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Understanding the relationships between environmental variables and erosion rates in badlands is vital for forecasting sediment yields. While the controlling role of rainfall on badland erosion rates has long been recognized, here we assess the relative influences of temperature and precipitation on slope erosion rates in the Nanxiong Basin, Southeast China. The volume of weathered and transported fragments was measured within a bounded plot at ten-day intervals between May 1, 2016, and April 30, 2017, and temperature and precipitation were continuously recorded. Mann-Kendall τ correlation, Granger causality, impulse response, and variance decomposition analyses were performed. The results show that Granger causality relationships exist between the ten-day mean temperature (TMT) and ten-day mean erosion rates (TER) and between the ten-day total precipitation (TTP) amount and the TER. Moreover, our findings indicate that TMT and TTP explained 14.6 and 12.61% of the variability in slope erosion rates, respectively, which indicates that temperature had at least the same influence on slope erosion than precipitation. In addition, because 22.5% of the measured erosion occurred during periods when there were no erosive rain events, the importance of small dry slides for removing rock fragments from these humid slopes is emphasized.
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INTRODUCTION
Badlands are commonly defined as ‘intensely dissected natural landscapes where vegetation is sparse or absent and useless for agriculture (Bryan and Yair, 1982). Due to their high erosion rates, badlands are also viewed as degraded areas worldwide (Brandolini et al., 2017; Molina et al., 2009; Peng et al., 2015). Soft bedrock and a lack of vegetation both promote accelerated erosion in these landscapes that produce steep, highly dissected topography and the formation of gully networks and badlands (Fairbridge, 1968; Bocco, 1991). As a result, Badland areas have some of the highest erosion rates globally (Clarke and Rendell, 2010). Consequently, they are considered as ‘ideal field laboratories’ for studying landscape evolution, acting as miniature fluvial systems in which it is possible to directly observe hill slope-scale processes, interconnections, and resulting landforms (Bryan and Yair, 1982; Parsons and Abrahams, 1994; Campbell, 1997; Alexander et al., 2008; Dickie and Parsons, 2012; Yair et al., 2013).
Several factors and processes affect the development and dynamics of badlands, most notably lithology (Kasanin-Grubin and Bryan, 2007; Morenode las Heras and Gallart, 2016), climate (Bryan and Yair, 1982), and slope aspect (Nadal-Romero et al., 2007). Marked differences in badland slope morphology (Churchill, 1981) and species richness (Nadal-Romero et al., 2014) have been recognized between aspects, and slope aspect can also be one of the most critical factors determining the intensity of physical weathering processes (Regüés et al., 2000). For a specific badland site, lithology and slope aspects are fixed over long temporal scales relative to climate. Thus, an important aspect of forecasting erosion rates in these landscapes is determining the influence of individual climatic factors.
The rate at which badland landforms develop is the subject of continued speculation (Clarke and Rendell, 2006). For example, erosion rates between 32 and 77 Mg ha yr−1 in non-vegetated badlands have been recorded in the Bardenas Reales, southeast Spain (Desir and Marin, 2009), compared with rates of between16 and 63 Mg ha yr−1 in vegetated badlands in the Penedès region of Spain (Martínezcasasnovas et al., 2010). In the Guadalajara badlands of Spain, erosion rates of up to 114 Mg ha yr−1 have been reported (Martín-Moreno et al., 2014).
Rainfall is an important driver of high erosion rates in badlands. For example, statistically significant relationships between sediment yield and the number of rainfall events have been reported (Cantón et al., 2001), which implies that wetting-drying cycles might have a more significant influence on weathering compared to the individual effects of heating and cooling cycles caused by temperature fluctuations (Cantón et al., 2001). Exceptions to this include badlands in Saudi Arabia, Kuwait, Qatar, and Yemen, where desert-like conditions prevail with substantial differences between day and night temperatures (Erguler and Shakoor, 2009). Erosion rates are assumed to be closely related to average annual precipitation (Bull and Kirkby, 2001), with the relationship between cumulative rainfall and cumulative erosion being particularly strong (Clarke and Rendell, 2006; Schumm, 1964). In addition, rain splash and creep caused by rainfall events can contribute to the detachment and transport of particles from slope face (Cantón et al., 2001). Thus, we hypothesized that in humid subtropical areas, erosion rates would be more strongly correlated with precipitation than temperature.
Although the role of temperature in the rapid weathering of badland materials has been studied (Yan et al., 2019), the impact of temperature on the erosion processes remains relatively understudied. Many existing studies on erosion rates in badlands have been undertaken on a yearly or decadal scale (Clarke and Rendell, 2006; Clarke and Rendell, 2010) and, as a result, the temperature is often averaged across an entire year. About methods, most previous studies have deployed erosion pins, which are considered an inaccurate means of monitoring short-term erosion rates and, therefore, have limited value in assessing the impacts of environmental variables. Thus, fine-scale erosion rate measurements are required to study the possible influences of temperature and predict future erosion rates to inform erosion-control measures (Cantón et al., 2001). Therefore, this study aimed to determine the relative contributions of temperature and rainfall to the erosion of badland slopes.
STUDY AREA
The Nanxiong Basin (24°33′–25°24′ N, 113°52′–114°45′ E), an ancient, Cretaceous faulted rift basin in the fold belt of the Nanling Mountains, is located in north Guangdong Province, southeast China. The basin has an elevation range of 48 to 1,421 m above sea level (Dogan and Aslan, 2017) and covers an area of 2,214 km2 (Figure 1). The basin has a subtropical monsoon climate with long hot summers and short winters. According to the Nanxiong meteorological station (1956–2010), the mean annual temperature, precipitation, and potential evaporation rate are 19.6°C, 1,555.1 mm, and 1,678.7 mm, respectively (Yan et al., 2017). In addition, continuous successions of red fluvial-lacustrine clastics with a maximum thickness of more than 7 km are preserved in the basin (Ma et al., 2018).
[image: Figure 1]FIGURE 1 | Map of Nanxiong Basin in Guangdong Province and the Monitoring site.
Visually spectacular badland landscapes are well developed over a homogeneous and monotonous series of calcareous silty mudstones and siltstones in the Nanxiong Basin (Figure 2). These are incised into continental purple mudstones from the Nongshan Formation (En) in Dahangkeng Village, the Shanghu Formation (Esh) in Huangtian Village, and the Zhutian formation (Kzt) in Jiangtian Village. Most studies conducted in this area have focused on the nature of the purple soils rather than erosion of the badland landscapes themselves (Jiang et al., 2015).
[image: Figure 2]FIGURE 2 | Badland landscape in Nanxiong Basin (Peng et al., 2015).
MATERIALS AND METHODS
Erosion Monitoring
To control for slope aspect, we established two bounded plots (1.6 × 2 m) on two opposite slopes oriented in an E–W direction (Figure 3). Weathered fragments (detached material) that had been eroded and transported to the platforms at the foot of each slope were collected. The slopes were left untouched for 12 months. The upper part of each plot was open, and, in the lower part, the platform from which regolith was collected was bounded by a brick wall. Outlets to drain water in platforms were set in thewalls and were covered with a filter screen to trap regolith. At approximately ten-day intervals, regolith fragments were collected from the bases of the slopes, dried in an oven for 24 h at 100°C, and their dry weight was recorded. Given the fixed area of the bounded plots and experimental time interval, time-series erosion rate datasets could be easily calculated.
[image: Figure 3]FIGURE 3 | The environment of the study site and the instruments for monitoring of erosion rates. We chose a site where the gully bottom is not steep to construct a cement platform to collect regolith depletion.
Given the problems associated with observations over just one season (Regüés et al., 1995), fragments were collected across an entire year, between May 1, 2016, and April 30, 2017. Given the low amounts of Ca2CO3 in the rocks forming this area (Yan et al., 2019), the potential loss of material from the dissolution of calcareous material was not considered. Moreover, given the low relief of these badlands (with a topographic range of approximately 20 m), topography was not considered. Unfortunately, one of the bounded plots was vandalized 3 months into the monitoring period, and, as such, results for one plot are discussed here.
Rainfall and Temperature
An automatic weather station was installed 200 m away from the experimental plot, which was connected to an automatic data logger. Temperature and precipitation recordings were made at 10-min intervals over the 12 months of field monitoring.
Mann-Kendal τ Correlation Coefficient and Granger Causality
The Mann-Kendal (M-K) tau test is a nonparametric test that does not require data with a specified distribution. M-K τ correlation coefficients for the measured erosion rates and environmental variables (temperature and rainfall) were calculated using MATLAB software. The Granger causality test is a statistical test used to determine whether one time series is useful for forecasting another (Granger, 1969), which has been widely used to study the dynamic relationships between economic time-series (Granger, 1988). Here, Granger causality tests were performed using Eviews software (version 11), which can be used for general statistical analysis and econometric analyses, such as cross-section and panel data analysis, and time-series estimation and forecasting. All of the variables used in our analyses are presented in Table 1.
TABLE 1 | Nonlinear correlations for Monthly and Ten-day erosion rates and environmental variables.
[image: Table 1]RESULTS
Erosion Rates and Erosional Modulus
The mean erosion rate for the whole year, which was calculated as the weight of fragments collected at the base of the experimental slope during the study year divided by the plot area, was 140 Mg ha−1 yr−1. The highest erosion rate was logged during October 20th–30th, 2016, at 440 Mg ha−1 yr−1. Conversely, the lowest erosion rates recorded were 2.92 Mg ha−1 yr−1, 8.03 Mg ha−1 yr−1, and 4.02 Mg ha−1 yr−1, which occurred during January 1–11, January 11–20, and January 20–30, 2017, respectively (Figure 4).
[image: Figure 4]FIGURE 4 | Erosion amount and the environmental variables during the study period.
August 2016 had the highest mean erosion rate at 313.58 Mg ha−1 yr−1 (calculated by dividing the sum erosion amount of each month and 12 months/year per area) (Figure 3). Conversely, the months with the lowest erosion rates were December, January, and February, at 4.76 Mg ha−1 yr−1, 27.01 Mg ha−1 yr−1, and 35.66 Mg ha−1 yr−1.
Similar to most transport-limited slopes of badlands (Campbell and Honsaker, 1982), the badlands slope in Nanxiong Basin is covered with a thick layer of rock fragments, especially on the slope faces. As its slope is equal or close to the critical slope of fragments, even during periods without rain, weathered fragments were still found in the plot platform. For example, during September 13–21, 2016, and December 30, 2016, to January 11, 2017, there was a marked difference in erosion rates, at 195.64 Mg ha−1 yr−1 and 2.92 Mg ha−1 yr−1.
Given that not all rainfall events cause erosion of the regolith, the term ‘erosive rain’ can be applied to those rainfall events to initiate transport. A threshold for such events of 12.7 mm of total rainfall has been suggested by Wischmeier and Smith, (1978), while Jiang and Li (1988) suggest a lower value of 10 mm that is more applicable to badlands considering the presence of dry regolith, which is more vulnerable to erosion. During the year-long study, no erosive rainfall events (>10 mm) were observed during several of the monitoring periods (Table 2). Without removing fragments caused by rain, the highest and lowest erosion rates were 195.64 Mg ha−1 yr−1 and 2.92 Mg ha−1 yr−1, respectively, representing a difference of 65 times. The erosion occurring during these ‘dry’ periods accounted for 22.5% of the total erosion amount.
TABLE 2 | Erosion rates during study period.
[image: Table 2]Statistical Analysis
The correlation coefficient between monthly and ten-day erosion rates and various environmental variables shown in Table 1 was obtained by applying the M-K tau correlation. Strong correlations were observed between the environmental variables, including monthly mean temperature, monthly mean temperature of daily highest temperature, monthly mean temperature of daily lowest temperature, and monthly erosion rate. Most of the calculated correlations of the ten-day erosion rates with environmental variables were positive and statistically significant (p ≤ 0.01) (Table 1). Based on these data, temperature appeared to significantly influence on erosion rates than rainfall during the study period.
Granger Causality Tests
Tried with different environmental variables, finally, ten-day mean temperature (TMT) and ten-day total precipitation (TTP) were selected to test the causality between variables. The results of Granger causality tests are summarized in Table 3, which indicate variable causal links between erosion rates and TMT, erosion rates and TTP. Moreover, TTP and TMT were found to have positively contributed to increases in erosion rates (p = 0.05).
TABLE 3 | Granger causality test results.
[image: Table 3]Impulse Response and Variance Decomposition
Impulse response analysis was deployed to analyze the dynamic relationship between erosion rate and environmental variables. As shown in Figure 5, providing a positive standard deviation shock is given to the residual of erosion rates, the rest of the variables react to this innovation. TTP response to erosion rates was found first to decrease, then fluctuate to become stationary in the long-term. The response of TMT to erosion rates fluctuated at first and then stabilized due to shocks stemming from TER. Since the impulse response tends towards stability, the Granger causality tests are reasonable.
[image: Figure 5]FIGURE 5 | Impulse responses of TER, TTP, and TMT.
The variance decomposition approach was adapted to compare the contribution of rainfall and temperature to erosion rates. From No. Seven periods, the impulse response tended towards stability. Thus, the result of the impulse response was deemed to be reliable. Moreover, to forecast precipitation and temperature impacts on erosion rates, a variance decomposition and impulse response analyses were performed (Table 4). According to thevariance decomposition analysis results presented in Table 3, 72.75% of the variation in erosion amounts could be attributed to innovative shocks within the variable itself. In comparison, the contribution made by TMT and TTP was 14.64 and 12.61%, respectively.
TABLE 4 | Variance Decomposition of TER (Ten-day erosion rate).
[image: Table 4]DISCUSSION
In some areas, frost action, snowmelt, and freeze-thaw processes are known to have important impacts on the weathering and erosion of badland surfaces (Regüés et al., 2000; Schumm, 1964; Regüés et al., 1995). In the Nanxiong Basin, with its subtropical climate, freezing occurs only a few times a year and it is not, therefore, considered to be a significant geomorphic factor. Excluding freezing processes, badland erosion occurs in response to individual rain events via rain-splash, concentrated and unconcentrated surface flow, creep, mass movement, and piping (Bryan and Yair, 1982). Rain-splash and creep in particular shape the characteristic convexity of the upper slopes of badland landscapes (Parsons and Abrahams, 1994; Schumm, 1956; Carson and Kirkby, 1972). Surface runoff in the form of thin films is likely to be important for transporting material that has been detached and mobilized by splash and raindrop impact (Parsons and Abrahams, 1992; Abrahams et al., 1994). The effectiveness of creep and mudflow becomes apparent at high slope angles, where the thin weathered surface, once wetted, can begin to sag downslope under the influence of gravity (Clarke and Rendell, 2006). The impact of rain and mudflow was also notable at our study site, with mudflows appearing to transport most of the fragments from the slope face (Figure 6). A similar phenomenon is also recorded in Basilicata, Italy, where the effect of creep appears to be limited to a 10–40 mm thick weathered layer, where the sagging effect is visible on steep (>53°) Biancane slopes (Clarke and Rendell, 2006). Thus, we speculate that the mudflows explain how TTP is related to removal fragments in Badlands in Nanxiong Basin. Further research is now required to determine the precipitation threshold for mudflow initiation.
[image: Figure 6]FIGURE 6 | Creep or mudflow occurs during continuous rain was observed during the monitoring period.
Gravity has been identified as the primary morphogenic process responsible for shaping slopes in badlands (Ciccacci et al., 2008). In Nanxiong, small slides of dry fragments under a small perturbation are another notable form of erosion. During the periods when no erosive rain events occurred, such small-scale slides resulted in the highest erosion rate of 195.64 Mg ha−1 yr−1, which was almost 65 times higher than the lowest recorded erosion rate of 2.92 Mg ha−1 yr−1. Parsons and Abrahams (1994) note that the maximum slope angles of badland surfaces are related to the angle of repose of dry weathered detritus. In the Nanxiong badlands, slope angle equals the angle of frictional resistance, thus promoting the transport of weathered fragments downslope. The initiation of small dry slides involves disturbing animals, such as birds and insects, and wind.
Badlands developed in sub-humid mountainous areas are subject to higher rates of denudation and more active dynamics compared to similar landscapes in arid or semiarid areas (Bull and Kirkby, 2001; Regüés and Gallart, 2004).
Previous studies demonstrated that wetting and drying cycles are more effective at causing the disintegration of clay-bearing rocks (Erguler and Shakoor, 2009; Yan, et al., 2019). However, in the field, precipitation amounts recorded between sampling periods did not significantly correlate with rock bulk density or surface mechanical resistance, indicating that regolith moisture does not depend solely on precipitation at this site but also related to temperature (Nadal-Romero et al., 2007). Thus, we speculate that the mean temperature contributes to increase the number of wetting and drying cycles. This might explain why, at our study site, mean temperature was found to contribute 14.6% of erosion rates, which was slightly higher than the contribution of total precipitation (12.6%).
It is apparent that mean temperature (including the mean lowest and highest temperatures) had a stronger relationship with erosion rates over monthly timescale than temperature difference. However, over a ten-day timescale, while the correlation was significant, the M-K tau coefficient was low. Remarkably, the mean temperature was found to have casual links with erosion rates rather than temperature differences. High temperatures were also found to be dominant in increasing erosion rates. Thus, it appears that the coefficient of the ten-day temperature difference and erosion rates resulted from a time-lag effect of temperature. Work is now needed using long-term datasets to quantify the nature of this time interval.
In this climate and lithology, mean temperature rather than temperature difference has more of an influence on the erosion rates of badland slopes. As for other dry badlands, weathering dynamics depend mainly on rainfall characteristics and water deficit (Sole´-Benet et al., 1997). For example, Gallart et al. (2002) reported that in the Vallcebre catchments of the Pyrenean ranges, the main controlling factor on badland development appears to be low temperatures rather than a lack of moisture. Indeed, at our subtropical study site, the temperature was found to have at least the same influence as precipitation on the erosion of badland slopes.
We applied the Granger causality method to examine the relationships between climate variables and erosion rates over short temporal scales. In this sense, the dataset we need for this test is not necessarily from two or more years, although we are aware that more extended datasets have preferable. Nevertheless, the impulse response has shown that the result of the impulse response is reliable. Thus we believe that studies with only one are fine.
CONCLUSION
Analysis based on M-K τ correlation tests suggests that temperature variables positively and significantly corelated with erosion rates in the Nanxiong badlands. Granger causality relationships were also derived for erosion rates and TMT and total TTP. The results of impulse response and variance decomposition analyses show that the relative contributions of TMT and TTP to erosion were 14.6 and 12.61% during the study period, respectively. This suggests that in this subtropical environment, high mean temperatures have at least the same influence on badland development as precipitation. This implies that mean temperature might be an important parameter for erosion forecasting.
During the year-long study, 22.5% of the total erosion amount occurred during periods when no erosive rain events occurred. During these periods, small slides of dry weathered fragments were important for the removal of material in this transport-limited humid badland landscape, while mudflow processes were important for transporting material during periods of continuous rain.
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Groundwater, the most important water resource and the largest distributed store of fresh water in the world, supports sustainability of groundwater-dependent ecosystems and resilient and sustainable economy of the future. However, groundwater level decline in many parts of world has occurred as a result of a combination of climate change, land cover change and groundwater abstraction from aquifers. This study investigates the determination of the contributions of these factors to the groundwater level changes with the HydroSight model. The unconfined superficial aquifer in the Gnangara region in Western Australia was used as a case study. It was found that rainfall dominates long-term (1992–2014) groundwater level changes and the contribution rate of rainfall reduced because the rainfall decreased over time. The mean rainfall contribution rate is 77% for climate and land cover analysis and 90% for climate and pumping analysis. Secondly, the increasing groundwater pumping activities had a significant influence on groundwater level and its mean contribution rate on groundwater level decline is -23%. The land cover changes had limited influence on long-term groundwater level changes and the contribution rate is stable over time with a mean of 2%. Results also showed spatial heterogeneity: the groundwater level changes were mainly influenced by rainfall and groundwater pumping in the southern study region, and the groundwater level changes were influenced by the combination of rainfall, land cover and groundwater pumping in the northern study region. This research will assist in developing a quantitative understanding of the influences of different factors on groundwater level changes in any aquifer in the world.
Keywords: groundwater hydrograph decomposition, transfer function noise model, groundwater level decline, climate change, land cover change, groundwater abstraction, the Gnangara region
INTRODUCTION
Groundwater is an important natural resource that supplies water to humans (Döll, 2009), especially as the primary source of drinking water for over two billion people (Famiglietti, 2014). In arid and semiarid regions, groundwater is also used for agricultural irrigation. At the global level, 50% of the domestic water supply, 40% of the industrial water supply and 20% of the irrigation water supply originate from groundwater (Zektser and Lorne, 2004). However, global groundwater depletion has been increasing since the 1960 (Wada et al., 2010). Many countries and regions now face serious problems of excessive groundwater depletion, such as North Africa, North China, North America, the Middle East, South and Central Asia, and Australia (Konikow and Kendy, 2005). For example, groundwater depletion in the United States during 1900–2008 is estimated totals approximately 1,000 cubic kilometers (km3) (Konikow, 2013). Groundwater depletion rate in North China based on GRACE was 2.2 ± 0.3 cm/yr from 2003 to 2010, which is equivalent to a volume of 8.3 ± 1.1 km3/yr (Feng et al., 2013). Groundwater is often poorly monitored and managed (Famiglietti, 2014). This has led to notable social and economic impacts (Gleeson et al., 2012). As a result, more efforts and attention are required to better understand and manage groundwater resources.
Continuous groundwater level decline in unconfined and confined aquifers over a long period is an important depletion indicator (Zektser and Lorne, 2004). Groundwater level decline can not only impose negative influences on local economic and social development, but could also impose significant influences on natural streamflow and groundwater-dependent ecosystems (Wada et al., 2010; Fu et al., 2019). It has been widely recognized that groundwater level fluctuation is influenced not only by natural processes, such as precipitation, evaporation and river water stages (Zhou et al., 2020), but also by anthropogenic activities, such as groundwater abstraction (Shapoori et al., 2015a) and land use and land cover change (Yue et al., 2016; Cheng et al., 2017; Abiye et al., 2018). Therefore, it is necessary to detect these drivers and decompose groundwater hydrographs into individual drivers to support groundwater resource management and regional development.
A well-known method is time series analysis which has been widely adopted in groundwater hydrology to interpolate, simulate and predict groundwater levels and further quantify the effects of various drivers of groundwater level fluctuation (Peterson and Western, 2014; Peterson and Western, 2018; Obergfell et al., 2019). This method is relatively simple and requires few parameters, and the model is easily constructed and produces reliable results. The Hydrograph Analysis: Rainfall And Time Trends (HARTT) model proposed by Ferdowsian et al. (2001), Ferdowsian et al. (2002) and Ferdowsian and Pannell (2009) is a representative time series model for groundwater level modelling. Another time series approach model is the transfer function noise (TFN) model developed by von Asmuth et al. (2002) and von Asmuth et al. (2008). This model is based on predefined impulse response functions and simulates groundwater head observations by weighting input historical forcing data and estimating the noise component. TFN models, in contrast to the HARRT model, do not require groundwater level observation data obtained at regular time steps, and they do not assume a stationary climate (Peterson and Western, 2014). Therefore, the TFN model is readily applied in groundwater hydrograph modelling because groundwater observation data are not always acquired at regular time steps. This method has been applied in many studies, including the estimation of groundwater recharge (Obergfell et al., 2019) and aquifer hydraulic properties (Shapoori et al., 2015b) and even the decomposition of the observed groundwater head into different hydrological stresses (Peterson and Western, 2011; Shapoori et al., 2015c). In this study, the TFN model developed by Peterson and Western (2014) was adopted to separate the contributions of land cover change and groundwater pumping from that of rainfall variation to the observed groundwater level fluctuation.
The Gnangara groundwater system is one of the most important groundwater sources in Western Australia and is vital to the local drinking water supply, supplying over 40% of Perth’s drinking water each year (Merz, 2009), as well as supporting nationally significant groundwater-dependent ecosystems, such as lakes, wetlands, woodlands and cave ecosystems (Western Australian Planning Commission, 2001). The Gnangara groundwater resources are a key factor to achieve sustainable social and economic growth in the region, and they provide approximately 60% of the potable water supply to the city of Perth (with a population 1.5 million people) (Elmahdi and McFarlane, 2009). However, the groundwater levels in this region have been found to decline in the unconfined (superficial aquifer with groundwater moves slowly) and confined aquifers (Leederville with a maximum thickness of more than 600 m and Yarragadee aquifers with a maximum thickness of more than 2000 m), over the last 40 years due to a combination of rainfall decline, groundwater abstraction for public and private water supply purposes (Iftekhar and Fogarty, 2017), evapotranspiration, and interception by pine plantations (Bekesi et al., 2009; Strobach, 2013). It has been widely accepted that the sustainability of the Gnangara groundwater resources and groundwater-dependent ecosystems is greatly threatened by the continued decline in groundwater levels (Xu, 2008). However, the relative contributions of these factors to the groundwater level decline remain uncertain. Therefore, quantitative estimation of the impact of the individual drivers on groundwater level dynamics is necessary for scientific and effective groundwater resource management in the Gnangara region.
The HydroSight program employed in this study is a highly flexible statistical toolbox developed by Peterson and Western (2014). It integrates multiple models, such as soil moisture and time series models, into one model provides an efficient means to build a wide range of groundwater time-series models and separate the impacts of different factors from climate on groundwater level without knowledge of programming knowledge (http://peterson-tim-j.github.io/HydroSight/). Based on this tool, this study focuses on long-term groundwater level change analysis in unconfined superficial aquifer to identify the controlling factors and quantitatively decompose groundwater hydrograph into different drivers, such as rainfall variability, land cover change (represented by the normalized difference vegetation index (NDVI)) and groundwater pumping (for public and private water supply purposes), in the Gnangara region. This study has implications for groundwater resource management and regional development.
Study Area
Site Location
The Gnangara region is a basin consisting of water-holding sands and gravels interspersed with clays in the coastal plain of the northern part of Perth, Western Australia (Figure 1). It covers an area of 2,200 km2 and is bounded by the Gingin Brook and Moore River to the north, the Swan River to the south, the Darling Scarp, Ellen Brook and Swan Valley to the east, and the Indian Ocean to the west (Davidson, 1995; Western Australian Planning Commission, 2001). This region experiences a Mediterranean climate with hot, dry summers and mild, wet winters. The long-term (1900–2017) mean annual rainfall is 758 mm and the mean annual potential evapotranspiration reaches 1,386 mm (calculated based on the daily rainfall and potential evapotranspiration which is extracted from the SILO Data Drill database, see the detail in 2.2.1). Approximately 80% of the rainfall and 23% of the potential evapotranspiration are concentrated from May to September (Figure 2). A dry climate period following 1968 was evaluated by cumulative deviation from the mean rainfall (CDFM) technique (Figure 2). Over the last 47 years (1970–2017), rainfall has declined by 13% below the long-term average (1900–2017), which has influenced the local ecosystem (Wilson et al., 2012). The long-term mean annual rainfall was considered to determine the spatial distribution of rainfall in the Gnangara region via the empirical Bayesian kriging in ArcGIS 10.5 (Figure 3A). Figure 3A shows that the rainfall is high in the south and central part of the Gnangara region (up to 865 mm) and is low in north part of the Gnangara region (as low as 688 mm).
[image: Figure 1]FIGURE 1 | Location of the observation and pumping sites in the Gnangara region, Western Australia.
[image: Figure 2]FIGURE 2 | Long-term averages of the monthly rainfall, annual rainfall and potential evapotranspiration, and dry climatic periods by cumulative deviation from mean rainfall (CDFM) in the Gnangara region.
[image: Figure 3]FIGURE 3 | Contour map of the rainfall (A) and NDVI (B) in the Gnangara region.
In the Gnangara groundwater system, plantation forestry is one of the major land use types (land use map in 1992 and 2018 extracted from Bureau of Rural Sciences (2006) and Australian Bureau of Agricultural and Resource Economics and Sciences (2018), Supplementary Figure S1). Approximately 17,000 ha of the area contains currently mature maritime pine (Pinus pinaster) plantations, located in the centre of the system (Forest Products Commission, 2009). Mature pines consume much water because the transpiration rate of pines is 23% higher than that of the native banksia woodland surrounding the pine plantation (Carbon et al., 1982; Tremayne, 2010). Urbanized areas mainly occur in the southwest and southeast of the system. Other land use types, such as pastures, are found along the eastern and northern margins of the system (Australian Bureau of Agricultural and Resource Economics and Sciences, 2018). The long-term mean annual NDVI at various sites was adopted to determine the spatial distribution of the NDVI in the Gnangara region via the empirical Bayesian kriging in ArcGIS 10.5 (Figure 3B) (with Root Mean Squared Error of 0.003). Figure 3B shows that high NDVI values largely occurred in the north and east of the Gnangara region, which are mainly covered with pine and banksia plantations and pastures. Low NDVI were mainly found in the south and middle west of the Gnangara region where urban areas are located.
The groundwater resources in the Gnangara region are mainly from winter rain. A high proportion of the precipitation infiltrates into the soil and recharges local groundwater due to the sandy soils with a high permeability occurring in the study area (Western Australian Planning Commission, 2001). The groundwater resources are usually abstracted for public water supply purposes, private water use, park and garden watering, industrial and commercial use, horticultural and agricultural irrigation, and domestic use. Approximately 42% of the extracted groundwater is used for the public water supply (Department of Water, 2009a).
The Gnangara groundwater system comprises four different hydrogeological aquifers and the 3D Aquifer Visualization of the Gnangara region can be found in http://www.bom.gov.au/water/groundwater/explorer/3d-aquifer-visual.shtml. The shallowest, unconfined superficial aquifer (its top surface is commonly termed the Gnangara Mound) which stretches across the coastal plain, with an average thickness of 45 m, a maximum thickness of 75 m and a depth to groundwater ranging from 3 to 20 m. From east to west, the sediments of the superficial aquifer generally vary from being predominantly clayey adjacent to the Darling Fault and Gingin Scarp, to a sandy succession in the central coastal plain area, and to sand and limestone within the coastal belt. The hydraulic properties of the superficial aquifer vary significantly depending on geology. The horizontal hydraulic conductivity increased from western and eastern margin to central with values of 0.1, 15, and 50 m/day in Guildford Clay, Bassendean Sand, Tamala limestone. The shallow, semi-confined Mirrabooka aquifer which is mainly occurs in the southern and eastern regions of the Gnangara region and varies in thickness to a maximum thickness of 160 m, and its horizontal hydraulic conductivity of this aquifer ranges from 4 to 10 m/day. The deep, partially confined Leederville aquifer below the superficial aquifer, extends beneath the entire coastal plain except in the north near the Swan Estuary and in the south-east corner, and is typically several hundred meters thick, consisting of discontinuous interbedded sandstones, siltstones and shales with horizontal hydraulic conductivity of the sandstone beds about 10 m/day and that of the siltstone and shale beds about 1 × 10–6 m/day. The Yarragadee aquifer is the deepest and major confined aquifer underlying the Perth Region and extending to the north and south within the Perth Basin. It is a multilayered aquifer often more than 2000 m thick, consisting of discontinuous interbedded sandstones, siltstones and shales with the average horizontal hydraulic conductivities range between 1 × 10–6 and 10 m/day., and it offers a vast storage and a robust supply of groundwater (Davidson and Yu, 2008; Department of Water, 2009a; Environmental Protection Authority, 2017). The Gnangara Mound developed because the vertical rainfall infiltration rate (about 1 m/day) exceeds the horizontal groundwater flow rate (ranges from 50 m/year to 1000 m/year) in the aquifer (Davidson, 1995; Davidson and Yu, 2008). Groundwater recharge of the superficial aquifer is highly variable and depends on the local rainfall, land use, and geological conditions (Davidson and Yu, 2008; Department of Water, 2009a). The superficial aquifer is predominantly recharged by rainfall in winter with some upward recharge, occurring from the underlying Leederville and Yarragadee aquifers (Department of Water, 2009a). Groundwater is naturally discharged into wetlands, rivers, springs and ocean, and groundwater undergoes vegetation transpiration and leaks into underlying aquifers during groundwater movement. Additional discharge is associated with groundwater abstraction (Davidson and Yu, 2008; Department of Water, 2009a).
Data Source
Climate Data
Climate data (1900–2017), including the daily precipitation and FAO56 potential evapotranspiration (FAO Penman-Monteith equation, Allen et al. (1998)), were extracted from the SILO Data Drill database created by the Queensland Government Department of Science, Information Technology and Innovation (DSITI). This dataset provides 0.05° gridded daily data and are constructed by spatially interpolating the observational data with methods of a thin plate smoothing spline and ordinary kriging (Jeffrey et al., 2001) and can be accessed on the Internet at https://www.longpaddock.qld.gov.au/silo/. Minimum and maximum temperatures, solar radiation and vapor pressure prior to 1956 were interpolated by an anomaly interpolation technique (Zajaczkowski and Jeffrey, 2020). At each observation site, the acquired climate data exhibit a daily time-step and start at 20 years prior to the first observation date of the groundwater level.
Land Cover Data
The NDVI (Normalized Difference Vegetation Index) - high resolution gridded (0.05° * 0.05° grid) monthly NDVI dataset (1992–2017) used as the land cover change data in this study was obtained from the Australian Bureau of Meteorology website (http://www.bom.gov.au/metadata/catalogue/view/ANZCW0503900404.shtml). The satellite data originated from the Advanced Very High-Resolution Radiometer (AVHRR) instruments onboard the National Oceanic and Atmospheric Administration (NOAA) series of satellites operated by the US (http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html). The NOAA-11, -14, -16 and -18 satellites were considered. The NDVI was used to examine the vegetation cover changes because the vegetation and non-vegetation area is easy to identify and historical land use information cannot be obtained. The NDVI value ranges from −1 to +1, where positive values indicate vegetation features and negative values indicate non-vegetation features (Gandhi et al., 2015).
Groundwater Monitoring Data
Groundwater monitoring data were retrieved from 325 observation bores in the unconfined superficial aquifer within the Gnangara region (Figure 1). The observation records are irregular and the data from 1992 to 2014 are used in this study. This dataset was provided by the Department of Water and Environmental Regulation, Government of Western Australia. The details of cite description can be downloaded for free from https://water.wa.gov.au/maps-and-data/monitoring/water-information-reporting.
Groundwater Abstraction
A groundwater abstraction dataset (2,324 pumping sites) collected from the different aquifers (mostly pertaining to from superficial aquifer) in the Gnangara region, from 1992–2014, was used in this study. These groundwater pumping data referred to the extraction for public and private water supply purposes. The groundwater abstraction data were obtained from the Department of Water and Environmental Regulation, Government of Western Australia.
METHODS
The Transfer Function Noise Model
The original TFN model was developed by von Asmuth et al. (2002) to simulate the groundwater level. This model includes three components: a deterministic component simulating the groundwater level due to the combined effect of all external factors, a residual series of the groundwater level and a constant component of the local drainage level. The Pearson type III distribution function was introduced by von Asmuth et al. (2002) to establish the precipitation and evapotranspiration impulse response functions. A revised version of the Pearson type III distribution function was adopted and five weaknesses in use for climatic stressors had been improved by Peterson and Western (2014). The first modification was to minimize the parameter covariance. The second modification was the calibration reproducibility was improved by undertaking a log 10 transformation of the parameters. The third modification was to reduce the impulse response function value at the start of the climate record. The fourth modification was to address the integration of the function from the first climate observation to negative infinity. The fifth modification was minimizing rounding errors in the numerical estimation of the integrals. Finally, Eq. 1 details the linear TFN model comprising two components of precipitation and evaporation:
[image: image]
where [image: image] [LT−1] and [image: image] [LT−1] are the daily precipitation and the daily potential evapotranspiration, respectively, and [image: image] [−] is a dimensionless parameter scaling the transfer function for application to the evapotranspiration signal. [image: image] is the impulse response function which was defined by von Asmuth and Bierkens (2005). [image: image][L] is the residual series of groundwater level at time t, and is calculated by the observed groundwater head at time t subtracted from the modeled groundwater head at time t, d[L] is the constant component for local drainage level. To consider the groundwater level response to land cover change, von Asmuth et al. (2008) added a third integral to the time series model for the land cover change stressor, which involves a weighting the evapotranspiration integral by two parameters of the evaporation factor parameter [image: image] that depending on the soil and land cover and the historic fraction of vegetation clearing [image: image] (Eq. 2):
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However, the linear TFN model does not simulate the groundwater head well because of the nonlinearity between precipitation and groundwater head (Peterson and Western, 2014). Therefore, a vertically lumped soil moisture model (Eq. 3) was introduced into Eq. 1. The model is highly flexible and contains one to five parameters (KlemeŠ, 1986).
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where S [L] is the soil moisture at time [image: image] [T], [image: image] [L] is the antilog (log10)-transformed parameter related to the maximum soil moisture capacity [image: image] [L], [image: image] [LT−1] is the antilog (log10)-transformed parameter related to the maximum vertical soil saturated conductivity [image: image] [LT−1], [image: image] [LT−1] is the potential evapotranspiration rate at time [image: image], [image: image] is a dimensionless parameter controlling the fraction of precipitation available for infiltration as the catchment wetness, [image: image] is the antilog (log10) transformed dimensionless parameter controlling the free drainage as the catchment wetness, and [image: image] is a dimensionless parameter controlling soil evapotranspiration.
In the process of transforming the precipitation and potential evapotranspiration time series data into the required TFN model input, the precipitation [image: image] in Eq. 1 can be replaced with the free drainage [image: image] or infiltration rate [image: image], and the potential evapotranspiration [image: image] can be replaced with the soil evapotranspiration [image: image]or groundwater potential evapotranspiration[image: image]. Two impulse response functions [image: image] and [image: image] for precipitation and evapotranspiration, respectively, were adopted in the time series model.
To consider for the groundwater level response to groundwater pumping, Shapoori et al. (2015a) and Shapoori et al. (2015c) added a third integral to the time series model (Eq. 4). Shapoori et al. (2015c) showed that models with and without groundwater evaporation produced similar results. Therefore, the second integral of groundwater evaporation was omitted in the models of this study.
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where [image: image] [L3T−1] is the daily pumping rate. The response function [image: image] can either be the Hantush’s equation for a leaky aquifer (Hantush, 1956; Eq. 5) or the Ferris and Knowles’ well equation for a nonleaky aquifer (Ferris and Knowles, 1963; Eq. 6). The Ferris and Knowles’ well equation without groundwater potential evapotranspiration was selected in this study due to the groundwater levels in most bores occurring deeper than 1 m according to tests conducted by Shapoori et al. (2015a):
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where a, b and c are parameters that only have a physical meaning if the basic Hantush assumptions are satisfied.
According to Peterson and Western (2014), there are 84 nonlinear TFN models based on 16 soil moisture models available within HydroSight. Eqs 3, 7 (Peterson and Western, 2014), Eq. 8 (Peterson and Western, 2014), and Eq. 9 (Siriwardena et al., 2011) are four model structures used in this study and is named as structure “cccc,” “c1c1,” “c0cc,” “inf101.” Structure cccc means all parameters are calibrated. Structure c1c1 means fixing [image: image] = [image: image]. Structure c0cc means fixing [image: image] = [image: image]. Structure inf1c1 means fixing [image: image] = [image: image]. Free drainage was chosen to transform the precipitation time series data into the required TFN model input. The Ferris and Knowles’ well equation was selected as the response function.
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Model Calibration and Evaluation
Following Shapoori et al. (2015a) and Shapoori et al. (2015c), the first 70% and last 30% of the observation records were designated as the calibration and evaluation periods, respectively. To identify individual parameter which produces the best possible fit to the hydrograph, the default calibration methods in the toolbox of Shuffled Complex Evolution with Principal Components Analysis - the University of California at Irvine (SP-UCI), developed by Chu et al. (2011), were used. SP-UCI is a global optimization algorithm based on the Shuffled Complex Evolution (SCE-UA) method (Duan et al., 1992) to address high-dimensional and complex problems.
Model Performance Assessment
The Akaike information criterion with correction (AICc) and Bayesian information criterion (BIC) (Burnham and Anderson, 2004) were used to account for the number of model parameters. The lower AICc and BIC indicates the better model. Moreover, the Nash-Sutcliffe efficiency (NSE) has been widely used to assess the goodness fit of a hydrograph (Ritter and Muñoz-Carpena, 2013; van der Spek and Bakker, 2017). Therefore, to assess the TFN model performance, the NSE (Nash and Sutcliffe, 1970) and unbiased NSE (Shapoori et al., 2015a) were adopted in the calibration and evaluation periods, respectively. NSE ranges from −∞ to 1. The model is more accurate when the NSE value is closer to 1. At NSE = 1, the modelled data are a perfect match to the observed data (only if the measurements are free of errors). At NSE = 0, the modelled data are as accurate as the mean of the observed, and if NSE <0, the modelled data are less accurate than the mean observed data. Model performance can be evaluated as unsatisfactory if NSE ≤ 0.5, model performance can be evaluated as satisfactory if 0.50 < NSE≤0.65; model performance can be evaluated as good if 0.65 < NSE≤0.75; model performance can be evaluated as very good if 0.75 < NSE≤0.1 (Moriasi et al., 2007; Moriasi et al., 2015).
Radius of Influence
Based on the current data on the study area, the Dupuit equation (Dupuit, 1863) was selected to calculate the radius of influence of pumping wells. In the confined aquifer, the Dupuit equation (Eq. 10) was used to calculate the radius of influence of pumping wells. In the unconfined aquifer, the Dupit equation (Eq. 11) (Dupuit, 1863) was used to calculate the radius of influence of pumping wells.
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[image: image]
where [image: image] [m] is the radius of influence of a pumping bore, [image: image] and [image: image] [m] are the drawdowns in the observation bores, [image: image] and [image: image] [m] are the distances between the observation and pumping bores, and [image: image] [m] is the thickness of the aquifer. In this study, the thickness of the unconfined aquifer was determined according to Smith and Pollock (2010).
RESULTS
Model Structure Comparison
To determine the most applicable model structure, four soil moisture model structures (structures cccc, c1c1, cocc and inf101) were tested in all bores for climate-only analysis. For AICc and BIC, there are not obvious differences between these four model structures, but structure cccc showed worse than other three model structures (Figure 4A). The climate-only analysis means the groundwater level is considered only influenced by rainfall. The NSE values of 325 bores using these four soil moisture models are listed in a box plot is shown in Figure 4B. During the calibration period, model structure inf101 performed the worst, with the lowest mean, median values of the NSE. The model structure cccc performed the best with the highest mean value of NSE in calibration but performed the worst with the lowest mean value of NSE. The model structure c0cc performed as good as model structure c1c1. Therefore, either model structure c1c1 with less parameters than c0cc was appropriate in this study. In this study, model structure c1c1 (Eq. 7) was chosen to model all the bores in the Gnangara region in all subsequent groundwater level analyses.
[image: Figure 4]FIGURE 4 | Box plot of AICc, BIC (A) and NSE (B) results of the four soil model structures in the climate-only analysis. Note: Structure cccc means all parameters of [image: image], α, β, and γ are calibrated. Structure c1c1 means α = γ = 1. Structure c0cc means α = 1. Structure inf101 means α = γ = 1 and β = 0.
Model Performance
Climate Only
Sixty percent of the bores in climate-only (C) analysis during the calibration period produced an acceptable performance (NSE >0.5), of which 36% of the bores performed very good, 10% of the bores performed good and 14% of the bores performed satisfactorily. In addition, 40% of the bores performed unsatisfactorily. During the evaluation period, 48 and 52% of total bores yielded an acceptable and unsatisfactory groundwater head modelling performance, respectively.
Spatially, bores producing an acceptable model performance in climate-only analysis predominantly occurred in the southeastern Gnangara, followed by the northern Gnangara, and an unsatisfactory performance was predominantly produced in central-western and northwestern Gnangara and the coastal area of the Gnangara region during the calibration period (Supplementary Figure S2). The spatial distribution of model performance during the evaluation period is similar with that during the calibration period. However, an unsatisfactory performance increased in south area of the Gnangara region (Supplementary Figure S2).
Climate and Land Cover
The model performance was improved during both the calibration and evaluation periods when the NDVI was added to the TFN model. The acceptable performance increased from 60 to 62%, especially the good and satisfactory performance level with an improvement of 2% during the calibration period. In addition, the unsatisfactory performance level was reduced by 2% during the calibration period. However, the acceptable performance level decreased from 48 to 47% during the evaluation period.
Among the 325 bores in the Gnangara region, an acceptable performance was largely attained in the south, southeast and north of the Gnangara region during the calibration and evaluation periods in the climate and land cover (C + L) analysis (Supplementary Figure S2). An unsatisfactory performance during the calibration and evaluation periods was predominantly distributed is mainly attained in the central-western and northwest of the Gnangara region (Supplementary Figure S2).
Figure 5 shows the spatial distribution and magnitude of the NSE improvement considering the land cover data were considered. The improvement was calculated by subtracting the NSE value of the climate-only analysis from the NSE value of the climate and land cover analysis. The model performance had decreased when the NSE change value was smaller than −0.1. The model performance remained stable when the NSE change value varied between −0.1 and 0.1. The model performance had improved when the NSE change value was larger than 0.1. During the calibration period, the NSE value at 17 bores had improved with the NSE change values ranging from 0.1 to 1.85 and 18 bores had been reduced by values ranging from −8.62 to −0.1. Most of the bores (290) remained stable, with NSE change values ranging from -0.1 to 0.1. During the evaluation period, the NSE value at 21 bores had improved with NSE change values ranging from 0.1 to 0.85, and at 19 bores, the performance had decreased with NSE change values ranging from -0.52 to −0.1. Most of the bores (285) remained stable, with NSE change values ranging from −0.1 to 0.1. In calibration and evaluation period, the NSE improved mainly at bores in northern Gnangara and the NSE declined mainly at bores in the northern parts of the Gnangara region.
[image: Figure 5]FIGURE 5 | Difference in NSE between the climate-only (C) analysis and the climate and land cover (C + L) analysis.
Climate and Groundwater Pumping
According to the empirical Dupuit equation, the radius of influence of the pumping wells in the confined and unconfined aquifers ranged from 708 to 9,303 m, and 1,302 pumping sites were determined to influence 271 observation sites. At these 271 observation sites, the groundwater pumping stressor was included to assess its contribution to the groundwater level changes. The corresponding modelling results of the C analysis and C + L analyses were separated and compared to climate and pumping analysis (C + P) results during the calibration and evaluation periods.
To validate the pumping well influence on the groundwater head, models with multiple bores and only the nearest bore were applied. The NSE of these two models are shown in Figure 6. During both the calibration and evaluation periods, the models containing one bore and multiple bores did not exhibit notable differences, but the model with one bore attained a slightly better performance than the model with multiple bores. Therefore, the model with one bore was applied in the climate and pumping stressor analysis.
[image: Figure 6]FIGURE 6 | Comparison NSE results between the climate and pumping analysis with the nearest pumping bore and multiple pumping bores.
During the calibration period, 60% of the bores produced an acceptable modelling performance, and 40% of the bores produced an unsatisfactory modelling performance in the C analysis (Figure 7). The acceptable model performance level had been improved by 3 and 19% in the C + L and C + P analyses, respectively. Especially for the very good performance rate had improved by 21% in the C + P analyses (Figure 7). Moreover, unsatisfactory model performance rate has been reduced by 2 and 18% for C + L and C + P analysis. During the evaluation period, the acceptable model performance rate increased slightly from 48% in the C analysis to 50% in the C + P analysis. In the C + L analyses, the acceptable model performance rate was even reduced by 3% (Figure 7). In general, the pumping analysis results were slightly better than the land cover analysis results during both the calibration and evaluation periods.
[image: Figure 7]FIGURE 7 | Proportion of bores with different NSE levels of the climate-only (C) analysis, climate and land cover (C + L) analysis, and climate and pumping (C + P) analyses.
Among the 271 bores in the Gnangara region, an acceptable and unsatisfactory model performance predominantly occurred in the south and north (coastal region), respectively, of the study area in the C analysis (Supplementary Figure S3). In central and north area, the model performance level increased when the pumping stressor were considered (Supplementary Figure S3). The model performance level was improved at a few bores in north area for C + L analysis. During the evaluation period, the unsatisfactory performance level was much higher that during the calibration period, especially in the bores of central, coastal and north part (Supplementary Figure S3).
Figure 8 shows the spatial distribution and magnitude of the NSE improvement when the land cover and pumping data were considered. The improvement was calculated by subtracting the NSE value of the climate-only analysis from the NSE value obtained when the land cover and pumping data were included in the model, respectively. During the calibration period, most of the bores (140) remained stable, with NSE values ranging from −0.1 to 0.1. At 18 bores, the performance improved with NSE change values ranging from 0.1 to 0.85, and at 17 bores, the performance decreased with NSE change values ranging from −0.52 to −0.1 in the C + L analyses. During the evaluation period, 15 bores with an increased NSE value were found, with the NSE improvement ranging from 0.1 to 1.85, while 16 bores with a reduced NSE value were found with NSE reduction ranging from −0.1 to -8.62 during the calibration period. And 240 bores keep a stable NSE values. In the C + P analysis, the number of bores with an increased NSE in both the calibration (98, range: 0.1–0.98) and evaluation periods (59, range: 0.1–27.27) was larger than that in the C + L analysis. Moreover, the number of bores with an NSE reduction increased to 59 during the evaluation periods (range: 9.82∼−0.1) compared to that during the calibration (15 bores) period. The bores with an NSE improvement in the C + L analysis were largely distributed in the upper part of the bores area during the calibration and evaluation periods (Figure 8). The bores with an NSE reduction and increase in the C + L analysis were mainly foundin north area of the Gnangara region. In the C + P analysis, the areas in the southwestern Gnangara with a high concentration of pumping wells, the model performance level did not exhibit a notable improvement. Areas with an NSE improvement primarily occurred in the north and central area of the Gnangara region.
[image: Figure 8]FIGURE 8 | Improvement in NSE of the climate and land cover, and the climate and pumping analyses.
Drivers’ Contribution
Contribution in Space
To determine the spatial distribution of the contribution of each stressor to the groundwater level changes, the multiyear average rainfall, land cover, and pumping contribution rate of bores with NSE exceeding 0.5 (acceptable model performance) during both the calibration and evaluation periods were used to generate the spatial distribution of the contribution rate in the Gnangara region by the Inverse Distance Weighted method in ArcGIS 10.1 (Figures 9, 10).
