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Editorial on the Research Topic
Network bioscience Volume II

Network biology is based on the intuition that the quantitative modeling and algorithmic
tools of network theory offer new possibilities to understand, model, and simulate the cell’s
internal organization and evolution, fundamentally altering our view of cell biology. As
network biology has been gaining ground and recognition in the last 20 years, the scope of its
application, while still well grounded in molecular biology and genetics, has moved steadily
from tackling fundamental biological questions towards translational medicine, including
modeling of diseases and applications in drug design and drug action prediction.

This Research Topic Network Bioscience Vol II follows in the track of the first one
Network Bioscience completed in 2019 (Antoniotti et al., 2019), and it aims at collecting
cutting-edge research on the many guises of network bioscience.

The papers contained in the present Research Topic are examples of how network and
graph analysis can be used to elucidate various aspects of biological systems from inferring
missing annotations, handling heterogeneous data types, including the vast literature
available online, understanding metabolic dynamics, phenotype-genotype linking, to
relationships assessment among diverse omics data for drug design and drug
repositioning, to a deeper understanding of modularity in gene networks.

Among the recent trends with a potential of high impact, a most notable one is the
incorporation of causality considerations and concepts within the classical network models
so to make better use of perturbation data that are currently not exploited to their full
potential. In particular such hybrid causal network models help bridging the gap between
descriptive and actionable network models, the former successfully describe biological
systems as they are, the latter allows us to formulate questions and find answers within
the vast scope of what-if, counterfactual, worlds.

Papers presentation

The papers collected in this Research Topic are roughly grouped as follows:

• “Foundational” papers,
• Analysis of particular biomedical problems,
• Algorithms and Tools.
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Five foundational papers in this collection tackle in innovative
ways basic issues in the mathematical modeling of bio-networks,
covering an overview of relevant modularity concepts, to
incorporating causality and biologically plausible sparsity
assumptions in gene regulatory networks (GRNs), as well as
empirically-found motif sub-network distributions.

Alcalá-Corona et al. bridge a notable gap between the
perspective on community detection and network modularity
derived from statistical physics and network science on the one
hand, and its adaptation and application in biological research, on
the other hand.

Maheshwari et al. present a general biological network inference
method that combines the discovery of a parsimonious network
structure and the identification of Boolean functions that determine
the dynamics of the system. The method uses a causal logic
framework to assimilate indirect information obtained from
perturbation experiments and infer relationships that have not
yet been documented experimentally.

Seçilmiş et al. note that many gene regulatory networks (GRNs) use
sparsity definitions that are independent of other relevant biological
properties expected from GRNs. They thus provide a general approach
for identifying GRN that are both biologically accurate and structurally
sparse GRN, within the entire space of possible GRNs, by selection
criteria based on Akaike and Bayesian Information Criterion (AIC and
BIC) adapted to the task of GRN inference.

Zhivkoplias et al. developed a novel motif-based preferential
attachment algorithm, FFLatt, that aims at constructing a gene-
proteins gene-regulatory network (GRN) rich in feed-forward loop
(FFL) which are network motifs known to be significantly enriched
in experimentally validated GRN.

In cancer driver gene identification, it is often assumed that a
driver mutation is less likely to occur in case of an earlier mutation
that has common functionality in the same molecular pathway
(mutual exclusivity—ME). Ahmed et al. note that the current
mutual exclusivity tests lack a network-centric view and thus fail
to model key aspects of the problem. Thus they propose a network-
centric framework to evaluate the pairwise significance values found
by statistical ME tests and correct potential biases.

Two articles apply network techniques in the area of
optimization of antibody design for drug design and to
challenging modeling of the immune system’s role for a specific
relevant complex condition (human infertility).

In the context of SARS-CoV-2 studies, Gross and Sharan tackle a
fundamental problem of growing importance for antibody design
that is the identification of mutations of concern of the Spike protein
with high escape probability.

Taraschi et al. use a network-based approach to explore the
etiopathogenic mechanisms involved in human hypofertility and
infertility, aiming at understanding the involvement of the immune
system.

Several of the articles describe advances in designing and
providing the scientific community with increasingly powerful
tools and algorithms capable of making the best use of the vast
amount of heterogeneous and often noisy and incomplete biological
data available from online repositories.

Castresana-Aguirre et al. note that when analyzing the association
between a gene set and a pathway an issue that is generally ignored is
that gene sets often represent multiple pathways. They experimentally

found that pre-clustering of genes can be beneficial in this association
studies by increasing the sensitivity of pathway analysis methods and by
providing deeper insights into biological mechanisms related to the
phenotype under study.

Di Maria et al. introduce BioTAGME, a system for the inference of
novel knowledge and new hypotheses from the current biomedical
literature analysis by constructing an extensive Knowledge Graph
modeling relations among biological terms and phrases extracted
from titles and abstracts of papers available in PubMed.

Semantic knowledge graphs (KGs) are increasingly used to
combine unstructured human-curated full-text literature data and
structured gene expression data from biomedical databases. In this
area, Gurbuz et al. here demonstrate how KGs can be used to find
new indications for existing drug targets in order to accelerate the
process of launching a new drug for a disease on the market.

Often newly sequenced prokaryotic genomes have poor initial gene
functional annotation and missing metabolism pathway gene
assignments. To counter these shortcomings, Lu et al. developed
PPA-GCN, a prokaryotic pathways assignment framework based on
graph convolutional network, to assist functional pathway assignments.

Galvão Ferrarini et al. describe a novel tool, Totoro, that aims at
predicting the metabolic reactions that are most likely active during
the transient states of a metabolic network as a result of network
perturbation simulations.

Zhao et al. propose a computational method called LncPNet to
predict potential lncRNA–protein interactions based on spatial
embedding a lncRNA–protein heterogeneous network into a
collection of low-dimensional latent representations.
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Network modeling, from the ecological to the molecular scale has become an essential

tool for studying the structure, dynamics and complex behavior of living systems. Graph

representations of the relationships between biological components open up a wide

variety of methods for discovering the mechanistic and functional properties of biological

systems. Many biological networks are organized into a modular structure, so methods

to discover such modules are essential if we are to understand the biological system

as a whole. However, most of the methods used in biology to this end, have a limited

applicability, as they are very specific to the system they were developed for. Conversely,

from the statistical physics and network science perspective, graph modularity has

been theoretically studied and several methods of a very general nature have been

developed. It is our perspective that in particular for the modularity detection problem,

biology and theoretical physics/network science are less connected than they should.

The central goal of this review is to provide the necessary background and present the

most applicable and pertinent methods for community detection in a way that motivates

their further usage in biological research.

Keywords: modularity, community structure, motifs, biological networks, systems biology

1. INTRODUCTION

The field of Systems Biology has many branches that focus on studying networks. It is common
to encounter in the literature terms such as metabolic networks, transcriptional networks, protein-
protein interaction networks, etc. These networks are graph-theoretical constructs composed of
nodes and edges that aim to describe the integrated state of a biological system. Nodes represent
the elements of the system, while edges represent the relation between any two of these elements.
Depending on the scale of the biological entities at hand, a network can describe systems such
as: ecological systems where each node is a biological entity itself; an organism with nodes
being organs or groups of organs; tissues or individual cells with genes, proteins, organelles, and
metabolites interacting with each other; down even to the level of amino acids interacting to build
a protein. Networks facilitate the identification of relevant entities and interactions through the
use of theoretical and computational analysis over experimental data. These analyses aim to make
predictions, or at least detailed and accurate descriptions of the underlying biological systems.
Since one of the most common applications of complex systems in biology is the representation
of biological interactions as edges or links of a network, the connectivity or interaction structure
of such a network is of utmost importance. This structure is known as the topology of the network
and in biological systems it is usually not random. This means that who is connected to whom
is relevant, and the distribution of links is arguably related to the particular functionality of
such systems.
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Alcalá-Corona et al. Modularity in Biological Networks

In biological systems, modularity has been associated with
properties such as robustness (Aldana and Cluzel, 2003), mainly
derived from the Boolean network approach (Kauffman, 1969).
The concept of robustness is related to the ability of a system to
withstand perturbations and retain its functionality, whichever
it may be (Aldana et al., 2007). Examples of robustness in
a biological system can be observed in biochemical networks
(Barkai and Leibler, 1997; Morohashi et al., 2002), signaling
networks (Igoshin et al., 2007; Espinal et al., 2011; Espinal-
Enríquez et al., 2017) and other complex biosystems. For
instance, in prokaryotic organisms, sigma factors, despite their
structural similarity, regulate different sets of genes, but the
regulatory function of a dysfunctional sigma factor can be
reassigned to other sigma factors making the organism functional
(Torres-Sosa et al., 2012). Another example of modularity arises
when a set of genes is regulated by the same transcriptional
factor (set known as a regulon). It has been proposed that
these sets of genes can give rise to functional modules in
Pseudomonas aeruginosa (Schulz et al., 2015) and that such
modules are essential for the adaptation and survival under
challenging environments.

One goal of studying biological systems as networks is to
understand how the interconnectedness and function of each
element derives in a system-level behavior. In order to uncover
these features one can look into the design principles of the
network. This means, to try to uncover the particular patterns
present in the network’s topology, such as the ways the nodes are
connected to each other; the functional groups they belong to;
or if nodes with a particular function agglomerate in subgroups.
Topological features, of course, are only partially responsible for
the actual design principles of biological systems. Connectivity
features common of biological networks, such as the approximate
scale-free nature of their connectivity distributions, hierarchical
and modular organization, set the stage for functional features
to emerge. Such functional features are a consequence of
the underlying organizational structure of the systems, their
physiological setting and environmental constraints. Regarding
network connectivity, it is known that the organization patterns
of large complex networks are often composed of structural
sub-units often called modules or communities (Girvan and
Newman, 2002). Communities and modules in the present
context are interchangeable terms, however in this manuscript
we will use the latter term as we believe it has a similar meaning
over a large number of disciplines, with the possible exception of
the Social Sciences and Mathematics.

2. MODULARITY IN BIOLOGICAL
SYSTEMS

So what is a module? Despite there is still no consensus on
what defines a module, a generally accepted notion is that
it corresponds to a tightly interconnected set of edges in a
network. Intuitively, the density of connections inside any so-
called module (within-connections) must be significantly higher
than the density of connections with other modules (between-
connections) (Thieffry and Romero, 1999; Girvan and Newman,

2002; Clauset et al., 2004; Palla et al., 2005). Modularity has
been helpful in many biological fields and can even be useful in
exploratory research (Serban, 2020). In the following sections, we
will present and discuss the latest developments of modularity
research in biological systems as well as the necessary concepts
and formal definitions to understand and promote the usage of
several modularity detection algorithms in the biological sciences
(Didier et al., 2018; Li et al., 2019).

2.1. Emergence of Modularity
In order to perform their vital functions and at the same time
comply with changing environmental conditions, living systems
must possess a high degree of internal organization. A likely
scheme to attain such a sophisticated degree of organization
is through the coupling of diverse biological processes, which
creates the needed correlations among their internal and external
constraints to perform a certain task. This theory is known as the
networks of processes (Clarke and Mittenthal, 1992) and suggests
that modules can be thought as clusters of coupled elements that
work under certain constraints. It also states that organisms can
be studied as super-modules (e.g., networks) made up of several
interplaying modules that adapt as a whole to changes in their
environment. Under this scheme, modularity can be thought of
as a very effective way to prioritize and optimize the correct
functioning of living systems, which are undoubtedly subject to
changing environmental conditions or even to entropic decay.

The question of how modularity emerges in biological
networks has no definitive answer yet, either. It has been shown
that dynamical networks, which include temporal processes
occurring in the whole spatial structure of the network, can give
rise to modular behavior when driven by growth, duplication
and diversification. These duplication-centered dynamic models
emerge from the fact that if some parts of a system undergo
duplication, the new system will be more modular than the
original (Lorenz et al., 2011). How modularity emerges is closely
related to the question of how and why it is preserved across so
many biological systems (Kashtan and Alon, 2005; Gibson, 2016).
This question has been addressed in evolutionary/developmental
biology (evo/devo) and in molecular systems biology as a kind of
intersection point between both disciplines. It has been argued
that there is indeed a relationship between modularity and
controllability (Constantino and Daoutidis, 2019).

Despite underlying mutational mechanisms have been
proposed to explain the emergence of modularity, selection and
other evolutionary forces have also been part of this discussion
(Wagner et al., 2001, 2007; Espinosa-Soto and Wagner, 2010;
Clune et al., 2013; Friedlander et al., 2013; Banerjee et al., 2017;
Verd et al., 2019; Jaeger andMonk, 2021), as are ecological factors
such as spatial distribution and population dynamics (Gilarranz,
2020). Biological modularity arise in the contexts of dynamical
process that may even challenge compartmentalization and cause
the breakdown of modularity or its rearrangement (Valverde,
2017; Wang et al., 2021).

In the next section, we will discuss the different notions
of modularity –particularly those more closely related to
the modular organization at the molecular, functional and
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cellular levels– and their application to a wide diversity of
biological phenomena.

2.2. Applications of Network Modularity
One clear example of application of network theory in biology
is the study of Gene Regulatory Networks (GRNs) (Davidson
and Levin, 2005). These networks can be conceptualized as
control systems that drive whole-genome expression patterns
(Hernández-Lemus et al., 2019). This coordinated expression
is attained through the orchestrated expression of transcription
factors and other regulatory molecules like siRNAs, histones,
etc. The wider availability of high throughput technologies has
sprouted a new wave of modularity research in GRNs. After
the completion of the human genome project (HGP), and
following the pioneering work of Kauffman (1969) and Britten
and Davidson (1969) in the late 1960s, transcriptional regulation
module discovery has become an extremely fruitful research
field. For instance, it has been demonstrated that modularity can
emerge as a consequence of gene co-expression in GRNs; by
associating the functions of these genes and their regulators, it
has been argued that gene co-expression may confer functional
advantages to the organisms, as genes with related functions are
likely regulated in a similar manner (Solé et al., 2002; Narula
et al., 2010). Gene functionality of several genes with no prior
functional description has already been predicted (Segal et al.,
2003; Lee et al., 2004; Tanay et al., 2004). Also, by integrating
gene expression levels with the modular structure, it was possible
to build a comprehensive map of gene regulation for a whole
organism (Zhu et al., 2008).

Community structure and modularity in metabolic networks
is another important research field. Many biochemical
interventions and biotechnological applications depend on
modularity, and with the advent of synthetic biology, the use of
modules will probably escalate in the near future, driven by the
possibility to evolve engineered biological systems (Parter et al.,
2007). Modularity in metabolic networks has been extensively
explored since the pioneering work by Ravasz et al. (2002) where
through the reconstruction of 43 metabolic networks from
different organisms, they found that scale free topologies were
ubiquitous. Briefly, in these networks the probability distribution
of connections on the network (degree-distribution) follows a
power law, so that most nodes will end up with few connections
and only a few nodes will end up with many. In this case, the
studied networks had values of the scaling exponent around 2,
and an average clustering coefficients (see section 3) about an
order of magnitude larger than expected for scale free networks.
This scaling exponent around 2, suggests that these networks are
probably under a dynamical regime between that of an ordered
system and the one of a chaotic one. This regime is known as
critical and it has been observed in many different complex
systems (Shmulevich et al., 2005). Another important theoretical
contribution of this work is the introduction of the topological
overlap matrix (Ravasz et al., 2002; Cheng et al., 2019).

The interactome (Sanchez et al., 1999) is a useful concept
related to Protein-protein (physical) interaction (PPI) networks,
which are also organized into functional subnetworks or
modules. An interactome is defined as a biological network,

which encompasses the complete set of molecular interactions
in a particular cell. These interactions range from physical (as
in PPI networks) to indirect, as is the case of epistatic or
gene-gene interactions, and may even include edges defined by
regulatory interactions like those of a GRN (Gómez-Romero
et al., 2020). Even if interactomes seem to be less clearly
defined than other biological networks, they may be used to
represent processes that, although not completely understood,
may be associated with some specific phenotypes. The human
disease network (HUDiNE) (Goh et al., 2007) was actually
created by using interactomes. HuDiNe, according to its creators
is a network of disorders and disease genes linked by known
disorder–gene associations. The observation that genes linked to
similar diseases present a higher likelihood of sharing physical
interactions between their products (e.g., PPI) and a higher
correlation in their expression profiles, lead to the conclusion that
such a network will likely display characteristic disorder-specific
functional modules. This fact was corroborated by analyzing the
topological structure of the HuDiNe (Goh et al., 2007). Since
the release of HUDiNE, interactomes related to disease have
been carefully curated and archived in structured databases, thus
making possible the discovery of new co-morbidities from a
molecular rather than epidemiological perspective (Menche et al.,
2015).

In the case of human diseases, modular network
decomposition has been applied to further our understanding
of the interactions driving the emergence of several complex
diseases (Sardiu et al., 2017; Tripathi et al., 2019; Lucchetta and
Pellegrini, 2020). One good example is the work of De Matos
Simoes and collaborators with cancer cells. By using a network
modularity analysis, they showed that transmembrane proteins
along with ion channel complexes and receptors play a significant
role in the pathogenesis of B-cell lymphoma. The authors based
their argument on the observation that central and peripheral
layers in the modular decomposition of the networks may play
different physiological roles. Hierarchical modular separation
may then provide clues as to cross-regulatory phenomena in
complex phenotypes. Specifically, they noted that thesemolecules
act via the communication disruption between the intracellular
regions and the peripheral regions of B cells (de Matos Simoes
et al., 2012). In pancreatic cancer, the disruption of intracellular
adhesion and cell-division cycles in the tumors were found to be
driven by clearly defined transcriptional modules (Long et al.,
2016). Also, network communities related to survival have been
found in regulatory networks from hepatocellular carcinoma
(Xu et al., 2016). Expression activity of the genes in such modules
may contribute to timely stratification and tumor staging of liver
cancer patients.

Other complex phenotypes have been dissected by analyzing
the community structure of their underlying networks. During
brain development, for example, it has been shown that the
perinatal transition leads to modular reorganization of the
brain, which is in turn associated with the development of new
functions. This modularization is also correlated with specific
gene sets whose expression are synchronously changing, as
they share transcriptional regulators (Monzón-Sandoval et al.,
2016). Similar methods have allowed the identification of
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distinctive molecular pathways that differentiate early and late-
onset temporal lobe epilepsy in children (Moreira-Filho et al.,
2015). These studies have pointed out that differentially expressed
modules in early onset epilepsy are related to neural excitability
and febrile seizures, whereas no neural excitability gene modules
were found for late onset. These findings support the hypothesis
that early onset epilepsies, even if accompanied by severe
hippocampal damage, may present compensatory effects. This
difference may set the basis for differentiated drug treatments.

Community structure in regulatory networks may also be
useful to discover potential molecular targets to treat complex
diseases (Muraro and Simmons, 2016). In coronary artery
disease, for instance, modules associated with the hypertrophic
cardiomyopathy pathway and membrane-related functions were
detected (Liu et al., 2016). These pathways, the authors suggest,
can provide a means to define a set of druggable process-
specific targets (Ashrafian et al., 2011). Transcriptional modules
associated with the response to allergens leading to seasonal
allergic rhinitis have been also identified by Shi and collaborators
(Shi et al., 2010). These modules revealed that theMAP kinase, B-
cell receptor and toll-like receptor signaling pathways are crucial
for the critical stages of allergic rhinitis. Regarding the role of
gene regulation on viral pathogenicity and how it has been shaped
by modular adaptation, it has been discussed how enhanced
redundancy leads to robustness of the infectious phenotypes
(Oliveira et al., 2013).

So far we have discussed several examples where finding
modules in biological networks lead to a better understanding
of the molecular and regulatory processes involved in certain
phenotypes and behaviors. A relevant fraction of the modularity
finding approaches used in network biology were developed
with a particular biological question in mind. The methods
thus developed were, in general, efficient to answer that kind
of questions but resulted somehow lacking generalizability. We
call these methods ad hoc, since they have been developed for a
special purpose. Most of these methods are indeed quite useful
on a case-by-case basis. However, since modularity analysis is
a relevant problem in contemporary theoretical biology, it is
desirable to have general methods, or at least methods with broad
applicability, to help lay the conceptual foundations of biological
modularity. We believe that a first step toward this aim consists
in applying the general methods developed in graph theory and
network science to biological questions and fine-tune them to
account for known biological phenomena. In the next section,
we will review several necessary concepts and useful methods
for modularity detection that come from a more theoretical
perspective. As such, these methods were developed to be useful
under any, or at least several, quite general circumstances. We
have also included a benchmark section, where we discuss how
these algorithms stand against each other in the discovery of
modules using both real and synthetic datasets. Although the
field of modularity detection in biological systems is somewhat
young, it has a long history in physics, and thus, many algorithms
are already out there making impossible to review all of them. A
later section will discuss the most relevant methods separated by
the algorithm they are based on in the hopes that the reader will
find some of them useful for their research.

3. NETWORK THEORY

In order to better understand the modularity detection methods
that will follow, we will briefly define/recall a few important
network properties. For a deeper coverage of these and several
other properties we suggest the reader to look, for instance, at the
review by Newman (2010). For an introductory lecture on the
importance of networks in biology and their main applications
besidesmodularity detection we suggest the review byGreen et al.
(2018).

3.1. Complex Networks: Concepts and
Definitions
For the sake of clarity, we will briefly introduce some well-known
definitions of network theoretical concepts.

DEFINITION 1. A network is formally defined as a graph G(V ,E)
over two sets: a set of nodes or vertices, vi ∈ V, (e.g., bio-reactants),
and a set of edges or links connecting such vertices (ei ∈ E)
(e.g., chemical reactions). The connectivity of the network is often
represented by the adjacency matrix A = Ai,j, where Ai,j 6= 0
implies an existing interaction between nodes vi and vj.

DEFINITION 2. The degree-distribution of a network refers to the
distribution of the number of connections per node, and is defined
as the number of connections a given node has to other nodes
(called the degree of the node). Thus, the degree distribution is
defined as the probability distribution of the degrees of all the nodes
of the network. This measure is often used as an indicator of the
relative importance of a particular node (Barabasi and Oltvai,
2004).

Mathematically: Let vmi be the set of vertices connected to a given
vertex (a.k.a. node) m (i.e., Ai,m 6= 0; ∀vi ∈ vmi ). We call vmi
the neighborhood of vertex m. The size, or cardinality, of this set
C(emi ) = km is called the degree or connectivity of vertex m, also
written as deg(vm).

DEFINITION 3. A Network motif is defined by a group of
connected nodes (a sub-graph) that is prevalent in a network or in
several networks. Each motif is thus associated with a particular
pattern of interconectedness between vertices, and may reflect a
framework in which particular functions are achieved efficiently.
These patterns describe arrangements of interconnection that are
present with a significantly higher frequency than in networks
where nodes are randomly connected (Milo et al., 2002).

DEFINITION 4. Intuitively, network modularity consists in

associating network nodes to different categories or subsets of the
network. Assignment is based on connectivity patterns within the
graph, rather than on some inherent node features. The formal
definition of network modularity is still controversial, but we
believe that by giving some enclosing definitions from graph
theory, we can gain a deeper understanding of this concept and
methods described below.

DEFINITION 5. Full/Overlapping partition. We may consider a
set Z of disjoint subsets of a network Z(V ,E) so that Z =
Z1 ˙⋃Z2 ˙⋃ . . . ˙⋃Zk. This is called a full partition of the network.
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If, on the other hand, we allow a non-empty intersection between

the subsets Zi
⋂

Zj 6= ∅, we have Z = Ẑ1
⋃

Ẑ2
⋃

. . .
⋃

Ẑk
which is called an overlapping partition of the network.

DEFINITION 6. Incomplete/Modular Partition. We can also
consider an incomplete partition of Z, i.e., one in which not
every vertex in V is assigned to a subset. In this case we
call M ⊂ Z a modular partition of the network, M =
M1

⋃

M2
⋃ · · ·⋃ Mk ⊂ Z. The subsets Mi (which may or

may not be overlapping) are called the modules of Z. There are
several ways in which a network can be partitioned. Here lies the
difficulty in defining modularity in complex networks: different
definitions of modularity may induce different modular partitions
of the network, which leads to different modularity measures.

DEFINITION 7. The clustering coefficient CC(i) for a particular
vertex i in a network is given by:

CC(i) = number of triangles connected to i

number of possible triangles connected to i
(1)

Here, a triangle is a set of three fully interconnected nodes. Since
0 ≤ CC(i) ≤ 1. Equation (1) can be rewritten as:

CC(i) = 2Ei

ki (ki − 1)
(2)

Where Ei is the number of triangles centered in vertex i and ki is
the degree of that vertex.

Once we have an operative definition of clustering coefficient, its
mean value is the average over all nodes i.

〈CC〉 = 1

N

N
∑

i

CC(i) (3)

〈CC〉 is a probabilistic measure of the abundance of triangles (not
necessarily triads, but also higher order motifs) in the network.

Global measures such as the 〈CC〉 are computationally cheap
(Fortunato, 2010). However, their utility is mostly restricted
to the case of hierarchic modularity scenarios (modules within
modules). Hierarchic modularity was originally defined as the
property of self similarity in the module distribution in a
large scale network, evidenced by a power-law behavior of the
clustering coefficient C(k) ∼ k−1. This relation in turns involves
the coexistence of a hierarchy of nodes with different degrees
of node-modularity –as measured by the node-specific clustering
coefficient–. In brief, under such assumptions, the higher a node
connectivity k is, the smaller its clustering coefficient, which in
the asymptotic regime gives rise to the inverse law, 1/k.

3.2. Network Models: Types and
Approaches
3.2.1. Weighted Networks

A weighted network is defined by the assignment of a weight
for each of the edges of the network. These weights are

established based on the type and strength of the interaction at
hand. Interestingly, weighted networks have proven to further
increase the reliability of the modules proposed. For instance, the
weighted overlap measure (WOM) is a similarity measure that
calculates the overlap between two sets weighted by their relative
contribution to the overall (joint set) (Smith, 1985). The WOM
has been used to define gene modules that are more cohesive
than those obtained through unweighted networks though this
is not always the case. Here a more cohesive module means
that the average value of the inter-module clustering coefficient
is higher than the average value of the network’s clustering
coefficient. Since its proposal, theWOMhas been used to recover
experimentally validated functional gene modules in cancer cells
and in yeast (Zhang and Horvath, 2005). More importantly,
it has been shown that modularity affects biological functions
as the dynamics of the whole network is determined by the
organizational patterns generated by themodules themselves. For
example, bi-stable switches, where weighted edges are essential
for bi-stability, are known to enhance regulatory feedback and
feed-forward loops, which in turn are related to the ability of
an organism to adapt to changing environments (Kashtan et al.,
2009; Gyorgy and Del Vecchio, 2014).

The functional role of regulatory modules has proved to go
beyond that of loops and motifs. By studying a transcriptional
network of myeloid cells, Alcalá-Corona and coworkers showed
that modules are consistently associated at the pathway level
to sets of biological functions (Alcalá-Corona et al., 2016).
Community structure has also proven to affect the dynamical
behavior of the network (Qi and Ge, 2006). By analyzing
simple models of gene regulation, Xu and Wang were able to
fully decompose a complex network in terms of independent
functional modules (Xu and Wang, 2010). Although clear cut
decompositions are not likely to occur in a real biological
networks due to pleiotropy, decompositions make possible to
observe modular effects in an idealized way. For instance, they
have been used to study the effects of the free scale topology
and of hierarchical modularity on the large scale structure of
GRNs (Zhan, 2007). When network structural properties are
supplemented with appropriate dynamic behavior, robustness is
enhanced (Aldana et al., 2007). This increase in robustness has
been shown to be due to the presence of large attractor basins
that lead to stable gene expression patterns (Sevim and Rikvold,
2008).

3.2.2. Multi-Level Networks

The advancement of graph theory along with interactomes gave
rise to the concept of multi-layered networks. Multi-layered
networks encompass several types of interactions and node
types. However, in this multiplex framework interactions are
integrated into different network layers and therefore more
information about the real underlying phenomena can be
retained (Didier et al., 2015). Adding extra dimensions to a graph
can make the associated mathematical analyses more intricate
and hinder the application of common topological approaches
to study modularity. Nevertheless, it has been shown that real
modules encountered in curated networks are better recovered
with modular algorithms applied to multilayered networks,
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compared with the same algorithms applied to single-layer
networks. A detailed mathematical framework for multilayer
networks—introductory, though not elementary—is found in the
comprehensive paper by De Domenico et al. (2013).

In addition to the multiple molecular levels of description
of a phenomenon, multi-layered networks can be adapted to
include multiple species which can be useful in disciplines such
as in comparative genomics. This extended approach also has
more robust scalability features than mono-layered networks
(Ritchie et al., 2016). Multi-layered networks have enforced the
development of new theoretical approaches need for discovering
modularity such as the Multiplex PageRank algorithm (Iacovacci
and Bianconi, 2016).

Another important feature of multi-layered networks is
that they allow a direct analysis of the functional features of
their subjacent modules (e.g., pathway-based strategies). This
approach is useful for studying phenotypes that are naturally
multi-layered, like those associated with genetic regulation where
multiple different sources (e.g., transcription factors, chromatin,
methylation, etc.) are responsible for the phenotype. For instance,
through the use of a multi-layered network of transcription
factors and microRNA co-targeting, along with protein-protein
interaction and gene co-expression (Cantini et al., 2015) were
able to find a set of cancer driver genes associated with the
community structure of the network.

A related issue to that of multilayer networks is multiscale
modularity. Despite highly connected nodes, or hubs, are
often labeled as the most important nodes of a network,
recent studies in the modular structure of the regulatory
networks of Escherichia coli, Saccharomyces cerevisiae, and
Staphylococcus aureus revealed an unexpected relevance for
low degree metabolites. By using flux balance analysis and
graph theoretical methods, Samal et al. (2006) were able to
discover connected clusters of low-degree metabolites. These
large clusters of low degree nodes turned out to be over-
represented in these metabolic networks so that a majority of
the essential metabolic reactions could be characterized by just a
few low degree metabolites. In this study, reactions whose fluxes
were strongly correlated formed well-defined communities in
metabolic networks of the organism. The large scale community
structure, that is, the network modules conforming relatively
large subnetworks, and the small scale modularity (partitions
of small motifs), represent a complex interplay that has been
shown to play an important role in metabolism under the
assumption of hierarchical network organization (Gao et al.,
2016). By introducing the concept of multiscale modularity, they
propose that network community structure may be defined in
several organizational levels, taking into account high and low
degree nodes.

4. MODULARITY DETECTION
ALGORITHMS

From the perspective of the statistical physics, computer science,
computational sociology, network science and complex systems
communities, there has been a significant amount of work

devoted to solve the modular partition or community detection
problem. Unlike what happened with biological networks, these
methods aimed at reaching formal and theoretically-founded
results with wide applicability. It is important to note that
there is the possible drawback of losing some interpretability
of the results in the quest for generality. However, it is our
belief that these methods will prove useful for the biological
community, as these approaches remain largely unknown and
offer complementary views of the same problem. With this in
mind, the following sections will be focused on introducing this
second perspective to the community detection problem.

Classification of community detection algorithms depends on
their approach to the graph partition problem. Although there
is a wide variety of methods and algorithms to approach the
problem of graph partitioning and networkmodularity detection,
they often fall in one of five (quite general and sometimes
overlapping) possible categories:

1. Methods based on data clustering
2. Methods based on optimization of the modular partition
3. Methods based on the spectral properties of the adjacency

matrix
4. Random walk based and other dynamical algorithm methods
5. Stochastic block models

As we will see, there are advantages, disadvantages and
limitations in all types of models. For this reason, it is wise to
consider the features, applicability and benchmark performance
before opting-in for a certain model.

4.1. Data Clustering-Based Methods
There are several methods based on measuring some significant
statistical similarity or distance over the biological data. Some
techniques have been developed to ascertain whether a set
of proposed modules adequately represents the whole set
of molecular determinants of a single disease, or closely
related diseases.

For instance, in Menche et al. (2015), a topological method
was devised in order to locate disease-related communities
within the interactome (whole set of interactions in a particular
cell). This method uses the overlap among communities of
different pathologies to predict disease-disease associations.
Although simple, this method has proved very useful and further
improvements have been made to the initial algorithm, in
particular on relation to the establishment of endo-phenotype
models as discussed in Ghiassian et al. (2015) and Ghiassian et al.
(2016).

One important limitation of clustering based methods rely on
the challenge to determine the optimal number of clusters. The
problem of an optimal number of clusters/modules is actually
an open challenge in theoretical computer science and graph
theory. Even approximate solutions often depend on the specifics
of the algorithm used. Some methods as the ones based on
spectral bisection have conditions to define an a priori number
of clusters, while other methods like those based on structural
properties, on dynamical process over the networks and those
which have a stochastic component; may determine a number of
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clusters, based on their large and local structure of the network,
an approach some consider to be more natural.

One relevant method for disease module detection is
DIAMOND (Ghiassian et al., 2015). The theoretical ground for
DIAMOND is that in incomplete interactomes “diseases cannot
be associated with topologically dense network communities”,
rather, the statistical significance of an interaction, meaning the
weight of the link, is the relevant quantity used to characterize
suchmodules. This highlights the impact of the node/link ratio in
the establishment of interacting structure and then in biological
function. By extending the ideas of the DIAMOND/HuDiNe
approaches it is possible to analyze the relationship between
drug targets and disease-proteins through a topological proximity
measure. This measure quantifies the interactions between drugs
and disease-proteins in the human disease interactome (Guney
et al., 2016) and can be used as a proxy for therapeutic effect.
This can be useful for establishing a basis for drug screening
and repositioning and evaluation strategies. Another approach
to detect modularity in the interactome was based on identifying
joint patterns of gene expression and drug response (Chen and
Zhang, 2016). This was done to gain further insight into the
biochemical mechanisms of drug action that may drive the
development of new therapeutic targets in cancer. Interactome
modularity has allowed de novo design of therapeutic strategies
in cancer and also allowed the creation of methods for drug
repositioning analysis (Chen et al., 2016). Such methods are
aimed at detecting multi-targeted drug candidates that may
disable malignant cellular functions.

Several methods have been proposed to analyze community
structure in PPI networks. Feature selection by clustering has
been applied to real and synthetic interaction data revealing
modules with increased biological significance for E. coli and
yeast networks (Henriques and Madeira, 2016). A similar
approach was used in the NCMine method (Tadaka and
Kinoshita, 2016) which is implemented as a plug-in for the
popular network visualization and analysis suite Cytoscape
(Adamcsek et al., 2006; Su et al., 2010; van Dongen and
Abreu-Goodger, 2012) and is based on a technique called near-
clique mining that distinguishes nodes in a network as either
“core” or “peripheral” to a given subnetwork. Topological Data
analysis (TDA) has also been used to detect topological network
modules in protein interaction networks. TDA encompasses
several statistical methods like clustering and perturbation
analysis to find structure in data. By deleting protein complexes
of the S. cerevisiae INO80 protein interaction network and
performing TDA, isolated modules that contain proteins with
shared biological functions were discovered to belong to the same
module, even if they mapped to distinct locations of the network
(Sardiu et al., 2017).

Clustering using genetic algorithms has been also applied with
certain success (Ramadan et al., 2016). In brief, an objective
function is built for exclusive clustering (nodes belonging to a
unique module) and overlapping clustering (a particular node
or set of nodes can be as indicated by spectral clustering
methods, see section 4.2). This function is then optimized by a
replication/mutation/recombination genetic algorithm in order
to detect modular components of the network identified as

protein complexes. One approach to detect such modularity in
GRNs is through phylogenetic profiling. This approach is based
on the idea that the joint presence or joint absence of two traits
across various species is used to infer a meaningful biological
connection, such as involvement of two different proteins in the
same biological pathway.

As it was mentioned, sometimes approaches made use
of hybrid methods, such is the case, for instance, of the
work by Servis and Clark (2021) that perform a cluster
identification strategy by using modularity optimization to
analyze chemical heterogeneity in complex solutions. We will
abound on modularity optimization in the next subsection.

4.2. Methods Based on Modularity

Optimization
Unlike the methods based on similarity of data, most of the
methods take into account the large-scale structure of the
network itself, defined by the edges between nodes, regardless of
the source of the data (Newman, 2012). Such as the case of the
methods based on and supported by some class of Modularity
optimization (see Definition 8).

In order to categorize different modularity measures, we
must distinguish between local and global methods that quantify
and assess network modularity. Measures of local modularity
emphasize scoring specific clusters or partitions of the network.
This score considers the number of modules that are dense
or sparsely connected in a given assignment (Reichardt and
Bornholdt, 2006). The more dense connections are within a
module and the more sparse the connections are from within
a module to outside vertices, the higher the modularity score
will be. The local modularity of a network is usually given
as the score of the highest-scoring partition. Finding the
best partition and evaluating its score solves the modularity
problem completely, but it relies on comprehensive enumeration
of partitions, a problem that often carries computationally
prohibitive combinatorial burdens (Fortunato, 2010).

The case of global modularity of a network is different in the
sense that global measures usually are computed without a priori
computing the network partitions. Instead, this measure relies on
other network properties such as the average clustering coefficient
〈CC〉. The rationale is that vertices that form a module should
have adjacent neighbors, as they increase themodular density and
induce the formation of triangles in the graph.

An important family of local modularity measures is based
on the concept of edge-betweenness, a concept introduced to
generalize the node-associated betweenness centrality measure.
Edge betweenness is then defined as the number of shortest
paths between pairs of nodes that run along a given edge. The
more paths traverse pairs of nodes traversed by an edge, the
more central the edge is for the global connectivity structure
of the network (Freeman, 1977). The first algorithm that used
this concept was proposed by Girvan and Newman (Newman
and Girvan, 2004) and is a paradigmatic example of the
application of local modularity measures. The method consists
in disconnecting sets of vertices by removing edges with larger
betweenness. This algorithm was applied to several simulated
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networks as well as a number of real networks with an a
priori known modular structure with good overall performance.
More importantly, Newman and Girvan also provided a formal
measure of network modularity.

DEFINITION 8. Given a network modular partition we have the
following:

Q =
∑

i

(eii − a2i ) = Tr(E)− ||E2|| (4)

Here, eij is the matrix element –from the modularity matrix E–
whose entries are defined as the fraction of all the edges in the
network that connects nodes in the i module to the nodes in the
module j, ai =

∑

j eij. Notice that, for an arbitrary matrix X, a

norm is defined as ||X|| =∑

i

∑

j xij.

Q is called the Girvan-Newman modularity of a network
partition, or sometimes just the Modularity. Q measures the
fraction of edges in the network connecting vertices within the
same module or community (or intra-community edge ratio) and
then subtracts form this fraction its expected value in a network
with the same partition scheme over randomly connected nodes.
Q = 0 implies that the partition’s modularity is not better
than random, whereas Q = 1 is indicative of a strong
modular structure.

Modularity can also be rewritten (Clauset et al., 2004) as:

Q = 1

2m

∑

i,j

[

Aij −
kikj

2m

]

δ(Ci,Cj) (5)

Where m is the total number of edges in the network. ki is the
degree for node i. Aij is the adjacency matrix. C is an indicator
function such that Ci = Cj implies that nodes i and j belong to
the same community, δ is Kronecker’s delta function. This way,
if two nodes i andj belong to the same community δ(Ci,Cj) = 1,
otherwise δ(Ci,Cj) = 0.

There is yet another (equivalent) way to represent the
modularity Q that may result even more useful in practice
(Fortunato and Barthelemy, 2007; Porter et al., 2009):

Q =
M
∑

s=1

[

ls

L
−
(

ds

2L

)2
]

(6)

The sum, over all M modules of the partition, ls is the number
of edges inside community s. L is the number of edges in the
network and ds is the total degree of nodes in module s.

These important ideas lead to the establishment of
Community Detection as one of the foundational problems
of Network Science (Newman and Girvan, 2003; Newman,
2004a; Kovács and Barabási, 2015). Maximization of modularity
Q has been proposed as a central idea in several optimal network
partition algorithms (Clauset et al., 2004; Newman, 2004b,

2006b). However, modularity optimization, also known as Qmax

algorithms, are constrained by a resolution limit that depends
on the overall size of the network and on the interconnection
density of the modules, which may lead to failure of Qmax

methods due to sub-optimal optimization caused by the presence
of a multitude of local minima on the modularity function
(Fortunato and Barthelemy, 2007).

A related issue with respect to large networks is that
calculating the modularity score Q (see Equation 6) belongs
to the family of NP-Hard or non-deterministic polynomial-
time problems. The main characteristic of these problems is
that they cannot be solved in polynomial-time, so they are
computationally and time consuming, precluding its direct use
on extremely large networks. Several heuristic approaches have
been proposed to deal with this problem (Danon et al., 2005;
Duch and Arenas, 2005; Guimera and Amaral, 2005; Newman,
2006b; Von Luxburg, 2007; Brandes et al., 2008). One particularly
useful technique is known as the Louvain method (Blondel et al.,
2008). This approach is based on a two-step heuristic: (1) a
maximal modularity full partition is obtained by merging nodes
in order to maximize modularity through a greedy method, (2)
then a network is formed in which nodes are the modules from
the first step. This stage is continued recursively until no further
improvement in modularity can be obtained.

A whole new family of methods was developed after the
introduction of the modularity measure Q. Most of these
methods aimed to maximize either Q itself or some proper
function of Q under the rationale that if one is able to find a
partition that maximizes Q, the induced community structure
would be optimal. In this family we can find the original works
by Newman (2004b) as well as later refinements of his method,
either by himself (Clauset et al., 2004; Newman, 2006b) or by
others (Guimera et al., 2004; Duch and Arenas, 2005; Blondel
et al., 2008; De Leo et al., 2013). However, since maximization
of the Q-measure has a resolution limit that depends on
the size of the network and the degree of interconnection
between the modules, the method is not fail-safe (Fortunato
and Barthelemy, 2007; Lancichinetti and Fortunato, 2011).
Some recent implementations, however, have been developed to
improve the results obtained under Q-optimization as is the case
of the works by Medus and Dorso (2009), Khadivi et al. (2011),
Gong et al. (2011), and (Bettinelli et al., 2012).

4.3. Spectral Graph Theory
Another family of algorithms is based on Spectral graph theory,
which uses the analysis of the eigenvalues of the adjacency matrix
or the Laplacian matrix of a graph. It consists in a transformation
of the set of nodes into a set of points in a space whose coordinates
are elements of eigenvectors, then the set of points can be
clustered via standard techniques (Fortunato, 2010). The change
of representation induced by the eigenvectors makes the cluster
properties much more evident (Donath and Hoffman, 1972;
Fiedler, 1973).

The analysis of the spectrum of the Laplacian matrix

L, is the most used approach in spectral clustering. This
matrix can be derived from the adjacency matrix A of
a network and it is constructed by reversing the signs
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of the non-diagonal entries and replacing the diagonal
entries with the degree of the corresponding node (See
Figure 1).

The Laplacian matrix can be written in block-diagonal form,
that is, the nodes can be ordered in such a way that the
Laplacian displays k square blocks along the diagonal, with some
entries different from zero, and all other elements vanish. Each
block is the Laplacian of the corresponding subgraph, so it
has the trivial eigenvector E1 with components (1, 1, 1, ..., 1, 1).
Therefore, there are k degenerate eigenvectors with equal non-
vanishing components in correspondence with the nodes of a
block, whereas all other components are zero. In this way, from
the components of the eigenvectors, it is possible to identify the
connected components of the graph, and then based on this
property, it is possible to find highly connected groups of nodes
and the expected number of modules in which the network may
be partitioned.

Since the values of the eigenvector components are close
for nodes in the same community, it is possible to use them
as coordinates, such that vertices turn into points in a metric
space. So, for M eigenvectors, the nodes can embed in an M-
dimensional space. Thus, modules appear as groups of points
well-separated from each other (Donetti and Muñoz, 2004).
Also, it is possible to use the Laplacian matrix property, in
which, if the graph has g connected components, the largest g
eigenvalues are equal to 1, with eigenvectors characterized by
having equal-valued components for nodes belonging to the same
component. Thus, the modules can be found by inspecting the
components of the eigenvectors with eigenvalue 1 (Capocci et al.,
2005).

Furthermore, in the context of Spectral clustering, there is
a remarkable relationship introduced by Newman (Newman,
2006b), between Modularity optimization and the spectral
properties of the adjacency matrix known as Spectral
optimization. We can rewrite the Q optimization in terms
of finding the spectrum of a particular matrix as we will
see below.

Starting from Equation (5), it is possible to define the
modularity matrix Bij as:

B = Bij =
(

Aij −
kikj

2m

)

Now, let us suppose a particular a partition of a network into just
twomodules. Thus we can assign to each node, a quantity si, such
as:

si =
{

+1, if a node i belongs to group 1

−1, if vertex i belongs to group 2

Thus, Q can conveniently be written in matrix form:

Q = 1

4m

∑

ij

Bijsisj =
1

4m
EsTBEs (7)

where Es is a column vector whose elements are si.

Then, in order to optimize this form of Q it is possible
to perform the so-called relaxation method (that is, allowing
its entries to take continuous values and retaining the norm
of the vector), which is one of the standard methods for the
approximate solution of vector optimization problems such as
this one. Thus, by differentiating and imposing the constraint
|s| = √

n or equivalently:

∑

i

s2i = n

The modularity maximization problem is now straightforward.
We now have a maximization problem with this norm as a
constraint, or equivalently, (n − ∑

i s
2
i ) = 0. This is done

by introducing a Lagrange multiplier λ, and taking the partial
derivative with respect to the components of the vector (one at
a time) of the following expression:

∂

∂si=k,j=k





∑

i

∑

j

Bijsisj + λ

(

n−
∑

i

s2i

)



 = 0 (8)

to obtain:





∑

i

Biksi +
∑

j

Bkjsj − 2λsk



 = 0 (9)

which leads to:
∑

j

Bkjsj − λsk = 0

∑

j

Bkjsj = λsk

for all k.
Which is in a matrix form an eigenvalue problem for the

modularity matrix:

BEs = λEs (10)

The value of λ that maximizes Q is the largest possible one, that
is the dominant eigenvalue of the matrix B.

It is worth mentioning, that similarly to this approach, the
spectral bisection method (Barnes, 1982), uses the spectrum of
the Laplacian matrix, to find partitions of a graph by dividing
it recursively into two groups. Every partition of a graph with
n nodes in two groups can be represented by an index vector Es,
whose component si is +1 if a node i is in one group and a1 if it
is in the other group. Then the cut size R of the partition of the
graph in the two groups can be written as:

R = 1

4
EsTLEs (11)

Finally, theModularity optimization approach can be extended to
a more than two modules, by writing an additional contribution
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FIGURE 1 | The Laplacian Matrix of a network. Panel (A) presents a small undirected network; Panel (B) shows the Adjacency Matrix A describing the network

connectivity of the network in (A); Panel (C) shows the definition of the Laplacian Matrix of a Network and panel (D) shows the Laplacian Matrix L of the network in

(A). The bold numbers represent the degree of node i, whenever i=j. This figure is intended for illustrative purposes, no actual results are presented.

1Q to the modularity upon further dividing a group g of size ng
in two as:

1Q = 1

4m

∑

i,j∈g



Bij − δij

∑

k∈g
Bik



 sisj (12)

1Q = 1

4m
EsTB(g)Es (13)

where δij is Kronecker’s δ, and B
(g) is the ng × ng matrix with

elements indexed by the labels i, j of nodes within group g.
Because Equation (13) has the same form as Equation (7) it
is possible to apply the spectral approach to this generalized
modularity matrix, just as before, to maximize 1Q.

In addition, themodularity matrix B also has always the trivial
eigenvector E1 with eigenvalue zero (like the Laplacian matrix),
because the sum of the elements of each row/column of the
matrix vanishes. Thus, it is also possible to optimize modularity

on bipartitions via spectral bisection, by replacing the Laplacian
matrix with the modularity matrix (Newman, 2006a,b).

4.4. Random Walk Based Models
The use of random walks to find modules on a network is based
on the somehow intuitive premise that a random walker moving
on the network will spent more time inside modules—due to
the high density of edges, thus many possible trajectories—than
hoping from one module to another. A first approach to this
problem was addressed by Zhou (2003) who used random walks
to define a distance between pairs of nodes, assuming that there
is a high likelihood that closer nodes—under this measure of
distance—belong to the same module. Such distance was used to
define global and local attractor nodes used to detect modules, i.e.,
minimal distance subnetworks. A different but related approach
was taken by Pons and Latapy (2006) on a method called
Walktrap. Here, distance is calculated via the probability that
a random walk moves from one module to another on a fixed
number of steps, then grouping nodes via hierarchical clustering.
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A method based on the application of the Markov property
of node-to-node walks called Markov Cluster algorithm (MCL)
was developed by Van Dongen (2001). MCL simulates a
diffusive process in the network. A stochastic matrix is obtained
by dividing every entry of the adjacency matrix Aij by the
corresponding degree of node i. This stochastic matrix is used to
calculate transition probabilities on a Markov random field. This
method is quite elegant and comparatively easy to implement,
however, its large computational complexity makes it difficult to
apply in practice for real (large) networks (even in sparse cases).

As already mentioned, for large sparse networks also the
standard versions of spectral based algorithms are suboptimal,
in the sense that in some cases these fail to detect communities
even when other algorithms such as belief propagation can do so.
Efforts to improve these spectral theory methods have been made
by resorting again to random walk dynamics, mainly through
implementing non-backtracking random walks (the random
walker cannot move backwards) over the network (Krzakala
et al., 2013; Newman, 2013; Zhang and Newman, 2015). Other
methods in the literature are built on ideas borrowed from
non-linear dynamic processes, such as spin-coupling models
with nearest neighbor interaction (Reichardt and Bornholdt,
2004), synchronized oscillators (Arenas et al., 2006; Arenas and
Diaz-Guilera, 2007), as well as generalized random walks (Van
Dongen, 2001; Zhou and Lipowsky, 2004; Pons and Latapy,
2005). Among this plethora of models, INFOMAP has been
shown to be quite reliable and computationally efficient (Rosvall
and Bergstrom, 2007, 2008).

The INFOMAP algorithm is founded on a clever combination
of randomwalk dynamics and information theory. Themain idea
is to reach optimal compression of the information needed to
describe the diffusion process of a set of random walkers. This
is achieved by using the random walk itself as a proxy for the
diffusion process via a sequential enumeration algorithm and the
use of tools of information theory and computational linguistics.

In a nutshell, the approach is quite similar to the way we
imprint location information on geographic maps of cities: you
can map a large number of close-to-each-other streets into a
neighborhood (“a module,” with its own description) and a series
of close-by neighborhoods into a town. The larger the scale of
these urban modules, the smaller the total amount of information
needed for their description. In a similar way, the INFOMAP
algorithm looks up for the minimal description length for the
modular partition of a network. The best partition is the one that
can be described with the minimal information.

In brief, the description length is a measure of the complexity
of a given process. By using the description length is possible to
characterize the trajectory of a random walk (or the trajectories
for an ensemble of random walkers), in the form of the
map equation:

L(M) = qxH(Q)+
m
∑

i=1

qxH(Pi) (14)

Here, L(M) is the description length of an ensemble of random
walkers moving through a given modular partition M. The first
term qxH(Q) represents the average number of bits needed

to describe the movements from nodes in one module of the
partition to nodes in another module, whereas the second
term represents the information for the intramodule walks.
Since by the coding theorem (Knuth, 1985), the information
needed to characterize inside module walks is smaller, a minimal
description length implies that most of the time walkers move
inside modules of a given partition, thus optimizing modularity,
allowing however for the presence of a number of intermodule
hops. This method uses a greedy algorithm, so it can be applied
quite efficiently even to large networks, directed or undirected.
There are also INFOMAP implementations to find hierarchic
modular structure (Rosvall and Bergstrom, 2011) and overlapped
modules (Esquivel and Rosvall, 2011).

4.5. Stochastic Block Models
Statistical inference provides a powerful set of methodological
tools useful in modularity detection. The usual way to proceed is
by adjusting a generative network model to the experimental data.
A stochastic block model (SBM) is by far, the most used model to
generate networks with a modular structure. The essentials of the
SBM are as follows:

The stochastic block model generates a number n of vertices
of the network; the algorithm makes a partition of the vertex
set {1, . . . , n}{1, . . . , n} into q disjoint subsets C1, . . . ,Cq i.e.,
the modules. By starting with a symmetric q× q matrix P
containing edge probabilities for all the possible connections.
These probabilities must be known a priori. Then the SBM is
generated by randomly sampling this edge set as follows: any
two vertices u ∈ Ci and v ∈ Cj are connected by an edge with
probability Pij.

Modularity detection works out by optimizing the
unnormalized log-likelihood that a given partition g of a
graph G in q modules will be reproduced by the SBM (Karrer
and Newman, 2011).

L(G|g) =
q
∑

i,j=1

eij log

(

eij

ninj

)

(15)

Here L(G|g) is the log-likelihood for a partition g of a given
networkG to be produced by the standard SBM. eij is the number
of edges connecting module i with module j of the partition, and
ni, nj are the number of nodes in modules i and j respectively.
The sum includes the case i = j. The strongest drawback of the
method is that it requires a priori knowledge of the number q
of modules in which the network has to be partitioned, although
this limitation has been recently overcome by using a Bayesian
formulation (Peixoto, 2018).

General SBM models (i.e., non-Bayesian) have been
demonstrated to be formally equivalent to modularity
optimization approaches that do not usually require a fixed
number of modules for the partition (Newman, 2013). Despite
this and the fact that maximum likelihood exact estimation is an
NP problem—so all solutions are approximate—SBMmodels are
still popular in statistics and machine learning algorithms.

As we have discussed in this section, topology based methods
for modularity detection are robust, general and intelligible. They
can also be benchmarked with experimentally available modular
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partitions. Such validation uses robust statistics, such as the ones
given by normalized mutual information measures. The strength
of these methods is that they do not rely a priori on any non-
topological information, as they are based on the (weighted or
un-weighted, directed or un-directed) connectivity as given by
adjacency matrices. This is the basis of their generality and broad
applicability, in particular to complex biological problems.

The fact that these methods do not need any prior
knowledge—aside from the connectivity structure—does not
preclude us to incorporate such information when available,
to enhance our intuition and empower our predictions when
applied to real large scale biological networks. For this reason
we strongly believe that the popularization of these approaches
within the computational and systems biology research settings
will prove to be highly beneficial for both, the construction of
more general approaches to study modularity in biology and for
the further development of analytic methodologies in the theory
of complex networks.

5. BENCHMARKING AND PERFORMANCE
TESTS

Whenever several methods perform a similar task, benchmarking
becomes necessary. However, as described in Tripathi et al.
(2016), a large heterogeneity among different community
structure discovery methods is often found. As many of the
available methods for module discovery have been developed as
ad-hoc solutions, they often lack reliability when applied to other
biological systems. Also, the intrinsic complexity of biological
modularity makes it hard for a single method to describe all types
of modules correctly. Nevertheless, in the following section we
will show how by resorting to theoretically sound and rigorous
methods of comparison that do not rely on the specifics of a
given biological system, one can attain precise measurements of
performance for any module detection method.

5.1. Testing Performance and Scoring
Measurements
Benchmarking community detection algorithms using real
biological networks is not optimal, as it is not clear what the ideal
partition is. However, real networks such as the social network of
bottle-nose dolphins from Doubtful Sound (New Zealand) built
and studied by Lusseau (2007), as well as the network of college
football teams obtained by Girvan and Newman (Girvan and
Newman, 2002) have been used for this purpose. Real biological
network communities (also called ground-truth communities)
are often inferred from non-topological studies carried out by
network curators, which based on experimental observations
(e.g., protein-protein interactions) define the network itself. As
these methods rely only on observed data, it is possible that
the resulting network is either incomplete or has spurious
interactions. So how can one find these modules and relate them
to particular functionalities, especially when such functionalities
are unknown? One general approach is to use random network
methods to test if the community or modular structure in
our networks is valid and significant (Sah et al., 2014). One

common approach consists in generating network models that
satisfy the constraints imposed by the real networks (such
as the connectivity, the number of nodes, etc.) and keep a
graph structure that is as random as possible. These network
realizations allow the use of a large set of tools already available
to analyze the topology of random networks. In particular, they
are useful for creating null-models that serve as a baseline to
which we can compare the significance of our partition model.
As such null models have been established, they can be used
to test biological functional hypotheses. This generation of null
models serves directly to generate scoring metrics that allow the
comparison and selection of the best network partitions. These
null-model networks may be generated synthetically, and this
way we could test to what extent the algorithm is able to found
the a-priori known communities.

There are two classic and widely used performance tests
for community detection algorithms: the GN and the LFR
(Fortunato, 2010), both of which belong to a class of methods
generated under the planted l-partitionmodel (Condon andKarp,
2001).

DEFINITION 9. In the planted l-partition model a network with
n = g · l nodes, is partitioned into l groups of g nodes each. Nodes
in the same group are linked with a fixed probability pin, whereas
nodes in different groups are linked with probability pout . Each
module is then a random Erdös-Rényi network with p = pin and
if every module were a node, the whole network would also be an
Erdös-Rényi graph with p = pout .

For a subgraph representing a module or community C, the

average connectivity degree will be given as 〈k〉in = pin(g − 1)
and the average external degree would be 〈k〉out = g · pout(l − 1)
(recall that for an Erdös-Rényi graph connected with probability p,
the average degree is given as 〈k〉 = p(n − 1)). If these conditions
hold, the average degree for the whole network is

〈k〉 = pin(g − 1)+ g · pout(l− 1) (16)

This way, if 〈k〉in > 〈k〉out (i.e., if the intra-module average degree
is greater than the inter-module average degree), then the network
will have well-defined community structure. This is equivalent to
the intuitive definition of modularity, namely pin > pout .

The GN test was designed by Girvan and Newman (Girvan and
Newman, 2002) to test their community detection algorithm. It
is a particular case of the planted l-partition model where the
authors fixed l = 4 and g = 32 to get a network composed
of 128 nodes forming 4 modules with 32 nodes each and an
average degree of 〈k〉 = 16. Within this framework link-density
is adjusted by scanning the values of the average in-degree 〈k〉in
and out-degree 〈k〉out to choose specific values to change the
community structure for each network provided that 〈k〉 =
〈k〉in + 〈k〉out = 16.

Under this model it is possible to have explicit expressions for
the average in- and out- degrees, namely: 〈k〉in = pin(g − 1) =
31 pin and 〈k〉out = g · pout(l − 1) = 96 pout . By varying the
values of pin and pout it is then possible to simulate networks
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with a stronger or weaker modularity. For instance, a clearly
defined community structure is induced if pin ≃ 0.5 or larger,
whereas a value of pin ≃ 0.25 or lesser precludes the existence of
well-defined modules.

For this benchmark communities are well-defined for 〈k〉in >

8. One of the advantages of the GN test is that by varying a single
parameter in a pretty simple network it is possible to contrast
different network partition methods. In order to test a particular
method via the GN test one has to calculate a similarity measure
between the partition of the GN network as given by this method
against the natural partition of the network in four modules
of the same size. A highly used similarity measure—proposed
by Newman and Girvan (Girvan and Newman, 2002)—is the
fraction of edges correctly classified, though a more objective
measure can be the normalized mutual information between
partitions (see Equation 17) (Arenas et al., 2008).

In spite of its simplicity and mathematical rigor, the GN
test presents a couple of important shortcomings derived from
unrealistic assumptions. First, all the nodes are expected to have
the same degree. Second, all the communities must be of the same
size. Clearly real complex networks, such as those encountered in
biology, are characterized by long-tailed degree distributions or
power law-like ones, and also by heterogeneous community sizes.
Some improved versions of the GNmethod have been developed
such as the one presented in Fan et al. (2007) where different
weights are assigned to inner and outer edges, regarding their
position in the communities.

The fact that the planted l-partitionmodel generatesmutually-
interconnected Erdös-Renyi random graphs implies that all the
nodes will have almost the same degree and all the communities
will have exactly the same size. Of course, these two features do
not match with what is observed in real networks. To tackle this
problem, Lancichinetti et al. proposed the LFR Benchmark test
(Lancichinetti et al., 2008). The LFR test assumes that the node
degree distribution and the module size distribution follow a—
more realistic—power law behavior. Each node shares a fraction
1 − µ of its edges with nodes within its community and a
fraction µ with nodes in other communities. Hence 0 ≤ µ ≤ 1
the mixing parameter is equivalent to a normalized version of
the 〈k〉out used in the GN test. The LFR test was devised for
undirected, unweighted networks, but there are implementations
for directed, weighted graphs including the possibility to have
overlapping communities (Lancichinetti and Fortunato, 2009a).
Aside from purely computational costs, the main performance
test for network community detection algorithms must establish
a clear criterion to compare the degree of similarity between the
modules discovered (i.e., the specific partition) by an algorithm
and the real (in the test, a priori known) partition. There are
several proposals in the complex network literature as how to
measure similarity between different partitions (Meilă, 2007),
some of them based on pair recounting and group coincidence
counts (Fortunato, 2010).

Additionally, two widely used measures are the fraction of
correctly classified edges and the normalized mutual information
between partitions. The former was proposed by Girvan and
Newman to test their algorithm, but can be generalized to other
benchmark tests. The criteria for the correct classification is as

follows: Each of the modules Ai of the partition found by the
given algorithm is compared to all of the actual modules Bi,
known a priori from the real network partition. When more than
half of the nodes in one of these Ai correspond to those of a
community Bi then Ai is considered to be correctly classified
and no more comparisons between Ai and the rest of the Bis are
carried out. In the contrary case (less than half corresponding
nodes) or when the community Ai is smaller than half the size
of the given Bi, then the module is compared to the rest of the
Bi’s until exhaustion. This criterion is quite stringent since there
are cases in which one may consider that some of the nodes have
been correctly classified by the algorithm but the measure (total
node count divided by the size of the network to give a number
between 0 and 1) rules them out.

DEFINITION 10. The normalized mutual information between

partitions (NMIBP) was proposed by Danon et al. as a similarity
measure (Danon et al., 2005) built on ideas proposed by Ana and
Jain (2003), Kuncheva and Hadjitodorov (2004).

The rationale is that if two partitions are similar, very little
information is needed to infer one partition given the other. One is
able to calculate the mutual information between two partitions A
and B by building a confusion matrix N where rows correspond to
the actual modules and columns correspond to the modules found
by the given algorithm. The Nij-th element of N is the number of
nodes in a real (known a priori) community i that are also present
in the community j detected by the algorithm. Since the partitions
under comparison may have a different number of groups (the
modules or communities), N is not necessarily a square matrix.
This way the similarity between two partitions A and B is given
by the normalized mutual information measure (NMI) as follows:

NMI(A,B) =
−2

∑CA
i=1

∑CB
j=1 Nij log

(

NijN

Ni.N.j

)

∑CA
i=1 Ni. log

(

Ni.

