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Evaluating the Causal Association
Between Educational Attainment and
Asthma Using a Mendelian
Randomization Design
Yunxia Li1†, Wenhao Chen1†, Shiyao Tian1, Shuyue Xia1 and Biao Yang2*

1 Department of Respiratory and Critical Care Medicine, Affiliated Central Hospital, Shenyang Medical College, Shenyang,
China, 2 Department of Pathogen Biology, Shenyang Medical College, Shenyang, China

Asthma is a common chronic respiratory disease. In the past 10 years, genome-wide
association study (GWAS) has been widely used to identify the common asthma genetic
variants. Importantly, these publicly available asthma GWAS datasets provide important
data support to investigate the causal association of kinds of risk factors with asthma
by a Mendelian randomization (MR) design. It is known that socioeconomic status
is associated with asthma. However, it remains unclear about the causal association
between socioeconomic status and asthma. Here, we selected 162 independent
educational attainment genetic variants as the potential instruments to evaluate the
causal association between educational attainment and asthma using large-scale
GWAS datasets of educational attainment (n = 405,072) and asthma (n = 30,810).
We conducted a pleiotropy analysis using the MR-Egger intercept test and the MR
pleiotropy residual sum and outlier (MR-PRESSO) test. We performed an MR analysis
using inverse-variance weighted, weighted median, MR-Egger, and MR-PRESSO.
The main analysis method inverse-variance weighted indicated that each 1 standard
deviation increase in educational attainment (3.6 years) could reduce 35% asthma risk
[odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.51–0.85, P = 0.001]. Importantly,
evidence from other MR methods further supported this finding, including weighted
median (OR = 0.55, 95% CI 0.38–0.80, P = 0.001), MR-Egger (OR = 0.48, 95% CI
0.16–1.46, P = 0.198), and MR-PRESSO (OR = 0.65, 95% CI 0.51–0.85, P = 0.0015).
Meanwhile, we provide evidence to support that educational attainment protects against
asthma risk dependently on cognitive performance using multivariable MR analysis. In
summary, we highlight the protective role of educational attainment against asthma. Our
findings may have public health applications and deserve further investigation.

Keywords: asthma, educational attainment, genome-wide association study, Mendelian randomization, inverse-
variance weighted

INTRODUCTION

Asthma is a common chronic respiratory disease (Beasley et al., 2015; Han et al., 2020; von Mutius
and Smits, 2020). It is estimated that asthma could affect over 300 million people in the world
and result in a substantial burden (Beasley et al., 2015; Han et al., 2020; von Mutius and Smits,
2020). During the past 30 years, asthma death rates have decreased greatly (Beasley et al., 2015;
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von Mutius and Smits, 2020). However, there are still no effective
therapeutic regimens (Beasley et al., 2015; von Mutius and Smits,
2020). Hence, it is important to identify the risk factors for
asthma, especially those with the causation association for asthma
(Beasley et al., 2015; von Mutius and Smits, 2020).

In the past 10 years, genome-wide association study (GWAS)
has been widely used to identify the common asthma genetic
variants (Demenais et al., 2018; Zhu et al., 2018; Shrine et al.,
2019; Han et al., 2020). In 2018, the Trans-National Asthma
Genetic Consortium (TAGC) conducted a GWAS analysis of
asthma using 23,948 cases and 118,538 controls from kinds of
populations, including European, African, Japanese, and Latino
ancestries (von Mutius and Smits, 2020). They successfully found
five new asthma loci (Demenais et al., 2018). Zhu et al. (2018)
conducted a genome-wide cross-trait analysis of asthma and
allergic diseases using large-scale GWAS datasets from the UK
Biobank, including 33,593 cases and 76,768 controls of European
ancestry. They found a significant genetic correlation between
asthma and allergic diseases and highlighted 38 shared loci (Zhu
et al., 2018). Shrine et al. (2019) carried out a GWAS analysis to
identify common genetic variants associated with moderate-to-
severe asthma by a two-stage design, including 5,135 asthma cases
and 25,675 controls in stage 1 and 5,414 asthma cases and 21,471
controls in stage 2. Importantly, all these selected individuals
are of European ancestry (Shrine et al., 2019). Interestingly, they
reported 24 novel genetic variants to be significantly associated
with moderate-to-severe asthma (Shrine et al., 2019). Han et al.
(2020) conducted a GWAS analysis of asthma using 64,538
asthma cases and 329,321 controls from the UK Biobank. They
further performed an asthma GWAS meta-analysis of the UK
Biobank and the TAGC (Demenais et al., 2018; Han et al., 2020).
Finally, Han et al. identified 66 novel asthma loci (Demenais et al.,
2018; von Mutius and Smits, 2020).

Importantly, these publicly available asthma GWAS datasets
provide important data support to investigate the causal
association of kinds of risk factors with asthma by Mendelian
randomization (MR) design or polygenic score (Granell et al.,
2014; Minelli et al., 2018; Skaaby et al., 2018; Rosa et al., 2019;
Xu et al., 2019; Zhao and Schooling, 2019; Chen et al., 2020;
Mulugeta et al., 2020; Shen et al., 2020; Sun et al., 2020; Au
Yeung et al., 2021a; Park et al., 2021; Raita et al., 2021). Some
risk factors have been reported to increase the risk of asthma,
including soluble interleukin-6 receptor level (Rosa et al., 2019;
Raita et al., 2021), childhood body mass index (BMI) (Au Yeung
et al., 2021a), adult BMI (Granell et al., 2014; Skaaby et al.,
2018; Xu et al., 2019; Sun et al., 2020; Au Yeung et al., 2021a),
major depressive disorder (Mulugeta et al., 2020), early pubertal
maturation (Chen et al., 2020), and age at puberty (Minelli et al.,
2018). Meanwhile, other risk factors are associated with reduced
risk of asthma, including estimated glomerular filtration rate
(Park et al., 2021), lifetime smoking (Shen et al., 2020), and
linoleic acid (Zhao and Schooling, 2019).

In addition to these risk factors discussed earlier,
socioeconomic status is also associated with asthma (Eagan
et al., 2004; Hancox et al., 2004; Kozyrskyj et al., 2010; Brite et al.,
2020). However, it remains unclear about the causal association
between socioeconomic status and asthma (Eagan et al., 2004;

Hancox et al., 2004; Kozyrskyj et al., 2010; Brite et al., 2020).
Here, we selected 162 independent educational attainment
genetic variants as the potential instruments to evaluate the
causal association between educational attainment and asthma.

MATERIALS AND METHODS

Educational Attainment Genome-Wide
Association Study Dataset
We selected 162 independent genetic variants that influence
educational attainment to be the potential instrumental variables
(Okbay et al., 2016). In brief, these genetic variants are identified
by a recent large-scale GWAS dataset of educational attainment
in individuals of European descent (n = 405,072) (Okbay et al.,
2016). The educational attainment was a continuous variable
measuring by the number of years of schooling completed
(EduYears) and was assessed at age or older than 30 years (Okbay
et al., 2016). This large-scale GWAS dataset is based on the
meta-analysis of GWAS results from the discovery stage (Social
Science Genetic Association Consortium, including 293,723
individuals) and replication stage (UK Biobank, including
111,349 individuals) (Okbay et al., 2016). The participating
cohorts in the discovery stage are provided in Table 1. Finally,
this meta-analysis identified 162 independent genetic variants
with the genome-wide significance (P < 5.00E-08), as provided
in Supplementary Table 1 (Okbay et al., 2016).

Cognitive Performance Genome-Wide
Association Study Dataset
We selected a large-scale GWAS dataset of cognitive performance
in 257,841 individuals of European descent (Okbay et al.,
2016). It is based on the sample-size-weighted meta-analysis of
two large-scale GWAS datasets from the COGENT consortium
(n = 35,298) and UK Biobank (n = 222,543) (Okbay et al.,
2016). In COGENT, the phenotype measure was the first
unrotated principal component of performance on at least
three neuropsychological tests (or at least two IQ-test subscales)
(Okbay et al., 2016). In the UK Biobank, the phenotype measure
was a standardized score on a test of verbal–numerical reasoning
(Okbay et al., 2016). More detailed information is provided in the
original study (Okbay et al., 2016).

Asthma Genome-Wide Association
Study Dataset
We selected the large-scale asthma GWAS dataset in 30,810
individuals of European ancestry, including 5,135 moderate–
severe asthma cases and 25,675 controls, as described in the
original study (Shrine et al., 2019). These selected moderate–
severe asthma cases are from the Genetics of Asthma Severity and
Phenotypes study (GASP, n = 1,858), the Unbiased Biomarkers in
Prediction of respiratory disease outcomes project (U-BIOPRED,
n = 281), and the UK Biobank (n = 2,996) (Shrine et al.,
2019). The selected controls are from the U-BIOPRED (n = 75)
and the UK Biobank (n = 25,600) (Shrine et al., 2019). In
GASP and U-BIOPRED, moderate-to-severe asthma patients
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TABLE 1 | Participating cohorts in Educational attainment GWAS discovery stage (Okbay et al., 2016).

Study Country Sample size Birth year (mean/range) Female %

ACPRC England 1,713 1923 (1903–1948) 0.71

AGES Iceland 3,212 1927 (1908–1936) 0.58

ALSPAC England 2,877 1959 (1948–1963) 1

ASPS Austria 777 1932 (1909–1949) 0.57

BASE—II Germany 1,619 1948 (1925–1983) 0.52

CoLaus Switzerland 3,269 1950 (1928–1970) 0.53

COPSAC2000 Germany 318 1966 (1964–1969) 0.47

CROATIA—Korčula Croatia 842 1950 (1909–1977) 0.64

deCODE Iceland 46,758 1945 (1894–1983) 0.57

DHS Germany 953 1949 (1929–1974) 0.53

DIL England 2,578 1958 (1958–1958) 0.52

EGCUT1 Estonia 5,597 1950 (1905–1980) 0.55

EGCUT2 Estonia 1,328 1957 (1911–1979) 0.53

EGCUT3 Estonia 2,047 1966 (1930–1982) 0.73

ERF Netherlands 2,433 1952 (1914–1974) 0.55

FamHS United States 3,483 1941 (1900–1965) 0.53

FINRISK Finland 1,685 1946 (1923–1977) 0.46

FTC Finland 2,418 1945 (1910–1972) 0.56

GOYA Denmark 1,459 1947 (1944–1954) 0

GRAPHIC England 727 1951 (1942–1965) 0.53

GS Scotland 8,776 1955 (1909–1981) 0.59

H2000 Cases Finland 797 1949 (1924–1970) 0.5

H2000 Controls Finland 819 1949 (1924–1969) 0.52

HBCS Finland 1,617 1941 (1934–1944) 0.57

HCS Australia 1,946 1940 (1920–1951) 0.49

HNRS (CorexB) Germany 1,401 1942 (1926–1955) 0.5

HNRS (Oexpr) Germany 1,347 1942 (1926–1955) 0.5

HNRS (Omni1) Germany 778 1942 (1927–1955) 0.52

HRS United States 9,963 1940 (1900–1979) 0.42

Hypergenes Italy/United Kingdom/Belgium 815 1945 (1914–1971) 0.46

INGI—CARL Italy 947 1946 (1910–1975) 0.58

INGI—FVG Italy 943 1951 (1917–1978) 0.6

KORA S3 Germany 2,655 1945 (1920–1964) 0.51

KORA S4 Germany 2,721 1949 (1926–1970) 0.51

LBC1921 Scotland 515 1921 (1921–1921) 0.58

LBC1936 Scotland 1,003 1936 (1936–1936) 0.49

LifeLines Netherlands 12,539 1960 (1921–1980) 0.58

MCTFR United States 3,819 1953 (1926–1974) 0.54

MGS United States 2313 1951 (1914–1976) 0.5

MoBa Norway 622 1971 (1966–1976) 1

NBS Netherlands 1,808 1941 (1923–1972) 0.5

NESDA Netherlands 1,820 1958 (1939–1977) 0.64

NFBC66 Finland 5,297 1966 (1966–1966) 0.52

NTR Netherlands 5,246 1958 (1917–1989) 0.64

OGP Italy 370 1950 (1916–1976) 0

OGP—Talana Italy 544 1949 (1910–1977) 0.59

ORCADES Scotland 1,828 1952 (1914–1979) 0.6

PREVEND Netherlands 3,578 1948 (1923–1968) 0.48

QIMR Australia 8,006 1956 (1900–1984) 0.59

RS—I Netherlands 6,108 1922 (1893–1938) 0.6

RS—II Netherlands 1,667 1935 (1906–1944) 0.52

RS—III Netherlands 3,040 1950 (1910–1960) 0.56

Rush—MAP United States 887 1921 (1901–1948) 0.72

(Continued)
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TABLE 1 | Continued

Study Country Sample size Birth year (mean/range) Female %

Rush—ROS United States 808 1921 (1896–1946) 0.66

SardiNIA Italy 5,616 1955 (1901–1983) 0.58

SHIP Germany 3,556 1945 (1918–1971) 0.5

SHIP—TREND Germany 901 1956 (1928–1980) 0.57

STR—Salty Sweden 4,832 1951 (1943–1958) 0.52

STR—Twingene Sweden 9,553 1941 (1916–1958) 0.53

THISEAS Greece 829 1950 (1909–1979) 0.33

TwinsUK England 4,012 1949 (1919–1978) 1

WTCCC58C England 2,804 1958 (1958–1958) 0.48

YFS Finland 2,029 1969 (1962–1977) 0.55

23andMe Primarily US 76,155 1961 (1901–1985) 0.52

were evaluated using clinical records based on the British
Thoracic Society 2014 guidelines (Shrine et al., 2019). In the UK
Biobank, moderate-to-severe asthma cases were diagnosed by a
doctor (Shrine et al., 2019). The key demographic characteristics,
including age and sex, are provided in Table 2 or the original
study (Shrine et al., 2019).

Pleiotropy Analysis
MR is established based on three key assumptions. Assumption 1:
genetic variants (instrumental variables) should be significantly
associated with the exposure (educational attainment). Hence,
we selected 162 independent genetic variants associated with
educational attainment with the genome-wide significance
(P < 5.00E-08), as described earlier. Both assumption 2 and
assumption 3 are known as no pleiotropy, as described in recent
MR studies (Larsson et al., 2020; Au Yeung et al., 2021b; Sun et al.,
2021; Yuan et al., 2021; Zhao and Schooling, 2021; Zhuang et al.,
2021b). Hence, we conducted a pleiotropy analysis using the MR-
Egger intercept test (Bowden et al., 2015; Burgess and Thompson,
2017) and the MR pleiotropy residual sum and outlier (MR-
PRESSO) test (Verbanck et al., 2018); both have widely used
in recent MR studies (Larsson et al., 2020; Au Yeung et al.,
2021b; Sun et al., 2021; Yuan et al., 2021; Zhao and Schooling,
2021; Zhuang et al., 2021b). The significance threshold P < 0.05
indicated evidence of pleiotropy.

Mendelian Randomization Analysis
For univariable MR analysis, we selected the inverse-variance
weighted (IVW) as the main MR analysis method. Meanwhile,
we also selected other additional MR analysis methods, including
weighted median, MR-Egger method, and MR-PRESSO, as
used in recent MR studies (Bowden et al., 2015; Burgess and
Thompson, 2017; Liu et al., 2018; Larsson et al., 2020; Au
Yeung et al., 2021b; Sun et al., 2021; Yuan et al., 2021; Zhao
and Schooling, 2021; Zhuang et al., 2021b). For multivariable
MR analysis, we selected the multivariable IVW method,
multivariable median-based method, and multivariable MR-
Egger method. The odds ratio (OR) and 95% confidence interval
(CI) of asthma correspond to approximately per 3.6 years
increase [approximately 1 standard deviation (SD)] in EduYears.
R (version x64 4.0.3), R package “MendelianRandomization,”

TABLE 2 | Baseline characteristics of asthma cases and controls
(Shrine et al., 2019).

Phenotypes Cases (n = 5,135) Controls (n = 25,675)

Age, years 55 (12) 56 (8)

Female 3,170 (61.7%) 14,626 (57.0%)

Male 1,965 (38.3%) 11,049 (43.0%)

FEV1, % predicted 72.4% (21.4) 91.8% (17.4)

FEV1/FVC 0.67 (0.12) 0.76 (0.06)

Smoking status Ever smoker 2,265 (44.1%) 11,913 (46.4%)

Smoking status Never smoker 2,647 (51.6%) 13,487 (52.5%)

Smoking status Unknown 223 (4.3%) 275 (1.1%)

Rhinitis or eczema status Yes 1,897 (36.9%) 8†

Rhinitis or eczema status No 2,062 (40.2%) 25 667†

Rhinitis or eczema status Unknown 1,176 (22.9%) 0†

Rhinitis or eczema status Oral
corticosteroid use (prednisolone)

222/3,710 (6.0%) NA

Data are mean (SD) or n (%), unless otherwise stated.
FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; NA,
not applicable; U-BIOPRED, Unbiased biomarkers in prediction of respiratory
disease outcomes.
†Patients in the U-BIOPRED cohort were not screened for rhinitis or eczema before
sample selection but were subsequently found to comprise eight patients with
rhinitis, eczema, or allergy.

and MR-PRESSO were used to perform the MR analysis. The
significance threshold P < 0.05 indicated evidence of causal
association. To test the influence of a single genetic variant,
we also conducted a sensitivity analysis using leave-one-out
permutation (Liu et al., 2018).

Power Analysis
The variance of educational attainment (R2) explained by the
selected genetic variants was calculated using the effect allele
frequency, the effect size beta (β), and the number of the selected
genetic variants (k), as described in a previous study (Locke et al.,
2015).

R2
=

k∑
i=1

β2
i
∗ (1− EAFi) ∗ EAFi ∗ 2

Based on the R2 and other necessary information, including
sample size, type-I error rate, proportion of cases in the study,
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and true OR of the outcome variable per SD of the exposure
variable, the statistical power was calculated using mRnd (Power
calculations for MR) (Brion et al., 2013).

RESULTS

Educational Attainment Genetic Variants
and Asthma
We selected 162 independent genetic variants influencing
educational attainment and extracted their corresponding
summary statistics in the asthma GWAS dataset. The results
showed that 141 unique genetic variants were available
in the asthma GWAS dataset. Only five genetic variants
are associated with asthma risk with P < 0.05, including
rs1378214 (P = 0.000531), rs76878669 (P = 0.00607), rs7772172
(P = 0.00666), rs113520408 (P = 0.0183), and rs9556958
(P = 0.0388). These findings indicated that all these selected
genetic variants showed a more significant trend associated
with educational attainment. Table 3 provides the more detailed
results about these 141 genetic variants.

Pleiotropy Analysis
Evidence from the MR-Egger intercept test supported that these
141 genetic variants showed no significant pleiotropy with
intercept = 0.005, P = 0.581. Importantly, evidence from the MR-
PRESSO global test further highlighted no significant horizontal
pleiotropy P = 0.375. Hence, these 141 genetic variants could be
selected as the effective instrumental variables.

Univariable Mendelian Randomization
Analysis
The main analysis method IVW indicated that each 1 SD increase
in educational attainment (3.6 years) could reduce 35% asthma
risk (OR = 0.65, 95% CI 0.51–0.85, P = 0.001). Importantly,
evidence from other MR methods further supported this finding,
including weighted median (OR = 0.55, 95% CI 0.38–0.80,
P = 0.001), MR-Egger (OR = 0.48, 95% CI 0.16–1.46, P = 0.198),
and MR-PRESSO (OR = 0.65, 95% CI 0.51–0.85, P = 0.0015).
Figures 1–3 show the individual causal estimates using the
IVW method, weighted median, and MR-Egger, respectively. We
further conduct a sensitivity analysis using the leave-one-out
permutation. The results suggested no single genetic variant to
significantly affect the estimates between educational attainment
and the risk of asthma.

Multivariable Mendelian Randomization
Analysis
In multivariable MR analysis, we evaluated the effect of
cognitive performance on the causal association between
educational attainment and the risk of asthma. However, all
three multivariable MR analysis methods indicated no significant
causal association between educational attainment and the risk
of asthma, including multivariable IVW method (OR = 0.64,
95% CI 0.35–1.17, P = 0.144), multivariable median-based
method (OR = 0.63, 95% CI 0.28–1.42, P = 0.265), and

multivariable MR-Egger method (OR = 0.32, 95% CI 0.08–1.22,
P = 0.094). Hence, these findings provide evidence to support that
educational attainment protects against asthma risk dependently
on cognitive performance.

Power Analysis
One hundred forty-one educational attainment genetic variants
finally selected in our MR analysis explain a total of 3.87% of
educational attainment variance. Power analysis using mRnd
showed that our MR analysis had 80% power to detect OR of
0.79 or lower per SD increase in educational attainment for the
risk of asthma. Meanwhile, our MR analysis has 100% power to
detect the OR of 0.65 using IVW, the OR of 0.55 using weighted
median, the OR of 0.48 using MR-Egger, and the OR of 0.65
using MR-PRESSO.

DISCUSSION

Until recently, multiple large-scale GWAS analyses have been
conducted to report novel asthma genetic variants (Demenais
et al., 2018; Zhu et al., 2018; Shrine et al., 2019; Han et al.,
2020). Importantly, these GWAS datasets are publicly available
and promote additional analyses, such as MR analysis, to evaluate
the causal association between common risk factors and asthma.
These risk factors include soluble interleukin-6 receptor level
(Rosa et al., 2019; Raita et al., 2021), childhood BMI (Au
Yeung et al., 2021a), adult BMI (Granell et al., 2014; Skaaby
et al., 2018; Xu et al., 2019; Sun et al., 2020; Au Yeung et al.,
2021a), major depressive disorder (Mulugeta et al., 2020), early
pubertal maturation (Chen et al., 2020), age at puberty (Minelli
et al., 2018), estimated glomerular filtration rate (Park et al.,
2021), lifetime smoking (Shen et al., 2020), and linoleic acid
(Zhao and Schooling, 2019).

It is reported that socioeconomic status is also a risk factor
for asthma (Eagan et al., 2004; Hancox et al., 2004; Kozyrskyj
et al., 2010; Brite et al., 2020). In the World Trade Center Health
Registry study, Brite et al. (2020) analyzed the data from 30,452
individuals and found that individuals with lower socioeconomic
status had worse asthma outcomes. In the Western Australian
Pregnancy Cohort (Raine) Study, Kozyrskyj et al. (2010) analyzed
the data from 2,868 children and found that children with
lower socioeconomic status tended to develop persistent asthma.
However, Hancox et al. (2004) reported inconsistent findings
in a prospective cohort study including approximately 1,000
individuals in New Zealand. They found no significant between
socioeconomic status during childhood and the prevalence of
asthma (Hancox et al., 2004). Hence, the causal association
between socioeconomic status and asthma remains unclear,
which further promotes us to perform an MR analysis using the
large-scale GWAS datasets.

Using 162 independent educational attainment genetic
variants, we successfully extracted the summary association
results of 141 unique genetic variants from the asthma GWAS
dataset. The pleiotropy analysis indicated these genetic variants
to be effective instruments. MR analysis showed each 1 SD
increase in educational attainment (4.2 years) reduced 35%
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TABLE 3 | Association between 141 educational attainment genetic variants and asthma.

SNP CHR Position (b37) EA NEA EAF Beta SE P-value

rs56044892 1 41830086 T C 0.198 0.00536 0.0291 0.854

rs12076635 1 44026656 C G 0.779 −0.0126 0.0265 0.634

rs12410444 1 44188719 G A 0.297 −0.0303 0.0241 0.207

rs142328051 1 44371441 C T 0.142 −0.00193 0.0289 0.947

rs2568955 1 72762169 C T 0.739 −0.0225 0.0262 0.39

rs12142680 1 73615892 A G 0.0757 0.018 0.0461 0.696

rs12145291 1 74161795 C T 0.0546 −0.0294 0.053 0.579

rs1008078 1 91189731 T C 0.397 0.0316 0.0226 0.163

rs12134151 1 96202443 C G 0.494 0.00288 0.0219 0.895

rs4378243 1 98395881 T G 0.834 −0.04 0.0299 0.182

rs17372140 1 98572382 A G 0.295 0.0299 0.0244 0.22

rs648163 1 199315998 T C 0.27 −0.00598 0.0247 0.809

rs11588857 1 204587047 A G 0.205 0.0112 0.0272 0.681

rs35771425 1 211609768 C T 0.221 −0.0371 0.0265 0.162

rs78365243 1 211737950 C T 0.0499 0.058 0.0515 0.26

rs2992632 1 243503764 T A 0.287 −0.00229 0.0248 0.927

rs7590368 2 10961474 C T 0.257 0.0258 0.0251 0.305

rs76076331 2 10977585 T C 0.123 0.016 0.0338 0.636

rs17504614 2 51080481 C T 0.186 −0.0113 0.0286 0.692

rs56158183 2 60632924 A G 0.0795 0.0447 0.0407 0.272

rs7593947 2 60704933 A T 0.529 −0.0343 0.0226 0.129

rs356992 2 60753593 G C 0.695 −0.0127 0.024 0.598

rs268134 2 65608363 G A 0.752 −0.00901 0.0254 0.723

rs6715849 2 100306378 G A 0.559 0.0105 0.0224 0.638

rs4851251 2 100753490 T C 0.274 0.0216 0.0248 0.383

rs12987662 2 100821548 A C 0.4 −0.0294 0.0225 0.191

rs71413877 2 100924822 A G 0.0419 −0.0846 0.0558 0.13

rs34106693 2 101151830 G C 0.171 0.0371 0.0301 0.218

rs77702819 2 101328728 T G 0.0926 −0.0211 0.0388 0.587

rs17824247 2 144152539 C T 0.41 −0.0298 0.0223 0.182

rs10178115 2 155451738 G T 0.45 0.0216 0.0223 0.332

rs10930008 2 161854736 A G 0.738 −0.0478 0.0249 0.0549

rs16845580 2 161920884 C T 0.37 −0.00443 0.023 0.847

rs4500960 2 162818621 T C 0.483 −0.0128 0.022 0.56

rs1596747 2 193802478 G A 0.493 0.000776 0.0219 0.972

rs4675248 2 202880230 G A 0.57 −0.0423 0.0229 0.0642

rs12694681 2 226609241 G T 0.308 0.0044 0.0238 0.853

rs11687170 2 237058144 C T 0.168 −0.0209 0.0293 0.475

rs7429990 3 47901803 A C 0.275 0.00642 0.0245 0.793

rs140711597 3 48469441 G C 0.0213 −0.0101 0.0823 0.902

rs34638686 3 48682658 T C 0.0999 0.0572 0.0371 0.124

rs3172494 3 48731487 T G 0.108 −0.0447 0.0357 0.211

rs113011189 3 49250007 T C 0.0896 0.0311 0.039 0.424

rs13090388 3 49391082 T C 0.303 −0.0368 0.0239 0.123

rs11130222 3 49901060 T A 0.42 0.0279 0.0223 0.21

rs6800916 3 50052873 A T 0.0953 −0.0565 0.0425 0.184

rs2624818 3 50056265 A G 0.103 0.00892 0.0363 0.806

rs112634398 3 50075494 G A 0.0487 0.0799 0.0527 0.13

rs71326918 3 50174844 A C 0.116 −0.0201 0.0347 0.561

rs35971989 3 51469248 G A 0.158 −0.00101 0.0306 0.974

rs7610856 3 71579022 A C 0.43 −0.0393 0.0224 0.08

rs62263923 3 85674790 G A 0.362 −0.0225 0.0231 0.33

(Continued)
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TABLE 3 | Continued

SNP CHR Position (b37) EA NEA EAF Beta SE P-value

rs56262138 3 86183716 A T 0.299 0.00764 0.0245 0.755

rs9755467 3 127143885 T C 0.159 −0.00189 0.0303 0.95

rs12646808 4 3249828 C T 0.35 0.0203 0.0235 0.388

rs1967109 4 28720915 G A 0.837 −0.000441 0.03 0.988

rs4308415 4 67821874 G C 0.57 0.0253 0.022 0.25

rs6839705 4 106144735 C A 0.662 0.0272 0.0232 0.241

rs4863692 4 140764124 T G 0.325 0.011 0.0234 0.64

rs1912528 4 140945966 T C 0.358 −0.00849 0.0229 0.71

rs12640626 4 176626272 A G 0.568 −0.00204 0.0222 0.927

rs4493682 5 45188024 C G 0.18 −0.0144 0.0287 0.615

rs1562242 5 57566494 C T 0.516 0.0191 0.0221 0.388

rs61160187 5 60111579 G A 0.403 0.0123 0.022 0.576

rs113474297 5 60554934 T C 0.14 0.0511 0.0319 0.109

rs10223052 5 60800336 G A 0.645 0.0181 0.0231 0.434

rs775326 5 62918416 A C 0.322 0.0117 0.0234 0.617

rs12653396 5 87847273 A T 0.568 −0.00266 0.0225 0.906

rs6882046 5 87968864 G A 0.267 0.0359 0.025 0.151

rs700590 5 88106258 C T 0.401 0.00243 0.0226 0.914

rs152603 5 106774922 G A 0.361 0.00366 0.0229 0.873

rs660001 5 113866598 A G 0.212 0.0201 0.0269 0.454

rs62379838 5 120102028 C T 0.299 0.0269 0.024 0.263

rs7776010 6 14723608 C T 0.19 −0.0418 0.0283 0.139

rs7772172 6 16662928 G A 0.599 0.0609 0.0225 0.00666

rs6939294 6 16950631 T C 0.228 −0.0092 0.0265 0.728

rs56231335 6 98187291 C T 0.327 −0.0149 0.0235 0.525

rs1338554 6 98346801 G A 0.504 −0.00034 0.0221 0.988

rs9401593 6 98549801 C A 0.483 −0.0256 0.0222 0.25

rs56081191 6 98557732 A G 0.0785 −0.00977 0.0418 0.815

rs11756123 6 152218079 T A 0.633 −0.0368 0.0228 0.107

rs113779084 7 11871787 A G 0.302 0.00464 0.0243 0.849

rs12531458 7 39090698 C A 0.487 0.0113 0.0224 0.614

rs12702087 7 44812607 A G 0.437 −0.00242 0.0225 0.914

rs756912 7 71741797 T C 0.525 0.0203 0.022 0.356

rs11976020 7 72247800 A G 0.228 0.0067 0.0261 0.798

rs12534506 7 92662327 T A 0.539 0.0131 0.0226 0.564

rs148490894 7 99531755 G A 0.0275 0.0856 0.0674 0.204

rs11771168 7 113904061 T C 0.255 0.0428 0.0263 0.104

rs113520408 7 128402782 A G 0.278 −0.0582 0.0247 0.0183

rs17167170 7 133302345 G A 0.205 0.00347 0.0276 0.9

rs320700 7 137049477 A G 0.641 −0.0159 0.0229 0.486

rs1106761 8 142619234 A G 0.385 0.0206 0.023 0.371

rs11774212 8 145686505 T C 0.515 0.00315 0.022 0.886

rs4741343 9 14075095 A G 0.17 −0.0273 0.0293 0.352

rs4741351 9 14222782 G A 0.705 −0.039 0.0244 0.111

rs7029201 9 23358081 A G 0.418 0.00472 0.0224 0.833

rs7033137 9 72055158 G C 0.26 0.0412 0.0253 0.104

rs17425572 9 88006338 G A 0.53 −0.00799 0.0221 0.718

rs10821136 9 96238731 T C 0.33 −0.0115 0.0234 0.625

rs10818606 9 124618386 C T 0.588 −0.0151 0.0223 0.498

rs10761741 10 65066186 T G 0.415 0.0302 0.0224 0.177

rs7914680 10 67965010 G T 0.271 0.0302 0.0252 0.23

rs1925576 10 68689083 G A 0.451 −0.0128 0.0228 0.575

rs149613931 10 103550281 T G 0.0564 −0.0516 0.0481 0.284

(Continued)
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TABLE 3 | Continued

SNP CHR Position (b37) EA NEA EAF Beta SE P-value

rs73344830 10 103816828 G A 0.582 −0.0213 0.0223 0.341

rs61874768 10 103880118 T G 0.18 −0.0165 0.0292 0.572

rs10786662 10 103989812 C G 0.582 −0.0126 0.0223 0.573

rs12761761 10 133775375 T C 0.253 −0.0146 0.0252 0.562

rs7945718 11 12748819 G A 0.412 0.0346 0.0225 0.123

rs76878669 11 66092567 G C 0.252 0.072 0.0262 0.00607

rs7948975 11 90424638 C T 0.398 0.0278 0.0224 0.215

rs111321694 11 110950386 T C 0.175 −0.0242 0.0292 0.408

rs79925071 11 121998253 T G 0.571 −0.0136 0.0224 0.545

rs10772644 12 13417617 C G 0.887 −0.00369 0.0364 0.919

rs7964899 12 14595756 A G 0.431 −0.0359 0.0222 0.105

rs1389473 12 92154270 A G 0.388 0.0109 0.0223 0.626

rs10773002 12 123746961 T A 0.755 0.0173 0.0256 0.501

rs8002014 13 58358159 A G 0.264 0.0374 0.0248 0.132

rs9556958 13 99100046 T C 0.519 0.0465 0.0225 0.0388

rs34344888 14 23387585 G A 0.606 −0.0238 0.0225 0.291

rs1115240 14 27090388 C G 0.742 −0.0239 0.0251 0.341

rs10483349 14 29629456 G A 0.184 0.0299 0.0287 0.297

rs58694847 14 84916511 C G 0.266 0.0107 0.025 0.667

rs1378214 15 47579004 C T 0.628 0.0795 0.0229 0.000531

rs6493271 15 47613593 C T 0.179 −0.0475 0.0291 0.102

rs281302 15 47686662 A G 0.546 −0.0416 0.0227 0.0665

rs12900061 15 66009248 A G 0.172 0.00978 0.029 0.736

rs4076457 15 78007213 T C 0.257 −0.00426 0.0253 0.866

rs28420834 15 82513121 G A 0.573 −0.0238 0.0229 0.298

rs9914544 17 18787828 C A 0.374 0.0426 0.0227 0.0608

rs9964724 18 35159124 T C 0.682 −0.00238 0.0237 0.92

rs12956009 18 44768024 C T 0.426 −0.0195 0.0224 0.384

rs62100765 18 50735418 T C 0.403 −0.00695 0.0224 0.757

rs1382358 19 13171424 C T 0.13 −0.0209 0.033 0.527

rs111730030 19 13268826 T G 0.0578 −0.024 0.0476 0.615

rs12462428 19 16694610 C T 0.193 −0.0149 0.0278 0.592

rs78387210 20 47823441 T C 0.0904 −0.0153 0.0393 0.698

rs6065080 20 59832791 C T 0.645 0.0244 0.023 0.289

rs35532491 22 34329603 T A 0.101 0.0106 0.0364 0.771

rs7286601 22 51121416 G T 0.458 −0.00681 0.0222 0.759

EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; SE, standard error; Beta is regression coefficients based on effect allele.

asthma risk (OR = 0.65, 95% CI 0.51–0.85, P = 0.001) using IVW.
Importantly, other additional analysis methods and sensitivity
methods supported this finding. However, multivariable MR
analysis showed that educational attainment protected against
asthma risk dependently on cognitive performance.

Until now, univariable and multivariable MR studies have
evaluated the association of educational attainment and/or
cognitive performance on other human complex diseases or
phenotypes. Wang et al. (2021) conducted a two-sample
univariable and multivariable MR to evaluate the causal
effects of educational attainment and cognition on the risk of
epilepsy. Using univariable MR analysis, they found that both
educational attainment and cognitive performance could reduce
the risk of epilepsy (Wang et al., 2021). Using multivariable
MR analysis, they found that only educational attainment

protected against epilepsy independent of cognitive performance
(Wang et al., 2021).

Gill et al. (2019) conducted a two-sample univariable MR
to evaluate the effect of education and cognitive performance,
respectively, on the risk of coronary heart disease and ischemic
stroke. Meanwhile, they performed a multivariable MR to
adjust for the effects of cognitive performance and education,
respectively (Gill et al., 2019). Using univariable MR analysis, they
found a causal association between high education and reduced
risk of coronary heart disease and stroke (Gill et al., 2019).
Meanwhile, they also found that high cognitive performance
could also reduce the risk of coronary heart disease but not
stroke (Gill et al., 2019). Using multivariable MR analysis,
they found that education could protect against coronary
heart disease and stroke independent of cognitive function
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FIGURE 1 | Single estimates about causal association between educational attainment and asthma from MR analysis using IVW method. This scatter plots
represent 141 genetic variants associated with educational attainment on x-axis and risk of asthma on y-axis. Continuous line represents causal effect of educational
attainment on risk of asthma. IVW, inverse variance weighted.

FIGURE 2 | Single estimates about causal association between educational attainment and asthma from MR analysis using weighted median method. This scatter
plots represent 141 genetic variants associated with educational attainment on x-axis and risk of asthma on y-axis. Continuous line represents causal effect of
educational attainment on risk of asthma.

(Gill et al., 2019). However, the cognitive performance had no
causal association with coronary heart disease or stroke by
adjusting for education (Gill et al., 2019). Carter et al. (2019)
found that BMI, systolic blood pressure, and smoking behavior
could mediate the protective role of education on the risk
of cardiovascular outcomes, including coronary heart disease,
stroke, myocardial infarction, and cardiovascular disease (all
subtypes; all measured in OR).

Liang et al. (2021) identified that educational attainment
protected against type 2 diabetes independently of cognitive
performance. Rosoff et al. (2020) found that educational
attainment could reduce the risk of suicide attempts in
individuals with and without psychiatric disorders independent
of cognition. Zhang et al. (2020) found that high educational
attainment, but not cognitive performance, was causally
associated with a reduced risk of amyotrophic lateral sclerosis.
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FIGURE 3 | Single estimates about causal association between educational attainment and asthma from MR analysis using MR-Egger method. This scatter plots
represent 141 genetic variants associated with educational attainment on x-axis and risk of asthma on y-axis. Continuous line represents causal effect of educational
attainment on risk of asthma.

Meanwhile, MR studies have found that increased education
could reduce the risk of ischemic stroke (Gill et al., 2019; Xiuyun
et al., 2020; Harshfield et al., 2021) and Alzheimer’s disease
(Larsson et al., 2017; Anderson et al., 2020; Andrews et al., 2021;
Zhuang et al., 2021a). Anderson et al. (2020) recently examined
whether educational attainment and cognitive performance had
causal effects on the risk of Alzheimer’s disease, independently of
each other. They found that educational attainment affected the
risk of Alzheimer’s disease dependently of cognitive performance
(Anderson et al., 2020). However, cognitive performance affected
the risk of Alzheimer’s disease independently of educational
attainment (Anderson et al., 2020).

Hence, all these findings discussed earlier indicated that
educational attainment had causal effects on the risk of epilepsy
(Wang et al., 2021), coronary heart disease (Gill et al., 2019),
stroke (Gill et al., 2019), type 2 diabetes (Liang et al., 2021),
and suicide attempt (Rosoff et al., 2020), independently of
cognitive performance. However, the causal effect of educational
attainment on the risk of Alzheimer’s disease may be mediated
by cognitive performance (Anderson et al., 2020). Our findings
are consistent with recent MR findings in other human complex
diseases or phenotypes.

Since 2018, multiple large-scale asthma GWAS datasets have
been reported, as described in the Introduction. Here, we
only selected the large-scale asthma GWAS dataset in 30,810
individuals of European ancestry from Shrine et al. (2019). In
brief, these GWAS samples are from GASP, U-BIOPRED, and
the UK Biobank (Shrine et al., 2019). In 2018, TAGC examined
the common asthma variants by a meta-analysis of worldwide
asthma GWAS datasets, including 23,948 asthma cases and
118,538 controls (Demenais et al., 2018). However, all these
individuals are from ethnically diverse populations, including
European ancestry, African ancestry, Japanese ancestry, and
Latino ancestry (Demenais et al., 2018). It is known that all

these selected educational attainment genetic variants are from
the large-scale GWAS dataset in individuals of European descent
(n = 405,072) (Okbay et al., 2016). Hence, we did not select
the asthma GWAS dataset from TAGC in our MR analysis
(Demenais et al., 2018). Zhu et al. (2018) conducted a genome-
wide cross-trait analysis to investigate the shared genetic etiology
in asthma and allergic diseases by analyzing large-scale GWAS
datasets from the UK Biobank, including 25,685 allergic diseases
subjects, 14,085 asthma subjects, and 76,768 controls. Hence,
both Shrine et al. (2019) and Zhu et al. (2018) have used the
UK Biobank samples. Hence, we did not select the asthma
GWAS dataset from Zhu et al. (2018) in our MR analysis. Han
et al. (2020) conducted a GWAS using 64,538 asthma cases and
329,321 controls from UK Biobank and then performed a meta-
analysis using the UK Biobank and the TAGC datasets. However,
they did provide the effect size and the corresponding standard
error for each variant in the GWAS summary dataset (Han et al.,
2020). Importantly, there is a sample overlap in both studies
from Shrine et al. (2019) and Han et al. (2020), as both shared
the UK Biobank samples. Hence, we did not select the GWAS
dataset from the UK Biobank or the GWAS dataset from the
meta-analysis of the UK Biobank and TAGC in our MR analysis
(Han et al., 2020).

Meanwhile, our MR analysis still has some limitations.
First, our findings are based on the educational attainment
GWAS dataset and asthma GWAS dataset in individuals of
European ancestry (Okbay et al., 2016; Shrine et al., 2019). It
remains unclear about the causal association between educational
attainment and asthma in other ancestries. Hence, replication
MR studies are required to investigate our findings in the future.
Second, both the educational attainment GWAS dataset and
asthma GWAS dataset include the samples from the UK Biobank
(Okbay et al., 2016; Shrine et al., 2019). In brief, the replication
stage in the educational attainment GWAS dataset included
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111,349 individuals from the UK Biobank (Okbay et al., 2016).
The asthma GWAS dataset included 2,996 asthma cases from the
UK Biobank and 25,600 controls from the UK Biobank (Shrine
et al., 2019). Hence, the educational attainment GWAS dataset
and the asthma GWAS dataset may not be independent. Hence,
independent GWAS datasets are also required to evaluate our
findings further.

In summary, we highlight the protective role of educational
attainment against asthma with 100% statistical power using
univariable MR analysis. Meanwhile, we provide evidence to
support that educational attainment protects against asthma risk
dependently on cognitive performance using multivariable MR
analysis. Our findings may have public health applications and
deserve further investigation.
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It has been a long time that the relationship between serum calcium levels and
Alzheimer’s disease (AD) remains unclear. Until recently, observational studies have
evaluated the association between serum calcium levels and the risk of AD, however,
reported inconsistent findings. Meanwhile, a Mendelian randomization (MR) study had
been conducted to test the causal association between serum calcium levels and AD
risk, however, only selected 6 serum calcium SNPs as the instrumental variables. Hence,
these findings should be further verified using additional more genetic variants and
large-scale genome-wide association study (GWAS) dataset to increase the statistical
power. Here, we conduct an updated MR analysis of the causal association between
serum calcium levels and the risk of AD using a two-stage design. In discovery stage,
we conducted a MR analysis using 14 SNPs from serum calcium GWAS dataset
(N = 61,079), and AD GWAS dataset (N = 63,926, 21,982 cases, 41,944 cognitively
normal controls). All four MR methods including IVW, weighted median, MR-Egger, and
MR-PRESSO showed a reduced trend of AD risk with the increased serum calcium
levels. In the replication stage, we performed a MR analysis using 166 SNPs from serum
calcium GWAS dataset (N = 305,349), and AD GWAS dataset (N = 63,926, 21,982
cases, 41,944 cognitively normal controls). Only the weighted median indicated that
genetically increased serum calcium level was associated with the reduced risk of AD.
Hence, additional studies are required to investigate these findings.

Keywords: Alzheimer’s disease, serum calcium, GWAS, Mendelian randomization, weighted median

INTRODUCTION

It has been a long time that the relationship between serum calcium levels and Alzheimer’s disease
(AD) remains unclear (3–4), as few studies had investigated the association of serum calcium levels
with AD (Deary et al., 1987; Landfield et al., 1991; Conley et al., 2009). Until recently, observational
studies have evaluated the association between serum calcium levels and the risk of AD
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(Sato et al., 2019; Ma et al., 2021). However, these observational
studies have highlighted inconsistent findings about the
association of serum calcium levels with the risk of AD. Some
observational studies have found the protective role of high
serum calcium levels in AD (Deary et al., 1987; Landfield et al.,
1991; Conley et al., 2009; Sato et al., 2019). Landfield et al. (1991)
and Conley et al. (2009) found that AD cases had lower serum
calcium levels compared with normal age-matched controls.
Meanwhile, Shore et al. found that the severely demented patients
had lower serum calcium levels compared with mildly affected
individuals (Deary et al., 1987). Sato et al. (2019) analyzed
the neuroimaging data of 234 mild cognitive impairment
(MCI) participants from the Japanese Alzheimer’s Disease
Neuroimaging Initiative (J-ADNI) study cohort. They found that
low serum calcium levels could increase the conversion of MCI
to early AD (Sato et al., 2019).

However, other observational studies have identified the
harmful role of high serum calcium levels in AD. In a
longitudinal population-based study, Kern et al. (2016) reported
that compared with women without calcium supplementation,
women with calcium supplements had increased risk of dementia
and stroke-related dementia. Ma et al. (2021) analyzed the
neuroimaging data of 1,224 non-demented elders including
413 cognitively normal and 811 MCI from ADNI. Their
results indicated that serum calcium levels increased with
the disease severity (Ma et al., 2021). High serum calcium
could increase the cognitive decline and the conversion from
non-demented status (cognitively normal and MCI) to AD
(Ma et al., 2021).

In order to test the causal association between serum
calcium levels and AD risk, He et al. (2020) conducted
a Mendelian randomization (MR) study using genome-wide
association study (GWAS) datasets from serum calcium and
AD. He et al. (2020) found that genetically increased serum
calcium levels could significantly reduce the risk of AD. This
MR analysis still has two limitations. First, He et al. (2020)
only selected 8 serum calcium related genetic variants as
the potential instrumental variables. They further excluded
two genetic variants using the pleiotropy analysis, and the
remaining six genetic variants could only explain 0.81% of
the serum calcium variance (He et al., 2020). Second, He
et al. (2020) used four MR analysis methods including inverse-
variance weighted (IVW), Weighted median, MR-Egger, and
MR-PRESSO. However, the main analysis method IVW only
indicated suggestive association (P = 0.031). Hence, these
findings should be further verified using additional more
genetic variants and large-scale GWAS dataset to increase the
statistical power.

Until recently, large-scale GWAS of serum calcium levels
(N = 305,349) and AD (N = 63,926, 21,982 cases, 41,944
cognitively normal controls) have been reported (Kunkle
et al., 2019; Young et al., 2021). There GWAS included
larger sample size than previous GWAS of serum calcium
levels (N = 61,079) (O’seaghdha et al., 2013) and AD
(N = 54,162, 17,008 AD cases and 37,154 controls) (Lambert
et al., 2013), as used by He and colleagues, respectively
(He et al., 2020). Importantly, these datasets are publicly

available. Hence, we conduct an updated MR analysis of
the causal association between serum calcium levels and the
risk of AD using serum calcium GWAS datasets (O’seaghdha
et al., 2013; Young et al., 2021), and AD GWAS dataset
(Kunkle et al., 2019).

MATERIALS AND METHODS

Study Design Overview
This MR analysis is a two-sample MR study. Hence, we used
the GWAS datasets from the exposure (serum calcium) and the
outcome (AD) to estimate the effect of exposure on outcome (He
et al., 2020). MR analysis has three assumptions, which have been
widely described (Liu et al., 2018; Anderson et al., 2020; He et al.,
2020; Wang L. et al., 2020; Zhang et al., 2020; Ou et al., 2021;
Sproviero et al., 2021). Ethical approvals were provided in the
original articles (Lambert et al., 2013; Young et al., 2021). Here,
our MR analysis only used the GWAS summary datasets from
serum calcium and AD (Lambert et al., 2013; Young et al., 2021).
Hence, the informed consent is not needed. Figure 1 provides the
framework of MR.

Genetic Instrument Selection (Discovery)
In discovery stage, 14 serum calcium single nucleotide
polymorphisms (SNPs) were selected including 8 SNPs at
the genome-wide significance threshold (P < 5.00E-08), and
6 SNPs with P < 1.00E-04 (O’seaghdha et al., 2013). The 14
serum calcium SNPs were identified by a GWAS using 61,079
individuals of European descent (O’seaghdha et al., 2013).
These 14 serum calcium SNPs, especially the 8 SNPs at the
genome-wide significance threshold, have been widely used as
the potential instrumental variables to evaluate the association
of serum calcium with other human complex diseases or
phenotypes (Larsson et al., 2017, 2019; Xu et al., 2017; Meng
et al., 2020; Wang Y. et al., 2020; Qu et al., 2021; Sun et al., 2021;
Young et al., 2021; Yuan et al., 2021). Detailed information about
these 14 SNPs is presented in Supplementary Table 1.

Genetic Instrument Selection
(Replication)
In replication stage, 208 independent SNPs associated serum
calcium levels at the genome-wide significance threshold
(P < 5.00E-08) were identified by a recent GWAS using 305,349
individuals from the UK Biobank (Young et al., 2021). Compared
with 7 SNPs explaining 0.9% of the total variance of total serum
calcium, these 208 SNPs explain 5.8% of the total variance of total
serum calcium (Young et al., 2021). Detailed information about
these 208 SNPs is presented in Supplementary Table 2.

AD GWAS Selection
The discovery GWAS summary statistics of AD were obtained
from the International Genomics of Alzheimer’s Project (IGAP)
stage 1 including 21,982 AD and 41,944 cognitively normal
controls of European descent (Kunkle et al., 2019). The IGAP
stage 1 is based the meta-analysis of four AD GWAS datasets
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FIGURE 1 | The framework of MR. MR analysis has three assumptions. Assumption 1: SNPs are associated with serum calcium levels with the genome wide
significance; Assumption 2: SNPs are not associated with either known or unknown confounders; Assumption 3: SNPs should influence risk of the outcome through
the exposure, not through other pathways.

TABLE 1 | Association of 14 serum calcium SNPs with AD risk.

SNP Serum calcium AD

EA NEA EAF Beta SE P value Beta SE P value

rs10491003 T C 0.09 0.027 0.005 4.80E-09 −0.0287 0.0246 0.2442

rs11967485 G A 0.9 0.026 0.005 9.40E-07 −0.0026 0.0248 0.9175

rs12150338 T C 0.09 0.03 0.006 1.50E-06 0.0491 0.0285 0.08516

rs1550532 C G 0.31 0.018 0.003 8.20E-11 −0.0027 0.0154 0.8593

rs1570669 G A 0.34 0.018 0.003 9.10E-12 −0.0015 0.015 0.9188

rs17711722 T C 0.47 0.015 0.003 8.20E-09 −0.0112 0.0171 0.5115

rs1801725 T G 0.15 0.071 0.004 8.90E-86 −0.0346 0.0202 0.08741

rs2281558 T G 0.25 0.015 0.003 5.10E-06 −0.0267 0.0168 0.1128

rs2885836 A G 0.24 0.012 0.003 5.40E-05 −0.023 0.017 0.1759

rs4074995 A G 0.28 0.013 0.003 4.60E-06 −0.0153 0.016 0.3385

rs7336933 G A 0.85 0.022 0.004 9.10E-10 −0.0113 0.0203 0.5779

rs7481584 G A 0.7 0.018 0.003 1.20E-10 0.0161 0.0157 0.3042

rs780094 T C 0.42 0.017 0.003 1.30E-10 0.0177 0.0145 0.2216

rs9447004 A G 0.48 0.012 0.003 3.30E-06 0.0111 0.0143 0.4387

SNP, single-nucleotide polymorphism; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; SE, standard error; Beta, regression coefficient based on
the effect allele.

including Alzheimer Disease Genetics Consortium, Cohorts
for Heart and Aging Research in Genomic Epidemiology
Consortium (CHARGE), The European Alzheimer’s Disease
Initiative (EADI), and Genetic and Environmental Risk in
AD/Defining Genetic, Polygenic and Environmental Risk
for Alzheimer’s Disease Consortium (GERAD/PERADES)
(Kunkle et al., 2019). AD cases were autopsy-confirmed or
clinically confirmed using the NINCDS-ADRDA criteria or
DSM-IV guidelines (Kunkle et al., 2019). The IGAP AD
GWAS summary statistics have been widely used in recent
MR analysis (Liu et al., 2018; Anderson et al., 2020; He et al.,

2020; Wang L. et al., 2020; Zhang et al., 2020; Ou et al., 2021;
Sproviero et al., 2021).

MR Method Selection
Four MR methods were selected to evaluate the causal association
between serum calcium and the risk of AD including the
main analysis method inverse-variance weighted meta-analysis
(IVW) (Bowden et al., 2016), and other three additional
analysis methods weighted median (Bowden et al., 2016),
MR-Egger (Burgess and Thompson, 2017), and Mendelian
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TABLE 2 | MR results in discovery and replication stages.

Stage Method OR 95% CI P value

Discovery Weighted median 0.67 0.40–1.12 1.22E-01

Discovery IVW 0.76 0.51–1.15 1.94E-01

Discovery MR-Egger 0.66 0.30–1.42 2.87E-01

Discovery MR-PRESSO Raw 0.76 0.51–1.15 2.17E-01

Discovery MR-PRESSO Outlier-corrected NA NA NA

Replication Weighted median 0.15 0.02–0.90 3.80E-02

Replication IVW 1.14 0.36–3.64 8.18E-01

Replication MR-Egger 0.27 0.03–2.19 2.22E-01

Replication MR-PRESSO Raw 1.15 0.36–3.64 8.19E-01

Replication MR-PRESSO Outlier-corrected 0.85 0.30–2.39 7.62E-01

OR, odds ratio; CI, confidence interval; IVW, Inverse-variance weighted meta-
analysis.

randomization pleiotropy residual sum and outlier (MR-
PRESSO) (Verbanck et al., 2018). Meanwhile, MR-Egger
intercept test and MRPRESSO Global test were used to
evaluate the evidence of pleiotropy (Bowden et al., 2016;

Burgess and Thompson, 2017; Verbanck et al., 2018; Bowden
and Holmes, 2019). The odds ratio (OR) and 95% confidence
interval (CI) of AD corresponds to 1 standard deviation (SD) in
serum calcium levels. The statistical significance threshold was
P < 0.05. All analyses were performed using R Version 4.0.3 and
R packages (“MendelianRandomization”) and (“MRPRESSO”)
(Yavorska and Burgess, 2017; Verbanck et al., 2018).

RESULTS

MR Analysis in the Discovery Stage
All these 14 serum calcium SNPs are available in the AD
GWAS dataset. We then extracted their corresponding summary
statistics for MR analysis, as provided in Table 1. The main and
other additional MR methods indicated no significant association
between serum calcium and the risk of AD including weighted
median (OR = 0.67, 95% CI: 0.40–1.12, P = 1.22E-01), IVW
(OR = 0.76, 95% CI: 0.51–1.15, P = 1.94E-01), MR-Egger
(OR = 0.66, 95% CI: 0.30–1.42, P = 2.87E-01), and MR-PRESSO

FIGURE 2 | The scatter plot of the MR analysis in discovery stage using different methods. The scatter plot is based on the single causal estimates from 14 serum
calcium SNPs using IVW, weighted median, simple median and MR-Egger, respectively. The scatter plot depicts the causal relationship between serum calcium level
and the risk of AD. The X-axis stands for the effect estimate (beta coefficient) of serum calcium level utilizing a certain SNP; stands for the effect estimate (beta
coefficient) of AD risk utilizing a certain IVW, Inverse variance weighting.
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FIGURE 3 | The forest plot of the single Mendelian randomization causal estimates for the association between genetically predicted serum calcium and the risk of
AD from 14 serum calcium SNPs using IVW. The black point showed the causal effect estimate (beta coefficient) of serum calcium level on the risk of AD utilizing a
certain SNP, and the black line indicated the 95% CI of the estimate. “IVW estimate” reports the effect using all SNPs estimated by the inverse-variance weighted
method. CI, confidence interval.

(OR = 0.76, 95% CI: 0.51–1.15, P = 2.17E-01), as provided in
Table 2. However, all these four methods showed a reduced
trend of AD risk with the increased serum calcium levels.
Meanwhile, the MR-Egger intercept test (with intercept = 0.004,
and P = 0.650) and MRPRESSO Global Test (P = 0.337) did
not indicate evidence of pleiotropy. Figure 2 is the scatter plot
of the single causal estimates from these 14 serum calcium
SNPs using IVW, weighted median, simple median and MR-
Egger. Figures 3, 4 are the forest plot, and funnel plot of the
single causal estimates from these 14 serum calcium SNPs using
IVW, respectively.

MR Analysis in the Replication Stage
166 of the 208 serum calcium SNPs are included in the AD
GWAS dataset. We then extracted the summary statistics of these
166 SNPs for the MR analysis, as provided in Supplementary
Table 3. Using the weighted median, we found that the genetically
increased serum calcium level (per 1 SD increase) was associated
with the reduced risk of AD (OR = 0.15, 95% CI: 0.02–0.90,

P = 3.80E-02) (Table 2). However, the other MR methods did not
reported any significant results including IVW (OR = 1.14, 95%
CI: 0.36–3.64, P = 8.18E-01) and MR-Egger (OR = 0.27, 95% CI:
0.03–2.19, P = 2.22E-01). Meanwhile, MR-Egger intercept test did
not indicate evidence of pleiotropy with intercept = 0.005, and
P = 0.105. Using MRPRESSO, we found evidence of pleiotropy
with Global Test P = 0.006. The MR-PRESSO Raw estimate is
OR = 1.15, 95% CI: 0.36–3.64, P = 8.19E-01. The MR-PRESSO
Outlier-corrected estimate is OR = 0.85, 95% CI: 0.30–2.39,
P = 7.62E-01. Figure 5 is the scatter plot of the single causal
estimates from these 166 serum calcium SNPs using IVW,
weighted median, simple median and MR-Egger.

DISCUSSION

Calcium signaling is involved in many different intracellular and
extracellular processes (Marambaud et al., 2009). It is known
that AD is characterized by the extracellular accumulation of
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FIGURE 4 | The funnel plot of the single causal estimates from 14 serum calcium SNPs using IVW. The funnel plot shows the potential bias of the selected 14 serum
calcium SNPs. The X-axis stands for the causal effect estimate (beta coefficient) of serum calcium level on the risk of AD utilizing a certain SNP and the Y-axis is the
reciprocal of standard error for each causal effect estimate. CI, confidence interval.

amyloid (Aβ) plaques and intracellular neurofibrillary tangles
(NFTs) in the brain (Tong et al., 2018). Evidence shows that
the calcium dysregulation occurs prior the key AD pathologies
including plaques, tangles, and synaptic deficits (Tong et al.,
2018). The disrupted calcium could further induce synaptic
deficits, and promote the accumulation of Aβ plaques and NFTs
(Tong et al., 2018). Hence, deregulated calcium homeostasis
may play an important role in the pathogenesis of AD
(Marambaud et al., 2009).

Until now, observational studies by analyzing the
neuroimaging data have evaluated the association between
serum calcium levels and the risk of AD, however, reported
inconsistent findings (Sato et al., 2019; Ma et al., 2021). Sato et al.
(2019) concluded that low serum calcium levels increased the
conversion of MCI to early AD. Ma et al. (2021) found that high
serum calcium increased the cognitive decline and the conversion
from non-demented status (cognitively normal and MCI) to
AD. Two reasons have caused these inconsistent findings. First,

Sato et al. (2019) selected a total of 234 MCI individuals, and
Ma et al. (2021) selected 413 cognitively normal and 811 MCI.
Hence, the sample size may have affected the conclusions from
both studies. Second, the samples used in both studies are of
different descents including one from Japanese and the other
European. Hence, different descents may have also affected the
conclusions from both studies (Sato et al., 2019; Ma et al., 2021).
Meanwhile, a longitudinal population-based study had tested the
association between calcium supplementation and dementia in
700 dementia-free women aged 70–92 years (Kern et al., 2016).
The results indicated that women with calcium supplements had
higher risk of developing dementia than women without calcium
supplementation (Kern et al., 2016). A cross sectional study in
337 subjects in India indicated that increased calcium level could
increase the cognitive score (Basheer et al., 2016).

Here, we conduct an updated MR analysis of the causal
association between serum calcium levels and the risk of AD
using a two-stage design. In discovery stage, we conducted a
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FIGURE 5 | The scatter plot of the MR analysis in replication stage using different methods. The scatter plot is based on the single causal estimates from 166 serum
calcium SNPs using IVW, weighted median, simple median and MR-Egger, respectively. The scatter plot depicts the causal relationship between serum calcium level
and the risk of AD. The X-axis stands for the effect estimate (beta coefficient) of serum calcium level utilizing a certain SNP; stands for the effect estimate (beta
coefficient) of AD risk utilizing a certain IVW, Inverse variance weighting.

MR analysis using 14 SNPs from serum calcium GWAS dataset
(N = 61,079) (O’seaghdha et al., 2013), and AD GWAS dataset
(N = 63,926, 21,982 cases, 41,944 cognitively normal controls)
(Kunkle et al., 2019). All four MR methods including IVW,
weighted median, MR-Egger, and MR-PRESSO showed a reduced
trend of AD risk with the increased serum calcium levels. In
the replication stage, we performed a MR analysis using 166
SNPs from serum calcium GWAS dataset (N = 305,349) (Young
et al., 2021), and AD GWAS dataset (N = 63,926, 21,982 cases,
41,944 cognitively normal controls) (Kunkle et al., 2019). Only
the weighted median indicated that genetically increased serum
calcium level was associated with the reduced risk of AD,
which indicates that 50% of the weight comes from the valid
instrumental variables (Bowden et al., 2016; Bowden and Holmes,
2019). Our findings may have clinical application that high serum

calcium level by diet or calcium supplementation may contribute
to reduce the risk of AD. However, IVW, MR-Egger, and MR-
PRESSO indicated no causal association between serum calcium
level and the risk of AD. Hence, additional studies including MR
studies and especially randomized controlled trials are required
to investigate these findings.

Compared with the original MR study from He and colleagues,
our MR analysis may have several strengths. First, we selected a
large-scale AD GWAS dataset (N = 63,926, 21,982 cases, 41,944
cognitively normal controls) (Kunkle et al., 2019), which included
more additional samples compared with the original study
(N = 54,162, 21,982 cases, 41,944 cognitively normal controls),
as used by He and colleagues (Lambert et al., 2013). Second, we
selected 14 serum calcium SNPs in the discovery stage and 166
serum calcium SNPs in the replication stage. He and colleagues
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only selected six SNPs as the effective instrumental variables, and
only observed suggestive association (P = 0.031) (He et al., 2020).
Our undated MR analysis significantly increased the number of
instrumental variables, which may contribute to the increases
statistical power in MR analysis (He et al., 2020). Meanwhile,
this two-sage method may contribute to test the replication and
robustness of MR estimate. Third, the individuals from both the
serum calcium and AD GWAS are of European descent. Hence,
our MR analysis may have reduced the population stratification
bias. Fourth, multiple MR and pleiotropy analysis methods
including IVW, weighted median, MR-Egger, and MR-PRESSO
were selected to reduce the pleiotropy.

Meanwhile, our MR study may also have some limitations.
First, we selected 14 SNPs in the discovery stage, and 208 SNPs
in the replication stage, as the potential instrumental variables.
However, they are not completely in linkage disequilibrium.
Hence, the linkage disequilibrium may have influenced the MR
findings. Second, the 208 serum calcium SNPs are identified
using is based UK Biobank samples (Young et al., 2021),
and the AD GWAS dataset is based on the 21,982 AD and
41,944 cognitively normal controls of European descent (Kunkle
et al., 2019). Hence, we could not ensure that the serum
calcium GWAS dataset and AD GWAS dataset are completely
independent with each other. Hence, the cryptic relatedness
may have influenced the MR findings. Third, our MR findings
are based on the individuals of European descent. Considering
the genetic heterogeneity across the different descents, the MR
findings between serum calcium levels and the risk of AD may be
different. Hence, our findings are required to be tested in other
populations. Fourth, we have evaluated the pleiotropy using both
the MR-Egger intercept test and MRPRESSO test. However, we
could not completely exclude all the pleiotropy. Hence, there may
be other confounding factors, which may have influenced our MR
findings. Hence, future studies are required to verify our findings.

CONCLUSION

Collectively, our updated MR analysis highlighted a reduced
trend of AD risk with the increased serum calcium levels
in the discovery stage, and reduced risk of AD in the
replication stage. Meanwhile, additional studies are required to
investigate our findings.
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Background: We aimed to explore the genetic correlation and bidirectional causal
relationships between low back pain (LBP) and three neurodegenerative diseases,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS).

Methods: Summary-level statistics were obtained from genome-wide association
studies of LBP (n = 177,860), AD (n = 63,926), PD (n = 482,730), and ALS (n = 80,610).
We implemented linkage disequilibrium score regression to calculate heritability
estimates and genetic correlations. To investigate possible causal associations between
LBP and three neurodegenerative diseases, we also conducted a bidirectional two-
sample Mendelian randomization (MR) study. Inverse variance-weighted MR was
employed as the primary method to generate overall estimates, whereas complementary
approaches and sensitivity analyses were conducted to confirm the consistency and
robustness of the findings.

Results: There was no evidence of genetic correlations between LBP and AD
(Rg = −0.033, p = 0.766). MR analyses did not support the causal effect of LBP
on AD (OR = 1.031; 95% CI, 0.924–1.150; p = 0.590) or the effect of AD on LBP
(OR = 0.963; 95% CI, 0.923–1.006; p = 0.090). Likewise, this study failed to identify
genetic correlations between LBP and two other neurodegenerative diseases. MR
results of the associations of LBP with PD and ALS, and the reverse associations, did
not reach Bonferroni-corrected significance.

Conclusion: The study did not support genetic correlations or causations between
LBP and three common neurodegenerative diseases, AD, PD, and ALS in the
European population.