[image: Figure 9]FIGURE 9 | Spatial distribution of the rainfall and land cover (as suggested by the NDVI) contributions to the groundwater level changes in the Gnangara region.
[image: Figure 10]FIGURE 10 | Spatial distribution of the rainfall and pumping contributions to the groundwater level changes in the Gnangara region.
As shown in Figure 9, the multi-year mean contributions of rainfall and land cover to the groundwater level changes ranged from 44 to 99% and from -53 to 43%, respectively. A large rainfall contribution rate was mainly found in central and southern Gnangara region. In contrast to the rainfall recharge contribution, the land cover contribution can either be positive or negative. A positive land cover contribution (green area) was largely distributed in upper central and southeastern Gnangara region. In certain areas, such as the southwestern and central-western areas (light yellow area), the land cover contribution was very small. In the south-western, north margin, central-eastern parts (red areas) of Gnangara region, the contribution was negative.
As shown in Figure 10, the multi-year mean contributions of rainfall and pumping to the groundwater level changes ranged from 1 to 99% and from −1% to −99%, respectively. Large rainfall recharge contribution to the groundwater level changes mainly occurred in the southwestern and northwestern parts of the Gnangara region. In contrast to the rainfall recharge contribution, the pumping contribution to the groundwater level changes was negative. The bores most affected by pumping occurred in the north-eastern parts of the Gnangara region.
Contribution in Time
Over time, the multi-site mean contributions of climate change and land cover on groundwater level were 90 and 2% with ranges of 89–90% and 2.1–2.3%, respectively. The multi-site mean contributions of climate change and pumping were 77% and -23% with ranges of 68–99% and −1%∼−32%, respectively. In the whole Gnangara region, the trend of the rainfall contribution slightly decreased from 1992 to 2014 (Figure 11A). The land cover contribution rate was stable from 1992 to 2014. The pumping contribution rate decreased from 1992 to 2014. However, the pumping contribution rate is negative, that means the pumping activities lowers the groundwater decline. Moreover, the trend of the contribution of factors on groundwater level were calculated. Seventy-four percent of the rainfall contribution rate trend showed decline (<=−0.01) over time and 26% of the rainfall contribution rate trend showed stable (0) for C + L analysis. Eighteen percent of the land cover contribution rate trend showed decline over time, 70% of the land cover contribution rate trend showed stable, and 12% of the land cover contribution rate trend showed increase (≥0.01) for C + L analysis. Sixty percent of the rainfall contribution rate trend showed decline over time and 40% of the rainfall contribution rate trend showed stable for C + P analysis. Fifty-eight percent of the pumping contribution rate trend showed decline over time, 42% of the pumping contribution rate trend showed stable for C + P analysis.
[image: Figure 11]FIGURE 11 | Contribution rates in the climate-only (C), climate and land cover (C + L), and climate and pumping (C + P) analyses to the groundwater level changes (A). Rainfall, NDVI and groundwater pumping in the Gnangara region (B).
Model Parameters
The variability of critical fitted parameters of the model was presented in a box plot (Figure 12) and the spatial distribution of the fitting parameters was presented in Figure 13. Figure 12 showed that the Ksat, β, and Scap between C + L and C + P analysis is slight. Parameter of Ksat (maximum vertical conductivity) ranged from 0.01 to 10 m/day with mean of 0.47 and 0.61 m/day for C + L and C + P analysis, respectively. Parameter of β(power term for drainage rate) ranged from 1 to 10 with mean of 3.59 and 3.56 for C + L and C + P analysis, respectively. Parameter of Scap (soil moisture storage capacity) ranged from 0.01 to 1 m with mean of 0.18 and 0.21 m for C + L and C + P analysis, respectively. Spatially, Figure 13 showed about 60% bores has the Ksat of 0.01–0.2 m/day for both C + L and C + P analysis. And larger Ksat (more than 2 m/day) was found in the northern Gnangara for C + L analysis and in both southern and northern Gnangara for C + P analysis. Parameter of β in spatial showed slight difference between C + L and C + P analysis and the larger β is mainly occurred in the north area of the Gnangara region. 84 and 76% bores has the Scap of 0.01–0.2 m. The bores with Scap larger than 0.4 m is dispersedly distributed in the study area.
[image: Figure 12]FIGURE 12 | Box plot of the calibrated parameters of the model.
[image: Figure 13]FIGURE 13 | Spatial distribution of the calibrated parameters of the model.
DISCUSSION
Groundwater Hydrograph Decomposition Evaluation
The spatial distribution of the acceptable model performance level (in the southern Gnangara) in the climate-only analysis was consistent with the area with a high rainfall. Additionally, the areas with a large rainfall recharge contribution were largely found in the area with a high rainfall (Figure 3), while a small rainfall recharge contribution occurred in the area with a low rainfall. The rainfall always keeps higher contribution (47–99 and 1%–99%) than land cover (−53–43%) and groundwater pumping (−1% to −99%) contribution after the NDVI and groundwater pumping were included into the model, respectively. Generally, the area rainfall more than 770 mm have the contribution rate more than 75%. These results indicated that the spatial distribution of the rainfall recharge contribution to groundwater was consistent with the rainfall distribution based on a comparison of the rainfall recharge contribution graph (Figures 9, 10) and rainfall graph were compared (Figure 3). Temporally, the rainfall contribution rate continually decreased and were higher than land cover and pumping contribution rate (Figure 11A), which is closely related to the rainfall reduction over time (Figure 11B). All of the above results indicate that the climate (precipitation) is the main factor influencing the groundwater level in the Gnangara region (dominating the groundwater level changes). Yesertener (2005) and Gallardo (2013) also proposed that climate change is the primary factor influencing the groundwater level decline in the Gnangara region based on the cumulative deviation from main rainfall (CDFM) analysis method. This finding has been verified, and the contribution of climate change to the groundwater level changes in time and space have been quantified.
The model performance was improved at some bores in northern Gnangara when the land cover data were added to the model, indicating that the land cover change also exerts an impact on groundwater level changes. However, the land cover contribution on groundwater level was stable over time and the contribution rate kept at 2%. Although the land cover had changed in some area over time, the NDVI changes for the whole region is little (Figure 11B). This demonstrated that the land cover changes had influence on local long-term groundwater level changes, but the influence is limited and is stable over time. The locations of the sites with an improved model performance generally agreed with the vegetated area in the northern Gnangara region (suggested by high NDVI) (Figure 3B). In the central of the northern Gnangara region, the land cover contribution rate was higher and the NDVI was lower than surrounding areas, indicating a negative relationship between land cover changes and groundwater level changes. These indicated that the groundwater level in the northern Gnangara region was closely related to the local vegetation conditions. Although the land cover contribution rate is positive in central of the northern Gnangara region, the positive trend over time was decreasing because of the increased areas of conservation and natural environments, especially the minimal use area (Bureau of Rural Sciences, 2006; Australian Bureau of Agricultural and Resource Economics and Sciences, 2018). In the margin of northern Gnangara region, the land cover changes lower the groundwater level due to the land use of grazing modified pastures reduced and the other minimal land use increased (Bureau of Rural Sciences, 2006; Australian Bureau of Agricultural and Resource Economics and Sciences, 2018). The plantation forests area reduced from 1992 to 2018 (Bureau of Rural Sciences, 2006; Australian Bureau of Agricultural and Resource Economics and Sciences, 2018). However, in the plantation forests area in land use map 2018, the land cover contribution rate is up to −53%. This is likely closely associated with the high density of pine plantations in these areas (Yesertener, 2007; Gallardo, 2013). In the southwestern area of the Gnangara region, urban use is the main land use, but the contribution is negative, that means other factors such as groundwater abstraction influenced the groundwater level.
The model performance was significantly improved after the pumping data were added to the model. In the south area of the study area, the model performance remained high. In the western part of the study area, which is the coastal region, the model performance remained unsatisfactory, although the land cover or pumping data were included. In the coastal areas, the climate, land cover and pumping exert limited impacts on the groundwater level changes, and other factors such as seawater intrusion, may impose major impact on the groundwater level changes. The limited changes in the groundwater level along the coast also occur due to the extremely high hydraulic conductivity of the Tamala limestone and proximity to the discharge zone (Costall et al., 2020). Other possibility of limited groundwater level changes may be from the boundary conditions (Morgan et al., 2012). As the C, C + L, and C + P analysis results indicated, the model performance was improved when the pumping data were considered, especially during the calibration period. However, the model performance was slightly improved when the land cover data were considered, and the performance at some sites was reduced. Moreover, the large pumping contribution (negative) to the groundwater level changes occurred in the northeast of the Gnangara region and did not always occur near the pumping sites, indicating that the distance between the bores and pumping wells and the density of the pumping wells are not critical elements in the determination of the pumping contribution to the groundwater level changes. In the southwestern Gnangara, the contribution rate mainly ranged between −15% and −40% (Figure 10). However, the groundwater pumping contribution continually increased over time due to the sustained groundwater abstraction (Figure 11B). It is obvious that groundwater pumping is highest in the 2011, and the pumping contribution on groundwater level is also highest with contribution value of −32% (Figure 11B). Results indicated that sustained groundwater pumping over time has a significant influence on groundwater level decline. Depletion of groundwater levels is a global phenomenon and is defined as long term water level declination caused by sustained groundwater pumping over time (Tularam and Krishna, 2009). More attention should be paid to manage the groundwater pumping activities to ensure the sustainable use of groundwater.
The fitted parameter of the maximum vertical conductivity of the model in this study has a value range 0.01–9.8 m/day and the maximum vertical conductivity of most of the bores is concentrated in range of 0.01–2 m/day. Salama et al. (2005) and Department of Water (2009b) calculated the hydraulic conductivity in the Gnangara, ranging from 0.56 to 6.38 m/day and from 0.01 to 5 m/day, respectively. The similar results indicated the results of fitted parameters of the maximum vertical conductivity is accepted and the results of the model are credible. Moreover, the fitted parameter of Ksat and Scap showed slight difference in C + L and C + P analysis, indicating that the maximum vertical conductivity and soil moisture storge capacity are important parameter of the model.
Uncertainties and Limitations
The approach adopted in this study is based on various assumptions and has limitations, which constrain the results of the groundwater hydrograph decomposition. It should be noted that this method assumes that the drivers (climate, land cover, and groundwater pumping) of the groundwater level changes are independent of each other, and the land cover and pumping were added into the model, respectively. However, the considered drivers interact with each other, which may complicate the evaluation results. Climate change (rainfall change) could lead to changes in vegetation, thus affecting groundwater recharge, and groundwater pumping may lead to groundwater level changes, thereby negatively impacting vegetation (Şen, 2015). Many factors influence groundwater level changes, but only three major drivers were considered to establish the model in this study. Other drivers such as bush fires, pine clearing, and groundwater evaporation, were not examined. And the surface water-groundwater interaction is also an important cause of groundwater level changes in many areas (Wang et al., 2014). Moreover, this model assumed that the aquifer is homogeneous, but the thickness, permeability and water-bearing structure of the aquifer affect the accuracy of the modelling results.
In this study, model was constructed for each individual observation bore of the Gnangara region. Then, for the whole Gnangara region, the groundwater level changes and its main factors can be assessed by interpolating the results of each bore. In the model construction, an optimal model structure fitted for the study area was used for each model to reduce the model running time and improve the model operation efficiency. In fact, one model structure cannot ensure the satisfactory model results of each site. Therefore, model performance in spatial is not always satisfactory. However, in the process of interpolation, only the satisfactory model performance was used to reduce the errors in spatial.
Other limitations arise from the dataset used. NDVI was selected as the representation of the land cover impact on the groundwater level changes. The NDVI may not be accurate enough to express all of the land cover situation. However, the vegetation and non-vegetation area is easy to identify and historical land use information cannot be obtained. Furthermore, the groundwater level data at certain sites were fragmented or the number of observations was insufficient, but the established models allowed the simulation of irregular water level observations.
CONCLUSION
Understanding and interpreting changes in groundwater level is essential for long term management of both a groundwater resource and urban development. The present study quantitatively clarifies the impacts of three drivers, namely, climate change, land cover change and groundwater pumping (for public and private use) on the long-term groundwater level changes with HydroSight model. And the unconfined aquifer of Gnangara region in Western Australia was used as a case study.
Based on the three established independent models (climate-only analysis, climate and land cover analysis, and climate and pumping analysis models), climate always plays the most important role and positively contributes to the observed groundwater level changes. And groundwater decline in this region is mainly caused by the reduction in rainfall recharge over time. In the whole region, the contribution of the groundwater pumping to groundwater level decline is larger than that of land cover change. Temporally, from 1992 to 2014, the contribution of rainfall on the groundwater level of the Gnangara region decreased because the rainfall decreased over time. The mean pumping contribution rate is −23%, and the impact of groundwater pumping on the groundwater level decline continually increased from 1992 to 2014 because of the sustained groundwater pumping. The land cover changes had influence on long-term groundwater level changes, but the influence is limited and is stable over time with contribution rate of 2%. Spatially, in the southern Gnangara region, the groundwater level changes were mainly influenced by rainfall and pumping activities. In the northern Gnangara region, the groundwater level changes were influenced by the combination of rainfall, land cover and groundwater pumping.
The results of this study suggest that the improved groundwater hydrograph decomposition method is effective and can be easily applied in other regions due to its highly flexible. And this method improved the efficiency of data utilization, especially for the region which the groundwater head record is irregular. And the best-fit model for a certain study area can be obtained by trying different model structures. The findings of this study have important implications for research on the influence of various drivers on groundwater level changes and also provide notable guidance for local governments to rationally allocate and utilize groundwater resources. In areas where the groundwater level is mostly affected by groundwater pumping, other water resources should be utilized, such as rainfall runoff collected during the wet season for park irrigation, seawater desalinized, and surface water quality improved, while the groundwater abstraction reduction could ease the stress resulting from groundwater level decline.
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Microorganisms played important roles in nutrient removal in Pond-ditch circulation system (PDCS). However, dynamics of microbial community in the PDCS, and responses of rhizosphere and non-rhizosphere microbial community to rural wastewater remains unclear. In this paper, average operational taxonomic units numbers of sediment microbial varied from 10,254 to 17,112, and values in rhizosphere were higher than those of the non-rhizosphere (p < 0.05). Bacillus, Clostridium sensu stricto 1, and Geobacter were the predominant genera in PDCS sediment with relative abundances of 0.52–17.61%, 0.26–8.08%, and 0.20–4.58%, respectively. However, Bacillus, Clostridium sensu stricto 1, and Geobacter genera in rhizosphere were more abundant than those in non-rhizosphere at day 30. Chao 1 index ranged from 10,225 to 17,033 and showed significant positive correlations with all sediment properties (p < 0.05). Chao 1 and Shannon indices in rhizosphere were significant positively related to tartaric acid and total organic carbon, respectively; while significant correlation between Shannon and Simpson indices in non-rhizosphere and oxidation-reduction potential were detected (p < 0.05). Redundancy analysis suggested that lactic acids, proteins, and amino acids had strong positive effects on Geobacter and Clostridiu sensu stricto 12 in the rhizosphere; while Bacillus and Clostridium in non-rhizosphere were significantly affected by sediment ammonia nitrogen and nitrate nitrogen. Environmental variables accounted for 66.9 and 60.3% of the total variation for the microbial community of non-rhizosphere and rhizosphere sediments, respectively. Our results highlight that root exudates and sediment available N alter predominant genera in the rhizosphere and non-rhizosphere, respectively, which is benefit for optimizing removal efficiency of PDCSs in large-scale applications.
Keywords: pond-ditch circulation system, rhizosphere bacteria, microbial community structure, diversity, redundancy analysis
INTRODUCTION
With the rapid development of economy and industrialization, the problem of water pollution in rural areas of China is getting worse. Large amounts of untreated domestic wastewater were discharged into the ponds, ditches, lakes, and rivers, which resulted in the deterioration of water environment and threatened the health of people (Bowes et al., 2015). In order to solve this problem, many types of wastewater treatment systems have been developed and widely used, such as constructed wetland system (Childers, 2020; Torrens et al., 2021), high-rate algal ponds (Evans et al., 2005), mineral-based small-scale active filter system (Gustafsson et al., 2008), sequencing batch reactor-biofilm system (Yin et al., 2015). Recently, our group have developed a new rural wastewater treatment system, pond-ditch circulation system (PDCS), which exhibits the advantages of high efficiency, cheap, and simple management and is an appropriate alternative for rural wastewater remediation (Ma et al., 2015a; Ma et al., 2015b).
In the PDCS, microorganisms played important roles in nitrogen (N) and phosphorus (P) removal. For example, approximately 79.5% of the total nitrogen removal was attributed to microbial process, especially nitrification and denitrification, which were mediated by a range of microbes, such as amoA, arch-amoA, nirS, and nirK genes (Ma et al., 2016). Meanwhile, anaerobic anammox bacteria have been widely used in nitrogen removal reactors due to their ability of converting ammonium into nitrogen gas under the anoxic conditions (Hu et al., 2010; Liu et al., 2020). The anaerobic anammox processes also performed a crucial role in nitrogen removal of the PDCS due to 41.3–50.3% contribution to nitrogen gas production (Ma et al., 2019). Similarly, some bacteria such as denitrifying phosphate-accumulating organisms can utilize nitrate (NO3−-N) or nitrite (NO2−-N) as the terminal electron receptor under the anoxic condition for the simultaneous removal of N and P (Li et al., 2019; Chen et al., 2021). Many studies reported that structures and diversities of microorganisms were affected by a number of abiotic and biotic factors, such as pH, temperature, oxygen concentration, carbon availability, hydraulic retention time, and plants (Khammar et al., 2005; Tomaszewski et al., 2017; Li et al., 2018; Liu et al., 2020).
Our previous studies have demonstrated that in the PDCS, aquatic plants participated in nutrient removal, were responsible for 10.1% N and 50% P reduction, respectively (Ma et al., 2016; Ma et al., 2019). Besides direct absorption, plants can also regulate the nutrient removal via root exudates such as sugars, polysaccharide, amino acids, and organic acids. These exudates can be used as the carbon and nitrogen sources, or stimulating signals by the rhizosphere microorganisms (Bais et al., 2006). This will in turn lead to the gathering of more microorganisms around the plant rhizosphere and result in “rhizosphere effect” (Egamberdieva et al., 2008). This “rhizosphere effect” is beneficial for the removal of nutrient in the rhizosphere microenvironment (Nie et al., 2015; Chen et al., 2016). and can exert significant impacts on the rhizosphere microorganisms (Li et al., 2016). Therefore, the compositions, diversities of both rhizosphere and non-rhizosphere sediment bacteria vary greatly. Although several studies have correlated environmental factors to the microbial communities in decentralized treatment approaches, how rhizosphere and non-rhizosphere sediment bacteria in the PDCS responds to abiotic environmental factors still remain unclear. Based on our previous studies, we assumed that biotic factors such as plants and microbial communities rather than abiotic environmental factors were the dominant factors for nutrient removal in the PDCSs.
In this study, we have built two small-scale PDCS systems to treat domestic wastewater in rural areas of Southern China. These systems continuously operated for 2 months. This study aimed to elucidate dynamic changes of microbial community structures and diversities between rhizosphere and non-rhizosphere sediments and their responses to the environmental factors. The main contents of this study are as follows: (1) the total efficiency of N and P removal in the PDCS; (2) bacterial clustering information in rhizosphere and non-rhizosphere microenvironments; (3) relative abundances and diversities of bacteria in rhizosphere and non-rhizosphere environments at phylum and genus levels; (4) spearman’s correlation coefficient analysis between rhizosphere and non-rhizosphere microbial diversities, water quality, sediment properties, and root exudates; (5) redundancy analysis (RDA) of dominant bacterial species and environmental factors in the rhizosphere and non-rhizosphere of the PDCSs. Based on this research, we have elucidated the dynamic changes of microbial communities in the PDCSs and the relations between environmental variables and microbial communities. These findings will be helpful in the design and the optimization of nutrient removal in PDCSs and other nutrient removal systems in large-scale applications.
MATERIALS AND METHODS
Experimental Water and Sediments
The experimental sediments and water were collected and used as we previously described (Ma et al., 2015a). Briefly, four different types of water were collected from sites A, B, C, and D, respectively; two different types of sediments were sampled from sites A and C (Figure 1A). Initial total nitrogen concentrations in these four types of water were 3.28 mg L−1, 24.22 mg L−1, 4.16 mg L−1, and 0.81 mg L−1, respectively; While initial total phosphorus contents in the overlying water of sites A, B, C, and D were 0.26 mg L−1, 2.0 mg L−1, 0.4 mg L−1, and 0.07 mg L−1, respectively. The initial physic-chemical indices of water and sediments in pond 1, ditch, pond 2, and water distribution storage apparatuses were analyzed and presented in Supplementary Tables S1, S2.
[image: Figure 1]FIGURE 1 | Schematic diagram of the pond-ditch circulation system and sampling sites.
Construction of the PDCS Systems
Two sets of rural wastewater treatment system, was designed and operated as we previously described elsewhere (Ma et al., 2021b). Briefly, the small-scale system consisted of six parts: a water distribution bucket, pond 1, ditch, pond 2, a water-storage tank, and a water pump (Figure 1B). The two ponds were laid with 10 cm sediments sampled from the sites A and C and planted with Vallisneria natans L., respectively. Moreover, in the ditch, a 10 cm thick gravel layer was evenly spread and planted with Iris tectorum L. and Acorus calamus L. Then, these five microcosms were filled with 45 L, 96 L, 35 L, 45 L, and 35 L water sampled from sites D, A, B, C, and D, respectively. In the PDCS system, the running parameters was circulating every other 4 h with a water flow of 3.6 Lh-1, thus resulting in 0.30 m3m−2d−1, 0.43 m3m−2d−1, and 0.37 m3m−2d−1 hydraulic loading rates for pond 1, ditch, and pond 2, respectively. Meanwhile, in the static group, the velocity of water flow was zero.
Analysis of Water and Sediments
The system continuously ran for 60 days since the beginning of the operation. At days 1, 4, 7, 11, 15, 18, 22, 26, 30, 40, 50, and 60, 500 ml water samples were collected from pond 1, ditch, and pond 2 from the control (static) and PDCS systems, respectively. For these water samples, the 15 indices were analyzed as following: water salinity, dissolved oxygen (DO), pH, temperature (W-temp), oxidation-reduction potential (ORP), turbidity, total phosphorus (TP), total nitrogen (TN), inorganic nitrogen (IP), ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), nitrite nitrogen (NO2−-N), total suspended solids (TSS) (State EPA of China, 2002), chemical oxygen demand (CODcr) and Chl-a (Holm-Hansen and Riemann, 1978).
Approximate 50 g rhizosphere and non-rhizosphere sediments in pond 1, ditch, and pond 2 of these two systems were also collected at days 15, 30, and 60, representing the early, middle, and late stages of the experiment, respectively (Zou et al., 2021). About 10 g of fresh sediment samples was used to measure water contents (WC) of each sediment sample gravimetrically. The contents of organic matter were determined gravimetrically using approximate 5 g fresh sediment sample dried at 450°C for 3 h. The contents of total organic carbon (TOC) and sediment total nitrogen (STN) in air-dried and sieved sediment samples were determined using an elemental analyzer (Vario TOC cube, Hanau, Germany). The contents of NH4+-N, NO3−-N, NO2−-N in sediments were determined using an automatic nutrient analyzer (EasyChem plus, Systea, Italy). Sediment P fractions were measured using the SMT harmonized P extraction protocol, and the four main forms of P in sediment total phosphorus (STP), sediment inorganic phosphorus (SIP), NaOH-P, and HCl-P were analyzed as previously described (Ruban et al., 2001). The left sediments were mixed thoroughly and frozen in −20°C for future analysis. The dynamic changes of physic-chemical characteristics for the non-rhizosphere sediments for the PDCS systems were shown in Supplementary Tables S3, S4, respectively.
Analysis of Root Exudates
The contents of five types of root exudates proteins, polysaccharides, amino acids, lactic acids and tartaric acids were measured (Ma et al., 2021a). Briefly, 10 strains of Vallisneria natas L., 1 strain of Acorus calamus L. and Iris tectorum L. were sampled from the ponds and ditches at days 15, 30, and 60, respectively. However, in the pond 1 of the static group, all Vallisneria natans L. died due to the deterioration of water quality in the early stage of the experiment. Therefore, root exudates for this microcosm were missed. After careful rinsing in the water, plant roots were immersed in 500 ml ultra-pure water for 24 h. The values of pH for these solutions were measured. Then, 400 ml culture solution was concentrated to 20 ml using a vacuum circumgyration evaporator. The contents of proteins and polysaccharides were analyzed using the coomassie brilliant blue method (Spector, 1978) and the anthrone-sulfuric acid chromatometry method (Grandy et al., 2000), respectively. The contents of amino acids were determined by an ICS 5000 + amino acid analyzer (model 120A, Thermo Fisher, United States). Meanwhile, the contents of tartaric acids in root exudates were measured using a DIONEX ICS-5000 + DP chromatograph (Thermo Fisher, United States). The initial and changes of proteins, polysaccharides, amino acids, lactic acids, tartaric acids, and pH of root exudates of aquatic plants were presented in Supplementary Tables S5, S4, respectively.
Construction of 16S rDNA Library
Bacterial DNA were extracted and used for 16S rDNA gene sequencing as previously described with some modifications (Poret-Peterson et al., 2019). Briefly, the total DNA of sediment samples was extracted using the PowerSoil DNA Isolation Kit according the manufacturer’s instructions (MoBio, Carlsbad, CA, United States). Then, the concentrations and qualities of DNA samples were spectrophotometrically measured (Nanodrop 2000, NanoDrop Technology, Wilmington, DE, United States). The hypervariable V3-V4 regions of bacterial 16S rDNA were amplified using the specific bar-coded forward primer 5’-ACTCCTACGGGAGGCAGCAG-3’ and reverse primer 518R, 5’-ATTACCGCGGCTGCTGG-3’. Polymerase chain reaction (PCR) amplification procedures were as follows: denaturation at 95°C for 3 min, denaturation at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 30 s, 35 cycles. Following the pre-amplification, the qualified DNA samples were used in the next PCR amplification. Then, the amplified PCR products were purified and used to construct the 16S rDNA library.
Sequencing of 16S rDNA Gene and Data Analysis
Sequencing of PCR products were performed using the Illumina paired-end sequencing technology (Mega Genomics Corp. Beijing, China). Briefly, the raw data of bacterial 16S rDNA gene sequencing were demultiplexed, qualify-filtered by Trimmomatic using the specific filtering criteria of QIIME (Caporaso et al., 2010) and merged using the FLASH software. Chimeric sequences were determined and deleted using the UCHIME algorithm (Edgar et al., 2011). The operational taxonomic units (OTUs) were clustered with a threshold of 97% sequence similarity using UPARSE (version 7.1, http://drive5.com/uparse/), annotated and classified using the SILVA database. Sediment bacterial α-diversity was estimated via the observed chao1, Shannon, and Simpson indices.
Statistical Analysis
All data were presented as mean ± SEM. One-way ANOVA with Turkey’s post hoc tests were performed to analyze the differences in water quality, sediment physic-chemical parameters, α-diversity and richness indices of sediment bacteria, root exudates in these two systems. Sediment bacterial community richness (presented as observed species and goods coverage) and α-diversity (presented as Chao 1, Simpson, and Shannon) in rhizosphere and non-rhizosphere microenvironments in these two systems were calculated in R version 3.5.2 using the vegan package (Zhou et al., 2020). Spearman’s correlation coefficients were calculated to determine the associations among sediment microbial diversity, water quality, sediment properties, and root exudates. RDA was performed to determine the correlations between the top 10 sediments bacterial and abiotic environmental variables using the Canoco software (Version 5.0, Microcomputer, Ithaca, NY, United States). The RDA will be picked up and used as the appropriate ordination form when the longest gradient length of detrended correspondence analysis was <2. All statistical analyses were done in SPSS software (version 20.0, SPSS Inc., Chicago, United States). p < 0.05 was considered statistically significant.
RESULTS
Nutrient Removal Rates in PDCS Systems
The efficiencies of N and P removal in the two systems were demonstrated in Figure 2. In the PDCS, the concentrations of TN, NH4+-N, and NO2−-N in the three microcosms pond 1, ditch, and pond 2 declined from day 4 and reached a plateau level at day 30. Contents of NO3−-N in the PDCS remained at a low level before day 20, and then significantly increased, peaking at day 40, and gradually declined to a low level. The final removal efficiencies for TN and NH4+-N in the PDCS system ranged from 72.7 ± 2.3 to 94.5 ± 1.5%, and 72.3 ± 2.6 to 99.1 ± 0.3%, respectively. For the P, in the PDCS, the concentrations of TP and IP in the three microcosm’s pond 1, ditch, and pond 2 significantly declined from day 4 and reached a stable low level at day 30. The final removal efficiencies of TP in pond 1, ditch, and pond 2 in the PDCS system were 81.7 ± 2.3, 97.4 ± 1.1, and 77.8 ± 2.1%, respectively. Significant differences were detected in TN, NH4+-N, NO3−-N, NO2−-N, TP, and IP between these two systems (p < 0.05).
[image: Figure 2]FIGURE 2 | Changes of TN, NH4+-N, NO3−-N, NO2−-N, TP, and IP in overlying water for two systems within 60 sampling days. In the circulation PDCS system, the water was circulated 3.6 L/h every other 4 h, while the control group was static.
The values of the other six indices ORP, W-temp, pH, DO, turbidity, and salinity for water were presented in Supplementary Figure S1. The ORPs for the two systems increased from day 1 to day 15, and then decreased. The W-temp for these two systems fluctuated from 25.5 ± 0.3°C to 32.6 ± 0.2°C.The values of pH generally increased from 7.16 ± 0.13 from day 0 to 8.19 ± 0.15 at day 60. The values of DO also increased from 0.05 ± 0.01 to 5.4 ± 0.1 mg L−1. For the turbidity, their values fluctuated two times and generally decreased. For the salinity, the change trend for the static system were increasing, the values in the PDCS remained at a stable level. Significant differences in pH, DO, salinity, and turbidity were observed between these two systems (p < 0.05).
OTU Analysis in Single Microcosms of the PDCS System
Both rhizosphere and non-rhizosphere sediments were sampled for analyzing the compositions of bacteria in two systems at days 15, 30, and 60, respectively. After quality control and filtering, twenty-four OTU numbers for eight microcosms were obtained (Figure 3A). Due to the death of plants in the pond 1 of the static system and the existence of two different types of plants in the ditches of the two systems, there were 452,989 ± 3,426 bacterial OTUs observed in the 36 rhizosphere/non-rhizosphere sediment samples. The OTU numbers in the S-ditch, S-pond 2, ditch, and pond 2 microcosms were all significantly lower than those of their corresponding rhizosphere counterparts, respectively (p < 0.05). Meanwhile, the OTU numbers in the microcosm of R-pond 1 was statistically insignificantly higher compared with that in the microcosm of pond 1 (p < 0.05). In order to show the unique and shared OTUs between the static and PDCS systems, a petal diagram was drawn based on the OTU analysis results (Figure 3B). The ten petals represented ten different microcosms in these two systems. There were 1,360 OTUs shared by the 10 microcosms. The numbers of unique OTUs in the S-ditch, ditch, and pond 2 microcosms were significantly lower than those of their corresponding counterparts (p < 0.05).
[image: Figure 3]FIGURE 3 | OTU numbers and Venn diagram for two systems. (A) OTU numbers in the pond-1, R-pond-1, ditch, R-ditch, pond-2, R-pond-2 of the PDCS and S-ditch, S-R-ditch, S-pond-2, S-R-pond-2 of the control static group, respectively. Due to the death of plants in the pond-1 of the control static group died at the early stage, the data for the S-pond-1 and S-Rpond-1 were omitted. (B) Each circle represents a single microcosm of the PDCS systems. The numbers in the overlapping area of the circles represent the numbers of OTUs shared between the microcosms, while the numbers without overlaps represent the numbers of OTUs unique to these single microcosms.
Heatmap of the Relative Abundances of Bacterial Communities
Relative abundances of top 35 bacteria at phylum and genus levels were statistically analyzed (Figure 4). The utmost dominant bacterial phyla in pond 2 of the two systems were Firmicutes, Deinococcus, and Armatimonadetes. The frequencies of these three bacterial phyla in the rhizosphere of pond 2 were more abundant in those of the non-rhizosphere. For the ditch of two systems, the dominant bacterial phyla were Bacteroidetes and Proteobacteria, their values in the rhizosphere were significantly higher than those of their corresponding non-rhizosphere groups. In addition, the frequencies of Nitrospirae, and Acidobacteria in the rhizosphere of pond 1 for two systems were significantly higher than those of their corresponding non-rhizosphere groups. At the genus level, Geobacter and Pseudomanas genera were in relatively higher abundances in the rhizosphere of pond 1 for the PDCS than those in the non-rhizosphere. The frequencies of Clostridium_sensu stricto 1, Romboutsia, and Clostridium_sensu stricto 13 genera in the rhizosphere of pond 1 for two systems were more abundant in those in non-rhizosphere. For the pond 2 of the PDCS, the dominant bacterial phyla were Methenoregula and Methanosaeta, their values in the rhizosphere were significantly higher than those of their corresponding non-rhizosphere groups.
[image: Figure 4]FIGURE 4 | Relative abundance heatmap of top 35 bacteria in rhizosphere and non-rhizosphere sediments in two systems at the phylum (A) and genus (B) levels.
Bacterial Community Structure Analysis of Rhizosphere/Non-Rhizosphere Sediment
Relative abundances of top 10 bacteria in rhizosphere and non-rhizosphere sediment samples at days 15, 30, and 60 at phylum and genus levels were analyzed and demonstrated in Supplementary Figure S2 and Figure 5, respectively. At the phylum level, the most abundant bacteria in both rhizosphere and non-rhizosphere sediments of the PDCS were Proteobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Actinobacteria. Relative abundances for these five bacterial phyla in the rhizosphere of the PDCS ranged from 25.52 ± 2.68 to 53.44 ± 2.56%, 3.62 ± 0.37 to 45.2 ± 2.15%, 5.97 ± 0.67 to 15.06 ± 1.03%, 2.69 ± 0.28 to 9.01 ± 0.98%, and 1.92 ± 0.35 to 11.74 ± 0.51%, respectively. Meanwhile, relative abundances of these five bacterial phyla in the non-rhizosphere ranged from 20.76 ± 1.36 to 46.88 ± 1.57%, 2.12 ± 0.26 to 25.75 ± 1.18%, 6.63 ± 0.34 to 14.59 ± 0.43%, 2.32 ± 0.10 to 7.12 ± 0.23%, and 2.07 ± 0.16 to 14.26 ± 0.24%, respectively. Relative abundances of Firmicutes in two ponds of two systems increased from day 15 to day 30. At the middle of experiment (day 30), Firmicutes was found to be more enriched in the rhizosphere of ponds for two systems than those in the non-rhizosphere of two ponds. Meanwhile, the phylum Proteobacteria was more abundant in the rhizosphere of the ditch for two systems than those in the non-rhizosphere of the ditch at day 30.
[image: Figure 5]FIGURE 5 | Relative abundances of top 10 bacteria at the genus level in the two systems. The relative abundances of top 10 bacteria at the genus level at days 15, 30, and 60 were calculated. Abbreviations: In the static systems, S-ditch, S-R-ditch, S-pond-2, and S-R-pond-2 mean the sediments collected from the ditch, plant rhizosphere in the ditch, pond 2, plant rhizosphere in pond 2, respectively. The plants in the pond 1 of the static system died at the early stage of the experiment. In the PDCS, Pond-1, R-pond-1, ditch, R-ditch, pond-2, and R-pond-2 represented the sediments collected from the pond 1, plant rhizosphere of the pond 1, the ditch, plant rhizosphere in the ditch, pond 2, plant rhizosphere in the pond 2, respectively.
At the genus level, the most abundant bacteria in both rhizosphere and non-rhizosphere sediments of the PDCS were Bacillus, Geobacter, and Clostridium sensu stricto 1 genera. The relative abundances of these three bacterial genera in the rhizosphere of the PDCS ranged from 0.56 ± 0.02 to 19.52 ± 1.95%, 0.28 ± 0.03 to 8.50 ± 2.13%, and 0.13 ± 0.02 to 11.89 ± 0.36%, respectively. Meanwhile, the relative abundances of these three bacterial genera in the non-rhizosphere ranged from 0.12 ± 0.01 to 15.61 ± 0.68%, 0.20 ± 0.02 to 4.58 ± 0.32%, and 0.26 ± 0.01 to 8.08 ± 1.35%, respectively. Dominant genera in ditches of two systems were Geobacter. Relative abundances of ditches for two systems increased from day 15 to day 30, and then decreased (Figure 5). Meanwhile, the frequencies of Geobacter in genus Proteobacteria in the rhizosphere sediments of these two ditches at day 30 were significantly higher than those of their non-rhizosphere sediments (p < 0.05). Moreover, in the microcosms pond 1 and pond 2, the most dominant bacterial genera were Bacillus and Clostridium sensus stricto 1, and relative abundances of these two genera in two ponds of the PDCS remarkably increased from day 15 to 30. The frequencies of Bacillus and Clostridium sensus stricto 1 in the rhizosphere of ponds for the PDCS were higher than those in the non-rhizosphere (Figure 5).
Richness and α-Diversity Analysis of Rhizosphere and Non-Rhizosphere Sediment Bacteria
To further explore the effects of root exudates on bacterial community in the PDCS, the richness (presented as observed species, goods coverage) and α-diversity (presented as Chao1, Shannon and Simpson) of rhizosphere and non-rhizosphere sediment bacteria were performed. As shown in Figure 6, the values for the observed species in the rhizosphere and non-rhizosphere sediments in the PDCS ranged from 9,560 ± 1,235 to 12,500 ± 1,230 and 9,080 ± 1,254 to 12,100 ± 1,035, respectively. The numbers of observed species in the rhizosphere groups S-R-ditch, S-R-pond-2, R-ditch, and R-pond-2 were significantly higher than those of their corresponding non-rhizosphere groups S-ditch, S-pond-2, ditch, and pond-2, respectively. Meanwhile, the values for goods coverage in the rhizosphere and non-rhizosphere sediments in the PDCS ranged from 0.90 to 0.94 and 0.9 to 0.94, respectively. Moreover, Chao 1, Shannon, and Simpson indices in the PDCS ranged from 11,600 ± 1,396 to 16,400 ± 1,543, 11.3 ± 0.3 to 12.0 ± 0.3, and 0.9971 ± 0.0021 to 0.9979 ± 0.0003 in the rhizosphere sediments and ranged from 11,300 ± 286 to 15,900 ± 879, 11.1 ± 0.2 to 12.0 ± 0.2, and 0.9970 ± 0.0023 to 0.9977 ± 0.0002 in the non-rhizosphere sediment, respectively. Chao1 values in the five rhizosphere groups S-R-ditch, S-R-pond-2, R-pond-1, R-ditch, and R-pond-2 were all significantly higher than their corresponding non-rhizosphere groups S-ditch, S-pond-2, pond-1, ditch, and pond-2, respectively (p < 0.05). Similarly, the values of Shannon in the S-R-ditch, R-ditch and R-pond-2 groups were significantly higher than those of their corresponding non-rhizosphere groups S-ditch, ditch, and pond-2, respectively (p < 0.05). Moreover, Simpson values in the S-R-ditch, R-pond-1, and R-pond-2 were significantly higher than those of their corresponding non-rhizosphere groups S-ditch, pond-1, and pond-2, respectively (p < 0.05).
[image: Figure 6]FIGURE 6 | Richness and diversity of rhizosphere and non-rhizosphere sediment bacteria in two systems. (A) Numbers of observed species, (B) the values of goods coverage, (C) the Chao1 index, (D) the Shannon index, and (E) the Simpson index of non-rhizosphere and rhizosphere sediment bacteria in different microcosms of two systems. S-ditch and S-R-ditch meant non-rhizosphere and rhizosphere ditch groups in the static system, respectively; Similarly, S-pond-2, and S-R-pond-2 meant non-rhizosphere and rhizosphere pond-2 groups in the static system, respectively. The same naming rules were applicable in pond-1, R-pond-1, ditch, R-ditch, pond-2, and R-pond-2 in the PDCS.
Spearman’s correlation coefficients between microbial diversity indices and water quality were presented in Table 1. In the rhizosphere, Chao 1 index showed significant and positive correlations with NH4+-N and turbidity (p < 0.05). Meanwhile, turbidity was significantly positively correlated with the Shannon index (p < 0.01). In the non-rhizosphere, significant positive correlations between the ORP and the Shannon and Simpson indices were observed (p < 0.05); while Simpson index was significantly negatively correlated with W-temp, and was significantly positively associated with salinity (p < 0.05).
TABLE 1 | Spearman’s correlation coefficients between sediment microbial diversity and water quality.
[image: Table 1]Spearman’s correlation coefficients between microbial diversity indices, sediment properties, and root exudates were demonstrated in Table 2. In the rhizosphere, Chao 1 index showed significant correlation with sediment total nitrogen (STN), sediment ammonia nitrogen (SNH4+-N), sediment nitrate nitrogen (SNO3−-N), STP, SIP, OM, TOC, WC, and tartaric acids respectively (p < 0.01). Meanwhile, TOC was significantly positively related to Shannon index (p < 0.05). Similarly, in the non-rhizosphere sediments, Chao 1 index showed significant correlations with all measured sediment properties (p < 0.05).
TABLE 2 | Spearman’s correlation coefficients between microbial diversity indices, sediment properties and root exudates.
[image: Table 2]Relationship Between Sediment Bacteria and Environmental Factors
As demonstrated in Figure 7A, the first two eigenvalues could explain 48.97 and 13.32% of the total variation at the genus level in the non-rhizosphere sediments, respectively. The environmental variables accounted for 66.9% of the total variation for the microbial community of non-rhizosphere sediments. In the non-rhizosphere sediment groups, SNH4+-N and SNO3−-N exhibited significant positive effects on the dominant bacterial genera Clostridium sensu stricto1, Clostridium sensu stricto 13, and significant negative effects on Arthrobacter and Geobacter. Moreover, pH, DO, and ORP had strong positive effects on Clostridium sensu stricto 12 and Bacillus.
[image: Figure 7]FIGURE 7 | RDA analysis of species composition of sediment bacterial taxa associated with significant environmental factors. The blue and red arrows indicate top 10 functional bacteria genus and significant environmental factors in the non-rhizosphere sediments (A) and the rhizosphere sediments (B).
As demonstrated in Figure 7B, the first two eigenvalues could explain 43.63 and 11.18% of the total variation at the genus level in the rhizosphere sediments, respectively. Environmental variables accounted for 60.3% of the total variation for the microbial community of rhizosphere sediments. In the rhizosphere, lactic acids, proteins, and amino acids showed significant positive effects on Lactobacillus, Geobacter and Clostridiu sensu stricto 12. Moreover, Bacillus, Clostridium sensu stricto 1, and Clostridium sensu stricto 13 were significantly positively affected by W-temp and WC.
DISCUSSION
The Role of Bacteria in Nutrient Removal of the PDCS
In the present study, the averaged final TN and TP removal efficiencies of the PDCS at day 60 were mostly higher than that in IVCWs (51.6%) (Chang et al., 2015), in line with the mean value in algal pond combined with constructed wetlands (69.74%) (Zhao et al., 2016), yet lower than that in SFCWs (96.14%) (Li et al., 2020), suggesting the PDCS system was a valuable choice for rural wastewater remediation. Our previous study have demonstrated that microorganisms play important role in N and P removal in the PDCS (Ma et al., 2019). The removal of N was mainly contributed to simultaneous nitrification, anaerobic ammonium oxidation, and denitrification processes via the nitrogen-related bacteria (Zhao et al., 2019). In this paper, Bacillus was one of the three predominant genera in ponds and the ditch for the two systems, respectively. This finding was in line with the previous study reported that Bacillus was one of the six predominant bacterial genera for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems (Qiao et al., 2020). Previous studies reported that Bacillus. sp. participated in aerobic denitrification in the PDCS, and Clostridium sp. was used for anaerobic ammonium-oxidizing in the sludge fermentation reactor (Yang et al., 2011; Ma et al., 2021b). A earlier study reported that rhizosphere bacteria played a pivotal role in regulating the P transformation and can utilize various P forms in wetland plants (Teng et al., 2018). Geobacter and Bacillus. sp. were known to act as polyphosphate-accumulating organisms, showing a strong capacity of poly-P accumulation and P storage (Schelfhout et al., 2015; Wang et al., 2019).
Comparison of Microbial Community Structure and Diversity Between Rhizosphere and Non-Rhizosphere Bacteria
The “rhizosphere effect” can lead to greatly variations in compositions and diversities of rhizosphere and non-rhizosphere sediment bacteria, where the impacts were influenced by seasons (Dewedar et al., 2009), soil types (Zhao et al., 2017), and plant species (Yin et al., 2018). The OTU numbers in the rhizosphere sediments of five microcosms were all higher than those of their counterparts in the non-rhizosphere, suggesting the presence of more bacteria and more complex microbial communities in the rhizosphere sediments. Moreover, α-diversities of rhizosphere groups S-R-ditch, S-R-pond-2, R-pond-1, R-ditch, and R-pond-2 were all significantly higher than their corresponding counterparts (p < 0.05). These results indicated that compared with the non-rhizosphere, both the richnesses and diversities of microorganisms in the rhizosphere were enhanced due to the exudates from the plant roots (Stringlis et al., 2018). These effects will indirectly promote the roles of plants in nutrient removal in the PDCS. This was in line with the previous study in wetland plants which reported that “rhizosphere effects” affected the removal efficiency of nutrient via regulating the density and diversity of the rhizosphere microbes (Chen et al., 2016). Similarly, a recent study have reported that “rhizosphere effects” can result in the increase of relative abundances of some beneficial bacteria such as Streptomycetaceae and Bacillaceae, which exhibited significantly positive correlations with the uptake of N (Wu et al., 2021).
Both non-rhizosphere and rhizosphere groups shared five predominant bacterial genera, Bacillus, Geobacter, Clostridium sensu stricto 1, Clostridium sensu stricto 12, and Clostridium sensu stricto 13. These findings were consistent with the previous research in tidal marsh soil reported that relative abundances of Geobacter, Bacillus, Clostridium and Shewanella in the rhizosphere were higher than those in the bulk soil (Luo et al., 2018). However, at day 60, the relative abundance of Geobacter in the ditch of the PDCS was richer than those of two ponds; while frequencies of Bacillus and Clostridium sensu stricto 1 in two ponds of the PDCS at day 60 were significantly higher than those in the ditch. This was mainly due to that differences in environmental factors such as soil types (Bakker et al., 2015) and plant species (Yin et al., 2018), resulting in varying root exudates composition and contents (Ma et al., 2021b), thereby affected the community structure of bacteria. Moreover, the frequencies of Bacillus and Clostridium sensus stricto 1, and Geobacter in the rhizosphere of ponds and the ditch for two systems at day 30 were higher than those in the non-rhizosphere (Figure 5). This was consistent with our results that protein and amino acids contents of Vallisneria natans L. in PDCS’s two ponds increased from day 15 to 30 (Supplementary Table S5). This suggested that plants could adjust the secretion to cope with abiotic environmental stress (Edayilam et al., 2018). Relative higher proteins and amino acids values were conductive to increment of rhizosphere bacteria, which would be helpful in promoting the removal of nutrients (Bakker et al., 2015).
Responses of Rhizosphere and Non-Rhizosphere Bacteria to Abiotic Environmental Stress
Root exudates such as amino acids, organic acids, and sugars could provide carbon source for microbial growth and can drive sediment bacterial population richness and activities (Raaijmakers et al., 2009; Berendsen et al., 2012). Meanwhile, root exudates excreted by plants distributed in strong gradient manners from root surface into the soil. These root exudate gradients exert selective pressures, which affected the local microbial community structure such as their abundance and composition (Nunes da Rocha et al., 2009). Meanwhile, WC and W-temp played important roles in modulating the community structure of bacteria (Liddell et al., 2007; Gaumont-Guay et al., 2008). This was confirmed by our observations that Chao 1 indices of the rhizosphere and non-rhizosphere bacteria were both significantly correlated with water content (Table 2); while significant negative relationship between Simpson index and W-temp was only detected in the non-rhizosphere (Table 1). Bacillus and Clostridium sp. in the rhizosphere were significantly affected by water content and W-temp. Higher water content could enhance oxygen availability and diffusion rates in the sediment, which was benefit for Bacillus growth (Ma et al., 2021b). This was confirmed by our finding that the relative abundance of Bacillus was positively associated with DO in the non-rhizosphere (Figure 7A). In addition, Chao 1 index showed significant positive correlations with all measured sediment properties in the rhizosphere and non-rhizosphere (Table 2). Compared to the rhizosphere, Bacillus and Clostridium sp. in the non-rhizosphere were mainly affected by SNH4+-N and SNO3−-N (Figure 7A). Nitrification and denitrification always occurred in adjacent area resulting in the NO3− formed by nitrification diffusing towards an anaerobic zone where it was the terminal electron receptor for the denitrification process (Lu et al., 2012).
CONCLUSION
The PDCS system exhibited great capabilities in reducing nutrients N and P from rural wastewater, with the removal efficiencies ranging from 72.7 to 97.4%. Microorganisms were largely responsible for N and P removal, however, the community structures and diversities of rhizosphere and non-rhizosphere sediment bacteria varied greatly. The average numbers of bacterial OTUs in the rhizosphere sediments were significantly higher than their corresponding counterparts (p < 0.05). In the PDCS, the different microcosms in both rhizosphere and non-rhizosphere sediments shared dominant bacterial genera, such as Bacillus and Clostridium sensu stricto 1 for the ponds, and Geobacter for the ditch, respectively. Meanwhile, the contents of these three bacterial genera in the rhizosphere were higher than those of the non-rhizosphere at day 30. Moreover, Chao 1 index in both rhizosphere and non-rhizosphere was significantly positively correlated with all measured sediment properties, such as STN, STP, and OM. In the rhizosphere, Chao 1 index showed significant positive associations with NH4+-N, turbidity, tartaric acid, and Shannon index was significantly positively correlated with turbidity and TOC (p < 0.05). Similarly, in the non-rhizosphere, the Shannon and Simpson indices were associated with ORP (p < 0.05), respectively. RDA analysis demonstrated that exudates such as lactic acids, proteins, and amino acids exhibited strong positive effects on Geobacter and Clostridiu sensu stricto 12 in the rhizosphere; while Bacillus and Clostridium were significantly associated with SNH4+-N and SNO3−-N in non-rhizosphere. Together, regulating root exudates and sediment available N will increase the richness and diversity of dominant microbial species in the rhizosphere and non-rhizosphere. These findings are beneficial for the optimization and design of PDCSs and other nutrient removal systems in large-scale wastewater treatment applications.