N

)

+∑CB
j=1 N.j log

(

N.j

N

) (17)

Here, the number of actual modules (partition A) is denoted by CA,
the number of modules found by the algorithm (partition B) is CB,
the sum over the row i of the matrixN = Nij is Ni. and the sum over
column j is N.j and N is the total number of nodes. If the partitions
A and B are identical, then NMI(A,B) = 1, whereas completely
dissimilar partitions give NMI(A,B) = 0.

This measure is highly used in the performance tests for
community detection algorithms since it is highly sensitive as it
quantifies explicitly the amount of information recovered by the
algorithm from the original topological structure of the network
(Lancichinetti and Fortunato, 2009b; Lancichinetti et al., 2011;
Tripathi et al., 2016). The NMIBP measure can be used in the
GN and LFR performance tests, both in standard and overlapping
partitions (Lancichinetti and Fortunato, 2009a).

More recently there have been some other approaches that
propose new benchmarks that provide actual techniques to
determine which is the most suited algorithm in most
circumstances based on observable properties of the network
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under consideration. Also considering the use of the mixing
parameter µ and the Normalized Mutual Information measure
(NMI) (Yang et al., 2016). There are also benchmarks based
on novel methods that generate networks with topological
properties found in empirical biological networks (Sah et al.,
2014; Gilbert, 2015).

Despite the high performance of algorithms and methods
shown on the artificial networks generated by benchmarks and
its test with the µ (mixing factor), for example on the LFR test,
an open question is, whether the methods with good results
on benchmarks necessarily find meaningful modules in actual
networks (Jebabli et al., 2018; Cherifi et al., 2019).

It may happen that the community structure found by
some methods with high performance in benchmarks, does
not necessarily correspond to correct ground-truth community
structure—that is, the one based on real known node groups,
or derived from some metadata or even identified by the node
attributes—and vice versa. There could be a substantial difference
between structural communities and metadata groups (Orman
et al., 2012; Hric et al., 2014; Jebabli et al., 2018).

So, for a fair assessment of the performance of some methods,
it is necessary to have a good match between the detected
partition and the attribute-based partitioning for considering
that a method is reliable. Both tests are complementary, and we
recommend applying both of them to perform a complete and
accurate assessment of an actual community structure.

Nonetheless, to overcome these limitations, exploiting the
topological features of the so-called “community graphs” (where
the nodes are the communities and the links represent their
interactions) has been proposed to evaluate the algorithms;
in contrast with metrics defined at node level that are fairly
insensitive to the variation of the overall community structure.
Thus, if the ground-truth community structure is available, it is
possible to compare it vs. the one discovered by these algorithms
by using these clustering-based metrics as has been proposed by
some authors (Orman et al., 2012; Hric et al., 2014; Jebabli et al.,
2018; Cherifi et al., 2019), where more emphasis has been put on
the topology of the community structure.

In this direction, some modifications to the LFR benchmarks
have been proposed to make generated networks more realistic
(Orman et al., 2012). In this work, authors studied generated
networks in terms of community-centered topological properties
to evaluate some methods, they used such properties to compare
community structures to rank the tested community detection
algorithms. As well, recently da Fonseca Vieira et al. (2020) tested
some representative state-of-the-art methods for overlapping
community detection (Cherifi et al., 2019) with synthetic and
real-world benchmark Ground-Truth networks showing that,
although the methods can identify modular communities, they
often miss many structural properties of the communities.

5.2. Good Performance Methods
Commonly Applied to Biological Networks
Beyond presenting the benchmarking for the performance of the
different algorithms, it is important to point out which methods
we think are good for finding modules, given the biological

question under consideration. The question of which algorithm
is the best for biological networks is not easy to answer, it will
depend on the context of the research question and the data on
which the network is built.

However, two of these graph-theoretically-grounded, general
purpose algorithms have been widely applied in biological
networks with good and significant results, such methods
are the Louvain (Blondel et al., 2008) and Infomap (Rosvall
and Bergstrom, 2008). Both methods have good performance
and accuracy scores, as we can see from the several artificial
network bencharmking analyses (Lancichinetti et al., 2008, 2009;
Lancichinetti and Fortunato, 2009a; Sah et al., 2014; Gilbert,
2015; Yang et al., 2016), as well as in Ground-Truth networks
and also in terms of community-centered topological properties
(Orman et al., 2012; Hric et al., 2014; Jebabli et al., 2018). In
addition, both methods show good results and performance
in biological networks, even in comparison with more recent
methods (Mall et al., 2017b; Debnath et al., 2021). Furthermore,
they also have been proved as standard methods to identify
biologically meaningful modules in biological networks (Zheng
et al., 2021) and even for evaluating significant topological
differences between networks (Mall et al., 2017a). In addition,
they have been incorporated on different Bioinformatic analysis
suites and tools, as well as implemented in different programming
languages widely used today, such as R, Python, MatLab, and
C++ and incorporated into standard widely network analysis
libraries such as igraph.

The Louvain method (Blondel et al., 2008) is by far the most
widely used method in biological networks, showing significant
results and meaningful modules (Praneenararat et al., 2011) even
compared with newer methods in recent studies (Şen et al.,
2014; Bennett et al., 2015; Rahiminejad et al., 2019; Calderer
and Kuijjer, 2021). The method is indeed still widely used
nowadays, for example, in the context of SARS-COV-2 analyses
(Zheng et al., 2020). The efficiency and high performance of this
method lie on its taking into account the whole structure of the
network and searching for the best partition in an algorithmic
greedy fashion. In addition, this method has been extended and
applied to bipartite biological networks (Pesantez-Cabrera and
Kalyanaraman, 2016; Calderer and Kuijjer, 2021) as well as to
multilayer and multiplex biological networks (Mucha et al., 2010;
Didier et al., 2015; Mittal and Bhatia, 2018).

On the other hand, Infomap is accepted as a very well-known
method in module detection (Acharya et al., 2012) and even
as a method for comparing the performance and accuracy of
novel methods in biological networks (Lecca and Re, 2015),
and has been incorporated in some bioinformatic layouts as a
standard community detection framework (Aldecoa and Marín,
2014; Zhou and Xia, 2018; Farage et al., 2021). Moreover, has
been widely adapted and extended by its authors in several
ways to different kinds of networks and problems in community
detection, for example, hierarchical module detection (Rosvall
and Bergstrom, 2011), bipartite networks (Kheirkhahzadeh et al.,
2016) and multilayer networks (De Domenico et al., 2015). In
addition, these extensions have proved to give meaningful results
in the context of biological networks as ecological networks
(Pilosof et al., 2020; Farage et al., 2021), multiplex genetic datasets
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(Mittal and Bhatia, 2018) and breast cancer networks (Alcalá-
Corona et al., 2018a). The efficiency and high performance of
Infomap lie in how information flow in a network can reveal
the structure of it (Esquivel and Rosvall, 2011; Aslak et al., 2018;
Eriksson et al., 2021), combined with a strategy of optimizing
partitions such as the Louvain method, which make it one of the
most robust and applicable methods for all kinds of networks
and giving meaningful results (Kawamoto and Rosvall, 2015;
Emmons and Mucha, 2019).

Finally, it is worth mentioning that other three methods have
been demonstrated to be efficient and reliable in the context of
biological networks in comparison with Infomap and Louvain:
the Spinglass Method (Reichardt and Bornholdt, 2004, 2006),
OSLOM (Lancichinetti et al., 2011), and Label Propagation

approach (Garza and Schaeffer, 2019).
Thus, we can suggest as a general strategy for community

detection in biological networks to apply both Louvain and

Infomap, in addition to one of these three latter methods and

then consensing the partition by the Consensus Clustering

approach (Lancichinetti and Fortunato, 2012) to compute a
unique community structure.

6. APPLICATION EXAMPLE: COMMUNITY
DETECTION METHODS FOR CANCER
NETWORKS

Network approaches have been extensively used for instance, to
observe structural differences between cancer and non-cancer
related networks (Reyna et al., 2020; Wang et al., 2020). These
differences, often carry functional features that may help to
understand such complex phenotypes (Miecznikowski et al.,
2016; Drago-García et al., 2017; de Anda-Jáuregui et al., 2019;
Dorantes-Gilardi et al., 2020).

Finding functional modules in cancer has been a matter of
intense research. A common method to infer such modules
resorts to the so-called Weighted gene co-expression network
analysis (WGCNA) (Zhang and Horvath, 2005; Langfelder et al.,
2008). In this method, Pearson correlation is used to evaluate
pairwise gene co-expression. Such co-expression network can be
decomposed into modules by using different methods.

For instance, in Ai et al. (2020), the authors used the
dynamic tree cut method (Langfelder and Horvath, 2008)
to infer modules in a microarray-based colorectal cancer
(CRC) gene co-expression network. This method improves the
classic hierarchical clustering that sets a fixed cutoff value. A
dynamic branch cutting depending on the dendrogram shape
is implemented. With this approach, Ai and cols., found that
GUCA2A, GUCA2B, and CDH3 genes were highly correlated
with the occurrence of CRC.

Along similar lines, WGCNA was used to analyze 182 CRC
and 54 normal samples (Qiu et al., 2020). There, a k-means
clustering was used to find modules, and the hub genes from
those modules were separated into samples with high and low
expression. The authors identified that overexpression of MYL9,
MYLK, and CNN1 genes was associated with poorer outcome in
CRC patients.

In breast cancer, efforts have been made to observe modules
that may be underlying functional processes (Wilkinson and
Huberman, 2004; Zhu et al., 2008; Cantini et al., 2015). It is widely
known that breast cancer is a highly heterogeneous disease. This
heterogeneity can be traced down to the genetic level (Alcalá-
Corona et al., 2017).

Molecular subtyping provides a helpful tool to classify tumors
by identifying common patterns in their genetic expression.
One of the most used classification methods is PAM50 (Sørlie
et al., 2001). Samples are grouped based on the molecular
signature. With this method, breast cancer can be divided
into four main differentiated subtypes: Luminal A, Luminal B,
HER2+, and Basal-like. Each subtype has a different clinical and
histopathological manifestation.

Network approaches to identify modules in breast cancer
molecular subtypes has been a matter of intense research. For
instance, the infomap algorithm has been used to reveal
functional modules in HER2+ breast cancer transcriptional
network (Alcalá-Corona et al., 2018b). Additionally, it has
been observed that in the HER2+ tumors related network, a
hierarchical modular structure appears (Alcalá-Corona et al.,
2018a).

In basal-like breast cancer, network modularity has been used
to observe functional modules and discern whether or not those
modules are shared between the cancer and the non-cancer
network (de Anda-Jáuregui et al., 2019). It has been observed
that the basal breast cancer has a different distribution of module
size between cancer and non-cancer networks (de Anda-Jáuregui
et al., 2019). Additionally, those modules are composed of
different genes.

In all those cases, cancer networks are formed by small
connected same-chromosome gene components. Often, said
components coincide with modules independent of the
community detection method. However, this is not always the
case. For example, in García-Cortés et al. (2021), for Luminal A
breast cancer, an RNA-Seq-derived gene co-expression network
was decomposed into communities by using four different
methods: Fast greedy (Clauset et al., 2004), Infomap (Rosvall and
Bergstrom, 2008), Leading eigenvector (Newman, 2006b) and
Louvain (Blondel et al., 2008).

The aforementioned methods have different postulates
and different approaches to detect communities. In that
work (García-Cortés et al., 2021) it was demonstrated that,
independent of the algorithm used to detect communities,
the results were very similar in terms of the number of
detected communities and the nature of the genes observed in
each community.

Despite modules being quite similar, independently of the
method to detect them (Jaccard indexes between modules
obtained by the different methods, are larger than 0.95), the
algorithm with optimal modularity was the Louvain method.
Interestingly, Modularity is larger in the case of Luminal A
network than the healthy network, for all methods.

An additional effect observed when comparing cancer and
non-cancer derived networks, is a high proportion of same-
chromosome gene-gene interactions in cancer phenotypes. On
the other hand, healthy tissue-derived networks are composed

Frontiers in Genetics | www.frontiersin.org 15 September 2021 | Volume 12 | Article 70133122

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Alcalá-Corona et al. Modularity in Biological Networks

of interactions between genes from any chromosome in a
homogeneous fashion. This phenomenon has been called loss
of long-distance co-expression in cancer (Espinal-Enríquez et al.,
2017). This abrupt change has been reported for different tissues
such as breast cancer (Espinal-Enríquez et al., 2017; de Anda-
Jáuregui et al., 2019), each breast cancer molecular subtype
(García-Cortés et al., 2020), clear cell renal carcinoma (Zamora-
Fuentes et al., 2020), lung adenocarcinoma and lung sqamous
cell carcinoma (Andonegui-Elguera et al., 2021). It is worth
noticing that modularity has been used as an indirect measure
of coordinated gene function (Solé et al., 2002; Segal et al., 2003;
Lee et al., 2004; Tanay et al., 2004; Zhu et al., 2008). In this
case, modules do not always represent gene function, but often
act as a proxy for spatial clustering between genes from the
same chromosome.

The studies just mentioned are just a handful instances,
illustrating how network modularity determination is a
becoming an essential approach to biological discovery.

7. CONCLUDING REMARKS

As we have already discussed, complexity in biological systems
can be understood partially by using network approaches.
Modularity is often an inherent component of complex biological
networks. However relevant, network modularity discovery (or
community detection, as is also called) is a daunting task. Its
importance in theoretical biology, to describe the emergence
of functional behaviors in biological systems, as well as its
use in understanding the underlying principles behind such
functionality make it a worthy tool in biology.

In the past years, a number of relevant approaches to this
problem have been developed in the computational and systems
biology settings. Most of these approaches, although extremely
informative are built upon Ad Hoc assumptions and are thus not
easy to generalize. Hence, they provide useful information, but
are too specific. On then other hand, the network science and
statistical physics research communities have been developing
a series of quite general modularity detection algorithms. Here
we present some of them, organized as families of methods,
depending on their methodological foundations: (i) clustering
algorithms, (ii) modularity optimization methods, (iii) methods
based on the spectral properties of adjacency matrices, (iv)
methods based on random walks and (v) methods based on
stochastic block models. These broad families of methods along
with the benchmarks that have been developed to evaluate their
performance may constitute a relevant toolbox for the analysis
of biological systems from a more general perspective. We

argue that by resorting to these methods (freed from the design
constraints typical of Ad Hocmethods) will allow to focus on the
actual biology rather than on the method’s specificities.

The problem of modularity and the discovery of functional
communities in biological networks is an important emerging
field of research. Omic high throughput technologies and
the rise of computing power as well as the development
of novel analytical algorithms have allowed the generation
of bio-molecular network models at an unprecedented pace.
This has led us with the need to develop theoretical and
computational tools to extract biologically useful (e.g., functional
ormechanistic) information from such large scalemodels. Awide
variety of biological questions that can be answered—at least
partially—by knowing the modular structure of the underlying
networks, are being added to the current research scenario in
the systems biology and genomics communities. A number of
powerful mathematical and computational schemes to deal with
modularity are also currently under development.

In the preceding review, we have discussed both, the biological
problems and the computational approaches to the problem of
modularity in complex bio-molecular networks. It is our sincere
desire that works like this will stimulate the discussion between
researchers in all the involved fields. A discussion that may in
turn strengthen the ties of collaboration and ultimately leads to
fruitful cross-fertilized scientific discoveries.
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A Network-Centric Framework for the
Evaluation of Mutual Exclusivity Tests
on Cancer Drivers
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One of the key concepts employed in cancer driver gene identification is that of mutual
exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that
has common functionality in the same molecular pathway. Several ME tests have been
proposed recently, however the current protocols to evaluate ME tests have two main
limitations. Firstly the evaluations are mostly with respect to simulated data and
secondly the evaluation metrics lack a network-centric view. The latter is especially
crucial as the notion of common functionality can be achieved through searching for
interaction patterns in relevant networks. We propose a network-centric framework to
evaluate the pairwise significances found by statistical ME tests. It has three main
components. The first component consists of metrics employed in the network-centric
ME evaluations. Such metrics are designed so that network knowledge and the
reference set of known cancer genes are incorporated in ME evaluations under a
careful definition of proper control groups. The other two components are designed as
further mechanisms to avoid confounders inherent in ME detection on top of the
network-centric view. To this end, our second objective is to dissect the side effects
caused by mutation load artifacts where mutations driving tumor subtypes with low
mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of
the third main component, the confounding issue stemming from the use of nonspecific
interaction networks generated as combinations of interactions from different tissues is
resolved through the creation and use of tissue-specific networks in the proposed
framework. The data, the source code and useful scripts are available at: https://github.
com/abu-compbio/NetCentric.

Keywords: mutual exclusivity, network-centric mutual exclusivity evaluation, cancer drivers, cancer genomics,
tumor mutation load

1 INTRODUCTION

Cancer is a disease caused mostly due to a gradual accumulation of somatic alterations that give rise
to pathway dysregulation through alterations in copy number, DNA methylation, gene expression,
and molecular function. An important challenge in cancer genomics is to distinguish driver
mutations from passenger mutations. The former are those determined to be causal for cancer
progression, whereas the latter are characterized as those not leading to any selective advantage.
Several computational methods have been proposed for the identification of cancer driver genes or
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driver modules of genes by integrating mutations data with
various other types of genetic data; see Dimitrakopoulos and
Beerenwinkel. (2017), Zhang and Zhang. (2018), Bailey et al.,
2018, Tokheim et al., 2016 for recent comprehensive evaluations
and surveys on the topic.

A phenomenon observed frequently in the data pertaining to
the alterations that the tumors acquire is mutual exclusivity (ME);
a driver mutation is less likely to occur in case of an earlier
mutation that has common functionality in the same molecular
pathway (Thomas et al., 2007; Yeang et al., 2008; Leiserson et al.,
2016; van de Haar et al., 2019). Therefore several driver gene or
module identification approaches employ ME detection as part of
their problem definitions and optimization goals (Babur et al.,
2015; Ciriello et al., 2012; Leiserson et al., 2013; Kim et al., 2015;
Ahmed et al., 2019; Baali et al., 2020). Such a central role in driver
gene and module identification has led to the design of many
different approaches for defining and computing mutual
exclusivity. Some of these approaches are based on
combinatorial definitions of mutual exclusivity (Vandin et al.,
2012; Leiserson et al., 2013; Sarto Basso et al., 2019; Ahmed et al.,
2019; Song et al., 2020; Baali et al., 2020). In most cases the
combinatorial definitions are incorporated and tested within a
driver gene or module identification framework, rather than as
stand-alone ME tests. On the other hand, the vast majority of the
ME detection approaches are based on statistical tests (Ciriello
et al., 2012; Szczurek and Beerenwinkel, 2014; Leiserson et al.,
2015; Constantinescu et al., 2015; Hua et al., 2016; Canisius et al.,
2016; Leiserson et al., 2016; Kim et al., 2017; Liu et al., 2020;
Zhang et al., 2020) and in most cases for such approaches the
specific goal is to provide ME significance results. Therefore the
focus of the proposed framework is the evaluation of the latter set
of approaches consisting of the statistical ME tests.

Among such approaches, MEMo builds a graph based on gene
similarities and extracts cliques from this graph. To determine
whether each clique has significant mutual exclusivity, it then
proposes a null model generated by randomly permuting the set
of genomic events, while preserving the overall distribution of
observed alterations across both genes and samples, and
introduces a Markov Chain Monte Carlo (MCMC) permutation
strategy based on random network generationmodels (Ciriello et al.,
2012). Szczurek and Beerenwinkel. (2014) propose a probabilistic,
generative model of mutual exclusivity, explicitly taking coverage,
impurity, and error rates into account. Based on such a model, they
provide a statistical test of mutual exclusivity by comparing its
likelihood to the null model that assumes independent gene
alterations. Mutex defines the alteration of two genes to be
mutually exclusive if their overlap in samples is significantly less
than expected by chance, where the statistical significance of the
overlaps are calculated using a hypergeometric test with the
assumption of a uniform alteration frequency among samples
(Constantinescu et al., 2015). This may not always be the case as
inmany data sources there are hyper-mutated samples. The problem
is resolved partially by simply excluding such samples from the
analysis. CoMEt (Leiserson et al., 2015) on the other hand provides
an exact statistical test for mutual exclusivity conditional on the
observed frequency of each alteration with the goal of introducing
less bias towards high frequency alterations. Based on this it provides

a tail enumeration procedure to compute the exact test, as well as a
binomial approximation. DISCOVER provides a statistical
independence test that makes no assumption of identical gene
alteration probabilities across tumors (Canisius et al., 2016). The
alteration probabilities are estimated by solving a constrained
optimization problem guaranteeing the probabilities are
consistent with both the observed number of alterations per gene
and the observed number of alterations per tumor. The tumor-
specific gene alteration probabilities are then used to compute the
probability of concurrent alterations which in turn are used to decide
whether the number of tumors altered in both genes deviates from
the expectation through an analytical test based on the Poisson-
binomial distribution. WeXT provides a weighted exact test that
conditions simultaneously on the number of samples with a
mutation and the per-event, per-sample mutation probabilities
(Leiserson et al., 2016). A recursive formulation to compute
p-values for this weighted test exactly and a saddle-point
approximation of the test are proposed. WeSMe provides a
permutation-based test and an approximation of significance
through a weighted sampling technique that enables further
improvements in running time spent for sampling and a way to
obtain a better precision without increasing the computational time
significantly (Kim et al., 2017). Mina et al. propose the SELECT
method which uses a weighted version of mutual information to
identify significant mutual exclusivity or co-occurrence patterns
where significance is estimated by comparing against patterns
observed in random permutations of the data (Mina et al., 2017).
Two recently suggested ME tests are FSME (Zhang et al., 2020) and
MEScan (Liu et al., 2020). The former proposes a seed-and-extend
strategy to alleviate the computational cost of a permutation-based
test. The seed pairs are constructed by a combinatorial formulation
incorporating both ME and the coverage of the pair. The seeds are
then grown with new genes by employing an independence test.
MESCan provides a test statistic that incorporates a patient and
gene-specific background mutation rate in the calculation to adjust
for the background noise, and that includes a gene-specific weight to
down-weigh genes with high mutation rates. Such a statistic is then
employed in an MCMC algorithm followed by a false discovery rate
control.

We propose a network-centric framework to evaluate the
pairwise significances found by statistical ME tests. It is
important to make a distinction between the network-centric
view of the current study and that of the previous studies
employing both network data and the concept of ME (Ciriello
et al., 2012; Leiserson et al., 2013; Kim et al., 2015; Ahmed et al.,
2019; Baali et al., 2020). The latter are network-centric in the
sense that the proposed ME tests are applied on interacting pairs
or subnetworks as part of a more general goal of identifying
cancer driver genes/modules. Thus due to the nature of the set
objectives their evaluations focus on the success of output genes/
modules matching reference cancer-related drivers/pathways.
The proposed study takes on an approach in the opposite
direction; we assume the interaction network and the reference
cancer-related drivers to be inputs to our framework which
evaluates the success of various ME tests. The focus of the
proposed framework is on pairwise significances since one of
the major application areas where ME tests are commonly
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employed is knowledge-based cancer driver identification where
pairwise ME significances are of major essence. In terms of the
general objectives our work is most similar to that of Deng et al.,
2017, where a framework for performance comparisons of
statistical ME detection approaches is proposed and executed
on six such tests. An important distinction is that the
performance analysis of Deng et al. is based on experiments
with simulated data and the framework does not suggest any
mechanism to avoid confounders inherent in ME detection. One
such confounder is due to the alterations specific to cancer
subtypes (Deng et al., 2017; van de Haar et al., 2019).
Alterations in different subtypes may be incorrectly diagnosed
with ME, although the alterations are not due to any natural root
causes of ME such as redundant functionality. Inspired by the
observation that mutual exclusivity is enriched among physically
interacting pairs of genes (Dao et al., 2017), our network-centric
view aims to recognize such false positives by constructing
reference sets based on known drivers gathered from
neighborhoods of interaction networks. Furthermore, inspired
by the mutation load confounding concept of van de Haar et al.,
2019, we extend our network-centric framework to dissect side
effects caused by mutation load artifacts; mutations that drive
tumor subtypes with low mutation load might be incorrectly
diagnosed as mutually exclusive. A possible drawback of the
proposed network-centric evaluation framework would be due to
the use of nonspecific interaction networks that are generated as
combinations of interactions from different tissues and are thus
suboptimal in resolving confounding issues of mutual exclusivity.
In order to detect whether there exists such discrepancies or to
limit their effect if they do, we therefore refine the network-
centric approach by designing further tests on tissue-specific
networks (TSN) we construct based on gene co-expression.

2 METHODS

The overall network-centric ME evaluations framework has three
main components. The first one consists of definitions of the
metrics employed in the network-centric ME evaluations. Such
metrics are designed so that network knowledge and the reference
set of known cancer genes are incorporated in ME evaluations
under a careful definition of proper control groups. The second
component detects whether the use of the interactome
information provides similar advantages in ME corrections of
pairwise mutual exclusivity findings as the subtype-stratification
idea suggested by van de Haar et al., 2019. Finally, the third
component extends our framework to incorporate tissue-specific
networks with the aim of reducing the possible side effects of
using nonspecific interaction networks.

2.1 Metrics for the Network-Centric Mutual
Exclusivity Evaluations
Assuming that cancer driver genes in the same pathway are more
likely to show mutually exclusive mutation profiles, we utilize the
interactome to devise a strategy for evaluating the ME methods
and the effects of the interactome information on quantifying

ME. Let G, C, T ,S, pt, c denote respectively the input Protein-
Protein Interaction (PPI) network, the employed cohort, the
statistical ME test undergoing the network-centric ME
evaluations, the golden standard reference gene set of known
cancer drivers, the p-value threshold for significance, and the type
of the control group to be employed. LetNS(gi) denote the set of
genes from S that are in the neighborhood of the node
corresponding to gene gi in the PPI network G. For a gene
gi ∈ S, corresponding to each neighbor gj ∈ NS(gi), we
randomly select a gene gr from a control group X c(gi), and
compute TPcur, FPcur, based on the − log-transformed p-values
pi,j and pi,r as computed by the ME test T . Here pi,j denotes the
significance of the mutual exclusivity of the pair gi, gj for gi ∈ S
and gj ∈ NS(gi), and pi,r denotes the significance of the mutual
exclusivity of the pair gi, gr for a random gene gr from the control
group. Based on the premise that cancer driver genes interacting
in the PPI network are likely to exhibit ME, a pair gi, gj belongs to
the set of True Positives if pi,j is significant and a pair gi, gr belongs
to the set of False Positives if pi,r is significant.

To obtain robust results, the selection of the random genes
from the control group is repeated robustness_iterations number
of times, which is set to 100 in all the evaluations, except for those
testing the robustness of the framework with respect to various
parameter settings. Finally the medians of these 100 instances are
summed over all genes gi ∈ S to provide the necessary statistics
TP, FP. Thus precision, sensitivity, and the F1 scores
are computed based on these statistics. Precision is calculated
as |TP|/(|TP| + |FP|). Sensitivity is calculated with the formula
|TP|/|P| where P corresponds to condition positives which are
defined as the gene pairs gi, gj ∈ S where gi, gj interact in G.

We note that limiting our focus solely on these conventionally
formed TP, FP classes may be misleading as each one considers
the significance of pi,j and pi,r individually. A more detailed
inspection with a simultaneous consideration of their values
could prove more insightful in certain cases since they both
involve a common gene gi. Towards this aim we introduce the
strict versions of these conventional classes. More specifically
TPstrict consists of gi, gj pairs where pi,j is significant not only with
respect to the given threshold but also as compared to the p-value
of the control pair gi, gr. Similarly FPstrict consists of the control
pairs gi, gr, where pi,r is more significant than both the threshold
value and pi,j. Based on these strict classes we can compute three
metrics: precisionstrict, sensitivitystrict, and F1strict. Precisionstrict is
defined as |TPstrict|/(|TPstrict| + |FPstrict|) and sensitivitystrict is
defined as |TPstrict|/|P|. Such a consideration is especially
convenient in reducing any potential bias inherent in genes
like TP53 which have large mutation frequencies almost
exclusively in tumors with small numbers of mutations; both
pi,j and pi,r are likely to be significant in such a scenario giving rise
to vagueness in the conventional F1 score. A comparison of
F1strict values based on the two statistics simultaneous by their
nature, TPstrict and FPstrict provides a more rigorous evaluation in
such cases.

For the network-centric ME evaluations we employ two
different definitions for the control groups. For the first one,
the control group X 1(gi) consists of genes in S that do not
interact with gi in the PPI network. For the second one, X 2(gi)
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consists of neighbors of gi in the PPI network that are not in S. In
the latter case only the genes gi ∈ S for which the number of
neighbors not in S is larger than or equal to the number of
neighbors in S are taken into account.

2.2 Network-Centric Mutual Exclusivity
Corrections in Relation to Mutation Load
Association
Some statistical mutual exclusivity tests are based on the
assumption that gene’s alterations across tumors are
identically distributed. Among the approaches considered in
this study Fisher’s Exact Test and MEGSA belong to this
category. However, it has been observed that the number of
alterations per tumor can vary quite considerably, even in tumors
of the same type; colorectal tumors with microsatellite stability
have a median of 66 non-synonymous mutations, but colorectal
tumors with microsatellite instability have a median of 777
mutations (Vogelstein et al., 2013; Leiserson et al., 2016). It
has been shown that under such settings the mutual
exclusivity tests relying on identical alteration probabilities
across tumors may lead to reduced sensitivity for mutual
exclusivity analysis (Canisius et al., 2016). The effects of
varying alteration probabilities on pairwise mutual exclusivity
calculations have been formalized within the context of the so-
called mutation load confounding (MLC) in a recent study by van
de Haar et al., 2019. MLC is a correlation between the number of
statistically significant mutual exclusivity findings and the
mutation load association (MLA) of a gene. MLA of a gene is
calculated by running a logistic regression where a gene’s binary
mutation status indicating whether the gene is mutated or not in a
tumor is used as the only feature to predict the mutation load of
that tumor. Mutation load is defined as the number of genes that
are mutated in a tumor. Once the coefficient of the feature is
obtained by fitting the logistic regression model, it is standardized
by dividing by the standard error to make it comparable across
the genes. This standardized coefficient value is defined as the
MLA value. Note that negative MLA values correspond to higher
mutation frequencies in tumors with lowmutation loads, whereas
positive values correspond to higher mutation frequencies in
tumors with high mutation loads. Strong negative correlations
between the MLA of a gene and the number of statistically
significant pairwise mutual exclusivities have been observed,
implicating the finding that the more negative a gene’s MLA,
the higher the number of other genes that show mutual
exclusivity with that particular gene (van de Haar et al., 2019).
However, such a negative correlation does not always imply true
ME since a gene that exclusively shows large mutation frequency
in tumors with low mutation loads, naturally has a better chance
of forming mutually exclusive pairs with other genes. Thus extra
sources of information are necessary to filter out the pairs with
true ME relations among a set of statistically significant pairwise
mutual exclusivities postulated by some exclusivity test. van de
Haar et al., 2019 make use of the subtype information for such a
purpose and show that MLC can be reduced by correcting via
tumor subtype stratification. Such a correction greatly reduces the
number of gene pairs reported to show mutual exclusivity,

especially for pairs that include genes with low MLA. A major
drawback is the absence of subtype information for many tumors.
As part of our network-centric ME framework, we suggest that
such a correction can be efficiently done with the interaction
network data, rather than or better yet on top of the subtype
information. For this purpose we calculate the correlation
between the number of statistically significant pairwise ME
findings and the MLA for two settings; one where pairwise
mutual exclusivities are sought between a gene in S and all
other genes in S, and the other where a gene in S is checked
against only its PPI neighbors that are in S. The computations of
the two settings are repeated with the subtype-stratified data as
well, to see the added value of the network-centric ME corrections
on top of the subtype-based corrections on statistically significant
pairwise MEs.

2.3 Network-Centric Mutual Exclusivity
Evaluations in Relation to Tissue-Specific
Networks
Rather than using a common nonspecific network for all the
cancer types, in this component of our evaluation framework we
employ TSN based on the tissue in which the tumor develops. To
construct the TSN for a particular tissue, we start with the original
PPI network and remove the edges between the pairs of genes that
are not co-expressed in the corresponding tissue. For this
purpose, we download RNA-seq datasets from GTEX portal
(GTEXConsortium, 2020). See Supplementary Table S49 for
the total number of available samples for each tissue. To
determine the co-expressed genes, we follow the procedure
described in Luck et al., 2020. For each pair of genes that have
an edge in the original PPI network, we identify the number of
samples where both genes have Transcripts Per Kilobase Million
(TPM) values ≥1. We then divide this number with the total
number of samples where either gene has a TPM value ≥1. The
resulting value is called the co-expression ratio. Gene pairs
interacting in the original network are included in the TSNcor

if the co-expression ratio is ≥ cor, for a given threshold cor.
In addition to applying the network-centric metrics

introduced in Section 3.1 on the constructed TSNs, we also
propose a more detailed evaluation in terms of ROC analysis
based on tissue-specificity. For this purpose, we define the gene
pairs with co-expression ratio value of 1 as tissue-specific gene
pairs. Similarly, the gene pairs with co-expression ratio values
≤0.5 are called non-tissue-specific gene pairs. To test whether a
specific ME test identifies stronger mutual exclusivities for the
tissue-specific gene pairs in S, we rank the gene pairs in S in
increasing order of p-values. To construct the control group, we
rank the same number of random samples of gene pairs not in S
with respect to the p-values making sure that the sizes of the
positive (or negative) sets of gene pairs not in S are exactly the
same as those that are found for the gene pairs in S. For both gene
pairs in S and gene pairs not in S, the set of positives consists of
the tissue-specific gene pairs, whereas non-tissue-specific gene
pairs are labelled as negatives. We then compute the True Positive
Rate (TPR) and the False Positive Rate (FPR) for each case. Note
that for robustness considerations the control group
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computations are repeated 100 times and the median TPR and
FPR values are reported.

3 RESULTS

3.1 Input Data and Parameter Settings
The somatic mutation data from TCGA was preprocessed and
provided by van de Haar et al., 2019. The 8 different cancer types
and their corresponding tumor samples within the dataset is as
follows: BLCA (411), BRCA (1026), COADREAD (498), LUAD
(568), LUSC (485), SKCM (468), STAD (438) and UCEC (531).
The preprocessing step involves the removal of all mutations with
“variant_classification” of “Silent,” “3’UTR,” “Intron,” “5’UTR,”
“RNA,” “3’Flank” and “5’Flank” from the TCGA data. The input
data is then further filtered by mutation frequency threshold, t, to
include genes with > t mutations across the cohort. More
specifically, with t � 20 we include the genes that are mutated
in more than 20 samples within the cancer type under study.
Regarding subtypes, we download subtype information for BRCA
from the cBioPortal (Cerami et al., 2012; Gao et al., 2013) and the
CMS stratification for COADREAD from (Guinney et al., 2015).
We use the COSMIC Cancer Gene Census database to compile
the set of known cancer genes (Sondka et al., 2018).

For the results presented in the main document we employ the
IntAct PPI network as it is a comprehensive and well-
characterized database (Orchard et al., 2014). As a
preprocessing step, we remove duplicate edges and edges
below the confidence threshold of 0.35 from the network. The
final network contains 15,079 nodes and 103,520 edges. For the
gene expression data employed in the construction of TSNs, we
download RNA-Seq data from the Genotype-Tissue Expression
(GTEx) portal (GTEXConsortium, 2020) (05-06-2017).

For the comparative evaluations of our network-centric
framework described in the previous section, we choose six
popular statistical mutual exclusivity methods: DISCOVER
(Canisius et al., 2016), DISCOVER Strat (Canisius et al., 2016;
van de Haar et al., 2019), Fisher’s Exact Test, WeXT (Leiserson
et al., 2016), MEMo (Ciriello et al., 2012) and MEGSA (Hua et al.,
2016). Among these, MEMo and MEGSA are originally designed
to output p-values for a set of genes with size > 2. For MEMo, we
re-implement the first part of the algorithm where pairwise ME
p-values are estimated. We use Q � 100 and N � 10, 000 as
suggested by the original paper (Ciriello et al., 2012). ForMEGSA,
pairwise ME p-values are calculated by applying chi-square
cumulative probability less than or equal to the value of the

log likelihood calculated by the funestimate function. With
regards to the parameter settings of our proposed framework,
we employ the values of 5 and 20 for t.

3.2 Mutual Exclusivity Evaluations Based on
Defined Metrics
Table 1 and 2 show the results of evaluating the 6 ME detection
methods on COADREAD data where t � 20 and we use the data
from 498 patients for which subtype information is available. We
useX 1 andX 2 as the control group in Table 1 and 2, respectively.
We first discuss the results of X 1. We observe that DISCOVER
Strat gives the highest precision and precisionstrict values. The
ranking of the other methods from best to worst in terms of
precision or precisionstrict is as follows: WeXT, DISCOVER,
MEMo, MEGSA and Fisher’s Exact Test. A comparison of the
precision and precisionstrict values distinguishes two groups of
ME methods; for DISCOVER, DISCOVER Strat, Fisher’s Exact
Test, and WexT the precisionstrict values are greater than or equal
to the precision values, whereas the exact opposite is observed for
MEGSA and MEMo. This suggests that the performance of the
methods in the latter group gets worse when random control gene
pair is considered simultaneously in the precision calculation,
that is precisionstrict. Compared to the precision, we observe much
larger differences among the sensitivity or the sensitivitystrict
values output by the employed methods. We can group the
methods into two where the first group contains WeXT,
MEMo and DISCOVER, and the second group contains the
rest of the methods. The first group of methods give much
larger sensitivity or sensitivitystrict values than the second. For
instance, the sensitivity value obtained with WeXT is an order of
magnitude larger than that of Fisher’s Exact Test. This also shows
that the second group of methods are more conservative than the
first group of methods. WeXT is the least conservative approach
based on its high sensitivity value. Even though WexT predicts
many significant p-values, it still has a competitive precisionstrict
value which is slightly lower than the maximum observed value
(0.725 vs 0.727). Accordingly, WeXT obtains the best F1 score
and F1strict score which is followed by MEMo and DISCOVER.
The remaining three methods give much smaller F1 scores and
they rank as follows from highest to lowest: MEGSA, DISCOVER
Strat and Fisher’s Exact Test. Comparing the conventional F1
score with the F1strict score of each ME method, the largest
difference is observed for MEMo indicating that the
consideration of the random pair as a control affects its
performance dramatically. Another interesting observation is

TABLE 1 | Results of network-centric ME evaluation framework with control group X1 COADREAD t20 (498 samples, 196 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.661 0.220 0.331 0.708 0.183 0.291
DISCOVER Strat 0.727 0.041 0.078 0.727 0.041 0.078
Fisher’s Exact Test 0.500 0.031 0.058 0.500 0.031 0.058
MEGSA 0.611 0.056 0.103 0.588 0.051 0.094
MEMO 0.658 0.329 0.439 0.647 0.237 0.347
WExT 0.676 0.403 0.505 0.725 0.329 0.453
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the lower performance of DISCOVER Strat compared to
DISCOVER which suggests that the use of subtype
information is not useful for COADREAD. Table 2 shows the
results where X 2 is used as the control group. Since X2(gi) is
defined as the non-CGC neighbors of gi in the PPI network, we
can only consider the CGC genes that have more non-CGC
neighbors than CGC neighbors. As such, the number of pairs
included in this analysis is much smaller than that of Table 1 (107
vs 196). The ranking of the methods in Table 2 with respect to F1
score and sensitivity remain the same as Table 1. However, there
are differences in the ranking with respect to other metrics. For
instance, WeXT ranks best in terms of precision whereas the best
ranking method in Table 1, DISCOVER Strat, ranks the fifth.
Compared to Table 1, the precision values of all the methods are
smaller in Table 2. We see the opposite trend for sensitivity
values. These changes are in parallel with the increase in percent
significant p-values output by the methods. For instance, the
percentage of significant p-values output by DISCOVER is 12% in
Table 1 and 18% in Table 2. We also observe differences between
the conventional and the strict versions of the employed metrics.
WeXT and DISCOVER have increased precisionstrict values
compared to precision whereas we observe the opposite trend
for the rest of the methods. Additionally, the ranking of the
methods with respect to F1 score and F1strict score is different.
Namely, MEMo’s ranking decreases from second highest to third
highest when we switch from F1 score to F1strict score.
Accordingly, DISCOVER’s ranking improves from third
highest to second highest based on F1 score. This increases

the confidence of DISCOVER results as F1strict requires a
stricter definition of true and false positives. Supplementary
Table S1 shows the results with X1 control group and t � 20
filtering for the other cancer types. A detailed discussion of these
results are available in the Supplementary Material.

Table 3 and 4 show the COADREAD results of t � 5 setting
with c � X1 and c � X2, respectively. Using a lower value for t
increases the number of gene pairs tested in our analysis. When
we compare these results with the results we obtained when t �
20, we observe few differences. Though the number of tested gene
pairs is larger, the percentage of significant p-values obtained by
the methods decreases. For instance, the percentage of significant
p-values output by WeXT for COADREAD data decreases from
42 to 14% when t is changed from 20 to 5. This is likely related to
the larger inclusion of low mutation frequency genes when t � 5.
An interesting observation for t � 5 results is the decrease in
DISCOVER Strat’s performance. For COADREAD, DISCOVER
Strat’s precision and precisionstrict value is the highest for t � 20
when X 1 is used as the control group. However, when t � 5, we
observe that it ranks after WeXT and DISCOVER in terms of
precision/precisionstrict value. Similarly, for BRCA dataset,
DISCOVER Strat ranks after WeXT for both control groups
X 1 and X 2 (Supplementary Table S25B, Supplementary Table
S37B).

Lastly, we investigate the robustness of our results with respect
to robustness_iterations value, the p-value significance threshold
value, the reference gene set and the employed PPI network. The
results together with a discussion of these results are available in

TABLE 2 | Results of network-centric ME evaluation framework with control group X2 COADREAD t20 (498 samples, 107 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.537 0.276 0.365 0.579 0.210 0.308
DISCOVER Strat 0.455 0.048 0.086 0.400 0.038 0.069
Fisher’s Exact Test 0.444 0.038 0.069 0.375 0.028 0.052
MEGSA 0.571 0.075 0.133 0.538 0.066 0.118
MEMO 0.566 0.388 0.460 0.495 0.215 0.300
WExT 0.575 0.438 0.497 0.596 0.295 0.395

TABLE 3 | Results of network-centric ME evaluation framework with control group X1 COADREAD t5 (498 samples, 1748 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.647 0.052 0.096 0.658 0.046 0.086
DISCOVER Strat 0.618 0.012 0.024 0.618 0.012 0.024
Fisher’s Exact Test 0.583 0.008 0.016 0.565 0.007 0.014
WExT 0.645 0.121 0.203 0.668 0.102 0.177

TABLE 4 | Results of network-centric ME evaluation framework with control group X2 COADREAD t5 (498 samples, 1625 CGC-CGC pairs).

Method Precision Sensitivity F1 Score Precisionstrict Sensitivitystrict F1 Scorestrict

DISCOVER 0.721 0.052 0.097 0.746 0.048 0.090
DISCOVER Strat 0.641 0.013 0.025 0.641 0.013 0.025
Fisher’s Exact Test 0.619 0.008 0.016 0.619 0.008 0.016
WExT 0.670 0.118 0.200 0.712 0.103 0.180
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Supplementary Table S2-S47. As a summary, our conclusions
remain the same in these different settings and the largest
differences are observed when the employed PPI network is
changed.

3.3 Mutual Exclusivity Evaluations Based on
Corrections via Mutation Load Association
Having compared theME tests with respect to our novel network-
centric evaluation framework, we now assess whether including
network knowledge reduces the mutation load confounding
(MLC) problem introduced by van de Haar et al., 2019. van
de Haar et al. identified a strong negative correlation between the
MLAs of genes and their percent significant findings in mutual
exclusivity tests. In van de Haar et al., 2019, these statistics are
computed for a set of 341 genes from an established cancer gene

panel (Cheng et al., 2015) where, for each gene, mutual exclusivity
tests are performed with all the other genes in the panel. Here, we
first perform a similar analysis where we use the COSMIC CGC
database (Forbes et al., 2017) to define the reference cancer gene
set as it is more comprehensive and up to date.

Figures 1A shows the MLA of the reference cancer genes vs
the percent significant findings in mutual exclusivity tests
performed with DISCOVER for the TCGA COADREAD
cohort (498 tumors). We observe a strong negative correlation
between MLA values and percent significant findings in mutual
exclusivity tests (Pearson correlation -0.88, p-value 4.0e − 25)
similar to van de Haar et al., 2019. In Figures 1B, we take into
account the PPI information to calculate percent significant
findings. Namely, for each CGC gene, we perform mutual
exclusivity tests only with its PPI neighbors that are also in
CGC. Note that CGC genes which do not have any CGC

FIGURE 1 | Comparison of mutual exclusivity results of DISCOVER and DISCOVER Strat on TCGA COADREAD cohort (498 samples) (A) The scatterplot of
percentage significance of ME runs (p-value<0.05) of DISCOVER on COADREAD data where tests are performed between a CGC gene and a random subset of other
CGC genes so that ME of a CGC gene of interest is checked with same sized group of genes in both A and B. (B) The scatter plot of percentage significance of ME runs of
DISCOVER where tests are performed between a CGC gene and its PPI neighbors that are in CGC (red) compared with (A) in gray. (C) The scatterplot of
percentage significance of mutual exclusivity runs of DISCOVER Strat where tests are performed between a CGC gene and a random subset of other CGC genes (blue)
so that ME of a CGC gene of interest is checkedwith same sized group of genes in both C and D, results from (A) are shown in gray for comparison. (D) The scatterplot of
percentage significance of mutual exclusivity runs of DISCOVER Strat where tests are performed between a CGC gene and its PPI neighbors that are in CGC (red)
compared with (C) in blue.
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neighbors are excluded from this analysis. To make a fair
comparison between Figures 1A,B, only the CGC genes that
have CGC neighbors are shown in Figures 1A. We also ensure
that the mutual exclusivity of a gene of interest is checked with
same sized group of genes in both Figures 1A,B. To achieve this
in Figures 1A, for each gene, we compute mutual exclusivity with
a random subsample of the CGC reference set, the same size as
the set of CGC neighbors of that gene. We repeat this random
sampling 100 times and plot the mean percent significant findings
value. For reference, Supplementary Figure S3A, S3D contains
versions of Figures 1A,C, where all CGC genes (i.e., with and
without CGC neighbors) are plotted and mutual exclusivities are
checked between all CGC pairs, as it was done in van de Haar
et al., 2019.

In Figures 1B, we observe a reduced correlation when network
information is included (Pearson correlation -0.4, p-value 4.91e −
4). We also run DISCOVER Strat where stratification is based on
CMS subtypes (Guinney et al., 2015). We plot these results in
Figures 1C where we again ensure comparability with Figures
1D where both subtype and network information are considered.
Comparing Figures 1A and Figures 1C, we verify the findings of
van de Haar et al., although with less significance in correlation
difference (Pearson correlation −0.73, p-value 2.8e − 13). It
should be noted that the subtype stratification inherently
causes an overall decrease in percent significant findings, not
specific to genes with low MLA. On the contrary the idea of ME
corrections through network incorporation, materialized in the
comparison of Figures 1A and Figures 1B, inherently leads to an
increase in percent significant findings. Most of the decreases
occur in genes with small number of CGC neighbors. When we
compare Figures 1D to Figures 1B, the decrease in correlation
from −0.4 to −0.36 indicates that including subtype information

is still useful when used on top of network-based corrections we
propose.

Next, we utilize waterfall plots to compare the outputs of
DISCOVER and DISCOVER-Strat to assess how MLA and
subtype information can affect mutual exclusivity findings.
Figures 2A shows two selected gene pairs that display
significant mutual exclusivity based on both DISCOVER and
DISCOVER-Strat estimations on TCGA COADREAD dataset.
The mutual exclusivity between BRAF and NRAS, two members
of the MAPK pathway, is well-known and has been detected in
multiple cancer types including melanoma, myeloma and
colorectal cancer (Samowitz et al., 2006; Roth et al., 2010;
Popovici et al., 2012) BRAF is frequently mutated in patients
from CMS1 subtype whereas NRAS shows almost no mutation
across these patients. However, since BRAF and NRAS mutations
are mutually exclusive across not only CMS1 subtype but also
across the other subtypes, DISCOVER-Strat identifies this pair as
significantly mutually exclusive. Similarly, SMAD3 and SMAD4
are two members of the TGF-β pathway and the mutual
exclusivity between these two transcription factors is
previously reported in colorectal cancer (Fleming et al., 2013).
Mutations on SMAD3 and SMAD4 are distributed almost
uniformly across the subtypes. As such, the mutual exclusivity
between the mutations of these two genes is still significant when
subtype information is incorporated. Figures 2B similarly shows
two selected gene pairs that display significant mutual exclusivity
based on DISCOVER but not based on DISCOVER Strat. For the
first pair, we observe that NUP98 is mutated almost exclusively in
patients from the CMS1 subtype which shows hypermutation due
to microsatellite instability. On the other hand, there is a
depletion of APC mutations among the patients from the
CMS1 subtype which results in a low MLA value. As such,

FIGURE 2 |Waterfall plots of the distribution of mutations for selected gene pairs. (A)Mutation distribution of two selected gene pairs (BRAF-NRAS and SMAD4-
SMAD3) that are found to be significantly mutually exclusive based on both DISCOVER and DISCOVER-Strat estimations. (B)Mutation distribution of two selected gene
pairs (APC-NUP98 and KRAS-PDE4DIP) that are found to be significantly mutually exclusive based on DISCOVER but not based on DISCOVER-Strat. Note that the set
of samples included in each plot is determined by finding the set of patients that have a mutation in at least one of the listed genes. GenVisR R package is used to
generate the waterfall plots (Skidmore et al., 2016). Subtype information is downloaded from (Guinney et al., 2015).
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DISCOVER Strat fails to detect a significant ME between these
two genes since it explores ME within each subtype separately. A
similar observation can also be made for the KRAS-PDE4DIP
pair where the former has a low MLA and the latter has a
high MLA.

Supplementary Figure S2 compares the MLA of the reference
cancer genes with the percent significant findings in mutual
exclusivity tests for BRCA. Similar to the results that we
obtain for COADREAD data, including network information
reduces the correlation between MLA and ME detection rate
(Supplementary Figures S2B vs S2C). The magnitude of
reduction is even more significant than what we observe for
COADREAD data (Pearson correlation −0.93 vs −0.27).
Interestingly, including subtype information results in a very
slight decrease in correlation coefficient (−0.93 to −0.91)
(Supplementary Figures S2B vs S2E) as opposed to what we
observe for COADREAD. We observe that including subtype
information on top of network information results in no decrease
in correlation (Supplementary Figures S2C vs S2F). This
difference in the effect of including subtype information for
BRCA and COADREAD datasets could be related to the
average tumor mutation load of subtypes. BRCA subtypes
have comparable average TML values (Her2: 146, LumA:65,
LumB: 71, Normal: 55) whereas the CMS1 subtype in
COADREAD has a dramatically larger average TML value
compared to the other subtypes of COADREAD (CMS1: 1387,
CMS2:93, CMS3: 272, CMS4: 212) We repeat the same analysis
with the other ME detection methods as well as for other cancer
types when t is set to 20 (Supplementary Figures S1-S8). We
observe that the percent significant finding values can vary
remarkably across the tumor types. Compared to other cancer
types, we observe smaller percent significant findings for LUSC
(Supplementary Figures S5A,S5D, S5G). Similarly, very few
pairs have percent significance value ≥ 20 when we consider
network information in LUSC (Supplementary Figures
S5C,S5F,S5I). On the contrary, we observe many pairs with
large percent significant values for CGC-CGC neighbors in
UCEC data. This is particularly true for DISCOVER and
WeXT results (Supplementary Figures S8C–S8L).

When we consider the correlation between MLA and percent
significant values, we observe that adding network information
decreases the correlation coefficient values for all cancer types and
for all ME detection methods except for Fisher’s Exact Test.
Fisher’s Exact Test results show an increased correlation with the
addition of network information for LUSC and SKCM
(Supplementary Figures S5-S6 D vs F). Also, the correlation
coefficient can not be computed for LUAD and STAD since
Fisher’s Exact Test gives a value of 0 for the percent significant
findings of all considered genes (Supplementary Figures S4D-
S7F). Another interesting observation is the variance in
magnitude of decrease in correlation values across different
tumor types. In particular, we observe a smaller decrease in
correlation values for LUAD compared to other cancer types.
The analogous results are also available for t � 5 setting
(Supplementary Figures S9-S16). For all the cancer types, the
correlation between MLA values and percent significant findings
decreases and becomes non-significant for most cases.

We should also note that the majority of CGC genes have only
one neighbor within the data setting of the cancer type under
consideration. This leads to percentage significant findings of
either 0 or 1 in many cases simply because these are the only
possible values; for COADREAD see Figures 1B and Figures 1D
where 41 out of 74 genes under study have only one CGC
neighbor in the COADREAD data settings. To avoid any such
possible biases, we repeat the same evaluations after filtering out
those CGC genes with only one neighbor. The evaluations still
provide significant decreases in correlation coefficient values
analogous to the decreases observed in Figures 1B as
compared to Figures 1A and Figures 1D as compared to
Figures 1C. For detailed results, see Supplementary Figures
S17-S24 for t � 20 and Supplementary Figures S25-S32 for t � 5.

Individual genes of interest are those that have increased
percent significant findings when network neigborhood
information is incorporated while at the same have significant
number of CGC neighbors. More specifically, for the former
constraint, we identify the CGC genes with at least 0.1 increase in
percentage of significant findings value of WeXT, DISCOVER
andMEMowhen the network information is included as opposed
to the scenario when it is not (e.g., for COADREAD, Figures 1A
vs Figures 1B). We choose these 3 MEmethods since they are top
performers based on the defined metrics in Section 3.1. For
STAD, SKCM and UCEC, since MEMo results are unavailable,
we only consider WeXT and DISCOVER results. For the second
constraint, we include the CGC genes with at least 3 CGC
neighbors. For COADREAD, this selection procedure results
in four genes: EP300, CREBBP, NCOA2 and NCOR2. Among
these, EP300 is a well-known tumor suppressor in epithelial
cancer types including COADREAD (Gayther et al., 2000).
For BRCA, the only identified gene is PIK3R1. PIK3R1 is
found to be significantly mutually exclusive with PIK3CA and
SPEN based on both WeXT, DISCOVER and MEMo results.
PIK3R1 and PIK3CA are members of the PI3K pathway and their
mutual exclusivity has been previously established in the
literature (Chen et al., 2018). For LUAD, PTPRB is the only
identified gene and is found to be mutually exclusive with EGFR,
a well-known oncogene in non-small cell lung cancer (Bethune
et al., 2010). The set of identified genes for STAD are NCOA2,
NCOR2 and CREBBP; all of which are found to be mutually
exclusive with TP53. For SKCM, we identify ERBB4, RAC1,
EP300 and ITK. ERBB4 is a well-known oncogene in skin
cancer and found to be mutually exclusive with ERBB2
(Prickett et al., 2009; Nielsen et al., 2014). ERBB2 and ERBB4
indeed belong to the same family (i.e. ErbB family of receptor
tyrosine kinases) and form a heterodimer receptor for Heparin-
binding EGF-like growth factor (HB-EGF) (Iwamoto et al., 2017).
RAC1 mutation P29S is an established driver in melanoma (Jiang
et al., 2018). RAC1 is found to be mutually exclusive with MYH9,
a tumor suppressor in melanoma (Singh et al., 2020). Lastly, ITK
has been shown to be an oncogene in melanoma (Carson et al.,
2015). For UCEC, we identify 33 genes in total. Among these, KIT
and PTEN have established roles in UCEC cancer development
(Chang et al., 2015; Wang et al., 2020). Moreover, PTEN is found
to be strongly mutually exclusive with SPOP, whose mutations
are also associated with endometrial cancer (Clark and Burleson,
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2020). Lastly, for BLCA and LUSC, no gene satisfies the
abovementioned criteria. Overall these results suggest that the
CGC genes that show increased ME with network incorporation
as well as their mutually exclusive partner genes often have
established roles in the development of the particular cancer type.

3.4 Mutual Exclusivity Evaluations Based on
Corrections via Tissue-Specific Networks
We first provide our ME evaluations with respect to the metrics
defined in Section 3.1 by replacing the non-specific networks
with TSNs. We provide two types of comparisons; one where we
compare TSN0.5 with the original non-tissue specific Intact
network and one where results of TSN0.5 are compared against
TSN0. We do the latter to avoid artifacts that may be introduced
due to the fact that some genes in the original Intact network
might be simply missing from even TSN0 since they may be
nonexistent in the GTEX database. For the BLCA dataset,
comparing the F1 scores of the ME methods under TSN0 and
TSN0.5 settings, we observe that the scores of all methods are
higher for the latter network. The largest percent increase of 10%
is observed forWeXTwhen the control group isX 1. Similarly, the
largest percent increase of 12% is observed for MEMo when the
control group is X2. On the other hand, when we compare the

scores of TSN0 against the original network, the differences are
negligible. The next largest difference between the F1 scores
obtained under TSN0.5 as compared to TSN0 is observed in
STAD where we see a 7% increase in DISCOVER’s score for
X1, and a 10% increase inWeXT’s score forX2. For the rest of the
cancer types under study, for LUSC and UCEC we observe slight
increase in performances of all the ME methods comparing the
metrics under TSN0.5 against TSN0. For COADREAD, BRCA and
SKCM we observe both increases and decreases in performances
but the differences are almost negligible; see Supplementary
Tables S50-S81 for detailed results.

Figure 3 compares the ROC curves of CGC gene pairs and
non-CGC gene pairs for COADREAD data where mutual
exclusivities are estimated with DISCOVER, DISCOVER Strat,
Fisher’s Exact Test, MEGSA, MEMo and WeXT with t � 20. We
observe that all the ME methods estimate stronger mutual
exclusivities for tissue-specific CGC gene pairs compared to
non-tissue-specific CGC gene pairs since AUROCs are greater
than 0.5. Additionally, we observe much smaller AUROCs for the
control group where we repeat the same analysis with non-CGC
gene pairs. Analogous results are available for the other cancer
types where both the positive and negative set contains at least 10
number of pairs when t is set to 20. (Supplementary Figures
S33–S35). We observe a similar result for SKCM where CGC

FIGURE 3 | Performance of selected ME tests in terms of discriminating TSN and non-TSN gene pairs based on estimated ME p-values on COADREAD data. Blue
curve is plotted with CGC gene pairs and red curve is plotted with non-CGC gene pairs. Mutual exclusivities are estimated with (A) DISCOVER, (B) DISCOVER Strat, (C)
Fisher’s Exact Test, (D) MEGSA, (E) MEMo and (G) WeXT respectively.
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pairs result in larger AUROCs compared to non-CGC pairs for all
ME methods (Supplementary Figure S34). We observe a steep
increase in the ROC curves plotted for MEGSA results. This is
due to the utilized likelihood ratio test that results in a p-value of
0.5 when the likelihood values are equal to each other. For UCEC,
we see a significant difference between the ROC curves of CGC-
pairs vs non-CGC pairs for Fisher’s Exact Test and MEGSA;
whereas the corresponding difference is negligible for
DISCOVER and WeXT.

4 CASE STUDY

Apart from the defined network-centric ME evaluation framework,
we discuss a case study where we assess whether mutual exclusivities
estimated by the considered ME methods improve the performance
of driver identification methods that utilize mutual exclusivity
information. To this end, we compare the original version of
MEXCOwalk with its alternatives where mutual exclusivity
estimates are provided by the employed ME methods. Assuming
that gi and gj genes are mutated in patient sets Si and Sj, respectively;
MEXCOWalk simply computes the mutual exclusivity between

these two genes with the following formula: |Si ∪ Sj|/(|Si| + |Sj|).
MEXCOwalk uses the estimated mutual exclusivity values as
part of edge weights. As such, to utilize the p-values output by ME
detection methods in MEXCOwalk, we first compute −log (p-value)
and then convert the resulting values between 0 and 1. To this end,
we replace all −log (p-value)’s larger than 10 with 1. We then find
the maximum −log (p-value) less than 10 and divide all other −log
(p-value)’s with this value. The reason why we set a threshold for
finding the maximum is the large differences across the smallest
p-values output by different ME methods. For instance, WeXT
outputs a very large range of p-values and if we use the smallest
p-value to scale, all other −log (p-value)s will be converted to values
that are very close to 0. In the original MEXCOWalk study, a
threshold of 0.7 is applied to ME values such that all values ≤0.7
are clamped to 0. This conversion is equivalent to removing
those edges from the network since the edge weights include a
multiplicative term for ME values. We find that the removal of
these edges correspond to a 0.035 percent reduction in graph
density. For the current analysis, we determine the threshold
value for each ME detection method to achieve the same percent
density reduction in the graph. Figure 4 shows the number of
recovered CGC genes for fixed output gene sizes from 100 to

FIGURE 4 | The number of recovered CGC genes for the original MEXCOwalk as well as for its modified versions where mutual exclusivity values are estimated with
DISCOVER, Fisher’s Exact Test and WeXT. COADREAD dataset is used with t � 5 setting. The numbers in parentheses indicate the area under the ROC curve for the
corresponding curve.
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2,500 as a ROC curve for original MEXCOwalk as well as for
versions of MEXCOwalk where mutual exclusivity values are
estimated with DISCOVER, Fisher’s Exact Test and WeXT,
respectively. We observe that MEXCOwalk with WeXT’s ME
values results in the best AUROC value for COADREAD.
Supplementary Figures S36 shows the analogous results for
the other cancer types. For, LUSC, STAD and UCEC,
MEXCOwalk with DISCOVER gives the best AUROC
whereas for BLCA, LUAD and SKCM MEXCOwalk with
Fisher’s Exact Test performs the best. An important
observation is the worse performance of MEXCOwalk with
Fisher’s Exact Test compared to the original MEXCOwalk for
COADREAD, STAD and UCEC. As such, using Fisher’s Exact
Test in place of MEXCOwalk’s original ME values does have the
potential to decrease the performance whereas for the other ME
methods we do not observe such a risk. Note that for these
analysis we employ t � 5 since t � 20 filtering does not provide
enough number of genes to be evaluated.