Keywords: low back pain, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Mendelian
randomization, linkage disequilibrium score regression
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INTRODUCTION

Neurodegenerative diseases have imposed a heavy burden on
the global healthcare in line with the accelerated trend of
population aging. Alzheimer’s disease (AD) is the most common
neurodegenerative disorder and the leading cause of dementia
characterized by severe decline in cognitive function (Weller
and Budson, 2018). Parkinson’s disease (PD) is the second
most common neurodegenerative disease and the primary
movement disorder attributed to neurodegeneration (Balestrino
and Schapira, 2020). Amyotrophic lateral sclerosis (ALS), also
known as Lou Gehrig’s disease, is the most common type of
motor neuron disease (Hardiman et al., 2017; Liu et al., 2018).
With their etiology and mechanism largely unknown, there
are no effective treatments to slow down the progression of
neurodegenerative diseases so far (Dorst et al., 2018; Piton et al.,
2018; de Bie et al., 2020). Patients get worse gradually and lose
basic activities of daily living in the last stage. With enhancement
in international collaboration and advancement in genomic
sciences, especially large-scale genome-wide association studies
(GWAS), genetic underpinnings of neurodegenerative diseases
are being elucidated (Nicolas et al., 2018; Kunkle et al., 2019;
Nalls et al., 2019; Roberts et al., 2020). Low back pain (LBP) is a
common health condition with escalating healthcare utilization.
In the last three decades, LBP has been the leading level-3 cause
of years lived with disability (YLDs) globally, and particularly
in high-income countries (Vos et al., 2012; Hoy et al., 2014).
According to the most recent Global Burden of Disease Study
(GBD, 2020), LBP was responsible for 780 YLDs per 100,000
population, and among 692 million non-communicable disease
YLDs the proportion contributed by LBP was approximately
9.2%. LBP affects all age groups with a lifetime prevalence of
about 40% (Manchikanti et al., 2014), which increases with aging
and is slightly higher in women (Shmagel et al., 2016). Apart from
behavioral and social-economic factors, the genetic basis of LBP
has been well recognized in previous studies (Livshits et al., 2011;
Junqueira et al., 2014; Suri et al., 2021).

Possible relationships between LBP and neurodegenerative
diseases have been previously postulated (Broetz et al., 2007;
Aggarwal et al., 2010; Miller et al., 2013; Udeh-Momoh et al.,
2019; Silveira Barezani et al., 2020). In a prospective cohort of
690 participants at the preclinical stage of AD (Udeh-Momoh
et al., 2019), back pain was among the most frequently occurring
(3.0%) safety events, whereas in a recent cross-sectional study
of 115 patients with sporadic PD (Silveira Barezani et al., 2020),
58.3% of participants reported to have LBP. A higher prevalence
of back pain in PD patients (75/101, 74.3%) when compared with
age-matched control patients (35/132, 26.5%) was reported in
another prior study (Broetz et al., 2007). With regard to ALS,
back pain was also among top safety concerns (8/32, 25%) in prior
clinical trials (Aggarwal et al., 2010; Miller et al., 2013). Notably,
these studies had limited sample size due to ethical and economic
restrictions, and unmeasured confounding and reverse causation
would incur biases to the findings as well. Meanwhile, established
at parental gamete formation and insusceptible to later-life
environmental confounders, genetic variants precede disease
onset and hence are ideal epidemiological instruments. The last

two decades have witnessed great strides in GWASs (Visscher
et al., 2017), particularly increased samples and augmented
power, and numerous single-nucleotide polymorphisms (SNPs)
have been identified for common disorders, including self-
reported back pain (Freidin et al., 2019) and chronic back pain
(Suri et al., 2018). From the perspective of human genomics
and genetic epidemiology, cutting-edge statistical tools such as
linkage disequilibrium score regression (LDSC) (Bulik-Sullivan
et al., 2015; Zheng et al., 2017) and Mendelian randomization
(MR) (Hemani et al., 2018; Walker et al., 2019), have made it
possible to use GWAS summary-level data to explore genetic
correlation (Wang et al., 2020; Zhuang et al., 2021) and make
causal inference (He et al., 2020; Zhang et al., 2020) within a wide
spectrum of complex traits.

In this study, we utilized LDSC to investigate genetic
correlations and further conducted two-sample bidirectional
MR to explore relationships between LBP and three
neurodegenerative diseases.

MATERIALS AND METHODS

Data Sources
This study was based on publicly available GWAS datasets,
with informed consent from participants and approval by ethics
committees completed in original studies (Nicolas et al., 2018;
Kunkle et al., 2019; Nalls et al., 2019; FinnGen, 2021).

Summary association statistics for LBP was retrieved from
the FinnGen study (FinnGen, 2021). LBP was defined as back
pain localized between the costal margin and the inferior
gluteal folds. From the Finnish registries of hospital discharge
and cause of death, cases of LBP were ascertained using
electronic health records with specific International Classification
of Diseases (ICD) code (ICD-10, M54.5; ICD-9, 724.2; ICD-8,
728.7). Patients with symptoms of back pain caused by other
specific diseases, such as fracture of lumbar vertebra (ICD-10,
S32.0) and ankylosing spondylitis (ICD-10, M45), were excluded.
Totally, there were 13,178 cases of LBP and 164,682 controls
of the European ancestry (Supplementary Table 1). GWAS was
performed in SAIGE, version 0.36.3.2 (Zhou et al., 2018), with
sex, age, genotyping batches, and first 10 principal components
incorporated as covariates. Variant positions which were initially
presented in base pairs on build GRCh38 underwent coordinate
conversion to GRCh37 using the command line tool liftOver
and reference chain files from the UCSC Genome Browser
Database (Lee et al., 2020). Effect size was reported in the unit
of log-transformed odds ratio (OR) per additional copy of the
alternative allele (Supplementary Table 2).

Summary-level GWAS data of three neurodegenerative
diseases were from large-scale meta-analyses of AD (Kunkle
et al., 2019), PD (Nalls et al., 2019), and ALS (Nicolas et al.,
2018) in the European population. There were 21,982 clinically
diagnosed cases and 41,944 controls in the GWAS of AD (Kunkle
et al., 2019), 33,674 cases and 449,056 controls in the GWAS of
PD (Kunkle et al., 2019), and 20,806 cases and 59,804 controls
in the GWAS of ALS (Kunkle et al., 2019). More details of
demographic information and case ascertainment were described
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in Supplementary Materials of original studies. GWAS meta-
analyses were implemented using PLINK v1.90 (Purcell et al.,
2007). Coordinates of SNPs according to the GRCh37 build were
adopted; thus, no conversion was required. Likewise, the effect
size represented change in log-OR of AD, PD, or ALS in the
additive logistic regression (Supplementary Table 3).

Linkage Disequilibrium Score Regression
We used the common line tool ldsc v1.0.1 (Bulik-Sullivan et al.,
2015) to compute heritability estimates and genetic correlations
from summary-level statistics. Pre-calculated reference LD scores
according to the 1000 Genomes EUR panel were adopted.1

First, we filtered our data to keep HapMap3 SNPs (International
HapMap 3 Consortium, Altshuler et al., 2010), using the
recommended SNP list in the LD hub (Zheng et al., 2017).
These variants had minor allele frequencies above 1% and
were well-imputed in most European-ancestry GWASs, which
benefited minimizing biases in the ensuing analyses. Variants at
the MHC locus were not considered due to their great potential
of pleiotropy and the complexity of local LD structure, which
would affect the robustness of LDSC results. Those SNPs with
large effect sizes (χ2 > 80) were filtered, since outliers could
disproportionately influence the regression. Totally, 1,160,464
SNPs for LBP, 1,204,767 for AD, 1,120,769 for PD and 1,170,115
for ALS were retained. Heritability (H2) on the observed scale,
genomic inflation factor (λGC), mean chi-square (χ2), and
intercept statistics were derived from the SNP heritability analysis
(command-line, –h2) for LBP and three neurodegenerative
diseases. We divided the heritability estimate by its related
standard error (SE) to calculate heritability z-scores. Suggested
criteria (Zheng et al., 2017) to get reliable estimates of the genetic
correlation were all met for LBP and three neurodegenerative
diseases. The genetic correlation estimate (Rg) and its associated
SE were computed with the −rg command flag. In the genetic
correlation analysis, the p-value below the Bonferroni-corrected
threshold (p < 0.05/3 = 0.017) was considered to be significant.

Mendelian Randomization
We performed bidirectional MR using the TwoSampleMR
(version 0.5.6) package (Hemani et al., 2018) in R 3.6.3 (R
Foundation for Statistical Computing, Vienna, Austria). First,
instrumental SNPs robustly associated with traits of interest were
selected. Using the default clumping threshold (r2 < 0.001 within
a 10,000 kb distance) in the MR-Base platform (Walker et al.,
2019), we obtained 20, 23, and 6 SNPs associated with AD,
PD, and ALS, respectively, reaching the significance threshold
(p < 5 × 10−8). Regarding LBP, however, there were no genome-
wide significant loci identified outside the MHC locus. Therefore,
we relaxed the threshold (p < 5 × 10−6), as previous studies did
(Schooling and Ng, 2019; Kwok et al., 2020; Ng and Schooling,
2020; Kwok and Schooling, 2021), to select 17 instrumental
variants of LBP. For instrumental SNPs which were not present
in the outcome datasets, we also searched for available proxies
(r2 > 0.8, 1000 Genomes EUR). We aligned effect alleles within
each exposure–outcome pair, and the harmonized and merged

1https://data.broadinstitute.org/alkesgroup/LDSCORE/

datasets were utilized for subsequent analyses. As the primary
MR analysis, we employed the inverse variance weighted (IVW)
model to compute the overall estimate (Burgess et al., 2013).
The weighted median approach would provide robust estimates
on the assumption that more than 50% of weights came from
valid instruments (Bowden et al., 2016). MR-Egger regression
was capable of examining unbalanced horizontal pleiotropy via
the intercept and provided causal estimate with adjustment for
pleiotropy via the regression slope (Burgess and Thompson,
2017). The weighted mode-based method would obtain a
robust overall causal estimate when the majority of similar
individual estimates were from valid instrumental SNPs (Hartwig
et al., 2017). Nevertheless, the weighted median, MR-Egger, and
weighted mode estimates had compromised power (Slob and
Burgess, 2020), as indicated by wide confidence intervals (CIs),
and hence were performed as complimentary methods. As for
MR results, ORs represented the relative odds of the occurrence
of the outcome concerned (i.e., AD) given exposure to the trait of
interest (i.e., LBP). The power calculation was performed using
a web application, mRnd (Brion et al., 2013). We estimated
the proportion of variance explained by instrumental SNPs for
the exposure using the formula 2 × EAF × (1-EAF) × Beta2,
where EAF is the effect allele frequency and Beta denotes the
effect size. Then, assuming a power of 80% and an alpha of 5%,
we calculated the detectable range of OR with sufficient power
for the outcome of interest. The significance threshold was set
at p < 0.05/6 = 0.008 after applying Bonferroni correction for
multiple MR tests.

RESULTS

Heritability Estimates and Genetic
Correlations
Common SNPs (∼1.1 million, EUR phase 3 HapMap)
cumulatively explained 1.86% of the total heritability of LBP,
suggesting the small effects of SNPs in the genetic contribution to
complex disorders. In the GWAS of LBP, genomic inflation factor
(λGC = 1.096) demonstrated slight inflation; with the intercept
(1.035) being close to 1, the inflation should be attributed to
the polygenic genetic architecture. As shown in Table 1, the
heritability estimate on the observed scale, genomic inflation
factor, and LDSC intercept for AD, PD, and ALS in this study
were similar to those in the original GWASs. Moreover, all these
statistics satisfied the following criteria, heritability H2/SE > 4,
mean χ2 > 1.02 and intercepts between 0.9 and 1.1, indicating
the suitability and reliability for estimating genetic correlations.

There was no evidence for the genetic correlation between
LBP and AD (Rg = −0.033, p = 0.766). As detailed in Table 2,
correlations between LBP and PD (Rg = −0.079, p = 0.279)
and ALS (Rg = 0.069, p = 0.583) did not reach nominal
significance, either.

Bidirectional MR Analyses
Overall, MR estimates suggested that genetically predicted
higher risks of LBP were not associated with the liability to
AD, PD, or ALS. By the IVW approach, genetically predicted
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TABLE 1 | Heritability estimates based on single-nucleotide polymorphisms for
low back pain and three neurodegenerative diseases.

Traits H2(SE) λGC Mean χ2 Intercept (SE)

Low back pain 1.86% (0.32%) 1.096 1.102 1.035 (0.008)

Alzheimer’s disease 7.13% (1.14%) 1.093 1.118 1.030 (0.008)

Parkinson’s disease 1.85% (0.18%) 1.090 1.137 0.985 (0.007)

Amyotrophic lateral
sclerosis

3.17% (0.70%) 1.044 1.071 1.020 (0.007)

H2, heritability estimate on the observed scale; SE, standard error; λGC, genomic
inflation factor.

TABLE 2 | Genetic correlations between low back pain and three
neurodegenerative diseases.

Phenotypes Rg (95% CI) p-value

Alzheimer’s disease −0.033 (−0.252, 0.186) 0.766

Parkinson’s disease −0.079 (−0.223, 0.064) 0.279

Amyotrophic lateral sclerosis 0.069 (−0.177, 0.315) 0.583

Rg, genetic correlation estimate; CI, confidence interval.

predisposition to LBP was not associated with the risk of
AD (OR = 1.031; 95% CI, 0.924–1.150; p = 0.590). Likewise,
causal effects of LBP on PD (OR = 1.002; 95% CI, 0.844–
1.190; p = 0.982) and ALS (OR = 0.935; 95% CI, 0.844–
1.036; p = 0.199) did not reach significance threshold in the
main analysis. Complementary MR methods provided consistent
results (Figure 1 and Supplementary Figure 1). Notably, our
analysis might be underpowered (Supplementary Table 4) to
detect small causal effects given the small proportion of variance
explained by instrumental SNPs. No unbalanced horizontal
pleiotropy (all p > 0.05) was indicated by MR-Egger regression
intercepts (Supplementary Table 5). Cochran’s Q tests provided
no evidence for the existence of heterogeneity (Supplementary
Table 6), whereas leave-one-out plots (Supplementary Figure 2)
did not identify any outlier variants.

In the reverse direction, MR analyses did not support the
effects of neurodegenerative diseases on LBP. A one-unit increase
in log-OR of AD was not associated with change in risks of
LBP (OR = 0.963; 95% CI, 0.923–1.006; p = 0.090) by the
IVW method, whereas the weighted median estimate reached
nominal significance, albeit failing the Bonferroni-corrected
threshold (p = 0.009 > 0.05/6). Similarly, as shown in Figure 2,
the relationship between PD and LBP (OR = 0.960; 95% CI,
0.922–1.000; p = 0.048) reached nominal significance. However,
there was no evidence for the association of ALS with LBP
(OR = 1.030; 95% CI, 0.935–1.135; p = 0.545). According to
scatter plots (Supplementary Figure 3) and leave-one-out plots
(Supplementary Figure 4), no evident outliers existed, while
additional analyses (Supplementary Tables 5, 6) demonstrated
no horizontal pleiotropy or heterogeneity.

DISCUSSION

In this study, we did not find evidence supporting genetic
correlations or causations between non-specific LBP and three

common neurodegenerative diseases. Back pain has been
commonly studied as a self-reported symptom (Suri et al.,
2018; Freidin et al., 2019) and studied in spine-related diseases
like lumbar spinal stenosis (Suri et al., 2021). For example,
a previous GWAS (Freidin et al., 2019) of self-reported
back pain in 509,000 Europeans identified three significant
loci (p < 5 × 10−8), but genetic correlation estimates
between back pain and AD (Rg = 0.115, p = 0.147), PD
(Rg = 0.029, p = 0.586), and ALS (Rg = 0.166, p = 0.030)
all failed Bonferroni-corrected significance. Notably, only a
small part of LBP has clear causes and can be classified
into specific diseases; however, there exists the majority with
unknown mechanisms. Such LBP has been seen as an entity
itself in the electronic health record, and as a complex
trait, GWAS and related tools are likely to be powerful to
disentangle the genetic underpinnings. Here, we employed LDSC
and MR to elucidate their relationships based on biobank
association data of LBP and the most up-to-date GWASs of
AD, PD, and ALS.

Observational studies exploring the relationship between LBP
and neurodegenerative diseases have been conducted before
(Broetz et al., 2007; Aggarwal et al., 2010; Miller et al., 2013; Udeh-
Momoh et al., 2019; Silveira Barezani et al., 2020). Several studies
reported a high occurrence of LBP during the non-interventional
course of AD (Udeh-Momoh et al., 2019), and the interventional
diagnostic and therapeutic procedure of AD (Landen et al., 2013;
Alcolea et al., 2014). Similarly, LBP was a common complaint
during the treatment of ALS (Aggarwal et al., 2010; Miller et al.,
2013). We could not tell whether there are causal mechanisms
underlying such findings, given the complexity of insufficiently
controlled factors in traditional epidemiology. Regarding the
potential role of LBP in PD, in a recent questionnaire-based study
(Silveira Barezani et al., 2020), about 40% patients reported the
onset of LBP before the diagnosis of PD, and higher pain scores
were associated with more advanced stage and rating scales of
PD. The interaction of LBP and PD undoubtedly leads to more
difficulty and disability in daily activities. Besides, both PD and
ALS extensively involved neural and musculoskeletal systems
with a variety of manifestations and unbalanced musculoskeletal
dynamics due to gait abnormality, posture alteration and chronic
joint trauma in the progressive course were likely to result in
LBP (Ozturk and Kocer, 2018; Duncan et al., 2019). The vicious
cycle of LBP and neurodegenerative diseases should have a severe
influence on the life quality of patients. Identifying possible
links underlying LBP, AD, PD, and ALS from the perspective of
genetic correlations would provide more informative knowledge
and ultimately benefit in developing effective interventions. In
this study, we found no evidence for the causal effects of LBP
on neurodegenerative diseases, neither did the reverse effects
reach Bonferroni-corrected threshold (p < 0.05/6 = 0.008). The
effects of AD and PD on LBP reached nominal significance,
and interestingly, the genetic predisposition to AD and PD
seemed to be associated with the lower occurrence of LBP
in this study. The findings failed to agree with previous
observational studies and were against common intuition to
a certain extent. Notably, it may as well be common sense
that more environmental components (i.e., sedentary behaviors)
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FIGURE 1 | Effects of low back pain on three neurodegenerative diseases by Mendelian randomization analyses. Relative odds of the occurrence of three
neurodegenerative diseases given exposure to low back pain were generated by three Mendelian randomization methods and presented in forest plots. AD,
Alzheimer’s disease; CI, confidence interval; ALS, amyotrophic lateral sclerosis; LBP, low back pain; OR, odds ratio; PD, Parkinson’s disease; SNP, Single-nucleotide
polymorphism.

FIGURE 2 | Effects of three neurodegenerative diseases on low back pain by Mendelian randomization analyses. Relative odds of the occurrence of low back pain
given exposure to three neurodegenerative diseases were generated by three Mendelian randomization methods and presented in forest plots. AD, Alzheimer’s
disease; CI, confidence interval; ALS, amyotrophic lateral sclerosis; LBP, low back pain; OR, odds ratio; PD, Parkinson’s disease; SNP, Single-nucleotide
polymorphism.

rather than genetic underpinnings would underlie the liability
to LBP when compared with neurodegenerative diseases. In the
current statistical model of MR, however, both the exposures

and outcomes of interest were genetically predicted “ideal” traits,
which were proxied by common variants without taking account
of other factors. Undoubtedly, MR estimates alone were not
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enough. Triangulating evidence across multiple lines of studies is
necessary to shed light on relationships between complex traits.

The major strength of this study was the utilization of the
state-of-the-art tools, LDSC and MR, to explore the relationships
between complex disorders. Using millions of summary-level
statistics from hundreds of thousands of participants, LDSC
was a powerful tool to estimate the genetic correlation. Based
on a subset of instrumental SNPs strongly associated with
the exposure-trait of interest, MR was capable of estimating
the causal effect on the outcome-trait concerned, while
circumventing reverse causation and minimizing biases by
confounders. There were also several limitations. Firstly, LBP was
defined by electronic health record codes with more reliability
and less misclassification, but we could not tell whether the
relationship existed between chronic LBP and neurodegenerative
diseases. LBP was studied as a whole, without separating the
acute and chronic type as generally included in self-reported
questionnaires. Neither did we differentiate between subgroups
of neurodegenerative diseases like AD subtypes based on
neuropathology and neuroimaging, PD subtypes by age at onset
(i.e., early-onset and late-onset), and ALS subgroups classified
by site of onset (i.e., bulbar and spinal). Secondly, gender
differences in the prevalence of LBP and three neurodegenerative
diseases have been proposed; however, we could not address
the meaningful question since no sex-stratified association data
were available. Lastly, this study was based on datasets from
European-ancestry GWASs, and great attention should be paid
when generalizing the findings to the other populations.

In summary, our results provided no evidence for the genetic
correlations between LBP and three common neurodegenerative
diseases, AD, PD, and ALS.
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The 10-Repeat 39-UTR VNTR
Polymorphism in the SLC6A3 Gene
May Confer Protection Against
Parkinson’s Disease: A Meta-analysis
Qiaoli Zeng1,2†, Fan Ning1,3†, Shanshan Gu1,3†, Qiaodi Zeng4, Riling Chen1,5,2, Liuquan Peng5,
Dehua Zou1,2*, Guoda Ma1* and Yajun Wang6*

1Maternal and Children’s Health Research Institute, Shunde Women and Children’s Hospital, Guangdong Medical University,
Foshan, China, 2Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University,
Foshan, China, 3Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China, 4Department of
Clinical Laboratory, People’s Hospital of Haiyuan County, Zhongwei, China, 5Department of Pediatrics, Shunde Women and
Children’s Hospital, Guangdong Medical University, Foshan, China, 6Institute of Respiratory, Shunde Women and Children’s
Hospital, Guangdong Medical University, Foshan, China

The dopamine transporter (DAT) is encoded by the SLC6A3 gene and plays an important
role in the regulation of the neurotransmitter dopamine. The SLC6A3 gene contains several
repetition alleles (3–11 repeats) of a 40-base pair variable number of tandem repeats
(VNTR) in the 3′-untranslated region (3′-UTR), which may affect DAT expression levels. The
10-repeat (10R) allele could play a protective role against PD. However, inconsistent
findings have been reported.

Methods: A comprehensive meta-analysis was performed to accurately estimate the
association between the 10R allele of the 3′-UTR VNTR in SLC6A3 and PD among four
different genetic models.

Results: This meta-analysis included a total of 3,142 patients and 3,496 controls. We
observed a significant difference between patients and controls for the allele model (10R vs.
all others: OR � 0.860, 95%CI: 0.771–0.958, P � 0.006), pseudodominant model (10R/10R
+ 10R/9R vs. all others: OR � 0.781, 95%CI: 0.641–0.952, P � 0.014) and pseudorecessive
model (10R/10R vs. all others: OR � 0.858, 95% CI: 0.760–0.969, P � 0.013) using a fixed
effects model. No significant differences were observed under the pseudocodominant
model (10R/9R vs. all others: OR � 1.079, 95% CI: 0.945–1.233, P � 0.262). By subgroup
analysis, the 10R, 10R/10R and 10R/9R genotypes were found to be significantly different
from PD in Asian populations.

Conclusion: Our findings suggest that the SLC6A3 10R may be a protective factor in
susceptibility to PD.

Keywords: Parkinson’s disease, Slc6a3, dopamine transporter, variable number of tandem repeats, meta-analysis
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INTRODUCTION

Parkinson’s disease (PD) is a very common neurodegenerative
disorder. One of the critical neuropathologies of PD is the
degeneration of dopamine-producing neurons in the
substantia nigra, resulting in impairment of the dopaminergic
pathway and the subsequent depletion of dopamine levels
(Balestrino and Schapira 2020). Another pathologic hallmark
is the presence of ubiquitinated protein deposits named Lewy
bodies, which cause dopaminergic cell death (Balestrino and
Schapira, 2020; Singleton et al., 2003). These pathologic
changes result in depletion of dopamine levels that underlie
the etiology of PD. Therefore, dopaminergic transmission and
metabolism pathway genes have been investigated and are
considered to be candidate genes for PD.

The dopamine transporter (DAT) plays an important role in
dopaminergic neurotransmission. It is mainly present on the
terminals of neurons in the substantia nigra and is responsible for
controlling the duration and intensity of neurotransmission by
rapid dopamine uptake into the presynaptic terminals; thus, DAT
is critical in the temporal and spatial buffering of released
dopamine and its recycling (Cheng and Bahar 2015; Uhl 2003;
Bannon et al., 2001). In addition, DAT is considered a gateway for
neurotoxicants because the nigrostriatal toxicant 1-methyl-4-
phenylpyridinium (Mpp+) is taken up selectively by
presynaptic DAT, and access to dopaminergic neurons leads
to dopaminergic cell toxicity (Krontiris 1995; Uhl et al., 1994);
DAT has also been shown to interact with alpha-synuclein (a kind
of Lewy body) (Lee et al., 2001; Wersinger et al., 2003; Thomas
and Beal 2007). These findings provide evidence for a role of DAT
in PD and seem to explain why the density of DAT correlates with
the extent of dopaminergic cell loss in PD brains.

DAT is coded by the SLC6A3 gene. The 3′-UTR of the SLC6A3
gene includes a 40 bp variable number tandem repeat (VNTR)
polymorphism. Between 3 and 11 copies of the 40 bp VNTR have

been identified in normal populations (Uhl 2003), and the 9 and
10 repeat alleles are most frequent in both PD patients and several
populations (Uhl 2003; Bannon et al., 2001). The SLC6A3 VNTR
itself seems to be a functional polymorphism. A recent study
found that the seed region of miR-491 is located in the VNTR
fragment of the DAT mRNA e 3′-UTR, and the effect of miR-491
on DAT expression is dependent on the VNTR copynumber (Jia
et al., 2016). Thus, SLC6A3 polymorphic VNTRs may directly
influence DAT expression (Fuke et al., 2001; Heinz et al., 2002;
Mill et al., 2002; Lynch et al., 2003). Lin reported that the 10R
alleles conferred protection against PD compared to other alleles
(Lin et al., 2003), but other noteworthy studies showed different
results. Given these controversial conclusions, we performed a
meta-analysis to systematically, quantitatively, and objectively
summarize the association between the 10R of the 3′-UTR VNTR
in SLC6A3 and PD susceptibility.

MATERIALS AND METHODS

Literature Search
The PubMed, Google Scholar, and Chinese National Knowledge
Infrastructure databases were systematically searched for
potentially qualified studies using a combination of the
keywords “dopamine transporter,” “DAT,” “DAT1,” “SLC6A3,”
“VNTR,” “3′-UTR,” “polymorphism,” “rs28363170” and
“Parkinson.” with no language or date restrictions. All studies
were evaluated on the basis of the title and abstract and we
excluded studies that were clearly irrelevant. Then, potentially
eligible studies were reviewed in full to determine the inclusion in
the meta-analysis.

Inclusion and Exclusion Criteria
Studies included in the meta-analysis had to meet all the
following inclusion criteria: 1) case-control or cohort studies

FIGURE 1 | Flow diagram of the literature search and selection.
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TABLE 1 | Characteristics of each study included in this meta-analysis.

Author Year Ethnic Case/Control Allele distribution Genotype distribution

Cases, n Control, n Cases, n Control, n

9R 10R Other 9R 10R Other 9R/9R 9R/10R 10R/10R Other 9R/9R 9R/10R 10R/10R Other

Chang et al. 2018 Chinese 52/60 19 85 0 23 97 0 5 9 38 0 6 11 43 0
Lu et al. 2016 Chinese 521/502 76 966 0 66 938 0 6 64 451 0 6 54 442 0
BENITEZ et al. 2010 South American 99/131 37 161 0 59 203 0 3 31 65 0 5 49 77 0
Ritz et al. 2009 Latino, Asian, and

Native American
324/334 — — — — — — 28 113 179 4 16 109 200 9

Kelada et al. 2005 non-Hispanic
Caucasian

251/355 147 346 9 179 525 6 23 101 119 8 28 120 202 5

Zhao et al. 2004 Chinese 138/184 10 249 17 16 341 11 0 10 113 15 1 13 160 10
Lin et al. 2003 Chinese 193/254 32 342 12 30 465 13 1 29 151 12 1 26 214 13
Lynch et al. 2003 African-American,

and Other
100/63 — — — — — — 10 44 42 4 4 24 32 3

Goudreau et al. 2002 Caucasian 183/146 114 249 3 76 211 5 — — — — — — — —

Kimura et al. 2001 Japanese 204/300 17 371 20 25 551 24 — — — — — — — —

Kim et al. 2000 Korean 116/128 32 179 21 37 209 10 12 7 84 13 15 6 101 6
Zhang et al. 2000 Chinese 128/85 13 231 12 2 156 12 0 13 104 11 0 2 73 10
Wang et al. 2000 Chinese 171/180 20 300 22 13 333 14 0 20 130 21 0 13 153 14
Mercier et al. 1999 French 75/78 48 99 3 52 102 2 10 26 36 3 8 36 32 2
Nicholl et al. 1999 Caucasian 206/206 — — — — — — 15 73 113 5 17 86 100 3
Leighton et al. 1997 Chinese 203/230 28 366 11 35 415 10 0 27 164 12 2 31 187 10
Le Couteur et al. 1997 Caucasian 100/200 51 144 5 112 286 2 7 36 52 5 15 81 102 2
Plante-Bordeneuve et al. 1997 British,French 78/60 42 108 6 34 85 1 — — — — — — — —
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that evaluated the associations between the SLC6A3 3′-UTR
VNTR polymorphism and the risk of PD; 2) available data for
estimating odds ratios (ORs) with corresponding 95% confidence
intervals (CIs); and 3) studies in which all PD patients had been
diagnosed according to the common diagnostic criteria (Jankovic
2008).

Studies were excluded from the current analysis with the
following criteria: 1) not a case-control or cohort study; 2)
irrelevant to PD or SLC6A3 3′-UTR VNTR; 3) genotype
distribution of the control subjects is not in Hardy-Weinberg
equilibrium (HWE); and 4) reports lacking detailed
genotype data.

Data Extraction
The following data were independently extracted from the
included studies and entered into a database to ensure the
validity of the data: first author’s name, year of publication,
ethnicity, number of patients and controls, allele distribution,

and genotype distribution. Studies were excluded if they did not
provide the above information.

Statistical Analysis
Four genetic models were used in the meta-analysis: the allele
model (10R vs. all others), the pseudodominant model (10R/10R
+ 10R/9R vs. all others), the pseudorecessive model (10R/10R vs.
all others), and the pseudocodominant model (10R/9R vs. all
others). Genetic heterogeneity was evaluated using the Q-test and
I2 test. I2 ranged from 0 to 100%. Significant heterogeneity was
defined with p < 0.01 and I2 > 50% (He et al., 2015; Shen et al.,
2015; Zhang et al., 2016). If there was no significant heterogeneity
among the total of studies, ORs with corresponding 95% CIs were
calculated by the fixed effect model (Mantel–Haenszel);
otherwise, ORs were calculated by a random-effect model. Z
test was used to determine the significance of OR. Additionally,
publication bias was investigated with Egger’s test and Begg’s test
(Li et al., 2016; Liu et al., 2017; Han et al., 2019). Statistical

FIGURE 2 | Meta-analysis with a fixed effects model for the association between the 3′-UTR VNTR in SLC6A3 and PD susceptibility. (A) Allele model, 10R vs. all
others (B) Pseudodominant model, 10R/10R + 10R/9R vs. all others (C) Pseudorecessive model, 10R/10R vs. all others (D) Pseudocodominant model, 10R/9R vs. all
others OR: odds ratio, CI: confidence interval, I-squared: measured to quantify the degree of heterogeneity in meta-analyses.
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analyses were performed using STATA v.16.0 software (Stata
Corporation, Texas, United States).

RESULTS

Study Inclusion and Characteristics
A total of 175 potential studies were retrieved through the initial
search. Thirty-two duplicates were excluded. Then, 143 studies
were screened on title and abstract, 91 of which were excluded.
The remaining 52 articles were evaluated by full-text reading, 34
of which were excluded because 10 were not case-control or
cohort studies, 20 were not related to the SLC6A3 3′-UTR VNTR
or PD, and 4 did not provide sufficient data. A flow chart of study
selection in the meta-analysis is shown in Figure 1. There were 18
potentially relevant papers, including 14 in English and 4 in
Chinese; among them, 15 studies provided allele model data
(Chang et al., 2018; Lu et al., 2016; Benitez et al., 2010; Kelada
et al., 2005; Zhao et al., 2004; Lin et al., 2003; Goudreau et al.,

2002; Kimura et al., 2001; Kim et al., 2000; Zhang et al., 2000;
Wang et al., 2000; Mercier et al., 1999; Leighton et al., 1997; Le
Couteur et al., 1997; plante-Bordeneuve et al., 1997),
and 15 studies had pseudodominant, pseudorecessive and
pseudoadditive model data (Chang et al., 2018; Lu et al., 2016;
Benitez et al., 2010; Ritz et al., 2009; Kelada et al., 2005; Zhao et al.,
2004; Lin et al., 2003; Lynch et al., 2003; Kim et al., 2000; Zhang
et al., 2000; Wang et al., 2000; Mercier et al., 1999; Nicholl et al.,
1999; Leighton et al., 1997; Le Couteur et al., 1997). The
characteristics of each study are shown in Table 1.

Heterogeneity Analysis
Cochran’s Q and I2 test results revealed low heterogeneity
among studies in four models (10R vs. all others p � 0.772 I2

� 0.0%; 10R/10R + 10R/9R vs. all others: p � 0.986 I2 � 0.0%;
10R/10R vs. all others: p � 0.268 I2 � 16.5%; 10R/9R vs. all others
p � 0.299 I2 � 13.8%, respectively) (Figure 2).

In the subgroup analysis by ethnicity, the results also
revealed low heterogeneity among studies in four models in

FIGURE 3 | Meta-analysis with a fixed effects model for the association between the 3′-UTR VNTR in SLC6A3 and PD susceptibility in Asian and Western
populations. (A) Allele model, 10R vs. all others; (B) Pseudodominant model, 10R/10R + 10R/9R vs. all others; (C) Pseudorecessive model, 10R/10R vs. all others; (D)
Pseudocodominant model, 10R/9R vs. all others OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.
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the Asian populations (10R vs. all others p � 0.799 I2 � 0.0%;
10R/10R + 10R/9R vs. all others: p � 0.809 I2 � 0.0%; 10R/10R
vs. all others: p � 0.792 I2 � 0.0%; 10R/9R vs. all others p � 0.589
I2 � 0.0%, respectively) and in Western populations (10R vs. all
others p � 0.496 I2 � 0.0%; 10R/10R + 10R/9R vs. all others:
p � 0.973 I2 � 0.0%; 10R/10R vs. all others: p � 0.100 I2 � 43.7%;
10R/9R vs. all others p � 0.228 I2 � 26.3%, respectively)
(Figure 3).

The Association Between the 10-Repeat of
the 39-UTR VNTR in SLC6A3 and PD
A fixed-effect model was used to analyze four models. The results
showed a significant difference between patients and controls
for the allele model (10R vs. all others: OR � 0.860, 95% CI:
0.771–0.958, p � 0.006), pseudodominant model (10R/10R +
10R/9R vs. all others: OR � 0.781, 95% CI: 0.641–0.952, p �
0.014) and pseudorecessive model (10R/10R vs. all others: OR �
0.858, 95% CI: 0.760–0.969, p � 0.013). No significant

differences were observed under the pseudocodominant
model (10R/9R vs. all others: OR � 1.079, 95% CI:
0.945–1.233, p � 0.262) (Figure 2).

In the subgroup analysis by ethnicity, the results showed a
significant difference between patients and controls for the allele
model (10R vs. all others: OR � 0.813, 95% CI: 0.695–0.952, p �
0.010), pseudorecessive model (10R/10R vs. all others: OR �
0.769, 95% CI: 0.637–0.928, p � 0.006) and pseudocodominant
model (10R/9R vs. all others: OR � 1.270, 95% CI: 1.010–1.597,
p � 0.041), but no significant differences were observed under the
pseudodominant model (10R/10R + 10R/9R vs. all others: OR �
0.781, 95% CI: 0.584–1.046, p � 0.097) in Asian populations with
a fixed-effect model. There was no significant difference between
patients and controls for the four models in the Western
populations (10R vs. all others: OR � 0.904, 95% CI:
0.778–1.050, p � 0.187; 10R/10R + 10R/9R vs. all others: OR
� 0.781, 95% CI: 0.597–1.022, p � 0.071; 10R/10R vs. all others:
OR � 0.929, 95% CI: 0.792–1.089, p � 0.361; 10R/9R vs. all others:
OR � 0.993, 95% CI: 0.843–1.170, p � 0.930) (Figure 3).

FIGURE 4 | Funnel plot of the odds ratios in the meta-analysis. (A) Allele model, 10R vs. all others (B) Pseudodominant model, 10R/10R + 10R/9R vs. all others (C)
Pseudorecessive model, 10R/10R vs. all others (D) Pseudocodominant model, 10R/9R vs. all others OR: odds ratio, CI: confidence interval, I-squared: measured to
quantify the degree of heterogeneity in meta-analyses.
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Publication Bias
No significant publication bias was observed in any of the above
genetic models via Begg’s funnel plot and Egger’s test (all p > 0.05,
data not shown), and the funnel plot was symmetrical, with studies
not coagulating into one quadrant of the funnel (Figures 4, 5).

DISCUSSION

This meta-analysis assessed the association between the 10R allele of
the 3′-UTR VNTR in the SLC6A3 gene and PD, and it included a
total of 18 published studies. In general, our findings suggested that
the 10R alleles and 10R/10R and 10R/10R + 10R/9R genotypes of the
VNTR polymorphism in the SLC6A3 gene confer protection against
PD. The 10R alleles and 10R/10R genotype results were replicated in
Asian populations, and the 10R/9R genotype was associated with an
increased risk of PD inAsian populations. The currentmeta-analysis
confirmed most of the previous findings showing that the 10R allele
of the 3′-UTR VNTR in the SLC6A3 gene may be a protective factor
in susceptibility to PD.

Previous studies have shown that the prevalence of PD in Asia
is low, approximately half that of Caucasians (Zhang and Román
1993; Leighton et al., 1997). This may be related to the
discrepancies in genetic polymorphisms among populations of
different racial and ethnic groups. There was a difference in allelic
frequency in the SLC6A3 VNTR polymorphism (Vandenbergh
et al., 1992; Sano et al., 1993; Le Couteur et al., 1997; Leighton
et al., 1997; Mercier et al., 1999; Kim et al., 2000) and the
distribution was similar among the different Asian ethnic
populations (Chinese, Korean and Japanese), but it was
different from the Western populations. There are research
findings that the frequencies of the 10 and 11 repeats of
SLC6A3 in Asian populations were higher than those in
Caucasians, but the 9R of SLC6A3 was much lower in normal
Asian populations. The results of our meta-analysis indicate that
the 10R may be a protective factor against susceptibility to PD in
Asian populations, which may be one of the reasons for the low
prevalence of PD in Asia.

Several studies indicate that the 9R allele demonstrates more
enhanced transcription activity than the 10R allele of the SLC6A3

FIGURE 5 | Funnel plot of the odds ratios in the subgroup: Asian populations and Western populations. (A) Allele model, 10R vs. all others. (B) Pseudodominant
model, 10R/10R + 10R/9R vs. all others. (C) Pseudorecessive model, 10R/10R vs. all others. (D) Pseudocodominant model, 10R/9R vs. all others.
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VNTR polymorphism (Purcaro et al., 2019; Miller and Madras,
2002; Michelhaugh et al., 2001). From a clinical point of view,
increased DAT expression due to the 9R allele might exacerbate
striatal neuronal damage over time by increasing the presynaptic
uptake of potentially neurotoxic endogenous or exogenous
substrates via DAT, such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) (Contin et al., 2004; Tipton and
Singer, 1993). However, the 10R/10R genotype of the SLC6A3
gene may result in the most stable expression, which may confer
nerve terminal protection against Mpp+-like compounds and
prevent the toxicity of dopaminergic neurons (Lin et al., 2003).
This may effectively reduce the incidence of PD. Moreover,
interindividual genetic differences in DAT might also play a
role in the therapeutic outcome of levodopa-treated PD patients
(Contin et al., 2004). The DAT 9R allele has been suggested to be a
predictor of dyskinesias or psychosis in PD patients (Kaiser et al.,
2003). In general, research has shown that changes in the number
of VNTR copies are closely related to PD, and our meta-analysis
suggests that the 10R allele may be a protective factor in
susceptibility to PD. We also conducted heterogeneity analysis,
and we found low heterogeneity in our meta-analysis. In addition,
our meta-analysis showed no publication bias.

There are potential limitations to the current study. First, PD is
a complex disorder that develops as a result of age,
environmental, and genetic factors, but age and exposure to
environmental agents were often not discussed in our included
studies. Moreover, interactions between multiple genes might
affect the risk of PD. Additionally, since some are a bit ambiguous
from the current Ethnic column (e.g., Ritz et al., Lynch et al.).
Ritz’s study inclued 13 Asian populations, and Lynch‘s sudy
inclued 9 other populations. Although these quantities account
for a relatively small proportion of the total, these were difficult to
conduct more accurate analyses. Therefore, the findings should
be interpreted with caution. Further studies are necessary to
establish larger sample sizes and consider SNP-SNP,

gene–gene and gene–environmental interactions before
reaching robust conclusions.

CONCLUSION

Our findings suggest that the 10R of the 3′-UTR VNTR in
SLC6A3 may be a protective factor in susceptibility to PD.
This result was also confirmed in Asian populations.
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A Corrigendum on
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In the original article, there were somemistake in the Legends for FIGURE 2 | Meta-analysis with a fixed
effects model for the association between the 3′-UTR VNTR in SLC6A3 and COPD susceptibility and
FIGURE 3 | Meta-analysis with a fixed effects model for the association between the 3′-UTR VNTR in
SLC6A3 and COPD susceptibility in Asian and Western populations as published. The “COPD” in the
legends of Figures 2 and 3 should be “PD.” The correct legend appears below.

FIGURE 2 | Meta-analysis with a fixed effects model for the association between the 3′-UTR
VNTR in SLC6A3 and PD susceptibility.

FIGURE 3 | Meta-analysis with a fixed effects model for the association between the 3′-UTR
VNTR in SLC6A3 and PD susceptibility in Asian and Western populations.

Additionally, there were some minor formatting errors in References. Following references:
Chang et al., 2018;Wang et al., 2000; Zhang et al., 2000; Zhao et al., 2004 as “(chinese),” should be “in
Chinese” And the for reference: Lin et al., 2003, “Lin, J.-J., Yueh, K.-C., Chang, D.-C., Chang, C.-Y.,
Yeh, Y.-H., and Lin, S.-Z. (2003). The Homozygote 10-copy Genotype of Variable Number Tandem
Repeat Dopamine Transporter Gene May Confer protection against Parkinson’s Disease “for Male,
but “Not to Female Patients. J. Neurol. Sci. 209, 87–92. doi: 10.1016/s0022-510x(03)00002-9, it
should be Lin, J. J., Yueh, K. C., Chang, D. C., Chang, C. Y., Yeh, Y. H., and Lin, S. Z. (2003). The
homozygote 10-copy genotype of variable number tandem repeat dopamine transporter gene may
confer protection against Parkinson’s disease for male, but not to female patients. J. Neurol. Sci. 209,
87–92. doi: 10.1016/s0022-510x(03)00002-9.”

Finally, Figure 5 was incorrectly cited in the Discussion section. A correction has been made to
Section: Discussion, Paragraph 1:

“This meta-analysis assessed the association between the 10R allele of the 3′-UTR VNTR in the
SLC6A3 gene and PD, and it included a total of 18 published studies. In general, our findings
suggested that the 10R alleles and 10R/10R and 10R/10R + 10R/9R genotypes of the VNTR
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polymorphism in theSLC6A3 gene confer protection against
PD. The 10R alleles and 10R/10R genotype results were
replicated in Asian populations, and the 10R/9R genotype
was associated with an increased risk of PD in Asian
populations. The current meta-analysis confirmed most of
the previous findings showing that the 10R allele of the 3′-
UTR VNTR in the SLC6A3 gene may be a protective factor in
susceptibility to PD.”

The authors apologize for this error and state that this does not
change the scientific conclusions of the article in any way. The
original article has been updated.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zeng, Ning, Gu, Zeng, Chen, Peng, Zou, Ma andWang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7891122

Zeng et al. Corrigendum: SLC6A3 Polymorphism and PD

44

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


fgene-12-745224 October 20, 2021 Time: 13:47 # 1

ORIGINAL RESEARCH
published: 21 October 2021

doi: 10.3389/fgene.2021.745224

Edited by:
Liangcai Zhang,

Janssen Research and Development,
United States

Reviewed by:
Quan Zou,

University of Electronic Science
and Technology of China, China

Balachandran Manavalan,
Ajou University, South Korea

*Correspondence:
Yang Hu

huyang@hit.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal

Frontiers in Genetics

Received: 21 July 2021
Accepted: 20 August 2021

Published: 21 October 2021

Citation:
Qiu S, Li M, Jin S, Lu H and Hu Y

(2021) Rheumatoid Arthritis
and Cardio-Cerebrovascular Disease:

A Mendelian Randomization Study.
Front. Genet. 12:745224.

doi: 10.3389/fgene.2021.745224

Rheumatoid Arthritis and
Cardio-Cerebrovascular Disease:
A Mendelian Randomization Study
Shizheng Qiu1†, Meijie Li2†, Shunshan Jin3†, Haoyu Lu1 and Yang Hu1*

1 School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China, 2 Department of Neurology,
Xuanwu Hospital, Capital Medical University, Beijing, China, 3 General Hospital of Heilongjiang Province Land Reclamation
Bureau, Harbin, China

Significant genetic association exists between rheumatoid arthritis (RA) and
cardiovascular disease. The associated mechanisms include common inflammatory
mediators, changes in lipoprotein composition and function, immune responses, etc.
However, the causality of RA and vascular/heart problems remains unknown. Herein,
we performed Mendelian randomization (MR) analysis using a large-scale RA genome-
wide association study (GWAS) dataset (462,933 cases and 457,732 controls) and six
cardio-cerebrovascular disease GWAS datasets, including age angina (461,880 cases
and 447,052 controls), hypertension (461,880 cases and 337,653 controls), age heart
attack (10,693 cases and 451,187 controls), abnormalities of heartbeat (461,880 cases
and 361,194 controls), stroke (7,055 cases and 454,825 controls), and coronary heart
disease (361,194 cases and 351,037 controls) from United Kingdom biobank. We
further carried out heterogeneity and sensitivity analyses. We confirmed the causality
of RA with age angina (OR = 1.17, 95% CI: 1.04–1.33, p = 1.07E−02), hypertension
(OR = 1.45, 95% CI: 1.20–1.75, p = 9.64E−05), age heart attack (OR = 1.15, 95%
CI: 1.05–1.26, p = 3.56E−03), abnormalities of heartbeat (OR = 1.07, 95% CI: 1.01–
1.12, p = 1.49E−02), stroke (OR = 1.06, 95% CI: 1.01–1.12, p = 2.79E−02), and
coronary heart disease (OR = 1.19, 95% CI: 1.01–1.39, p = 3.33E−02), contributing to
the understanding of the overlapping genetic mechanisms and therapeutic approaches
between RA and cardiovascular disease.

Keywords: Mendelian randomization, genome-wide association studies, rheumatoid arthritis, cardiovascular
disease, inverse-variance weighted

INTRODUCTION

Cardiovascular disease remains the leading cause of human death, with an estimated 17.3 million
people worldwide dying of cardiovascular disease each year, which is expected to increase to
23.6 million by 2030 (Laslett et al., 2012; Smith et al., 2012; Leong et al., 2017). Epidemiological
studies have shown that the occurrence of cardiovascular disease is caused by various factors,
with obesity, diabetes, smoking, hyperlipidemia, atherosclerosis, hypertension, and blood viscosity
being its potential risk factor (Leong et al., 2017; Xu et al., 2019). Importantly, traditional
cardiovascular disease risk factors account for a large proportion of rheumatoid arthritis (RA)
(An et al., 2016). RA patients were 48% more likely to have cardiovascular disease than normal
people and a 50% higher incidence of cardiovascular disease-related mortality (Avina-Zubieta
et al., 2008, 2012; Sokka et al., 2008; England et al., 2018). However, most of the previous
studies have examined the association between RA and atherosclerosis and congestive heart

Frontiers in Genetics | www.frontiersin.org 1 October 2021 | Volume 12 | Article 74522445

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.745224
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.745224
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.745224&domain=pdf&date_stamp=2021-10-21
https://www.frontiersin.org/articles/10.3389/fgene.2021.745224/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-745224 October 20, 2021 Time: 13:47 # 2

Qiu et al. Rheumatoid Arthritis and Cardiovascular Disease

failure, ignoring other phenotypes of heart disease and vascular
problems (England et al., 2018). Moreover, the exact causality
is still unknown.

Mendelian randomization (MR) could estimate causality
without bias, which has been used in previous studies to
explore the association between phenotypes (Jansen et al.,
2014; Smith et al., 2017; Hemani et al., 2018; Cheng et al.,
2019b, 2021; Zhuang et al., 2019; Qiu et al., 2021). Causality
between multiple metabolic characteristics, nutrient elements,
and common diseases with cardiovascular disease have been
demonstrated (Ference et al., 2017; Larsson et al., 2017, 2020;
Yeung et al., 2018; Rosoff et al., 2020; Arvanitis et al.,
2021). However, strong evidence linking RA to cardiovascular
disease is still lacking. Herein, we mainly selected inverse-
variance weighted (IVW), weighted median, and MR-Egger
methods for MR analysis. We provided strong evidence that RA
contributed to six vascular-/heart problem-related phenotypes,
which could be of great significance for clinical disease
prevention and treatment.

MATERIALS AND METHODS

Genome-Wide Association Study
Dataset Sources
We obtained large-scale genome-wide association study (GWAS)
summary datasets from the United Kingdom Biobank on RA
and six cardiovascular disease phenotypes, and all of the
participants were of European ancestry. From 2006 to 2010, the
United Kingdom Biobank Assessment Center recruited 386,005
participants from the United Kingdom to participate in self-
reporting of non-cancer illness (Li et al., 2015; Sun et al.,
2019). RA GWAS (462,933 cases and 457,732 controls) was
derived from the non-cancer illness study. At the same time,
the United Kingdom Biobank Assessment Center carried out the
study of vascular/heart problems diagnosed by doctors, covering
501,555 participants. These heart or vascular problems included
age angina (461,880 cases and 447,052 controls), age high blood
pressure (461,880 cases and 337,653 controls), age stroke (7,055
cases and 454,825 controls), and age heart attack (10,693 cases
and 451,187 controls). In addition, we supplemented two other
United Kingdom Biobank studies on coronary heart disease
(CHD) (361,194 cases and 351,037 controls) and abnormalities
of heartbeat (461,880 cases and 361,194 controls).

Quality Control and Identifying Genetic
Instruments
In order to enhance the statistical power of genetic variants, we
deleted single-nucleotide polymorphisms (SNPs) with a minor
allele frequency (MAF) < 1%. Moreover, we removed variants
with physical distance less than 10,000 kb and R2 < 0.001 to
avoid linkage disequilibrium (LD). For preprocessed exposure
(RA) data, we selected genetic variants that passed genome-wide
association threshold (p < 5E−08) as instrumental variables
(IVs) to satisfy IV assumption 1 of MR analysis: variants should
be strongly associated with exposure (RA) (Hemani et al., 2018).

Two-Sample Mendelian Randomization
Analysis
In the absence of individual-level data, we used MR, a powerful
statistical method, to infer the causality between two phenotypes.
MR analysis eliminates the need to consider confounders and
reverse causality. Two-sample MR requires that the samples of
exposure and outcome be independent, which greatly expands
the application range of MR (Hemani et al., 2018). Details of
MR analysis have been described in previous reports (Davey
Smith and Hemani, 2014; Bowden et al., 2015, 2016; Yavorska
and Burgess, 2017; Cheng et al., 2018, 2019b; Hemani et al., 2018;
Hu et al., 2020, 2021; Qiu et al., 2021). Herein, we first aligned
alleles on the forward strand and harmonized SNP effects of
exposure and outcome (Ong et al., 2021). If the variant in IVs was
lacking in outcome, we allowed the proxy SNP with a strong LD
to replace it (Hemani et al., 2018). Subsequently, we performed
the inverse-variance weighted (IVW) estimator to estimate the
association between RA and vascular/heart disease (Burgess and
Thompson, 2017). In the case of certain invalid instruments or
directional pleiotropy bias, the weighted median and MR-Egger
estimators could help to make further judgment (Bowden et al.,
2017; Burgess and Thompson, 2017; Hartwig et al., 2017; Cheng,
2019; Cheng et al., 2019a). Finally, we carried out reverse MR
analysis to evaluate the evidence for reverse causal association.

Sensitivity Analysis
We performed a series of sensitivity tests to ensure that our results
were robust, including heterogeneity tests to assess heterogeneity
between IVs, leave-one-out analysis (Wei et al., 2019, 2021;
Govindaraj et al., 2020; Hasan et al., 2021) to assess whether a
single SNP over-drove outcome, and funnel plots and MR-Egger
to assess potential horizontal pleiotropy (Bowden et al., 2017;
Hartwig et al., 2017; Rosoff et al., 2020). The statistical tests for
MR analysis were undertaken using the R package of meta and
TwoSampleMR (Hemani et al., 2018). The statistically significant
association is defined as p < 0.05.

RESULTS

Association of Rheumatoid Arthritis With
Cardiovascular Disease
Eight genetic variants were used as IVs to evaluate the
association between RA and cardiovascular disease (Table 1).
Two SNPs needed to be proxied, but we lacked evidence for
the presence of wrong effect alleles, strand issues, palindromic
SNPs, and incompatible alleles. Due to the heterogeneity in
some studies, we preferred to use the random-effects model
(Table 2). By performing IVW analysis, we confirmed the
causality of RA with age angina (OR = 1.17, 95% CI: 1.04–1.33,
p = 1.07E−02), hypertension (OR = 1.45, 95% CI: 1.20–1.75,
p = 9.64E–05), age heart attack (OR = 1.15, 95% CI: 1.05–1.26,
p = 3.56E–03), abnormalities of heartbeat (OR = 1.07, 95% CI:
1.01–1.12, p = 1.49E−02), stroke (OR = 1.06, 95% CI: 1.01–
1.12, p = 2.79E−02), and CHD (OR = 1.19, 95% CI: 1.01–1.39,
p = 3.33E−02) (Figure 1). Detailed MR results are shown in
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TABLE 1 | Characteristics of eight genetic variants as instrumental variables (IVs).

SNP Chr Pos Effect allele Other allele Beta EAF SE p

rs185320691 6 32,490,292 C G 0.0076 0.10 0.00040 2.30E−82

rs28559870 6 31,377,974 T C 0.0017 0.18 0.00029 4.10E−09

rs35175534 6 32,531,108 C A 0.0076 0.14 0.00035 3.50E−105

rs460568 6 33,232,025 T C 0.0019 0.17 0.00029 4.10E−11

rs6679677 1 114,303,808 A C 0.0031 0.10 0.00036 4.90E−18

rs7731626 5 55,444,683 A G −0.0015 0.38 0.00023 2.00E−11

rs7760841 6 32,574,868 T C 0.0083 0.17 0.00030 7.29E−172

rs9265076 6 31,287,765 T C 0.0021 0.38 0.00026 1.10E−15

Beta is the estimated effect size for the effect allele; Beta > 0 and Beta < 0 means that this effect allele could increase and reduce RA risk, respectively. EAF, effect
allele frequency.

TABLE 2 | The results of Mendelian randomization (MR) sensitivity analysis.

Phenotypes
Methods

Angina Hypertension Heart attack Abnormalities of heartbeat Stroke Coronary heart disease

MR-Egger 0.494 0.090 0.373 0.481 0.448 0.306

Heterogeneity
tests

0.010 0.472 0.038 0.293 0.566 0.003

Leave-one-out
analysis

0.0107 9.64E−05 0.00356 0.0149 0.0279 0.0333

The values in the table are all p-values.
MR-Egger: p > 0.05 means that the original hypothesis is rejected, and horizontal pleiotropy (non-zero intercept) has no significant effect on the results.
Heterogeneity tests: p > 0.05 means no heterogeneity.
Leave-one-out analysis: p < 0.05 means that no single single-nucleotide polymorphism (SNP) over-drives the overall results.

FIGURE 1 | Mendelian randomization (MR) analysis between rheumatoid arthritis (RA) and six cardiovascular diseases. TE, treatment effects (β); se TE, standard
error of treatment effect (se).

the Supplementary Material. No evidence of reverse causality
existed in any of the studies. Thus, RA made a significant
contribution to common phenotypes associated with vascular or
cardiac problems.

Sensitivity Analysis
Unlike IVW, MR-Egger allows horizontal pleiotropy between IVs
and exposure and outcome, and the weighted median allows a
more powerful variant to have a greater impact on the overall
result (Bowden et al., 2017; Hartwig et al., 2017; Qiu et al., 2021).
Other MR calculation methods are a powerful supplement to
IVW, especially when the IV assumptions of MR framework is
not satisfied perfectly. In all methods, our results were robust,
with small intercepts and high p-values in MR-Egger, which
meant that horizontal pleiotropy made almost no effect on
the results (Figure 2 and Table 2). According to funnel plots,

rs7731626 and rs460568 in angina, and rs6679677 and rs9265076
in CHD, there existed a certain horizontal pleiotropy; however,
little influence affected the overall results (Figure 3). Moreover,
no single SNP over-drove the overall results.

DISCUSSION

In this study, we carried out MR analysis to demonstrate
that RA was positively associated with six heart and vascular
diseases. Observational studies evaluated that the patients
with RA had a significantly increased risk of cardiovascular
disease (An et al., 2016; Crowson et al., 2018). Crowson
et al. (2018) followed up 5,638 RA patients for 5.8 years
and found that about 30% of them eventually developed
cardiovascular disease. RA might increase the risk of the six
heart and vascular diseases we mentioned at the same time
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FIGURE 2 | MR tests of RA with angina, hypertension, heart attack, abnormalities of heartbeat, stroke, and coronary heart disease. The estimate of intercept can be
interpreted as an estimate of the average pleiotropy of all single-nucleotide polymorphisms (SNPs), and the slope coefficient provides an estimate of the bias of the
causal effect. (A) Angina. (B) Hypertension. (C) Heart attack. (D) Abnormalities of heartbeat. (E) Stroke. (F) Coronary heart disease.

FIGURE 3 | Funnel plots of RA with angina, hypertension, heart attack, abnormalities of heartbeat, stroke, and coronary heart disease. The x-axis represents odds
ratio (OR), and the y-axis represents standard error (se). (A) Angina. (B) Hypertension. (C) Heart attack. (D) Abnormalities of heartbeat. (E) Stroke. (F) Coronary heart
disease.

(Kitas and Gabriel, 2011; Dougados et al., 2014; Hadwen et al.,
2021). Thus, we subdivided the phenotypes of cardiac and
vascular diseases to provide different risk values, which might
be a significant help for the clinical cotreatment of RA and
cardiovascular disease.

Our study may have many advantages over previous
observational studies. First, we used seven large-scale GWAS
datasets. RA GWAS alone involved more than 900,000
participants. The seven studies were all from European descent,
avoiding potential population stratification. Second, MR greatly
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avoids the influence of confounding factors and reverse causality
because the alleles of the SNP site are randomly assigned much
earlier than the occurrence of any potential confounding factors.
Third, we applied a variety of MR methods to jointly verify
the robustness of the results. When some instruments were
unavailable or horizontal pleiotropy, an unbiased causal estimate
could still be given.

However, certain limitations existed in our study. First, there
may be overlap of some samples in RA GWAS and cardiovascular
disease GWAS, which leads to weak instruments bias (Pierce and
Burgess, 2013). In addition, some of the genetic variants have
a certain degree of heterogeneity or horizontal pleiotropy, such
as rs7731626 and rs9265076, in the analysis of RA and angina.
For population stratification from gender, age, and ancestry,
inappropriate proxy SNP may be the potential reasons for them.

In conclusion, we explored the causality between RA and
six cardio-cerebrovascular diseases for the first time, and all the
results showed the risk effect of RA. Eight variants as IVs may
be the link between RA and cardiovascular disease. We expect to
find out the genetic association between chronic diseases more
deeply in the future.
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Genome-wide Identification and
Analysis of Splicing QTLs in Multiple
Sclerosis by RNA-Seq Data
Yijie He†, Lin Huang†, Yaqin Tang, Zeyuan Yang and Zhijie Han*

Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory
demyelinating lesions in the central nervous system. Recently, the dysregulation of
alternative splicing (AS) in the brain has been found to significantly influence the
progression of MS. Moreover, previous studies demonstrate that many MS-related
variants in the genome act as the important regulation factors of AS events and
contribute to the pathogenesis of MS. However, by far, no genome-wide research
about the effect of genomic variants on AS events in MS has been reported. Here, we
first implemented a strategy to obtain genomic variant genotype and AS isoform average
percentage spliced-in values fromRNA-seq data of 142 individuals (51 MS patients and 91
controls). Then, combing the two sets of data, we performed a cis-splicing quantitative trait
loci (sQTLs) analysis to identify the cis-acting loci and the affected differential AS events in
MS and further explored the characteristics of these cis-sQTLs. Finally, the weighted gene
coexpression network and gene set enrichment analyses were used to investigate gene
interaction pattern and functions of the affected AS events in MS. In total, we identified
5835 variants affecting 672 differential AS events. The cis-sQTLs tend to be distributed in
proximity of the gene transcription initiation site, and the intronic variants of them are more
capable of regulating AS events. The retained intron AS events are more susceptible to
influence of genome variants, and their functions are involved in protein kinase and
phosphorylation modification. In summary, these findings provide an insight into the
mechanism of MS.

Keywords: multiple sclerosis, alternative splicing, RNA-seq, splicing quantitative trait loci, function analysis

INTRODUCTION

Multiple sclerosis (MS) is a serious autoimmune disease of central nervous system (CNS) and is
characterized by inflammatory demyelinating lesions in the white matter (Compston and Coles,
2008). According to the most recent survey in 2020 (the Atlas of MS investigation), the estimated
number of the people affected by MS has reached approximately 2.8 million worldwide (Walton
et al., 2020). Similar to most of the complex diseases, genetic factors are the major contributors to the
individual differences in MS susceptibility, and the role of genetic variants and transcriptional
regulation in MS may be the key to understanding its pathogenesis (Fugger et al., 2009; Olsson et al.,
2017; Yang et al., 2019).

Recently, alternative splicing (AS), a process that enables a gene to generate different transcript
isoforms, has been found to have the characteristic of high complexity and play an important role in
primates and human CNS (Barbosa-Morais et al., 2012; Merkin et al., 2012; GTEx Consortium, 2015;
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GTEx Consortium, 2020). Further, previous studies demonstrate
that dysregulation of AS events in genes significantly influences
the progression of many nervous system diseases, including MS.
For example, the RNA helicase DDX39B, a repressor of AS of
IL7R exon 6, is downregulated in MS peripheral blood
mononuclear cells, and consequently, the overexpression of the
soluble form of the interleukin-7 receptor alpha chain gene
(sIL7R) increases MS risk (Galarza-Munoz et al., 2017).
Inclusion of AS4 exon in Nrxn 1-3 is significantly increased in
the prefrontal cortex of a murine MS model, and the abnormal
splicing promotes the expression of IL-1β, which is an important
mediator of inflammation and leading to cognitive dysfunction in
MS (Marchese et al., 2021). The dysregulated AS of the A1β
transcript results in a significantly diminished adenosine A1
receptor protein, which is an important therapeutic target in
the treatment of MS in peripheral blood mononuclear cells and
brain tissue of MS patients (Johnston et al., 2001).

Moreover, previous studies demonstrate that genetic variants
can control the regulation of AS events by directly altering
nucleotide sequences in the splice site or as splicing
quantitative trait loci (sQTLs) in a genome-wide manner
(Battle et al., 2014; GTEx Consortium, 2015; Takata et al.,
2017; GTEx Consortium, 2020). For MS, numerous disease-
related risk single nucleotide polymorphisms (SNPs) have been
identified by genome-wide association studies (GWAS)
(International Multiple Sclerosis Genetics Consortium et al.,
2013; Sawcer et al., 2014; Patsopoulos, 2018), and a part of
them as the regulation factors of AS events can contribute to
the pathogenesis of MS. For instance, MS risk variants
rs35476409 and rs61762387 can affect the splicing of exon 3
of the PRKCA gene, which is considered to be a functional
contributor to MS predisposition (Paraboschi et al., 2014).
Another MS risk SNP rs6897932 locates in the functional AS
exon of IL7R. Through disrupting the exonic splicing silencer, it
can increase skipping of IL7R exon 6 to produce more soluble and
membrane-bound isoforms of IL7R protein (IL7Ra), which is a
key factor in the immune response pathway of MS (Gregory et al.,
2007). The SNP rs3130253, located within the MOG gene, has a
proven genetic susceptibility to MS. The minor allele (A) of
rs3130253 is associated with the increased splicing of MOG
exon 2 to 3 in the oligodendrocyte cell (1.7-fold) and
influences the extracellular and transmembrane domains of
MOG to induce the development of MS (Jensen et al., 2010).
Although these findings provide valuable insights into the direct
influence of SNPs on AS events in MS, the profile and function of
sQTLs throughout the genome remain poorly understood.

Our previous studies systematically describe the influence of
genomic variants on gene expression in a genome-wide manner
and find that this impact is more significant among the regions of
long intergenic noncoding RNA for MS (Han et al., 2018; Han
et al., 2020). However, by far, the genome-wide research about the
effect of these genomic variants on AS events in MS has been not
yet reported. To solve this problem, in this study, we used the
blood RNA-seq data from 51 MS patients and 91 controls of
European descent that have been previously successfully used for
our expression quantitative trait loci (eQTLs) analysis (Han et al.,
2020). Particularly, we first comprehensively detected the AS

events on a whole-genome scale and performed a differential
splicing analysis between the MS patients and healthy individuals
by using the RNA-seq data. Then, based on the same data, we
genotyped the large-scale genomic variants (mainly the SNPs) in
the entire human genome. According to the previous studies,
genotyping using RNA-seq can be effectively performed in a
lower sample scale (typically tens to hundreds of individuals) and
higher genetic heterogeneity and is more conducive to the
discovery of functional SNPs than the traditional approaches
(e.g., SNP arrays) (Wang et al., 2009; Davey et al., 2011). Next,
combining the data of AS isoform average percentage spliced-in
(PSI) and genomic variant genotype, we performed a sQTL
analysis to identify the cis-acting loci and the affected AS
events in MS. Further, we explored the distribution
characteristics and disease specificity of these cis-sQTL loci.
Finally, we conducted the weighted gene coexpression network
analysis (WGCNA) and gene set enrichment analysis (GSEA) to
investigate the interaction pattern of the AS affected genes and
the functions of these genes to the pathogenesis of MS. The flow
chart is shown in Figure 1.