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The contradiction between economic growth, social development, and water environment deterioration represent significant challenges for river basin sustainable development. By constructing an indicator system of river basin sustainable development, the entropy method is adopted to conduct a quantitative evaluation of the cities sustainable development level for the Weihe River Basin in Shaanxi Province from 2009 to 2018, and the standard deviational ellipse is used to analyze the evolution of spatial distribution pattern of sustainable development in the study area. Furthermore, the obstacle degree model is applied to analyze the main obstacle factors restricting the improvement of river basin sustainable development. The results show that the sustainable development level of the Weihe River basin in Shaanxi Province improved slowly during the study period and significant regional differences among cities. This study provides a novel approach for future evaluation on sustainable development of the Weihe River basin and even the arid region in Northwest China, to achieve a win-win situation between economic and social development and ecological environment protection.
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INTRODUCTION
With 1% yearly growth of global water consumption (Wada et al. 2016), it is speculated that by 2050, more than 50% of the world’s population will be chronically short of water (Roshan and Kumar, 2020). Water shortage will not only restrict social and economic development but also cause immeasurable damage to the ecological environment (Silva et al., 2019). Global water crisis is a barrier to sustainable development (Roshan and Kumar 2020); importance should be given to exploring the river basin sustainable development (RBSD).
Amid the unceasing appearance of global environment deterioration, resource depletion, population explosion, and other realistic problems, the concepts of sustainable development and the sustainable utilization of river basin have been recognized by many scholars. At present, the research on RBSD mainly focuses on the assessment of ecological health in the river basin Wu et al. (2020), Jamal et al. (2021); land use/cover changes and its environmental response in the river basin Shen and Ma (2020); optimization and management of water resources Chen et al. (2019), Ferreira et al. (2020); and ecological function zoning and ecological compensation of river basin (Melanie and John, 2018; Gao et al., 2019).
Much work has been done to RBSD during the past decades. A framework for quantitatively evaluating development sustainability was established with water-related eco-environmental carrying capacity as the core measure by Wang et al. (2014). Wang et al. (2019) used a pressure–state–response (PSR) model to quantify the sustainability of water resources in Beijing, China. D'Ambrosio et al. (2020) assessed the sustainability in water use at the basin scale through the water footprint. In recent years, evaluation methods such as system dynamics (Kotir et al. (2016), Pluchinotta et al. (2021), Song et al. (2018)) and sustainability index (Bui et al. (2019), Roobavannan et al. (2020)) have been widely used in the study of RBSD. However, with research concentrating on a single perspective, less attention was paid to the connection between the integrated socioeconomic development of the river basin and its water resources (Zhong et al., 2018). Besides, there is no unified and authoritative theoretical system for RBSD nor does it truly reflect the concept of sustainable development (Silva et al., 2020). Consideration is lacking in the coordinated development of society–economy–ecology to maximize the comprehensive benefits.
Some rivers in China suffer from problems such as the decline of sustainability and the deterioration of the natural environment caused by human activities (Fu et al., 2020). Among them, the problem of water shortage poses a threat to the sustainable development in arid and semiarid areas (Li J. et al., 2019). The Yellow River basin is a miniature of Asia and Africa’s water resource deficit (Chen Y.-p. et al., 2020). As the largest tributary of the Yellow River basin, the Weihe River basin (WRB) is crucial to the sustainable development of the Yellow River basin. The ecological environment of WRB is seriously degraded Wang et al. (2019) and water resources have an obvious restrictive effect on regional development. The mechanism and difference in the midstream of the Yellow River basin can be clarified through the study of WRB, and it also offered a reference for the development of the upstream and downstream in the Yellow River basin.
The entropy weight method, standard deviational ellipse, and obstacle degree model are employed in this article. The entropy method is used to calculate the weight of each indicator, which can provide the basis for the comprehensive evaluation of multiple indicators. It avoids the deviation caused by human factors and makes the evaluation more objective. The method has been used for the evaluation of electric power development (Zhao et al. (2020)), carbon emission (Cui et al. (2021)), the sustainable development capability of agriculture Li Q. et al., (2019), and many other fields. The standard deviational ellipse method analyzes the directivity of spatial distribution well and reflects the concentration degree of each element in the spatial pattern. Standard deviational ellipse was used to examine the effects of land use policy on the spatiotemporal changes in the area of surface water by Xu et al. (2018). Zuo et al. (2021) revealed a dynamic evolution process of ecological civilization construction. Du et al. (2019) investigated the relationship between economic growth and carbon emissions from the construction industry. The obstacle degree model is a mathematical statistical model to calculate the impact factor, and it is widely used in many aspects of comprehensive evaluation of ecological resources and environment such as cultivated land resources security Huang et al. (2021), water resource security (Zhang et al., 2019), etc.
In this article, an indicator system of RBSD is established to analyze the temporal and spatial variation of sustainable development with the case study of WRB in Shaanxi Province. Next, the obstacle degree model is introduced to investigate the main impediments that affect RBSD, with countermeasures put forward accordingly. The project has a theoretical value for implementing scientific development view and enriching sustainable development theory. As for realistic significance, WRB in the northwest arid region of China is selected as a specific case, providing operational and referable suggestions for remodeling the development and evolution process of different rivers.
MATERIAL AND METHODS
Study Area
Weihe River basin (34°–37°N, 104°–110°E; Figure 1), originating from Niaoshu Mountain in Gansu Province, flows into the Yellow River basin in Shaanxi Province. It lies in the north of Qinling Mountain, south of Liupanshan Mountain, the east of Loess hilly and gully region, and the west of Guanzhong Plain. Located in the warm temperate zone, WRB in Shaanxi Province has a subhumid continental climate, with an annual mean temperature of 7.8–13.5°C and an annual precipitation of 500–800 mm (Zhao et al., 2016). The main stream of WRB in Shaanxi Province, a length of 502.40 km, covers a drainage area of 67,108 km2, accounting for 50% of the total drainage area of the Yellow River basin in Shaanxi Province. The average annual runoff of the whole river is 1.04 × 1010 m3, of which the runoff in Shaanxi Province is 6.27 × 109 m3, with the flooding period (July to September) accounting for about 60% (Deng et al., 2020).
[image: Figure 1]FIGURE 1 | The location of study area in China.
The Weihe River is the mother river of Shaanxi, related to the rise and fall of economic and social development in Shaanxi Province. The core of Guanzhong–Tianshui economic region, WRB, plays an important role in the western development strategy of China. By the end of 2018, the population of the study area grew to 2.45×107 people and GDP 9.87×1014 yuan (Shaanxi Provincial Bureau of Statistics, 2019). The total water resources quantity in the study area, 7.25 × 109 m3, only accounted for 1.95% of that in Shaanxi Province. Only covering one-third of the land area of Shaanxi Province, WRB in Shaanxi Province discharged over three-fourths of the wastewater in Shaanxi Province. The water supply and water consumption of WRB in Shaanxi Province compose more than half of Shaanxi Province, 57.50% and 59.37%, respectively (Shaanxi Province Department of Water Resources, 2018). This study involves five cities on the main stream of WRB in Shaanxi Province, including Xi’an, Tongchuan, Baoji, Xianyang, and Weinan.
In recent years, remarkable changes have taken place in WRB with the intensification of human activities and the rapid development of the regional economy and society. However, multiple issues have attracted public concern, such as insufficient water resources, aggravated water pollution, overexploitation of groundwater, and incomplete containment of soil and water loss. Therefore, the study on sustainable development of WRB in Shaanxi Province is of great significance for promoting green development of the economy and society in Shaanxi province.
Construction of Indicator System
The indicator system was based on the United Nations Sustainable Development Goals (SDGs) and China’s National Plan on Implementation of the 2030 Agenda for Sustainable Development. To clarify the status of RBSD, this article regarded water resources as the core, the basin as a research space, and the complex system composed of human and nature in the basin as a research object. According to the construction principle of indicator system and covering the main environmental and socioeconomic issues contained in the concept of sustainable development with Chinese characteristics, the evaluation indicator is divided into a hierarchical system consisting of target layer (A), system layer (B), subsystem layer (C), and indicator layer (D).
The indicators were chosen for systematicness, completeness, representativeness, and accessibility. In terms of the actual situation, the water resource characteristics, and the evaluation content of WRB, 31 indicators were selected to construct the indicator system of RBSD (Table 1).
TABLE 1 | The evaluation indicator system of river basin sustainable development.
[image: Table 1]Calculation of Weight and the Level of Sustainable Development
To eliminate the magnitude difference among the data, the deviation standardization formula is adopted for each indicator, so that the results are all within the range of (0,1).
Positive Indicator

[image: image]
Negative Indicator
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Here, xij and Yij are the original and normalized values of the ith indicator in the year j, respectively.
In information theory, entropy is a measure of uncertainty. According to the characteristics of entropy, the discrete degree of indicator layer can be measured by calculating the entropy value. The larger the discrete degree of indicator, the greater the influence of indicator on a comprehensive evaluation. The entropy method is used to quantify the information of each indicator with the Shannon entropy (Shannon, 1948). Information entropy is employed to calculate the weight of each indicator layer to achieve an objective quality evaluation.
Assuming that there are m evaluation objects and n evaluation indicators, a matrix A with n rows and m columns can be established:
[image: image]
The proportion Zij of the ith indicator in the year j is given as follows:
[image: image]
The entropy ki of the ith indicator is as follows:
[image: image]
The redundancy gi of the information entropy of the ith indicator is as follows:
[image: image]
The weight wi of each indicator is calculated as follows:
[image: image]
The comprehensive evaluation of RBSD is calculated as follows:
[image: image]
Obstacle Degree Model
In the process of sustainable development evaluation, it is not only necessary to measure the level of RBSD but also to understand the critical factors that affect RBSD. Therefore, the obstacle degree model (Chen Y. et al. (2020), Fan and Fang (2020)) is introduced to analyze the obstacle factors of RBSD so as to carry out the pathological diagnosis in a practical application. The formula is as follows:
[image: image]
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where Qij represents the obstacle degree of the ith indicator in the year j, and Pij is the deviation degree of indicator i in year j.
Data
In view of accessible and limited data, this article chose 2009 to 2018 as the research period and five cities of WRB in Shaanxi Province were selected as samples to establish a comprehensive indicator system for the sustainable development of WRB in Shaanxi Province. Data were collected from the China Urban Statistical Yearbooks (2010–2019), Shaanxi Statistical Yearbooks (2010–2019), and Shaanxi Water Resources Bulletins (2009–2018). In addition, missing data were obtained by the interpolation method.
RESULTS
Temporal Analysis
The evaluation levels of sustainable development of WRB in Shaanxi Province rose from 1.29 in 2009 to 1.87 in 2018 with an upward overall trend and a subtle fluctuation (Figure 2 and Table 2). The inflection points were detected between 2013 and 2017, and the values remained around 1.6 from 2014 to 2016.
[image: Figure 2]FIGURE 2 | The comprehensive evaluation value for river basin sustainable development.
TABLE 2 | The assessment results on river basin sustainable development.
[image: Table 2]At the regional scale, the levels of sustainable development in different regions (Table 2 and Figure 3A). The level of sustainable development in Xi’an was much higher than that of the other four cities (Tongchuan, Baoji, Xianyang, and Weinan) from 2009 to 2018. It indicated that the levels of sustainable development of these four cities had different levels of hysteresis, and different regions showed diversified development. The value of Tongchuan was the lowest, hovering between 0.20 and 0.26. The levels of sustainable development in four cities except Tongchuan had seen a yearly increase.
[image: Figure 3]FIGURE 3 | The evaluation value of river basin sustainable development by score-radar maps (A) sustainable development, (B) economic development, (C) social development, and (D) ecological development.
The economic development system (B1) and the social development system (B2) were on a similar development track compared with the sustainable development system (A) (Figures 3B,C). In comparison, the value of the ecological development system (B3) was far lower than that of the economic development system (B1) and social development system (B2) (Figure 3D), indicating the lag of ecological development behind local economic and social development. In the economic development system (B1) and the social development system (B2), the values of the four cities (Tongchuan, Baoji, Xianyang, and Weinan) were relatively centralized, with only the value of Xi’an being far ahead than that of the rest (Figure 3A). In the ecological development system (B3), the increased values of Weinan in 2017 and Baoji in 2018 were 0.19 and 0.17, respectively, while the values of the other three cities (Xi’an, Tongchuan, and Xianyang) were relatively stable over the past decade. The level of sustainable development in the ecological system was the lowest, illustrating that the ecological development lagged behind economic and social development in WRB in Shaanxi Province and sustainable development was unbalanced.
Spatial Analysis
Through the change of the spatial distribution for the sustainable development of WRB in Shaanxi Province (Figure 4) and calculation of the relative parameters of standard deviational ellipse (Table 3) from 2009 to 2018, the evolution of spatial pattern was analyzed from four aspects of spatial distribution (center, shape, range, and direction) to account for the dynamic changes of spatial difference.
[image: Figure 4]FIGURE 4 | The evolution of a spatial distribution pattern on the river basin sustainable development. D1–D31 represent the obstacle degree of the corresponding indicator.
TABLE 3 | The parameters of standard deviational ellipse of the river basin sustainable development.
[image: Table 3]The spatial distribution centers of sustainable development of WRB in Shaanxi Province were adjacent to Xi’an and Xianyang in 2009–2018. Overall, the spatial distribution center shifted to the north, showing that the accelerated growth speed of cities in the northern part of the axis, and the enhanced influence on the overall distribution pattern of the study area. The rotation angle of the standard deviational ellipse of spatial distribution dropped with a small counterclockwise rotation, suggesting that the study area in the northeastern cities were growing faster than the southwestern cities.
From the perspective of a spatial distribution shape, the long axis of the ellipse increased first and then shortened. Such a trend indicated that the spatial distribution shape changed from dispersion to polarization and then to dispersion. The changes in the short axis were the opposite. On the whole, the spatial distribution ellipse showed an obvious flattening trend; that is, the long axis grew and the short axis shrank. Afterward, the flattening trend gradually weakened and the directivity abated.
Obstacle Factor
The obstacle degree of 31 indicators ranked by the obstacle degree model (Table 4 and Figure 5). The biggest obstacle degree was the number of college students per 10,000 (D12). Prior to 2013, the financial revenue (D2) and the amount of water resource per capita (D21) were ranked second and third, respectively. The rankings were reversed from 2013 to 2017, indicating that the influence of economic obstacles on sustainable development of WRB in Shaanxi Province was gradually weakened with the increase of financial revenue. The fourth obstacle indicator was the investment in water conservancy as a percentage of GDP (D30), while the fifth obstacle factors alternated between the gross domestic product (D1) and urban living area per capita (D16).
TABLE 4 | Dominant obstacle indicators and the order of obstacle degree on the river basin sustainable development.
[image: Table 4][image: Figure 5]FIGURE 5 | The obstacle degree of 31 indicators.
DISCUSSION
Extended Implication
The ecological development of WRB in Shaanxi Province fell so far behind economic and social development on the whole during 2009–2018, despite the striking advancement of ecological development that had been made at the later stage of the study. The improvement of ecological development cannot be separated from the management behavior of the government. China attaches great importance to RBSD in the face of environmental degradation and water shortage. In 2014, President Xi Jinping called for a water control policy of “giving priority to saving water, balancing space, systematic treatment, and exerting force all-sided.” From 2016 to 2017, the Shaanxi provincial government issued a series of policies such as the Overall Plan for the Construction of Weihe Ecological Zone in Shaanxi Province and the Implement Plan Comprehensively of River Administrator in Shaanxi Province. Subsequently, a major national strategy of “Ecological conservation and high-quality development of the Yellow River basin” was proposed in 2019. WRB is a typical region with water shortage and underdeveloped economy, and water resources pose an obvious constraint on the sustainable development of WRB in Shaanxi Province. The water resources shortage and ecological environment pollution hamper the sustainable development of the economy and society. Conversely, the long-term development model has only focused on the aspects of economy and society, exerting great pressure on the ecological environment. Thus, solving the contradiction between economic and social development and environmental protection should be considered pivotal to the sustainable development of WRB in Shaanxi Province. The government departments must attach importance to the basin ecological management and water resources conservation for the sake of ensuring sustainable development of WRB in Shaanxi Province.
Among the five cities, Xi’an was identified as the region with the highest level of sustainable development during the study period, while Tongchuan was the lowest. Xi’an has developed into the only megacity in northwest China by virtue of its sound economic-social development foundation and the status as the central city of Shaanxi Province. Xi’an is in a high-speed state of sustainable development; its core leading role constantly enhanced, exerting a siphon effect. Meanwhile, Tongchuan, as a resource–based city in its early development stage, is facing the pressure of resource exhaustion, limited natural conditions, and prominent environmental problems, impeding its sustainable development. The results revealed evident polarization among regions as well as unsynchronized sustainable development. The study area belongs to an important exploitation area of Guanzhong Plain urban agglomeration, having formed a superior economic base in the long-term development. The western development provided favorable conditions for resource-rich regions, which is the main reason for the internal differences in sustainable development among regions. Besides, the implementation of the Belt and Road Initiative has greatly promoted regional coordination and sustainable development.
The results of obstacle degree unexpectedly discovered that the amount of water resource per capita (D21) and the investment in water conservancy as a percentage to GDP (D30) in the ecological development system (B3) were vital factors hindering sustainable development of WRB in Shaanxi Province. The ecological environment, especially water resources, acts as a primary in the river basin sustainable development. Water conservancy construction is regarded as the basic support and important guarantee for promoting economic growth, social progress, and ecological control. In recent years, investment in water conservancy construction and water conservancy projects have seen a continuous increase, especially the construction of the Water Diversion from Hanjiang River to Weihe River basin project (172 major national water conservancy projects of China in 2015 and 10 major water ecological projects of Shaanxi Province in 2017), bringing obvious ecological–economic benefits.
Limitation and Improvement
Indicator Optimization
Including environmental, social, and economic factors, sustainability indicators have been considered as a potential assessment method (Rama et al., 2020). GDP (D1), an important comprehensive statistical indicator in the economic accounting system, is often used to measure the economic status of a country. Its limitation is that it does not involve the ecological environment. Under a rapid social and economic development, GDP cannot fully represent the relationship between human activities and ecological environment, nor can it uncover resource consumption and environmental loss incurred by the economic development. To overcome the above shortcomings, the current system of national economic accounting was reformed based on the sustainable development, with the indicator green GDP (sustainable income) introduced. Green GDP is the calculation of environmental resource elements in a comprehensive environmental–economic accounting system, namely, environmental resource cost and protection services fees are deducted from GDP. Green GDP implicates a harmonious sustainable development model between economic growth and ecological environment, which is conducive to evaluating the effect of economic growth. However, the existing literature is insufficient to answer the question of what is the difference between GDP and green GDP in China (Wu and Han, 2020). Although a traditional indicator (GDP) was used in this article, it does not mean that green GDP is meaningless. In the follow-up work, it can be considered to reasonably adopt the indicator of green GDP in the indicator system of sustainable development and explore the change for RBSD.
Ammonia nitrogen discharge (D27) and chemical oxygen demand discharge (D28) are the indicators of water environmental quality (C8) in the ecological development system (B3); they represent an eutrophication degree and an organic pollutant content in river basin, respectively. According to the Shaanxi Water Resources Bulletin in 2018, the major pollutants exceeding the standard in WRB in Shaanxi Province were ammonia nitrogen, chemical oxygen demand, and total phosphorus. However, the indicator of total phosphorus is not involved in our indicator system due to the lack of data; therefore, it is unclear whether this indicator will lead to the variation on sustainable development of WRB in Shaanxi Province. In addition, the publicly obtained data by the government may need further adjustment according to the actual measured values in the field.
WRB is characterized by severe soil erosion owing to overexploitation, especially in the mining area, highway, railway, and other engineering construction sections. Severe soil and water loss not only threatens the downstream of WRB, but also aggravates the deterioration of the ecological environment. Therefore, given the actual development situation of WRB, the suitable indicators were selected when constructing the indicator system for the sustainable development of WRB in Shaanxi Province. Particularly, the growth rate of soil erosion control (D31) was added to the indicator system. Such an indicator has not been extensively used in sustainable development research but is conducive to the planning and decision-making of basin management. Because the factors affecting RBSD are diversified, whether the indicators in the established indicator system for our study are applicable to other regions remains to be further explored.
Basin Management
Studies in China focusing on water resource management have emphasized the effective utilization of water resources while neglecting the protection of water quality (Cai et al., 2017; Zhou et al., 2015). Few studies have focused on the sustainable development of basin management, especially in arid areas of northwest China.
According to China’s current water law, basin management is combined with the administrative division management. The inevitable consequence is a segmented state, a kind of transition from water resources management to administrative management. Division management hinders overall planning, unified supervision, and rational allocation. Under the restriction of market economy and traditional thoughts, the local government is driven by their respective economic interests, which conflicts with the unified basin management, especially in the exploitation, utilization, and protection of natural resources.
In the practice of RBSD, developed countries such as Australia, the United States, and Germany give importance to the sustainable development, and the coordination of population, resource, and environment, highlighting the long-term management and basin integrity, while taking into account the comprehensive utilization of water resources and engineering measures. Social, ecological, and environmental factors should be reflected in the planning, with the river basin managed as a unit, not as an administrative division. Kotir et al. (2016) investigated the interaction between the population, the water resource, and the agricultural development of the Volta River basin in West Africa, and it could enhance sustainable management within the basin. Wei et al. (2017) describe the evolution of the societal value of water resources in Australia over a period of 169 years and then provide management practices focused on the sustainable water resource use. The theory of RBSD had benefited the development and management practices of river basin ecosystems, such as the Amazon River (Ioris, 2020), the Mississippi River Piazza and La Peyre (2011), the Tennessee River Secchi and Mcdonald (2019), and the Rhine River Jeannot et al. (2018), offering a reference for RBSD in China.
A New Perspective on Sustainability Assessment
The framework of the planetary boundary in 2009 was considered as one of the most symbolic achievements in the field of quantification of international resource and environmental carrying capacity in recent years (Rockström et al., 2009; Running, 2012). The concept first defined the maximum safety threshold of the earth’s ecosystem in a series of environmental problems, such as climate change, water resources consumption, land use, nitrogen and phosphorus cycle, and loss of biodiversity. It is used to judge environmental sustainability as a whole (Steffen et al., 2015). Environmental sustainability can comprehensively reflect the complex effects of human activities on the earth’s ecosystem and provide a policy basis for key fields of environmental governance.
Studies of planetary boundaries have concentrated on global, national, and regional scales (Dao et al., 2018; Huang et al., 2020). Water resource consumption is a compound environmental problem; its influence scope is mainly a river basin. Combining with the planetary boundary framework, the safe interval of water resources utilization and RBSD can be discussed, providing the development space and early warning threshold for regional sustainable development.
CONCLUSION
This article constructed an indicator system of sustainable development. The entropy method and standard deviational ellipse were used to evaluate temporal and spatial variations for sustainable development of WRB in Shaanxi Province. The obstacle degree model was used to calculate and rank the factors that hindered its sustainable development. First, from the perspective of temporal analysis, the overall rise of sustainable development of WRB in Shaanxi Province is accompanied by regional differences. Economic development is synchronous with the social development, while the ecological development is relatively backward. Second, from the perspective of a spatial pattern evolution, the center of distribution moves north and rotates counterclockwise, the shape variation being dispersion-polarization-dispersion. Lastly, the main obstacle factors affecting the sustainable development of WRB in Shaanxi Province during 2009–2018 include the number of college students per 10,000 (D12), local government revenue (D2), amount of water resource per capita (D21), investment in water conservancy as a percentage to GDP (D30), gross domestic product (D1), and urban living area per capita (D16).
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Uncertainties concerning low-impact development (LID) practices over its service life are challenges in the adoption of LID. One strategy to deal with uncertainty is to provide an adaptive framework which could be used to support decision-makers in the latter decision on investments and designs dynamically. The authors propose a Bayesian-based decision-making framework and procedure for investing in LID practices as part of an urban stormwater management strategy. In this framework, the investment could be made at various stages of the service life of the LID, and performed with deliberate decision to invest more or suspend the investment, pending the needs and observed performance, resources available, anticipated climate changes, technological advancement, and users’ needs and expectations. Variance learning (VL) and mean-variance learning (MVL) models were included in this decision tool to support handling of uncertainty and adjusting investment plans to maximize the returns while minimizing the undesirable outcomes. The authors found that a risk-neutral investor tends to harbor greater expectations while bearing a higher level of risks than risk-averse investor in the VL model. Constructed wetlands which have a higher prior mean performance are more favorable during the initial stage of LID practices. Risk-averse decision-makers, however, could choose porous pavement with stable performance in the VL model and leverage on potential technological advancement in the MVL model.
Keywords: climate change, stormwater management, Bayesian, life span, low-impact development, porous pavement, constructed wetland
INTRODUCTION
Low-impact development (LID) practices such as incorporation of constructed wetland (CW) and porous pavement (PP) in stormwater management are decentralized elements that could be used to manage storm runoff through retention and infiltration at source (Ahiablame and Shakya, 2016). As an important adaptation strategy, LID is growing in popularity due to its anticipated social, esthetic, and environmental benefits, as well as its flexibility and compatibility to blend in with architecture and landscape, particularly in a high-density urban area (Ahiablame et al., 2012; Yuan et al., 2018). Decision-making tools for selecting, sizing, and design of LID at various plot scales such as a single project development site, urban sub-catchment, or at a regional level have been developed (Bakhshipour et al., 2019; Wang et al., 2020). However, the robustness associated with the LID devices has not been addressed (Pyke et al., 2011; Bahrami et al., 2019). Bracmort et al. (2006) stated that although a “design life of LID” had been established, the effective duration and performance of a LID during its design life span remained uncertain. Naturally, LID efficiency would vary over time (Koch et al., 2014; Chen et al., 2016). Like all stormwater ancillaries, the efficiency of LID devices is likely to decrease over time due to progressive degradation and deterioration of the structural elements, clogging of pervious surfaces, and sedimentation. Periodic maintenance would no doubt restore the performance of LID to some degree.
Many reported studies have focused on certain aspects of hydrologic performance of LID based on field or experimental investigations (Montalto et al., 2007; Emerson et al., 2010; Thompson et al., 2016; Hou et al., 2019). Some hydrological or hydraulic modeling studies have focused on the potential variations in long-term performances of LID but these studies assumed that LID functions perfectly after installation (Liu et al., 2015; Wang et al., 2021). There are only a handful of studies that had developed techniques to address long-term efficiency of LID and incorporated this consideration into the models to simulate the actual performance (Bracmort et al., 2006). Liu et al. (2018) presented a life-time modeling framework for assessing the efficiency of LID technologies and long-term performances of CWs and grass buffer strips in removing total phosphorus. Wang et al. (2021) illustrated that the hydrological robustness of a wetland system would decrease significantly over its service life cycle once long-term performance for LID practices is considered.
Selecting an appropriate LID solution is becoming more complicated and more challenging due to high uncertainty of climate change in recent years (Larsen et al., 2016) on top of the uncertainty associated with long-term performance of LID. Obviously, the combined effects and uncertainties of climate change and its long-term efficiency would further complicate decisions to invest on LID practices. Several researchers suggested that a realistic modeling method should consider both the internal uncertainties of LID’s dynamic hydrological performance and external uncertainties such as climate change (Pyke et al., 2011; Yazdanfar and Sharma, 2015). There are still knowledge gaps and potential opportunities for further development of models and tools which could be used to support decision-making of LID.
An investment on LID often involves a long-term planning horizon, hinging on management objectives, available resources, risk appetite, and potential benefits of LID. The challenge is how to structure the information on the cost-benefits of LID and include a variety of structural uncertainties and climate scenarios. A multi-scenario analysis with adaptive options including a decision-tree analysis, real options analysis (Woodward et al., 2014; Sturm et al., 2017), dynamic adaptive policy pathways, and multi-stage stochastic programming (MSP) has been considered. In this approach, adaptation strategies can be modified dynamically and progressively based on updated information (Shi et al., 2019). A Bayesian analysis is widely used in the multi-scenario analysis with adaptive options. The Bayesian approach begins with an assumed initial distribution of certain variables, which is then refined progressively until an optimum state is obtained (Kelly and Kolstad, 1999). Other reported studies that include these are by Liu et al. (2017) and Tang et al. (2018) on regional flood risk; Jacobi et al. (2013) on water quality improvement; Hung and Hobbs (2019) on green infrastructures; and Webster et al. (2017) on climate mitigation technologies.
The objective of this study is to develop a reliable Bayesian-based and coupled optimization model which addresses uncertainty and risk associated with long-term efficiency of LID and potential climate change.
MATERIALS AND METHODS
The proposed methodology for optimized design and investment of LID based on Bayesian learning and anticipated long-term efficiency over its design life span is described herein. The procedure includes several steps as represented schematically in Figure 1. Two urban sub-catchments in Guangzhou are used as the test catchments in this study.
[image: Figure 1]FIGURE 1 | Flowchart of the methodology for the coupled Bayesian optimization model of LID investments. Note: PP, permeable pavement; CW, constructed wetland; LCC, life cycle cost; SWMM, Storm Water Management Model; VL, variance learning; MVL, mean-variance learning; None-L, none learning; Part-L, part learning; All-L, all learning; CVaR, conditional value at risk.
There are five main blocks in the work flow process: 1) preparation of input data and focusing on the hydrological characteristics of a test catchment; 2) select an appropriate hydrological model; the model is used for hydrologic simulation of stormwater runoff through the test catchments; 3) a Bayesian learning model which is used to assess the performance of LID practices under different investment strategies and various degrees of LID implementation; 4) a coupled optimization model which is used for developing the optimum investment strategy (optimum LID implementation); and 5) final decision module, in which the outcome of the above processes is used to determine the extent of the LID and its configuration such that the objective could be achieved optimally and with optimum investment.
Long-Term Efficiency of Low-Impact Development
Test Catchment and Climate Scenarios
Guangzhou, a high-density city in China, has the most severe urban flooding risk among the 136 large coastal cities in the world (Hallegatte et al., 2013). The rainfall distribution is non-uniform throughout the year due to the impacts of subtropical monsoon climate. Using selected multi-global climate models (GCMs) and the corresponding representative concentration pathways (RCPs) scenarios in Guangzhou, occurrences of extreme storms are expected to rise dramatically over the next 30 years (Zhang et al., 2017).
Two test catchments selected for this study were located at 23°04′ N; 113°12’ E, and they were residential sub-catchments S01 and S02 (Supplementary Figure S1). The land surface area of S01 and S02 included a different proportion of impermeable areas. The hydrologic parameters of both sub-catchments, as shown in Table 1, had been established and calibrated using ten rainfall events and validated using another 25 events over the period of 2013–15. The Kling–Gupta efficiency and Nash–Sutcliffe efficiency were above 0.7 and 0.6, respectively (Zhu et al., 2019).
TABLE 1 | Characteristic parameters of sub-catchment S01 and S02.
[image: Table 1]Historical rainfall data (2010–19) were collected from the rainfall station at the Baiyun International Airport, Guangzhou. In order to extract independent rainfall events from continuous time series, the inter-event time definition method with a duration of 12 h was adopted (Joo et al., 2014). “Future” rainfall data were established based on observed data and projections based on multi-GCMs (Figure 1) as well as RCPs introduced by IPCC in its Fifth Assessment Report (O'Neill et al., 2014). The median ensemble model of multi-GCMs was adopted to project rainfall events over the projected period. RCP 8.5, a high emission scenario reflecting the increasing greenhouse gas emissions leading to radiative forcing of 8.5 W/m2 in 2,100, was selected as the climate change scenario (Lee et al., 2014). The projected period of 2020–39 was adopted. In so doing a 30-year planning horizon and LID’s life span (assumed to be 30 years) (Vineyard et al., 2015) was established, with the first 10 years (2010–19) of observed rainfall time series and 20 years (2020–39) of projected rainfall time series.
Hydrologic Model and LID Practices
The Storm Water Management Model (SWMM), a dynamic hydrologic model, was used to simulate the hydrological processes for a single and continuous rainfall event on an urban catchment. The result was used in the planning and design of various LID technologies (Kong et al., 2017). The underlying surface of catchment was treated as a non-linear reservoir (Palla and Gnecco, 2015). The Horton model for infiltration and dynamic wave routing was selected for rainfall loss and confluence routing (Rossman and Huber, 2016).
Although both PP and CW have been widely used in LID practices for reducing peak flow and pollution loads at source, their construction structures, materials, costs, and maintenance as well as applicabilities are quite different (Wang et al., 2019). In this study, PP and CW were adopted as representative LID elements, and the corresponding structural parameters are listed in Table 2. The surface area and width of the PP and CW were used to describe the extent of LID conceptually.
TABLE 2 | Parameters of the permeable pavement (PP) and constructed wetland (CW) in SWMM.
[image: Table 2]Annual runoff volume reduction was set as the main parameter in the optimization (maximized cost-saving) of investment. The construction costs of LID practices are included in Table 3. The annualized maintenance costs were defined as a certain fraction of the capital costs, that is, 4.0% for PP and 8.0% for CW (Houle et al., 2013; Wang et al., 2020). The life cycle cost (LCC) of LID was a long-term cost over the service life time, and they were adopted as the investment budget. LCCs of PP and CW were calculated using the capital and maintenance costs over a service life time of 30 years (Rossman and Huber, 2016). Construction of PP and CWs was set to be ready at the beginning of year 1, while the maintenance costs were incurred at some point in time between years 1–30 (Wang et al., 2020). A present value (PV) accounting was performed by compiling all LCC and discounted to the 2018 United States dollar ($) value. The LCC of PP and CWs were calculated as:
[image: image]
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where [image: image] is the capital cost of LID, [image: image] is the present value of the maintenance costs, [image: image] is the number of year in service, and i is the discount rate reflecting the depreciation in value over time (Reis and Shortridge, 2020). A discount rate of 2% was adopted in this study (Dong, 2018).
TABLE 3 | Construction costs of constructed wetland (n m2) and permeable pavement (n m2) used in this study.
[image: Table 3]Long-Term Efficiency Metrics
Following the long-term performance modeling framework for LID developed by Liu et al. (2018), the effective performance of PP was assumed to degrade linearly over time and is shown in Figure 2A (Emerson et al., 2010; Haile et al., 2016). The decrease in PP effectiveness was mainly attributable to physical degradation such as clogging of the pores and sediment accumulation over the surface. Figure 2B shows the potential change in the mean CW effectiveness normally distributed during a typical year following the annual vegetative growth and decay cycle.
[image: Figure 2]FIGURE 2 | (A) Potential mean PP effectiveness during each year, (B) potential mean CW effectiveness during each year, and (C) example of composite mean PP and CW effectiveness over the design life span.
The composite efficiency of PP and CW is shown in Figure 2C. It is derived by superimposing the cyclic trend of the CW on the linearly decreasing trend of the PP. The relationship of [image: image] is as follow:
[image: image]
where [image: image] is the slope (assumed to have a default value of 0.020 ± 0.005) (Liu et al., 2018), and [image: image] is the intercept set to 1, since the initial efficiency of PP was set to 100%.
The mean efficiency for CW ([image: image]) was reflected as a series of normal distribution with attenuated magnitude (Figure 2C), which emulated the natural characteristics of decreasing efficiency from year-to-year. The ([image: image]) was assumed normally distributed (Forbes et al., 2011) as:
[image: image]
where σ is the standard deviation (assumed to have a default value of 1.0 and a range of 0.5–5.0) (Liu et al., 2018); μ is the mean of x (assumed to be 0); and x has a value between −6 and +6 (the range of 12 months).
For the first year of CW’s service life, the highest mean efficiency ([image: image]) was set to 100%. To reflect the downward trend of CW’s performance, [image: image] was assumed to decay with a reduction factor, [image: image] year-on-year:
[image: image]
where N is the number of years of the design life span, and [image: image] reflects the progressive reduction of potential maximum efficiency year-on-year, and is assumed to have a default value of 2.0 ± 1.0%.
For the annual rainfall–runoff reduction, it was necessary to establish the statistics for the total runoff generated in the events for the yth year as follow:
[image: image]
where [image: image] is the reduction runoff volume of LID practices in year y (from 2010–39), [image: image] is the yth year annual runoff volume generated for non-LID catchment, n is the number of rain events in year y, and [image: image] is the mean efficiency of LID practices.
Bayesian Learning Programming
A Bayesian-based multi-stage decision model (with “prior” and “posterior” predictive distribution) was adopted to model the implementation process of the LID. The model analyzes various schemes of implementation, while considering opportunities and risks progressively. Certain schemes might change course at some future stages, depending on the level of achievement attained at that time. A two-stage decision model was incorporated in the LID scheme (investment decision) in this study. The main constraints were certain pseudo-random events and acceptable risk-averse levels.
“Prior” Distributions
According to the terminology of Bayesian inference theory, the distribution on the hydrological performances of LID practices at the initial stage, called the “prior” distribution, was assumed to be normally distributed ([image: image], where [image: image] and [image: image] were the mean and variance of performances, respectively) based on the simulated ensemble of LID function units.
[image: image]
where [image: image] represents LID function objectives, [image: image] is 30 years of the simulated period, [image: image] represented the investments in PP or CW, [image: image] represents the LID investment scenario s in S scenarios, and [image: image] and [image: image] are the storm runoff volume reduction and life cycle costs for u LID type in scenario s, respectively. The LID function objective contains a single parameter, that is, storm runoff reduction. [image: image] was therefore adopted as an index for average annual runoff volume reduction and reflected as reduced investment amount per $ per year in scenario s.
Learning Curve Function
A learning curve was assumed to be a function of the transformed relationship of investment on LID practices based on potential information gains from Bayesian Inference (Hung and Hobbs, 2019). These information gains were used to update the knowledge/beliefs regarding “posterior” distribution of the hydrological performance of LID practices in the second stage (Ferioli et al., 2009). A variance learning (VL) model and a mean-variance learning (MVL) model were proposed for various learning curve functions. The VL model was defined as a learning process which could only reduce the uncertainty of LID’s performance, whereas the MVL model assumed that the learning process could reduce uncertainty and improve the expected performance through technological advancement or cost reduction. Thus, the MVL model might be viewed as an extension of the VL model. The VL curve for variance reduction was expressed in the form of a two-step function (Figure 3A) representing one of the three possible learning pathways (None-L, Part-L, and All-L) that would take place. None-L was defined as one that the posterior distribution was identical to its prior; Part-L was defined as one that the posterior distribution variances were less than the prior distributions but not zero, and All-L was defined as one that the posterior distribution variance was set to zero. The learning curve function for reducing uncertainty of u LID solution in scenario s at Stage II (denoted Uncertainty ([image: image])) for both VL and MVL models was defined as follows.
[image: image]
where [image: image] is a scaling constant that is used to adjust the variance. The parameters [image: image] and [image: image] are the threshold values for investments needed for Part-L and All-L cases, respectively.
[image: Figure 3]FIGURE 3 | (A) Variance learning curve functions used in the VL and the MVL models and (B) learning curve functions for the expected value improvement in the MVL model.
In the MVL model, the learning curve function for mean improvement in scenario s of u LID type at Stage II (denoted by Mean ([image: image])) is assumed to have a single level only, and has a threshold value equaled to [image: image] (Figure 3B), as shown as below.
[image: image]
where [image: image] is the scaling constant that could be used to adjust the posterior mean. The abscissa, investment ($), was indicated the extent/magnitude of LID.
Bayesian Optimization Formulation
The objective of the optimization process was to improve the relationship between LCC and the expected reductions in runoff volume based on the decision to invest on LID at various stages of development, and pending the resources, progressive learning, and risk constraints. Between expenditures and risk, tradeoffs were evaluated by adjusting the investment budget and risk appetite. Minimizing the risk of reduced efficiency was considered as one of the main considerations of investment on LID (Yamout et al., 2007). Conditional Value at Risk (CVaR), which reflects the average level of “portfolio excess loss,” is adopted as a reliable and valid index of the potential risk (Bakhtiari et al., 2019). This index was used as the index of “poor outcomes.” The optimization process portrayed risk-averse preferences by adopting CVaR constraints. If the constraint was binding, the decision was likely to be an investment that would elevate the expected performance under the worst risk conditions. The higher value of CVaR was desirable for maximum storm runoff volume reduction.
The VL model for investment optimization was calculated as follow:
[image: image]
[image: image]
subject to
[image: image]
[image: image]
where Eqs 12, 13 are learning and risk constraints, respectively; x is a decision variable; [image: image], and [image: image] are stage I, and II, respectively; [image: image], [image: image] and [image: image] are the investment vector at stage II for the None-L, Part-L, and All-L case in scenario s, respectively; [image: image] is the reduction capacity of the storm runoff volume at stage I in scenario s; [image: image], [image: image], and [image: image] are the expected posterior mean of storm runoff volume reduction for the None-L, All-L, and Part-L cases at stage II in scenario s, respectively; [image: image], [image: image] and [image: image] are binary vector indicating whether (=1) or not (=0) None-L, Part-L, and All-L would occur for each of the [image: image] LID types; [image: image] is an auxiliary variable used to calculate CVaR; and [image: image] is the stormwater reduction below [image: image] in scenario s. In addition, it assumed equal likely of each scenario s.
The MVL model reflects technological improvement that would lead to added increase of the mean of the “posteriors” in comparison with the VL model. Therefore, the objective Eq. 10 may be revised as follow:
[image: image]
where [image: image] and [image: image] are “posterior” mean of the storm runoff volume reduction rate for the All-L and Part-L cases in scenario s at stage II in the MVL model, respectively.
Discussion on the Assumptions Made
The constraints imposed on investment included the overall budget, learning relationships, and risk appetite. A budget per hectare of $100K was suggested for LID implemented at the test sub-catchment. Thus, the budgets for S01 and S02 were set to $200K and $150K, respectively. A two-stage investment process was developed to optimize the LID planning process. Stage I began at the start of the project, and Stage II would begin at year 4 in the 30-year planning horizon. Once installed, the LID would continue to generate storm runoff volume reduction until the end of the planning period.
The learning curves assumed in the VL model are displayed in Figure 3A. There, Uncertainty ([image: image]) = 1 indicated that the investment was below the threshold and would trigger learning; Uncertainty ([image: image]) = 0.25 meant that the investment would result in Part-L and the variance was reduced to a quarter of the original value. Here, Part-L thresholds corresponded to setting $10K and $30K for PP and CW, respectively. Uncertainty ([image: image]) = 0 meant that full information in All-L was obtained in Stage II so that the variance was reduced to zero. All-L thresholds corresponded to setting $30K and $60K for PP and CW, respectively. In the MVL model, the thresholds for 80 and 50% meant that improvements were assumed at setting $10K and $30K for PP and CW, respectively, and were the same as the Part-L thresholds in the VL model (Figure 3B). Besides, a lower bound value was placed on CVaR0.05 as a minimal acceptable storm runoff volume reduction.
RESULTS
“Prior” Distributions of the Performance of a Low-Impact Development
Statistically, the average annual rainfall from 2010 to 2019 was 2,253 mm. The climate ensemble of RCP 8.5 showed a small increase (0.9%) for the projected period (2020–39) of 2,272 mm for the median ensemble model. Although the median was close to that of the observed climate, the projected changes in monthly precipitation were still highly uncertain, especially in the monsoon. (Figure 4). The projected change in monthly precipitation in July ([image: image] is 9.4 mm; [image: image] is 1,008.4 mm) is the most obvious, and its variance is nearly 110 times that in February. Figure 4 shows that Guangzhou could be subject to more severe urban flooding and drought due to significantly increased precipitation during the rainy season but decreasing rainfall during the dry season. Other studies focusing on climate change impacts reported similar findings (Huang et al., 2018). Deng et al. (2018) reported that seasonal storms and drought might occur more frequently with greater intensity in most areas of Guangzhou.
[image: Figure 4]FIGURE 4 | Projected changes in monthly precipitation compared to historical average data in Guangzhou during the simulated period for RCP 8.5. Note: source of information published by the Climate Change Knowledge Portal of the World Bank Group (https://climateknowledgeportal.worldbank.org [accessed 23 Jan 2020]).
Figure 5 illustrates the annualized storm runoff volume reduction, averaged over the 30-year time horizon. The performances of PP and CW showed a significant downward trend attributable to decreasing efficiency based on the long-term performance curves of LIDs. It was noted that the performance curves were calculated according to the average performance as recorded in the long-term time series for both LIDs. Therefore, extreme scenarios would not be reflected within the scenario of a particularly stable long-term performance or rapid degradation. At the end of service life, long-term effectiveness of PP would remain between 25.0 and 55.0% and appeared normally distributed. However, in its last year of service life, the highest efficiencies of CW would range from 10.0 to 70.0% with greater fluctuation.
[image: Figure 5]FIGURE 5 | Annualized stormwater reduction of LIDs in (A) S01 and (B) S02 based on the long-term effectiveness analysis in a simulated period.
More frequent heavy rainfall events following climate change would have exceeded the LID’s drainage capacity and reduce the hydrological efficiency of LID. The performance of CW was found to be superior than that of PP in S01 and S02 during the same period. Also, the efficiency of storm runoff volume reduction through LID in S01 was relatively lower than that in S02. This result was attributed to the lower impervious rate in S01, which led to lower rainfall losses and hence lower runoff volume reduction.
By calculating the “prior” distribution of LIDs based on long-term effectiveness, the performances of both LIDs appeared normally distributed. CVaR0.05 was used to calculate the risk values of “prior” probability for LIDs under long-term performance (Figure 6). As a result, investment on CW was found to be more cost-efficient than that for PP, but the uncertainty with the performance of CW was higher. Also, CW showed lower CVaR values, reflecting its potentially higher risk. These findings were found to be consistent with those reported by others (Liu et al., 2018). It was noted that the unit performance of LID in S02 was better than that in S01 but it also showed a significant level of uncertainty.
[image: Figure 6]FIGURE 6 | Prior distribution of LIDs with normal distribution in (A) S01 and (B) S02.
Variance Learning Model
Though the same unit budget (a budget of $100K per hectare {assumed}) was invested in LID, the performance and risk thresholds corresponding to different test catchments were different (Figure 7). The VL model was examined for CVaR0.05 with values ranging from 7,060 m3/yr to 9,678 m3/yr in S01 and 4,815 m3/yr to 7,980 m3/yr in S02. S01, at a CVaR of 7,060 m3/yr, which was the alternative that maximizes the expected storm runoff volume reduction, achieved a value of 12,000 m/yr. High value of CVaR had higher stability at the expense of lower expected hydrological performance. CVaR could increase to as much as 9,678 m3/yr, with an increase of 37.1%. However, the corresponding expected storm runoff volume reduction was reduced by about 7.0% from 12,000 to 11,160 m3/yr. Thus, it appeared that the risk capacity determined the expected reduction of runoff. Meanwhile, CVaR showed a 65.7% increase from 4,815 m3/yr to 7,980 m3/yr, while the expected storm runoff volume reduction fell about 23.3% from 10,800 m3/yr to 8,280 m3/yr in S02.
[image: Figure 7]FIGURE 7 | Investment strategies at Stage I (left axis) and the objective function values (right axis) from the VL model for CVaR0.05 in (A) S01 and (B) S02.
Not surprisingly, the optimal strategy was one in which all allotted budgets were invested in CW at Stage I for a risk-neutral decision-maker since CW had proven track of good performance with a higher “prior” mean, even if PP were to degrade more slowly than CW, and CW only portrayed a marginally higher effectiveness than PP at around the middle of each year from Figure 2. It is worth noting that the average annual runoff control over the service life time was adopted as the performance level in this study. Limited hydrological management ability of CW in the later period was ignored, since CW degrades faster than PP over time.
There was no strong incentive to invest in PP or take advantage of learning on the VL model since “to wait” means that there would be no derived benefit during the initial 3 years, which then led to lower surface runoff reduction over the 30-year period. However, were him showed a risk-averse attitude, the manager might act to save some amount of budget for the next stage or mix his investment with more LID alternatives, or to wait to obtain better estimates of LID performance. For instance, when 7,060 m3/yr < CVaR ≤ 9,678 m3/yr, the model suggested making investments in CW and also saving some amount of budget for Stage II.
In the case of S02, the optimal solutions were more complex. With 4,815 m3/yr < CVaR ≤ 7,758 m3/yr, the model suggested making investments in CW, while saving some amount of budget to leverage on “All-L” in CW. However, with 7,758 m3/yr < CVaR ≤ 7,980 m3/yr, the model suggested investing in PP to the tune of $85.5K to $30K for “All-L″ at Stage I and saving the balance to invest at Stage II in order to further reduce the risk. It was noted that CVaR showed a 2.9% increase from investing in CW to PP. However, the expected storm runoff volume reduction decreased dramatically by about 18.4% from 10,152 to 8,280 m3/yr. Note that PP was not recommended for the risk-neutral decision-makers since its efficacy is limited, but it was added for the conservative or risk-averse one due to its obvious stability of hydrological performance.
Mean-Variance Learning Model
The MVL model added other sets of learning functions to the VL model, for which the expected performances of PP and CW could be improved. As a result, the MVL model depicted a lower incentive to make investment at Stage I to increase the expected volume reduction, as compared to the VL model. A recommended initial decision is to make a partial or delayed investment first, and then decide when more information becomes available. The losses at Stage I may increase, but better long-term outcomes could be achieved by reducing the loss of structural performance and potential technological change for LID, since it avoids irreversible investment at the initial stage and retains the option of future expansion (Gersonius et al., 2013). Meanwhile, the expectation is one with the highest return when the investment strategy is extremely risk averse. This means that aggressive and high-risk investment strategies at the initial stage do not necessarily lead to high expectations when considering the uncertainty of technological development.