5 DISCUSSION

It is important to investigate whether the employment of an
interaction network within our ME evaluation framework causes
any ascertainment bias in the findings and to elaborate on how any
such potential bias is mediated within the framework. It is established
that known cancer genes have larger number of interactions
compared to other genes in the network (Hou and Ma, 2014a).
This implies a potential bias that needs to be resolved in cancer driver
gene identification methods employing interaction network data.
Such a bias is less of a problem for the current study, since our aim is
not to identify novel cancer driver genes but to utilize the interaction
network and known cancer genes to form a ground truth of mutually
exclusive interactions for evaluating existing ME methods. On the
contrary, the fact that most known cancer genes have well-
characterized interactions in the network provides a benefit for
our work as it supports the confidence of our true positive
examples. Additionally, our framework makes use of not only
genes from the reference set S but also genes not in S to create
random controls. Nevertheless, the fact that some known cancer
genes have significantly larger number of interactions compared to
other known cancer genes could lead to a bias. For instance, for our
analysis of the COADREAD data (t � 20,S � CGC), there are 74
CGC genes among which five CGC genes have more than ten CGC
neighbors whereas 41 have exactly one CGC neighbor. This could
lead to a bias as CGC genes with large number of CGC neighbors
contribute to the aggregate statistics and metrics much more than
those CGC genes with small number of CGC neighbors. To mediate
this bias, our framework includes additional results where all the
statistics and the traditional measures such as the F1 score are
calculated in a degree-normalized way for each gene and the
gene-level results are then aggregated by taking an average across
the genes. These results are available in the Supplementary
Document; Supplementary Tables S12, S24, S36, S48. To
summarize, the degree-normalized results are in agreement with
those of the previous settings in almost all the cases in terms of
ranking based on F1 score.

Another important point worth emphasizing is that apart
from the aggregate statistics provided in the previous sections
as part of the metrics for the network-centric ME evaluations, our
proposed framework also provides analogous statistics at the
gene-level as well. Such statistics may in fact be of more interest to
cancer biologists than the aggregate statistics in certain cases.
Several interesting observations can be made through an
inspection of these gene-level evaluations, especially for the
settings where the conventionally defined F1 score fails in
quantifying ME. Genes with low MLA comprise an example
setting, where TP53 is a leading member. Consider the case of
TP53 in COADREAD evaluations for instance. With respect to
the degree-normalized setting, the values of precision, sensitivity,
precisionstrict and sensitivitystrict for WeXT are respectively 0.5, 1,
0.25, 0.25 which gives rise to an F1 score of 0.66 and F1strict score
of 0.25. On the other hand, MEMo provides the same precision,
sensitivity and F1 scores as WeXT whereas its precisionstrict,
sensitivitystrict and F1strict scores are all 0. To summarize,
although the inspection of the F1 scores does not provide a
distinction between the two results, an inspection of the F1strict
scores establishes that MEMo is worse than WeXT in this setting.
We note that the advantages of inspections based on the strict
definitions of the metrics rather than the conventional ones are
also apparent in the aggregate analysis as well. In addition to the
COADREAD evaluations shown in Table 2, BRCA also contains
an example instance where the conventional and the strict
versions of the metrics provide different conclusions; see
Supplementary Table S7B. In terms of the F1 scores,
DISCOVER Strat ranks fourth, whereas comparing F1strict
scores it ranks the second. Also, overall we observe that
MEMo’s performance gets severely affected when the strict
versions of the metrics are employed.

Next, our robustness analysis results reveal some suggestions
for potential users of our framework. We recommend using a
p-value threshold smaller than 0.1 but larger than 0.05 as lower
threshold values are too stringent and lead to too few predicted
positives. Regarding robustness_iterations, we tested values both
smaller than and higher than the default value of 100 for
COADREAD evaluations: 5, 50, 100, 300 and 500. We
repeated each experiment 20 times and calculated the standard
deviation of the obtained set of F1 and F1strict scores. For the
majority of the cases, we observe a large decrease in the standard
deviation values when robustness_iterations is increased from 5
to 50. (Supplementary Table S82). This analysis suggests that the
robustness_iterations should be set to a at least 50. Lastly, we
observe that different PPI networks can lead to large differences
in both the F1/F1strict scores and the ranking of the methods. As
such, exploring different PPI sources would be beneficial.

To assess whether our findings extend to other datasets other
than TCGA, we repeat our evaluations on somatic mutation data
of 402 colon cancer patients within the Pancancer Analysis of
Whole Genomes (PCAWG) study (Campbell, 2020).
Supplementary Tables S83-S86 shows the ME evaluations
with respect to the metrics defined in section 4.2. We observe
an overall decrease in F1strict scores of the methods. Compared to
analogous results in TCGA data, WexT still performs the best in
terms of F1strict score whereas the second best performing method
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is changed fromMEMo to DISCOVER. The changes with respect
to varying the p-value threshold, robustness_iterations value,
input PPI, reference cancer gene set are consistent with the
changes that we previously observe for the TCGA
COADREAD dataset. When we switch from IntAct to its TSN
version, we observe that all the ME methods estimate stronger
mutual exclusivities for the tissue-specific CGC gene pairs
compared to the non-tissue-specific CGC gene pairs as evident
from AUROC values greater than 0.5; see Supplementary
Figures S37, S38 shows the results of MLA where we observe
slightly smaller correlation values for DISCOVER (−0.84 vs
−0.88) as compared to the results obtained from TCGA
COADREAD dataset. We observe findings similar to those
obtained from the TCGA COADREAD data in that the
correlation values drop when the network information is
incorporated. To summarize, our conclusions remain the same
when we repeat our analyses on an entirely different cohort from
the PCAWG study.

The majority of the somatic mutations observed in cancer
genomics are passenger mutations. In the evaluations provided in
the Results section we employ a simple filtering strategy where we
remove silent mutations and mutations on non-coding regions of
the genes. Additionally, we also assess the effects of employing a
more elaborate mutation filtering procedure. To this end, we
download the predictions of the Muiños et al. study on COREAD
type (Muinos et al., 2021). This includes the classification of all
possible mutations on 12 genes as driver or passenger mutations.
Accordingly, we filter out the proposed passenger mutations from
our mutation data and repeat all of our relevant analyses. We
observe that the ranking of the methods according to the metrics
proposed in section 4.2 remain the same where WExT, MEMO,
and DISCOVER Strat show reduced F1strict scores, and
DISCOVER and Fisher’s Exact Test show higher F1strict scores
(Supplementary Tables S87-S90). The TSN results and the MLA
analysis results are also similar to our original results
(Supplementary Figures S39-S40). Muiños et al. provides
classifications of mutations on a subset of genes which have
training data larger than a certain size. If such classifications
become available for a larger set of genes in the future we can
provide a better assessment regarding the filtering procedures
employing these classifications.

Mutated genes in cancer prevalently exhibit a long tail
phenomenon where few genes are mutated in many patients
and large number of genes are mutated in few patients. To check
whether assessing the mutual exclusivity of gene pairs with very
different mutation frequencies bias the evaluations of the
compared ME methods, we repeat our analyses after filtering
out the genes with mutation frequencies < 5% and > 30%. The
results after this filtering step are available in Supplementary
Tables S91-S93. We observe that the ranking of the methods
remain the same where we see a significant increase in Precision/
Precisionstrict values and a slight decrease in Sensitivity/
Sensitivitystrict values. When we look at the Precisionstrict values
in more detail, we observe that the FPstrict values drop
dramatically when we apply the filtering. This suggests that
the control gene pairs that include genes with very low or very
high mutation frequencies can have more significant p-values as

compared to the p-values obtained for the corresponding CGC-
CGC pair.

We also evaluate a more general ME detection method
SELECT, which investigates both types of relationships among
pairs, co-occurence and ME simultaneously. SELECT outputs
ME associated scores to only a subset of the input gene pairs.
Thus one strategy for comparing the results of SELECT against
other methods is to focus only on such subsets. The relevant
results where we use this strategy are available in Supplementary
Tables S94-S97. We report evaluations on two subsets of TCGA
COADREAD dataset: 1) the set of CGC-CGC pairs where
SELECT results are available, 2) the set of CGC-CGC pairs
where SELECT’s version which uses subtype information
(i.e., SELECTsubtype) are available. For the former, we observe
that SELECT and SELECTsubtype rank the fourth after WExT,
MEMO, and DISCOVER. For the latter evaluation,
SELECTsubtype performs better than SELECT although both of
them still rank the fourth among the other MEmethods. Another
strategy to fix this problem is to assign the worst ASC score to
such pairs without specific ASC scores in the ME direction. We
employ this approach as well and observe that it gives no
significant difference in the comparisons.

Lastly, it is important to mention certain limitations of the
proposed framework. Our framework is based on the
presupposition that ME is likely to occur between interacting
known cancer genes. Although rare, there may exist two different
types of exceptions to this assumption; ME can be observed
between non-interacting known drivers and the relationship
between an interacting pair of known drivers can be that of
co-occurrence rather than that of ME. These constitute
respectively the false negative and the false positive events in
our framework. An example instance of the former is the
mutually exclusive mutations of APC and RNF43 observed in
colorectal cancer [Mina et al., 2017] and example instance of the
latter is the co-occurrence of CCNE1 and TP53 alterations
[Zhang et al., 2014]. Both of these patterns are currently
ignored by our framework and incorporation of mechanisms
to dissect each such pattern to increase the performance of true
ME detection is an important future step. Another limitation of
the current framework is that it requires the availability of whole-
genome or whole-exome sequencing data.

6 CONCLUSION

We propose a network-centric framework to evaluate pairwise
mutual exclusivity findings reported by different ME algorithms.
The first component of our framework consists of useful
definitions of statistics employed in the network-centric ME
evaluations. We observe that for the majority of the cancer
types under study WeXT outperforms the other methods in
terms of F1 score measured with respect to appropriately
defined control groups. In half of the cancer types DISCOVER
and in the other half MEMo perform as the second best methods.
When comparing different cancer types we observe that BRCA
and COADREAD are among the top two types leading to
maximum F1 scores with at least one of the ME methods
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providing a score greater than 0.5. We note that DISCOVER Strat
is only applicable in two cancer types among a total of eight since
these are the only cancer types with well-defined subtypes.
Furthermore, among these two cancer types, DISCOVER Strat
outperforms original DISCOVER algorithm in BRCA, whereas it
is the second worst method after Fisher’s Exact Test in
COADREAD. This is noteworthy since van de Haar et al.
propose subtype stratification as employed by DISCOVER
Strat as a way to emphasize true mutual exclusivity by
reducing mutation load confounding (van de Haar et al.,
2019). We also observe that Fisher’s exact test and MEGSA
are more conservative compared to DISCOVER and WeXT,
where from the latter group, WeXT outputs notably larger
number of significant p-values. The second component of our
framework evaluates ME tests by comparing two types of
measures obtained with and without network information.
First measure is with respect to the percent significant findings
of mutually exclusive gene pairs, whereas the second is based on
MLC values. In most of the cancer types and for most of the genes
we observe an increase with respect to the former whereas a
decrease with respect to the latter measure. Finally, we repeat the
same analysis by considering TSNs in the network-centric
framework. Considerable improvements achieved due to the
use of TSNs as opposed tissue nonspecific interaction network
are only observed for BLCA and STAD datasets. A more detailed
analysis in terms of comparing ROCs of CGC gene pairs and non-
CGC gene pairs on cancer types with considerable number of
tissue-specific gene pairs indicate the advantages of employing
tissue specificity in detecting mutual exclusivity in COADREAD,
SKCM, and UCEC. Finally we extend out network-centric
evaluation framework to assess whether including network
knowledge reduces the mutation load confounding problem.

As noted earlier the proposed framework is intended for the
network-centric evaluations of mutual exclusivities of pairs of
genes rather than groups of genes. Such a choice stems form the
fact that the mutual exclusivities are commonly made use of in
driver gene/module identification algorithms which mostly
employ pairwise mutual exclusivities. Furthermore the
extensive evaluation settings proposed, the number of ME
methods under study and their own computational
requirements, and the potentially exponential computational
complexity inherent in handling groups of genes limits the
scope of the current study to evaluations of pairwise ME
scorings. Nonetheless most statistical ME methods are capable
of providing ME results for groups of genes as well. Regarding the
ME tests considered in this study, the main ME test provided by
DISCOVER is based on a pairwise test definition but it also
extends the definition for possible use in quantifying the ME of a
group of genes, although the experiments involving the latter are
based only on simulation data. The remaining tests MEGSA,
MEMo, and WeXT are all ME tests specifically designed for

groups of genes. An important direction for future work is to
design a suitable extension of the proposed network-centric
framework to evaluate the results of ME tests on groups of
genes. Design choices relevant for such an extension would
involve an appropriate and computationally efficient definition
of the reference groups of genes analogous to a pair of interacting
genes from the set S in the current setting and the definitions of
control groups analogous toX 1 andX 2. Another future direction
is to apply our network-centric framework on heterogeneous
biological networks incorporating biological pathway
information with PPI network data. Such incorporations have
been successfully applied in other bioinformatics domains such as
cancer driver identification (Hou and Ma, 2014b; Dinstag and
Shamir, 2020).
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Human Immune System Diseasome
Networks and Female Oviductal
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Human hypofertility and infertility are two worldwide conditions experiencing nowadays an
alarming increase due to a complex ensemble of events. The immune system has been
suggested as one of the responsible for some of the etiopathogenic mechanisms involved
in these conditions. To shed some light into the strong correlation between the
reproductive and immune system, as can be inferred by the several and valuable
manuscripts published to date, here we built a network using a useful bioinformatic
tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were
linked. This constitutes an important event related with Human fertility since this interaction,
and specially the spermatozoa, represents a not-self entity immunotolerated by the female.
As a result, we discovered that some proteins involved in the sperm-oviduct interaction are
implicated in several immune system diseases while, at the same time, some immune
system diseases could interfere by using different pathways with the reproduction
process. The data presented here could be of great importance to understand the
involvement of the immune system in fertility reduction in Humans, setting the basis for
potential immune therapeutic tools in the near future.

Keywords: diseasome, immune system, oviductal environment, human, biological network, immunological disease,
rheumatoid arthritis, asthma

1 INTRODUCTION

Fertilization is a cell-cell recognition process that occurs naturally in vivo within the oviductal
microenvironment of the female body. The successful interaction between the spermatozoa (male
gametes) and the oocyte (female gamete) is supported by the presence of oviduct epithelial cells
(OECs) and the oviductal fluid, that participates in this complex dialogue either by directly
interacting with the gametes (OECs) and secreting (OECs) or carrying (oviductal fluid) different
molecules necessary to achieve a successful fertilization.

The process initiates with the arrival of the ejaculated spermatozoa to the cervix, where only the
healthiest spermatozoa are selected to advance towards the uterus (or are directly deposed within the
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uterus, depending on the species), cross the utero-tubal junction
and reach the oviduct (reviewed in Suarez, 2016; Gadella, 2017; Li
and Winuthayanon, 2017). Here, sperm cells are able to bind to
the oviductal epithelium for an indefinite period of time, varying
from hours to days (species-specific) and forming the so-called
“functional sperm reservoir,” before being released to continue
their way towards the oocyte (Suarez and Pacey, 2006; Coy et al.,
2012). As a result of this close interaction, it is originated a cross-
talk between the OECs and the sperm cells, that is important to
ensure the success of early reproductive events (Almiñana, 2015).
With regard to the oviductal fluid, it is mainly composed of amino
acids, energy metabolites, inorganic salts, glycosaminoglycans
and numerous proteins (Ballester et al., 2014; Coy and
Yanagimachi, 2015; Canha-Gouveia et al., 2019), that are
either passively or actively transported over the epithelial
barrier from the circulating blood or the interstitial tissue, or
de novo secreted by the OECs (Saint-Dizier et al., 2020) and are
able to sustain and drive the biochemical machinery of
spermatozoa and embryos during their journey.

Thus, on the one hand, the oviduct and its secretions influence
the physiology of the gametes (Avilés et al., 2010), while on the
other one hand the reproductive cells are able to modulate the
oviductal environment by activating a cell-type-specific signalling
pathway leading directly to specific alterations in the tubal fluid
composition (Georgiou et al., 2007).

Overall, the study of the interaction between the female
counterpart with male gametes (firstly) and embryos
(secondly) poses a fascinating and challenging questions
involving all the hemostatic mechanisms of the body. If the
role of neuro-endocrine system is evident, now new emerging
evidences are highlighting the involvement of immune system.
For instance, the spermatozoa are clearly not-self and the
embryos are semi-allogenic, but instead to be attacked by the
maternal immune system they are tolerated for days or even
months (Zandieh et al., 2015), thus indicating the existence of a
gamete recognition system (Georgiou et al., 2007), as will be
explained in the discussion section. Moreover, the immune
system is involved in the etiopathogenesis of reproductive
diseases, as it happens in case of immune/immunological
infertility. This condition is diagnosed when spontaneously
produced antibodies bind to the antigens occurring on the
male gametes, with the production of anti-sperm antibodies
(ASA) (Bohring and Krause, 2003; Brazdova et al., 2016).

Ultimately, the involvement of immune system in determining
the success of fertility, or its partial or total failure (hypo-fertility
or infertility) is still far to be completely deciphered, and the
molecules involved in linking reproductive function with
immune response are still under investigation.

For this reason, here we carried out an innovative study to
explore the possible involvement of genes encoding for proteins
that participate to the functional dialogue existing between male
gametes and female structures in immune pathologies. In
particular, we used an approach based on the application of
network theory to the study of biological complexity. By
definition a network is a set of nodes (in our care the genes or
the diseases) linked by edges (relationship between genes and
diseases). The statistical study of network properties will lead to

infer biologically relevant information, otherwise hidden by the
complexity of the system.

To that, the work was carried as follow: I) retrieving in
literature of the proteins involved in the sperm-oviduct
interaction; II) creation of the list with the corresponding
genes for those proteins; III) linking of the genes to the
immune system disease in which it is involved, thus obtaining
a bipartite network (a gene-disease network); IV) analysis of the
network to infer biologically relevant information; and V) deep
analysis of the relevance of this association in animal models of
every human immune diseases, which constitutes one of the most
valuable experimental approaches used in medical sciences.

The final aim was to suggest new players in the complex
relationship between the reproductive function and immune
pathology, to shed some light on how fertility could be
compromised in immune system dysregulation.

2 MATERIALS AND METHODS

2.1 Data Collection
In order to recreate the microenvironment in which fertilization
occurs, we collected the scientific literature published between
2005 and December 2020 in peer-reviewed international papers
included in Scopus (https://www.scopus.com; accessed on 20/09/
2021). In parallel, and as a quality control, two qualified
researchers used the same key-words (“protein” AND
“oviductal secretion” or “oviduct”), to carry out an
independent search on the published manuscripts including
information about the proteins found in the human oviduct.
Then, the databases were compared, and a third qualified
researcher verified the correctness of the record inserted,
resolving eventual conflicts.

Data from each independent search was extracted to Excel
spreadsheets (Microsoft Corporation, Albuquerque, USA), filling
in and the following fields:

• Species: human;
• Protein: protein found in oviductal environment;
• Gene: protein-related gene;
• Biological function: physiological and/or pathological role of
the protein;

• Role in fertilization: physiological and/or pathological role
of the protein related to fertility;

• OF/OEC/oviductal tissue: protein identified within the
oviductal fluid, on/in the oviductal epithelial cells or
oviductal tissue;

• References: article reporting the above-mentioned data;
• Phenotype ko mice: existence of KO mouse and its relative
phenotype;

• Notes: any further information useful for the study.

These data can be found in Supplementary Material S1.

2.2 Diseasome Creation and Visualization
Bioinformatics analysis was performed using Reactome,
DisGeNET Cytoscape App, and Cytoscape 3.7.2.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7951232

Taraschi et al. Immune System and Reproduction

46

https://www.scopus.com/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


First, we uploaded the gene list to Reactome (http://www.
reactome.org/; accessed on 11/10/2021), a free, open-source,
curated and peer-reviewed pathway database useful to visualize
and analyse the biochemical pathways in which the genes are
involved.

DisGeNET is a Cytoscape plugin designed to analyze human
gene–disease association (GDA) networks, the diseasome. GDA
is represented as a bipartite graph in which a set of nodes consists
of diseases and the other one of disease-associated genes (Bauer-
Mehren et al., 2010; Pavlopoulos et al., 2018). A disease and a gene
are connected by a link only if the gene is implicated in the
particular disease (Pavlopoulos et al., 2018). DisGeNET integrates
information on human diseases and their genes from expert
curated repositories, GWAS catalogues, animal models and the
scientific literature discovered by text-mining approaches (Pinero
et al., 20152015; Piñero et al., 2017; Piñero et al., 2020). Data are
organized according to the type of source databases:

• CURATED: gene-disease association provided by expert
curated resources, such as UniProt, ClinGen, Orphanet
and CTD (human data), among others (Piñero et al., 2020);

• ANIMAL MODELS: gene-disease association provided by
resources containing information about animal models
(currently rat and mouse) of disease (RGD, MGD, and
CTD) (Piñero et al., 2020);

• INFERRED: gene-disease association from the Human
Phenotype Ontology and from VDAs reported by
Clinvar, the GWAS catalogue and GWAS db (Piñero
et al., 2020);

• ALL: gene-disease association from the previous sources
and from LHGDN and BeFree (Piñero et al., 2020).

In addition, DisGeNET is able to classify the diseases
according to the MeSH hierarchy and the genes according to
the PANTHER Protein Class Ontology and Reactome top-level
pathways (Pinero et al., 20152015). The gene-diseases
associations are classified according to the DisGeNET
association type ontology, that describes the different types of
association between a gene and a disease, integrating information
from the different databases (Bauer-Mehren et al., 2011). The
GDA ontology is available at https://www.disgenet.org/dbinfo
(accessed on 20/05/2021).

Using the DiGeNET Cytoscape App, we built two different
networks for each gene in “Gene Disease Networks” tab, selecting
“curated” or “animal models” as sources and “Immune System
Diseases” as disease class. After merging the obtained networks
on Cytoscape, we built two final diseasomes: the first curated
(CURDi) and the second referred to animal models (AMDi).
Both were then analysed using the plugin Network Analyzer.

2.3 Network Creation, Visualization, and
Analysis
As previously stablished, the diseasome network was realized and
analyzed using Cytoscape 3.7.2 and the specific plug-in Network
Analyzer.

3 RESULTS AND DISCUSSION

3.1 Proteins Involved in the Sperm-Oviduct
Interaction
The sperm-oviduct interaction and fertilization process can be
considered as complex systems constituted by networks of
heterogeneous elements interacting among them in a non-
linearly way, giving rise to an emergent behavior. Thus, their
properties cannot be explored or predicted simply by analysing
their individual components, rather by putting their individual
pieces togheter and building a network model. To this aim, a
total of 145 proteins were identified through the literature
search as proteins expressed within the oviduct and involved
in the sperm-oviduct interaction in humans (see
Supplementary Material S1, second sheet for the list of
proteins and their corresponding genes, LOPaG). Here, we
have used Reactome to investigate the pathways in which the
identified proteins are involved. The analysis showed the 25
most relevant immunology pathways (see Figure 1;
Supplementary Material S2), stressing the strong correlation
between reproduction and immune system.

Then, by using the DisGeNET Cytoscape App and the genes
list, we realized a bipartite network, i.e., a graph constituted by
two families of nodes (genes and immune diseases) connected by
edges and that represent the gene-disease association.

Depending on the data source (Curated or Animal Models
Archives) we obtained two different diseasome networks: curated
diseasome network (CURDi, see Figure 2) and animal model
diseasome network (AMDi, see Figure 3).

3.2 CURDi Network and the Most Linked
Genes
In CURDi network 54 of the 145 genes present in LOPaG were
correlated with 124 immune system diseases.

As showed in Figure 4, the most linked genes in CURDi were
HLA-B, SERPING1 and IFNG (64, 52, and 42 links each one,
respectively) (see Supplementary Material S3, sheet 1 for the
complete list). These genes are well-studied for their key role in
the immune response since their alterationmay be responsible for
several immune system diseases. Interestingly, there is growing
evidence on the roles played by proteins encoded by the HLA-B,
SERPING1 and IFNG genes in several steps of the reproduction
process.

3.2.1 HLA-B Gene
Among the 54 genes correlated with immune system diseases
within the CURDi network, HLA-B stands out as the most linked
one. This gene encodes for the human leukocyte antigen type B
(HLA-B), one of the more than 200 genes belonging to the major
histocompatibility complex (MHC) in humans. Located on
chromosome 6p21.3, it comprises specific HLA class I (HLA-
A and -B) and class II (HLA-DRB1, -DQA1, -DQB1, -DPA1 and
-DPB1) genes that encode for cell-surface glycoproteins, whose
main action is the induction and regulation of immune response
(Leone et al., 2013; Wieczorek et al., 2017; Jongsma et al., 2019).
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The genes of the MHC are the most polymorphic of the
human genome with a total of 13,023 HLA alleles (HLA class I:
9749; HLA class II: 3274) (Robinson et al., 2015). Interestingly,
distinct HLA alleles have been associated with several human
pathological conditions (Tersigni et al., 2020), while HLA

proteins also own an important role in non-pathological
conditions, such as lifespan and social behavior (Mosaad, 2015).

Regarding more Specifically, different alleles of the HLA-B
gene have been associated with autoimmune diseases (such as
HLA-B27 and its relationship with psoriatic arthritis and

FIGURE 1 | Voronoi pathway visualization (Reacfoam) for the identified proteins in human oviduct. The color code denotes over-representation of that pathway in
our input dataset. Light grey signifies pathways which are not significantly over-represented.

FIGURE 2 | Curated diseasome network (CURDi). CURDi forms the two node sets of bipartite networks with two types of nodes: diseases (pink circle) and gene
(blue circle). Disease node and gene node are connected if the gene is implicated in the disorder.
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ankylosing spondylitis), inflammatory diseases (such as HLA-
B*35 and systemic sclerosis, and HLA-B*52 and Takayasu
arteritis), viral infections (such as HLA-B*35 phenotype and
progression of Acquired Immune Deficiency Syndrome-AIDS)
and tumor risks (such as HLA-B*52:01 and cervical cancer). In
addition, it has been demonstrated an association of HLA-B
alleles and severe drug hypersensitivity syndromes (such as HLA-
B*57:01 and hypersensitivity to abacavir, and HLA-B*15:02 and
use of carbamazepine) (Profaizer and Eckels, 2012).

In the reproductive field, the HLA antigens have been
demonstrated to be crucial for the embryo-maternal tolerance
and the achievement of a successful pregnancy (Chattopadhyay
et al., 2014; Tersigni et al., 2020). For instance, some molecules as
the high polymorphic HLA-C participate in the innate immune
system by serving as a ligand for the inhibitory killer cell
immunoglobulin-like receptors (KIRs) present on natural killer
(NK) cells (Leone et al., 2013; Wilczyńska et al., 2020). HLA-C
(along with the HLA-E, G and F ones) from both maternal and
paternal origin is highly expressed by the extravillous
trophoblasts invading the uterine tissues. While the paternal
HLA-C protein represents a main target for maternal NK and
T cells, an increased expression of foreign HLA-C (as in the case
of oocyte donation) can be correlated with an incorrect
placentation and further linked pathologies, thus requiring a
tight regulation in the dual function of the protein (Papúchová
et al., 2019). Despite the absence of evidence regarding the direct
involvement between HLA-B and the immune response in the
embryo, it might be possible to hypothesize that the close link
between HLA-B and the encoding area of HLA-C could exert an
indirect effect in the interaction between the NK cells from the
uterus and the trophoblast HLA-C (Nielsen et al., 2017).

In addition, discordant results have been reported so far on the
role of HLA polymorphisms on the susceptibility to pre-
eclampsia (PE) (Emmery et al., 2016). This complex disease,
exclusive to human pregnancy, shows clinical features as a new

onset of hypertension and proteinuria after 20 weeks of gestation
and is characterized by a systemic disproportionated
inflammatory response, representing the main cause of
maternal and perinatal morbidity and mortality with a
prevalence of 3–8% in the total number of pregnancies
worldwide and an increasing incidence. The four main
potential causes underlying the pathophysiology of pre-
eclampsia include: an immunological maladaptive tolerance
between maternal, paternal, and fetal tissues; placental
implantation with abnormal trophoblastic invasion; oxidative
stress causing endothelial cell dysfunction; and genetic and
epigenetic predisposing alterations (Agius et al., 2018).
Regarding the immunological maladaption occurring between
mothers and fetuses, few studies have focused on the role of HLA
alleles in inducing pre-eclampsia. Wiktor and collaborators
reported a significant increase of HLA-B13 allele frequency in
patients with pre-eclampsia and of HLA-B22 allele in their male
partners (Wiktor and Kozioł, 1998). A subsequent study of Zhang
Z et al. in 119 Chinese pre-eclamptic patients showed a higher
frequency of some HLA alleles shared by mothers and fetuses
(HLA-A11, HLA-B13, HLA-B15, HLA-B22), and a lower
frequency of a different protective allele (HLA-B14) (Zhang
et al., 2009). On the contrary, a study carried out in 201
Danish couples of mothers and children reported no specific
association with HLA-A, -B, and -DR alleles, denying the role of
HLA antigens as risk factors for pre-eclampsia (Biggar et al.,
2010). An association of HLA-G polymorphic alleles with pre-
eclampsia has also been reported in several studies (Moreau et al.,
2008; Tan et al., 2008; Persson et al., 2017).

Recently, a more comprehensive report of genome-wide
association (GWAS), transcriptomics, proteomics and
metabolomics studies identified inhibin as a potential
preeclamptic biomarker (Benny et al., 2020).

Despite few studies have focused on the role of HLA alleles in
inducing pre-eclampsia, further functional studies are necessary

FIGURE 3 | Animal model diseasome network (AMDi). AMDi form the two node sets of bipartite networks with two types of nodes: diseases (pink circle) and gene
(blue circle). Disease node and gene node are connected if the gene is implicated in the disorder.
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to clarify an effective role of the classical HLA genes in its
etiopathogenesis.

3.2.2 SERPING1 Gene
The second most linked gene, SERPING1, encodes for the
plasma protease serine inhibitor (C1-INH), also known as
SERPING1 or C1-inhibitor (Madsen et al., 2014). C1-INH
regulates the activation of the classical and lectin
complement pathways, coagulation and fibrinolysis cascades
(López-Lera et al., 2014). Mutations in the SERPING1 gene are
responsible for the largest cases of hereditary angioedema
(HAE) (OMIM#106100), a rare autosomal dominant
disorder that causes recurrent attacks of cutaneous
angioedema, severe abdominal pain, and airway compromise
(Santacroce et al., 2021). The disease course during pregnancy

is unpredictable, with one study showing that seven Australian
patients with HAE had reduced or absent attacks in the last two
trimesters of pregnancy, while in the post-partum period they
suffered from increased frequency and more severe attacks
(Chinniah and Katelaris, 2009). However, fertility seems not to
be impaired by HAE itself or by HAE medications (Yakaboski
et al., 2020).

A network study by Sabetian and coll. (2014) built a sperm and
oocyte protein interaction network and revealed new protein
interactions. For example, the authors indicated that SERPINE1,
also known as PAI-1 (plasminogen activator inhibitor), is located
on the surface, in the tail and in the acrosome of mature
spermatozoa, participating in the sperm-egg interaction by
interacting with C1-INH of the oocyte (Sabetian et al., 2014).
Thus, our results suggest that new studies could be useful to better

FIGURE 4 | Most linked genes in CURDi network. The histograms show the most linked genes to immune system diseases in CURDi: HLA-B, SERPING1 and
IFNG.
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clarify the interactions among the SERPING1 gene, immune
diseases and fertility.

3.2.3 INFG Gene
The IFNG gene codifies for an extracellular proinflammatory
cytokine (interferon γ, IFN-γ) that constitutes the main effector
of cell-mediated immunity. Its main function is to recognize and
eliminate pathogens by enhancing the antigen recognition
through the antigen presenting cells and T cells, and is
secreted by CD4+, NK and NKT cells. It is able to intervene as
the early host defense and autocrine regulation but also during
the adaptative immune response (reviewed in (Schroder et al.,
2004; Bhat et al., 2018; Kak et al., 2018)).

In reproduction, IFN-γ shows an important role on embryo
implantation and pregnancy progression (Robertson et al., 2018).
For instance, increased levels of IFN-γ have been associated with
a reduced fertility (Carrasquel et al., 2014), as evidenced by the
results of Carrasquel and coll. (2014). In that in vitro study, high
concentrations of IFN-γ affected the intracellular calcium
concentration, altering the sperm membrane permeability and
thus impairing the sperm fertilizing ability (Carrasquel et al.,
2014). Moreover, it has been demonstrated that an excess of the
protein can also promote the generation of cytotoxic or CD8+

cells during the embryo implantation that later drives to fetal loss
(Robertson et al., 2018), thus supporting its fundamental
involvement as a regulator of the maternal-fetal immune
relationship.

Being secreted in the uterus during early pregnancy, IFN-γ
plays a critical role in gestation, including remodeling of
endometrial vasculature, angiogenesis at implantation sites,
and maintenance of the decidual (maternal) component of the
placenta. Alteration of INF-γ levels in the plasma of pregnant
women may contribute to severe gestational pathologies, such as
autoimmune disease, preterm labor, and preeclampsia (Sargent
et al., 2006; Murphy et al., 2009; Yang et al., 2014).

One plausible mechanism could be the inability of the mother
to switch from T helper cell type 1 (Th1) to Th2 cytokine profiles
at the fetal-maternal interface, due to an altered expression of
INF-γ and its receptors (IFN-γ R1 and IFN-γ R2) (Sargent et al.,
2006).

3.2.4 Other Genes
In the list of most connected genes, CSF2 showed 38 links. This
gene encodes for the granulocyte-macrophage colony-
stimulating factor (GM-CSF), responsible for the growth and
differentiation of hematopoietic precursor cells in granulocytes,
macrophages, eosinophils and erythrocytes, among others.
Interestingly, an important role has also been given to this
protein during the fertilization process. Specifically, GM-CSF
was found to mediate the maternal effects on embryonic
development during preimplantation, probably by inducing
the expression of IFN-γ (Loureiro et al., 2009). The presence
of GM-CSF receptors has been also described in the midpiece and
principal segment of the tail of mature spermatozoa in human
and bovine species, while it was also demonstrated that GM-CSF
was able to improve sperm motility when added to bovine sperm
samples (Vilanova et al., 2003). In Csf2 null mutant mice, a

deficiency in GM-CSF protein levels resulted in altered
differentiation and maturation of junctional-zone trophoblast
lineages, glycogen cells, and giant cells, thus suggesting the
role of the Csf2 gene as a regulator of trophoblast
differentiation and placental development (Sferruzzi-Perri
et al., 2009).

Among the other most connected genes in the CURDi
network stand out several genes codifying for cytokines, such
as the tumor necrosis factor alpha (TNF-α), interleukins 4, 6 and
10 (IL-4, IL-6 and IL-10, respectively), and granulocyte colony-
stimulating factor (G-CSF). TNF-α is a cytokine codified by the
TNF gene and with a wide variety of functions. It is naturally
produced by activated macrophages and monocytes, and its
increased levels have been associated with infertility in
humans (Eggert-Kruse et al., 2007; Yildizfer et al., 2015; Pinto-
Bravo et al., 2017). Although few studies evaluated the role of
TNF-α in the oviduct, evidence support that TNF-α may
modulate the oviduct contraction necessary for transporting
the gametes and embryo into the site of fertilization and the
uterus, respectively (Wijayagunawardane et al., 2003; Parada-
Bustamante et al., 2016). In addition, increased levels of TNF-α
was detected in the tubal fluid of patients with hydrosalpinx and
salpingitis due to chlamydial or gonococcal infection (Nasu et al.,
2007). In these pathological conditions, TNF-α may induce the
vascular endothelial growth factor (VEGF) production, which
may further enhance the oviductal secretion by regulating
vascular permeability (Nasu et al., 2007).

Interleukin-4 and -10 are pleiotropic anti-inflammatory
cytokines that function mainly by suppressing the pro-
inflammatory milieu (Chatterjee et al., 2014). For this reason,
they play crucial roles in the success of pregnancy: progesterone
induces the IL-4 and IL-10 production, which acts to inhibit Th1
responses during pregnancy, creating a tolerogenic environment
in women (Chatterjee et al., 2014; Shahbazi et al., 2019). Indeed,
while the trophoblastic cell implantation into endometrial cells is
associated with an active Th1 pro-inflammatory response, the
pregnancy maintenance is marked by an anti-inflammatory
response, promoting fetal allograft tolerance and ensuring fetal
development (Granot et al., 2012; Chatterjee et al., 2014).

Interleukin-6 is a pleiotropic cytokine involved in both acute
and chronic inflammatory processes (Papathanasiou et al., 2008;
Balasubramaniam et al., 2012). Papathanasiou and coll. (2008)
showed that IL-6, in addition to act as an inflammatory marker, is
capable in vitro to significantly reduce the ciliary beat function
(CBF) causing a severe tubal damage, whereas the addition of
anti-IL-6 restores the activity of CBF (Papathanasiou et al., 2008).
IL-6 may also play a role in the pathophysiology of tubal ectopic
gestation. Indeed, it was demonstrated that the expression of IL-6
is significantly increased near the implantation site in tubes with
ectopic gestation, as compared with normal gestations
(Balasubramaniam et al., 2012). On the other hand, IL-6 has
been shown to affect sperm motility and to induce protein
tyrosine phosphorylation in human spermatozoa (Laflamme
et al., 2005).

Granulocyte-colony stimulating factor (G-CSF) is a
pleiotropic cytokine belonging to the hematopoietic growth
factor family that codifies by the CSF3 gene. Recent studies
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has revealed granulocyte colony-stimulating factor (G-CSF) as a
predictive biomarker of oocyte and embryo developmental
competence in humans (Naghshineh et al., 2018; Cai et al.,

2020), promoting endometrial thickening and improving the
pathophysiology of endometriosis, which all fundamentally
lead to preventing from the pregnancy loss (Cai et al., 2020).

TABLE 1 | Group of diseases and number of diseases included within each group.

Class Disease class Number of diseases

C15 Hemic and Lymphatic Diseases 45
C17 Skin and Connective Tissue Diseases 33
C04 Neoplasms 32
C16 Congenital, Hereditary and Neonatal Diseases and Abnormalities 14
C14 Cardiovascular Diseases 13
C12 Male Urogenital Diseases 11
C13 Female Urogenital Diseases and Pregnancy Complications 11
C05 Musculoskeletal Diseases 8
C25 Chemically-Induced Disorders 8
C10 Nervous System Diseases 7
C18 Nutritional and Metabolic Diseases 7
C23 Pathological Conditions Signs and Symptoms 7
C19 Endocrine System Diseases 6
C01 Infections 5
C07 Stomatognathic Diseases 5
C08 Respiratory Tract Diseases 3
C06 Digestive System Diseases 1
C11 Eye Diseases 1
C24 Occupational Diseases 1

FIGURE 5 |Graphical representation of the most linked immune system diseases with the gene list in CURDi. The highest number of correlated genes are found in
rheumatoid arthritis (14 linked genes), allergic reaction and hypersensitivity (13 linked genes) and asthma (10 linked genes).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7951238

Taraschi et al. Immune System and Reproduction

52

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


3.3 CURDi Network and the Most Linked
Immune Diseases
Analyzing the link of the selected gene set with diseases involving
other organs and systems (different from the Immune System),
we found that the largest number of pathologies were related to
the following groups: “Hemic and Lymphatic diseases” (Chinniah
and Katelaris, 2009), “Skin and Connective Tissues diseases”
(Emmery et al., 2016) and “Neoplasms” (Nielsen et al., 2017)
(Table 1; Supplementary Material S3, second sheet for the
complete dataset).

As showed in Figure 5 the most linked diseases to the list of
genes from CURDi were rheumatoid arthritis (14 linked genes),
allergic reaction and hypersensitivity (13 linked genes) and
asthma (10 linked genes) (for the complete list of diseases and
related information see Supplementary Material S3, sheet 3).

3.3.1 Rheumatoid Arthritis
Among the three most linked conditions, only rheumatoid
arthritis (RA) has been related to fertility (Fattah et al., 2020)
so far, maybe because the other two (i.e., allergic reaction and
hypersensibility) show very high variability and multiple
interconnected components. A recent review by Fattah and
coll. (2020) provided several proofs regarding the relationship
between women with RA and fertility, which seems declined and
dependent on inflammatory milieu, mother age, hampered sexual
activity and negative effects of non-steroidal anti-inflammatory
drugs on ovarian function (Fattah et al., 2020). Indeed, it has been
found that women with RA deliver fewer children when
compared to healthy women (Fattah et al., 2020). The
decreased fertility rate in women suffering from RA might be
due to a reduced sexual activity (because of pain, fatigue, mental
distress, functional limitations), treatment with antirheumatic
medications hampering ovulation, as well as, to advanced
maternal age, patients’ choice, or a combination of all of these
factors (Fattah et al., 2020). The results showed here demonstrate
that at least 13 genes (CXCL8; CSF2; IL6; LCN2; TNF; VEGFA;
IFNG; IL1B; IL10; CP; CXCL2; GC; F1) could be involved in this
relationship.

3.3.2 Asthma
From the CURDi analysis, asthma showed 10 linked genes. The
link between asthma and infertility was studied in a nationwide
register-based twin study, in which a cohort of 15,250 twins
living in Denmark participated in a questionnaire study
including questions about the presence of asthma and
fertility (Gade et al., 2014). Differences in time to pregnancy
and pregnancy outcome were analysed in subjects affected with
asthma and allergy and in healthy individuals, using multiple
regression analysis. Results showed an association between
asthma and an increased time to pregnancy, with a
percentage of asthmatics with a time to pregnancy >1 year of
27% versus the 21.6% for the non-asthmatic individuals.
Interestingly, the association remained significant after
adjustment for age, age at menarche, body mass index and
socioeconomic status and was more pronounced in those
>30 years of age. In addition, untreated asthmatics had a

significant increased risk of prolonged time to pregnancy
compared to control individuals, while asthmatics receiving
any kind of treatment for asthma tended to have a shorter
time to pregnancy than untreated asthmatics (Gade et al., 2014).
Thus, the authors concluded that asthma seems to be correlated
with an alteration in fertility parameters, and that the negative
effect of asthma on fertility increases with age and disease
severity.

3.4 AMDi Network and the Most Linked
Genes
Since the study of human diseases takes a huge advantage by the
use of animal models as valuable resource for the investigation of
pathogenesis, diagnostics, and therapeutics of human diseases, we
realized the network representing the connections between the
selected gene set and the immune diseases in animal models
(AMDi). The most linked genes were IL4, TNF and CCL2, (12, 12
and 10 links, respectively) (see SupplementaryMaterial S4, sheet
1 for the complete list).

The roles of IL4 and TNF, have been discussed before. The
CCL2 gene codifies for the small chemokine CCL2, also referred
to as monocyte chemotactic protein 1 (MCP1), which is secreted
by endothelial, epithelial and stromal cells, monocytes and
lymphocytes (Hess et al., 2013). It influences the innate
immunity through its effects on monocytes, as well as the
adaptive immunity through the control of T helper cell
polarization (Hess et al., 2013). It was proposed that
chemokines expressed by the oviductal epithelial cells
contribute to normal physiological homoeostasis and
protection from pathogens by activating the immune cells
(Fahey et al., 2005). In addition to this protective function,
chemokines, including CCL2, may protect these cells from
malignant transformation, again suggesting that CCL2 may be
involved in early tumour development (Wojnarowicz et al.,
2012). It was also shown that a marked down-regulation of
CCL2 may contribute to allogenic tolerance of the
preimplantation embryo as it crosses the Fallopian tube (Hess
et al., 2013).

Interestingly, an association between two CCL2
polymorphisms (rs1024611 and rs4586) and the development
of gestational diabetes mellitus (GDM), the most common
medical complication of human pregnancy, was demonstrated
in 411 pregnant women (Teler et al., 2017). To this regard, a more
recent study confirmed that blocking the CCL2/CCR2 pathway in
a mouse GDM model, the inflammatory cytokines may be
reduced, mitigating GDM symptoms and improving the
reproductive outcomes in mice (Qi et al., 2021).

3.5 AMDi Network and the Most Linked
Diseases
The AMDi network also provided very intriguing and useful
information. For instance, the two pathologies related with the
highest number of correlated genes are the Experimental
Autoimmune Encephalomyelitis (EAE, 17 genes) and Asthma
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(11 genes), this last being already discussed above (for the
complete list of diseases and related information, see Figure 6;
Supplementary Material S4, second sheet).

3.5.1 Experimental Autoimmune Encephalomyelitis
EAE is an autoimmune encephalomyelitis commonly used as an
experimental model for the human inflammatory demyelinating
disease, multiple sclerosis (MS). It constitutes a complex
condition in which the interaction between a variety of
immunopathological and neuropathological mechanisms leads
to the key pathological features of MS: inflammation,
demyelination, axonal loss and gliosis (Constantinescu et al.,
2011).

The exploration of the link between MS and infertility is
very complex for several reasons. As discussed by Cavalla and
coll. (2006), the frequency of childlessness in the female MS
patients seems to be higher than in the general population
(Cavalla et al., 2006). Rather than lowered fertility, this could
reflect other issues related to this pathology, such as the fact
that patients may choose to avoid or postpone pregnancy,
mainly because of concern about taking care of the baby or
about the risk of transmitting a genetic susceptibility to MS to
their children (Cavalla et al., 2006). A recent study has shown
that women affected with MS had lower live birth rates (LBR)
compared to unaffected women (irrespective of their infertility
diagnosis or treatment) (Houtchens et al., 2020). This
statistically significant difference in LBRs was more evident
in women in early (Bauer-Mehren et al., 2011; Profaizer and
Eckels, 2012; Leone et al., 2013; Chattopadhyay et al., 2014;
Mosaad, 2015; Pinero et al., 20152015; Robinson et al., 2015;
Piñero et al., 2017; Wieczorek et al., 2017; Jongsma et al., 2019;
Piñero et al., 2020; Tersigni et al., 2020; Wilczyńska et al.,

2020) and middle (Emmery et al., 2016; Nielsen et al., 2017;
Agius et al., 2018; Papúchová et al., 2019) childbearing years.
The difference between women with and without MS
disappeared after receiving infertility treatments, thus
highlighting the importance of information regarding the
efficacy of infertility treatments in women with autoimmune
diseases (Houtchens et al., 2020).

Despite the fact that MS is three times more common in
women than in men and that endocrine alteration commonly
found in MS patients and immunosuppressive therapies could
interfere with fertility, Glazer and co-workers evaluated the
association of MS and male infertility in a register-based
cohort study in Denmark between 1994 and 2015 (Glazer
et al., 2017). A comparison was made between a group of
24,011 men diagnosed with male factor infertility and a
control group of 27,052 normal males. Infertile men showed
a higher risk of prevalent and incident MS when compared to
the reference group, thus suggesting, for the first time, an
association between male infertility and MS (Glazer et al., 2017).

Here we provided the evidence that in both EAE and asthma a
common genetic background could explain, at least in part, the
finding that a systemic inflammation can also involve the
reproductive system.

From the results obtained in this study, we highlighted as
immune system and reproductive function are closely linked.
Indeed, as it was shown, some proteins involved in sperm-oviduct
interaction could be involved in several immune system diseases,
while, at the same time, some immune system diseases could
interfere with the reproduction process, although their causal
relationship is still unclear.

However, to better understand the cross-talk between the
immune and the reproductive systems are needed further

FIGURE 6 | Graphical representation of the most linked immune system diseases with the genes list in AMDi. The most linked diseases were experimental
autoimmune encephalomyelitis (EAE, linked 17 genes) and asthma (linked 11 genes).
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investigations, such as wider epidemiological studies and
experimental research with the use of animal models.

In conclusion, our innovative approach fits well in the field of
“reproductive immunology” that represents an active area of
research aimed at understanding how the immune system
contributes to human reproduction. In a clinical research
scenario this comprehension might be fundamental in
reducing implantation failure and recurrent miscarriage in
assisted reproductive technologies (ARTs).
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lncRNA–protein interactions play essential roles in a variety of cellular processes. However,
the experimental methods for systematically mapping of lncRNA–protein interactions
remain time-consuming and expensive. Therefore, it is urgent to develop reliable
computational methods for predicting lncRNA–protein interactions. In this study, we
propose a computational method called LncPNet to predict potential lncRNA–protein
interactions by embedding an lncRNA–protein heterogenous network. The experimental
results indicate that LncPNet achieves promising performance on benchmark datasets
extracted from the NPInter database with an accuracy of 0.930 and area under ROC curve
(AUC) of 0.971. In addition, we further compare our method with other eight state-of-the-
art methods, and the results illustrate that our method achieves superior prediction
performance. LncPNet provides an effective method via a new perspective of
representing lncRNA–protein heterogenous network, which will greatly benefit the
prediction of lncRNA–protein interactions.

Keywords: lncRNA–protein interaction, computational method, heterogenous network, network embedding,
LncPNet

1 INTRODUCTION

The non-coding RNA (ncRNA) plays important roles in biological processes, which can influence
human health on various levels (Louro et al., 2009). Existing studies have shown that less than 2% of
the human genome can be translated into proteins; while, over 80% of the genome has biochemical
functions (Djebali et al., 2012). In addition, over 70% of ncRNAs are lncRNAs (Yang et al., 2014). It is
demonstrated that lncRNAs play crucial roles in transcription, splicing gene expression (Ponting
et al., 2009; Guttman and Rinn, 2012; Qu and Adelson, 2012; Zhu et al., 2013), and have a close
relationship with complex diseases (Mercer et al., 2009; Yang et al., 2015). Therefore, lncRNA is of
great importance for understanding the mechanisms of biological processes.

Most of the functions of lncRNA are still unknown. One of themechanisms is lncRNAs usually function
by binding to chaperone proteins (Mercer et al., 2009). Hence, the basis for understanding the functions of
lncRNAs is to recognize the interactions between lncRNAs and proteins, which can help understand the
mechanism of physiological processes. Experimental methods for identifying protein–RNA interactions
include ChiRP, CHART, RIP, RIP-ChIP/Seq, and CLIP (Yang et al., 2015). Since these experimental
methods are often time-consuming and expensive, an effective computational method is an alternative way
for expanding our knowledge of lncRNA–protein interactions (Liu, 2021).

In recent years, some methods for predicting lncRNA–protein interactions have been developed.
Muppirala et al. applied random forest (RF) (Breiman, 2001) and support vector machines (SVMs)
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(Joachims, 1998) to classify an interaction only via the sequence
information of lncRNA and protein (Muppirala et al., 2011).
Lncpro was developed for predicting lncRNA–protein
associations (Lu et al., 2013) by three types of features based
on the Fisher linear discriminant approach, including classical
protein secondary structures and hydrogen-bond and van der
Waals propensities as well as six types of RNA secondary
structures. In 2016, IPMiner was proposed to predict
lncRNA–protein interactions from sequences, which employed
deep learning and further improved the performance using
stacked integration (Pan et al., 2016). Hu et al. introduced a
method named HLPI-Ensemble specifically for human
lncRNA–protein interactions (Hu et al., 2018). HLPI-Ensemble
adopts three methods to extract the features of lncRNA and
protein from sequences based on three mainstream machine
learning algorithms of SVM, RF, and extreme gradient
boosting (XGB) (Chen and Guestrin, 2016). Suresh et al.
proposed an approach based on SVM classifiers by integrating
sequence and structure features of the lncRNA and protein
(Suresh et al., 2015). Zhang et al. combined multiple
sequence-based features, lncRNA–lncRNA similarity and
protein–protein similarity, and predicted lncRNA–protein
interactions by RNA sequences and protein sequences as well
as known lncRNA–protein interactions (Zhang et al., 2018b). Li
et al. proposed a network-based computational method, which
used a random walk with restart based on heterogenous network
model (i.e., LPIHN), to infer the lncRNA–protein interactions (Li
et al., 2015). Although LPIHN employs the method of network
embedding, it does not consider the type of node. Moreover, these
ordinary random walks cannot well retain the local and global
information of the node from the network. LPLNP was developed
for calculating the linear neighborhood similarity in the feature
space and transferring it into the interaction space to predict
unobserved interactions by a label propagation process (Zhang
et al., 2018a). Yi et al. introduced a stacking ensemble-based
computational model to predict lncRNA–protein interactions,
called RPI-SE, which integrated XGB, SVM, and extremely
randomized trees (ExtraTree) (Geurts et al., 2006) algorithms
(Yi et al., 2020).

However, there are main drawbacks with the aforementioned
methods. First, most of their extracted features for proteins as well
as lncRNAs are hand-crafted, which consume much time and
require strong domain knowledge. What is more, the previous
studies attempt to construct a model to predict the
lncRNA–protein interactions of all species. All these may lead
to low robustness and overly optimistic predictions.

With the development of machine learning, network
representation learning algorithm has become a pressing
research task (Cui et al., 2019). In this study, we propose a
new lncRNA–protein interactions prediction model called
LncPNet based on heterogenous network embedding, which
can solve the aforementioned problems in the existing
methods. LncPNet is intentionally designed for predicting
lncRNA–protein interactions in human, and thus it is trained
by human lncRNA–protein interaction data. We apply network
embedding to automatically generate features for proteins and
lncRNAs. Specifically, a lncRNA–protein heterogenous network

is constructed with lncRNA–lncRNA similarity,
protein–protein similarity, and lncRNA–protein associations.
Then, network embedding extracts, lncRNA features and
protein features, are then fed into a SVM classifier to predict
lncRNA–protein interactions. Moreover, we compare the
performance of LncPNet with the previous models on the
same benchmark database. The results demonstrate that
LncPNet obtains predictive performance with higher
accuracy and robustness.

2 MATERIALS AND METHODS

2.1 Framework of LncPNet
Figure 1 shows the schematic flowchart of our proposed LncPNet
approach for predicting lncRNA–protein interactions based on
heterogenous network embedding. The proposed method briefly
includes three steps: 1) construction of a heterogenous network
based on lncRNA–lncRNA similarity, protein–protein similarity,
and known lncRNA–protein interactions; 2) the feature
extraction for given lncRNA and protein using network
embedding; and 3) training with SVM to predict novel
lncRNA–protein associations. More detailed descriptions for
each step are given below.

2.2 Datasets
In this study, we apply the known lncRNA–protein interaction
data from NPInter v2.0 (Yuan et al., 2014) and lncRNA sequence
data from NONCODE v6.0 (Zhao et al., 2016) as well as protein
sequence data from UniProt (The UniProt Consortium, 2017).
NPInter integrates experimentally verified functional interactions
between ncRNAs (excluding tRNAs and rRNAs) and other
biomolecules (proteins, RNAs, and genomic DNAs).
NONCODE aims to present a complete collection and
annotation of non-coding RNAs, especially long non-coding
RNAs (lncRNAs). The UniProt knowledge base is a large
resource of protein sequences and associated detailed
annotation. First, we extract the human lncRNA–protein
interactions from NPInter, which are filtered by restricting the
organism, the type of lncRNAs, and the type of proteins to
“Homo,” “ncRNA,” and “protein,” respectively. After data
cleaning, we obtain 7,523 experimentally validated human
lncRNA–protein interactions, including 3,052 lncRNAs and
212 proteins. Then, we map these lncRNA IDs and protein
IDs of NPInter into NONCODE IDs and UniProt IDs,
respectively. From these lncRNAs and proteins that we have,
we remove lncRNA and protein whose sequence information is
unavailable. Finally, we obtain a dataset with 4,578
lncRNA–protein interactions between 2,009 lncRNAs and 78
proteins. In these datasets, only known lncRNA–protein
associations (positive samples) are available. To train the
classifier, we choose negative samples by a subcellular
localization method with empirical tests of other alternatives.
So, we randomly choose the same number of samples from all
possible negative pairs. Meanwhile, the dataset is randomly
divided into two parts, where one part is used for training set
and the other is for testing. Among them, the quantity scale of the
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training set and test set is approximately 9:1, and the procedure is
repeated three times.

2.3 Construction of a lncRNA–Protein
Heterogenous Network
An lncRNA–protein heterogenous network is constructed with
lncRNA–lncRNA similarity, protein–protein similarity, and
known lncRNA–protein associations. lncRNA–lncRNA

similarity and protein–protein similarity are both quantified in
two different ways.

2.3.1 Jaccard Similarity
The Jaccard similarity (Bag et al., 2019) is an index used to
measure the similarity of two sets. In this study, the Jaccard
similarity is employed to calculate lncRNA–lncRNA similarities
and protein–protein similarities. We define Li � {p1, p2, ..., px}
and Pj � {l1, l2, ..., ly} as two sets of lncRNA i and protein j ,

FIGURE 1 | Flowchart of LncPNet.
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which contain associated proteins of lncRNA i and associated
lncRNAs of protein j, respectively. Given two lncRNAs, the
similarity between two lncRNAs is defined as follows:

J(Li, Lj) �
∣∣∣∣Li ∩ Lj

∣∣∣∣∣∣∣∣Li ∪ Lj

∣∣∣∣, (1)

where Li and Lj represent lncRNA i and lncRNA j associated
proteins sets, respectively.

2.3.2 BLAST Similarity
BLAST is a fundamental and basic local alignment search tool for
sequence similarity based on a local optimal alignment strategy
(Ye et al., 2006). Essentially, BLAST is a heuristic algorithm. It
first breaks the query sequence into sub-segments, called seed
words. Furthermore, the seed is compared with the pre-indexed
sequence, and the position with the higher continuous score of the
seed is selected for further extension by the dynamic programming
algorithm. The extension process will also be scored.When the score
is below a certain limit, the extension process will be terminated and
abandoned. Finally, a series of high-scored sequences are produced.
In this study, we establish two local databases for lncRNA and
protein. Then, the similarities between every two lncRNAs and every
two proteins are calculated via BLAST.

2.3.3 The Heterogenous Network
The lncRNA–lncRNA Jaccard similarity network can be
represented using a bipartite graph G11, as follows:

G11 � (L,E11, J), (2)

where L � {l1, l2, ...ln} represents the set of n lncRNAs, E11 �
{e1, e2, ...em} represents sets of edges between vertices, and li and
lj are connected if the Jaccard similarity is more than 0.5.

The lncRNA–lncRNA BLAST similarity network can be
represented using a bipartite graph G12, as follows:

G12 � (L,E12, B), (3)

where L � {l1, l2, ...ln} represents the set of n lncRNAs, E12 �
{e1, e2, ...em} represents sets of edges between vertices, and li and
lj are connected if the BLAST similarity e-value is less than 0.001.

Similarly, two bipartite graphs G21 and G22 represent
protein–protein similarities as follows:

G21 � (P, E21, J); (4)

G22 � (P,E22, B), (5)

where P � {p1, p2, ...pn} represents the set of n proteins, E21 �
{e1, e2, ...em} and E22 � {e1, e2, ...em} represent sets of edges
between vertices, and Pi and Pj are connected if their Jaccard
similarity is more than 0 and the BLAST similarity e-value is less
than 0.01.

Then, we construct two heterogenous networks. Among them,
one is by known lncRNA–protein interactions, lncRNA–lncRNA
similarities, and protein–protein similarities calculated with the
Jaccard similarity. The other is by known lncRNA–protein
interactions, lncRNA–lncRNA similarities, and protein-protein
similarities calculated with BLAST similarity.

2.4 Heterogenous Network Embedding
Network embedding can use less information to represent nodes
as dense- and low-dimensional vectors and has been rapidly
developed and applied recently (Cao et al., 2016; Hamilton et al.,
2018; Veličković et al., 2018; Zhang et al., 2020). According to the
heterogenous network constructed previously, we employ
network embedding to learn the low-dimensional latent
representations based on the structural and semantic
properties of the lncRNA–protein heterogenous network,
which are able to characterize the lncRNA–protein
associations. In LncPNet, we adopt the metapath2vec method
(Dong et al., 2017) for network embedding because it takes better
account of the type of nodes, which is suitable for representing the
heterogenous network. Generally, metapath2vec can be divided
into two steps. First, we employ meta-path-based random walks
to generate paths that can capture both the semantic and
structural correlations between different types of nodes and
then facilitate the transformation of heterogenous network
structures into metapath2vec′s skip-grams.

In detail, a meta-path scheme φ from V1 to Vl is defined as the
form of V1 ��������→R1 V2 ��������→R2 ...Vt ��������→Rt Vt+1... ����������→Rl−1 Vl,
where R � R1+R2+...+Rl−1 is defined as the composite relations
between node types V1 and Vl. In this study, we define “LPLPL”
and “LLPPLL” metapaths, in which “LPLPL” represents two
lncRNAs interact via a protein and similarly for “LLPPLL”.
For the heterogenous network G(V, E) and metapath
V1 ��������→R1 V2 ��������→R2 ...Vt ��������→Rt Vt+1... ����������→Rl−1 Vl, the
transition probability at step i is defined as follows (Yang
et al., 2019):

p(vi+1∣∣∣∣vik,φ) �
⎧⎪⎪⎨
⎪⎪⎩

1∣∣∣∣Nj(vik)
∣∣∣∣, (v

i+1, vik) ∈ E,ϕ(vi+1) � j

0, otherwise,

, (6)

where vj and vk, respectively, denote the jth and kth node type in
the path φ, Nj(vk) denotes the neighborhood of node vjk with
respect to the jth node type, and ϕ(v) is a constraint function to
make sure the node type of node v to be type j. In order to avoid
the disclosure of the test set information, we remove the
associations between lncRNA and protein in the test set
when the metapath is generated. Then, skip-gram learns
effective node representations for a heterogenous network
G(V, E) by maximizing the probability of having the
heterogenous context.

LncPNet employs metapath2vec on the aforementioned two
heterogenous networks to produce a 1 × 64 feature vector for
every vertex. Moreover, we splice the two feature vectors of every
lncRNA to obtain a 1 × 128 feature vector, which is the same to
every protein encoded.

2.5 Prediction of lncRNA–Protein
Interactions
With vector representations of lncRNA–protein associations as
inputs, which of dimensionality is 1 × 256, SVM is trained to
predict whether an lncRNA interacts with a protein. In particular,
our training set and test set are pre-divided, and we conduct the
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procedure three times. What is more, we choose radial basic
function (RBF) as the SVM kernel function.

2.6 Performance Evaluation
Precision (PRE), recall (REC), specificity (SPE), accuracy (ACC),
Matthew’s correlation coefficient (MCC), and F1-score are the
most common classification model evaluation indicators. They
can be defined as (Sokolova et al., 2006):

PRE � TP

TP + FP
; (7)

REC � TP

TP + FN
; (8)

SPE � TN

FP + TN
; (9)

ACC � TP + TN

TP + TN + FP + FN
; (10)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ ; (11)

F1 � 2 × precision × recall

precision + recall
, (12)

where TP, FP, TN, and FN is the number of true positives, false
positives, true negatives, and false negatives, respectively.