MATERIALS AND METHODS

Sample Collection and Preprocessing
A total of 142 individuals, including 51 MS patients and 91 age-
and gender-matched healthy controls, were selected from the
Utrecht Medical Center (UMCU) and VU University Medical
Center (VUMC) of Netherlands. The RNA-seq data of blood
samples from these individuals were used for this study (Table 1).
The details are described in previous studies (Best et al., 2017;

FIGURE 1 | The flow chart of the study design for exploring the influence
of genome variants on gene AS and their functions to pathogenesis of MS.
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Han et al., 2020). Briefly, the mirVana miRNA isolation kit was
used to extract the total RNA of these samples. The Truseq Nano
DNA Sample Preparation Kit and Illumina Hiseq 2500 platform
were used for library preparation and sequencing, respectively.
After the RNA read quality control, these sequence data were
stored in the NCBI Sequence Read Archive (SRA) database
(SRP093349). We used the SRA Toolkit software to download
these sequence data and converted them into FASTQ files.

Variant Genotyping and Annotation
The procedure of variant genotyping and annotation on a whole-
genome scale using FASTQ files has been described in our
previous study (Han et al., 2020). Briefly, the BWA software
was first used to align the sequenced reads to the human reference
genome (hg19) with its default parameter settings and generated
the sequence alignment/map (SAM) files (Li and Durbin, 2009).
Then, the SAMtools and BCFtools software were used with their
default parameter settings to perform the format conversion of
these SAM files and variant calling, respectively (Li, 2011; Li et al.,
2009). The genotyped variants were stored in the VCF file.
Further, based on the annotation databases, refGene (about
the functional information of variants) (Pruitt et al., 2007) and
snp138 of dbSNP (about the genomic position and ID of variants)
(Day, 2010), we used the ANNOVAR software to annotate these
genotyped variants (Yang and Wang, 2015). Finally, we
preformed quality control, which is based on the sequencing
quality and variant annotation.We conducted a Hardy-Weinberg
equilibrium (HWE) test using the R package ‘Genetics’ (https://
cran.r-project.org/web/packages/genetics/index.html).
According to the findings of previous studies (Greif et al., 2011;
Quinn et al., 2013), we filtered the low-quality genotyped variants
if their HWE p value <5 × 10−5 or root mean square (RMS)
mapping quality <10 or read depth (DP) < 10 or minor allele
frequency (MAF) < 1%. Moreover, other studies suggest that only
the results catalogued in dbSNP should be retained to reduce the
false positives when performing the SNP calling (Chepelev et al.,
2009; Cirulli et al., 2010; Liu et al., 2012; Xu et al., 2013).
Therefore, we further removed genotyped variants that are not
catalogued in dbSNP according to the annotation results.

Identification and Differential Analysis of AS
Events
Based on the RNA-seq data of the same samples, we used the vast-
tools software to detect the AS events and calculate their PSI
values on a whole-genome scale (Irimia et al., 2014). In particular,
we first aligned the sequenced fragments to human reference

genome (hg19) using the align tool module of vast-tools software
with its default parameters to identify AS events and calculate
their PSI values in each sample. Then, the results (five subfiles for
each AS event) were merged using the combine tool module of
vast-tools software to generate a file containing PSI of each AS
event and quality control content for all samples. The quality
control threshold is according to quality scores in the merged file,
i.e., the mapped reads >10. Next, we used the multiple imputation
method with the generalized linear model to impute missing PSI
values of each AS event by the R package “mice” (Van Buuren and
Groothuis-Oudshoorn, 2011) and counted the number of each
type of AS events. Finally, based on the PSI values, we used the
diff tool module of vast-tools software with its default parameters
to perform a Bayesian inference-based differential AS analysis.
The threshold of significance was set at the minimum value for
absolute value of differential PSI between MS cases and controls
(MV|ΔPSI|) at 0.95 confidence level greater than 10% according
to the previous studies (Fagg et al., 2020; Ha et al., 2021; Hekman
et al., 2021).

Identification of cis-s Quantitative Trait Loci
and Characteristic Analysis
Combining the PSI values of AS events and the data of the
genomic variant genotype from the same samples, we performed
an sQTL analysis to identify the cis-acting loci and the affected AS
events. Particularly, according to previous studies (GTEx
Consortium, 2015; GTEx Consortium, 2020), we first
considered it as the cis region where the distance between
variants and transcription initiation site (TSS) of AS event
corresponding genes less than 1 M, and selected all the
suitable variant and AS event pairs for the cis-sQTL analysis.
The genomic locations of the variants and the TSS of AS event
corresponding genes are based on the annotation files of the
dbSNP (snp138) and Ensembl databases (release 75), respectively.
Then, we used the genotype data of the variants in combination
with the PSI values of AS events to perform the sQTL analysis by
the R package “Matrix eQTL” with a linear regression model
(Shabalin, 2012). The parameters age and gender were used as the
covariates. The threshold of significance level was set at a false
discovery rate (FDR) q value <0.05. The p values are corrected for
multiple testing by the Benjamini–Hochberg method. Finally, we
calculated the percentage of various types of the cis-sQTL variants
and the affected AS events, respectively, and compared them with
the original proportion using a two-tailed Fisher exact test (the
threshold of p < .05). Moreover, we further explored the

TABLE 1 | Summary of the 142 individuals studied in this work.

Individuals Institution Ethnicity Sample size Mean age
(s.d.)

Male/female (%)

MS patients VUMC European 51 46.14 (7.54) 25.5/74.5
Healthy controls VUMC and UMCU European 91 46.92 (8.50) 34.1/65.9
Total 142 46.64 (8.18) 31.0/69.0

VUMC, VU University Medical Center; Amsterdam, Netherlands; UMCU, Utrecht Medical Center, Utrecht, Netherlands. This information is also described in our previous study (Han et al.,
2020).
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FIGURE 2 | The characteristic of the cis-sQTL variants and the affected AS events. (A) The pie charts show the percentage of all variants (left) and cis-sQTL variants
(right) annotated with each class (intergenic, intronic, exonic, ncRNA intronic, ncRNA exonic, 5′/3′-UTR, upstream/downstream, splicing site, and others), respectively.
(B) The pie charts show the proportion in all AS events (left) and affected AS events (right) annotated with each class (EX, INT, ALTA, and ALTD), respectively. (C) The bar
graph indicates the relationship between the abundance of the cis-sQTL variants and the distance of them to the nearest TSS of AS events corresponding genes.
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relationship between the abundance of the cis-sQTL variants and
the distance of them to the nearest TSS.

Weighted Gene Coexpression Network
Analysis and Gene Set Enrichment Analysis
To explore the interaction pattern of the AS affected genes and
their functions to the pathogenesis of MS, we performed the
WGCNA and GSEA in turn. Particularly, we first downloaded the
gene expression count data of the 51 MS patients and 91 healthy
individuals from Gene Expression Omnibus (GEO) data set
GSE89843 (Best et al., 2017) and carried out a standardized
processing of these data using the “preprocess” function of R
package “caret” (https://cran.r-project.org/web/packages/ caret/).
Then, we conducted quality control to identify the outlier samples
using the “hclust” function of R package “WGCNA” (Langfelder
and Horvath, 2008). Further, to ensure the scale-free topology

criterion of the coexpression network, we used the
“pickSoftThreshold” function of R package “WGCNA” to
choose the satisfactory soft threshold power β. Next, based on
the satisfactory soft threshold power β, we used Pearson’s method
to calculate the weighted correlation of gene pairs in an adjacency
matrix and used the dynamic cut-tree algorithm to construct the
hierarchical clustering dendrogram by the R package “WGCNA.”
Finally, we calculated the correlation between the module
membership and the importance of genes in this module to
clinical traits to assess the relationship between the
coexpression module and the clinical traits (including gender,
age, and disease status) by the R package “WGCNA.”

We further use the genes in the modules that are significantly
associated with MS disease status to perform GSEA by DAVID
software (Jiao et al., 2012). The default background of DAVID,
i.e., three pathway data sets (BBID, BIOCARTA, and
KEGG_PATHWAY), three gene ontology data sets
(GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and
GOTERM_MF_DIRECT), three functional categories
(COG_ONTOLOGY, UP_KEYWORDS, and
UP_SEQ_FEATURE), three protein domains (INTERPRO,
PIR_SUPERFAMILY, and SMART), and one disease data set
(OMIM_DISEASE) for the GSEA. The threshold of significance
was set at FDR q < 0.05. The other parameters were set according
to the default values of the DAVID software.

RESULTS AND DISCUSSION

Variant Genotyping by RNA-Seq Data
We obtained a total of about 3.2 billion sequenced reads from the
blood RNA-seq data of 51 MS patients and 91 healthy controls.
Based on these RNA-seq data, we aligned the sequenced reads to
human reference genome (hg19) using BWA software and used
these aligned reads to call the variant genotypes by SAMtools and
BCFtools software. After quality control based on DP, RMS
mapping quality, MAF, HWE, and dbSNP catalog, we
obtained 620,339 genotyped variants. Finally, the results of
annotation using ANNOVAR software showed that a total of
600,872 genotyped SNPs and 19,467 indels are included in these
genotyped variants, and approximately 56.25%, 33.65%, 0.87%,
5.98%, 0.43%, 1.58%, 1.21%, and 0.02% of them are categorized
into the intergenic, intronic, exonic, ncRNA intronic, ncRNA
exonic, 5′/3′-UTR, upstream/downstream, and splicing site
classes, respectively. These findings reveal an uneven
distribution of these variants in the genome (Figure 2A).

Identification and Differential Analysis of
Alternative Splicing Events
Based on the FASTQ files from the same samples, we used the
corresponding tool modules of vast-tools software to identify the AS
event with their PSI values and performed the differential analysis of
them. After the quality control, we found a total of 2272 significant
differential AS events between the MS cases and healthy individuals
(MV|ΔPSI| at 0.95 confidence level ≥10%) from the more than seven
million identified AS events. These differential AS events are involved

FIGURE 3 | The results of differential analysis of AS event
HsaINT0051850. (A) The x-axis represents MV|ΔPSI | at a 95% confidence
level. The y-axis represents the probability of ΔPSI being greater than some
magnitude value of x. The red line indicates that the maximum probability
of ΔPSI of AS event HsaINT0051850 between MS cases and controls is
greater than 0.90. (B) The histogram shows the two joint posterior
distributions over PSI and the points below the histograms estimate for each
replicate.
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in 1542 genes (Supplementary Table S1). Figure 3 shows the most
significant differential AS event HsaINT0051850 of DPP8 gene
(MV|ΔPSI| at 0.95 confidence level � 0.90). According to the
classification criteria of vast-tools, the types of AS events contain
alternative exon skipping (EX), retained intron (INT), alternative
splice site acceptor choice (ALTA), and alternative splice site donor
choice (ALTD).We found that approximately 54.12%, 37.16%, 5.07%,
and 3.65% of these identified AS events are categorized into EX, INT,
ALTA, and ALTD classes, respectively, which also revealed an uneven
distribution of them (Figure 2B).

Identification ofCis-s Quantitative Trait Loci
and Characteristic Analysis
Combining the PSI values of AS events with the genotype data of the
genomic variant in the cis region from the same samples, we used a
linear regressionmodel to perform the cis-sQTL analysis by R package
“Matrix eQTL” with the parameters age and gender serving as
covariates. In total, we identified 5835 variants affecting 672 AS
events (involving 482 genes) of all these 2272 significant
differential AS events with a significance level of q < 0.05. The top
30 significant results are shown in Table 2 (the full information is
presented in Supplementary Table S2). Further, we found that
approximately 49.39%, 40.78%, 0.93%, 5.58%, 0.29%, 1.22%, 1.72%,
and 0.05% of the cis-sQTL variants are categorized into the intergenic,
intronic, exonic, ncRNA intronic, ncRNA exonic, 5’/3′-UTR,
upstream/downstream, and splicing site classes, respectively

(Figure 2A), and approximately 27.40%, 64.22%, 5.08%, and
3.30% of the affected AS events are categorized into EX, INT,
ALTA, and ALTD classes, respectively (Figure 2B). By the two-
tailed Fisher exact test, we found that the percentage of main types
both in the cis-sQTL variants and the affected AS events show a
significant difference compared with the original proportion.
Particularly, the percentage of the cis-sQTL intergenic variants is
49.39%, but its original proportion in all of the variants is 56.25%
(odds ratio (OR) � 0.76, p � 1.84 × 10−45); the percentage of the cis-
sQTL intronic variants is 40.78%, but its original proportion in all of
the variants is only 33.65% (OR � 1.36, p � 1.09 × 10−52); the
percentage of the affected EX events is 27.40%, but its original
proportion in all AS events is 54.12% (OR � 0.32, p � 9.65 ×
10−69); the percentage of the affected INT events is 64.22%, but its
original proportion in all AS events is only 37.16% (OR � 3.03, p �
5.12 × 10−70). This reveals a specific regulation of the AS events by
variants in MS. Moreover, we also found that these cis-sQTL variants
tend to be distributed in the proximity of the TSS of AS events
corresponding genes (Figure 2C).

Weighted Gene Coexpression Network
Analysis for Affected Alternative Splicing
Events Corresponding Genes
We performed WGCNA to explore the characteristics of the affected
AS event corresponding genes in MS. According to the sample
clustering results for quality control, we removed eight outlier

TABLE 2 | The top 30 significant results of the sQTL variants and the differential AS events affected by them.

SNP ID Position Gene Ensembl ID AS event TSS Beta p
Value

FDR q
value

rs1950969 94236929 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 34.2500 0.00E + 00 1.05E-303
rs1950970 94236975 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 34.2500 0.00E + 00 1.05E-303
rs8017818 93651054 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 −34.2500 0.00E + 00 1.05E-303
rs12226058 43190629 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs12795809 43190576 ACCSL ENSG00000205126 HsaEX6001613 44069531 12.7000 0.00E + 00 1.05E-303
rs61690000 43523415 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs72898940 43315617 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs74545163 43424312 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs7931142 43189976 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs890245 43201830 ACCSL ENSG00000205126 HsaEX6001613 44069531 12.7000 0.00E + 00 1.05E-303
rs113384165 26738788 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs6498005 27270200 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs7187853 27267403 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs2976708 125398800 SNX4 ENSG00000114520 HsaEX6058167 125239041 5.1100 0.00E + 00 1.05E-303
rs543453 3139759 PIAS4 ENSG00000105229 HsaEX6091950 4007748 1.2500 0.00E + 00 1.05E-303
rs644193 3139715 PIAS4 ENSG00000105229 HsaEX6091950 4007748 1.2500 0.00E + 00 1.05E-303
rs16949296 45984949 SCRN2 ENSG00000141295 HsaEX6023334 45918699 −66.6580 3.86E-238 1.75E-233
rs11643492 2791938 SRRM2 ENSG00000167978 HsaEX6041902 2802330 52.7000 1.46E-172 6.04E-168
rs2858609 49620817 PIM3 ENSG00000198355 HsaEX6027387 50354161 22.1493 2.47E-124 9.47E-120
rs73179160 50082716 PIM3 ENSG00000198355 HsaEX6027387 50354161 −11.0746 2.47E-124 9.47E-120
rs11671147 8227499 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 49.6873 2.55E-56 7.47E-52
rs62638003 7908051 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 49.6873 2.55E-56 7.47E-52
rs216272 3013971 PIAS4 ENSG00000105229 HsaEX6091950 4007748 −0.5013 5.37E-50 1.53E-45
rs57414916 141780202 EIF2C2 ENSG00000123908 HsaEX6082596 141645718 −5.0980 7.11E-50 1.97E-45
rs2020857 15030752 USP9Y ENSG00000114374 HsaEX0070061 14813160 −8.2372 1.40E-49 3.66E-45
rs138123250 105087582 CALHM2 ENSG00000138172 HsaEX6090238 105212660 −8.8666 1.27E-45 3.16E-41
rs12610435 8021331 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 42.5593 5.34E-45 1.30E-40
rs192519226 48400006 XYLT2 ENSG00000015532 HsaEX6023498 48423453 −22.2205 2.90E-44 6.55E-40
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FIGURE 4 | The results of WGCNA and GSEA. (A) The expression clustering dendrogram of all 4722 genes in the GSE89843 data set. There are four clustered
modules in the hierarchical clustering dendrogram, which contain 360 of 482 affected AS events corresponding genes. These clustered modules are marked as four
different colors, respectively, i.e., turquoise, blue, brown, and grey. (B) The correlation between the module membership and the gene significance in the turquoise
module, which reveals a relatively strong correlation with the disease status (cor � 0.34 and p � 4.5 × 10−71). The gene significance is defined as the correlation
between a single gene expression and sample trait (e.g., gender, age, and disease status) (C) The annotation cluster 1 contains 10 functionally highly similar enriched
terms involved in the protein–protein interaction domain motif. (D) The annotation cluster 2 contains 32 functionally highly similar enriched terms involved in protein kinase
and phosphorylation modification. This figure can be viewed more clearly by enlarging in the electronic version.
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samples (Supplementary Figure S1). Then, we found that the model
fitting index R-squared reaches 0.85 for the first time, and the mean
connectivity approaches zero simultaneously when the soft threshold
power β equals 12 (Supplementary Figure S2). Therefore, we
calculated the weighted correlation of gene pairs and constructed
the coexpression network using the R package “WGCNA” with the
parameter β � 12. The results show that there is a total of fourmodules
(i.e., MEturquoise, MEblue, MEbrown, and MEgrey) in the
coexpression network. The modules are defined as clusters in
which the densely interconnected genes are coexpressed with each
other. The unsupervised clustering analysis with a topological overlap
index was used to measure the network interconnectedness. They
contain a total of 4722 clustered genes according to their
interconnectedness, and 360 of them belong to the affected AS
event corresponding genes (Figure 4A). These AS affected genes
are generally evenly distributed in the four modules according to their
scale. The results of correlation analysis reveal some association of all
the modules with individual gender or age (p < .05). Among them,
however, only the turquoise module shows a relatively strong
correlation with the disease status (cor � 0.34 and p � 4.5 ×
10−71) (Figure 4B), which means that the interaction of the genes
in the turquoise module is relevant to pathogenesis of MS. In the grey
module, for example, the cor and p value are −.027 and .65,
respectively.

Gene Set Enrichment Analysis of Alternative
Splicing Affected Genes in Multiple
Sclerosis–Related Module
Based on the results ofWGCNA,we used the 198AS affected genes in
the MS-related turquoise module to perform the GSEA. According to
the significance threshold FDR q < 0.05, we identified a total of 30
enriched terms. The most significant of them contain the AS-related
terms, e.g., alternative splicing (q � 2.0 × 10−8) and splicing variant (q
� 1.0 × 10−3), which are consistent with the findings of sQTL analysis.
Most of the other significant enriched terms are involved in epigenetic
modification, which is the common biological process associated with
the pathogenesis of MS (Supplementary Table S3). Further, we
performed a functional annotation clustering analysis of the
enriched terms. We identified two annotation clusters with
enrichment score more than 2, which contain 10 and 32
functionally highly similar terms, respectively. Particularly,
annotation cluster 1 (enrichment score � 3.78) contains the
protein–protein interaction domain (e.g., LisH, CTLH, and CRA)
motif-related terms, which are the basic biological properties for
eukaryotes (Figure 4C). The annotation cluster 2 (enrichment
score � 2.12) contains protein kinase and phosphorylation
modification terms, which are significantly associated with the
pathogenesis of MS (Figure 4D). For example, Feng et al. found
that the type I interferons and the p38 MAP kinase can induce
tyrosine and serine phosphorylation of STAT1 in MS patients,
respectively, and the excessive phosphorylation of STAT1 can
induce inflammatory cytokines and demyelination to aggravate the
development of MS (Feng et al., 2002). Trinschek et al. found that
phosphorylation of protein kinase B/c-Akt in MS autoaggressive T
effector cells (Teff) is able to induce the unresponsiveness of the CD4+

and CD8+ course independent MS-Teff by stimulation of the active

regulatory T cells and thereby lead to the ineffective treatment of MS
(Trinschek et al., 2013). Delgado-Roche et al. found that ozone
therapy can promote the phosphorylation of the transcriptional
factor NF-E2-related factor 2 through upregulating the expression
of MAP kinase CK2, which can reduce oxidative stress and pro-
inflammatory cytokines in MS (Delgado-Roche et al., 2017).

CONCLUSIONS

In this study, based on the MS RNA-seq data, we genotyped 620,339
variants and identified 2272 significant differential AS events in the
same samples. Then, combing the two sets of data, we performed a cis-
sQTL analysis and identified 5835 variants affecting 672 differential
AS events in MS. Further, the results of characteristic analysis showed
that the intronic variants are more capable of regulating AS events,
and INT AS events are more susceptible to the influence of genome
variants. Moreover, the cis-sQTL variants tend to be distributed in the
proximity of the TSS of AS events corresponding genes. Finally, the
results of WGCNA and GSEA demonstrate that the regulation of AS
by genome variants are important to MS and their potential function
may be involved in protein–protein interaction domain motif protein
phosphorylation modification. All in all, we performed a strategy to
explore the regulation of AS by genome variants in MS by RNA-seq
data, and these findings will benefit the improvement of
understanding MS pathogenesis.
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Background: We aimed at investigating causal associations between matrix
metalloproteinases (MMPs) and bone mineral density (BMD) by the Mendelian
randomization (MR) analysis.

Methods: From genome-wide association studies of European ancestry, we selected
instrumental variables for MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, and MMP-12.
Accordingly, we retrieved summary statistics of three site-specific BMD, namely, forearm,
femoral neck, and lumbar spine. We conducted an inverse variance weighted MR as the
primary method to compute overall effects from multiple instruments, while additional MR
approaches and sensitivity analyses were implemented. Bonferroni-adjusted significance
threshold was set at p < 0.05/18 � 0.003.

Results: Totally, there was no evidence for causal effects of genetically-predicted levels of
MMPs on BMDmeasurement at three common sites. MR results indicated that there were
no causal associations of circulating MMPs with forearm BMD (all p ≥ 0.023) by the inverse
variance weighted method. Similarly, there were no causal effects of MMPs on femoral
neck BMD (all p ≥ 0.120) and MR results did not support causal relationships between
MMPs and lumbar spine BMD (all p ≥ 0.017). Multiple sensitivity analyses suggested the
robustness of MR results, which were less likely to be biased by unbalanced pleiotropy or
evident heterogeneity.

Conclusion:We found no evidence for the causal relationship between MMPs and BMD
in the European population.

Keywords: matrix metalloproteinase, bone mineral density, mendelian randomization, genome-wide association
study, summary statistics, causal inference
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INTRODUCTION

Bone mineral density (BMD) is a key measurement of bone mass
and an essential indicator of osteoporosis, which is prevalent in
the aging society. In 1994, the World Health Organization gave
the diagnosis standard of osteoporosis as 2.5 SD or more below
the young adult average value (Kanis, 1994). The main
characteristics of osteoporosis include loss of bone mass,
deterioration of the bone microarchitecture, decrement of
bone strength and increased risk of fractures, which lead to a
systemic skeletal disorder with negative consequences on general
health and quality of life in post menopause and in old age (Lane,
2006; Vidal et al., 2019; Capozzi et al., 2020). Fractures due to
osteoporosis more likely occur on the hip, vertebral body and
distal forearm, therefore, the BMD measurements of forearm
(FA), lumbar spine (LS) and femoral neck (FN) are always taken
by dual-energy X-ray absorptiometry (DXA) in patients to
estimate the general risk of osteoporosis. With the continued
ageing of the population worldwide, osteoporotic fractures could
present an increasing prevalence and thus lead to higher rates of
chronic pain, disability and even death in patients, as well as
impose a major economic burden on healthcare systems
(Sambrook and Cooper, 2006; Catalano et al., 2017). Current
studies have found several risk factors that may decrease BMD
(Kenny and Prestwood, 2000; Raisz, 2005; Li and Wang, 2018),
but overall, the cause of osteoporosis still remains unclear, which
brings difficulty in seeking for effective therapy for this disease.

Matrix metalloproteinases (MMPs) are a family of zinc-
dependent neutral endopeptidases capable of degrading
extracellular matrix components (Johansson et al., 2000).
Previous studies have found that MMPs are expressed in bone
tissue as key players in the digestion of bone matrix by
osteoblasts, and are involved in bone-destructive lesions
(Wahlgren et al., 2001; Azevedo et al., 2018; Fatemi et al.,
2020), which indicates that MMPs may play a role in the
pathogenesis of osteoporosis. It has been reported that the
gene polymorphism of MMP-1 was associated with
osteoporosis (Liang et al., 2019), and MMP-3 was negatively
related to the osteoblast function markers of serum bone-specific
alkaline phosphatase and osteocalcin while positively related to
the resorptive function marker of serum cross-linked N-
telopeptides of type I collagen (Momohara et al., 2005).
Increased levels of MMP-7 and 9 in osteoclasts were reported
to be associated with rheumatic osteoporosis (Yang et al., 2013),
while MMP-8 participated in the healing process as well as
embryonic bone development, and may play an important role
in the remodeling of extracellular matrix molecules during bone
and cartilage formation (Sasano et al., 2002). MMP-10 was found
strongly expressed in osteoclasts and most mononuclear cells
within the marrow and produced in an active form with
associated degradation (Bord et al., 1998). Meanwhile,
recombinant MMP-12 cleaved the putative functional domains
of osteopontin and bone sialoprotein, two bone matrix proteins
that strongly influence osteoclast activities, such as attachment,
spreading and resorption (Hou et al., 2004). These studies
strongly suggested the possibility that MMPs are related to
osteoporosis. However, due to current randomized controlled

trials which were based on either small samples or observational
epidemiological studies, whether changes in MMP levels are
correlated with BMD remains controversial.

Genome-wide association studies (GWAS) provide a new
perspective for understanding genetic determinants that
underlie complex disease. The technique of Mendelian
randomization (MR), which employs single nucleotide
polymorphism (SNPs) as instrumental variables, has been
developed to identify causations between a wide range of risk
factors and complex diseases. Unlike traditional observational
studies, this analytical tool was less susceptible to confounding
and reverse causation (Davey Smith and Hemani, 2014). MR has
also been widely used these years to explore the causes of
osteoporosis (Larsson et al., 2019; Zheng et al., 2019). Given
that MMPs were hypothesized to participate in the development
of osteoporosis, here we carried out an MR study to identify
whether there existed causal associations between MMPs
and BMD.

MATERIALS AND METHODS

The MR schematic was shown in Figure 1. There were three
underlying assumptions: 1) relevance assumption, genetic
instrumental variables are associated with the risk factor of
interest; 2) independence assumption, genetic variants are not
associated with confounders; and 3) exclusion-restriction
assumption, instrumental SNPs influence the outcome
concerned only through the risk factor (Burgess et al., 2019).
This study utilized publicly accessible datasets from published
studies wherein formal consent from participants and ethical
approval by committees had been obtained.

Data Sources
Summary-level association data for MMPs were obtained from
GWASs of European ancestry (Salminen et al., 2017; Folkersen
et al., 2020). Folkersen et al. (Folkersen et al., 2020) recently
conducted a large-scale mapping of protein quantitative trait loci.

FIGURE 1 | Schematic of the Mendelian randomization analysis. BMD,
bone mineral density; MMP; matrix metalloproteinase; SNP, single nucleotide
polymorphism.
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Circulating levels of MMPs, including MMP-1 (n � 16,889),
MMP-3 (n � 20,791), MMP-7 (n � 18,245), MMP-10 (n �
16,933), and MMP-12 (n � 19,178) were measured among a
panel of 90 candidate biomarkers related to cardiovascular risk.
Summary statistics were released by the SCALLOP consortium
(http://www.scallop-consortium.com/scallop_downloads/).
Genetic variants associated with MMPs at genome-wide
significant significance (p � 5 × 10–8) and clumped at the
threshold (r2� 0.001 within ±1 Mb, EUR 1000 Genomes phase
3) were selected as instrumental variables (Supplementary Table
S1). Salminen et al. (Salminen et al., 2017) conducted a GWAS of
MMP-8 concentrations in 6,049 Europeans and strongest
associations were identified at locus 1q31.3. Two independent
SNP associated with MMP-8 meeting the above criteria were
utilized as instrumental variables in the ensuing MR analysis.
Effect size was given in the unit of SD change in circulating
concentration per additional effect allele (Supplementary
Table S2–7).

Summary statistics for BMD used in this study were gained
from the GWAS datasets released by the GEnetic Factors for
OSteoporosis Consortium. Zheng et al. (Zheng et al., 2015)
performed a large-scale meta-analysis in 2015 to identify
genetic variants associated with BMD including FA-BMD (n �
8,143), FN-BMD (n � 32,735) and LS-BMD (n � 28,498) in
individuals of European ancestry from the general population. It
is the largest GWAS on DXA-measured BMD so far. The
associations for BMD were derived from whole-genome
sequencing, whole-exome sequencing, deep imputation, and de
novo replication genotyping. The association of each SNP with
BMD was tested and adjusted for sex, age, square of age and
weight. When instrumental SNPs were not present in the BMD
datasets, proxies (r2 > 0.8) were searched and utilized if available.
Effect size was given in SDs of BMD in association tests with the
additive model (Supplementary Table S2–7). Summary statistics
of MMPs and BMDwere harmonized in terms of effect allele, and
subsequent analyses were based on the merged exposure-
outcome dataset.

Mendelian Randomization
The MR analysis was conducted using the TwoSampleMR
(version 0.5.4) package (Hemani et al., 2018) in R 3.6.3 (R
Foundation for Statistical Computing, Vienna, Austria). First,
individual estimate of the causal effect MMPs on site-specific
BMD mediated by each instrumental SNP was computed as the
Wald ratio (Walker et al., 2019). Then, the primary method, the
inverse variance weighted (IVW) MR was employed to generate
overall estimates (Burgess et al., 2013). Two complementary
approaches were implemented, considering that IVW
estimates would be biased in the presence of invalid
instruments or horizontal pleiotropy. Weighted median
approach would give robust effect estimates when less than
half instruments were invalid (Bowden et al., 2016). MR-Egger
regression would serve as a tool to detect unbalanced horizontal
pleiotropy, and generate estimates adjusted for pleiotropy
(Burgess and Thompson, 2017). IVW estimates were generally
more precise, whereas effect estimates given by weighted median
and MR-Egger were accompanied by wide confidence intervals

(CIs) in the forest plots. Causal effects on BMD were presented in
SD units per 1-SD increase in circulating levels of MMPs. The
Bonferroni-corrected significance level at p < 0.05/18 � 0.003 was
adopted in the scenario of multiple tests.

RESULTS

Mendelian Randomization Analyses of
Matrix Metalloproteinases on FA-Bone
Mineral Density
MR results demonstrated that genetically-predicted levels of
MMPs were not associated with changes in FA-BMD
(Figure 2). By the primary method, causal effects on FA-BMD
were 0.024 SD (−0.018–0.402, p � 0.402) per 1-SD increase in
MMP-1 levels, −0.005 SD (−0.074–0.065; p � 0.896) per 1-SD
increase inMMP-3 levels, −0.218 SD (−0.461–0.025; p � 0.079) per
1-SD increase in MMP-7 levels, −0.252 SD (−0.535–0.032; p �
0.082) per 1-SD increase in MMP-8 levels, -0.271 SD
(−0.504–−0.038; p � 0.023) per 1-SD increase in MMP-10
levels, and −0.016 SD (−0.070–0.039; p � 0.575) per 1-SD
increase in MMP-10 levels. MR results were generally consistent
among causal estimates given by IVWmethods and two additional
approaches (Supplementary Table S8). In MR analyses with three
or more instrumental variables (except for MMP-8), no horizontal
pleiotropy was detected according to MR-Egger intercepts and no
evident heterogeneity was identified (Supplementary Table S8).

Mendelian Randomization Analyses of
Matrix Metalloproteinases on FN-Bone
Mineral Density
Overall, MR estimates suggested that circulating concentrations of
MMPs were not associated with FN-BMD. As shown in Figure 2,
there was no evidence for causal effects of MMP-1 (−0.018 SD;
−0.059–0.024; p � 0.402), MMP-3 (0.006 SD; −0.027–0.040; p �
0.708), MMP-7 (0.017 SD; −0.070 to 0.104; p � 0.697), MMP-8
(−0.073 SD; −0.168–0.023; p � 0.135), MMP-10 (−0.145 SD;
−0.327–0.038; p � 0.120) and MMP-12 (−0.016 SD;
−0.042–0.010; p � 0.238) by the IVW approach. Complimentary
methods further verified the robustness ofMR results by the primary
method, and there was no evidence for the existence of unbalanced
horizontal pleiotropy or heterogeneity (Supplementary Table S9).

Mendelian Randomization Analyses of
Matrix Metalloproteinases on LS-Bone
Mineral Density
MR analyses showed that genetically-predicted MMPs were not in
relation to LS-BMD (Figure 2). Causal relationships between
circulating levels of MMP-1 (−0.007 SD; −0.046–0.032; p �
0.718), MMP-3 (0.013 SD; −0.020–0.047; p � 0.430), MMP-7
(0.028 SD; −0.077–0.134; p � 0.599), MMP-8 (−0.107 SD;
−0.194–−0.019; p � 0.017), MMP-10 (−0.099 SD; −0.223–0.025;
p � 0.118) and MMP-12 (−0.006 SD; −0.036–0.025; p � 0.721) and
measurement in LS-BMDwere not significant by the IVWmethod.
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According to sensitivity analyses (Supplementary Table S10), MR
results by different methods were consistent; besides, unbalanced
horizontal pleiotropy or obvious heterogeneity was not present.

DISCUSSION

Osteoporosis is a common cause of morbidity and mortality
worldwide especially in people aged over 60 years. Studies have
shown that for decrease per 10 percent in bone mineral density,
the risk of fracture increases 2–3 folds (Nguyen et al., 1993), and
the mortality rate of patients caused by hip and spine fractures
increases to 10–20% (Ioannidis et al., 2009). The causes of
decrease in BMD have always been discussed in order to
benefit for seeking effective therapy, and more and more risk
factors are being identified to better predict the occurrence of
osteoporosis and therefore avoid the severe complications of
fracture.

The family of matrix metalloproteinases have been considered
involved in basic pathological processes of osteoporosis for acting as
key roles in the digestion of bone matrix by osteoblasts (Azevedo
et al., 2018). However, different studies showed conflict results. For
example, Zuo et al. (Zuo et al., 2020) found that MMP-8 was
involved in the 17β-Estradiol replacement therapy for

postmenopausal osteoporosis, while Viljakainen et al. (Viljakainen
et al., 2017) found that there was no significant correlation between
MMP-8 levels and low BMD. MR is an effective tool for identifying
the causal association between certain exposure and disease while
circumventing confounders, which might be the main cause of these
inconsistent results. In the recent 3 years, a lot of factors that had
been reported related to osteoporosis before have been re-evaluated
byMR. Somewere further confirmed to be associated with BMD, for
instance, serum calcium (Sun et al., 2021), sex hormone-binding
globulin (Qu et al., 2021) and age at menarche (Magnus et al., 2020),
while others such as vascular endothelial growth factor, uric acid and
serum vitamin D got no evidence for their correlations with
osteoporosis (Lee and Song, 2019; Sun et al., 2019; Keller-Baruch
et al., 2020). In a previous MR study of heel-ultrasound estimated
BMD (Folkersen et al., 2020), there were no causal effects ofMMP-1,
3, 7, 10, 12 in the European population. In this study, we found no
evidence for the causal relationship between MMPs and DXA
measured BMD at three common sites.

There are some limitations in present study. First, we could
not identify the non-linear relationship between MMPs and
BMD. Second, we only evaluated the effect of a small set of
MMPs on BMD, but missed such types as MMP-2, -9 and -13,
which might be in relation to osteoporosis according to previous
studies (Bolton et al., 2009; Zheng et al., 2018). Further MR

FIGURE 2 | Effect estimates of matrix metalloproteinases on bone mineral density in the Mendelian randomization study. BMD, bone mineral density; CI;
confidence interval; FA, forearm; FN, femoral neck; LS, lumbar spine; MMP; matrix metalloproteinase; SNP, single nucleotide polymorphism.
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studies were warranted when relevant datasets are available.
Third, it is noteworthy that our study was limited to the effect
of circulating MMP levels on BMD, but the intracellular function
ofMMPs cannot be denied. Forth, both association data of MMPs
and BMD were obtained from Europeans in this study. We
should be cautious when generalizing the conclusion to other
populations.

In this study, we found no evidence for causal relationships
between MMPs (MMP-1, 3, 7, 8, 10, 12) and BMD in the
European population.
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Association of GAK rs1564282 With
Susceptibility to Parkinson’s Disease
in Chinese Populations
He Li1†, Chen Zhang2† and Yong Ji 1*

1Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of Neurology, Tianjin Huanhu
Hospital, Tianjin, China, 2Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Department of
Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China

The susceptibility of the GAK rs1564282 variant in Parkinson’s disease (PD) in Europeans
was identified using a series of published genome-wide association studies. Recently,
some studies focused on the association between rs1564282 and PD risk in Chinese
populations but with inconsistent results. Thus, we conducted an updated meta-analysis
with a total of 7,881 samples (4,055 PD cases and 3,826 controls) from eligible studies.
After excluding significant heterogeneity, we showed that the rs1564282 variant was
significantly associated with PD in Chinese populations (p � 1.00E-04, odds ratio � 1.28
and 95% confidence interval � 1.16–1.42). The sensitivity analysis showed that the
association between rs1564282 and PD was not greatly influenced, and there was no
significant publication bias among the included studies. Consequently, this meta-analysis
indicates that the GAK rs1564282 variant is significantly associated with susceptibility to
PD in Chinese populations.

Keywords: Parkinson’s disease, genome-wide association study, GAK, rs1564282, Chinese population

INTRODUCTION

Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s
disease (Ascherio and Schwarzschild, 2016). With the widespread use of genome-wide association
studies (GWAS), more genetic components of PD have been identified, and potential mechanisms of
PD have been uncovered (Nalls et al., 2014; Nalls et al., 2019). In 2009, Pankratz et al. designated
GAK/DGKQ as a new PD risk region in a Caucasian population (Pankratz et al., 2009). The following
GWAS showed that the GAK rs1564282 variant was associated with the increasing risk of PD
(Spencer et al., 2011). Subsequently, the underlying associations between rs1564282 and PD were
investigated in Chinese populations.

Li et al. selected 812 PD patients and 763 control individuals from west China and first
corroborated that rs1564282 was associated with PD in a Chinese population (p � 0.017) (Li
et al., 2012). Then a meta-analysis using a European population reached a similar conclusion (Li
et al., 2012).

In 2013, Chen et al. recruited 376 PD patients and 277 healthy controls from west China and
identified an association between rs1564282 and PD (Chen et al., 2013). The presence of rs1564282
was reported to significantly increase the risk of PD progression (Chen et al., 2013). However, Lin
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team and Tseng team evaluated Chinese populations from
Taiwan and Singapore respectively and demonstrated no
association between rs1564282 and PD (Lin et al., 2013; Tseng
et al., 2013).

In 2015, Yu et al. analyzed 534 PD patients and 435
neurologically healthy controls from west China and found
that rs156428 was significantly associated with PD (Yu et al.,
2015).

The inconsistent association results from the previous studies
may be due to at least two reasons: genetic heterogeneity and
small sample sizes. Firstly, genetic heterogeneity among the
previous studies may lead to the inconsistency. Although all
the previous studies included Chinese populations, their
population compositions (or structures) and geographical
environment at largely varied. In other words, the associations
between the risk variants and PD may be different among
different populations. Secondly, the smaller sample sizes of the
previous studies may also contribute to the inconsistency. In these
previous studies, Tseng et al. recruited 978 and 777 samples from
Taiwan and Singapore population respectively while the Tian
et al. used 2049 individuals for analysis. The results of these
studies showed that larger sample sizes provided greater power in
discovering significant genetic associations. Because of the
inconsistent results, the association between rs1564282 and PD
in Chinese populations needs further research. Thus, we
conducted a new meta-analysis to investigate the association
between rs1564282 and PD via combining previous
case–control cohort data.

MATERIALS AND METHODS

Systemic Literature Search
A systemic literature search was performed in four databases:
PubMed (http://www.ncbi.nlm.nih.gov/pubmed), Google
Scholar (https://scholar.google.com/), China National
Knowledge Infrastructure (CNKI, http://www.cnki.net/) and
Wanfang Medicine database (http://www.wanfangdata.com.cn/).
We screened all the relevant studies using the following terms:
“Parkinson’s disease”, “GAK” and “Chinese or China”. Literature
published before July 31, 2021 was selected. The detailed content
of the inclusion and exclusion criteria is given in the Study
Selection section.

Study Selection
The eligible studies satisfied the inclusion criteria: 1) case–control
designed studies in humans, 2) studies calculating the association
between rs1564282 variant and PD and 3) studies providing the
number of rs1564282 genotypes or adequate data for the
calculation of the odds radio (OR) and a 95% confidence
interval (CI). Studies that did not satisfy the inclusion criteria
were excluded.

Data Extraction
Two investigators independently extracted the following available
data from studies: 1) name of the first author; 2) year of
publication; 3) population of study; 4) numbers of PD cases

and controls; 5) genotype distribution of rs1564282 in cases and
controls; and 6) OR with 95% CI or data for calculating OR and
95% CI.

Genetic Model
The additive genetic model was used to estimate the association
between rs1564282 and PD: the T allele versus the C allele.

Statistical Analysis
The Hardy–Weinberg equilibrium (HWE) of rs1564282 in the
control for each study was calculated respectively with a chi-
squared test at p < 0.001. We conducted the heterogeneity test
using Cochran’s Q test and I2 statistic (Liu et al., 2013). The Q
statistic follows a χ2 distribution with k−1 degrees of freedom (k
means the number of researches selected in calculation). The
p-value of Cochran’s Q test <0.1 means a significant
heterogeneity exists among the studies. The statistic I2

(I2 � Q−(k−1)
Q × 100%) reflects the percentage of variation across

studies caused by heterogeneity. I2 ranges between 0 and 100% (I2

� 0–25%, 25–50%, 50–75% and 75–100%), with a higher
percentage indicating a greater degree of heterogeneity (Liu
et al., 2013; Liu et al., 2017). If there was a large amount of
heterogeneity (p < 0.1 of Q statistic and I2 > 50%), a random-
effect model was used for meta-analysis, otherwise a fixed-effect
model was chosen. The statistical significance of OR was
calculated utilizing a Z-test, with p < 0.05 considered
significant. We completed the sensitivity analysis through
removing any study from the included studies in turn to
evaluate the influence of each study on pooled OR and related
p-value (Liu et al., 2017). Publication bias was estimated by a
funnel plot. The regression method propounded by Egger was
utilized to test publication bias of the selected studies (Egger et al.,
1997). The significant threshold was 0.01. All statistical
computations were performed utilizing R (http://www.r-
project.org/).

RESULTS

Systematic Literature Search
Utilizing our literature search methods, we obtained 20 articles
from four databases (Figure 1). Firstly, three articles were
removed due to duplication or being a review.
Subsequently, 11 articles were excluded because they did
not estimate the association between rs1564282 variant
and PD or have sufficient data to compute OR. Finally, six
articles that included seven studies, with a total of 4,055 PD
patients and 3,826 controls, were selected for the meta-
analysis. Detailed characteristics of the eligible studies are
listed in Table 1.

HWE and Heterogeneity Test
We evaluated the HWE of rs1564282 in controls for each study
respectively. We did not find significant deviation from HWE at
p < 0.001. Neither Cochran’s Q test nor I2 statistic identified
significant heterogeneity of rs1564282 polymorphism among the
seven studies in Chinese populations (p � 0.44 and I2 � 0%).
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Meta-Analysis
Because there was no significant heterogeneity of rs1564282
polymorphism, we computed the general OR with 95% CI
using a fixed-effect model. The meta-analysis results
demonstrated significant association between GAK rs1564282
and PD with p � 1.00E-04, OR � 1.28 and 95% CI �
1.16–1.42. More information on the meta-analysis results are
shown in Figure 2.

Sensitivity Analysis and Publication Bias
Analysis
The sensitivity analysis was conducted by removing each study at
a time. We found that omitting any eligible study did not

substantially influence the overall association between
rs1564282 and PD (Figure 3).

The funnel plot was used to estimate the publication bias of the
included studies. The shape of the funnel plot was symmetrical
and inverted (Figure 4). The regression test showed no significant
publication bias among the seven included studies in this meta-
analysis (p � 0.77).

DISCUSSION

The genetic association between the GAK rs1564282 and PD was
first reported in a familial PD GWAS and replicated by following
studies in European populations (Pankratz et al., 2009; Hamza

FIGURE 1 | Flow chart of the literature search process.

TABLE 1 | Characteristics of seven eligible studies on the association between rs1564282 and PD.

Study Population Case Control HWE in control Case genotypes Control genotypes

CC CT TT CC CT TT

a Tian. (2012) South China 1,019 1,030 0.11 814 186 19 866 152 12
b Li et al. (2012) West China 812 762 0.22 616 183 13 616 142 4
a Chen et al. (2013) West China 376 277 1 285 81 10 227 48 2
a Lin et al. (2013) Taiwan 448 452 0.60 341 97 10 363 85 4
b Tseng et al. (2013) Taiwan 483 495 0.37 381 97 5 387 104 4
b Tseng et al. (2013) Singapore 388 389 0.095 306 77 5 311 77 1
a Yu et al. (2015) West China 529 421 0.046 385 132 12 331 89 1

HWE: Hardy–Weinberg equilibrium.
aStudy tested multiple SNPs including the GAK rs1564282 with PD in Chinese populations.
bStudy only tested the association of one SNP (GAK rs1564282) with PD in Chinese populations.
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et al., 2010; Lill et al., 2012; Nalls et al., 2014). Furthermore, the
underlying mechanism of GAK in PD has been explored. GAK is
ubiquitously expressed and participates in various biological
processes such as clathrin-mediated membrane traffic and
hepatitis C virus entry (Olszewski et al., 2014; Neveu et al., 2015).

In the pathogenesis of PD, rs1564282 was significantly
associated with a higher expression level of α-synuclein
expression (encoded by SNCA gene) in the cortex of PD cases
than controls using microarray data (Dumitriu et al., 2011).
Dumitriu et al. further investigated the interaction between
GAK expression and SNCA (Dumitriu et al., 2011). They
executed small interfering RNA knockdown of GAK in
HEK293 cells that overexpressed the SNCA protein and
reported that lack of GAK expression increased the
cytotoxicity based on the overexpression of a-synuclein
(Dumitriu et al., 2011).

In addition to the synergistic action with SNCA, evidence also
showed that GAK impacted the leucine-rich repeat kinase 2
(LRRK2) by forming a complex (Beilina et al., 2014). The gene
for LRRK2 has been identified as risk both for monogenic and
sporadic PD (Gasser, 2009; Sharma et al., 2012). Beilina et al.
utilized the protein–protein arrays to explore the potential

FIGURE 2 | Forest plot for meta-analysis of the association between rs1564282 polymorphism and the risk of PD. Tseng_2013 (T) stands for the Taiwan population
in the Tseng_2013 study. Tseng_2013 (S) represents the Singapore population in the Tseng_2013 study. TE � Treatment Effect; TEse � Treatment Effect standard error;
CI � Confidence Interval.

FIGURE 3 | Sensitivity analysis of meta-analysis by omitting every study in turn. Tseng_2013 (T) stands for the Taiwan population in the Tseng_2013 study.
Tseng_2013 (S) represents the Singapore population in the Tseng_2013 study. CI � Confidence Interval.

FIGURE 4 | Funnel plot for publication bias analysis of the eligible studies
evaluating the relationship between rs1564282 polymorphism and the risk of
PD. The x-axis and y-axis represent the ORs and standard errors for every
eligible study, respectively.
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interaction mechanisms of LRRK2 in PD pathogenesis (Beilina
et al., 2014). The results indicated that GAK was a part of a
LRRK2-related complex that helped the autophagy–lysosome
system to clean vesicles from the Golgi (Beilina et al., 2014).

Nagle’s team conducted deep RNA sequencing in human
brain tissue from dead PD patients (Nagle et al., 2016).
Compared with controls, GAK was a unique gene in the
4p16.3 region which had significantly increased expression in
PD after adjustment (q value � 4.80E-09) (Nagle et al., 2016).
Song et al. studied the function of auxilin, the Drosophila GAK
homolog, via an in vivo model (Song et al., 2017). Through
systematic experimentation, auxilin was identified as playing a
vital role in PD pathogenesis (Song et al., 2017). Researchers
proved that reduced auxilin expression resulted in the progressive
loss of dopaminergic neurons (Song et al., 2017). Furthermore,
the concurrence of reduced auxilin expression and increased
SNCA expression accelerated the early death of dopaminergic
neurons (Song et al., 2017). Recent evidence showed that GAK
was one candidate PD gene that had association with N6-
methyladenosine modification (Qiu et al., 2020).

So far, PDGWASs and relevant large-scale meta-analyses have
identified tens of risk loci in European population (Hamza et al.,
2010; Nalls et al., 2011; Nalls et al., 2014; Nalls et al., 2019). As a
vital part of the world population, Chinese population accounts
for a certain proportion of global PD patients. Strong evidence
provided by Foo team identified that SNCA, LRRK2 andMCCC1
genes had genome-wide significant associations with PD
susceptibility in both Chinese and European population (Foo
et al., 2017). In the analysis of risk loci, they inferred that MAPT
and GBA genes might be “European-specific variant loci” (Foo
et al., 2017). In subsequent studies, some PD risk loci with
genome-wide significance identified in European population
had been confirmed to have association in Chinese population,
for example GALC, IL1R2, SATB1, BIN3 and COQ7 genes (Li
et al., 2018; Chen et al., 2019; Hu et al., 2020).

Several studies estimated the underlying association between
rs1564282 and PD risk in Chinese populations in China and
Singapore (Tseng et al., 2013; Yu et al., 2015). However, the

results of these studies were not consistent. We integrated the
pooled data of previous studies and conducted a new meta-
analysis with 4,055 PD patients and 3,826 controls in all.
Firstly, we identified that there was no significant genetic
heterogeneity of rs1564282 in the included Chinese
populations. Subsequently, the meta-analysis using a fixed-
effect model showed a significant association between
rs1564282 and PD in Chinese populations. Finally, we
performed sensitivity and publication bias analysis. Results
showed that the association between rs1564282 and PD was
not greatly influenced substantially and that there was no
significant publication bias among the eligible studies. In
conclusion, our meta-analysis provides good evidence on the
risk of the GAK rs1564282 variant on PD in Chinese populations.
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Polymorphism and Type 2 Diabetes
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Background: Insulin-like growth factor-1 (IGF-1) has been demonstrated to increase fatty
acid β oxidation during fasting, and play an important role in regulating lipid metabolism and
type 2 diabetes mellitus (T2DM). The rs35767 (T > C) polymorphism, a functional SNP was
found in IGF-1 promoter, which may directly affect IGF-1 expression. However, the
inconsistent findings showed on the IGF-1 rs35767 polymorphism and T2DM risk.

Methods: We performed a comprehensive meta-analysis to estimate the association
between the IGF-1 rs35767 and T2DM risk among four genetic models (the allele, additive,
recessive and dominant models).

Results: A total 49,587 T2DM cases and 97,906 NDM controls were included in the allele
model, a total 2256 T2DM cases and 2228 NDM controls were included in the other three
genetic models (the additive; recessive and dominant models). In overall analysis, the IGF-1
rs35767 was shown to be significantly associated with increased T2DM risk for the allele
model (T vs. C: OR � 1.251, 95% CI: 1.082–1.447, p � 0.002), additive model
(homozygote comparisons: TT vs. CC: OR � 2.433, 95% CI: 1.095–5.405, p � 0.029;
heterozygote comparisons: TC vs. CC: OR � 1.623, 95% CI: 1.055–2.495, p � 0.027) and
dominant model (TT + CT vs. CC: OR � 1.934, 95% CI: 1.148–3.257, p � 0.013) with
random effects model. After omitting Gouda’s study could reduce the heterogeneity,
especially in the recessive model (TT vs. CC + CT: I2 � 38.7%, p � 0.163), the fixed effects
model for recessive effect of the T allele (TT vs. CC + CT) produce results that were of
borderline statistical significance (OR � 1.206, 95% CI: 1.004–1.448, p � 0.045). And
increasing the risk of T2DM in Uyghur population of subgroup for the allele model.
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Conclusion: The initial analyses that included all studies showed statistically significant
associations between the rs35767 SNP and type 2 diabetes, but after removing the Gouda
et al. study produced results that were mostly not statistically significant. Therefore, there is
not enough evidence from the results of the meta-analysis to indicate that the rs35767
SNP has a statistically significant association with type 2 diabetes.

Keywords: type 2 diabete mellitus, insulin-like growth factor-1, rs35767, susceptibility, meta-analysis

1 INTRODUCTION

Diabetes is one of the most common chronic metabolic disorder
diseases in the worldwide, over 90% of the diabetes patients are
type 2 diabetes mellitus (T2DM), which is characterized by
insulin resistance in peripheral tissues and dysregulated insulin
secretion by pancreatic beta (β) cells (Banerjee and Vats, 2014;
Song et al., 2015). Substantial evidence suggests that insulin
resistance, an inherited genetic defect, is the basis and major
feature of T2DM (DeFronzo and Tripathy, 2009; Cai et al., 2019;
Li et al., 2021). Insulin resistance is attributable to excess fatty
acids and proinflammatory cytokines, which leads to impaired
glucose transport and increases fat breakdown. Since there is an
inadequate response or production of insulin, the body responds
by inappropriately increasing glucagon, thus further contributing
to hyperglycemia. Accumulated data have revealed that lipid
abnormalities are associated with insulin resistance and
contribute to T2DM (Johnson and Olefsky, 2013; Perry et al.,
2014; Li et al., 2021). Studies have also revealed lipid metabolism-
related genes and their single-nucleotide polymorphisms (SNPs)
associated with insulin resistance and the development of T2DM
(Ruchat et al., 2009; Dupuis et al., 2010; Chistiakov et al., 2012;
Langberg et al., 2012; Mannino et al., 2013; Li et al., 2014;
Thankamony et al., 2014; Yuan et al., 2015; Li et al., 2021).

Insulin-like growth factor-1 (IGF-1) is a circulating growth
factor which structure is highly homologous with pro-insulin.
IGF-1 is expresses in insulin-resistant tissue, it downregulates free
fatty acid and increases fatty acid β oxidation during fasting
(Thankamony et al., 2014; Li et al., 2021). It plays an important
role in regulating lipid metabolism and insulin sensitivity (Seppä
et al., 2015; Gouda et al., 2019), since it effects on glucose
homeostasis and associated with insulin resistance (Li et al.,
2011; Li et al., 2014; Dai et al., 2015; Ming et al., 2015; Yuan
et al., 2015; Wei et al., 2018; Liao et al., 2019; Regué et al., 2019; Li
et al., 2021). Previous studies have been reported that people with
a low IGF-1 level are prone to have diabetes mellitus (Chen et al.,
2013; Colao et al., 2013; Shankar and Li, 2013). Polymorphisms in
the IGF-1 gene can directly affect IGF-1 expression. The rs35767
(T > C) polymorphism, a functional SNP was found in IGF-1
promoter, in which the promoter with C allele showed a higher
transcriptional activity than promoter with T allele (Telgmann
et al., 2009). Therefore, rs35767 may contribute to insulin
resistance involving lipid metabolism in T2DM.

A significant association of IGF-1 rs35767 with T2DM has
been reported in several case-control studies (Gouda et al., 2019;
Gulixiati·Maimaitituersun. 2020; Wang. 2019; Zhang et al., 2017;
Song et al., 2015). However, seven studies failed to replicate the

results (Dupuis et al., 2010; Hu et al., 2010; Fujita et al., 2012; Liu
et al., 2012; Zhao et al., 2016; Li et al., 2019; Li et al., 2021). In veiw
of the inconsistent results, whether IGF-1 rs35767 is associated
with T2DM remains to be determined. In this meta-analysis, we
estimate the association of IGF-1 rs35767 with T2DM among four
different genetic models.

2 MATERIALS AND METHODS

2.1 Literature Search
The Google Scholar, PubMed and Chinese National Knowledge
Infrastructure were comprehensively searched for related studies
published before July 31, 2021, using the key terms: “insulin-like
growth factor 1 or IGF-1 or IGF1,” “rs35767 or rs35767 (T >C) or
rs35767 (A > G),” “polymorphism or SNP or mutation or
variant” and “diabetes or type 2 diabetes or T2DM.” All
searches had no language limitations. Eligible studies were
estimated by reading full texts, and excluded substandard studies.

2.2 Inclusion and Exclusion Criteria
The following inclusion criteria: 1) case-control or cohort studies
that relate to the IGF-1 rs35767 and T2DM risk; 2) sufficient raw
data or adequate data for assessing odds ratios (ORs) with
corresponding 95% confidence intervals (CIs); and 3) The
diagnostic standard of T2DM conformed to the World Health
Organization.

The following exclusion criteria: 1) not a case-control study; 2)
irrelevant to IGF-1 rs35767 and T2DM risk; 3) lacking detailed
data; and 4) control subjects is not in Hardy-Weinberg
equilibrium (HWE).

2.3 Data Extraction
Data were independently extracted by two authors from the
eligible studies and collected the following data: first author,
year of publication, origin, the numbers of T2DM cases and
NDM controls, gender and age, BMI (kg/m2), the distributions
number of genotype and alleles, ORs with 95% CI, or ability to
calculate the OR and 95% CI. p-value for the HWE of NDM
controls.

2.4 Statistical Analysis
Statistical analyses using the STATA v.14.0 software (Stata
Corporation, TX, United States). Four genetic models were
evaluated in this meta-analysis: the allele model (T vs. C); the
additive model (homozygote comparisons: TT vs. CC;
heterozygote comparisons: TC vs. CC); the recessive model
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(TT vs. CC + CT) and the dominant model (TT + CT vs. CC).
Using Q-test and I2 test to estimate the genetic heterogeneity. OR
with corresponding 95% CIs were calculated by the random
effectss model when p < 0.01 and I2 > 50% (He et al., 2015;
Zhang et al., 2016). Otherwise, the fixed effectss model were used.
Sensitivity analyses were implemented to evaluate the stability of
the overall effect by excluding a study at a time. The Hardy-
Weinberg equilibrium for the NDM controls was assessed using
Pearson’s Chi-squared test. Using Bgger’s test to evaluate
publication bias (Shen et al., 2015; Li et al., 2016; Liu et al.,
2017; Han et al., 2019).

3 RESULTS

3.1 Study Inclusion and Characteristics
A total of 182 potential articles obtained through initial search.
51 duplicates were excluded. Then 131 studies were screened on
title and abstract, 84 of them were excluded. The left 47 articles
were evaluated by full-text reading, 35 of them were excluded
cause that 22 were not case-control researchs, 10 were not
related to rs35767 or T2DM, three did not provided
sufficient data. 12 articles were included that there are six
articles including five in English and one in Chinese just of
the allele model data, and other six articles including four in
English and two in Chinese of four genetic models data (the
allele, additive, recessive and dominant models). Flow chart of
researches selection in the meta-analysis was shown in Figure 1.
A total 49,587 T2DM cases and 97,906 NDM controls were

included in the allele model, a total 2256 T2DM cases and 2228
NDM controls were included in the other three genetic models
(the additive; recessive and dominant models). The
characteristics of each study are shown in Table 1 and
Supplementary Table S1.

3.2 Meta-Analysis
The association between the IGF-1 rs35767 polymorphism and
T2DM were evaluated using ORs and 95% CI in the allele model
(12 studies, 49587 T2DM cases and 97906 NDM controls) and
the additive; recessive and dominant models (6 studies, 2256
T2DM cases and 2228 NDM controls).

In overall analysis, A random effects model were used to
analyze the allele, additive, recessive and dominant models. The
IGF-1 rs35767 was shown to be significantly associated with
increased T2DM risk for the allele model (T vs. C: OR � 1.251,
95% CI: 1.082–1.447,p � 0.002), additive model (homozygote
comparisons: TT vs. CC: OR � 2.433, 95% CI: 1.095–5.405, p �
0.029; heterozygote comparisons: TC vs. CC: OR � 1.623, 95%
CI: 1.055–2.495, p � 0.027) and dominant model (TT + CT vs.
CC: OR � 1.934, 95% CI: 1.148–3.257, p � 0.013). The results
showed no significant difference for the recessive model (TT vs.
CC + CT: OR � 1.876, 95% CI: 0.989–3.559, p � 0.054)
(Figure 2).

3.3 Sensitivity Analysis
Aiming to estimate the influence of each study on the overall OR
below four genetic models and analysis the sources of high
heterogeneity, sensitivity meta-analysis was performed with

FIGURE 1 | Flow chart of researches selection in the meta-analysis.
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random effects model. The results were showed in Figure3,
omitting Gouda’s study could reduce the heterogeneity,
especially in the recessive model (TT vs. CC + CT: I2 � 38.7%,
p � 0.163), the fixed effects model for recessive effect of the T
allele (TT vs. CC + CT) produce results that were of borderline
statistical significance (OR � 1.206, 95% CI: 1.004–1.448, p �
0.045); In addtion, other three modal show moderate degree of
heterogeneity (T vs. C: I2 � 64.9%, p � 0.002; TT vs. CC: I2 �
70.3%, p � 0.009; TC vs. CC: I2 � 84.0%, p � 0.000; TT + CT vs.
CC: I2 � 85.8%, p � 0.000, respectively), the result showed no
significant association between IGF-1 rs35767 and T2DM risk
with random effects model (T vs. C: OR � 1.065, 95% CI:
0.983–1.153, p � 0.126; TT vs. CC: OR � 1.603, 95% CI:
0.996–2.578, p � 0.052; TC vs. CC: OR � 1.407, 95% CI:
0.937–2.112, p � 0.099; TT + CT vs. CC: OR � 1.469, 95% CI:
0.978–2.207, p � 0.064, respectively) (Figure 4). Since there are
not sufficient evidence to draw the conclusion that the rs35767
SNP is associated with T2DM.

3.4 Subgroup-Analyses
As high heterogeneity was observed, we performed subgroup-
analysis according to origin to evaluate the association between
rs35767 and T2DM susceptibility in the allele model. The results
suggested that rs35767 was significantly related to the risk of
T2DM in XinJiang, China subgroup (T vs. C: OR � 1.508, 95% CI:

1.210–1.878, p � 0.000) with fixed effects model; a random effects
model were used to analyze the other provinces, China, rs35767
was shown no significant association with T2DM risk (T vs. C:
OR � 1.051, 95% CI: 0.943–1.173, p � 0.369); and not a
significantly associatied in the other countries subgroup
(excluding Gouda et al. Literature) (T vs. C: OR � 0.975, 95%
CI: 0.922–1.031, p � 0.376) with fixed effects model (Figure 5).

3.5 Publication Bias
The funnel plot was showed to be visually symmetrical
(Supplementary Figure S1, Supplementary Figure S2,
Supplementary Figure S3). Begg’s and Egger’s tests were
performed to detect publication bias. There was no
significant publication bias appeared in all genetic models
in overall analysis via Begg’s test (all p > 0.05,
Supplementary Table S2), but for Egger’s test, there was
publication bias in the additive model (heterozygote
comparisons) (Egger’s test, p � 0.006, Supplementary Table
S2). We did not determine publication bias for Begg’s test after
omitting Gouda’s study and subgroup analysis in all genetic
models (all p > 0.05, Supplementary Table S3, Supplementary
Table S4). However, for Egger’s test, there were publication
bias in the allele model (Egger’s test, p � 0.039, Supplementary
Table S3) and additive model (heterozygote comparisons)
(Egger’s test, p � 0.031, Supplementary Table S4).

TABLE 1 | Characteristics of each study included in this meta-analysis.

Allele
distribution

Genotype
distribution

T2DM, n NDM,
n

T2DM, n NDM,
n

Authors Origin Gender T2DM/
NDM, n

ORs with 95%
CI (T vs. C)

C T C T CC CT TT CC CT TT

Li et al. (2021) Chinese
(Yunnan)

M/F 1194/
1274

0.928
(0.826−1.042)

1538 850 1597 951 513 512 169 500 597 177

Gulixiati
et al. (2020)

Chinese
(Xinjiang)

M/F 220/229 1.452
(1.092−1.931)

287 153 335 123 93 101 26 120 65 14

Gouda
et al. (2019)

Egyptian F 180/165 5.103
(3.641−7.153)

72 288 185 145 12 48 120 60 65 40

Wang et al.
(2019)

Chinese
(Tianjin)

M/F 367/367 1.322
(1.065−1.641)

460 274 506 228 146 168 53 176 154 37

Zhang et al.
(2017)

Chinese
(Hebei)

M/F 244/142 1.388
(1.025−1.879)

280 208 185 99 77 126 41 56 73 13

Song et al.
(2015)

Chinese
(Xinjiang)

M/F 51/51 1.900
(1.006−3.587)

67 33 81 21 21 25 4 34 13 4

Li et al. (2019) Chinese
(Tianjin)

F 80/1160 1.043
(0.727−1.494)

− − − − − − − − − −

Zhao et al.
(2016)

Chinese
(Xinjiang)

M/F 130/135 1.480 (0.980-
2.230)

− − − − − − − − − −

Fujita et al.
(2012)

Japanese M/F 2632/
2050

0.990 (0.912-
1.075)

− − − − − − − − − −

Liu et al.
(2011)

Chinese
(Beijing,
Shanghai)

M/F 424/
1899

0.935 (0.795-
1.099)

− − − − − − − − − −

Hu et al.
(2010)

Chinese
(Shanghai)

M/F 3410/
3412

1.027 (0.956-
1.103)

− − − − − − − − − −

Dupuis et al.
(2010)

European M/F 40655/
87022

0.962 (0.890-
1.038)

− − − − − − − − − −

n, Number; M, Male; F, Female; T2DM, type 2 diabetes mellitus; NDM, Non-diabetic subject;OR, odds ratio; CI, confidence interval; (-), not applicable.
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4 DISCUSSION

Previous studies have showed the inconsistent findings of
association between IGF-1 rs35767 and the risk of T2DM.