Figure 8 illustrates the expected storm runoff volume reduction as a function of CVaR0.05. The objective values in MVL models were higher than the results in VL models due to anticipated technological improvements with a decrease in capital costs or an increase in hydrological efficiency for a “new” LID device. Moreover, with an increased CVaR value, the expected runoff volume reduction showed an upward trend of fluctuation, which was the opposite of the VL model. For instance, in S01, CVaR could be significantly increased from 7,060 m3/yr to 15,415 m3/yr, and the corresponding expected storm runoff volume reduction increased by about 32.4%, from 12,000 to 15,890 m3/yr. This was the result of investing a limited amount of budget at Stage I to activate technological improvements, resulting in the reductions of posterior variance and an expected increase in LID. With the assumed technological improvement, the CVaR value could be as high as 15,415 m3/yr and 13,490 m3/yr in S01 and S02, respectively. In the VL model, the CVaR had a cup of 10,000 m3/yr in both sub-catchments, whereas the maximum expected storm runoff volume reduction in the MVL model increased by about 32.4 and 40.0% for S01 and S02, respectively, when compared with the VL model. It was also noted that, in S01, and with CVaR set to 13,480 m3/yr or higher, the MVL also suggested investment of more than $10K in PP in Stage I to obtain “Part-L” for improving the efficiency of LID. Here, PP was not invested in the VL model as PP had a higher potential to enhance its performance with a relatively lower uncertainty in Stage II.
[image: Figure 8]FIGURE 8 | Investment strategies at Stage I (left axis), and the objective function values (right axis) from the MVL model for CVaR0.05 in (A) S01 and (B) S02.
CONCLUSION
A coupled long-term efficiency analysis of LID and a Bayesian learning model has been proposed. The model has the ability to minimize urban flooding risk and maximize expected storm runoff volume reduction through optimal investment in LID. As a dynamic decision-making tool, the model could be implemented in stages with deliberate decision to invest more or suspend investment on the LID elements at various times, pending the observed performance (progressive updates of performance) of the LID, resources available, environmental changes, technological advancement, and users’ needs and expectations. Each and every stage of the development is to be designed and built after a Bayesian update of the probabilistic performance function for each LID option. The goal of this Bayesian update is to support the engineers and administrators on the improvement of the design and investment, respectively, by having to minimize uncertainty and to maximize returns leveraging on potential technological advancements and reducing cost. The proposed framework and procedure can also be applied to the planning and investment planning in other fields that involve some degree of uncertainty. Despite the successful illustration of the framework reported herein, the authors emphasize that simulation of long-term LID efficiencies and the modification/validation of learning curves based on the Bayesian method can be further enhanced. A rapid and efficient method for calibration and verification for the data-driven Bayesian model needs to be further investigated.
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Quantitative assessment of the contributions of climate change and human activities to vegetation change is important for ecosystem planning and management. To reveal spatial differences in the driving mechanisms of vegetation change in the Qinling Mountains, the changing patterns of the normalized difference vegetation index (NDVI) in the Qinling Mountains during 2000–2019 were investigated through trend analysis and multiple regression residuals analysis. The relative contributions of climate change and human activities on vegetation NDVI change were also quantified. The NDVI shows a significant increasing trend (0.23/10a) from 2000 to 2019 in the Qinling Mountains. The percentage of areas with increasing and decreasing trends in NDVI is 87.96% and 12.04% of the study area, respectively. The vegetation change in the Qinling Mountains is caused by a combination of climate change and human activities. The Tongguan Shiquan line is a clear dividing line in the spatial distribution of drivers of vegetation change. Regarding the vegetation improvement, the contribution of climate change and human activities to NDVI increase is 51.75% and 48.25%, respectively. In the degraded vegetation area, the contributions of climate change and human activities to the decrease in NDVI were 22.11% and 77.89%, respectively. Thus, vegetation degradation is mainly caused by human activities. The implementation of policies, such as returning farmland to forest and grass, has an important role in vegetation protection. It is suggested that further attention should be paid to the role of human activities in vegetation degradation when formulating corresponding vegetation protection measures and policies.
Keywords: normalized difference vegetation index (NDVI), quantitative analysis, climate change, human activities, the Qinling Mountains
1 INTRODUCTION
The continuous intensification of global climate change and human activities has been impacting the stability of the global terrestrial ecosystem (Duan et al., 2020). As the main component of the terrestrial ecosystem, vegetation plays an irreplaceable role in the mutual adjustment of atmosphere–soil–water, global carbon balance adjustment, and the maintenance of global climate stability (Cheng et al., 2017; Zhang et al., 2021). Vegetation is one of the most sensitive indicators in response to global change (Landuyt et al., 2019), and exploring vegetation change trends and driving mechanisms has become a focus of global change research, which is of great significance to assess the carbon sequestration capacity of vegetation and the evolution mechanism of terrestrial ecosystems.
Previous studies have pointed out that climate change is one of the main driving forces of vegetation variation (Piao et al., 2015; Ge et al., 2021). With temperature closely associated with the beginning and end of vegetation photosynthesis (Braswell et al., 1997), the continuous increase in temperature prolongs the vegetation growing periods (Ji et al., 2020), which in return promotes vegetation growth, especially in high-latitude areas and mountain areas (Nemani et al., 2003; Xu et al., 2017; Myers-Smith et al., 2020). However, the temperature increase aggravates the occurrence of drought, inhibiting vegetation growth in middle-to-low latitude regions, and arid and semi-arid regions (Ichii et al., 2002; Zeng et al., 2020; Huang et al., 2021). Precipitation is another important factor affecting vegetation variation (Piao et al., 2015; Shi et al., 2021). In arid and semi-arid regions, insufficient precipitation is the main factor that restricts vegetation growth (Vicente-Serrano et al., 2013). However, in humid areas, the increase in precipitation lowers the temperature and radiation, thereby, inhibiting vegetation growth (Nemani et al., 2003). Besides climate change, the impact of human activities on vegetation growth cannot be ignored. Human activities, such as urban expansion, agricultural production, and returning farmland to forests and grasses, are important factors affecting the spatial pattern of vegetation and its growth (Yan et al., 2019; Huang et al., 2020; Qin et al., 2021; Shi et al., 2021). Meanwhile, since the industrial revolution, the rapid increase in CO2 and other greenhouse gas emissions caused by human activities has promoted the photosynthesis of vegetation (Leakey et al., 2009), resulting in the fertilization effect of CO2, promoting the growth of global vegetation (Zhu et al., 2016). Both climate change and human activities impact vegetation variation, which may intensify the spatial difference of vegetation change. Therefore, quantifying the impact of driving factors on vegetation change is essential to ecosystem management and vegetation response to global changes.
In the past, the study of spatial vegetation changes often involves remote sensing data (Duan et al., 2021). Among them, the Normalized Difference Vegetation Index (NDVI), a commonly used vegetation index, is closely related to vegetation primary productivity and leaf area index and is also a good indicator of vegetation cover and growth status (Ichii et al., 2002; Mao et al., 2012; Kai et al., 2020; Shi et al., 2021). The quantitative assessment method of the impact of climate change and human activities on vegetation variation mainly involves mathematical statistical methods, including correlation analysis, principal component analysis, and least-squares method (Wold et al., 1987; Qin et al., 2021). However, uncertainties exist in the processes and factors of the impact on vegetation change (Cai et al., 2016). A single-scale analysis of influencing factors may obscure the actual impact of driving factors, whereas the multiple regression residuals analysis method is able to overcome the drawbacks of the single-scale analysis, with a good application in the quantitative evaluation of multiple driving factors (Ovakoglou et al., 2018; Song et al., 2018; Kai et al., 2020; Qin et al., 2021).
The Qinling Mountains, located at the boundary between the temperate monsoon climate and the subtropical monsoon climate, is an important north–south geographic boundary in China, which has particular significance for the local natural geographic environment due to the obvious differences in climate and vegetation zones between the north and south of the Qinling Mountains (Qi et al., 2021). Previous studies revealed qualitatively the vegetation cover changes in the Qinling Mountains due to climate change and human activities (Wang and Bai, 2017; Deng et al., 2018b; Liu et al., 2018; Li et al., 2019; Kai et al., 2020; Qin et al., 2021). However, spatial differences in the effects of climate change and human activities in the Qinling Mountains have not been clearly revealed, so it is necessary to analyze the drivers of vegetation change in the Qinling Mountains in detail in the spatial differences analysis, which is essential for understanding the spatial variability of vegetation ecosystem change and its response mechanism research (Deng et al., 2018b).
Based on MODIS NDVI remote sensing data from 2000 to 2019 in the Qinling Mountains and data from 32 meteorological stations, this paper employs trend analysis and multiple regression residual analysis to evaluate the driving mechanism of vegetation changes in the Qinling Mountains and quantitatively evaluate the driving factors. The study provides a scientific basis for the construction of ecological civilization in the Qinling Mountains and the response of the ecosystem to climate fluctuations.
2 MATERIALS AND METHODS
2.1 Study area
The Qinling Mountains is a huge east–west mountain range in central China, between 32°40′N∼34°35′N and 105°30′E∼111°3′E, with an elevation of 195–3,767.2°m and a total area of 61,900 km2 (Qi et al., 2021). There are significant climatic differences between the northern and southern slopes of the Qinling Mountains (NSQM and SSQM) (Qi et al., 2021), the NSQM under a warm temperate semihumid climate, while the SSQM a humid northern subtropical climate. The Qinling Mountains is also the geographical boundary between the north and south of China and a sensitive area for climate change, which is generally consistent with the 0°C isotherm in January, the 800-mm annual equivalent precipitation line, and the 2,000-h sunshine hour line (Bai et al., 2012). The Qinling Mountains is the dividing line between five key elements: geography, climate, biology, water system, and soil (Deng et al., 2018a; Deng et al., 2019; Hu et al., 2020; Wang et al., 2020).
2.2 Data Sources
The meteorological data are the monthly average temperature and monthly precipitation of 32 meteorological stations in the Qinling Mountains during 2000–2019, provided by the National Earth System Science Data Sharing Infrastructure (www.geodata.cn) and the Shaanxi Meteorological Bureau. The spatial distribution of meteorological stations is shown in Figure 1. This paper uses the ANUSPLIN method to interpolate the temperature and precipitation (Hutchinson and Xu, 2013). Compared with other spatial interpolation methods, the ANUSPLIN method induces less error in interpolation accuracy in a complex mountain environment (Xu et al., 2017; Qi et al., 2019; Qi et al., 2021). The DEM (spatial resolution: 250 m) is obtained via the National Geomatics Centre of China.
[image: Figure 1]FIGURE 1 | Geographical environment and distribution of meteorological stations in the southern and northern slopes of the Qinling Mountains.
This paper uses the NDVI index of the growing season to measure the vegetation status. According to the climate and vegetation growth in the Qinling Mountains, the vegetation-growing season is from March to October (Deng et al., 2019). NDVI data were obtained from the MOD13Q1 dataset of NASA (https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MOD13Q1--6), with a spatial resolution of 250 m × 250 m, and a time resolution of 16 days.
The MODIS Reprojection Tool (MRT) is used for image splicing, projection, and format conversion, and maximum value composite (MVC) is used to eliminate the influence of cloud, atmosphere, and Sun altitude to synthesize monthly NDVI data, which can effectively reflect the vegetation coverage of the area.
Method
2.3.1 Change Trend Analysis
The trends in this study were calculated using linear least-squares regression. The calculation formula is as follows:
[image: image]
where [image: image] is the time series, [image: image] denotes the value of the [image: image] at time i; slope>0 or slope<0 indicates an upward or downward trend for [image: image]; [image: image] indicates the increase in [image: image], and [image: image] indicates otherwise.
Partial correlation analysis is a geostatistical method based on correlation analysis (Sun et al., 2020). When two variables are related to the third variable, the influence of one of the variables will be excluded, with only the degree of correlation between the other two variables considered, which has proven effective in eliminating other influencing factors:
[image: image]
where [image: image] represents the partial correlation coefficient between variable [image: image] and variable [image: image] after excluding variable [image: image], [image: image] represents the partial correlation coefficient between variable [image: image] and variable [image: image], and [image: image] and [image: image] represent the same meaning as [image: image].
The change trend and the partial correlation significance test are all determined by the t-test, and the results are divided into four levels: extremely significant [image: image], significant [image: image], weakly significant [image: image], and insignificant [image: image].
2.3.2 Multiple Regression Residual Analysis
Multiple regression residual analysis is employed to study the impact of climate change and human activities on vegetation NDVI changes and their relative contributions. The details of the method are as follows (Evans and Geerken 2004; Wessels et al., 2007):
① The binary regression model was constructed based on the growing season NDVI and the spatial temperature and precipitation time series datasets, in which temperature and precipitation were independent variables, and NDVI in the growing season was the dependent variable.
② According to the constructed model of step ①, the predicted NDVI is obtained ([image: image], which represents the impact of climate change on vegetation change).
③ According to the difference between the remotely sensed NDVI observation value [image: image] and the predicted value of NDVI [image: image] in the growing season of the Qinling Mountains, the NDVI residual [image: image] is calculated, which represents the influence of human activities on vegetation change.
The calculation formula is as follows:
[image: image]
[image: image]
where [image: image] and [image: image] refer to the predicted value of NDVI based on the regression model, and the observed value of NDVI based on remote sensing image (dimensionless), respectively; [image: image], [image: image] and [image: image] are model parameters; and [image: image] (°C) and [image: image] (mm) refer to the growing season average temperature and cumulative precipitation, respectively.
2.3.3 Determination of Driving Factors for Vegetation normalized difference vegetation index change
The slopes of [image: image], [image: image], and [image: image] during the growing season were calculated. The positive slopes represent, respectively, the increase in NDVI, the promotion of NDVI by climate change, and by human activities, while the negative slopes represent, respectively, the decline of NDVI, the inhibition of NDVI increase by climate change, and by human activities.
According to the impact of climate change and human activities on vegetation, [image: image], [image: image], and [image: image] are classified into seven levels to better determine the impact of the driving factors (Table 1) (Kai et al., 2020). Meanwhile, the relative contribution rates of the driving factors to vegetation changes are calculated according to the contribution of different driving factors and the trend of vegetation change (Table 2) (Sun et al., 2020).
TABLE 1 | Classification of the impacts of climate change and human activities on vegetation restoration (10–3 a−1).
[image: Table 1]TABLE 2 | Identification criterion and contribution calculation of the drivers of NDVI change.
[image: Table 2]3 RESULTS
3.1 Temporal and Spatial Change Trends of Vegetation normalized difference vegetation index
The NDVI of the Qinling Mountains in the growing season during 2000–2019 showed a significant increase, with the rate of increase being 0.23/10a (p < 0.01) (Figure 2). Specifically, the rate of increase was 0.013/10a (p < 0.05) on the NSQM, and 0.026/10a (p < 0.01) on the SSQM. The NDVI during the growing season fluctuated between 0.64 and 0.70 on the NSQM, and between 0.69 and 0.76 on the SSQM. The NDVI on the SSQM is significantly higher than that on the NSQM. In the past 20 years, the vegetation coverage on the SSQM is not only higher than the NSQM but also displayed better signs of continuous improvement. This may be related to the expansion of the urban agglomeration on the NSQM.
[image: Figure 2]FIGURE 2 | Interannual variation of growing season normalized difference vegetation index (NDVI) in the northern and southern slopes of the Qinling Mountains (NSQM and SSQM) during 2000–2019.
The change trend of NDVI during the growing season showed spatial heterogeneity in the Qinling Mountains during 2000–2019 (Figure 3). The area with increasing and decreasing trends of NDVI accounted for 87.96% and 12.04%. Among them, the areas with increasing and decreasing trends of NDVI accounted for 75.18% and 24.82% of the NSQM, and 91.30% and 8.70% of the NSQM, respectively.
[image: Figure 3]FIGURE 3 | Spatial distribution of trend and the significance for NDVI in the NSQM and SSQM during 2000–2019.
The area with a significant increase in NDVI accounts for 59.21% of the Qinling Mountains (Figure 3B), which was mainly distributed in the eastern region (i.e., Zhen’an, Zhashui, Shanyang, etc.); the area with a significant decrease in NDVI only accounted for 4.00% of the study area, which is mainly located in Huyi, Chang’an, and Huazhou in the NSQM, and Hanzhong, Ankang, and Chenggu in the SSQM. Meanwhile, the areas with insignificant NDVI change are mainly distributed in the central region of the Qinling Mountains.
3.2 Analysis of the Driving Forces of Vegetation Change
With the continuous intensification of human activities, to reveal the internal mechanism of vegetation change, we must not only consider the impact of climate change but also account for the contribution of human activities. The area where climate change contributed to the increase in NDVI accounted for 84.04% of the Qinling Mountains, of which the severe and moderately promoted areas accounted for 56.97% of the Qinling Mountains, distributed in the eastern region and the area around the Qinling Mountains. The impact of climate change on the increase of NDVI showed that the lightly promoted area accounted for 27.07% of the Qinling Mountains, which is mainly distributed in the central areas of the Qinling Mountains. The inhibited impact of climate change on the increase in NDVI accounted for 7.54% of the Qinling Mountains, of which the area of moderate and severe inhibition is only 2.17% of the Qinling Mountains. It shows that climate change in the past 20 years is beneficial to vegetation growth in most areas of the Qinling Mountains.
The impact of human activities on the increase in NDVI is that the promoted area accounts for 73.63% of the Qinling Mountains, of which the severely and moderately promoted areas accounted for 52.77% of the Qinling Mountains, mainly distributed in the eastern part of the Qinling Mountains (Figure 4B). It may be related to the Natural Forest Protection Project and the Grain for Green Project. The area where the influence of human activities on the increase in NDVI is inhibited accounts for 17.65% of the Qinling Mountains, mainly located at low elevations (i.e., Huyi, Chang’an, Huazhou, and Hanzhong, Chenggu, Ankang), which are urban areas that have seen expansion. The moderately promoted area of the impact on NDVI increase of climate change accounts for a relatively high proportion, while the severely promoted area of human activity impact on NDVI increase is relatively high; the proportion of areas where human activities have inhibited the rise of NDVI is far greater than climate change. It indicates that human activities have a more direct and rapid impact on vegetation than climate change. A dividing line along Tongguan–Shiquan exists for the spatial distribution of climate change and human activity impact on NDVI in the Qinling Mountains. The impact of human activities on vegetation is more obvious east of the “Tongguan–Shiquan” divide.
[image: Figure 4]FIGURE 4 | Spatial distribution of the impacts of climate change and human activities on vegetation restoration in the Qinling Mountains during 2000–2019.
The NDVI change is caused by climate change and human activities, accounting for 80.17% of the Qinling Mountains, among which 73.45% were found to increase and 6.72% decreased (Figure 5). The region of NDVI change caused by climate change alone accounted for 11.26% of the Qinling Mountains, mainly distributed in the central region (i.e., Liuba, Foping, Taibai, etc.); the region of NDVI change caused by human activities alone accounted for 8.57% of the Qinling Mountains. Regarding the NSQM and SSQM, the proportion of the NSQM where the NDVI decreases due to the combined influence of climate and human factors is much higher than that of the SSQM, but the area with increased NDVI is smaller than the SSQM.
[image: Figure 5]FIGURE 5 | Drivers of vegetation cover change in the Qinling Mountains during 2000–2019.
3.3 Spatial Distribution of Driving Factors of Vegetation Change in Qinling Mountains
The NDVI change is caused by climate change and human activities, accounting for 80.17% of the Qinling Mountains, among which 73.45% were found to increase, and 6.72% decreased (Figure 5). The region of NDVI change caused by climate change alone accounted for 11.26% of the Qinling Mountains, mainly distributed in the central region (i.e., Liuba, Foping, Taibai, etc.); the region of NDVI change caused by human activities alone accounted for 8.57% of the Qinling Mountains. Regarding the NSQM and SSQM, the proportion of the NSQM where the NDVI decreases due to the combined influence of climate and human factors is much higher than that of the SSQM, but the area with increased NDVI is smaller than the SSQM.
3.4 Contribution of Climate Change and Human Activities to Vegetation Improvement or Degradation
Regarding vegetation improvement area (Figure 6A and Figure 6B), the contribution of climate change to vegetation improvement was higher than that of human activities in the Qinling Mountains (51.75% vs. 48.25%), including the NSQM (53.42% vs. 46.58%) and the SSQM (51.41% vs. 48.59%).
[image: Figure 6]FIGURE 6 | Spatial distributions of the contribution proportions of (A) climate change and (B) human activities to vegetation improvement, (C) climate change, and (D) human activities to vegetation degradation in the Qinling Mountains (CC, climate change; HA, human activities in the figure).
Regarding climate change, the largest area was characterized with 40%–60% contribution to vegetation improvement (Figure 6A). The regions where the climate change contribution rates are more than 80% were distributed in the central region of the Qinling Mountains. Regarding human activities, the largest area was found with 40%–60% contribution to vegetation improvement (Figure 6B). The highest rates of human activity contribution (over 80%) were distributed in the eastern part of the Qinling Mountains.
Regarding vegetation degradation area (Figures 6C, D), the contribution proportion of human activities to vegetation degradation was larger than that of climate change in the Qinling Mountains (77.89% vs. 22.11%), including the NSQM (81.78% vs. 18.22%) and the SSQM (75.02% vs. 24.98%).
As for climate change, the region with a contribution rate of 0%–20% was the largest, while for human activities, the regions with a contribution rate of more than 80% are the largest. The vegetation degradation is mainly caused by human activities, while the contribution of climate change is small.
3.5 Spatial Distribution of Dominant Factors in Vegetation normalized difference vegetation index Changes
In this study, the classification criteria for the leading factors of vegetation change are as follows: When the contribution rate of climate change is more than human activities, it is defined as “climate dominated.” On the contrary, it is defined as “human dominated.”
The percentage of climate-dominated vegetation improvement is smaller than that of human dominated (48.42% vs. 51.58%) (Figure7), while the percentage of climate-dominated vegetation degradation is smaller than that of human dominated (17.56% vs. 82.44%). The above shows that the impact of climate change on vegetation change is smaller than that of human activities in the Qinling Mountains.
[image: Figure 7]FIGURE 7 | Spatial distributions of the climate and human dominated in the Qinling Mountains. (A) Vegetation improvement areas and (B) vegetation degradation areas.
4 DISCUSSION
The vegetation changes in the Qinling Mountains are caused by the combined effects of climate change and human activities. On the one hand, it may be due to the continuous increase in temperature and precipitation, which promotes the growth of vegetation (Deng et al., 2018a; Qi et al., 2021), and the deposition of atmospheric carbon dioxide and nitrogen also enhances the growth of vegetation (Leakey et al., 2009). On the other hand, the implementation of vegetation restoration projects is conducive to vegetation restoration (i.e., the Grain for Green project), increasing vegetation coverage, and improving the management level of vegetation ecosystems.
The vegetation in the central region of Qinling Mountains was affected by climate change to a lesser extent, while in the surrounding region, it was affected by climate change to a greater extent (Figure 4A). This may be due to the high vegetation coverage in the central Qinling Mountains with little room for vegetation improvement. The vegetation of these regions is mildly promoted. Vegetation changes are not only affected by climate change but also human activities (Liu et al., 2018) (Qin et al., 2021). Population density, policy orientation, and topographical conditions will all affect the impact of human activities on vegetation changes (Li et al., 2017; Zheng et al., 2019). In areas with large slopes and complex terrain, the impact of human activities on vegetation changes is weakened. In this study, the eastern region with low altitude and low slope was found to have a high contribution rate of human activities to vegetation improvement, which is particularly obvious in the east of the “Tongguan–Shiquan line” (Figure 4B, Figure 6B).
In the degraded vegetation areas of the Qinling Mountains, human activities contributed 77.89% to the vegetation change (Figure 6D). It has been pointed out that land cover changes in Chang’an, Huyi, Lantian, and Huazhou in the Qinling Mountains are mainly the conversion of forest land and grassland to construction land (Guo et al., 2018), which may be the reason for the high contribution rate of human activities to the decrease of NDVI.
The central part of Foping also exhibits high human activity contribution with the NDVI declining significantly, which was related to the conversion of forested grassland to construction land during the construction of scenic areas (Guo et al., 2018). Human activities in the eastern part of the Qinling Mountains leads to an increase in vegetation NDVI (Figure 6), which was due to the implementation of artificial ecological projects, which has significantly improved the vegetation. Previous studies have pointed out that the vegetation coverage in the eastern part of the Qinling Mountains has increased significantly (Wang et al., 2016; Li et al., 2019), which was similar to the results of this study. The improvement of vegetation in this area is the main contribution of human activities. Therefore, the implementation of ecological engineering projects plays a significant role in the improvement of vegetation coverage.
Regarding the vegetation ecosystem change, there may be some normal ecological succession during the evolution of vegetation ecosystem leading to vegetation change, which needs to be improved by adding more detailed vegetation distribution data later. In the study, severe vegetation degradation was identified in the low-elevation areas in the Qinling Mountains, with the main factor of degradation being human activities. However, whether this area was converted to construction land or cultivated land after degradation deserves further exploration. Moreover, the deviation of NDVI data quality may lead to some errors in the results, which may cause certain errors in the research. Although this study has certain shortcomings, the research and analysis in this article are still a good attempt to quantitatively assess the influence factors of vegetation change.
5 CONCLUSION
This paper investigated the spatial and temporal variability characteristics of NDVI and quantitatively assessed the relative contribution of the drivers of NDVI change in the Qinling Mountains. The results show that the NDVI value in the Qinling Mountains exhibited a significant increasing trend at a rate of 0.23/10a during 2000–2019. The combined impact of climate change and human activities were the main driving force for the change and spatial difference of vegetation NDVI in the Qinling Mountains. The “Tongguan–Shiquan line” is not only the dividing line for the intensity of vegetation change but also separates the climatic- and human-dominated type. In terms of the vegetation improvement area, the contribution of climate change to the NDVI increase is greater than that of human activities (51.75% vs. 48.25%). In terms of vegetation degradation area, the area of climate change as the leading factor accounted for 17.56%, and the area with human activities as the dominant factor accounted for 82.44%. It is more important to establish stricter measures for human activities.
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Limited water resources and rapid socioeconomic development pose new challenges to watershed water resource management. By integrating the perspectives of stakeholders and decision-makers, this study aims to identify cases and approaches to achieve sustainable water resources management. It improves and expands the experience of previous project research. The comparative evaluation provides an analytical basis to verify the importance of stakeholder participation in water policy interactions. The results show that if an effective demand management policy is not implemented, the Guanzhong area will not meet water demand in the future. Through the combination of water-saving policies, water transfer projects and other measures, the available water resources will continue into the future. Optimizing management measures, improving the ecological environment, and encouraging stakeholder participation will help change this situation, although supply-side limitations and future uncertainties likely cause unsustainable water. Therefore, decision-makers should pay attention to the application potential of water-saving and other measures to reduce dependence on external water sources. In addition, the three sustainable development decision-making principles identified in this paper can promote the fairness and stability of water policy.
Keywords: impact assessment, optimization measures, sustainable water resource management, scenarios analysis, the Guanzhong area
INTRODUCTION
Water resources are the core element of sustainable development. In the past few decades, people have increasingly recognized the importance of water resources and their services to socioeconomic development and eco-environmental protection (Bakker, 2012; Gleeson et al., 2012; UNEP, 2012). However, due to the uneven distribution of global water resources, rapid population growth and social water scarcity, watershed-scale water resource management is becoming increasingly challenging, especially in developing countries with water scarcity (Vörösmarty et al., 2000; Mirauda and Ostoich, 2011; Liu et al., 2013; Kotir et al., 2016). It is necessary to formulate adaptive water resource management policies to achieve social, economic and environmental sustainability (UNDP, 2015; Naghdi et al., 2021). Decision-makers are caught between the two options: strengthening the development of external water resources and optimizing the management of internal water resources, although both come with deficiencies. External resources may lead to water dependence and water conflict (Poff et al., 2003), while internal management is prone to blind policies and measures leading to an unsustainable occurrence. Therefore, researchers emphasize the use of new tools and technologies to improve water resource management, avoiding conflicts caused by water scarcities (Babel et al., 2005; Xu et al., 2013). Any behavior related to water resources may have an impact on related processes in the water system. The complex relationships and feedback among different systems present obstacles to understanding sustainable water resource management and evaluating water policies (Simonovic, 2009; Sterman, 2012; Mohamed et al., 2020). Unless the ecological environment and human uses of water are more clearly considered, the unsustainability of water will continue to worsen.
We conceptualize sustainable water resource management as a dynamic interaction between social economy and ecosystems in response to human driving factors. Deemed a suitable tool to study complex human-environmental systems, the system dynamics explains complex phenomena and processes by simulating system behavior and its changes over time (Sterman, 2000; Simonovic, 2009). Sustainable water resource management involves water resource planning and decision-making by using feedback views and models, integrating all aspects of the water system (Liu et al., 2015; Sahin et al., 2015; Behboudian et al., 2021). System dynamics uses the characteristics of feedback to find the root of the problem from the perspective of system structure, which is conducive to strengthening the understanding of the objective world and testing the effects of various policy measures (Simonovic, 2009; Sivapalan, 2015).
The system dynamics model (SDM) is a mature modeling tool that includes different advanced modeling platforms. This model is based on the developer’s concentrated thinking on the system and can be adjusted according to the level and experience of different users, thereby promoting the consensus of stakeholders. Moreover, the SD model can simulate a variety of scenarios to evaluate the impact of decisions and measures and identify effective adaptation strategies. Hence, the SDM provides an understanding of the long-term dynamic behavior of complex systems and the response of intervention measures, combining climate, resources, social, economic and environmental factors and decision-making measures in an integrated manner (Zare et al., 2019). At present, some system simulation models of different watersheds around the world have been developed based on SDM methods (Dawadi and Ahmad, 2013; Gohari et al., 2013; Sun et al., 2017; Bakhshianlamouki et al., 2020; Naderi et al., 2021). The diversity of their applications is helpful to research in the field of sustainable development.
The Chinese government proposed a major national strategy in 2019, the ecological protection and high-quality development of the Yellow River Basin. The Yellow River Basin is an important ecological barrier and economic zone in China and is of great significance to China’s social economic development and ecological security. As the largest tributary of the Yellow River, Weihe River Basin water resource management will directly affect the implementation of the national strategy. However, the limited water resources hinder the development of the socio economic and ecological environment in the basin. To tackle this issue, the Weihe River Basin management department is expanding the available water resources in the region through reservoir construction and water transfer projects. This management program of seeking external water sources is considered an effective solution to water scarcities. However, if the impact of related factors is not considered, providing more water will be counterproductive (Song et al., 2018). The comprehensive solution to the water scarcity problem is the goal of policy optimization, which is to control the behavior of the system through multiple strategic options and improve the reliability of water resources in the basin. Thus, a new evaluation framework is established based on the previous research of our project team (Song et al., 2018). The model was originally developed for water scarcity. This study will review and expand developed models and understanding to solve the challenges of sustainable water resource management related to the socio-economic and ecological environment.
Assessment of Water Management: A New Case Example
This paper improves the system dynamics model recently developed by the project team, and re-evaluates the socio-economic and ecological environmental dimensions of sustainable water resource management from a new perspective. Compared to the previous study, the structure of some subsystems has been optimized, the impact of ecosystem services on rebalancing between systems has been identified, and the importance and participation of stakeholders have been considered in the system.
The project team, decision-makers, and stakeholders emphasized that the decision-making on the sustainability of water resources must be strengthened under effective overall guidance. To optimize the result, the opinions of stakeholders affected by the watershed should be taken into account and applied to decision support at the system level (Zilio et al., 2019). In this sense, our research expects to help local communities develop their solutions and provide them to decision-makers.
Site Description
The Weihe River originates from Niaoshu Mountain in southwestern Weiyuan County, Dingxi City, Gansu Province, passes through the three provinces of Gansu, Ningxia and Shaanxi, and flows into the Yellow River in Tongguan County, Shaanxi Province. As the largest primary tributary in the Yellow River Basin, the Weihe River has a total length of 818 km and a drainage area of approximately 1.34 × 105 km2. The Guanzhong area, an area of approximately 55,000 km2, is an important political, economic and cultural core area of Shaanxi Province, with the total economic volume accounting for 70% of Shaanxi Province (Figure 1). The Weihe River is known as the mother river in the Guanzhong area, supporting production and domestic water demands (Dou et al., 2018).
[image: Figure 1]FIGURE 1 | Location map of the Guanzhong area in the Weihe River basin.
The Guanzhong area contains a wide range of water supply projects and construction plans. The management department of the Weihe River has proposed building a rich regional water supply network based on a natural water system supplemented by artificial water transmission channels in recent years. Meanwhile, supporting reservoirs have been built or are under construction, such as the Dongzhuang Reservoir, Doumen Reservoir and Tingkou Reservoir. Managers hope to achieve the goal of water security in the Weihe River Basin by improving the water supply capacity and water utilization efficiency of the Guanzhong area. The time-consuming construction of water conservancy projects may present difficulty to the assessment.
Data Sources
Multiple data sources were involved in the model parameterization. There are seven types of data required by the model (including population, economy, household life, land and food, water supply and demand, wastewater recycling, and the ecological environment). These data have been provided by the project team and re-collection. Data sources include the statistical yearbook of Shaanxi Province (SXBS (Shaanxi Bureau of Statistics), SXITNBSC (Shaanxi Investigation Team of National Bureau of Statistics of China), 2002–2020), the Water Resources Bulletin, Shaanxi Water Conservancy Statistical Yearbook and some literature. Key parameters, values and data source information are provided in Table 1.
TABLE 1 | Details of some important parameter values and date sources used in the Guanzhong area.
[image: Table 1]METHODOLOGY
System Dynamics Model
The development of SDM was considered to be a valuable thinking and learning process. A model based on the system framework can reveal the cause of the problem, provide predictive results, and choose a solution. Such a view is widely recognized in system dynamics and review literature (Zare et al., 2019). SDM is a method that can provide comprehensive results by outputting system results via focusing on the relationship between and within each system element through a comprehensive and dynamic perspective, which is important for specific aspects of the modeling process.
Model Improvement
For a detailed introduction of the sub-system, please refer to the previous research of the project team (Song et al., 2018). Here we focus on the improvement of the model, which is mainly divided into the following two aspects:
Ecological Environment Subsystem
We have broadened the selectivity of the ecological environment subsystem. In this paper, we extend the key role of water resources in the socio-economic and ecological environment. Ecosystem integrity is the principle in the pursuit of sustainable water resource management. The sustainability of water depends on the provision of ecosystem services. This interdependence indicates that water policy should prioritize ecosystems and their services. Sustainable water resource management emphasizes the gradual reduction of water vulnerability, so the corresponding policy formulation must be internalized by all stakeholders, instead of solely relying on the management department.
People are increasingly aware of the importance of protecting environmental flows (Scott et al., 2021). However, the demand for environmental flow is not linear. Decision-makers need to use environmental flow as a dynamic parameter for different purposes, rather than a fixed value. The redesigned subsystem can define appropriate environmental flows based on the opinions of policy stakeholders, such as designing environmental flows with different ecological functions or adding time functions to simulate cascading changes in time series. We used three different environmental flow configurations to simulate the different attitudes of stakeholders towards ecological water use in this study.
Land and Food Resource Subsystem
We have optimized the structure of the original model subsystem and to promote the link between land use and grain yield more accurately. Water resources are the basis of food security. Land and food systems depend on the provision of water resources system services. Water resources policies should consider the irrigation of crops in local communities to provide people with sufficient water to sustain food production. Therefore, we re-expanded this complex relationship between land and food and optimized the structure of the original model. We have added two new stock variables total sown area (TSA) and Sown Area of grain crops (SAGC). TSA and SAGC refer to the total sown area of various crops and grain in crops throughout the year, respectively. The improved subsystem will simulate the process of system feedback through four stock variables. The specific operation methods include: 1) Establish Multiple-crop index (MCI) parameters between total cultivated field area (TCA) and total sown area (TSA), MCI represents the ratio of TSA to TCA; 2) Establish the ratio of total sown area and sown area of grain crops (GCSI) parameters between TSA and sown area of grain crops (SAGC), GCSI represents the ratio of SAGC to TSA; 3) Establish per unit area of grain production (PUA) parameters between Grain yield (GY) and SAGC, and PUA parameters represent the ratio of SAGC to GY. Generally speaking, unless there are significant changes in technology and policies, these control parameters will remain within a fixed range. The improved model structure can examine the prediction results of grain yield through the above land use control parameters, thereby improving the assessment of food security in the subsystem.
Model Setting
A framework of the flow chart of this research is shown in Figure 2. The boundaries of the improved model were limited to the Guanzhong area. The model consists of seven interrelated subsystems, including 123 variables. The new stock-flow diagram (SFD) of the improved model indicates the direction and change of feedback between different systems (Figure 3). System simulation was achieved using the professional system dynamics software package Vensim PLE (www.vensim.com). The model simulation time is from 2001 to 2060, and the time step is 1 year. The input data related to the model were collected in 2001–2019 and used for the model calibration and verification.
[image: Figure 2]FIGURE 2 | The overview of stepwise framework of the study.
[image: Figure 3]FIGURE 3 | A system dynamic stock-flow diagram of the improve system, including subsystems of (A) population, (B) economy, (C) the livelihoods of people, (D) land and food resource, (E) recycled water, (F) water supply and demand, (G) ecological environment.
Model Testing
Compared with the black box model driven by pure data, SDM pays more attention to the rationality of system structure (Sterman, 2000). This point of view runs through the entire process of developer modeling, such as determining system goals, drawing causal loop diagrams and constructing stock-flow diagrams. To this end, a series of tests were performed, including testing of the system structure, overall consistency and model error. To achieve the relevant goals of system research, a test of the system structure and overall consistency was carried out to determine whether the model fit the actual system. The model error was used to study the accuracy of the model output. The data simulated by the model were compared with the historical data to ensure consistency.
In this study, the test tools in the Vensim PLE software package, the coefficient of determination (R2), discrepancy coefficient (U0), the absolute relative error (ARE) and the mean absolute relative error (MARE) test combinations were used to verify the model. The system structure test will be completed by the software package tool. The coefficient of determination (Eq. 1), the discrepancy coefficient (Eq. 2), the absolute relative error (Eq. 3) and the mean absolute relative error (Eq. 4) were employed to test the performance of the model. Furthermore, the views of some experts and stakeholders were collected to verify of SD model.
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where Ysim and Yobs are the simulated and observed data point for the tested parameter, respectively; Cov (Ysim, Yobs) is the covariance of the simulated and observed data; and σYsim and σYobs are the standard deviations of simulated and observed sets of values.
Scenario Analysis
Scenario analysis can be used to assess future uncertainties and help develop water resource management strategies (Carter et al., 2007). Combined with the existing planning research of government departments and expert opinions, the management policies are identified as five scenarios. These five scenarios reflect the impact of different measures and stakeholders on the system. First, we propose a business as usual (BAU) scenario. The other four scenarios control system behavior through the supply-side, demand-side management and stakeholder attitudes. The description and parameter settings of each scenario are displayed in Tables 2, 3. The parameter settings of the water resource utilization efficiency are summarized in Table 4.
TABLE 2 | Descriptions of the four scenarios.
[image: Table 2]TABLE 3 | Description of the parameter settings in five scenarios.
[image: Table 3]TABLE 4 | Assumptions of the water resource utilization efficiency in different scenarios.
[image: Table 4]RESULTS
Model Calibration and Validation
The structure and unity of the system were confirmed before running the model. To conduct model calibration and validation, we divide the simulation results and the historical data series during the period of 2001–2019 into two parts. One part from 2001–2014 is used for model calibration, and the rest was used for model validation. These tests will contribute to improving the reliability and confidence of the SD model. Figure 4 shows the test results of the relevant variables. Among the tested system parameters, the coefficients of determination (R2) values of TP and UGA are relatively low, at 0.89 and 0.87, respectively. The urban expansion and new talent introduction policies in the Guanzhong area may be the cause of this deviation. The maximum and the minimum values of the model difference discrepancy coefficient (U0) are 0.0009 and 0.002, respectively. Meanwhile, the mean absolute relative error (MARE) of the model during calibration and verification are 0.016 and 0.033, respectively. The results of the model showed that the simulated values were in good agreement with the observed values.
[image: Figure 4]FIGURE 4 | Results of calibration and validation, (A) the coefficient of determination (R2) and discrepancy coefficient (U0) between simulated results and observed data, (B) calibration and validation results using Absolute Relative Error (ARE) and Mean ARE (MARE).
Simulation Results
Business As Usual Scenario
In the BAU scenario, the system show similar development results for the three different environmental flow configurations. With the continuous growth of water demand caused by social and economic development, the available water resources in the Guanzhong area will be depleted. Figure 5 shows the simulation results of the water resource balance, indicating that the water resources of the Weihe River Basin under the three configurations are unsustainable. The water resources that meet the allocation of sediment transport will face water scarcity in 2043. It is predicted that the water scarcity in the Guanzhong area will reach 1.4 × 109 m3 in 2060. The simulation results in Table 5 show that the total population decreased by 0.2731 × 106 people and is affected by restrictions on the growth of water resources. GDP decreased from 63,883.2 × 109 yuan to 45,108.5 × 109 yuan, and PCG also showed a downward trend. With the reduction in the disposable income of households, the gap index has slightly expanded. In terms of land and grain, the reduction in cultivated land accelerated from 1,354.25 × 103 ha reduced to 1,340.56 × 103 ha. The grain output per unit area remained relatively stable, while the grain output decreased relatively. The current food self-sufficiency rate in the Guanzhong area fluctuates between 0.8 and 0.9. The simulation results showed that the future food self-sufficiency rate in the Guanzhong area fluctuates between 0.7 and 0.8, further increasing the food security risk. Table 5 shows the simulation results of some stock variables in the BAU scenario.
[image: Figure 5]FIGURE 5 | The simulation results of BAU scenarios under three EF allocations (BEF, EFD, EFS).
TABLE 5 | Simulated values of the social economic variables in the BAU scenarios.
[image: Table 5]Scenario Analyses
Figures 6, 7 show the change trend of the selected variables of the four scenarios due to different supply-side and demand-side management policies and measures in the simulation range (2020–2060).
[image: Figure 6]FIGURE 6 | The simulation results of water balance in four scenarios (scenario 2, scenario 3, scenario 4, and scenario 5) under three EF allocations (BEF, EFD, EFS).
[image: Figure 7]FIGURE 7 | The behavior of water use variables under three EF allocations, (A) base ecological flow, (B) instream flow for dilution pollution, (C) instream flow for transport sediment.
Scenario 2 produced similar results as Scenario 1. Under the condition that the system meets the environmental requirements of the sediment transportation configuration, water scarcity is expected in 2054 in the later stage of simulation. Compared with Scenario 1, the water transfer project alleviated water scarcity and reduced the risk to water resources in the Guanzhong area. The increase of 1 × 109 m3 of water resources in the second phase of the Han-to-Weihe River Diversion Project delayed the occurrence of water scarcity by 12 years. Although the improvement of available water resources impacted the balance of water resources, it did not benefit the water savings, because the water demand will not be reduced. The pressure on water resources brought about by social and economic development cannot be eliminated. However, the simulation results show that the supply-side solution provides promising results for solving water scarcity.
The simulation results of scenario 3 show that sacrificing the speed of socio-economic development cannot have a positive impact on watershed water resources. Water-saving measures are a key policy lever for reducing water consumption in river basins. Although reducing the speed of social and economic development can lower the demand for water resources in the early stage, the decline of technology and policy will further aggravate the shortage of water resources. The simulation results in Figure 6 show that the unsustainability of water resources increases under the low development mode. The system predicts water scarcity in 2048, reaching 1.69 × 109 m3 in 2060, with the upward trend of industrial water use will becoming steep. The implementation of this policy of demand-side management requires a re-examination of the adverse effects of development and technological regression on the future management of the Guanzhong region.
The system can meet the water demand of each department during the whole simulation period without water scarcity in scenario 4. Although the speed of social-economic development increased, the sustainability of water resources was significantly enhanced due to the improvement of water-saving technologies. Agricultural water use began to show a slight downward trend. Industrial water use is controlled. Tertiary industry water use tended to be flat in the later period. Compared with scenario 3, this scenario seems to provide a satisfactory solution to achieve sustainable water resource management.
The results of Scenario 5 emphasize the key role of water-saving technologies in the sustainable use of water resources and social and economic development. Compared with the previous scenario, the growth rate of the socio-economic sector parameter and water-saving plan in this scenario improved. However, in addition to the steady growth of agricultural water, domestic water, and ecological water, the demand for industrial water and tertiary industry water exhibited a downward trend. Regarding the water resource balance, this scenario yielded increased water resource reliability and reduced vulnerability, indicating that improving demand-side management (improving water resource utilization efficiency) as a water policy can fully meet the rapid social and economic development in the future.
Sustainability Evaluation
The results of the model analysis show that the attitudes of stakeholders will different water distribution and management. The three types of environmental flows represent different stakeholders’ perceptions of the importance of ecological water use in water distribution. This will directly affect water resource planning and the formulation of management policies. At this point, achieving sustainable management of water resources requires continuous trade-offs between uses and users. The vulnerability of water resources can be reduced under the dual management of the supply-demand side, and the sustainable development of the social economy and the ecological environment can be realized in the Guanzhong area.
In addition, this scenario-based analysis show that the management department can provide sufficient available water resources through the water transfer project on the supply side. However, this development model is unsustainable in the long run due to the problem of water limiting growth. Relying on demand-side management and other measures to provide reliable and sufficient water resources to meet development needs will be a new challenge for watershed water resource management. This is the fundamental problem of the governance of water-deficient areas, and the area’s development exceeds the limit of available water resources (Bahaddin et al., 2018).
This study has similar results with previous studies in some respects. For example, the two-research emphasized that improving water use efficiency is a driving factor of sustainable water management. However, the focus of this study is to explore the impact of supply-side and demand-side management on community water management and policy-making, especially in water scarcity areas. Simultaneously, we have emphasizes that stakeholder participation is of great significance to sustainable water resources management. The following discussion will focus on these contents.
DISCUSSION
Restricted Development
Although the results of the model show that the development of the supply side and the improvement of demand-side management can achieve the sustainability of water resources in the Guanzhong area. However, the implementation of water policies may be limited by human and climate driving factors and cause water scarcity, such as extreme arid climates and unequal water competition. The new water management policy in the Guanzhong area is still in the process of planning and construction, which undoubtedly enhances the uncertainty of sustainable water resource management in the future.
The scenario analysis showed that water scarcity limits not only social and economic growth but also affects other aspects of the system. First, Water scarcities will widen the income gap between urban and rural residents, affecting the well-being of residents. A decline in income will impact the level of consumption, which affects the expenditure on water resources. Income and expenditure determine the attitude of stakeholders: when income does not exceed expenditure expectations, no one has shown interest in improving water management; but due to the negative impact of water pressure, the water-saving awareness of stakeholders will be improved. Some studies have shown that water price increases will directly affect water consumption (Li et al., 2018). Managers can control water prices to promote water savings and reduce wastewater discharge. Second, the improved model shows that there are food security risks in the Guanzhong area. This is a different answer from previous research. It may be necessary to purchase sufficient food from outside regions if no measures are taken in the future. Water scarcity may exacerbate the imbalance between food supply and demand. The changes in grain production impact land use and could even affect the ecosystem (Yang F. et al., 2021). Therefore, ensuring adequate water resources is the key to the future social and economic development of the Guanzhong area.
Policy Implications
In Scenario 2, the water transfer project increased the available water resources in the Guanzhong area. The construction of water conservancy projects is expensive and time-consuming, and their impact on the ecological environment and biodiversity is difficult to evaluate (Abell et al., 2008; Jiang et al., 2020). However, such projects as an effective management tool are currently being implemented in the Guanzhong area, positively impacting local development. Although relying on external water resources enhances the water resources carrying capacity of the Guanzhong area, the water transfer projects may be forced to stop in case of a water crisis in the water transfer basin, thus affecting the downstream water-receiving area. Management strategies tend to be biased towards supply-side development in the case of water scarcity, but people are increasingly aware of the potential of demand-side management and other solutions. The system simulation results show that focusing on demand-side management is more effective than water supply-side management.
All scenario analyses show that the sustainable utilization of water resources in the Guanzhong area must rely on improving water resource utilization efficiency, which is an important policy decision point. Scenario 5 is the best solution for demand-side management, including increasing the agricultural water consumption coefficient and wastewater plant treatment rate and reducing the water use per unit of industry AV, water use per cultivated area and per capita water use per day. As mentioned in other studies, the effectiveness of water-saving technologies as a solution to problems is controversial (Bian et al., 2014; Yang S. et al., 2021). The implementation of this measure often requires sufficient technical, financial and policy support, especially the increase in public awareness and participation. If the reduction of water demand through development speed was carried out without considering water efficiency, such a measure may harm social and economic development, as shown in scenario 3. Thus, the best policy for sustainable water resource management is to improve demand-side management to reduce water consumption in various departments.
Environmental Water Indication
People are increasingly aware of the importance of environmental flows in watershed management (Wei et al., 2020). If we want to maintain the ecological functions of the river, it is necessary to ensure sufficient water for the environment. However, our experience shows that water use is not suitable for all purposes. Satisfying ecosystem functions is likely to affect drinking water or other human uses. Sometimes, decision-makers will introduce demand standards into supply-side-oriented management, thereby formulating a failed water policy.
Sustainable water management policies mean that decision-makers need to weigh the balance between water production, recreation, landscape, and biological protection. Decision-makers should consider future policy changes and stability to reduce conflicts of interest in water distribution. The improved model structure no longer sets the environmental flow as a fixed maximum value. The design should consider the different needs of stakeholders and provide more results through “selection” to improve the management of water resources. We selected three different configurations of environmental flow in this study. These represent the attitudes of different stakeholders, respectively. The results show that, if no measures were taken, the water resources in the Guanzhong area would not meet the ecological needs of sediment transportation in the future. However, some studies suggest that with the improvement of soil and water conservation and the ecological environment, the river sediment content of the Yellow River Basin has seen a yearly decrease (Sun et al., 2020; Zhao et al., 2021). Ecological water will be released into social and economic development in the future, which may require decision-makers to weigh the distribution of water in the system and the potential risks.
Other Measures
The managers have developed several other solutions to supplement the sustainable water resources management strategy in the Guanzhong area. These include the diversification of water resources, the change of the model that completely relies on the surface water and groundwater in the region, and the water management department actively expanding the use of recycled water and rainwater to meet water demand. An irrigation network will be constructed to connect the local water conservancy facilities (reservoirs and dams). Promote the gathering of industrial parks for companies by recycled water use. Finally, innovative building regulations require land developers for new projects to comply with green building standards to obtain development permits.