3 RESULTS AND DISCUSSION

3.1 Performance of LncPNet
To evaluate the prediction performance of LncPNet, we test RF
(Breiman, 2001), naive Bayesian (NB) (Elkan, 1997), and SVM
(Joachims, 1998) classifiers. As shown in Figure 2, SVM achieves
the AUC of 0.971 on the NPInter v2.0 dataset. It increases by 4.7%
over NB with the AUC of 0.924 and decreases by 0.1% over RF
with the AUC of 0.972. But from Figure 3, SVM has comparable
performance with RF. Thus, we choose SVM as our classifier
implemented in LncPNet. What is more, we test different
negative samples producing approaches on this model. Finally,

LncPNet employs the SVM classifier to train the model and
adopts the subcellular localization method to produce negative
samples. For comparison study, we evaluate the performance of
CF (Sarwar et al., 2001), RWR (Köhler et al., 2008), LPBNI (Ge
et al., 2016), SFPEL-LPI (Zhang et al., 2018b), LPIHN (Li et al.,
2015), LPLNP (Zhang et al., 2018a), RPI-SE (Yi et al., 2020), and
IPMiner (Pan et al., 2016) on NPInter v2.0. Meanwhile, the
performance of different sub-models has also been identified.
In order to evaluate the performance of these methods
comprehensively, we employ the ACC, PRE, REC, SPE, MCC,
AUC, and F1 as the evaluation metrics. AUC (Huang and Ling,
2005) is the area under the ROC (Fawcett, 2006) curve, which is
an evaluation dedicated to the classification model. In LncPNet,
the average PRE, REC, SPE, ACC, MCC, F1, and AUC is 0.908,
0.957, 0.903, 0.930, 0.860, 0.932, and 0.971, respectively.

3.2 Comparisons With Sub-Models
In order to fully evaluate the performance, we compare LncPNet
with three sub-models on NPInter v2.0. LncPNet model
construction is mainly divided into three steps. Specifically, we
construct a heterogenous network with lncRNA–lncRNA
similarities, protein–protein similarities, and known
lncRNA–protein interactions, where lncRNA–lncRNA
similarities and protein–protein similarities are calculated by
the Jaccard similarity and BLAST similarity, respectively.
Then, a feature vector is generated from the heterogenous
network with network embedding (metapath2vec) to
characterize a pair of lncRNA and protein. Finally, with the
feature vectors with class labels as inputs, SVM is trained to
predict potential lncRNA–protein associations. The construction
of heterogenous network contains four types of different
strategies. In approach 1, only known lncRNA–protein
interactions (KNet) are used to construct the network; in
approach 2, known lncRNA–protein interactions and Jaccard
similarity (KJNet) are used to construct the network; in approach
3, known lncRNA–protein interactions and BLAST similarity
(KBNet) are used to construct the network; and in approach 4,
known lncRNA–protein interactions, Jaccard similarity, and
BLAST similarity (LncPNet) are used to construct the

FIGURE 2 | ROC curves of SVM, RF, and NB.

FIGURE 3 |Histogram of the six evaluation criteria achieved by SVM, RF,
and NB models.
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network. Figure 4 shows the ROC curve. Table 1 illustrates the
prediction results of different integration strategies on NPInter
v2.0. From Table 1, we can find the experiments of LncPNet
integrate the advantages of different branch models, achieving
better performance than those of sub-models.

3.3 The Strategy of Negative Sampling
Missing negative samples has always been a problem in predicting
molecular interactions, which leads to a wide variety of negative
sample generation methods. However, few studies have proved
how to generate negative samples is the most reliable. In this
section, we summarize three commonly used negative sample
construction methods. The first one, and also the most popular
one, is the random pairing method. Negative samples are
randomly sampled from the possible lncRNA–protein pairs
except the positive samples. The second one is the method of
subcellular localization, which is based on the assumption that the
lncRNA and protein that are not in the same subcellular location
would not interact with each other. Therefore, proteins and
lncRNAs that are not in one organelle are regarded as
negative sample pairs. The third one is the network distance
method, which calculates the shortest-path distance between each
lncRNA and protein in the prior interaction network, and treats
the protein and lncRNA that are greater than a certain distance
threshold, for e.g., six, as a negative sample pair.

According to these rules, we further categorize the distance
method of selecting negative samples into three types of
experiments: 1) “Distance_3”: the negative samples with a

distance equal to 3; 2) “Distance_5”: the negative samples with
a distance greater than 1 and less than or equal to 5; and 3)
“Distance_7”: the negative sample with a distance greater than 1
and less than or equal to 7. To avoid the imbalance problem when
training the classifier, we choose negative samples with the same
number of positive samples in the experiments. As presented in
Figure 5, the subcellular localization method and “Distance_7”
achieve a relatively higher value than the random pairing,
“Distance_3” and “Distance_5” methods. Meanwhile, in the
three distance-based methods, “Distance_3,” “Distance_5,”
and “Distance_7”, we find that as the distance of selecting
negative sample increases, the AUC value becomes higher.
This also validates the rationality of our proposed strategy and
the former assumption in selecting negative samples. Table 2
shows that the subcellular localization method achieves the
best prediction performance according to the six evaluation
metrics. This clearly shows that different negative samples
have a concrete impact on the model, and more reliable
negative samples will make LncPNet to achieve better
prediction results. Thus, we employ the subcellular
localization method as our negative sample generation
method in LncPNet.

3.4 Comparison With Other
State-Of-The-Art Models
In order to further demonstrate the reliability and robustness of
prediction by the LncPNet method, we compare LncPNet with

FIGURE 4 | ROC curves of LncPNet and sub-models.

TABLE 1 | Prediction results of LncPNet and sub-models.

Network PRE REC SPE ACC MCC F1 AUC

KNet 0.898 0.873 0.901 0.887 0.774 0.885 0.953
KJNet 0.887 0.914 0.884 0.899 0.799 0.900 0.959
KBNet 0.875 0.982 0.859 0.921 0.848 0.925 0.962
LncPNet 0.908 0.957 0.903 0.930 0.860 0.932 0.971

Every bold value means it corresponds to the highest value in the evaluation indicator.

FIGURE 5 | AUC values of Random, Subcellular, “Distance_3,”
“Distance_5,” and “Distance_7” (Random, random-pairing method;
Subcellular, subcellular localization method).

TABLE 2 | Performance comparison of five negative sample models.

Method PRE REC SPE ACC MCC F1 AUC

Random 0.870 0.946 0.856 0.901 0.808 0.905 0.960
Subcellular 0.908 0.957 0.903 0.930 0.860 0.932 0.971
Distance_3 0.846 0.820 0.851 0.835 0.672 0.833 0.910
Distance_5 0.863 0.915 0.854 0.884 0.771 0.888 0.950
Distance_7 0.905 0.933 0.903 0.918 0.837 0.919 0.973

Every bold value means it corresponds to the highest value in the evaluation indicator.
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the eight state-of-the-art methods, namely IPMiner, RPI-SE,
LPLNP, RWR, CF, SFPEL-LPI, LPBNI, and LPIHN, on the
same benchmark of NPInter v2.0. These methods are typical
methods that have been proposed in recent years, and they can be
divided into three categories:

(1) The first type of method is mainly based on sequence
information, structural information, evolutionary
knowledge, or physical and chemical properties to mine
the distinguishing characteristics of the lncRNA and
protein. For example, RPI-SE applied the position weight
matrix combined with Legendre moments to obtain protein
evolutionary information and k-mer sparse matrix to
extract feature of lncRNA sequences. SFPEL-LPI used
sequence information to build a feature projection
ensemble-learning frame to predict lncRNA–protein
interactions.

(2) The second type of method is mainly to use stacked
autoencoders to extract high-level hidden features of
proteins and lncRNAs. For example, IPMiner extracted
raw sequence composition features from lncRNA and
protein sequences, high-level features by applying stacked
autoencoder, and fine-tuning features using label
information, and then a training ensemble strategy such as
RF classifier to robustly predict the interactions between
lncRNAs and proteins.

(3) The third type of method mainly uses topological
information to extract lncRNA and protein features. For
example, LPLNP employed a linear neighborhood
propagation method, to predict lncRNA–protein
interactions. LPBNI used a bipartite network–based
method for predicting lncRNA–protein interactions. RWR
and CF are also the same type of methods. LPIHN
constructed a lncRNA–protein heterogenous network and
used a random walk with restart to infer novel
lncRNA–protein interactions.

We replicate all these methods on the same dataset for fair
comparisons. As shown in Table 3, LncPNet achieves a PRE
of 0.908, SPE of 0.903, ACC of 0.930, MCC of 0.860, and F1
of 0.932, which outperform all the other methods. REC is a
little worse than the best method, IPMiner. All these
performance comparisons indicate that LncPNet has
higher reliability in predicting lncRNA–protein

interactions. Figure 6 illustrates the ROC curves with
AUCs of these methods. The results further demonstrate
the effectiveness and advantage of our method, LncPNet.
Although we use the heterogenous network with LPIHN, our
metapath2vec method takes into account the node type and
transition probability simultaneously, which makes it
achieves better performance.

3.5 Case Study
In order to further evaluate the reliability of our prediction
model, we propose a case study to verify its performance. As
mentioned earlier, the dataset we used in LncPNet is NPInter
v2.0, and currently NPInter has been updated to NPInter v4.0,
which includes some novel lncRNA–protein interaction pairs.
We test to predict the new lncRNA–protein interactions
confirmed in NPInter v4.0 based on known interactions in
NPInter v2.0. Specifically, we predict the 23 pairs of
interactions newly discovered in NPInter v4.0 and the
generated 23 pairs of negative samples and rank them
according to the scores. As shown in Table 4, we list the top
ten interactions predicted by LncPNet, in which seven novel
interactions are confirmed in the new version of NPInter.
Figure 7 illustrates the constructed network diagram. The
case study provides more evidence for the effectiveness,

TABLE 3 | Performance comparison of LncPNet and eight available methods.

Method PRE REC SPE ACC MCC F1 AUC

CF 0.583 0.894 0.361 0.627 0.301 0.706 0.761
RWR 0.739 0.798 0.717 0.757 0.517 0.767 0.830
LPBNI 0.740 0.840 0.698 0.769 0.548 0.785 0.859
SFPEL-LPI 0.769 0.920 0.724 0.822 0.657 0.838 0.916
LPIHN 0.807 0.966 0.769 0.867 0.750 0.879 0.938
LPLNP 0.832 0.943 0.810 0.876 0.761 0.884 0.944
RPI-SE 0.877 0.974 0.863 0.919 0.843 0.923 0.959
IPMiner 0.886 0.970 0.875 0.922 0.849 0.926 0.961
LncPNet 0.908 0.957 0.903 0.930 0.860 0.932 0.971

Every bold value means it corresponds to the highest value in the evaluation indicator.

FIGURE 6 | ROC curves of LncPNet and eight comparing methods.

TABLE 4 | Top 10 novel interactions predicted by LncPNet.

Rank lncRNA Protein Whether confirmed

1 NONHSAT032174.2 O00425 Yes
2 NONHSAT017141.2 O00425 Yes
3 NONHSAT125498.2 P61978 Yes
4 NONHSAT048327.2 Q01844 Yes
5 NONHSAT017141.2 O00571 No
6 NONHSAT125498.2 Q9NW64 Yes
7 NONHSAT017141.2 P78332 No
8 NONHSAT048327.2 Q9NW64 No
9 NONHSAT125498.2 Q8IYB8 Yes
10 NONHSAT067050.2 P70372 Yes
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flexibility, and extendibility in predicting lncRNA–protein
interactions.

CONCLUSION

In this study, we proposed LncPNet based on a heterogeneous
network embedding method for predicting lncRNA–protein
interactions. The experimental results demonstrated that
LncPNet achieves high prediction performance on our
benchmark dataset and yields better results compared to other
methods. As for the lncRNA–protein interaction predictive
task is a nonnegative sample problem, we provided a new

perspective into network embedding by comparing three
kinds of methods for negative sampling. In addition, the case
study results further demonstrated the effectiveness of
LncPNet. The network embedding method is a general node
representing method. The framework of LncPNet can be
expanded to other interaction predictive task, such as
miRNA–protein interaction prediction and lncRNA–disease
interaction prediction.
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Generation of Realistic Gene
Regulatory Networks by Enriching for
Feed-Forward Loops
Erik K. Zhivkoplias1†, Oleg Vavulov2†, Thomas Hillerton1 and Erik L. L. Sonnhammer1*

1Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden, 2Bioinformatics
Institute, St. Petersburg, Russia

The regulatory relationships between genes and proteins in a cell form a gene regulatory
network (GRN) that controls the cellular response to changes in the environment. A
number of inference methods to reverse engineer the original GRN from large-scale
expression data have recently been developed. However, the absence of ground-truth
GRNs when evaluating the performance makes realistic simulations of GRNs necessary.
One aspect of this is that local network motif analysis of real GRNs indicates that the feed-
forward loop (FFL) is significantly enriched. To simulate this properly, we developed a novel
motif-based preferential attachment algorithm, FFLatt, which outperformed the popular
GeneNetWeaver network generation tool in reproducing the FFL motif occurrence
observed in literature-based biological GRNs. It also preserves important topological
properties such as scale-free topology, sparsity, and average in/out-degree per node. We
conclude that FFLatt is well-suited as a network generation module for a benchmarking
framework with the aim to provide fair and robust performance evaluation of GRN inference
methods.

Keywords: network biology, gene regulatory networks, gene-gene interaction, network motif structure, network
generation, network simulation, benchmarking

INTRODUCTION

Understanding large-scale biological relationships between genes and the proteins they encode
remains a great challenge in systems biology. The wide availability of system-level expression datasets
has given rise to a variety of reverse engineering methods that aim to reconstruct the hidden
regulatory gene–gene and gene–protein relationships. Such relationships form a gene regulatory
network (GRN) that regulates developmental processes in organisms and controls adaptation to
changes in the environment (Davidson, 2010). By contrast with other networks in biological systems,
GRNs are harder to validate as the interactions that occur between genes usually involve indirect
interactions through biological molecules making the interaction hard to detect and quantify. The
incompleteness and scarcity of ground-truth networks results in problems when evaluating the
performance of methods that seek to infer GRNs from large-scale expression data (Emmert-Streib
and Dehmer, 2018).

The problem of inferring a gene regulatory network from gene expression data has received
significant attention. A variety of GRN inference methods are commonly used (Margolin et al., 2006;
Faith et al., 2007; Friedman et al., 2010; Huynh-Thu et al., 2010; Zavlanos et al., 2011) to tackle this
problem. It was also the focus of four separate Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenges, with DREAM5 being the most recent one (Marbach et al., 2012).
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Newer, more advanced algorithms require not only expression
data but also utilize additional information such as
experimentally validated interactions and Gene Ontology
terms (Chouvardas et al., 2016), structures of genomic datasets
and network topology (Siahpirani and Roy, 2017), DNA binding
domains of transcription factors, and promoter sequences of its
putative targets (Kang et al., 2018), or use the iterative kernel PCR
model (Iglesias-Martinez et al., 2021). Despite this, for most
methods the performance on real experimental datasets
remains modest (Marbach et al., 2012; Chen and March 2018;
Pratapa et al., 2020).

Regardless of the method used, it is important to fairly assess
its performance with respect to other methods. As some methods
can only predict Boolean networks, assessment should be done in
terms of binary error classification such as the number of false
positives and false negatives. In addition to this, experimental
information about transcriptional interactions is usually only
available in the binary form. Boolean networks can only be
defined by their topology, which is why it is essential to
understand the structure of GRN graphs. It is also worth
pointing out that most GRN inference methods can only
predict a static network structure, which implies that in-silico
generated GRNs should also possess biological stability.

While the true structure of real GRNs is usually not known,
they tend to share some topological features: the scale-free
property (Barabasi and Albert, 1999), where the node degrees
follow a power-law degree distribution, and often have the small
world property (Watts and Strogatz, 1998), and where nodes
form distinct clusters in which they are connected to each other in
lattice rings. These properties are different from random graphs
where node degrees are normal distributed across all nodes in the
system. Some attempts to simulate GRNs have been made by
implementing methods that generate random (Watts and
Strogatz, 1998; Mendes et al., 2003) or scale-free (Barabasi and
Albert, 1999) graphs with given sets of parameters, but eventually
methods based on the idea of subnetwork-selection from
biological networks gained more popularity (Van den Bulcke
et al., 2006). One example of this is GeneNetWeaver (GNW)
(Schaffter et al., 2011), which was used to generate in silico
networks for the DREAM challenges.

The regulatory dynamics of GRNs is shaped by network
patterns that are more frequent in GRNs than in other
networks (Milo et al., 2002; Shen-Orr et al., 2002) and may
carry information-processing functions. These local patterns, or
motifs, and do not result in emergence of specific patterns in gene
expression but rather determine dynamical boundaries of the
phase space of the system (Ahnert and Fink, 2016). It was
suggested that some motifs could be particularly important for
network dynamics and therefore become overrepresented and
drive the evolution of the networks (Prill et al., 2005). Examples of
how feed-forward loops are involved in such dynamics are ample,
including sign-sensitive delay elements (Mangan et al., 2003), bi-
phase response generators (Kaplan et al., 2008), band-pass filters
(Sohka et al., 2009), and decoders of oscillatory signals (Zhang
et al., 2016). Due to this, simulating a network structure that
preserves the overrepresentation of motifs is of utmost
importance for capturing realistic dynamics of GRNs. The idea

of building gene regulatory networks by using motifs as building
blocks was first introduced by Abdelzaher et al. (2015a) that
hypothesized that this could be important for the evolution of
GRN topology in E. coli.

Network inference methods aim to solve the problem of finding
regulatory interactions within a set of genes. This, however, doesn’t
imply that all edges in a reconstructed network represent physical
binding between transcription factors and their respective targets.
Gardner and Faith (2005) describe two groups of reverse-engineering
algorithms. The first group seeks to identify regulators that directly
control mRNA expression, and the second one is focused on
identification of general regulatory interactions between different
genes that may be indirect. Regardless of interaction type, simulated
data should allow for exploring a wide range of network properties to
evaluate inference algorithms performance. It was shown that FFLs
are significantly overrepresented in experimentally validated
transcriptional regulation databases (Lee et al., 2002; Milo et al.,
2002). FFLs were also found to be significantly overrepresented in
other databases ofmicroRNAs and their predicted targets (Krek et al.,
2005; Lewis et al., 2005) with Z-score range between 1.39 and 6.03
(Shalgi et al., 2007). Other TF-microRNA studies demonstrated that
in the circuitry of gene regulation via intermediate microRNAs, in
mouse and human, and the FFL motif is also enriched (Tsang et al.,
2007). This suggests that FFL is an important signature of real GRNs
that represent either direct or indirect interactions between genes.

In the present study the significance of 3-node motifs in
four directed GRNs based on experimentally verified
transcriptional interaction databases were evaluated. In
agreement with previous studies (Lee et al., 2002; Milo
et al., 2002; Boyer et al., 2005), it was found that the feed-
forward loop (FFL) is the only motif that is overrepresented.
This motivated us to develop a novel motif-based preferential
attachment algorithm called FFLatt for simulating realistic
structures of GRNs that are enriched with the FFL motif. The
networks generated by FFLatt demonstrate structural
properties that agree with biological GRNs, and have good
robustness in stability analyses. Given their realistic
properties, they are well suited for fair and robust
evaluation of the performance of GRN inference algorithms.

METHODS

Transcriptional Interaction Databases
Three biological databases that contain information of
experimentally validated transcriptional regulation were chosen
as ground-truth networks: RegulonDB (Santos-Zavaleta et al.,
2019) for E. coli (Balaji et al., 2006), for S. cerevisiae, and TRRUST
v2 (Han et al., 2018) forM. musculus andH. sapiens transcription
factor—target regulatory relationships.

Motif-Node Participation and Motif
Enrichment
We chose to test for node-motif participation for all possible
connected three-node motifs with no reciprocal links between
them (Figure 1). Reciprocal links were not considered as they are
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very rare in the biological networks studied here. To calculate the
motif-node counts, Nreal, for every node in the network we
calculated the presence of a given node in all different roles of
a given motif, N(i). and so for a set of nodes {1 = 1, . . . , M} in the
network of size M it could be framed as:

Nreal � ∑
M

i�1
Nrole1(i) +Nrole2(i) +Nrole3(i) (1)

For example, node a could either participate in Role 1 (2
outgoing edges, 0 incoming), Role 2 (1 outgoing edge, 1
incoming), and Role 3 (0 outgoing edges, 2 incoming) of FFL
motif 1 but at the same time participate in different role of other
FFL motif 2 (Figure 2).

To test for motif enrichment, we calculated Z-score for every
motif type:

Nreal − μshuffled
σshuffled

(2)

where Nreal is the number of motif counts in the original
network, μshuffled and σshuffled are the mean and standard
deviation of motif counts in the distribution of shuffled
networks. Every network was shuffled with a preserved in/
out-degree for all nodes until at least 80% of edges in the
original network were swapped. To calculate the mean and
standard deviation of motif counts in the shuffled networks
every network was shuffled 10,000 times. To ensure that the
same type of nodes stay connected after shuffling, we
calculated the correlations between the degree of connected
nodes as weighted average nearest-neighbors degrees (Barrat
et al., 2004) in the original and shuffled networks.

Algorithm Description
The FFL-based generation algorithm starts with a nucleation step
where an input network is used to find a subnetwork of
predefined size (default 20 nodes) with all FFLs connected via
shared nodes as in all analyzed networks, almost all FFL motifs
share a common node with another FFLmotif (Table 1). To avoid
excessive parameters that could additionally control for in/out
degree distribution, the E. coli GRN graph was used for the
nucleation step. The degree distribution in the “FFL nucleus”
sampled from a biological GRN was utilized by the preferential
attachment rules as initial conditions to reconstruct a scale-free
topology when attaching new edges and nodes to the growing
network. The outline of the algorithm is presented graphically
(Figure 3).

Once the substrate is selected the algorithm adds nodes and
edges iteratively such that at every iteration, a candidate node is
selected with a random uniform probability. Once selected, one of
the four attachment rules (R1, R2, R3, and R4) is applied
(Figure 4) based on four predetermined probabilities (p1, p2,
p3, and p4) that add up to 1. The iterations are repeated until the
required number of nodes in the network is reached.

If the random float number r1 is less or equal to p1 then R1 is
picked. For the R1 rule we applied the modified preferential
attachment algorithm from Abdelzaher et al. (2015a) with a
power-law kernel:

P(g) � Kγ
g

∑n
i�1
Kγ

i

(3)

where Ki denotes node-degree connectivity, P(g) is the probability
that a new node will be connected to existing node g, and ɣ is a
parameter that controls the shape of the out-degree distribution.

If r1 is greater than p1 then one of the motif-based preferential
attachment rules (R2, R3 or R4) is applied, and so 1-p1
corresponds to the desired percentage of nodes that participate
in FFL motifs. For R2-R4 rules, one of the already existing FFL
motifs is picked based on it’s connectivity with the others.

Once the candidate motif and rule are chosen, a new random
float number, r2, is generated. If 0 < r2 7 p2, the R2 rule is
applied. In that case, two new edges and one new node will be
added to the existing node so the new FFL motif is formed. If r2 >
p2, one of the R3 or R4 rules is selected with equal probability. For
the R3 rule, two edges are added to nodes in existing FFLmotifs to
create a new FFL motif. For the R4 rule, and one edge is added
between nodes in two existing FFL motifs to create a new FFL
motif. If R2 is applied, it creates an FFL motif where one node has

FIGURE 1 | Motif collection. The five possible three-node motifs with 2 or 3 unidirectional links.

FIGURE 2 | Node participation in FFL motif. An example of 3-node motif
counts given on an FFL motif. Node a plays different roles in two FFL motifs
[(a c) and (d, a, and e) respectively]. Colors represent different roles.
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only incoming edges. If R2 or R3 is applied, it creates an FFLmotif
where all participating nodes have at least one incoming and one
outgoing edge. See Figure 4 for details.

All nodes have to have an out-degree smaller or equal to a
threshold Kmax after which no new outgoing edges are added. If
the candidate motif doesn’t satisfy the conditions for a chosen
FFL attachment rule, another candidate motif picked and this is
repeated until a motif is found that meets the rule conditions. If a
new motif is created, the library with FFL motifs is updated.

When the desired network size is reached, the algorithm
adjusts the sparsity (average number of connections per gene)
until it reaches the set sparsity level in terms of average links per
node. If the network is too dense, edges are selected for removal
based on out-degree node connectivity so that an edge is
proportionally more likely to be removed if it is attached to a
node with a high out-degree. If the network is too sparse, edges
are added to nodes selected proportionally to their out-degree
connectivity, connecting them to randomly selected nodes. When
network generation is completed, the network is saved as an
unweighted directed graph.

Network Generation
For network simulation comparison five algorithms were chosen:
FFLatt (developed in present study), GeneNetWeaver (GNW;
Schaffter et al., 2011), NetworkX directed scale-free graph
algorithm (NetworkX; Hagberg et al., 2008), and sparse

uniformly distributed random matrix with and without
allowing for feedback loops in the network (DAG and
RandG; Guo and Amir, 2021). DAG and RandG matrices
were binarized by setting all non-zero elements equal to 1.
The NetworkX graph algorithm was modified to control for
sparsity as the FFLatt algorithm does, i.e., edges are added to or
removed from nodes proportionally to their out-degree node
connectivity. For network generation of different sizes with
FFLatt, the set of transcriptional interaction graph properties
estimated from the E. coli transcriptional interaction network
(Table 1) was used. For each organism, the number of nodes
that participate in FFL motif was used to set p1, with p2 equal
to (1-p1)*0.9, and p3=p4=(1-p1)*0.05 respectively. For
network generation of different sizes with other algorithms
(except GNW), only network size and sparsity parameters
were taken into account as only controllable parameters
available. For network generation/subselection with GNW
the following (default) parameters were used: -random-seed,
--greedy-selection, --keep-self-interactions as well as the size of
the subtracted network.

When mimicking the E.coli transcription network model,
all three-node cycles were disrupted, by removal of one edge,
as they are absent in the target network. The removal was done
by deleting the outgoing edge of the node with the highest out-
degree and an edge was instead attached to a random node
with a probability based on the connectivity of each node.

TABLE 1 | Biological GRNs’ graph properties.

Organism # Of
nodes

% Of
nodes that

participate in
FFL motifs

% Of
FFL motifs

sharing nodes
with other

FFLs

Sparsity In-degree Out-degree

E. coli 1,917 37.4 99.1 2.328 1.106 1.222

S. cerevisiae 4,441 27.0 100 2.899 1.421 1.477

M. musculus 2,862 31.5 99.7 2.643 1.274 1.369

H. sapiens 2,456 34.7 99.9 2.944 1.364 1.580

FIGURE 3 | Graphic outline of the FFLatt algorithm. It starts with selecting a seed from the input network, and then iteratively grows the nucleus until the required
size is reached. Finally, the sparsity of the network is adjusted according to the sparsity level.
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To mimic the complete three-node motif profile in biological
GNRs in which non-FFL motifs are depleted, an optional motif
depletion step can be executed. Here all three-node cycles are
converted to FFL motifs by swapping the direction of one of the
edges. In addition, up to one tenth of the cascades that do not share
edges with FFL motifs were used to create new FFLs by adding an
edge. The total number of edges that was used for motif conversion
was taken into account when adjusting the network sparsity.

For stability analysis, self-loops (if any) were removed from
network graphs generated with above mentioned algorithms
before applying the stability analysis model.

Stability Analysis Model
To measure the stability of a network, i.e., how a network graph
structure affects the dynamical stability of a gene regulatory
interaction model, we utilized the model developed by (Guo
and Amir, 2021) that explores how the dynamics of protein and
mRNA concentrations control the transcriptional regulation. The
model allows for multiple proteins acting on the same gene, and is
defined by the authors as:

gi( �c) � gi0 +∏
j

(1 + γijfij(cj)) (4)

where gi and gi0 is the effective gene copy number of gene i with
and without input of other genes respectively, cj is the
concentration of transcription factor j, and γij relates to the
strength of the regulation of gene i by cj. The functional
relationship between the transcription factor and target gene,
fij, is modelled as a sigmoid Hill function:

fij(cj) � chj
Kh

ij + chj
(5)

where h is the saturation binding coefficient, i.e. the number of
proteins required for saturation of binding to DNA, and K is the
protein concentration threshold needed to produce a significant
increase in mRNA.

The process of gene expression could be described as coupled
dynamics of protein and mRNA concentrations. It was shown
that in yeast (Zhurinsky et al., 2010) and mammalian cells
(Schmidt and Schibler, 1995), the RNA polymerase
concentration limits the transcription of mRNA, and the
number of ribosomes limits the process of translation. The
general transcription model (4) that connects transcription
rate of gene i and the number of RNA polymerases can then
be described as:

dCmi

dt
� kmϕi( �c)n − Cmikpcr − Cmi

τ
(6)

dci
dt

� kpcr(Cmi

CmT
− ci) (7)

where n is the total number of RNA polymerases, Cmi is the
mRNA concentration of gene i, CmT is the concentration of all
mRNAs, ϕ is the gene allocation fraction of gi( �c) controlled by
RNA polymerases active on gene i, km is the transcription rate of
RNA polymerase, kp is the translation rate of the ribosome, cr is
the ribosomal concentration, and τ is the degradation rate
difference between proteins and mRNA.

We assume that mRNAs degrade much faster than
proteins, and as suggested by (Guo and Amir, 2021) we
can set dCmi

dt ≈ 0 to neglect fast dynamics aiming to simplify
the model. By substituting Cmi from 6 into 7, the dynamics
of transcription factors concentrations can be simplified as:

dci
dt

≈ kpcr(ϕi( �c) − ci) (8)

In such case, the stability of a steady-state in the dynamical
model is dependent on the Jacobian matrix A of size NxN:

A � kpc
ss
r (M − I) (9)

where cssr is the steady-state ribosomal concentration, M is the
gene-gene interaction matrix that consists of γij weights of the
regulation, I is the identity matrix, and N is the number of genes
in the system. The system is stable if the maximal real part of all
eigenvalues of M, λM, is smaller than 1, i.e., the real part of all
eigenvalues of A are negative. As the imaginary part of the
eigenvalues is ignored, both oscillatory systems and systems
without oscillations around the steady state are considered to
be stable.

In contrast to random matrix theory (May 1972) or the
generalized models (Gross and Feudel, 2006; Gross et al.,
2010), the Jacobian matrix here is not a random matrix nor
approximated through studying system bifurcations. In the Guo
and Amir model it is derived by applying a knowledge-
driven modelling approach which we find convenient for such
a well-studied biological process like transcription. We applied
this model to all network graphs simulated with different
algorithms. Each graph, in a form of adjacency matrix, was
supplied as a binary interaction matrix. For each replicate of a

FIGURE 4 | Attachment rules that create FFL motif enriched network;
p1, p2, p3, and p4 correspond to probabilities for choosing rule R at the next
iteration while growing network. FFLTTG and FFLTTT correspond to different
FFL motif types, where G or T (Gene or Transcription factor) indicate
whether a participating node has only incoming edges (G), or at least one
outgoing edge (T). The red dotted arrows here show new edges added to the
network and the solid blue arrows show edges participating in the new FFL
motif with the new edges.
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different size generated with a given algorithm, we repeated
assigning the network graph with link strengths 10 times. To
focus on the effect of the GRN structure and FFL content on
stability, we forced the distribution of link strengths of all GRNs
to be similar. This was done by randomly setting half of the links
in the binary interaction matrix to be upregulated and the other
half downregulated (setting max (γij) and min (γij) to 1.5 and −1.5
respectively as boundaries of a normal distribution). In every trial,
we first numerically solved for the ribosomal concentration cssr
with which the system reaches its non-zero steady state with Eq.
8. Given cssr , A was found such that it only has negative real part
eigenvalues using Eq. 9 by optimizing M, and the highest
eigenvalue in λM from this solution was compared across
networks of different sizes.

RESULTS

Feed-Forward Loop is the Only Enriched
Three-Node Motif in Biological Gene
Regulatory Networks
Of all possible 3-gene network motifs with 2 or 3 unidirectional
links, we found a strong enrichment relative to shuffled networks
of the FFLmotif in the networks studied here, which are networks
that mainly capture transcription factor to target interactions
(Supplementary Table S1). This was previously shown for E. coli
(Milo et al., 2002) and S. cerevisiae (Lee et al., 2002). We also
found that the cascade, uplink, and downlink motifs were
consistently and significantly (p-value < 0.05) depleted in all
four target networks. To ensure that the shuffling procedure
produced topologically similar networks, we verified that the
distribution of correlations between the degree of connected
nodes was similar for the original and shuffled networks
(Supplementary Figure S1).

All depleted motifs are 3-node motifs with two edges
(Figure 1), and these have previously been shown to be
significantly depleted in other biological networks, for instance
in a protein structure network and a human brain functional
network (Mirzasoleiman and Jalili, 2011). However, how the
depletion of these motifs contributes to the function of the
gene circuitry, and how it relates to the evolution of gene
regulatory networks, remains to be answered.

We found that FFL is the only enriched motif, and this was
observed in all analyzed networks (Supplementary Table S1).
Almost all FFL motifs share a common node with another FFL
motif, as this fraction ranges from 99.1% in the E. coli GRN to
100% in S. cerevisiae (Table 1). The fraction of nodes that
participate in FFL motifs ranges from 27 to 37.4%. This
inspired us to develop a GRN generation algorithm that
attaches nodes to form connected FFL motifs at a high rate.
For each GRN we also calculated the average number of edges per
node, here referred to as sparsity, and average in- and out-
degrees, and these properties were also used as targets for the
algorithm.

Each regulatory interaction in the FFL motif can be either
positive or negative, i.e., activating or inhibiting, resulting in

eight different types that can act as e.g. accelerators, delay-
generators or pulsers (Mangan and Alon, 2003), resulting in
different dynamics of gene circuits. Given the wide variety of
FFL types and their importance to GRN dynamics, an unsigned
in silico GRN graph needs a large number of FFLs to
accommodate these. A combination of the eight signed
types of FFL motifs will in turn reflect a realistic flow of
GRN circuits.

We generated a set of GRNs of different sizes from 500 to
1,500 nodes, 10 replicates for each size, using five different
algorithms: FFLatt, GNW, NetworkX graph, RandG, and
DAG. For each algorithm we analyzed four properties of
their GRNs: the number of nodes that participate in FFL
motifs, network sparsity, average in- and out-degree within
the network. We repeated these simulations for all four
organisms, as they have different graph properties. The
results for E. coli are shown in Figure 5, and for the other
organisms in Supplementary Figures S2, S3, and S4. Each
organism-related GRN was used to set the topological
parameters in the GRN simulated by FFLatt as described in
Methods.

To assess the accuracy of GRN inference algorithms, the
topological parameters such as in- and out-degree
distribution and sparsity should be controlled when
simulating data for benchmark analysis. We found that
sparsity as well as out-degree of artificial networks
generated with the subnetwork selection based GNW
algorithm deviates considerably from the target networks
for E. coli in sizes 500 and 750 (Figures 5B,D), for S.
cerevisiae in size 500 (Supplementary Figures S2B, S2D),
and in all sizes for M. musculus and H. sapiens
(Supplementary Figures S3B, S3D, S4B, and S4D). While
this alone does not indicate a poor performance of the GNW
algorithm, it does advocate for the necessity of network
generation algorithms to control topological parameters.

More importantly, when subsetting networks from
biological GRNs with the GNW algorithm, we obtained a
significant underrepresentation of FFL motifs in sizes 500,
750, and 1,000 for E. coli (Figure 5A) in comparison with
FFLatt networks. Similar results were obtained for GRNs of
other organisms (Supplementary Figures S2A, S3A, and
S4A). To confirm and extend these findings, we performed
motif enrichment analysis on the simulated networks as well
as on biological GRNs (Figure 6; Supplementary Table S1).
This showed that FFL motifs are not significantly
overrepresented in GNW networks, but they are highly
significantly enriched in the E. coli GRN (Z-score 7.4). In
networks generated with other algorithms, the FFL motif was
also not significantly overrepresented, with the exception of
FFLatt whose networks were significantly enriched with
Z-scores between 2.95 and 4.98. By default, FFLatt does not
deplete other 3-node motifs, and but this is possible with an
optional motif depletion step. We explored how this step in
combination with various parameter values can mimic the
complete 3-node motif distribution profile with the FFL motif
enriched, and all other motifs depleted (Supplementary
Table S2).
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FIGURE 5 | Topological properties of simulated networks (E. coli). FFL motif node participation, average sparsity, in- and out-degree distribution in simulated
networks. For FFL-motif node participation counts, up to three participations for each node were allowed (in different roles). Each data point was calculated as the
average of ten different replicates of each network size. Error bars represent standard deviation.

FIGURE 6 |Motif enrichment analysis of 3-node network motifs in simulated networks (E. coli). For networks generated with GNW, the E. coli RegulonDB (Santos-
Zavaleta et al., 2019) database was used. For networks generated with FFLatt, we used the graph properties for E. coli specified in Table 1. RandG is a random
assignment of links and DAG is the same with cycles removed. NetworkX graph GRNs are scale-free. For RandG, DAG, and NetworkX graph GRNs we used the E. coli
network sparsity.
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Topology, Motif Composition, and Network
Stability
In biology, random matrix theory, that seeks to understand the
properties of matrices with randomly drawn elements, is known
from R. May’s research on the stability of large biological systems
(May 1972). He demonstrated that the stability of a large
ecological system depends on satisfying the following inequality:

1> α

nC

√
(10)

where α is the average interaction strength, n is the number of
species, and C is the density of interactions between them.
Therefore, the larger a system gets the more unstable it
becomes unless the sparsity and/or interaction strengths are
scaled down accordingly. May’s approach has been proven to
be highly valuable to other biological networks (Aljadeff et al.,
2015), including those that aim to describe gene regulations (Prill
et al., 2005; Stone, 2018).

It was earlier suggested that motif composition contributes to
fault-tolerance in transcriptional networks (Roy et al., 2020). To
test if the structural composition is important for stability in
artificially generated networks, we analysed the stability of the five
network models using the method by Guo and Amir (2021). As
expected, all GRNs with fixed sparsity and interaction strengths
became more fragile when increasing in size. We found that
GRNs with different motif profiles demonstrated different levels
of network stability (Figure 7). The RandG GRNs that were
neither enriched nor depleted with any 3-node motifs (Figure 6)
were far less stable than the other ones. The DAG GRNs which
are generated like RandG GRNs but without cyclic motifs were
more stable but still considerably less stable than NetworkX,
GNW, and FFLatt GRNs. We note that NetworkX, GNW, and
FFLatt GRNs have different network motif abundances, such as
either depleted or enriched FFL motifs, and yet they show similar

stability. The abundance of the FFLmotif alone therefore does not
seem to be amajor factor for network stability, which is congruent
with previous findings about non-importance of the FFL motif to
system robustness under random node failure test (Abdelzaher
et al., 2015b).

We note that the two lines that represent size-dependent
stability of DAG and RandG GRNs have a steeper slope than
the other three. This means that as the GRN increases in size,
DAG and RandG GRNs become less stable faster than the other
three. To find a reason for this, we analyzed the degree
distribution of the GRNs. Since RandG and DAG networks
are sparse uniformly distributed random binary matrices, their
degree distributions do not follow the power-law and therefore
they are not scale-free (Figure 8). This suggests that a scale-free
topology which has been previously found to be central for
creating a robust system, protecting the GRN from random
mutations (Greenbury et al., 2010), can in fact help gene
regulatory systems to reach a stable state after perturbation.

DISCUSSION

Here we present a new algorithm, FFLatt, for generating realistic
directed GRN graphs to enable more accurate and authentic
performance evaluation of GRN inference methods. The novelty
of the presented algorithm is that it generates networks with
boosted FFL motifs, which are known to be important for
network dynamics. Besides being enriched with the FFL motif,
the resulting GRN graphs generated with FFLatt exhibit
topological properties similar to experimentally validated
biological GRNs.

We show that the motif profile and topological properties of
FFLatt network graphs demonstrate a biological stability
comparable with other models, such as the NetworkX and
GNW algorithms. It is particularly important for network

FIGURE 7 | Stability of randomly wired simulated network graphs. λ is
the lowest eigenvalue of the interaction matrix M. Each data point was
calculated as the average of ten different repeats of overlaying links chosen
randomly with strengths from a standard distribution, with
corresponding semi-transparent areas indicating the 95% confidence interval.

FIGURE 8 | Degree distributions in simulated networks generated by
different algorithms. GRNs of sizes 500, 750, 1,000, and 1,500 were used, ten
of each size. A power-law distribution should generate a straight line.
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inference methods working with steady-state gene expression
data as many of them, for instance Least-Squares with Cut-Off
(LSCO; (Tjärnberg et al., 2013), LASSO (Tibshirani, 1996;
Friedman et al., 2010), LASSO-VAR (Larvie et al., 2016), and
GENIE3 (Huynh-Thu et al., 2010) aim to infer a stable static
network from steady-state data. To summarize, the FFLatt graph
generation algorithm provides an opportunity to simulate
biologically meaningful network graphs that can be wired with
realistic biological dynamics.

We also noted that the FFLatt networks were enriched with
three other motifs: uplinks, downlinks and cascades whereas in
GNW networks and biological GRNs these motifs are usually
depleted. Sorrells and Jonhson (2015) suggested that in biological
GRNs, FFL formation proceeds through a non-adaptive rewiring
of gene regulatory regulation which could explain how the
abundance of FFLs and the depletion of uplinks, downlinks,
and cascades is coupled. The algorithm can be run to allow
for depletion of other 3-node motifs while growing the network.
However a reason that such depletions are important for network
dynamics is yet to be found. A thorough search of the relevant
literature did not yield in related articles. We also could not find
evidence that different three-node motif profiles affect network
stability. NetworkX, GNW, and FFLatt motif profiles are fairly
different yet they demonstrated comparable stability across
different sizes. While being out of scope for this study, it
remains an interesting question how the composition of more
complex and higher-order structures known to be present in
GRNs (Benson et al., 2016; Gorochowski et al., 2018) could
contribute to stability of the system.

In this article we focus on the proof of concept of the FFL
attachment algorithm to demonstrate its necessity and feasibility.
However, to increase model performance, it could be extended
with other parameters. For example, to better capture “small
world” (Watts and Strogatz, 1998) structural properties that are
known to be present in biological networks, one parameter could
be a desired number of biological modules so that within each
module the connectivity is higher than in between them. The
clustering algorithm should however be biologically motivated so
that the connection between modular graph structure and
expression dynamics is clear.

Despite a continued uncertainty of how structural properties
and functional modularity of GRNs relate to each other, some
patterns such as FFLs are known to be key signatures of
transcriptional regulation networks. Here we developed a
novel algorithm that generates biologically realistic structures
of large artificial gene regulatory networks with controlled size,
sparsity, topology, and number of FFLs. The implementation
executes with reasonable runtimes (Supplementary Figure S5).
FFLatt graphs are binary and can thus assume a wide range of
dynamical structures with signed strengths. They could be used as

input to already established tools based on Hill function kinetics
such as GNW, which allows for knock-out and knock-down
perturbation designs when generating expression data, and some
control of the number of nodes, including the number of
transcription factors, based on a user-defined input network.
To generate expression data it utilizes a non-linear ordinary
differential equations (ODE) model for gene expression, and
stochastic differential equations (SDEs) for molecular noise
generation. Potentially, they could also become a part of future
deep learning frameworks that aim to model gene expression
from DNA sequence (Zrimec et al., 2020; Avsec et al., 2021). In
such frameworks, FFLatt networks could be used as a deep
learning model constraint to incorporate prior knowledge of
each node participation in FFL motifs. As a result, we believe
that it will contribute to future development of benchmarking
tools that could fairly and accurately evaluate the performance of
GRN inference methods.
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Motivation: The increasing availability of metabolomic data and their analysis are
improving the understanding of cellular mechanisms and how biological systems
respond to different perturbations. Currently, there is a need for novel computational
methods that facilitate the analysis and integration of increasing volume of available data.

Results: In this paper, we present TOTORO a new constraint-based approach that
integrates quantitative non-targeted metabolomic data of two different metabolic states
into genome-wide metabolic models and predicts reactions that were most likely active
during the transient state. We applied TOTORO to real data of three different growth
experiments (pulses of glucose, pyruvate, succinate) from Escherichia coli and we
were able to predict known active pathways and gather new insights on the different
metabolisms related to each substrate. We used both the E. coli core and the iJO1366
models to demonstrate that our approach is applicable to both smaller and larger
networks.

Availability: TOTORO is an open source method (available at https://gitlab.inria.fr/erable/
totoro) suitable for any organism with an available metabolic model. It is implemented in
C++ and depends on IBM CPLEX which is freely available for academic purposes.

Keywords: metabolomics, metabolic networks, transient state, metabolic perturbation, omics integration

1 INTRODUCTION

The increasing availability of metabolomic data and their analysis are currently enhancing our
knowledge on diverse biological mechanisms and elucidating how cells and organisms respond to
different perturbations (Sevin et al., 2015). Metabolomics can be used to obtain a metabolic profile
that characterizes the physiological response of a cell, tissue or organism to a stress or to a general
perturbation (Roessner and Bowne, 2009), and experiments ranging from shorter-term responses
(such as stress response programs) to longer-term responses (such as acclimation) are broadly
available for diverse species. Different network-based strategies for metabolomic data analysis
have been recently reviewed in (Perez de Souza et al., 2020) and amongst others, such strategies can
be used to establish associations between metabolites or to integrate them into metabolic
pathways.
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Metabolic profiles are often analyzed and interpreted with the
help of bioinformatic software such as METEXPLORE (Cottret et al.,
2018; Frainay et al., 2019), METABOANALYST (Xia et al., 2015;
Chong et al., 2018) or 3OMICS (Kuo et al., 2013) that can

identify the set of metabolites with a significant change in
their concentration. The metabolomic data are projected on
the annotated metabolic pathways in order to highlight the
processes that may be linked to the observed changes. The

FIGURE 1 | TOTORO method explained. (A) TOTORO is able to integrate a metabolic model with metabolomic data in order to predict active reactions during the
transient state between two conditions (or simply after a perturbation). The inputs of TOTORO are an SBML metabolic model, and a list of intervals for the difference in
concentration (Δ) for each measured metabolite. In the metabolic model panel, grey circles depict metabolites and arrows depict reactions. In the metabolic data panel,
accumulated metabolites are depicted in red circles, depleted metabolites are depicted in blue circles. The method TOTORO then requires two additional user-
defined parameters to fine tune the results, namely λ and ϵ. TOTORO provides as output the predicted variation of metabolites and reactions that were most likely active
between the two states in each enumerated solution as well as metric files grouping all enumerated solutions. In the figure, reaction occurrence is depicted as a
percentage in all enumerated solutions. (B) The fine-tuning of parameters λ and ϵ are provided within a toy network, in which active reactions are showed in orange and
dashed arrows indicate several reactions in a row. When we don’t allow an accumulation of non-measured metabolites (ϵ = 0), the method will try to connect the input
deltas of distant and possibly unrelated metabolites; and in the case exchange reactions are not blocked, the method will most likely propagate the accumulation or
depletion towards outside of the boundaries of the model. When accumulation is allowed (ϵ > 0) a low lambda (λ = 0.1) will favor solutions in which fewer non-measured
metabolites accumulate or deplete, and will include a larger number of reactions within the solutions. As we raise the parameter lambda (λ = 0.9), we favor local and
smaller solutions.
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aforementioned software also try to integrate different kinds of
omic data (such as transcriptomic, metabolomic or proteomic
data) in order to give a deeper understanding of the studied
mechanisms (Cambiaghi et al., 2017). Different approaches were
reviewed in (Rosato et al., 2018; Ivanisevic and Want, 2019;
Stanstrup et al., 2019) and software for the enrichment analysis of
metabolomic data were evaluated and their results compared in
(Marco-Ramell et al., 2018). However, metabolic pathways have
subjective definitions and can differ between databases
(Ginsburg, 2009). Additionally, this kind of analysis can make
it hard to identify the connections between metabolites since they
can be part of many pathways and it is thus possible to miss paths
which traverse several biological pathways.

Another approach is to use graph-based methods that allow to
consider the whole metabolism as an integrated system focusing
on the parts that are connecting the metabolites of interest.
Usually, these methods rely mainly on the network structure,
chemical information and on an input list of metabolites (Frainay
and Jourdan, 2017). Another example can be seen in (Acuña et al.,
2012; Milreu et al., 2014), with the enumeration of metabolic
stories. A metabolic story is defined by the authors as the set of
reactions that summarize the flow of matter from a set of source
metabolites to a set of target metabolites and is characterized as a
maximum directed acyclic subgraph connecting the metabolites
of interest. One of the drawbacks of this approach is that a
metabolic story is acyclic and thus, it is not possible to obtain sets
of reactions that contain cycles. Nevertheless, cycles are common
in metabolic networks and this assumption does not reflect
reality. Additionally, the method does not take into account
the stoichiometry of the reactions, which can lead to a set of
unfeasible reactions in practice.

Metabolite concentrations have also been used to assess the
responses to small perturbations in the context of constraint-based
models (Palsson, 2000; Covert and Palsson, 2003; Klamt et al.,
2014), and has been reviewed in detail by (Topfer et al., 2015).
While standard flux balance analysis (FBA) tries to predict the flux
distribution for one specific steady-state condition, dynamic FBA,
as described in (Mahadevan et al., 2002), has been extensively used
in smaller models to predict the evolution of the fluxes and of the
metabolite concentrations over time. In (Reznik et al., 2013), the
authors provide a method derived from the classical FBA
framework, and showed that the variables of the dual problem
(the so-called shadow prices, which correspond to the sensitivity of
FBA to imbalances in the flux) can indicate if a metabolite is a
growth-limiting metabolite in FBA. In (Bordbar et al., 2017) the
authors describe the unsteady-FBA method (uFBA), created to
integrate dynamic time-course metabolomics with a constraint-
based metabolic model, allowing a bypass into the steady-state
assumption for intracellular metabolites that are measured. In
(Rohwer and Hofmeyr, 2008; Christensen et al., 2015), methods
are presented to identify regulatory metabolites and paths by
varying in silico their known concentrations in a measured
steady-state using supply-demand analysis. Therefore, these
methods are based on the response of an organism to a
relatively small perturbation and on the influence of the
metabolite concentrations on the reaction rates of the system to
return to the original equilibrium.

In this paper, we focus not on the metabolite pools in one
condition but on the difference of the obtained measurements
between two conditions, which could be measured either within
shorter or longer timeframes, depending on the biological
question to be addressed. We also do not need neither
comprehensive time-course datasets nor coupled data from the
relative expression of genes or proteins, which are much harder to
obtain. Our main hypothesis is that the difference of metabolite
pools between two metabolic states can provide information on
the transient state, that is, on the transition between the two
measured conditions.

Similar problems have been studied in the literature. In (Sajitz-
Hermstein et al., 2016), the authors provide a method (IREMET-

FLUX) to integrate relative metabolomic measurements in order to
make predictions about differential fluxes. They use a constraint-
based approach which minimizes the distance between the two
flux vectors of the two different states based on the ratio between
the measured metabolite concentrations in both conditions. For
both states, steady-state is assumed for the flux vectors. However,
the authors identify differential fluxes between the two conditions
whereas we aim at finding reactions that are likely active during
the transient state. In (Case et al., 2016), the authors investigated
reachability problems in chemical reaction networks. Given two
different states of the network, the goal is to identify a path that
leads the network from the first state to the second one. They
prove that this problem can be solved in polynomial time.
However, they also discuss that a variant of this problem in
which the maximum size of the path is fixed is more difficult to
solve. Our approach overcomes this limitation at the same time
that it minimizes the number of active reactions in the solutions,
since we are interested in identifying only the parts of the network
that are potentially active during the transient state. Even though
other methods could be adapted to answer this problem, our
objective is much simpler, requiring less computational
complexity. By reformulating our problem in a simpler way
we can also address larger genome-scale metabolic models,
instead of focusing on smaller portions of the metabolism
(e.g., core models).

We use constraint-based modeling to enumerate sets of
reactions that explain the changes in concentrations for some
measured metabolites, i.e., how the system moved from a state to
another. We implemented our approach in a software we called
TOTORO (for “Transient respOnse to meTabOlic pertuRbation
inferred at the whole netwOrk level”), that is publicly available at
https://gitlab.inria.fr/erable/totoro, along with the test datasets
presented in this study. It is implemented in C++ and depends on
IBM CPLEX which is freely available for academic purposes. We
also tested our method with data from pulse experiments with
different carbon sources (glucose, pyruvate and succinate) in
Escherichia coli.

2 METHODS

A metabolic network can be represented as a weighted directed
hypergraphH(V,R,S) where V is the set of vertices,R the set of
hyperarcs and S the stoichiometric matrix representing weights
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on the hyperarcs. Each c ∈ V represents a metabolite of the
network and each hyperarc r ∈ R a reaction that connects two
sets of disjoint metabolites Subsr, Prodr with Subsr, Prodr ⊆ V. To
each hyperarc, a set of weights is associated representing the
stoichiometric coefficients of the metabolites participating to the
corresponding reaction. These weights are given by the
stoichiometric matrix S which is a m × n matrix where each
column represents a reaction and each row a differentmetabolite. It
contains the stoichiometric coefficients which are positive if a
metabolite is produced by a reaction and negative if it is consumed.

The set X ⊆ V contains all measured metabolites. The
metabolomic data is given as a list which, for each measured
metabolite inX, contains an interval. This interval describes by how
much the internal metabolite concentration changed between two
different states. Usually, small deviations for the measurements are
available which can be used to calculate the minimum and the
maximum possible difference between the internal metabolite
concentrations. Furthermore, all reversible reactions of the
network are split into forward and backward reactions.

We are interested in solving the following problem: Given a
network H and a list containing the changes for some metabolite
concentrations before and after a perturbation, we want to
identify sets of reactions that were involved in diverting the
system from the initial state before the perturbation to the
state after the perturbation (Figure 1A). Here, we present a
constraint-based approach to solve this problem where the
change of concentrations (Δ) between two states is represented
as an interval.

2.1 Core Method
The variation of the concentrations in time of the metabolites inX
can be written as:

dX

dt
� (S · v)X. (1)

In this equation, v is a flux vector and the (·)X operator means that
only the entries of the vector corresponding to the metabolites in
X are taken into account. We use [X]t to denote the concentration
for the metabolites in X at time point t. Considering two points t0
and t1 in time and ΔX � [X]t1 − [X]t0, one can write:

ΔX � S · φ. (2)
In this case, each entry of the vector φ can be interpreted as the
overall number of moles that passed through the reaction j during
the time interval [t0, tf] which corresponds to the area under the
reaction rate curve in this time interval:

φj � ∫
t1

t0

vj(t) · dt. (3)

Due to biological and technical variability that can arise from
different replicates of the same experiment, we assume that the
measured variations in concentrations of the metabolites in X are
represented by an interval rather than using a fixed number:

ΔX � [Δmin
X , Δmax

X ]. (4)

Furthermore, for the non-measured metabolites, we do not know
if their concentration changed or not. Therefore, similarly to the
approach of UFBA (Bordbar et al., 2017) and their ‘node relaxation’
to allow for changes in non-measured metabolites, we assume
that a variation (ϵ) is possible for all non-measured
metabolites �X � V\X:

Δ �X � [ϵmin, ϵmax]. (5)
Based on these assumptions, we can model the production or
consumption of metabolites between two states by the following
constraints:

Δmin ≤S · φ≤Δmax

0≤φj ≤ uj ∀j ∈ R. (6)

All φj are positive and have an upper bound uj. We have that Δmin

is a vector composed of Δmin
X and ϵmin while Δmax is composed of

Δmax
X and ϵmax.
As showed above, in our formulation, the variable φ can only be

zero or have a positive value. For this, we use an additional
constraint as explained in Section 2.2 in order to prevent both
forward and reverse senses of reversible reactions from being picked
in any given solution. However, this means that we do not know if
the activity of the corresponding reactionwas increased or decreased
during the shift compared to the initial steady state. We only know
that if φj is zero in the solution, reaction j is proposed as inactive
during the shift while if φj has a non-zero value, reaction j is
proposed as active during the shift. Hence, we are only interested in
the reactions that have a non-zero φ because we want to identify the
part of the metabolic network that was active during the metabolic
shift. These reactions are represented by the support of the vector φ.

2.2Minimizing the Number of Reactions and
the Variation of the Concentrations for the
Non-Measured Metabolites
Since the number of possible paths that can explain the measured
metabolic shifts can be very large, we will focus on finding the
smallest solutions with regard to the number of active reactions that
still explain themetabolic shift. This corresponds to the parsimonious
assumption that the fewest possible resources are used or the smallest
changes are made. Thus, we are interested in identifying minimum
sets of reactions that play amajor role in themetabolic shift. For each
reaction j, a binary variable yj is then introduced that is set to zero if
and only if the corresponding φj is zero and therefore, the reaction is
not part of the solution. In this way, these variables will correspond to
the support vector ofφ and it will be sufficient tominimize their sum:

yj � 0 ↔ φj � 0 ∀j ∈ R
yj ∈ {0, 1}. (7)

Additionally, to prevent that both a reaction j and its reversible �j
can be picked at the same time for one solution, the following
constraint is used:

yj + y�j ≤ 1 ∀(j, �j) ∈ R. (8)
Tominimize the number of reactions that are part of the solution,
the objective function is written as:
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min∑
m

j�1
yj. (9)

However, we are not only interested in minimizing the number of
reactions in the solution but also in minimizing the variation in
concentration for the non-measured metabolites �X. Since the
measured compounds are usually the more important ones for
analyzing the biological experiment, it is reasonable to aim for
solutions where other compounds do not accumulate or deplete a
lot. This leads to the following minimization:

min∑
i∈ �X

| S · φ( )i|. (10)

On the other hand, we are trying to explain as much change in the
concentration as possible for the measured metabolites:

max∑
i∈X

| S · φ( )i|. (11)

To combine both ideas in one objective function, a weight λ is
used for both objectives:

min λ∑
m

j�1
yj + (1 − λ)∑

i∈ �X

| S · φ( )i| − (1 − λ)∑
i∈X

| S · φ( )i|. (12)

The value for λ should lie between 0 and 1. Finding a good balance
between these two objectives can be challenging but necessary to

identify meaningful biological solutions (for a schematic
representation of TOTORO, see Figure 1A). A toy network
example is provided in Figure 1B to show the influence of
parameters λ and ϵ on the solutions. This will be further
discussed in the following sections.

Summing up, the mixed-integer linear program (MILP) that is
implemented in our software TOTORO is the following:

minφ,y λ∑
m

j�1
yj +(1−λ)∑

i∈ �X

| S ·φ( )i| −(1−λ)∑
i∈X

| S ·φ( )i|
s.t Δmin≤S ·φ≤Δmax

0≤φj≤uj ∀j ∈R
yj � 0↔φj � 0 ∀j ∈R
yj +y�j≤1 ∀(j,�j) ∈R
yj ∈ {0,1};λ ∈ (0,1);uj,φj ∈R.

(13)

2.3 Enumerating Different Solutions
To enumerate different solutions, once a solution is found, it must
be excluded for the next iteration. Two solutions are different if
they do not contain the same reactions. We are using the following
constraint where y* is a previously found solution vector:

∑
j∈R: yj*�1

yj ≤ ∑
m

j�1
yj* − 1. (14)

FIGURE 2 | Expected active reactions for different pulse experiments. These essential reactions along with their expected directions are highlighted in orange
whereas other non-essential reactions (but which nonetheless could be chosen) are depicted in grey. Each pulse is indicated by the short red arrow (Glc: glucose; Pyr:
pyruvate and Suc: Succinate). During the glucose pulse, the glycolysis reactions (depicted in green) should be active in order to generate ATP from the hydrolysis of
glucose. On the other hand, the pyruvate and succinate pulse experiments should show gluconeogenesis activation (also depicted in green but in the opposite
sense), generating glucose-6-phosphate from these two carbon sources. Furthermore, the TCA cycle (depicted in blue) can be fed from pyruvate during the pyruvate
and glucose pulses. During the succinate pulse, the overflow in the TCA cycle should lead to the production of pyruvate with a subsequent activation of gluconeogenesis
to produce biomass precursors. The pentose phosphate pathway (depicted in purple) is most likely active in all pulses in order to generate biomass precursors; however,
since this pathway is a mere interconversion of carbohydrates, there is no particular expectation as to the actual direction of these reactions.
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This prevents that the exact same combination of reactions gets
chosen again. Afterwards, we can solve the updated MILP again
to compute a different solution. We repeat this process until no
more new solutions can be found or until a desired number of
solutions has been computed.

2.4 DealingWith Source/Sink Reactions and
Non-Measured Metabolites
Source and sink reaction (i.e., reactions that have only products or
only substrates) of the network should be blocked to avoid that
changes in the concentration are just transferred outside of the
network where they cannot be taken into account by the objective
function. However, no information is lost if source and sink
reactions are blocked. If the substrates of a sink reaction are
accumulated or the products of a source reaction are depleted
in a solution, this indicates that the corresponding source/sink
reaction is active. Their use is limited by the chosen ϵ but it can be
set to a very low or large value to imitate an infinite source or sink.
Hence, specific sources or sinks can be added to the problem by
specifying a large negative Δmin or a large positive Δmax for certain
metabolites, but the method will remain robust to small variations,
as long as the range of this parameter remains within a similar
order of magnitude of the values of the measured metabolites.

However, if the minimization of the number of active reactions is
prioritized (λ ≈ 1) and the value of ϵ for the non-measured
metabolites is higher than the one for the measured metabolites,
the changes in concentration of themeasuredmetabolites can simply
be distributed to (accumulated on or taken from) the nearby non-
measured metabolites (Figure 1B, ϵ > 0, λ = 0.9) and prevents that
larger sub-hypergraphs are chosen (which would instead connect
several measured metabolites and explain how the depletion of one
measuredmetabolite leads to the accumulation of another measured
metabolite, or vice-versa). However, this can be addressed by
decreasing the value of λ in the objective function and thereby
givingmore weight to the portion of the function that minimizes the
accumulation in non-measured metabolites Figure 1B, ϵ > 0, λ =
0.1). This should result in solutions that are larger but that connect
the measured metabolites better than when only the number of
reactions is minimized. Furthermore, based on other experimental
data, the user might choose smaller values of ϵ, or constrain it to the
highest measured metabolite to further restrict the accumulation/
depletion of the non-measured metabolites.