Gouda et al. revealed that the TT, TT + CT genotypes of
rs35767 were associated with an increased risk of T2DM in
pregnant Egyptian women respectively (Gouda et al., 2019).
This results were successfully replicated in a Chinese Han

FIGURE 2 |Meta-analysis with a random effects model for the association between the IGF-1 rs35767 and T2DM susceptibility. (A) Allele model, T vs. C.
(B) Additive model (homozygote comparisons): TT vs. CC.(C) Additive model (heterozygote comparisons): TC vs. CC. (D) Recessive model, TT vs. CC +
CT.(E) Dominant model, TT + CT vs. CC. OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-
analyses.
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population (Wang. 2019). Zhang et al. found that the A allele
of rs35767 contributed to the risk of developing T2DM in a
Chinese Han population (Zhang.et al., 2017). More recently,
two studies documented that the association of the rs35767 in

IGF-1 was associated with T2DM in a Uyghur population in
China (GulixiatiMaimaitituersun. 2020; Song et al., 2015).
However, some studies did not find evidence of an
association between rs35767 and T2DM (Dupuis et al.,

FIGURE 3 | Sensitivity analysis by iteratively removing one study at a time. (A) Allele model, T vs. C. (B) Additive model (homozygote comparisons): TT vs. CC. (C)
Additive model (heterozygote comparisons): TC vs. CC. (D) Recessive model, TT vs. CC + CT. (E) Dominant model, TT + CT vs. CC.
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2010; Hu et al., 2010; Fujita et al., 2012; Liu et al., 2012; Zhao
et al., 2016; Li et al., 2019; Li et al., 2021). It is worth noting that
the four largest studies with the most statistical power (Dupuis

et al., Hu et al., Fujita et al., and Li et al., 2021) did not report
statistically significant associations between the rs35767 SNP
and T2DM, whereas five small studies (Song et al., Zhang et al.,

FIGURE 4 |Meta-analysis for the association between the IGF-1 rs35767 and T2DM susceptibility after omitting Gouda’s study. (A) Allele model, T vs. C (random
effects model). (B) Additive model (homozygote comparisons): TT vs. CC. (random effects model). (C) Additive model (heterozygote comparisons): TC vs. CC (random
effects model) (D) Recessive model, TT vs. CC + CT (fixed effects model) (E) Dominant model, TT + CT vs. CC (random effects model). OR: odds ratio, CI: confidence
interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.
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Wang et al., Gouda et al., and Gulixiati et al.) all reported
statistically significant associations. Compared the subjects
selected for the studies between the larger and smaller
studies, we found that in the Gouda et al. study, the mean
body mass index (BMI) of subjects with T2DMwas 34.26 ± 5.7,
which is very different from a mean BMI of 26.96 ± 4.57 for
control subjects without T2DM. There were a significant
difference concerning BMI between T2DM and control
groups. This study included only pregnant women, was
observed to be very influential on the initial analyses.

Previous studies have been reported that people with a low
IGF-1 level are prone to have diabetes mellitus (Colao et al., 2013;
Shankar and Li, 2013). The functional SNP rs35767 (T > C) in
IGF-1 promoter, with C allele showed a higher transcriptional
activity than promoter with T allele (Telgmann et al., 2009). In
terms of mechanism, the higher transcriptional activity of the C
allele IGF-1 promoter was contributed by the C/EBPD
transcription activator, which bound exclusively to the C
allele, but not to the T allele (Chen et al., 2013; Telgmann
et al., 2009). Therefore, there may have low IGF-1 expression

level when promoter with rs35767 T allele, which contribute to
the development of T2DM. In our meta-analysis, we found that T
allele, TT genotype, TT + CT genotype of rs35767 increased
T2DM risk in overall analysis, as well as increasing the risk of
T2DM in Uyghur population. After omitting Gouda’s study, the
result showed TT genotype were of borderline statistical
significance.

In overall analysis, high heterogeneity among studies were
detected in four genetic models, which might be a result of the
difference in ethnicity, country, genetic background and
environmental factors (e.g., dietary, life style, climates) (Qin
et al., 2010). Then omittied Gouda’s study, the heterogeneity
was reduced. We found that the subjects of Gouda’s study were
pregnant Egyptian women, but participants of other studies
were both male and female. Thus gender ratio may also had a
certain impact on heterogeneity. The subgroup-analyses were
detected by origin in allele model, the subgroup of Uyghur in
Xinjiang, China have no heterogeneity, but other subgroups
still had high heterogeneity. It is noteworthy that a previous
study in Xinjiang found that 19.6% of Uyghur had diabetes,

FIGURE 5 | The association between the IGF-1 rs35767 and T2DM susceptibility in the subgroup for the allele model (T vs. C) (A) XinJiang, China (fixed effects
model) (B) Other provinces, China (random effects model) (C) Other countries (fixed effects model). OR: odds ratio, CI: confidence interval, I-squared: measure to
quantify the degree of heterogeneity in meta-analyses.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7744898

Zeng et al. IGF1 rs35767 and T2DM Susceptibility

80

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


exceptionally higher than that in Kazakh (7.3%) and Han
Chinese (9.1%) (Li et al., 2012; Song et al., 2015). The
marriage pattern and unique life style might be responsible
for the observation. One hand, the practice of endogamy in
Uyghur population might also be a reason (Wang et al., 2003;
Mamet et al., 2005). On the other hand, The most Uyghurs
have different dietary habits from Han Chinese. They have
more meat, high carbohydrate diets with a higher salt (more
than 20 g per day) and less unsaturated fatty acids compared
with Han Chinese (Zhai et al., 2007).

There still have several limitations in our meta-analysis.
Firstly, there were limited studies which estimated IGF-1
rs35767 and T2DM risk, only six articles had four gene
models data, and the other six articles had only one allele
model data. Secondly, the results did not adjustment the
potential risk factors, including gender, body mass index, age,
drinking and smoking status, and environmental factors. Thirdly,
some results showed relatively obvious heterogeneity, but
research the source of heterogeneity needs to more larger
sample. Finally, some groups results existed potential
publication bias in Egger’s test. Therefore, the results of the
article should be interpreted carefully.

5 CONCLUSION

This is the first time to perform a meta-analysis to systematically
summarize the association between the IGF-1 rs35767 and T2DM
susceptibility. Overall, there is not enough evidence from the
results of the meta-analysis to indicate that the rs35767 SNP has a
statistically significant association with T2DM. Further more
studies are necessary to verify the results.
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Lung cancer is the second most frequently diagnosed cancer and the leading cause of
cancer death worldwide, making its prevention an urgent issue. Meanwhile, the estimated
prevalence of insomnia was as high as 30% globally. Research on the causal effect of
insomnia on lung cancer incidence is still lacking. In this study, we aimed to assess the
causality between the genetic liability to insomnia and lung cancer. We performed a two-
sample Mendelian randomization analysis (inverse variance weighted) to determine the
causality between the genetic liability to insomnia and lung cancer. Subgroup analysis was
conducted, which included lung adenocarcinoma and lung squamous cell carcinoma. In
the sensitivity analysis, we conducted heterogeneity test, MR Egger, single SNP analysis,
leave-one-out analysis, and MR PRESSO. There were causalities between the genetic
susceptibility to insomnia and increased incidence of lung cancer [odds ratio (95%
confidence interval), 1.35 (1.14–1.59); P, < 0.001], lung adenocarcinoma [odds ratio
(95% confidence interval), 1.35 (1.07–1.70); P, 0.01], and lung squamous cell carcinoma
[odds ratio (95% confidence interval), 1.35 (1.06–1.72), P, 0.02]. No violation of Mendelian
randomization assumptions was observed in the sensitivity analysis. There was a causal
relationship between the genetic susceptibility to insomnia and the lung cancer, which was
also observed in lung adenocarcinoma and lung squamous cell carcinoma. The underlying
mechanism remains unknown. Effective intervention and management for insomnia were
recommended to improve the sleep quality and to prevent lung cancer. Moreover, regular
screening for lung cancer may be beneficial for patients with insomnia.
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INTRODUCTION

Lung cancer is the second most frequently diagnosed cancer
for both male and female in the world, of which the estimated
number of new cases was 228,150 in 2019 (Siegel et al., 2019).
It is also the leading cause of cancer death worldwide, with the
estimated number of new deaths as 142,670 in 2019.
Regarding its high incidence and mortality, lung cancer
has long been a heavy burden in public health, making
lung cancer prevention an urgent issue. For this reason, it
is meaningful to investigate whether there are causalities
between potential risk factors and lung cancer, to provide
guidance in lung cancer prevention.

Insomnia has become a common sleep disorder worldwide, with
the estimated prevalence as 30% (Roth, 2007). Previous studiesmainly
revealed the association between poor sleep habits like prolonged or
shortened sleep duration and cancer incidence (Kakizaki et al., 2008;
Chen et al., 2019). The incidence of lung cancer increased when sleep
duration was ≤6.5 h or ≥8 h(Luojus et al., 2014). However, insomnia
disorder is not simply characterized by reduced sleep duration but
more by difficulties falling asleep and sleep disturbance (Morin et al.,
2015). Research focusing on the causal effect of insomnia on lung
cancer incidence is still lacking. We think it necessary to analyze the
causality between insomnia and lung cancer, considering the urgency
of lung cancer prevention, high prevalence and the potential
carcinogenicity of insomnia.

Mendelian randomization (MR) analysis is a novel epidemiological
approach for the estimation of causality between exposure and
outcome (Smith and Ebrahim, 2003). In MR analysis, single-
nucleotide polymorphisms (SNPs), which have been identified to
be robustly correlated with the exposure, are used as proxies of
exposure. SNPs of exposure should be correlated with the risk of
outcome to the extent predicted by their influence on exposure, if the
causality between exposure and outcome exists (Smith et al., 2008).
MR analysis can be a potential mimic of randomized controlled trial
(RCT) by utilizing SNPs, especially when RCT is too costly or
infeasible (Smith and Ebrahim, 2004). SNPs, instrument variables
in MR analysis, are randomly allocated during gamete formation and
fertilization in the population, which is similar to the randomization in
RCT. In this way, biases from confounders and inverse causality can
also be avoided in MR analysis, which are common in observational
studies (Davey Smith and Hemani, 2014).

In this study, we aimed to assess the causality between genetic
liability to insomnia and lung cancer, utilizing two-sample MR
analysis. We present the following article in accordance with the
STROBE reporting checklist.

MATERIAL AND METHODS

Summary Data From Genome-wide
Association Study on Insomnia and Lung
Cancer
In a meta-analysis by Jansen et al., 248 SNPs were identified to be
robustly correlated with insomnia (Jansen et al., 2019). Data from
United Kingdom Biobank (UKB) version 2 (n � 386,533) and

23andMe (n � 944,477) were pooled. Sample size in total was
1,331 010. (Table 1). Information about insomnia was collected
utilizing a self-report sleep questionnaire. Prevalence of insomnia
in the combined sample was 29.9%. The questionnaires used by
UKB and 23andMe were with high accuracy (sensitivity/
specificity of UKB � 98/96%; sensitivity/specificity of 23andMe
� 84/80%). The 248 SNPs were genome-wide significant (P < 5 ×
10−8). These 248 SNPs were in linkage equilibrium with each
other at r2 < 0.1, and they could explain 2.6% of the variance in
insomnia. Conclusively, the 248 SNPs can serve as the genetic
instrumental variables for insomnia with enough statistical
power. These 248 SNPs were utilized as the proxies of
insomnia in this MR analysis.

We used summary data from a Genome-wide Association
Study (GWAS) by International Lung Cancer Consortium
(ILCCO) on lung cancer (11,348 cases and 15,861 controls),
lung adenocarcinoma (LUAD) (3,442 cases and 14,894
controls), and lung squamous cell carcinoma (LUSQ) (3,275
cases and 15,038 controls). (Table 1) (Wang et al., 2014). The
effects of the SNPs of insomnia on lung cancer, LUAD and LUSQ,
the effect size and standard error, were extracted from the GWAS
by ILCCO in the form of summary data through MR-base
(Hemani et al., 2018). SNPs Summary data of insomnia and
the outcomes were harmonized, where effect of each SNP on
insomnia and outcomes were estimated and 12 SNPs were
removed for being palindromic with intermediate allele
frequencies (rs11126082, rs12454003, rs12991815, rs1731951,
rs2030672, rs2221119, rs4858708, rs6545798, rs7044885,
rs8180817, rs9373590, rs9540729). (Supplementary Table S1)
Effect allele and frequency of effect allele were also provided.

To assess the potential existence of weak instrumental bias in
this MR study, we also calculated the statistical power and F
statistic of this study, with four presumed and fixed range of odds
ratio (OR) (Brion et al., 2013) (Table 2). Power and F statistic
were dependent on the strength of association between the SNPs
and insomnia and the sample size of the outcome GWAS studies.
The larger the power and F statistics were, the smaller the
possibility of weak instrumental bias would be (cut off value
for judgement, power, 80%; F statistic, 10) Powers were larger
than 80%, only when OR was set to be “0.75 or 1.33” and “0.67 or
1.50” for lung cancer and when ORs were set to be “0.67 or 1.50”
for LUAD and LUSQ. F statistics were far greater than 10 for lung
cancer, LUAD and LUSQ.

No patients were involved in the study design. Recruitment or
conduct and the need for ethical approval was waived.

Two-Sample MR Analysis
Two-sample MR was utilized to investigate the causality between
the genetic liability to insomnia and lung cancer incidence. Two-
sample MR can improve statistical power, with the utilization of
summary data of SNPs from large scale GWAS (Burgess et al.,
2015; Lawlor, 2016). In two-sample MR, the effects of SNPs of
exposure on exposure and outcome are derived from GWAS of
exposure and GWAS of outcome respectively. Specifically,
inverse variance weighted (IVW) was used (Hemani et al.,
2018). Subgroup analyses of LUAD and LUSQ were conducted
to assess whether there was a difference between the MR estimate
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of lung cancer and those of LUAD and LUSQ, considering the
reported difference in the etiologies between LUAD and LUSQ
(Herbst et al., 2018).

Genetic instrumental variable used in MR analysis must fulfill
three assumptions: 1) the instrumental variable is associated with
the exposure; 2) the instrumental variable is associated with the
outcome through the studied exposure merely; and 3) the
instrumental variable is independent of other factors which
affect the outcome (Boef et al., 2015). In terms of sensitivity
analysis, we produced a MR regression slopes chart to display the
difference between the result of IVW and those of MR Egger and
weighted median. Additionally, the heterogeneity test was also
conducted by performing Cochran’s Q test on the IVW and the
MR-Egger estimate. If there is heterogeneity (Cochrane’s Q
p-value < 0.05) and a random effect model was employed to
it. To assess whether the assumptions of MR were violated, MR-
Egger analysis was performed to detect directional horizontal
pleiotropy, and a funnel plot was also generated (Bowden et al.,
2015; Burgess and Thompson, 2017). The existence of pleiotropy
means the instrument variable can be associated with the
observed outcome through other mechanisms than insomnia.
Furthermore, the detection of directional horizontal pleiotropy
suggests that the sum of pleiotropy does not equal to zero, which
means the violation of the 2) assumption (exclusion restriction
assumption). If the intercept is close to 0 and P is close to one in
MR-Egger analysis, the MR study will be free of directional
horizontal pleiotropy. Single SNP analysis and leave-one-out
analysis was performed to assess whether the result was driven
by a single SNP. MR PRESSO was also conducted for the
estimation of horizontal pleiotropy, which included global test,
outlier test, and distortion test (Verbanck et al., 2018). If a
horizontal pleiotropy was detected by the global test, the
outlier test would be performed, figuring out the outlying
SNPs. Subsequently, an outlier-corrected causal estimate would
be assessed and compared with the original MR estimate, which
was the distortion test, providing a p-value for the comparison.

The statistical analysis was performed utilizing the package
TwoSampleMR (version 0.4.25) in R (version 3.6.1). The study
was conducted in accordance with the Declaration of Helsinki (as
revised in 2013).

RESULTS

Causality From Insomnia to Lung Cancer
The genetic susceptibility to insomnia was causally associated
with increased lung cancer incidence based on the results of IVW
method {OR [95% confidence interval (CI)], 1.35 (1.14–1.59); p <
0.001; Cochrane’s Q p-value � 0.00078}. (Table 3). MR regression
slopes showed positive correlation between the effect of SNP on
insomnia and that on lung cancer. (Supplementary Figure S1)
The three slopes according to the three different MR analyses
were close to each other. Single SNP analysis indicated that the
MR estimate of single SNP varied from each other.
(Supplementary Table S2; Supplementary Figure S2)
However, results in the leave-one-out analysis were similar to
each other, indicating that there was no driving SNP in this MR
analysis (Supplementary Table S3; Supplementary Figure S3)
According to the result of MR-Egger analysis, directional
horizontal pleiotropy was not detected, which meant the SNPs

TABLE 1 | Genome-wide Association Study Utilized in this MR Analysis.

Consortium Phenotype Participants Web source

CTGlab of CNCR Insomnia 133,1010 https://ctg.cncr.nl/software/summary_statistics
ILCCO Lung cancer, LUAD, LUSQ 27,209 ilcco.iarc.fr

CTGlab, complex trait genetics lab; CNCR, center for neurogenomics and cognitive research; ILCCO, international lung cancer consortium; LUAD, lung adenocarcinoma; LUSQ, lung
squamous cell carcinoma.

TABLE 2 | Power and F statistic for Conventional Mendelian Randomization Analysis (two-sided α � 0.05).

Outcome Sample size of
GWAS on outcome

Proportion of cases Power to identify
OR of 0.91
or 1.10

Power to identify
OR of 0.83
or 1.20

Power to identify
OR of 0.75
or 1.33

Power to identify
OR of 0.67
or 1.50

F Statistic

Lung cancer 27,209 0.4171 0.24 0.68 0.96 1.00 727.32
LUAD 18,336 0.1877 0.13 0.38 0.61 0.98 490.46
LUSQ 18,313 0.1788 0.13 0.37 0.59 0.97 489.85

GWAS, genome-wide association study; OR, odds ratio; LUAD, lung adenocarcinoma; LUSQ, lung squamous cell carcinoma.

TABLE 3 |Mendelian randomization estimates of the causality between insomnia
and lung cancer.

Exposure Outcome Inverse variance weighted

Or (95%CI) p-value

Insomnia Lung Cancer 1.35 (1.14–1.59) <0.001
Insomnia LUAD 1.35 (1.07–1.70) 0.01
Insomnia LUSQ 1.35 (1.06–1.72) 0.02

OR, odds ratio; CI, confidence interval; LUAD, lung adenocarcinoma; LUSQ, lung
squamous cell carcinoma.
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of insomnia did not affect the incidence of lung cancer through
other traits than insomnia. (Table 4). The funnel plot was
symmetrical, with the indication of no directional horizontal
pleiotropy (Supplementary Figure S4) Horizontal pleiotropy
and outlying SNPs were identified in the MR PRESSO global
test, while the distortion test did not show a statistically
significant difference between the original MR estimate and
the outlier-corrected MR estimate. (Table 5).

Causal Effect From Insomnia to LUAD and
LUSQ
According to the result of IVW, insomnia was positively
correlated with the incidence of LUAD [OR (95% CI), 1.35
(1.07–1.70); P, 0.01; Cochrane’s Q p-value � 0.056] and LUSQ
[OR (95% CI), 1.35 (1.06–1.72); P, 0.02; Cochrane’s Q p-value
� 0.0050]. (Table 3) The MR regression slopes of both LUAD
and LUSQ showed positive associations between the SNP
effect on insomnia and the SNP effect on outcomes
(Supplementary Figures S5; Supplementary Figure S6)
However, the three regression curves did not overlap with
each other, as were displayed in the two Supplementary
Figures. Like the results of lung cancer, single SNP
analysis of LUAD and LUSQ indicated varied MR effect
size of single SNP (Supplementary Table S2;
Supplementary Figure S7; Supplementary Figure S8),
while leave-one-out analysis did not show signs of driving
SNPs (Supplementary Table S3; Supplementary Figure S9;
Supplementary Figure S10) MR Egger detected no
directional horizontal pleiotropy for LUAD and LUSQ.
(Table 4). Funnel plots of LUAD and LUSQ were
symmetric, in support of the intercept and p-value
mentioned (Supplementary Figure S11; Supplementary
Figure S12) Horizontal pleiotropy was indicated in the
MR analysis of LUAD and LUSQ, according to the result
of the global test in MR PRESSO. (Table 5). Rs76145129 was
identified as the outlying SNP in LUSQ. However, the

removal of this SNP brought no significant difference in
the MR estimate.

DISCUSSION

In this study, we estimated the causality between insomnia and
lung cancer. The genetic liability to insomnia was causally
correlated with lung cancer incidence. The positive
associations were also observed in LUAD and LUSQ.

Insomnia usually leads to circadian disruption which has been
classified as probably carcinogenic to humans (Group 2A) by the
IARC (Humans and International Agency for Research on, 2010).
Moreover, circadian disruption can alter the secretion patterns of
melatonin (Kim et al., 2015). Melatonin was reported to have
multiple anti-tumor effect, by modulating cell cycle, stimulating
cell differentiation, inducing apoptosis, inhibiting metastasis and
angiogenesis, and activating immune system, which was also
found among lung cancer patients (Mediavilla et al., 2010)
(Du-Quiton et al., 2010; Bhattacharya et al., 2019; Gurunathan
et al., 2021). However, we should note that the disruption of the
circadian rhythm of melatonin secretion was observed mainly in
chronic primary insomnia patients (Hajak et al., 1995).
Additionally, lower sleep quality was associated with decreased
level of Klotho, an aging-suppressing protein, which also inhibits
lung cancer cell growth and promotes lung cancer cell apoptosis
(Chen et al., 2010; Chen et al., 2012; Mochón-Benguigui et al.,
2020).

Some intermediate phenotypes can mediate the association
between insomnia and lung cancer. A bidirectional causal
relationship has been found between insomnia and smoking
(Gibson et al., 2019). Specifically, smoking initiation and cigarettes
smoked per day were positively correlated with insomnia. And
insomnia was also found to be a promoter of smoking heaviness
and an obstructor of smoking cessation. Considering the
carcinogenicity of smoking in lung cancer, tobacco consumption
may be an important mediator between insomnia and lung cancer
(Hecht, 2002). Insomnia patients whose sleep duration was short or
longwere at higher risk of obesity and central obesity (Cai et al., 2018).
In another MR analysis by Gao et al., body mass index (BMI) was
identified as a risk factor of lung cancer (Gao et al., 2016). The above
two previous studies indicated the potential intermediate effect of
obesity in the positive relationship between insomnia and lung cancer,
as was found in this study. The potential mediation of tobacco
consumption and high BMI still needs verification in further
research. Yet, the currently uncertain mediation status should not

TABLE 4 | Results of MR Egger for the estimation of directional horizontal
pleiotropy.

Outcome Intercept Standard error p-value

Lung cancer −0.001 0.006 0.91
Lung adenocarcinoma 0.004 0.009 0.64
Lung squamous cell carcinoma 0.005 0.009 0.62

TABLE 5 | Results of MR PRESSO for the estimation of horizontal pleiotropy.

Outcome p-value of
global test

Outlying SNP Outlier-corrected causal
estimate

p-value of
outlier-corrected causal

estimate

p-value of
distortion test

Lung cancer <0.001 rs73079014, rs76145129 0.269 <0.001 0.61
LUAD 0.03 No significant outliers NA NA NA
LUSQ 0.01 rs76145129 0.284 0.02 0.83

LUAD, lung adenocarcinoma; LUSQ, lung squamous cell carcinoma.
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detract the importance of management for insomnia as one way to
decrease the lung cancer risk.

This is the first large-scale MR study to illustrate the causal
relationship between the genetic liability to insomnia and lung
cancer. First, this study demonstrated its great clinical significance.
It is an important mission to identify and intervene modifiable risk
factors of lung cancer, and finally reduce the incidence of lung
cancer. With the utilization of MR analysis, the genetic
susceptibility to insomnia was found to be a risk factor of lung
cancer. We advocate medical intervention on insomnia, along with
the advocacy of other healthy lifestyles, like cigarette cessation
(Siegel et al., 2019). Second, several issues may confuse the result of
observational study on the association between insomnia and lung
cancer. In this MR analysis, we used genetic liability to insomnia as
a proxy of exposure. The effect of confounders and inverse
causality, which are common in observational study, were
avoided in MR analysis (Fewell et al., 2007; Davey Smith and
Hemani, 2014).With the utilization of SNPs as proxies of exposure,
confounders can be avoided, as SNPs are randomly allocated in the
population during gamete formation, serving as a mimic of the
randomization in RCT. To our concern, the problem of inverse
causality should be paid extra attention to in the study of the
relationship between insomnia and lung cancer, because insomnia
is a common mental disorder in lung cancer patients (Savard and
Morin, 2001). Third, RCT has been regarded as a steady approach
for the estimation of causality. However, in the assessment of the
causality between insomnia and lung cancer, RCT is infeasible and
unethical. MR analysis was used in this study instead. Last but not
least, no violation of the assumptions of MR analysis was observed
in this study. The sample size was also large enough to support our
findings.

However, there are still some limitations in this study. First,
the two GWASs utilized were based on the United Kingdom
population. The application of our conclusion in other
populations may cause some unknown biases. Second, with
the application of GWAS summary data, we couldn’t make
stratification of the sample, because we didn’t have access to
the individual characteristics of the studied population, like age,
smoking status and so on. Third, the genetic liability to insomnia
was used in this study as a proxy of insomnia, but it did not mean
that every individual with those SNPs would necessarily suffer
from insomnia. While insomnia is a disorder closely correlated
with physical illness, behavioral factors, environment and
medications (Kamel and Gammack, 2006). Researchers should
be cautious when interpreting our result. Fourth, bidirectional
MR analysis between insomnia and lung cancer and multivariable
MR study were also infeasible, because of the limited data
accessed. However, the result of this study was still rational
because directional horizontal pleiotropy was not found in MR
Egger and the distortion test did not deny our MR estimates even
though the global test identified horizontal pleiotropy. MR
analysis is an effective method in terms of causality
estimation, a mimic of RCT (Smith and Ebrahim, 2003, 2004).
Finally, the direct underlying mechanism is still unknown and
needs further exploration or verification.

CONCLUSION

In conclusion, the genetic susceptibility to insomnia was causally
correlated with higher incidence of lung cancer, along with its
histological subtype, LUAD and LUSQ. Effective intervention
and management for insomnia were recommended to improve
the sleep quality itself and to prevent lung cancer. Moreover,
regular screening for lung cancer may be beneficial for patients
with insomnia. However, further prospective studies are
warranted to confirm the results and clarify the underlying
mechanism.
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Investigating the Causal Relationship
Between Physical Activity and Chronic
Back Pain: A Bidirectional
Two-Sample Mendelian
Randomization Study
Shaowei Gao1, Huaqiang Zhou2, Siyu Luo1, Xiaoying Cai1, Fang Ye1, Qiulan He1,
Chanyan Huang1, Xiaoyang Zheng1, Ying Li1, Zhanxin Du1, Yaqing Wang1, Zhihui Qi1 and
Zhongxing Wang1*

1Department of Anesthesia, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China, 2Department of Medical
Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: Recent observational studies have reported a negative association
between physical activity and chronic back pain (CBP), but the causality of the
association remains unknown. We introduce bidirectional Mendelian randomization
(MR) to assess potential causal inference between physical activity and CBP.

Materials and Methods: This two-sample MR used independent genetic variants
associated with physical activity and CBP as genetic instruments from large genome-
wide association studies (GWASs). The effects of both directions (physical activity to CBP
and CBP to physical activity) were examined. Inverse variance-weighted meta-analysis
and alternate methods (weighted median and MR-Egger) were used to combine the MR
estimates of the genetic instruments. Multiple sensitivity analyses were conducted to
examine the robustness of the results.

Results: The MR set parallel GWAS cohorts, among which, those involved in the primary
analysis were comprised of 337,234 participants for physical activity and 158,025
participants (29,531 cases) for CBP. No evidence of a causal relationship was found in
the direction of physical activity to CBP [odds ratio (OR), 0.98; 95% CI, 0.85–1.13; p �
0.81]. In contrast, a negative causal relationship in the direction of CBP to physical activity
was detected (β � −0.07; 95% CI, −0.12 to −0.01; p � 0.02), implying a reduction in
moderate-vigorous physical activity (approximately 146 MET-minutes/week) for
participants with CBP relative to controls.

Conclusion: The negative relationship between physical activity and CBP is probably
derived from the reduced physical activity of patients experiencing CBP rather than the
protective effect of physical activity on CBP.
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INTRODUCTION

Back pain, especially low back pain, has become a large burden
worldwide, as it is estimated to affect more than 510 million
people and cause over 57 million “years lived with disability” in
2016 (Disease, 2018; Wu et al., 2020). At least one-third of
patients with back pain report persistent pain after an acute
episode and eventually develop chronic back pain (CBP) (Qaseem
et al., 2017), which is generally defined as back pain lasting
≥3 months (Deyo et al., 2014). A key step in preventing CBP
is the identification of possible risk factors, especially intervenable
risk factors. To date, well-known risk factors for CBP have
included smoking (Shiri et al., 2010), obesity (Zhang et al.,
2018), previous episodes of back pain (Taylor et al., 2014),
other chronic conditions (e.g., diabetes, headache) (Ferreira
et al., 2013), and poor mental health (Hartvigsen et al., 2018;
Power et al., 2001). However, the role of physical activity on CBP
is inconclusive (Table 1).

Physical activity is defined as musculoskeletal movement
that results in energy consumption (Caspersen et al., 1985).
As shown in Table 1, recent meta-analyses reviewed tens of
observational studies and found a negative relationship
between physical activity and CBP (Alzahrani et al., 2019a;
Shiri and Falah-Hassani, 2017). A similar conclusion was also
reported by other cross-sectional studies (Alzahrani et al.,
2019b; B. Amorim et al., 2019). However, studies with high-
level evidence (such as randomized control studies), which

can address the problem of causal inference, are lacking.
Consequently, whether the negative relationship between
physical activity and CBP is due to the protective effect of
physical activity on CBP or the tendency of patients with CBP
to reduce physical activity remains unknown.

Randomized control studies on physical activity are difficult to
conduct, as it is unethical to constrain participants’ physical
activity. Mendelian randomization (MR) is an alternative
method to achieve randomization for this situation by treating
genetic variation as a natural experiment in which individuals are
randomly assigned to different levels of nongenetic exposure
during their lifetime (Davey Smith and Ebrahim, 2003). In
addition, MR can strengthen causal inferences by importing a
bidirectional design.

In this study, we first applied bidirectional MR to determine
the causal association between physical activity and CBP
(Figure 1). We aim to clarify the causal relationship behind
this observed negative association between physical activity and
CBP. We hypothesize that CBP resulted in reduced physical
activity whereas physical activity per se did not have
protective effect on CBP.

MATERIALS AND METHODS

This is a Mendelian randomization study with a bidirectional
and two-sample design, as illustrated in Figure 1. All the data

TABLE 1 | Representative studies for the association between physical activity and chronic back pain.

Study Type Design Region Time Sample
size

Results Note References
number

Alzahrani
(2019a)

Meta-
analysis

Observational
studies (cohort or
cross-sectional)

Nonspecific Earliest-
March 2017

35 studies,
106,776
participants

Medium physical activity
was significantly
associated with a lower
prevalence of low back
pain

This meta-analysis did
not specify acute or
chronic low back pain

11

Alzahrani
(2019b)

Clinical
study

Cross-sectional
study

Participants form
the
United Kingdom

1994–2008 60,134
participants

Total PA volume was
inversely associated with
the prevalence of chronic
back conditions

The outcome was
chronic back
conditions, among
which low back pain is
one of the most
common

13

Shiri (2017) Meta-
analysis

Observational
studies
(prospective,
cohort)

Nonspecific Earliest-July
2017

36 studies,
158,475
participants

Leisure time physical
activity may reduce the
risk of chronic low back
pain by 11–16%

The exposure was
leisure time physical
activity

12

Heneweer
(2009)

Clinical
study

Cross-sectional
study

Dutch 1998 3,364
participants

There is some evidence
that the relation between
physical activity and
chronic low back pain is
U-shaped

Type of activity (daily
routine, leisure time and
sport activity), intensity
of and time spent on
these activities, and
back exertion during
sport activities were
taken into account

18

Kamada
(2014)

Clinical
study

Cross-sectional
study

Japan 2009 4,559
participants

There were no significant
linear or quadratic
relationships between
self-reported physical
activity and chronic low
back pain

The population were
aged 40–79 years

16
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used are summary-level and derived from public genome-
wide association studies (GWAS), which had obtained ethical
permissions from their respective institutional review boards
and written informed consent from their respective
participants. Neither patients nor the public were involved
in this MR study. The study was conducted under Burgess’s
guidelines and reported according to the STROBE-MR
statement (Supplementary checklist 2) (Burgess et al., 2019;
Davey Smith et al., 2019). We analyzed these data from April
20, 2021 to June 20, 2021.

Selection of Instruments and Outcome Data
Physical Activity
The physical activity instruments were based on Klimentidis’s
GWAS conducted with participants of the United Kingdom
Biobank cohort (19). This GWAS, using a population of
predominantly European ancestry, examined the following
four physical activity phenotypes: (Disease, 2018) self-reported
moderate-vigorous physical activity [continuous phenotype,
337,234 participants, in standardized units of inverse
normalized metabolic equivalent minutes per week (MET-
minutes/week)]; (Wu et al., 2020) self-reported vigorous
physical activity (binary phenotype, 261,055 participants with
98,060 cases, ≥ 3 vs. 0 for days per week), (Qaseem et al., 2017)
self-reported strenuous sports or other exercises (binary
phenotype, 350,492 participants with 124,842 cases, ≥ 2–3 vs.
0 for days per week), and (Deyo et al., 2014) seven-day average
acceleration from a wrist-worn accelerometer (continuous
phenotype, 91,084 participants, in milligravities). The
characteristics for each phenotype are summarized in

Supplementary Table S1. We chose SNPs from the first
phenotype (self-reported moderate-vigorous physical activity)
for the primary analysis, as this phenotype yielded the largest
number of significant SNPs. To ensure robustness, the SNPs from
the other three phenotypes were used in a sensitivity analysis
(Supplementary Table S2). In addition, as the GWAS of the
accelerometer-based activity identified only two SNPs but had
higher heritability than that of the self-reported activity (∼14 vs.
∼5%), the top SNPs meeting a relaxed threshold (p < 1 × 10–7)
were also imported to our study (Supplementary Table S3) in a
sensitivity analysis; the method of using SNPs with relaxed
thresholds has been used for other MR studies when
insufficient SNPs are available (Gage et al., 2017; Hartwig
et al., 2017; Choi et al., 2019). We retained only the top
independent SNPs by selecting one representative SNP among
highly correlated SNPs (r2 > 0.001), a process known as
“clumping”. If an instrument SNP was not present in the
outcome GWAS, then a proxy SNP that was in linkage
disequilibrium with the instrument SNPs was searched for
instead. Clumping and proxy SNPs are both based on
reference data from the 1,000 Genomes Project (Genomes
Project et al., 2015).

For the other direction, in which physical activity is
regarded as the outcome trait, we again applied
Klimentidis’s GWAS (Klimentidis et al., 2018). The
completed summary data can be accessed from the
OpenGWAS database through the MR-base platform
(Elsworth et al., 2020; Hemani et al., 2018a). Similarly, data
for all four phenotypes above are available, while moderate-
vigorous physical activity was used for the primary analysis.

FIGURE 1 | Flow diagram for the design of the bidirectional, two-sample Mendelian randomization study. Multiple phenotypes and cohorts were cross-validated to
maintain the robustness of our results. The direction marked (A) refers to the effect of physical activity on chronic back pain, while that marked (B) refers to the reverse
effect. Details on the SNPs used as trait instruments are summarized in Supplementary Tables S2–S4. The numbers of participants for different phenotypes or cohorts
are labeled in the brackets. SNP: single-nucleotide polymorphism.
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Chronic Back Pain
Genetic instruments for CBP were derived from a genome-wide
meta-analysis comprising adults of European ancestry from 16
cohorts (26), in which positive cases were obtained by examining
the questionnaires from the participants. These cohorts did not
have a consistent definition of CBP: two cohorts used “≥ 1 month
of back pain in consecutive years”; nine cohorts used “≥ 6 months
of back pain”; six cohorts used “≥ 3 months of back pain”. The
control group enrolled participants who reported not having back
pain or reported back pain of insufficient duration as cases. Most
of the included cohorts did not include question items regarding
localization of the pain to the low back or lumbar region
specifically. Therefore, a general definition examining chronic
“back pain” rather than a more specific chronic “low back pain”
definition was applied. This meta-analysis identified four SNPs
associated with chronic back pain, one of which met a relaxed
threshold (p � 3.9 × 10–7), while the others met strict criteria (p <
5 × 10–8) (Supplementary Table S4). Similarly, we introduced a
sensitivity analysis by eliminating the SNP with a relaxed
threshold.

For the outcome data, we searched the OpenGWAS database
and found four GWAS cohorts with completed summary data
(Supplementary Table S5). Two out of the four cohorts are of
European ancestry, while the other two contain South Asian
populations and African American or Afro-Caribbean
populations. Because the MR results may be uninformative for
the magnitude (rather than the direction) of the effect when the
exposure and outcome studies are derived from different
populations (Hemani et al., 2018a), we selected one European
ancestry cohort with the maximum sample size (117,404
participants and 80,588 cases) for the primary analysis and the
other three for the sensitivity analyses.

Statistical Analysis
The R package “TwoSampleMR” developed by researchers in
the MR-base platform was used for this Mendelian
randomization study (Hemani et al., 2018a). Briefly, the
algorithm in this package combines the effect sizes of the
instruments on exposure traits with those of the instruments
on outcome traits using the principle of meta-analysis. In
addition to the effect size, the effect allele and its frequency
for each instrument—whether for exposure or
outcome—must be extracted to determine the direction of
the strand.

As the primary method for combining MR estimates, we used
the multiplicative random-effect IVW method, which translates
to a weight regression of instrument-outcome effects on
instrument-exposure effects where the intercept is restricted to
zero (Burgess et al., 2013). In this way, bias may occur if
horizontal pleiotropy (in which the instruments influence the
outcome through causal pathways other than the exposure) is
present. We therefore introduced two other MR methods: the
weighted median method and MR-Egger regression. The
weighted median method chooses the median MR estimate of
the instruments as the result, while MR-Egger regression allows
the intercept to be a value other than zero (Bowden et al., 2015;

Bowden et al., 2016). Both methods are more robust for
horizontal pleiotropy, although at the cost of reduced
statistical power (Hemani et al., 2018b). Generally, the effect
size for the binary outcome should be represented as odds ratio
(OR) (i.e., exponentiated β). However, in Klimentidis’s GWAS, a
mixed model-model linear regression was used even for binary
phenotypes (vigorous PA and strenuous sports or other
exercises), leading to unreliable estimates of effect sizes (but
not influencing the direction and statistical power)
(Klimentidis et al., 2018). We therefore reported the effect
estimates in the β value for PA as an outcome trait (we
avoided translating the meaning of β for the binary
phenotypes) and in the OR for CBP as an outcome trait.

A series of methods were applied for the sensitivity analyses: in
addition to setting multiple comparisons among different
phenotypes and different cohorts, the funnel plot, Cochran’s Q
statistic, leave-one-out analyses, MR-PRESSO, and the MR-Egger
intercept test of deviation from the null were used to detect
heterogeneity and horizontal pleiotropy (Burgess and Thompson,
2017). By implementing a homonymous R package, MR-PRESSO
also detects and corrects outlier SNPs reflecting pleiotropic biases
(Verbanck et al., 2018). Finally, to determine potential pleiotropy,
we searched each instrument used for the primary analysis in the
PhenoScanner GWAS database (version 2; http://phenoscanner.
medschl.cam.ac.uk) to find any existing associations with
potential confounding traits; then, we removed these SNPs to
control the pleiotropic effects and to see if the primary results
could be reversed.

RESULTS

The cohorts used for extracting instruments in the primary
analysis were comprised of 337,234 participants for physical
activity and 158,025 participants (29,531 cases) for CBP.
Details for all parallel cohorts were summarized on the section
of Section 2 and Supplementary Tables S1, S5.

TABLE 2 | MR results for the effect of self-reported moderate-vigorous physical
activity on chronic back pain (CBP).

Method OR (95% CI)b p Value No. of SNPs

With outliera

IVW 0.98 (0.85–1.13) 0.81 9
Weighted median 0.96 (0.84–1.11) 0.59 9
MR-Egger 0.91 (0.48–1.73) 0.77 9

Without outliera

IVW 0.94 (0.84–1.05) 0.26 8
Weighted median 0.96 (0.84–1.09) 0.51 8
MR-Egger 1.00 (0.61–1.63) 1.00 8

aThe outlier was rs1043595, which was detected with the MR-pleiotropy residual sum
and outlier method.
bIndicates odds for CBP per 1-SD increase in moderate-vigorous physical activity (1-SD
equals 2084 MET-minutes/week in Klimentidis’s GWAS).
Abbreviations: IVW: inverse variance weighted; CBP, chronic back pain; MR, Mendelian
randomization; OR, odds ratio; CI, confidence interval; SNP, single-nucleotide
polymorphism.
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Effect of Physical Activity on CBP
In this direction, we found no evidence of a discernible causal
effect of physical activity on CBP. In our primary analysis—the
effect of self-reported moderate-vigorous physical activity on the
largest CBP cohort with European ancestry—the combined
inverse variance-weighted (IVW) OR was close to 1 (IVW OR,
0.98; 95% CI, 0.85–1.13; p � 0.81) (Table 2; Figure 2), which
indicated that there is no effect of physical activity on CBP. The
results were almost consistent for different exposure phenotypes
and different outcome cohorts (Supplementary Table S6). The
funnel plot did not detect obvious asymmetry, and the leave-one-
out analysis did not change the pattern of the result
(Supplementary Figure S1). The MR-Egger intercept test
suggested no directional horizontal pleiotropy (intercept,
0.001; standard error, 0.005; p � 0.81), even though Cochran’s
Q test indicated moderate heterogeneity (Q � 19.8; p � 0.011).

The method of MR-pleiotropy residual sum and outlier (MR-
PRESSO) detected one outlier (rs1043595), but the result
remained negative when this outlier was removed (Table 2).

Effect of CBP on Physical Activity
In contrast to the previous analysis, we found a robust negative
causal relationship between CBP and physical activity. In our
primary analysis—the effect of CBP represented by all four single-
nucleotide polymorphisms (SNPs) on self-reported moderate-
vigorous physical activity—the MR estimate with the IVW
method was significantly less than zero (IVW β, −0.07; 95%
CI, −0.12 to −0.01; p � 0.02) (Table 3; Figure 3), implying that
participants with CBP tended to reduce their physical activity by
approximately 146 MET-minutes/week with respect to those
without CBP. The weighted median and MR-Egger tests
yielded similar patterns of effects (Table 3). The results were
consistent not only with analyses with different outcome traits,
such as self-reported strenuous sports and accelerometer-based
physical activity, but also with analyses where the SNP with the
relaxed threshold was removed for CBP (Supplementary Table
S7). The leave-one-out analysis showed that no single SNP was
strong for reversely driving the overall effect of CBP on physical
activity but detected one SNP (rs12310519) that played a
relatively predominant role (Supplementary Figure S2A).
Furthermore, the funnel plot presents with a symmetric
pattern (Supplementary Figure S2B), and Cohran’s Q test
suggested no heterogeneity (Q � 0.3; p � 0.96). In addition,
MR-PRESSO found no outliers, and the MR-Egger intercept test
indicated no consistent pleiotropy (intercept, 0.001; standard
error, 0.004; p � 0.91).

FIGURE 2 | MR plots for the effect of moderate-vigorous physical activity on chronic back pain (CBP). (A) Scatter plot of the SNP effect on moderate-vigorous
physical activity vs. that on CBP. The slope of each fitted line represents the pooled MR effect calculated by each method. (B) Forest plot of individual and pooled MR
effect sizes for moderate-vigorous physical activity on CBP. Each point and its corresponding line represent the β value with its 95%CI, respectively. Abbreviations: SNP,
single-nucleotide polymorphism; CBP, chronic back pain; MR, Mendelian randomization; IVW, inverse variance weighted.

TABLE 3 | MR results for the effect of chronic back pain (CBP) on self-reported
moderate-vigorous physical activity.

Method β (95% CI)a p Value No. of SNPsb

IVW −0.07 (−0.12 to −0.01) 0.02 4
Weighted median −0.07 (−0.13 to −0.01) 0.03 4
MR-Egger −0.08 (−0.25 to 0.09) 0.47 4

aIndicates a change in multiple of SD of moderate-vigorous physical activity (1-SD equals
2084 MET-minutes/week in Klimentidis’s GWAS) for participants with CBP vs control
status.
bNo outlier was detected with MR-pleiotropy residual sum and outlier method
Abbreviations: IVW, inverse variance weighted; CBP, chronic back pain; MR, Mendelian
randomization; SNP single-nucleotide polymorphism.
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Potential Pleiotropy Searched in
PhenoScanner
In total, thirteen SNPs were included in our primary analyses (9
for physical activity to CBP, four for CBP to physical activity). We
searched PhenoScanner database for these SNPs and found that
the most potential pleiotropy was “trunk fat/fat-free mass”, which
was involved in 7/13 of all SNPs (Supplementary Table S8). After
removing these involved SNPs, the pattern of the primary results
did not change (physical activity to CBP: IVW OR, 1.09; 95% CI
0.85–1.40; p � 0.52; CBP to physical activity: IVW β, −0.077; 95%
CI, −0.15 to −0.003; p � 0.04) (Supplementary Figure S3).

DISCUSSION

To the best of our knowledge, this is the firstMR study to explore the
causal relationship between physical activity and CBP.We examined
the effects in both directions and found that engaging in more
physical activity was not associated with a reduced risk of CBP, but
having CBP was associated with reduced physical activity (including
both self-reported and accelerometer-based physical activity). The
result supports the more intuitive view that the negative association
between physical activity and CBP arises from the fact that patients
with CBP tend to reduce their physical activity.

Heritability and Genetics of Selected
Variables
The heritability of physical activity varies in terms of different
measurements: objective measurement (i.e., accelerometry-based

method) has higher heritability than self-reported one (14 vs 5%)
(Klimentidis et al., 2018). The study (Klimentidis et al., 2018) we
used for extracting instrument SNPs of physical activity applied
multi-variable models to adjust covariates such as age, sex,
genotyping chip, BMI. This dataset has been involved in
several powerful MR studies (Choi et al., 2019; Choi et al.,
2020; Papadimitriou et al., 2020), most of which selectively
analyzed a few of measurements. To make our results robust,
we used all measurements for sensitivity analysis and obtained
consistent results, which deeply strengthen our conclusions.

In contrast, the heritability of back pain ranges from 0 to 67%,
and is always higher for chronic than acute conditions (Ferreira
et al., 2013). The mechanisms of CBP are not only due to
anatomic disorders, such as intervertebral disc degeneration,
but also to psychological factors. Some previous studies have
discovered possible susceptibility genes involved in CBP
including SPOCK2, DCC, SLC10A7. (Suri et al., 2018; Freidin
et al., 2021). SPOCK2 encodes a protein binding to
glycosaminoglycans to form part of the extracellular matrix
(Ren et al., 2020), while DCC encodes a transmembrane
receptor for netrin-1, an axonal guidance molecule involved in
the development of commissural neurons (Finci et al., 2015).
SLC10A7, Solute Carrier Family 10Member 7, is involved in teeth
and skeletal development. The evidences above imply that CBP is
a complex syndrome, and to some extent related to genetics. The
study from which we extracted instrument SNPs of CBP is a
meta-analysis including 15 different cohorts, each adjusted for
covariates like age, sex, study-specific covariates, and population
substructure (Suri et al., 2018). The nature of meta-analysis made
the instrument SNPs more robust.

FIGURE 3 | MR plots for the effect of chronic back pain (CBP) on moderate-vigorous physical activity. (A) Scatter plot of the SNP effect on CBP vs. that on
moderate-vigorous physical activity. The slope of each fitted line represents the pooled MR effect calculated by each method. (B) Forest plot of individual and pooled MR
effect sizes for CBP onmoderate-vigorous physical activity. Each point and its corresponding line represent the β value and its 95%CI, respectively. Abbreviations: SNP,
single-nucleotide polymorphism; CBP, chronic back pain; MR, Mendelian randomization; IVW, inverse variance weighted.
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Comparisons With Previous Traditional
Studies
Previous studies reported conflicting results regarding the effect
of physical activity on CBP. Some studies showed no association
between physical activity and CBP (Kamada et al., 2014; Picavet
and Schuit, 2003) or a U-shaped relationship, in which very low
and very high levels of physical activity increased the risk of CBP
(Heneweer et al., 2009). However, a recent observational study
with a large population and two meta-analyses supported a
negative relationship between physical activity and CBP (Shiri
and Falah-Hassani, 2017; Alzahrani et al., 2019a; Alzahrani et al.,
2019b). The observational study involved a population 60,134
adults, but its cross-sectional design was insufficient for
identifying the causal inference between physical activity and
CBP (Alzahrani et al., 2019b). Although the meta-analysis
recruited prospective studies (Shiri and Falah-Hassani, 2017),
the observational design was “apt in generating hypotheses and
suggesting causality but can never prove it” (De Rango, 2016). In
contrast, MR can mimic the design of randomized controlled
trials (Hemani et al., 2018a). Given that a SNP is known to be
related to a trait (the so-called “instrument variable”), according
toMendel’s law, the alleles at the SNP are causally upstream of the
corresponding trait and expected to be random with respect to
potential confounders. In anMR study, participants are randomly
assigned to the treatment group or control group according to the
genotype at the instrument SNP of exposure. Then, the effect size
of the causal inference can be calculated as the ratio between the
SNP effect on the outcome and the SNP effect on the exposure.
Our study extends the current literature from the level of
association to the level of causal inference.

Robustness
Our results were robust to different pairs of exposure and outcome
cohorts (Supplementary Tables S6, S7). In the direction of
physical activity to CBP, engaging in more physical activity did
not significantly change the risk of CBP except in the “ukb-e-
3571_AFR” cohort (Supplementary Table S6). The small sample
size (approximately 2000 participants) of the “ukb-e-3571_AFR”
cohort and the wide range of the OR indicate that the exception
probably derives from a random error. In addition, the
generalization of our results to different races (e.g., Chinese and
African) is limited due to the fact that the exposure and outcome
datasets were mostly from European population. Future studies on
this issue will require analyses of other races.

In the other direction, from CBP to physical activity,
reporting CBP was always associated with reporting reduced
physical activity (Supplementary Table S7). However, in the
leave-one-out analysis, we found one predominant SNP,
rs12310519, without which the OR of reporting CBP on
reporting moderate-vigorous physical activity was no longer
statistically significant (the 95% CI for the OR included 1)
(Supplementary Figure S2A). To examine the extent of the
influence of this SNP, we repeated the leave-one-out analysis on
the other three phenotypes of physical activity; interestingly,
however, this SNP (rs12310519) was not the predominant SNP
for self-reported vigorous physical activity and self-reported

strenuous sports or other exercises (Supplementary Figure S4).
This result may imply different mechanisms by which genetic
variance influences different levels of one phenotype.

After looking up the SNPs used for the primary analysis in
Phenoscanner database, a potential pleiotropy, “trunk fat/fat-free
mass”, was detected (Supplementary Table S8). This trait has
been reported as a common predictive factor for both physical
activity and CBP (Ness et al., 2007; Urquhart et al., 2011; Brady
et al., 2019) and served as an exposure-outcome confounder for
the current study. Nevertheless, the pattern of the primary results
did not change after controlling this pleiotropy, possibly due to
the balance of the multiple SNPs that have effects of different
directions on this confounder.

Limitations
This study has several limitations. First, although different levels
of physical activity were included in this study, the CBP was an
all-or-none variable. Thus, it was impossible to compare the effect
between different levels of CBP. It will be interesting to determine
in future studies if the effects of physical activity are similar on
different levels of CBP. Second, there were overlapping samples in
both the exposure and outcome studies because the physical
activity source study and the CBP outcome data both involved
participants from the United Kingdom Biobank project. Results
from MRs with overlapping samples may be biased due to the
winner’s curse phenomenon (Bowden and Dudbridge, 2009).
However, we used a sensitivity analysis in which weaker
instruments were excluded, which can minimize the bias from
sample overlap (Pierce and Burgess, 2013). Finally, the CBP
phenotype we used represents a symptom rather than a disease or
a biomarker. Compared with othermore detailed phenotypes, such
as osteoarthritis, additional mechanisms may be involved in CBP,
such as muscle injury, nerve root compression, or intervertebral
disc degeneration. Thus, a single genome-wide association study
is insufficient for finding all SNPs as instruments for CBP.
Although the genome-wide meta-analysis we selected for this
MR included 16 CBP cohorts, it detected only three to four
SNPs, which might partially cover all the mechanisms.

Another point we should clarify is that we used chronic back
pain instead of chronic low back pain, a more commonly used
phenotype, as the exposure phenotype. The primary reason for
this is that the questionnaires used for the included cohorts did
not specifically isolate the low back region (Suri et al., 2018)).
Given the high agreement between general back pain and low
back pain-specific questions (Denard et al., 2010) and since
upper/mid back pain without concurrent low back pain is
uncommon (Hartvigsen et al., 2009), we believe that our
results with CBP can well represent those with chronic low
back pain, as exemplified in other studies using similar
substitutions (Suri et al., 2018; Suri et al., 2017).

Importance
Despite these limitations, the MR study performed here provides a
novel insight into genetic variants as instruments for assessing the
causal inference between physical activity and CBP and obviates
typical challenges in observational research while providing an
internal explanation for such studies (Koes et al., 2010; Shiri and
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Falah-Hassani, 2017; Alzahrani et al., 2019a; Alzahrani et al., 2019b).
If the negative relationship between physical activity and CBP is truly
a reverse causality, the concept that patients with CBP should be
engaging in activity, which is recommended by current guidelines
(Koes et al., 2010), may need to be reconsidered.

CONCLUSION

This study applied MR to examine the causal inference between
physical activity and CBP. The negative relationship between
these two traits is probably derived from the fact that patients
experiencing CBP tend to reduce their physical activities.
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Background: CDK5 regulatory subunit associated protein 1 like 1 (CDKAL1) is a major
pathogenesis-related protein for type 2 diabetes mellitus (T2DM). Recently, some studies
have investigated the association of CDKAL1 susceptibility variants, including rs4712523,
rs4712524, and rs9460546with T2DM. However, the results were inconsistent. This study
aimed to evaluate the association of CDKAL1 variants and T2DM patients.

Methods: A comprehensive meta-analysis was performed to assess the association
betweenCDKAL1SNPs and T2DM among dominant, recessive, additive, and allelemodels.

Results:We investigated these three CDKAL1 variants to identify T2DM risk. Our findings
were as follows: rs4712523 was associated with an increased risk of T2DM for the allele
model (G vs A: OR � 1.172; 95% CI: 1.103–1.244; p＜0.001) and dominant model (GG +
AG vs AA: OR � 1.464; 95% CI: 1.073–1.996; p � 0.016); rs4712524 was significantly
associated with an increased risk of T2DM for the allele model (G vs A: OR � 1.146; 95%
CI: 1.056–1.245; p � 0.001), additive model (GG vs AA: OR � 1.455; 95% CI:
1.265–1.673; p＜0.001) recessive model (GG vs AA + AG: OR � 1.343; 95% CI:
1.187–1.518; p＜0.001) and dominant model (GG + AG vs AA: OR � 1.221; 95% CI:
1.155–1.292; p＜0.001); and rs9460546 was associated with an increased risk of T2DM
for the allele model (G vs T: OR � 1.215; 95% CI: 1.167–1.264; p � 0.023). The same
results were found in the East Asian subgroup for the allele model.

Conclusions: Our findings suggest that CDKAL1 polymorphisms (rs4712523,
rs4712524, and rs9460546) are significantly associated with T2DM.
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1 INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a complex disease
characterized by insulin resistance in peripheral tissues and
dysregulated insulin secretion by pancreatic β-cells (Li et al.,
2020). The incidence of T2DM in adults has been increasing over
recent decades (Yang et al., 2010; Tian et al., 2019) and is

estimated to increase to over 700 million by 2045 (Saeedi
et al., 2019; Li et al., 2020). T2DM is caused by genetic and
environmental factors (Tian et al., 2019; Wu et al., 2014). Genetic
variants are thought to be involved in the development of T2DM.
Genome-wide association studies have indicated that some single
nucleotide polymorphisms (SNPs) are critical risk factors for
T2DM (Tian et al., 2019).

FIGURE 1 | Flow diagram of the literature search and selection.

TABLE 1 | Characteristics of each study included in rs4712523 of meta-analysis.

Author Year Ethnic T2DM/NDM ORs with
95% CI
(G vs
A)

Allele distribution Genotype distribution

T2DM, n NDM, n T2DM, n NDM, n

A G A G AA AG GG AA AG GG

Liju et al. 2020 India 1183/1188 1.077 (0.893–1.300) 1640 726 1684 692 — — — — — —

Tian et al. 2019 Chinese 510/503 1.420 (1.190–1.690) 508 512 588 418 131 246 133 175 238 90
Qian et al. 2019 Chinese 526/526 1.027 (0.956–1.103) 590 462 556 496 164 262 100 149 258 119
Rao et al. 2016 Chinese 458/429 0.924 (0.766–1.114) 525 391 475 383 154 217 87 138 199 92
Ren et al. 2013 Chinese 98/97 1.521 (1.018–2.273) 99 97 118 76 9 81 8 26 66 5
Li et al. 2013 Chinese 192/190 1.654 (1.237–2.212) 202 182 246 134 22 158 12 62 122 6
Lu et al. 2012 Chinese 2897/3259 1.223 (1.139–1.314) 3105 2689 3816 2702 848 1409 640 1120 1576 563
Gong et al. 2016 Chinese 91/186 1.380 (1.250–1.520) — — — — — — — — — —

Long et al. 2012 African Americans 1549/2722 0.960 (0.870–1.070) — — — — — — — — — —

Takeuchi et al. 2009 Japanese 5629/6406 1.270 (1.210–1.330) — — — — — — — — — —

Takeuchi et al. 2009 Europeans 14586/17968 1.120 (1.080–1.160) — — — — — — — — — —

Rung et al. 2009 Caucasian 180/165 1.200 (1.140–1.260) — — — — — — — — — —

Scott et al. 2007 Finnish 1161/1174 1.123 (1.032–1.222) — — — — — — — — — —

n, Number; T2DM, type 2 diabetes mellitus; NDM, Non-diabetic subject; OR, odds ratio; CI, confidence interval.
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CDK5 regulatory subunit associated protein 1 like
1 (CDKAL1) is a crucial pathogenesis-related protein for
T2DM. The CDKAL1 gene encodes cyclin-dependent kinase
5 regulatory subunit-associated protein 1 (CDK5RAP1)-like 1.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine
protein kinase that contributes to the glucose-dependent
regulation of insulin secretion (Li et al., 2020); therefore, it
plays a critical role in the pathophysiology of β-cell
dysfunction and predisposition to T2DM (Li et al., 2020;
Wei et al., 2005; Ubeda et al., 2006). The associations of
many SNPs in CDKAL1 with T2DM have been examined in
some meta-analyses, but no published meta-analysis has
evaluated the role of CDKAL1 rs4712523, rs4712524 and
rs9460546 variants in the susceptibility to T2DM. Several
studies have examined the association between CDKAL1
polymorphisms (rs4712523, rs4712524 and rs9460546) and
T2DM risk, but some findings were failed to replicate.
Therefore, performing a meta-analysis is needed to evaluate
the association between CDKAL1 polymorphisms (rs4712523,
rs4712524, and rs9460546) and T2DM.

2 MATERIALS AND METHODS

This meta-analysis was conducted according to Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines.

2.1 Literature Search
The Google Scholar, PubMed and Chinese National Knowledge
Infrastructure databases were systematically searched for relevant
studies using the following terms:

1 “CDKAL1” or “rs4712523” or “polymorphism” and “T2DM”;
2 “CDKAL1” or “rs4712524” or “polymorphism” and “T2DM”;
3 “CDKAL1”, or “rs9460546” or “polymorphism” and “T2DM”,
respectively.

The search was performed with no date or language
restrictions. All the studies were evaluated by reading the title
and abstract and excluding irrelevant studies. The full texts of
eligible studies were then assessed by reading the full text to
confirm inclusion in the study.

2.2 Inclusion and Exclusion Criteria
The inclusion criteria of the studies were as follows: 1) case-
control/cohort studies; 2) studies that evaluated the association
between CDKAL1 SNPs (rs4712523, rs4712524, and rs9460546)
and T2DM; 3) adequate raw data or sufficient data to calculate
odds ratios (ORs) with corresponding 95% confidence intervals
(CIs); 4) a T2DM diagnosis based on the clinical criteria of the
World Health Organization.

The exclusion criteria were as follows: 1) not a case-control/
cohort study; 2) not related to CDKAL1 SNPs (rs4712523,
rs4712524, and rs9460546) and T2DM; 3) insufficient data; 4)
NDM data not in Hardy-Weinberg equilibrium (HWE).

2.3 Data Extraction
Two authors independently extracted the following data from the
included studies: first author, ethnicity, year of publication,
numbers of T2DM patients and NDM controls, distribution of
alleles and genotypes, and ORs with 95% CIs of the allele
distribution.

2.4 Statistical Analysis
Four genetic models were evaluated in rs4712523 and rs4712524:
the dominant model (GG + AG vs AA), recessive model (GG vs
AA + AG), additive model (GG vs AA) and allele model (G vs A).
Additionally, the allele model (G vs T) was evaluated in
rs9460546. Genetic heterogeneity was estimated using Q-test

TABLE 2 | Characteristics of each study included in rs4712524 of meta-analysis.

Author Year Ethnic T2DM/NDM Allele distribution Genotype distribution

T2DM, n NDM, n T2DM, n NDM, n

A G A G AA AG GG AA AG GG

Liju et al. 2020 India 1183/1188 658 1708 624 1752 — — — — — —

Li et al. 2020 Chinese 1169/1277 1324 1014 1551 1003 375 574 220 470 611 196
Azarova et al. 2020 Russian 1579/1627 1988 1170 2204 1050 636 716 227 721 762 144
Tian et al. 2019 Chinese 508/493 506 510 570 416 130 246 132 171 228 94
Li et al. 2018 Chinese 123/311 128 118 327 295 34 60 29 94 139 78
Rao et al. 2016 Chinese 456/417 521 391 457 377 150 221 85 125 207 85
Unoki et al. 2008 Japanese 4795/3441 5119 4471 4019 2863 1431 2257 1107 1176 1667 598
Lu et al. 2012 Chinese 2899/3260 3157 2641 3868 2652 880 1397 622 1156 1556 548

n, Number; T2DM, type 2 diabetes mellitus; NDM, Non-diabetic subject (-), not applicable.

TABLE 3 | Characteristics of each study included in rs9460546 of meta-analysis.

Author Year Ethnic T2DM/NDM ORs with 95% CI
(G vs T)

Li et al. 2020 Chinese 1169/1277 1.133 (1.011–1.270)
Hu et al. 2009 Chinese 1849/1785 1.145 (1.041–1.260)
Herder et al. 2008 German 433/1438 1.410 (1.190–1.680)
Unoki et al. 2008 Japanese 4775/3442 1.226 (1.152–1.305)
Maller et al. 2012 European 632/677 1.250 (1.150–1.350)

T2DM, type 2 diabetes mellitus; NDM, Non-diabetic subject; OR, odds ratio; CI,
confidence interval.
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and I2 test. Lower heterogeneity was defined as I2 <50% and p >
0.01, using the fixed effects model (Mantel–Haenszel) to calculate
ORs with corresponding 95% CIs. Otherwise, the random effects
model (Mantel–Haenszel) was used. The significance of the ORs
was evaluated using the Z test. Begg’s and Egger’s tests were used
to determine publication bias. STATA v.14.0 software (Stata
Corporation, Texas, United States) was used to perform all
statistical analyses.

3 RESULTS

3.1 Study Inclusion and Characteristics
A total of 179 potential studies were searched using the inclusion
and exclusion criteria. Figure 1 shows a flow chart of the study
selection process. Twelve articles, including 7 in English and 5 in
Chinese, had rs4712523 data. Eight articles, including 5 in
English, 2 in Chinese and 1 in Russian, had rs4712524 data.
Five articles, including 5 in English, had rs9460546 data. The
characteristics of each included study are shown in Tables 1−3.

3.2 Heterogeneity Analysis
3.2.1 rs4712523
High heterogeneity among studies (Scott et al., 2007; Rung et al.,
2009; Takeuchi et al., 2009; Long et al., 2012; Lu et al., 2012; Gong,
2016; Li et al., 2013; Ren et al., 2013; Rao et al., 2016; Qian, 2019;
Tian et al., 2019; Liju et al., 2020) was detected in the allele model
(G vs A: I2 � 84.4%; p＜0.001), additive model (GG vs AA: I2 �
84.6%; p＜0.001), recessive model (GG vs AA + AG: I2 � 73.8%;
p � 0.002), and dominant model (GG +AG vs AA: I2 � 86.1%; p＜
0.001) (Figure 2).

3.2.2 rs4712524
High heterogeneity among studies (Unoki et al., 2008; Lu et al.,
2012; Rao et al., 2016; Li, 2018; Tian et al., 2019; Azarova, 2020;
Li et al., 2020; Liju et al., 2020) was detected in the allele model
(G vs A: I2 � 75.1%; p＜0.001). A moderate degree of
heterogeneity among studies was detected under the
additive model (GG vs AA: I2 � 58.7%; p � 0.024) and
recessive model (GG vs AA + AG: I2 � 57.8%; p � 0.027).
Low heterogeneity among studies was detected under the

FIGURE 2 | Meta-analysis using a random effects model for the association between the CDKALl rs4712523 polymorphism and T2DM susceptibility (A) Allele
model, G vs A (B) Additive model, GG vs AA (C) Recessive model, GG vs AA + AG (D) Dominant model, GG + AG vs AA. OR: odds ratio, CI: confidence interval,
I-squared: measure to quantify the degree of heterogeneity in meta-analyses.
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dominant model (GG + AG vs AA: I2 � 31.8%; p � 0.185)
(Figure 3).

3.2.3 rs9460546
Low heterogeneity among studies (Herder et al., 2008; Unoki
et al., 2008; Hu et al., 2009; Maller et al., 2012; Li et al., 2020) was
detected in the allele model (G vs T: I2 � 37.0%; p � 0.174)
(Figure 4).

3.3 Meta-Analysis Results
3.3.1 rs4712523
A significant difference was found between T2DM patients and
NDM controls for the allele model (G vs A: OR � 1.172; 95%
CI: 1.103–1.245; p＜0.001) and dominant model (GG + AG vs
AA: OR � 1.464; 95% CI: 1.073–1.996; p � 0.016). No
significant associations were found under the additive
model (GG vs AA: OR � 1.495; 95% CI: 0.990–2.257; p �
0.056) and recessive model (GG vs AA + AG: OR � 1.188; 95%

CI: 0.900–1.568; p � 0.223) using a random effects model
(Figure 2).