At present, the Guanzhong area is improving the utilization rate of recycled water and rainwater through industrial upgrading and sponge city construction. Meanwhile, the river ecosystem protection plan is incorporated into the water policy management to ensure ecological safety. However, the management strategies announced by the water department seem to be slightly overlapping and hollow and it is difficult for some stakeholders to find specific approaches. Table 6 shows the supply of water resources in the Guanzhong area in the past 10 years. The Guanzhong area still relies on traditional water resources, and there is still a lot of room for the development of other water sources. Moreover, the water body is over-exploited or polluted and may threaten stakeholders in remote supply. It is difficult to find inter-regional water rights trading and compensation mechanisms in public information.
TABLE 6 | The supply structure of water resources in the Guanzhong area (Unit: 109 m3).
[image: Table 6]A variety of policies and measures may promote the solution of the water problem, including adjustment of tax structure, rainwater collection, and greywater reuse by urban households, policy incentives (incentives or subsidies) to reduce water demand, and encourage stakeholders to participate in planning.
Uncertainties of Climate Change
A critical uncertainty factor in our research is that the supply and demand of water resources caused by climate change are not considered. Studies have evaluated the impact of climate change and human activities on hydrological processes and water resources activities in different regions (Ahn and Merwade, 2014; Ran and Tao, 2017; Wang et al., 2020). Most of these studies focus on changes in water availability (Grouillet et al., 2015; Omer et al., 2020). Climate change, including extreme events such as droughts and floods, may affect ecosystem services and water resources utilization throughout the basin (Brendel et al., 2017). Therefore, close connections exist among climatic conditions, water users, and distribution methods. However, the impact of human activities on water resources has exceeded climate change, especially when people are aware of adopting various measures to deal with the adverse effects of climate conditions. For instance, the supply-side plan is based on the construction of water conservancy projects to integrate flood and water supply management. Decision-makers need to consider effective management policies to meet the challenges of future climate.
Comparative Assessment
The previous research of the project team was based on the perspective of decision-makers, integrating all aspects of the water system to solve the problem of water shortage. In this study, we integrate model developers, stakeholders, and decision-makers into the same perspective, and employ improved model structures to simulate the impact of supply-side and demand-side management on water resources management strategies. The case study in the Guanzhong area summarizes the three principles of sustainable water resources management. These have been verified in our research and lead to our conclusions.
First of all, sustainable water resources management depends on the carrying capacity of water resources, the level of regional development and the common understanding of stakeholders. The case of the Guanzhong region shows that economically developed regions can determine ecological environmental protection and regulate demand through enhanced supply-side and demand-side dual management. In other words, Water policy can avoid unsustainable water management by combining supply-demand side measures. However, supply-side development may not be affordable in underdeveloped and disadvantaged regions. Decision-makers must weigh fairness between regions and systems. How stakeholders view and reach a common understanding is crucial to determining the results of water policies. Therefore, we recognize that demand-side management is more important than supply-side development in water-scarce areas. Reducing water demand can replace new water resources development plans and avoid falling into supply-oriented management. This is a point neglected in previous studies.
Second, improving ecosystem services is the basic goal of the sustainable development of water resources, which is closely related to the socio-economic system. Stakeholders may cause differences in demand management results for different purposes. The improved model structure shows that the ecological environment and social economy may be rebalanced at the expense of part of the ecological function. Specifically, high-quality water, availability, and fair access are the core values of sustainable water resources management. However, sustainable water resources management should be phased. The dynamic balance between systems requires water policy to pay more attention to fairness, stability and reduce conflicts of interest.
Third, no water policy can completely avoid the unsustainability of water resources due to extreme weather disasters and poor governance policies. Decision-makers should consider the stakeholders’ opinions in the decision-making process, which may reduce the human influence. The participation of stakeholders in water resources management has been reflected in the formulation of national-level strategies. However, this approach is still difficult to achieve in small and medium-sized river basins. This is mainly related to the division of administrative boundaries, the complexity of the governance structure, and the difficulty for decision-makers to refer to the opinions of users in the design process. Stakeholder leadership has emerged in water management at local and regional levels and this could translate into policy impact in the future (Scott et al., 2021). In addition, the open platform owned by SDM provides the possibility for stakeholder participation. Common values and more new ideas are considered, planned, and executed will help improve the efficiency of sustainable management strategies. This was verified in this study.
CONCLUSION
Water resources management should consider the participation of stakeholders and integrate all major components and problems into an overall system for research with decision-makers Otherwise, some policies and measures formulated cannot solve the current problems and even worsen after spending limited resources and time. Based on new perspectives and improved models, we compare and analyze the impact on sustainable water resource management through supply-side and demand-side management and other policy measures. The research aims to establish a new framework to evaluate the best policies and measures for sustainable development, not just research on water scarcity. This paper expands the three decision-making principles that we believe are related to sustainable development: 1) Follow a systematic and comprehensive approach to ensure sustainable development. Decision-makers need to weigh the differences between systems and regions to promote consensus among stakeholders; 2) Sustainable water resources management is phased, providing scientific water policies to achieve fairness, stability and reducing conflicts of interest; and 3) The uncertainty of future changes should be considered, the participation of stakeholders should be encouraged and promoted the efficiency of sustainable water management strategies. Beyond the principles set out above, consider the impact of the following policies on system behavior in the long run, which will lead to sustainable water management:
• Water transfer projects reduce the vulnerability of water resources, but water transfer measures between river basins are unsustainable in the long run.
• Demand-side management (improving water resource utilization efficiency) and other methods (irrigation systems, wastewater treatment, rainwater and reclaimed water reuse, etc.) are more important than supply-side development (as new water resources), especially in economically disadvantaged areas. Reducing water use in various sectors can replace new water resources development plans.
• The improvement of the eco-environment will help release water resource and further promote social economic development.
• The participation of stakeholders is essential to determine the results of water policies, which will help decision-makers weigh water allocation and policy risks and minimize the impact of human factors.
To improve the model in future research work, the recommendations are as follows. First, we hope that more stakeholders will participate, which can promote the optimization of the system structure and improve the performance of the model. Second, the analysis of scenarios may not be comprehensive and factors such as extreme arid climate have not been considered. More scenarios can help improve the quality of water policy management.
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The transfer of CO2 from lakes to the atmosphere is a component of the global carbon equilibrium, while the quantification of the CO2 partial pressure (pCO2) is critical for exploring the contribution of freshwater CO2 emissions in the regional/global carbon budget. To investigate the daily variability of pCO2 and CO2 fluxes (fCO2), we conducted in situ biweekly pCO2 detection at 7:00, 10:00, 14:00, and 17:00 China Standard Time (CST) from Jan. to Sept. 2020 in the subtropical urbanizing Qinglonghu Lake in Chengdu, Sichuan, China. The pCO2 during the daytime varied greatly from 8.3 to 1,061.3 μatm, with an average of 137.7 μatm, while the average pCO2 (n = 11) clearly gradually decreased from 7:00 CST (204.9 ± 295.7 μatm) to 17:00 CST (93.5 ± 105.5 μatm). Similarly, the average fCO2 values were −19.3 (±27.5), −24.8 (±20.7), −29.2 (±9.1) and −30.4 (±10.7) mmol m2 h−1 at 7:00–17:00 CST, respectively. Further, we observed a negative correlation between pCO2 and water temperature and dissolved oxygen, but a positive correlation between pCO2 and total organic carbon and chlorophyll a. By a systematic overview of previously published data, we also discussed the differences and uncertainties in pCO2 and fCO2 estimates at regional and global scales. We therefore speculate that uncertainties may exist in the contributions of CO2 balance on lake surface in regional/global carbon budgets due to this daily pCO2 variation.
Keywords: CO2 evasion, CO2 fluxes, environmental factors, middle-eutropher, pCO2, subtropical urbanizing lake
INTRODUCTION
Since the Industrial Revolution, human activities, such as the consumption of fossil fuels and the exacerbation of land development (e.g., uncontrolled deforestation and rapid urbanization), have increased atmospheric carbon (C) by approximately 40% (Xu et al., 2019; Li Q. et al., 2020; Wang et al., 2021). From 2007 to 2016, approximately 10.7 ± 1.2 Gg C yr−1 of anthropogenic carbon was released into the atmosphere globally, of which 4.7 ± 0.1 Gg C yr−1 remains in the atmosphere (Le Quéré et al., 2018; Chen and Hu, 2019; León-Palmero et al., 2020). The absorption of carbon dioxide (CO2) by the ocean (ca. 2.4 ± 0.5 Gg C yr−1) has caused ocean acidification (an increase of ca. 30% acidity) or surface-water pH decline (ca. 0.1 units), resulting in a decline of marine biodiversity and ecosystem functions (Dickinson et al., 2012; Chen et al., 2017; Chen and Hu, 2019). Furthermore, CO2 emitted into the atmosphere from aquatic ecosystems, including inland freshwater ecosystems, such as urban lakes, can greatly contribute to climate change, as verified by previous works (IPCC, 2014; Wen et al., 2017). Correspondingly, the global carbon balance and hydrological processes are rapidly becoming urgent issues in studies of anthropogenic impacts.
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Inland waters are a small but crucial part of the global carbon cycle (Peter et al., 2014; Yang et al., 2019); the net carbon flux of aquatic ecosystems per unit area is greater than that of surrounding terrestrial ecosystems (Karim et al., 2011). Many publications have reported that 90% of inland lakes worldwide are supersaturated with CO2 compared to the atmosphere and are therefore considered sources of atmospheric CO2 (Cole et al., 1994; Karim et al., 2011). As a result, CO2 outgassing from inland lakes represents a significant contribution to the global carbon equilibrium (Marce et al., 2015). Based on previous evaluations, CO2 emissions from global inland lakes to the atmosphere are more than 1.4 Pg C yr−1 (Li et al., 2012; Keller et al., 2020), of which 60% are from freshwater lakes and 40% are from saline lakes (Cole et al., 1994; Tranvik et al., 2009; Raymond et al., 2013). Furthermore, the level of dissolved CO2 in inland lakes is higher than the typical level (i.e., 380–420 μatm; Sabine et al., 2004; Abril et al., 2014; Li Q. et al., 2020, Li S. et al., 2020) of atmospheric CO2, suggesting that freshwater has the potential to degas aqueous CO2 into the atmosphere (Li et al., 2012). Therefore, CO2 emissions from inland lakes to the atmosphere are an important part of the global and regional carbon budget.
The surface-water CO2 partial pressure (hereafter pCO2) is one of the key parameters quantified in research works to better understand the changes in carbon cycling globally. In general, surface-water pCO2 is mainly controlled by four interrelated phenomena: thermodynamic effects, physical mixing, biological activities, and water-atmosphere CO2 inter-exchange (Yang et al., 2019; Wang et al., 2021). Aquatic environmental variables, such as surface acidity (Pardue et al., 1988), trophic states (Tonetta et al., 2014), chlorophyll level (Xu et al., 2019; Yang et al., 2019), and water temperature (Marotta et al., 2009; Kosten et al., 2010), and other parameters, such as dissolved oxygen (DO), wind speed and solar radiation (Marce et al., 2015; Chen et al., 2017), are closely related to these four phenomena and might cause fluctuations in the spatial-temporal variability of pCO2 and CO2 evasion. Regarding inland freshwater systems, numerous studies have been conducted to investigate pCO2 and CO2 evasion in large rivers (with widths greater than 100 m), such as the Amazon (Richey et al., 2002; Abril et al., 2014), Mississippi (Crawford et al., 2016), Yangtze (Li et al., 2012; Liu et al., 2017) and Yellow Rivers (Ran et al., 2015). The results have revealed that the concentrations of CO2 in these rivers are higher than those in the overlying atmosphere (i.e., that these rivers exhibit CO2 supersaturation), suggesting that these rivers are the “source” of CO2 in the atmosphere (Yoon et al., 2017; Li S. et al., 2020). Unlike the conditional conversion between the “source” and “sink” roles of marine ecosystems (Sabine et al., 2004; Yan et al., 2018), most inland lakes/reservoirs function as net “sources” of CO2 because they are heterotrophic systems, similar to rivers (Cole et al., 1994; Richey et al., 2002; Gu et al., 2011), while some small productive lakes as carbon “sinks” (Maier et al., 2021 and related refs.). Currently, the temporal variability of CO2 in lakes/streams is taken into account in many studies, which find similar relationships between photosynthesis and remineralization in response to variations in solar insolation (Alin and Johnson, 2007; Callbeck et al., 2010; Marotta et al., 2010; Tonetta et al., 2014). However, lots of the field data collected for CO2 evasion estimation have low temporal resolution, such as weekly to quarterly, and therefore ignore the diurnal variation in pCO2 and thus the CO2 flux.
In addition, aquatic pCO2 is markedly affected by photosynthesis (P) and respiration (R), which are driven by temperature and radiation in different geographic regions (Marotta et al., 2010; Tonetta et al., 2014; Xu et al., 2019). For example, the average CO2 flux in the headwater catchment area of the Alaska Highlands, in Arctic tundra, is 5.1 μmol C m2 s−1 (Crawford et al., 2013), while the average CO2 emissions in the two reservoirs in Spain (Guadalcacín and Bornos), in the Mediterranean climate, are between 5.6 and 34.7 μmol C m2 s−1 (Morales-Pineda et al., 2014). Accordingly, the influences of diel pCO2 changes on the estimation of CO2 degassing and uncertainties in these estimates remain unclear, although the estimation of CO2 emissions on a regional/global scale has been strengthened through many studies. Thus, to reduce the uncertainty of CO2 evasion estimation, we need to consider the changes in air-water pCO2 and CO2 flux (i.e., fCO2) over the span of a day, thereby limiting these factors that cause data scatters and variances.
There is still a knowledge gap regarding the daily change in pCO2 and fCO2, while previous studies mainly focused on weekly to quarterly data. Based on the aforementioned background, an in situ investigation of the daily changes in pCO2 and fCO2 in a subtropical urbanized lake (named Qinglonghu Lake) was conducted in Chengdu, Southwest China. Specifically, the objectives of our study are to 1) monitor fortnightly the water-air pCO2 and related environmental parameters during the daytime from Jan. to Sept. 2020; 2) evaluate fCO2 by employing the measured pCO2 and discuss the uncertainties in CO2 evasion estimation; and 3) explore the roles of environmental factors and the in-lake CO2 exchange behaviours. The findings will significantly improve our understanding of the mechanisms of daily pCO2 variations and increase the accuracy of CO2 evasion estimations in freshwater environments.
METHODS
Site Description
This study was conducted at Qinglonghu Lake (longitude 104°11′14″ E, latitude 30°38′26″ N) in Chengdu, Southwest China (Figure 1). The lake is located in the Round-the-city Ecological Zone of Chengdu, which is the largest urban wetland in the city and is used for the construction of a lake-forest system. The lake has an open water surface of approximately 82 ha, a circumference of 12 km, and a depth ranging from 0.5 to 6.0 m (Li and Cai, 2019). The lake was irrigated from the Dongfeng Canal in April 2008 and officially opened in Jan. 2016.
[image: Figure 1]FIGURE 1 | Geographical location of Qinglonghu Lake in the city of Chengdu, Sichuan, Southwest China. Ws represents the location of water sample collection and on-site dynamic monitoring. The above is a modified graph based on the Google® Maps (https://www.google.cn/maps).
The study region has a humid subtropical climate with a long frost-free period and abundant rainfall; the average annual air temperature is 16.5°C, with the lowest air temperature in January (4.6°C) and the highest air temperature in July or August (∼37.5°C). During the 9-months investigation period, the average daily air temperature around the lake was −5 to 30°C, with the highest air temperature in August and the lowest air temperature in January (Figure 2A). Moreover, the annual average rainfall is approximately 900 mm. Less precipitation occurs in spring, but more precipitation occurs in summer (e.g., ∼200 mm in Aug. 2020), which can easily cause floods. The annual average number of solar radiation hours is approximately 1,032, and the number of radiation hours from April to August was higher than that from January to March during the study period (Figure 2B).
[image: Figure 2]FIGURE 2 | Daily air temperature and precipitation ((A); mm d−1) and radiation ((B); h d−1) during the study period in Qinglonghu Lake. The hollow circles represent the dates of sampling and monitoring of water samples. The data in the above figures have been authorized by the National Meterological Data Center of China (https://data,cma,cn/) via the authors’ emails.
Field Measurements
In this study, we conducted biweekly field trips from Jan. to Sept. 2020 to measure pCO2 and related water quality parameters. Based on previous full-scale investigations, an open site near the lake outflow was selected for water sample collection and parameter monitoring (Figure 1). During each trip, in situ measurements were taken at 7:00, 10:00, 14:00, and 17:00 China Standard Time (CST) at approximately 2 m from the lake shore, which was based on previous studies such as Perkins et al. (2015), Xu et al. (2019), and Yang et al. (2019). All measurements were carried out at the same location. To minimize the influences of rainfall/runoff and avoid the potential bias in measurements, all trips were made on sunny days to avoid weather conditions such as rainfall, winds and runoff by adjusting the timing. All on-site detected parameters (including pH, water temperature (twater), transparency (TPC), turbidity (FNU), electrical conductivity (EC), total dissolved solids (TDS), DO, bicarbonate (HCO3−; BCB) and carbonate (CO32−; CB) were measured at a depth of 30–50 cm below the water surface, and recordings were taken after the instrument reading had remained stable for 3–5 min.
Among the detected parameters, TPC was measured using a black-and-white disc with a diameter of 200 mm, while FNU was monitored using a TSS portable turbidity meter (HACH, TSS Portable, Danaher, United States). The other parameters, including pH, EC, TDS, and twater were measured by a Hanna multiparameter pen-type detector (Hanna-HI9829, Hanna Instruments Co., Ltd., Italy). The DO and DO saturation (DO%) were monitored using a Hanna-HI98186 portable high-precision DO meter.
Unlike oceanography, there is currently no consistent definition of an appropriate method for measuring or calculating pCO2 in freshwater. There are direct and indirect methods for measuring pCO2 using acidimetric titrations. An indirect method that greatly simplifies the alkalinity determination procedure by titrating to pH 4.5 and has been widely used, especially for freshwater with pH > 7 and low organic carbon, i.e., pCO2 is calculated via pH/alkalinity in particular (Telmer and Veizer, 1999; Butman and Raymond, 2011; Wang et al., 2011). Moreover, currently direct measurements of water pCO2 remain scarce in freshwater, and most published pCO2 data are calculated from temperature, pH and total alkalinity using the above indirect method (e.g., Li et al., 2013; Abril et al., 2015; Varol and Li, 2017; Xiao et al., 2020; Ni et al., 2021). As we know, the alkalinity and pH are critical for pCO2 calculations, in particular, a pH difference of 0.005 unit could affect pCO2 calculations (Li et al., 2013). Therefore, we carefully scrutinized the values as follows: 1) the pH probes were carefully calibrated, 2) the in situ pH values were recorded when the pH stabilized in 0.01 units for 3–5 min, and 3) three replicates for individual samples were determined for alkalinity and the mean values were taken. Our investigation found that our studied freshwater lake has the pH from circumneutral to basic (∼8.8) and the alkalinity exceeding 1,000 μmol L−1 (Abril et al., 2015), suggesting that the calculation of pCO2 from pH, alkalinity and temperature is effective reliability. Following the previous classic Eq. 1, therefore, pCO2 was calculated by detecting the pH, bicarbonate, ion concentrations and Henry’s law constant (Kh) of water (Telmer and Veizer, 1999).
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Thus, we collected 100 ml of water samples into a 250 ml Erlenmeyer flask and then added 4 drops of phenolphthalein indicator. We also employed an HCl standard solution to titrate the solution until it became just faded or colourless and then recorded the amount of standard solution (defined as P) after it turned red. If the solution was colourless after adding the phenolphthalein indicator, it was considered unnecessary to titrate the HCl standard solution again. Subsequently, we continuously added 3 drops of standard methyl orange indicator into the Erlenmeyer flask, standardized the flask with the HCl standard solution until it turned from orange-yellow to orange-red, and then recorded the amount of standard solution (defined as M). Accordingly, the total consumption of HCl standard solution (defined as T) in the water sample was calculated as follows Eq. 2:
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According to the different values of P (i.e., P = T, p > 1/2T, P = 1/2T, p < 1/2T, P = 0), the following calculation Eqs. 3, 4 of CB and BCB were employed:
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where CHA represents the concentration of HCl standard solution (mol L−1) and V represents the water sample volume (ml). In this study, CHA was 0.025 mol L−1, while V was 100 ml. In addition, (30.005) indicates the mass of CO32− in grams (g) equivalent to 1.00 ml of HCl standard solution (CHA = 1.00 mol L−1), while (61.017) indicates that of HCO3− in grams (g).
After completing the on-site data collection, we collected water samples using a homemade polyethylene grab sampler at 7:00, 10:00, 14:00 and 17:00 CST on each trip for laboratory analysis. Briefly, 500 ml water samples were collected, and 0.5 ml MgCO3 suspension (1%) was added for the determination of water chlorophyll a (Chla). The lake water (20 ml) was filtered with a microporous membrane (50 mm × 0.45 μm; Jiangsu Green-Union Scientific Instrument Co., Ltd., Jiangsu, China) and then stored in polyethylene bottles to determine total carbon (TC) and inorganic carbon (IC). In addition, we collected 50 ml water samples and filtered them with a microporous membrane for anion (i.e., fluoride/F−, chloride/Cl−, sulfate/SO42−, and nitrate/NO3−) detection. All samples were stored in acid-washed high-density polyethylene bottles that were capped tightly and placed in cooling vessels with enough ice during transportation.
Laboratory Analyses
The Chla in water samples was detected using the acetone method following a previous protocol (The National Environmental Protection Agency, 2002). Briefly, a quantitative volume of water sample was poured onto the suction filter with a fibre membrane for complete suction filtration. The filter membrane with phytoplankton was then removed, dried at a low temperature in a refrigerator for 8 h, and fully ground with MgCO3 powder and 2 ml of 90% acetone to extract Chla. The extraction solution was then centrifuged at 3,500 × g for 10 min. The supernatant was ground with 2 ml of acetone, centrifuged again for 10 min, and then transferred/diluted to 10 ml with acetone. Finally, the treated supernatant was detected by using an UV1901PCS ultraviolet spectrophotometer (Youke Instruments, Shanghai, China) at 750, 663, 645, and 630 nm, with 90% acetone as a blank. The Chla concentration (mg m−3) was calculated following formula Eq. 5:
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where V is the volume of the water sample (L), D is the absorbance, V1 is the constant volume of the extraction solution, and CL is the optical path of the cuvettes (cm).
Four anions were determined by ion chromatography following the National Environmental Protection Standards of China (HJ 84-2016). Briefly, the water samples were filtered through a 0.45 μm microporous membrane to determine the standard curves (F−, R2 = 0.9996; Cl−, R2 = 0.9991; NO3−, R2 = 0.9998; SO42−, R2 = 0.9999). The concentrations (mg L−1) of the four anions were then detected using IC-2800 ion chromatography (Beijing Dongxi Analytical Instrument Co., Ltd., Beijing, China).
To analyze trophic states, the other parameters such as NT (nitrate; Supplementary Methods S1), TP (total phosphorus; Supplementary Methods S2), TDN (total dissolved nitrogen; Supplementary Methods S3) and eutrophication evaluation [TLI (∑); Supplementary Methods S4] also were evaluated.
TC and IC were analyzed using a Total Organic Carbon Analyser (TOC-L CPH Basic System; Shimadzu Co., Kyoto, Japan). Briefly, 0–50 ml of organic carbon (i.e., potassium hydrogen phthalate), inorganic carbon (i.e., sodium carbonate/bicarbonate) and KNO3 standard solution were added to 50 ml colorimetric tubes and then diluted. The standard curves (IC: R2 = 1.0000; TC: R2 = 1.0000; see Supplementary Figure S1) were measured by using the TOC-L CPH analyser. Before detection, these samples were bubbled with nitrogen to remove inorganic carbon (CO2) (Kortelainen, 1993; Bisutti et al., 2004). Moreover, a filter was used when the tested water samples contained insoluble particles, and the pore size of the filter membrane was ≤60 µm. During the detection, to ensure that no-air (CO2) entered, the sampling tubes were submerged below the liquid surface, and the nozzle of the tube was placed at about 1/3 of the height of the solution near the bottom of the container. The calculations of TC and IC (mg L−1) were based on the peak height of the absorption peak, which subtracts the correction value of the peak height from the blank test absorption peak. Accordingly, the total organic carbon (TOC) concentration (mg L−1) was estimated using Eq. 6
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pCO2 and CO2 Flux Calculation
Detection of pCO2
Previous studies have confirmed that dissolved inorganic carbon in water is composed of HCO3−, CO32−, H2CO3, and dissolved CO2. When the aqueous solution is in equilibrium, the concentration of each component is related to the pH, temperature and ionic strength of the water (ref. Cole and Caraco, 1998; Telmer and Veizer, 1999; Yao et al., 2007; Abril et al., 2015). Accordingly, in our work, based on the pH, HCO3−, CO32−, Kh and ions in water, the water-air pCO2 was calculated employing the CB equilibrium model (see Supplementary Methods S5 in detail). Based on the Henry’s Law, pCO2 (μatm) is calculated by the following Eq. 7:
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where α (H+) and α (HCO3−) represent the ion activities of [H+] and [HCO3−], respectively (Eqs. 8, 9), while I represents the ionic strength Eq. 10.
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Calculation of fCO2
CO2 diffusion at the water-air interface is affected by factors such as the difference in pCO2 between the atmosphere and water, temperature, salinity, and wind speed. Therefore, the calculation of water-air fCO2 in our study was based on the stagnant-layer model as follows Eq. 11 (ref. Cai and Wang, 1998; Bade and Cole, 2006; see Supplementary Methods S6 in detail):
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where fCO2 indicates the flux of CO2 at the water-air interface (mmol m2 h−1), KH indicates the solubility of CO2 at a certain temperature (mol L−1 atm−1; ref. Weiss, 1970), KT represents the gas exchange rate of CO2 (cm h−1; ref. Katul and Liu, 2017). Moreover, KT was converted from the standardized Schmidt number of 600 (K600) according to the following Eq. 12 (Jahne et al., 1987):
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where n is the Schmidt number exponent that depends on the surface state of the water. n is 0.50 when the wind speed exceeds 3.7 m s−1 and 0.75 when the wind speed is lower than 3.7 m s−1 (Guérin et al., 2007). Based on the findings of Cole and Caraco (1998), the Schmidt number is taken as 0.67 under normal circumstances. [ScCO2] represents the Schmidt number of CO2 at a given temperature (t) (Wanninkhof, 1992). The following Eq. 13 was used to obtain the value of K600 (Vachon and Prairie, 2013):
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where U10 is the wind speed normalized to a height of 10 m above the water surface at the sampling time (m s−1; ref. Cole and Caraco, 1998). The data were compiled from the database of the National Meteorological Science Data Center of China (http://data.cma.cn/, Chengdu, Sichuan). This observation station is located in Longquanyi, Chengdu, which is close to the studied lake (less than 5 km away). The data were authorized by the application and were selected based on the average maximum value of 10 min of measurement on the sampling day.
Data Analysis
In this study, all statistical analyses were performed by IBM-SPSS Statistics software (IBM Corp., Armonk, New York, United States) from the contribution software platform provided (http://ms.sicau.edu.cn/soft/detail/52) for Tukey’s tests at the significance level of 0.05. The figures constructed in the present study, including Figures 4, 6, were generated using SigmaPlot 14.0 (Systat Software Inc., San Jose, California, United States).
RESULTS AND DISCUSSION
The Sink-Source Behaviours of CO2 in the Mesoeutrophic Urbanizing Lake
As urbanization has accelerated in recent years, anthropogenic waste emissions have increased sharply, which has inevitably caused the deterioration of water quality in urbanizing lakes, the changes in hydrological processes, and the destruction of the water-nutrient-carbon cycle (Li S. et al., 2020). Therefore, studying the carbon dynamics of lakes and their CO2 exchange behaviour is of great significance for understanding the carbon emissions of urbanizing lakes in developing countries.
In the present study, our field investigations showed that on all most of the sampling days from Jan. to Sept. 2020 except April 5 (with the highest pCO2 at 14:00 CST; Figure 3B), May 6 (with the lowest pCO2 at 10:00 CST; Figure 3C) and Sept. 5 (with the highest pCO2 at 14:00 CST; Figure 3K), the concentrations of pCO2 significantly decreased from early morning (at 7:00 CST) to late afternoon (at 17:00 CST). Among the daily pCO2, the lowest values occurred between 14:00 and 17:00 CST, and the highest occurred between 7:00 and 10:00 CST (Figures 3A–L, 4). Furthermore, the average pCO2 (n = 11) showed a clear and gradually decreasing trend from 7:00 CST to 17:00 CST, with average decreases rate of 39.0% from 7:00 (240.9 ± 295.7 μatm) to 10:00 CST (146.9 ± 220.5 μatm), 28.3% from 10:00 to 14:00 CST (105.4 ± 85.3 μatm), and 11.3% from 14:00 to 17:00 CST (93.5 ± 105.5 μatm) (Figure 4A). These findings revealed that this studied lake could be a sink of CO2 throughout the season from January to September (except for August 19), while a sink-source phenomenon was discovered in Capitol/University Lake in central Louisiana, United States (Xu et al., 2019; Yang et al., 2019).
[image: Figure 3]FIGURE 3 | Hourly measurements of water pCO2 and estimation of fCO2 in Qinglonghu Lake. (A–K): The dots represents the pCO2 (solid line) and fCO2 (dotted lines) at each sampling time (n = 1). (L): The dots represent the average pCO2 (solid line) and fCO2 (dotted line) of all measurements (n = 11) at each sampling time during the study.
[image: Figure 4]FIGURE 4 | Hourly and monthly changes in water pCO2 (A,C) and fCO2 (B,D) at different sampling times Jan. to Sept. 2020 in Qinglonghu Lake. The black line, red line, lower edge, upper edge, bars, dots in or outside the boxes refer to median and mean values, 25th and 75th, 5th and 95th, and <5th and >95th percentiles of all data, respectively. Figures A and B were drawn based on the data of all measures values (n = 11) at each sampling time during the study period, while Figures C and D were drawn based on the data of all measurements (n = 4, 8) in each sapmling month.
Interestingly, the pCO2 on the sampling dates other than August 19 was below 400 μatm (Figure 3), although the pCO2 values in the mornings were higher than those in the afternoons (Figure 5), which may be due mainly to the large amount of atmospheric precipitation (i.e., 80–200; Table 1) compared to that in our previous study (0–85 mm of rainfall; Yang et al., 2019). Studies showed that precipitation affects aquatic pCO2, mainly due to its impact on soil respiration and carbon transport (Hope et al., 2004; Li et al., 2017). After short-term atmospheric precipitation, the biodegradation and decomposition of the labile fractions toward the top soil layers via runoff (Ran et al., 2015) are also important sources of dissolved CO2. However, for the lake area during the dry season, long-term and high-intensity floods offset the contribution of soil CO2 erosion input (Luo et al., 2019), thereby significantly diluting the control of lake pCO2 and CO2 exchange. Further, many previous studies have confirmed that precipitation stimulates complex chemical reactions at the water-air interface. The principle of these processes can be explained by the classic carbonate equilibrium equation as follows Eq. 14:
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[image: Figure 5]FIGURE 5 | Differences in average pCO2 (A), fCO2 (B), twater (C), and DO (D) between the morning hours (7:00–10:00 CST) and the afternoon hours (4:00–17:00 CST). The rectangular bars represent the average values of all measurements at two tome points, while the error bars represents the standard deviations (SDs) among a total of 24 testing results. Different lowercase letters indicate that the mean values are significantly different between morning and afternoon hours at p < 0.005 according to Turkey’ tests.
TABLE 1 | Hourly changes in water quality parameters in Qinglonghu Lake.
[image: Table 1]When rainwater with a pH value lower than the lake water falls on the lake surface, the amount of free ion H+ greatly increases, causing the balance of carbonates existing in the water to be disturbed and moving to the left. Therefore, in the case of excessive H+, especially acid rain in urban areas, an extra amount of CO2 will be produced in the surface water. Furthermore, atmospheric precipitation represents a certain chemical pressure, which depends on the quasi-stable daily rhythm of CO2 consumption and emission by aquatic organisms. Once the CO2 content in the surface water is excessive for a short period of time, the biota cannot respond quickly to this change, causing most of the gas to be discharged into the atmosphere. These findings have been confirmed by previous studies on the influence of atmospheric precipitation on the changes in CO2 content at the water-air interface of the Lake Baikal in southern Eastern Siberia, Russia (Domysheva et al., 2007), University Lake in Baton Rouge, Louisiana, United States (Xu et al., 2019) and other lakes (Hastie et al., 2018 and related refs.). Accordingly, in our study, precipitation on the lake surface facilitated CO2 exchange and can be regarded as an additional source. Besides, because the sampling site is relatively open, the overall wind speed is relatively high; this wind accelerates the exchange of water-soluble gases with the atmosphere, decreasing the pCO2 at the water-air interface. In agreement with this study, previous publications have reported that the regression between pCO2 and wind speed was the largest with a no-time-lag negative correlation (Morales-Pineda et al., 2014), suggesting that the acceleration of CO2 gas-water exchange, as the main process, promoted the decrease in pCO2 (Podgrajsek et al., 2015; Shao et al., 2015). Therefore, combining the daily CO2 dynamic information from atmospheric precipitation and wind-speed improves the accuracy of CO2 estimation.
In our study, the daily average pCO2 for the whole period (i.e., Jan. to Sept. 2020) was 108.2 ± 100.8 μatm; at the monthly level, the highest daily average pCO2 was August (308.5 ± 407.4 µatm), while the lowest was July (23.3 ± 16.4 µatm) (Figure 4C). Correspondingly, the levels of daily average fCO2 decreased from 7:00 to 17:00 CST (from −19.3 ± 27.5 to −30.4 ± 10.7 mmol m2 h−1) (Figures 3, 4), while the daily average fCO2 ranged from −10.4 (±38.5) mmol m2 h−1 in Aug. 2020 to −27.3 (±7.2) mmol m2 h−1 in April 2020, with an average fCO2 of −27.3 (±10.7) mmol m2 h−1 (Figures 4B,D). These lower values indicate that the biological productivity at 1.0 m depth far surpassed CO2 dissolution into the water. Similarly, a previous work regarding lake CO2 evasion in central Louisiana, United States, showed that lake water can serve alternately as a seasonal source-sink of CO2 (Xu and Xu, 2015). However, the global size distribution of lakes and ponds is a key source of uncertainty in calculating gas exchange and its contribution. Holgerson and Raymond (2016) analyzed the CO2 concentration of 427 lakes/ponds with a surface area ranging from 2.5 m2 to 674 km2. The results showed that very small ponds accounted for 8.6% of the global lakes/pond area, but accounted for 15.1% of CO2 emissions, and decreased with the increasing in the area of these lakes, which may be due to shallow water, high sediment and edge-to-water volume ratios, and frequent mixing (Kankaala et al., 2013; Holgerson, 2015). Therefore, whether the seasonal source-sink of lakes contribute to the global carbon budget depends on the flux (grams of CO2 per unit area) and the relative contribution of such lake systems to the global lake area, which needs further investigation against our studied lake.
Many previous studies have confirmed that the two main biogeochemical processes influencing pCO2 changes in freshwater systems are photosynthesis (P) and respiration (R) (Alin and Johnson, 2007). In this study, according to the variability of daily pCO2 and fCO2 (Figures 3, 4), the CO2 dynamics in the mesoeutrophic urbanizing lake were mainly driven by P during the daytime and impacted by the balance of P and R (Tranvik et al., 2009; Karim et al., 2011). Similar findings have been reported in our previous works (Xu et al., 2019; Yang et al., 2019) and in other studies of aquatic systems (Peng et al., 2012; Tonetta et al., 2014; Wang et al., 2021). In general, the P and R processes follow a circadian rhythm; that is, C fixation is limited to the day, but R occurs through the whole 24 h cycle (Schelske, 2006). Furthermore, strong negative correlations between DO and both pCO2 and fCO2 occurred during the daytime (i.e., −0.482** for pCO2/DO and −0.502** for fCO2/DO) in this study (Table 2, Supplementary Table S1), suggesting the pCO2 on the water surface mainly caused mainly by R is higher than the atmospheric CO2 when P is less than R (i.e., P:R < 1.0). In other words, this process is heterotrophic. In contrast, pCO2 in autotrophic ecosystems is lower than CO2 in the atmosphere (Gu et al., 2011). When P: R > 1.0, the lake may be supersaturated with CO2. Previous studies showed that the inorganic carbon loading is the main factor influencing dissolved CO2 concentration in lakes/reservoirs in the United States (Mcdonald et al., 2013). Further, water temperature could cause the concentrations of dissolved gases to rise, and the daily trends of pCO2 and DO can become similar because both gases become more difficult to dissolve at higher temperatures. However, in the present work, pCO2 and DO exhibited opposite responses to water temperature changes (Table 2, Supplementary Table S1; Figures 5A,D), indicating that the main force influencing dissolved gas concentration is the balance between P and R (Xu et al., 2019).
TABLE 2 | Comprehensive nutritional status index TLI (∑) of Qinglonghu Lake.
[image: Table 2]Studies have shown that lakes in temperate regions could be considered heterotrophic when the concentration of dissolved organic carbon is higher than 6.0 mg C L−1 (Carignan et al., 2000). It is generally believed that due to heterogeneous loading of organic matter, pCO2 increases as the organic carbon in lake water increases (Sobek et al., 2005; Xu et al., 2019). In this study, a similar positive correlation between TOC and pCO2 was detected at all water sampling points (Supplementary Table S1), indicating that 7:00 CST may be the transition point between P and R. Moreover, a significantly positive relationship between TOC and Chla (p <0.05) was observed, indicating the TOC in this productive lake mainly sources from autochthonous production (Figure 6A–C, Supplementary Figure S5). In accordance with the results of Gu et al. (2011), the aforementioned result indicated that this phenomenon may be related to the consumption and decomposition of chlorophyll-containing materials overnight and the daytime production of aquatic organisms, which further supports the conclusion that major biological processes are controlling factors.
[image: Figure 6]FIGURE 6 | Monthly changes in water TC, IC, and TOC in Qinglonghu Lake. The symbol of the box diagrams is similar to Figure 4. The above figires were made based on the data of all measurements (n = 4, 8) in each sampling month.
Main Environmental Variables Contributing to the Dynamics of CO2
A previous investigation by Sobek et al. (2003) confirmed that TOC and pCO2 are co-variable in boreal lakes, which is interpreted as in-lake R of mainly terrestrial derived from TOC or DOC. However, in addition to the formation of aquatic R of pCO2 in the lake sediments, pCO2 supersaturation on the water surface may be the result of terrestrial R, by inputting groundwater with supersaturated pCO2 from soil R (Worrall et al., 2005; Stets et al., 2009). In this study, the CO2 dynamics during the daytime caused by pCO2 changes were mainly P and were driven by the availability of sunlight and nutrients, while R was regulated by water temperature and organic loading (Yvon-Durocher et al., 2010; Yang et al., 2019; Wang et al., 2021). However, current discussions on whether lakes are oversaturated have put forward to various hypotheses. For example, Weyhenmeyer (2008) et al. proposed that if the aquatic R of TOC is the main factor for predicting pCO2 supersaturation along aquatic conduits, the observed increase in dissolved organic carbon (DOC) in many old/new rivers of northern latitudes may lead to an increase in CO2 outflow. The other scholars speculated that if a large part of aquatic pCO2 can be related to terrestrial R transferring to aquatic conduits through groundwater input, the conclusion that TOC is the main causal predictor of CO2 supersaturation in boreal lakes will need to be reconsidered (Algesten et al., 2004; Sobek et al., 2005). Comprehensively, Humborg et al. (2010) has verified, in the Swedish watershed, CO2 supersaturation along aquatic conduits is limited by terrestrial/aquatic R and weathering. Therefore, the mechanisms causing over- or under-saturation in freshwater lakes are complicated, which needs to be studied from multiple carriers and perspectives.
Previous works showed that productive systems are more likely to be CO2 sinks (Marotta et al., 2010; Yang et al., 2019), while a higher nutrient could promote the biological activity of aquatic P and then leading to more CO2 absorption (Cole and Caraco, 2001). Based on the detection of Chla, TP, TN and TPC, the nutritional status index [i.e., TLI (∑)] of this urbanizing lake was 63.15 (Table 2, Supplementary Figure S2), suggesting that a variable relationships between pCO2 and N/P was found (Supplementary Table S2, Supplementary Methods S4; Li et al., 2018), which thus was defined as a middle-eutropher lake. The average DO and TP of this lake (including four anions; Supplementary Figure S6, Supplementary Table S3) were recorded as 8.43 (Supplementary Figure S3) and <0.01 mg L−1 (Supplementary Figure S2), respectively, and therefore being classified as class I abiding by the national standard (GB 3838-2002). For lakes with different nutrients, the diel CO2 changes are different. For example, the dynamic changes in CO2 in a typical tropical productive lake were highly dependent on biological metabolism during the diurnal cycle (Reis and Barbosa, 2014), while no significant diel changes in fCO2 were found in oligotrophic lakes (Morin et al., 2018). In addition, diurnal changes in CO2 and related parameters in lakes with different nutrients change seasonally (e.g., Supplementary Figure S2–S4). In this study, the daily variations in pCO2 on April 5 and Sept. 5 2020, were opposite each other (Figure 3). Similarly, during the peak period of Chla, the diurnal changes in August and September were obvious, whereas no obvious temporal changes occurred in the other months (Shao et al., 2015).
Besides, changes in lake CO2 are also closely related to temperature and pH. In this study, a weak negative correlation between water temperature and daily pCO2 was observed (Table 2), indicating an increase in gas solubility and a decrease in CO2 absorption at low temperatures. The diurnal changes in pCO2 affected by water temperature were therefore usually smaller (R2 = −0.030 for pCO2; R2 = −0.043 for fCO2; Table 3, Supplementary Table S3) than the biologically induced changes (Nimick et al., 2011; Morales-Pineda et al., 2014). Moreover, the lake water temperature during the daytime was almost constant in this study (Figure 5C); further, the average daily twater was negatively correlated with daily pCO2 (Table 3), indicating that daily twater influenced on the CO2 level in the late afternoon. Therefore, we speculate that there may be a temperature threshold in subtrophic water. When the twater exceeds this threshold, pCO2 might be extremely low in the late afternoon due to active P. Accordingly, there is a relationship between CO2 and pH in lakes, as shown in this study (R2 = −0.823** for pCO2, R2 = −0.825** for fCO2; Supplementary Table S1), suggesting that the critical threshold for the pH value shifts from the CO2 absorption capacity to the emission source (Wilson-McNeal et al., 2020)). In river systems, the river represents a CO2 sink when the pH value exceeds 8.59 but acts as a CO2 source when the pH value is less than 8.59 (Li et al., 2020a, Li et al., 2020b). Therefore, we speculate that the increases in EC and nutrient levels in the lake system are closely related to urban development, and that anthropogenic emissions may lower the pH value (see Supplementary Table S1), leading to an increase in aqueous pCO2 (Richey et al., 2002; Ran et al., 2015; Liu et al., 2017).
TABLE 3 | Daily correlation between pCO2 and fCO2 and time in Qinglonghu Lake (n = 4).
[image: Table 3]Uncertainties in CO2 Evasion Evaluation Owing to Daily pCO2 Fluctuations
Owing to the variations of pCO2, the interaction of CO2 source-sink within a day is driven by many factors, especially daylight and thus the biological processes in the lake (Cole and Caraco, 1998; Maberly et al., 2013; León-Palmero et al., 2020). Findings of our study indicated, due to daily fluctuations, considerable uncertainties in the current estimations of CO2 evasion from regional and global lake systems. On the one hand, most current estimates of annual CO2 evasion from freshwater lakes are mainly calculated using data collected from measurements with poor temporal coverage (i.e., weekly or monthly) (Cole et al., 2007) or low-frequency time series (Peter et al., 2014). For daily change, as in our study, the time frame (from 7:00 to 17:00 CST) for observing a decrease in pCO2 is actually short, the variable level therefore may cause an underestimation or overestimation for the daily CO2 based on one-time measurement. On the other hand, the observations were made at 3 h intervals from morning to afternoon (Figures 3, 4), with no measurements conducted during the nighttime. The CO2 evasion during the nighttime could be stronger than that during the daytime, which may be due to darkness favors R over P (Xu et al., 2019), or to physical changes in the water column (Wang et al., 2021). For instance, Reis and Barbosa (2014) observed a tropical productive lake in Brazil for two consecutive days showing, the average pCO2 (565 matm from 21:00 to 5:00 BRT) during the nighttime was higher than that during the daytime (436.1 matm from 9:00 to 17:00 BRT). In agreement, based on direct measurements in the Ross Barnett reservoir, fCO2 during the nighttime (0.39 μmol m−2 s−1) was ca. 70% greater than that during the daytime (0.23 μmol m−2 s−1 from 08:00 to 20:00 CST) over the 1-year study period (Liu et al., 2016). In addition, Gu et al. (2011) presented an investigation of limnological data collected from 1987 to 2006, suggesting the average pCO2 (i.e., 224 µatm) at nighttime was slightly higher than that during the daytime but undersaturation with reference to atmospheric pCO2. A study conducted in Lake Lochaber in eastern Nova Scotia, Canada, showed that 65–95% of total CO2 emissions in a day actually occur at night, which is 21:00 to 7:00 Atlantic Daylight Time (Spafford and Risk, 2018).
The uncertainties among studies in CO2 estimates may also be partly due to differences in geographic region (Schelske, 2006). In a study of carbon dynamics in two Mediterranean reservoirs in southern Spain, by relying on different models, Morales-Pineda et al. (2014) found that the average CO2 emissions ranged from 8.0 to 12.5 mmol C m−2 d−1 in Guadalcacín but ranged from 33.0 to 50.0 mmol C m−2 d−1 in Bornos. Further, on a daily scale, variability in pCO2 was closely related to the diurnal cycle of metabolic activity, with a minimum pCO2 value between 15:00 and 18:00 Central European Time and a maximum value between 22:00 and 06:00 CET. Reis and Barbosa (2014) also observed a significant difference in CO2 flux between daytime and nighttime in Lake Carioca, Brazil. Interestingly, CO2 outgassing was lower at 1:00 Brasilia Time than at other times of day, with a maximum of 2.4 mmol C m−2 d−1 and an average of 0.9 mmol C m−2 d−1. Watras et al. (2015) focused on two small seepage lakes in northern Wisconsin, suggesting that the diel cycle is controlled by biological activities, which mediate the production and destruction of organic matter based on daily CO2 dynamics (0.32 mg C m−2 d−1). From October 2011 to September 2013, a strong diurnal change in fCO2 from −0.45 to 0.98 g C m−2 d−1 in western Lake Erie in North America was found by Shao et al. (2015). However, no clear diurnal variation was observed in a small boreal lake (i.e., Lake Kuivajärvi) in Finland, although the average diel fCO2 was 0.7 μmol C m−2 s−1 (Mammarella et al., 2015), while the clear diurnal cycles of fCO2 in three lakes with different characteristics in southwestern Sweden (Natchimuthu et al., 2017).
Furthermore, previous studies have also proved that C derived from terrestrial systems could cause CO2 oversaturation in lakes, where DOC serve as a direct substrate for CO2 production or as a proxy for inorganic C loading (Roehm et al., 2009; Humborg et al., 2010). In this regard, the relationship between pCO2 and DOC could be a key feature for explaining the regional differences in lake pCO2 regulation (Lapierre and del Giorgio, 2012). A strong positive correlation in pCO2-DOC indicates that in-situ oxidation of terrestrial organic C plays a leading role in the excessive CO2 production in lakes, or the significant contribution of DOC related driving factors to pCO2 effects (Larsen et al., 2011). On the contrary, a weak/negative correlation would indicate either a strong contribution from other drivers that are not related to DOC, or drivers that are related to DOC but have an opposite effect on pCO2, respectively. Lapierre and del Giorgio (2012) found that the proxy for lake metabolic balance and terrestrial C exports accounted for a large part of these patterns in the lake pCO2-DOC relationship, indicating that the key driver of the difference in pCO2-DOC is the integration of the average regional TP: DOC ratio and altitude. Based on the findings from these and our studies, we argue that great uncertainties may exist in current regional and global estimations of CO2 evasion from lake systems.
CONCLUSION
In the current work, we systematically investigated the daily fluctuations in pCO2 and related parameters at 3 h intervals from morning to afternoon from Jan. to Sept., 2020 in a subtropical urbanizing lake. Several interesting findings have resulted from the work. From early mornings to late afternoons, strongly decreasing pCO2 and fCO2 trends were observed except on 2 days on which unusual rainfall/wind occurred. The daily pCO2 was highest at 7:00 CST (1,061.3 µatm on August 19) and lowest at 17:00 CST (12.6 µatm on August 6), while the average pCO2 was highest at 7:00 CST (204.9 ± 295.7 µatm) and lowest at 17:00 CST (93.5 ± 105.5 µatm). As a result, the highest daily fCO2 occurred in the morning hours (−19.3 ± 27.5 and −24.8 ± 20.7 mmol m−2 h−1 at 7:00 and 10:00 CST, respectively) and in the afternoon hours (−29.2 ± 9.1 and −30.4 ± 10.7 mmol m−2 h−1 at 14:00 and 17:00 CST, respectively). These findings revealed that the daily CO2 exchange in the studied subtropical urbanizing lake reflects the dynamics of ecosystem metabolism and remineralization reactions. Accordingly, we speculate that nighttime pCO2/fCO2 may be much higher than daytime pCO2/fCO2, which would indicate that the entire lake is undersaturated and a carbon sink during daylight hours. In addition, there was a strong negative correlation between pCO2 and each of pH, twater, and DO but a positive correlation between pCO2 and each of TOC and Chla, suggesting that uncertainties in the estimation of fCO2 at regional/global scales owing to some factors such as geographical region and temporal coverage. Future work needs to constrain these critical factors and overall uncertainty and determine the levels of accuracy needed to enable robust CO2 estimations at different scales.