3 RESULTS

To evaluate our approach, we used data from different pulse
experiments with different carbon sources in E. coli as presented
in (Taymaz-Nikerel et al., 2013). The authors measured the internal
concentrations for several metabolites for a glucose baseline and for
glucose, pyruvate and succinate pulse experiments. These data were
used to apply the method on the E. coli core model (Orth et al.,
2010) and the E. coli iJO1366 model (Orth et al., 2011) available
from the BiGG database (King et al., 2015b). The E. coli core model
consists of 72 metabolites and 95 reactions, the E. coli iJO1366
model of 1,805 metabolites and 2,583 reactions.

We were interested in the difference between the glucose baseline
and the pseudo-steady state which was achieved in about 30–40s after
each pulse. In (Taymaz-Nikerel et al., 2013), the authors provided the
internal concentrations for the baseline, including the deviations for
their measurements and the fold changes for the three different
pseudo-steady states which we used to calculate the internal
concentrations for each pseudo-steady state. In (Taymaz-Nikerel
et al., 2013), deviations for the measured concentration of the
glucose baseline are given that were derived from several replicates
of the same experiment. We used them to be able to calculate the
minimum difference Δmin

X and maximum difference Δmax
X in the

concentrations between the glucose baseline and each pseudo-steady
state. A detailed explanation can be found in the Supplementary
Material Section S1.1. The calculatedΔmin

X andΔmax
X for all three pulse

experiments can be found in the Supplementary Tables S1–S3.
We used all measured metabolites that are present in the

network and that had a significant change in their concentration
as input. It should be noted that a change for each given
metabolite must be either positive or negative. For further
details, see the Supplementary Material Section S1.1.

Furthermore, source and sink reactions cannot be chosen as
part of the solution and therefore glucose, pyruvate and succinate
were added as sources for the corresponding pulse experiments.
Oxygen was added as another source because in (Taymaz-Nikerel
et al., 2013), the authors identified increased oxygen uptake rates
during the pulse experiment. To allow unlimited growth, the
biomass was added as sink.

The expected active reactions in the core metabolism of E. coli
are displayed in Figure 2 for each pulse experiment.

3.1 E. coli Core Model
At first, the method was applied using the E. coli core model. To
better understand how the different parts of our model impacted
the solutions, we did several runs with different values for λ (0.1,
0.5, and 0.9) and ϵ (5 and 10) for each pulse experiment. Although
a single solution should be enough to identify some pathways
responsible for the shift, we wanted to see if we could also obtain
alternative pathways. Furthermore, we wanted to investigate how
the solutions evolve when they are slightly suboptimal. For each
different parameter setting, 100 different solutions were therefore
enumerated. The results are displayed using Escher (King et al.,
2015a) in the Supplementary Figures S1to S18.

In general, we could observe that solutions with λ = 0.1 were
preferable since usually the goal is to have a final solution which is
overall more connected. In this way, we were able to extract
connected sub-hypergraphs that resemble complete biological
pathways which played a role during the metabolic shifts. This
was the case for all three pulse experiments. A higher λ led to
solutions that were less connected since the optimizer prioritizes
solutions with fewer active reactions, and depending on the case, it
might be harder to interpret these solutions biologically.
Nevertheless, the user is able to fine-tune the number of
reactions in the final solution and the degree of connectivity (for
instance, if the goal is to highlight only parts of the complete
metabolic network instead of finding a connected sub-hypergraphs).

By adjusting the parameters λ and ϵ, TOTORO could propose
connected sub-hypergraphs for all three pulse experiments. The
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predicted solutions did not use co-factors as shortcuts through
the network. We therefore did not modify our method further to
treat co-factors separately.

3.1.1 Pyruvate Pulse
For the pyruvate pulse, we expected that the activity of the TCA
cycle would increase and that reactions for gluconeogenesis would
be active (see Figure 2). Both observations could be reproduced
with a λ = 0.1 (see Figure 3 for a comparison of the values of λ),
while higher values of lambda constrained the solutions locally
around the measured metabolites. For λ = 0.9, neither the TCA
cycle nor the gluconeogenesis pathway were proposed to be active.
Setting λ to 0.5 already improved the results: the TCA cycle was
proposed as active but the complete gluconeogenesis pathway was
only recovered in less than 50% of the solutions.

The four measuredmetabolites citrate, isocitrate, L-malate and
fumarate had positive input deltas and could thus be used as
sinks. The results showed how the TCA cycle can be fed from
pyruvate either by the phosphoenolpyruvate carboxylase (PPC)
or by the combination of pyruvate dehydrogenase (PDH) and
citrate synthase (CS). Furthermore, the pathway from pyruvate to
glucose 6-phosphate (G6P) was active in 100% of solutions for λ =
0.1. The pathway from pyruvate to G6P contains nine reactions
including seven reversible ones: glucose-6-phosphate isomerase
(PGI), fructose-bisphosphate aldolase (FBA_R), triose isomerase
(TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPD),
phosphoglycerate kinase (PGK), phosphoglycerate mutase
(PGM) and enolase (ENO). Especially here, it is important to
state that all these reversible reactions were predicted in the
correct direction going from pyruvate towards G6P. The core

FIGURE 3 | E. coli core model - Results for Gluconeogenesis and TCA Cycle in the pyruvate pulse (red arrow in Pyr) with ϵ = 5 and varying λ (0.1, 0.5, and 0.9). The
metabolites that were given as input are highlighted in blue if the corresponding input deltas were below zero and red if they were above zero. Reactions that are
highlighted in orange were chosen in almost all of the enumerated solutions, while light yellow corresponds to very few occurrences (less than 5%). Reactions in gray
were not chosen in any solution. The expected reactions of the gluconeogenesis and part of the TCA cycle are active in all 100 solutions for λ = 0.1. The reversible
reactions of the gluconeogenesis were chosen in the correct direction. For simplicity reasons, side compounds and cofactors were excluded from the figure.
Abbreviations for metabolites: G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FDP, fructose-biphosphate; PEP, phosphoenolpyruvate; Pyr, pyruvate; Lac,
lactate; For, formate; Mal, malate; Fum, fumarate; Cit, citrate; Icit, isocitrate; Glu, glutamate; Gln, glutamine; Abbreviations for reaction names (_R indicates the reverse
direction of a reversible reaction within the original model): G6PDH2r, glucose 6-phosphate dehydrogenase; PGI, glucose-6-phosphate isomerase; FBP, fructose-
bisphosphatase; FBA_R, fructose-bisphosphate aldolase; TPI, triose-phosphate isomerase; GAPD, glyceraldehyde-3-phosphate dehydrogenase; PGK,
phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase; PPS, phosphoenolpyruvate synthase; LDH, D-lactate dehydrogenase; PFL, pyruvate
formate lyase; PPC, phosphoenolpyruvate carboxylase; PDH, pyruvate dehydrogenase; CS, citrate synthase; ACONTa, Aconitase (half reaction A); ACONTb, Aconitase
(half reaction B); ICDHyr, Isocitrate dehydrogenase; AKGDH, 2-Oxoglutarate dehydrogenase; SUCOAS, Succinyl-CoA synthetase; SUCDi, Succinate dehydrogenase;
FUM, fumarase; MDH, malate dehydrogenase; ICL, isocitrate lyase; MALS, malate synthase; GLUDy, glutamate dehydrogenase; GLUSy, glutamate synthase; GLUN,
glutaminase.
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network results can be seen in Supplementary Figures S1–S6,
with varying λ and ϵ. These figures were created using Escher
(King et al., 2015a).

We do not fix the objective value in our optimization problem
after obtaining the first solution but in every iteration, the
minimization problem is solved again after excluding the newly
found solution. This means that the next solution can have the
same objective value but it is also possible that the objective value is
worse than in the previous iteration. In this particular case, the
100th solution had an objective value that was only 5.5%worse than
the objective value of the first solution (see Table 1) which shows
that, as concerns optimality, all 100 solutions were very similar.
They also had very similar active reactions. Comparing the 100
enumerated solutions for λ = 0.1 and ϵ = 5, a total of 43 reactions
with a specific directionwere chosen in all solutions. Out of these 43
reactions, 24 were chosen in every solution (including reactions in
the TCA cycle and the gluconeogenesis pathway). This means that
certain core pathways were consistently picked also in slightly
suboptimal solutions. Looking at only the ten best solutions, already
38 out of the 43 reactions were identified. The missing reactions
were mostly part of the pentose phosphate pathway which also
contains reactions that were part of the solution only in a few cases.
Even with only ten solutions, we were able to obtain the alternative
pathways feeding the TCA cycle (PPC/PDH). This indicates that it
is not necessary to enumerate a large amount of solutions to get
significant results and to identify alternative biological pathways.

To check the robustness of the method against small
perturbations, we tested within the pyruvate pulse the results
of TOTORO for the values of λ = 0.1 and 0.9, excluding one
metabolite at a time, recomputing the results, and computing
the distances to the results on the complete metabolite set for
reaction occurrence (in terms of absolute difference of
occurrences). Overall, the results for both λ = 0.1 and 0.9
differed from less than 5% to around 20%. In general, the
results were robust (< 10% in average distance) for 70–80% of
the metabolites tested (with λ = 0.1, and 0.9, respectively), but we
noticed that excluding metabolites with a higher neighborhood
connectivity (such as glutamate and glutamine) had a greater
impact on the final results. These results show that even though
the distances were small, the amount of information provided by
different metabolites varied widely.

Moreover, we tested 10 random sets of measured metabolites
(Supplementary Tables S4, S5), with a varying number of

excluded metabolites to detect at which point the method
would not behave as with the complete dataset. In accordance
with the previous results for single exclusions, and within the tests
with less than 50% of the measured metabolites excluded, the
smallest distance (≈ 10%) to the complete results came from a
random dataset which included glutamate, glutamine and
pyruvate (to ensure the carbon source uptake). As expected,
when more than 50% of the measured metabolites were
excluded, we detected a much higher difference (≈ 40%)
between the results from the complete dataset and those from
the random datasets.

3.1.2 Glucose Pulse
For the glucose pulse, we expected that reactions that are part of the
glycolysis pathway would be active as they convert glucose into
pyruvate generating energy. Consequently, the TCA cycle should
also be fed (see Figure 2). For λ = 0.9 and 0.5, the active reactions
proposed by TOTORO were disconnected and it was not possible to
identify active pathways. We believe that the results coming from
this pulse were less insightful since the bacteria were already grown
in glucose prior to the pulse, which in turn might be a reason why
the changes in metabolites were not as informative as the other
pulses. This was for the most part corrected if more metabolites
were added as input to TOTORO when using the complete network
as presented in Section 3.2. This also shows the importance of
careful experimental design and how subtle perturbations may
generate results that are not always homogeneous.

Even for λ = 0.1 and ϵ = 5, only disconnected parts of the
network were active (see Supplementary Figure S9). Since we
were interested in testing the method to obtain more connected
sub-hypergraphs, we decided to fine-tune the solutions by
lowering the value of ϵ as much as possible. The result for ϵ =
2 and 1.2 can be found in Supplementary Figures S10, S11,
respectively. Lowering the value of ϵ to 1.1 rendered the
underlying optimization problem infeasible. For ϵ = 1.2, we
got solutions that linked intermediate metabolites of the
glycolysis pathway to the TCA cycle through the PPC
reaction. In some solutions, the TCA cycle was also fed by
PDH and CS to account for the accumulation of citrate. As
previously mentioned, when the solutions are disconnected and
this is unwanted, decreasing the value of ϵ can sometimes help to
obtain more connected solutions. However, this should be used
carefully in order to avoid linking unrelated and distant
metabolites, which might not be meaningful biologically.

The 100 solutions were very similar (λ = 0.1, ϵ = 1.2). They
accounted for a total of 47 reactions (with distinct directions) and
30 of these appeared in all solutions. Similarly to the pyruvate
pulse, the difference in these solutions were mostly based on a few
reactions that are not part of the main pathways (glycolysis/TCA
cycle). One critical observation is that the D-glucose transport
reaction (GLCpts) was not part of every solution although glucose
should be used as important source. As previously mentioned, the
bacteria were already grown in glucose prior to the glucose pulse,
which is possibly a reason why glucose was already internalized
prior to the initial pulse. When comparing the objective values for
these 100 solutions, the absolute difference between the first
solution and the 100th one was similar to the one observed

TABLE 1 | Comparison of different objective values for the best runs for each
experiment. Since we are not fixing the objective value of the first solution in
our optimization problem, the objective values for the subsequent solutions can be
worse. In this table, we are comparing the difference in the objective values
between the first solution and the 100th solution. In addition to the absolute
differences, also the percentage of how much the objective value worsened
compared to the first solution is displayed. The underlying optimization
problem is a minimization problem. Therefore, smaller objective values are
better.

Pulse experiment 1st sol. 100th sol. Abs. diff. %

Pyruvate (λ = 0.1, ϵ = 5) −32.139 4 −30.663 5 1.48 5.5
Glucose (λ = 0.1, ϵ = 1.2) 5.383 0 6.558 2 1.18 21.8
Succinate (λ = 0.1, ϵ = 5) −158.177 0 −157.576 0 0.60 0.4
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for the pyruvate pulse (see Table 1). However, proportionally this
value was 21.8% worse than for the first solution. When we
repeated the run for λ = 0.1 and ϵ = 1.2 with 50 iterations, the
D-glucose transport reaction was part of 42 solutions. For ten
iterations, this reaction was picked in all ten solutions. Hence, the
glucose transport reaction was active in solutions with the best
objective values. This showed that although the solutions
remained very similar, there was a decline in their quality.
And similarly to the pyruvate pulse, we saw that it is not
necessary to enumerate a large amount of solutions.

3.1.3 Succinate Pulse
After the succinate pulse, part of the TCA cycle should always be
active. Furthermore, the gluconeogenesis pathway should be
active to produce G3P and glucose-6-phosphate from
succinate. Again, the results for λ = 0.5 and 0.9 led to smaller
solutions that were more disconnected (see Supplementary
Figures S13–S16). Therefore, we focused on the analysis of
the results for λ = 0.1 (see Supplementary Figures S17, S18).
For both ϵ = 5 and 10, succinate entered the TCA cycle and turned
into oxaloacetate. TOTORO proposed two possibilities to output the
excess of the TCA cycle: Either phosphoenolpyruvate (PEP) was
produced by PEP carboxykinase (PPCK) or by PEP synthase
(PPS) using pyruvate as intermediate substrate. Subsequently,
PEP was, as expected, transformed to G3P. The lower right part of
the TCA cycle predicted as active can be explained by the fact that
the concentration of L-glutamate decreased and the
concentration of citrate increased. The active reaction in this
part connected these two metabolites. Furthermore, reactions of
the pentose phosphate pathway were proposed as active and the
biomass precursors R5P, E4P, and G3P were produced.

The results for ϵ = 5 and 10 were very similar. For example, one
difference was that for ϵ = 10, the reverse D-lactate
dehydrogenase (LDH) was predicted to be active in 56
solutions which led to a small accumulation of D-lactate. It
does make sense biologically because in general, D-lactate is
one of the main products of the fermentation but we do not
have the measurements for the concentration of D-lactate for this
pulse experiment to actually verify this observation. However, in
total, the differences were negligible and in contrast to the glucose
pulse, the parameter ϵ had a lower impact on the outcome.

Again, the core reactions of all 100 solutions were very similar.
In total, 41 reactions (with distinct directions) appeared in all 100
solutions (for λ = 0.1, ϵ = 5). We observed that 22 of these were
always active (mostly in the gluconeogenesis pathway and part of
the TCA cycle). The objective values for all 100 solutions were
extremely close (see Table 1).

3.2 E. coli iJO1366 Model
Based on the results for the E. coli core model, we only did runs
with λ = 0.1 for the E. coli iJO1366 model. The inputs were
updated because this network contains more metabolites and
therefore, more measured metabolites could be added. The
amount of iterations was decreased to ten because the runtime
in the larger network is significantly higher and we had already
established in the core model that it was not necessary to
enumerate a larger amount of solutions. To decrease the

runtime for each solution, CPLEX was configured differently.
The relative MIP gap tolerance was set to 0.05 which means that
the solver will stop an iteration if a solution is found that is within
5% of the optimal. This allows for a faster result and we could see
in the core model that the first 100 solutions tended to be very
similar. This means that even if we are enumerating slightly
suboptimal solutions, we should be able to compute solutions that
are very similar to the actual optimal solution. If the 5% limit is
not reached after 48 h, the iteration is stopped. Thememory usage
of CPLEX was limited to 10 GB.

The runtime for the different pulse experiments differed a lot.
The results for the pyruvate and glucose pulses were computed on
a cluster. For the pyruvate pulse, the 5% limit was reached only in
three iterations (see Supplementary Table S6). All other
iterations were stopped after 48 h. However, all solutions
obtained were within 7% of the optimum. Thus, we still took
them into account when analyzing the predicted active reactions.
In none of the iterations for the glucose pulse, the 5% limit was
reached. The obtained solutions were within 8.5% of the optimal
value (see Supplementary Table S7).

In contrast to the pyruvate and the glucose pulses, the 5% limit
was reached in all iterations for the succinate pulse and
computing all ten solutions took less than 5 min on a personal
machine (2.90 GHz Intel i7-7820HQ CPU, 16 GB RAM). This
shows that the constraints describing the input deltas in theMILP
have a large influence on the difficulty of the optimization
problem, and thus also on the runtime.

However, although the obtained solutions were suboptimal,
the active reactions predicted by TOTORO for the core metabolism
were similar to the best results of the E. coli core model for all
three pulse experiments. For instance, in the pyruvate pulse
results, out of 12 reactions in the TCA cycle within the large
network, 8 were also present in the core model. In total, 5 were
chosen in 100% of the solutions in the same direction in both core
and large networks. The complete network was also able to
correct the only inconsistency within the TCA cycle for the
core network: the direction of the reaction ICDHyr, which
shows the advantage of relying on complete networks
whenever available. For the glycolysis/gluconeogenesis
pathways, out of 12 reactions, 9 were also included in the core
model. In total, 6 reactions were chosen in 100% and 1 in more
than 80% of the solutions in the same direction in both networks.
TOTORO predicted as active for pyruvate, glucose and succinate (in
at least 1 solution) a total of 221, 284, and 189 reactions
respectively. Moreover, 52% of the reactions were chosen
across all iterations in the pyruvate pulse dataset, 81% in the
succinate pulse dataset and 62% in the glucose pulse dataset.

The additional measurements that were added as input deltas
for the large network were mostly amino acids (see
Supplementary Tables S1–S3). In (Waschina et al., 2016), the
authors show for the example of amino acid production in E. coli
how the production cost for individual amino acids can depend
on the available carbon source, and reactions close to the entry
point of the carbon source might have considerably higher fluxes.
A schematic representation of this is provided in Figure 4A.
Indeed, from the experimental data, alanine and valine only
accumulated during the pyruvate pulse, and were depleted
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with the other two carbon sources. Pyruvate is a direct precursor
for valine production. We therefore expected that reactions of the
alanine and valine biosynthesis should play a greater role in the
predicted results for pyruvate compared to the other two pulses.
TOTORO predicted an activation of the pathway from pyruvate to
alanine and valine, which resulted in the accumulation of these
amino acids (Figure 4B). In accordance with the predictions in
(Waschina et al., 2016), another example is the accumulation of
threonine during the succinate pulse. Threonine and succinate
are closely connected, and TOTORO predicted active reactions
leading to its biosynthesis and accumulation in the succinate
pulse (Figure 4B). Compared to the results for succinate, TOTORO
predicted more active reactions consuming threonine during the
glucose pulse, and no reactions producing it in the pyruvate pulse,
resulting in the depletion of this amino acid with those carbon
sources. Moreover, only during the glucose pulse, phenylalanine
was accumulated, and TOTORO proposed the complete pathway
for the phenylalanine biosynthesis as active when compared to
the pyruvate and succinate pulses (Figure 4B), in accordance
with the predictions in (Waschina et al., 2016) of lower cost to
produce this amino acid with glucose as carbon source.

4 DISCUSSION

TOTORO was able to predict expected pathways as active based on
the differences in the measured concentrations for some internal
metabolites for both the E. coli core and complete models. We
show that in general, it is preferable to use smaller values of λ (e.g.,
λ = 0.1) though the method is not critically sensible to this setup,
being robust to small perturbations. However, it is worth noting
that a higher λ can lead to smaller solutions which might be
biologically irrelevant. Here, we focused in extracting connected
sub-hypergraphs that explained the changes in concentration
between two different conditions. We also show that a reduction
of ϵ can also be used to obtain more connected solutions.
However, there might be situations where the user might be
interested in only local changes around the measurements. In this
context, it might be advantageous to choose higher values for λ
and ϵ. We did not encounter problems specific to co-factors
which is a known problem when looking for shortest paths in
metabolic networks. This is probably due to the fact that we are
not only minimizing the number of active reactions in the
solutions but also focusing on the changes in the metabolite

FIGURE 4 | Amino acid biosynthesis in the E. coli iJO1366 model. (A) Schematic representation of carbon sources with closely related amino acids. Glycolysis/
Gluconeogenesis in green; TCA cycle in blue and Pentose Phosphate Pathway in purple. (B) TOTORO results explaining the accumulation of valine (Val) and alanine (Ala) in
the pyruvate (Pyr) pulse; accumulation of phenylalanine (Phe) from the glucose (Glc) pulse and accumulation of threonine (Thr) from the succinate (Succ) pulse. For
simplicity reasons, side compounds and cofactors were excluded from the figure. Dashed arrows indicate several reactions from the shikimate and chorismate
pathways. Abbreviations for reaction names are as follows: VALTA, valine transaminase; VPAMTr, valine-pyruvate aminotransferase; CHORM, chorismate mutase;
PPNDH, prephenate dehydratase; PHETA1, phenylalanine transaminase; ASPTA, aspartate transaminase; ASPK, aspartate kinase; ASAD, aspartate-semialdehyde
dehydrogenase; HSDy, homoserine dehydrogenase; HSK, homoserine kinase; THRS, threonine synthase; THRD_L, L-threonine deaminase.
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concentrations. By splitting reversible reactions, TOTORO was able
to predict distinct directions for them.

Both in the core network and in the larger network, we were
able to recover biologically meaningful pathways. Additionally,
although the larger network contains more reactions and we
added more input deltas, the predictions for the core metabolism
of E. coliwere fairly similar to the results for the core network.We
also showed a particular case in which the perturbation was
subtle, and the results from the complete model were more
insightful than the ones from the core model. It must be
however noted that the predictions do depend on the
measured metabolites. If for large parts of the network, no
metabolite concentrations are measured, TOTORO will likely not
be able to find active pathways for these parts of the network.

Moreover, we could also see that it is not necessary to
enumerate a high number of solutions which is especially
important when larger networks are used and the runtime of
TORORO increases. We enumerated 100 different solutions for the
core network. However, in our case, the enumerated solutions
were very similar and a large amount of reactions appeared in all
100 solutions. Therefore, already one (or few) solution(s) would
have been sufficient to infer the most important reactions that
were proposed to be active.

5 CONCLUSION

In this paper, we presented TOTORO, a method that identifies
active reactions during the transient state based on the differences
in the concentrations for some measured metabolites from two
different conditions and we showed its prediction power on the
example of different pulse experiments in E. coli. It is important to
note that even though we provided several biologically trivial
results, TOTORO only used metabolomic data as basis for these
predictions, without any other source of bias such as defined
metabolic pathways. Our method was also able to handle full
networks which take into account model stoichiometry, and we
did not perform any type of filtering for cycles, reversible
reactions or co-factors.

With the current technologies, it gets more common to have
different kinds of data available which creates a need for methods
that combine, for instance, metabolomic, transcriptomic and
proteomic data. We have recently developed a method for
integration of metabolic networks and transcriptomic data
(Pusa et al., 2019) and we intend in the future to adapt our
approaches to be able to integrate multiple kinds of omic data,
similarly to what was proposed in (Pandey et al., 2019) for
thermodynamic, transcriptomic and metabolomic data, and in
(Kleessen et al., 2015) for transcriptomic and metabolomic data.

On a larger scale, it might be interesting also to consider whether
some measures used in (hyper)graph theory such as connectivity
or (hyper)path length might be related to the parameters used
and thus provide an automatic and perhaps more reliable way of
setting them. Notice that achieving this would be even more
challenging in the case of hypergraphs for which such measures
might have to be adapted.
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Indication expansion aims to find new indications for existing targets in order to accelerate
the process of launching a new drug for a disease on the market. The rapid increase in data
types and data sources for computational drug discovery has fostered the use of semantic
knowledge graphs (KGs) for indication expansion through target centric approaches, or in
other words, target repositioning. Previously, we developed a novel method to construct a
KG for indication expansion studies, with the aim of finding and justifying alternative
indications for a target gene of interest. In contrast to other KGs, ours combines human-
curated full-text literature and gene expression data from biomedical databases to encode
relationships between genes, diseases, and tissues. Here, we assessed the suitability of
our KG for explainable target-disease link prediction using a glass-box approach. To
evaluate the predictive power of our KG, we applied shortest path with tissue information-
and embedding-based prediction methods to a graph constructed with information
published before or during 2010. We also obtained random baselines by applying the
shortest path predictive methods to KGs with randomly shuffled node labels. Then, we
evaluated the accuracy of the top predictions using gene-disease links reported after
2010. In addition, we investigated the contribution of the KG’s tissue expression entity to
the prediction performance. Our experiments showed that shortest path-based methods
significantly outperform the random baselines and embedding-based methods
outperform the shortest path predictions. Importantly, removing the tissue expression
entity from the KG severely impacts the quality of the predictions, especially those
produced by the embedding approaches. Finally, since the interpretability of the
predictions is crucial in indication expansion, we highlight the advantages of our glass-
box model through the examination of example candidate target-disease predictions.

Keywords: knowledge graphs, ontologies, drug discovery, target repurposing, target repositioning

INTRODUCTION

Indication expansion (IE) is an emerging subject in drug discovery that aims to find alternative
therapeutic applications, or diseases (indications) for an existing drug target (Parisi et al., 2020).
Considering the high cost and slow process of bringing a new drug into the market, in silico
approaches for drug discovery and repurposing (Dudley et al., 2011; Picart-Armada et al., 2019; Sosa
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et al., 2020) became a popular subject in the bioinformatics
community due to the increasing availability of both
structured and unstructured data modalities. In fact, with the
improvement in text mining technologies, literature mining has
become an established and popular tool for indication expansion
in drug discovery (Andronis et al., 2011; Lekka et al., 2012;
Smalheiser, 2012; Sebastian et al., 2017; Sang et al., 2018; Sosa
et al., 2020). One can search for all potential disease relations for a
given drug in the literature via text mining techniques and expand
the analysis to all targets of the drug to establish a more
comprehensive search (Andronis et al., 2011; Lekka et al.,
2012; Smalheiser, 2012). The outcome of this method is the
direct disease-gene links (based on search criteria). On the
other hand, analysis of biological data sources (such as
molecular data, experimental data, gene expression data, etc.)
are common approaches to search for novel target-disease links
(Brown and Patel, 2017; Härtner et al., 2018; Picart-Armada et al.,
2019).

A natural extension of these studies would be the integration of
several data sources for amore comprehensive analysis. However, the
heterogeneity of data formats and sources raises questions during
their integration (Holzinger, 2018; Katsila andMatsoukas, 2018). The
best way to undertake this data integration challenge, together with
data contextualization, is the application of semantic web
technologies: ontologies and knowledge graphs (Qu et al., 2009;
Chen and Xie, 2010; Williams et al., 2012; Lin et al., 2017; Kanza
and Frey, 2019; Zhu et al., 2020). The main ideas of ontologies and
knowledge graphs (KGs) are that each resource has a unique
identifier, and once each resource is defined with the identifier,
regardless of where they are extracted from, they will be merged
and the integration process will be effortless. Secondly, integrating the
data sources brings up the topic of data governance, as data needs to
be findable, accessible, interoperable, and reusable or, in other words,
in alignment with the FAIR data principles (Wilkinson et al., 2016).
For this, ontologies can also be very helpful (Williams et al., 2012)
because all the data mapped using the same ontology will be already
linked which makes it very easy to search, query, and reuse. Lastly,
predictions from comprehensive and integrated data sets are often
difficult to interpret (Holzinger, 2018; Lecue, 2020). This is a major
challenge in the biological domain, which can be tackled by providing
ontological perspective into the prediction process to incorporate
human recognition and interpretation, thusmaking themethodology
a “glass box”model (Holzinger et al., 2017). Due to the importance of
semantic web technologies in addressing the above-mentioned
challenges, many researchers have added a semantic layer and
included KGs in their computational methods for drug discovery
studies (Kanza and Frey, 2019).

In our previous work, we divided the studies that use KGs for
drug discovery into two categories (Gurbuz et al., 2020): KGs built
from biological data sources (Qu et al., 2009; Fu et al., 2016; Han
et al., 2018; Celebi et al., 2019; Zhu et al., 2020) and KGs built
from the literature (Sang et al., 2018, 2019; Sosa et al., 2020).
Then, we distinguished between studies performing drug-disease
predictions (Qu et al., 2009; Fu et al., 2016; Han et al., 2018;
Sang et al., 2018, 2019; Sosa et al., 2020; Zhu et al., 2020) and
those predicting drug-drug interactions (Herrero-Zazo et al.,
2015; Celebi et al., 2019). The outcome of this review of the

state-of-the-art was that the studies using structured biological
data sources (BioGrid, StringDB, Human Protein Atlas, etc.) for
building the KG applied several network analysis methods to
predict either drug-disease relations or gene-disease associations.
Even though the value of available biological sources cannot be
denied, the outcome of such predictions based on statistical
confidence scores may not be sufficiently persuasive to kick-off
a full drug-development program (Holzinger, 2018). Literature
support would be more convincing for further investigation.
Therefore, the second group of studies constructed the KG
from literature sources but did not implement KGs that
combine both structured biological data sources and literature
sources for a more comprehensive indication expansion or target
repositioning approach. Additionally, all these studies did not
truly benefit from semantic web technologies. Instead, they
directly applied network analysis algorithms.

As a result, in the past we conducted an exploratory case study
aimed at constructing a comprehensive KG to facilitate indication
expansion (Gurbuz et al., 2020). We presented the methodology,
defined the reasoning and inferencing on the KG, and successfully
applied it to two randomly selected cases to predict the link
between the target and disease. We ranked the paths connecting
the target and disease based on the number of publications
associated with its constituent edges. In addition, a path was
considered more relevant when all the proteins in the path
showed expression in the same tissue, either at the RNA or
protein level. One limitation of the previous study was that we
conducted the exploratory cases at a small scale with a target and
a given candidate indication to find the mechanism of action. By
contrast, in the current study we extend the identification of novel
target-disease links to all available pairs, evaluate the performance
of the inferred edges based on random baselines, and study the
value of including RNA- and protein-level expression
information in our predictions. Moreover, we show how the
KG can be exploited to interpret candidate gene-disease
associations through the examination of two examples.

RELATED WORK

In this section, we review the approaches that have resorted to the
use of KGs for drug discovery regardless of whether the purpose
was drug-disease, gene-disease, or drug-drug interaction
prediction. Table 1 shows a comprehensive overview of the
reviewed methods.

Celebi et al. used KGs for drug-drug interaction identification
and used a publicly available dataset called Bio2RDF to extract
drug features (Celebi et al., 2019). After feature extraction via
RDF2Vec, TransE, and TransD embeddings, they applied
Logistic Regression, Naïve Bayes, and Random Forest models
and evaluated which combination of embedding and machine
learning models was better at predicting a reference set of drug-
drug interactions. The best performance they achieved was using
RDF2Vec together with a Random Forest model.

There are several studies which use KGs to predict
drug-disease relations. Fu et al. (Fu et al., 2016) built a
network from various biological and chemical data sources to
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predict drug-target relations using Random Forest and Support
Vector machine algorithms. However, they only benefited from
semantic web technologies at the stage of data integration and
concentrated on drug-target relations. Han et al. (Han et al., 2018)
integrates popular biological databases (DB) such as TTD,
DrugBank, PharmGKB, and AlzGene to predict novel drug
targets for Alzheimer’s disease. Their novel strategy was to
combine ontology inference together with enrichment analysis.
However, their main goal was limited to finding genes for one
specific disease, Alzheimer’s in this case. Zhu et al. built a drug
centric KG by integrating six drug data sources (PharmGKB,
TTD, KEGG DRUG, DrugBank, SIDER, and DID) (Zhu et al.,
2020). They implemented a machine learning approach on a
path-based representation and an embedding-based
representation, separately. To evaluate the effectiveness of the
KG, the authors used positive samples and unlabeled samples
(samples from diabetes mellitus only) and implemented positive
and unlabeled learning (PU) with Decision Tree, Random forest,
and SVM models. According to their performance evaluations,
the best outcome came from SVM implemented on path-based
representation (normalized path count). However, this study uses
a drug centric KG to understand the drug-disease interaction.

On the other hand, there are two studies by Sang et al. (Sang
et al., 2018; Sang et al., 2019) which used literature for building
the KG including SemaTyp. This KG is built from PubMed
abstracts by using a natural language processing (NLP) tool
called SemaRep. In the first study (Sang et al., 2018), they
applied logistic regression on the KG and outperformed the
results obtained with a random walk method. Their aim was
to predict drug-disease relations via drug-target-disease chains.
Later, the authors published a continuation of their work called
GrEDeL in which they used KG embedding methods for

discovering drug-disease relations from literature (Sang et al.,
2019). The authors again use SemaRep to extract associations
from PubMed abstracts and build the KG. This time they claim
that their previous work, which used logistic regression, couldn’t
reflect the order of the entities in the associations and couldn’t
show the detailed drug mechanism of action. Therefore, they first
used the TransE embedding method and applied a Long Short-
Term Memory (LSTM) based Recurrent Neural Network model
to show that graph embeddings capture more information than
logistic regression. However, they claimed that the limitation of
both studies is that the effectiveness of the methods is dependent
on the NLP tool. Likewise, Sosa et al. (Sosa et al., 2020) also
constructed a KG from PubMed abstracts to repurpose FDA-
approved drugs for rare diseases. They used graph embedding
and network proximity for generating their hypothesis. The
limitation of this study is that they missed important
knowledge that is usually present in the full text but not in
the abstract. Moreover, Nunes et al. (Nunes et al., 2020)
implemented a KG using all curated gene-disease links
extracted from DisGeNET1. They filtered out genes that did
not have protein correspondence in Uniprot or annotations in
the Gene ontology and genes and diseases that were not
annotated in Human Phenotypes. Then, they created 3
different KGs based on this filtering and deployed several
embedding strategies, noting that they achieved their best
performance for predicting gene-disease links with OPA2Vec.
However, they only included gene-disease relations in their KGs.

Furthermore, in another study by Paliwal et al. (Paliwal et al.,
2020), the authors built a heterogeneous KG in which 20% of the

TABLE 1 | Overview of knowledge graph usage in drug discovery.

Study Purpose Method Data source

Celebi et al.
(2019)

Drug-Drug Interaction: evaluating the different
embedding methods in various Cross Validation
schemes

Embedding: RDF2Vec, CBOW, Skip Gram, TransE, TransD
MLModel: Logistic Regression, Naive Bayes, Random Forest

Bio2RDF

Fu et al.
(2016)

Drug-target interactions Metapath + Random forest, SVM Biological and chemical datasets

Han et al.
(2018)

Drug target genes for Alzheimer’s Disease Inference + enrichment analysis TTD, DrugBank, PharmGKB,
AlzGene

Zhu et al.
(2020)

Drug centric KG Positive and Unlabeled Learning * SVM, Decision Tree and
Random Forest

PharmGKB, TTD, KEGG DRUG,
DrugBank, SIDER and DID

Sang et al.
(2018)

Potential drugs for diseases Logistic regression Pubmed Abstracts

Sang et al.
(2019)

Potential drugs for diseases TransE embedding + LSTM Pubmed Abstracts

Sosa et al.
(2020)

FDA approved drugs for rare diseases Network proximity Pubmed Abstracts

Paliwal et al.
(2020).

Predicting clinical failure Tensor factorization + gene prioritization 20% is from biomedical literature
and biological data sources

Nunes et al.
(2020)

Predicting Gene-Disease links Embeddings + Random Forest Gene-Disease links from Disgenet

Geleta et al.
(2021)

Knowledge Graph construction to support drug
discovery like predicting Gene-Disease links and

Embeddings (RESCAL) + XGBoot Gene and Disease nodes and
edges from public databases

KG for IE Target repurposing Tissue based semantic inferencing + Embeddings & Random
Forest

Human curated full text literature +
biological database

1https://www.disgenet.org/(accessed on 12.11.21).
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data comes from biomedical literature databases and the rest
from biological data sources. These sources consist of entities
such as genes, proteins, diseases, gene ontology processes,
pathways, and compounds (Paliwal et al., 2020). Although the
aim of the study was to evaluate translatability of in silico
predictions of clinical trial failure, they were able to predict
therapeutic genes for diseases using gene prioritization
algorithms. Note that, contrary to what we do in this work,
Paliwal and colleagues searched for therapeutic genes related to a
group of selected diseases. A similar study from Geleta et al.
(Geleta et al., 2021) also presents a comprehensive knowledge
graph built from internal data, external public databases such as
ChEMBL and Ensembl, and information extracted from PubMed
full-text using Natural Language Processing Techniques named
Biological Insights Knowledge Graph (BIKG) to be used for
knowledge discovery with machine learning. They use
RESCAL for knowledge graph embeddings and XGBoost as
machine learning method. They report their average F1 score
as 88% for gene-disease link prediction where they reduce the size
of the KG to Gene and Disease nodes. However, their focus lies on
the creation of the KG, whereas our paper addresses the practical
utility of KGs in the context of indication expansion in drug
development. Furthermore, they depend on natural language
parsers and the full details about the method for gene-disease
prediction are unavailable, hindering their reproducibility and
application to drug discovery. Likewise, Ochoa et al. (Ochoa et al.,
2020) also present a comprehensive knowledge graph with
characterization of targets, diseases, phenotypes, and drugs to
support target identification and prioritization. This is part of an
update within the Open Targets platform. While full text
literature is a data stream within Open Targets, its use for
drug discovery in indication expansion is not explored.

After analyzing these studies, we concluded that KGs are
becoming mainstream for supporting drug discovery initiatives,
but they have not benefited from semantic information and instead
have relied directly on the application of network analysis. In
consequence, we evaluated both tissue-based semantic inferencing
and various embedding strategies. Additionally, most literature-
based KGs were constructed with abstracts. However, the authors
behind these studies have acknowledged that this is a limitation
and that extracting information from full texts would increase the
predictive power of KGs in general. Therefore, we set out to address
these pitfalls and used full-text literature for building a KG for IE.
Predictions based on this graph can be accompanied by the
literature references supporting them, as well as the
mechanisms of action. Furthermore, our KG takes tissue
specificity information into consideration when inferencing and
predicting target-disease links.

METHODOLOGY

Knowledge Graph Development for
Indication Expansion
This section summarizes the methodology that improves upon the
KG developed in our previous work to facilitate indication expansion
studies. More details can be found in Gurbuz et al. (2020).

We start with the upper layer ontology, which defines the data
and semantic layer of the KG. In the current study, we have
improved the KG and included the following entities: Protein/
Gene, RNA Tissue, Protein Tissue, Publication, and Disease.
Figure 1A shows the updated upper layer ontology. We have
used Python’s RDFLib2 for creating the ontologies and RDF
graph. Since it was not possible to create edge properties with
the RDF syntax and reification brings about efficiency problems,
the new RDF* syntax can be used for creating a weight property
on the edges (relations) with RDF4J 3. Alternatively, a third entity
can be created to store the references of these genes’ connection
information. In this study, we chose to create a third entity,
named Publication, between gene and disease. This entity holds
the information for PubMed IDs and the number of PubMed
articles between the given gene and the disease as data properties.

After building the upper layer ontology, we populated it with
Metabase4, a commercial source for human curated full-text
literature information. We only selected the high confident
relations between gene-gene and gene-disease interactions
provided by Metabase. We extracted the tissue-level gene
expression from the Human Protein Atlas5 (Uhlen et al.,
2010). The pipeline for building and analyzing the KG is
shown in Supplementary Figure S1. For data extraction and
analysis, we used the R programming language and for ontology
population and KG implementation we used Python’s RDFlib.
Both data extraction and ontology population processes were
automated with R and Python scripts (see script KGbuild_toy.py,
which can be used as a template for KG construction). Therefore,
building the KG took less than 1 day. We used Ensembl IDs for
gene/proteins and Mesh IDs for diseases as Unique Resource
Identifiers (URI).

Characterization of the Knowledge Graph
We described the following topological features of the KG: in- and
out-degree (i.e., number of directed links going in and out of a node,
respectively), total degree (sum of in- and out-degree), edge density
(ratio of the number of edges and the number of possible edges),
value of the coefficient of the power-law distribution fitted to the
degree distribution, and PageRank centrality (Page et al., 1999).

On the other hand, we explored the changes of the KG over the
years, focusing on the largest (weakly) connected component
consisting of only gene and disease nodes. To build the KG of a
given year, we only kept the gene-gene and gene-disease edges
whose first mention in literature was no later than that year.
Then, we represented the evolution of the number of nodes,
edges, the edge density, and the power law coefficient.

Tissue-Based Gene-Disease Link
Prediction From the Knowledge Graph
Since there may be indirect links (Lekka et al., 2012) between a
gene and a disease via secondary signaling cascades (modelled

2https://rdflib.readthedocs.io/en/stable/apidocs/rdflib.html (accessed on 12.11.21).
3https://rdf4j.org/documentation/programming/rdfstar/(accessed on 12.11.21).
4https://www.cortellislabs.com/page/?api=api-MB (accessed on 12.11.21).
5https://www.proteinatlas.org/(accessed on 12.11.21).
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as protein-protein interaction networks and pathways in our
KG), we defined hop-based inferencing rules with RNA- and
protein-level expression in tissues as key components (Gurbuz
et al., 2020). For instance, say a protein/gene instance X
interacts with another protein/gene instance Y and these
two entities are expressed in the same tissues. Then, it is
assumed that the disease D that Y is related to is one-hop-
related to the instance X. Similarly, if protein/gene X interacts

with Y, Y interacts with another protein/gene Z, all these
entities are expressed in the same tissues and Z is associated
with the disease D, we say that D is two-hop-related to the
instance X (see Figure 1B). These candidate gene-disease links
can be ranked according to the total number of publications in
the X-Y-D or X-Y-Z-D path (i.e., the sum of the edge weights).
A sample mock-up diagram can be found in Supplementary
Figure S2.

FIGURE 1 | Knowledge graph schema and gene-disease prediction strategies. (A) Upper layer ontology with the entities and relations defining the structure and
content of our knowledge graph. (B)Hop-based prediction strategies to find novel gene-disease associations via intermediary genes expressed in the same tissue at the
RNA or protein levels. (C) Embedding-based prediction strategy to find novel gene-disease associations via distances/similarities in a latent space.
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For inferencing, we used five different strategies: one-hop links
filtered by protein expression in the tissues, one-hop links filtered
by RNA expression in the tissues, two-hop links filtered by
protein expression in the tissues, two-hop links filtered by
RNA expression in the tissues, and the union of all these types
of predictions (see Figure 1B). We also evaluated the
performance of the one- and two-hop strategies without the
tissue filters.

Random Baselines
We created 100 random KGs to evaluate the performance of the
hop-based predictions. To this end, we shuffled the identity of the
protein/gene entities, which maintained the structure of the KG
unchanged but affected the biology encoded by the gene-gene,
gene-disease, and gene-tissue components of the graph.

In Silico Validation of Tissue-Based
Gene-Disease Predictions
For each gene-gene and gene-disease link, we have the
information of when the association was first reported
(published) and what is the last record (publication) of such
association. Accordingly, we used a prospective time-split
validation scheme, where interactions and indications
published before or in 2010 were eligible for the training data,
whereas indications reported after 2010 were used to construct a
gold standard or test set (see Table 2). It is important to note that
the gold standard was constructed by making sure that only genes
and diseases which also exists in KG_Before2010 were included,
as these are the only cases that can be predicted. We further
refined the gold standard by removing gene-disease pairs
separated by more than two hops in the original KG. This led
to fairer performance metrics because we considered a maximum
of two hops of separation between genes and diseases in our
predictions. Therefore, the final test set comprised 5,176 reference
gene-disease associations.

Knowledge Graph Embeddings
We employed the Nunes et al. (2020) implementation of the
most commonly used embedding methods for KGs, which are
RDF2Vec6, DistMult7, TransE8, TransH9, and TransD10 to
embed KG_Before2010 into a low-dimensional space (see

Figure 1C). We used a 200-dimensional space as
recommended in Nunes et al. (2020). Therefore, we
obtained 200-dimensional representations of all the gene
and disease entities, which we used to calculate Euclidean
distances and cosine similarities between gene-gene and gene-
disease pairs. These distances/similarities were used to build a
Random Forest model that we applied to the prediction of
gene-disease links. We selected this machine learning
approach based on the work of Celebi et al. (2019) and
Nunes et al. (2020) who found that Random Forests
outperformed other techniques in their studies for
predicting gene-disease links from ontologies.

To train the Random Forest and evaluate its
performance, we labeled all the gene-disease pairs
separated by at most 2-hops and which did not take place
in the train and test data (Table 2) as negative cases. This
allowed to construct a training set (98,426 positive and
98,426 negative cases) and a test set (5,176 positive and
5,176 negative cases).

Performance Metrics
We evaluated the overall prediction accuracy of the inference
strategies described above using the following definitions:

• True positive: Gene-disease link inferred from
KG_Before2010 and that is listed in the KG_After2010
gold standard.

• False positive: Gene-disease link inferred from
KG_Before2010 but that is not listed in the
KG_After2010 gold standard.

• False negative: Gene-disease link not inferred from
KG_Before2010 but that is listed in the KG_After2010
gold standard.

In addition, we constructed a table with all the possible
gene-disease links that can be formed with the
KG_Before2010 data (18,045 unique genes and 330 unique
diseases for a total of 5,954,850 possible gene-disease
associations). This list was further reduced to gene-disease
pairs separated by at most two hops in the KG_Before2010 for
a total of 458,640. Then, we determined which of those
combinations were corroborated in the gold standard
(positive cases) and scanned the list decreasingly based on
the scores assigned to each pair by the hop-based prediction
strategies (see Figure 1B). Gene-disease links not predicted by
the hop-based methods were given a score of 0. This allowed
us to construct Receiving Operating Characteristic (ROC) and
Precision-Recall curves (Cannistraci et al., 2013) using the
following definitions:

TABLE 2 | Validation scheme based on the date when the interaction was first reported.

Node1 Node2 Interaction First referenced Graph Type

Gi Dk hasDisease ≤2010 KG_Before2010 Train data
Gi Gj activates ≤2010 KG_Before2010 Train data
Gj Dk hasDisease >2010 KG_After2010 Test data

6https://github.com/IBCNServices/pyRDF2Vec (accessed on 11.10.21).
7https://github.com/thunlp/OpenKE (accessed on 11.10.21).
8https://github.com/thunlp/OpenKE (accessed on 11.10.21).
9https://github.com/liseda-lab/KGE_Predictions_GD (accessed on 11.10.21).
10https://github.com/liseda-lab/KGE_Predictions_GD (accessed on 11.10.21).
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• True positive: Gene-disease link above current weight
threshold that was reported after 2010.

• False positive: Gene-disease link above current weight
threshold that was not reported after 2010.

• False negative: Gene-disease link below current weight
threshold that was reported after 2010.

• True negative: Gene-disease link below current weight
threshold that was not reported after 2010.

FIGURE 2 | Topological properties of KG_Before 2010. (A) In- and out-degree of the nodes in each node type. Also shown is the total degree, defined as the
sum of the in- and out-degree. All node types have hubs with over 100 edges (log2 (101) ≈ 6.7). (B) PageRank centrality, by node type. (C) Probability of each node
degree suggest a power law; both axes are log scaled. (D, E) Temporal evolution of gene-gene and gene-disease links between 1990 and 2021. Edges were filtered
according to their first mention in the literature. (D) Evolution of the largest weakly connected component over time, in terms of node count, edge count, edge
density and power law coefficient. (E) Details on the relative growth by node types (genes or diseases) and by edge types (gene-gene interactions and gene-disease
annotations).
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Data and Code Availability
Gene-gene links and gene-disease links were extracted from the
commercial database Metabase11, which prevents us from sharing
these data. However, the code we used to define and populate our
KG is available in the github link: https://github.com/bi-
compbio/kg_for_ie and can be used with publicly available
databases like StringDB12 for gene-gene links and DisGeNET13

for gene-disease links. Gene-tissue links for the resulting KG can
be retrieved using the Human Protein Atlas R package14 (Tran
et al., 2019).

RESULTS

Characterization of the Graph
The KG was created from 18,790 unique nodes (464 diseases;
18,165 genes; 124 ProteinTissues; 37 RNATissues) and
669,900 edges (70,380 hasDisease; 263,106
hasProteinExpression; 234,294 hasRNAExpression; 102,120
Interaction). The graph was directed and contained no multi-
edges. After imposing the publication date restriction,
KG_Before2010 had 12,906 nodes (330 diseases; 12,417
Ensembl genes; 122 Protein-Tissues; 37 RNA-Tissues) and
518,427 edges (34,201 hasDisease; 222,438
hasProteinExpression; 197,563 hasRNAExpression; 64,225
Interaction). Its edge density was 0.00311.

The topological properties ofKG_Before2010 suggest it follows
a scale free architecture (power law coefficient of 2, Figure 2C).
Regarding their in-degree, genes are the least central nodes,
followed by diseases, Protein-Tissues, and RNA-Tissues
(Figure 2A). The out-degree is only positive for genes, with a
maximum of 1,025. The total degree shows trends like those in the
in-degree, except for genes and disease being on par due to the
addition of the out-degree of genes. Using PageRank as a
centrality measure depicts a similar scenario to the in-degree
(Figure 2B). All the node types show heavy tails and hubs with
more than 100 connections (Figures 2A,C). Such properties are
in line with those of molecular networks and KGs in the
biomedical domain.

Temporal Evolution of Indications
To characterize the time dynamics of indication discovery, we
started from the induced subgraph containing genes and diseases
only and built year-specific subgraphs by removing the edges
whose first mention in literature was posterior to the year under
consideration (Figure 2). When accounting for all-time data
(i.e., the 2021 network), the network encompassed 16,552
nodes and 172,118 edges (16,530 and 172,044 in the largest
weakly connected component, respectively). In contrast, the
largest connected component dating from 1990 consisted of
705 nodes and 1,360 edges, and the one from 2010 had 12,151

nodes and 95,375 edges. We observed a reduction of the increase
rate in both the number of nodes and edges, more pronounced
from 2015 onwards (Figure 2D), which might be explained by
changes in the literature curation criteria or by the pace of data
ingestion. Both edge density and the power law coefficient tend to
decrease and plateau (Figure 2D), which might indicate the new
addition of nodes over time that remain sparsely connected. The
growth patterns in number of nodes and edges also hold for their
sub-types (Figure 2E).

Performance Evaluation of Hop-Based
Methods
Overall precision and recall values for the different strategies to
predict indirect gene-disease links are shown in Table 3. The
average performance metrics across 100 random KG are also
reported, together with p-values from a one-sided z-test
comparing the actual performance values and the distribution
of random ones. In all cases, both precision and recall are higher
than expected by chance with the one-hop with RNA tissue
predictions producing the best precision-recall combination,
followed by the one-hop with Protein tissue inferences
(Table 3 and Figure 3A). Interestingly, while removing the
tissue expression entity from the KG does have an impact on
precision, the sensitivity of the one-hop and two-hop strategies
without tissue is higher. This responds to the fact that, in these
cases, the intermediary nodes connecting the gene with its
predicted associated disease (see Figure 1B) do not have to be
expressed in the same tissue, resulting in many more predicted
gene-disease links and a higher probability to identify pairs in the
gold standard. This is also the case for the two-hop and the union
of all predictions (Figure 3A). However, when precision and recall
are summarized with the F1 statistic, it becomes evident that the
best predictions come from the one-hop methods (Figure 3A). We
believe that, even though the F1 metric from the one-hop no tissue
approach is comparable to that of the predictions with tissue
constraints, it is better to ensure tissue homogeneity.

Table 3 shows that each hop-based method predicts tens of
thousands of gene-disease links, a number of associations that
is unlikely to be validated by experimental means. Therefore,
we assessed the performance of the hop-based approaches for
early retrieval by looking at metrics for the top-100
predictions (see Supplementary Table S1). In particular,
Precision@100 shows that one-hop with RNA tissue and
one-hop without tissue constraints are the best approaches
for early recognition.

To better understand whether predicted gene-disease links with
high scores were corroborated in publications after 2010, we built
performance curves by scanning a list of all possible gene-disease
pairs in KG_Before2010 separated by at most 2 hops (seeMethods).
Figure 3B shows the receiver operating characteristic (ROC) and
Precision-Recall curves of all the gene-disease inference strategies,
while Figure 3C shows the areas under these curves. The plots
corroborate that one-hop predictions are the best when it comes to
early retrieval and the tails of the curves represent the random ranks
for gene-disease pairs that were given artificial scores of 0 (see
Methods).

11https://www.cortellislabs.com/page/?api=api-MB (accessed on: 09.11.2021).
12https://string-db.org/(accessed on: 12.11.2021).
13https://www.disgenet.org/(accessed on: 12.11.2021).
14https://bioconductor.org/packages/release/bioc/vignettes/hpar/inst/doc/hpar.
html (Accessed on: 13.10.2021).
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Performance Evaluation Based on Random
Forest on Several Knowledge Graph
Embeddings
We employed 5 different dimensionality reduction strategies15

(Nunes et al., 2020) to embed the KG_Before2010 into a

200-dimensional space, obtain vector representations of genes
and diseases, and use these vectors to build a machine learning
model for gene-disease link prediction (see Methods and
Figure 1C). Intuitively, a good embedding method should put
gene-disease associations reported in the gold standard near each
other in the latent space. We computed the distance between all
gene-disease pairs, binned the distance range into 10 groups, and
calculated the probability of finding gene-disease links reported
after 2010 within each bin (Supplementary Figures S3, S4). This

TABLE 3 | Types of inferencing and their overall performance scores based on a total of 5,176 reference gene-disease links reported after 2010. Average ± standard
deviations are reported for the random predictions.

Type
of inferencing

Predicted
links

Precision Precision
at100

Precision
(random)

p-value
precision

Recall Recall
(random)

p-value
recall

All the inferences 170,506 0.0296 0.23 0.0152 ± 0.0003 2.55E-
284

0.9737 0.5449 ± 0.0223 1.50E-81

One-hop and protein
tissue

33,633 0.0817 0.21 0.0227 ± 0.0006 0.00E+00 0.5307 0.2234 ± 0.0060 0.00E+00

One-hop and RNA tissue 45,664 0.0794 0.3 0.0227 ± 0.0006 0.00E+00 0.7007 0.2235 ± 0.0061 0.00E+00
Two-hop and protein
tissue

120,319 0.0319 0.14 0.0158 ± 0.0003 0.00E+00 0.7417 0.5247 ± 0.0088 4.50E-
127

Two-hop and RNA tissue 167,939 0.0295 0.23 0.0157 ± 0.0003 7.10E-
286

0.9571 0.5286 ± 0.0088 0.00E+00

One-hop without tissue 47,734 0.0787 0.30 0.0227 ± 0.0006 0.00E+00 0.7262 0.2235 ± 0.0061 0.00E+00
Two-hops without tissue 174,305 0.0291 0.23 0.0157 ± 0.0003 7.10E-

286
0.9795 0.5286 ± 0.0088 0.00E+00

FIGURE 3 | Performance evaluation of the hop-based predictions. (A) Precision, Recall, F1 and Precision@100 metrics calculated from all the gene-disease links
predicted by each hop-based approach. (B) ROC and Precision-Recall performance curves for all the hop-based prediction methods. (C) Area under the ROC (AUROC)
and Precision-Recall (AUPRC) curves shown in (B).

15https://github.com/liseda-lab/KGE_Predictions_GD (Accessed on 13.10.2021).
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analysis showed that TransD, TransE, and TransH were the
approaches that produced the expected gene-disease proximity
patterns. To confirm whether these methods would indeed
produce good gene-disease link predictions, we computed the
Euclidean distances and cosine similarities between genes and
diseases in the five different 200-dimensional spaces and used
these measures to train a Random Forest model whose
performance was evaluated with the gold standard
mentioned above (see Methods). Table 4 and Figure 4 show

the performance of the Random Forest predictions refined with
and without the tissue expression information. TransE
embeddings using cosine similarity vector as the training
data for Random Forest achieved the best performance
overall. These results also show that embeddings from the
KG that contains gene-tissue links outperform the
embeddings that don’t have this information, highlighting
the importance of this entity for the embedding approaches
(Table 4; Figure 4 and Supplementary Table S2).

TABLE 4 | Random Forest predictions on different embeddings.

With tissue No tissue

Category Precision Recall F1 Category Precision Recall F1

DistMult/Cos-sim/@all 0.5339 0.1609 0.247278 DistMult_notissue/Cos-sim/@all 0.3747 0.0326 0.059981
DistMult/Euclidean/@all 0.6758 0.2413 0.355622 DistMult_notissue/Euclidean/@all 0.4152 0.0917 0.150222
RDF2Vec/Cos-sim/@all 0.4765 0.2057 0.287353 RDF2Vec_notissue/Cos-sim/@all 0.5711 0.1636 0.25434
RDF2Vec/Euclidean/@all 0.412 0.242 0.304905 RDF2Vec_notissue/Euclidean/@all 0.4074 0.1246 0.190835
TransD/Cos-sim/@all 0.7356 0.3827 0.503468 TransD_notissue/Euclidean/@all 0.6038 0.3066 0.40669
TransD/Euclidean/@all 0.5312 0.3462 0.419196 TransD_notissue/Cos-sim/@all 0.6794 0.1027 0.178428
TransE/Cos-sim/@all 0.6988 0.6854 0.692035 TransE_notissue/Cos-sim/@all 0.6894 0.6049 0.644392
TransE/Euclidean/@all 0.6604 0.5085 0.57458 TransE_notissue/Euclidean/@all 0.5958 0.3098 0.407639
TransH/Cos-sim/@all 0.6922 0.5884 0.636093 TransH_notissue/Euclidean/@all 0.54 0.3021 0.387446
TransH/Euclidean/@all 0.6187 0.5818 0.599683 TransH_notissue/Cos-sim/@all 0.6601 0.6263 0.642756

Bold numbers show the highest performance.

FIGURE 4 | Embedding based gene-disease prediction evaluation. (A) Embedding performances in which gene-tissue links were included in the knowledge graph.
(B) Embedding performances in which gene-tissue links were not included in the knowledge graph.
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Performance Evaluation Per Disease
Finally, we investigated the precision, recall, and F1 metrics for
each disease separately to determine whether the biological
knowledge encoded by the graph allows to make better
predictions for certain diseases compared to others.

Figure 5A and Supplementary Figure S5 show that the hop-
based strategies tend to perform well in a common set of
disorders like Tauopathies (D024801), Esophageal Diseases
(D004935), Stomach Neoplasms (D013274), and Digestive
System Diseases (D004066). A similar pattern is observed for
the embedding methods, with Arthritis (D01168), Amyotrophic
Lateral Sclerosis (D000690), Mental Disorders (D001523), and
Bacterial Infections (D001424) among the top-10 diseases in at
least four embedding approaches (Figure 5B and
Supplementary Figure S6).

The hop-based strategies show a similar behavior across
diseases: many predictions, which makes recall high but causes
low precision (see numbers in brackets in Supplementary Figure
S5). Yet, the one-hop strategies show more balance between
precision and recall than the two-hop strategies, as reflected
by higher F1 scores (Supplementary Figure S5). In contrast,
the embedding methods produced, in general, less predictions for
the top-10 diseases, which led to low recalls but very high
precisions as most of them were true hits (Supplementary

Figure S6). This corroborates the metrics reported in
Supplementary Table S2 and highlights that these prediction
strategies are well suited for early retrieval tasks. Of note, when
the embedding methods predicted more links for a disease (e.g.,
see Mental Disorders or ALS in TransE on Figure 5B), these were
also mostly true hits, leading to high recall and F1 statistics. In the
following section, we interpret some use cases for the diseases
with the best local performance and showcase the interpretability
of the predictions.

Use Cases
In order to showcase the potential of our approach, we identified
the best performing disease areas as promising domains of
application. Then, we demonstrate how both predictions with
highest literature support and with highest prediction score yield
sensible links that were confirmed after 2010.

Based on Figure 4, the best performing embedding method
was TransE followed by a Random Forest prediction on the
cosine-similarity of the gene and disease low-dimensional
vectors. Performance evaluation per disease (Figure 5B)
showed that this method attained its highest F1 score for
Mental Disorders (D001523) and Amyotrophic Lateral
Sclerosis (ALS) (D000690). There were 55 gene-Mental
Disorders pairs that were published after 2010, and with the

FIGURE 5 | Performance evaluation per disease. (A) Precision, recall and F1 metrics attained by each the top two best performing hop-based prediction methods.
(B) Same as (A) but for the top two embedding methods. Only the top 10 diseases are shown based on the precision value. The numbers in parentheses indicate the
total number of gene-disease links in the gold standard for that disease, the number of predicted gene-disease links and how many of those were positive, respectively.
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TransE embedding strategy 48 of them were correctly predicted.
In the ALS case, TransE recovered 88 of the 111 gene-disease
pairs, TransH recovered 80, and the one-hop with Protein tissue
strategy covered 63 reported after 2010. To explain these
predictions, one can go back to the KG and study their paths,
literature, and tissue support.

For Mental Disorders, the path with the strongest literature
backing (i.e., total number of publications) was the one linking
TGFB1 with this disease group via IL-6, both genes co-expressed
in the cerebral cortex (see Figure 6A). Before 2010, the activation
of IL-6 by TGFB1 is endorsed by 45 publications, while the link
between IL-6 and Mental Disorders is endorsed by 2 as shown in
Figure 6A. Moreover, there are 22 different one-hop paths
(TGFB1—gene X—Mental Disorders) and 926 different two-
hops paths (TGFB1—gene Y—gene Z—Mental Disorders)
between TGFB1 and Mental Disorders in which all genes are
expressed in the cerebral cortex. The predicted TGFB1-Mental
Disorders link, which later were published in López-González
et al. (2019), supports the theory that dysfunction of the immune
system plays an important role in the etiology of mental illnesses,
such as schizophrenia and depression (Frydecka et al., 2013;
Bialek et al., 2020). In fact, significantly higher serum levels of the
IL-6 and TGFB1 cytokines have been reported in patients with
schizophrenia compared to healthy controls (Ergün et al., 2017)
and mutations in TGFB1 have been associated with the
susceptibility and treatment response of schizophrenia
(Frydecka et al., 2013) and major depressive disorder (Bialek
et al., 2020).