3.3.2 rs4712524
A random effects model was used to analyze the allele, additive
and recessive models, and the dominant model was analyzed
using a fixed effects model. A significant difference was found
between T2DM patients and NDM controls for the allele model
(G vs A: OR � 1.146; 95% CI: 1.056–1.245; p � 0.001), additive
model (GG vs AA: OR � 1.455; 95% CI: 1.265–1.673; p＜0.001)
recessive model (GG vs AA + AG: OR � 1.343; 95% CI:
1.187–1.518; p＜0.001) and dominant model (GG + AG vs
AA: OR � 1.221; 95% CI: 1.155–1.292; p＜0.001) (Figure 3).

3.3.3 rs9460546
A significant difference was found between T2DM patients and
NDM controls for the allele model (G vs T: OR � 1.215; 95% CI:
1.167–1.264; p � 0.023) using a fixed effects model (Figure 4).

FIGURE 3 | Meta-analysis for the association between the CDKALl rs4712524 polymorphism and T2DM susceptibility (A) Allele model, G vs A (random effects
model) (B) Additive model, GG vs AA (random effects model) (C) Recessive model, GG vs AA + AG (random effects model) (D) Dominant model, GG + AG vs AA (fixed
effects model). OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.
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FIGURE 4 |Meta-analysis using a fixed effects model for the association between theCDKAL1 rs9460546 polymorphism and T2DM susceptibility (Allele model, G
vs T). OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of heterogeneity in meta-analyses.

FIGURE 5 | Association between the CDKALl variants and T2DM susceptibility in the subgroup for the allele model (A) rs4712523: G vs A (random effects model)
(B) rs4712524: G vs A (random effects model) (C) rs9460546: G vs T (fixed effects model). OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the
degree of heterogeneity in meta-analyses.
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3.4 Subgroup Analyses
3.4.1 rs4712523
We performed subgroup analysis according to ethnicity to
evaluate the association between rs4712523 and T2DM
susceptibility in the allele model. Rs35767 was significantly
related to the risk of T2DM in the East Asian (G vs A: OR �
1.241; 95% CI: 1.123–1.371; p＜0.001) and others subgroup (G
vs A: OR � 1.108; 95% CI: 1.039–1.180; p � 0.002) using a
random effects model (Figure 5A).

3.4.2 rs4712524
We performed subgroup analysis according to ethnicity to
evaluate the association between rs4712524 and T2DM
susceptibility in the allele model. Rs4712524 was
significantly related to the risk of T2DM in the East Asian
(G vs A: OR � 1.182; 95% CI: 1.095–1.277; p＜0.001), but no
significant associations were found in others subgroup (G vs A:
OR � 1.071; 95% CI: 0.807–1.423; p � 0.634) using a random
effects model (Figure 5B).

3.4.3 rs9460546
We performed subgroup analysis according to ethnicity to
evaluate the association between rs9460546 and T2DM
susceptibility in the allele model. Rs9460546 was significantly
related to the risk of T2DM in the East Asian (G vs T: OR � 1.189;
95% CI: 1.134–1.247; p＜0.001) and others subgroup (G vs T: OR
� 1.277; 95% CI: 1.188–1.373; p＜0.001) using a fixed effects
model (Figure 5C).

3.5 Publication Bias
According to Begg’s and Egger’s tests, no significant publication
bias was found in each of the genetic models (all p > 0.05, data not
shown), and the funnel plots are shown in Figures 6–9.

4 DISCUSSION

CDKAL1 is a key pathogenesis-related protein for T2DM (Tian et al.,
2019). Genetic variants may play an essential role in T2DM

FIGURE 6 | Funnel plot of the odds ratios in the CDKALl rs4712523 meta-analysis (A) Allele model, G vs A (B) Additive model, GG vs AA (C) Recessive model, GG
vs AA + AG (D) Dominant model, GG + AG vs AA.
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susceptibility. In this meta-analysis, three SNPs (rs4712523,
rs4712524, and rs9460546) from previous studies were evaluated
to determine the association of CDKAL1 polymorphisms with
T2DM. CDKAL1 polymorphisms (rs4712523, rs4712524, and
rs9460546) showed a significant association with T2DM. Our
results were consistent with some previous study findings.

The results revealed that the G allele and GG + AG genotypes
of rs4712523 were associated with an increased risk of T2DM.
Nine of the thirteen previous studies investigated rs4712523
showed an association between the G allele and T2DM (Scott
et al., 2007; Rung et al., 2009; Takeuchi et al., 2009; Long et al.,
2012; Lu et al., 2012; Gong, 2016; Li et al., 2013; Ren et al., 2013;
Tian et al., 2019), and four studies found an association between
the GG + AG genotypes and T2DM (Lu et al., 2012; Li et al., 2013;
Ren et al., 2013; Tian et al., 2019). In addition, the rs4712524 G
allele, GG and GG + AG genotypes were associated with an
increased risk of T2DM susceptibility. That have been confirmed
previous observations (Unoki et al., 2008; Lu et al., 2012; Tian
et al., 2019; Azarova, 2020; Li et al., 2020). Additionally, the

FIGURE 7 | Funnel plot of the odds ratios in the CDKALl rs4712524 meta-analysis (A) Allele model, G vs A (B) Additive model, GG vs AA (C) Recessive model, GG
vs AA + AG (D) Dominant model, GG + AG vs A.

FIGURE 8 | Funnel plot of the odds ratios in the CDKALl
rs9460546 meta-analysis for the allele model (G vs T).
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results showed that rs9460546 G allele was associated with T2DM
susceptibility. Markedly, all five studies found that the
rs9460546 G allele was associated with T2DM in various
populations (Herder et al., 2008; Unoki et al., 2008; Hu et al.,
2009; Maller et al., 2012; Li et al., 2020). Moreovr, rs4712523,
rs4712524, and rs9460546 showed a significant association with
T2DM in the East Asian subgroup for the allele model. In general,
Our results have confirmed previous observations suggesting that
CDKAL1 may play a role in T2DM. But it is worth noting that
high heterogeneity among studies was detected in rs4712523 and
rs4712524 likely because of the difference in country, ethnicity,
genetic background and environmental factors. Subgroup
analyses were performed by ethnicity in the allele model, and
the subgroup still had high heterogeneity. Importantly, the high
heterogeneity among studies might have affected our data.

CDKAL1 expression in human pancreatic β-cells increases
insulin secretion by inhibiting CDK5 (Li et al., 2020; Wei et al.,
2005; Ubeda et al., 2006; Ching et al., 2002). Subsequently, several
studies have shown the association of genetic variants in CDKAL1

with defects in proinsulin conversion and the insulin response
following glucose stimulation (Pascoe et al., 2007; Steinthorsdottir
et al., 2007; Tian et al., 2019). Thus, CDKAL1 is involved in the
development of T2DM. Genome-wide association studies have
identified several SNPs in the CDKAL1 gene associated with T2D
(Saxena et al., 2007; Scott et al., 2007; Tian et al., 2019). Our results
confirmed the significant association between CDKAL1 SNPs and
T2DM susceptibility. However, the mechanisms must be verified in
functional studies. Our association results provide reference data to
identify new biomarkers of T2DM that could contribute to the
diagnosis of T2DM.

This meta-analysis has a few limitations. First, because of the
limited examination of CDKAL1 variants in T2DM, the included
studies had comparatively small sample sizes, which might affect
the results of the meta-analysis because of insufficient statistical
power. Thus, studies must be performed across different
geographical and ethnic groups. Additionally, the factors of
T2DM might be complex, with the contribution of genetic,
environmental and dietary habits. Therefore, further study is

FIGURE 9 | Funnel plot of the odds ratios in the CDKALl variants in the subgroupmeta-analysis for the allele model (A) rs4712523: G vs A (B) rs4712524: G vs A (C)
rs9460546: G vs T.
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required to evaluate whether other risk factors together with the
CDKAL1 gene influence T2DM susceptibility.

5 CONCLUSION

To our knowledge, this study is the first to assess the role of
CDKAL1 polymorphisms (rs4712523, rs4712524, and rs9460546)
in T2DM. Significant associations were found between the
CDKAL1 rs4712523, rs4712524, and rs9460546 polymorphisms
and susceptibility to T2DM.
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Low Intelligence Predicts Higher Risks
of Coronary Artery Disease and
Myocardial Infarction: Evidence From
Mendelian Randomization Study
Fangkun Yang1†, Teng Hu2†, Songzan Chen3, Kai Wang3, Zihao Qu3 and Hanbin Cui4*
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Background: Low intelligence has been shown to be associated with a high risk of
cardiovascular disease in observational studies. It remains unclear whether the association
is causal. This study aimed to explore the causal association of intelligence with coronary
artery disease (CAD) and myocardial infarction (MI).

Methods: A two-sample Mendelian randomization study was designed to infer the
causality. A total of 121 single nucleotide polymorphisms were selected as a genetic
instrumental variable for intelligence. Summary data on CAD (n = 184,305) and MI (n =
171,875) were obtained from the Coronary ARtery DIsease Genome-wide Replication and
Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics
(CARDIoGRAMplusC4D) consortium and the FinnGen study. Inverse variance
weighting method was used to calculate the effect estimates. Sensitivity analyses
including other statistical models and leave-one-out analysis were conducted to verify
the robustness of results. MR-Egger test was performed to assess the pleiotropy.

Results: Genetically predicted higher intelligence was significantly associated with lower
risk of CAD (OR, .76; 95%CI, .69–.85; p = 1.5 × 10–7) andMI (OR, .78; 95%CI, .70–.87; p =
7.9 × 10–6). The results remained consistent in the majority of the sensitivity analyses and
were repeated in the FinnGen datasets. MR-Egger test suggested no evidence of
directional pleiotropy for the association with coronary artery disease (intercept = −.01,
p = .19) and myocardial infarction (intercept = −.01, p = .06).

Conclusion: This Mendelian randomization analysis provided genetic evidence for the
causal association between low intelligence and increased risks of CAD and MI.

Keywords: intelligence, coronary artery disease, myocardial infarction, Mendelian randomization, causal
association
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INTRODUCTION

Cardiovascular diseases (CVD) have represented a major cause of
death and disability in the past few decades (Joseph et al., 2017).
The global number of deaths associated with CVD has increased
by 12.5% during the past 10 years (GBD 2015 Maternal Mortality
Collaborators, 2016). In Europe, CVD cause more than 4 million
deaths each year, accounting for 45% of all deaths (Townsend
et al., 2016). The burden of CVD remains a great challenge,
though great efforts have been made to manage this disease (GBD
2013 Mortality and Causes of Death Collaborators, 2015).

In addition to diagnosis and treatment, prevention strategies
for CVD are also indispensable (Goff et al., 2014). Many risk
factors have been found independently associated with CVD,
such as age, sex, hyperlipidemia, hypertension, diabetes, smoking,
and family history (Chiu et al., 2018; Madhavan et al., 2018). The
risk of incidence of CVD could be effectively reduced by
intervening on several modifiable factors among them. There
are also other newly discovered risk factors. Several observational
studies demonstrated that low intelligence is associated with a
high risk of CVD (Roberts et al., 2013; Dobson et al., 2017).
However, it is unclear whether this association is causal or
spurious.

Randomized controlled trials (RCTs) are the most reliable
methods to explore the direct association between the exposures
and the outcomes. However, these trials are difficult to carry out
due to ethics or others. In recent years, Mendelian randomization
(MR) studies, considered an analogy of RCTs, have been
increasingly used to ascertain the cause of diseases (Bennett
and Holmes, 2017). MR studies use genetic variations as
instrumental variables for the exposures, randomly allocated at
conception (Sekula et al., 2016; Emdin et al., 2017). Therefore,
MR studies are less prone to environmental confounders.
Moreover, reverse causality is avoided considering that alleles
were always allocated before the onset of the diseases (Sekula
et al., 2016; Emdin et al., 2017). A recent regression analysis and
MR study investigated the association between intelligence and
coronary artery disease (CAD) risk (Li et al., 2021). However, the
MR part was simple and not rigorous enough in the selection of
the instrumental variable, outcome dataset, and statistical
methods. Moreover, the role of physical activity, alcohol use,
sleep traits, and psychological factor needs to be further
investigated.

This study aims to resort to theMR study to provide consistent
evidence for the causal association of genetically determined
intelligence with the risk of CAD and myocardial infarction (MI).

MATERIALS AND METHODS

Study Design
A two-sample MR study was designed to estimate the causal
association between intelligence and the risk of CAD and MI.
Three core assumptions for identifying the genetic instrumental
variables are the basis of the MR analyses (Sekula et al., 2016;
Emdin et al., 2017). First, the genetic instruments should be
strongly associated with intelligence, generally at the genome-

wide significant level (p < 5 × 10–8). Second, the instruments
should be independent of the confounders. Third, the
instruments should be only associated with the CAD and MI
via intelligence.

Construction of the Genetic Instrumental
Variable
The exposure was genetically predicted intelligence. Genetic
associations with intelligence were taken from the largest
meta-analysis of the genome-wide association study (GWAS)
of intelligence to date (n = 269,867) (Savage et al., 2018). That
meta-analysis included 14 independent cohorts of European
ancestry, adjusted for age, sex, and ancestry principal
components. Although intelligence was assessed using different
neurocognitive tests in each cohort, the cognitive test scores
remained robust in multiple populations (Savage et al., 2018).
In that study, 242 lead single-nucleotide polymorphisms (SNPs)
were identified as significantly associated with intelligence at a
genome-wide significant level (p < 5 × 10–8). The SNPs were
further quality-controlled based on a minor allele frequency >1%.
For palindromic SNPs, if the minor allele frequency is smaller
than .42, then this SNP was regarded as inferrable. Any
palindromic SNPs with minor allele frequency larger than .42
were regarded as not inferrable and would be removed. The
pairwise-linkage disequilibrium of SNPs was tested using LD-
Link (https://ldlink.nci.nih.gov/) based on the European 1,000
Genomes Project reference panel (r2 < .001 and clump distance
>10,000 kb). If SNPs were in linkage disequilibrium, the SNP with
a greater p-value would be removed (Machiela and Chanock,
2015; Myers et al., 2020). Then, those 157 SNPs were looked up in
PhenoScanner 2.0 (a database of human genotype-phenotype
associations) manually (Staley et al., 2016). The SNPs associated
with other traits that may influence the results at a genome-wide
significance level (p < 5 × 10–8) were further removed. We found
that 25 SNPs were associated with body mass index, height,
weight, or waist circumference and 11 SNPs were associated with
cholesterol level, blood pressure, diabetes, alcohol intake, or
smoking (Supplementary Table 1). After excluding these 36
SNPs, the remaining 121 SNPs were finally selected as the
instrumental variable of intelligence.

Data Sources
The summary statistics for genetic associationswithCADandMIwere
acquired from Coronary ARtery DIsease Genome-wide Replication
and Meta-analysis (CARDIoGRAM) plus The Coronary Artery
Disease (C4D) Genetics (CARDIoGRAMplusC4D) consortium [n =
184,305, the majority (77%) were of European ancestry] (Nikpay et al.,
2015). That study involved 60,801 CAD cases (~70% were MI sub-
phenotype) and 123,504 controls. The participants were phenotyped
based on clinical diagnosis and medical records. The data was publicly
available in CARDIoGRAMplusC4D consortium (http://
cardiogramplusc4d.org/). The replication datasets were from the
FinnGen study, which was launched in Finland in 2017, including
genome and health data from about 500,000 Finnish participants
(https://www.finngen.fi/en). We used the fifth release of the results of
genome-wide association analysis on CAD, including 21,012 cases and

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 7569012

Yang et al. Low Intelligence, CAD and MI

110

https://ldlink.nci.nih.gov/
http://cardiogramplusc4d.org/
http://cardiogramplusc4d.org/
https://www.finngen.fi/en
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


197,780 controls. The genetic associations for MI included 12,801
cases and 187,840 controls. Genetic associations with smoking
and alcohol use were obtained from the GWAS and Sequencing
Consortium of Alcohol and Nicotine (GSCAN) use (Liu et al.,
2019). Genetic associations with physical activity were acquired
from a GWAS including about 90,000 individuals of European
ancestry (Doherty et al., 2018). Genetic associations with sleep
duration and insomnia were from the Sleep Disorder
Knowledge Portal (Dashti et al., 2019; Jansen et al., 2019).
Genetic associations with depression were obtained from
Psychiatric Genomics Consortium (PGC) (Howard et al.,
2019). Studies contributing data to the outcome datasets had
already received ethical approval from relevant institutional
review boards. In the present study, we only made use of the
summarized data from these studies. Hence, no additional ethics
approval was required.

Statistical Analyses
Two-sample MR analyses were used to estimate the causal
associations of intelligence with the risk of CAD and MI.
Specifically, we calculated the Wald ratio (quotient of the
genetic association with outcome and the genetic association
with the intelligence) and standard error for each SNP and
then meta-analyzed them using the inverse variance weighting
(IVW) method with fixed effect as our main MR effect estimates.
In the sensitivity analyses, in order to test the robustness of the
main results, the MR analyses with various statistical models,
such as maximum likelihood, the IVW with multiplicative
random effect (Bowden et al., 2017), penalized IVW, penalized
robust IVW, simple median, weighted median (Bowden et al.,
2016), and Mendelian Randomization Pleiotropy Residual Sum
and Outlier (MR-PRESSO) (Verbanck et al., 2018), were
conducted. The MR-Egger intercept test was used to assess the
violation of the “no directional pleiotropy” assumption (Bowden
et al., 2015). The visual inspection of scatter plots, funnel plots
(Sterne et al., 2011), and leave-one-out plots were also performed
to detect the potential horizontal pleiotropy (Bowden et al., 2017).
Multivariable MR analysis was performed to investigate whether
the association between intelligence and CAD/MI would be
affected by potential confounders, including lifestyle factors
[smoking (Liu et al., 2019), drinking (Liu et al., 2019), physical
activity (Doherty et al., 2018), sleep duration (Dashti et al., 2019),
insomnia (Jansen et al., 2019)], and psychological factor
[depression (Howard et al., 2019)] (Burgess and Thompson,
2015; Sanderson et al., 2019). Specifically, we obtained
summary-level data of the intelligence-related SNPs with
confounding factors from corresponding genetic consortia.
Then, the data was combined with the genetic associations
between intelligence and outcomes for each SNP. The
multivariable MR analysis allowed the genetic variants to be
associated with all the risk factors in the statistical model
(Burgess and Thompson, 2015). Causal estimates reflecting
direct causal effects of the primary risk factor were provided,
adjusted for the influence of a secondary risk factor or mediator.
For power calculation, we used an online tool named mRnd
(https://shiny.cnsgenomics.com/mRnd/) based on sample size,
type-I error rate, proportion of cases, odds ratio of outcome per

standard deviation of exposure, and proportion of variance
explained by the included SNPs (Freeman et al., 2013). All the
analyses needed to achieve the statistical power of at least 80%. A
two-sided p-value of <.025 (=.05/2 outcomes) was defined as
statistically significant. All the statistical analyses in the current
study were implemented by the R software (version 3.6.3)
together with the R package “MendelianRandomization”
(https://github.com/cran/MendelianRandomization) and “MR-
PRESSO” (https://github.com/rondolab/MR-PRESSO)
(Yavorska and Burgess, 2017; Verbanck et al., 2018). In the
MR analyses using the IVW method, we chose the fixed-effect,
random-effect, penalized, or robust model. And for other
analyses, default settings were used.

RESULTS

After excluding SNPs that might violate the three core
assumptions, 121 SNPs were identified as a genetic instrument
in our main analysis. The characteristics of these SNPs and their
genetic associations with the intelligence and the outcome are
shown in Supplementary Table 2.

The scatter plots of the associations between the genetically
predicted intelligence and CAD/MI are displayed in Figure 1.
The associations between the genetically predicted intelligence
and CAD/MI are shown in Figure 2. The fixed-effect IVW
method showed that higher genetically predicted intelligence
was significantly associated with lower risks of CAD (OR .76
per SD increase; 95%CI, .69–.85; p = 1.5 × 10–7) and MI (OR .78
per SD increase; 95%CI, .70–.87; p = 7.9 × 10–6). Similar results
were observed using the maximum likelihood, the
multiplicative random effect IVW, penalized IVW,
penalized robust IVW, simple median, weighted median
(for CAD), and MR-PRESSO method. However, the
associations were not evident using the weighted median
(for MI) and MR-Egger test. The main results were repeated
based on genetic data for CAD and MI from the FinnGen
study, indicating the robustness and consistency of the main
results (Table 1; Supplementary Table 3).

The MR-Egger intercept test is shown in Table 2, which did
not provide strong evidence of potential directional pleiotropy for
the associations between the genetically predicted intelligence
and CAD (intercept = −.01, p = .19) and MI (intercept = −.01, p =
.06). Funnel plots were symmetric distribution, indicating no
obvious potential pleiotropic effects (Supplementary Figure 1).
The results of the leave-one-out analysis suggested that the
associations between the genetically predicted intelligence and
CAD/MI were stable and not drastically driven by individual SNP
(Figure 3; Supplementary Figure 2). The association pattern
remained after adjusting for most of the potential confounding
traits (Table 3). The MR estimates were slightly attenuated after
adjusting for smoking and sleep duration. However, limited
evidence was found for the mediating effect of smoking and
sleep duration between intelligence and CAD/MI. The MR
analyses have 98% and 90% statistical power at the type I
error rate of .05 for association with CAD and MI,
respectively (Supplementary Table 4).
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DISCUSSION

We conducted a two-sample MR study to explore the causal
effects of intelligence on CAD and MI. We found that the higher
genetically predicted intelligence was significantly associated with
the lower risk of CAD and MI. In addition, the results remained

consistent in the majority of the sensitivity analyses with different
statistical models and leave-one-out analyses.

CVD represents a leading cause of illness and disability associated
with high morbidity and mortality (Benjamin et al., 2018). Except for
the well-established risk factors, such as age, sex, and hypertension,
intelligence has been newly discovered as an intriguing risk factor

FIGURE 1 | Associations of intelligence-related variants with outcomes. (A)Coronary artery disease. (B)Myocardial infarction. The dots indicate the causal effect of
each SNP. The bars indicate the 95% confidence intervals. The blue line indicates the estimate of effect using the inverse-variance weighted method.
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(Dobson et al., 2017). In the past few decades, observational
epidemiological studies have accumulated evidence for an inverse
association between intelligence and the risk of CVD. A prospective
cohort study in Scotlandwith 938 participants and a 25-year follow-up
showed that childhood intelligence quotient (IQ) was significantly
inversely related to CVD events in individuals aged up to 65 (Hart
et al., 2004). The Newcastle Thousand Families study with 412
members and a 40-year follow-up suggested that individuals with
higher childhood intelligence had a lower risk of atherosclerosis in
middle age (Roberts et al., 2013). In ameta-analysis offive longitudinal

studies with 17,256 participants, each standard deviation decrease in
childhood IQ was associated with an increase of 16% in the risk of
CVD (Dobson et al., 2017). Moreover, a prospective cohort study of
49,321 Swedish males and another cohort study of 4,316 Vietnam
males demonstrated that lower IQ scores in early adulthood were
associated with an increased risk of coronary heart disease (CHD) and
acute myocardial infarction (AMI) (Hemmingsson et al., 2007; Batty
et al., 2008). However, these studies fail to distinguish between the
causal and spurious associations because of the unmeasured
confounding and reverse causality. The present study can largely
overcome these shortcomings and provide a reliable causal inference.
Our study, together with previous evidence, suggested that intelligence
was causally associated with the risks of CAD and MI.

Though the associations between the low premorbid intelligence
and the increased risk of CVD and the high rate of later mortality
have been explored, the exact mechanism remains unclear. Several
plausible hypotheses have been proposed. First, socioeconomic factor
was put forward to explain the association between intelligence and

FIGURE 2 | Causal effect estimates of genetically predicted intelligence on coronary artery disease and myocardial infarction using different statistical models. OR,
odds ratio; CI, confidence interval.

TABLE 1 | The associations between intelligence and coronary artery disease/
myocardial infarction using genetic data from the FinnGen study.

Outcome Statistical model OR 95% CI p-value

CAD IVW (random effects) .82 (.70, .95) 6.7E-03
IVW (fixed effects) .82 (.71, .94) 4.6E-03
Weighted median .91 (.74, 1.12) .36
MR-Egger 1.47 (.71, 3.03) .30
Maximum likelihood .81 (.70, .94) 4.5E-03
MR-PRESSO .82 (.70, .95) 7.7E-03

MI IVW (random effects) .76 (.64, .89) 9.2E-04
IVW (fixed effects) .76 (.64, .90) 1.2E-03
Weighted median .80 (.63, 1.01) 6.3E-02
MR-Egger 1.06 (.46, 2.46) .89
Maximum likelihood .75 (.63, .89) 1.2E-03
MR-PRESSO .76 (.64, .89) 1.2E-03

CAD, coronary artery disease; MI, myocardial infarction; IVW, inverse-variance weighted;
MR-PRESSO, mendelian randomization pleiotropy residual sum and outlier; OR, odds
ratio; CI, confidence interval.

TABLE 2 | MR-Egger tests of intelligence with CAD and MI.

Outcome MR-Egger Estimate LCI UCI p-value

CAD Slope .06 −.45 .56 .82
Intercept −.01 −.02 .0033 .20

MI Slope .27 −.29 .83 .34
Intercept −.01 −.02 .0005 .06

LCI, lower confidence interval; UCI, upper confidence interval; CAD, coronary artery
disease; MI, myocardial infarction.
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CAD risk. Individuals with low intelligence were less prone to
educational success and well-remunerated employment, which
provided protection against CAD (Batty et al., 2009). Second, the
effect of intelligence could bemediated via health literacy. Individuals

with low intelligence were less likely aware of their health conditions
and even had more difficulties understanding health messages
(Dobson et al., 2017). They rarely knew how to prevent the
diseases or take medicine properly. It was demonstrated that

FIGURE 3 | Leave-one-out analyses of the associations between intelligence and coronary artery disease. The dots indicate the causal effect using the inverse-
variance weighted method when the SNP is removed. The bars indicate a 95% confidence interval.
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higher intelligence was associated with improved disease prevention
or better health behaviors, including quitting smoking, having a
prudent diet, and persisting with moderate physical activity (Sörberg
Wallin et al., 2015). However, the present MR study found limited
evidence for the mediating effect of smoking, physical activity, and
sleep duration between intelligence and CAD/MI. Third, these
associations could also be partly explained by the congenital or
childhood health damage in both intelligence and physiological
functions, which eventually increased CAD risk in later life
(Dobson et al., 2017). Future investigations were warranted to
elucidate the exact mechanism by which the low intelligence was
causally associated with the increased CAD risk.

The strength of this study is the design of the two-sample MR
study. MR analysis is a novel technique that uses genetic variants
as instrumental variables to estimate the causal effect of exposure
on the outcomes (Sekula et al., 2016). The genetic variants are not
associated with other confounding factors because of the random
allocation at the conception, greatly reducing the potential bias
(Sekula et al., 2016; Emdin et al., 2017). MR analysis can also
avoid reverse causation because genotyping is always earlier than
phenotyping (Sekula et al., 2016; Emdin et al., 2017). MR analysis
represents a reliable method to infer the causal associations, even
described as the best alternative to RCTs (Nitsch et al., 2006). In
addition, we investigated the causal association between
intelligence and CAD and MI based on a large-scale cohort,
which could improve the effectiveness of the statistical test.

There are several limitations to our study. First, the potential
pleiotropy cannot be completely ruled out, which may lead to
biased causal estimates. However, the MR-Egger intercept test
suggested no potential directional pleiotropy, and MR-PRESSO
found no evidence of horizontal pleiotropic outliers. The result was
almost consistent in the sensitivity analysis except for the MR-
Egger method. On the one hand, it could be explained by a
potential violation of the Instrument Strength Independent of
Direct Effect (InSIDE) assumption. This assumption was
unlikely completely satisfied, to which the MR-Egger method
was sensitive. On the other hand, MR-Egger regression was

very conservative compared to other methods, especially when
no violation of the horizontal pleiotropy assumption was evident.
Second, we did not explore the associations between the genetic
instrumental variables and the observed confounders, such as body
mass index and cholesterol level. Nevertheless, we had excluded the
SNPs related to potential confounders by looking up the SNPs in
PhenoScanner. Third, the phenotype of the intelligence varied
among the 14 independent cohorts included in the GWAS, but the
test scores remained robust in multiple populations. This result
needed to be verified when a uniform and precise phenotype of the
intelligence was available in GWAS studies. Moreover, the results
of the current study were based on samples from individuals of
European ancestry, and the effect of low intelligence on the risk of
CAD/MI needed to be further investigated in other racial and
ethnic groups. Finally, we only revealed the causal association
between intelligence and CAD and MI from a genetic perspective
without involving other environmental factors.

CONCLUSION

Our two-sample MR study provides genetic evidence for the
causal association between low intelligence and the increased risk
of CAD and MI. Early recognition coupled with appropriate care
of individuals with low intelligence may have significant clinical
and public health implications. Further studies are warranted to
verify our findings and reveal the potential mechanism.
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Genetic Influence Underlying Brain
Connectivity Phenotype: A Study on
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Background: Human brain structural connectivity is an important imaging quantitative
trait for brain development and aging. Mapping the network connectivity to the phenotypic
variation provides fundamental insights in understanding the relationship between detailed
brain topological architecture, function, and dysfunction. However, the underlying
neurobiological mechanism from gene to brain connectome, and to phenotypic
outcomes, and whether this mechanism changes over time, remain unclear.

Methods: This study analyzes diffusion-weighted imaging data from two age-specific
neuroimaging cohorts, extracts structural connectome topological network measures,
performs genome-wide association studies of themeasures, and examines the causality of
genetic influences on phenotypic outcomes mediated via connectivity measures.

Results: Our empirical study has yielded several significant findings: 1) It identified genetic
makeup underlying structural connectivity changes in the human brain connectome for
both age groups. Specifically, it revealed a novel association between the minor allele (G) of
rs7937515 and the decreased network segregation measures of the left middle temporal
gyrus across young and elderly adults, indicating a consistent genetic effect on brain
connectivity across the lifespan. 2) It revealed rs7937515 as a genetic marker for body
mass index in young adults but not in elderly adults. 3) It discovered brain network
segregation alterations as a potential neuroimaging biomarker for obesity. 4) It
demonstrated the hemispheric asymmetry of structural network organization in genetic
association analyses and outcome-relevant studies.

Discussion: These imaging genetic findings underlying brain connectome warrant further
investigation for exploring their potential influences on brain-related complex diseases,
given the significant involvement of altered connectivity in neurological, psychiatric and
physical disorders.

Keywords: causal inference, body mass index, genome-wide association study, human connectomics, network
segregation
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1 INTRODUCTION

Brain structural connectivity is a major organizing principle of
the nervous system. Estimating interregional neural connectivity,
reconstructing geometric structure of fiber pathways, and
mapping the network connectivity to corresponding inter-
individual variabilities provide fundamental insights in
understanding detailed brain topological architecture, function
and dysfunction. A large body of research has been devoted to
extracting and investigating macro-scale brain networks from
diffusion-weighted imaging (DWI) data (Xie et al., 2018; Jiang
et al., 2019; van den Heuvel et al., 2019; Bertolero et al., 2019;
Elsheikh et al., 2020), and various behavioral, neurological and
neuropsychiatric disorders have been linked to the disrupted
brain connectivity (Jiang et al., 2019; van den Heuvel et al., 2019).
As structural changes of brain connectivity are phenotypically
associated with massive complex traits across different categories,
the brain-wide connectome has been extensively studied.

It is worth noting that human brain connectome re-configures
its network structure dynamically and adaptively in response to
genetic, lifestyle, environmental factors (Cohen and D’Esposito,
2016; Cauda et al., 2018), brain development and aging (Sala-
Llonch et al., 2015; Alloza et al., 2018; Varangis et al., 2019).
However, the underlying neurobiological mechanism from gene
to brain connectome, and to cognitive and behavioral outcomes,
and whether this mechanism changes over time, remain unclear.
To bridge this gap, we perform a genetic study of brain
connectome phenotypes on two different age-specific cohorts:
one contains healthy young adults (age: 28.7 ± 3.6), and the other
contains elderly participants (age: 73.8 ± 7.0). Our goal is to
identify genetic factors affecting brain connectivity and examine
their consistency and discrepancy between these two age-specific
groups.

Emerging advances in multimodal brain imaging, high
throughput genotyping and sequencing techniques provide
exciting new opportunities to ultimately improve our
understanding of brain structure and neural dynamics, their
genetic architecture and their influences on cognition and
behavior (Shen and Thompson, 2020). Present studies
investigating direct associations among human connectomics,
genomics and clinical phenotyping are primarily focused on four
aspects: 1) estimating genetic heritability of basic connectome
measures such as number of fibers, length of fibers and fractional
anisotropy (FA) (Jahanshad et al., 2013; Thompson et al., 2013;
Elliott et al., 2018); 2) discovering pairwise univariate associations
between single nucleotide polymorphisms (SNPs) and imaging
phenotypic traits such as above mentioned basic connectome
measures at each edge (Jahanshad et al., 2013; Karwowski et al.,
2019) and white matter properties at each voxel (Kochunov et al.,
2010; Alloza et al., 2018; Guo et al., 2020); 3) discovering pairwise
univariate associations between SNPs and clinical phenotypes
such as cognitive or behavioral outcomes (Jahanshad et al., 2013;
Elsheikh et al., 2020); and 4) discovering pairwise univariate
associations between basic connectome measures and clinical
phenotypes (Jiang et al., 2019; van den Heuvel et al., 2019).

Among the studies mentioned above, there exist two major
limitations. First, these studies were conducted based on basic

connectome measures such as number of fibers, length of fibers
and FA, but the complex-network attributes were overlooked,
which included network segregation, integration, centrality and
resilience and important network components such as hubs,
communities, and rich clubs (Sporns, 2013). These attributes
were extensively adopted to detect network integration and
segregation, quantitatively measure the centrality of network
regions and pathways, characterize patterns of local anatomical
circuitry, and test resilience of networks to insult (Rubinov and
Sporns, 2010). Second, these studies performed analyses by
examining the association between an independent variable
(e.g., SNP) and a dependent variable (e.g., cognitive or
behavioral outcome), without taking into consideration the
mediator(s) linking these variables (Baron and Kenny, 1986).
Mediation analysis can help identify the underlying mechanism
of outcome-relevant genetic effects implicitly mediated by
neuroimaging phenotypes (e.g., connectome measures). Of
note, mediation analysis requires the independent variable to
be significantly associated with both the dependent variable and
the mediator. This makes applying it in brain neuroimaging
studies a challenge due to the modest effect size of an
individual genetic variant on both behavioral and imaging
phenotypes (Saykin et al., 2015; Cong et al., 2018), as well as
limited size of the sample with all diagnostic, imaging and genetic
data available.

With the demand of measuring complex-network attributes, a
few recent genome-wide association studies (GWAS) (Bertolero
et al., 2019; Elsheikh et al., 2020) recognized the first problem
mentioned above and adopted quantitative measurement
approaches for complex-network attributes, and treated the
attributes as neuroimaging traits for the explorations of
complex imaging genomic associations. They successfully
identified a number of loci susceptible for Alzheimer’s disease
(Elsheikh et al., 2020), and demonstrated the associations
between loci and segregated network patterns, which may be
involved in brain development, evolution, and disease (Bertolero
et al., 2019). However, a notable limitation is that these studies
only focus on the brain networks of either young or elderly
participants, as a result, their study outcomes are lack of
validations in multiple data sets. Since there is an age-related
discrepancy for genetic effects on human connectome alterations
across lifespan (Varangis et al., 2019), it remains an under-
explored topic to examine genetic consistency and discrepancy
for complex-network attributes among cohorts different in age.
Another factor that may cause discrepancy in the network
architecture is the hemispheric asymmetry (Jiang et al., 2019),
and the hemispheric asymmetry of network organization has
been linked to development processes (Zhong et al., 2017) and
neuropsychiatric disorders (Sun et al., 2017). It remains a
challenge to understand the genetic basis for the network
attributes of two hemispheres as they may be distinctively
correlated to cognition level, physical and psychological
development.

Among a large number of complex-network attributes, it has
been well documented in recent literatures (Cohen and
D’Esposito, 2016; Xie et al., 2018) that segregation of neural
information such as modularity, transitivity, clustering
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coefficients and local efficiency represent the connectivity of local
network communities that are intrinsically densely connected
and strongly coupled. A converging evidence (Cohen and
D’Esposito, 2016; Karwowski et al., 2019) is shown that local,
within-network communication is critical for motor execution,
whereas integrative, between-network communication is critical
for measuring connectome (Bertolero et al., 2019). Thus, network
segregation is thought to be essential for describing and
understanding of complex neural connectome systems

(Sporns, 2013). In addition, segregation measures are highly
reliable and heritable network attributes (Xie et al., 2018), and
these measures have been linked to the disruption of neural
network connectivity in brain development, evolution, disease
(Cohen and D’Esposito, 2016; Mak et al., 2016; Bertolero et al.,
2019), and immunodeficiency (Bell et al., 2018). Given the
importance of network segregation, in this study, we first
focus on quantifying measures of network segregation,
analyzing heritability of segregation measures and performing

FIGURE 1 | Flowchart of brain connectome GWAS design. Abbreviations: SNPs, single nucleotide polymorphisms; ADNI, Alzheimer’s disease neuroimaging
initiative; HCP, human connectome project; dbGaP, database of genotypes and phenotypes; QC, quality control; ROI, region of interest; iQT: imaging quantitative trait;
BMI, body mass index.
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genetic association analyses by treating them as neuroimaging
traits. Then, our next priority is to explore the genetic basis for the
rest of the complex-network attributes (e.g. integration, centrality
and resilience).

To overcome the challenges mentioned above, this study aims
to develop and implement computational and statistical strategies
for a systematic characterization of structural connectome
optimized for imaging genetic studies, and to determine
genetic basis of structural connectome. Specifically, the
framework is organized and described in Figure 1, and the
primary goals are to address the following six critical issues: 1)
construction of basic network connectivity with diffusion
tractography, 2) systematic extraction of complex-network
attributes, 3) heritability analysis of complex-network
attributes, 4) genome-wide association studies of quantitative
endophenotypes, 5) examination of mediation effect that
intermediately bridges genes and outcomes, and 6)
identification of outcome-relevant neuroimaging biomarkers.
Given the enormously broad scope of brain connectome, our
focus is on studying 1) static tractography-based structural
connectome and complex-network attributes characterizing
segregation, integration, centrality and resilience; 2) genetic
consistency and discrepancy for complex-network attributes
among cohorts different in age; and 3) mediation effects of
network attributes on outcome-relevant genetics.

The major contributions of this study are fivefold:

• New challenges in human connectome: we elucidate the
neurobiological pathway from SNPs to brain connectome,
and to phenotypic outcomes. By integrating connectomics
and genetics, this study provides new genetic mechanism
insights into understanding detailed brain topological
architecture, and encoding (or mapping) inter-regional
connectivity in the genome.

• New genetic insights for brain phenotype: we validate the
study outcomes by examining genetic consistency and
discrepancy for complex-network attributes between
young adult cohort and elderly adult cohort, which
illustrates the genetic basis for human connectome in
different life stages.

• Biological findings: we treat network segregation measures
as imaging quantitative traits (iQT), and demonstrate that
body mass index [BMI, which is related to multiple complex
diseases (Emmerzaal et al., 2015; Stenholm et al., 2017)] is
influenced by a locus rs7937515 with network segregation
attributes (e.g., clustering coefficient and local efficiency)
measured at the left middle temporal gyrus as mediators,
which reveals the intermediate effects of brain connectivity
in the pathway of outcome-relevant genetics.

• Biological findings: we discover network segregation as an
important neuroimaging biomarker for BMI and weight-
related disorders, and illustrate the importance of the left
middle temporal gyrus for BMI.

• Biological findings: we demonstrate the hemispheric
asymmetry of structural network organization in genetic
association analyses and outcome-relevant studies.

2 MATERIALS AND METHODS

2.1 Study Datasets
With the purpose of examining genetic consistency and
discrepancy for complex-network attributes between young
and elderly adults, and illustrating genetic basis for human
connectome in different life stages, our analysis was
respectively conducted on Human Connectome Project (HCP)
database for young adults and Alzheimer’s disease Neuroimaging
Initiative (ADNI) database for elderly adults.

2.1.1 HCP Young Adult Dataset
HCP (Van Essen et al., 2013) is a major endeavor to map
macroscopic human brain circuits and their relationship to
behavior in a large population. It aims to reveal the neural
pathways that underlie brain function and behavior, by
acquiring and analyzing human brain connectivity from high-
quality neuroimaging data in healthy young adults. The HCP
datasets serve as a key resource for the neuroscience research
community, as it provides valuable resources for characterizing
human brain connectivity and function, their relationship to
behavior, and their heritability and genetic underpinnings,
which enables discoveries of how the brain is wired and how
it functions in different individuals.

2.1.2 ADNI Elderly Adult Dataset
Alzheimer’s disease Neuroimaging Initiative (ADNI) database
was initially launched in 2004 as a public-private partnership, and
led by the Principal Investigator Michael W. Weiner, MD. One
primary aim of ADNI has been to examine whether serial
imaging biomarkers extracted from MRI, positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD.
For up-to-date information, see www.adni-info.org.

2.2 Demographics
We initially downloaded 981 subjects from HCP database,
including a part of twin subjects, then one individual from

TABLE 1 | Participant characteristics in HCP and ADNI genetic association
analyses.

Cohort HCP ADNI p

Number 275 178 —

Gender (M/F) 137/138 108/70 3.02E-02
Age 28.69 ± 3.64 73.76 ± 6.95 5.56E-175
Education 15.14 ± 1.64 16.03 ± 2.78 1.41E-04
MMSE 29.09 ± 1.04 27.37 ± 2.54 2.28E-15
Weight 77.70 ± 17.06 77.71 ± 15.92 1.00
BMI 25.99 ± 4.73 27.28 ± 5.24 8.87E-03
clus coef ROI 087 0.51 ± 0.05 0.29 ± 0.13 1.41E-55
loc effi ROI 087 0.52 ± 0.05 0.39 ± 0.17 1.20E-18

p-values were assessed because of significant differences among diagnosis groups,
and were computed using one-way ANOVA (except for gender using χ2 test). The p
values < 0.05 are shown in bold. HC � healthy control; EMCI � early mild cognitive
complaint; LMCI � late mild cognitive complaint; AD � Alzheimer’s disease.
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each family was randomly selected and excluded. As a result, 275
unrelated participants were selected for further population-based
genetic analyses. ADNI data were collected by selecting the
participants who had both genotype data and baseline DWI
data at their first visit, family relationship was also removed in
the same way as described above for HCP data filtration. Detailed
characteristic information and the number of subjects in each
data cohort are shown in Table 1. In this study, we analyzed a
total of 275 participants (age: 28.7 ± 3.6; gender: 137 male, 138
female; education: 15.1 ± 1.6) from the HCP database, and a total
of 178 participants (age: 73.8 ± 7.0; gender: 108 male, 70 female;
education: 16.0 ± 2.8) from the ADNI database. This study was
approved by institutional review boards of all participating
institutions, and written informed consent was obtained from
all participants or authorized representatives.

2.3 Genotyping Data Acquisition and
Processing
2.3.1 HCP Young Adults Dataset
HCP samples were genotyped usingMEGA array with PsychChip
and ImmunoChip content. 1,141 genotype data was downloaded
from dbGAP. Quality control was performed in PLINK v1.90
(Purcell et al., 2007) using the following criteria: 1) call rate per
marker ≥ 98%, 2) minor allele frequency (MAF) ≥ 5%, 3) Hardy
Weinberg Equilibrium (HWE) test p ≤ 1.0E-6, and 4) call rate per
participant ≥ 98%. Variants with no “rs” number, and samples
with evidence of identity-by-descent (IBD) ≥ 0.25 or
heterozygosity rate ±3 standard deviations from the mean
were further excluded. Following quality control process, the
number of samples with genotype data reduced to 327, we then
checked the missing data by matching subjects information
between phenotype and genotype data. As a result, this study
comprised a total of 327 unrelated subjects and 515,956 SNPs.

2.3.2 ADNI Elderly Adults Dataset
Genotyping data were obtained from the ADNI database (adni.
loni.usc.edu). They were quality-controlled as described in (Cong
et al., 2020; Yao et al., 2020). We then performed imputation to
maximize the number of overlaps between HCP GWAS findings
and ADNI SNPs, see (Yao et al., 2019) for details. Briefly,
genotyping was performed on all ADNI participants following
the manufacturer’s protocol using blood genomic DNA samples
and Illumina GWAS arrays (610-Quad, OmniExpress, or
HumanOmni2.5-4v1) (Saykin et al., 2010). Quality control was
performed in PLINK v1.90 (Purcell et al., 2007) using the
following criteria: 1) call rate per marker ≥ 95%, 2) minor
allele frequency (MAF) ≥ 5%, 3) Hardy Weinberg Equilibrium
(HWE) test p ≤ 1.0E-6, and 4) call rate per participant ≥ 95%. In
total, 5,574,300 SNPs were included for further targeted genetic
association analysis.

2.4 Tractography andNetwork Construction
2.4.1 Tractography
We downloaded high spatial resolution DWI data and genotype
data from both HCP and ADNI databases. DWI data from HCP
was processed following the MRtrix3 guidelines (Tournier et al.,

2012), detailed procedures have been previously reported (Xie
et al., 2018) and are briefly described below: 1) generating a tissue-
segmented image; 2) estimating the multi-shell multi-tissue
response function and performing the multi-shell multi-tissue
constrained spherical deconvolution; 3) generating the initial
tractogram and applying the successor of Spherical-
deconvolution Informed Filtering of Tractograms (SIFT2)
methodology (Smith et al., 2015); and 4) mapping the SIFT2
output streamlines onto the MarsBaR automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) with 90
ROIs to produce the structural connectome with edge value
equal to the mean fractional anisotropy (FA).

DWI data from ADNI was acquired following the scanning
protocols described in (Elsheikh et al., 2020), and processed
following the procedures discussed in (Yan et al., 2018).
Tractography was performed in Camino (Cook et al., 2006)
based on white matter fiber orientation distribution function
(ODF). As Camino adopted a deterministic approach,
streamlines were modeled with a multi-tensor modeling
approach (voxels fitted up to three fiber orientations, this way
accounting for most of the fiber-crossings) of the ODF data. To
generate a comparable tractography, the streamlines were also
mapped onto AAL atlas with 90 ROIs to produce the structural
connectome with edge value equal to the mean FA.

2.4.2 Network Construction
Network was created and defined by connectivity matrixMwhere
Mij stores the connectivity measure between ROIs i and j. As
described in the previous section, we considered FA for defining
Mij. Since the diffusion tensor is a symmetric 3 × 3 matrix, it can
be described by its eigenvalues (λ1, λ2 and λ3) and eigenvectors
(v1, v2 and v3) for tractography analysis. FA at edge-level is an
index for the amount of diffusion asymmetry within a voxel,
defined in terms of its eigenvalues:

FA �
����������������������������
λ1 − λ2( )2 + λ2 − λ3( )2 + λ1 − λ3( )2

2 λ21 + λ22 + λ23( )
√

. (1)

Thus, mean FA is a normalized measure of the fraction of the
tensor’s magnitude due to anisotropic diffusion, corresponding to
the degree of anisotropic diffusion or directionality.

2.5 Complex-Network Attributes
With an undirected and weighted connectivity matrixM (defined
in Section 2.4.2), we assessed a comprehensive set of network
features such as segregation (e.g., transitivity, clustering
coefficients, local efficiency and modularity), integration (e.g.,
global efficiency), centrality (e.g., eigen centrality) and resilience
(e.g., assortativity) of the structural connectome using Brain
Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010).
Given the importance and priority of segregation measures in
this study, we only introduced the definitions of segregation
measures, and the definitions of the rest complex-network
attributes were explained in (Rubinov and Sporns, 2010).

For the following sub-sections, we define N as the set of all
nodes in the network, n as the number of nodes, ti as geometric
mean of triangles around node i (ti � 1

2∑j,h∈N(MijMihMjh)1/3),
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ki as weighted degree of i (ki � ∑j∈NMij), aij as the connection
status between i and j aij � 1 when link (i, j) exists, aij � 0
otherwise), dij as shortest weighted path length between i and
j(dij � ∑auv∈gi-j

f(Muv), where f is a map from weight to length
and gi-j is the shortest weighted path between i and j).

2.5.1 Transitivity
Transitivity measures the ratio of triangles to triplets in the
network. By following the definition in (Newman, 2003):

T � ∑i∈N2ti∑i∈Nki ki − 1( ), (2)

where T is the transitivity measured at network level.

2.5.2 Clustering Coefficient
Clustering coefficient measures the degree to which nodes in a
network tend to cluster together by evaluating the fraction of
triangles around a node and is equivalent to the fraction of node’s
neighbors that are neighbors of each other. By following the
definition in (Onnela et al., 2005):

C � 1
n
∑
i∈N

Ci � 1
n
∑
i∈N

2ti
ki ki − 1( ), (3)

where Ci is the clustering coefficient of node i and C is the
clustering coefficient measured at network level.

2.5.3 Local Efficiency
Local efficiency measures the efficiency of information transfer
limited to neighboring nodes by evaluating the global efficiency
computed on node neighborhoods. By following the definition in
(Latora and Marchiori, 2001):

Eloc � 1
n
∑
i∈N

∑j,h∈N,j≠i MijMih djh Ni( )[ ]−1( )1/3

ki ki − 1( ) , (4)

where Eloc is the local efficiency of node i, and djh(Ni) is the
length of the shortest path between j and h, that contains only
neighbors of i.

2.5.4 Modularity
Modularity measures network segregation into distinct networks,
and it is a statistic that quantifies the degree to which the network
may be subdivided into such clearly delineated groups (Newman,
2006):

Q � 1
l
∑
i,j∈N

Mij − kikj
l

[ ]δmi,mj, (5)

where Q is the modularity measured at network level, mi is the
module containing node i, and δmi,mj � 1 if mi � mj, and 0
otherwise.

2.6 Heritability Analysis
Heritability analysis focused on identifying highly heritable
measures of structural brain networks, and it was a
commonly adopted and critical measurement to describe

properties of the inheritance of iQT. An iQT such as
network attributes must be heritable, which was defined as
the proportion of phenotypic variance due to genetic
differences between individuals (Jørstad and Næevdal, 1996).
In this study, we estimated heritability of four segregation
measures from twin subjects in the HCP young adult cohort
(N � 350, 232 mono-zygotic twins, 118 di-zygotic twins) and
SOLAR-Eclipse software (Kochunov et al., 2015) was employed
for this task. The inputs to this software included phenotype
traits, covariates measures and a kinship matrix indicating the
pairwise relationship between twin individuals. A maximum
likelihood variance decomposition method was applied to
estimate the variance explained by additive genetic factors
and environmental factors respectively. The output from
SOLAR-Eclipse included heritability (h2), standard error and
the corresponding significance p-value for each feature. We
estimated the heritability of connectomic features, including
transitivity, clustering coefficients, local efficiency and
modularity. Since many previous studies had reported the
effect of age (linear nonlinear), gender and their interactions
on structural brain connectivity (Burzynska et al., 2010; Gong
et al., 2011; Lopez-Larson et al., 2011; Zhao et al., 2015), all
heritability analyses were performed with age, age2, sex, age×sex
and age2×sex as covariates. In addition, we extracted the total
variance explained by all covariate variables.

2.7 Brain Connectome Genetic Association
Analysis
2.7.1 HCP Cohort
GWAS on the brain network segregation measures of the 90 ROIs
were performed using linear regression under an additive genetic
model in PLINK v1.90 (Purcell et al., 2007). Age, gender and
education were included as covariates. Our GWAS was focused
on analyzing the following network segregation measures: 1)
modularity and transitivity, which were network-level
measures; and 2) clustering coefficient and local efficiency,
which were node-level measures. As a result, in total, we have
2 + 90 × 2 � 182measures. Our post-hoc analysis used Bonferroni
correction for correcting the genome-wide significance (GWS)
for the number of quantitative traits (i.e., 5E-8/182 � 2.75E-10).

2.7.2 ADNI Cohort
Genetic findings of the segregation measures from HCP young
adult dataset were treated as genotypic candidates and
segregation measures at specific ROIs as phenotypic
candidates, we further examined in ADNI elderly adult dataset
regarding their associations. Apart from including age, gender
and education as covariates, we also added diagnostic status into
the linear regression model, as a large part of ADNI participants
suffered from cognitive disorders. By validating the genetic
findings from HCP data using ADNI participants, we
examined genetic consistency and discrepancy for network
segregation attributes between young and elderly adults, which
illustrated the consistency and discrepancy of genetic basis for
human connectome in different life stages.
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In addition, the validated genetic findings were used to further
explore connectivity variances with all important complex-
network attributes excepting segregation measures such as
integration (e.g., global efficiency and network density),
centrality (e.g., eigen centrality) and resilience (e.g.,
assortativity), and we examined the targeted genetic basis on
certain brain ROIs (e.g., middle temporal gyrus). As previously
stated, linear regression models were used. In particular, we
applied additive genetic models implemented in PLINK v1.90,
with age, gender, education as covariates.

2.8 Mediation Analysis
To examine the causal assumption, we followed the Baron-Kenny
procedure (Baron and Kenny, 1986) to perform standard
mediation analysis to identify the mediated effect, and we
treated iQTs (e.g., network segregation measures) as mediating
variables, which intermediately linked the pathological path from
genetic findings to clinical phenotypes. Specifically, we
constructed a set of candidate SNPs which were found
significantly associated to segregation measures in both young
and elderly participants, and we constructed a set of candidate
clinical phenotyping information by extracting overlapped
clinical outcomes collected in both HCP and ADNI databases.
We then employed the mediation model to detect the indirect
effect of loci on clinical outcomes via iQT.

Specifically, mediation analysis was performed using the non-
parametric bootstrap approximation with the R “mediation”
package developed by Imai et al. (2010). Let y be the
dependent variable which was a clinical outcome in our study,
x be the independent variable which was a candidate SNP, z be the
covariates (age, gender and education), and M be the mediating
variable which was brain iQT. The mediation analysis was
conducted in 3 steps:

1) fit a linear model to regress the mediating variable M against
SNP x while controlling for z;

2) fit a linear model to regress the clinical outcome y against SNP
x while controlling for z;

3) adopted the non-parametric bootstrap approximation to
estimate the direct effect, mediation effect, proportion of
total effect via mediation, their 95% confidence intervals
(CI) and p values, by conducting 1,000 simulations.

2.9 Outcome-Relavent Brain Connectome
Association Analysis
To discover the outcome-relevant biomarkers which mapped
brain connectivity alterations to cognitive or behavioral
outcomes, we performed pairwise univariate association
analysis between network segregation attributes and outcome
data. We selected BMI and Mini-Mental State Examination
(MMSE) as outcomes as they were not only measures available
in both HCP and ADNI cohorts but also important quantitative
traits related to complex diseases such as weight-related disorders
as well as neurological and psychiatric disorders. We used linear
regression to regress the phenotypic outcomes against network
segregation measures for both HCP and ADNI datasets, and

explored outcome-relevant brain neuroimaging biomarkers. By
comparing young and elderly participants, we illustrated the
consistency and discrepancy of human brain connectome in
different ages regarding on BMI and MMSE variations.

3 RESULTS

3.1 Heritability of Network Segregation
As illustrated in Figure 1, we examined segregation measures
estimated at both network-level and node-level prior to GWAS.
All of the segregation measures such as clustering coefficients
(node-level), local efficiencies (node-level), transitivity (network-
level) and modularity (network-level) showed significantly high
heritability after Bonferroni correction
(p<0.05/182�2.75E − 04). The mean (±std) heritability of 182
segregation measures (h2 score) was 0.81 (±0.05), and more
detailed results of heritability analysis were listed in
Supplementary Table. We included all 182 segregation
measures in the subsequent GWAS analysis.

3.2 GWAS of Network Segregation in HCP
Young Adults
In the HCP cohort, genome-wide associations between 515, 956
SNPs and 182 structural network segregation measures were
assessed under the additive genetic model and controlled for
age, gender and education. GWAS identified 20 significant
associations between 10 SNPs and 7 segregation measures
(Table 2), after correcting the genome-wide significance
(GWS) for the number of phenotypes using Bonferroni
method (i.e., p<5E − 08/182�2.75E − 10). Respectively shown
in Figure 2 were Manhattan plots of GWAS results of clustering
coefficient and local efficiency measured in left middle temporal
gyrus. GWAS of HCP data showed high consistency for clustering
coefficient and local efficiency, where nine SNP-ROI associations
were discovered for these two segregation measures. After
Bonferroni correction, there was no significant finding for the
network level segregationmeasures (i.e., transitivity andmodularity).

3.3 Targeted Genetic Association of
Segregation in ADNI Elderly Adults
Given the list of significant findings from the aforementioned
GWAS of HCP segregation measures, we further examined their
statistical significance in the ADNI cohort to identify brain
network relevant genetic variants which were consistent for
brain aging. We assessed the associations of 15 out of 20 HCP
GWAS findings in ADNI cohort, as three SNPs (rs4841664,
rs1461192 and rs147446959 are corresponding to 5
associations in Table 2) were not included in ADNI
genotyping data. Associations of rs7937515 with clustering
coefficient and local efficiency measured in left middle
temporal gyrus were duplicated and validated in ADNI cohort
with p values of 1.63E-03 and 1.34E-03, respectively, where the
Bonferroni corrected significant level p < 0.05/15�3.33E − 03
was applied (Table 2).
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The minor allele G of rs7937515 (rs7937515-G) was associated
with lower level of both clustering coefficient and local efficiency,
compared to its major allele A (Figure 3). We will discuss the risk
effect of rs7937515-G on brain function and dysfunction in the
discussion section.

3.4 Mediation Analysis
According to the genetic association results from the HCP and
ADNI subjects, we identified a common genetic finding SNP
rs7937515, which was associated with two segregation measures
in left middle temporal gyrus (e.g., clustering coefficient and local
efficiency). In addition, we extracted two common behavioral and
cognitive outcome measures (e.g., BMI and MMSE) by
comparing the outcome evaluation methods across the HCP
and ADNI databases. Thus, in this section, we had two major
focuses: 1) exploring the genetic effect of SNP rs7937515 on
outcomes including BMI andMMSE, and gaining deeper insights
to the molecular mechanisms of the identified genetic variant,
and 2) examining the mediated effect of iQTs (e.g., segregation
measures) and illustrating their implicit effects in Eq. 1.

To achieve those two goals, mediation analysis of outcome was
performed for evaluating both the direct and implicit effects of
rs7937515 on outcomes (i.e., BMI andMMSE) through segregation
measurements in left middle temporal gyrus. Mediation analysis
required the independent variable (i.e., rs7937515) to be
significantly associated with both the dependent variable
(i.e., BMI or MMSE) and the mediator (i.e., segregation

measurements). Below we respectively reported the mediation
results analyzed from both HCP and ADNI data.

For the first focus, the minor allele G of rs7937515 was
significantly associated with the increased BMI in HCP cohort
(p � 1.62E-03; Figure 4A). The same increasing trend was also
observed from the ADNI data, although the association between
rs7937515 and BMI was not significant (p � 0.22; Figure 4B). For
the second focus, Figure 5 illustrated the results of mediation
analysis with BMI as an outcome measure, from which both
clustering coefficient and local efficiency of the left middle
temporal gyrus demonstrated the significant intermediate roles
between rs7937515 and BMI, with mediation effects of 0.98 (95%
CI � [0.06, 2.29], p � 3.60E-02) and 0.99 (95%CI � [0.02, 2.11],
p � 4.60E-02), respectively. There was no significant association
between rs7937515 with MMSE in the HCP young adult dataset,
so no mediation analysis regarding MMSE was performed. In the
ADNI elderly adult dataset, there were no significant associations
observed between rs7937515 with BMI nor MMSE; therefore it
was not necessary to further examine mediation effects.

Since the brain can be viewed as a predictor, a mediator, or
outcome of a health condition (e.g., obesity) (Lowe et al., 2019), it
is unclear whether the brain regulates the condition (e.g.,
structural connectome alteration considered as a mediator for
a physical condition such as BMI), or, conversely, brain is affected
by the condition. For completeness, we also explored the potential
reciprocal relationship from the other direction. The above
experiment was repeated with BMI as a mediator and

TABLE 2 | Significant associations between SNPs and segregation measures: statistics in the HCP and ADNI cohorts.

Segregation measure ROI CHR SNP BPa Closest geneb HCP ADNI

Beta p Beta Pc

Clustering coefficient FMidO_R 6 rs6930337 148788006 — −0.36 1.25E-10 −0.10 1.65E-01
18 rs1940608 5927441 TMEM200C −0.39 8.00E-12 0.09 2.15E-01
18 rs4798416 5930979 TMEM200C −0.39 7.52E-12 0.09 2.15E-01

FMedO_R 10 rs2104994 5273767 AKR1C4 −0.37 7.71E-11 −0.10 1.98E-01
TPMid_L 4 rs9994092 66436 114 — −0.37 1.51E-10 −0.05 4.71E-01

4 rs10032124 66485 112 — −0.39 8.26E-12 −0.04 5.68E-01
8 rs4841664 11859 985 DEFB134/DEFB135/ −0.38 7.16E-11 — —

DEFB136
11 rs7937515 71841 325 ANAPC15/LRTOMT/ −0.37 1.09E-10 −3.20 1.63E-03

FOLR3/LAMTOR1
11 rs1461192 130043580 ST14 −0.40 5.54E-12 — —

Local efficiency FMidO_R 6 rs6930337 148788006 — −0.38 4.68E-11 −0.07 3.51E-01
18 rs1940608 5927441 TMEM200C −0.39 7.75E-12 0.10 2.02E-01
18 rs4798416 5930979 TMEM200C −0.39 7.36E-12 0.10 2.02E-01

FMedO_L 10 rs2104994 5273767 AKR1C4 −0.37 1.56E-10 −0.11 1.33E-01
FMedO_R 10 rs2104994 5273767 AKR1C4 −0.38 1.86E-11 −0.11 1.62E-01
TPMid_L 4 rs9994092 66436 114 — −0.38 6.84E-11 −0.05 4.82E-01

4 rs10032124 66485 112 — −0.40 3.71E-12 −0.04 5.71E-01
8 rs4841664 11859 985 DEFB134/DEFB135/ −0.38 5.98E-11 — —

DEFB136
11 rs7937515 71841 325 ANAPC15/LRTOMT/ −0.38 4.22E-11 −0.24 1.34E-03

FOLR3/LAMTOR1
11 rs1461192 130043 580 ST14 −0.39 1.74E-11 — —

21 rs147446959 29291 173 — −0.37 2.72E-10 - —

aBuild 37, assembly hg19.
bGenes located ±100 kb of the top SNP.
cp value reaching the Bonferroni corrected threshold (0.05/20 � 2.25E-03) is shown in bold.
Abbreviations: F � frontal, TP � temporal pole, Mid � middle, Med � medial, O � orbital, L � left, R � right.
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connectivity measures as outcomes. No significant findings were
identified, and thus no evidence was observed for BMI as a
significant mediator between gene and brain connectivity.

3.5 Outcome-Relevant Neuroimaging
Biomaker Discoveries
On one hand, for the HCP cohort, we respectively identified
significantly negative associations (p<0.05/4�1.25E − 02)
between BMI with clustering coefficient (p � 3.92E-05) and
local efficiency (p � 4.57E-05) measured in left middle
temporal gyrus. On the other hand, for the ADNI cohort, we
examined the associations between BMI and the above
mentioned segregation measures in a pair-wise manner, but
there was no significant findings satisfying the corrected p
threshold. Regarding the relationship between cognitive score
(e.g., MMSE) and network segregation measures, there was no
significant associations identified for both HCP and ADNI
cohorts.

3.6 Targeted Genetic Association of Other
Important Network Attributes in the Left
Middle Temporal Gyrus
To review the genetic effect of SNP rs7937515 from different
aspects of network connectivity attributes of the left middle

temporal gyrus, we assessed the relationship between rs7937515
and additional node-level measures on reported brain ROI (i.e., left
middle temporal gyrus) as well as network-level measures in both
HCP and ADNI datasets. Table 3 showed association statistics of
rs7937515 with segregation, integration, centrality and resilience
measures. After correcting for the number of examined network
measures (i.e., p< 0.05/9�5.56e − 03), both HCP and ADNI
identified significant associations between the targeted SNP with
global efficiency (integration) and transitivity (resilience), together
with our previous finding that rs7937515 was associated with
segregation measures such as clustering coefficient and local
efficiency, our results showed the consistent genetic effect of
rs7937515 on brain structural network segregation, integration
and resilience across aging. Besides the common findings
between young and elderly adults, rs7937515 was associated
with several other node-level and network-level attributes
including network density (integration) and eigenvector
centrality (centrality) in HCP data, but not in ADNI. Our
results suggested the possible genetic discrepancy for certain
brain connectivities in different life stages.

3.7 Hemispheric Asymmetry of Brain
Connectome
In this study, we noticed a hemispheric asymmetry of
outcome-relevant brain connectivity alterations in the left

FIGURE 2 |Manhattan plot of GWAS results in the HCP dataset. (A,B) show the GWAS results of clustering coefficient and local efficiency on left middle temporal
gyrus, respectively. Red and blue lines correspond to the p-value of 5E-08 and 2.75E-10, respectively.
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and right middle temporal gyrus (Table 3). Due to two brain
regions (e.g., left and right MTG), two segregation measures
(e.g., clustering coefficient and local efficiency) and one
outcome measure (e.g., BMI), we applied a Bonferroni
corrected p threshold in this section
(p <5E − 02/8�6.25E − 03). In the HCP young adult cohort,
for the left MTG, we respectively identified significant
associations of BMI with clustering coefficient (p � 3.92E-
05), and with local efficiency (p � 4.57E-05); for the right
MTG, even though there were no significant associations of
BMI with clustering coefficient (p � 2.24E-02), and with local
efficiency (p � 2.90E-02), both clustering coefficient and local
efficiency in left and right MTG showed negative associations
with BMI. In the ADNI cohort, as reported in the previous
section, network segregation was not associated with BMI, so it
was not necessary and proper to conduct analyses regarding
ADNI data in this section.