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Aquatic vegetation is one of the important parts of the shallow lake ecosystem, which has an important impact on the characteristics of wind-driven wave and current. In this article, we embed the vegetation module into the flow model TELEMAC-3D and the wave model TOMAWAC, respectively, and construct the coupling model of flow–wave–vegetation in the open source model Open TELEMAC-MASCARET. Through the verification of two sets of experimental data, it has been proven that the model can well reproduce the influence of vegetation on current and wave. Then, the model is applied to the wind-driven wave and current simulation of a typical shallow lake, Taihu Lake. The results show that the model can accurately reproduce the characteristics of wind-driven wave and current. Aquatic vegetation significantly changes the velocity, wave height, and local three-dimensional circulation flow in the vegetation patches. At the same time, the existence of aquatic vegetation reduces the material exchange rate between the vegetation area and the outside world, which has a significant impact on the material transport characteristics of the lake. Sensitivity analysis shows that the influence of aquatic vegetation should not be ignored in the simulation of wind-induced wave current and material transport in shallow lakes.
Keywords: aquatic vegetation, flow–wave–vegetation coupling model, shallow lake, wind-induced wave and current, Open TELEMAC-MASCARET
1 INTRODUCTION
Shallow lakes are one of the most important parts of the Earth’s natural resources, which have the functions of improving ecological environment, protecting phytoplankton, and maintaining biodiversity (Temmerman et al., 2013). However, with the continuous improvement of urbanization and climate change, shallow lakes are facing the problems of eutrophication and ecosystem degradation (Lürling et al., 2016). The health of the lake ecosystem is greatly affected by its own characteristics of wave and current. Wind is the main driving force of lake water movement, together with the geometric structure, topography, and aquatic vegetation patches of the lake; it determines the circulation structure of the lake (Li et al., 2016; Yang et al., 2019). Aquatic vegetation is one of the key components of the shallow lake ecosystem, mainly in the form of vegetation patches in the lake, which provides food resources for primary producers and plays a key role in the transportation and circulation of lake water (Gaylord et al., 2003). At the same time, patches of vegetation often change the direction of water flow and affect the circulation structure of lake water, which is of great ecological significance (Barbier et al., 2008; Lu and Dai, 2017). In order to evaluate the resilience of the shallow lake ecosystem, we need to understand the interaction mechanism among vegetation, wind-induced wave, and current, and the material transport characteristics (Pang et al., 2015).
In light of the significant importance of vegetation ecology, a great deal of research has been done on the interaction between lake dynamics and aquatic vegetation in shallow lakes. The methods in previous studies include field-based observation (Resende et al., 2019), laboratory experiment (Dan and Hua, 2014; Banerjee et al., 2015), and physically based hydrodynamic modeling (Werner et al., 2005; Kim et al., 2015; Zhang et al., 2019a). Generally speaking, the remoteness and complexity in the majority of vegetation patches have limited the field observation study on the interaction between hydrodynamics and aquatic vegetation (Karim et al., 2015). The vegetation effects from the laboratory experiment did not consider the complexity of the real environment, so it cannot be extended to the more general situations in shallow lakes (Nepf, 2011). With the development of computer technology, numerical simulation has gradually become an important tool to improve the aquatic ecosystem of shallow lakes. How to accurately simulate the resistance of vegetation is the focus of numerical simulation research. The common method is to increase the Manning coefficient of vegetation patch location, which has been widely used in a two-dimensional depth-averaged model (Morin et al., 2000), but this method cannot explain the complex three-dimensional vertical structure of water flow within and over submerged vegetation (Sheng et al., 2012). In view of the three-dimensional flow, the RANS equations are solved with a vegetation drag term in the momentum equations and the corresponding vegetation-induced turbulence production terms in the turbulence closure equation (standard k-ε turbulence model, GLS model, and LES method, and other methods) (Jin et al., 2007; Chi-wai and Afis, 2019); this methodology has been verified by a large number of flume data with varying vegetation submergence ratios, densities, and velocities areas (Kombiadou et al., 2014). Scholars have used the numerical simulation method to simulate the influence of vegetation on the wind-induced current in the shallow lakes, but these studies are based on the two-dimensional hydrodynamic model (Xu et al., 2018) and use the method of increasing local Manning coefficient to simulate the vegetation resistance (Li et al., 2020), so it is unable to describe the submerged vegetation effect and the three-dimensional characteristics of shallow lake flow field. In recent years, several open-source three-dimensional models which allow custom editing to study the complex interactions between vegetation and water flow have been developed, such as FVCOM (Morales–Marín et al., 2017), SCHISM (Zhang et al., 2019b), and ROMS (Beudin et al., 2017). These models use the method of adding body resistance into momentum equations to simulate the resistance of vegetation and are widely used to study the attenuation of vegetation on coastal storm surge (Zhang et al., 2019a). However, these models have not been applied to study the complex interaction among aquatic vegetation, wind-induced wave, and current characteristics in shallow lakes. Given these backgrounds, it is necessary to improve the understanding of the role of floodplain vegetation, and fill information gaps regarding the vegetation effects on the wind-induced wave and current characteristics in the shallow lakes.
This article aimed to establish a model to study the effects of aquatic vegetation on wind-induced wave and current characteristics in shallow lakes by establishing an appropriate vegetation resistance module and coupling it with an open-source numerical model. We first describe in detail the establishment process of the flow–wave–vegetation coupling model in Section 2, and then 2 sets of laboratory data are applied to verify the reliability of the coupling model in Section 3. In Section 4, the model is applied to a typical shallow lake, Taihu Lake, and the influence of vegetation on the wind-induced wave and current characteristics in the lake are studied. Finally, a brief conclusion is drawn in Section 5.
2 METHODS
Open TELEMAC-MASCARET is a set of open-source models for solving free surface flows, including the three-dimensional flow model TELEMAC-3D and the wave model TOMAWAC. In this article, the vegetation module was established based on FORTRAN (Add body resistance to the momentum equation. Add the vegetation turbulence term to the standard k-ε turbulence model. Add the dissipative term of vegetation to the wave spectrum energy balance equation); the module was coupled with TELEMAC-3D and TOMAWAC through the model coupling toolbox (MCT). Finally, the flow–wave–vegetation coupling model was constructed.
2.1 Flow Model
TELEMAC-3D (Hervouet, 2007) is a set of calculation module for simulating three-dimensional non-hydrostatic free surface flow, which is solved by the unstructured grid and finite element method. Its governing equation can be described by the RANS equation:.
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Based on the non-hydrostatic assumption, the total pressure can be written as the sum of hydrostatic pressure and hydrodynamic pressure.
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where [image: image] [image: image] is the time average velocity in three directions; t is the time; [image: image] is the time average pressure; ρ is the density of water; ν is the dynamic viscosity; gi is the acceleration of gravity in direction i; Fw is the wind stress term; Fv is the resistance term of aquatic vegetation; Fs is the wave radiation stress term, and Mellor radiation stress formula was used for calculation; Patm is the atmospheric pressure; Zs is the water surface elevation; and [image: image] is the time averaged hydrodynamic pressure.
The wind stress term can be written as follows:
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where [image: image] is the air density near the water surface, W is the wind speed, and Cd is the drag coefficient of wind stress, which is calculated by the formula proposed by Large and Pond (Large and Pond, 1981).
The resistance term of aquatic vegetation considering the porous media effect can be written as (Sonnenwald et al., 2019)
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where Dv is the diameter of vegetation, Nv is the number of plants per square meter, Cdv is the resistance coefficient of vegetation, φ is the density of vegetation and φ = πNvDv2/4, z is the z coordinate of the node, hv is the height of vegetation, and H(x) is the Heaviside function.
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In this study, the standard k-ε turbulence model was used to close Eqs. 2.1, 2.2, and the transport equation of turbulent kinetic energy k and turbulent dissipation rate ε can be written as (King et al., 2012)
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where P is the turbulence production term, G is the term of gravity source, T is the source term of k equation, Tτ-1 is the source term of ε equation, and [image: image] is turbulent dynamic viscosity.
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where Cμ = 0.09; Cl is a coefficient that scales the vegetation patch geometry to the mean turbulence length scale, with a value of 0.8 based on the study of Uittenbogaard (Vossen and Uittenbogaard, 2004); and σk and σε are Prantdl numbers, where C1ε = 1.44, C2ε = 1.92, σk = 1.0, and σε = 1.3.
2.2 Wave Model
TOMAWAC is the third generation of the spectral wave model. By accurately solving the non-linear wave energy transfer, it can solve the spectral energy balance equation without being limited by the shape of the wave spectrum. In the Cartesian coordinate system, the energy balance equation of spectrum can be written as follows:
[image: image]
where n is the wave action density, k = (kx,ky) = (ksinθ, ksinθ) is the wave number vector, θ represents the direction of wave propagation, and Q represents the source term including wind, vegetation, and terrain effects.
Based on the Rayleigh probability density function and replacing the wave height (H) with the root mean square wave height (Hrms), the influence of vegetation on waves can be written as the following equation (Bacchi et al., 2014):
[image: image]
where σ is the wave frequency and α is the ratio of vegetation height to local water depth.
3 MODEL VERIFICATION
In this section, we will use the flow–wave–vegetation coupling model constructed in the previous section to reproduce the two groups of model tests (Løvås, 2000; Neumeier, 2007), and compare the numerical simulation results with the model test results to illustrate the accuracy of the coupling model.
3.1 Open Channel Flow with Submerged Vegetation
Neumeier studied the three-dimensional flow field and turbulence characteristics at the tip of Spartina through a large number of flume experiments. Here, we take experiment BB to verify the accuracy of the coupling model. The computational domain size and model parameters of the numerical simulation are consistent with Neumeier’s model test as far as possible. The experimental tank is 5 m long, 0.3 m wide, and 0.46 m high. Vegetation is laid from 2 m away from the inlet of the tank to the end of the tank.
The flow velocity at the inlet of the flume is 0.066 m/s, the water depth is 0.32 m, the average height of vegetation is 0.153 m, the average diameter is 0.0035 m, the vegetation density is 1,200 stem/m2, and the vegetation resistance coefficient is calculated by the formula proposed in the study by Kothyari et al. (2009). The calculation area is divided into unstructured grids with 12,224 elements and 26,653 nodes, and 20 layers of grids are distributed unevenly along the vertical direction. In order to meet the requirements of the turbulence model for the boundary layer, the boundary layer is locally dandified. The calculation step is set to 0.2 s.
The comparison of numerical simulation and model test is shown in Figure 1. The position z, stream-wise velocity u, and turbulent kinetic energy k are dimensionless by water depth H, inlet velocity u0, and the square of inlet velocity u02, respectively. The results of numerical simulation in the vegetation layer are in good agreement with those of the model, while those above the canopy are in poor agreement. The location and magnitude of the maximum turbulent kinetic energy are well simulated by the model, and the numerical simulation results of some locations are quite different from those of the physical model. This is due to the fact that different vegetation types and positions have different resistance coefficients along the vertical direction, and the whole resistance of vegetation patches is replaced by a resistance coefficient in the model calculation, which leads to errors. In general, the model can capture the effect of vegetation on flow.
[image: Figure 1]FIGURE 1 | Comparison of numerical simulation and model test: (A) dimensionless velocity and (B) dimensionless turbulent kinetic energy.
3.2 Wave Through Emergent Vegetation
Based on wave flume, Lovas studied the effects of vegetation on wave propagation with different incident breaking wave parameters in shallow water. The experimental wave flume is 40 m long and 0.6 m wide. The artificial seaweed is placed on the slope of 1:30, and the vegetation patch is 7.26 m long. The model terrain is shown in Figure 2A. The height and diameter of artificial seaweed are 0.2 and 0.025 m respectively, and the vegetation density is 1,200 stem/m2. In this calculation, three conditions including four different incident wave heights, two incident wave periods, and two water depths are selected to verify the simulation accuracy of the model for broken wave propagation and the vegetation dissipation process. The parameters of incident wave in the test conditions are shown in Table 1. The JONSWAP spectrum was used in the model, and the vegetation resistance coefficient was calculated by the formula proposed in the study by Kothyari et al. (2009). An unstructured grid is used in the calculation domain, and the calculation step is set to 0.2 s.
[image: Figure 2]FIGURE 2 | Comparison between numerical simulation and model test on the influence of vegetation patches on breaking wave height: (A) Bathymetry; (B) Case1; (C) Case2; and (D) Case3.
TABLE 1 | Parameters of the incident wave in test condition.
[image: Table 1]The comparison of numerical simulation and model test on the influence of vegetation patches on breaking wave height is shown in Figure 2 above. The red data represent condition without vegetation, and the blue data represent condition with vegetation. It can be seen that in the process of wave propagation on the slope, the wave height decreases gradually. The wave energy dissipation provided by vegetation and topography contributes to the wave height attenuation, and the attenuation effect of vegetation on the wave is obvious. The results of numerical simulation are consistent with the experimental data under the three conditions, and the two sets of data are in good agreement, which indicates that the model can effectively simulate the propagation process of waves in vegetation patches.
4 MODEL APPLICATION
4.1 Study Area and Model Set up
Taihu Lake is located in the lower reaches of the Yangtze River Delta in Southeast China. It is the third largest freshwater lake in China, and its geographical location is shown in Figure 3. As a typical large shallow lake, the total area of Taihu Lake Basin is 36,900 m2, the total area of Lake area is 2427.8 m2, the average water depth is 1.9 m, and the maximum water depth is no more than 3 m. The Taihu Lake Basin has a subtropical monsoon climate, with an average annual rainfall of 1,200 mm, mainly in the monsoon season from May to September. Due to global warming and environmental pollution in recent years, algae blooms often occur in Taihu Lake, which has a devastating impact on the ecosystem (Jalil et al., 2019).
[image: Figure 3]FIGURE 3 | Geographical location of the study area, surrounding rivers, and monitoring points (where circular points are water-level verification points; square points are speed verification points; triangle points are wave height verification points).
The lake is connected to more than 150 rivers, many of which are seasonal. Because Taihu Lake is located in an area with strong human activities, a large number of water conservancy projects have made the inflow and outflow of the Lake strongly interfered by human activities. The main driving force of flow and wave field is wind. The dominant wind direction is southeast in summer and northwest in winter.
In recent years, the distribution and density of vegetation patches in Taihu Lake have changed with time, which affects the hydrodynamic characteristics, sediment, wave characteristics, and the stability of the lake ecosystem. The main vegetation types in Taihu Lake can be divided into submerged vegetation, emergent vegetation, and floating vegetation. Among them, submerged vegetation is dominated by Vallisneria natans and Ceratophyllum demersum L., emergent vegetation is dominated by Phragmites australis and Zizania latifolia, and floating vegetation is dominated by Potamogeton microdentatus. We used Vallisneria natans and Phragmites australis as the dominant of submerged vegetation and emergent vegetation, respectively, considering the influence of floating vegetation on the flow field of shallow lake is relatively small compared with the other two kinds of vegetation (Xu et al., 2018). In this study, only the effects of submerged vegetation and emergent vegetation on the characteristics of wind-driven current and wave are considered.
An unstructured grid is used in the computational domain. The horizontal grid consists of 1,25,433 cells and 59,386 nodes, and the size of the grid is between 30 and 150 m. The vertical grid is arranged in 30 layers according to the sigma coordinate, and the local refinement is carried out at the bottom and free surface. The average maximum depth slope of the grid is less than 0.33 to avoid the pressure gradient error caused by sigma transformation. The global calculation step is set to 1 s to satisfy the CFL stability condition. The model uses cold start and MURD (multidimensional upwind residual distribution scheme) scheme to deal with the convection and diffusion of variables.
The dataset of vegetation characteristics (regional distribution and density of vegetation) in the Taihu Lake region in 2016 was used in the numerical simulation, and the data were from the National Mathematical Center of Earth System Science of China (http://lake.geodata.cn/index.html); based on the Landsat remote sensing data in 2016, the image data of aquatic vegetation was obtained through band combination and image change technology, and the decision tree was constructed on the basis of the image data. Finally, the classification and density estimation results of aquatic vegetation were obtained. The regional distribution of vegetation in the Taihu Lake area is shown in Figure 4.
[image: Figure 4]FIGURE 4 | Regional distribution of vegetation in the Taihu Lake area. P1–P4 are the observation points, and D1 is the observation section of numerical simulation.
The input parameters of the vegetation model include the identification vector of each vegetation distribution area, resistance coefficient of vegetation, average height, and average width. The product of average height and average width is used to characterize the effective resistance area per unit volume of vegetation. Based on field investigation and the related literature (Wang et al., 2016), the density of submerged vegetation and emergent vegetation was set as 100 stem/m2 and 150 stem/m2, respectively, the average height of individual plant was set as 0.5 and 1.5 m, respectively, and the average width of individual plant was set as 0.007 and 0.015 m, respectively. The resistance coefficients of submerged vegetation and emergent vegetation are calculated through Hua’s research (Hua et al., 2013).
4.2 Model Verification
The data of 2016 were used to verify the numerical model. The average daily discharge of more than 150 tributaries connected with Taihu Lake in 2016 was generalized to 15 discharge boundaries as the driving force of the inflow and outflow of the lake (Liu et al., 2018); the daily rainfall evaporation data of VM1 station, hourly wind speed, and wind direction of WH1 station are collected as the atmospheric driving force of the model. Figure 5 shows the wind field data used to drive the model. For the treatment of bottom friction, the equivalent roughness is adopted, and 0.022 m is used for the whole bottom of the lake area. The background horizontal turbulence viscosity is set as 10–4 m2/s, and the vertical turbulence viscosity is set as 10−6 m2/s.
[image: Figure 5]FIGURE 5 | Wind speed and direction during calculation time.
In terms of model validation, hourly water level data of three stations from WL1 to WL3 during May 1 to December 1 were used to verify the water level results of hydrodynamic simulation. The surface velocity of VM1 and VM2 every 3 h from June 25 to 30 was used to verify the results. Daily wave height data from WH1 station from 29 May to 28 July were used to verify the results of wind wave simulation.
Figure 6 shows the simulated and observed data of the water level, velocity, and wave height of six stations, and the reliability of the calculated results is verified by RMSE and SS (Murphy, 1992). Even though the three water level monitoring points are located in different locations of the lake, the fluctuation of the water level shows a similar trend. This is because the water level of the lake is mainly regulated by tributary flow, rainfall, and evaporation. The wind speed has relatively little influence on the fluctuation of the water level. The velocity of VM1 and VM2, and the wave height of WH1 showed a similar trend to the wind speed, indicating that the flow field and wave field in Taihu Lake were mainly regulated by wind speed and direction, respectively. On the whole, the amplitude and phase of the water level, velocity, and wave obtained by simulation and observation are in good agreement.
[image: Figure 6]FIGURE 6 | Comparison between numerical simulation results and observed data. (A) WL1, (B) WL2, (C) WL3, (D) VM1, (E) VM2, and (F) WH1.
4.3 The Effect of Vegetation on the Wind-Induced Current
Observed wind (see Figure 5) shows it could blow persistently at one prevailing direction for a couple of days until it changes direction, while the wind speed changes daily. Under the influence of stable wind direction, complex topography, and boundary of Taihu Lake, a variety of relatively stable circulation gyres will be formed in the lake after vertical averaging.
Figure 7 shows the depth-averaged flow field without the consideration of vegetation, and the velocity of the lake varies greatly in different regions. In the three northern bays, the structures of circulation gyres are similar where two small circulation gyres with opposite directions are formed. The direction of circulations near the entrances of the three bays is clockwise in July when the southeast wind is dominant and counterclockwise in November when the northwest wind is dominant. A slender circulation gyre has been formed along the west coast of the lake, and the average circulation direction is clockwise in July and counterclockwise in November. Several small-scale gyres with different sizes and directions appeared in the central region of the lake under the influence of the high velocity area in the southwest region and the topography of Xishan Island. By comparing the average circulation patterns of Taihu Lake in July and November, it can be seen that the circulation characteristics are similar but the circulation direction is opposite under the influence of different directions of dominant wind (Li et al., 2011).
[image: Figure 7]FIGURE 7 | Monthly mean depth-averaged flow field without the consideration of vegetation: (A) July and (B) November.
Figure 8 shows the depth-averaged flow field with the consideration of vegetation. Due to the blockage effect of vegetation, the flow velocity decreases significantly in the lake area with vegetation, and increases to a certain extent in the vicinity of vegetation patches due to the agglomeration of kinetic energy (Tse et al., 2016). The vegetation patches distributed at the entrance of Zhushan Bay and the central part of Meiliang Bay reduces the local current velocity and the water exchange capacity with the central area. Due to the existence of large areas of submerged vegetation and emergent vegetation, the current velocity decreases near the southwest bank of Taihu Lake, thus changing the structure of slender circulation in this region. At the entrance of Dongtaihu Bay, the flow velocity at the vegetation patches on the north side decreased sharply. Due to the narrow bay, the kinetic energy was tightly surrounded by the vegetation patches and the north side, so the flow velocity in this area increased significantly compared with that without considering the vegetation. In summary, it is found that the circulation characteristic of the lake in the two cases is similar, regardless of whether the influence of vegetation is considered, but the circulation structure of the vegetation patch and its vicinity will change significantly.
[image: Figure 8]FIGURE 8 | Monthly mean depth-averaged flow field with the consideration of vegetation: (A) July and (B) November.
Figure 9 shows the temporal variation of the velocity difference among the three monitoring points. Among them, P1 is located in the emergent vegetation patch near the west bank of the lake, P2 is located in the submerged vegetation patch, and P3 is located in the non-vegetation area, affected by the topography of Taihu Lake and local wind field; the area where the three points are located is prone to elongated circulation gyre near the west shore (see Figure 7). The velocity difference of P1 is greater than that of P2, indicating that the blocking effect of emergent vegetation is stronger than that of submerged vegetation. The velocity difference of P3 is mostly less than 0, which is due to the redistribution of kinetic energy caused by the influence of vegetation obstruction near the west coast. As a result, the flow velocity in this region with vegetation is greater than that without vegetation. Meanwhile, when the velocity difference of P1 is large, the velocity difference of P2 and P3 is also large.
[image: Figure 9]FIGURE 9 | Time variation of velocity difference at monitoring points; positive values in the figure indicate that the flow velocity under the condition of without vegetation is higher than that under the condition of with vegetation.
Figure 10 shows the vertical flow field of the cross section shown by the dotted line in the figure. The submerged vegetation is distributed on the north side of the entrance of Dongtaihu Bay (see the green dotted line in Figure 4B). In the absence of vegetation, due to the shear action of wind stress, the flow velocity on the free surface is higher than that at the bottom. Meanwhile, influenced by the circulation and the compensation flow at the bottom, the section forms a clockwise secondary flow, and the average velocity on the north side of the section is higher than that on the south side. When considering the influence of vegetation, the flow velocity of vegetation patch decreases due to the blocking effect of vegetation. The average velocity on the north side of the section decreased, while the velocity on the south side of the section increased significantly due to the redistribution of kinetic energy, which was much higher than that without considering the influence of vegetation. The presence of local vegetation patches changed the secondary flow characteristics of the section. Episodic shear flow over the top of the vegetation has a capacity to redistribute constituents and organisms positioned deeply within the vegetation, remote from open water (Abdul et al., 2017a).
[image: Figure 10]FIGURE 10 | Vertical velocity distribution of the section of Dongtaihu Bay in July; green dots in the figure represent vegetation patches. (A) Without vegetation and (B) with vegetation.
4.4 The Effect of Vegetation on the Wind-Induced Wave
Figure 11 shows the average wave height distribution of the lake in July with and without the consideration of vegetation, and the simulation results of other monthly averages are similar to the figure, so they will not be repeated. As shown in Figure 11A, the high wave height mainly occurs in the areas with large wind blowing fetch and deep water depth. Comparing the distribution of wave height and the topography of Taihu Lake, it can be seen that the area with the maximum water depth is very similar to the area with the maximum wave height. Figure 11B shows the wave height distribution with the consideration of vegetation. It can be seen that there is no obvious change in the wave height of submerged vegetation patches. Under the influence of blocking effect of emergent vegetation, the wave height on the west bank and the north bank of the entrance of Dongtaihu Bay decreased significantly; this is because the resistance coefficient, vegetation height, and the width of submerged vegetation are much lower than those of emergent vegetation, making the ability of submerged vegetation to reduce wind-induced wave worse than that of emergent vegetation. The simulation results show that emergent vegetation has the potential to provide coastline protection by reducing wave height.
[image: Figure 11]FIGURE 11 | Average wave height distribution of Taihu Lake with and without vegetation in July. (A) Without vegetation and (B) with vegetation.
Figure 12 shows the time sequence changes of wave height difference at monitoring points P1 and P2. It can be seen from the figure that the wave height difference at the emergent vegetation patch is much higher than that at the submerged vegetation patch (Parvathy et al., 2017). According to Figure 5, when the wind direction is southeast and lasts for a long time, the wind blowing fetch and wave height of P1 and P2 points are larger, and the larger the incident wave height is, the more obvious the wave height attenuation of vegetation water area is. Therefore, it is feasible to protect the lake bank embankment project by arranging appropriate emergent vegetation patches on the west bank of the lake to reduce the high wind-induced wave caused by typhoons in summer.
[image: Figure 12]FIGURE 12 | Time variation of wave height difference at monitoring points; positive values in the figure indicate that the wave height under the condition of without vegetation is higher than that under the condition of with vegetation.
4.5 The Effects of Vegetation on Material Transport Characteristics
In order to study the influence of vegetation on the material transport characteristics of Taihu Lake, the tracer was continuously released at the inlet of Wangyu River at the amount of 1 kg/s, and the initial tracer concentration in the calculation domain was set to 0. Here, in this study, depth-averaged tracer concentration is presented. Figure 13 shows the concentration distribution of the tracer in the lake at different times without the consideration of vegetation; after leaving Gonghu Bay, the tracer entered the central area of the lake and was mixed into these bays due to the influence of small-scale circulation gyres. As the dominant wind direction in July was opposite to that in November, the high tracer concentration area in Taihu Lake was located in the northwest region under the dominance of southeast wind in July, while the high tracer concentration area under the dominance of northwest wind in November was located in the southeast region. Combined with the monthly mean flow field in Taihu Lake shown in Figure 7, it has been found that the transport characteristics of tracer in Taihu Lake are mainly controlled by different circulation structures under the influence of different wind directions.
[image: Figure 13]FIGURE 13 | Time series of tracer concentration images without the consideration of vegetation: (A) Jul, 31st, (B) Sept, 30th, and (C) Nov, 30th.
Figure 14 shows the concentration distribution of the tracer in the lake at different times with the consideration of vegetation. Combined with Figures 13, 15, it can be seen that vegetation can “delay” the transport of the tracer. For example, without the consideration of vegetation, tracers have been spread throughout the whole Gonghu Bay on 30 July, and covered most of the Zhushan Bay. With the consideration of vegetation, the concentration of the tracer in the southern part of Gonghu Bay and the northern part of Zhushan Bay decrease significantly. No significant difference is found in the concentration of tracer in the two regions, whether vegetation is considered or not on 30 September. These conditions also occur on the west bank of the lake on 30 September and in the Xukou Bay area on 30 November. The area with large concentration difference of tracer gradually evolves from the three northern bays to the southwest region of Taihu Lake, which is related to the mainstream movement direction of the tracer. The maximum difference of tracer concentration at different times can reach 0.29 kg/s, and the tracer area under the condition of considering vegetation is smaller than that without considering vegetation. The main reason for the difference in tracer concentration is due to the blocking effect of vegetation, which reduces the local velocity and changes the circulation structure, thus affecting the convection and diffusion of the tracer. In summary, the presence of vegetation reduces the exchange rate between vegetation patches and the outside world, and has an important effect on the material transport characteristics of the lake.
[image: Figure 14]FIGURE 14 | Time series of tracer concentration images with the consideration of vegetation: (A) Jul, 31st, (B) Sept, 30th, and (C) Nov, 30th.
[image: Figure 15]FIGURE 15 | Spatial influence of vegetation on tracer concentration; positive values in the figure indicate that the tracer concentration under the condition of without vegetation is higher than that under the condition of with vegetation. (A) Jul, 31st, (B) Sept, 30th, and (C) Nov, 30th.
4.6 Sensitivity Analysis
In the vegetation resistance term, density, height, and diameter of vegetation largely determine the resistance per unit area. In different seasons, the density, height, and diameter of each vegetation patch in the lake are different, but most of the models use constant values that do not change with time and space, which is bound to have a great impact on the results.
In order to study the effects of different vegetation parameter values on the characteristics of wind-induced wave and current in Taihu Lake, sensitivity analysis was conducted for vegetation density in this section. The reference density (150 stem/m2 for emergent vegetation and 100 stem/m2 for submerged vegetation) was n = 1.0 and n = 0 for the absence of vegetation. Figure 16 shows the influence of different vegetation densities on the results. With the gradual increase of vegetation density, the velocity of P1 gradually decreases. Meanwhile, due to the redistribution of kinetic energy, the velocity of P3 increases, and the trend of decreasing or rising velocity flattens out with the increase of vegetation density. Similar effects also appear in the simulation of wave height. The wave height at P1 and P2 decreases with the increase of vegetation density, and the decreasing trend of velocity gradually flattens out. Meanwhile, the decreasing gradient of wave height at P1 is much lower than that of P1, indicating that the capacity of emergent vegetation to reduce wind-induced wave is greater than that of submerged vegetation. As can be seen from Figure 16C, the concentration of the tracer at P1 point showed a trend of gradual increase and then decrease over time without the consideration of vegetation. In the case of considering the influence of vegetation, the change of tracer concentration at P1 is similar to that without considering vegetation, but the inflection point (the point where tracer concentration changes from an upward trend to a downward trend) appears later, and the maximum tracer concentration decreases. With the gradual increase of vegetation density, the inflection point appeared later, and the maximum concentration of tracer gradually decreased. Even if the overall vegetation density is reduced to 25% of the reference density (37.5 stem/m2 for emergent vegetation and 25 stem/m2 for submerged vegetation), the results of the wind-induced wave and current characteristics of shallow lakes with the consideration of vegetation are significantly different from those without the consideration of vegetation. Therefore, the influence of vegetation should not be ignored in the numerical simulation of lake dynamics.
[image: Figure 16]FIGURE 16 | Sensitivity analysis of the influence of vegetation density on the results: (A) sensitivity analysis of velocity at P1 and P3, (B) sensitivity analysis of wave height at P1 and P2, and (C) sensitivity analysis of tracer concentration at P1.
5 DISCUSSION
As a typical eutrophic lake, the algae bloom usually exists in Taihu Lake, which is closely related to the characteristics of wind-induced wave and current (Abdul et al., 2017b). The nutrients would be transported due to strong wind-induced current. At the same time, wind waves are also conducive to the re-suspension of the sediment and to promote the release of nutrients from the sediment. The model application in Section 4 shows the applicability of the flow–wave–vegetation coupling model in the numerical simulation of shallow lakes with vegetation patches. The results show that the presence of vegetation patches significantly changes the characteristics of the wind-induced wave, current, and material transport in shallow lakes. This shows that the layout of submerged and emergent vegetation patches in appropriate areas can change the lake hydrodynamic structure in local areas where algae bloom usually occurs, so as to reduce the probability of algae bloom. These results provide meaningful information for the study of long-term vegetation evolution in shallow lakes.
However, the flow–wave–vegetation coupling model established above has some limitations and uncertainties. Different from the similar and evenly distributed vegetation in the laboratory, the vegetation parameters in the natural environment are often uncertain, and the vegetation types, growth degree, density, project area, and drag coefficient in different regions are often different (Li et al., 2020). At present, methods such as NDVI estimation (Adamala et al., 2016) and field sampling have been widely used to retrieve vegetation parameters in shallow lakes. But the error of observation and the different choice of the calculation model will lead to the different results of vegetation parameters under different schemes (Lamchin et al., 2020). As shown in the sensitivity analysis in Section 4.6, there are obvious differences in the wind-induced wave, current, and material transport characteristics with different vegetation densities (Smith et al., 2016), but these vegetation parameters are often roughly summarized in mathematical models (Weiming and Marsooli, 2012); for example, the vegetation density in the whole vegetation patch is set to the same value (although the vegetation density in different areas of the same vegetation patch is different); this leads to the distortion of the calculation results. In the future, it is necessary to refine the resistance module of vegetation, so as to make the calculation results of the model closer to the real situation.
Meanwhile, the application of the flow–wave–vegetation coupling model also touches the challenge of simulating the long-term and large-scale vegetation growth and attenuation process. The distribution and parameters of vegetation patches will change periodically with different seasons, but the coupling model does not take into account the response of vegetation to nutrients, light intensity, and suspended sediment concentration, so it cannot simulate the process of vegetation growth and attenuation (Cerco and Moore, 2001). The AED model (http://aed.see.uwa.edu.au/research/models/AED/) is coupled with the Open TELEMAC-MASCARET model; the model takes into account the carbon, nitrogen, and phosphorus cycles, as well as the effects of other related factors such as dissolved oxygen, light, and suspended sediment, and can simulate the biochemical process and ecological function among phytoplankton, zooplankton, and environment. We can refer to the Cai (2018) method in the future, by splitting vegetation parameters into leaves, roots, and stems, and parameterizing their relationships with variables such as water quality, light intensity, and suspended sediment concentration; coupling the response among vegetation, hydrodynamic force and wave, and the response between vegetation parameters and ecological action, a complete ecological model was established to consider the impact of vegetation on wind-induced wave and current. The fully coupled model can be used to simulate the algae bloom and ecological processes in shallow lakes. The vegetation module based on the Open TELEMAC-MASCARET in this article can provide some reference for such research.
6 CONCLUSION
Based on the Open TELEMAC-MASCARET model, we implanted the vegetation module into the 3d flow model TELEMAC-3D and the wave model TOMAWAC, respectively, and built the flow–wave–vegetation coupling model. Through two sets of laboratory data verification, it has been proven that the model can well capture the complex three-dimensional flow structure and turbulent characteristics near vegetation patches, and accurately predict the attenuation characteristics of waves in the waters with vegetation patches. The model was then applied to the simulation of wind-induced wave and current in Taihu Lake, a typical shallow lake. By comparing the calculated results with the measured data, it has been shown that the model can accurately reproduce the long-term wind-induced wave and current characteristics of shallow lakes. It is found that vegetation has a significant effect on the velocity of the vegetation patch and its adjacent area, and also changes the three-dimensional circulation structure, so as to redistribute constituents and organisms positioned deeply within the vegetation, remote from open water. The resistance of emergent vegetation is higher than that of submerged vegetation, and the attenuation ability of wave is also stronger than that of submerged vegetation. The presence of vegetation reduces the exchange rate between vegetation patches and the outside area, and has an important effect on the material transport characteristics of the lake. The change of velocity and wave height gradually flattens out with the increase of vegetation density, and the sensitivity analysis results show that the influence of vegetation should not be ignored in the numerical simulation of hydrodynamic lake. This model helps to better understand the impact of aquatic vegetation on the natural environment and provides a useful tool for decision-making on the potential ecological benefits of aquatic vegetation.
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Compared to the eutrophication of lakes and reservoirs, the mechanism of river algal blooms in a flowing water body are more complicated, and often lead to serious consequence in catchment scale. Due to the simultaneous impact of a variety of environmental pressures, the water ecosystem integrity state often shows a response characteristic of accumulation, complexity and time lag, therefore it is difficult to use conventional hydrodynamic and water quality models to scientifically characterize and analyze. The lower Hanjiang River (HR) is an important influence area of the middle route of the South-to-North Water Diversion Project (SNWDP) in China, continuous river blooms issue has become a major national concern. In this study, a time-lag analysis approach was developed to identify the causes of algal blooms formation and the time-lag response law in the lower HR, including principal component analysis (PCA), grey relation analysis (GRA), and Almon Distributed Lag Model. Results found that, the hydrological regime (ΔH) contributes the most to the river bloom, especially due to the flow hindrance of the Yangtze River (YR) and the water project upstream. It is also found that the algal bloom outbreak in the lower HR is not an immediate response to the driving factors. It has a time lag of about 1 period (10 days) in the response with antecedent driving factors. Finally, we discussed the influence and its responding mechanism of ΔH on the growth of phytoplankton. The research can provide early warning for the prevention and control of algal blooms in the large river system.
Keywords: river algal blooms, time-lag effect, drive factors, river ecosystem, Hanjiang River
1 INTRODUCTION
Algal blooms as an extreme form of water eutrophication (Whitehead et al., 2015), usually occur in relatively static water bodies such as lakes and reservoirs (Cheng et al., 2019). However, the anthropogenic regulation of rivers (i.e., dam construction, flood protection, and water extraction) can greatly change the hydrological conditions in the rivers, causing severe environmental loss of river connectivity (Zhou et al., 2013; Maavara et al., 2015). Therefore, algal blooms have become one of the serious environmental issue at catchment scale that are greatly disturbed by human activities (Jeong et al., 2007; Mitrovic et al., 2007). Algal blooms prevent sunlight from penetrating the water surface, causing the death of aquatic life (Bhat et al., 2006). On the other hand, many phytoplankton species can produce potent toxins that can cause direct or indirect harm to various lives through the food chain and food web (Hallegraef, 1993). The causal analysis and driving mechanism of algal blooms in large hydrological-regulated rivers have become a major concern, as the algal blooms in these rivers not only lead to deteriorating water quality and aquatic ecosystems but also restrict socioeconomic developments and threaten public health with a greater sphere of influence.
Because of the nonlinearity and time-lag of aquatic ecological process, river blooms are not only caused by a single driving factor but also resulting of a combination of multiple driving factors under antecedent environmental conditions (Xia et al., 2020). There is a general perspective that river blooms are mainly caused by sufficient nutrients, suitable climatic conditions, and slow hydrological conditions (Mitrovic et al., 2007; Jung et al., 2009; Jung et al., 2011; Yang et al., 2011; Liu et al., 2016; Ji et al., 2017). In the most algal bloom rivers, nutrients often meet the basic conditions for algae growth, so they are not the main limiting factor for algal blooms (Mischke et al., 2011; Yang et al., 2012; Oliver et al., 2014). However, increased nutrient loads could lead to harmful algal blooms increase (Zhou et al., 2001; Wang, 2006; Li et al., 2014). With higher water temperature and longer water retention time at low flow rates, which can promote the growth of algae in the Hunter River, Australia (Mitrovic et al., 2007). Even though physical and chemical conditions are conducive to the growth of algae, the hydrodynamic conditions also determine the occurrence of algal blooms in the tributaries of the Three Gorges Reservoir, China (Ji et al., 2017; Chuo et al., 2019). Experimental studies have shown that hydrodynamic conditions (i.e., fluctuations and agitation of water flow) usually have a significant impact on the migration, diffusion, growth, and accumulation of algae (Chung et al., 2008; Lucas et al., 2009; Whitehead et al., 2015). Fluctuations in hydrological conditions can change the migration and transformation of nutrients, the transmission of solar radiation, and the migration of algae (McKiver and Neufeld, 2009; Istvánovics and Honti, 2012). In addition, the gentle hydrological situation will reduce the turbidity of the water body, which help the growth and reproduction of algae (Wang, 1974). All of the above studies show that the hydrologic regime is an important driving factor for river-type algal blooms (Mitrovic et al., 2007; Cheng et al., 2019; Xia et al., 2020). However, few studies have explored the time-lag response of algal blooms to driving factors.
Time-lag response refers to a response relationship with a certain time lag between the dependent variable and the independent variable. The majority of research on river algal blooms focuses on phytoplankton and driving the short-term “snapshot effect” between factors (Jeong et al., 2007). However, the time-lag effect not only has an important explanatory effect on the field observation results of microalgae communities under natural conditions but also has an important effect on the simulation, prediction, and early warning of water bloom outbreaks (Harris, 1983). Studies have shown that there is a lag of at least 2 years between the population dynamics of Microcystis aeruginosa and Stephanodiscus hantzschii and hydrological environment (i.e., the quantity of dam storage and discharge) in the lower Nakdong River, South Korea (Jeong et al., 2007). Other studies on the Nakdong River have also proved this conclusion. In a normal year, the response period of the Chla concentration in the Nam River dam to rainfall is 1 month later than that of other dams, while in a wet year, the lag response period is 2 months (Kim et al., 2009). In fact, in previous studies of algal blooms in the HR, scholars proposed the importance of the time-lag effect (Yang et al., 2012; Xia et al., 2020). According to the study of algal blooms in HR, some scholars have pointed out the importance of the time-lag effect. Yang et al. (2011) proposed that the time lag effect is a frontier issue in the study of river-type algal blooms. Furthermore, through the gradient boosting machine (GBM), it is proved that the use of the environmental factors (especially the hydrological situation) in the first 10 days can better predict the algal blooms of the HR, China (Xia et al., 2020). The above research shows that different rivers and water bodies have different time lags. However, few studies have quantitatively revealed the length of the lag response time of algal blooms to various driving factors. It is necessary to carry out a quantitative analysis of the time-lag effect between river algal blooms and its multiple driving factors, in order to reveal the mechanism of river water ecological degradation.
Plenty of algal blooms occurred in the lower HR, and it is essential to analyze them from multiple angles. Therefore, this study aims to reveal the response mechanism of river algal blooms based on the analysis of interactions of those influencing factors, by quantitatively determining the time-lag response of algal bloom to multiple driving factors. We conduct following studies including 1) determining the key driving factors regulating the algal blooms in the lower HR. 2) evaluating the time-lag effect of influencing factors by analyzing data collected from field surveys with principal component analysis (PCA), Almon Distributed Lag Model and curve fitting. PCA was carried out to classify the environmental factors. Almon Distributed Lag Model was applied to establish the optimal lag time of every variable. Curve fitting was applied to quantitatively describe the impact of hydrological regimes on algal blooms. Finally, we expect to propose a method for predicting river water ecological degradation in advance.
2 MATERIALS AND METHODS
Study Area
The HR is the largest tributary of the YR of China (Figure 1). It flows from the northwest to the southeast and joins the YR in Wuhan City (Li et al., 2009). The annual discharge from the HR to the YR is 33.2 billion m3 (Xin et al., 2020). The average annual temperature is 16°C. The average annual precipitation amounts to 700–1,000 mm, with >80% occurring between May to September (Chen et al., 2007). Danjiangkou Reservoir, as the water source for the middle route of the South-to-North Water Diversion Project, is located in the middle reaches of the HR (Xia et al., 2016). Flowing through the most economically-developed region in Hubei Province, the middle and lower reaches of the HR are the most important source of drinking water for coastal cities (Xia et al., 2012; Cheng et al., 2019). However, the wastewater influent to the HR with nutrients and organic matters has increased in the past 30–40 years as a consequence of rapid urbanization, economic growth, and intensification of agricultural productivity (Xie et al., 2004). In addition, the opening of the middle route of the SNWDP has also changed the hydrologic situation of the lower reaches of the HR (Cao et al., 2020). The middle and lower reaches of the HR have been plagued by algal blooms. There have been lots of algal blooms in this area since 1992 (Li et al., 2020). The driving factors for the algal blooms in the lower reaches of the HR are complex. It is not only related to the water environmental factors of the HR but also to the hydrological situation in the estuary confluence area (backwater area) (Xia et al., 2020) (Figure 1). As the impact of algal blooms on the lower reaches of the HR becomes more and more serious, it has become one of the urgent problems to be solved (Xie et al., 2006; Li, 2007).
[image: Figure 1]FIGURE 1 | Overview of the study area and sample sites. Water levels were measured at the Xiantao Station for the HR and at the Hankou Station for the YR. Water quality and Chla were measured at three sample sites: Baihezui (BHZ), Qinduandou (QDK), and Zongguan (ZG).
Data Collection and Processing
Unlike lakes or other rivers, the causes of algal blooms in the lower HR are extremely complex. Because the lower HR is located in the area affected by the middle route of the SNWDP and also in the hydrological change area where the HR merges into the YR. In this study, we used the algal blooms data (Chlorophyll-a concentration, Chla) at Baihezui (BHZ), Qinduankou (QDK), and Zongguan (ZG) sample sites located in the lower HR every 10 days from February to April in 2004–2014. We collected the hydrological data of the Xiantao (XT) and Hankou (HK) hydrologic stations during the same period from the YR Water Conservancy Commission Hydrological Bureau. The hydrological data include daily flow (QH), flow velocities (vH), and water level (WLH) in the Xiantao Station; daily flow (QY), flow velocities (vY), and water level (WLY) in the Hankou Station. Furthermore, we calculated the water level difference (ΔH) between the two hydrological stations. In addition, 10 days water quality data (i.e., water temperature (WT), total nitrogen concentration (TN), and total phosphorus concentration (TP)) at the BHZ, QDK, and ZG stations were provided by the YR Basin Ecological and Environmental Supervision Authority. 1 L of water sample was filtered in situ and taken back to the laboratory for the analysis of nutrients, including TP and TN, using ammonium molybdate spectrophotometric method and alkaline potassium digestion UV spectrophotometric method. WT was determined using a HACH Hydrolab MI-parameter Meter. The above datasets were used for analysis.
Methods
2.1.1PCA
PCA (Zhou et al., 2017) is often used to classify the dominant environmental factors and define the effects of the hidden variables (major components) on the biomass of phytoplankton in the study area. The standardized environmental factor data, including hydrological data and water quality data, were used for PCA.
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where [image: image] (m = 1,2,3,…) are principal components; [image: image] (n = 1,2,3,…) are original variables; and [image: image] to [image: image] are weight coefficients. If principal components exist plurally, these principal components are independent of one another. We used the Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett’s spherical value at the significance level of 0.05 to test for statistical significance. Only the components whose accumulative contribution rate reached 80 percent were taken into account (Lee et al., 2009; Yin et al., 2012). The data can be normalized through SPSS 22.0 software.
2.1.2 Almon Distributed Lag Model
Almon Distributed Lag Model (Almon, 1965) was used to analyze the time-lag effect of algal blooms on each driving factor quantitatively.
The Almon Lag Model as
[image: image]
where [image: image] is a dependent variable, [image: image] are linearly combined independent variables (i.e., a sequence of influencing factor values in a current 10 day period, a previous 10 day period, and a kth previous 10 day period; in this embodiment, a time interval of the data is 10 days), [image: image] is a random interference term, [image: image] are model coefficients, and k is a lag time.
To eliminate the multicollinearity between variables in different lag periods, the polynomial distributed lag method is used:
[image: image]
where, m is the order number of a polynomial, and generally, m < k.
By substituting Eq. 3 into Eq. 2, we get:
[image: image]
It is transformed into the regression of Y on a reconstructed variable Z.
By using Eq. 4, estimated values [image: image] of [image: image] are obtained through linear regression. Then the estimated values [image: image] of β are calculated through Eq. 5 and substituted into Eq. 2, to obtain a sequence of estimated values of Y (that is, Chla) for a maximum lag time k at the current moment.
[image: image]
The correlation coefficient between the estimated Yt and the measured Yt was used to determine an optimal lag time. If the correlation coefficient no longer increases with the increase of k, a value of k at this time is considered to be the optimal lag time (Liu, 2019; Özbay and Toker, 2021).
3 RESULTS
Characterization of Chla and Driving Factors
A variety of driving factors were used to determine the driving effect on algal blooms. According to their availability, we divide them into algal bloom characterization data, water quality data, and hydrological data. The statistics of the different driving factors, including the mean, minimum (min), maximum (max), standard deviation (SD), and coefficient of variation (CV), are listed in Table 1. The maximum of Chla during the three sites is 67.8 μg/L (ZG). The variability of Chla at ZG is also the largest (0.20–67.8 μg/L). Statistics of TP are similar at three sites including BHZ (mean 0.12 mg/L; min 0.05 mg/L; max 0.35 mg/L; SD 0.04; CV 0.35), QDK (mean 0.12 mg/L; min 0.05 mg/L; max 0.35 mg/L; SD 0.04; CV 0.34), and ZG (mean 0.12 mg/L; min 0.04 mg/L; max 0.30 mg/L; SD 0.04; CV 0.36). The situations of TN and WT are similar to that of TP. The differences among the three sites are not significant. Regarding hydrological data, the flow and velocity of the HR are less than those of the YR. Moreover, the ΔH is in a state of volatility.
TABLE 1 | Mean, range (min, max), standard deviation (SD), and coefficient of variation (CV) of chlorophyll-a and the associated environmental factors during 2004–2014.
[image: Table 1]According to the level of Chla, the biomass in the three sections were in a state of flux. The average value of Chla was high in other years except for the years 2005 and 2007 (Figures 2A–C). For TP and TN, a similar trend was exhibited. TN was in a state of rising volatility from 2004 to 2014, but TP had relatively large fluctuations during the year, relative to TN (Figures 2D–I). In addition, the WT showed a unique trend, and the change had a certain periodicity, about 6–7 years (Figures 2J–L).
[image: Figure 2]FIGURE 2 | Chla and water quality in the lower HR.
We used the hydrological data of hydrological situation in Xiantao (located in HR) and Hankou (located in YR) to represent the hydrological conditions of the HR and the YR, respectively. The results are shown in Figure 3. We can see that the hydrological situation of the YR had changed significantly, compared to that of the HR. The two low values of QY appeared in 2006 and 2011 and the WLY was also at a low peak. As shown in Figure 3B, ΔH had been showing a downward trend since 2011 and the direct causes are the increase of WLY and the decrease of WLH Figure 4.
[image: Figure 3]FIGURE 3 | Hydrological regime in the lower HR.
[image: Figure 4]FIGURE 4 | Absolute value of principal component score for each variable at the three sample sites.
RESULT OF PRINCIPAL COMPONENT ANALYSIS
The normalized data met the analysis requirements of PCA. The results of PCA at three sites (BHZ, QDK, and ZG) are as follows (Figure 4). At the BHZ sample site, three principal components have been selected and their total contribution rate reached 81.1%. The first two components together represented 70.5% of the total variation. The first principal component explained 47.4% of the total variation and the second principal component explained 23.1% of the total variation. Moreover, the third principal component explained 10.6% of the total variation. The Radar chart of the score for each variable at the BHZ site indicated that WT, QH, vH, QY, vY, WLH, and WLY had high capacities in the first principal component, while ΔH had high capacity in the second principal component. In addition, TP and TN were dominant in the third principal component. More specific PCA results are shown in Supplementary Appendix A.
The results of PCA at the QDK and ZG sites are similar to that at the BHZ site. It is worth noting that the second principal component only contains the variable ΔH, which contributes 23.1, 23.3, and 23.3% of interpretation at the BHZ, QDK, and ZG sites respectively. Therefore, the ΔH is considered as an important factor influencing the algal blooming in the lower HR.
The above analysis shows that there is not much difference between each variable among the three sites, so we will average the variable values of the three sites. GRA was used to determine the correlation between each environmental driving factor and Chla during 2004–2014. ΔH achieves the highest degree of relevance, which is 0.8960. WT, TN, TP are then in turn. The results are shown in Supplementary Appendix B.