For ALS, on the other hand, the top prediction from the
embedding methods is Ubiquitin and ALS. There are 32 different
one-hop paths (Ubiquitin—gene X—ALS) and 547 two-hops
paths (Ubiquitin—gene Y—gene Z—ALS) in which all the
genes in the paths were expressed in cerebral cortex as shown
in Figure 6B. In this context, the strongest one-hop literature link
(in terms of publication numbers) is Ubiquitin—c-Jun—ALS
with 27 publications. The predicted Ubiquitin—ALS link is
supported by the literature (Hasegawa and Arai, 2007;
Watanabe et al., 2010; Keller et al., 2012) stating that

Ubiquitin inclusions have been seen in ALS patients. JNK/
c-Jun signaling has been found involved in the cell death
caused by TDP-43, which is closely linked with ALS and
ubiquitin inclusions (Suzuki and Matsuoka, 2013). It is
important to note that the link between Ubiquitin and ALS
has been discussed in the literature before 2010 (Hasegawa
and Arai, 2007), but this was not considered a high-confidence
association in Metabase and was therefore not known by our
predictive model.

DISCUSSION

In this study, we presented the evaluation of the effectiveness of
the methodology that we developed to build a comprehensive KG
for target-repurposing (indication expansion) studies. We first
evaluated the effectiveness of the constructed KG for target-
disease prediction via semantic inferencing, i.e., by linking
targets and diseases that are one or two hops away from each
other passing through genes that are expressed in the same tissue
as the target. In addition, we checked whether embedding our KG
to a low dimensional space to then use the inferred gene and
disease coordinates to generate dis-/similarity inputs for a
machine learning model could lead to more reliable
predictions. For these experiments, we divided the KG in two
parts such that edges reported before 2010 were used as training
data and edges reported after 2010 served as our gold standard.
This splitting allowed us to have a reliable gold standard
reference, supported by the literature.

Our experiments showed that the hop-based strategies
using RNA- and Protein-level expression data significantly
outperformed our random baselines and were more precise
than hop-based predictors without tissue information. Also,
the one-hop RNA prediction method outperformed the two-
hop and the one-hop Protein strategies. This reflects the fact
that there is much more available information about gene
expression at the RNA level (and/or protein abundance data is
still incomplete) and suggests that two-hop predictions

FIGURE 6 | Example prediction from the knowledge graph. (A) TGFB1 is connected to Mental Disorders via IL6. (B) Ubiquitin is connected to ALS via c-Jun. Both
panels also show the number of alternative connections from the genes to the predicted disease via one-hop and two-hop links.
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incorporate too many false positives to be reliable, especially
for early recognition. In addition, using Euclidean distances
and cosine similarities between gene and disease vectors
inferred by KG embeddings to train a Random Forest
model led to much better gene-disease prediction results.
In particular, the TransE and TransH embedding methods
followed by the computation of cosine similarities between
genes and diseases represented the best training platform for
the constructed Random Forests. Our initial quality controls
of the embeddings already hinted at this result, as the
probability of finding gold standard gene-disease
associations at short embedding distances was very high for
these methods. Moreover, added value by gene-tissue links is
more visible in the KG Embeddings strategies.

One of the limitations of this study is that when creating
the training data set, the true negatives are usually unknown.
We use as proxy gene-diseases for which no connection is
known, but this does not imply that they are unrelated. This
can also overestimate the number of false positives: even
though a predicted link might have not yet discovered, we
simply assumed that if the predicted link does not appear in
the KG after 2010, then it is a false positive. Secondly, gene-
gene interaction network is incomplete due to evolution of the
network over time (which is continuous), and also it is
technically challenging and costly to test each protein pairs’
interaction in humans. Thirdly, we have the relations for
tissue-specific expressions, but we cannot distinguish cell
type-specific effects. And genes and diseases which are
linked to low number of genes and diseases (in other words
with less neighbors) are most likely result in worse
predictions. Lastly, this study only focuses on the human
data and other organisms are out of scope. However, this
method can be applied on other organism data as well.

Although the explainability of the predictions, i.e., the glass-box
property of the KG, is easier to see in the hop-based methods, it is
also possible to query the KG in order to explain the predictions
produced by embedding combined with machine learning
approaches, as we did for our two use cases. In addition, it is
possible to inspect the resulting Random Forest model to
determine which features have a strong impact on a decision.
This kind of analysis was outside of the scope of this study.

To the best of our knowledge, this work is the first one to apply
inferencing constrained by tissue expression on a semantic KG.

Moreover, our KG is built from full-text literature sources and not
only abstracts, which means that the graph does not miss any
important information and does not depend on NLP tools like
other literature-based approaches. As future work, we plan to
extend the data sources employed to construct our KG, explore
other predictive modelling methods, as well as to make it a key
component of our target identification pipelines.
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PPA-GCN: A Efficient GCN Framework
for Prokaryotic Pathways Assignment
Yuntao Lu1,2, Qi Li 1* and Tao Li1*

1Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan,
China, 2College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China

With the rapid development of sequencing technology, completed genomes of microbes
have explosively emerged. For a newly sequenced prokaryotic genome, gene functional
annotation and metabolism pathway assignment are important foundations for all
subsequent research work. However, the assignment rate for gene metabolism
pathways is lower than 48% on the whole. It is even lower for newly sequenced
prokaryotic genomes, which has become a bottleneck for subsequent research. Thus,
the development of a high-precision metabolic pathway assignment framework is urgently
needed. Here, we developed PPA-GCN, a prokaryotic pathways assignment framework
based on graph convolutional network, to assist functional pathway assignments using
KEGG information and genomic characteristics. In the framework, genomic gene synteny
information was used to construct a network, and ideas of self-supervised learning were
inspired to enhance the framework’s learning ability. Our framework is applicable to the
genera of microbe with sufficient whole genome sequences. To evaluate the assignment
rate, genomes from three different genera (Flavobacterium (65 genomes) and
Pseudomonas (100 genomes), Staphylococcus (500 genomes)) were used. The initial
functional pathway assignment rate of the three test genera were 27.7% (Flavobacterium),
49.5% (Pseudomonas) and 30.1% (Staphylococcus). PPA-GCN achieved excellence
performance of 84.8% (Flavobacterium), 77.0% (Pseudomonas) and 71.0%
(Staphylococcus) for assignment rate. At the same time, PPA-GCN was proved to
have strong fault tolerance. The framework provides novel insights into assignment for
metabolism pathways and is likely to inform future deep learning applications for
interpreting functional annotations and extends to all prokaryotic genera with sufficient
genomes.

Keywords: graph convolution network, prokaryotic genome, metabolic pathway, deep learning, self supervised

INTRODUCTION

With the rapid development of sequencing technology, the number of newly released prokaryotic
genomes has exploded, providing an important foundation for subsequent research work (Doerks et al.,
2004). Functional annotation and pathway assignment are important components of understanding the
details of metabolism. Accordingly, a series of reference genome databases and functional annotation
platforms have been developed (Benson et al., 2012; Federhen, 2012; Keegan et al., 2016; Chen et al., 2019;
Bazgir et al., 2020). The Kyoto Encyclopedia of Genes and Genomes (KEGG) is one of the most widely
used and reliable functional platforms, and it provides three annotation software tools, namely,
BlastKOALA, GhostKOALA, and KofamKOALA, for functional annotation (Suzuki et al., 2014;
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Kanehisa et al., 2016a; Kanehisa et al., 2016b; Aramaki et al., 2020).
Currently, only 48% of the protein sequences are assigned to
pathways in the KEGG GENES database (Aramaki et al., 2020).
It is even lower for newly sequenced prokaryotic genomes, which has
become a bottleneck for subsequent research (Suzuki et al., 2014).
Thus, the development of a high-precision metabolic pathway
assignment framework is urgently needed.

Here, we propose PPA-GCN, a framework based on graph
convolutional network (GCN) that uses genomic gene synteny
information within specific genus, from which the graph
topological pattern and gene node characteristics can be learned,
to disseminate node attributes in the network and provide assistance
to the assignment of metabolic pathways. Synteny is defined as two
or more pairs of homologous genes occupying the same

FIGURE 1 | PPA-GCN architecture. The input to the framework is the metabolic pathway network extracted from the KEGG metabolic pathways and the gene
synteny network composed of the prokaryotic genomes. The graph convolutional layer attempts to construct a mapping relationship between the two input networks
and iteratively uses the training results to update the input inspired by self-supervised learning until a steady state is reached and the final assignment output is obtained.

FIGURE 2 | Schematic diagram of the use of multiple genomes to construct a gene synteny network. First, all genomic genes are compared for sequence similarity,
and genes that share high reciprocal similarity and cover ratios are assigned the same node id. Then, positional relationship pairs between two genes from each genome
were constructed. Finally, all gene position relationship pairs are connected into a gene synteny network.
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chromosomal segment, where homologous loci are defined
based on the similarity of function of the products of the
corresponding genes (Nadeau and Taylor, 1984). Analyzing
synteny can provide insight regarding the evolution and
function of genes (Zhang et al., 2016). As an inherent
biological attribute, bacteria of different genera have
different synteny patterns. In general, bacterial genomes
have two different pan-genome types. The pan-genome
refers to all genes detected in a whole group of genomes
(Wang L. et al., 2020). Some prokaryotes have genomes
with highly conserved gene content (closed pan-genomes),
while others are more flexible (open pan-genomes). Since the
concept of a “pan-genome” was first proposed in 2005, pan-
genome analysis has revealed the diversity and evolution of
bacterial genomes (Tettelin et al., 2005). In present, there is
currently no deep learning framework for direct assignment of
functional pathways against KEGG database. To evaluate PPA-
GCN, genome datasets of three different genus were used, and
on all of them, the proposed framework had achieved excellent
performance. PPA-GCN enables novel insights into
assignment for functional pathways and is likely to inform
future deep learning applications for interpreting functional
annotations.

RELATED WORK

The study of gene location in the genome is one of the classic fields
of genetics (Rogozin et al., 2004). In prokaryotes, genes encoding
functional linked proteins are usually organized into gene clusters
(Shmakov et al., 2019). There weremethods assign protein function
using neighborhood properties (Saha et al., 2012; Jun et al., 2017;
Saha et al., 2018). It has been shown that the neighborhoodmilieu of
genes in a network can assist in predicting the probable function of a
gene for which no function is known (Hao et al., 2012). However,
there is almost no method to assign KEGG pathways using gene
neighborhood information.

In recent years, deep learning has been widely used in the field of
life science, for example, for identifying and interpreting the
contextual features of transcription factors (Zheng et al., 2021),
generating functional protein sequences (Repecka et al., 2021), and
identifying cell types (Lukassen et al., 2020;WangM. et al., 2020). At
present, the applications of graph neural networks in the medical
and biology fields show strong representation and integration
capabilities (Wu et al., 2020), including neuroimage analysis
(Zhang et al., 2018), disease gene identification (Li et al., 2019;
Schulte-Sasse et al., 2021), drug combination synergy prediction
(Zitnik et al., 2018; Jiang et al., 2020; Manoochehri and Nourani,
2020), discovery of disease pathways (Agrawal et al., 2018),
prediction of tissue cell function (Zitnik et al., 2017), pseudogene
function prediction (Fan and Zhang, 2020), conducting taxonomic
classification for phage contigs (Shang et al., 2021) and identifying
missing protein–phenotype associations (Liu et al., 2021). The graph
convolutional network (GCN) is a type of graph neural network that
can learn the structure of a graph. This networkmodel was originally
proposed for semi-supervised classification (Kipf et al., 2016). A

FIGURE 3 | The performance of PPA-GCN on three genera (in terms of the PRA) and the node scale distribution of the node set at each PRA level (10% as one
level). From left to right are Flavobacterium, Pseudomonas, and Staphylococcus.

TABLE 1 | Performance under 5-fold cross-validation for the three genera.

Species PRA TLPR WPRA KC HD JS

Flavobacterium 0.848 0.846 0.829 0.842 0.008 0.751
Pseudomonas 0.770 0.728 0.736 0.721 0.014 0.609
Staphylococcus 0.710 0.691 0.698 0.689 0.008 0.651
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GCNmodel can extensively integrate graph topological features and
node information by defining each node as a computational graph
and using neural networks to integrate neighbor node information.

MATERIALS AND METHODS

Problem Statement
Given an undirected graph G = (Vtr, Vte, E), where Vtr is the set of
nodes that assigned function pathway, Vte is the set of nodes that
unassigned function pathway, V = {Vtr, Vte}. E is the set of edges and
the edge represents two genes belonging to different nodes are
connected in the genome. A label set L = {l1, l2...lk} is formed
according to the KEGG secondary class. The relationship between
the node set and the label set is represented by amatrix YNxK. Yij = 1,
if there is a gene in node i has assigned to label j. Our goal is to assign
the possible pathway labels to those nodes that have no labels.

Framework
PPA-GCN is a deep learning framework based on a graph
convolutional model (Figure 1). Gene synteny information
from the selected genome is used to construct edges in a
network, while genes sharing high sequence similarity and
cover ratio are grouped into nodes. All node and edge
information are used to construct the gene synteny network.
PPA-GCN applies a three-layer graph convolutional architecture.
Input features include node encoding, node scale and adjacency
probability matrix. The KEGGmetabolic pathway information of
the secondary class is used as the node labels for initial training.
Improve performance with inspiration from self-supervised
learning. The final outputs are ranked in accordance with the
stability of the assignment during the training process.

Graph Construction
Node Construction
Blast (Altschul et al., 1990) was used to compare the sequence
similarity of all genome genes in one genus. In order to quickly
and strictly find the similar genes, we directly adopted the
reciprocal best hits comparison and controlled the identities

and cover ratios to 65%. Taking Flavobacterium as an
example, a total of 16,830 orthologs were obtained using
OrthoFinder 2.0 (Emms and Kelly, 2019), and 51,247 nodes
were obtained using our method, of which 50,998 nodes
contained only one orthologs (99.5%). Therefore, our method
is stricter than directly using orthologs. Node2vec algorithm
(Grover and Leskovec, 2016) was used to generate graph
embeddings for each node.

Edge Construction
Positional relationship pairs between two genes from each genome
were constructed using the data of coding DNA sequence (CDS)
(Figure 2). Through the correspondence between genes and nodes,
all positional pairs were connected into a single gene synteny
network, in which there could be more than one connection
between two nodes. The adjacency matrix was constructed in
accordance with the number of connections between nodes.

Construction of the Adjacency Probability
Matrix
The adjacency probability is defined as the probability that two nodes
form a certain number of connections in the network. First, the degree
of each node in the gene synteny network (the number of connections
by which a node is directly connected to surrounding nodes) was
calculated. Then, the probability Pi that an edge is connected to a
specific node i was calculated. Finally, the probability that there are k
edges between node i and node j was defined as:

Pi � degree(i)
∑N

n�1degree(n)
(1)

Pij � Ck
degree(i) P

k
j(1 − Pj)degree(i)−k (2)

where N is the total number of nodes in the gene synteny graph
and degree(i) is the degree of node i, C is the combination symbol.

After the adjacency probabilities of all nodes had been formed
into an N*N adjacency probability matrix, because there are no
connections between most nodes, the node2vec algorithm was
used to densify the adjacency probability matrix.

The GCN Model
Framework Architecture
Given an undirected graph with node feature matrix X and
adjacency matrix A, the graph convolution operation (Kipf
et al., 2016) is defined as:

TABLE 2 | Performance comparison under 5-fold cross-validation

Methods PRA TLPR WPRA KC HD JS

deepNF 0.562 0.365 0.339 0.511 0.273 0.379
Mashup 0.562 0.446 0.479 0.529 0.108 0.450
Pseudo2GO 0.578 0.470 0.466 0.513 0.051 0.433
SVM 0.483 0.304 0.319 0.506 0.118 0.414
DNN 0.402 0.365 0.339 0.501 0.063 0.429
PPA-GCN (without self-supervised learning) 0.607 0.570 0.539 0.522 0.034 0.402
PPA-GCN 0.710 0.691 0.698 0.689 0.008 0.651

TABLE 3 | Performance under the new data set.

Metrics Flavobacterium Pseudomonas Staphylococcus

PRA 0.637 0.613 0.798
TLPR 0.606 0.538 0.723
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H � σ(D1
2 ÂD−1

2XW) (3)
Â � A + I, Dii � ∑

j

Âij (4)

where I is the identity matrix,W is the matrix of trainable weights
in the neural network, X is the feature matrix before the update,H
is the feature matrix after the update, and σ is the activation
function (ReLU). The graph convolution operation iteratively
calculates the weighted average of the node attributes of the
neighbors of the current node to obtain the new feature matrix of
the node. In this framework, the features of unlabeled nodes
(nodes without assigned functional pathways) and the features of
nearby labeled nodes (nodes with assigned functional pathways)
are mixed to be propagated through the synteny network
diagram. If two nodes have the same neighbor structure and
neighbor features, their embedded feature matrix H will be
exactly the same.

Python’s PyTorch Geometric Module was used to implement
PPA-GCN. Multiple graph convolutional layers can be stacked to
enable learning on a larger domain structure. After testing, a
three-layer stack was found to perform the best. The two-class
cross entropy was used as the loss function because of the
multilabel nature of the problem.

Self-Supervised Learning Inspiration
The original input was fed into the framework, and 50 epochs of
random sampling verification training were performed with the
test set. The nodes with an average cross-validation accuracy rate
of less than 30% are removed from the training set, and nodes and
labels with a assignment stability of 90% in the test set (that is, the
same label is assigned more than 45 times) are added to the
training set. After many iterations, when the number of nodes in
the training set reached more than 90% of the total number of

nodes in the gene synteny network, the training was considered to
have reached a stable state, and the final assignment results were
output.

Topological Analysis
Degree and Degree Distribution
The degree is defined as the number of all edge connections of a
node in a graph, describing the first-order connection degree of
the node. The degree distribution is an overall description of the
nodes in a network, that is, the probability distribution or
statistical distribution of the node degrees.

Clustering Coefficient
The clustering coefficient is used to describe the degree of
clumping among the vertices of a network. Specifically, it is
the degree of interconnection among the adjacent nodes of a
node, describing the second-order connection degree of the node.
For node i with degree ki, the local clustering coefficient is
defined as:

Ci � 2Li

ki(ki − 1) (5)

where Li is the number of connections among the ki neighbors of
node i. The overall aggregation coefficient of the network is
characterized as the average value of the aggregation
coefficients of all nodes.

RESULT

Data
All training genomes were downloaded from the National Center
for Biotechnology Information (NCBI) database in June 2021

FIGURE 4 | Framework fault tolerance evaluation. On the three datasets, the performance was tested with the accumulation of 5–20% incorrectly labeled data in
each epoch; the horizontal axis is the number of iteration, and the vertical axis is the performance indicator (current PRA/original PRA). This result shows that PPA-GCN
has strong fault tolerance.
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(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/).
The datasets include Flavobacterium (Gram-negative, 65
genomes), Pseudomonas (Gram-negative, 100 genomes) and
Staphylococcus (Gram-positive, 500 genomes). Staphylococcus
has a closed pan-genome. The 500 genomes selected for this
study contain 1,332,382 genes grouped into a gene synteny
network of 10,074 nodes. Flavobacterium and Pseudomonas
have open pan-genomes. The 65 Flavobacterium genomes and
100 Pseudomonas genomes selected for this study contain
243,834 and 550,752 genes grouped into 51,247 and 79,941
nodes, respectively.

KEGG internal annotation tool KofamKOALA (version 100.0,
updated October 1, 2021) was used to assign genes to functional
pathways. The pathway labels belonging to the global and
overview maps category were removed. Staphylococcus had
400,478 genes (1,324 nodes) assigned to metabolic pathways,
Flavobacterium had 67,529 genes (3,694 nodes) assigned to
metabolic pathways, and Pseudomonas had 272,388 genes
(12,429 nodes) assigned to metabolic pathways
(Supplementary Table S1). The original assignment rates for
the three genera were 7.2% (Flavobacterium), 15.5%
(Pseudomonas) and 13.1% (Staphylococcus).

In order to verify the performance of the model, the new
genome data of the three genera were downloaded from the
National Center for Biotechnology Information (NCBI) database
in October 2021 (newly released genomes were downloaded first).
The datasets include Flavobacterium (30 genomes), Pseudomonas
(50 genomes) and Staphylococcus (200 genomes).

Evaluation Metrics
Pathway label assignment is essentially a multilabel classification
problem. Hence, some commonly used evaluation indicators for
binary classification problems are not suitable for PPA-GCN. We
use six indicators to measure the effectiveness of the framework:

Prediction Rate of Assignment
PRA is the accuracy at the node level and is defined as the
proportion of genes with at least one label assigned correctly.

Total Label Prediction Rate
The TLPR is the accuracy at the label level and is defined as the
number of correctly assigned labels divided by the total number of
labels.

Weighted Prediction Rate of Assignment
When a label is predicted for a node, we assign weights in
accordance with the assignment probability, sum the WPRA
of each label of a node to obtain the WPRA of that node, and
divide by the total number of nodes to obtain the overall WPRA:

wprediction � 1
N

∑
k∈Ti

2(I + 1 − k)
I (I + 1) (6)

where N is the total number of nodes, I is the number of labels for
node i, Ti is the order of the correct label probabilities assigned for

FIGURE 5 | (A) Feature importance assessment of the node scale.
Comparison of performance changes before (standard) and after removing
node scale (no scale). (B) Feature importance evaluation of the probability
adjacency matrix. Comparison of performance changes before
(standard) and after removing probability adjacency matrix (no pro). (C)
Feature importance assessment of the gene synteny network. The horizontal
axis represents standard training and training using random networks
generated with three strategies: not including any adjacency probability matrix
(with no pro), including the adjacency probability matrix of the newly generated
network (with pro), and including the adjacency probability matrix of the real
network (with true pro). The three graphs all use the prediction rate of
assignment (PRA) as the evaluation index. The results show that node scale,
adjacency probability matrix and network are very important features of
PPA-GCN.
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node i (from large to small), and k is the k-th ranked probability
label that was assigned correctly.

Kappa Coefficient
The kappa coefficient is often used for testing consistency, that is,
whether the assignment effect of the model is consistent with the
actual classification effect. Its value is between -1 and 1. When the
value is greater than 0.6, it is considered substantial, and when it is
greater than 0.8, it is considered almost perfect. The calculation of
the kappa coefficient is based on the confusion matrix:

kappa � p0 − pe

1 − pe
(7)

p0 � ∑iMii

∑ijMij
, pe � ∑iMi.M.i

(∑ijMij)2
(8)

where M is the confusion matrix of the assignment results.

Hamming Distance
The Hamming distance is measure of the distance between the
assigned and real labels, with a value between 0 and 1. A distance
of 0means that the assigned results are exactly the same as the real
results, and a distance of 1 means that the model’s results are
completely opposite to the desired results. This indicator is
calculated as the number of erroneously assigned labels
divided by the total number of labels.

Jaccard Similarity Coefficient
This coefficient is an indicator for comparing the similarity of two
finite sets, defined as the size of the intersection of two label sets

(the true label set and the assigned label set) divided by the size of
the union. When this coefficient is 1, the assigned results are
completely consistent with the actual situation; when the
coefficient is 0, the assigned results are completely inconsistent
with the actual situation.

Results of Experiments
Results of Cross-Validation
We tested PPA-GCN with 5-fold cross-validation on three data
sets. PPA-GCN achieved prediction rates of assignment (PRAs)
of 84.8% (Flavobacterium), 77.0% (Pseudomonas) and 71.0%
(Staphylococcus) on the three prokaryotic bacterial genera
(Figure 3). According to the evaluation index results
(Table 1), PPA-GCN is well adapted to all three genera.

In addition, we compared PPA-GCN with five other machine
learning methods. deepNF (Gligorijevic et al., 2018), Mashup
(Cho et al., 2016) and Pseudo2GO (Fan and Zhang, 2020) are
three deep learning methods that use graph information for
function prediction. Support vector machines (SVM) and deep
neural networks (DNN) are two machine learning models that
are not based on graph information. Using the Staphylococcus
genome as the test data set, all methods use the same features in
PPA-GCN as input, and use 5-fold cross-validation to test
performance. The results (Table 2) show that, PPA-GCN
achieves the best performance among all indicators.

Results of Test
In order to evaluate the adaptability of PPA-GCN to new data, the
genes of the new genome were classified into network nodes. The
test set node of the newly assigned functional path label in the

FIGURE 6 | Self-supervised learning iteration results for the three genera. In each iteration, training was performed for 50 epochs, nodes with an average PRA of
less than 30% were removed from the training set, and nodes with stably assigned labels in the test set (with assignment consistency over more than 90% of epochs)
were added to the training set. When the proportion of the total number of nodes included in the training set exceeded 90%, the final results were output.
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network was used as the evaluation object, and the difference
between the assigned output label and the real label is directly
compared. The results are shown in Table 3, which proves that
the results of PPA-GCN is reliable.

Fault Tolerance Evaluation
Because functional pathway assignment for bacterial genomes is
still in the development stage, there will inevitably be some false
pathway labels on the bacterial genes. Hence, we needed to test
the fault tolerance of PPA-GCN. All assigned labels were
assumed to be correct. In each epoch of training, some
unlabeled nodes were given random labels to also participate
in the training process. Two sets of experiments were
conducted. In one, a certain percentage (5–20%) of
incorrectly labeled samples were added in each epoch
independently, and in the other, incorrectly labeled samples
were added accumulatively. The PRA without the addition of
incorrect labels was taken as the standard, and the PRA after the
addition of incorrect labels was divided by the standard PRA to
serve as the performance indicator. The results (Figure 4,
Supplementary Table S2) show that PPA-GCN can still
maintain more than 75% performance with the addition of
incorrect labels at a rate of up to 100% (that is, the incorrectly
labeled samples compose up to 50% of the training set). Because
the distribution of wrong labels is random, and the distribution
of correct labels is ordered, the influence of correct labels on the
training results is greater than that of wrong labels, which
enhances the fault tolerance of the framework. With an
increasing proportion of incorrect labels, the efficiency of the
framework did not drop sharply. This result shows that PPA-
GCN has strong fault tolerance.

Feature Importance Test
A graph neural network can achieve excellent prediction
accuracy, but it is difficult to give practical meaning to
features. To evaluate the importance of the selected features,
the PRAs before and after feature removal were compared
(Figure 5, Supplementary Table S3). There are three
important features in the PPA-GCN input: the node scale, the
adjacency probability matrix and the gene synteny network.

The node scale is defined as the number of genes grouped into
one node. The node scale was selected as an input feature because
it can reflect the characteristics of a group of genomes.
Staphylococcus has a closed pan-genome with an average node
scale of 132.3, that is, an average of approximately 132 genes
grouped into one node. Flavobacterium and Pseudomonas have
open pan-genomes with average node scales of only 4.8 and 6.9,
respectively. The node scale was one of the major observed
differences between the labeled (training set) and unlabeled
(test set) node sets in the gene synteny network. PPA-GCN
showed no significant difference in performance when the
node scale information was removed from the input
(Figure 5A). The node scale has no effect on framework
training, and this is beneficial for the applicability of the
framework to unlabeled nodes.

The locations of genes in genomes are often specific, and the
gene synteny network extracted from the same genus could reflect
the intrinsic properties of the genus. The adjacency probability
matrix is defined as the probability that two specific nodes can
achieve a certain number of connections in a specific genome
synteny network. Adding the adjacency probability matrix to the

FIGURE 7 | Degree distribution curves describing the degree
distributions of the overall network, the training set network and the test set
network for each of the three genera [(A) Flavobacterium, (B) Pseudomonas
(C) Staphylococcus]. The horizontal axis is the degree (truncated to
100), and the vertical axis is the probability distribution (The sum of the
probabilities is 1). The results show that the degree distributions of the initial
training set and the test set for the three genera are different, reflecting the
genome characteristics of each genus to a certain extent.
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input was found to greatly improve the performance of the
framework (Figure 5B). The adjacency probability matrix
provides PPA-GCN with an information dissemination pattern
for a specific bacterial genus in the gene synteny network.

Since the adjacency probability matrix can be used to extract
synteny information patterns for specific microbial species, we
wished to verify whether the gene synteny network could be
replaced. Two types of random networks were designed while
keeping the degree distribution constant. In one case, the
arrangement of the gene positions in each sample genome
was disrupted, and in the other, the positional relationships of
all genomes were disrupted. Three strategies were considered
for feature selection: not including any adjacency probability
matrix, including the adjacency probability matrix of the
newly generated network, and including the adjacency
probability matrix of the real network. The training results
show that (Figure 5C), regardless of which random network
was used, the training performance when using a random
network was much lower than that achieved using the real
network. Interestingly, the true probability adjacency matrix
can improve the framework training performance, while
including the matrix of a random network actually impairs
performance. This further shows that the adjacency
probability matrix can capture specific information patterns
of bacterial genomes. The gene synteny network and the
adjacency probability matrix can provide the framework

with different information patterns, and neither can replace
the other.

Effectiveness of Self-Supervised Learning
Inspiration
Currently, the assignment rate for gene metabolism pathways is
lower than 50% in the KEGG GENES database. For the tested
genera of three prokaryotes, the assignment rate for metabolic
pathways is less than 20% of all nodes in the network, which
greatly limits the training performance. The inspiration of self-
supervised learning was adopted to extend the training set. Nodes
with low PRAs in the validation set were temporarily excluded
from the training set, and nodes with highly stable assigned labels
in the test set were temporarily added to the training set. After
several iterations, the performance eventually stabilized and
showed a great improvement over the initial performance
(Figure 6).

We speculate that PPA-GCN’s performance could be
significantly improved because labeled nodes spread node
attributes in a certain pattern, ultimately causing the entire
gene synteny network to present a genus-specific information
pattern. The question of whether this kind of propagation can be
universally applied to different types of gene synteny networks or
is suitable only for network structures with a more “uniform”
topology should be considered. Labeled and unlabeled nodes were

FIGURE 8 | The impact of MGEs on PPA-GCN performance. The horizontal axis represents standard training for the three genera (left), training with the MGEs as
negative samples (middle) and training with theMGEs removed from the gene synteny network (right). The vertical axis uses PRA as an evaluation index. The results show
that when the MGE nodes are removed from the networks, the performance of PPA-GCN is significantly reduced. When they are used as negative samples, the
performance of the framework is only slightly reduced.
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extracted to construct training and test networks, respectively,
and the topological structures of the two new networks were
compared. Because PPA-GCN iteratively extracts information
from the first- and second-order neighbors of nodes, the
tightness of the first- and second-order connections in the
network, as measured in terms of the degree distribution and
clustering coefficient, need to be considered. The results
(Figure 7, Supplementary Table S4) show that the degree
distributions of the initial training set and the test set for the
three genera are different, reflecting the genome characteristics
of each genus to a certain extent. The degree distribution curves
and clustering coefficients for the closed pan-genome
(Staphylococcus) are not significantly different between the
initial training set and the test set; in contrast, the initial
training set networks of the open pan-genomes
(Flavobacterium and Pseudomonas) are more closely
connected than the test set networks, and the overall
networks exhibit some level of inhomogeneity. These
findings show that the self-supervised inspiration can
effectively adapt to gene synteny networks with different
topologies.

The Impact of Different Types of Genomes
on Training
Synteny has been used to filter, organize and process local
similarities between genome sequences of related organisms
to build a coherent global chromosomal context (Deb et al.,
2020). Each genus of prokaryotes possesses characteristic
genomic gene synteny information, and its patterns are
broadly associated with many bacterial functional traits
(Brbić et al., 2016). Integrating gene synteny data from one
genus can provide assistance to the functional pathway
assignments of all genes.

Whether different types of genomes would affect training
results should be considered. In addition to the node scale,
the run number of self-supervised iterations needed to reach
convergence can also reflect differences between different types
of genomes. Staphylococcus requires more iterations to reach a
steady state than Flavobacterium or Pseudomonas. This suggests
that the information pattern of a closed pan-genome is
relatively conservative and cannot be easily extended, while
the information pattern of an open pan-genome is easier to
spread. PPA-GCN could provide insights for judging genome
types in accordance with the number of iterations needed for
self-supervised learning when analyzing the genome of an
unknown species.

The Role of Hyperlink Nodes in the Gene
Synteny Network
There are several nodes with a “super connection number” in the
gene synteny network of each genus. Further analysis revealed
that these hyperlinked nodes have certain similarities in function.
A large proportion of such nodes is assigned to mobile genetic
elements (MGEs), which have the potential to disrupt the synteny
of the involved genomes and are considered to cause gradual

changes (sometimes mutations) in biological genes and promote
biological evolution (Muszewska et al., 2019; Richards et al.,
2019).

We investigated whether the insertion of MGEs into the
genomes is random and has an impact on the pattern of
functional labels. Two sets of experiments were designed. In
the first set, all MGE nodes were removed from the gene
synteny network to verify whether the insertion of the MGEs
disrupted the information pattern of the original gene synteny
networks. In the second set, all MGE nodes were added to the
training set as negative samples to verify whether the intervention
of the MGEs affected the distribution of functional labels. The
results show (Figure 8) that when the MGE nodes are removed
from the networks, the performance of PPA-GCN is significantly
reduced. When they are used as negative samples, the
performance of the framework is only slightly reduced. This
indicates that from the perspective of gene location, MGEs
may constitute an important part of the gene synteny network
of a specific genus, and removing them will destroy the
information pattern of the existing gene synteny network.
Moreover, MGEs do not interfere with the distribution pattern
of gene function.

DISCUSSION

In present, PPA-GCN is the first deep learning framework that
uses genomic structure information to directly assist metabolic
pathway assignments of prokaryotic genomes against KEGG
information. Datasets representing three genera
(Flavobacterium, Pseudomonas and Staphylococcus) were used
to evaluate the assignment rate of the framework, and on all of
them, good performance and strong fault tolerance were
achieved. These results support the broad application of PPA-
GCN to prokaryotic genomic research. For example, it can
provide support for the mechanism research of pathogenic
bacteria and the design of synthetic biology elements, modules
and pathways.

Although all bacterial genome had been fragmented and
shuffled by the endless genomic reconstruction and horizontal
gene transfer, the localized genome structure was conserved
within specific genus of bacteria. Gene synteny structure is
intrinsic and stable under genus level and PPA-GCN relies on
it. PPA-GCN captures the graph structure and node attributes
from the gene synteny information through a graph
convolutional network. To maximize the given pathway
information of genomes of a genus, PPA-GCN obtains and
mines as many possibilities for label assignment through the
network as possible. Then PPA-GCN constructs the adjacency
probability matrix to evaluate all possibilities, improving the
certainty of all assigned labels. The idea of self-supervised
learning is adopted to expand the training set and reinforce
the training process.

PPA-GCN has the potential for further improvement. The
runtime and memory usage of PPA-GCN will be optimized
(Supplementary Table S5). At present, only one kind of
graph information (the gene synteny network) is used to make
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assignments. In the future, some other information networks
could be incorporated to improve the performance of PPA-GCN,
potentially providing the perfect complement to the existing
framework, such as a protein-protein interaction network and
gene co-expression network.

PPA-GCN exhibits good performance and shows promise to
help guide experimental verification and provide considerable
additional space for downstream analysis. PPA-GCN could be
applied to more genera of prokaryotes with sufficient whole
genome sequences and used to build a database of consensus
sequences from the perspective of functional pathway
assignment, that could describe the differences in
prokaryotes of various genera. In short, we present a deep
learning framework with great potential to explain the
relationship between gene synteny and KEGG pathway
information in prokaryotes, which can provide novel insights
into functional pathways assignments and is likely to inform
future deep learning applications for interpreting functional
annotations.
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The inference of novel knowledge and new hypotheses from the current literature analysis
is crucial in making new scientific discoveries. In bio-medicine, given the enormous amount
of literature and knowledge bases available, the automatic gain of knowledge concerning
relationships among biological elements, in the form of semantically related terms (or
entities), is rising novel research challenges and corresponding applications. In this regard,
we propose BioTAGME, a system that combines an entity-annotation framework based
on Wikipedia corpus (i.e., TAGME tool) with a network-based inference methodology
(i.e., DT-Hybrid). This integration aims to create an extensive Knowledge Graph modeling
relations among biological terms and phrases extracted from titles and abstracts of papers
available in PubMed. The framework consists of a back-end and a front-end. The back-
end is entirely implemented in Scala and runs on top of a Spark cluster that distributes the
computing effort among several machines. The front-end is released through the Laravel
framework, connected with the Neo4j graph database to store the knowledge graph.

Keywords: knowledge graph, text mining, annotation tools, TAGME, wikipedia, DT-hybrid

1 INTRODUCTION

The increasing amount of scientific literature is raising new challenges for scientists. For example,
identifying the proper set of articles dealing with a specific topic could be a not straightforward task.
Thus, the possibility of missing essential references and relevant research is high nowadays. In
particular, in research areas such as Biology or Bio-Medicine, thanks to fast-track publication
journals, the number of published papers increases significantly fast, thus making it very difficult for
scientists to keep track of literature evolution.

Furthermore, network analysis has become a key enabling technology to help the understanding
of life mechanisms, living organisms and, in general, and uncover the underlying fundamental
biological processes. Examples of applications include 1) analyzing disease networks for identifying
disease-causing genes and pathways Barabási et al. (2010); 2) discovering the functional
interdependence among molecular mechanisms through functional network querying (Xiaoke
and Lin (2012)); 3) deriving network-based inferences for drug repurposing (Himmelstein et al.
(2017)).

The large number of publicly available ontologies, which hold entities and their relations
(Lambrix et al. (2007)), and the repositories of open-access articles such as PubMed Central
(Beck (2010)), arXiv, and bioarXiv, are driving the academic community to rely on text mining
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tools and machine learning algorithms for extracting semantic
knowledge from documents such as understanding how proteins
interact each other, which gene mutations are involved in a
disease, etc. In this context, the Biological Expression
Language (BEL) (Hoyt et al. (2018)) or the Resource
Description Framework (RDF) (McBride (2004)) are widely
employed to represent this knowledge as triplets having the
following structure: < subject, predicate, object> . The subject
and the object represent biological elements, whereas the
predicate represents a (logical or physical) relationship.

Since the implementation of biological text mining
methodologies requires skills in natural language processing
(NLP) that usually end-users do not have, several tools have
been made available to scientists: 1) PubAnnotation (Kim et al.
(2019)) is based on the “Agile text mining” concept, and it is a
public resource for sharing annotated biomedical texts; 2)
PubTator (PTC, Wei et al. (2019)) is a web service for viewing
and retrieving bio-concept annotations (for genes/proteins,
genetic variants, diseases, chemicals, species, and cell lines)
from all PubMed abstracts and more than three million
PubMed full-texts. These annotations are downloadable in
multiple formats (XML, JSON, and tab-delimited) via the
online interface, a RESTful web service, and bulk FTP. PTC is
synchronized with PubMed and PubMed Central, adding new
articles daily.

The literature also offers many frameworks for building
functional networks. STRING (Szklarczyk et al. (2016)) is a
database that collects known and predicted functional protein-
protein associations for many organisms. Each protein-protein
association is given a score (between zero and one) which
summarizes the biological reliability of the interaction, its
specificity, and the supporting evidence. Another significant
contribution of these interactions is the so-called “interolog”
transfer, based on the observation that orthologs of interacting
proteins in one organism are often also interacting in another
organism. The STRING resource is available online1. Hetionet
(Himmelstein et al. (2017) is a heterogeneous network of
biomedical knowledge constructed over genes, diseases, and
compounds, extracted from the processing of a collection of
29 publicly available databases and millions of publications. It
was created as part of Project Rephetio to predict new uses for
existing drugs. In the last few years, it has been modified for
working over a wider variety of purposes: such as drug
repurposing and prioritizing disease-associated Genes.
Hetionet is available at2 Reactome (Croft et al. (2010) is a
peer-reviewed knowledge base of biomolecular pathways that
contains a detailed representation of cellular processes
interconnecting terms to form a graph modeling biological
knowledge. Reactome adopts Neo4j as a graph database to
improve the graph traversal performance and knowledge
discovery. Reactome is also available online3. SemRep
(Rindflesch and Fiszman (2003)) is an NLP advanced

information management application, which extracts
relationships from biomedical sentences in PubMed titles and
abstracts by mapping textual content to an ontology representing
its meaning. To establish the binding relation, SemRep relies on
internal rules (called “indicator rules”), which map syntactic
elements, such as verbs, prepositions, and nominalization, to
predicates in the Semantic Network. It is available at4 Kindred
(Lever and Jones (2017)) is a Python package built on top of the
Stanford CoreNLP framework and the scikit-learn library. It
performs relation extraction in biomedical texts, where
relation candidates are created by finding every possible pair
of entities within each sentence. Next, it exploits an SVM classifier
to rank and select the most promising candidates. In NetME
(Muscolino et al. (2022)), authors propose a tool that allows to
query PUBMED and build knowledge networks synthesizing the
concepts described through the selected papers. In the context of
clinical Text Analysis and Knowledge Extraction, cTAKES
(Savova et al. (2010)) is a system for information extraction
from electronic medical record free-text. The pipeline comprises
several modules, such as sentence boundary detector, tokenizer,
normalizer, part-of-speech tagger, Shallow parser, and named
entity recognizer. Other relevant work include CKG (Santos et al.
(2022)). CkG is an open-source knowledge-graph platform,
which includes 20 million nodes and 220 million relationships
that represent relevant experimental data, public databases and
literature. CKG incorporates statistical and machine learning
algorithms to accelerate the analysis and interpretation of
common proteomics workflows.

This paper introduces BioTAGME, a knowledge graph
inferred from more than 33 million titles and abstracts in the
PubMed database (Williamson and Minter (2019)), and
downloadable as XML files via third-party applications.

BioTAGME uses two well-known tools to generate the
Knowledge Graph. First, entities are extracted from each
abstract using the TAGME annotation system (Ferragina and
Scaiella (2010)). TAGME is a tool that analyzes short texts and
extracts entities related to its content. It makes use of Wikipedia
to perform the annotation. All the entities extracted from the
abstracts are treated as nodes of the knowledge graph. Next, the
DT-Hybrid (Alaimo et al. (2013)) recommendation system is
applied to predict possible relationships among entities coming
from different abstracts. These relationships form the edges of the
knowledge graph. Finally, such predicted relationships are
enriched with those from publicly available databases (the
complete list is provided in Section 2) to generate a
comprehensive Knowledge Graph, stored in the Neo4j
database and made available to users via our web app. Such a
knowledge graph consists of more than 161 thousand nodes and
40 million edges. Moreover, there are three different types of
edges: 1) Literature edge: indicates a piece of biological evidence
resulting from laboratory experiments, biological and biophysical
processes; 2) STRING edge: represents STRING predicted
protein-protein associations; finally 3) BioTAGME edge: are
edges predicted by the combination of TAGME relatedness

1http://string-db.org/.
2https://neo4j.het.io/browser.
3https://reactome.org. 4https://lhncbc.nlm.nih.gov/ii/tools/SemRep_SemMedDB_SKR/SemRep.html.
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and BioTAGME one. Both BioTAGME edges and STRING ones
are marked with the corresponding score value to indicate the
interaction’s likelihood. Biotagme is available at: https://
biotagme.eu/5

The paper is organized as follows. In the Section 2, we introduce
the back-end of our tool. Next, we introduce the web app to browse
and query the system. Moreover, we show a BSG-Diseases network
that reports literature evidence and BioTAGMEprediction. Finally,
in section conclusions, we explain future work about our tool.

2 MATERIALS AND METHODS

BioTAGME is a framework backed by two different pipelines
(Figure 1) for building a biological knowledge graph from
PubMed documents’ titles and abstracts. It integrates two
different learning algorithms, DT-Hybrid (Alaimo et al.
(2013)) and TagME (Ferragina and Scaiella (2010)).

The first pipeline is built on top of the Apache SPARK analytic
engine and Hadoop Distributed File System (HDFS). This
implementation guarantees large-scale data processing through
cluster managers (Apache Meson, YARN, Stand Alone, and
Kubernetes). The pipeline collects results into DataFrames
(Apache-Spark (2016)) the data coming from several freely
available online databases as shown in Table 1. In addition, the
complete set of PubMed titles and abstracts in order to build a life

science knowledge graph using the Spark SQL language. DataFrame
and SQL language provide a common way to access various data
files, including Hive, Avro, Parquet, CSV, TSV, and JSON.

The major functionalities provided by the first pipeline are 1)
Download and import, 2) SQL to JSON parser, 3) Integrating
databases, 4) Annotation, 5) Prediction, 6) Network generation,
and 7) Updating.

The second pipeline is built on top of the Laravel framework
and consists of the following components: 1) MySQL for storing
names, aliases, BioTAGME IDs, and Wikipedia pages IDs; 2)
Neo4j for storing the knowledge graph, and allow querying the
network (i.e., compute the shortest path between two user-
specified biological entities (nodes)); 3) the User Interface
(GUI), based on Laravel and React, used for wrapping the
Neo4j queries and making them more accessible and more
intuitive. Queries can be: 1) Search on the graph; 2) Shortest
path. (Detailed information are in Section 2.2).

Data processing is done in PHP and bash to achieve high
performance. In addition, all the GUI modules have been realized
in react-native.

2.1 Pipeline One: Data Loader and Network
Synthesis
This section describes all components and functionalities of the
first pipeline underling BioTAGME.

2.1.1 Download and Import Module
This module allows importing the external databases into
Hadoop Distributed File System (HDFS) through a custom
bash script, which consists of three main sections:

FIGURE 1 | BioTAGME pipelines: The first one pipeline is the core of the project. It transforms the whole set of PubMed abstracts within nodes and edges of the
knowledge graph. It has been implemented in Scala e Spark. The seconds pipeline, allows a user to extract information from the graph. It has been implemented using
Laravel and Reactstrap.

5if the url does not work, more information about a possible new url is reported
within the readme of the repository: https://github.com/Anto188bas/biotagme_
docker.git.
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• PubMed section: it downloads titles and abstracts of
PubMed articles through SemmedDB SENTENCE table
(Kilicoglu et al. (2012)). Such table contains all the
sentences related to the articles’ title and abstract in
PubMed.

• Literature databases section: it downloads the external
databases which are used for i) filtering of noisy
annotation entities caused by disambiguation and high
generality of the Wikipedia corpus; ii) building literature
edges, a biological evidence resulting from laboratory
experiments, biological and biophysical processes. These
edges allow us to evaluate the quality of BioTAGME
prediction. Note that some databases, such as DrugBank
(Wishart et al. (2007)), PharmGKB (Thorn et al. (2013)),
Brenda (Chang et al. (2020)), require free registration or
authorization to be downloaded. Therefore, such a
procedure is left to the user.

• The import section transfers the downloaded databases
from the local file system to the Hadoop FileSystem (HDFS).

2.1.2 SQL to JSON Parser Module
Although SemmedDB guarantees faster downloads than NCBI
Entrez APIs, it has two main issues: the 1) title and abstract of
each PMID (Document identifier in PubMed) are divided into
sentences, and 2) the SENTENCE table is in a SQL format, which
is not natively supported by the Spark engine.

To solve these issues, we implemented a new Spark module,
named SQL2Json parser, that extracts headers, and every data
row from a table by applying Spark SQL Window methodology.
Each row is then aggregated to form the complete title and
abstract through Spark built-in collect_list, concat_ws, and
group-by functions. Finally, the parsed data is converted into
JSON format and stored within the Hadoop FileSystem.

2.1.3 External Databases Integration Module
As previously mentioned, several databases are integrated into
our pipeline. However, there are a few issues to consider: 1)

Different databases often use different words to describe the same
entity (synonyms). For example, DisGenNET uses “Colorectal
cancer, hereditary nonpolyposis, type 1”, while DiseaseOntology
(DO) uses “Lynch syndrome 1” to refer to the same disease. 2)
Equivalent attributes have different names in different databases.
For example, a database might use the attribute name
“mirna_nr”, while another database might use “id”. 3)
Different databases might use different files formats, such as
JSON, XML, TXT, CSV, TAB, OBO, GTF, FASTQ, and SQL, etc.

We implemented an integration module that executes the
following tasks to tackle such issues. First, all databases are loaded
into Spark DataFrames. We use the built-in Spark functions for
CSV (read.csv), Tab-delimited and TXT (read.txt), and JSON
(read.json) files. To import OBO, GFT, SQL, and FASTQ files, we
implemented custom spark modules that convert such formats
into DataFrames. The Databricks Spark-XML (Databricks
(2021)) library is used for XML files. Then, each DataFrame is
processed and subjected to a schema redefinition by using
external databases metadata, synonyms list, and references
(toward other external databases) list to harmonize the
contents of the different data sources. This module is a
fundamental intermediate layer that transforms all external
databases into new ones having the same schema, attributes,
format, and nomenclature.

2.1.4 Annotation Module
This module transforms documents’ titles and abstracts into a list
of annotation entities. Thus, for each document “ti”, a tuple
(TI_AB, TAGME parameters map)i is generated and sent to the
TAGME API through an HTTP POST request. We use TI_AB to
represent the union of Documenti Title and Abstract.

TAGME removes all stop-words and punctuation symbols from
the TI_AB text at first. Then, a list of “annotation entities” is
extracted and returned in response to the request, where each entity
can be one or more words. Each annotation entity contains entity
text,Wikipedia page title,Wikipedia page categories, andWikipedia
page ID. Each entity will be a node of the knowledge graph.

TABLE 1 | Ontologies.

Source name Citation Data type

DisGeNET Piñero et al. (2019) human gene-disease association
DiseaseOntology (DO) Schriml et al. (2018) human disease
DiseaseEnhancer Zhang et al. (2017) human disease-associated enhancer
DrugBank Wishart et al. (2007) drug and drug target
PharmGKB Thorn et al. (2013) human-genetic variation on drug resp
HGNC Daugherty et al. (2012) human gene
ENSEMBL Birney et al. (2004) vertebrates genomic information
LNCipedia Volders et al. (2012) human long non-coding RNAs
miRcode Jeggari et al. (2012) human microRNA-target predictions
miRBase Kozomara et al. (2018) microRNA sequences
miRTarBase Huang et al. (2019) microRNA-target interactions
miRCancer Xie et al. (2013) microRNA expression profile in cancer
Reactome Fabregat et al. (2017) pathway
PathBank Wishart et al. (2019) pathway
UniProt The UniProt Consortium (2016) protein sequence
STRING Szklarczyk et al. (2018) protein–protein interaction
BRENDA Chang et al. (2020) enzyme
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TAGME annotations are not entirely accurate. The authors
provide an estimate F1 measure of 0.78, where F1 is the
harmonic mean between the precision and the recall of the
annotation process. However, this does not considers any
improvement due to 1) more up-to-date Wikipedia dumps
and 2) pages filtering to obtain only Wikipedia pages
relevant to the Biological field. Indeed, we properly pruned
the Wikipedia network using the main biological categories6 to
1) perform annotation only on Biological entities, and 2)
mitigate the disambiguation problem.

Finally, the documents with their annotation entities are sent
to the prediction module to generate the relationships.

2.1.5 Prediction Module
Our methodology aims to predict a potential relationship
between i-th entity and j-th entity based on the BioTAGME
score value (BioTGi,j). This score is defined as the product
between the DT-Hybrid score si,j (Alaimo et al. (2013)) and
the TAGME relatedness one ri,j (Ferragina and Scaiella
(2010)). The higher is the score value, the higher is the
meaningfulness of the predicted relationship.

The domain tuned-hybrid (DT-Hybrid) tool (Alaimo et al.
(2013)) defines a recommendation method based on a bipartite
network projection technique that implements the concept of
resources transfer within the network to predict the robustness of
the relationship between a pair of entities.

The DT-Hybrid score is computed by using a DT-Hybrid
version running on Spark; the TAGME relatedness is computed
through the online TAGME service available at7. The relatedness
value is in the range [0,1] and expresses how much two entities
are semantically related within the Wikipedia corpus. The value
zero means no relationships between them; the value one means
equivalence between two entities.

The output of this step is a set of relations between entities. These
relations are then integrated during the network-construction phase
with others coming from the external databases.

2.1.6 Network Construction
As soon as the documents have been annotated and the
prediction procedure has been completed, the last step of the
pipeline is to build the Knowledge Graph containing logical or
physical relationships among biological elements. Physical

FIGURE 2 | BioTAGME homepage.

6https://en.wikipedia.org/wiki/Portal:Biology. 7https://tagme.d4science.org/tagme/.
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relationships represent the real connection between biological
entities. Instead, the logical one represents the effect that a
biological entity (i.e., Drug) could have on another one
(i.e., Disease or Gene).

For every Entityi–Entityj association obtained during the
prediction procedure, our system creates three different edges types:

• Literature: indicates an interaction derived from a publication,
describing a biological evidence resulting from laboratory
experiments, biological, and biophysical processes, etc.

• STRING: represents the predicted protein-protein
associations stored in the STRING database. We report
this information because our system integrates STRING
Homo sapiens protein-protein interactions.

• BioTAGME: the edges predicted by our tool.

Both BioTAGME edges and STRING edges are marked with
the corresponding score value to indicate the interaction’s
likelihood. More information about the plotting of the
network, motif search, and shortest path computations are
reported in the following Section 2.2.

We publicly release our network on Zenodo. The link is
provided in the Supplementary Data section. Data is fully
compliant with FAIR principles (Wilkinson et al. (2016)).

Supplemental Data
The networks data (nodes, edges, and other files) are available at:
https://doi.org/10.5281/zenodo.6325345360.

FIGURE 3 |Upload Panel: Such a panel allows amanager user of the site to load the graph andmetadata. (A) File upload panel; (B) File upload panel with progress
bar displaing the upload status.

FIGURE 4 | Authentication and Import panel. (A) Authentication panel; (B) Import panel.
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The pipeline one code is available at: https://github.com/
Anto188bas/biotagme pipeline.git361

The pipeline two code is available at: https://github.com/
Anto188bas/biotagme laravel.git362

The docker-compose.yml file is available at: https://github.
com/Anto188bas/biotagme docker.git363

2.1.7 Updating Procedure
BioTAGME pipeline annotates Pubmed documents’ titles
and abstracts to predict the relationships among their
corresponding biological entities. A periodical update is
needed since many new documents are submitted daily to
the Pubmed database.

Our pipeline carries out the following steps to achieve this purpose.
First, it downloads all the PMIDs (Documents’ identifier in PubMed)
within an established data range [mindate, maxdate] through an
NCBI esearch POST request. “Mindate” usually refers to the last
updating date; whereas “maxdate” is usually set to the actual date.

Once the PMIDs list has been obtained, the updating module
downloads the title and abstract of these PMIDs using the NCBI
efetch API. For performance reasons, the PMIDs list is partitioned
into chunks of proper size, and then several chunk-based NCBI
efetch post requests are generated and sent to the Pubmed server to
obtain the required data. NCBI does not impose amaximumon the
number of requests to be submitted, especially when a POST
request is used. However, we suggest keeping this value under
10,000 to reduce the computational burden of our job.

Once the documents’ titles and abstracts have been
downloaded, the annotation, prediction, and network
construction procedures are executed to update the Knowledge
Graph’s edges and nodes.

The update procedure is incremental. It does not require the
entire PubMed abstracts corpus. It runs on a subset of abstracts
within a date range ([start_date, end_date]), and then generate a
knowledge graph only on those abstracts. Therefore, this

procedure could be used to produce a temporal knowledge
graphs over a certain topic of interest.

2.2 Pipeline Two: Network Deployment and
Query Interface
The second pipeline has been implemented for importing the
Knowledge Graph into the Neo4j database and querying the
network to get the neighborhood of a biological element or
compute the shortest path between two nodes. The interface
module for network querying is crucial to exploit such graphs
and infer putative novel biological knowledge. This pipeline
employs the Laravel model-view-controller and the React Native
framework to implement the back-end and web-pages components.
In this section, we will describe such modules (Figure 2).

2.2.1 Network Import Module
A user may access the upload section through the “biological
element search” panel by clicking on the “network files upload”
link. Such section includes three consecutive phases:

• the first one is the “authentication phase” ensuring that only
authorized users may execute the import procedure
(Figure 4A).

• then, the “files selection phase” is enabled (Figure 3).
During this phase, the user selects both “nodes.csv” and
“edges.csv” files containing the network components and
the “Name_Aliases.csv” file about biological elements
aliases. Since the size of the files is large (GB), our
system uses the “Pion” library (Pion (2021)) to split the
file into small chunks (client-side) and re-assemble them as
soon as these are correctly received (server-side).

• As all files are successfully received, the “import phase” is
enabled. It shows a summary (Figure 4B) of the uploaded
files to check for file selection mistakes. If everything is

FIGURE 5 | Echo Network and Shortest path panel: The first (A) is used to extract the neighborhood of a given node and type. (B) The second one, instead, returns
the shortest path among two specified biological entities.
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correct, the user can trigger network loading on Neo4j by
clicking the import button.

2.2.2 Searching Module
Once the network has been imported, a user may execute several
queries through our “GUI”, composed of the following panels:
Searching panel (Figure 5) and Graph panel (Figure 6).

The Searching Panel is used for setting the query parameters
based on the selected menu: 1) Echo network or 2) shortest path.

• When the Echo Network option is selected, a user may search
the Echo Network of a biological entity “bei”. Therefore, he
should provide the type and name of the biological entity to be
analyzed (Figure 5A, red rectangle) and the type of the other
entities (Figure 5A, orange rectangle) to include within the
echo network. To avoid building a large graph, a maximum
number of entities has to be supplied (ranging from 10 to 200

nodes) through the “Top n” section (Figure 5A, green
rectangle). Once all the required parameters have been
filled, the search process can be triggered by clicking the
Submit button. This process transforms the specified
parameters in a “Cypher query”8 that looks for the “Top
n” nodes having one or more links from/to “bei”.

• When the Shortest Panel option is selected (Figure 5B), a
user looks for the shortest path between two biological
entities. First, the user specifies the type and name of the
source “el_src” and destination “el_dst” entities (Figure 5B,
red rectangle), and then BioTAGME transforms all these
parameters into a proper “Cypher query” which is mainly
based on a Neo4j shortest path computation.

FIGURE 6 | Blood coagulation—gene interaction network. A limit of 30 has been set. In addition, the yellow edges represent a set of BioTagME unpredicted edges
(extracted by external databases). Instead, the orange ones (yellow + red) are edges both predicted (by BioTagME) and extracted from the external databases.

8Cypher is Neo4j′s query language to retrieve data from the graph, and was inspired
by SQL.
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The Graph phanel is used to plot [by using the CytoscapeJS
library (Franz et al. (2015))] the sub-graph (Figure 6) corresponding
to a user-submitted query. The edges of such sub-graph are
interactive. Thus, if a user clicks on them, then a relationship
window (Figure 7) containing the following data is shown:

• A table containing the name of the source and destination
nodes as well as the BioTagME and STRING scores. In
addition, the last column of the table also reports the
literature evidence (1 if the relationship is reported in at
least one of the literature databases, 0 otherwise).

• A navigation panel with three different options. The first
two (Element 1 Wikipedia Pages and Element 2 Wikipedia
Pages) show several links among Wikipedia pages and
source or destination nodes, respectively. The last one
(PubMed articles) shows all the links to PubMed articles
containing the selected relationship.

3 EXPERIMENTAL ANALYSIS

We analyzed the the reliability of BioTagMe on two case studies.
The first one aims at determining preduction quality by

evaluating our ability to extract “Basigin” relationships. The
results were compared with STRING (Szklarczyk et al. (2018)).
The second case study focuses on the construction of a “blood
coagulation” network. Such a network is then compared against a
literature one (generated by the links among the external
databases employed in BioTagME, Table 1).

3.1 Case study 1
Many tools and computational models (Alaimo et al. (2020)) rely
on existing network databases, such as KEGG (Kanehisa and
Goto (2000)) and Reactome (Fabregat et al. (2017)). However,
despite the enormous amount of available data, these databases
are still incomplete and therefore have partial information.

In this case study, we have chosen Basigin (BSG), also known as
CD147 or EMMPRIN, as a starting point to construct a protein-
protein functional network. This gene represents an example of a
biological element that should be supplemented to the KEGG
network since it is not currently described in their pathways. BSG is
a transmembrane glycoprotein of the immunoglobulin
superfamily, expressed in many tissues and cells. It is known to
participate in several highgly relevant biological and clinical
processes. Furthermore, BSG is a crucial molecule in the
pathogenesis of several human diseases (Xiong et al. (2014)).

FIGURE 7 | Relationship window.
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Missing a crucial gene within a biological network can
compromise scientists’ efforts to understand certain
molecular mechanisms. However, the most reliable
approach to date remains the manual curation through
careful and time-consuming literature analysis. On the
other hand, a manually constructed network provides
partial information due to the limited number of articles
that a scientist could read.

Our case study tackle this issue by providing a practical
example of how BioTagME can create valuable networks
(Figure 8) by analyzing a large sets of PubMed abstracts. In
addition, such a network has been compared with STRING to
assess sensitivity and specificity.

Through BioTagMe, we inferred 426 true positive relations
and 38 false negatives. Qualitatively, this network includes most
of the interconnections mentioned in STRING, thus providing a

reliable and comprehensive overview of the molecular function of
Basigin. Quantitatively, BioTagME achieved a sensitivity of
91.8%, and a specificity of 94.8%.

3.2 Case Study 2
The second case study aims to build a general functional network
related to the “blood coagulation pathway” and other biological
entities (i.e. diseases, genes).

Blood coagulation is a complex chain process involving a
series of stimulus responses in conjunction with coagulation
factors and enzymes, whose intent is to stop blood fluxes
when a vascular tissue injury occurs (Ngo et al. (2012)).

To evaluate the quality of BioTagME, our network (Figure 6)
is compared with a “literature network” (generated by data and
relationships into the external databases, Table 1) in terms of
sensitivity and specificity.

FIGURE 8 | Basigin-Proteins interaction network. It has been created using the Neo4j user interface. In addition a limit of 30 nodes has been set. BioTagme and
STRING edges have been merged in a single one.
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BioTagMe was able to infer 54 true positive and 23 false
negative. Quantitatively, We achieved a sensitivity of 70.12%, and
a specificity of 96.43%. Indeed, we could predict the relation
between blood coagulation and PROS1 (Figure 6). Such gene
plays a crucial role on the mechanism of PtdSer exposure during
immunity and blood coagulation (Wang et al. (2022)).

Moreover, BioTagME could predict the relations among blood
coagulation and the thrombin and plasmin enzymes (Figure 9).
The role of Thrombin enzyme is to catalyze the initiation and
propagation phases of blood coagulation. In addition, it converts
soluble fibrinogen to insoluble fibrin (Becker et al. (2013)).