4 DISCUSSION

As summarized in Figure 1, prior to GWAS, we first performed
heritability analysis for network attributes screening, and only
heritable measures of network segregation were treated as iQT for
GWAS. Based on experimental outcomes, all of the segregation
measures were highly heritable: transitivity and modularity were
heritable at network level, clustering coefficient and local
efficiency were heritable at all nodes, which suggested
segregation measures were suitable for genetic analyses. Then,
we performed GWAS of segregation attributes in 275 HCP
subjects, and identified several pairwise associations between
SNPs and iQTs as listed in Table 2. These GWAS findings
were validated in 178 ADNI subjects. As a validation result,
we identified several genetic consistency and discrepancy patterns
for human connectome in different life stages (as shown in
Table 2). As common findings in both HCP young adult and

FIGURE 3 | Association of rs7937515 on clustering coefficient and local efficiency of the left middle temporal gyrus. (A,B)Mean clustering coefficient with standard
errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. (C,D)Mean local efficiency with standard
errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the HCP and ADNI cohorts, respectively. p values are calculated from GWAS (HCP)
and targeted analysis (ADNI), and significant p values are marked in bold.
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ADNI elderly adult cohorts, rs7937515 was negatively associated
with clustering coefficient and local efficiency respectively
measured at left middle temporal gyrus. To the best of our
knowledge, this was among the first GWAS of human brain
high-level network measures across both young and elderly
participants. As shown in Figures 3A,C, the minor allele G of
rs7937515 was associated with decreased clustering coefficient
and local efficiency of the left middle temporal gyrus in both
young and elderly participants. As concluded in (Rudie et al.,
2013; Keown et al., 2017; Karwowski et al., 2019; Varangis et al.,
2019), the weakness of segregated network connectivity (e.g.,
modularity, clustering coefficient, and local efficiency) was linked
to multiple brain disorders such as age-related cognitive declines
and autism spectrum disorder. Thus, our GWAS findings for
HCP young adults demonstrated that rs7937515 played a risk

effect on human network segregation. This neurorisk effect was
also confirmed in a targeted genetic association analysis for ADNI
elderly participants (as shown in Figures 3B,D), these common
discoveries between HCP and ADNI datasets suggested a
consistent genetic risk effect across young and old life stages.

This study was further conducted by performing several post-
hoc analyses in the following three aspects (shown as bottom
sections in Figure 1): 1) examining genetic mechanisms for
common outcome measures in the HCP and ADNI studies,
and elucidating the mediated effect of iQTs for such outcome-
relevant genetic association, 2) discovering outcome-relevant
imaging biomarkers, and 3) exploring the genetic mechanisms
of other important complex-network attributes.

For the first aspect, our goal was to elucidate the
neurobiological pathway from SNPs to brain connectome, and

FIGURE 4 | Association of rs7937515 on BMI in the HCP and ADNI cohorts. (A) Mean BMI with standard errors are plotted against the rs7937515 genotype
groups (i.e., AA, AG and GG) for the HCP cohort. (B) Mean BMI with standard errors are plotted against the rs7937515 genotype groups (i.e., AA, AG and GG) for the
ADNI cohort. p values are calculated from mediation analysis, and significant p values are marked in bold.

FIGURE 5 |Direct andmediation effect of rs7937515 on BMI through left middle temporal gyrus. (A,B) illustrate the effect size, 95%CI and p value from rs7937515
mediation analysis of BMI via left middle temporal clustering coefficient. (C,D) illustrate the effect size, 95% confidence interval and p value from rs7937515 mediation
analysis of BMI via left middle temporal local efficient. TE � total effect; DE � direct effect; ME � mediation effect; CI � confidence interval.
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to phenotypic outcome. In addition, we aimed to discover the role
of iQTs in the outcome-relevant genetic associations by
performing mediation analyses in both HCP and ADNI
datasets. For the HCP young participants, we identified that
BMI was positively associated with rs7937515 in the first step
of mediation analysis, demonstrating a risk effect. rs7937515
located in the regions of FAM86C1/FOLR3 was previously
discussed in literatures (Gao et al., 2015; Gao, 2017) and
positively linked to waist circumference in the meta-analysis
based on the Insulin Resistance Atherosclerosis Family Study
(IRASFS) (Palmer et al., 2015), which was designed to investigate
the genetic and environmental basis of insulin resistance and
adiposity. FAM86C1 (Family With Sequence Similarity 86
Member C1) and FOLR3 (Folate Receptor Gamma) had been
reported for their associations with various weight-related
phenotypes such as bone mineral density (Li et al., 2019) and
BMI (Hair, 2014; Mrozikiewicz et al., 2019), which closely related
to osteoporosis (Li et al., 2019; Mrozikiewicz et al., 2019) and
obesity (Gómez-Ambrosi et al., 2004). In the second and third
steps of mediation analysis, we illustrated that BMI was indirectly
influenced by rs7937515 (Figures 4, 5), and iQTs such as
clustering coefficient and local efficiency measured at the left
middle temporal gyrus respectively played a mediating role. We
also examined the genetic association with MMSE, but no
evidence indicated any genetic associations to MMSE. In
contrary, for the ADNI elderly participants, neither significant
associations between rs7937515 and BMI nor MMSE were
identified in the first step of mediation analysis, so there was
not a necessary to examine mediated effect in this dataset. Our
results demonstrated a disappearance of outcome-relevant
genetic effect in the elderly participants, this discrepancy from
young to elderly participants might due to the dominated
influences from life style, environment or other non-genetic
factors.

For the second aspect, recent studies (Lowe et al., 2019;
Azevedo et al., 2019) showed that structural changes in brain
tissues could affect food consumption behaviors and mediate
BMI, which implied connectome alteration could be a causal
agent and a promising imaging biomarker in this study. Thus, our

goal was set to reveal the mapping between connectivity
alterations and phenotypic outcome, and discover outcome-
relevant imaging biomarkers. For young adult participants,
segregation measures (e.g., clustering coefficient or local
efficiency measured at left middle temporal gyrus) previously
demonstrated their potential to play a mediating role in genetic
association discoveries, in this step, we focused on examining
their direct associations to the outcomes. Thus, we performed a
targeted association analysis between the mentioned segregation
measures and the common outcomes (e.g., BMI or MMSE)
evaluated in both HCP and ADNI studies (Table 2) by
employing linear regression models. For the young
participants, clustering coefficient and local efficiency
measured at left middle temporal gyrus were negatively
associated with BMI. Similar observation was obtained in
(Chen et al., 2018) which linked lower structural network
segregation to obesity (higher BMI). Our findings suggested
that there was a mapping between brain network segregation
attributes and human physical conditions, and segregation
features of the left middle temporal gyrus showed their
potential as neuroimaging biomarkers to detect BMI-
associated complex diseases such as dementias (Emmerzaal
et al., 2015), cardiovascular disease, cancer, respiratory disease
and diabetes (Stenholm et al., 2017). For elderly adult
participants, no significant associations were identified
between segregation measures and any outcomes, which
suggested an interesting topic for further explorations.

Multiple regression analyses demonstrated that middle
temporal gyrus was linked to weight-related issues. For
example, Veit et al. (2014) and Gómez-Apo et al. (2018)
revealed that BMI, visceral fat and age were negatively
associated with cortical thickness of the left middle temporal
gyrus, Ou et al. (2015) indicated that greater adiposity was
associated with lower gray matter (GM) volumes in the
middle temporal gyrus, Yokum et al. (2012) found positive
correlation between BMI and white matter (WM) volume in
the middle temporal gyrus, Rapuano et al. (2016) illustrated left
middle temporal gyrus was detected significantly greater
activation in response to food commercials than to non-food

TABLE 3 | Associations between rs7937515 and brain network measures.

Class QT ROI or Global HCP ADNI

Beta p Beta p

Segregation Clustering coefficient TPMid_L −0.37 1.09E-10 −0.24 1.63E-03
Clustering coefficient TPMid_R −0.20 3.53E-04 −0.22 3.94E-03
Local efficiency TPMid_L −0.38 4.22E-11 −0.24 1.34E-03
Local efficiency TPMid_R −0.22 7.05E-05 −0.22 2.92E-03
Transitivity Global −0.23 3.65E-05 −0.24 1.17E-03
Modularity Global 0.20 5.32E-04 −0.12 9.32E-02

Integration Global efficiency Global −0.29 1.63E-07 −0.24 1.48E-03
Density Global −0.26 2.64E-06 0.03 7.11E-01

Centrality Betweenness centrality TPMid_L −0.09 1.28E-01 −0.05 5.28E-01
Betweenness centrality TPMid_R −0.06 3.24E-01 −0.03 6.75E-01
Eigenvector centrality TPMid_L −0.32 9.58E-08 −0.13 7.85E-02
Eigenvector centrality TPMid_R −0.20 6.11E-04 −0.03 6.98E-01

Resilience Assortativity coefficient Global 0.10 1.14E-01 0.06 3.95E-01

Abbreviations: TP � temporal pole, Mid � middle, L � left, R � right, QT, quantitative trait. p values reaching the Bonferroni corrected threshold (0.05/9 � 5.56E-03) are shown in bold.
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commercials, Salzwedel et al. (2019) concluded that maternal
adiposity influenced neonatal brain functional connectivity in
middle temporal gyrus, and Peven et al. (2019) identified that
cardiorespiratory fitness was negatively associated with
functional connectivity in the right middle temporal gyrus. To
the best of our knowledge, our investigations for the association
between structural connectivity in the middle temporal gyrus and
BMI was among the first weight-related studies with high-level
imaging features measured from structural network connectivity,
and our results confirmed several previous findings analyzed
from thickness data, T1-weighted MRI data, and fMRI data.

For the third aspect, since there was an emerging interest in
understanding the segregation and the integration of brain
networks (Cohen and D’Esposito, 2016; Mohr et al., 2016) as
well as other important network attributes such as centrality (Zuo
et al., 2012) and resilience (Karwowski et al., 2019), our goal was
to expand our focus on comprehensively discussed segregation
attributes to a more complete set of network attributes including
segregation, integration, centrality and resilience. For both node
level network attributes measured at left and right middle
temporal gyrus and global network attributes, we applied
targeted genetic association analyses on global efficiency and
density (integration, network level), betweeness and
eigenvector centrality (centrality, node level) and assortativity
coefficient (resilience, network level) of the structural
connectivity. We identified several pairwise associations
between rs7937515 and these network attributes in both HCP
and ADNI datasets (Table 3), and noticed a significant
association between rs7937515 and global efficiency in both
datasets, which suggested that rs7937515 was involved into the
dynamic fluctuations of segregation and integration of neural
information. This finding partially answered an elusive question
of revealing genetic basis for brain mechanisms of balancing
network segregation and integration. Another worth noting
finding was that rs7937515 was associationed density and
eigenvector centrality respectively in our targeted analyses,
while such associations were vanished in elderly participants,
which suggested inconsistent genetic influences across different
life stages.

With the awareness of the hemispheric asymmetry of network
organization, a genetic basis to explain the differences in
connectome between two hemispheres were under discovered.
In this work, we identified an obvious inconsistency of genetic
influences on human connectome in different brain hemispheres
(Table 3). As reported in several recent studies (Tian et al., 2011;
Shu et al., 2015; Jiang et al., 2019), the topological organizations of
structural networks were not uniformly affected across brain
hemispheres, which lead to a non-uniformly distributed
destruction on neural network of the left and right
hemispheres. Our finding gave an explanation from the point-
view of genetics, with the potential for further investigations as
many of the destruction on neural network (as iQT) were linked
to cognitive and behavioral functions and dysfunctions, and their
genetic mechanisms were still under discovered.

5 CONCLUSION

In this work, we constructed the structural network connectivity,
extracted complex-network attributes and examined the
heritability of network segregation measures. Then, we
revealed a novel association between the minor allele (G) of
rs7937515 and decreased network segregationmeasures of the left
middle temporal gyrus across HCP young participants and ADNI
elderly participants, which demonstrated a consistent genetic risk
effect on brain network connectivity across lifespan. We
elucidated the neurobiological pathway from SNP rs7937515
and genes FAM86C1/FOLR3 to brain network segregation, and
to BMI. In such pathway, we concluded a genetic risk effect on
BMI due to their positive association, examined the mediated
effect of network segregation measures, and discovered network
segregation of the left middle temporal gyrus as BMI-related
neuroimaging biomarkers by identifying a negative association
between them. We also examined genetic associations of a more
complete set of important network attributes including
integration, centrality and resilience, and demonstrated the
consistency and discrepancy in genetic associations in brain
aging. At last, we illustrated hemispheric asymmetry of
network organization in both datasets in the aspect of genetic
effect.

In sum, with the awareness that BMI is directly and indirectly
associated to multiple complex diseases, this study performed a
systematic analysis that integrated genetics, connectomics and
phenotypic outcome data, with the goal of revealing biological
mechanisms from the genetic determinant to intermediate brain
connectomic traits and to the BMI phenotype at two different life
stages. We identified the genetic effect of rs7937515 on human
brain network segregation in both young and elderly participants
and on BMI in young adult cohort. Our findings confirmed
several previous genetic and imaging biomarker discoveries.
Moreover, we provided outcome-relevant genetic insights in
the aspect of complex-network attributes of human brain
connectome. Similar analytical strategies can be applied to
future integrative studies linking genomics with connectomics,
including the analyses of structural and functional connectivity
measures, additional network attributes, longitudinal or dynamic
connectomic features, as well as other types of brain imaging
genomic data.

6 THE ALZHEIMER’S DISEASE
NEUROIMAGING INITIATIVE

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data, but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu.
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A Pan-Cancer Analysis Reveals the
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Recent studies have identified a role for ALKBH7 in the occurrence and progression of
cancer, and this protein is related to cellular immunity and immune cell infiltration. However,
the prognostic and immunotherapeutic value of ALKBH7 in different cancers have not
been explored. In this study, we observed high ALKBH7 expression in 17 cancers and low
expression in 5 cancers compared to paired normal tissues. Although ALKBH7 expression
did not correlate relatively significantly with the clinical parameters of age (6/33), sex (3/33)
and stage (3/27) in the cancers studied, the results of the survival analysis reflect the pan-
cancer prognostic value of ALKBH7. In addition, ALKBH7 expression was significantly
correlated with the TMB (7/33), MSI (13/33), mDNAsi (12/33) and mRNAsi (13/33) in
human cancers. Moreover, ALKBH7 expression was associated and predominantly
negatively correlated with the expression of immune checkpoint (ICP) genes in many
cancers. Furthermore, ALKBH7 correlated with infiltrating immune cells and ESTIMATE
scores, especially in PAAD, PRAD and THCA. Finally, the ALKBH7 gene coexpression
network is involved in the regulation of cellular immune, oxidative, phosphorylation, and
metabolic pathways. In conclusion, ALKBH7 may serve as a potential prognostic pan-
cancer biomarker and is involved in the immune response. Our pan-cancer analysis
provides insight into the role of ALKBH7 in different cancers.

Keywords: ALKBH7, pan-cancer, prognosis, immunotherapy, immune infiltration

INTRODUCTION

The AlkB family consists of Fe (II) and α-ketoglutarate-dependent dioxygenases. Nine AlkB
homologues have been identified, including ALKBH1-8 and FTO. Previous experimental studies
have found that these proteins are involved in biological processes such as RNA modification and
fatty acid metabolism and the DNA damage response (Wu et al., 2016; Bian et al., 2019; Rajecka et al.,
2019). In addition, recent studies have also discovered the potential of the AlkB family to participate
in immune responses. ALKBH5 regulates the immune response by controlling CD4+ T cells (Zhou
et al., 2021), regulating lactic acid levels (Li et al., 2020), and regulating HMGB1 expression (Chen
et al., 2021). Moreover, many studies have reported a role for the AlkB family in the development of
BLCA, HNSC, LUAD and OV, and this family is involved in regulating the immune response (Fujii
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et al., 2013; Pilžys et al., 2019; Cai et al., 2021; Wu et al., 2021),
suggesting that AlkB homologues may be promising therapeutic
targets.

ALKBH7 is a member of the AlkB family. Multiple studies have
shown that ALKBH7 participates in biological processes such as lipid
metabolism and programmed necrosis (Wang et al., 2014). ALKBH7
deficiency increases body weight and body fat in mice (Solberg et al.,
2013) and protects mouse hearts from ischaemia-reperfusion (IR)
injury (Kulkarni et al., 2020). ALKBH7 plays a key role in the process
of alkylation and oxidation-induced programmed necrosis (Fu et al.,
2013) and drives tissue- and sex-specific necrotic cell death responses
(Jordan et al., 2017). In addition, recent studies have identified a role
for ALKBH7 in the progression of several cancers and its relationship
with immune cell infiltration. ALKBH7 expression is significantly
elevated in hepatocellular carcinoma and negatively correlates with
CD4+ cells,macrophages andneutrophils (Peng et al., 2021). ALKBH7
is associated with overall survival in individuals with lung
adenocarcinoma and negatively correlates with CD8+ T cells and
macrophages (Wu et al., 2021). ALKBH7 correlates with the
pathological stage of ovarian serous carcinoma and positively
correlates with the infiltration of CD8+ T cells, dendritic cells and
neutrophils (Cai et al., 2021). ALKBH7 is involved in cellular
immunity and the proliferation of HeLa cervical cancer cell lines
(Meng et al., 2019).

However, the prognostic value and immunological role of
ALKBH7 in cancer have not been systematically investigated. In
the present study, we explored changes in the expression and
prognostic value of ALKBH7 in 33 cancers. Then, we investigated
ALKBH7 expression in different cancer immune and molecular
subtypes. In addition, we performed an in-depth study of the
immune mechanism of ALKBH7 in different cancers to explore
its potential immunotherapeutic value. Overall, this work
provides evidence to elucidate the immunotherapeutic role of
ALKBH7 in cancer, which may be helpful for further functional
experiments.

MATERIALS AND METHODS

Data Acquisition and Software Availability
The genomic and clinicopathological information, somatic
mutation and stemness score data of 33 cancers were obtained
from TCGA (https://cancergenome.nih.gov/) and UCSC Xena
(https://xena.ucsc.edu/) database (Goldman et al., 2020). In
addition, to obtain more normal tissue genomic data, we
downloaded tumor and normal tissue gene expression data
combined with TCGA and GTEx database on the
UCSCXenaShiny (https://shiny.hiplot.com.cn/ucsc-xena-shiny/)
website (Wang S. et al., 2021). R 4.1.0 was used to integrate,
analyse the original data and visualize the results.

Differential ALKBH7 Expression Analysis in
the Normal, Tumor, Various Age, Gender,
and Pathological Stage Tissues
The discrepancy of the gene expression between various types of
cancer and paired normal tissues was investigated to explore

whether ALKBH7 is associated with cancer development.
Differential expression analysis of ALKBH7 has been
investigated in a variety of cancers with patients’ age, gender
and pathological stage by using wilcox test.

Immunohistochemical Staining
The Human Protein Atlas (https://www.proteinatlas.org/)
contains over 25,000 antibodies and a collection of over 10
million immunohistochemical (IHC) images (Thul and
Lindskog, 2018). To further compare the expression of
ALKBH7 gene in tumors and corresponding normal tissues,
antibody-based ALKBH7 protein profiles using
immunohistochemistry were obtained from the HPA database.

Prognostic Analysis of ALKBH7 in Human
Cancers
Univariate Cox regression analysis and Kaplan-Meier curve were
used to analyse the relationship between ALKBH7 expression and
clinical survival data including overall survival (OS), disease-
specific survival (DSS), disease-free interval (DFI) and
progression-free interval (PFI) in 33 cancers.

Analysis of ALKBH7 Expression in Different
Subtypes of Human Cancers
The TISIDB database (http://cis.hku.hk/TISIDB/) is an online
integrated repository portal integrating multiple types of data
resources in oncoimmunology (Ru et al., 2019). The relationship
between ALKBH7 expression and immune or molecular subtypes
of different cancer types was explored through the TISIDB
database.

FIGURE 1 | The analysis and indicators employed in our research. In
clinical correlation section, differential ALKBH7 expression analyses were
performed between different tissues (tumor versus normal), ages (≤60 versus
>60), genders (male versus female), stages (stage I + II versus stage III +
IV). Prognostic analysis was based on univariate Cox regression and Kaplan-
Meier survival curve. In immune mechanism section, relevant signaling
pathways were explored by GSEA based on the ALKBH7 expression.
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FIGURE 2 | The clinical correlation of ALKBH7 expression. (A) Differential expression of ALKBH7 in normal and tumor samples from patients with 33 cancers; the
correlations of ALKBH7 with age (B), sex (C) and stage (D) in 33 cancers. “*” indicates p < 0.05, “**” indicates p < 0.01 and “***” indicates p < 0.001.

FIGURE 3 | Representative ALKBH7 immunohistochemical staining in tumor and normal tissues. The expression of ALKBH7 gene in BRCA (A), LUAD (B), LUSC
(C), OV (D), PRAD (E), and UCEC (F) is significantly higher than that in the corresponding normal tissues.
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FIGURE 4 | Associations between ALKBH7 expression and OS of patients with cancer. (A) Forest plot showing the hazard ratios of ALKBH7 in 33 cancers;
Kaplan-Meier survival curves of OS forpatients stratified according to different ALKBH7 expression profiles in KIRP (B), LAML (C), MESO (D), SARC (E) and UCEC (F).
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FIGURE 5 | Associations between ALKBH7 expression and DSS of patients with cancer. (A) Forest plot showing hazard ratios of ALKBH7 in 32 cancers; Kaplan-
Meier survival curves of DSS forpatients stratified according to different ALKBH7 expression profiles in BLCA (B), KIRC (C), KIRP (D), MESO (E) and UCEC (F).
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Correlation Analysis of ALKBH7 Expression
With Immune Checkpoint Genes, Tumor
Mutational Burden, Microsatellite Instability
and Tumor Stemness Index in Human
Cancers
The correlation between ALKBH7 expression and the expression
of immune checkpoint (ICP) genes, was explored via the
SangerBox website (http://sangerbox.com/). The tumor
mutational burden (TMB), microsatellite instability (MSI)
score and tumor stemness index of each TCGA tumor case
were obtained from somatic mutation data and previously
published studies respectively (Topalian et al., 2015; Bonneville
et al., 2017). Tumor stemness indices are indicators for assessing
the degree of oncogenic dedifferentiation. Among them, mRNAsi
is a gene expression-based stemness index while mDNAsi is a
DNA methylation-based stemness index. Correlations between
ALKBH7 expression and TMB, MSI, mRNAsi and mDNAsi were
analyzed using Spearman’s method.

Analysis of Immune Infiltration-Related
Factors and Pathways
The TIMER database (https://cistrome.shinyapps.io/timer/),
which collected 10,897 samples across 32 cancer types from
TCGA, was created to analyze the level of tumor-associated
immune cell infiltration in the TME (Li et al., 2016; Li et al.,
2017). The correlation between ALKBH7 expression and six
immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages and dendritic cells) and tumor-infiltrating
lymphocyte (TIL) marker genes in human cancers was
investigated using the TIMER database. ESTIMATE is an
algorithm that predicts the presence of immune and stromal
cells in tumor tissue which based on gene expression profiles

(Yoshihara et al., 2013). We calculated the stromal score, immune
score and estimate socre of each case by using the ESTIMATE
package. xCell is a powerful web tool for inferring the proportion
of immune cell subtypes in tumor tissue (Aran et al., 2017). A
spearman correlation heat map of ALKBH7 expression with 36
immunoinfiltrating subtypes of cells in human cancers was
established. Finally, to further investigate the relevant
signalling pathways, gene set enrichment analysis (GSEA) was
performed to explore pathways of ALKBH7 coexpression gene
network.

RESULTS

Clinical Landscape of ALKBH7 Expression
in 33 Cancers
The details of the analysis are summarized and presented in
Figure 1 for a more comprehensive perspective. As illustrated in
Figure 2A, significantly higher ALKBH7 expression was detected
in most human cancers than in adjacent normal tissues, such as
ACC, BRCA, COAD, DLBC, GBM, KICH, KIRP, LGG, LIHC,
OV, PAAD, PRAD, READ, SKCM, STAD, THYM and UCEC. In
contrast, significantly lower ALKBH7 expression was observed in
a few human cancers (ESCA, HNSC, KIRC, LAML and TGCT).
ALKBH7 was highly differentially expressed among elderly
patients in the THCA, BRCA, KIRP, READ and COAD
groups, whereas it was weakly expressed in patients with
THYM (Figure 2B). Meanwhile, the results indicated
significant sex-based differences in ALKBH7 expression in
HNSC, KIRP and LUAD (Figure 2C). In addition, ALKBH7
expression was significantly correlated with the pathological stage
of some cancers, including BLCA, KIRC and UCS (Figure 2D).
Finally, we used immunohistochemistry to validate ALKBH7
expression. Compared with normal tissues, ALKBH7 was

FIGURE 6 | The relationship between ALKBH7 expression and immune subtypes in BLCA (A), BRCA (B), KIRC (C), LIHC (D), PRAD (E), SKCM (F), TGCT (G) and
UCEC (H). [C1 (wound healing); C2 (IFN-gamma dominant); C3 (inflammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-beta dominant)].
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highly expressed in BRCA, LUAD, LUSC, OV, PRAD and UCEC
(Figure 3).

Pan-Cancer Analysis of the Multifaceted
Prognostic Value of ALKBH7
The association between ALKBH7 expression and patient
prognosis was estimated in the pan-cancer dataset. The
survival metrics included OS, DSS, DFI, and PFI. Univariate
Cox regression analysis of the results from 33 types of cancer
suggested that ALKBH7 expression significantly correlated
with OS in 4 types of cancer, including BLCA, HNSC,
KIRP, and PAAD. Kaplan–Meier survival curves indicated
that downregulated ALKBH7 expression was remarkably

associated with shorter OS of patients with KIRP, LAML,
MESO, SARC, and UCEC (Figure 4). The relationship
between ALKBH7 expression and DSS in patients with
cancer was examined. ALKBH7 expression affected DSS in
six types of cancer, including BLCA, KIRP, LIHC, LUSC,
PAAD, and PCPG. The Kaplan–Meier analysis indicated
that decreased ALKBH7 expression indicated shorter DSS of
patients with BLCA, KIRP, MESO, and UCEC, while increased
ALKBH7 expression corresponded with shorter DSS of
patients with KIRC (Figure 5). Cox regression analysis of
the DFI revealed that ALKBH7 expression significantly
correlated with DFI in 4 types of cancer, including LUSC,
OV, PAAD, and THCA. The results from the Kaplan–Meier
analysis suggested that increased ALKBH7 expression was

FIGURE 7 | The relationship between ALKBH7 expression and molecular subtypes in BRCA (A), COAD (B), HNSC (C), KIRP (D), LGG (E), LUSC (F), OV (G),
PRAD (H), STAD (I) and UCEC (J).
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associated with a poor prognosis for patients with PRAD, while
decreased ALKBH7 expression was associated with a poor
prognosis for patients with THCA (Supplementary Figure
S1). We also assessed the association between ALKBH7
expression and PFI and identified that ALKBH7 expression
influenced PFI in patients with BLCA, KIRC, LUSC and
PAAD. Kaplan–Meier PFI curves revealed that decreased
ALKBH7 mRNA expression correlated with an unfavourable
PFI in patients with BLCA and PAAD. In contrast, increased
ALKBH7 mRNA expression correlated with an unfavourable
PFI in patients with KIRC (Supplementary Figure S2).

ALKBH7 Expression Is Related to Immune
and Molecular Subtypes in Human Cancers
Based on accumulating evidence, immunophenotyping reflects
the comprehensive immune status of a tumor, which is closely
related to immunotherapy and the tumormicroenvironment (Ma
et al., 2021). Different molecular subtypes correspond to the

unique molecular biology of cancer and may facilitate the
selection of molecular targeted therapies and immunotherapy
strategies (Kim et al., 2019; Bai et al., 2021). Next, ALKBH7
expression in immune and molecular subtypes of human cancer
was explored using the TISIDB website. ALKBH7 expression was
significantly different in different immune subtypes of BLCA,
BRCA, KIRC, LIHC, PRAD, SKCM, TGCT, and UCEC
(Figure 6). In addition, the trends for the up- and
downregulation of ALKBH7 expression were also different in
different immune subtypes of a specific cancer type. Taking
SKCM as an example, low ALKBH7 expression was detected
in C2 and C4 types and high expression was observed in the C3
type. Regarding different molecular subtypes of cancers, a
significant correlation with ALKBH7 expression was observed
in BRCA, COAD, HNSC, KIRP, LGG, LUSC, OV, PRAD, STAD
and UCEC (Figure 7). Based on the results described above, we
suggest that ALKBH7 may play an important role in the tumor
immune microenvironment and modulate the effect of
immunotherapy.

FIGURE 8 |Correlations between the expression of ALKBH7 and immune checkpoint genes in 33 types of cancer. “*” indicates p < 0.05, “**” indicates p < 0.01 and
“***” indicates p < 0.001.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8222618

Chen et al. A Pan-Cancer Analysis of ALKBH7

141

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


ALKBH7 Expression Is Related to Immune
Checkpoint Genes in Human Cancers
Studies have shown that immune checkpoint genes have important
implications for immunotherapy in many cancers (Topalian et al.,
2015; Li et al., 2019). Here, we collected expression patterns of 47
common immune checkpoint genes and analysed the relationship
between ALKBH7 expression and immune checkpoint gene
expression to explore the potential role of ALKBH7 in
immunotherapy. As shown in Figure 8, ALKBH7 expression
significantly correlated with the expression of most ICP genes in
many cancers, such as BRCA COAD, HNSC, KIRC, LUAD, OV,

PAAD, PRAD, READ, SKCM, THCA, THYM, and UVM. Among
them, a negative correlationwas themain trend; for example, in PRAD,
ALKBH7 expression was negatively correlated with the expression of
30 ICP genes and positively correlated with the expression of 5 ICP
genes. Thus, high levels of ALKBH7 expression may predict
unsatisfactory immunotherapy outcomes when targeting ICP genes.
On the other hand, ALKBH7 inhibitors may be potential alternative
therapeutic approaches. Therefore, we hypothesized that ALKBH7, a
potential pan-cancer biomarker or a novel immunotherapeutic target,
may predict the response to immunotherapy or achieve promising
therapeutic outcomes, respectively.

FIGURE9 | The correlation between ALKBH7 expression and the TMB (A), MSI (B), mDNAsi (C), andmRNAsi (D). “*” indicates p < 0.05, “**” indicates p < 0.01 and
“***” indicates p < 0.001.
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FIGURE 10 | Correlations between ALKBH7 expression and both immune cell infiltration and ESTIMATE score. (A) The relationship between the ALKBH7
expression level and numbers of infiltrating B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, dendritic cell in human cancers. (B) The relationship between
ALKBH7 expression and the ESTIMATE score in human cancers. (C) Correlation of ALKBH7 expression with immune cell infiltration levels in PAAD, PRAD, and THCA.
(D) Correlation of ALKBH7 expression with ESTIMATE scores in PAAD, PRAD, and THCA.
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ALKBH7 Expression Is Related to the Tumor
Mutational Burden, Microsatellite
Instability, and Tumor Stemness Index
We analysed the correlations between ALKBH7 expression and
the TMB, MSI, and tumor stemness index to explore the role of
ALKBH7 in the immunemechanism and immune response of the
tumor microenvironment (TME). The TMB, MSI, and tumor
stemness index in the tumor microenvironment are related to
antitumor immunity and might predict the therapeutic efficacy of
tumor immunotherapy (Lee et al., 2016; Yarchoan et al., 2017;
Malta et al., 2018). As presented in Figure 9, ALKBH7 was
associated with the TMB in 7 cancers and MSI in 13 cancers. In
addition, ALKBH7 was related to mDNAsi in 12 cancers and
mRNAsi in 13 cancers. Among them, ALKBH7 expression was
negatively correlated with the TMB and MSI in COAD and
READ, while it was positively correlated with the TMB and
MSI in UCEC. Based on this finding, ALKBH7 might exert an
indirect effect on the immunotherapeutic response of COAD,
READ and UCEC. ALKBH7 was positively correlated with

mRNAsi and mDNAsi in TGCT and HNSC, but negatively
correlated with mRNAsi and mDNAsi in BRCA. High
ALKBH7 expression in TGCT and HNSC may be related to
the low sensitivity to immune checkpoint blockade therapy; in
contrast, high ALKBH7 expression in BRCAmay be related to the
high sensitivity to immune checkpoint blockade therapy.
Interestingly, ALKBH7 was positively correlated with mRNAsi
but negatively correlated with mDNAsi in THCA and THYM.
This result might arise from the discrepancies between mRNAsi
and mDNAsi caused by DNA hypermethylation (Malta et al.,
2018).

Correlation Analysis Between ALKBH7
Expression and Infiltrating Immune Cells
and the ESTIMATE Score
The tumor microenvironment contains immune cells and
fibroblasts, which affect the effect of immunotherapy (Aran
et al., 2015). We analysed the correlation between ALKBH7
expression and six types of infiltrating immune cells, including

FIGURE 11 | Heat map of the correlations between ALKBH7 expression and immune cell subtypes in 33 types of cancer. “*” indicates p < 0.05, “**” indicates p <
0.01 and “***” indicates p < 0.001.
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B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells. The results revealed a significant correlation in 31
cancer types. ALKBH7 expression displayed a strong relationship
with dendritic cells in 8 cancer types, macrophages in 9 cancer
types, neutrophils in 11 cancer types, CD8+ T cells in 14 cancer
types, B cells in 8 cancer types and CD4+ T cells in 3 cancer types
(Figure 10A). Results from the TIMER database included these
results, and all details are shown in Supplementary Table S1.
Subsequently, the correlation between ALKBH7 expression and
stromal, immune and ESTIMATE scores was analysed
(Figure 10B). All results are presented in Supplementary
Table S2. Interestingly, the most significant correlation
between ALKBH7 expression and the two parameters
described above was observed in PAAD, PRAD and THCA.
As shown in Figures 10C,D, ALKBH7 expression was
negatively correlated with TILs and stromal, immune, and
ESTIMATE scores. Therefore, ALKBH7 may be involved in
inhibiting immune cell infiltration in PAAD, PRAD and THCA.

We also used the xCell web tool to explore the association between
ALKBH7 gene expression and the infiltration of various subtypes of
immune cells. The Spearman correlation heat map is shown in
Figure 11. NK T cells and CD4+ Th1 T cells were positively
correlated with ALKBH7 gene expression in most cancers. In
contrast, CD4+ Th2 T cells, memory CD4+ T cells, monocytes

and mast cells were negatively correlated with ALKBH7 gene
expression in most cancers. In PAAD, PRAD and THCA,
ALKBH7 expression was associated with most subtypes of
immune cells and generally exhibited negative correlations.

Correlation Between ALKBH7 Expression
and Various Immune Markers
We validated the correlations between ALKBH7 expression and
diverse immune signatures in PAAD, PRAD and THCA using the
TIMER database to obtain a better understanding of ALKBH7
crosstalk with the immune response. The genes listed in Table 1
were used to characterize immune cells, including CD8+ T cells,
T cells, B cells, monocytes, tumor-associated macrophages
(TAMs), M1 macrophages, M2 macrophages, neutrophils and
dendritic cells. Tumor purity is an important aspect affecting the
number of infiltrating immune cells in clinical cancer biopsies.
After adjusting for tumor purity, ALKBH7 expression was
significantly negatively correlated with most of the immune
markers of divergent types of immune cells in PAAD, PRAD
and THCA (Table 1).

We also examined the correlations between ALKBH7
expression and various functional T cells, including Th1, Th1-
like, Th2, Th17, Tfh, Treg, resting Tregs, effector Tregs, effector

TABLE 1 | Correlation analysis between ALKBH7 and gene markers of immune cells in TIMER.

Description Gene
markers

THCA PRAD PAAD

None Purity None Purity None Purity

Cor Pvalue Cor Pvalue Cor Pvalue Cor Pvalue Cor Pvalue Cor Pvalue

CD8+ T cell CD8A −0.202 a −0.192 a −0.314 a −0.254 a −0.292 a −0.233 b

CD8B −0.152 a −0.143 b −0.157 a −0.124 c −0.279 a −0.217 b

T cell (general) CD3D −0.26 a −0.25 a −0.153 a −0.071 0.146 −0.19 c −0.122 0.112
CD3E −0.305 a −0.295 a −0.259 a −0.2 a −0.238 b −0.17 c

CD2 −0.316 a −0.303 a −0.253 a −0.16 b −0.292 a −0.224 b

B cell CD19 −0.183 a −0.167 a −0.059 0.187 −0.015 0.759 −0.186 c −0.118 0.123
CD79A −0.209 a −0.194 a −0.153 a −0.089 0.068 −0.194 b −0.123 0.109

Monocyte CD86 −0.404 a −0.393 a −0.414 a −0.336 a −0.399 a −0.332 a

CSF1R −0.346 a −0.343 a −0.37 a −0.299 a −0.347 a −0.289 a

TAM CCL2 −0.26 a −0.244 a −0.223 a −0.165 a −0.282 a −0.253 a

CD68 −0.358 a −0.34 a −0.35 a −0.289 a −0.228 b −0.157 c

IL10 −0.292 a −0.279 a −0.338 a −0.251 a −0.258 a −0.208 b

M1 Macrophage IRF5 −0.324 a −0.317 a −0.234 a −0.263 a 0.027 0.719 0.058 0.454
PTGS2 −0.319 a −0.31 a −0.268 a −0.179 a −0.237 b −0.253 a

M2 Macrophage CD163 −0.335 a −0.32 a −0.414 a −0.343 a −0.438 a −0.377 a

VSIG4 −0.353 a −0.345 a −0.379 a −0.303 a −0.347 a −0.278 a

MS4A4A −0.334 a −0.321 a −0.363 a −0.297 a −0.379 a −0.309 a

Neutrophils CEACAM8 −0.196 a −0.197 a 0.004 0.922 0.017 0.724 −0.059 0.433 −0.005 0.95
ITGAM −0.411 a −0.401 a −0.361 a −0.309 a −0.285 a −0.191 c

CCR7 −0.293 a −0.276 a −0.274 a −0.217 a −0.178 c −0.124 0.106
Dendritic cell HLA-DPB1 −0.305 a −0.295 a −0.119 b −0.057 0.246 −0.232 b −0.159 c

HLA-DQB1 −0.291 a −0.295 a −0.198 a −0.147 b −0.243 b −0.189 c

HLA-DRA −0.377 a −0.365 a −0.351 a −0.295 a −0.35 a −0.289 a

HLA-DPA1 −0.364 a −0.351 a −0.339 a −0.257 a −0.356 a −0.3 a

CD1C −0.336 a −0.319 a −0.319 a −0.242 a −0.199 b −0.14 0.067
NRP1 −0.258 a −0.245 a −0.29 a −0.271 a −0.471 a −0.439 a

ITGAX −0.363 a −0.348 a −0.299 a −0.277 a −0.185 c −0.091 0.236

cp < 0.05.
bp < 0.01.
ap < 0.001.
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T cells, naïve T cells, effector memory T cells, resistant memory
T cells, and exhausted T cells (Table 2). Using the TIMER
database, the ALKBH7 expression level was also significantly
negatively correlated with 44 of 50 T cell markers in PRAD and

THCA and with 31 of 50 T cell markers in PAAD after adjusting
for tumor purity (Table 2). These findings further support the
hypothesis that ALKBH7 may be involved in inhibiting immune
cell infiltration in PAAD, PRAD and THCA.

TABLE 2 | Correlation analysis between ALKBH7 and gene markers of different types of T cells in TIMER.

Description Gene
markers

THCA PRAD PAAD

None Purity None Purity None Purity

Cor P Cor P Cor P Cor P Cor P Cor P

Th1 TBX21 −0.199 a −0.192 a −0.2 a −0.17 a −0.194 b −0.143 0.062
STAT4 −0.317 a −0.317 a −0.281 a −0.216 a −0.207 b −0.179 c

STAT1 −0.451 a −0.436 a −0.421 a −0.339 a −0.355 a −0.302 a

IFNG −0.231 a −0.221 a −0.206 a −0.144 b −0.277 a −0.238 b

TNF −0.236 a −0.229 a −0.261 a −0.168 a −0.125 0.096 −0.076 0.32
IL12A −0.064 0.152 −0.057 0.206 −0.21 a −0.155 b −0.127 0.09 −0.108 0.159
IL12B −0.254 a −0.245 a −0.211 a −0.145 b −0.134 0.075 −0.101 0.187

Th1-like HAVCR2 −0.395 a −0.382 a −0.364 a −0.3 a −0.352 a −0.28 a

IFNG −0.231 a −0.221 a −0.206 a −0.144 b −0.277 a −0.238 b

CXCR3 −0.15 a −0.136 a −0.226 a −0.185 a −0.017 0.825 0.046 0.549
BHLHE40 −0.375 a −0.367 a −0.345 a −0.311 a −0.097 0.196 −0.091 0.238
CD4 −0.394 a −0.384 a −0.4 a −0.322 a −0.337 a −0.268 a

Th2 GATA3 −0.077 0.082 −0.058 0.199 −0.127 b −0.035 0.479 −0.157 c −0.119 0.122
STAT6 −0.301 a −0.285 a −0.308 a −0.269 a −0.034 0.65 −0.019 0.806
STAT5A −0.273 a −0.266 a −0.24 a −0.164 a −0.072 0.339 −0.006 0.942
IL13 −0.074 0.094 −0.071 0.116 −0.061 0.177 −0.088 0.073 −0.058 0.441 −0.049 0.521

Th17 STAT3 −0.356 a −0.336 a −0.449 a −0.385 a −0.338 a −0.298 a

IL17A −0.135 a −0.13 b −0.139 b −0.028 0.565 −0.235 b −0.228 b

Tfh BCL6 −0.231 a −0.202 a −0.316 a −0.306 a −0.26 a −0.238 b

IL21 −0.144 b −0.133 b −0.139 b −0.116 c −0.089 0.234 −0.048 0.532
Treg FOXP3 −0.377 a −0.363 a −0.332 a −0.337 a −0.264 a −0.199 b

CCR8 −0.421 a −0.402 a −0.451 a −0.396 a −0.392 a −0.342 a

STAT5B −0.209 a −0.189 a −0.465 a −0.409 a −0.126 0.093 −0.127 0.098
TGFB1 −0.05 0.264 −0.042 0.359 −0.179 a −0.193 a 0.07 0.353 0.133 0.083

Resting Treg FOXP3 −0.377 a −0.363 a −0.332 a −0.337 a −0.264 a −0.199 b

IL2RA −0.414 a −0.404 a −0.414 a −0.356 a −0.397 a −0.334 a

Effector Treg FOXP3 −0.377 a −0.363 a −0.332 a −0.337 a −0.264 a −0.199 b

T-cell CCR8 −0.421 a −0.402 a −0.451 a −0.396 a −0.392 a −0.342 a

TNFRSF9 −0.38 a −0.361 a −0.454 a −0.377 a −0.362 a −0.309 a

Effector CX3CR1 −0.17 a −0.162 a −0.383 a −0.262 a −0.262 a −0.236 b

T-cell FGFBP2 0.055 0.217 0.051 0.259 −0.118 b −0.094 0.056 −0.22 b −0.196 c

FCGR3A −0.336 a −0.329 a −0.38 a −0.317 a −0.388 a −0.326 a

Naive T-cell CCR7 −0.293 a −0.276 a −0.274 a −0.217 a −0.178 c −0.124 0.106
SELL −0.355 a −0.352 a −0.4 a −0.331 a −0.249 a −0.183 c

Effector memory DUSP4 −0.29 a −0.278 a −0.162 a −0.153 a −0.111 0.137 0.09 0.242
T-cell GZMK −0.253 a −0.242 a −0.258 a −0.19 a −0.216 b −0.149 0.052

GZMA −0.242 a −0.235 a −0.228 a −0.151 b −0.222 b −0.173 c

Resident memory CD69 −0.324 a −0.311 a −0.389 a −0.306 a −0.335 a −0.297 a

T-cell CXCR6 −0.282 a −0.269 a −0.292 a −0.188 a −0.339 a −0.283 a

MYADM −0.144 a −0.123 b −0.335 a −0.306 a −0.186 c −0.159 c

General memory CCR7 −0.293 a −0.276 a −0.274 a −0.217 a −0.178 c −0.124 0.106
T-cell SELL −0.355 a −0.352 a −0.4 a −0.331 a −0.249 a −0.183 c

IL7R −0.415 a −0.4 a −0.458 a −0.394 a −0.425 a −0.38 a

Exhausted T cell PDCD1 −0.152 a −0.154 a −0.088 c −0.072 0.142 −0.117 0.119 −0.044 0.568
CTLA4 −0.317 a −0.304 a −0.151 a −0.115 c −0.227 b −0.159 c

LAG3 −0.211 a −0.207 a −0.031 0.486 0.001 0.98 −0.074 0.323 −0.047 0.543
HAVCR2 −0.395 a −0.382 a −0.364 a −0.3 a −0.352 a −0.28 a

GZMB −0.231 a −0.23 a −0.162 a −0.114 c −0.33 a −0.273 a

CXCL13 −0.264 a −0.262 a −0.192 a −0.147 b −0.218 b −0.161 c

LAYN −0.073 0.098 −0.074 0.101 −0.237 a −0.189 a −0.217 b −0.162 c

cp < 0.05.
bp < 0.01.
ap < 0.001.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 82226113

Chen et al. A Pan-Cancer Analysis of ALKBH7

146

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The ALKBH7 Coexpression Network
Relevant Signalling Pathways
The aforementioned results identified significant associations
between ALKBH7 expression and the prognosis and immunity of
cancers. Considering the robust correlation between ALKBH7
expression and PAAD, PRAD and THCA, GSEA was performed
to investigate the potential signalling pathways of ALKBH7 in these

cancers. The results presented in Figure 12 indicate that genes
coexpressed with ALKBH7 are enriched in the regulation of
immune and inflammatory responses and are negatively
associated with these pathways, such as the JAK/STAT signalling
pathway and TGF-β signalling pathway. These results suggested that
ALKBH7 expression might play an essential role in human cancers
by suppressing the immune response of the TME.

DISCUSSION

ALKBH7 is a mitochondrial protein involved in programmed
necrosis, fatty acid metabolism and obesity development. In this
paper, a comprehensive pan-cancer study of ALKBH7 revealed the
potential prognostic and immunotherapeutic value of ALKBH7 in
human cancers. First, significantly higher ALKBH7 expression was
detected in most cancers compared to paired normal tissues,
consistent with previous studies. Cai et al. observed high ALKBH7
expression in ovarian plasmacytoma (Cai et al., 2021), and Peng et al.
found high ALKBH7 expression in hepatocellular carcinoma (Peng
et al., 2021). However, ALKBH7 expression correlates with clinical
parameters (age, sex and pathological stage) in only a few patients
with cancer. For example, in BLCA, ALKBH7 expression correlated
with the pathological stage of the tumor. Interestingly, ALKBH7
expression has some prognostic value for some cancers. For example,
in a univariate survival analysis, ALKBH7 expression was
significantly associated with four clinical survival datasets (OS,
DSS, DFI and PFI) in patients with PAAD; in Kaplan–Meier
survival estimates, downregulated ALKBH7 expression was
significantly associated with shorter OS and DSS of patients with
UCEC. These results suggest that ALKBH7 is a potential prognostic
biomarker.

Next, ALKBH7 expression in different immune subtypes and
molecular subtypes of human cancers was explored to determine
its potential mechanism of action. ALKBH7 expression was
significantly different in different immune subtypes and
molecular subtypes in many cancer types, suggesting that
ALKBH7 is a promising diagnostic pan-cancer biomarker and
participates in immune regulation. Moreover, we documented
significant differences in ALKBH7 expression in different
immune and molecular subtypes of BRCA, PRAD and UCEC.
In fact, differential ALKBH7 expression was detected in the
cancers listed above and their normal tissue, indicating that
ALKBH7 might play a role in the growth and progression of
cancers.

Tumor cells use the immune checkpoint pathway to suppress
immune cells and achieve immune escape (Topalian et al., 2015).
Based on this principle, immune checkpoint inhibitors (ICIs)
have emerged as new therapeutic approaches for cancer
treatment (Muenst et al., 2016) and have been successfully
applied in the clinic. The most commonly used ICI predictive
biomarkers are programmed cell death ligand-1 (PD-L1),
microsatellite instability (MSI) and tumor mutational burden
(TMB) (Wang Y. et al., 2021). In addition, a study by Malta et al.
found that a high tumor stemness index was associated with
reduced PD-L1 expression in most cancers (Malta et al., 2018). In
the present study, immunotherapy biomarkers (TMB and MSI)

FIGURE 12 | KEGG enrichment analysis of ALKBH7. (A) Top 20
enriched KEGG pathways in PAAD. (B) Top 20 enriched KEGG pathways in
PRAD. (C) Top 20 enriched KEGG pathways in THCA.
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and the tumor stemness index showed significant associations
with ALKBH7 in some cancers. Moreover, a strong relationship
between the expression of ALKBH7 and ICP genes was identified.
These results indicate that ALKBH7 has a strong association
with ICIs.

Based on accumulating evidence, the tumor microenvironment
(TME) is involved in tumor progression and significantly affects the
treatment response and clinical outcome (Wu and Dai, 2017;
Hinshaw and Shevde, 2019). Tumor-infiltrating lymphocytes
(TILs) in the TME have been proven to be an independent
predictor of the prognosis of patients with cancer and
immunotherapeutic efficacy (Azimi et al., 2012). Our study found
that ALKBH7 was related to the immune, stromal, and ESTIMATE
scores and immune cell infiltration in the TME of most human
cancer types, especially in PAAD, PRAD and THCA. Then, we
explored the function of ALKBH7 in PAAD, PRAD and THCA by
performing a KEGG analysis. ALKBH7 and its coexpression network
were indeed involved in the regulation of the immune response and
inflammatory response. In summary, these results strongly indicated
the potential of ALKBH7 as a target of anticancer immunotherapy.

Overall, our pan-cancer analysis of ALKBH7 is the first to
explore the relationship between ALKBH7 expression in
human cancers and clinical prognostic factors, immune
subtypes, molecular subtypes, immune checkpoints (ICPs),
tumor mutational burden (TMB), microsatellite instability
(MSI), tumor stemness index, tumor microenvironment
(TME) and tumor-infiltrating lymphocytes (TILs). This
information contributes to the understanding of the
function of ALKBH7 in cancer development and its role in
immunology. However, more experimental studies are
required to explore the specific mechanisms of ALKBH7
action in cancer.
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Observational studies have evaluated the potential association of socioeconomic
factors such as higher education with the risk of stroke but reported controversial
findings. The objective of our study was to evaluate the potential causal association
between higher education and the risk of stroke. Here, we performed a Mendelian
randomization analysis to evaluate the potential association of educational attainment
with ischemic stroke (IS) using large-scale GWAS datasets from the Social Science
Genetic Association Consortium (SSGAC, 293,723 individuals), UK Biobank (111,349
individuals), and METASTROKE consortium (74,393 individuals). We selected three
Mendelian randomization methods including inverse-variance-weighted meta-
analysis (IVW), weighted median regression, and MR–Egger regression. IVW
showed that each additional 3.6-year increase in years of schooling was
significantly associated with a reduced IS risk (OR = 0.54, 95% CI: 0.41–0.71, and
p = 1.16 × 10–5). Importantly, the estimates from weighted median (OR = 0.49, 95%
CI: 0.33–0.73, and p = 1.00 × 10–3) and MR–Egger estimate (OR = 0.18, 95% CI:
0.06–0.60, and p = 5.00 × 10–3) were consistent with the IVW estimate in terms of
direction and magnitude. In summary, we provide genetic evidence that high
education could reduce IS risk.

Keywords: stroke, educational attainment, Mendelian randomization, genome-wide association studies, ischaemic
stroke
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INTRODUCTION

Stroke is one of the leading causes of serious long-term disability
in the world and is the fifth leading cause of death in the
United States (Mozaffarian et al., 2016a; Mozaffarian et al.,
2016b). Every year, there are more than 795,000 people having
a stroke and more than 130,000 deaths from stroke, and the
estimated stroke cost is $33 billion in the United States
(Mozaffarian et al., 2016b). In recent years, there has been an
increased interest for observational studies exploring the impact
of socioeconomic factors such as higher education on stroke risk.
In fact, a number of studies have reported that high education
could reduce the risk of stroke (Nordahl et al., 2014; Ferrario et al.,
2017; Kubota et al., 2017; Mchutchison et al., 2017). However,
there are still some inconsistent findings. In 2002, Chang et al.
found that stroke risk was reduced among less educated women
in Africa, compared to highly educated women (Chang et al.,
2002). It is well known that persons with cognitive impairment
are at a higher risk of stroke (Sajjad et al., 2015). In 2015, Sajjad
et al. conducted an observational study of 9,152 participants from
the Rotterdam (Sajjad et al., 2015). They identified that education
could modify the association between subjective memory
complaints and risk of stroke (Sajjad et al., 2015). Higher
education is significantly associated with a higher risk of
stroke (hazard ratio = 1.39; 95% CI: 1.07–1.81) (Sajjad et al.,
2015).

In recent years, large-scale genome-wide association studies
(GWAS) promptly identified some common genetic variants and
provided insight into the genetics of educational attainment
(Okbay et al., 2016) and stroke (Malik et al., 2016). The
existing large-scale GWAS datasets provide strong support for
investigating the potential causal association of educational
attainment with stroke risk by a Mendelian randomization
analysis (Mokry et al., 2015; Nelson et al., 2015; Ference et al.,
2017; Larsson et al., 2017a; Manousaki et al., 2017; Tillmann et al.,
2017). This method could avoid some limitations of observational
studies and is widely used to determine the causal inferences
(Mokry et al., 2015; Ference et al., 2017; Larsson et al., 2017a;
Manousaki et al., 2017; Tillmann et al., 2017; Wang et al., 2020).

It is reported that about 87% of all strokes are ischemic stroke
(IS), in which blood flow to the brain is blocked (Mozaffarian
et al., 2016a; Mozaffarian et al., 2016b). Intracerebral hemorrhage
is the second most common cause of stroke (about 15%–30% of
strokes) (An et al., 2017). Here, we performed a Mendelian
randomization (MR) study to investigate the association of
increased educational attainment with IS risk using the genetic
variants from the large-scale educational attainment GWAS
dataset (N = 405,072 individuals of European descent) and the
large-scale IS GWAS dataset (N = 29,633, including 10,307 IS
cases and 19,326 controls of European descent).

MATERIALS AND METHODS

Study Mesign
MR is based on three principal assumptions (Emdin et al., 2017;
Larsson et al., 2017a). First, the genetic variants selected to be

instrumental variables should be associated with the exposure
(educational attainment) (Emdin et al., 2017; Larsson et al.,
2017a). Second, the genetic variants should not be associated
with confounders (assumption 2) (Emdin et al., 2017; Larsson
et al., 2017a). Third, genetic variants should affect the risk of the
outcome (IS) only through the exposure (educational attainment)
(assumption 3) (Emdin et al., 2017; Larsson et al., 2017a). Recent
studies have provided the more detailed information about the
three principal assumptions (Liu et al., 2018; Liu et al., 2019;
Zhang et al., 2020; Liu et al., 2021a; Liu et al., 2021b; Sun et al.,
2021). This study is based on the publicly available, large-scale
GWAS summary datasets. All participants gave informed consent
in all these corresponding original studies. All relevant data are
within the paper and the Supplementary Tables S1. The authors
confirm that all data underlying the findings are either fully
available without restriction through consortia websites or may
be made available from consortia upon request.

Educational Attainment GWAS Dataset
We selected a large-scale GWAS dataset of educational
attainment in individuals of European descent whose
educational attainment was assessed at or above age 30
(Okbay et al., 2016). The examined phenotype is a continuous
variable measuring the number of years of schooling completed
(EduYears) (Okbay et al., 2016). This GWAS dataset consisted of
293,723 individuals in the discovery stage [Social Science Genetic
Association Consortium (SSGAC), EduYears mean = 14.3,
standard deviation (SD) = 3.6] and 111,349 individuals in the
independent replication stage (UK Biobank, EduYears mean =
13.7, SD = 5.1) (a total of 405,072 individuals of European
descent) (Okbay et al., 2016). In brief, the discovery stage
GWAS from SSGAC was performed at the cohort level in
individuals of European descent (Okbay et al., 2016). The
replication stage GWAS from UK Biobank was conducted
using conventionally population-based unrelated individuals
with “White British” ancestry in the United Kingdom (Okbay
et al., 2016). The meta-analysis of the discovery and replication
stages of GWAS identified 162 independent genetic variants with
the genome-wide significance (p < 5.00 × 10–8) (Okbay et al.,
2016). Here, we selected these 162 independent genetic variants as
the potential instrumental variables, as provided in Table 1 and
Supplementary Table S1, which could explain 1.6%–1.8% of the
variance in education (Tillmann et al., 2017). Meanwhile, Li and
others also selected these 162 independent genetic variants in
their MR analysis to evaluate the causal association between
educational attainment and asthma (Li et al., 2021).

IS GWAS Dataset
The IS GWAS dataset is from the METASTROKE consortium
(Malik et al., 2016). TheMETASTROKE consortium performed a
meta-analysis of 12 IS cohorts with a total of 10,307 IS individuals
and 19,326 controls of European ancestry (N = 29,633
individuals) (Malik et al., 2016). More detailed information is
described in the original study (Malik et al., 2016). The
significance threshold for the association of these 162
educational attainment genetic variants with IS is p < 0.05/162
= 3.09 × 10–4.
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TABLE 1 | 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs11130222 A T 0.59 0.025 0.0023 3.68E-28
rs13090388 T C 0.31 0.026 0.0024 2.58E-26
rs7029201 A G 0.41 0.025 0.0023 7.16E-27
rs9401593 A C 0.52 −0.024 0.0022 3.83E-28
rs12987662 A C 0.39 0.025 0.0023 8.52E-28
rs8002014 A G 0.27 −0.024 0.0025 3.80E-21
rs34305371 A G 0.1 0.036 0.0039 1.52E-20
rs10773002 A T 0.25 0.022 0.0026 7.74E-18
rs6882046 A G 0.74 −0.019 0.0025 8.12E-14
rs17824247 T C 0.59 −0.016 0.0023 2.41E-12
rs61160187 A G 0.61 −0.017 0.0023 2.71E-14
rs11588857 A G 0.21 0.02 0.0027 3.27E-13
rs2456973 A C 0.67 −0.019 0.0024 5.83E-16
rs10786662 C G 0.55 −0.017 0.0022 4.63E-14
rs4863692 T G 0.32 0.017 0.0024 4.61E-12
rs10223052 A G 0.36 0.016 0.0023 3.56E-12
rs11998763 A G 0.54 0.017 0.0022 4.61E-14
rs9964724 T C 0.68 0.018 0.0024 2.39E-14
rs6839705 A C 0.36 0.015 0.0023 1.19E-10
rs7964899 A G 0.44 0.016 0.0022 4.37E-13
rs12410444 A G 0.7 −0.017 0.0024 6.01E-13
rs112634398 A G 0.95 0.038 0.0055 2.74E-12
rs1106761 A G 0.38 −0.016 0.0023 1.37E-11
rs3172494 T G 0.12 0.023 0.0036 8.98E-11
rs58694847 C G 0.26 −0.018 0.0025 4.98E-12
rs1008078 T C 0.4 −0.017 0.0023 3.10E-14
rs34344888 A G 0.39 −0.016 0.0023 8.87E-13
rs1378214 T C 0.37 −0.015 0.0023 1.85E-11
rs16845580 T C 0.63 0.016 0.0023 4.14E-12
rs12900061 A G 0.18 0.019 0.0029 5.04E-11
rs35771425 T C 0.79 0.018 0.0027 2.71E-11
rs7776010 T C 0.82 −0.021 0.003 2.61E-12
rs1338554 A G 0.5 0.015 0.0022 1.52E-11
rs356992 C G 0.3 0.017 0.0024 4.03E-12
rs7593947 A T 0.51 0.015 0.0022 2.39E-11
rs1912528 T C 0.36 0.014 0.0023 1.53E-09
rs2992632 A T 0.72 0.016 0.0025 3.25E-11
rs4741351 A G 0.3 −0.015 0.0024 2.98E-10
rs6715849 A G 0.44 −0.015 0.0022 1.65E-11
rs660001 A G 0.21 −0.018 0.0027 1.34E-10
rs320700 A G 0.65 0.014 0.0023 3.91E-09
rs113474297 T C 0.13 −0.021 0.0034 8.34E-10
rs28420834 A G 0.45 −0.014 0.0023 2.67E-10
rs56231335 T C 0.67 −0.017 0.0024 7.17E-13
rs62263923 A G 0.64 −0.017 0.0023 1.11E-13
rs12076635 C G 0.79 0.018 0.0027 3.11E-11
rs9556958 T C 0.53 −0.015 0.0022 1.21E-11
rs8049439 T C 0.59 0.015 0.0023 6.99E-11
rs11774212 T C 0.52 0.016 0.0023 1.51E-12
rs10483349 A G 0.81 −0.017 0.0028 7.11E-10
rs71326918 A C 0.1 0.022 0.0039 1.02E-08
rs11687170 T C 0.83 0.021 0.0035 1.39E-09
rs7286601 T G 0.54 −0.014 0.0023 1.99E-09
rs73344830 A G 0.42 0.015 0.0023 9.93E-12
rs12143094 C G 0.06 0.029 0.0049 2.73E-09
rs34638686 T C 0.1 0.023 0.0038 1.51E-09
rs10761741 T G 0.42 0.013 0.0023 7.05E-09
rs75090987 A C 0.52 0.014 0.0022 1.14E-09
rs4500960 T C 0.46 −0.014 0.0022 2.56E-10
rs1562242 T C 0.48 −0.013 0.0022 5.95E-09
rs192818565 T G 0.8 0.02 0.0029 2.02E-12
rs12534506 A T 0.47 −0.014 0.0023 3.17E-10
rs10178115 T G 0.54 0.014 0.0022 5.84E-10

(Continued on following page)
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TABLE 1 | (Continued) 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs62100765 T C 0.42 −0.015 0.0023 1.08E-10
rs12142680 A G 0.09 0.026 0.0043 8.97E-10
rs71413877 A G 0.04 0.035 0.0058 1.91E-09
rs149613931 T G 0.06 −0.028 0.0048 5.54E-09
rs17167170 A G 0.8 0.019 0.0028 1.79E-12
rs12956009 T C 0.57 −0.013 0.0022 3.75E-09
rs2179152 T C 0.37 −0.013 0.0023 9.30E-09
rs7033137 C G 0.76 0.015 0.0026 1.77E-08
rs4378243 T G 0.83 0.018 0.0029 1.04E-09
rs4493682 C G 0.17 0.019 0.003 1.54E-10
rs9755467 T C 0.16 0.019 0.0031 5.11E-10
rs4851251 T C 0.27 −0.015 0.0025 1.36E-09
rs7945718 A G 0.62 0.014 0.0023 1.26E-09
rs1382358 T C 0.87 0.02 0.0035 1.66E-08
rs148490894 A G 0.98 0.044 0.0078 1.84E-08
rs12761761 T C 0.24 0.016 0.0027 1.04E-08
rs142328051 T C 0.91 0.022 0.0039 3.60E-08
rs55786114 T C 0.07 −0.03 0.0045 4.11E-11
rs7948975 T C 0.64 0.014 0.0023 1.14E-09
rs1606974 A G 0.12 0.022 0.0034 1.82E-10
rs10772644 C G 0.88 0.02 0.0035 1.65E-08
rs111321694 T C 0.17 −0.016 0.003 4.33E-08
rs17425572 A G 0.46 0.014 0.0022 1.38E-09
rs111730030 T G 0.06 −0.029 0.005 7.51E-09
rs1550973 A G 0.35 −0.014 0.0023 2.00E-09
rs2406253 A G 0.81 0.016 0.0028 4.64E-08
rs7772172 A G 0.4 0.013 0.0023 9.83E-09
rs281302 A G 0.56 −0.013 0.0022 2.88E-09
rs17372140 A G 0.3 −0.014 0.0024 9.19E-09
rs12640626 A G 0.58 0.013 0.0023 1.66E-08
rs113011189 T C 0.09 −0.025 0.0045 2.91E-08
rs56081191 A G 0.07 0.028 0.0047 3.67E-09
rs12694681 T G 0.69 0.014 0.0024 1.81E-08
rs12134151 C G 0.5 −0.013 0.0022 1.14E-08
rs7914680 T G 0.71 −0.014 0.0025 1.60E-08
rs6493271 T C 0.83 0.017 0.0029 4.21E-09
rs152603 A G 0.65 −0.013 0.0023 2.01E-08
rs7791133 A C 0.38 −0.014 0.0023 2.33E-09
rs1389473 A G 0.38 −0.013 0.0023 4.52E-09
rs61874768 T G 0.18 −0.016 0.0029 3.85E-08
rs10818606 T C 0.4 −0.014 0.0023 5.67E-10
rs2568955 T C 0.25 −0.016 0.0026 5.77E-10
rs268134 A G 0.25 0.014 0.0026 3.53E-08
rs6939294 T C 0.23 0.016 0.0026 2.90E-09
rs12653396 A T 0.56 −0.013 0.0022 7.65E-09
rs648163 T C 0.26 0.014 0.0025 1.38E-08
rs140711597 C G 0.98 0.052 0.0091 1.66E-08
rs301800 T C 0.18 0.016 0.0029 2.85E-08
rs12462428 T C 0.81 0.016 0.0028 3.31E-08
rs11756123 A T 0.35 −0.015 0.0023 6.43E-11
rs7429990 A C 0.27 −0.015 0.0026 8.44E-09
rs12702087 A G 0.46 0.013 0.0022 1.74E-09
rs4076457 T C 0.25 0.015 0.0026 8.85E-09
rs78387210 T C 0.09 0.023 0.004 8.41E-09
rs7610856 A C 0.43 0.012 0.0023 3.02E-08
rs78365243 T C 0.95 0.029 0.0052 2.22E-08
rs1115240 C G 0.75 −0.016 0.0026 7.05E-10
rs7605827 A T 0.29 0.016 0.0029 4.86E-08
rs76076331 T C 0.14 0.02 0.0032 2.38E-10
rs1596747 A G 0.51 0.014 0.0022 1.14E-09
rs77702819 T G 0.09 0.022 0.004 2.93E-08
rs12646808 T C 0.66 0.015 0.0024 3.79E-10
rs2624818 A G 0.11 0.021 0.0037 8.63E-09

(Continued on following page)
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Pleiotropy Analysis
We performed a comprehensive pleiotropy analysis to assure that
the selected genetic variants do not exert effects on IS through
biological pathways independent of education levels. The
American Heart Association and American Stroke Association
have reported the leading risk factors for stroke, including high
blood pressure, high cholesterol, heart disease (coronary artery
disease), diabetes, current smoking, obesity, and excessive alcohol
drinking (Meschia et al., 2014). In stage 1, we manually evaluated
the potential pleiotropy using the GWAS datasets about the
known confounders including high blood pressure, high
cholesterol, body mass index (BMI), smoking behavior, and
alcohol drinking from the UK Biobank (Sudlow et al., 2015);
coronary artery disease from the CARDIoGRAMplusC4D
[Coronary ARtery DIsease Genome wide Replication and
Meta-analysis (CARDIoGRAM) plus The Coronary artery
disease (C4D) Genetics] consortium (Nikpay et al., 2015); and
type 2 diabetes from the DIAGRAM (DIAbetes Genetics
Replication And Meta-analysis) consortium (Zhao et al.,
2017). The significance threshold for the association of these

162 genetic variants with the potential confounders is a
Bonferroni correction p < 0.05/162 = 3.09E-04.