Result of Almon Distributed Lag Model
Furthermore, we analyzed the annual change trends of Chla and ΔH during the four consecutive years of algal blooms from 2008 to 2011. The results are shown in Supplementary Appendix C. During the algal blooming period, the ΔH between Xiantao and Hankou was always at a low level. The relatively gentle hydrological regime was suitable for the growth of phytoplankton. We also found that the ΔH was already at a low level during the pre-order time when the Chla appeared high. Therefore, the growth of phytoplankton was not an “instantaneous” response to hydrological driving factors but a response lagged a certain amount of time. The response time of the algal blooms in 2008–2011 has a relatively significant lag effect, which means that the change of the water level usually occurs before the algal bloom occurs.
To analyze the time-lag response of algal blooms to various driving factors, we identified four main variables based on the previous analysis, including ΔH, WT, TP, and TN. Furthermore, the Almon Distributed Lag Model was used to determine the effect of algal bloom on various driving factors. The length of the lag time of the driving factors and the average value of the variable are continued to be used. The analysis results are as follows (Figures 5, 6). For the driving factor ΔH, when we used the data from the same period as Chla, the correlation coefficient (r) of the measured and simulated values of Chla was 0.240 (p > 0.05). When we used the ΔH data of the current period and the 1 period ahead (10 days) at the same time, it was 0.297 (p < 0.05). Furthermore, when we used the ΔH data of the current period, 1 period ahead (10 days), and two periods ahead (20 days), the result became 0.298 (p < 0.05). In addition, the results for the driving factor WT are 0.040 (p > 0.05), 0.285 (p < 0.05), and 0.288 (p < 0.05). For the driving factor TN, the results are 0.071 (p > 0.05), 0.209 (p > 0.05), and 0.210 (p > 0.05). Regarding the driving factor TP, the results are 0.475 (p < 0.05), 0.493 (p < 0.01), and 0.492 (p < 0.01).
[image: Figure 5]FIGURE 5 | Results of Almon Distributed Lag Model. TL, Time-lag length.
[image: Figure 6]FIGURE 6 | The change of r under different time-lag lengths and different driving factors.
Furthermore, from Figure 6 we can infer that when the lag time was set to two periods ahead (20 days), the r did not continue to increase or the increase was very small. For the increased range in r, WT achieved the largest value of 0.248 and TP had the smallest value of 0.017. Therefore, we set 1 period ahead (10 days) as the optimal time-lag length, which is the most significant impact on the algal blooms in the lower HR are the driving factors in the current period and the 1 period ahead (10 days).
4 DISCUSSION
Driving Factors Algal Blooms in the Lower Hanjiang River
Based on the results of PCA and GRA, the roles of the different environmental factors were evaluated during the river-type algal blooms. TP and TN exhibited no significant effects on Chla during the diatom algal blooms. Although they are critical for the growth of diatoms, their concentrations were high enough to support the diatom bloom (Zhang et al., 2008). Previous studies have confirmed that nutrients are not a necessary limiting factor for most river algal bloom events, but nutrients are a prerequisite for the occurrence of algal blooms (Mitrovic et al., 2007; Yang et al., 2017). Our results show that the GRA scores of the concentration of Chla and the concentrations of TP and TN are ranked behind those of the ΔH and WT. Similar to our research, Zeng et al. (2006) believed that there is no significant positive correlation between the concentration of phytoplankton and Chla and the content of nutrients in the Three Gorges reservoir area. Besides, during the outbreak of algal blooms in the lower HR, the concentrations of TN and TP have far met the needs of phytoplankton growth, and there is a continuous supply without restriction. Moreover, water temperature is essential for the growth of phytoplankton (Carey et al., 2012). Does low temperature constrain the growth rates of heterotrophic protists become a question, and Rose and Caron (2007) gave a negative answer. Any aquatic organism has its optimal growth temperature range and the suitable water temperatures for the growths of blue algae, green algae, and blue-green algae are approximately 30–35°C, 20–25°C, and 15–20°C, respectively (Cheng et al., 2019). However, diatom algae as the dominant species in the spring algal blooms of HR, have an optimal growth temperature range of 5–15°C (Ha et al., 2002; Kim et al., 2007). Some experimental results in the laboratory showed that the growth rate of S.hantzschii decreased when the temperature exceeded 20°C (Jung et al., 2011). Therefore, the temperature recovery period in late winter and early spring is a window period for the growth of diatoms and also a period when water blooms are prone to outbreaks in the lower reaches of the HR.
Our analysis also show that, ΔH is closely related to the algal blooms in the lower HR as a variable that comprehensively expresses the hydrological situation of the HR and the YR. Many researchers have also proposed that the hydrological regime is the most important driving factor for the outbreak of river algal blooms (Yang et al., 2011; Kim et al., 2019; Xia et al., 2019; Xia et al., 2020). A lower water level difference indicates a smaller flow rate. It decreases the loss of phytoplankton caused by flow flushing and provides phytoplankton more retention time to enlarge their biovolumes (Fisher, 1996). In addition, sometimes gentle hydrological conditions can lead to thermal stratification in some regulated rivers, which promotes the growth of diatoms (Bormans and Webster, 1998). The lack of underwater sunlight will reduce the biomass of underwater phytoplankton in turbulent rivers (Reynolds and Descy, 1996). The lower flow rate will reduce the disturbance of the water body, which reduces the turbidity and increases the transparency. Therefore, ΔH was found to provide new insights for the prevention and control of river algal blooms.
Time-Lag Response of Algal Bloom Outbreaks to Multiple Driving Factors
Time-lag response widely exists in the biological world due to the complexity of aquatic ecological processes. Dependent on the algal species and the magnitude of the nutrient pulse, the cell division has different states (Collos, 1986). For different phytoplanktons, their growth can be divided into two different strategies. One is that the body of certain phytoplanktons does not accumulate nutrients. The growth of these phytoplanktons and the absorption of nutrients are closely integrated. Therefore, these phytoplanktons have a rapid stress growth response to the stimulation of nutrients. In contrast, other kinds of phytoplanktons have the ability to accumulate a large amount of nutrients in the body and carry out complex transformation and absorption processes. The time lags in cell division are usually more than 24 h (Collos, 1986). Our studies show that the length of the time lag in response of the algal blooms to the driving factors is 1 period (10 days) in HR. It is consistent with previous studies. For example, Xia et al. (2020) have proposed river algal blooms are well predicted by antecedent environmental conditions, especially hydrological factors.
However, it is hard to quantify the time-lag effect of algal bloom outbreaks to various driving factors. Although we were not able to conduct a more detailed analysis since the time interval of our data is 10 days, results are similar to the conclusions of many other studies. Based on the artificial neural network model, it was indicate that the time lag in response to environmental variables is often between 7 and 14 days (Lee et al., 2003). Moreover, some studies show that the length of time lag between the algal bloom outbreak and the driving factors is 2–4 days in lakes (Recknagel et al., 2013). In addition, the length of time lag is related to the distance between the driving element monitoring point and the algal bloom monitoring point, which includes the time involved in environmental variable migration and exercise (Jeong et al., 2007). Our research area is located at the confluence of estuaries where the HR merges into the YR, it is also the sensitive impact area of mega water project. Therefore, the intrusion of the YR water also affects the driving factors in the study area, and it makes the causes of blooms are more complex. By utilizing the time-lag response of algal bloom outbreaks to the driving factors, hydrological regulations that are feasible and efficient to implement can be developed to reduce the potential risk of river algal blooms (Mitrovic et al., 2007; Xin et al., 2020). As demonstrated above, hydrological data are easy to observe and effective for early warning of algal bloom outbreaks. Based on the hydrological sensitivity of algal blooms, we can adjust the interactive hydrological situation of the YR and HR to alleviate algal blooms.
Effects of Hydrological Regime on Algal Blooms
We have also found that the ΔH affects the ecological processes and flow patterns of the river channel in several ways. When ΔH becomes smaller, the YR’s supporting effect on the HR is obvious and its inflow become hindered. This promotes the formation of a stable hydrological environment similar to a lake reservoir in the estuary confluence area. It provides a site and environmental stimulation for the growth and reproduction of phytoplankton. From Figure 3, we can see that the water level fluctuation of the YR is more intense than that of the HR. The change of the water level of the YR contributes the most to the change of ΔH. We infer that the water level change was highly affected by the impoundment of the Danjiangkou Reservoir upstream, which also decreases the ΔH. The drop of ΔH forms a backwater area in the estuary area (Qu et al., 2014), which lengthens the residence time of the water body and slows down the changes in hydrological situation (Yin et al., 2012). The nutrients, such as nitrogen and phosphorus, in the YR are significantly overloaded (Li et al., 2007; Liu et al., 2018). The backflow of the YR causes nutrients to enter the Han River, which promotes the growth of phytoplankton and increases the probability of algal blooms.
This study shows that there is a significant correlation between Chla and ΔH, and the ΔH contributed most to the algal blooms (Appendix B). Therefore, it can be concluded that the hydrological condition of the YR has greatly contributed to the occurrence of algal blooms in the lower HR. To further analyze the relationship between phytoplankton growth (G(h)) and ΔH, we assume a specific environment. At this time, the water quality and climate conditions are kept in a relatively stable state. Furthermore, we performed a curve fitting analysis on the phytoplankton change rate and the two-periods ΔH data. The results (Figure 7) show that a cubic equation can fit the correlation best, compared to a quadratic equation, logarithmic equation, and linear equation. The fitting equation is as follows.
[image: image]
[image: Figure 7]FIGURE 7 | Nonlinear fitting between Chla growth and ΔH at the lower HR.
Some experiments have been conducted to analyze the mechanism underlying the correlation between hydrological regimes and algal blooms by estimating the suitable hydrological conditions (Zheng et al., 2009; Yin et al., 2012). Our results imply that the growth rate of Chla first decreases with the increase of water level then increases. After that, it keeps decreasing. This fluctuation is related to the growth habit of diatoms. As the ΔH increases, phytoplankton is washed away to reduce (Yang et al., 2012). Diatoms are suitable for growth in water bodies with a certain flow rate (Zheng et al., 2009). At the same time, the proper flow rate also reduces the settlement of phytoplankton (Xia et al., 2019). During the treatment of algae blooms in the lower reaches of the HR in 2018, the discharge flow rate of Danjiangkou Reservoir was increased to 800 m3/s but the elimination of algal blooms did not achieve the expected effect. When the discharge flow increased to 1,300 m3/s, the algal bloom outbreak was further curbed (Li et al., 2020). Therefore, we can make early decisions and warnings for the prevention and control of algal blooms in the lower HR by discovering the key driving role of ΔH based on the time-lag effect of the algal bloom outbreak.
5 CONCLUSION
In this study, we used a variety of statistical analysis methods and the Almon Time Lag Model to investigate the algal blooms during a decade (2003–2014) in the lower HR, which is the largest tributary of the YR of China. It is found that all hydrological conditions, nutrients, and water temperature contributed to the outbreak of river algal blooms. In particular, hydrological conditions contributed the most to the outbreak of algal blooms in the rivers. Hydrological conditions contained only the principal component of a variable ΔH, contributing more than 23% of the explanatory power. Moreover, the gray correlation between Chla and ΔH was the highest, which was 0.896. In addition, there was a time lag of about 1 period (10 days) in response to the main driving factors of algal bloom outbreaks. These findings provide new discovery for the simulation and early warning of algal blooms, as well as provide time to take emergency measures for the upcoming algal bloom in advance. Therefore, the water level relationship between the YR and the HR should be harmonized to destroy the hydrological regime that is conducive to the growth of phytoplankton. Traditionally, the elimination of algal blooms in the lower HR mainly relied on the flushing of upstream water, which sometimes resulted in the waste of many high-quality freshwater resources. This study is limited by the scale of the data interval and the analysis of the length of the time lag can be further improved. With the rapid expansion of human activities and the intensification of climate change, many rivers will suffer from algae blooms in the future. Therefore, our research provides a baseline for the prevention and control of algae blooms in other rivers.
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Resource resorption from senescing leaves is an important strategy for internal nutrient recycling in plants. However, our understanding of whether the responses of resource remobilization to mire types (fens vs. bogs) differ among various plant growth forms remains unclear. We thus assessed resource remobilization among various growth forms in fens and bogs in the Hani peatland in the Changbai Mountains, northeastern China. We analyzed and compared the concentrations of non-structural carbohydrates (NSCs), nitrogen (N), phosphorus (P), and potassium (K) in leaves and roots collected in August (mid-season) and September (end-season), and calculated the resource remobilization efficiency (RRE) of four species belonging to four growth forms grown in both fens and bogs. The deciduous dwarf trees (Betula fruticosa) and perennial grass (Phragmites australis) had relative higher leaf RRE than the moss (Sphagnum magellanicum). Although leaf nutrient RRE did not differ between fens and bogs, the deciduous dwarf trees had a higher leaf NSC RRE in bogs than in fens, and the moss NSC RRE was lower in bogs than in fens. Our results suggest that reallocation of mobile carbohydrates seems to be more sensitive to the growth condition than nutrients (N, P, and K) under nutrient-poor inhabits, which may be one of the reasons leading to nutrient limitation in peatlands.
Keywords: mires, non-structural carbohydrates, nitrogen, phosphorus, potassium, reallocation, storage, plant growth form
INTRODUCTION
Peatlands are usually classified into two categories: ombrogenous bogs and geogenous fens (Bridgham et al., 1996; Jonasson and Shaver, 1999). These peatlands types are characterized by high water tables, low nutrient availability, and dominant plant species (Aerts et al., 1999; Bridgham et al., 1996). The imbalance and shortage of nutrients can differ considerably between fens and bogs (Ohlson, 1995; Jonasson and Shaver, 1999), mainly due to the hydrological distinction (Waughman, 1980). Fens are fed by precipitation, mineral- and nutrient-rich surface water, and groundwater (Aerts & Chapin, 1999), whereas bogs lack groundwater input and receive nutrients mainly from precipitation (Charman, 2002), leading to different growth forms that occur in fens and bogs. Fens are often dominated by deciduous shrubs or dwarf shrubs and graminoids (mainly Carex and Cladium species), while bogs are dominated by Sphagnum mosses and evergreen shrubs or dwarf shrubs and trees (Maimer et al., 1992; Bridgham et al., 1996). Previous studies have shown that plants in fens and bogs are often limited by nutrient availability (Charman, 2002; Wang et al., 2014; Li et al., 2019). This raises the question of how plants respond to low nutrient availability in fens and bogs.
Effective resource resorption from senescing leaves is an important strategy for internal nutrient recycling (Killingbeck, 1996), which reduces plants’ dependence on external nutrient supply from the environment (Aerts and Chapin, 1999). It has been estimated that, in general, half of nitrogen (N) and phosphorus (P) contained in mature leaves would be withdrawn during senescence (Aerts, 1996). Vergutz et al. (2012) calculated that the mean nutrient resorption efficiency was over 60% for N and P and 70% for K of global terrestrial plants. The patterns of resource remobilization differ among various growth forms. A large-scale study found that differences of leaf nutrient-use efficiency in plant growth forms are more important than differences in mire type (fen vs. bog) (Aerts et al., 1999). Greater allocation to storage in deciduous than in evergreen species reflects the lower opportunity cost in deciduous species that experience a more pronounced asynchrony of supply and demand (Chapin et al., 1990). For example, storage of carbohydrates is particularly important for deciduous species that do not have green tissues in early season and relay on carbon storage for regrowth (Epron et al., 2012). Similarly, Aerts (1996) found that nitrogen resorption efficiency was significantly higher in deciduous species and graminoids than in evergreen species and forbs, while P resorption efficiency did not differ between these growth forms. Yuan and Chen (2009) had observed consistent differences between deciduous and evergreen species. However, Vergutz et al. (2012) reported that graminoid had much higher nutrient resorption efficiency, due to the smaller non-leaf pools, leading to a greater need for nutrient resorption compared to other growth forms. Moreover, several studies highlighted that roots or rhizome played a crucial role as resource storage tissues of deciduous species and herbaceous plants (Granéli et al., 1992; Millard et al., 2001; Cong et al., 2019). In contrast, evergreen species directly retained resources in over-wintering leaves rather than recycled back to roots (Wyka et al., 2016).
Various relationships between nutrient availability and nutrient resorption were found. Some species growing in nutrient-poor habitats have higher resource remobilization efficiency (RRE) than those in moderate habitats (Pensa and Sellin, 2003; Yuan et al., 2005). A large-scale study found that bog species had a higher P use efficiency than fen species (Aerts et al., 1999). High RRE may help plants to obtain a competitive advantage in the infertile habitats (Pugnaire and Chapin, 1993). However, some evidence showed no major differences in nutrient resorption between plants in infertile and fertile soils (Aerts, 1996; Yuan and Chen, 2009). Hence, response of RRE to nutrient availability remains controversial.
In this study, we investigated and compared resource remobilization among various growth forms in fens and bogs in the Hani peatland in the Changbai Mountains. We measured tissue concentrations of non-structural carbohydrates (NSCs), N, P, and K at the peak-growing season and at the end of growing season, and calculated and compared the RRE of species grown in both fens and bogs, to answer the following questions: (1) whether the RRE varies with growth forms and (2) whether the RRE differs between bogs and fens.
MATERIALS AND METHODS
Study Sites
The study was conducted at the Hani Peatland (42°13′N, 126°31′E) located in the west Changbai Mountain region in northeastern China. The area has a continental monsoon climate with a mean annual air temperature of 2.5–3.6°C (Bu et al., 2011). The annual precipitation ranges from 757 to 930 mm (Li et al., 2019). The peatland has a mean peat depth of 4 m; the deepest record was 9.6 m (Qiao, 1993). The peatland plants consist of dwarf trees (mainly Betula fruticosa Pall.), dwarf shrubs (mainly Rhododendron tomentosum Harmaja, and Vaccinium uliginosum L.), herbs [Carex lasiocarpa Ehrh., Phragmites australis (Clav.), Eriophorum polystachion L., and Smilacina japonica A. Gray], and peat mosses including Sphagnum magellanicum and S. palustre L. (Bu et al., 2017).
Field Sampling
To compare RRE patterns of plants growing in fens and bogs, four plant species that grow in both fens and bogs were selected. The four species included B. fruticosa Pall. (deciduous dwarf tree), P. australis (Clav.) (perennial grass), C. lasiocarpa Ehrh. (perennial grass), and S. magellanicum (moss). We selected five fens plots (n = 5) and four bogs plots (n = 4); within each plot, there were all the four species selected. We collected leaves and roots (<0.5 cm in diameter) from six to eight individuals for each plant species within each plot and pooled them for a mixed leaf sample and root sample for each plot. However, for S. magellanicum, we collected branch leaves only, because it does not have proper roots. For leaf samples, mature and healthy leaves were collected on August 6, 2020 (mid-season), while only freshly yellow/fallen leaves were selected on September 16 (end-season), to minimize growth-form differences in leaf phenology among plant species. Also, to diminish the effects of diurnal temperature range and sunlight differences, all samples were collected at noon, placed in a cool box with ice, and transported immediately to the laboratory (Cong et al., 2019). Tissue samples were heated in a microwave oven at 600 W for 40 s to minimize the physiological activities, and dried at 65°C to a constant weight (Li et al., 2008). All samples were ground to powder with a ball mill (MM400, Retsch, Germany), and stored after being sealed with silica gel at 4°C prior to analyses.
Analysis of NSC
Dried plant material (30 mg) was put into a 10-ml centrifuge tube and mixed with 5 ml of 80% ethanol. The mixture was incubated at 80°C in a water shaker (SHA-C, Jintan Jingda Instrument Manufacturing Co., Ltd., Jintan, China) for 30 min, cooled to ambient temperature, and then centrifuged at 4,000 rpm for 10 min. The precipitates were re-extracted twice with 80% ethanol to extract the soluble sugars (Li et al., 2018). The ethanol-insoluble pellets were used for starch extraction, and the combined supernatants were saved for soluble sugars analysis by the anthrone method (Dubois et al., 1956). Glucose was used as a standard. Starch was extracted from the ethanol-insoluble residue placed at an 80°C water bath to remove the ethanol by evaporation. The ethanol-insoluble residues were boiled in 2 ml of distilled water for 15 min. After cooling to room temperature, 2 ml of 9.2 M HClO4 was added to hydrolyze the starch for 15 min and 4 ml of distilled water was added to the samples. The mixture was centrifuged at 4,000 rpm for 10 min. Thereafter, the solid residues were extracted once more with 2 ml of 4.6 M HClO4. Soluble sugars and starch concentrations were both determined using a spectrophotometer (TU-1810, Beijing Purkinje General Instrument Co., Ltd., Beijing, China) at 620 nm (Wang et al., 2018). Starch concentration was calculated by the glucose concentration by a conversion factor of 0.9. The soluble sugars, starch, and NSC concentrations were expressed on a dry matter basis (% d.m.).
Analysis of Nitrogen, Phosphorus, and Potassium
Oven-dried plant samples (0.1 g) were digested in concentrated H2SO4 and H2O2 (Parkinson and Allen, 1975). Nitrogen (N) concentration was then determined with an automatic chemical analyzer (SmartChem 140, AMS-Alliance Instruments, Rome, Italy), using the indophenol blue colorimetric method. Phosphorus (P) was measured colorimetrically by the ammonium molybdate-ascorbic acid method (Murphy and Riley, 1962) on a spectrophotometer (TU-1810, Beijing Purkinje General Instrument Co., Ltd., Beijing, China). Potassium (K) concentration was determined on a flame photometer (FP6410, Shanghai Precise Scientific Instrument Co., Ltd., Shanghai, China).
METHODS FOR RESOURCE REMOBILIZATION EVALUATION
Remobilization efficiency (R) was determined by the resource concentrations at the mid-season and at the end of growing season. Therefore, remobilization efficiency (%) of each tissue was calculated according to Eq. 1 (Killingbeck, 1996):
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where Cs and Ca represent the concentrations of NSC, N, P, or K of each tissue at the end-season (September) and at the mid-season (August), respectively. A negative R value (Cs < Ca) indicates resource transfer from that tissue, while a positive value (Cs > Ca) indicates resource accumulation in that tissue. A smaller negative R value suggests higher remobilization efficiency, whereas a larger positive R value suggests higher accumulation efficiency.
Data Analysis
We defined NSC as the sum of soluble sugars and starch within each sample (Li et al., 2001; Li et al., 2002; Zhu et al., 2012). Data of NSC, soluble sugars, starch, and nutrients (i.e., N, P, and K) were confirmed for normality by Kolmogorov–Smirnov tests before statistical analysis. The above-mentioned data were analyzed using three-way ANOVAs with mire types, species, and time as fixed factors. Within each sampling time, two-way ANOVAs, with mire types and species as factors, were repeatedly performed to detect differences in parameters studied. Three-way ANOVAs with main factors of mire types, species, and tissue types were performed to test the trends in the remobilization efficiency of NSC, N, P, and K. Overall differences between fens and bogs species were analyzed using independent t-test.
RESULTS
Plant NSCs and Nutrients in Bogs and Fens
Leaf concentrations of NSCs (i.e., soluble sugars and starch) and nutrients (i.e., N, P, and K) varied significantly with species and sampling time (Table 1), while only leaf soluble sugars and NSCT were significantly affected by mire types (Table 1). Species interacted with sampling time to significantly influence leaf soluble sugars, NSCT, and nutrients, whereas mire types interacted with species to affect leaf K and with sampling time to influence leaf sugars and NSCT (Table 1). Within the August sampling date, leaf NSCs (except for leaf starch with a p = 0.081) and nutrients varied significantly with species (Table 2; Figures 1A–C, Figures 2A–C), while only leaf sugars, NSCT and K significantly differed between fens and bogs (Table 2), showing higher levels in bogs than in fens for all the four species (Figures 1A,C, and Figure 2C). At the end-season in September, leaf NSCs and nutrients differed among species only but did not change with mire type (Table 3; Figures 1A–C, Figures 2A–C). Generally, B. fruticosa (S1) had the highest level of NSCs and S. magellanicum (S4) showed the lowest levels of leaf NSCs in August (Figures 1A–C), whereas P. australis (S2) had the highest leaf nutrient levels and S. magellanicum (S4) showed the lowest leaf nutrient levels in August (Figures 2A–C).
TABLE 1 | Effects of mire types, species, sampling time, and their interactions on concentrations of NSCs (i.e., sugars, starch, and NSCT) and nutrients (i.e., N, P, and K) in plant leaves and roots, tested with three-way nested ANOVAs. F and p values are given.
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[image: Table 2][image: Figure 1]FIGURE 1 | Concentrations (mean ± SE; % of dry matter) of soluble sugars, starch, and NSCT in leaves and roots of plants grown in fens (n = 5) and bogs (n = 4) in the mid-season and end-season. Different lowercase letters display significant differences between fens and bogs for each species within each time, tested with t-test (p < 0.05). S1–S4 represent Betula fruticosa Pall., Phragmites australis (Clav.), Carex lasiocarpa Ehrh., and Sphagnum magellanicum, respectively.
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TABLE 3 | Effects of mire types, species, and their interactions on concentrations of NSCs (i.e., sugars, starch, and NSCT) and nutrients (i.e., N, P, and K) in plant leaves and roots in September, tested with two-way nested ANOVAs. F and p values are given.
[image: Table 3]Root concentrations of NSCs and nutrients (except for root P with a p = 0.762) varied significantly with mire types and species (Table 1), whereas root soluble sugars, NSCT, N, and P were significantly affected by sampling time (Table 1). Mire types interacted with sampling time to did not differ for all parameters, while species interacted with mire types to significantly influence root starch, N, and P and with sampling time to influence root sugars, NSCT, N, and P (Table 1). Within the August sampling date, root NSCs and nutrients varied significantly with species (Table 2; Figures 1D–F, Figures 2D–F), while only root sugars, NSCT, and N significantly differed between fens and bogs (Table 2), showing higher NSCT and K in bogs than in fens for all the 3 species (Figures 1D–F, and Figure 2F), but lower N and K in bogs than in fens for P. australis (S2) (Figures 2D,E). At the end-season in September, root NSCT (except for root starch with a p = 0.804) and nutrients differed among species, while only root starch, NSCT, and N significantly differed between fens and bogs (Table 3; Figures 1D–F, Figures 2D–F). Species interacted with mire types to significantly influence root N and K (Table 3). Generally, B. fruticosa (S1) had the highest level of NSCT in August (Figures 1D–F), whereas P. australis (S2) had the highest root nutrient levels and B. fruticosa (S1) showed the lowest root nutrient levels in August (Figures 2D–F).
Carbohydrate and Nutrients Remobilization
Mire types and mire types×species interaction only significantly affected the remobilization efficiency of NSC (Table 4). The NSC remobilization efficiency in B. fruticosa (S1) leaves was significantly higher in bogs than in fens (Figure 3A). In contrast, S. magellanicum (S4) leaves had lower NSC remobilization efficiency in bogs compared with fens (Figure 3A). Both species and tissue types, and their interaction had significant effects on NSC and nutrient remobilization efficiency (Table 4). At the end of the growing season, leaves resources in four species were reallocated and even for NSC accumulation in C. lasiocarpa (S3) and S. magellanicum (S4) (Figures 3A–D). However, roots accumulated NSC, but reallocated N, P, and K to other tissues, except for an N accumulation in C. lasiocarpa (S3) (Figures 3E–H). Generally, leaves resources remobilization efficiency were highest in P. australis (S2) and intermediate in B. fruticosa (S1) (Figures 3A–D). While B. fruticosa (S1) had the lowest root NSC remobilization efficiency and P. australis (S2) had the highest RRE (Figure 3E).
TABLE 4 | Effects of mire types, species, tissue types, and their interactions on resources remobilization between plant leaves and roots, tested with three-way nested ANOVAs. F and p values are given. R refers to remobilization efficiency.
[image: Table 4][image: Figure 3]FIGURE 3 | Remobilization efficiency (mean ± SE; % of dry matter) of NSC, N, P, and K in leaves and roots of plants grown in fens (n = 5) and bogs (n = 4). Different lowercase letters display significant differences between fens and bogs for each species within each time, tested with t-test (p < 0.05). S1–S4 represent B. fruticosa, P. australis, C. lasiocarpa, and S. magellanicum, respectively.
DISCUSSION
Growth Form-Dependent Reallocation of Mobile Carbohydrates and Nutrients
At the end of growing season, mobile carbohydrates translocated from senescing leaves (Figure 3A), whereas NSCs were stored in roots (Figure 3E). P. australis and B. fruticosa leaves reallocated NSC to roots (Figures 3A,E), leading to decreased leaf NSC concentrations (Figure 1A) but increased root concentrations (Figure 1D), which indicated that roots were the main NSC storage tissue in these two species. Our results supported the view that leaf carbohydrates recycle from leaves to storage tissue at leaf abscission in perennial plants (Chapin et al., 1990; Cong et al., 2018), which is most likely associated with the storage of NSC to ensure winter survival (Tixier et al., 2020) and support new growth after dormancy (Yan et al., 2016). In contrast, S. magellanicum directly retain NSC in leaves rather than translocate carbon compounds to roots (Figure 1A). As Sphagnum mosses have no anatomically specialized internal conducting tissue, it has long been believed that mosses do not have nutrient remobilization processes (Aerts et al., 1999). However, as suggested previously by Rydin et al. (1989), mobile carbohydrates of Sphagnum papillosum were translocated from older parts to the capitulum. Our results confirmed internal redistribution of carbon compounds in S. magellanicum, and carbohydrates were stored in leaves due to no real roots for transport.
We found a growth-form-dependent NSC remobilization efficiency (Table 4). The result of the observed differences among species was that P. australis had the highest leaf NSC remobilization efficiency followed by the deciduous tree B. fruticosa (S2) (Figure 3A). P. australis also had the highest root remobilization efficiency followed by C. lasiocarpa (Figure 3E). The efficiency of NSC relocation from senescing leaves ranged from 55% to 60% in P. australis (Figure 3A), which is much higher than 28% reported by Gessner (2001) for the same species (Chapin et al., 1990; Gessner, 2001). Higher leaf NSC remobilization efficiency indicated that a major portion of carbohydrates was translocated to rhizome and roots, necessarily resulting in greater efficiency of P. australis roots. To resist environmental stress, such as deep water or late season frost, rhizome carbohydrates storage was much larger than needed to ensure establishment of spring shoots for Phragmites (Granéli et al., 1992). Intermediate leaf NSC remobilization efficiency of B. fruticosa should be associated with leaf traits; deciduous tree species produce new leaves at a low cost, rather than store carbohydrates with a high cost (Dickson, 1989), which might be due to the frequent alternation between new leaves and defoliation.
In spite of the different growth forms, nutrients (N, P, and K) were all remobilized from senescing leaves (Figures 3B–D), supporting that nutrient remobilization is an important strategy employed by plants to conserve nutrients (Aerts, 1996; Chapin, 1980) and leaves play a primary role in nutrient remobilization (Eckstein et al., 1998). About half of N was recycled from senescing leaves in P. australis and deciduous trees (Figure 1B). These findings agreed with general perennials of Aerts (1996), who found that N resorption efficiency varied approximately 50% across different species or growth forms. However, N remobilization efficiency of C. lasiocarpa was 20% (Figure 3B), which is much lower than that value reported by Aerts (1996) for graminoids (mean 59%). Similarly, our results showed that P remobilization efficiency for B. fruticose and P. australis were comparable to the value (64.9%) reported by Vergutz et al. (2012) (Figure 3C). However, leaves had lower resorption efficiency for K (4–50%), except for P. australis (mean 75%) (Vergutz et al., 2012) (Figure 3D). In addition, N was only resorbed from leaves of C. lasiocarpa and stored in roots (Figure 3F), as nitrogen stored in specific tissue with an individual species due to leaf habit (Millard and Grelet, 2010). As we have already seen, however, there were significant differences in leaf nutrient efficiency between growth forms (Table 4). Leaf nutrient remobilization efficiency was much higher in deciduous tree and herbs compared with moss (Figures 3B–D). Thus, these would suggest that high nutrient remobilization from leaves prior to senescence is characteristic for most species (Aerts, 1996), whereas Sphagnum mosses have lower nutrient remobilization efficiency, probably due to their adaptation to nutrient-poor habitats. Previous studies indicated that moss species were highly tolerant to nutrient-poor inhabits (Aerts et al., 1999; Turetsky et al., 2012), even Li et al. (2019) demonstrated that long-term application of nitrogen did not increase but decreased the growth of Sphagnum mosses, implying the reasons of lower nutrient remobilization efficiency of Sphagnum mosses.
Effects of Fens and Bogs on Plant Resource Reallocation
We did not find differences in leaf nutrient remobilization efficiency between fens and bogs (Table 4; Figures 3B–D); this result may be caused by the similar habitat characteristics dominated by high water level for both fens and bogs. A large-scale analysis indicated that nutrient resorption did not differ between fens and bogs but varied with species or/and growth form (Aerts et al., 1999). Nevertheless, Bridgham et al. (1995) proposed that nutrient remobilization efficiency can be higher at low nutrient availability, representing an important adaptation to infertile habitats (Dissanayaka et al., 2017). For nutrient concentration in mature leaves, there were no differences in leaf nutrient concentrations between fens and bogs (Table 2; Figures 2A–C). This finding partly agreed with the conclusions of Aerts et al. (1999), who proposed that clear differences between fens and bogs species occurred in leaves’ P concentrations, but not in leaves’ N concentrations. However, there were no differences in nutrient remobilization of fine roots between fens and bogs (Table 4; Figures 3F–H). At the end of growing season, N concentrations of fine roots were significantly lower in P. australis and B. fruticosa in fens than in bogs (Figure 2D). No such pattern was found for P and K in fine roots (Figures 2F,G). These results suggested that N is the limiting mineral nutrient for Phragmites and deciduous tree, which also agreed with investigation on Phragmites in Sweden (Granéli et al., 1992).
We observed higher NSC remobilization efficiency and carbohydrates concentration of B. fruticosa leaves in bogs than in fens (Table 1, 4; Figures 1C, 3A). Thus, there are indications that translocation of non-structural carbon seems to be more important under nutrient-poor inhabits than translocation of nutrients (N, P, and K), suggesting that the species were limited more by carbon supply than by recycling of nutrients (Chapin et al., 1990). The availability of carbohydrates is strictly dependent on and linked to the growth of leaves and shoots, the allocation of carbohydrates being determined by resource availability, growth capacity, and maintenance requirement (Marchi et al., 2007). Many studies have demonstrated that the translocation of carbohydrates from leaves can be unloaded to storage tissues that reload to support new leaf and shoot growth in next spring (Marchi et al., 2005a; Marchi et al., 2005b; Cong et al., 2018; Cong et al., 2019). Larger NSC remobilization in bogs than in fens reflected that deciduous trees adapted to nutrient-poor inhabits may resorb more carbohydrates from the senescing leaves and have greater dependence on carbohydrate remobilization. Similarly, although tissue NSC remobilization efficiency did not differ for Phragmites between fens and bogs (Figures 3A,E), root starch and NSC concentrations of Phragmites were higher in bogs than in fens at the end-season (Figures 1E,F). The starch and NSC concentrations of roots increased in bogs, which may enhance the ability of Phragmites to adapt to winter environmental changes (i.e., low nutrient and cold temperature) (Sheen et al., 1999), because soluble carbon components participate in cell osmotic regulation and prevent intracellular ice formation by lowering the freezing point of the cytoplasm (Morin et al., 2007). Furthermore, Granéli et al. (1992) proposed that the rhizome of Phragmites stored excess carbohydrates. Since some carbohydrate stores may become inaccessible to the plant with time due to a winter rhizome mortality of approximately 30% (Granéli et al., 1992), carbohydrates remaining in dead cells cannot be retrieved (Ziegler, 1964). However, Sphagnum leaves had lower NSC remobilization efficiency in bogs, showing that Sphagnum mosses from nutrient-poor habitats have not adapted to oligotrophic environments by having a high NSC remobilization efficiency.
CONCLUSION
Our study clearly indicated that mobile carbohydrates and nutrients (N, P, and K) in four plant species (i.e., four growth forms) grown in both fens and bogs were reallocated from leaves to storage tissues at the end of the growing season. The NSCs and nutrient remobilization efficiency differ among different growth forms. Deciduous dwarf trees (B. fruticosa) and perennial grass (P. australis) had relative higher leaf resource remobilization efficiency, and moss (S. magellanicum) showed lower leaf nutrient remobilization efficiency. Differences in resource remobilization among plant growth forms seem to be related to different strategies in utilizing resources (Chapin et al., 1990). We also found that leaf nutrient remobilization efficiency did not differ between fens and bogs. Overall, our results suggest that reallocation of mobile carbohydrates seems to be more sensitive to the growth condition than nutrients (N, P, and K) under nutrient-poor inhabits, which may be one of the reasons leading to nutrient limitation in peatlands.
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In recent years, lakes’ water quality and quantity have been affected and damaged by agricultural activities. The sensitivity of phytoplankton to the hydrological environment can effectively indicate the health of the aquatic ecosystem and the change in water quality. Understanding the changes of phytoplankton communities in lakes contaminated by agriculture may contribute to determining the directions of protection of these water bodies and provide reference cases for wider research. It is found that there are 146 species, 63 genera, and 8 phyla of phytoplankton, including 57 species of Bacillariophyta, 46 species of Chlorophyta, 17 species of Cyanobacteria and Euglenophyta. The total abundance was changed successively with Bacillariophyta (75% in June), Cyanobacteria (50% in July–August), and Chlorophyta (75% in September–October). The total biomass decreased continuously over time. The biomass of Chlorophyta is highest in October (67.4%), and diatoms contribute the most biomass in other months (76.5%). The Redundancy analysis indicated that the main environmental factors affecting phytoplankton’s dynamic change are total salt, water temperature, total phosphorus, and 5-day biochemical oxygen demand. The phytoplankton can be divided into 21 functional groups. The MP group has the highest frequency, mainly distributed in the frequently stirred and turbid shallow water. Representative functional groups indicate the high degree of eutrophication and nutrient-rich conditions and the good associated environment for phytoplankton and slow water flow rate. With the seasonal change of agricultural irrigation and drainage, the water quality of Xinmiao Lake began to deteriorate from medium pollution in July and reached serious pollution in October finally. Furthermore, this research discovered that the risk of cyanobacteria bloom is high in summer, primarily when thermal stratification occurs. This study provides necessary information for understanding and predicting the changes of the phytoplankton community caused by the increase of nutrients, human disturbance, and temperature conditions in eutrophic lakes in agricultural areas.
Keywords: phytoplankton, Xinmiao Lake, diversity index, functional group, Agricultural area, indicative function, Seasonal dynamics
INTRODUCTION
Phytoplankton is regarded as one of the essential indicators of water environment because of its temporal and spatial distribution of community structure characteristics such as abundance, biomass and diversity (Kruk et al., 2010; Reynolds, 2012; Visser et al., 2016). Environmental conditions can also directly or indirectly affect the community structure of phytoplankton (Whitton, 2012). Therefore, monitoring phytoplankton community structure and diversity has become an essential water ecosystem health and water quality evaluation (Sabater et al., 2008; Nunes et al., 2018). It is feasible to predict and explain various models of phytoplankton through environmental factors. Previous studies have proved that the change characteristics of phytoplankton structure are closely related to hydrological conditions, and nitrate concentration (Negro et al., 2000), and also have a good coupling relationship with chemical oxygen demand (COD) and particulate organic matter (POM) (Lee and Kang, 2010). Similarly, it is common to use phytoplankton to indicate water quality. Reynolds first designed the phytoplankton classification system according to the classification method of plants and summarized 31 functional groups (Reynolds, 1980; Reynolds, 1984). Salmaso et al. proposed the division method of ecological functional group (MFG), and divided phytoplankton into 31 mfg groups (Salmaso and Padisák, 2007). Padisak et al. summarized 40 groups according to the sensitivity and tolerance of phytoplankton, which promoted the wide application of this method (Padisak et al., 2009). Phytoplankton pollution biological index can quantitatively analyze the state of water pollution (Chen et al., 2021). Furthermore, the phytoplankton diversity index (Spellerberg and peter, 2003), dominance index (Ignatiades, 2020), algae comprehensive index (Yang and Liu, 2020), and phytoplankton biological integrity index (Zhu et al., 2021)is commonly used to quantify the ecological status of lakes, rivers, and reservoirs in water pollution monitoring and evaluation. Therefore, understanding the relative impact of natural and artificial processes on hydrological and biochemical functions through phytoplankton diversity is essential for improving water resources management (Arab et al., 2019).
Due to the increase in agricultural production demand, the wetland ecosystem in the area faces environmental pressure, such as agricultural pollutants and water supply. The pollution from agriculture is more difficult to control than other point source pollution because of its dispersion diversity and regional (Wurtsbaugh et al., 2019). Under the current climate and human influence, agricultural reclamation increases the bioavailable P and N entering the wetland waters with increased rainfall intensity related to climate change (Glibert and Burford, 2017). High nutrient loads can promote the production of organic matter. Then the decomposition and release of regenerated ammonium in sediments provide a favorable environment for the growth of Cyanobacteria in summer (Newell et al., 2019). The consequent environmental risks (such as eutrophication and harmful water bloom outbreak) will further lead to the loss and degradation of wetlands (Mao et al., 2018). Due to the rapid economic development and population growth in recent years, many lakes in the world have been seriously eutrophized, such as the shallow agricultural lakes in the lower Mississippi River Basin (Henderson et al., 2021) in the United States (Henderson et al., 2021), Winnipeg Lake in Canada (Bunting et al., 2016), Greifensee in Switzerland (Niel et al., 2012) and 50 lakes in Western and northwest Ireland (Touzet, 2011), and the excessive investment of N and P in agricultural activities is one of the main reasons. Under these premises, it is imperative to strengthen wetland assessment, monitoring, and restoration through the comprehensive integration of human activities and climate change processes. Many scientists in China have paid more attention to the changes in phytoplankton structure in eutrophic lakes. However, most of these studies focus on the Yangtze River Basin in the subtropical region, such as Tai Lake (Paerl et al., 2011; Liu et al., 2021), Poyang Lake (Wu et al., 2013). Continental climate lakes in high latitudes, such as inland lakes in Northeast China, rarely study the coupling between phytoplankton and environmental factors. Under expanding agricultural production, lakes in these areas are prone to eutrophication. It is becoming more and more essential to study the changes of phytoplankton community structure to improve water quality assessment. The water environment of Xinmiao Lake has faced severe ecological and environmental problems such as agricultural non-point source pollution, salinization, and organic pollution (Dai and Tian, 2011), which provides a good research example. Because phytoplankton and environmental factors have high temporal and spatial heterogeneity, their relationship is usually complex and difficult to explain. For example, what factors in the lake (such as nutrition, light, temperature, etc.) regulate algae growth. Specifically, this work is devoted to clarify the correlation between phytoplankton and environmental factors in the lake adjacent to agriculture area and confirm the indicative function of the phytoplankton community on water quality.
MATERIAL AND METHOD
Research Area
Xinmiao Lake is a typical wetland ecosystem composed of lakes, swamps, swampy meadows, and other ecosystems, with shallow lakes as the core. It is located in 124°26′E–124°31′E, 45°8′30″N–45°13′30″N, belongs to a continental monsoon semi-arid climate with an area of 31 km2, average water depth of 1.5 m, water storage about 6.5 × 107 m3, and pH about 8.5 (Liu et al., 2020), which belongs to Chagan Lake National Nature Reserve in Jilin Province (Figure 1A). It is the front lake of Chagan Lake and plays an essential role in buffering and regulating about 2.3 × 102 km2 irrigation backwater from the surrounding paddy fields (Yao et al., 2010; Guo, 2012). The soil in the lake basin is alkaline, and the total salt (TS) is mainly sodium carbonate and sodium bicarbonate, so the saline-alkali soda wetland is formed (Liu et al., 2020). Affected by suspended mineral and section particles, Xinmiao Lake has a high content of suspended sediments (Guo et al., 2020). Affected by water particles, the light conditions in water droplets are poor and the transparency is low (Li et al., 2016). The winter of Xinmiao lake is from October to May, and the light is the strongest in July and August (Zhang et al., 2016). With the expansion of the Qianguo agricultural area, the contents of TN, TP (total phosphorus), TS, and alkali entering the lake will significantly increase the risk of eutrophication and water bloom (Chen et al., 2015).
[image: Figure 1]FIGURE 1 | Schematic diagram of sampling points. Panels show the geographical location of XinmiaoLake (A) and the specific layout of sampling points (B).
Sample Collection
According to the natural morphological characteristics of Xinmiao Lake and the standard of sampling point setting (Tnno et al., 2021), sampling points are arranged at the inlet, outlet, and the northern area of Xinmiao Lake (abbreviated as WI, WO, NA) (Figure 1B). Both WI and NA grow reed and Potamogeton crispus L. There are almost no aquatic plants in WO. The water depth of the three sample points is the same, with an annual average of 1.5 m. The samples were taken once a month, from June to October 2020.
In terms of water environment parameter measurement, water temperature (WT) and pH are measured on-site by YSI portable multiparameter analyzer. After acid and low-temperature preservation, water samples were taken back to the analysis and testing centre of Northeast Institute of geography and Agroecology, Chinese Academy of Sciences. According to the methods for detection and analysis of water and wastewater (Fourth Edition), total nitrogen (TN), TP, total potassium (TK), TS, Dichromate Oxidizability (CODCr), and 5-day Biochemical Oxygen Demand (BOD5) were measured.
When the water depth was less than 2 m, the water sample was taken at 0.5 m underwater. When the water depth was 2 ∼ 5 m, another water sample was taken at 0.5 m from the bottom. Qualitative samples of phytoplankton were collected by plankton net 25 (aperture 64) µ m), after concentrating to 100ml, immobilizing them with 1–2 ml of Luger iodine solution. After standing for 48 h, they were concentrated to 30 ml for microscopic examination (Olympus CX21, 400×). Quantitative samples of phytoplankton were collected by a water collector. After precipitation for 48 h, it was concentrated to 50 ml with a siphon, and 4% formaldehyde solution was added for storage. Finally, 100 view fields were counted twice and the average value was taken. The abundance of phytoplankton was calculated by an optical microscope (Utermöhl, 1958). Meanwhile, the biomass of phytoplankton was estimated by biological volume (Hillebrand et al., 2010). The identification of phytoplankton species is based on “The Phytoplankton Manual” recommended by UNESCO (Sournia, 1978) and “Freshwater Algae in China-System, Classification and Ecology” (Hu and Wei, 2006).
Data Processing and Analysis
To determine the diversity of the phytoplankton community, the diversity indicators used in this study include phytoplankton dominance ([image: image]) (Mcnaughton, 1967), Shannon-Wiener index ([image: image]) (Shannon, 1950), Margalef richness index ([image: image]) (Margalef, 1957), and Pielou evenness index ([image: image]) (Li et al., 2018). The biodiversity index can evaluate the pollution status of water quality. High biodiversity index value means low water pollution (Wang et al., 2002). Phytoplankton dominance [image: image] is defined as the dominant species.
The abundance and biomass information of dominant phytoplankton species were analyzed by detrended correspondence analysis (DCA). The sorting axis gradient length (LGA) was 5.0 and 6.7, respectively, high than 4.0. It is suitable to use canonical correspondence analysis (CCA) based on linearity (Zhao et al., 2014). Environmental factors include WT, TN, TP, CODcr and BOD, and the Monte Carlo permutation test (p < 0.05) is conducted first. The phytoplankton species and codes used in CCA analysis are shown in Table 2.
RESULT
Water Environment
The water temperature first increases and then decreases with the season. The highest was 27.28 in July and the lowest was 9.22 in October (Table 1). From June to October, the contents of TS increased continuously from 219.17 mg L−1–363.33 mg L−1. BOD5 was the highest in July (6.78 mg L−1), and there was no significant difference in other periods, to vary between 2.51 mg L−1 and 3.61 mg L−1. The seasonal fluctuation of CODCr is apparent. The peak occurred in June (28.32 mg L−1) and August (29.12 mg L−1), which means many were reducing substances in the water body, mainly organic pollutants. The contents of TN and TP increased at first and then decreased finally. They reached the highest in August (TN: 1.61 mg L−1 and TP: 0.12 mg L−1), and the lowest in October (TN: 0.54 mg L−1 and TP: 0.07 mg L−1). TK content decreased continuously from 4.07 mg L−1–3.14 mg L−1.
TABLE 1 | Environmental factors in Xinmiao Lake during the investigation period.
[image: Table 1]Seasonal Dynamics of Phytoplankton Composition
A total of 146 species (including varieties, modification, and undetermined species) belonging to 63 genera and 8 phyla of planktonic algae were identified. Bacillariophyta (57 species) and Chlorophyta (46 species) were the most abundant, accounting for 39.04 and 31.51% of the total species, respectively Cyanobacteria (Figure 2). Bacillariophyta has the largest number of species (Figure 3A), while Chlorophyta has the largest number of genera (Figure 3B).
[image: Figure 2]FIGURE 2 | Species composition of phytoplankton.
[image: Figure 3]FIGURE 3 | Temporal variation of phytoplankton species (A) and genera (B).
The total phytoplankton abundance rose to the highest in August (1.94 × 107 ind./L) and decreased to a minimum in October (5.93 × 106 ind./L) (Figure 4A). The abundance was changed successively with Bacillariophyta (about 75% in June), Cyanobacteria (about 50% in July–August), and Chlorophyta (about 75% in September–October). Phytoplankton biomass continued to decline from 17.7 mg/L to 4.4 mg/L (Figure 4B). The total phytoplankton biomass from 17.7 mg/L continuously decreased to 4.4 mg/L (Figure 4B). Bacillariophyta accounts for the most, followed by Cyanobacteria and Chlorophyta, and other algae account for a relatively small proportion.
[image: Figure 4]FIGURE 4 | Temporal changes of phytoplankton abundance (A) and biomass (B).
19 dominant phytoplankton species belonged to 13 genera and 3 phyla were identified during the research. Among them, there were 8 species of Chlorophyta, seven species of Bacillariophyta, and four species of Cyanobacteria (Table 2). Chlorophyta dominated in September and October. The dominant species of Bacillariophyta mostly appeared in June. Cyanobacteria took up the advantages part in July and August. The algae with the highest dominance were Chlamydomonas globosa, Achnanthes minutissima, Merismopedia minima, and reach 0.247, 0.188, 0.311, respectively. Nitzschia acicularis from diatom can serve as the dominant species for the longest time, lasting 4 months. Scenedesmus quadricauda and Ankistodesmus angustus follow Chlorophyta, lasting 3 months. Other species occur only once or twice.