4 CONCLUSION

In this paper, we have implemented the BioTAGME framework
for building offline biological knowledge graphs from all
documents’ titles and abstracts in PubMed. First, the graph’s
nodes (biological entities) have been extracted by TAGME. The
edges, instead, have been predicted through the combination of
the DT-Hybrid algorithm score and the TAGME relatedness
computation. Such predicted edges have also been enriched with
literature evidence resulting from laboratory experiments,
biological, and biophysical processes (extracted from the
connections among external databases), and protein-protein
relationships in STRING. Moreover, an uploader module has
been implemented to download and annotate new documents in
PubMed to keep the graph up-to-date. Finally, the main pipeline
(pipeline one) has been implemented using the Spark
Framework to distribute the computation among several
machines. Future works will include: 1) construction of
knowledge-graphs based on open-access documents’ title,
abstract and full-text in PubMed and PubMed Central; 2)
implementation and integration of new prediction algorithms

to improve and increase the prediction of the relationship
among biological entities; 3) implement a TAGME version
based on a biological Wikipedia corpus (no biological pages
will be pruned); 4) development of a new search panel to
enable advanced queries in the knowledge-graph. Such a panel
will provide: algorithms for community detection (clustering);
matching, shortest path, and k-shortest path based on
BioTagME score, nodes and edges types, publication date,
etc; centrality measures; cypher free text for writing custom
queries. Moreover, we will add a list of sentences (where
possible) to describe predicted relationships.

4.1 Permission to Reuse and Copyright
Figures, tables, and images will be published under a Creative
Commons CC-BY license, and permission must be obtained for
the use of copyrighted material from other sources (including re-
published/adapted/modified/partial figures and images from the
internet). It is the responsibility of the authors to acquire the
licenses, follow any citation instructions requested by third-party
rights holders, and cover any supplementary charges.
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FIGURE 9 | Blood coagulation and enzymes interaction.
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Benefits and Challenges of
Pre-clustered Network-Based
Pathway Analysis
Miguel Castresana-Aguirre, Dimitri Guala and Erik L. L. Sonnhammer*

Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden

Functional analysis of gene sets derived from experiments is typically done by pathway
annotation. Although many algorithms exist for analyzing the association between a gene
set and a pathway, an issue which is generally ignored is that gene sets often represent
multiple pathways. In such cases an association to a pathway is weakened by the
presence of genes associated with other pathways. A way to counteract this is to
cluster the gene set into more homogenous parts before performing pathway analysis
on each module. We explored whether network-based pre-clustering of a query gene set
can improve pathway analysis. The methods MCL, Infomap, and MGclus were used to
cluster the gene set projected onto the FunCoup network. We characterized how well
these methods are able to detect individual pathways in multi-pathway gene sets, and
applied each of the clustering methods in combination with four pathway analysis
methods: Gene Enrichment Analysis, BinoX, NEAT, and ANUBIX. Using benchmarks
constructed from the KEGG pathway database we found that clustering can be beneficial
by increasing the sensitivity of pathway analysis methods and by providing deeper insights
of biological mechanisms related to the phenotype under study. However, keeping a high
specificity is a challenge. For ANUBIX, clustering caused a minor loss of specificity, while
for BinoX and NEAT it caused an unacceptable loss of specificity. GEA had very low
sensitivity both before and after clustering. The choice of clustering method only had a
minor effect on the results. We show examples of this approach and conclude that
clustering can improve overall pathway annotation performance, but should only be used if
the used enrichment method has a low false positive rate.

Keywords: functional association networks, network clustering, biological mechanisms, pathway enrichment
analysis, sensitivity increase

INTRODUCTION

The advance in high throughput experiments has led to a huge increase in the data available for
understanding biological function. However, extracting function from high-throughput experiments
is often not straightforward since genes and proteins are involved in many different biological
mechanisms and pathways. The quest for biological insight from high-throughput experiments has
therefore prompted the invention of a large number of pathway enrichment analysis tools.

The most recent family of pathway analysis methods are the network-based tools, such as
EnrichNet (Glaab et al., 2012), NEAT (Signorelli et al., 2016), NEArender (Jeggari and Alexeyenko,
2017), BinoX (Ogris et al., 2017), and ANUBIX (Castresana-Aguirre and Sonnhammer, 2020). These
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methods require a functional association network, such as
FunCoup (Persson et al., 2021) or STRING (Szklarczyk et al.,
2021), where different types of data describing relationships
between genes and/or proteins, are integrated to infer
functional associations between genes. Using enrichment of
network links, instead of overlap between gene sets,
substantially improves the chances of detecting a relationship,
as networks provide much more information (Ogris et al., 2017).
Statistical significance of network-based pathway analysis
methods is assessed based on the network crosstalk, i.e., links
connecting the studied gene set and the pathway of interest.
Methods such as BinoX rely on network randomization to obtain
a null distribution, which is fit to a binomial distribution to
compute the expected crosstalk. NEAT and NEArender compute
the expected crosstalk based on the node degree of the query, the
pathway and the network, with the difference that NEAT fits a
hypergeometric distribution and NEArender a chi-square
distribution, but their results are very similar. ANUBIX
randomly samples gene sets of the same size as the original
query set and fits the expected crosstalk to a beta-binomial
distribution. While all these methods except ANUBIX have
been shown to suffer from high false positive rates when
testing random gene sets for enrichment (Castresana-Aguirre
and Sonnhammer, 2020), we here included BinoX and NEAT,
together with ANUBIX to study how clustering affects different
methods.

Network-based methods provide the highest sensitivity of all
the pathway enrichment families (Ogris et al., 2017; Castresana-
Aguirre and Sonnhammer, 2020). However, experimental gene
sets are often complex with multiple affected pathways, which

increases noise and leads to decreased sensitivity. An example of
this would be a gene set consisting of four functional modules
where each one is enriched for a specific pathway (Figure 1). A
pathway analysis method would struggle to detect each module’s
pathway association if the genes belonging to each module is only
a small fraction of all genes in the gene set. Additionally, the
studied gene set could contain noise in the form of other genes
not related to the main phenotypes of the gene set, which could
cause false negatives, impacting the sensitivity of pathway
analysis.

Due to the ubiquitous use of pathway analysis methods and
reliance on their output to interpret results from diverse and
important fields of research such as drug development (Jhamb
et al., 2019), biomarker discovery (Chen et al., 2017) and patient
diagnosis (Lu et al., 2019), it is important to ensure that these
methods can cope well with complex gene sets.

One way to achieve this is to reduce the mentioned complexity
by separating the mix of affected pathways. Clustering is a
technique that has been used to lower complexity of data by
grouping similar entities in various fields, such as pattern
recognition (Baraldi and Blonda, 1999; Chen and Huang,
2003), image analysis (Chen et al., 2015; Dhanachandra et al.,
2015), and analysis of biological interaction networks (Ideker
et al., 2002; Opresko et al., 2004; Mitra et al., 2013). In the field of
pathway analysis, clustering is used in PathFindR (Ulgen et al.,
2019) and GScluster (Yoon et al., 2019) to find subnetworks or
modules in a gene set mapped to a protein-protein interaction
(PPI) network, followed by gene overlap based pathway analysis.
However, neither of these tools have evaluated the combination of
clustering with state-of-the-art pathway analysis methods, nor

FIGURE 1 | Gene sets derived from experiments are often complex with multiple affected pathways. This illustration shows genes that belong to 4 pathways that
are functionally distinct. The mixture of pathways may complicate the pathway enrichment analysis, especially for smaller pathways. By separating gene clusters prior to
pathway analysis, a clearer picture of the pathway enrichment can be obtained.
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have they compared the performance of used methods with and
without clustering.

The approach we take here is applying clustering to decrease
complexity of the gene sets, and then apply state-of-the-art
network-based pathway enrichment methods. We first
investigated whether top-performing clustering methods such
as MCL, Infomap, andMGclus are able to extract single pathways
from pathway mixtures. The performance of clustering in
combination with the network-based pathway analysis
methods BinoX, NEAT, and ANUBIX, as well as classical
overlap-based Gene Enrichment Analysis (GEA), was
evaluated using a benchmark constructed based on the KEGG
pathway database.

MATERIALS AND METHODS

Clustering is a way to group objects into different communities,
where the objects within each community are more similar to
each other than to objects in the other communities (Malliaros
and Vazirgiannis, 2013). When clustering is used in the context of
a network it involves grouping nodes with high intra-module
density, i.e., that are highly connected within a network
neighborhood and less connected to the nodes outside said
community. There are different types of clustering, e.g.,
connectivity clustering, centroid clustering, density clustering,
distribution clustering, network-based clustering, etc. (Emmons
et al., 2016). In our study we focus on network-based clustering,
since we are mapping a query gene set onto a network. Since the
purpose of this study is not to benchmark the clustering methods
themselves, we decided to pick three methods. These methods are
MGclus, which has been shown to work well with the FunCoup
network (Frings et al., 2013), Infomap (Rosvall and Bergstrom,
2008), and MCL (Van Dongen, 2008), due to their superior
performances compared to other methods (Lancichinetti and
Fortunato, 2009; Shemirani et al., 2021).

Clustering Methods
MGclus defines modules based on the intra- versus inter-
connectivity in a module and considers shared neighbors of
nodes as evidence that they belong to the same module.

Both Infomap and MCL extract modules using random walks
on the underlying network. MCL performs an iterative random
walk along the edges of the network to discover where the flow
tends to gather. These iterative random walks are calculated using
Markov chains, where the transition probability matrix changes
in each run. Infomap finds the optimal set of modules that
minimizes the information required to describe a random
walk through a network. The description is in two levels,
coding for nodes and modules (Rosvall et al., 2009). All
clustering algorithms were used with their standard
configurations.

Pathway Analysis Tools
GEA is an overlap-based method that tests if the overlap between
two sets of genes is higher than would be expected by chance.
Statistical significance is assessed using a modified Fisher’s exact

test where random overlap is modeled from random samples of
pairs of gene sets. This test is a conservative variation of Fisher’s
exact test, where 1 is subtracted from the observed overlap, as in
DAVID’s (Huang et al., 2009) EASE score. This means that GEA
cannot determine statistical significance of overlaps smaller than
2 nodes.

BinoX assumes that the random crosstalk between two gene
sets in the network is distributed according to the binomial
distribution. It therefore randomizes the network and
computes a distribution of pairs of randomly drawn gene sets
to estimate the parameters of a binomially distributed random
crosstalk. These parameters are used to determine the expected
crosstalk. BinoX can assess whether a pathway is enriched or
depleted for the studied gene set. A depleted pathway means that
the gene set has fewer links to the pathway than expected by
chance.

NEAT and NEArender use slightly different assumptions
about the distribution of random crosstalk in the network.
NEAT assumes a hypergeometric distribution of crosstalk
while NEArender assumes a chi-square distribution. Therefore,
instead of testing the observed crosstalk between the studied gene
set and a pathway of interest using a sampled random
distribution, they rely on the hypergeometric and chi-square
test respectively to assess statistical significance. However, both
methods compute the expected crosstalk in the same way, taking
into account the degree of the gene set, the pathway and the
network. Both methods can compute enrichment and depletion.
Since NEAT and NEArender show very similar results, we only
selected one of them (NEAT) for our benchmark.

ANUBIX is a novel network-based method that computes
the enrichment of a gene set for a pathway of interest based on
the network crosstalk. The observed crosstalk is assessed for
statistical significance using a model of the null distribution of
the random crosstalk in the network. This null distribution is
modeled by drawing random samples of gene sets, of the same
size as the studied gene set, from the genome, calculating their
crosstalk with the pathway of interest and fitting the
parameters of a beta-binomial distribution for the
distribution of the random crosstalk. The procedure can be
applied to one or multiple pathways of interest. The statistical
significance of the observed crosstalk is only assessed for
enrichment, where the observed crosstalk is larger than
would be expected by chance.

Null Model Modification of ANUBIX
To generate a null distribution of random crosstalk, ANUBIX
samples gene sets from the genome, at random. The assumptions
behind this null distribution may be weak when the gene sets
under study contain genes not present in the used functional
association network or have node degrees that deviate from the
expected degrees when drawing random genes. To make the
underlying null model more accurate we used degree-aware node
sampling (McCormack et al., 2013) to construct the underlying
distribution. We achieved this by first grouping all network nodes
into bins, one per degree if more than 100 nodes exist for a given
degree, or bins representing a range of degrees if this was needed
to obtain at least 100 nodes in the bin. Sampling to produce
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random gene sets was done by randomly selecting nodes from
bins with the same degree as the nodes in the query set.

To assess the improvement of this modification, we generated
100 random gene sets by sampling from the whole genome and
another 100 random gene sets by sampling from the subset of
genes present in all Chemical and Genetic interaction (CGP) gene
sets in the Molecular Signatures Database (MSigDB) (Liberzon
et al., 2011). Sampling was done such that the gene frequencies in
the MSigDB gene sets were preserved. The size of the gene sets
was fixed to 50 genes, which was the median size of all the gene
sets in MSigDB.

Functional Association Network
Network-based pathway enrichment methods require a protein
interaction network. In our study we used FunCoup, which is one
of the most comprehensive functional association networks of
genes/proteins available. FunCoup infers functional associations
between genes by integrating different types of evidence using a
redundancy-weighted naïve Bayesian approach, combined with
orthology transfer. FunCoup’s high coverage comes from the
number and variety of different evidence types used, such as:
mRNA and protein co-expression, co-evolution based on
phylogenetic profile similarity, Protein-Protein and domain-
domain interactions, sub-cellular co-localization, co-regulation
via miRNA and transcription factors, as well as genetic
interaction.

For this study, we used theHomo sapiens FunCoup 5 network.
To avoid noise, we used the default link confidence cutoff of 0.8
resulting in a network of 612,276 links and 12,890 genes.

Pathway Database
For this study we use the 313H. sapiens pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (v.96.0) (Kanehisa
et al., 2016).

BENCHMARKS

Pathway Recovery for Each Clustering
Method
Performance of clustering algorithms may vary depending on the
properties of the network they are applied to, so we constructed a
simple benchmark to assess this. We generated 100 gene sets by
merging different KEGG pathways that had shared links, three
pathways at a time. Then we applied the different clustering
methods to these gene sets to produce modules. Each module was
assigned to the pathway with the highest overlap, and the Jaccard
index between the sets of assigned and true pathways was
computed for each method. The Jaccard index distributions of
the clustering methods were compared using Kruskal-Wallis and
Wilcoxon tests.

True Positive Benchmark
KEGG pathways were bisected into two parts with similar
number of nodes and total node degree. The overlap between
the bisected parts was emulated based on the median overlap
between gene sets in the MSigDB database and KEGG pathways.

KEGG pathways were ordered by size and grouped into seven
bins with an equal (or as equal as possible) number of pathways in
each bin.We then sampled one pathway from each bin at random
and merged them into a unique gene set. To decide how many
pathways to join, we performed a pathway analysis study of
Chemical and Genetic interaction (CGP) MSigDB gene sets
against KEGG pathways using the null model modified
ANUBIX. To keep a reasonable gene set size, and to avoid
merging too many pathways, we used Bonferroni correction
(Abdi, 2007) and a family-wise error rate (FWER) of 5% as a
cutoff. This resulted in a median number of significantly enriched
pathways of seven per gene set. We therefore chose to join seven
pathways for the construction of the multi-pathway gene sets.
Since our sampling was constrained by the binning procedure, to
avoid having toomuch overlap between the constructed gene sets,
but still retain a statically usable number of gene sets we generated
100 gene sets and ran pathway enrichment against the other parts
of the bisected pathways. Since each gene set was constructed
from seven different pathways and we were aiming to recover the
other half of each of those pathways, we could at most have 700
true gene set-pathway associations or True Positives (TPs).

False Positive Benchmark
For the false positive (FP) benchmark we generated 100 random
gene sets of the average size of the true positive gene sets, 280
genes. The generated gene sets were tested for enrichment against
the true KEGG pathways. Considering their randomness, we did
not expect to find any enriched pathways.

Performance Measures
Both the true positive and false positive benchmarks were applied
with and without clustering of gene sets prior to pathway analysis.
When clustering was applied, pathway enrichment was tested
individually for each identified module. The pathways with the
lowest p-value for each module were merged into a single list. The
performance of each method was assessed by Receiver Operator
Characteristics (ROC) curves (Bradley, 1997). For our analysis,
we select only the pairs that were statistically significantly (FDR <
0.05) enriched after adjusting p-values using the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). The
pipeline of the clustering implementation in pathway
enrichment analysis is shown in Figure 2.

Adaptive Module Size Filtering
Applying clustering to the query gene sets increases the sensitivity
of the underlying analysis. However, this often comes with an
increase in false positives, mainly stemming from small modules.
To control for this, we devised a filtering approach for small
modules prior to the pathway enrichment analysis. To calibrate it,
we generated 100 random gene sets for a range of sizes between 50
and 600 genes, increasing the size by 50 genes, and ran the
clustered pathway enrichment pipeline against KEGG pathways.
At FDR < 0.05, we studied which minimum module size cutoff
was necessary to keep the FPR below 5%. With the selected range
of gene set sizes, we observed that the required module size cutoff
increased linearly with the query gene set size (Supplementary
Figure S1), suggesting that the cutoff should be adapted to
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different gene set sizes. This approach only works well for
methods that already control the FPR well prior to clustering,
here yielding good results only for ANUBIX. The adaptive
module size filtering ensures an FPR level matching the set
FDR level in ANUBIX when filtering out modules whose size
is below 2% of the query gene set size, hence this filter was applied
to ANUBIX here. For BinoX and NEAT this was however not
possible to achieve without a massive loss of sensitivity, hence the
filter could not be applied to them.

Clustered vs. Non-Clustered MSigDB Gene
Sets Analysis
We ran pathway enrichment analysis against KEGG pathways for
all the CGPMSigDB gene sets in two different scenarios, with and
without pre-clustering the gene sets. To showcase that different
gene sets are a mixture of different pathway or pathway families,
for each MSigDB gene set, we studied how often a certain
pathway subclass, as defined by KEGG, was targeted by the
same gene set module. The KEGG database classifies pathways
into 6 classes and 42 subclasses. The overlap in significantly
enriched pathways between (A) with pre-clustering and (B)
without pre-clustering was computed using the Jaccard Index
as described in Eq. 1:

J(A, B) � |A ∩ B|
|A ∪ B| (1)

RESULTS

Gene sets derived from experiments typically represent multiple
affected pathways. Therefore, mapping these gene sets onto a

network such as FunCoup and applying network-based clustering
algorithms to divide gene sets into more homogeneous subsets
was expected to reduce noise and lead to more accurate pathway
analysis. We investigated the effect of clustering on pathway

FIGURE 2 | Integrating clustering methods into pathway enrichment analysis. The input gene set was mapped onto an association network and clustering
algorithms were applied. Based on this, the gene set was divided into several modules, and pathway enrichment analysis was run for each of the modules separately,
keeping only the most significant result for each module-pathway pair. Pathway enrichment was also run in the original gene set for comparison purposes. Each node
represents a gene. Different colors refer to membership in different modules or pathways. A multicolored circle indicates more than one membership.

FIGURE 3 | Ability of the clustering methods Infomap, MCL, andMGclus
to recover original KEGG pathways in multi-pathway gene sets. Three
pathways were grouped into a single gene set prior to clustering. Eachmodule
was assigned to the pathway with the greatest overlap, and the Jaccard
index of the overlap between true and assigned pathways was computed. The
Jaccard index distributions of the clustering methods were compared using
Kruskal-Wallis and Wilcoxon tests.
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analysis using MGclus, MCL, and Infomap. To assess the
clustering performance of these methods on data used in
pathway analysis we applied them to gene sets constructed by
joining multiple KEGG pathways. Infomap and MCL
demonstrated the greatest ability to recover the original
pathways with a mean Jaccard index of 41.2% for Infomap
and 39.9% for MCL, followed by MGclus at 31% (Figure 3).
The difference between Infomap and MCL was not significant
(p = 0.42), however both Infomap and MCL were significantly
different from MGclus, with p = 1.3 × 10−9 and p = 6.5 × 10−8,
respectively.

The original null model of ANUBIX is suitable to capture non-
randomness in pathways. However, it may not optimally handle
biases present in the query gene set such as genes that are not in
the network or genes with very high node degrees. To account for
these biases and make the null model more strict we improved the
random sampling step to take into account the degree
distribution of the query genes. To assess the modified null
model generation procedure we created two datasets of
random gene sets: one by sampling from the whole genome,
and another by sampling from the pool of genes present in the
MSigDB CGP gene sets. For the first dataset, both the original and
the null model modified ANUBIX had 0% FPR. However, for the
second dataset the original ANUBIX had an FPR of 6.6%, while
the FPR of the null model modified ANUBIX was only 0.2%.

We then devised a benchmark to show the effect of pre-
clustering of query gene sets. The first part of the benchmark
was intended to assess the ability to recover True Positive gene
set-pathway pairs. Construction of the benchmark involved
bisecting KEGG pathways, merging the first half of several
pathways into a heterogeneous gene set and trying to detect

enrichment between this gene set and the other bisected halves.
In the second part of the benchmark we simulated False
Positive gene set-pathway associations by generating
random gene sets of the average size of the true positive
gene sets. We then assessed the performance of pathway
analysis methods: ANUBIX, BinoX, NEAT, and GEA, with,
and without pre-clustering on this benchmark. Figure 4 shows
the results as a Receiver Operating Characteristic (ROC) curve
for MCL and all pathway analysis algorithms. ROC curves
when clustering by Infomap and MGclus are in
Supplementary Figure S2. The ROC curves only show the
statistically significant results at FDR < 0.05, and only for
enrichment (i.e. not depletion).

Detailed True Positive Rate (TPR) and False Positive Rate
(FPR) results are shown in Table 1. The best balanced
performance prior to the application of clustering was
demonstrated by ANUBIX, with a TPR of 71% and a FPR of
0%. BinoX and NEAT showed higher TPRs, of 75% and 74%
respectively, but had a much higher FPR of 9% and 8%,
respectively. As expected, GEA had a low TPR of only 37%
due to the low coverage that overlap-based methods tend to have.
However, it had a flawless specificity. A significant difference was
observed between the results of ANUBIX and the other methods
(McNemar´s test, p < 0.001).

When applying clustering of the gene sets prior to pathway
analysis, we observed a statistically significant (McNemar´s test,
p < 0.001) increase in TPR for all the network-based pathway
enrichment methods ANUBIX, BinoX, and NEAT, but not for
GEA, which decreased. The TPR for ANUBIX increased by at
most 7 percentage points, when using Infomap, still maintaining
an FPR not exceeding the requested FDR level of 5%. BinoX and
NEAT exhibited higher increases in TPR of up to 14–15
percentage points. However, this increase came with a very
high increase in FPR from 9% to 56–61% for BinoX and from
8% to 52–56% for NEAT. There is a significant difference between
the results of the other methods and ANUBIX for all the
clustering algorithms (p < 0.001).

We observed that almost all of the enrichments found without
clustering were also found using pre-clustering of the query sets
(Figure 5). For BinoX and NEAT the fraction of unique
enrichments found without clustering were the lowest, below
2%, while for GEA they were the highest at 12–15%. Looking at
enrichments only found by pre-clustering, these fractions were
generally higher, 8–17%. We further noted that most of the
associations, 99.6%, identified by GEA were also found by the
network-based methods.

FIGURE 4 | Receiver Operating Characteristic (ROC) curves that
measure the performance of each pathway analysis tool, with clustering
(dotted lines) and without (solid lines). The used clustering algorithm was
Infomap. Only the significantly enriched tests are shown (FDR < 0.05).

TABLE 1 | True positive rate (TPR) and false positive rate (FPR) for combinations of
the clustering and pathway enrichment methods run at FDR = 0.05.

ANUBIX BinoX NEAT GEA

TPR FPR TPR FPR TPR FPR TPR FPR

No clustering 0.71 0.00 0.75 0.09 0.74 0.08 0.37 0.00
MCL 0.73 0.03 0.90 0.57 0.88 0.53 0.35 0.00
MGclus 0.75 0.03 0.88 0.61 0.88 0.56 0.35 0.00
Infomap 0.78 0.05 0.90 0.56 0.88 0.52 0.36 0.00
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Clustered Versus Non-Clustered Gene Sets
Analysis

A large-scale analysis was carried out for 3302 gene sets from
MSigDB/CGP against the 313 human pathways in KEGG, to
observe possible benefits of applying clustering to experimental
gene sets. Clustering was applied using Infomap and ANUBIX
was used for the pathway enrichment analysis. Pathway
enrichment analysis web server tools, such as PathBIX
(Castresana-Aguirre et al., 2021) or PathwAX (Ogris et al., 2016),
are implemented in a way that allows only single gene set queries. By
analogy, we studied MSigDB gene sets by assuming independence
between gene sets, i.e., multiple testing correction was only
performed for the number of pathways each query is compared to.

Clustering of MSigDB gene sets occurred in 2703 of the 3302
gene sets. Pathway analysis without pre-clustering resulted in
129,044 significant (FDR < 0.05) crosstalks across 2,222 gene sets.
Clustered analysis produced 122,819 significant crosstalks for
2,178 gene sets, of which 1,890 were shared with the non-
clustering approach. The Jaccard index overlap (see Materials
and Methods) of significant crosstalks between clustering and
non-clustering was 52.5%, and 67.2% of the non-clustering
crosstalks were found by the clustering approach while 70.6%
of the clustering crosstalks were found by non-clustering.

To show that clustering helps to isolate different mechanisms
within a gene set, we used the pathway subclasses as defined in the
KEGG database and mapped them to the significant pathway
crosstalks from the MSigDB large-scale analysis. Each pathway
belongs to a KEGG subclass, and on average 95% of the significant
pathways of a certain subclass had crosstalk to just one module in
a gene set.

An Application of Clustered Pathway
Enrichment Analysis
To illustrate the usefulness of clustering we provide an example
with an MSigDB gene set,
HAHTOLA_SEZARY_SYNDROM_UP (Hahtola et al., 2006).
More examples can be found in Supplementary File S1 where
we provide all significant pathway enrichments found by pre-
clustering using ANUBIX and Infomap but not without
clustering. The selected example query set contains 99 up-
regulated genes (Supplementary Table S1) from peripheral
blood samples of Sezary syndrome patients compared to
samples from healthy donors. Sezary syndrome is an
aggressive form of cutaneous T-cell lymphoma (http://ghr.nlm.
nih.gov/condition/sezary-syndrome) and is a rare disease driven
by cancerous T-cells with one or several chromosomal

FIGURE 5 | Fractions of unique pathway enrichments found with pre-clustering relative to without pre-clustering, and vice versa, run at FDR = 0.05 for all the
combinations of clustering methods and pathway enrichment tools.
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abnormalities. We used the web-server PathBIX, which provides
both regular ANUBIX and clustered ANUBIX. We ran this gene
set against the KEGG pathway database with a FunCoup cutoff of
0.8 and compared the results obtained from non-clustering and
clustering. At FDR < 0.05, non-clustering finds 8 significantly
enriched pathways, full results in Supplementary Table S2. The
top seven pathways belonged to the KEGG classes of “Replication
and repair” and “Cell growth and death”, which are pathway
classes affected by cancer. The eighth was the “Human T-cell
leukemia virus 1 infection” pathway at FDR = 0.01. As opposed to
the other seven unspecific cancer related pathways, the last one
has been associated with Sezary syndrome (Pancake et al., 1995).

When clustering was applied to this gene set, it was split into
three modules of size 20, 18, and 4, where each module was
enriched for 16, 4, and 2 pathways respectively (Figure 6), full
results in Supplementary Table S3. The first module retrieved all
the enriched pathways found by the non-clustering approach,
while finding additional enriched pathways belonging to the same
pathway classes as the pathways found by non-clustering.
Pathways relevant to cancer included “Fanconi anemia”
(Figure 7A) at FDR = 2.8e−3, a bone marrow failure
syndrome whose complications can result in leukemia
(Cheung and Taniguchi, 2017), due to a failure in the repair
of DNA interstrand crosslinks in the genome (Ceccaldi et al.,

2016). The first module was further enriched in other cancer
related pathways, such as “Transcriptional misregulation in
cancer” at FDR = 1.77e−3. Furthermore, it was enriched in the
“Viral carcinogenesis” pathway (FDR = 0.01). This pathway
includes genes targeted by the Human T-cell leukemia virus 1
(HTL1 virus), which is thought to be the potential trigger for
Sezary syndrome. This is as relevant as the HTL1 infection
pathway identified by the non-clustering approach.

The second module finds pathways belonging to the
metabolism class, such as “Glutathione metabolism”
(Figure 7B) at FDR = 0.02, which is reasonable as glutathione
has been proven to effectively block cell death in primary T cells
from Sezary patients (Kiessling et al., 2009). Other metabolism
pathways like “Purine metabolism” at FDR = 0.03, and “One
carbon pool by folate” at FDR = 0.03, are reasonable as purine and
folate are potential therapeutic drugs for Sezary syndrome (Oka
and Miyagaki, 2019).

The third module finds pathways belonging to the class of
parasitic infectious diseases, with “Malaria” at FDR = 3.79e−3
(Figure 7C) and “African trypanosomiasis” at FDR = 8.72e−4.
Biomarkers such as miRNA are used for detecting infectious
diseases. In malaria, some of the most expressed miRNAs are
miR451 and miR92 (Babatunde et al., 2018), where the former is
significantly correlated with diagnosis and prognosis of Sezary

FIGURE 6 | Clustered pathway enrichment analysis of the MSigDB gene set HAHTOLA_SEZARY_SYNDROM_UP. The gene set is divided into 3 modules by
applying the network clustering algorithm Infomap. Each module finds different classes of pathways.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8557668

Castresana-Aguirre et al. Clustered Pathway Analysis

136

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


syndrome, and the latter is downregulated in it (Narducci et al.,
2011).

DISCUSSION

This study aimed at assessing the added benefit of pre-clustering
gene sets prior to conducting pathway enrichment analysis. In order
to achieve this we evaluated combinations of three network
clustering methods in conjunction with one overlap-based and
three network-based pathway analysis algorithms. Our findings
indicate that pre-clustering increases sensitivity of pathway
analysis with network-based methods but observed that it comes
with the challenge of risking a high false positive rate. For two of
these methods, the improvement in sensitivity came with an
unacceptable loss of specificity. However, ANUBIX was able to
substantially increase the sensitivity while keeping a high specificity.

The large-scale application of ANUBIX with clustering to the
MSigDB gene sets against all KEGG pathways resulted in a similar
number of significant enrichments as when no clustering was
applied, but about a third of the enrichments were unique to each
approach. We further observed that each network module within
a gene set tended to be enriched by a different subclass of
pathways. This supports the hypothesis that experimentally

derived gene sets often represent mixtures of genes with
different mechanisms, and isolating these provides a more
informative analysis of the different mechanisms that are
related to the condition under study. In this analysis we used
Infomap for clustering as it was the best method in the
benchmarks, and for the pathway enrichment analysis we used
ANUBIX since it outperformed the other methods.

Before the pre-clustering analysis, we introduced a modification
to the null model of ANUBIX. The new null model of ANUBIX
evaluated in the study uses degree-aware sampling of genes in the
network instead of randomly sampling genes from the whole
genome. This null model modification resulted in a lower FPR
compared to the original implementation, hence the modified
version of ANUBIX was used in the rest of this study.

A previous benchmark showed that BinoX and NEAT suffer
from a relatively high false positive rate (Castresana-Aguirre and
Sonnhammer, 2020). To compute the crosstalk between a query
gene set and a pathway, BinoX randomizes the network leading to a
loss of the internal pathway structure. NEAT does not randomize the
network to assess statistical significance but relies on the degrees of
the query gene set, pathway, and the whole network, regardless of
how that degree is distributed across the pathway. It has been
demonstrated that there is a correlation between the FPs of these
network-based methods and the fraction of intralinks of the

FIGURE 7 | Crosstalk between the three modules in the MSigDB gene set HAHTOLA_SEZARY_SYNDROM_UP and selected KEGG pathways (only genes linked
in the network are shown). (A) The “Fanconi anemia” pathway which is significantly enriched for crosstalk to module 1. (B) The “Glutathione metabolism” pathway which
is significantly enriched for crosstalk to module 2. (C) The “Malaria” pathway which is significantly enriched for crosstalk to module 3. The query gene set module genes
are marked in green and the pathway genes are marked in blue.
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pathways (Castresana-Aguirre and Sonnhammer, 2020), meaning
that the less random the pathway topology is, the more prone it is to
produce FPs. The distribution of crosstalk between a random gene
set and a pathway often suffers from overdispersion, i.e., when the
variance is larger than the mean. When this happens, the null
distributions of crosstalk assumed by the different methods,
binomial (BinoX) or hypergeometric (NEAT), are not
appropriate. Both the overdispersion and the high false positive
rate are resolved by ANUBIX. Instead of randomizing the whole
network which distorts the pathway structure, ANUBIX assesses
statistical significance by sampling random gene sets of the same size
as the query gene set and computing an expected crosstalk
distribution for each pathway. The resulting null distribution is
fitted to a beta-binomial distribution, which has been demonstrated
to accurately capture overdispersion (Young-Xu and Chan, 2008),
and this is used to assess the significance of an observed crosstalk.
Even though ANUBIX is the best performing method in that
benchmark, we wanted to include other network-based methods
to study if clustering could decrease their FPR. However, this issue
became even more apparent when clustering was applied. We
further observed that the average degree in the unclustered
ANUBIX FP gene sets was 82 while the average degree of the
genes in FP modules generated from those gene sets increased
significantly (p < 0.001) to 150, 161, and 193 for Infomap, MCL
andMGclus respectively. Statistical significance was assessed using a
permutation test by computing the average degree for 2,000 data sets
with 100 gene sets in each.

For this benchmark, we did not include quantitative pathway
analysis tools, such as GSEA (Subramanian et al., 2005), CAMERA
(Wu and Smyth, 2012) or SPIA (Tarca et al., 2009). In order to work,
these methods require as input the differential expression of all
genes. Several limitations were described previously (Subramanian
et al., 2005) when selecting subsets of genes from such a list. Thus,
clustering the whole set of genes into independent subsets is unlikely
to be beneficial for these methods.

We have demonstrated that the application of clustering of
query gene sets prior to pathway analysis improves the sensitivity
of all studied pathway enrichment methods, and helps to
elucidate complex mechanisms within an experimental gene
set. However, pre-clustering is recommended to be used

primarily with methods that can control the false positive rate
well. The approach finds almost all associations found without
clustering, while adding many new ones, and thus represents a
powerful new tool in the quest for more accurate pathway
analysis.
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Inference of a Boolean Network From
Causal Logic Implications
Parul Maheshwari 1*, Sarah M. Assmann2 and Reka Albert1,2*
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Biological systems contain a large number of molecules that have diverse interactions. A
fruitful path to understanding these systems is to represent themwith interaction networks,
and then describe flow processes in the network with a dynamic model. Boolean
modeling, the simplest discrete dynamic modeling framework for biological networks,
has proven its value in recapitulating experimental results and making predictions. A first
step and major roadblock to the widespread use of Boolean networks in biology is the
laborious network inference and construction process. Here we present a streamlined
network inference method that combines the discovery of a parsimonious network
structure and the identification of Boolean functions that determine the dynamics of
the system. This inference method is based on a causal logic analysis method that
associates a logic type (sufficient or necessary) to node-pair relationships (whether
promoting or inhibitory). We use the causal logic framework to assimilate indirect
information obtained from perturbation experiments and infer relationships that have
not yet been documented experimentally. We apply this inference method to a well-
studied process of hormone signaling in plants, the signaling underlying abscisic acid
(ABA)—induced stomatal closure. Applying the causal logic inference method significantly
reduces the manual work typically required for network and Boolean model construction.
The inferred model agrees with the manually curated model. We also test this method by
re-inferring a network representing epithelial to mesenchymal transition based on a subset
of the information that was initially used to construct the model. We find that the inference
method performs well for various likely scenarios of inference input information. We
conclude that our method is an effective approach toward inference of biological
networks and can become an efficient step in the iterative process between
experiments and computations.

Keywords: Boolean network inference, Boolean model, network inference, network construction, stomatal closure,
guard cell

1 INTRODUCTION

Network inference from expression information is an information extraction process where the
inputs are knowledge of the identity of the components that make up a network and their states in a
variety of contexts, and the output is a proposed regulatory network with edges and functions that
define the dynamics between the biomolecules. For inference of a gene regulatory network, the input
information comes from gene expression data, e.g., RNA-seq assays. Signal transduction networks
can be inferred from data on protein expression and post-translational modifications, combined with
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information on small molecule mediators. Metabolic networks
may be inferred from the knowledge of metabolite and enzyme
concentrations. Various methods have been developed for
network inference; each of these methods have their strengths
and weaknesses.

Correlation measures (e.g., Pearson correlation coefficient)
of the expression of gene or protein pairs can be used to
construct a weighted gene or protein co-expression network
(Huang et al., 2005). The correlation measures can also be
combined with clustering methods such as hierarchical
clustering or K-means clustering to obtain groups of co-
expressed genes/proteins (Horvath et al., 2006). These
networks show the extent of co-expression between genes/
proteins and may not be indicative of whether the gene
products/proteins regulate each other or have any causal
influence. Probabilistic graphical models like Bayesian
networks use Bayesian inference to obtain conditional
regulatory functions that indicate the probability that a target
node has a certain state given the state of its regulators. This
inference method often necessitates extensive data to calculate
the conditional probability of the state of the target node given
the state of the regulators (Sachs et al., 2005).

Network construction using edge inference from causal
information (such as information from perturbation
experiments) is a general method, applicable to any system,
that represents an efficient alternative to network inference
from state information (Albert et al., 2007; Kachalo et al., 2008,
S.; Li et al., 2006). The input information is the identity of the
components that make up a network and causal relationships
between them, and the output is a proposed regulatory
network. The causal effects used as input information
include the positive or negative causal effect of one node on
another (A → B), or information of the positive or negative
effect of a node on the regulation of another node by a
regulator (A → (B → C)). We will refer to the latter as a
three-node causal effect. The inferred network incorporates
each two-node causal effect as an edge or path of the
corresponding sign. Experimentally documented direct
interactions are always represented by edges. The inferred
network incorporates each three-node causal effect as the
intersection of two paths of the corresponding sign.
Specifically, (A → (B → C)) will yield a positive path from
B to C and a positive path from A to C, which intersect at an
unknown mediator (a pseudo-vertex). Two reduction
algorithms have been developed to simplify the resultant
network while preserving each of the initially encoded
causal relations: binary transitive reduction with critical
edges, and pseudo-vertex collapse (Albert et al., 2007;
Kachalo et al., 2008). The resulting network is the most
parsimonious incorporation of the input information. This
network synthesis method has been applied to various
biological systems and resulted in equivalent networks
compared to manual curation (Kachalo et al., 2008).

The Boolean modeling framework has been used successfully
to model the dynamics of various types of biological networks
(Wynn et al., 2012; Saadatpour and Albert, 2013; Abou-Jaoudé
et al., 2016) as well as for model inference from state (e.g., gene/

protein expression or post-translational modification) data.
Boolean models assume two possible states of each node, 1
(which can be interpreted as ON, active or above-threshold
level) and 0 (interpreted as OFF, inactive, or below-threshold
level). When a Boolean framework is used for network
inference, a key pre-processing step is to discretize the data
to either 0 or 1. Several methods are used for discretization of the
relevant data for inference (Berestovsky and Nakhleh, 2013).
One example is iterative k-means clustering where the data are
iteratively clustered into fewer clusters until there are only two
clusters that correspond to ON and OFF. The discretized data
are then interpreted as Boolean states (e.g., activity). The
inference process (described below) is performed in the same
way independent of the entity whose state is described by the
input data.

A traditional method to infer a regulatory network and
Boolean functions from state information is to observe the
time-course of the states of each node and perform an
exhaustive search through all possible Boolean functions
(with all subsets of nodes as possible regulators) to find the
one that best fits the given data (Pandey et al., 2010; Berestovsky
and Nakhleh, 2013; Dinh et al., 2017). This method is
implemented in the software BoolNet (Müssel et al., 2010).
This exhaustive search can be very time-consuming. Another
difficulty is that it is often the case that not all of the
combinations of the putative regulators’ states are observed
experimentally; thus, the inference is under-constrained and
can be satisfied by multiple alternate set of regulators and
multiple functions for each particular node.

A more effective method is to combine prior network
information with state data (for example, known attractors or
trajectories of the system) to infer the Boolean functions. Several
methods preserve the prior knowledge network during the
process of inferring the Boolean functions (La Rota et al.,
2011; Ghaffarizadeh et al., 2017; Chevalier et al., 2020;
Aghamiri & Delaplace, 2021). Such methods are implemented
in the applications Griffin and SMBionet (Khalis et al., 2009;
Munoz et al., 2018). Other methods refine the starting network by
deleting or adding edges (Terfve et al., 2012; Azpeitia et al., 2013;
Abou-Jaoudé et al., 2016; Dorier et al., 2016). Iterative
experimental and computational analysis can then be used to
further refine the Boolean network.

Here, we present a combined network and Boolean function
inference method based on causal logic relationships between
different network components (inferred from perturbation
experiments), extending the work in Albert et al. (2007),
Kachalo et al. (2008). We utilize the abundance of genetic or
pharmacological perturbation (knockout and overexpression)
experiments in the biological literature to infer causal logic
relationships. We then infer a parsimonious network and a set
of Boolean functions that recapitulates these causal relationships.
Our method differs from other Boolean network inference
methods in that it does not require snapshots or time courses
of all the nodes’ states, nor does it require a prior knowledge
network. Our method covers the middle ground between curated
(manual) network and model construction and automated
network inference. It is closer to the former in that it aims to
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find the most parsimonious model and does not explicitly identify
all the alternative models. Because of this reason, the resulting
model should be verified by follow-up experiments, as all models
should. This streamlined network and model inference method is
aimed at making the model construction process less laborious
and hence making it more accessible to the larger biological
community.

2 MATERIALS AND METHODS

2.1 Background: Causal Logic Implications
Between a Pair of Nodes in a Boolean
Network
Causal logic, introduced in (Maheshwari and Albert, 2017),
identifies causal relationships between pairs of nodes in a
Boolean network as sufficient or necessary. This logic
implication tells whether the sustained activity of the regulator
node is sufficient or necessary to activate the target node (for a
promoting edge) or deactivate the target node (for an inhibiting
edge) regardless of the state of other regulators.

There are four categories of logic relationships between a
regulator and its direct target: sufficient activator, sufficient
inhibitor, necessary activator, and necessary inhibitor. All of these
relationships are independent of the state of any other regulators. In
other words, these are canalizing relationships (Kauffman, 1993).
The logic relationships are summarized in Table 1. In the following
we give two examples. If the sustained ON state of a regulator node
leads to the sustained ON state of the target node, we say that the
regulator is sufficient for the target. A regulator node being necessary
for a target node means that the sustained OFF state of the regulator
node leads to the sustained OFF state of the target node. Such
necessary relationships are abundant in biology; for example, in an
enzyme-catalyzed reaction both the presence of the reactant(s) and
the activity of the enzyme are necessary for the production of the
reaction’s product.

An indirect regulator to target relationship can also have a logic
implication; this relationship is mediated by a path or subgraph
between the regulator and target node. For example, an indirect

sufficient relationship between R and T can be mediated by a group
of mediators Mi such that each Mi is necessary for the target node,
the union of Mi is collectively sufficient for T, and R is sufficient for
each Mi; see (Maheshwari and Albert, 2017) for a description of all
the paths and subgraphs that mediate a logic implication. In these
latter cases, the logic implication is independent of all other nodes in
the network except for the nodes that make up the path/subgraph of
the indirect regulation. An especially salient relationship is the
combination of sufficient and necessary logic implication,
i.e., when the state of a target node is completely determined by
the state of a distant regulator node. A sufficient and necessary
promoting relationshipmeans that the state of the target node will be
the same as the state of the regulator node while a sufficient and
necessary inhibitory relationship means that the state of the target
node will be the opposite of the state of the regulator node. More
details on each of these causal logic relationships can be found in
Maheshwari and Albert (2017).

2.2 Combining Causal Implications Incident
on the Same Target Node
In a large and complex network, nodes can have multiple direct
regulators, each of which may have a different causal logic
implication on the target node. These logic implications must
correspond to a single Boolean function that preserves each logic
implication. Consequently, the resulting Boolean function is in
the family of biologically meaningful functions (Raeymaekers,
2002) (i.e., no regulator is redundant or has an ambiguous effect),
and also in the family of nested canalizing functions (Y. Li et al.,
2013). Only certain combinations of logical regulators are able to
preserve each logic implication. To see why this is the case,
consider a hypothetical situation in which a target node (T) has a
direct regulator (R1) that is sufficient. According to the definition
of a sufficient regulator, the ON state of R1 always implies the ON
state of T independent of the state of other regulators. In terms of
Boolean functions, the existence of a sufficient direct regulator
among multiple regulators implies a logic OR gate. This means
that the effect of R1 is compatible with another direct regulator R2
that is also sufficient, making the update function T* = R1 or R2.
Here T* indicates the next state of the target node T. The other

TABLE 1 | Summary of the six different types of causal logic implication and their correspondence with the direct effect of the state of the regulator node (R) on the state of the
target node (T). The first column lists the causal logic implication, the second column lists what that implication indicates about the definite knowledge of the state of the
target node if the state of the regulator node is known, and the third column lists the corresponding Boolean rules. The “. . .” in the Boolean rule is a placeholder for any number
of other regulators of the target node. The asterisk (*) denotes a future state of a node, i.e., T* refers to the future (or next timestep) state of the target node.

Causal logic implication What does it mean for the state of T
(independent of the state of the rest of the network)?

Equivalent Boolean rule

Sufficient R = ON => T = ON T* = R or . . .
Sufficient inhibitory R = ON => T = OFF T* = not R and . . .

Necessary R = OFF => T = OFF T* = R and . . .

Necessary inhibitory R = OFF => T = ON T* = not R or . . .
Sufficient and necessary R = OFF => T = OFF T* = R

R = ON => T = ON
Sufficient and necessary inhibitory R = OFF => T = ON T* = not R

R = ON => T = OFF
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case of compatibility is when R2 is a necessary inhibitor; in this
case the function of the target is T* = R1 or not R2.Node T cannot
have another direct regulator (R2) that is necessary, because the
“necessary” classification of R2 (i.e., the OFF state of R2 implies
the OFF state of T) contradicts the sufficiency of R1. In summary,
sufficient regulators are incompatible with necessary regulators.
Please note that this incompatibility does not mean that every
regulator’s effect on the target must always combine with a logic
OR relation. For example, the Boolean rule for a target node can
be T* = R1 or (R2 and R3).Here, neither of the regulators R2 or R3
are independently sufficient or independently necessary for T but
they are still compatible with regulator R1.

We summarize the compatible logic implications in Table 2
and describe them in words in the following. When a direct
regulator is sufficient and necessary, it must be the only regulator
of the target node. Similarly, when a direct regulator is sufficient
and necessary inhibitory, it must be the only regulator of the
target node. Necessary regulators are compatible with other
necessary regulators and any other sufficient inhibitory
regulators. Sufficient inhibitory regulators are compatible with
other sufficient inhibitory regulators and any other necessary
regulators. Sufficient regulators are compatible with other
sufficient regulators and any necessary inhibitory regulators.
Necessary inhibitory regulators are compatible with other
necessary inhibitory regulators and any sufficient regulators.

2.3 Resolving Apparently Incompatible Implications by
Inferring New Relationships
A subset of the incompatible relationships described in the
previous subsection can be resolved if one or both of the
apparently incompatible regulators is in reality an indirect
regulator of the target node and if the two regulators are not
independent of each other, but rather one of them has a logic
implication on the other. This is expressed and proven in the co-
pointing subgraph theorem of (Maheshwari and Albert, 2017). If
a source node (S), i.e., a node with no regulators, is indirectly
sufficient for a target node (T) and another node (N), which is not
a source node, is directly or indirectly necessary for this target
node, we say that there are two co-pointing subgraphs, one from S
to T and one from N to T (Maheshwari and Albert, 2017)—see
Figure 1. The co-pointing subgraph theorem from Maheshwari
and Albert (2017) says that when there are two co-pointing
subgraphs as in Figure 1, where source node S is sufficient
and N is necessary to the target node, S must be sufficient for
N. The simplest subgraph that satisfies this theorem is if the
function of N isN* = S, and the function of the target is T*= S and
N. Here we extend the applicability of this theorem to the
situation in which S is not a source node and there is no path
from N to S.

The co-pointing theorem can be used to resolve certain kinds of
apparently incompatible logic implications of indirect regulators by
inferring new edges. Situations like this happen often in genetic or
pharmacological knockout experiments that aim to identify putative
signal transduction mediators. If the experiment finds that the
knockout of N disrupts the signal transduction process that
initiates from signal S, we conclude that N is necessary for the
target node. This might seem incompatible with the knowledge that
the signal S is sufficient for the target but in fact it is consistent if N is
a mediator of the pathway that establishes a sufficient relationship
from S to the target node. Therefore, we infer that S is sufficient for N
via an edge, a path, or a subgraph.

3 RESULTS

3.1 Our Proposed Method of Boolean Model
Inference From Causal Logic Implications
of Edges
We first give a high-level description of our inference process,
then describe the details of each step in separate subsections.
Boolean network inference using the causal logic method starts

TABLE 2 | Compatibility of the causal logic implications of regulator nodes. The matrix lists the compatibility of different regulators with varying causal logic implications with
✓’s and 7’s. The first row and the first column denote the logic implications of different regulators. A check (✓) entry denotes that the logic implications in the
corresponding row title and column title are compatible while a cross (7) entry denotes that they are incompatible.

Logic Sufficient Necessary Sufficient inhibitory Necessary inhibitory

Sufficient ✓ 7 7 ✓
Necessary 7 ✓ ✓ 7

Sufficient inhibitory 7 ✓ ✓ 7

Necessary inhibitory ✓ 7 7 ✓

FIGURE 1 | Illustration of the co-pointing subgraph theorem for inferring
logic implication between two regulators. The source node S is sufficient
indirectly (via a path or a subgraph) for the target node T and the non-source
node N is necessary indirectly for the target node T. The two subgraphs
from S to T and from N to T are co-pointing subgraphs. This leads to inference
of a direct or indirect causal logic implication that the signal node S is sufficient
for the non-source node N.
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with a compilation of information regarding the interactions and
inferred causal influences between different components of the
network. When a target node has multiple regulators, we classify
their effect on the target into three categories: direct relationships,
indirect relationships that likely do not share mediators with any
other relationships, and indirect relationships that likely share
mediators. The first two categories are represented as edges in the
Boolean network while the third may be implemented by paths or
subgraphs. We compile the edges incident on each node into
Boolean functions that best preserve their logic implications,
resolving any incompatibilities. Finally, we evaluate the
implementation of the mediator-sharing indirect causal logic
relationships by paths and subgraphs, and if necessary add
edges to reflect them, again resolving any incompatibilities in
the Boolean functions. A Python implementation of this method
is available in the GitHub repository https://github.com/parulm/
suff_necc.

3.1.1 Distilling Biological Knowledge and the Results
of Perturbation Experiments Into Logic Implications
The first step is to extract a library of information from
experiments regarding the behavior of the system in normal
and perturbed settings. This information is then organized as
a list of causal influences and interactions, with more details
indicated about each of the relationships whenever known. Each
entry must include whether the interaction is promoting or
inhibiting the target node, whether these relationships are
direct (i.e., due to a single reaction or physical interaction) or
indirect (mediated by other components) and the causal logic
implication of the regulator on the target node (if known).

Certain types of biological information naturally lend
themselves to causal representation. The causal effect
associated with a biochemical reaction can readily be
determined from the information that the presence of the
reactant(s), together with the enzyme that catalyzes the
reaction, leads to the production of the biomolecule that is the
product of the reaction. Thus, in an enzyme-catalyzed reaction
both the reactant(s) and the enzyme are necessary for the
product. More generally, if an experimenter observes that the
knockout of a node (regulator) leads to no (or below threshold)
levels or activity of another node (target), one can conclude that
the regulator node is necessary for the target. The “necessary”
designation incorporates the assumption that the knockout of the
source node would lead to the inactivity of the target in a different
context as well. This assumption is widely made in the biological
literature, as reflected by terms such as “necessary” and
“required”. If an experimenter observes that the sustained
presence or constitutive activity of a regulator leads to high
activity of another node (target), one can conclude that the
regulator is sufficient for the target node. Given the fact that
in vivo biological experiments involve multiple components in
addition to the pair whose relationship is studied, the noted
sufficient or necessary implication are provisional, conditioned
on the presence or absence of other components (known or
unknown) that define the biological context. Additional evidence
that characterizes these possibly hidden components may
necessitate the revision of the initial characterization.

Other types of biological information are better represented as
multi-node relationships. Specifically, many biological
experiments involve perturbing putative mediators and
comparing an input-output relationship in the perturbed and
normal systems. In these experiments, there are three essential
entities, the input, the output and the mediator. This usually
results in statements (three-node causal implications) of the form
“A promotes (B induces C)” [see (Albert et al., 2017; S.; Li et al.,
2006) for examples of such statements and how they were used
during model construction]. In general, each such statement
immediately leads to two derived statements. The first is that
“B induces C”, which usually implies that B is sufficient for C. The
second statement is that “A promotes C”. The causal logic
implication of this statement is obtained by looking at the
experiment regarding node A. The most frequently observed
case is that knockout of A leads to a drastically reduced
activity of C (below-threshold); in this case we conclude that
A is necessary for C. The role of node A could also be inhibitory,
leading to a statement of the type “A inhibits (B induces C)”. The
most frequently observed case is that constitutive activation of
such inhibitory A leads to a below-threshold activity of C; in this
case we conclude that A is a sufficient inhibitor of C.

A third regulatory relationship that can sometimes be inferred
from a promoting or inhibiting three-node relationship depends
on the use of the result on co-pointing subgraphs. If B affects C
indirectly and there is no path from A to B, for certain types of
causal logic of A on C we can infer that B regulates A according to
a specific causal logic. We do this using the co-pointing subgraph
theorem (Maheshwari and Albert, 2017). Given that B is
sufficient for C, the co-pointing subgraph theorem applies for
two causal logic implications of A on C. The first case is when A is
necessary for C—we can conclude in this case that B is sufficient
for A. The second case is when A is a sufficient inhibitor of
C—then we can conclude that B is a sufficient inhibitor of A.
However, if A is sufficient for C, no inference of any relationship
between B and A can be made.

3.1.2 Assigning a Boolean Function for Each Node and
Resolving Incompatibilities
We break up three-node causal implications into pairwise
implications and assign a logic implication to each pairwise
relationship as described above. We then consider each node
of the network along with its regulators and the corresponding
causal logic implications and use that information to obtain the
Boolean function for the node. In the following we describe the
method of determining Boolean functions in detail.

If a target node (T) has a single regulator (R), there are two
general cases: the regulator is either promoting or inhibiting. If the
regulator is promoting, its Boolean function would beT* = R; and if
the regulator is inhibiting, the Boolean function would be T* = not
R. When a target node has multiple regulators, we classify their
effect on the target into three categories: direct relationships,
indirect relationships that likely do not share mediators with
any other relationships, and indirect relationships that likely
share mediators. The third category consists of regulators of the
target node that are likely connected to the target node by a path or
subgraph, and this path may involve other, more direct regulators
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of the target node. For each of these regulators we need to evaluate,
on a case-by-case basis, whether or not an edge from the regulator
to the target is needed.

We start by considering the logic implications of direct
relationships and indirect relationships that likely do not share
mediators with any other relationships. In this case, there are two
possibilities: all of the incoming logic implications are compatible, or
the incoming edges have incompatible logic implications. In case of
incompatible logic implications, we cannot directly define the
Boolean function. These cases arise because the “sufficient” or
“necessary” implication was premature and the target node’s
activity in fact depends on the specific combination of regulators.
The ideal resolution for these incompatible logic implications would
be to do biological experiments that test both knockout and
constitutive activation of each regulator (see Figure 2). This
solution is often impossible to execute due to technical challenges
and/or the intertwined nature of biological systems. Hence, wemake
use of two theoretical resolution methods. One is automated while
the other requires manual curation.

The automated resolution method for incompatible logic
implication is the dominant regulators method; this has two
templates described as follows. One of these two templates
considers sufficient regulators as dominant (i.e., if any of the
sufficient regulators is active then the target node activates); the
other considers necessary regulators as dominant (i.e., if any of
the necessary regulators is inactive then the target node
inactivates). This resolution method assumes that during the
experimental result that concluded the logic implication that is
incompatible with the dominant logic implication the dominant
regulators were in their non-canalizing state. In the following we
describe each template.

The first automated template for resolving incompatibilities is
to assume sufficient regulators are dominant. We impose this
template by collecting all necessary regulators and marking them
sufficient together, i.e., when all the necessary regulators are
active, the target node will activate. Consider that target node
T has regulators A, B, C, and D, where the edges A→ T and B→
T have sufficient logic implication while the edges C→T and D→
T have necessary logic implication—see Figure 3. According to
the first template, we group C and D together, resulting in the
Boolean function T* = A or B or (C and D). When we group the
regulators C and D together and mark them as sufficient together,
we are implicitly assuming information about the states of the
other regulators, i.e., A and B, during the experiments concerning
C and D. Specifically, we are assuming that A and B are OFF
during the experiment involving knockout of C (or knockout of
D); in this context the experiment shows that C (or D) is
necessary for T, in agreement with the Boolean rule obtained
by the first template. Since necessary regulators are compatible
with sufficient inhibitory regulators, they can also be grouped
together with sufficient inhibitory regulators. In the above
example, if the edge from C to T were instead sufficient
inhibitory, the resulting Boolean function would be T* = A or
B or (not C and D). Our code on the GitHub repository (https://
github.com/parulm/suff_necc) lists the possible Boolean rules
obtained by this automated method.

The second template in the automated resolution method is to
give preference to the necessary logic implication and group the
sufficient regulators. Going back to the example of Figure 3, the
second template in this example (bottom right) leads to the
Boolean rule T* = (A or B) and C and D. Since sufficient logic
implication is compatible with necessary inhibitory logic

FIGURE 2 | Illustration of the use of knowledge about the experimental setting to resolve incompatibility. A target node T has two regulators; one is concluded to be
necessary (R1) from experiment/literature and the other is concluded to be sufficient (R2) from experiment/literature. The truth table below the network diagram shows
these relationships: R1→ T necessary relationship means that when R1 is constitutively OFF, T stabilizes to OFF; R2→ T sufficient relationship means that when R2 is
constitutively ON, T stabilizes to ON. Since this is an incompatibility, we consider two assumptions about the state of R2 (denoted by green “?”) in the experiment
that concluded R1 to be necessary—the row marked in green in the truth table below the network. The first assumption is when R2 is OFF. In this case, there are two
possible functions for T*: 1) T* = R1 and R2, and 2) T* = R1 or R2. If the rule were T* = R1 and R2, T would need to be OFF in the first row of the truth table, independent of
the state of R1, hence, this leads us to conclude that the rule is T* = R1 or R2—with the corresponding truth table shown on the top dashed edge. When R2 = OFF, this
rule becomes T* = R1, where R1 is indeed sufficient and necessary for T, making the “necessary” classification of R1→ T valid. The second assumption is when R2 is ON
but T is OFF when R1 is OFF, which leads us to conclude that the rule is T* = R1 and R2 (see bottom dashed edge). When R2 = ON, this rule is reduced to T* = R1, where
R1 is sufficient and necessary for T, making the “sufficient” conclusion about R1 → T valid. These two assumptions fall under the two templates of the dominant
regulators resolution method. Due to commutativity of the Boolean operators, the resulting Boolean function would be the samewhether the knowledge is about the
R2 → T experiment or about the R1 → T experiment.
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implication, sufficient regulators can be grouped with necessary
inhibitory regulators as well. In the previous example, if the edge
from B to T was necessary inhibitory, the Boolean rule would be
T* = (A or not B) and C and D. These resolution templates are
meant for a quick construction of the Boolean function from
incomplete information.

In the manual curation resolution method, whenever we come
across incompatible logic implications, we further browse the
literature to find information about the states (ON/OFF) of other
nodes of the network during the experiment that was used to infer
the logic implication. We then use this knowledge to pick the
more likely of the two possibilities detailed in the previous
paragraph. Often, there are more complex possibilities for the
Boolean function, which we handle on a case-by-case basis. In
many of these scenarios, we construct an incomplete truth table
from the literature knowledge and combine it with common
biological knowledge to obtain a Boolean function.

The automated and manual resolution methods can also be
applied simultaneously—we can obtain the two templates from
the automated method and pick one if it satisfies the existing
knowledge and the findings from the literature. The manual
curation method or the two methods used simultaneously will be
more thorough than just using the automatedmethod. However, the
automated method can be more useful to identify cases that need
manual attention, particularly when there are many
incompatibilities. Also, in scenarios where there is no additional
literature information available, the automated method is something
to rely on. Regardless of the method, the resulting function is one of

multiple possibilities compatible with the incomplete input
information. The function needs to be subjected to experimental
verification followed by improvement as necessary.

3.1.3 Incorporating the Mediator-Sharing Indirect
Relationships
After a draft network is constructed from the direct and indirect
but independent relationships between different nodes, we look at
the evidence for the remaining indirect relationships. Specifically,
we look at whether such relationships are reflected by paths or
subgraphs with logic implications in the network. If no relevant
path or subgraph is present, we add an edge to reflect the
relationship—see panels A, B, and C of Figure 4. In some
cases, an edge directed to one of the regulators of the target
would complete a path or subgraph and thus would be more
appropriate, as illustrated in Figure 4A for node S—most of these
instances are handled on a case-by-case basis. In some other
cases, this edge is pointing directly to the target node—this would
mean that the process behind the relationship of S and T is
independent of the other edges after all—this is illustrated in
Figures 4B,C. There are two such cases, one where the addition of
such an edge is logically compatible with other regulators so we
just connect the newly added regulator with the dominant
Boolean operator—illustrated in Figure 4B. The second case is
where the edge is incompatible with the other
regulators—illustrated in Figure 4C. In this case, we make the
newly added regulator the dominant regulator and update the
Boolean rule accordingly. In the case where a path/subgraph

FIGURE 3 |Dominant regulators method for the resolution of incompatible logic implications. Red edges indicate sufficient causal logic implication while blue edges
indicate necessary causal logic implication. In this example, regulators A and B are sufficient while regulators C and D are necessary for the target node T—this is an
incompatible combination of logic implications. The two templates for resolving this by the dominant regulators method are shown on the right. The top-right case shows
the first template where sufficient regulators are considered to be dominant, hence, the necessary regulators are grouped together, and this group is marked as
sufficient. In this case, nodeM is amediator node that is sufficient for T. The Boolean rule for the target node is: T* = A or B or (C and D), which is equivalent to T* = A or B or
M; where M* = C and D. The bottom-right case shows the second template where necessary regulators are considered to be dominant, hence, the group of sufficient
regulators is marked as necessary. In this case, M is a mediator node that is necessary for T. The Boolean rule for the target node is: T* = (A or B) and C and D which is
equivalent to T* = M and C and D; where M* = A or B.
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exists from the regulator to the target node, we have two cases. In
the first case, the causal logic implication of the path/subgraph is
not the same as the inferred causal logic implication of the new
regulator. In this case, we add an edge from the newly added
regulator to the target node—see Figure 4D. In the second case,
the causal logic implication of the path/subgraph is the same as
the inferred causal logic implication. In this case, we do not add a
new edge—see Figure 4E.