In stage 2, we selected three statistical methods to perform
the pleiotropy analysis. The first statistical method is based on
the heterogeneity test (Greco et al., 2015; Hartwig et al., 2017;
Liu et al., 2017). The potential heterogeneity in these genetic
variants could be evaluated using Cochran’s Q test (together
with the I2 index), which is a useful tool to explore the
presence of heterogeneity due to pleiotropy or other causes,
especially in MR studies with large sample sizes based on
summary data (Greco et al., 2015). The second statistical
method is the MR–Egger intercept test that provides an
assessment of the validity of the instrumental variable
assumptions and provides a statistical test of the presence
of potential pleiotropy (Dale et al., 2017). The third statistical
method is a newly developed method named Mendelian
Randomization Pleiotropy RESidual Sum and Outlier (MR-
PRESSO) test (Verbanck et al., 2018). In all these three
statistical methods, the threshold of statistical significance
for evidence of pleiotropy is p < 0.05.

TABLE 1 | (Continued) 162 independent genetic variants as the potential instrumental variables.

SNP Effect allele Non-effect allele Effect allele
frequency

Effect size Standard error p-value

rs7633857 C G 0.52 −0.014 0.0026 4.74E-08
rs11976020 A G 0.23 −0.015 0.0027 4.43E-08
rs4308415 C G 0.44 −0.013 0.0022 2.52E-09
rs700590 T C 0.59 −0.013 0.0023 2.84E-08
rs756912 T C 0.52 −0.014 0.0022 1.14E-09
rs7241530 T C 0.36 −0.013 0.0023 2.28E-08
rs35971989 A G 0.84 0.018 0.0032 2.95E-08
rs11771168 T C 0.24 −0.015 0.0027 2.56E-08
rs17504614 T C 0.8 0.016 0.0028 1.56E-08
rs9914544 A C 0.62 −0.013 0.0023 4.66E-08
rs4675248 A G 0.4 −0.012 0.0023 4.39E-08
rs6800916 A T 0.08 −0.024 0.0043 1.70E-08
rs35532491 A T 0.9 -0.022 0.0038 7.15E-09
rs56044892 T C 0.2 −0.016 0.0028 5.37E-09
rs79925071 T G 0.56 0.013 0.0022 1.52E-08
rs12145291 T C 0.94 −0.029 0.0051 2.21E-08
rs34106693 C G 0.83 0.017 0.0031 1.80E-08
rs12754946 T C 0.57 0.013 0.0023 1.48E-08
rs4741343 A G 0.18 −0.016 0.0029 2.32E-08
rs76878669 C G 0.76 0.014 0.0026 4.12E-08
rs775326 A C 0.32 −0.014 0.0024 1.22E-08
rs10821136 T C 0.34 0.013 0.0024 3.58E-08
rs1925576 A G 0.54 −0.012 0.0022 2.23E-08
rs6065080 T C 0.36 −0.013 0.0023 1.16E-08
rs56158183 A G 0.07 0.025 0.0043 1.42E-08
rs12531458 A C 0.52 0.012 0.0022 3.81E-08
rs62379838 T C 0.69 0.013 0.0024 4.06E-08
rs7590368 T C 0.73 −0.014 0.0025 2.72E-08
rs113520408 A G 0.27 0.015 0.0025 7.15E-09
rs62263033 T C 0.96 0.037 0.0063 5.60E-09
rs11643654 A C 0.6 0.013 0.0023 2.00E-08
rs10930008 A G 0.73 −0.014 0.0025 4.14E-08
rs56262138 A T 0.3 0.014 0.0025 2.29E-08
rs113779084 A G 0.31 0.014 0.0024 2.70E-08
rs62262721 T C 0.96 0.042 0.0072 3.41E-09
rs1967109 A G 0.15 −0.017 0.0031 4.40E-08
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Mendelian Randomization Analysis
We selected three MR methods including inverse-variance-
weighted meta-analysis (IVW), weighted median regression,
and MR–Egger regression, as in recent studies (Dale et al.,
2017; Larsson et al., 2017a; Tillmann et al., 2017; Liu et al.,
2018; Liu et al., 2019). If there is no clear evidence of pleiotropy,
these three methods should give consistent estimates. The odds
ratio (OR) as well as 95% confidence interval (CI) of IS
corresponds to a per 3.6 increase [about 1 standard deviation
(SD)] in educational attainment levels. All analyses were
conducted using R (version 3.2.4) and R package
“MendelianRandomization” (Yavorska and Burgess, 2017). The
statistical significance was p < 0.05.

Power Analysis
The proportion of education variance explained by the
instrumental variables can be estimated using R2.

R2 � ∑k
i�1

β2i p2pMAFSNPi(1 −MAFSNPi)
var(X)

where βi is the effect size (beta coefficient) associated with the
education for SNPi, MAFSNPi is the minor allele frequency for
SNPi, K is the number of genetic variants, and var(X) is the
variance of the education [var(X) = 1 for education, since the beta
estimates refer to change in 1 standard deviation (SD)] (Pattaro
et al., 2016; Mack et al., 2017). The strength of the instrumental
variables was evaluated by the first-stage F-statistic (Noyce et al.,
2017; Xu et al., 2017). A common threshold is F > 10 which avoids
bias in MR studies (Burgess and Thompson, 2011). Here, we
calculated statistical power to estimate the minimum detectable
magnitudes of association for IS using the web-based tool mRnd
and a two-sided type-I error rate α of 0.05 (Brion et al., 2013).

RESULTS

Association of Educational Attainment
Variants With IS
Of the 162 genetic variants associated with educational
attainment, we extracted the summary statistics for all these
162 variants in the IS GWAS dataset. The characteristics of
162 genetic variants used as instrumental variables in IS are
described in Supplementary Table S2. We noticed that none of
these 162 genetic variants was significantly associated with IS risk
at the Bonferroni-corrected significance threshold (p < 0.05/162 =
3.09 × 10–3) (Supplementary Table S2).

Pleiotropy Analysis
In stage 1, 51 of these 162 educational attainment genetic variants
are significantly associated with known confounders at the
Bonferroni-corrected significance threshold (p < 0.05/162 =
3.09 × 10–3), as described in Supplementary Tables S3–S9. In
brief, seven genetic variants were significantly associated with
smoking. Two genetic variants were significantly associated with
coronary artery disease. Six genetic variants were significantly
associated with high blood pressure. 43 genetic variants were

significantly associated with BMI. To meet the MR assumptions,
we excluded these 51 genetic variants in the following analysis. In
stage 2, using the remaining 111 genetic variants, the
heterogeneity test showed no significant heterogeneity [I2 =
0%, 95% CI (0%; 16.8%), and p = 0.7093]. The MR–Egger
intercept test showed no significant pleiotropy (MR–Egger
intercept β = 0.018; p = 0.064). The MR-PRESSO test did not
identify any horizontal pleiotropic outliers.

Association of Educational Attainment
Levels With IS
Using the remaining 111 genetic variants, IVW showed that each
SD increase in years of schooling (3.6 years) was significantly
associated with a reduced IS risk (OR = 0.54, 95% CI: 0.41–0.71,
and p = 1.16 × 10–5). Interestingly, the estimates from weighted
median (OR = 0.49, 95% CI: 0.33–0.73, and p = 1.00 × 10–3), and
MR–Egger estimate (OR = 0.18, 95% CI: 0.06–0.60, and p = 5.00 ×
10–3), were consistent with the IVW estimate in terms of direction
andmagnitude, as provided in Table 2. Figure 1 shows individual
causal estimates from each of the 111 genetic variants using
different methods.

Power Analysis
Here, all these 111 genetic variants could explain about 1.09% of
the educational attainment variance (R2 = 1.09%). The first-stage
F-statistic for the instrument including these 111 genetic variants
was 327.56 > 10, so a weak instrument bias is unlikely. The actual
N for IS GWAS is 29,633, and the proportion of cases is 0.347822.
Our MR study had 80% power to detect effect sizes of moderate
magnitude with ORs as low as 0.71 and as high as 1.37 per SD
increase in educational attainment levels for IS. Importantly, the
power to detect the causal association (OR = 0.54, 95% CI:
0.41–0.71, and p = 1.16 × 10–5) is 100% by selecting these 111
genetic variants as the instrumental variables. Hence, our analysis
has enough statistical power to detect robust causal effect
estimates.

DISCUSSION

It has been a long time since the relation between the educational
attainment and risk of stroke was evaluated. Until November
2015, there have been 79 observational studies including
approximately 164,683 strokes (Mchutchison et al., 2017).
However, these observational studies have reported both
positive and negative associations between higher educational
attainment and stroke (Mchutchison et al., 2017). Meanwhile,

TABLE 2 | MR analysis results between educational attainment and IS.

Method OR 95% CI p value

Inverse-variance weighted 0.54 0.41–0.71 1.16 × 10–5

Weighted median 0.49 0.33–0.73 1.00 × 10–3

MR–Egger 0.18 0.06–0.60 5.00 × 10–3

OR, odds ratio; CI, confidence interval; the significance was at p < 0.05.
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there was clear between-study heterogeneity in all comparisons,
ranging from 76% to 96% (Mchutchison et al., 2017). Until now,
it has been difficult to establish causality because of
methodological limitations of traditional observational studies.

Here, we performed an MR analysis to evaluate the potential
association of educational attainment with IS risk using large-scale
GWAS datasets. MR is based on the premise that the human genetic
variants are randomly distributed in the population (Emdin et al.,
2017). These genetic variants are largely not associated with
confounders and can be used as instrumental variables to estimate
the causal association of an exposure with an outcome (Emdin et al.,
2017), which could avoid the methodological limitations of the
traditional observational studies.

Our results indicated that a genetically increased educational
attainment was significantly associated with reduced IS risk. IVW
showed that each additional 3.6-year increase in years of
schooling was significantly associated with a reduced IS risk
(OR = 0.54, 95% CI: 0.41–0.71, and p = 1.16 × 10–5).
Importantly, other sensitivity analyses further supported this
estimate. All these findings show that the causal association
between genetically increased educational attainment and
reduced IS risk is robust. Hence, our results do seem to hint
at what lifestyle choices may help protect against IS. The life
experiences that engage the brain, such as higher educational
attainment, may protect against IS risk.

Our findings are comparable to findings from traditional
observational studies with OR = 0.74 (Mchutchison et al.,
2017), 0.65 (men) (Ferrario et al., 2017), and 0.71 (women)
(Ferrario et al., 2017). Meanwhile, our findings are also
consistent with the results from a recent MR study, which
found that one SD increase in years of schooling (3.6 years)
was associated with a reduced risk of coronary heart disease
(OR = 0.67, 95% CI 0.59–0.77; p = 3.00 × 10–8) (Tillmann et al.,
2017). It has been established that coronary artery disease is one
of the leading risk factors for stroke (Meschia et al., 2014).

Until now, 3 MR studies have also investigated the causal
association between educational attainment and IS. Harshfield
et al. assessed the causal effect of 12 lifestyle factors on risk of

stroke (Harshfield et al., 2021). They found that genetically
increased educational attainment was associated with reduced
risk of IS, large artery stroke, and small vessel stroke, and
intracerebral hemorrhage using 305 educational attainment
genetic variants (Harshfield et al., 2021). Wen et al. selected
58 educational attainment genetic variants and identified a
suggestive causal association between education and IS (p =
0.048) (Xiuyun et al., 2020). Gill et al. selected 625 instrument
SNPs for educational attainment and found that education was
causally associated with stroke risk (Gill et al., 2019). A main
difference between our and previous MR studies is the manual
pleiotropy analysis. These above 3 MR studies only used the
statistical methods to perform the pleiotropy analysis (Gill et al.,
2019; Xiuyun et al., 2020; Harshfield et al., 2021).

This MR study has several strengths. First, this study may
benefit from the large-scale educational attainment GWAS
dataset (N = 405,072 individuals of European descent
individuals) and IS GWAS dataset (N = 29,633 individuals of
European descent). Importantly, power analysis further provides
ample power to detect the association of educational attainment
with IS risk. Second, both the educational attainment and IS
GWAS datasets are from the European descent, which may
reduce the influence on the potential association caused by the
population stratification. Third, multiple independent genetic
variants are taken as instruments, which may reduce the
influence on the potential association caused by the linkage
disequilibrium; Fourth, we selected multiple methods to
perform MR analysis, as in previous studies (Mokry et al.,
2015; Nelson et al., 2015; Emdin et al., 2017; Larsson et al.,
2017a; Manousaki et al., 2017; Noyce et al., 2017). Fifth, we
performed a comprehensive pleiotropy analysis to evaluate the
potential association of these educational attainment genetic
variants with known IS risk factors. We excluded 51 genetic
variants associated with potential confounders, which meets the
MR assumptions.

Despite these interesting results, we recognize some
limitations in our study. First, we could not completely rule
out that there may be additional confounders, although some

FIGURE 1 | Individual causal estimates from each of the 111 genetic variants. This scatter plot shows individual causal estimates from each of 111 genetic variants
associated with educational attainment on the x-axis and IS risk on the y-axis. The continuous line represents the causal estimate of educational attainment on IS risk.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 7948207

Gao et al. Education and Ischaemic Stroke

156

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


other available software or tools may be helpful to identify the
pleiotropy, such as GSMR (Zhu et al., 2018) and CAUSE
(Morrison et al., 2020). Until now, it is almost impossible
to fully rule out pleiotropy present in any MR study (Emdin
et al., 2017; Larsson et al., 2017a; Larsson et al., 2017b). Second,
it could not be completely ruled out that population
stratification may have had some influence on the estimate.
Third, the genetic association between education and IS may
be different in different ancestries. Hence, this causal
association should be further evaluated in other ancestries.
In some individuals, the association between a genetic variant
and one specific outcome may have been confounded by the
hidden population structure (Davies et al., 2018). Thus, MR
studies using these individuals could have been biased by
population stratification or different ancestries (Davies
et al., 2019). In fact, Zheng et al. found that hypertension
could play different causal roles on chronic kidney disease
across ancestries (Zheng et al., 2022). Fourth, the underlying
mechanisms about the causal association between educational
attainment and IS remain unclear.

In summary, we provide genetic evidence that high education
could reduce IS risk. Our findings could have public health
implication to raise awareness of the extent to which
educational inequalities are associated with risk of IS.
Meanwhile, population-based solutions may contribute to
ameliorate the deleterious effects of low educational
attainment on health outcomes.
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Circulating N-Terminal Probrain
Natriuretic Peptide Levels in Relation
to Ischemic Stroke and Its Subtypes: A
Mendelian Randomization Study
Ming Li1†, Yi Xu1,2†, Jiaqi Wu3, Chuanjie Wu2, Ang Li4 and Xunming Ji1,2,3*

1China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, 2Department of
Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China, 3Beijing Advanced Innovation Center for Big Data-
Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China,
4Department of Biomedical Engineering, Columbia University, New York City, NY, United States

Mendelian randomization was used to evaluate the potential causal association between
N-terminal probrain natriuretic peptide (NT-proBNP) and ischemic stroke based on
summary statistics data from large-scale genome-wide association studies. Three
single-nucleotide polymorphisms (SNPs) rs198389, rs13107325, and rs11105306
associated with NT-proBNP levels found in large general populations and in patients
with acute heart disease were used as instrumental variables. The results of genetic
association analysis of each single SNP show that there is no significant association
between NT-proBNP levels and ischemic stroke or its subtypes, whereas rs198389 alone
has a suggestive association with large-artery atherosclerosis stroke. The MR analysis of
three SNPs shows that NT-proBNP levels may reduce the risk of small-vessel occlusion
stroke suggestively. This genetic analysis provides insights into the pathophysiology and
treatment of ischemic stroke.

Keywords: mendelian randomization, single nucleotide polymorphisms, N-terminal pro-brain natriuretic peptide,
stroke, risk predictor

INTRODUCTION

Stroke is the second major cause of global death with a mortality rate of approximately 5.5 million/
year and poses a huge financial burden to family members and public health (Donkor, 2018). The
study of INTERSTROKE presents 10 potentially modifiable risk factors that are associated with
around 90% of acute strokes (O’Donnell et al., 2016), and according to the data from the
INTERHEART study, those factors also account for the great majority of the risk of myocardial
infarction (Yusuf et al., 2004). Therefore, it is generally acknowledged that a bidirectional interaction
exists between brain damage and heart dysfunction (Chen et al., 2017; Scheitz et al., 2018), which
may share overlapping cell death pathways (Gonzales-Portillo et al., 2016).
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N-terminal probrain natriuretic peptide (NT-proBNP) is an
N-terminal fragment of brain natriuretic peptide (BNP), released
from the heart muscle in response to the blood pressure and
volume overload (Daniels and Maisel, 2007). This factor is widely
used in the clinic as a prognostic biomarker to predict mortality in
patients with coronary artery disease (CAD), atrial fibrillation,
and heart failure (Johansson et al., 2016). Compared with BNP,
NT-proBNP presents a longer circulating half-life, higher plasma
concentration, and greater diagnostic sensitivity. Due to the
connections between cardiac dysfunction and stroke, NT-
proBNP is supposed to be a potential predictor for the risk of
ischemic stroke (Zhao et al., 2020a).

The relationship between NT-proBNP and risks of stroke
remains a popular research subject. The related research dates
back to 1996 (Rubattu et al., 1996). The scientific community has
increasing interest in this area from 2010 (García-Berrocoso et al.,
2010; Kim et al., 2010; Quan et al., 2010) to 2020 (Bhatia et al.,
2020; Harpaz et al., 2020; Hotsuki et al., 2020; Khan and Kamal,
2020; Medranda et al., 2020; Rubattu et al., 2020; Shirotani et al.,
2020; Tonomura et al., 2020; Wang et al., 2020; Watson et al.,
2020; Yang et al., 2020; Zhao et al., 2020b). Several studies explore
and identify variable degrees of correlation in different types of
stroke. The data from the population-based Atherosclerosis Risk
in Communities (ARIC) study shows that NT-proBNP was
associated positively with total stroke, non-lacunar ischemic,
as well as cardioembolic stroke, but not with lacunar or
hemorrhagic stroke (Folsom et al., 2013). NT-proBNP is a
strong predictor of atrial fibrillation, which makes it a
contributor to the incidence of cardioembolic stroke (Yang
et al., 2014). A recent study indicates that serum levels of NT-
proBNP higher than 800 pg/ml obtained within 72 h after a
transient ischemic attack were associated with an increased
risk of stroke (Rodríguez-Castro et al., 2020). More
interestingly, in 2019, based on the Biomarkers for
Cardiovascular Risk Assessment in Europe-Consortium,
Castelnuovo et al. (2019) analyzed data of 58,173 participants
free of stroke from six community-based cohort studies and
found that, in the European group, levels of NT-proBNP have
positive association with risk of ischemic and hemorrhagic stroke,
independent from several other conditions and risk factors. These
findings cannot be easily explained by the known physiological
function of BNP.

The role of NT-proBNP in the incidence of stroke became an
unsolved question. A meta-analysis of 16 studies suggests that
NT-proBNP provides minor clinical predictive values for the
prediction of stroke mortality (García-Berrocoso et al., 2013).
According to the research of George et al. (Giannakoulas et al.,
2005), no significant correlation was observed between NT-
proBNP levels and stroke severity or infarct volume. Another
study also denied this association in terms of functional outcomes
(Etgen et al., 2005). Evidence suggests the causal relationships of
natriuretic peptides to endothelial permeability, which might
predispose people to atherosclerosis and hemorrhages (Lee
et al., 2007; Lin et al., 2007; Kuhn, 2012; Cannone et al.,
2013). Therefore, some researchers hypothesized that NT-
proBNP may be involved in the causal physiological path for
stroke incidence or be a causal risk factor of stroke (Cushman

et al., 2014; Di Castelnuovo et al., 2019). However, a large number
of studies confirms that BNP is a protective factor of CAD and a
self-regulator of the body’s pathological state. The release of BNP
improves myocardial relaxation and response to the acute
increase of ventricular volume by opposing sodium retention,
vasoconstriction, and antidiuretic effects of the activated renin-
angiotensin-aldosterone system (Daniels andMaisel, 2007). All of
these findings suggest that BNP may also have a protective role in
stroke.

As a result, available clinical observational studies
investigating the association between NT-proBNP and risk of
stroke show ambiguous results. The confounding factors of the
observational studies may cause BNP levels to rise, but this
increase is not one of the causes of stroke; and those studies
cannot rule out some implicit risk factors of stroke.

To circumvent the limitations of observational studies,
Mendelian randomization (MR) analysis was used to improve
causal inference. This technique is based on the premise that
human genetic variants are randomly distributed among the
population. This method may avoid the potential confounding
factors within the exposure–outcome relationship and provide
insight into the genetic association between the circulating NT-
proBNP levels and ischemic stroke (Figure 1). Therefore, we
conducted an MR analysis to investigate the causal effect of NT-
proBNP on ischemic stroke and its subtypes (cardioembolism
stroke, small-vessel occlusion stroke, and large-artery
atherosclerosis stroke) by using three single-nucleotide
polymorphisms (SNPs) (rs198389, rs13107325, rs11105306)
associated with NT-pro-BNP level (Johansson et al., 2016).

MANUSCRIPT FORMATTING

Methods
Selection of Instrumental Variables
To select SNPs associated with NT-proBNP as instrumental
variables, the term “[(B-type natriuretic peptide) OR (Brain
natriuretic peptide)] AND (Genome-wide association) (All

FIGURE 1 | Schematic diagram of the MR assumptions. The arrows
represent possible causal associations between variables. The dashed lines
represent possible causal associations between variables that would violate
the MR assumptions.
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Fields)” was searched in PubMed from 2005 to 2021, and the
results showed a total of 34 articles (Supplementary Appendix).
There are only five studies that found SNPs associated with NT-
proBNP, of which the genome-wide association study (GWAS)
performed by Johansson et al. (2016) was selected for our study
(the retrieval process and inclusion/discharge criteria are shown
in Figure 2). This GWAS of 18,624 individuals with acute
coronary syndrome consisting of 99% European and 1%
African or Asian identified two novel SNPs in SCL39A8
(rs13107325, pooled p = 5.99 × 10−10) and POC1B/GALANT4
(rs11105306, pooled p = 1.02 × 10−16) and confirmed one SNP
(rs198389, pooled p = 1.07 × 10−15) that were all associated with
the serum level of NT-proBNP. Among these three BNPs,
rs198389 is proven to be associated with the level of NT-
proBNP in several studies. The first study of this SNP was
reported in 2007. This GWAS surrounding the natriuretic
peptide precursor B (NPPB) gene with plasma BNP levels was
performed in 2,970 adults from the general population (Takeishi
et al., 2007). NPPB is on chromosome 1, encoding pre-proBNP.
rs198389 is located in the NPPB promoter and has previously
been found to influence promoter activity by interrupting an
E-box consensus motif in the gene promoter (Meirhaeghe et al.,
2007; Johansson et al., 2016). The rs13107325 is located in
SLC39A8 on chromosome 4. It is a missense variant, which
may cause an amino acid change at position 391 of the
protein (Johansson et al., 2016). This substitution is predicted

to be deleterious to the protein (Johansson et al., 2016). The
rs11105306 is located in POC1B/GALANT4 on chromosome 12,
which is in an intronic region with no obvious regulatory function
(Johansson et al., 2016).

Outcome Data
The statistical data used for MR analysis of genetic associations
with stroke was obtained from amulti-ancestry GWAS, including
data from 521,612 individuals (67,162 cases and 454,450 controls)
(Malik et al., 2018). These participants were selected from 29
investigations, consisting of ancestry groups from European
(40,585 cases and 406,111 controls), East Asian (17,369 cases
and 28,195 controls), African (5,541 cases and 15,154 controls),
Latin American (865 cases and 692 controls), mixed Asian (365
cases and 333 controls), and South Asian (2,437 cases and 6,707
controls) (Malik et al., 2018). To avoid bias produced by a multi-
ancestry population, we only used the data from the European
group. The MEGASTROKE project was approved by relevant
institutional review boards, and informed consent was obtained
from each participant. The data set and basic information
including sample size, age, and gender composition are
presented in Table 1.

Statistical Analysis
First, we conducted genetic association analysis to evaluate the
association between single NT-proBNP-associated SNPs and

FIGURE 2 | The retrieval process and inclusion/discharge criteria of instrumental variables.
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ischemic stroke and its three subtypes (cardioembolism, small-
vessel occlusion, and large-artery atherosclerosis strokes). The
significance threshold is p < .005, considering that many
association studies for a single test changed the p value from
.05 to .005, and the results with p values between .05 and .005 were
considered to be suggestive of significance. Second, we conducted
the MR analysis using three MR methods, including inverse-
variance weighted (IVW), weighted median, and MR-Egger.
IVW is the main MR analysis method, which combines the
variant-specific Wald estimators by taking the inverse of their
approximate variances as the corresponding weights (Bowden
et al., 2016). Weighted median could derive consistent estimates
when up to 50% of instruments are not valid (Bowden
et al., 2016). MR-Egger could test the presence of potential
pleiotropy and account for this potential pleiotropy using the
MR-Egger intercept test (Burgess and Thompson, 2017). The
odds ratio (OR) as well as 95% confidence interval (CI) of
stroke corresponds to about 1 standard deviation (SD) in
NT-proBNP level. All the statistical tests were completed
using R Packages “Mendelian Randomization” (Yavorska
and Burgess, 2017) and a p < .0042 (0.05/12 adjusted with
Bonferroni method) was considered statistically significant;
p between .05 and .0042 were considered suggestive of
significance.

Results and Discussion
The genetic association analysis evaluating the association
between single NT-proBNP-associated SNPs and ischemic
stroke and its three subtypes shows that neither of those
SNPs have significant association with ischemic stroke and

subtypes, whereas only rs198389 has a suggestive association
with LAS (95% CI 0.017~0.116, p = .008686, .05 > p > .005)
(Table 2). The MR analysis using three MR methods (IVW,
weighted median, MR-Egger) shows no significant causal
association between BNP levels and the risk of ischemic
stroke. However, the weighted median and the IVW present
suggestive association in small-vessel occlusion stroke (SVS)
(weighted median: OR = −0.268, 95% CI −0.492~−0.044, p =
.019; IVW: OR = −0.199, 95% CI −0.389~−0.009, p = .040)
with no horizontal pleiotropy, which was identified with
the MR-egger method (p = .499) (Table 3; Figure 3). In
conclusion, the genetic association analysis shows that
rs198389 has a suggestive association with LAS, and the MR
analysis shows that NT-proBNP levels suggestively reduce the
risk of SVS.

Analysis of the Negative Results
This MR study overcomes confounding risk factors and shows
that there is no significant causal association between BNP levels
and the risk of ischemic stroke, which is contrary to the results of
most previous prospective studies. The discrepancy therein may
be ascribed to the negligence of some hidden risk factors for
stroke, which may cause BNP levels to rise without any causal
association with stroke. In 2013, in a random community-based
sample, Cannone et al. found that rs5065 was associated with
increased cardiovascular risk by analyzing the phenotype
associated with atrial natriuretic peptide (ANP) genetic variant
rs5065. The rs5065 is a genetic variant and its minor allele
encodes for an ANP with two additional arginines at the
C-terminus, ANP-RR. This research also found that the

TABLE 1 | The data set and basic information of the stroke GWAS in 2018.

Dataset Stroke Control

N % Female Mean AAO N % Female Mean AAE

Metastroke 20,000 44.4% 67.1 19,326 49.9% 61.0
NINDS-SIGN 7,743 46.1% 66.5 17,970 — —

Charge 4,348 67.0% 75.8 80,613 — 63.7
EPIC-CVD 4,347 48.0% 70.1 7,897 60.2% 64.1
Barcelona 520 41.9% 69.1 315 37.7% 67.5
Biobank Japan 16,256 36.8% 69.9 27,294 60.4% 57.5
CADISP 555 38.9% 43.7 9,259 — —

Compass 5,541 — — 15,154 — —

Decode 5,520 44.2% 78.7 254,000 49.9% 53.3
Glasgow 599 49.7% 69.9 1,775 48.8% 69.6
Finland 501 40.9% 64.0 1,813 — —

Hisayama 1,113 39.1% 69.7 901 40.5% 69.4
HVH—All 805 65.7% 68.3 1901 50.3% 66.4
Interstroke 2,429 44.3% 64.0 2,128 47.6% 62.5
MDC 202 34.7% 62.9 4,925 59.4% 57.2
RACE1 1,218 47.6% 50.1 1,158 47.0% 51.9
RACE2 1,167 — — 4,035 — —

SAHLSIS 298 40.9% 59.3 596 35.6% 56.8
SDS 52 46.2% 55.7 1,514 46.4% 53.0
SIFAP 981 38.9% 41.7 1825 50.7% 55.2
SLESS 546 42.1% 66.2 868 47.9% 58.7
UK young lacunar stroke DNA 1,403 32.8% 60.6 968 47.5% 59.7
ICH 1,545 45.1% 67.0 1,481 40.5% 65.3

AAO, age at onset; AAE, age at examination.
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endothelial hyperpermeability induced by chronic exposure to
ANP-RR may predispose the subject to atherosclerotic disease.
Interestingly, the minor allele of rs5065 is associated with higher
BNP plasma values. The researchers hypothesized that higher
levels of BNP might be originated from the deleterious effects
caused by ANP-RR on the heart although it did not reveal any
other CAD signs (Cannone et al., 2013). The rs5065 causes both
ANP-RR and BNP levels to increase, but only ANP-RR is the
causal factor. Pathways such as this may exist in the incidence of
stroke and lead to controversial results. Although some evidence
suggests causal relationship between natriuretic peptides and
endothelial permeability, which might predispose to
atherosclerosis and hemorrhages, some research shows that
BNP may also have anti-inflammatory endothelial actions
(Kuhn, 2012). These two actions are contrary to each other,
which may explain the difference between the results mentioned
above and our result.

Possible Explanations of the Suggestive Associations
The contradiction stated in the previous paragraph leads us to
focus on the suggestive associations found in this study. The
genetic association analysis shows that rs198389 alone has a
suggestive association with LAS. The MR analysis shows that
NT-proBNP levels have a suggestive positive causal effect on LAS
inMR-Egger analysis (OR = 2.042, 95% CI 0.263–3.821, p = .024),
but the MR-Egger intercept (95%CI −0.676~−0.066, p = .017) is
significantly different from zero, showing a pleiotropic effect on
this outcome. The origin of loci may affect the results. In this
study, the rs198389 locus came from a large population without
special classification, and the other two loci came from people
with ACS in GWAS performed by Johansson et al. In our study,
genes as instrumental variables need to be absolutely associated
with exposure factors. However, the association between NT-
proBNP and the loci found in ACS patients is questionable.
Therefore, we cannot conclude that NT-proBNP has no causal

TABLE 2 | The genetic association analysis of BNPs and ischemic stroke and its subtypes.

SNP Stroke types Allele1 Allele2 Freq1a Effect StdErrb p-value

rs198389 AISc a g 0.5846 0.0093 0.0103 0.367
LASd a g 0.5833 0.0667 0.0254 0.008686
CESe a g 0.5851 −0.0126 0.0196 0.5212
SVSf a g 0.5838 0.0406 0.0236 0.0856

rs13107325 AIS t c 0.0748 −0.0065 0.0215 0.7611
LAS t c 0.0802 0.0206 0.0529 0.6965
CES t c 0.0769 −0.0299 0.0435 0.4921
SVS t c 0.0766 0.0234 0.0475 0.6219

rs11105306 AIS t c 0.2461 0.0058 0.0123 0.6384
LAS t c 0.2432 −0.0213 0.0294 0.4695
CES t c 0.2439 0.0146 0.0229 0.5232
SVS t c 0.2447 0.0492 0.0271 0.06945

aFrequence.
bStandard error.
cAcute ischemic stroke.
dLarge-artery atherosclerosis stroke.
eCardioembolism stroke.
fSmall-vessel occlusion stroke.

TABLE 3 | MR analysis of association between 3 BNPs (rs198389, rs13107325, rs11105306) and ischemic stroke and its subtypes.

Stroke types Method Estimate Std. error 95% CI p-value

IS Weighted median −0.04 0.049 −0.136, 0.056 0.415
IVW −0.044 0.043 −0.129, 0.041 0.313
MR-Egger 0.073 0.370 −0.653, 0.799 0.843
MR-Egger (intercept) −0.020 0.063 −0.144, 0.104 0.751

LAS Weighted median 0.100 0.149 −0.191, 0.391 0.501
IVW −0.107 0.105 −0.314, 0.099 0.308
MR-Egger 2.042 0.908 0.263, 3.821 0.024
MR-Egger (intercept) −0.371 0.156 −0.676, −0.066 0.017

CES Weighted median −0.031 0.095 −0.218, 0.156 0.746
IVW −0.023 0.083 −0.185, 0.139 0.779
MR-Egger −0.808 0.720 −2.219, 0.604 0.262
MR-Egger (intercept) 0.135 0.123 −0.106, 0.376 0.273

SVS Weighted median −0.268 0.114 −0.492, −0.044 0.019
IVW -0.199 0.097 −0.389, −0.009 0.040
MR-Egger 0.631 0.933 −1.197, 2.459 0.499
MR-Egger (intercept) −0.144 0.160 −0.458, 0.170 0.370
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relationship with stroke merely based on this study. We chose the
GWAS performed by Johansson et al. as the SNPs source because
it has the largest sample size among all of the available GWAS of
NT-proBNP (Figure 2). This is based on the idea that many of the
current limitations of GWAS can be overcome to some extent by
increasing sample sizes, which makes GWAS with larger sample
sizes more reliable (Tam et al., 2019). Therefore, GWAS of NT-
proBNP in general populations with a large sample size is
anticipated to explore the relationship between SNP and
stroke more accurately.

Interestingly, in our study, it is also implied that the serum
level of NT-proBNP suggestively reduces the risk of SVS. The role
of BNP in lowering blood pressure may be involved in the
mechanism behind this phenomenon. BNP is released from
the heart muscle in response to blood pressure and volume
overload. Its main effects are reducing the preload of the heart
by promoting diuresis and capillary permeability, which results in
the reduction of the blood pressure (Goetze et al., 2020). In 2013,
Wang et al. performed a retrospective study on the association
between hypertension and different ischemic stroke subtypes,
which involved 11,560 patients with ischemic stroke. The results
show that hypertension is significantly related to recurrent stroke
in patients with SVS, but not other subtypes of ischemic stroke

(Wang et al., 2013). Taken together, we conclude that BNP can
reduce the risk of SVS by lowering blood pressure. Whether BNP
can reduce the risk of SVS needs to be verified by more accurate
and credible studies in the future, which will help us form a better
understanding of the pathogenesis and treatment of SVS.

Strengths and Limitations
Our MR study has several strengths. First, stroke is a complex
disease with a large number of risk factors and pathophysiological
pathways. However, in this study, the relationship between NT-
proBNP and stroke was studied at the gene level with a large
sample size and directly from the gene, which reduces the
possibility of interference from implied risk factors. Second, in
this study, the potential confounding factors caused by linkage
disequilibrium may be reduced by using three independent
genetic variants as instrumental variables. Third, we selected
three MR methods to enhance the robustness of estimates.
Fourth, three-stage pleiotropy analysis were performed, which
may decrease the risk of pleiotropy.

Some limitations still exist in this MR analysis. First, the
additional confounders cannot be completely ruled out as well
as for the pleiotropy present in any MR study. Second, the
obtained analysis results may be influenced by the population

FIGURE 3 | The forest plot of the MR analysis.
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stratification, which cannot be fully ruled out. Third, the genetic
relationship between NT-proBNP levels and stroke risk may be
different in diverse genetic ancestries or ethnicities.

This genetic association should be further evaluated in other
ancestries. Fourth, a replication study should be performed to
ensure the accuracy and rigor of our original study. However, the
GWAS of stroke we used as outcome data had very large sample
size. It conducted meta-analyses of 29 studies, which involved
every large size of stroke-related database before 2018. As we
know, there are no other relative studies that have approximately
the same order of magnitude as the previous GWAS. Replication
studies should be performed with another large GWAS of
ischemic stroke.

CONCLUSION

This research provides evidence that there is no causal
relationship between elevated NT-proBNP level and the risk of
stroke. It is ineffective to use NT-proBNP as the target for stroke
treatment and prevention. NT-proBNP plays an important role in
ischemic stroke, but its function is not completely clear, and its
association with stroke needs to be further explored.
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Glioma is a primary high malignant intracranial tumor with poorly understood molecular
mechanisms. Previous studies found that both DNA methylation modification and gene
alternative splicing (AS) play a key role in tumorigenesis of glioma, and there is an obvious
regulatory relationship between them. However, to date, no comprehensive study has
been performed to analyze the influence of DNA methylation level on gene AS in glioma on
a genome-wide scale. Here, we performed this study by integrating DNA methylation,
gene expression, AS, disease risk methylation at position, and clinical data from 537 low-
grade glioma (LGG) and glioblastoma (GBM) individuals. We first conducted a differential
analysis of AS events and DNA methylation positions between LGG and GBM subjects,
respectively. Then, we evaluated the influence of differential methylation positions on
differential AS events. Further, Fisher’s exact test was used to verify our findings and
identify potential key genes in glioma. Finally, we performed a series of analyses to
investigate influence of these genes on the clinical prognosis of glioma. In total, we
identified 130 glioma-related genes whose AS significantly affected by DNA methylation
level. Eleven of them play an important role in glioma prognosis. In short, these results will
help to better understand the pathogenesis of glioma.

Keywords: glioma, alternative splicing, methylation modification, clinical prognosis, TCGA

INTRODUCTION

Glioma is the most common and highlymalignant primary intracranial tumor which is characterized
by substantial heterogeneity and extremely poor prognosis in central nervous system (CNS) (Dong
and Cui 2020; Pan et al., 2021). The World Health Organization (WHO) defines grade IV glioma as
the glioblastoma (GBM). The annual incidence of this disease worldwide is about 5 cases per 100,000
people (Hottinger et al., 2014), and shows a significant mortality and unclarified molecular
mechanism of the occurrence and development (Hottinger et al., 2014; Dong and Cui 2020).
Although the etiology of glioma has been extensively studied, there are still many challenges and
unknowns in the epigenetic mechanism of its pathogenesis and progress (Molinaro et al., 2019).

Recently, the DNAmethylation has been demonstrated to extensively participate in the epigenetic
mechanisms of CNS (Hwang et al., 2017), and many methyltransferase and demethylase-related
genes (e.g., MGMT, CD44, HYAL2, SPP1, MMP2) contribute to the pathogenesis of glioma (Weller
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et al., 2010; Wiestler et al., 2014; Xiao et al., 2020). A large amount
of the evidence showed that DNA methylation is involved in the
occurrence and development of glioma tumors (Etcheverry et al.,
2010; Chen et al., 2020; Dong and Cui 2020). For example, in
GBM patients, the disease-related important signaling pathways
(e.g., RB1 and TP53) are affected by CpG island promoter hyper-
methylation (Etcheverry et al., 2010). The promoter methylation
of DNA repair enzymes (O6-methylguanine-DNA
methyltransferase) has been identified as a significant
prognostic factor for temozolomide resistance in GBM patients
(Chen et al., 2020).

Conversely, the previous studies reported that pathogenesis of
glioma is significantly associated with the dysregulated alternative
splicing (AS) in the brain (Mogilevsky et al., 2018; Pattwell et al.,
2020; Zeng et al., 2020). AS is the primary driving force behind
generating diverse proteins, which is the basis for the remarkable
and complex functional regulation seen in eukaryotic cells (Xie
et al., 2019). Genome-wide studies showed that 90–95% of human
genes undergo some level of AS, and almost one-third of them
were proved to be generated multiple protein isoforms (Kim et al.,
2014; Wang et al., 2021). These processes usually show an
extreme complexity in brain tissues and can play an important
role in the progression of many CNS diseases (Merkin et al., 2012;
Galarza-Munoz et al., 2017; Consortium 2020). For glioma, for
instance, Mogilevsky et al. discovered that the manipulation of
MKNK2 AS significantly suppressed the oncogenic properties of
GBM cells and resensitized the cells to chemotherapy
(Mogilevsky et al., 2018). Pattwell et al. found that a truncated
splice variant, TrkB.T1, increases PDGF-induced Akt and STAT3
signaling and further enhances PDGF-driven GBM in vivo
(Pattwell et al., 2020). Moreover, many previous studies
indicate that there is a strong link between DNA methylation
and AS and it generally contributes to the pathogenesis of CNS
disorders, including glioma (Feng et al., 2019; Li et al., 2019). For
example, transcriptome analysis revealed that PTEN methylation
influences mature mRNA transcripts through modulation of pre-
mRNA AS, and the methylation-defective PTEN R159K mutant
is found most frequently in glioma patients. There was mark
dysregulation of splicing factors in the PTEN-deficient GBM
samples (Feng et al., 2019). The important oncogeneMETTL3 is a
methyltransferase and it is found to modulate the nonsense-
mediated mRNA decay of splicing factors and AS isoform
switches in GBM. The methylation modification of serine- and
arginine-rich splicing factors by METTL3 promotes GBM tumor
growth and progression (Li et al., 2019).

However, so far, there has been no systematic study to explore
the relationship between glioma-related DNA methylation and
gene AS in the whole genome scale, and the influence of their
interaction on the pathogenesis and progress of glioma.
Therefore, in this study, we performed a genome-wide analysis
by integrating the DNA methylation and AS data of 537 low-
grade glioma (LGG) and GBM individuals. First, we downloaded
the relevant data from the Cancer Genome Atlas (TCGA), TCGA
SpliceSeq and EWASdb database, respectively. Second, we
conducted the differential analysis between LGG and GBM
samples to identify the glioma-related methylation positions
and AS events. Third, based on the results, we performed a

splicing quantitative trait methylation loci (defined as me-sQTL
(Gutierrez-Arcelus et al., 2015; Han and Lee 2017)) analysis to
explore the influence of DNA methylation level on gene AS in
glioma. Fourth, we further explored the characteristics of these
me-sQTLs and affected AS events. Fifth, combining the data of
disease risk methylation positions from EWASdb, we performed
the two-tailed Fisher’s exact test to investigate the disease
specificity of the me-sQTLs and identify the potential key
genes related to them in glioma. Finally, based on these
potential key genes and clinical data, we conducted the least
absolute shrinkage, univariate Cox regression, selection operator
(LASSO) regression, clinical correlation and survival analysis to
explore the influence of these genes whose AS events affected by
DNAmethylation on clinical prognosis of glioma. The flow chart
is shown in Figure 1.

MATERIALS AND METHODS

Data Collection and Processing
Clinical and methylation information of glioma patients was
downloaded from the TCGA database (http://cancergenome.
nih.gov), a comprehensive resource containing multi-omics
data from various cancers. According to the annotation of
TCGA, glioma is classified as the LGG and the GBM. TCGA
is a global genomic profiling project that utilizes high-throughput
microarray technologies to identify molecular subtype
classifications of cancers, multigene clinical predictors, new
targets for drug therapy, and predictive markers for these
therapies (Vigneswaran et al., 2015). The International
Classification of Diseases for Oncology has been used for
nearly 25 years as a tool for coding diagnoses of neoplasms in
tumor and cancer registrars and in pathology laboratories
(Warzel et al., 2003). Data analysis was performed with the
glioma classification LGG and GBM provided by the TCGA
database. Current glioma classifications are based on the 2007
WHO grading scale, which separates gliomas based on cytologic
features and degrees of malignancy after hematoxylin and eosin
(H&E) staining (Erridge et al., 2011). According to the
classification of gliomas in the TCGA database, data analysis is
carried out by using the classifications LGG and GBM of gliomas
provided by the TCGA database. We accessed these TCGA data
using the Genomic Data Commons (GDC) data portal (https://
portal. gdc. cancer.gov/). Particularly, based on our previous
study (He et al., 2020), we first selected “DNA methylation”
for the Data Category, “Illumina human methylation 450” for the
Platform, “brain” for the Primary Site and “gliomas” in the
Disease Type to screen out the suitable methylation array of
patients in the GDC data portal. Then, the“clinical,” “brain” and
“gliomas” were selected to the Data Category, Primary Site and
Disease Type, respectively, to screen out the clinical information
of patients in the GDC data portal. Finally, we removed samples
that lacked methylation or clinical information.

The AS events of these samples were obtained from the TCGA
SpliceSeq database (http://bioinformatics.mdanderson.org/
TCGASpliceSeq), which identifies AS events and describes
their genome profiles using the RNA-seq data of the TCGA
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samples (Ryan et al., 2016). Particularly, we downloaded the AS
isoform average percent spliced-in (PSI) values of the LGG and
GBM samples, respectively, from TCGA SpliceSeq database with
the common parameter settings (i.e., the percentage of samples
with PSI value >75%, minimum PSI range >0 and minimum PSI
standard deviation >0.1) according to the previous studies (Yang
et al., 2019; Rong et al., 2020; Wei et al., 2021). Based on the
classification criteria of TCGA SpliceSeq, we classified the types of
AS events into Alternate Acceptors (AA), Alternate Donors (AD),
Exon Skip (ES), Retained Intron (RI), Alternate Promoters (AP),
Alternate Terminators (AT) and Mutually Exclusive Exons (ME).
The AS events that are not present in both LGG and GBM
samples were removed.

Moreover, the information of disease risk methylation
positions was obtained from the EWASdb database (http://
www.bioapp.org/ewasdb/index.php/Index/index). EWASdb is a
specialized epigenome-wide association database which stores the
results of 1,319 epigenome-wide association study (EWAS)
studies involved in the 302 diseases/phenotypes with the
threshold for significance p < 1 × 10–7 (Liu et al., 2019). We

downloaded the EWAS single epi-marker and annotation files
(phenotype/disease info) and merged the files by the
disease codes.

Differential Analysis of Methylation
Positions
To obtain the glioma-related methylation positions, we
performed differential methylation analysis between GBM and
LGG samples. In particular, we used a Subset-quantile Within
Array Normalization method to preprocess the methylation data
by the R package “minfi,”, a specialized tool for the analysis of the
Illumina methylation 450 array dataset (http://bioconductor.org/
packages/release/bioc/html/minfi.html) (Aryee et al., 2014).
Then, the quality control of methylation array was conducted
“densityBeanPlot” function of this package. The characteristics of
the qualified samples show that the methylation levels (beta
values) of CpG positions are distributed around 0 and 1,
respectively. Finally, based on the qualified methylation array
data, we used a bump-hunting algorithm to identify the

FIGURE 1 | The flow chart of the study design for exploring the influence of DNA methylation level on gene AS in glioma and its impact on disease prognosis.
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differentially methylated positions between GBM and LGG
subjects by the “dmpFinder” function of this package. The
parameter was set by its default value (i.e., type =
“categorical”) and the significance level was set according to a
common threshold for the absolute intercept ≥0.2 (i.e. 20%
difference on the beta values) and the p value <1 × 10–3 (Guo
et al., 2015).

Differential Analysis of Alternative Splicing
Events and Annotation
To identify the glioma-related AS events and corresponding
genes, we performed the differential AS events analysis and
gene annotation. Particularly, the differential AS events
analysis was conducted by the vast-tools software (Irimia
et al., 2014). Based on the PSI of each AS event, we performed
a Bayesian inference-based differential AS analysis by the “diff”
function of vast-tools software with its default parameters.
According to the previous studies, we set the threshold for
significance at the minimum value for absolute value of
differential PSI between GBM and LGG samples (MV|ΔPSI|)
at 0.95 confidence level greater than 10% (Ha et al., 2021; Hekman
et al., 2021). The gene annotation was conducted by g:Profiler
toolset, a web server for conversions between gene identifiers and
functional annotation (Raudvere et al., 2019). We used the g:
Profiler to identify these AS events corresponding genes, convert
their ID and annotate the genome location and type of the genes.
The annotation file (hg19) from the database (release 75) were
used for these analyses (Aken et al., 2017).

Association Analysis Between DNA
Methylation and Alternative Splicing
To explore the effect of methylation on AS events in glioma, we
performed a cis me-sQTL analysis by combining the PSI values of
differential AS events and the beta values of differentially
methylated positions from the same samples. Particularly, we
first considered the distance between the differentially methylated
positions and the transcription initiation site (TSS) of differential
AS events corresponding genes less than 1 M as the cis region,
and selected all methylation positions and AS event pairs that met
the conditions for the cis me-sQTL analysis. The annotation files
of the Illumina methylation 450 array dataset (hg19) and
Ensembl database (release 75) were used to locate the genomic
locations of the methylated positions and the TSS of AS events
corresponding genes, respectively. Then, based on the beta values
of the differentially methylated positions in combination with the
PSI values of the corresponding differential AS events, we used a
linear regression model to perform a cis me-sQTL analysis by the
R package “Matrix eQTL”with the parameters, age, and gender as
covariates (Shabalin 2012). Finally, we conducted a multiple
testing by Benjamini–Hochberg method to correct the p values
of the cis me-sQTL analysis and set false discovery rate (FDR) q
value less than 0.05 as the threshold for significance level
according to the previous studies (Gillies et al., 2018; Drag
et al., 2019; Han et al., 2020).

Disease Specificity Analysis of the Cis
Me-sQTLs
In order to explore the disease specificity of these cis me-sQTLs
and further verify our findings as well as identify the potential key
glioma-related genes with affected AS events bymethylation level,
we performed the two-tailed Fisher’s exact test by combining the
disease risk methylation positions and the results of cis me-sQTLs
analysis. Particularly, we first produced the disease risk
methylation position datasets for various disorders including
glioma from EWASdb database (Liu et al., 2019). Then, we
defined the methylation positions which were unlikely to have
an effect on the AS events in cis region (p > 0.05) as the non me-
sQTLs. Next, by the two-tailed Fisher’s exact test, we compared
the proportions of all these cis and non me-sQTLs in the disease
risk methylation positions for each of the disorders to explore the
disease specificity and further verify previous findings. The
threshold for significance level was set as the p value <0.05.
Finally, to identify the potential key glioma-related genes at the
me-sQTL level, we compared the proportions of cis and non me-
sQTLs in glioma-related methylation positions for each gene
using the two-tailed Fisher’s exact test (the threshold of p < 0.05).
The “fisher.test” function of R was used for these calculations.

Influence of the Me-sQTL Genes on Clinical
Prognosis of Glioma
We further analyzed the influence of these potential key genes
whose AS events are affected by DNA methylation on clinical
prognosis of glioma. First, we calculated the average expression of
these genes in each individual and separated the samples into low
and high expression groups according to the median of average
expression. Then, we used the Kaplan-Meier overall survival
curves to compare prognosis between the high expression and
low expression individuals. Next, we performed a univariate Cox
regression analysis to assess the association between these me-
sQTL genes and the prognosis of glioma. The threshold of
significance was set at 95% confidence interval (CI) of hazard
ratio (HR) S 1 and p < 0.05. Then, based on the results of
univariate Cox regression analysis, the R package “glmnet” was
used to perform the LASSO regression analysis, a fit algorithm
based on cyclical coordinate descent and warm start search along
a regularization path, to identify the main glioma prognosis-
related genes (Simon et al., 2011). According to the common
parameter settings, the maxit and alpha were set at 1,000 and 1,
respectively, and others were set by their default values. Based on
the results, the risk scores were calculated for each subject by the
R package “survival” (http://CRAN.R-project.org/package=
survival). Further, the receiver operator characteristic (ROC)
curve was used to verify the reliability of these risk scores by
the R package “survivalROC” (https://CRAN.R-project.org/
package=survivalROC). Finally, we used the chi-square test to
assess the association between the expression of these glioma
prognosis-related genes and other clinical features of the patients,
which included the age at initial pathologic diagnosis, the vital
status, and the gender. The threshold for significance was set at
the p value <0.05.
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RESULTS AND DISCUSSION

The Multi-Omics Data From 537 Glioma
Individuals
In total, we obtained the datasets of DNA methylation values, AS
events PSI values, gene expression levels and clinical information
from 537 glioma samples (including 486 LGG and 51 GBM
patients). The summary of these glioma samples was shown in
Table 1. Particularly, after the missing value filtering and
normalization processing, we quantified a total of 369,531
CpGs methylation positions with the normalized values
according to the annotation files of Illumina human
methylation 450 array. The results of normalization processing
were shown in the Supplementary Figure S1 and our previous
study (He et al., 2020). We obtained 7,414 AS events with the PSI
values from 537 glioma samples the TCGA SpliceSeq database.
These AS events are composed of about 39.0% ES, 27.8% AP,
11.3% AT, 8.4% RI, 6.9% AD, 5.9% AA and 0.5% ME types
(Figure 2A). The expression data of 20,530 genes of the glioma
samples was downloaded from the TCGA database and
quantified by RSEM values. The clinical information of these
samples contains age, gender, survival time, and vital status.
Moreover, after the combination of same disease types and
missing value filtering, we obtained a total of 141 disease risk
methylation position data sets from the EWASdb database.

Differential Analysis of Methylation
Positions and Alternative Splicing Events
We performed a differential methylation analysis between the
LGG and GBM subjects to identify the glioma-related DNA
methylation positions. All of the methylation array data met
quality control metrics. The results showed that the beta values of
DNA methylation positions are mainly distributed around 0 and
1, respectively, for each sample. The details are described in the
Supplementary Figure S2 and our previous study (He et al.,
2020). By the differential methylation analysis, we identified a
total of 208,138 positions with a significantly different
methylation level between LGG and GBM subjects. The results
are shown in the Supplementary Table S1 and our previous
study (He et al., 2020).

To identify the glioma-related AS events, we further
conducted differential AS events between the LGG and GBM
subjects. According to the significance threshold MV|ΔPSI| at
0.95 confidence level ≥10%, we identified a total of 287
differential AS events between LGG and GBM subjects. These

differential AS events belonged to 263 genes (Supplementary
Table S2). Figure 3 shows the most significant differential AS
events (SpliceSeq ID: 96726) of LPHN3 gene (MV|ΔPSI| at 0.95
confidence level = 0.25). A recent study reported that LPHN3 was
an important paralog of EVA1C which leads to the high
infiltration levels of multiple immune cells in glioma (Hu and
Qu 2021). Moreover, according to the classification criteria for
SpliceSeq database, about 35.5%, 31.0%, 14.0%, 9.1%, 5.2% and
5.2% of these identified AS events are categorized into ES, AP,
AT, RI, AD and AA types, respectively (Figure 2A). We did not
find a significant difference in the proportion of AS event types
when compared with the original AS event type proportion
by the two-tailed Fisher’s exact test (Figure 2A). This revealed
a typological universality of the differential AS events in
glioma.

Association Analysis Between DNA
Methylation and Alternative Splicing
Combining the PSI values of differential AS events with the beta
values of differentially methylated positions from the same
samples, we used a linear regression model to perform the cis
me-sQTL analysis by R package “Matrix eQTL” with the
parameters, age, and gender serving as covariates. In total, we
identified 19,345 methylated positions affecting 256 AS events
which are involved in 233 genes (over 88% of the total differential
genes) with a significance level of FDR q < 0.05. This revealed a
general influence of DNAmethylation level on gene AS in glioma.
The top 25 significant results are shown in Table 2 (the full
information is listed in the Supplementary Table S3). Among the
256 affected AS events, we found that about 34.1%, 32.2%, 14.6%,
9.6%, 4.6% and 5.0% of these affected AS events are categorized
into ES, AP, AT, RI, AD and AA types, respectively. By the two-
tailed Fisher’s exact test, we also did not find a significant
difference of percentage between the affected and the original
AS event types (Figure 2A). This revealed a typological non-
specific regulation of gene AS by DNA methylation level in
glioma. Further, we explored the relationship between the
significance of regulation of the cis me-sQTLs and the
distance of them to the TSS of the corresponding affected
gene, and their distribution characteristics in genome. The
results showed that these cis me-sQTLs tended to be
distributed in the proximity of the corresponding affected gene
TSS, and there were more significant regulatory effects of them in
these regions (Figure 2B). This was consistent with the findings
of previous studies (Pangeni et al., 2018; Chen and Elnitski 2019).

TABLE 1 | Summary of the 537 individuals studied in this work.

Individuals Sample Type Sample Size Mean Age
(Aken et al.)

Male/Female (Han
and Lee)

Death Rates
(Han and

Lee)

GBM subjucts Primary Tumor 51 61.54 (13.41) 56.00/44.00 66.00
LGG subjucts Primary Tumor 486 42.91 (13.42) 54.64/45.36 25.15
Total 537 44.66 (14.48) 54.77/45.23 28.97

These samples are from our previous study (He et al., 2020).
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FIGURE 2 | The characteristic of the cis me-sQTLs and the affected AS events. (A) The pie charts show the proportion in all (left), differential (middle) and DNA
methylation affected AS events (right) annotated with each class (AA, AD, ES, RI, AP, AT and ME), respectively. (B) The blue bar graphs indicate the relationship between
the abundance of the cis me-sQTLs and the distance of them to TSS of corresponding AS events. The red dots indicate the relationship between the statistical
significance of the cis me-sQTLs associated with AS and the distance of them to TSS of corresponding AS events. (C) The disease specificity of the cis me-sQTLs
by the two-tailed Fisher’s exact test. (D) The glioma specificity of the cis me-sQTLs in each gene by the two-tailed Fisher’s exact test. The black bars in histogram
represent 95% confidence intervals.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 7999136

Yang et al. Me-sQTL Analysis in Glioma

173

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Disease Specificity Analysis of the Cis
Me-sQTLs
To explore the disease specificity of these cis me-sQTLs and verify
our findings, as well as further identify the potential key glioma-
related genes at the me-sQTL level, we performed the two-tailed
Fisher’s exact test using the disease risk methylation position data
from the EWASdb database. We found that the risk methylation
positions of all the 141 diseases are overlapped with the cis me-
sQTLs and non me-sQTLs. By comparing the proportions of cis
me-sQTLs and non me-sQTLs in each disease risk methylation
position dataset (the threshold of Fisher’s p value <0.05), we
found that the cis me-sQTLs significantly enriched the risk
methylation position dataset of 103 diseases, which are mainly
composed of CNS disorders and malignant tumor diseases
including glioma (odds ratio (OR) = 2.49, p = 0). In contrast,
the remaining 38 diseases, whose risk methylation positions are
not significantly enriched by the cis me-sQTLs, are mainly
composed of the other types of disorders, e.g., the rheumatic
heart disease (p = 5.99 × 10–1), septicemia (p = 6.97 × 10–1), and
Infertile (p = 1). The top 5 most and least significant results are
shown in Figure 2C (the full information is listed in the

Supplementary Table S4). The results revealed the specificity
and similarity of neuro-oncological disorders at the me-sQTL
level and verified the association of the cis me-sQTLs we
identified with glioma. Further, for each type of AS event and
each gene, we compared the proportions of their cis and non me-
sQTLs in glioma risk methylation position dataset, respectively.
The results showed that the cis me-sQTLs of almost all types of
AS events are significantly enriched in glioma risk methylation
position dataset, i.e., AA (OR = 4.76, p = 1.18 × 10–36), AT (OR =
2.85, p = 9.63 × 10–66), ES (OR = 2.39, p = 6.26 × 10–112), RI (OR =
2.05, p = 2.85 × 10–30), AD (OR = 2.55, p = 4.78 × 10–21), and AP
(OR = 2.88, p = 8.69 × 10–191), and there are a total of 130 genes
whose cis me-sQTLs are significantly enriched in glioma risk
methylation position dataset (p < 0.05). Figure 2D shows the top
20 significant results and full information is listed in the
Supplementary Table S5. We considered that these genes are
more correlated with the pathogenesis of glioma at the me-sQTL
level and selected them for the following prognosis analysis of
glioma.

Influence of the Me-sQTL Genes on Clinical
Prognosis of Glioma
We further analyzed the influence of the potential key genes
which are associated with glioma in me-sQTL level on the clinical
prognosis of glioma. The expression data were obtained from
TCGA database and these data are involved in 117 of the 130
potential key genes. We found that the overall survival curve of
the subjects with high expression of these genes is significantly
longer than the subjects with low expression (p = 7.56 × 10–1

(Figure 4A). This revealed that the expression dysregulation of
these potential key genes is significantly associated with the bad
prognosis of glioma patients. To avoid dependence between the
117 genes and identify the main glioma prognosis-related genes,
we performed the univariate Cox regression analysis of the 117
genes. However, the results showed that 61me-sQTL genes
identified are high-risk factors for the prognosis of glioma
subjects (i.e. 95% CI HR S 1 and p < 0.001) (Supplementary
Figure S3). We discover that both over-expression of those 30
genes and under-expression of the other 31 genes can lead to a
poor prognosis in glioma patients, which is also consistent with
common sense. given that patients are in advanced stages of the
disease and their survival may be affected by other complications
or factors. Then, we further applied the LASSO regression
algorithm to conduct the selection and calculate the risk score
of each subject to univariate Cox regression results. The results
showed that there are 11 genes (i.e., KIF3A, HAUS1, TMCC1,
BEND7, B3GNT5, MTMR3, ITGB3, BICD1, EXTL3, SUN1 and
MXRA8) identified when the cross-validated partial likelihood
deviance reaches its minimum value (Figures 4B,C). Among the
11 genes, the coefficients of 7 were positive (i.e., increase risk of
disease), and others were negative (i.e., decrease risk of disease). A
previous study reported that the low expression of the TMCC1
gene confers poor clinical prognoses of glioma patients which is
in accordance with our findings (Pangeni et al., 2018). The area
under the curve (AUC) of the ROC is 0.988, which reveals the
reliability of the risk score (Figure 4D). According to the median

FIGURE 3 | The results of differential analysis for the AS event 96726 of
LPHN3 gene. (A) The red line indicates that the maximum probability of ΔPSI
of AS event 96726 between LGG and GBM subjects is greater than 0.25. (B)
The histogram shows the two joint posterior distributions over PSI and
the point estimates for each replicate.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 7999137

Yang et al. Me-sQTL Analysis in Glioma

174

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


of risk scores, the patients were separated into the low and high-
risk groups.We found that the LGG andGBM subjects are mainly
distributed in the low and high-risk group, respectively, which

reflects the consistency between the risk scores calculated by the
prognosis-related me-sQTL genes and the severity of glioma.
Moreover, the results of chi-square test showed that the risk

TABLE 2 | The top 25 significant results of the me-sQTLs and the differential AS events affected by the methylated position.

Methylated
position

Differential analysis of methylated positions AS event Differential analysis of AS Me-sQTLs

Strand Intercept f p Value Gene E (ΔPSI) 95% MV|ΔPSI| Statistic p Value FDR Beta

cg04928129 1429051− −2.1144 230.3921 3.34E-44 33029 LMF1 −0.004168 0.11 28.4852 4.34E-109 9.97E-106 0.7302
cg00583426 1209990− −2.7769 210.9880 4.05E-41 33029 LMF1 −0.004168 0.11 28.1495 1.93E-107 2.22E-104 0.6155
cg08259514 1131634− −3.8941 291.6219 1.79E-53 33029 LMF1 −0.004168 0.11 27.7357 2.11E-105 1.61E-102 0.5842
cg04603812 1429265− −4.5946 291.2726 2.01E-53 33029 LMF1 −0.004168 0.11 27.3596 1.51E-103 8.70E-101 0.7149
cg03323597 1131489− −2.1121 273.3760 8.81E-51 33029 LMF1 −0.004168 0.11 26.8338 6.07E-101 2.79E-98 0.7754
cg09249980 1213919− 1.1469 137.6579 9.86E-29 33029 LMF1 −0.004168 0.11 25.2485 4.74E-93 1.36E-90 1.0011
cg00611495 1120275− −1.0380 165.5488 1.38E-33 33029 LMF1 −0.004168 0.11 25.1518 1.44E-92 3.31E-90 0.8511
cg20104307 778658+ −1.9372 165.0035 1.71E-33 33029 LMF1 −0.004168 0.11 25.0200 6.57E-92 1.37E-89 0.7347
cg27040104 1384722− −0.7004 129.0667 3.38E-27 33029 LMF1 −0.004168 0.11 24.8244 6.25E-91 1.20E-88 0.8274
cg00525011 122031+ −1.6582 190.3615 9.36E-38 33029 LMF1 −0.004168 0.11 24.6293 5.92E-90 1.05E-87 0.6617
cg04913730 1121907− −1.7877 137.0784 1.25E-28 33029 LMF1 −0.004168 0.11 24.5070 2.42E-89 3.98E-87 0.6183
cg00675160 1208531+ −0.7381 141.6593 1.93E-29 33029 LMF1 −0.004168 0.11 24.4083 7.57E-89 1.16E-86 0.7337
cg08438529 1052939− −1.2133 173.4449 6.27E-35 33029 LMF1 −0.004168 0.11 24.1224 2.05E-87 2.94E-85 0.5957
cg07549278 1204244− −2.0317 95.9829 4.18E-21 33029 LMF1 −0.004168 0.11 23.9448 1.59E-86 2.15E-84 0.6040
cg16383109 126451− −1.4219 232.0717 1.82E-44 33029 LMF1 −0.004168 0.11 22.9002 2.77E-81 3.35E-79 0.6947
cg05245533 795877− −0.9085 145.6310 3.86E-30 33029 LMF1 −0.004168 0.11 22.8553 4.65E-81 5.34E-79 0.6500
cg16443148 776667− −0.2492 47.2131 1.61E-11 33029 LMF1 −0.004168 0.11 22.6322 6.12E-80 6.12E-78 0.6401
cg09786479 1020419+ −3.2149 77.1741 1.68E-17 33029 LMF1 −0.004168 0.11 22.6067 8.22E-80 7.87E-78 0.5584
cg07336438 1131466− −0.9484 173.4777 6.19E-35 33029 LMF1 −0.004168 0.11 22.5742 1.20E-79 1.10E-77 0.7216
cg10163825 776685+ −0.4881 18.5564 1.93E-05 33029 LMF1 −0.004168 0.11 22.5302 1.99E-79 1.76E-77 0.9054
cg27127090 1131327+ 0.3781 81.8560 2.08E-18 33029 LMF1 −0.004168 0.11 22.1160 2.38E-77 1.95E-75 0.9443
cg07915516 377344− −1.5503 116.9595 5.29E-25 33029 LMF1 −0.004168 0.11 21.8766 3.77E-76 2.99E-74 0.7060
cg06587435 865125+ 1.6381 82.6033 1.49E-18 33029 LMF1 −0.004168 0.11 21.7725 1.25E-75 9.00E-74 1.1040
cg08641445 1080637+ 0.4693 58.8931 6.88E-14 33029 LMF1 −0.004168 0.11 21.6790 3.68E-75 2.57E-73 0.9575
cg05272807 1232363+ 0.2547 93.9919 9.94E-21 33029 LMF1 −0.004168 0.11 21.6061 8.55E-75 5.78E-73 0.7974

FIGURE 4 | The influence of the glioma-related genes whose AS significantly affected by DNA methylation level on the disease prognosis. (A) The Kaplan-Meier
overall survival curves of the low (red) and high (blue) expression groups. (B) and (C) show the results of LASSO regression. There are 11 independent genes with their
coefficient when the partial likelihood deviance reaches its minimum value. (D) The ROC curve reveals the reliability of the risk score by comparing the true and false
positive rate. (E) The heatmap shows the association between the risk scores of the prognosis-related me-sQTL genes and the clinical features of glioma patients.
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scores of the prognosis-related me-sQTL genes are also associated
with the age at initial pathologic diagnosis (p = 4.89 × 10–2) and
vital status (p = 1.81 × 10–9), but not with the gender of the
patients (p = 4.60 × 10–1) (Figure 4E). This proves that the 11 key
genes we found are meaningful for clinical prognosis of glioma.
Among the 11 genes, 7 of them (i.e., B3GNT5, BICD1, KIF3A,
HAUS1, MTMR3, ITGB3 and EXTL3) have been confirmed to be
associated with the prognosis of glioma (Kim et al., 2011; Sumazin
et al., 2011; Huang et al., 2017; Zhou et al., 2018; Jeong et al., 2020;
Li et al., 2020; Wang et al., 2020). Our findings imply that the
functions of these genes in glioma prognosis may be related to the
methylation regulation of their AS events.