TABLE 2 | List of dominant phytoplankton species in Xinmiao Lake.
[image: Table 2]The species-environment correlation coefficients of the first two axes of phytoplankton abundance and biomass ranking axis are high, which explain 41.06 and 41.95% of the cumulative percentage variation of species-environment relationship, respectively (Table 3), indicating that the species composition of phytoplankton in Xinmiao Lake is closely related to environmental factors. The environmental factors affecting the abundance of dominant species were mainly TS, WT and TP (Figure 5A), the main factors affecting the biomass of dominant species were TS, TP and BOD5 (Figure 5B).
TABLE 3 | Statistical information of CCA analysis of phytoplankton community.
[image: Table 3][image: Figure 5]FIGURE 5 | Correlation plots of the redundancy analysis (CCA) on the relationship between the environment variables and dominant species of phytoplankton. Panels show CCA between the environment variables and abundance (A), biomass (B).In this figure, the black arrow represents the environment variable, and the arrow points to the direction in which the value of the environment variable increases most sharply. The angle between the arrows indicates the correlation between the various environment variables. The black triangle represents species, and the distance between symbols is similar to the relative abundance distribution of these species in the sample measured by chi-square distance. Adjacent points correspond to species that often occur at the same time. The species symbol can be projected vertically onto the line above the arrow of a specific environmental variable. These forecasts are made according to the predicted growth order of the best value of the prediction variables.
Spatial-Temporal Dynamics of Phytoplankton Diversity and Functional Groups
The biodiversity index reflects the low pollution of water quality in June and the highest pollution in October. NA has the lowest pollution, and WO is slightly higher than WI. (Table 4). In addition, the Shannon and Pielou indexes at WI did not fluctuate violently, with the mean values of 2.11 and 0.55, respectively, and the Margalef index reached the lowest of 0.47 in September. The Shannon indices and Pielou indices of NA were the highest in June and July, reaching 3.22 and 0.67 respectively. The Margalef index fluctuated sharply, with a difference of 2.11 between the highest and lowest. However, the biodiversity trend of WO was bimodal. The Shannon and Pielou indexes were the highest in June, 2.62 and 0.63, respectively. The Margalef index peaked at 1.63 in August. The biodiversity evaluation showed that the pollution was the lowest in June and the heaviest in October and generally belonged to medium pollution.
TABLE 4 | Distribution of phytoplankton diversity index in Xinmiao Lake wetland.
[image: Table 4]The phytoplankton is divided into 21 groups (Table 5), and 12 groups with relative biomass greater than 10% are defined as representative functional groups (Reynolds et al., 2002; Padisák et al., 2009) (Figure 6). The species and frequency of the MP group in the whole year are the highest. At WI, the dominant relative abundances from June to October were MP (28.5%), D (34.8%), B (30.4%), J (42.1%), and X2 (41.5%). Furthermore, biomass transited from B, D, MP (about 30%) in summer to X2 (50.8%) in autumn. And the relative abundance advantage of Na changed from X1 (about 15% in summer) and MP (28.5% in Aug.) to X2 (52.7% in Oct.). Moreover, The group with the highest biomass contribution changed from TC and W2 (33.6%, and 42.1% in July) to X2 and W1 (58.7%, and 18.1% in September). The dominant groups change from Lo (64.6% in July) to J (48.4 %in September) was found in WO, and MP has contributed more than 16% of the biomass. Changes in functional group abundance and biomass are usually related, but mismatches are still found. For example, TC and W2 with less abundance contributed most of the biomass at NA, while the abundance of Lo and J with a high proportion at WO had little effect on the relative biomass.
TABLE 5 | Main identification characteristics and representative species of Xinmiao Lake functional group during the survey period.
[image: Table 5][image: Figure 6]FIGURE 6 | Relative biomass (A) and relative abundance (B) of phytoplankton functional groups.
DISCUSSION
Key Factors Affecting Phytoplankton Dynamics
In order to determine the seasonal pattern of water environment, it is necessary to take into account the seasonal changes of rainfall and water temperature and the impact of agricultural activities. Agricultural activities will affect the time and intensity of water supply, thus affecting the transparency, light and nutrition level of lakes (Miao et al., 2011; Michalak et al., 2013; Liu et al., 2021). There is sufficient research proving that water temperature significantly impacts the abundance of plankton (Ho et al., 2019). CCA showed that water temperature significantly affected phytoplankton abundance but could not clearly explain the change of biomass (Figure 6). Cyanobacteria and Chlorophyta are suitable for growing in warm water, while diatoms are mostly cold-water species (Zhang Y et al., 2019). This study supports that diatom reproduction rapidly and advanced in spring with low water temperature. The Cyanobacteria will take up the advantages part in July and August because the Merismopedia minima, Merismopedia tenuissima, and Anabaena cylindrical will be high in terms of thermal stability to their DNA, protein synthesis systems, and photosynthetic systems. Therefore, it can adapt to high temperatures, and the optimal temperature is 25–35 °C (Lurling et al., 2013). The average water temperature from July to August in Xinmiao Lake is 26.33°C, suitable for the growth of Cyanobacteria. Although the abundance of Cyanobacteria was high in August, the biomass was low for the small cell size (Tian et al., 2016). The temperature changes not only directly affect the species composition of phytoplankton, but also affect the metabolism of heterotrophs (Taucher and Oschlies, 2011). Therefore, warming can control the community structure of phytoplankton from top to bottom by improving the grazing efficiency of consumption by herbivores (Winder and Sommer, 2012). The zooplankton in Xinmiao lake are mainly Rotifers and Sarcodina. These herbivores preferentially prey on small phytoplankton (Weithoff et al., 2000; Gomes et al., 2019; Sun et al., 2021). Therefore the balance change of Chlorophyta dominance from September to October may mainly be attributed to reduced competitive pressure from diatom and Cyanobacteria and higher resistance to grazing losses (Goldyn and Kowalczewska-Madura, 2008; Nolan and Cardinale, 2019). This study’s algae seasonal replacement model is similar to the Chagan Lake, the same type of lake (Li et al., 2014).
Depth reduces light availability by affecting the absorption and refraction of suspended solids and algae (Vadeboncoeur et al., 2008). High turbidity can limit light penetration into sediments, so limited light availability is usually controlled by water depth and transparency (Iachetti and Llames, 2015). The transparency of Xinmiao Lake is controlled by sediment resuspension under the influence of hydrodynamic forces. The water depth of this type of shallow turbid lake can determine light availability. In addition, the peak of algae biomass in spring is mainly due to the availability of nutrients and high light (Thamatrakoln, 2021). Meanwhile, the enormous growth of submerged plants shows that there is no photoinhibition at least before autumn. Light has no significant effect on the relative proportion of dominant species, but it can effectively change the total biomass of phytoplankton (Llames et al., 2009). The reduction of light energy input limits the net primary productivity. The loss of algae cannot be fully supplemented (Anneville et al., 2017), reducing algae biomass to an absolute minimum in winter.
In addition to the physical environment, such as water temperature and light, the steady-state phytoplankton assembly is also affected by nutrient levels and biological interactions (Rojo and Álvarez-Cobelas, 2003). TN and TP are the primary nutrients of agricultural non-point source pollution, which can affect the growth of phytoplankton in the process of lake evolution (Zhang et al., 2018). Due to the accumulation of a large number of phosphorus resources in sediment, the response of the lake ecosystem may be disturbed. The importance of N and P varies with N: P ratios in the lake, and the total biomass of phytoplankton will be strongly affected by the least supplied nutrients (Dolman et al., 2016). There is a significant positive correlation between phytoplankton and TP (Figure 5) and a complex relationship with TN. This shows that Xinmiao lake is a nitrogen-limited lake, which is also proved by nitrogen-fixing cyanobacteria in the phytoplankton community. Besides, Melosiraitalica of Bacillariophyta, Merismopedia minima, and Anabaena cylindrica of Cyanobacteria had a significant positive correlation with BOD5. Rainwater and irrigation backwater injected into the lake will receive a large number of particles, nutrients, and organic matter, which constitutes a typical feature under the influence of agriculture (Taylor et al., 2019). There is a seasonal pattern of material import: it starts in mid-May and peaks in mid-August. This model shows that it will be more effective to implement best management practices in warm summer (Lizotte et al., 2014).
Indication of Phytoplankton Functional Groups and Diversity on Water Quality
The change of phytoplankton species richness is usually the result of species extinction or invasion. In contrast, the change of biodiversity and evenness is usually related to species dominance (Hillebrand et al., 2008). Phytoplankton biodiversity is affected by different developmental stages or habitat differences of the community (Bandeira et al., 2013), so the water’s biophysical and biochemical quality will directly affect the biodiversity of the lake waters. In this study, the WI sampling site is surrounded by farmland, the rapid changes of nutrient input and physical water state weaken the stability of the phytoplankton community structure, and WO is mainly disturbed by human activities in nearby scenic spots so that the phytoplankton biodiversity is low. On the contrary, the stable water environment of NA provides better development conditions for phytoplankton community. In the early stage of phytoplankton community construction, the frequent fluctuation of the environment interfered with the competition, so the population was mainly restricted by environmental factors (Barraquand et al., 2018). The increase of nutrient level and illumination time in June satisfied the growth of phytoplankton and increased the diversity. In winter, the interference from agricultural activities almost disappeared, and the rainfall and backwater decreased, resulting in a slow flow rate. At this time, the ecological niche is separated due to competition, and competitors are inhibited by dominant species (such as Chlorophyta in this research), which reduces the diversity to the lowest level (Tilman et al., 1982). The results of the water quality evaluation based on the diversity index show that the water pollution degree of Xinmiao Lake is the lowest in June and the most serious in October. A large number of reeds grow in Xinmiao Lake (Zhang, 2015), its developed roots are more likely to produce an oxidizing environment in the water, to promote nitrification, accelerate the absorption of NO3−, NH4+, PO43- plasma in water and sediments, consequently, purify nitrogen and phosphorus pollution in paddy field irrigation backwater (Li et al., 2021). However, the purification capacity of the lake is limited, especially in the peak season of agricultural irrigation, when a large amount of N and P enter the lake with irrigation backwater. The nutrition of lakes is further risen, which increases the risk of eutrophication.
The temporal and spatial changes of dominant phytoplankton species in water can be well described by using the functional group classification method, and it can also better evaluate the response of phytoplankton to environmental changes (Salmaso et al., 2015). During the survey period, the functional group MP dominated by Bacillariophyta occupied an absolute advantage. This is due to the low transparency of Xinmiao lake and the easily mixed water body. The decrease in water transparency shows lake eutrophication (Dodds, 2006). Oscillatoria spp. from the MP group is often found on the sludge surface with rich organic matter or in shallow water ponds, consistent with the environmental characteristics of swamps and wetlands of Xinmiao Lake. Cocconeis placentula is often attached to submerged plants (Jahn et al., 2009) and may rely more on the Potamogeton crispus Linn. in Xinmiao Lake. In July, the representative functional groups of WI are B, H1 and LO. Because WI is a small and medium-sized shallow water body, and between mesotrophic to eutrophic, which is suitable for the growth of Melosiraitalica, Anabaena cylindrica and Merismopedia spp. The appearance of cyanobacteria H1 shows that the lake has a trend of thermal stratification. The representative functional groups of NA are TC and W2, because the environment of NA is mesotrophic to eutrophic, shallow water with a slow flow, and there are a large number of reeds, which are suitable for the growth of Phormidium tenue, Trachelomonas spp. and Strombomonas angusta. The D-functional group appeared on WI in August, reflecting its rich nutrient content and turbid water body. In September and October, X2, dominated by Chlamydomonas spp, is the main functional group. It grows in shallow water from mesotrophic to eutrophic, with less affected by stratification, and it is sensitive to water mixing and filtration (Raven et al., 2011), indicating that there is a low degree of stratification in the water body during this period. In addition, W1 (mainly includes Euglena spp. and Phacus spp.) at this time is dependent on the increase of BOD5 (Gani et al., 2017) which is mainly due to decomposed submerged plant in early autumn (Lin et al., 2018). Overall, the representative functional groups of phytoplankton reflect Xinmiao Lake’s high degree of eutrophication and nutrient content, slow water flow rate and low grazing pressure.
Risk Prediction of Cyanobacteria Bloom
Merismopedia sp. and Anabaena sp, which are dominant in summer, will produce water bloom under the condition of mass reproduction (Poot-Delgado et al., 2018). Nitrogen consumption is conducive to the reproduction of nitrogen-fixing algae Anabaena sp, and some species contain toxic substances (Chislock et al., 2014; Akagha et al., 2020). When the TP concentration exceeds 10 μg/L, the growth of Chlorophyta is primarily affected by physical factors, especially the stability of the water body (Steinberg and Hartmann, 2010). It has been proved that the increase of the stability of the water body, especially the surface water body, can better meet the hydrodynamic conditions for the occurrence of Cyanobacteria bloom (Zhang S et al., 2019). Moreover, the increased pH value may prolong this process in summer and prevent the diatom from recovering its dominance in autumn by inhibiting the growth rate and diatom silicon deposition (Zepernick et al., 2021). The growth rate of Cyanobacteria dominated by Microcystis will increase if the concentrations of TN and TP exceed 1.5 mg L−1 and 0.1 mg L−1. Furthermore, if TN remains above 1.0 mg L−1 and TP remains above 0.08 mg L−1, it is expected to increase the risk of water bloom (Xu et al., 2017). The average value of TN and TP in Xinmiao lake is about 0.99 mg/L and 0.10 mg/L, and the pH is often close to or greater than 8.5 in summer when the WT is higher than 25 °C (Table 1). Consequently, Xinmiao Lake has the hydrochemical environment for Cyanobacteria bloom in July and August in summer. The survey results also verify this hypothesis by the rapid increase of Cyanobacteria in July and August. Therefore, controlling the input of exogenous nitrogen and phosphorus is an important measure to reduce the risk of cyanobacteria bloom. Because the chemical environment in summer is suitable for the growth of cyanobacteria, it is imperative to accurately judge the physical environment of the water body, especially the stable state. Among the representative functional groups of phytoplankton, codon B dominated by Melosira italica and Cyclotella stelligera and codon C dominated by Melosira ambigua and Cyclotella meneghiniana are sensitive to water stratification (Table 4), which can be used to judge the stable state of water body and provide early warning for the outbreak of Cyanobacteria bloom.
CONCLUSION
By studying the relationship between phytoplankton and water quality in the wetland in agricultural areas, it is found that the backwater from farmland irrigation has dramatically changed the environment of phytoplankton growth by transporting nutrients, organic substances, and sediment to the lake. The reduction of interference in agricultural activities increases the competitive pressure among dominant species. When environmental factors change, it can still control the phytoplankton community structure to a great extent. Xinmiao Lake is a nitrogen-limited lake. Considering the functional groups and diversity of phytoplankton, the degree of eutrophication is deepening. Due to the increase in water temperature and nitrogen and phosphorus, the risk of cyanobacteria blooming from July to August is the highest. At this time, managers should control the input of phosphorus and pay close attention to the stable state of the water body. This study improves the understanding of the seasonal pattern of phytoplankton growth and its response to changes in environmental factors. In addition, it also provides available information for the control of Cyanobacteria bloom and the management of wetland ecosystem in agricultural areas.
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Interacting with aquatic environments in blue spaces is believed to benefit mental well-being. Relevant understanding is limited to regional pilot studies using self-reported emotions on questionnaires. We assessed emotional response by rating facial expressions on a large geographical scale with the purpose of detecting a relationship to microclimates. A total of 920 facial photographs were collected from Sina Weibo from 20 wetland parks in 14 eastern cities of China during 2020. Daily average air temperature, rainfall, average relative humidity (RH), and wind velocity were also recorded from the days when photographs were posted online. We found that happy expressions were higher in wetlands of eastern cities than in northern and inland cities. Sad expressions varied statistically among wetland locations. Weather records differed between temperate and subtropical climatic zones and were highly varied among cities. Happy and sad scores were driven by the change in average air temperature. Combined multivariable regression and binomial correlation suggested that increasing air temperature would not evoke positive emotions unless higher than 11.5°C, and an air temperature range of 17.5–22.3°C will be optimum to induce the presentation of a smiling face. Air humidity generally imposed a negative effect on expressions of positive emotions. Further verification of our findings is suggested on a larger geographical scale using more powerful big-data to obtain more robust conclusions.
Keywords: blue space, aquatic environment, mental well-being, emotional perception, big-data, social network service
INTRODUCTION
Ongoing urbanization is associated with mental health risks (Ventimiglia and Seedat, 2019; He et al., 2020). Mental health has been listed as one of the greatest issues for citizens and can reduce physical and psychological well-being and cause chronic disease (American Psychological Association, 2021). Anxiety and stress arise from the perceived living environment, neighborhood safety, improper use of medicine, and living in a city (Chen and Chen, 2015; Adli and Schondorf, 2020). These conditions cannot be avoided by city dwellers. Therefore, citizens need a way to cope up with these issues without a significant cost.
Contact with nature can help by promoting attention restoration (Kaplan, 1995) and reducing stress and anxiety (Ulrich et al., 1991). In general, when people mention “nature,” they mean “areas containing elements of living systems including plants and nonhuman animals across a range of scales and degrees of human management, from small urban parks to relatively pristine wilderness” (Bratman et al., 2015). Experiences in urban green space have been well documented to counter anxiety and stress (Guan et al., 2017; Van den Berg, 2017; An et al., 2019; Zhou et al., 2019). Evidence exists showing that contact with blue space (freshwater ecosystems such as sea, watershed, river, lake, and coast) can also elicit positive mental responses (White et al., 2016; White et al., 2017). As a type of coastal ecosystem, wetlands attract attention due to their role in stress reduction (Sandifer et al., 2015; Sutton-Grier and Sandifer, 2019).
Mental restoration by visiting wetlands can be recognized as a positive response explained by ‘attention restoration theory (ART)’ (Kaplan and Kaplan, 1989) and ‘stress reduction theory (SRT)’ (Ulrich et al., 1991). ART asserts that people can concentrate better following an experience with nature, even merely viewing a nature scene (Kaplan and Kaplan, 1989). SRT claims that exposure to nature can improve well-being by alleviating and reducing physiological and psychological stresses (Ulrich et al., 1991). According to these two theories, the perception of biodiversity in urban wetland parks can improve emotion and generate restoration (Fuller et al., 2007; Dallimer et al., 2012; Carrus et al., 2015). According to the ‘blue gym’ theory, positive emotions can also be associated with the distance to a waterbody in a wetland ecosystem (White et al., 2016). Interacting with water was considered to be the most crucial factor in making a blue space restorative (Volker and Kistemann, 2011). Environmental factors in an urban green space have been found to be major drivers of improved emotions and moods (Wei et al., 2020b; Liu et al., 2021b). Considering highly similar effects between green and blue spaces on mental health (Voelker and Kistemann, 2015), aquatic environments in wetland ecosystems may also be a key driver to improving mental well-being. Relative information is scarce, and relevant evidence is greatly needed.
Continuous urbanization has reduced the frequency of human contact with nature (Roberts and Foehr, 2008). Human beings have greatly impacted regional environments over the past 10,000 years (Torrey, 2004). Cities are the most populated areas in the world (United Nations, 2004). Urbanization alters regional environments through accelerated consumption of energy and natural products, contamination, and artificial management (Torrey, 2004). Regional environments are being altered due to the increasing population around coastal cities. The frequency of flood loss is being reduced in coastal cities due to decreased rainfall events (Brody et al., 2013). Thawing icebergs raise the sea level and stimulate seawater intrusion into the inland ecosystem (Guang-lan et al., 2002; Guo et al., 2016). As a result, regional climates change in response to modified water balance and biodiversity (Guo et al., 2016; Sarkar et al., 2019). It has been demonstrated that the change of regional climates in urban forest settings can induce the responses of psychological (Park et al., 2011; Wei et al., 2020b) and physiological well-being (An et al., 2019). Therein, local air temperature, relative humidity, and sunlight spectrum were all found to impose significant effects on perceived emotions. It will be beneficial to test these responses to the change of regional microclimates in blue spaces at a larger geographical scale.
Under the guidance of ART and SRT theories, the emotional dynamic was taken as a gauge to assess mental restoration and stress reduction (Zuckerman, 1977; Ulrich, 1979). Many studies evaluated the emotional changes of subjects through self-reported scores on questionnaires (Guan et al., 2017; Zhou et al., 2019). This methodology has been considered questionable due to errors from fatigue, subjective hiding of real thoughts (Kaplan and Kaplan, 1989), and lack of validation (Aerts et al., 2018). As an alternative, facial expressions have been taken into consideration to assess emotional changes more directly and accurately (Wei et al., 2019; Wei et al., 2020a). In studies on mental response to urban green space, facial expressions have been successfully used to evaluate perceived emotions at varied scales in a pilot study (Wei et al., 2021a; Wei et al., 2021b) to regional areas across provisional regions (Wei et al., 2019; Wei et al., 2020a; Liu et al., 2021b; Mao et al., 2022). Face-reading techniques have mainly been used to detect emotional responses to experiences in green spaces. Relevant studies testing mental well-being in wetland ecosystems have rarely been conducted. The assessment of facial expressions can efficiently monitor the emotional response to nature contact at a large scale. This methodology can also improve the detection of microclimates as driving forces.
In this study, a large-scale investigation across 14 cities and 20 urban wetland parks was conducted in typical blue spaces along the eastern coastal regions of China. Big-datasets of facial expressions of positive and negative emotions and climatic factors at the same location were recorded for spatial analysis and mechanism detection. Our objective was to map the spatial distribution of emotional expressions of people visiting urban wetland ecosystems and ascertain key meteorological factors that determined this effect. We also aimed to characterize the relationship between the regional climate and emotional perceptions in urban wetlands and depict the statistical curve of this relationship. Our data and results will facilitate future studies and supply a theoretical reference for sustainable planning of urban wetland parks.
MATERIALS AND METHODS
Selected Sites and Facial Photographs
This study was conducted on 20 urban wetland parks located in 14 cities along the eastern coast of mainland China. The spatial distribution of wetland parks is shown in Figure 1. Sina Weibo (can be recognized as Sina Micro-blog or China Twitter) was employed as the source of facial data from a social network service (SNS) platform (Wei et al., 2019; Wei et al., 2020a; Wei et al., 2020b; Liu et al., 2021b). Photographs were collected from daily records on Sina Weibo in 2020. Facial photographs were downloaded from Sina Weibo records where wetland parks were registered as check-in places. Matching facial photographs with check-in locations can enable further analysis between facial expression scores and climatic factors (Wei et al., 2020b; Liu et al., 2021b). These wetlands were chosen because there were more than 40 photographs found for each check-in place. Any parks where visitors were fewer than 40 were excluded from our dataset. The control of even distribution of replicated subjects among locations is needed because data about facial expressions were mostly abnormal and an even distribution will benefit running a regression model with expected confidence. Due to the COVID pandemic, no photograph records were found for some periods of 2020. We created data curation using a year-long dataset without specific monitoring for monthly records. A significant number of people were wearing masks during photographs, and all such photographs were excluded from our dataset. As a result, a total of 920 photographs were collected. Socioeconomic dimensions of host counties/districts for wetland parks in cities can be seen in Supplementary Figure S1.
[image: Figure 1]FIGURE 1 | Distribution of urban wetland parks along the eastern coast of mainland China. Red spots mark locations of wetland parks. Regions in light gray are provincial areas where objective wetlands are located.
Climatic Records
Climatic records were retrieved from the climatic data centre of national meteorological information of China (Climatic Data Centre, 2021). Daily records of rainfall, wind velocity, average air temperature, and average relative humidity (RH) were downloaded from historical records of meteorological stations located closest to the objective wetland park. Every record was assigned with the date as a daily mean value when each photograph was posted. A climatic record was derived from a city-wide average. Daily climatic data were collected from the day when an individual photo was downloaded from a specific wetland park. This enables regression analysis by closely matching facial data with climatic data on the same day. Mapping the distribution of climatic factors used an average of daily records when each photograph was posted to the micro-blog in Sina Weibo at the target location. Climatic records on sunshine duration, extreme air temperature, RH, etc. were not documented as independent variables to avoid significant variance inflations that could cause collinearity.
Treatment of Facial Photographs
As described before, photographs from people with facial masks were not usable. In addition, all photographs had to contain five facial organs, namely, the eyes, eyebrows, nose, mouth, and ears, for each subject. Selfies or photographs taken by others were kept, but photographs with more than one subject had to be cropped to leave only one face per image. Processed photographs were rotated to make the face perpendicular to the horizontal line to ensure the highest analyzing accuracy.
Facial Expression Analysis
Photographs were analyzed using FireFACE™ software version 1.0 to determine scores for happy and sad expressions (Wei et al., 2020a; Wei et al., 2021a; Liu et al., 2021b). This version of FireFACE can recognize three types of facial expressions, namely, neutral, happy, and sad (total frequency of 100%), but only happy and sad scores were used in this study. Happy and sad scores are percent frequencies that a face is about to present positive and negative emotions, respectively. The software was trained to recognize facial expressions using 30,000 photographs containing happy, sad, and neutral expressions (Wei et al., 2020a). The software was trained to recognize each emotion using about 10,000 photographs. Only one face was presented in each photograph for training, and all subjects were visitors to urban forest parks in mainland China. Training photographs were manually classified into three types of expressions, that is, happy, sad, and neutral for positive, negative, and indifferent affects, respectively. Machine learning was carried out by training the computer to recognize affects by coding directions until matching accuracy reached 80%. During this process, the computer was trained by recognizing a facial photograph with typical characteristics of facial organs and all possible combinations of their muscles for each type of affect. The actual accuracy was validated to be as high as about 90% for happy and sad scores. In brief, a total of 20 photographs were randomly chosen from a pool with an objective affect that had been recognized by the machine. Experts were invited to evaluate the emotions in each photograph. Hence, their matching accuracies were averaged and used to compare with those in 20 most recently published studies in the domain of facial recognition and expression rating. Details concerning validation of scores for these two expressions can be found in the work of Guan et al. (2021).
Statistical Analysis
Both facial expression scores and climatic factors were averaged for every wetland park, and their spatial distributions were mapped using ArcGIS v10.2 software. The variations of happy and sad scores were mapped by pools of data in spring (May, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February) seasons. Scattered data and interquartile ranges (IQRs) were described in box–whisker plots for happy and sad scores. Statistics were finished using SAS software (SAS Institute, Cary, NC, United States). Data were log-transformed to enable statistical analysis, but results were transformed back to raw data when shown in tables and figures. Log-transformation was performed to enable statistics depending on the general linear (GLM) models for analyzing the hydrological response to climates (Engeland and Hisdal, 2009; Osuch et al., 2017). Analysis of variance (ANOVA) was used to detect differences across wetland parks. Stepwise regression was employed to analyze combined relationships between climatic factors and expressional scores using log-transformed data. Thereafter, a type-I analysis of likelihood ratio test was conducted on contributions of rainfall, wind velocity, average air temperature, and average RH to happy and sad scores. When significant contributions were detected, a zero-inflated negative binomial (ZINB) model was used to regress the four climatic factors to happy and sad scores (Wei et al., 2021a). The maximum likelihood parameters of climatic factors for each existing record were estimated, and a significant response to climatic dose was screened according to the Wald chi-square test at the 0.05 level. All maximum likelihood parameter (MLP) estimates on happy and sad scores were regressed by binomial models to detect the critical values of climates as driving forces that formed presentations of facial expressions. We employed the identical value of 0.5 as a standard to screen the availability of regressed results by binomial models (Tsakiri et al., 2018; Fu et al., 2021). This also reveals the upper or lower limits of estimated contributions to the critical climatic dose. The characteristics of binomial models were used to analyze the extent to which climatic factors drove the change of facial expressions. Pearson correlation was employed to detect the relationship between paired variables among parameters about topography (latitude and longitude), socioeconomic dimension (National Bureau of Statistics, 2020) (see Supplementary Figure S1), and meteorological records.
RESULTS
Spatial Distribution of Facial Expressions
Whisker–box plots for happy and sad scores are shown in Figure 2. Scattered data for happy scores (Figure 2A) were more homogeneous than those for sad scores (Figure 2B). The data of happy scores were mostly dispersed around the IQR between 95 and 5% with little dispersed diffusion (Figure 2A). However, sad scores showed a more heterogeneous dispersion pattern due to many over-medium data dispersed with big diffusions outside the 95% upper limit of IQR (Figure 2B). In addition, medium values of sad scores shared a closer IQR with a lower limit of 5% quartile across most cities.
[image: Figure 2]FIGURE 2 | Whisker–box plots for happy (A) and sad (B) scores of visitors in 20 urban wetland parks at the eastern cities of China. Whiskers label 95% (upper) and 5% (lower) quartiles to bars at the top and bottom, respectively; box ends at 75% (top) and 25% (bottom) quartiles; dash within the box labeles the median value of data in a city; and scattered dots in gray color label extreme records of raw data with the highest and lowest values at the top and bottom, respectively.
Urban forest park visitors showed a heterogeneous pattern of happy scores’ distribution in spring (Figure 3A). In summer, happy scores tended to be higher in the central part than those in northern and southern parts (Figure 3B). Although Dongguan, Fuzhou, and Guangzhou were close to the southern seaside, visitors did not show happy scores significantly higher than in other parks. In autumn and winter seasons, visitors showed a higher level of happy scores in the south than in the north (Figures 3C,D). The sad score was also distributed as a heterogeneous pattern among visitors in wetland parks (Figure 3E). Again, summer visitors showed higher levels of sad scores in the central part of the study area (Figure 3F). In autumn, sad scores tended to be higher in visitors of inland wetland parks than those at coastal parks (Figure 3G). Visitors mostly showed an even distribution pattern of sad scores in winter with regional levels lower than those in adjacent parks in Fuzhou and Huzhou (Figure 3H).
[image: Figure 3]FIGURE 3 | Seasonal geographical distributions of happy (A–D) and sad (E–H) scores of visitors in urban wetland parks at cities of East China. The size of a spot and its adjacent value together remark the average of records when visitors posted their photographs to Sina Weibo at the aimed places.
Spatial Distribution of Climatic Factors
The average air temperature showed extreme contrasting levels for adjacent places where visitors took photographs in wetland parks (Figure 4A). For example, the average air temperature in the Haishi Bridge Wetland Park was 23.61°C, which was higher than that in the Dongjiao Wetland Park (15.15°C) in Beijing (Table 1). In Shanghai, the average air temperature in the Dongtan Wetland Park (25.62°C) was higher than that in the Wusong-Fort Bay Park (18.28°C). Contrasting records of average air temperature were also observed between Nansha and Daguan wetland parks in Guangzhou. Extreme maximum and minimum daily climatic records are shown in Supplementary Table S2.
[image: Figure 4]FIGURE 4 | Geographical distribution of annual average air temperature (A), rainfall (B), average relative humidity (RH) (C), and wind velocity (D) in urban wetland parks. Spots in dark red, light blue, green, and pink mark annual average air temperature, rainfall, average RH, and wind velocity, respectively. The size of a spot and its adjacent value together remark the average of records when visitors posted their photographs to Sina Weibo at the aimed places.
TABLE 1 | Difference of climatic factor records for visitors taking photographs in different wetland parks from cities along the eastern coast of mainland China.
[image: Table 1]Rainfall was generally higher in wetlands located in southern cities than that in northern ones (Figure 4B). Rainfall in wetland parks in Beijing ranged from 0.06 to 0.07 mm, which was lower than that in the Jiulong Lake Wetland Park in Nanchang (8.62 mm) and Huayang Lake Wetland Park in Dongguan (10.97 mm) (Table 1). Contrasting records also existed for rainfall in regionally adjacent wetland parks (Figure 4B). For example, in Nanchang, rainfall in the Jiulong Lake Wetland Park was higher (8.62 mm) than that in the Aixi Lake Park (0.76 mm) (Table 1). In Dongguan, rainfall in Huayang Lake was higher than that in Daguan (0.76 mm) and Nansha (4.76 mm) wetland parks in Guangzhou.
The distribution of average RH in the study area showed a similar pattern with rainfall, which was higher in southern cities than in northern ones; contrasting records existed for adjacent wetland parks (Figure 4C). For example, the average RH in wetland parks in Beijing ranged between 32.55 and 52.07% which was generally lower than that in the Xiaofu Lake Wetland Park in Zibo (67.73%) and that in the Yuzui Wetland Park in Nanjing (66.08%) (Table 1). In Guangzhou, the average RH in the Nansha Wetland Park (81.50%) was higher than that in Haizhu (69.64%) and Daguan wetland parks (68.10%).
Wind velocity was higher in coastal cities than that in inland cities except for Beijing (Figure 4D). Wind velocity in wetland parks of Beijing city ranged from 2.0 to 2.5 m s−1, which was higher than that in the Xiaofu River Wetland Park in Zibo (1.58 mg s−1) (Table 1). Wind velocity in wetland parks in Wuhan ranged between 1.0 m s−1 and 1.5 m s−1, which was lower than that in wetland parks in eastern coastal cities.
Stepwise Regression of Climatic Factors on Facial Scores
The average air temperature was the only climatic factor that generated a significant relationship with happy (F = 7.79; p = 0.0058) and sad scores (F = 3.90; p = 0.0499). The average air temperature had a positive relationship with happy scores, with a parameter estimate of 1.8079 ± 0.6477 (standard error) (type-II sum of squares [SS] = 36.51). In contrast, the average air temperature had a negative relationship with sad scores, with a parameter estimate of -1.3219 ± 0.6696 (type-II SS = 19.33). Therefore, the average air temperature had an overall higher direct contribution to happy scores than to sad scores.
Multivariable Regression Analysis of Climatic Factors on Facial Scores
The type-I analysis of likelihood ratio test by ZINB models indicated that all four types of climatic factors (average air temperature, rainfall, average RH, and wind velocity) had significant contributions to happy (Supplementary Table S1) and sad scores (Supplementary Table S2).
The average air temperature generated significantly negative contributions to happy scores in the range of 14–20°C (Supplementary Table S3). The estimates in the ZINB model fell in the range of -30 to -5. Rainfall only generated five significant contributions to happy scores. Generally, the estimates of rainfall contributions to happy scores increased with the increase in rainfall level from 0.5 to 33.7 mm; however, the contribution was estimated to be negative when rainfall was 23.9 mm (Supplementary Table S3). The average RH showed significant contributions to happy scores in the range of 14–67%. The estimate of RH contribution was generally indicated to decrease with the increase in RH level. When the average RH was 67%, contributions were estimated to be negative (Supplementary Table S3). Wind velocity showed a generally increasing trend of estimated contributions from 10 at 0.8 m s−1 to 22 at 3.4 m s−1 (Supplementary Table S3).
The average air temperature had fluctuant contributions to sad scores with estimates alternating between positive and negative levels in a range between 4.3 and 31°C (Supplementary Table S4). Rainfall had mostly positive contributions to sad scores at most levels, but the contributions were estimated to be negative at the levels of 0.7, 1.9, 8.4, and 11.0 mm (Supplementary Table S4). The average RH had a trend of decreasing contributions to sad scores from the levels of 26–58%. Thereafter, when RH increased higher than 58%, its contributions were mostly positive except for at the level of 66% (Supplementary Table S4). Wind velocity had fluctuant contributions of alternately positive and negative estimates to sad scores in a range between 0.2 m s−1–5.0 m s−1 (Supplementary Table S4).
Model Description of Climatic Factors on Facial Scores
According to data in Supplementary Table S3, the relationship between levels of climatic factors (average air temperature, rainfall, average RH, and wind velocity) and their estimated contributions on happy and sad scores can be described by binomial models (Figure 5).
[image: Figure 5]FIGURE 5 | Binomial regression of maximum likelihood parameter (MLP) estimates of climatic factors (average temperature, (A); rainfall, (B); average RH, (C); wind velocity, (D)) on happy scores. Spots are significant MLP estimates of an existing microclimatic record indicated by a zero-inflated negative binomial model. Data are derived from Supplementary Table S3. Coefficients of regressed models can be found in Table 2.
The relationship between average air temperature and maximum likelihood parameter (MLP) estimates on happy scores can be described by U-shape binomial curves. MLP estimates on happy scores decreased with the increase in average air temperature up to 11.468°C, when MLP reached the lower limit of -25.988 (Figure 5A). The relationship between rainfall levels and MLP estimates on happy scores can also be described by a U-shape binomial curve where MLP estimates on happy scores decreased with the increase in rainfall up to 18.810 mm, when estimated MLP-happy scores reached the lower limit of 32.862 (Figure 5B). The relationship between average RH and MLP estimates on happy scores can be described by a negative binomial curve (Figure 5C). Theoretically, when the average RH became infinitesimal, the MLP estimate on happy scores was the lowest at a value of -44.394 (Table 2). In contrast, the relationship between wind velocity and MLP estimate on happy scores can be described by a positive binomial curve (Figure 5D). Theoretically, with the increase of wind velocity up to 6.538 m s−1, MLP estimates increase to the upper limit of 17.091. Overall, the coefficient of determination, R2, was higher than the identical value of 0.5 only for regressions against average air temperature and RH. Therefore, regressed results of MLP estimates on happy scores in response to changes of air temperature and RH were more reliable than regressions against rainfall and wind velocity changes.
TABLE 2 | Coefficients from binomial regressions of climatic factors on maximum likelihood parameter (MLP) estimates on happy and sad scores.
[image: Table 2]The relationship between average air temperature and MLP estimates on sad scores can also be described by a reciprocal U-shape binomial curve (Figure 6A). With the increase of average air temperature to 22.270°C, MLP estimates reached the upper limit of 20.315 (Table 2). With the increase in rainfall, the MLP estimate on sad scores showed a small increasing trend (Figure 6B). Rainfall had an infinite closeness to the lowest level of 5.792 mm when MLP was estimated at the lower limit of 47.336 (Table 2). The relationship between average RH and MLP estimates on sad scores can be described by a U-shape binomial curve (Figure 6C). With the increase of the average to 53.285%, MLP estimates reached the lower limit of 13.340 (Table 2). The relationship between wind velocity and MLP estimates on sad scores was a barely increasing binomial curve (Figure 6D). Theoretically, with a wind velocity increase to 5.307 m s−1, MLP estimates on sad scores had an infinite closeness to the upper limit of 17.537 (Table 2). However, because all R2 values for regressions were lower than 0.5, none of the regressed MLP estimates on sad scores can be reliable.
[image: Figure 6]FIGURE 6 | Binomial regression of maximum likelihood parameter (MLP) estimates of climatic factors (average temperature, (A); rainfall, (B); average RH, (C); wind velocity, (D)) on sad scores. Spots are significant MLP estimates of an existing microclimatic record indicated by a zero-inflated negative binomial model. Data are derived from Supplementary Table S4. Coefficients of regressed models can be found in Table 2.
Pearson Correlations
Latitude was detected to have a negative relationship with rainfall (R = -0.4720; p = 0.0356) and RH (R = -0.6355; p = 0.0026) (Supplementary Figure S2). In contrast, both population and gross domestic product (GDP) had positive relationships with wind velocity (R = 0.6439, p = 0.0022 and R = 0.6258, p = 0.0032, respectively).
DISCUSSION
Spatial Variation of Emotional Expressions
In our study, happy scores of visitors in wetlands were mapped by a spatial distribution pattern in the range of longitudes between 20°N and 40°N. This pattern was formed by dual drivers of regional air temperature and RH as positive and negative forces, respectively. For example, the high level of happy scores found in the Xiaofu River Park at Zibo city was driven by the meanwhile records of high air temperature and low humidity. However, it was interesting to find that both happy and sad scores showed heterogeneous patterns in spring and winter, which were formed by alternatively high and low levels of scores in the same region although their meteorological conditions were not always different. We attribute these findings to four explanations. First, in natural spaces, emotional well-being can be perceived in response to not only regional weather conditions but also variations in locations (Wei et al., 2019), walking orientations (Wei et al., 2021b), time course (Wei et al., 2021a), and even biodiverse levels (Marselle et al., 2019; Methorst et al., 2021). Microclimates can drive changes in emotional expressions, but they are unlikely to be unique drivers. Second, emotions can also be associated with socioeconomic factors, which, however, we did not detect in this study. In a study, facial expressions were obtained in university campuses across mainland China (Wei et al., 2020a). Therein, both happy and sad scores showed big spatial variations which were highly associated with municipal dimensions in host cities. Third, emotional responses in our study were perceived by combined experiences of landscape metrics of green plus green spaces rather than the single suite of patchy features in blue spaces. Studies have demonstrated that people can perceive different affects in face of varied landscape metrics in both green and blue spaces (Liu et al., 2021a; Zhang et al., 2021). Finally, because our data were obtained from an SNS platform of Sina Weibo, pieces of will by people to post their faces online had a nature of existing uncertainties, which belong to a type of human error to expose their affects (Kaplan and Kaplan, 1989). We admit our data regarding facial expressions had systematic errors during collection and screening. All of our data were randomly allocated, and all suffered possible errors at the same technical level. Therefore, our results concerning spatial distributions of emotional expressions are acceptable and are adequate for further analysis.
Spatial Distribution of Microclimates
Our climatic factors were not shaped by the long-term climatology of local microclimates. Instead, the distribution of our climatic factors was mapped according to daily records during the time photograph suppliers visited wetland parks in our study area. This is why none of our climatic records showed an expected distribution pattern, for example, along a north–south geographical gradient (Wang and Tang, 2003; Lu and Xiong, 2013; Li et al., 2015; Liu et al., 2016). Generally, the distribution of our climatic factors had two characteristics. First, regional climates greatly differed in different climatic zones, including climates in subtropical and tropical regions (Wei and He, 2021). For instance, the average RH of wetland parks in Beijing was lower than that in parks of Wuhan and Nanchang, but their wind velocity was higher. Second, climatic records may be extremely different for wetland parks in regional cities. This was usually found for air temperature and rainfall in wetland parks around Shanghai and Guangdong. This resulted from people taking photographs when they were visiting these wetland parks during specific weather. In subtropical regions, people were more likely to visit wetland parks in Shanghai in weather with higher air temperature and air humidity, but lower wind velocity occurred contrary to the weather when people visited the Jing Lake Wetland Park in Shaoxing. In tropical regions such as wetland parks in Guangzhou, people were prone to visit in weather with higher air temperature, but lower rainfall and air humidity occurred, in contrast to the Huayang Lake Wetland Park in Dongguan. To our knowledge, no available evidence accounts for these differences. Our results can supply reference to further detect and explain why people like to visit these parks in different weathers.
Air Temperature Drives Presentation of a Smile
The average air temperature was the only climatic parameter that promoted positive emotions. Our results are supported by another set of data collected for urban forests across 12 cities in eastern China, which concurs with results found by Liu et al. (2021b). These results suggest a common phenomenon that air temperature can be the key driver among all climatic factors to determine positive expressions for visitors when both in urban green spaces (Guan et al., 2017; Van den Berg, 2017; An et al., 2019; Zhou et al., 2019) and when experiencing urban blue spaces (White et al., 2016; White et al., 2017). Hence, we conclude that those experiencing aquatic environments in wetland parks feel more comfortable when air temperature is warmer. In our study, critical values for average air temperature records fell in a range between 17.468 and 22.270°C, during which the influence of air temperature on negative expressions was the highest. Only when air temperature increased to be higher than this critical range up to approximately 30 °C, the negative effect of air temperature on positive expressions gradually reduced. Therefore, high air temperature favored the presentation of positive emotions by depressing the negative effects. The range of air temperature was also suggested to be comfortable for urban forest experiencers in a range of 12–22°C (Jeong et al., 2016), which was lower than the suggested air temperature range for comfort in wetland parks. However, our findings about the driving force from temperature were contradicted by those found in northern forest parks, where the beneficial effect of temperature on smile presentation tended to diminish when the annual temperature was higher than 6.05°C (Mao et al., 2022). Thus, people’s perception toward temperature change should be differed by microclimatic conditions on contrasting landforms between the deep inland and the coast.
Potential Force of Climatic Drivers to Elicit a Smile
Rainfall did not have a direct relationship with facial expression. Standard deviation (SD) was much higher in parks with low rainfall (lower than 1.0 mm), which made these parks unlikely to receive precipitation. When rainfall was higher than 5.27 mm, the contribution to elicit negative expressions increased synchronously with continuously increasing rainfall levels. When rainfall increases to be over 18 mm, it has a large step effect on the presentation of happy scores. Hence, precipitation over 18 mm is likely to increase positive emotions. Although wind velocity had positive contributions to both expressional scores, the positive contributions were estimated to be higher for happy scores than sad scores when wind velocity increased up to 6.54 m s−1. Wind velocity was indicated in wetland visitors subjected to counties/districts with greater population and higher GDP, which suggests that emotional perceptions of air flow were formed by feelings about the dense crowd and developed regions rather than the real awareness about winds. Due to low levels of coefficient of determination for regressed potential forces on happy and sad scores against rainfall and wind velocity, we cannot accept the likelihoods of facial expressions by the driving forces of these two parameters. Instead, regressions against air temperature and RH can be much more reliable. The increase of air temperature was found to lose its potential force on the presentation of smiles below 11.468°C. This was lower than the lower limit of optimum air temperature range of 17.468°C. Thereafter, the increase of air temperature over 11.468°C will evoke the response of growing force on happy scores, which also fell in the optimum range of 17.468 and 22.270°C. Air humidity between the levels of 14 and 67% generally had a negative contribution to happy scores, which suggests that, for most conditions in our park places, visitors would perceive negatively driving force if air RH increased.
Rainfall and RH had no relationship with socioeconomic dimensions. Instead, their spatial distributions were determined by the latitudinal gradient, which both decreased from the south to the north in our study area. As discussed before, the potential driving forces of rainfall and RH to activate presenting smiles resulted from natural responses to the latitudinal gradient among wetlands.
Limitations of This Study
Our study has several limitations. First, our dataset was limited by the sampling size due to the time of photograph collection. Our dataset comprises a total of 920 photographs from visitors of 20 urban wetland parks in 14 cities. This means that there were 40–50 photographs per park. Facial expression scores in our photographs were used as a bulked average for a park, but their relationships with microclimatic factors were regressed by daily records (n = 920). This dataset size is comparable with that used for regression in other geographical studies. For example, in the work of Sun et al. (2021), the regression of a logistical model was validated by a total of 22 factors and 1,522 landslides. Another instance is from the work of Shahani et al. (2021), where six parameters and 64 series framed a regression. Even so, the size of the dataset in our study is still limited by the time of our data collection. Since 2020 was the first year when the pandemic was felt globally, many people were wearing a mask and were unable to be chosen as our subject. Future studies can continue our design and methodology in the coming years when the public attitude toward COVID-19 is alleviated, increasing the number of people without facial masks in urban wetland parks.
Second, regression precision was limited by distinct dates of records. We run regression models by matching microclimatic records with facial expression scores for the same day. Technically, we were not able to fully determine that the date of photograph exposure was the same day when the photo was shot. This is unlikely to cause a strong technical error in our data variation. All photographs collected were derived from micro-blogs with specific check-in information concerning a specific location. According to common sense, a normal person will not likely take a photograph at a location and post it on a micro-twitter at the same place but at another time. We suggest further efforts in determining a way to make sure both the dates of micro-blog posting and photographing fully match one another.
Third, the use of posted photographs from SNS platforms potentially affects precision due to awareness of exposure. When facial expression scores were used as a gauge to evaluate emotional response to an experience in nature, two types of photographs were used. One is photographs of people who are not conscious of being photographed; therefore, all resulting facial scores will be natural to the nature experience (Wei et al., 2020b; Wei et al., 2021a; Wei et al., 2021b; Guan et al., 2021). This type of study usually needs a dataset of photographs collected from actual visitors to urban nature in cross-over designed studies (Guan et al., 2017; Stigsdotter et al., 2017; An et al., 2019; Zhou et al., 2019). The other type concerns posted photographs derived from SNS that the photograph subject is aware of (Wei et al., 2019; Wei et al., 2020a; Liu et al., 2021b). Photographs in our study belong to this type. Subjects were aware of the photographs that were being taken; hence, their facial expressions were not spontaneous. However, they were unaware their photographs would be used for an academic study. As a result, they do not change their expression due to any potential awareness of being involved in a study. This can especially happen for oriental people, who usually choose to hide the real and extreme expressions of feelings. Nevertheless, an upgraded methodology to obtain spontaneous facial expressions is needed.
Finally, meteorological records have a distinct characteristic of seasonal variation. We collected microclimatic records across a year-long span, and we should have analyzed the seasonal variation as one source of variance. However, because our timeframe for photograph collection was the first year of a global pandemic, many people in urban wetland parks were wearing facial masks and our data for seasonal variation were extremely scattered. Some seasons only had a few photographs that could be used, and some seasons even had none. Future work should be designed with a longer period for photograph collection, enabling a better likelihood of obtaining seasonal data.
CONCLUSION
No apparent gradient distribution was observed for happy and sad expressional scores from visitors to wetlands in the eastern cities at longitudes between 20°N and 40°N. Positive facial expression tended to be higher for wetland parks located in cities close to the eastern coasts of China but not for cities around the southern coasts. Weather records showed a general spatial difference between contrasting climatic zones or in regional cities. Both happy and sad scores were affected by the change in average air temperature. Combined multivariable regression and binomial correlation suggested that increasing air temperature would not evoke positive emotions unless higher than 11.5°C, and an air temperature range of 17.5–22.3°C will be optimum to induce the presentation of a smiling face. Air humidity generally imposed a negative effect on expressions of positive emotions. Our study introduces a new approach to evaluate ecosystem services for emotional perception by the experience of aquatic environments in wetland parks. Our results can be used as a reference for further studies on the emotional response to experiencing blue spaces.
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Figure S1 | Socio-economic dimensions of population (A), gross domestic product (GDP) (B), administrative area (C), and the distance of objective park to downtown of host-city (D) in host-counties/districts for wetland parks as study sites. Data are derived from National Bureau of Statistics (2020).
Figure S2 | Correlations between paired variables among parameters about topography (longitude and latitude), socio-economy (population, GDP, administrative area [Aarea], and the distance of objective park to downtown of host-city [Distance]), and meteorological records (temperature [T], rainfall [rain], relative humidity [RH], and wind velocity [Wind]).
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