Once all the experimental evidence is incorporated in the
network, we use previously proposed logic reduction methods
such as logic binary transitive reduction (l-BTR) to reduce this
network and eliminate redundant edges (Albert et al., 2007).
Logic binary transitive reduction consists of eliminating an edge
from A to B if 1) it does not correspond to direct interactions and
2) there exists a path of the same sign and causal logic from
A to B.

3.2 Application of the Network Inference
Method to Biological Systems
3.2.1 The ABA Induced Stomatal Closure Network
We illustrate the inference process on a signal transduction
network that is known to be complex and for which a

significant (but still incomplete) amount of causal evidence
exists. The ABA induced stomatal closure network is a plant
signaling network that illustrates the process of closing of the
stomatal pores on the surface of leaves induced by the plant
hormone abscisic acid (ABA). ABA is produced in the plant in
response to drought or other desiccating stress. This stomatal
closure process involves the interconnected and interdependent
activities of many ion transport proteins, enzymes and other
biomolecules. This process is important to study since the
stomatal pores are responsible for intake of CO2 for
photosynthesis and water loss in transpiration. In this case
study, we build upon multiple previous studies on
understanding this complex process by the means of a
Boolean network model (Li, S. et al., 2006; Sun et al., 2014;
Albert et al., 2017).

We do a careful analysis of the literature relevant to ABA
induced stomatal closure. We derive pairwise relationships from
three-node observations as described earlier. We find the
associated causal logic corresponding to each pairwise
relationship (see Supplementary Table S1). If the experiment
reports strong qualitative results, we directly conclude the causal
logic effect from there. There are two categories of such strong
qualitative results. If the knockout of a gene (gene A) leads to a

FIGURE 4 | Different ways to incorporate an indirect relationship from a regulator S to a target node T when S is sufficient for T. Panels (A–C) describe the case
when there is no existing path or subgraph from the regulator (S) to the target node (T) and panels D and E describe the case when there is an existing path/subgraph
from S to T. (A). An existing regulator of T, namely R, is sufficient for T. If there is also biological support for a pathway or causal relationship from S to R, we complete a
sufficient path from S to T by adding a sufficient edge from S to R. (B). An existing regulator R of T is sufficient for T but there is no evidence to support a causal
relationship from S to R. In this case, we construct an independent sufficient edge from S to T. (C). An existing regulator R is necessary for T. We cannot be confident that
R does not influence S, thus the co-pointing theorem cannot be applied. Since the causal logic relationship between S and T is “sufficient”, we construct an independent
sufficient edge from S to T. (D). A path/subgraph exists from S to T, but its logic implication is not the same as the desired sufficient causal logic—this path is marked in
gray. In this case, we add an independent sufficient edge from S to T to satisfy the “sufficient” logic. (E) A sufficient path/subgraph exists from S to T. In this case, the
expected causal logic relationship already exists and hence we do not add any edges.
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drastic decrease in the activity of the protein product of
another gene (gene B), we conclude that gene A is
necessary for gene B. If there is evidence of a reaction or
physical interaction between the products of gene A and B, we
mark the edge as direct; otherwise it is marked “not direct”.
The second category is the observation that the supply of a
molecule (X) leads to a drastic increase in the activity of a
protein (Y), in such cases we conclude that X is sufficient for Y
(directly or indirectly). In some cases, the causal logic
implication has a lesser confidence (due to quantitative
nuances or to expected combinatorial effects of multiple
regulators), these cases are marked with an asterisk (*) in
Supplementary Table S1. We take extra care in finding the
Boolean functions in these cases as these relationships may
actually be neither sufficient nor necessary. The relationship
between the regulator D and target node T in the first template
(top-right) of Figure 3 is an example of such a complex
relationship. In the cases where it is applicable, we also use
the result on co-pointing subgraphs to infer edges, see
Supplementary Table S2. We use the causal logic
implication we find to infer the Boolean network by our
method. Here, we present selected cases that exemplify the
inference method.

Example of sufficient and necessary relationship. ABA
activates RCARs (Park et al., 2009). RCARs is a collective
node representing the PYR/PYL family of proteins, which are
soluble ABA receptors that directly bind to ABA. Their strict
dependence on ABA leads us to conclude a sufficient and
necessary relationship from ABA to RCARs. This is further
reinforced by the necessary nature of RCARs in the stomatal
closure process reported in Gonzalez-Guzman et al. (2012).

Example of sufficient relationship. SPHK1 and SPHK2 are
sphingosine kinases denoted together by one node as SPHK1/2.
Phosphatidic acid (PA) interacts with both SPHK1 and SPHK2
and upon binding, it increases the activity of SPHK1/2. An
increase in concentration of PA leads to increase in activity of

SPHKs 1 and 2 as reported in Figures 4, 5 of (Guo et al., 2011).
Hence, we conclude the logic implication of the edge from PA to
SPHK1/2 to be sufficient.

Example of necessary relationship. Ca2+c promotes PLDα1
activity (Qin et al., 1997). Ca2+c is required for the activation of the
enzyme PLDα1. The analysis in Qin et al. (1997) shows that a
reduction in the Ca2+ concentration leads to a reduction in the
PLDα1 activity—see Figures 3, 4 of (Qin et al., 1997). We
conclude that Ca2+c is necessary for PLDα1 activity.

Example of the use of co-pointing subgraphs to characterize
the indirect effect of ABA on nitric oxide-dependent guanylate
cyclase (NOGC1). It is well-known that ABA is sufficient for
stomatal closure (Joudoi et al., 2013; Albert et al., 2017). The
results in Joudoi et al. (2013) show that knockout of NOGC1
prevents stomatal closure (see Figure 2A of Joudoi et al. (2013).
Hence, NOGC1 is necessary for closure. As its name indicates,
NOGC1 is regulated by nitric oxide, thus it cannot be a source
node. As per the co-pointing subgraph theorem (Maheshwari and
Albert, 2017), this implies that ABA must be sufficient for
NOGC1, which must be reflected by a sufficient path or
subgraph in the resulting network (see Figure 5).

Example of adding an edge from an indirect regulator.
When we observe an indirect regulator that already has a path
to the target, we add an edge only if the path does not have the
same logic implication—the case shown in Figure 4D. For
example, the inference process is provided with the
information that OST1 is sufficient for CaIM. There is already
a path from OST1 to CaIM: OST1→ RBOH→ ROS→ GHR1→
CaIM, but the logic implication of this path is not “sufficient” and
hence we add a sufficient edge from OST1 to CaIM. The resulting
feed-forward loop is illustrated in Figure 6. As biological
knowledge increases, this edge will likely be refined and
populated by mediators or, refinement/correction of the
existing path may render this edge unnecessary.

Example of an indirect relationship reflected by a path/
subgraph. If an indirect regulator with a certain causal logic

FIGURE 5 | Use of co-pointing subgraph inference method in the ABA signaling network. The signal, and source node of the network, ABA, is well-known to be
sufficient for the target node stomatal closure and Nitric Oxide dependent Guanylate Cyclase (NOGC1) is a putative mediator of the signaling process. (A). Experimental
results show that NOGC1 knockout leads to a higher stomatal aperture, i.e., NOGC1 KO prevents the closing of the stomata, implying that NOGC1 is necessary for
closure. (B) As per the co-pointing subgraph theorem, ABA must be sufficient for NOGC1. In a previously reported Boolean model of ABA induced closure (Albert
et al., 2017), there is indeed a sufficient relationship from ABA to NOGC1.
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implication already has a path or subgraph to the target node with
the same logic implication, we do not add an edge—case shown in
Figure 4E. This happens frequently in the ABA network. Here,
we produce two examples that illustrate this. In the first case, we
infer a necessary regulation of stomatal closure by SLAC1 [an ion
channel that mediates anion efflux (AnionEM)] from the
experimental observation that SLAC1 knockout disrupts 8-
nitro-cGMP -induced stomatal closure as shown in Figure 10C
of (Joudoi et al., 2013). As shown in Figure 7A, there already
exists a path, SLAC1 → AnionEM → H2O Efflux → Closure,
comprised of necessary edges. Hence, the logic implication is
expressed by the path; we do not add the “necessary” edge from
SLAC1 to Closure—shown as a dashed edge. In the second case,
the input to our inference method indicates a necessary
regulation of 8-nitro-cGMP by NOGC1—see Figure 7B. The
path NOGC1 → cGMP → 8-nitro-cGMP is also necessary and
hence we do not add the NOGC1→ 8-nitro-cGMP edge shown as
a dashed edge.

The causal logic inference method is applied to 206
regulatory relationships collected in Supplementary Table
S1 of (Albert et al., 2017), among which 107 relationships
were known to be direct and 99 not known to be direct. An
example application is available on the GitHub repository
(see Methods). Among all these regulatory relationships, we
could assign a logic implication to 196, of which 47 have a
lower confidence (marked with an asterisk in
Supplementary Table S1). We used the result on co-
pointing subgraphs to infer 17 regulatory relationships, of
which 8 resulted in the inference of a new edge. The
remaining 9 cases corresponded to existing paths and
subgraphs of the same logic implication. We then used
the causal logic algorithm (Maheshwari and Albert, 2017)

to look at the logic implications of the regulators for each
node and construct the Boolean rules. In this process, 13 of
the 62 nodes had incompatibility in the logic implications of
the regulators. We used the dominant regulators method to
resolve 7 of these cases. For the remaining 6 cases, we re-
evaluated the causal logic implications and constructed
the complete or incomplete truth table from data in the
literature.

Our method, which only rarely needs manual interpretation
and knowledge of the biology beyond the causal logic implication
of an edge, re-discovered the Boolean rules of the ABA network
correctly in 48 of 62 cases of inferring Boolean rules (see
Supplementary Text S1). Following the second resolution
method, we did an in-depth literature study for the remaining
14 cases. The methodology of this in-depth study involved
constructing the incomplete truth table to find the exact rules.
This methodology led to updated rules in 3 of the 14 cases,
namely, PA (see Supplementary Table S3), AnionEM (see
Supplementary Table S4), and OST1 (see Supplementary
Table S5). Even after this update, only the rule for OST1
matched the previously reported rule (Albert et al., 2017). The
remaining 13 discrepancies are marked in bold in Supplementary
Text S1 and are explained in detail in Supplementary Text S2.
We believe they can be best resolved with new experimental
results, leading to higher confidence in one of the possible
Boolean functions.

3.2.2 The Network Corresponding to Epithelial to
Mesenchymal Transition
As a second case study we consider another process whose
underlying network is known to be complex: the epithelial to
mesenchymal transition (EMT). Steinway et al. (2014)
constructed a signal transduction network, and a Boolean
model, whose outcome is the transcriptional downregulation
of E-cadherin, which is a hallmark of EMT. As an additional test
of our method we re-infer the Booleanmodel from a subset of the
information that was used to construct the original model. We
derive logical observations for every regulator—direct target pair
from the Boolean functions of the EMT model, for a total of 127
edges (Steinway et al., 2014). We then modify this information to
be more representative of characteristic use cases of the inference
method. Specifically, we add indirect edges, or replace two-node
paths by indirect edges, for a total of 18 changes to the input
information. Some of these indirect edges correspond to a path of
the same causal logic implication. Other indirect edges replace
paths of the same causal implication. The logical observations
used as inputs to the inference process are detailed in
Supplementary Table S6. We use our inference method and
find that it correctly resolves each modification.

1. Edges that correspond to a path of the same causal logic
implication are reduced during the inference process.
Example: The path TCF/LEF → GLI → SNAI1 is a
sufficient path. So, the added TCF/LEF → SNAI1
sufficient indirect edge is redundant; it is reduced in
the inference process – see Figure 8.

FIGURE 6 | Addition of sufficient edge from OST1 to CaIM to reflect the
causal logic inferred from the literature. The sufficient regulatory relationship of
OST1 and CaIM is not reflected in the path given by OST1→RBOH→ROS→
GHR1→CaIM. The path from OST1 to GHR1 is necessary but the edge
fromGHR1 to CaIM is neither sufficient nor necessary since the rule for CaIM is
CaIM* = Actin Reorganization or (NtSyp121 and GHR1 and MRP5) or not
ABH1 or not ERA1 or OST1. Hence, the total path from OST1 to CaIM does
not have any logic implication. The sufficient edge fromOST1 to CaIM is hence
added. Edges in red color are sufficient, in blue color are necessary, and in
gray color are neither sufficient nor necessary.
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2. In cases where a two-node path is replaced by an
indirect edge of the same logic implication, the
inference method indicates potential mediator
nodes, thus aiding the biologist in inferring the
mediator – see Figure 9. We verified that all the
suggested mediators were in fact actual mediators in
the published EMT model.

3. A variant of the previous case is when a two-edge path
between a regulator and a target is disrupted by
deleting either the incoming or outgoing edge of the
mediator node and is replaced by an indirect edge of

the same logic implication. The inference method
completes the path and infers a specific edge and
logic implication for the mediator. This gives an
even stronger aide for the biologist to infer the
mediator compared to the previous case. An
example of this case is listed in Figure 10.

4. The inference method used the co-pointing theorem to
resolve discrepancies between incompatible indirect logic
implications. An example is illustrated in Figure 11.

The Boolean functions resulting from the inference process are
given in Supplementary Text S3. They are identical to the
functions of the original EMT model.

FIGURE 7 | Example of indirect regulators with the inferred causal logic implication reflected in a path. (A). SLAC1 is inferred to be a necessary regulator of Closure,
which is reflected by the necessary path formed by SLAC1, AnionEM, H2O Efflux, and Closure. Hence the dashed edge from SLAC1 to Closure is not added to the
network. (B) NOGC1 is inferred to be a necessary regulator of 8-nitro-cGMP, which is reflected by the necessary path formed by NOGC1, cGMP, and 8-nitro-cGMP.
Hence the dashed edge from NOGC1 to 8-nitro-cGMP is not added to the network.

FIGURE 8 | Example of an input perturbation where an indirect regulator
has the same logic implication reflected by a path formed by direct regulators.
TCF/LEF is a sufficient indirect regulator of SNAI1 and a sufficient direct
regulator of GLI which is a sufficient direct regulator of SNAI1. Hence the
sufficient indirect edge from TCF/LEF to SNAI1 is reflected in the sufficient
path TCF/LEF → GLI → SNAI1.

FIGURE 9 | Example of mediator node inference. The sufficient indirect
regulation of PAK1 by TGFβR can be mediated by CDC42 as a sufficient path.
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To further test the accuracy and sensitivity of our method, we
reduced the input information being provided to the code and
assessed the accuracy of the resultant output. We provided ~80%
of the initial input information (see Supplementary Table S7)
and found that the method correctly infers the Boolean function
of 41 of the 59 nodes in the network (see Supplementary Text
S8), i.e., ~70% of the functions are correctly inferred.

4 DISCUSSION

In this work, we present a combined Boolean network
inference method that infers the network topology and the
Boolean function for each node by assigning a causal logic
implication to pairs of network components based on
parsimonious interpretation of the results of perturbation
experiments. This method significantly reduces the manual
work needed to construct a Boolean network and infer its
update rules. Our method not only eases the model
construction process but also points to conflicting elements
of the network which can thereafter be used to guide follow-up
experiments and hence improve biological understanding. In
certain stages of the model construction process we have more
than one option for Boolean functions, which can lead to an
in-depth re-examination of the interpretation of experimental
results. This often provides specific relationships to search for
in the literature that might have been missed in the
initial scan.

In addition to indicating the knowledge gaps that need
filling, this inference method can also give hints about the
direct or indirect nature of relationships. For example, if a
regulator is not known to be direct and the underlying causal
logic relationship is found to be fulfilled by a path or a
subgraph, we have reason to believe that this relationship is
indirect, and we have a list of putative mediators to consider.
This was shown in the specific case of Ca2+c inhibition of PP2Cs
in Maheshwari et al. (2019); the causal logic inference method
makes it generally applicable.

Our application of this causal logic inference method to the
well-studied ABA signaling process served as an excellent
testbed for the method. A well-supported Boolean model of
ABA-induced stomatal closure was reported in Albert et al.
(2017), which we use to test the results of this inference
method. The inferred Boolean functions of the ABA
network (see Supplementary Text S1) particularly highlight
the fact that this inference method gives a logical justification
for choosing one of multiple possibilities in the face of
insufficient knowledge. For example, the published and the
inferred function for SLAH3 represent two different ways of
resolving an incompatibility in the existing evidence; the
inferred function is different from the published rule in
Albert et al. (2017) on the basis of the stronger evidence of
the sufficient inhibitory relationships between one of its
regulators, ABI1, and SLAH3. Causal logic methodology
working alongside other Boolean network analysis methods
has helped us understand and improve the ABA network
model (Maheshwari et al., 2019; Maheshwari et al., 2020).
Despite the complexity of the network, we obtain promising
results on this network using the causal logic inference
method.

This method has limitations that should be addressed in
future research. Any gaps or errors in the biological
information used for inferring the causal logic could
contribute to incorrect inferences. Furthermore, the
assumption that a certain state of the regulator implies a
state of the target node irrespective of the state of the other
regulators does not always hold and instead the state of the
target node is determined by a combination of the states of all
regulators. Incompatibility between the regulators’
designations is an indicator of the inappropriateness of the
causal implication. We proposed methods to resolve
incompatibility by weakening the assumption and replacing

FIGURE 10 | Example of half-known mediator node inference. The
inference input information reveals that TCF/LEF is indirectly sufficient for SHH
and that GLI is directly sufficient for SHH. This helps the biologist infer that the
indirect sufficient regulation of SHH by TCF/LEF could be via GLI and
potentially achieved by a TCF/LEF → GLI sufficient edge.

FIGURE 11 | Example of using co-pointing theorem for inference in the
EMT network. RAS is sufficient inhibitory for E-cadherin via a subgraph and
TWIST is a necessary inhibitory for E-cadherin. Sufficient inhibitory and
necessary inhibitory logic implications are not compatible but since they
share the same regulator, we can use the co-pointing theorem to conclude
that RAS must be sufficient for TWIST1, which will result in the elimination of
the edge from RAS to E-cadherin in the final version of the network.
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it with multiple regulators being collectively sufficient or
necessary. An undocumented regulator can also introduce
incompatibility between the known regulators’ designations.
Developing systematic methodologies to consider
undocumented regulators will be the topic of future work.
In cases of observed failure of the causal logic implication the
fallback is to use manual inference from the collective
experimental evidence, see for example the rule for OST1 in
the ABA network (see Supplementary Table S5).

We envision the use of this method as one step in the cycle
between experiment and modeling: its use speeds up the
construction of an initial parsimonious Boolean model and
allows more effort to be dedicated to experimental verification
of the model and to the resulting model improvement. Future
applications of this method for the inference of other signal
transduction or gene regulatory networks will help us further
refine this theory to further decrease the manual
interpretation required to obtain the Boolean functions.
We also believe that one can expand the causal logic
inference method to multi-level discrete networks, as have
been constructed for stomatal response (Sun et al., 2014; Gan
and Albert, 2016). In these networks, each biomolecule has
multiple levels, for example, 0, 1, and 2, and each level is
represented by an individual node that has corresponding
Boolean functions for different levels of the regulator nodes.
“Necessary” can be extended to mean that the lowest level of
the regulator, i.e., when the regulator is inactive, implies the
lowest level of the target, i.e., the inactivity of the target, and
“sufficient” can be extended to mean that the highest level of
the regulator implies the highest level of the target. Criteria
for identification of the group of nodes that together are
sufficient can be derived in various modeling frameworks,
e.g., in threshold models a node may be activated if two out of
its three possible activators are present.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

PM, SA, and RA designed the research and methodology and
wrote the manuscript. PM and RA performed the analyses. All
authors contributed to the article and approved the submitted
version.

FUNDING

This work was supported by NSF grant MCB-1715826 to SA and
RA and NSF grant IIS-1814405 to RA. The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

ACKNOWLEDGMENTS

We thank Jorge Gómez Tejeda Zañudo, Xiao Gan, and Gang
Yang for helpful discussions.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.836856/
full#supplementary-material

REFERENCES

Abou-Jaoudé, W., Traynard, P., Monteiro, P. T., Saez-Rodriguez, J., Helikar, T.,
Thieffry, D., et al. (2016). Logical Modeling and Dynamical Analysis of Cellular
Networks. Front. Genet. 7, 94. doi:10.3389/fgene.2016.00094

Aghamiri, S. S., and Delaplace, F. (2021). “TaBooN Boolean Network Synthesis
Based on Tabu Search,” in IEEE/ACM Transactions on Computational Biology
and Bioinformatics (IEEE/ACM), 1. doi:10.1109/tcbb.2021.3063817

Albert, R., Acharya, B. R., Jeon, B.W., Zañudo, J. G. T., Zhu,M., Osman, K., et al. (2017).
A New Discrete Dynamic Model of ABA-Induced Stomatal Closure Predicts Key
Feedback Loops. PLoS Biol. 15 (9), e2003451. doi:10.1371/journal.pbio.2003451

Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., et al. (2007). A
Novel Method for Signal Transduction Network Inference from Indirect
Experimental Evidence. J. Comput. Biol. 14 (7), 927–949. doi:10.1089/cmb.2007.0015

Azpeitia, E., Weinstein, N., Benítez, M., Mendoza, L., and Alvarez-Buylla, E. R. (2013).
Finding Missing Interactions of the Arabidopsis thaliana Root Stem Cell Niche
Gene Regulatory Network. Front. Plant Sci. 4, 110. doi:10.3389/fpls.2013.00110

Berestovsky, N., and Nakhleh, L. (2013). An Evaluation of Methods for Inferring
Boolean Networks from Time-Series Data. PloS One 8 (6), e66031. doi:10.1371/
journal.pone.0066031

Chevalier, S., Noël, V., Calzone, L., Zinovyev, A., and Paulevé, L. (2020). “Synthesis
and Simulation of Ensembles of Boolean Networks for Cell Fate Decision,” in
International Conference on Computational Methods in Systems Biology
(Springer), 193–209. doi:10.1007/978-3-030-60327-4_11

Dinh, J.-L., Farcot, E., and Hodgman, C. (2017). The Logic of the Floral Transition:
Reverse-Engineering the Switch Controlling the Identity of Lateral Organs.
PLoS Comput. Biol. 13 (9), e1005744. doi:10.1371/journal.pcbi.1005744

Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M., and Xenarios, I. (2016).
Boolean Regulatory Network Reconstruction Using Literature Based
Knowledge with a Genetic Algorithm Optimization Method. BMC
Bioinforma. 17 (1), 410–419. doi:10.1186/s12859-016-1287-z

Gan, X., and Albert, R. (2016). Analysis of a Dynamic Model of Guard Cell
Signaling Reveals the Stability of Signal Propagation. BMC Syst. Biol. 10 (1), 78.
doi:10.1186/s12918-016-0327-7

Ghaffarizadeh, A., Podgorski, G. J., and Flann, N. S. (2017). Applying Attractor
Dynamics to Infer Gene Regulatory Interactions Involved in Cellular
Differentiation. Biosystems 155, 29–41. doi:10.1016/j.biosystems.2016.12.004

Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E.,
Bassel, G. W., et al. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a
Major Role in Quantitative Regulation of Stomatal Aperture and
Transcriptional Response to Abscisic Acid. Plant Cell 24 (6), 2483–2496.
doi:10.1105/tpc.112.098574

Guo, L., Mishra, G., Taylor, K., and Wang, X. (2011). Phosphatidic Acid Binds and
Stimulates Arabidopsis Sphingosine Kinases. J. Biol. Chem. 286 (15),
13336–13345. doi:10.1074/jbc.M110.190892

Horvath, S., Zhang, B., Carlson, M., Lu, K. V., Zhu, S., Felciano, R. M., et al. (2006).
Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as
a Molecular Target. Proc. Natl. Acad. Sci. U.S.A. 103 (46), 17402–17407. doi:10.
1073/pnas.0608396103

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 83685613

Maheshwari et al. Boolean Network Inference

152

https://www.frontiersin.org/articles/10.3389/fgene.2022.836856/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.836856/full#supplementary-material
https://doi.org/10.3389/fgene.2016.00094
https://doi.org/10.1109/tcbb.2021.3063817
https://doi.org/10.1371/journal.pbio.2003451
https://doi.org/10.1089/cmb.2007.0015
https://doi.org/10.3389/fpls.2013.00110
https://doi.org/10.1371/journal.pone.0066031
https://doi.org/10.1371/journal.pone.0066031
https://doi.org/10.1007/978-3-030-60327-4_11
https://doi.org/10.1371/journal.pcbi.1005744
https://doi.org/10.1186/s12859-016-1287-z
https://doi.org/10.1186/s12918-016-0327-7
https://doi.org/10.1016/j.biosystems.2016.12.004
https://doi.org/10.1105/tpc.112.098574
https://doi.org/10.1074/jbc.M110.190892
https://doi.org/10.1073/pnas.0608396103
https://doi.org/10.1073/pnas.0608396103
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Huang, S., Eichler, G., Bar-Yam, Y., and Ingber, D. E. (2005). Cell Fates as High-
Dimensional Attractor States of a Complex Gene Regulatory Network. Phys.
Rev. Lett. 94 (12), 128701. doi:10.1103/physrevlett.94.128701

Joudoi, T., Shichiri, Y., Kamizono, N., Akaike, T., Sawa, T., Yoshitake, J., et al.
(2013). Nitrated Cyclic GMP Modulates Guard Cell Signaling inArabidopsis.
Plant Cell 25 (2), 558–571. doi:10.1105/tpc.112.105049

Kachalo, S., Zhang, R., Sontag, E., Albert, R., and DasGupta, B. (2008). NET-
SYNTHESIS: A Software for Synthesis, Inference and Simplification of Signal
Transduction Networks. Bioinformatics 24 (2), 293–295. doi:10.1093/
bioinformatics/btm571

Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in
Evolution. USA: Oxford University Press.

Khalis, Z., Comet, J.-P., Richard, A., and Bernot, G. (2009). The SMBioNet Method
for Discovering Models of Gene Regulatory Networks. Genes, Genomes
Genomics 3 (1), 15–22.

La Rota, C., Chopard, J., Das, P., Paindavoine, S., Rozier, F., Farcot, E., et al. (2011).
A Data-Driven Integrative Model of Sepal Primordium Polarity in Arabidopsis.
Plant Cell 23 (12), 4318–4333. doi:10.1105/tpc.111.092619

Li, S., Assmann, S. M., and Albert, R. (2006). Predicting Essential Components of
Signal Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid
Signaling. PLoS Biol. 4 (10), e312. doi:10.1371/journal.pbio.0040312

Li, Y., Adeyeye, J. O., Murrugarra, D., Aguilar, B., and Laubenbacher, R. (2013).
Boolean Nested Canalizing Functions: A Comprehensive Analysis. Theor.
Comput. Sci. 481, 24–36. doi:10.1016/j.tcs.2013.02.020

Maheshwari, P., Du, H., Sheen, J., Assmann, S.M., andAlbert, R. (2019).Model-driven
Discovery of Calcium-Related Protein-Phosphatase Inhibition in Plant Guard Cell
Signaling. PLoS Comput. Biol. 15 (10), e1007429. doi:10.1371/journal.pcbi.1007429

Maheshwari, P., and Albert, R. (2017). A Framework to Find the Logic Backbone of a
Biological Network. BMC Syst. Biol. 11 (1), 122. doi:10.1186/s12918-017-0482-5

Maheshwari, P., Assmann, S. M., and Albert, R. (2020). A Guard Cell Abscisic Acid
(ABA) Network Model that Captures the Stomatal Resting State. Front. Physiol.
11, 927. doi:10.3389/fphys.2020.00927

Muñoz, S., Carrillo, M., Azpeitia, E., and Rosenblueth, D. A. (2018). Griffin: A Tool
for Symbolic Inference of Synchronous Boolean Molecular Networks. Front.
Genet. 9, 39. doi:10.3389/fgene.2018.00039

Müssel, C., Hopfensitz, M., and Kestler, H. A. (2010). BoolNet—An R Package for
Generation, Reconstruction and Analysis of Boolean Networks. Bioinformatics
26 (10), 1378–1380.

Pandey, S., Wang, R. S., Wilson, L., Li, S., Zhao, Z., Gookin, T. E., et al. (2010). Boolean
Modeling of Transcriptome Data Reveals Novel Modes of Heterotrimeric
G-Protein Action. Mol. Syst. Biol. 6 (1), 372. doi:10.1038/msb.2010.28

Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., et al. (2009).
Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of
START Proteins. Science 324 (5930), 1068–1071. doi:10.1126/science.1173041

Qin, W., Pappan, K., and Wang, X. (1997). Molecular Heterogeneity of
Phospholipase D (PLD). J. Biol. Chem. 272 (45), 28267–28273. doi:10.
1074/jbc.272.45.28267

Raeymaekers, L. (2002). Dynamics of Boolean Networks Controlled by Biologically
Meaningful Functions. J. Theor. Biol. 218 (3), 331–341. doi:10.1006/jtbi.2002.3081

Saadatpour, A., and Albert, R. (2013). Boolean Modeling of Biological Regulatory
Networks: AMethodology Tutorial.Methods 62 (1), 3–12. doi:10.1016/j.ymeth.
2012.10.012

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal
Protein-Signaling Networks Derived from Multiparameter Single-Cell Data.
Science 308 (5721), 523–529. doi:10.1126/science.1105809

Steinway, S. N., Zañudo, J. G. T., Ding, W., Rountree, C. B., Feith, D. J., Loughran,
T. P., et al. (2014). Network Modeling of TGFβ Signaling in Hepatocellular
Carcinoma Epithelial-To-Mesenchymal Transition Reveals Joint Sonic
Hedgehog and Wnt Pathway Activation. Cancer Res. 74 (21), 5963–5977.
doi:10.1158/0008-5472.CAN-14-0225

Sun, Z., Jin, X., Albert, R., and Assmann, S. M. (2014). Multi-Level Modeling of
Light-Induced Stomatal Opening Offers New Insights into its Regulation
by Drought. PLoS Comput. Biol. 10 (11), e1003930. doi:10.1371/journal.
pcbi.1003930

Terfve, C., Cokelaer, T., Henriques, D., MacNamara, A., Goncalves, E., Morris, M.
K., et al. (2012). CellNOptR: A Flexible Toolkit to Train Protein Signaling
Networks to Data Using Multiple Logic Formalisms. BMC Syst. Biol. 6 (1), 133.
doi:10.1186/1752-0509-6-133

Wynn, M. L., Consul, N., Merajver, S. D., and Schnell, S. (2012). Logic-Based
Models in Systems Biology: A Predictive and Parameter-Free Network Analysis
Method. Integr. Biol. 4 (11), 1323–1337. doi:10.1039/c2ib20193c

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Maheshwari, Assmann and Albert. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 83685614

Maheshwari et al. Boolean Network Inference

153

https://doi.org/10.1103/physrevlett.94.128701
https://doi.org/10.1105/tpc.112.105049
https://doi.org/10.1093/bioinformatics/btm571
https://doi.org/10.1093/bioinformatics/btm571
https://doi.org/10.1105/tpc.111.092619
https://doi.org/10.1371/journal.pbio.0040312
https://doi.org/10.1016/j.tcs.2013.02.020
https://doi.org/10.1371/journal.pcbi.1007429
https://doi.org/10.1186/s12918-017-0482-5
https://doi.org/10.3389/fphys.2020.00927
https://doi.org/10.3389/fgene.2018.00039
https://doi.org/10.1038/msb.2010.28
https://doi.org/10.1126/science.1173041
https://doi.org/10.1074/jbc.272.45.28267
https://doi.org/10.1074/jbc.272.45.28267
https://doi.org/10.1006/jtbi.2002.3081
https://doi.org/10.1016/j.ymeth.2012.10.012
https://doi.org/10.1016/j.ymeth.2012.10.012
https://doi.org/10.1126/science.1105809
https://doi.org/10.1158/0008-5472.CAN-14-0225
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1186/1752-0509-6-133
https://doi.org/10.1039/c2ib20193c
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Optimal Sparsity Selection Based on
an Information Criterion for Accurate
Gene Regulatory Network Inference
Deniz Seçilmiş 1, Sven Nelander2 and Erik L. L. Sonnhammer1*

1Department of Biochemistry and Biophysics, Science for Life Laboratory, StockholmUniversity, Solna, Sweden, 2Science for Life
Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden

Accurate inference of gene regulatory networks (GRNs) is important to unravel unknown
regulatory mechanisms and processes, which can lead to the identification of treatment
targets for genetic diseases. A variety of GRN inference methods have been proposed
that, under suitable data conditions, perform well in benchmarks that consider the entire
spectrum of false-positives and -negatives. However, it is very challenging to predict which
single network sparsity gives the most accurate GRN. Lacking criteria for sparsity
selection, a simplistic solution is to pick the GRN that has a certain number of links
per gene, which is guessed to be reasonable. However, this does not guarantee finding the
GRN that has the correct sparsity or is the most accurate one. In this study, we provide a
general approach for identifying the most accurate and sparsity-wise relevant GRN within
the entire space of possible GRNs. The algorithm, called SPA, applies a “GRN information
criterion” (GRNIC) that is inspired by two commonly used model selection criteria, Akaike
and Bayesian Information Criterion (AIC and BIC) but adapted to GRN inference. The
results show that the approach can, in most cases, find the GRNwhose sparsity is close to
the true sparsity and close to as accurate as possible with the given GRN inferencemethod
and data. The datasets and source code can be found at https://bitbucket.org/
sonnhammergrni/spa/.

Keywords: sparsity selection, information criteria, gene regulatory network inference, gene expression data, noise
in gene expression

INTRODUCTION

Genes are responsible for orchestrating the biochemical processes in a living organism, which is only
possible through a well-organized system of gene regulatory interactions called a gene regulatory
network (GRN). An alteration of the system may result in complex genetic diseases, and potential
treatment targets for these diseases can be identified by inferring reliable GRNs as they can reveal
important mechanisms in the underlying system.

Despite the importance of an accurate GRN inference, it has been difficult to achieve due to
several data-related issues such as biases and noise (Tjärnberg et al., 2015; Tjärnberg et al., 2017). The
application of preprocessing approaches to noisy datasets followed by GRN inference through an
accurate method has been shown on in silico data to overcome the noise-related obstacles in the
inference to a degree (Seçilmiş et al., 2020; Seçilmiş et al., 2021), when the accuracy of the GRN
inference can be measured with a known true network which is available for synthetically generated
data. The accuracy is most commonly measured by the area under the precision-recall and receiver-
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operating characteristic curves (AUPR and AUROC,
respectively) (Huynh-Thu et al., 2010; Madar et al., 2010;
Marbach et al., 2012; Bellot et al., 2015), that consider the
entire range of sparsities, from an empty to a full network.

For practical purposes, however, it is important to be able to infer
the single best GRN, which should be as close to the true GRN as
possible. In a benchmark with simulated data from a known true
network, this can be assessed by accuracy measures such as the F1-
score. However, in the absence of a known true network when using
real biological datasets where underlying novel genetic interactions
are yet to be identified as potential treatment targets, none of these
measurements can be used to evaluate the accuracy of the inferred
GRNs. In such situations, the selection of the best GRN is of critical
importance and most often made by an arbitrary cut-off on the
sparsity, which is usually ~1–3 three links per gene on average for
biological reasons (Martínez-Antonio et al., 2008; Seçilmiş et al.,
2020). However, this approach does not guarantee the selected GRN
to represent the best and most optimal model within the space of all
possibilities in terms of both accuracy and the information content.
Previous attempts have been published, for instance, Tjärnberg et al.
(2013) proposed amethod to reconstruct the gene expression from a
set of inferred GRNs whose sparsity ranges from full to empty, and
showed that this approach works well for informative data but not
when the noise level is high.Morgan et al. (2020) proposed amethod
for assessing GRN quality based on cross-validated fitting of the
GRN’s topology to expression data which was applied to select an
optimal GRN for a biological dataset.

Methods such as LASSO (Tibshirani, 1996; Friedman et al., 2010)
use a regularization approach through an internal penalty term
(called the L1-norm) to obtain a sparse GRN. However, they do
not offer any guidance on what value to set the L1 penalty to find the
optimal sparsity. To this end, one could potentially use the Akaike
Information Criterion (AIC) or Bayesian Information Criterion
(BIC), since these approaches would, in principle, minimize the
information loss with the minimum required number of
independent variables across all given models. These approaches
have previously been used in combination with penalty-based GRN
inference approaches (Menéndez et al., 2010), such as the graphical
LASSO (Friedman et al., 2008). However, it failed for AIC and is also
not applicable to non-penalty-based GRN inference methods such as
GENIE3 (Huynh-Thu et al., 2010).

Here, we present SPA, a sparsity selection algorithm that is
inspired by the AIC and BIC in terms of introducing a penalty
term to the goodness of fit, but is developed particularly for GRN
inference to identify the most mathematically optimal and accurate
GRN within a set of GRNs from varying sparsities inferred by any
inference method. The main idea behind the algorithm is to
determine the optimal model in which regulator genes are alone
capable of explaining target genes with minimum information loss,
given the gene expression data and its perturbation design.

METHODS

SPA: The Sparsity Selection Algorithm
SPA is a model selection pipeline that takes as input S GRNs
with different sparsities inferred by any inference method,

gene expression measured, and the perturbation design. It then
assesses the quality of each input GRN i (1, . . . , S) based on its
information content as detailed in Algorithm 1, and identifies
the model minimizing GRNIC as the best GRN (Figure 1).

Algorithm 1.

The assessment of a GRN model’s information content is
made by an information criterion inspired by AIC and BIC,
called GRNIC from GRN Information Criterion, and
calculated according to Eq. 1. This criterion aims to balance
the error in predicting the underlying gene expression
(badness of fit) and the number of variables (regulators) in
the model. Therefore, the GRN that minimizes GRNIC is
expected to include a set of variables which alone are
sufficient enough to reconstruct the measured gene
expression, without needing more variables.

GRNIC � K + L. (1)
In Eq. 1, K refers to the normalized penalty term, here set to

the number of genes that regulate at least one other gene in the
GRN, and L denotes the normalized badness of fit, here based on
the prediction errors of the estimated gene expression from the
GRN, calculated as described in Algorithm 1. The model for
predicting the gene expression from a GRN i as -Ai

† x P is
derived by Tjärnberg et al. (2015). It is preceded with a
conditional step of removing singular values below 1/max(Y)
that is almost never used but is included as a safeguard against
unstable inversions.

The normalization step to the terms of GRNIC was added as
their units do not naturally relate to each other, making them
incomparable without it. Finding the minimum GRNIC
rewards low badness of fit (high goodness of fit)
considering a penalty that increases with the number of
variables. To implement GRNIC as close to AIC as possible,
we here took e to the power of the badness of fit as an opposite
equivalent of taking the natural logarithm of the goodness
of fit.
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GRN Inference
We applied two different types of approaches: non-penalty-based
and penalty-based methods. As the non-penalty-based method
we chose GENIE3, and for the penalty-based methods, we chose
LASSO and Ridge regression. The code for the used methods is
available at https://bitbucket.org/sonnhammergrni/genespider.

GENIE3 was run with the following parameter settings:
number of regulators: all genes; tree method: random forests;
and number of trees: 1,000. Note that reverse edge direction is
used because it is considerably more accurate. This resulted in a
fully connected GRN with directed interactions that all have
positive weights. All GRNs were then extracted whose sparsity
ranged from 1–5 interactions per gene on average. For a 100-gene
dataset, this corresponds to 401 different sparsities. The rationale
behind this is that a biologically relevant GRN would contain
~1–3 interactions per gene on average (Martínez-Antonio et al.,
2008; Marbach et al., 2012).

LASSO was run as described by Tjärnberg et al. (2015) using
the glmnet Matlab package with alpha = 1, and GRNs were
inferred with as many sparsities as can be obtained given the data.
This was followed by extracting the GRNs whose sparsity ranges
from 1–5 interactions per gene on average, following the same
aforementioned biological motivation.

Ridge regression was also run using the glmnet Matlab
package with alpha = 0. Different sparsities were obtained by
applying cutoffs to the full GRN that Ridge regression outputs.

Data
Five 100-gene subnetworks were extracted from the complete
E. coli GRN available in the GeneNetWeaver network and data
generation tool (Schaffter et al., 2011) to be used as the “true”
GRNs (in other words, the underlying regulatory system, where
the topological properties of the E. coli network are preserved), for
gene expression data generation. Autoregulatory interactions

(self-loops) exist in these true GRNs for the system’s stability,
but none of them was used later on when measuring inference
accuracy, to make it solely determined by non-self-loops. To
maximize the regulatory effect in subsets, all genes were requested
to be a transcription factor, yet only a fraction of all genes had
regulatory effects: 0.53, 0.52, 0.53, 0.50, and 0.53 for the five true
GRNs. The vertices (genes) were drawn randomly with the
“greedy” edge selection (a GeneNetWeaver network extraction
setting). The sparsity of the extracted true GRNs is defined as the
number of interactions per gene on average, and ranges between
1.5 and 1.95 excluding self-loops. For each true subnetwork,
noise-free steady-state single knockdown gene expression data
were generated from ordinary differential equations (a data
generation setting in GeneNetWeaver). Fold changes in gene
expression following the system’s perturbations were calculated
as log base two of the ratio between experiment and wild-type
expression. The gene expression data created by GeneNetWeaver
are an NxN matrix Y (N = 100) of single replicate experiments,
which places the perturbation indications as −1 on the diagonal in
the experiment design matrix P. Then, concatenating these
matrices three times with themselves yields a three-replicate
matrix of size Nx3N. We separately generated the
corresponding Gaussian noise matrices with two different
signal-to-noise ratios (SNRs) corresponding to “high” and
“low” noise levels from Supplementary Equation S1 and
added these to the Y matrix.

RESULTS

We performed GRN inference using GENIE3, LASSO, and Ridge
regression on synthetic datasets and measured the GRN inference
accuracy in terms of the F1-score. Given a set of GRNs of different
sparsities for each method, we applied GRNIC model selection

FIGURE 1 |Workflow of SPA. SPA takes a set of inferred GRNs with varying sparsities, the measured gene expression in fold changes, and the perturbation design
as input. It then uses the GRN Information Criterion (GRNIC) as described in Algorithm 1 and identifies the GRN that minimizes GRNIC as the best GRN.
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criterion as described in the Methods section (Algorithm 1; Eq.
1). F1-scores of the selected GRNs were then compared with the
maximum F1-score obtained from the investigated range
(Figure 2). In addition to this, we evaluated the sparsities of
the selected GRNs (Figure 3).

The results show that the maximum accuracy of the GRN
inference method can be nearly achieved by SPA using GRNIC,
for all applied inference methods. In particular, we observed a
noise-related trend in the accuracy in terms of the F1-score,
where the GRN inference accuracy increased relative to the
decreasing noise, most notably for LASSO and Ridge
regression, from “high” to “low” noise. SPA was able to
identify GRNs very close to the maximum accuracy GRNs for
all methods in most datasets. There was a slight deviation from
the maximum achieved F1-score for network 1 for GENIE3,
networks 1 and 4 for LASSO, and network 5 for Ridge regression,
at the low noise level. At the high noise level, SPA was able to
identify GRNs whose F1-scores are almost identical to the
maximum achieved for all methods.

We analyzed the two terms of the GRN information criterion
(GRNIC) from Eq. 1, that is, the penalty term (K) and badness of
fit term (L), separately, and assessed their effect on GRNIC
(Supplementary Figures S1–S5). We observed that in most
cases, the two terms of GRNIC behave as expected, where the
badness of fit decreases relative to the increasing number of
regulators in the model (see e.g. Supplementary Figure S1A).
However, there are a few cases that do not behave as expected,
which we investigate as follows.

Issue of GRNIC Curve Not Finding a
Minimum at the True Sparsity
We observed a few cases where, even though both the penalty
term (K) and the badness of fit term (L) behave as expected, the
resulting GRNIC values are not minimized around the true
sparsity, and instead peak here (see e.g. Supplementary Figure
S2E). This situation can occur if the increase in the number of
regulators goes faster than the decrease in the badness of fit,

FIGURE 2 | Performance evaluation of the sparsity selection pipeline in terms of the F1-score. F1-scores of the inferred GRNs from datasets generated by
GeneNetWeaver with (A) high and (B) low noise levels. Each panel contains F1-scores from five datasets for two categories: GRNIC (circle) and maximum achieved in
inference (star).

FIGURE 3 | Performance evaluation of the sparsity selection pipeline in terms of sparsity. The sparsity of the inferred GRNs (the GRN having the maximum F1-
score, and the one selected by GRNIC) is shown in terms of the average number of links for (A) high and (B) low noise levels for the five networks. The sparsities of the five
true GRNs are shown in an extra column to the right.
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causing the penalty term to dominate the badness of fit when
calculating GRNIC. There is no obvious solution to this issue, but
either an improved function that better captures the badness of fit
or an adjustment to the penalty term K could potentially
resolve it.

Issue of Aberrant Badness of Fit
The badness of fit is expected to decrease with the addition of
regulators, that is, going from sparser GRNs to denser ones,
because of the increasing number of variables. However, a very
clear parabolic curve is formed by the badness of fit values from
the GENIE3 GRNs at the high noise level dataset generated from
network 4 (Supplementary Figure S4A) and less clearly from
network 3 (Supplementary Figure S3A). This type of behavior,
however, does not prevent SPA from finding the optimal sparsity.
Another concerning behavior of the badness of fit was observed
for Ridge regression GRNs at the low noise level, especially for
networks 3–5, where the badness of fit increases relative to the
increasing number of regulators (Supplementary Figures S2F,
S4F), which is the opposite of what is expected. We have not
found any clear explanation as to why these two situations occur.
In both types of aberrant behavior, the increased badness of fit
with increased GRN density indicates that the larger models
incorporate links that are less predictive, for instance, false
positives that have a strong negative impact on the goodness
of fit.

To explore how the badness of fit curves compare to what is
expected by chance, we applied an experiment-wise random
shuffling to the normalized gene expression matrices
reconstructed by the GRN inference methods. Both badness of
fit curves, the actual and shuffled, are visualized together in
Supplementary Figures. S6–S10. The trend observed in most
of the actual badness of fit curves, that is, gradually decreasing
badness of fit with decreasing sparsity, was lost for the shuffled
curves, which also had a very stochastic behavior. This adds
further support to the validity of the applied badness of fit for the
purpose of assessing the ability of a GRN to reconstruct the
underlying gene expression.

Despite a few aberrant cases, the GRNs identified by SPA are
almost as accurate as of the maximum achieved accuracy. To
further compare the sparsities of the GRNs identified by SPA with
those that achieved the maximum accuracy levels among others,
we calculated the number of interactions per gene on average
(Figure 3).

For GENIE3, SPA selected GRNs closer to the true sparsity than
the other methods, and for most networks, it also came closer than
the most accurate sparsity. This suggests that while GENIE3
predictions are not optimal, the criteria applied by SPA find the
set of regulators that are optimal to reconstruct the underlying gene
expression at both noise levels. The situation for LASSO and Ridge
regression is not as promising as observed for GENIE3 at the high
noise level. Some sparsities were overestimated while some others
were underestimated compared with the true sparsity levels.
However, the GRNs that achieved the maximum F1-scores also
deviated from the true sparsity levels, suggesting that at this noise
level, it is a difficult task to accurately reconstruct GRNs from the
underlying data. This hypothesis is supported by the sparsity

comparison at the low noise level, where both SPA GRNs and
those which achieved themaximumF1-scores have similar sparsities
to the true levels. In some cases, for example, for networks 3 and 5 at
low noise levels, sparsities of the GRNs identified by SPA are closer
to the true sparsity levels than those which achieved the maximum
F1-scores. This means, for some cases, SPA is able to eliminate
malefic interactions/regulators without sacrificing a significant
portion of accuracy.

DISCUSSION

The ability of SPA in identifying a GRN that approaches the
maximum achieved accuracy with a biologically relevant sparsity
solves an old and vexing problem in the field. It can provide guidance
for selecting the most optimal and accurate GRN from a set of
inferred ones, which is important, for instance, when the ultimate
goal is to determine novel treatment targets for underlying genetic
diseases from biological data in the absence of a true GRN.

There are a few obstacles to doing this, of which the most
important one is noise in gene expression. This study shows that,
even though SPA identifies the most accurate GRN, its accuracy
may still not be good enough for a biological discovery if the noise
levels are high, referring to possibly unreliable predictions.
Therefore, when using SPA, one should always note that the
highest possible accuracy that SPA can achieve is only limited to
the applied GRN inference method’s ability to compensate for
the noise.

SPA relies on the prediction accuracy of a set of input GRNs in
reconstructing the underlying gene expression, given the
perturbation design. Therefore, its usage is, to some extent,
limited to those methods inferring signed GRNs where not
only the direction but also the sign of the interaction, that is,
whether activation or inhibition, is known, if one wants to ensure
mathematical suitability. However, our application to GRNs
inferred by GENIE3 showed that SPA can overcome this
limitation and still identify an accurate GRN at a reasonable
sparsity. It would be possible to further extend its application to
undirected GRNs (Faith et al., 2007; de Matos Simoes and
Emmert-Streib, 2012) to see to what degree SPA can find the
most optimal GRN in such cases. However, we consider this
problem out of the scope for this particular study since the main
motivation behind identifying the most optimal GRN is to be able
to understand the causality in gene regulation, and the most
straightforward way of achieving this goal is to apply methods
which are suitable for this purpose.

The replacement of the goodness of fit term by the prediction
error in calculating the information-theoretical criteria required a
few adjustments in their formulation, including a normalization
step for the estimated gene expression data, and a scaling step to
the badness of fit and number of variables to allow for a fair
comparison between the two terms of the information criterion.
This was necessary to allow for a comparison between predicted
and measured gene expression since, depending on the
magnitude of the GRN content and measured gene expression,
the predicted gene expression can vary significantly, potentially
confounding biases. A series of normalization steps on the
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predicted gene expression allowed both measured and predicted
gene expression to be in the same range, therefore providing a
more balanced comparison to the problem. The results support
the methodology behind both the applied badness of fit
calculation and the general formula of SPA.

TheGRNIC algorithm includes a step inwhich the exponential of
the badness of fit is calculated. This was carried out to implement
GRNIC as close to AIC as possible, as an opposite equivalent of
taking the natural logarithm of the goodness of fit, and also, we
noticed that it improved performance. We also evaluated a number
of alternative transformation functions such as square, cube, and
logarithm of 1 minus the scaled badness of fit, to see which one
performed the best. We concluded that even if some cases were
improved with other functions, on the whole, there was no
improvement and we, therefore, prefer to stay with the
formulation closest to the original AIC. A potential future
improvement could be to adapt the function to certain properties
in the predicted and/or measured expression data. Because applying
a transformation function can radically change the scale of the
badness of fit, we apply normalization to ensure that it is in the same
range as the penalty term.

In addition to the overall accuracy of SPA in identifying the
most accurate GRNs near the true sparsity levels, we also focused
on a few aberrant cases, some of which were possible to explain in
terms of the negative effect of high noise levels, while some other
questions raised by SPA remained unanswered. These may be
answered by other researchers in the field together with what is
present in this study, possibly inspiring an even better solution to
the model selection problem in a larger context.

In conclusion, the implemented sparsity selection approach
introduces a great advance to the field since achieving the highest

possible accuracy is now made possible with the combination of a
GRN inference method and SPA. We foresee that more novel
gene regulatory interactions will be identified from the best
possible GRNs using our algorithm, and potential treatment
targets will be proposed.
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Multi-task learning for predicting
SARS-CoV-2 antibody escape

Barak Gross and Roded Sharan*

School of Computer Science, Tel Aviv University, Tel Aviv, Israel

The coronavirus pandemic has revolutionized our world, with vaccination

proving to be a key tool in fighting the disease. However, a major threat to

this line of attack are variants that can evade the vaccine. Thus, a fundamental

problem of growing importance is the identification of mutations of concern

with high escape probability. In this paper we develop a computational

framework that harnesses systematic mutation screens in the receptor

binding domain of the viral Spike protein for escape prediction. The

framework analyzes data on escape from multiple antibodies simultaneously,

creating a latent representation of mutations that is shown to be effective in

predicting escape and binding properties of the virus. We use this

representation to validate the escape potential of current SARS-CoV-2 variants.

KEYWORDS

multi-task learning, neural network, escape prediction, coronavirus, receptor binding
domain

1 Introduction

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

accounted for more than 500 million infections and more than six million deaths

worldwide according to World Health Organization (WHO, 2022). Though the virus

mutates rapidly, only a small minority of mutations are expected to impact the virus

phenotype and increase its fitness advantage. Such mutations might alter properties of the

virus such as: pathogenicity, infectivity, transmissibility and/or antigenicity. Due to the

virus’ high infectivity and rapid mutability, in early stages of the pandemic suchmutations

of concern started to appear. For example, D614G was noted to be increasing in frequency

in April 2020 and to have emerged independently several times in the global SARS-CoV-

2 population. Subsequent studies indicated that D614G confers a moderate advantage for

infectivity (Hou et al., 2020; Yurkovetskiy et al., 2020) and transmissibility (Volz et al.,

2022).

Although several antibodies and vaccines showed good clinical results, recognizing

mutations that impact the escape from antibodies and vaccines is still a major question in

the battle against SARS-CoV2. The receptor binding domain (RBD) region is a sub-region

of the SARS-CoV-2 spike glycoprotein that mediates viral attachment to ACE2 receptors.

The RBD is a major determinant of host range and a dominant target of neutralizing

antibodies, promoting systematic studies of mutations to the RBD region and their impact

on a variety of attributes including binding (Starr et al., 2020), antibody escape (Starr et al.,

2021a; Greaney et al., 2021b; Starr et al., 2021b) and more. There are fewer studies that
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consider multiple mutations (Li et al., 2020; Barton et al., 2021),

covering only a handful of them due to the infeasible number of

experiments needed to iterate over all possibilities.

The on-going emergence of variants with dozens of mutations

motivates computational approaches to study the effect of multiple

mutations. These include structural-based approaches (Rienzo et al.,

2021; Bozdaganyan et al., 2022) or approaches that directly use deep

mutational scans. An example is the escape calculator (Greaney

et al., 2021a) which aggregates data about antibody escape using an

interpolation based approach, thus allowing for a quantitative

scoring of the antigenic effects of arbitrary combinations of

mutations. Deep learning methods (Goodfellow et al., 2016) have

become the method of choice for diverse data science applications

including the analysis of coronavirus data. Specifically, Hie et al.

(2021) applied a masked language model approach to a data set of

more than 1 million SARS-CoV-2 sequences. Using the language

model they ranked mutations based on semantic change (distance

between wildtype and mutated sequence) and grammaticality

(probability for mutation under the resulting model), thus aiding

in identification of mutations that evade the immune system. But

they did not address any antibodies or vaccines in their work.

In this paper, we try to combine the best of both

worlds–aggregating escape data based on experimental data a la

(Greaney et al., 2021a), while using deep learning methods, like in

(Hie et al., 2021)—to tackle the challenge of predicting antibody

escape potential. Our approach uses the paradigm of multi-task

learning, wheremultiple learning tasks are solved at the same time in

order to exploit commonalities and differences across tasks. We

show that using a multi-task approach to learn escape data endows

us with a representation that can be useful in multiple prediction

scenarios. We further apply our approach to analyze the common

variants of concern.

2 Results

We developed a framework to assess the effect of

mutations in the RBD on viral escape, both with a single-

task approach and a multi-task approach. We tested our

framework using experimental antibody escape data and

compared the multi-task and single-task approaches. We

demonstrate that multi-task learning helps reduce variance

and improve performance. Moreover, we show that using

multi-task learning yields an informative representation of

the RBD sequence that can be subsequently used to predict

multiple properties.

2.1 Multi-task learning improves antibody
escape recognition

Our main training data set is taken from Greaney et al.

(2021b) and contains systematic single amino-acid substitutions

in the RBD region and their effects on escape probability with

respect to each one of several antibodies. From the

aforementioned data two tasks were derived: classifying a

mutation as significant for escape and predicting (regressing)

its escape probability. To this end, we developed neural network

models that either consider one antibody at a time (single-task)

or multiple antibodies simultaneously (multi-task). The

architectures and training process of these models are detailed

in the Materials and Methods.

Figure 1 depicts the (distribution of) Pearson correlation

between predicted and measured escape probabilities across

9 antibodies, comparing between the single-task and multi-

task approaches. Similarly, Figure 2 depicts the area under the

ROC curve for the corresponding classification task. It is evident

that the multi-task approach reduces variance and increases

mean performance for both regression and classification tasks,

respectively.

2.2 Analysis of the induced embedding

After establishing the utility of our predictive model, We aim

to further use it to find an informative representation of

mutations that is more compact than the sequence of amino

acids, while also preserving antibody escape information. Such a

representation will allow us to test the predictive power of our

model with respect to yet unseen properties. As a first test, we

calculate viral escape of single amino-acid substitution from new,

yet unseen antibodies: LY-CoV016, REGN10987 and

REGN10933 Starr et al. (2021b). Figure 3 shows that the

embedding-based predictions outperform the original neural

network. This result indicates the power of the latent

representation compared to the original amino-acid sequence.

As a second test, we checked the utility of the representation in

predicting the effect of a single amino-acid substitution on the

binding of the spike protein to ACE2. Specifically, binding affinity is

given as the difference between the log of the dissociation constant of

themutation with respect to wildtype. As the binding is vital for viral

entry, we assumed the learned representation could encompass

useful information about it. Figure 3 confirms this assumption

and shows that using the learned representation leads to

improved predictions. In conclusion, the embedding was able to

encode useful data regarding sites and mutations and apply them to

new tasks successfully.

3 Materials and methods

3.1 Data representation

Greaney et al. compiled a data set containing the escape

information of about 2,000 single amino-acid substitutions in the

RBD with respect to nine monoclonal antibodies Greaney et al.
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(2021b). Since the amino-acid changes are all in the RBD region,

we can treat our input as a subsequence of the original Spike

protein, reducing the representation to a 201-long character

string.

The original escape information is given as probabilities.

In order to create the viral-escape classification task from the

continuous data, we followed Starr et al. Starr et al. (2021b)

and chose 10 times the median escape across all sites as

FIGURE 1
A comparison of single-task and multi-task performance in predicting escape probability.

FIGURE 2
A comparison of single-task and multi-task performance in binary escape prediction.
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threshold for significant escape for each antibody and gave a

label of 1 to samples that exceeded the threshold.

3.2 Neural network architecture and
training

We use a neural network that receives as an input a string of

fixed length n = 201 over an alphabet of size m = 20 (number of

amino acids). The model applies one-hot encoding on every

character, resulting in a binary vector of size m. It then applies a

linear transformation to each vector to create a “character-level”

embedding. These embeddings are concatenated and fed to a

fully-connected layer, creating a “sequence-level” embedding.

The final output layer is a linear layer with size equal to the

number of prediction tasks k, followed by k task-dependent

activation functions. In our case, k = 9, each task corresponds

to an antibody in our train data, while our output activation

functions are all sigmoids. This means our output will be

9 probabilities each corresponding to an escape probability of

a different antibody.

When we refer to a model as a “single-task model” it

means that k = 1, when k > 1 we refer to the model as a “multi-

task model”. This means, that when comparing between

multi-task and single task, we will have k single-task

model, each corresponding to one antibody, while having a

single multi-task model with k outputs. For training and

evaluation we randomly split the data into 30% test and

70% train, run the model 100 times and report the

performance distribution obtained using box-plots.

Performance is measured in the binary case using the area

under the ROC curve and in the continuous case using

Pearson’s correlation between predictions and true value in

test set. We use the Adam optimizer Kingma and Ba (2015)

with a learning rate of 1e-4 and a maximum of 100 epochs.

Our model loss function is the sum of all the tasks’ loss

functions, where for each task we use the cross entropy loss

function.

3.3 Training using a fixed embedding

Utilizing our multi-task model’s last hidden layer as a

latent representation of mutations, we can predict other RBD

properties such as binding. To this end, we add a linear layer

after the embedding layer whose weights are trained using

linear regression. When calculating escape probabilities, we

use the sigmoid activation function in our output layer, so the

training with fixed embedding is done via logistic regression

(more precisely, linear regression on the inverse sigmoid of

the escape data), meaning the task is identical to binding

regression.

FIGURE 3
A comparison of a single-task neural network to linear regression of multi-task induced embedding.
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3.4 Data and materials availability

Code and data are available at https://github.com/bgmoshe/

multi_tasking_antibodies.

4 Discussion

In this paper we develop a computational framework that

harnesses systematic mutation screens in the receptor binding

domain of the viral Spike protein for escape prediction. Unlike

(Bozdaganyan et al., 2022) and (Greaney et al., 2021a), who

demonstrate an approach to quantify binding to antibodies, we

do not assume a predefined relation between the effect of

different mutations, allowing us to have a more general model

that is learned automatically from data. Furthermore, in contrast

to (Hie et al., 2021) we can quantify mutation escape potential

with respect to each antibody. Our framework allows us to infer a

latent representation of mutations that preserves escape

information. This is particularly useful for predictions

regarding yet unseen antibodies or variants.

In order to showcase this attribute, We used our trained

model to predict the escape probabilities of variants of

concern (as defined by the World Health Organization) as

shown in Figure 4. The figure highlights the result of Planas

et al. (2021) that Omicron has higher probability of evading

antibodies than previous variants. We suggest that using our

multi-task model one can provide information on the effect of

multiple mutations at different sites, thus allowing researchers

to focus on more likely variants of concern.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

Both authors conceived the idea for the paper and designed

the algorithm. BG implemented the algorithm and RS supervised.

Funding

RS was supported by a QBI/UCSF-TAU joint grant in

Computational Biology and Drug Discovery.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

FIGURE 4
Predicted escape from antibodies for different SARS-CoV-2 variants.
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