CONCLUSION

In this study, we used the TCGA data to explore the role of the
me-sQTL process on pathogenesis of glioma and identify the
affected genes and further analyze the influence of them on the
clinical prognosis of glioma. In total, we identified 130 such genes
which have the following three characteristics: 1) they are
significantly differentially expressed between the LGG and
GBM subjects; 2) their AS events are significantly regulated by
DNA methylation level in the cis regions; and 3) the cis me-
sQTLs of them are significantly enriched in glioma risk
methylation position dataset. Further, the results of clinical
data analysis show a significant association between the
expression of these genes and the clinical prognosis of glioma,
and among them, 11 (i.e., KIF3A, HAUS1, TMCC1, BEND7,
B3GNT5, MTMR3, ITGB3, BICD1, EXTL3, SUN1 and MXRA8)
are considered the key risk factors for the prognosis and severity
of glioma. At the same time, these 130 genes provide new ideas for
the study of the interaction between DNA methylation and
alternative splicing in gliomas and similar diseases and provide
reference for future research on the study of DNA methylation
and variable splicing in neurological diseases in the whole

genome. In summary, we performed a strategy to explore the
influence of DNA methylation level on gene AS in glioma and
these findings will help to better understand pathogenesis of
glioma.
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INTRODUCTION

Inflammation produces hepatic encephalopathy in patients with chronic liver disease by modulating brain
functions (O’Beirne et al., 2006). Several studies have reported that patients with chronic hepatitis C virus
(HCV) infection tend to exhibit cognitive impairment and may increase the risk for dementia (Chiu et al.,
2014; Adinolfi et al., 2015; Choi et al., 2021). Meanwhile, the HCV genome has been detected in the brain
tissues of some patients with dementia, which suggests that it may be able to infect the central nervous
system (CNS) directly (Forton et al., 2001; Khonsari et al., 2015). A recent study reported that treatment of
HCV infection with direct-acting antivirals (e.g., glecaprevir/pibrentasvir, elbasvir/grazoprevir, and
ledipasvir/sofosbuvir) significantly reduces mortality risk in patients with Alzheimer’s disease (AD)
and related dementia (Tran et al., 2021). Furthermore, apolipoprotein E (ApoE) plays a key role in
the mechanism of AD by driving amyloid-β (Aβ) peptide accumulation in the brain (Yamazaki et al.,
2019). Previous studies demonstrated that the ApoE level affects HCV infection and action in the CNS by
regulating the blood–brain barrier permeability and is significantly associated with the neuropsychiatric
symptoms in HCV-infected individuals (Gochee et al., 2004; Sheridan et al., 2014; Wozniak et al., 2016).
Although evidence has shown that HCV infection is associated with the dysfunctions of the CNS, it is not
clear whether any HCV infection influences AD pathogenesis. Observational studies are difficult to
interpret because these results may have been influenced by reverse causation and confounding factors.
Mendelian randomization (MR) has the potential to evaluate causal relationships between exposure and
outcome in the presence of such limitations (Sekula et al., 2016; Davies et al., 2018). In this study, we
investigated the causal impact of HCV infection on the risk of late-onset AD by implementing Causal
Analysis Using Summary Effect estimates (CAUSE), a novel MR method that can avoid more false
positives caused by correlated horizontal pleiotropy (Morrison et al., 2020).

ANALYSIS OF ASSOCIATION BETWEEN HCV INFECTION AND
RISK OF LATE-ONSET AD

The summary data for exposure (HCV infection) was downloaded from the National Bioscience Database
Center (NBDC)HumanDatabase which includes the complete results of genome-wide association studies
(GWAS) based on 5,794 HCV susceptible cases and 206,659 controls (NBDC Research ID:
hum0014.v17.CHC.v1) (Ishigaki et al., 2020). The GWAS results of late-onset AD were obtained
from the International Genomics of Alzheimer’s Project (IGAP) (n = 17,008 late-onset AD cases and
37,154 controls) (Lambert et al., 2013). In addition, Manhattan plot of HCV and ADGWAS results are in
Supplementary Figure S1. According to themanual of CAUSE, there should be asmany single-nucleotide
polymorphisms (SNPs) as the instrumental variable (IV) to estimate CAUSE posteriors to ensure the
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accuracy of the MR results (https://github.com/jean997/cause).
Therefore, we used the more liberal threshold of the GWAS
significance and the independence of SNPs (i.e., p < 0.001 and
r2 < 0.01, respectively) in this study. The “’ld_clump” function of
the R package “ieugwasr”was used to calculate pairwise prune linkage
disequilibrium (LD)measures between these SNPs based on the 1000
Genomes project phase I and prune the non-independent ones
(https://mrcieu.github.io/ieugwasr/). To avoid the pleiotropy
effects, CAUSE included as many information from all variants as
possible, evenweakly associated variants. It computed the test statistic
to distinguish variants associated with confounders. At last, we use
two-sample MR for further validation (Morrison et al., 2020).

After merging the GWAS results between the NBDC HCV and
IGAPAD studies, and further removing the variants with ambiguous
and mismatched alleles, we selected 4,289,211 SNPs which match
both datasets for the following analyses. The nuisance parameters are
estimated by finding the mixing parameters and the maximum a
posteriori estimate. According to the significance threshold of the
GWAS p < 0.001 and the LD analysis r2 < 0.01, there are a total of
606 SNPs as IVs for the CAUSE fitting. As Table 1 shows, when
compared with the null model, the estimated difference in expected
log pointwise posterior density (delta EPLD) in both the sharing and
causal models is positive, and no significant differences are presented
(p-value is 0.95 and 0.83, respectively). Further, the fitted delta EPLD
of the causal model is still not significantly better than the sharing
model (z-score = 0.80 and p-value = 0.79). This revealed a similar
posterior distributions and proportion of correlated pleiotropic SNPs
in the two models. A total of 42 SNPs for any HCV infection were
identified (Supplementary Table S1). Two-sample MR analysis
indicated that genetically predicted HCV infection was not
associated with AD (odds ratio (OR) = 0.99, 95% confidence
interval (CI) = −0.07to 0.04, p = 0.69) (Supplementary Table S2).
The resulting estimates of the effect of HCV on AD are shown in the
scatter plot (Supplementary Figure S2). Generalized funnel plot
indicated the absence of directional pleiotropy (Supplementary
Figure S3). Leave-one-out analysis revealed a high stability of our
results (Supplementary Figure S4). Thus, the present MR study
affords no support for causality between HCV and AD, which
suggests that HCV infection has no influence on the late-onset AD.

DISCUSSION

The traditional MR methods may tend to lead to false positive
results because the assumption about horizontal pleiotropy of

instrument is often violated. Therefore, in this study, using the
largest available GWAS results on HCV infection and AD, we
investigated a potential causal role for HCV infection in late-
onset AD using an improved MR analysis. However, the results
failed to reveal any causal association between them, which
appears to be in conflict with some previous reports about the
influence of HCV infection on the human CNS (Weissenborn
et al., 2004; Yarlott et al., 2017). Previous studies demonstrate that
ApoE and its cell-surface receptor is a key prerequisite for HCV
production and infectivity by enriching the virus particles and
giving rise to the lipoviral particles hybrid with lipoproteins.
Given that ApoE also plays an important role in Aβ peptide
accumulation, a potential explanation for these findings could be
that the ApoE level may affect HCV infection and also mediate
the genetic risk of late-onset AD in patients with HCV and AD
(Jiang and Luo, 2009; Hishiki et al., 2010; Yang et al., 2016) and
thus leads to a false association between HCV infection and AD.
In conclusion, our MR analyses found no evidence for a causal
role of HCV for late-onset AD pathogenesis. These findings could
further improve the conclusions of previous studies, and further
research are needed to elucidate the underlying mechanisms.

CONCLUSION

In this study, we used both CAUSE and two-sample MR study to
assess the causal effects of HCV infection on AD. The CAUSE
results revealed that HCV infection did not appear to have a
causal effect on the risk of AD. Similar trends were observed
through two-sample MR. The evidence suggests that previously
reported observational associations could have resulted from
confounding. Future studies are warranted to clarify the
underlying mechanism.
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TABLE 1 | The results of causality of HCV infection and AD by comparing causal
and sharing model.

Model 1 Model 2 Δ ELPD s.e. Δ
ELPD

Z-Score p-value

Null Sharing 0.22 0.13 1.70 0.95
Null Causal 0.96 1.00 0.94 0.83
Sharing Causal 0.74 0.92 0.80 0.79

Model 1 and Model 2 imply the models being compared. When estimated difference in
ELPD (Δ ELPD) = ELPDC − ELPDS is negative, model 2 is a better fit.
Key: s.e. Δ ELPD, estimated standard error of Δ ELPD; Z-Score, Δ ELPD/s.e. Δ ELPD.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8288272

Huang et al. Relationships Between HCV and AD

180

https://github.com/jean997/cause
https://mrcieu.github.io/ieugwasr/
https://www.frontiersin.org/articles/10.3389/fgene.2022.828827/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.828827/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Adinolfi, L. E., Nevola, R., Lus, G., Restivo, L., Guerrera, B., Romano, C., et al.
(2015). Chronic Hepatitis C Virus Infection and Neurological and Psychiatric
Disorders: an Overview. Wjg. 21 (8), 2269–2280. doi:10.3748/wjg.v21.i8.2269

Chiu, W.-C., Tsan, Y.-T., Tsai, S.-L., Chang, C.-J., Wang, J.-D., and Chen, P.-C. (2014).
Health Data Analysis in Taiwan Research, GHepatitis C Viral Infection and the Risk
of Dementia. Eur. J. Neurol. 21 (8), 1068–e59. doi:10.1111/ene.12317

Choi, H. G., Soh, J. S., Lim, J. S., Sim, S. Y., and Lee, S. W. (2021). Association
between Dementia and Hepatitis B and C Virus Infection. Medicine
(Baltimore). 100 (29), e26476. doi:10.1097/md.0000000000026476

Davies, N. M., Holmes, M. V., and Davey Smith, G. (2018). Reading Mendelian
Randomisation Studies: a Guide, Glossary, and Checklist for Clinicians. BMJ.
362, k601. doi:10.1136/bmj.k601

Forton, D. M., Allsop, J. M., Main, J., Foster, G. R., Thomas, H. C., and Taylor-
Robinson, S. D. (2001). Evidence for a Cerebral Effect of the Hepatitis C Virus.
The Lancet. 358 (9275), 38–39. doi:10.1016/s0140-6736(00)05270-3

Gochee, P. A., Powell, E. E., Purdie, D. M., Pandeya, N., Kelemen, L., Shorthouse,
C., et al. (2004). Association Between Apolipoprotein E ε4 and
Neuropsychiatric Symptoms During Interferon α Treatment for Chronic
Hepatitis C. Psychosomatics. 45 (1), 49–57. doi:10.1176/appi.psy.45.1.49

Hishiki, T., Shimizu, Y., Tobita, R., Sugiyama, K., Ogawa, K., Funami, K., et al.
(2010). Infectivity of Hepatitis C Virus Is Influenced by Association with
Apolipoprotein E Isoforms. J. Virol. 84 (22), 12048–12057. doi:10.1128/jvi.
01063-10

Ishigaki, K., Akiyama, M., Kanai, M., Takahashi, A., Kawakami, E., Sugishita, H.,
et al. (2020). Large-scale Genome-wide Association Study in a Japanese
Population Identifies Novel Susceptibility Loci across Different Diseases.
Nat. Genet. 52 (7), 669–679. doi:10.1038/s41588-020-0640-3

Jiang, J., and Luo, G. (2009). Apolipoprotein E but Not B Is Required for the
Formation of Infectious Hepatitis C Virus Particles. J. Virol. 83 (24),
12680–12691. doi:10.1128/jvi.01476-09

Khonsari, R. H., Maylin, S., Nicol, P., Martinot-Peignoux, M., Créange, A.,
Duyckaerts, C., et al. (2015). Sicca Syndrome and Dementia in a Patient
with Hepatitis C Infection: a Case Report with Unusual Bifocal Extrahepatic
Manifestations. J. Maxillofac. Oral Surg. 14 (Suppl. 1), 388–392. doi:10.1007/
s12663-014-0632-x

Lambert, J.-C., Ibrahim-Verbaas, C. A., Ibrahim-Verbaas, C. A., Harold, D., Naj, A.
C., Sims, R., et al. (2013). Meta-Analysis of 74,046 Individuals Identifies 11 New
Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 45 (12), 1452–1458.
doi:10.1038/ng.2802

Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M., and He, X. (2020).
Mendelian Randomization Accounting for Correlated and Uncorrelated
Pleiotropic Effects Using Genome-wide Summary Statistics. Nat. Genet. 52
(7), 740–747. doi:10.1038/s41588-020-0631-4

O’Beirne, J. P., Chouhan, M., and Hughes, R. D. (2006). The Role of Infection and
Inflammation in the Pathogenesis of Hepatic Encephalopathy and Cerebral

Edema in Acute Liver Failure. Nat. Rev. Gastroenterol. Hepatol. 3 (3), 118–119.
doi:10.1038/ncpgasthep0417

Sekula, P., Del Greco M, F., Pattaro, C., and Köttgen, A. (2016). Mendelian
Randomization as an Approach to Assess Causality Using Observational
Data. Jasn. 27 (11), 3253–3265. doi:10.1681/asn.2016010098

Sheridan, D. A., Bridge, S. H., Crossey, M. M. E., Felmlee, D. J., Thomas, H. C.,
Neely, R. D. G., et al. (2014). Depressive Symptoms in Chronic Hepatitis C Are
Associated with Plasma Apolipoprotein E Deficiency.Metab. Brain Dis. 29 (3),
625–634. doi:10.1007/s11011-014-9520-9

Tran, L., Jung, J., Carlin, C., Lee, S., Zhao, C., and Feldman, R. (2021). Use of
Direct-Acting Antiviral Agents and Survival Among Medicare Beneficiaries
with Dementia and Chronic Hepatitis C. Jad. 79 (1), 71–83. doi:10.3233/jad-
200949

Weissenborn, K., Krause, J., Bokemeyer, M., Hecker, H., Schüler, A., Ennen, J. C.,
et al. (2004). Hepatitis C Virus Infection Affects the Brain-Evidence from
Psychometric Studies and Magnetic Resonance Spectroscopy. J. Hepatol. 41 (5),
845–851. doi:10.1016/j.jhep.2004.07.022

Wozniak, M. A., Lugo Iparraguirre, L. M., Dirks, M., Deb-Chatterji, M., Pflugrad,
H., Goldbecker, A., et al. (2016). Apolipoprotein E-Ε4 Deficiency and Cognitive
Function in Hepatitis C Virus-Infected Patients. J. Viral Hepat. 23 (1), 39–46.
doi:10.1111/jvh.12443

Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C., and Bu, G. (2019).
Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting
Strategies. Nat. Rev. Neurol. 15 (9), 501–518. doi:10.1038/s41582-019-0228-7

Yang, Z., Wang, X., Chi, X., Zhao, F., Guo, J., Ma, P., et al. (2016). Neglected but
Important Role of Apolipoprotein E Exchange in Hepatitis C Virus Infection.
J. Virol. 90 (21), 9632–9643. doi:10.1128/jvi.01353-16

Yarlott, L., Heald, E., and Forton, D. (2017). Hepatitis C Virus Infection, and
Neurological and Psychiatric Disorders - A Review. J. Adv. Res. 8 (2), 139–148.
doi:10.1016/j.jare.2016.09.005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huang, Wang, Tang, He and Han. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8288273

Huang et al. Relationships Between HCV and AD

181

https://doi.org/10.3748/wjg.v21.i8.2269
https://doi.org/10.1111/ene.12317
https://doi.org/10.1097/md.0000000000026476
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1016/s0140-6736(00)05270-3
https://doi.org/10.1176/appi.psy.45.1.49
https://doi.org/10.1128/jvi.01063-10
https://doi.org/10.1128/jvi.01063-10
https://doi.org/10.1038/s41588-020-0640-3
https://doi.org/10.1128/jvi.01476-09
https://doi.org/10.1007/s12663-014-0632-x
https://doi.org/10.1007/s12663-014-0632-x
https://doi.org/10.1038/ng.2802
https://doi.org/10.1038/s41588-020-0631-4
https://doi.org/10.1038/ncpgasthep0417
https://doi.org/10.1681/asn.2016010098
https://doi.org/10.1007/s11011-014-9520-9
https://doi.org/10.3233/jad-200949
https://doi.org/10.3233/jad-200949
https://doi.org/10.1016/j.jhep.2004.07.022
https://doi.org/10.1111/jvh.12443
https://doi.org/10.1038/s41582-019-0228-7
https://doi.org/10.1128/jvi.01353-16
https://doi.org/10.1016/j.jare.2016.09.005
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Total Brain Volumetric Measures and
Schizophrenia Risk: A Two-Sample
Mendelian Randomization Study
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Lin Ma2, Dianxun Fu2, Jilian Fu2*, Junping Wang2* and Feng Liu2*

1Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China, 2Department of Radiology
and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China, 3Department of
Scientific Research, Tianjin Medical University General Hospital, Tianjin, China, 4National Supercomputer Center in Tianjin, Tianjin,
China

Schizophrenia (SCZ) is an idiopathic psychiatric disorder with a heritable component and a
substantial public health impact. Although abnormalities in total brain volumetric measures
(TBVMs) have been found in patients with SCZ, it is still unknown whether these
abnormalities have a causal effect on the risk of SCZ. Here, we performed a
Mendelian randomization (MR) study to investigate the possible causal associations
between each TBVM and SCZ risk. Specifically, genome-wide association study
(GWAS) summary statistics of total gray matter volume, total white matter volume, total
cerebrospinal fluid volume, and total brain volume were obtained from the United Kingdom
Biobank database (33,224 individuals), and SCZ GWAS summary statistics were provided
by the Psychiatric Genomics Consortium (150,064 individuals). The main MR analysis was
conducted using the inverse variance weighted method, and other MRmethods, including
MR-Egger, weighted median, simple mode, and weighted mode methods, were
performed to assess the robustness of our findings. For pleiotropy analysis, we
employed three approaches: MR-Egger intercept, MR-PRESSO, and heterogeneity
tests. No TBVM was causally associated with SCZ risk according to the MR results,
and no significant pleiotropy or heterogeneity was found for instrumental variables. Taken
together, this study suggested that alterations in TBVMs were not causally associated with
the risk of SCZ.

Keywords: schizophrenia, total brain volumetric measures, genetic, causality, Mendelian randomization

INTRODUCTION

Schizophrenia (SCZ) is one of the most serious mental disorders; it has a high disability rate
worldwide and has brought heavy economic burdens and life pressure to families and society
(Mueser andMcGurk, 2004). SCZ has been shown to have a high rate of heritability (60–80%), much
of which is attributable to common risk alleles, suggesting that the genome-wide association study
(GWAS) can enhance our understanding of the etiology of SCZ (Kahn et al., 2015). The GWAS has
revealed that single-nucleotide polymorphisms (SNPs) at novel loci confer risk for SCZ, and these
results have been obtained by enlarging sample sizes and incorporating more ethnicities (Ripke et al.,
2013; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Lam et al.,
2019).
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In addition to the genetic basis, substantial efforts have been
made in the past decade to elucidate the neural basis of SCZ by
using neuroimaging techniques (Kahn et al., 2015).
Neuroimaging measures can be considered as endophenotypes,
which are quantitative indicators of brain structure or function
that index genetic liability for neuropsychiatric disorders (Meyer-
Lindenberg and Weinberger, 2006). Compared to
neuropsychiatric disorders, endophenotypes are hypothesized
to have less polygenicity, have a greater effect size of
susceptible SNPs, and require smaller sample sizes to discover
the SNPs (Gottesman and Gould, 2003; Meyer-Lindenberg and
Weinberger, 2006). A number of studies have reported alterations
in total brain volumetric measures (TBVMs), such as total gray
matter volume (TGMV), total white matter volume (TWMV),
total cerebrospinal fluid volume (TCSFV), and total brain volume
(TBV), in patients with SCZ. For example, Haijma et al. (2013)
conducted a meta-analysis on TBVMs in more than 18,000
patients and controls, demonstrating a significant reduction in
intracranial volume (ICV, sum of TGMV, TWMV, and TCSFV)
and TBV (sum of TGMV and TWMV) and an increase in TCSFV
in SCZ patients. In addition, progressive decreases in TBV and
ventricular expansions (increased in TCSFV) were found in
longitudinal studies of SCZ (Kempton et al., 2010; Olabi et al.,
2011). However, all these findings were based on observational
studies, which may be limited by the possibility of confounding
factors and reserve causation; thus, it is still unknown whether
TBVM alterations have a causal effect on the risk of SCZ.

Mendelian randomization (MR) is an epidemiological
approach that could overcome the limitations in observation
studies by using genetic variants associated with exposure as
instrumental variables to uncover the causal relationship between
an exposure and an outcome (Lawlor et al., 2008). In addition,
MR can control the confounding factors and reverse causation
that are usually encountered in observation studies. To date, MR
has been successfully applied to assess causal relationships in
pioneer studies of neuropsychiatric diseases (Hartwig et al.,
2017a; Liu et al., 2018; Vaucher et al., 2018; He et al., 2020;
Wang et al., 2020; Zhang et al., 2020). For instance, Hartwig et al.
found a protective effect of C-reactive protein and a risk-
increasing effect of soluble interleukin-6 receptor on SCZ risk
(Hartwig et al., 2017a). Vaucher et al. reported that the use of
cannabis was causally associated with an increased risk of SCZ
(Vaucher et al., 2018). Therefore, in this study, by leveraging data
from the largest GWAS summary statistics on both TBVMs and
SCZ, we performed a two-sample MR study to estimate the causal
effect of TBVMs, including TGMV, TWMV, TCSFV, and TBV,
on the risk of SCZ.

MATERIALS AND METHODS

Study Design
MR is an approach that uses genetic variants as instrumental
variables to investigate the causal relationship between exposures
and outcomes, which should satisfy three principal assumptions:
1) the instrumental variables should be significantly associated
with exposure; 2) the instrumental variables should not be

associated with any confounders; and 3) the instrumental
variables should affect the risk of the outcome only by the
exposure. The second and third assumptions are also
considered independent of pleiotropy. In this study, MR is
based on the publicly available GWAS summary datasets of
TBVMs (Smith et al., 2021) and SCZ (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014), and all
subjects provided informed consent in the original studies.
Specifically, the genetic variants that were significantly
associated with TBVMs were used as instrumental variables to
examine the causal influence of TBVMs on SCZ risk (Figure 1).

Total Brain Volumetric Measure
Genome-Wide Association Study Dataset
The GWAS summary data of TBVMs, including TGMV, TWMV,
TCSFV, and TBV, were downloaded from an open resource
named the Oxford Brain Imaging Genetics (BIG40) web server
(https://open.win.ox.ac.uk/ukbiobank/big40/), which included
GWAS summary statistics with 33,224 individuals in the
United Kingdom Biobank (Smith et al., 2021). The genome-
wide significance threshold was set at p < 5 × 10−8 in the discovery
cohort (N = 22,138) and p < 0.05 in the replication cohort (N =
11,086). Only SNPs that met the significance level in both cohorts
were used as instrumental variables in MR analyses, and these
SNPs were independent and had no linkage disequilibrium, as
described in the original studies (Elliott et al., 2018; Smith et al.,
2021). Detailed information about the instrumental variables of
TGMV, TWMV, TCSFV, and TBV is shown in Supplementary
Tables S1-S4.

Genome-Wide Association Study of
Schizophrenia
GWAS summary data regarding SCZ were downloaded from a
meta-analysis provided by the Schizophrenia Working Group of
Psychiatric Genomics Consortium (https://www.med.unc.edu/
pgc/pgc-workgroups/schizophrenia/), including 36,989 cases
and 113,075 controls of predominantly European ancestry
without population stratification. In total, 128 significant
associations in 108 genetic loci were identified (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014).

Pleiotropy Analysis
Comprehensive pleiotropy analyses were performed to assure
that instrumental variables met the MR assumptions. First, an
MR-Egger intercept test was performed to evaluate the potential
pleiotropic associations of the instrumental variables with known
and unknown confounders (Bowden et al., 2015; Bowden et al.,
2016; Burgess and Thompson, 2017). Second, an MR pleiotropy
residual sum and outlier (MR-PRESSO) analysis was carried out
to detect horizontal pleiotropy (i.e., MR-PRESSO global test)
(Verbanck et al., 2018). Heterogeneity across instrumental
variables is also an indicator of pleiotropy. Thus, Cochran’s Q
test and I2 statistic were calculated to estimate the heterogeneity
(Sun et al., 2021). Specifically, Cochran’s Q test is a conventional
test for heterogeneity and approximately follows a chi-square
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distribution with n-1 degrees of freedom (here, n is the number of
instrumental variables). The I2 index is another measure to
quantify heterogeneity, which divides the difference between
the Q statistic and its degrees of freedom by the Q statistic
itself and then multiplies by 100. The value of the I2 index
ranges from 0 to 100%, with 0%–25%, 25%–50%, 50%–75%,
and 75%–100% representing low, moderate, large, and extreme
heterogeneity, respectively (Liu et al., 2013; He et al., 2020). The
significance threshold of all the MR-Egger intercept, MR-
PRESSO, and Cochran’s Q tests was set at p < 0.05.

Aligning Effect Alleles With Exposure and
Outcome
The effect alleles of the instrumental variables were adjusted to be
associated with increased TBVMs (i.e., the effect estimates of
SNPs were larger than zero). Subsequently, the effect alleles of
these genetic variants were aligned to be consistent with the effect
alleles in the SCZ GWAS dataset. If the instrumental SNPs were
not available in the outcome dataset, a proxy SNP that was in high
linkage disequilibrium (r2 > 0.8) with the requested SNP was
searched instead with the online tool SNiPA (https://snipa.
helmholtz-muenchen.de/snipa3/index.php) (Arnold et al., 2015).

Two-Sample Mendelian Randomization
Analysis
The inverse variance weighted (IVW) method was employed to
estimate the causal effects of TGMV, TWMV, TCSFV, and TBV
on SCZ risk. Specifically, for each TBVM, the effect estimates of
each instrumental variable on TBVMs and SCZ were extracted,
and Wald estimates and their standard errors were then
calculated (Burgess et al., 2017b). The Wald estimates of all
the instrumental variables were combined with a weighted
mean using inverse variance weights. The significance

threshold of the associations between exposures and outcomes
was set at p < 0.05.

Power Analysis
For each TBVM, the proportion of variance explained by each
instrumental variable (R2) was calculated using the following
formula:

R2 � 2 × MAF × (1 −MAF) × β2

2 × MAF × (1 −MAF) × β2 + 2 × MAF × (1 −MAF) × N × se(β)2
where MAF represents the minor allele frequency for a given
SNP, β represents the effect size associated with the TBVM for a
given SNP, se(β) represents the standard error of the effect size
associated with the exposure for a given SNP, and N represents
the sample size of the exposure GWAS data.

Then, the strength of instrument variables can be measured by
F-statistics, which were calculated based on the following
equation:

F � R2 × (N − 2)
1 − R2

where R2 is the proportion of the variance explained by each SNP,
and N represents the sample size of the exposure GWAS data. To
minimize weak instrument bias, SNPs with F-statistics > 10 were
retained for subsequent analyses (Lawlor et al., 2008).

Sensitivity Analysis
A series of sensitivity analyses were conducted to validate the
robustness of the results. First, four different MR methods
including MR-Egger, weighted median, simple mode, and
weighted mode methods were performed to estimate the
causal effect of TBVMs on SCZ risk. Specifically, the MR-
Egger method allows all variants to have pleiotropic effects
and can provide a consistent estimate of the causal effect

FIGURE 1 | Study design based on MR principal assumptions. In this study, MR is based on the publicly available GWAS summary datasets in TBVMs and SCZ.
Specifically, the genetic variants that are significantly associated with TBVMs were used as the instrumental variables to examine the causal influence of TBVMs on SCZ
risk. Abbreviations: SCZ, Schizophrenia; TBVMs, total brain volumetric measures.
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under a weaker instrument strength independent of direct effects
(InSIDE) assumption (Burgess and Thompson, 2017); the
weighted median method can provide valid causal estimates
even if up to 50% of instruments are not valid (Bowden et al.,
2016); and the model-based methods (i.e., simple mode and
weighted mode) use the causal effect estimates for individual
SNPs to form clusters, and the causal effect is estimated in the
largest cluster of SNPs (Hartwig et al., 2017b). Second, a leave-
one-out sensitivity analysis was carried out to identify SNPs that
could potentially bias the causal relationship. To this aim, by
sequentially removing each SNP, we estimated the relationship
between the remaining SNPs and the risk of SCZ using the IVW
method. Finally, reverse causation bias may occur when the
outcome variable is at an earlier time point (i.e., the risk of
SCZ causally influences the changes of each TBVM). Therefore,
we also tested the possibility of reverse causation by treating the
risk of SCZ as an exposure and each TBVM as an outcome.
Specifically, the instrumental variables were the significant
genetic variants associated with SCZ risk, and the same
procedures as the main analyses were used to perform reverse
MR causality detection.

All statistical analyses were conducted using R version 4.0.4 (R
Foundation for Statistical Computing, Vienna, Austria) using the
packages of “TwoSampleMR” (Hemani et al., 2018b) and “MR-
PRESSO” (Verbanck et al., 2018).

RESULTS

Association of Total Brain Volumetric
Measure Variants With Schizophrenia
Only two genetic variants without linkage disequilibrium were
found to be associated with TGMV, and their summary statistics
were extracted from SCZ GWAS data for MR analyses
(Supplementary Table S1). Of the five genetic variants
associated with TWMV, rs742396 was a palindromic SNP.
Thus, we deleted it in the subsequent MR analyses
(Supplementary Table S2). Seven genetic variants were
associated with TCSFV. All seven instrumental SNPs were
located on different chromosomes and were not in linkage
disequilibrium with each other. However, rs4843550 is a
palindromic SNP and was removed from the subsequent MR
analyses. The summary statistics for these TCSFV variants are
shown in Supplementary Table S3. Of the five genetic variants
associated with TBV, the summary statistics for the four variants
could be extracted from the SCZGWAS data. The SNP rs2732714
was not available in the SCZ GWAS data, therefore, we used the
information of its proxy SNP rs113138968, which was in high
linkage disequilibrium (r2 > 0.8), to perform the following
analyses. All five instrumental SNPs were not in linkage
disequilibrium with each other, and none of them were
palindromic SNPs. Detailed information about these five
instrumental SNPs is shown in Supplementary Table S4.

Pleiotropy Analysis
Both the MR-Egger intercept test and MR-PRESSO test showed
no significant pleiotropy for the genetic variants of TBVMs (all ps

> 0.05). Furthermore, Cochran’sQ test and I2 statistic revealed no
significant heterogeneity for these SNPs (Supplementary
Table S5).

Two-Sample Mendelian randomization
Analysis
We performed a two-sample MR analysis by using genetic
variants from TGMV, TWMV, TCSFV, and TBV as
instrumental variables. As shown in Table 1, we did not find
any causal influence on the risk of SCZ with the IVW method
(p > 0.05).

Power Analysis
The explained variances (R2) and F-statistics of each instrumental
variable are shown in Supplementary Tables S1-S4, and the
F-statistics of each instrumental variable were larger than 10,
indicating no weak instrumental bias among these variables.

Sensitivity Analysis
All other MR approaches, including the MR-Egger, weighted
median, simple mode, and weighted mode methods, did not
identify any significant causal effects of TGMV, TWMV, and
TBV on the risk of SCZ (Table 1). Although TCSFV was found to
be causally associated with the risk of SCZ when using the MR-
Egger method (BETA = 0.646, SE = 0.220, p value = 0.042), this
result was not validated by other methods. In leave-one-out
sensitivity analyses, no genetic variants could significantly
affect the MR estimates (Figure 2). For the reverse MR
causality analysis, 111 leading SNPs associated with SCZ risk
were extracted from the GWAS summary data of TBVMs.
Among them, ten palindromic SNPs were removed, and the
remaining 101 SNPs were retained for subsequent analyses
(Supplementary Table S6). All the MR methods indicated
that there was no causal influence of any TBVM on SCZ risk
(Supplementary Table S7).

DISCUSSION

SCZ is a chronic, complex mental disorder characterized by an
array of symptoms, including delusions, hallucinations,
disorganized speech, and impaired cognitive ability, that
typically emerges in late adolescence and early adulthood
(Mueser and McGurk, 2004; Sheffield and Barch, 2016;
Marder and Cannon, 2019; McCutcheon et al., 2020). Several
lines of evidence have suggested that structural brain
abnormalities play an important role in the pathology of SCZ
(Okada et al., 2016; Zhao et al., 2018; Kuo and Pogue-Geile, 2019).
Using neuroimaging methods, some researchers found TBVM
abnormalities in patients with SCZ relative to age-matched
healthy controls (Staal et al., 1998; Haijma et al., 2013), and
progressive reductions in TBVMs might be associated with
disease progression (Kempton et al., 2010). However, evidence
has pointed toward the possibility that antipsychotic drugs might
have an effect on TBVM alterations (Olabi et al., 2011; Guo et al.,
2015; Emsley et al., 2017). In addition, as a risk factor for SCZ,
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experience with cannabis use could also lead to brain structural
alterations (Kumra et al., 2012; Rapp et al., 2012; Navarri et al.,
2022). Hence, the causality between the changes in TBVMs and
the risk of SCZ remains largely unclear.

In this study, we aimed to explore whether there is a causal
effect of changes in TBVMs on the risk of SCZ by using MR, one
of the powerful genetic-epidemiological approaches. Here, we
used four reliable TBVMs (TGMV, TWMV, TCSFV, and TBV)
derived from structural neuroimaging data. Specifically, genetic
variants of TGMV, TWMV, TCSFV, and TBV without any
pleiotropy and heterogeneity were selected as the instrumental

variables, and five MRmethods were used to ensure the reliability
of the results. Different from the observational studies, no
significant result was found using MR between any TBVMs
and SCZ risk. The possible explanations for the difference are
as follows: 1) the substantial brain structural heterogeneity exists
across the individuals with SCZ (Alnæs et al., 2019). The changes
in TBVMs might not be a sensitive risk factor for SCZ, since
alterations (increase or decrease) in the volume of some specific
brain regions have been reported in patients with SCZ (Kuo and
Pogue-Geile, 2019); 2) some observational studies showed that
the decrease in TBVMs in SCZ might be the result of

TABLE 1 | Results of the causal effect of TBVMs on SCZ risk.

MR methods TGMV TWMV TCSFV TBV

BETA SE p value BETA SE p value BETA SE p value BETA SE p value

IVW 0.085 0.163 0.601 0.062 0.132 0.636 -0.089 0.089 0.315 0.114 0.090 0.202
MR-Egger — — — 0.004 0.831 0.997 -0.646 0.220 0.042 1.204 0.914 0.279
Weighted median — — — 0.025 0.122 0.841 0.012 0.088 0.089 0.081 0.094 0.384
Simple mode — — — 0.003 0.178 0.986 0.064 0.127 0.635 0.070 0.141 0.649
Weighted mode — — — 0.001 0.159 0.997 0.060 0.118 0.631 0.064 0.145 0.681

Abbreviations: BETA, regression coefficient; IVW, inverse variance weighted; MR, Mendelian randomization; SE, standard error; TBV, total brain volume; TCSFV, total cerebrospinal fluid
volume; TGMV, total gray matter volume; TWMV, total white matter volume.
Notably, only the IVW method worked when there were two instrumental variables in TGMV-SCZ MR analysis.

FIGURE 2 | Leave-one-out analysis for MR causality analysis between TBVMs and SCZ risk. (A). Leave-one-out analysis for MR causality analysis between TGMV
and SCZ risk. (B). Leave-one-out analysis for MR causality analysis between TWMV and SCZ risk. (C). Leave-one-out analysis for MR causality analysis between TCSFV
and SCZ risk. (D). Leave-one-out analysis for MR causality analysis between TBV and SCZ risk. The red points and red lines represent the BETA and 95% confidence
interval in MR analyses, while the black points and black lines represent the BETA and 95% confidence interval after removing each SNP sequentially. Of note, only
the IVWmethod was used in the leave-one-out sensitivity analysis. Abbreviations: SCZ, Schizophrenia; TBV, total brain volume; TCSFV, total cerebrospinal fluid volume;
TGMV, total gray matter volume; TWMV, total white matter volume.
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antipsychotics, aging, or other unknown confounders (Kumra
et al., 2012; Emsley et al., 2017); and 3) SCZ is a cognitive and
behavioral dysfunction with complex symptoms (Sheffield and
Barch, 2016), the onset of which might be linked to functional
abnormalities rather than structural abnormalities of the brain.
Hence, more attention should be devoted to the changes in
specific brain region volumes by removing the effects of
antipsychotics and aging and the functional neural
mechanisms of SCZ.

Our study design has many advantages. First, the exposure and
outcome datasets were from a large-scale GWAS of TBVMs (N =
33,224) and SCZ (36,989 cases and 113,075 controls). The large
sample sizes of GWAS typically led to higher levels of statistical
power (van der Sluis et al., 2013). Second, we utilized independent
SNPs as the instrumental variables in each MR analysis, which
could effectively avoid the influence caused by linkage
disequilibrium. Third, a series of pleiotropy and sensitivity
analyses based on different principles and assumptions were
carried out to detect pleiotropy and heterogeneity to ensure
that the instrumental variables we used here were reliable
(Burgess et al., 2017a; Hemani et al., 2018a). Finally, to
increase the robustness of the MR results, different methods
were applied to investigate the causal relationship between the
exposures and the outcomes. Assessing the causal relationship by
using a variety of methods is more reliable because the different
MR methods we used here were based on the different
assumptions (Burgess and Thompson, 2017).

Some limitations needed to be addressed in this study. First, the
subjects from the outcome GWAS dataset were of transancestral
descent (both European and East Asian); however, the subjects from
the TBVM GWAS dataset were of pure European descent.
Population stratification might have a potential confounding effect
on the causal estimate. Second, although a series of statisticalmethods
were used to identify pleiotropy, it is impossible to fully remove all
pleiotropy in MR studies. Third, the instrumental variables of
TBVMs were obtained from United Kingdom Biobank GWAS
summary data. The participants in the United Kingdom Biobank
were aged from 45 to 81 years (Smith et al., 2021), which is not the
typical age of onset for SCZ (Howard et al., 2000). The genetic
variants determining TBVMs in childhood and/or adolescence may
differ from those determining TBVMs in adulthood used in this
study. Therefore, it would be better to use instrumental variables from
large-scale TBVMsGWASdata in childhood and/or adolescence that
are not publicly available to date. Fourth, the generalized summary-
based MR (GSMR) method is also a popular MR approach to assess
the causal association between exposure and outcome (Zhu et al.,
2018). The rule of thumb advises that the application of GSMR
requires ten ormore independent genome-wide significant SNPs, but
there were fewer than ten instrumental variables used in each two-
sample MR analysis in our study, especially those of TGMV. Thus,
we could not use the GSMRmethod to test the causal associations of
TBVMs with SCZ risk. Finally, ICV is also an important TBVM, and
alterations in ICV were found in SCZ patients (Haijma et al., 2013).
We did not investigate the causal relationship between ICV and SCZ
risk in this study because there are no GWAS summary data of ICV
in the United Kingdom Biobank database.

CONCLUSION

In conclusion, although the previous neuroimaging studies
showed the changes in TBVMs in patients with SCZ, our MR
results demonstrated that there was no causal relationship
between alterations in TBVMs and the risk of SCZ at the
genetic level. Further studies with independent data are
warranted to confirm these findings.
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A Bidirectional Mendelian
Randomization Study of Selenium
Levels and Ischemic Stroke
Hui Fang†, Weishi Liu†, Luyang Zhang, Lulu Pei, Yuan Gao, Lu Zhao, Rui Zhang, Jing Yang,
Bo Song and Yuming Xu*

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Background: Previous observational studies have shown that circulating selenium levels
are inversely associated with ischemic stroke (IS). Our aims were to evaluate the causal
links between selenium levels and IS, and its subtypes by Mendelian randomization (MR)
analysis.

Methods: We used the two-sample Mendelian randomization (MR) method to determine
whether the circulating selenium levels are causally associated with the risk of stroke. We
extracted the genetic variants (SNPs) associated with blood and toenail selenium levels
from a large genome-wide association study (GWAS) meta-analysis. Inverse variance-
weighted (IVW) method was used as the determinant of the causal effects of exposures on
outcomes.

Results: A total of 4 SNPs (rs921943, rs6859667, rs6586282, and rs1789953)
significantly associated with selenium levels were obtained. The results indicated no
causal effects of selenium levels on ischemic stroke by MR analysis (OR = 0.968, 95%
CI 0.914–1.026, p = 0.269). Meanwhile, there was no evidence of a causal link between
circulating selenium levels and subtypes of IS.

Conclusion: The MR study indicated no evidence to support the causal links between
genetically predicted selenium levels and IS. Our results also did not support the use of
selenium supplementation for IS prevention at the genetic level.

Keywords: selenium, stroke, trace element, cause, Mendelian randomization (MR)

INTRODUCTION

Ischemic stroke (IS) is one of the leading causes of death worldwide and a major cause of
serious long-term disability (Campbell et al., 2019). Although IS mortality has been declining
globally over the past 2 decades, the number of IS incidents, IS survivors, IS-related deaths, and
overall disability-adjusted life years (DALY) lost remains significant and increases year by year
(Krishnamurthi et al., 2013). Therefore, early identification of the subjects with a high risk of
developing or relapsing IS is of great importance. In addition, the benefit of effective
medication for IS (i.e., alteplase) is time-dependent, which limits the wide application of
alteplase practice (Phipps and Cronin, 2020). The major challenge of developing new anti-
stroke drugs is the presence of the blood–brain barrier and blood circulation gaps, as well as the
complexity of signal transduction processes and inflammatory response (Amani et al., 2017;
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Saxton and Sabatini, 2017). Moreover, fast metabolization
clearance from blood circulation and poor transport across
the blood–brain barrier hinder the efficacy of most central
venous system medications (Amani et al., 2017; Amani et al.,
2019). All in all, further investigation of risk factors of IS and
targeted therapy strategies is warranted.

The major modifiable risk factors of IS include hypertension,
diabetes mellitus, hyperlipidemia, and smoking (Go et al., 2014;
Feigin et al., 2016). In addition, some trace elements, particularly
essential trace elements, have been reported to be associated with
IS (Zecca et al., 2004; Scheiber et al., 2014). Selenium is one of the
essential trace elements involved in human physiological
processes, metabolism, antioxidant defense, immune
regulation, and so on (Burk et al., 2014). The main functions
of selenoproteins, the main functional form of selenium, in the
neural cells are modulation of neurogenesis, regulation of Ca2+

channels, and maintenance of the redox balance (Cardoso et al.,
2015). Reported in vitro studies show that selenium protects
mitochondrial functional performance, stimulates mitochondrial
biogenesis, and reduces infarct volume after focal cerebral
ischemia, through an autophagy-dependent mechanism
(Mehta et al., 2012).

Evidence from observational studies indicated that circulating
selenium levels were inversely correlated with certain
cardiovascular outcomes with a possible U-shaped association,
and beneficial effects against IS were found in IS patients as well
(Flores-Mateo et al., 2006; Stranges et al., 2010; Rees et al., 2013).
However, results from clinical trials were controversial.
Specifically, reports of the Selenium and Vitamin E Cancer
Prevention Trial (SELECT) and Nutritional Prevention of
Cancer Trial (NPC) found no beneficial effects on the
incidence and mortality of coronary heart disease and stroke
(Stranges et al., 2006; Lippman et al., 2009). In addition, results
from a population-based survey revealed that blood selenium
concentration might be inversely associated with the prevalence
of stroke, and the relationship was non-linear (Hu et al., 2019).
However, due to selection bias and reverse causation, the
association between selenium levels and the risk of IS may be
overestimated. In addition, whether selenium had different
impacts on IS subtypes remains unclear. Mendelian
randomization (MR), which uses genetic variants as
instrumental variables, is a powerful method for inferring
causal links between exposures and outcomes. MR analysis
uses genetic variants associated with the selenium levels, as the

FIGURE 1 |Main assumptions of the Mendelian randomization study of selenium levels and ischemic stroke. IS, ischemic stroke; LVS, large-vessel atherosclerosis
stroke; CES, cardio-embolic stroke; SVS, small-vessel occlusion stroke.
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FIGURE 2 |Mendelian randomization analysis of the causal effects of selenium levels on ischemic stroke. A total of 4 SNPs significantly associated with selenium
levels were obtained. MR, Mendelian randomization; IS, ischemic stroke; SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidential interval; IVW, inverse
variance-weighted; RAPS, robust adjusted profile score; BWMR, Bayesian weighted Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy
residual sum and outlier; MR-LASSO, Mendelian randomization least absolute shrinkage and selection operator; LVS, large-vessel atherosclerosis stroke; CES,
cardio-embolic stroke; SVS, small-vessel occlusion stroke.
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random allocation in randomized controlled trials, to determine
the causal effect of the selenium levels on IS, and vice versa
(Davies et al., 2018). Since the genes are randomly allocated at
conception, genetically predicted selenium levels are not
associated with any potential confounders. In addition,
random allocation at birth can also avoid the bias caused by
reverse causation, as other factors, like disease status cannot affect
the genes (Davies et al., 2018). MR analysis was established by
three main assumptions (Emdin et al., 2017). First, instrumental
variables were significantly associated with the exposure. Next, no
links between instrumental variables and confounders were
identified. Last, the impact of instrumental variables on
outcome was only via exposure (Figure 1). Therefore, MR
analysis could overcome the limitations of observational
studies and provide insights into the association between
selenium and IS. And our aims were to evaluate the causal
links between selenium levels and IS and their subtypes by
MR analysis.

MATERIALS AND METHODS

Data Sources
The genetic variants associated with selenium levels were
obtained from a large genome-wide association study (GWAS)
meta-analysis of blood selenium (n = 5,477) and toenail selenium
(n = 4,162) levels in people of European ancestry (Evans et al.,
2013; Cornelis et al., 2015). The genetic variants associated with
IS were obtained from a large GWAS by the MEGASTROKE
consortium with 34,217 cases and 406,111 controls (Malik et al.,
2018). Based on the Trial of ORG 10172 in Acute Stroke
Treatment (TOAST) classification, all IS cases could be further
divided into large-vessel atherosclerosis stroke (LVS, n = 4,373),
cardio-embolic stroke (CES, n = 7,193), and small-vessel
occlusion stroke (SVS, n = 5,386) (Adams et al., 1993; Malik
et al., 2018). To perform bidirectional MR analysis, the GWAS of
the blood selenium level was used as the outcome dataset (Evans
et al., 2013).

Sample overlap was calculated in percentages by dividing the
number of participants in the GWAS of selenium levels by the
number of participants in the respective cohorts in the GWAS of
IS and its subtypes (Evans et al., 2013; Cornelis et al., 2015;
Malik et al., 2018). An acceptable level of population overlaps
between selenium and IS and its subtypes GWAS datasets was
0.22–0.63%.

Selection Criteria of Genetic Variants
We selected genetic variants associated with selenium levels,
IS of all causes, LAS, CES, and SVS at genome-wide
significance (p < 5 × 10−8) as instrumental variables. Then
linkage disequilibrium was tested among the preliminarily
selected single-nucleotide polymorphisms (SNPs), and those
with r2 > 0.01 in the 1000 Genome Project of Europeans were
excluded. The proportion of variance (R2) in the selenium
levels explained by the selected genetic variants was
calculated using the following formula: R2 = 2 × β2 × (1-
EAF) × EAF, where β represents the estimated effect of the

genetic variant and EAF represents the effect allele frequency
(Palmer et al., 2012). In addition, F-statistic was calculated
using the following formula: F = R2 × (N-k-1)/k (1-R2), where
R2 represents the proportion of variance explained by the
genetic variants, N represents the sample size, and k
represents the number of included SNPs (Palmer et al.,
2012). The SNPs with an F-statistic <10 were considered
weak instruments and were excluded from the MR analysis
(Burgess et al., 2011).

Then, the corresponding genetic variants were obtained from
the dataset of outcomes (IS or selenium). If selenium-associated
SNPs were not available in the outcome datasets, then a proxy
SNP in linkage disequilibrium (r2 > 0.9) was searched online
(https://ldlink.nci.nih.gov/) as replacement and used in the
further analysis.

All genetic variants were searched in the PhenoScanner V2
database to assess whether those variants were significantly
associated with the risk factors for IS and its subtypes (Kamat
et al., 2019).

Statistical Analysis
All analyses were conducted by R software (version 4.0.3)
with R packages TwoSampleMR, MRPRESSO, and
MendelianRandomization (Yavorska and Burgess, 2017;
Hemani et al., 2018; Verbanck et al., 2018). The estimated
effect for blood and toenail selenium levels was presented as
Z-score units per effect allele (Evans et al., 2013; Cornelis
et al., 2015). Therefore, the Z-score was converted to β and
standard error values by the formulas described previously
(Kho et al., 2019). The inverse variance-weighted (IVW)
method was used as the determinants of the causal effects
of exposures on outcomes (Hemani et al., 2018). We also
performed MR-Egger, simple median, weighted median,
simple mode, weighted mode, robust adjusted profile score
(RAPS), Bayesian weighted Mendelian randomization
(BWMR), Mendelian randomization pleiotropy residual
sum and outlier (MR-PRESSO), and Mendelian
randomization least absolute shrinkage and selection
operator (MR-LASSO) methods (Bowden et al., 2015;
Bowden et al., 2016; Hartwig et al., 2017; Verbanck et al.,
2018; Zhao et al., 2020). Sensitivity tests including the
heterogeneity test (Cochrane’s Q test), pleiotropy test
(MR-Egger intercept test), and leave-one-out test were
performed (Bowden et al., 2015). Bonferroni correction
(corrected p = 0.05/X/Y, where X represents the number of
exposures and Y represents the number of outcomes) was
used for multiple comparisons.

Power Calculation for Bidirectional
Mendelian Randomization Analyses
Statistical power for the bidirectional MR analyses was
calculated by mRnd (Brion et al., 2013). The minimum
effect estimates of selenium levels required to achieve a
power of 80% based on the sample size of the outcome
datasets and the R2 by the IVs were calculated and is given
in Supplementary Table S1.
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RESULTS

The Causal Effects of Selenium Levels on
Ischemic Stroke
A total of 4 SNPs (rs921943, rs6859667, rs6586282, and
rs1789953) significantly associated with selenium levels were
obtained (Table 1). The 4 SNPs explained 5.9% of the variance
in the selenium levels, and the corresponding F-statistic was
about 151.8. Then, we used PhenoScanner V2 to find whether
horizontal pleiotropy existed in the 4 SNPs (Kamat et al., 2019).
We found that rs6586282 was significantly associated with
plasma homocysteine levels, and rs921943 was associated
with height. In MR analysis, the IVW method indicated no
causal effects of selenium levels on IS of all causes (OR = 0.968,
95% CI 0.914–1.026, p = 0.269), LVS (OR = 1.015, 95% CI
0.881–1.170, p = 0.835), CES (OR = 1.031, 95% CI 0.922–1.154,
p = 0.591), and SVS (OR = 0.984, 95% CI 0.861–1.124, p = 0.811)
(Supplementary Table S2 and Figure 2). Heterogeneity tests
indicated no heterogeneities of the genetic variants for IS of all
causes (p = 0.626), LVS (p = 0.472), CES (p = 0.259), and SVS

(p = 0.293) (Supplementary Table S3), and pleiotropy tests
indicated no pleiotropy of the genetic variants for IS of all causes
(p = 0.896), LVS (p = 0.874), CES (p = 0.669), and SVS (p =
0.802) (Supplementary Table S3). Leave-one-out analysis
indicated that the results were still powerful and stable even
if they excluded any single SNP (Supplementary Figure S1).
Likewise, excluding the effect of rs6586282 did not significantly
change the results of MR analysis (Supplementary Figure S1).
Altogether, our results indicated no causal effects of selenium
levels on IS and its subtypes by MR analysis.

The Causal Effects of Ischemic Stroke on
Blood Selenium
To further explore the association between the blood selenium
level and IS and its subtypes, we further performed bidirectional
MR analysis to estimate the causal effects of IS and its subtypes on
blood selenium level. Overall, 9, 4, and 4 SNPs significantly
associated with IS of all causes, LVS, and CES were obtained,
respectively (Supplementary Table S2). No SNPs significantly

TABLE 1 | SNPs significantly associated with selenium levels and included in the MR study.

SNP Nearby
gene

Ch E/O allele EAF N β SE Z-score p-value R2

rs921943 DMGDH 5 T/C 0.29 9,639 0.295 0.022 13.14 1.90 × 10−39 0.0358
rs6859667 HOMER1 5 T/C 0.96 9,639 −0.360 0.052 −6.92 4.40 × 10−12 0.0099
rs6586282 CBS 21 T/C 0.17 9,639 −0.160 0.027 −5.89 3.96 × 10−9 0.0072
rs1789953 CBS 21 T/C 0.14 9,639 0.162 0.029 5.52 3.40 × 10−8 0.0063

SNP, single-nucleotide polymorphism; MR, Mendelian randomization; Ch, chromosome; SE, standardized error; E/O, effect or other; EAF, effect allele frequency.

TABLE 2 | MR results of the effect of IS and its subtypes on selenium levels.

SNP Nearby Gene Ch. E/O Allele EAF N Exposure Outcomea

β SE p β SE p

IS of all causes
rs2758612b PMF1-BGLAP 1 T/C 0.645 440,328 0.065 0.011 3.68 × 10−9 NA NA NA
rs34311906b ANK2 4 C/T 0.402 440,328 0.065 0.011 1.07 × 10−8 NA NA NA
rs2634074b RP11-119H12.3 4 T/A 0.212 440,328 0.094 0.012 5.90 × 10−15 0.018 0.037 0.620
rs2066864 FGG 4 A/G 0.245 440,328 0.063 0.012 3.51 × 10−8 0.036 0.034 0.296
rs11242678 RP11-157J24.2 6 T/C 0.255 440,328 0.072 0.011 2.70 × 10−10 0.031 0.034 0.358
rs2107595 HDAC9 7 A/G 0.167 440,328 0.088 0.013 2.33 × 10−11 −0.034 0.041 0.412
rs473238 WTAPP1 11 T/C 0.133 440,328 0.083 0.015 1.65 × 10−8 0.057 0.046 0.215
rs3184504 SH2B3 12 T/C 0.472 440,328 0.078 0.010 1.23 × 10−14 −0.002 0.029 0.957
rs4942561 LRCH1 13 T/G 0.759 440,328 0.066 0.012 1.77 × 10−8 −0.039 0.033 0.247
LVS
rs7610618b SIAH2 3 T/C 0.013 150,765 0.845 0.149 1.44 × 10−8 NA NA NA
rs2107595 HDAC9 7 A/G 0.168 150,765 0.236 0.032 1.44 × 10−13 −0.034 0.041 0.412
rs10820405 LINC01492 9 G/A 0.815 150,765 0.181 0.033 4.51 × 10−8 −0.083 0.038 0.027
rs476762b MMP3 11 A/T 0.133 150,765 0.201 0.035 1.22 × 10−8 −0.056 0.043 0.189
CES
rs146390073b RGS7 1 T/C 0.022 211,763 0.669 0.120 2.20 × 10−8 NA NA NA
rs2466455 RP11-119H12.3 4 T/C 0.783 211,763 −0.299 0.022 2.75 × 10−41 0.018 0.037 0.626
rs6838973 RP11-119H12.3 4 T/C 0.434 211,763 −0.108 0.020 3.58 × 10−8 −0.014 0.029 0.628
rs12932445 ZFHX3 16 C/T 0.181 211,763 0.176 0.025 6.88 × 10−13 −0.017 0.044 0.696

CES, cardio-embolic stroke; Ch, chromosome; E/O, effect/other; EAF, effect allele frequency; IS, ischemic stroke; LVS, large vessel atherosclerosis stroke; MR, mendelian randomization;
NA, not applicable; SE, standard error; SNP, single nucleotide polymorphism.
arepresented blood selenium level here.
bnot included in the MR analysis.
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associated with SVS were identified. After testing for linkage
disequilibrium, 7, 2, and 3 SNPs significantly associated with IS
of all causes, LVS, and CES remained, respectively (Table 2;
Supplementary Tables S2–S4). By using the IVWmethod, our

results indicated no causal effects of IS of all causes (OR =
0.920, 95% CI 0.622–1.360, p = 0.674), LVS (OR = 1.105, 95%
CI 0.620–1.976, p = 0.732), and CES (OR = 0.962, 95% CI
0.787–1.176, p = 0.706) on the blood selenium level
(Supplementary Tables S2–S4 and Figure 3). Sensitivity
analysis indicated heterogeneities in the analysis of LVS
(p = 0.027) and blood selenium level (Table 3). No
heterogeneities were identified in the analysis of IS of all
cause (p = 0.352) or CES (p = 0.692) (Table 3). The
pleiotropy test indicated no pleiotropy (IS of all causes: p =
0.404; CES: p = 0.672) among the genetic variants (Table 3).
Leave-one-out analysis indicated that the results of our
analysis were powerful (Supplementary Figure S2).
Altogether, our results indicated no causal effects of IS and
its subtypes on the blood selenium level by MR analysis.

FIGURE 3 |Mendelian randomization analysis of the causal effects of ischemic stroke on blood selenium levels. A total of 6, 2, and 3 SNPs significantly associated
with IS of all causes, LVS, and CES were obtained in the reverse Mendelian randomization analysis. MR, Mendelian randomization; IS, ischemic stroke; SNP, single-
nucleotide polymorphism; OR, odds ratio; CI, confidential interval; IVW, inverse variance-weighted; RAPS, robust adjusted profile score; BWMR, Bayesian weighted
Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MR-LASSO, Mendelian randomization least absolute
shrinkage and selection operator; LVS, large-vessel atherosclerosis stroke; CES, cardio-embolic stroke; SVS, small-vessel occlusion stroke.

TABLE 3 | Sensitivity analysis of ischemic stroke and selenium levels.

Pleiotropy Heterogeneity

Intercept p-value Q p-value

Exposures
IS of all causes 0.124 0.404 4.426 0.352
LVS − − 4.887a 0.027
CES 0.027 0.672 0.157 0.692

IS, ischemic stroke; LVS, large vessel atherosclerosis stroke; CE, cardio-embolic stroke.
aby inverse variance weighted method.
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DISCUSSION

By bidirectional MR analysis based on the summarized data of the
GWAS, we found that neither selenium levels were causally
associated with IS and its subtypes nor IS and its subtypes
were causally associated with selenium levels. The results of
our analysis were robust with multiple statistical methods,
such as heterogeneity test, pleiotropy test, and leave-one-out
analysis.

To our knowledge, the present study is the first study to
investigate the causal links between selenium levels and IS and its
subtypes by using the bidirectional MR method. Previously, the
association between selenium levels and IS was controversial and
not well investigated. Prior studies have revealed the potential
protective role of selenium in cardiovascular disease. In a
case–control study with more than 1,000 Chinese subjects,
lower concentrations of selenium were associated with a
higher risk of IS (Wen et al., 2019). The inverse association
between selenium levels and prevalence of IS was also observed in
American subjects (Hu et al., 2019). Nevertheless, Wu et al.
(2021) revealed no association between baseline serum
selenium levels and stroke in a cohort study (Wei et al., 2004).
In a meta-analysis including 12 observational studies, circulating
selenium levels were inversely associated with the risk of stroke
(Ding and Zhang, 2021). However, in a subgroup analysis, the
negative association of selenium levels and stroke was confirmed
in the retrospective study group, but not in the prospective study
group (Ding and Zhang, 2021). Therefore, the association
between selenium levels and IS was controversial and not well
investigated. Studies which demonstrated the association between
selenium levels and IS with different etiologies were rare.
Mironczuk et al. (2021) reported a higher copper-to-selenium
ratio in CES patients but a relatively low copper-to-selenium ratio
in SVS patients.

The association between selenium levels and stroke is
complicated. Selenium is an essential trace element of the
human body and shows antioxidant activity by scavenging free
radicals (Fang et al., 2002). In the rodent IS model, pretreatment
of selenium had significant protective effects on the activity of
catalase, superoxide dismutase, and glutathione peroxidase
(Ansari et al., 2004). In addition, selenium pretreatment
significantly improved hypoxia/ischemia-induced neuron death
and reduced infarction volume by alleviating oxidative stress and
maintaining mitochondrial function (Mehta et al., 2012).
However, the beneficial effect of selenium could be attenuated
or even eliminated because of the increasing inflammation and
oxidative stress caused by stroke (Ding and Zhang, 2021).
Moreover, excess blood selenium concentration (130–150 μg/L)
might be associated with minimal mortality (Rayman, 2012).

Gender differences could be a reason for the null finding. Hu
et al. (2021) reported a negative association between selenium
levels and the first stroke in males but not in females. Different
sources (plasma, whole blood, diet, and environment) of selenium
used in different studies could be another reason for the null
finding and the discrepancy between the present and previous
studies (Hu et al., 2017; Merrill et al., 2017; Hu et al., 2019; Wen
et al., 2019; Xiao et al., 2019; Hu et al., 2021). Then, regarding the

effect of IS on selenium levels, lower selenium levels were
observed among acute IS patients in a retrospective study
(Angelova et al., 2008). But our analysis provided no evidence
of causal effects of IS on selenium levels. Wu et al. (2021) reported
genetically predicted selenium levels were negatively causally
associated with total cholesterol and low-density lipoprotein
cholesterol, which were risk factors for IS (Diener and
Hankey, 2020). Furthermore, selenium was reported to be
positively correlated with systemic arterial function (Chan
et al., 2012). Because previous studies reported non-linear
association (including J-shaped and U-shaped) between
selenium levels and stroke, the links between selenium levels
and IS are rather complicated and still need further investigation
(Bleys et al., 2008; Hu et al., 2017; Hu et al., 2019; Hu et al., 2021).

Given the antioxidant activity of selenium and selenoproteins,
selenium supplementation was proposed as a potential strategy
for the prevention of multiple disorders, like IS, osteoarthritis,
rheumatoid arthritis, hypothyroidism, and prostate cancer
(Sanmartin et al., 2011). Regarding stroke, selenium
supplementation directly into the brain induced the expression
of antioxidant glutathione peroxidase 4, which further inhibited
the ferroptosis of neurons in a brain hemorrhage model (Alim
et al., 2019). In a clinical trial of 29,584 Chinese people, the group
receiving selenium supplements for a period of 5 years had a
reduction in stroke mortality (9%), but no statistical significance
was identified (Mark et al., 1998). Through a secondary analysis
of the Nutritional Prevention of Cancer Trial, Stranges et al
demonstrated no beneficial effect of selenium supplementation
on stroke or cardiovascular disease incidence (Stranges et al.,
2006). By bidirectional MR analysis, our results did not support
the effectiveness of selenium supplementation in the prevention
of IS and its subtypes at the genetic level. Given the impact of
selenium levels on blood lipids and arterial function (Chan et al.,
2012; Wu et al., 2021), the efficacy of selenium supplementation
in subjects with hyperlipidemia or atherosclerotic lesions needed
further investigation.

There were some limitations to our study. First, only subjects
with European ancestry were included in the MR analysis. The
prevalence and incidence of IS vary with ethnicity and so do the
proportions of the subtypes of IS (Kim and Kim, 2014). Studies
of Western populations indicated CES was the most common
subtype of IS, while studies in Asian countries reported a higher
prevalence of LVS than CES (Kolominsky-Rabas et al., 2001;
Tsai et al., 2013). And the ethnicity differences among the SNPs
associated with selenium levels also exist (Supplementary Table
S5). Therefore, the results of this study needed further validation
in Asian or African people. Second, despite including the genetic
variants significantly associated with selenium levels from the
largest GWAS of selenium levels, only 4 SNPs were finally
included in MR analysis. While the 4 SNPs explained
approximately 5.9% of the variance of selenium levels and
the F-statistic of each SNP was more than 10. Therefore,
more genetic variants associated with selenium levels, both
blood and toenail selenium levels, need to be identified in the
future. Third, pleiotropy, which is inevitable in MR analysis,
may overestimate the effect of the exposure on the outcome. To
eliminate the impact of pleiotropy as much as possible, we
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sought to identify potential pleiotropic SNPs before the MR
analysis. By PhenoScanner, we found one SNP significantly
associated with homocysteine. In addition, we performed a
pleiotropy test by MR-Egger intercept, and no pleiotropy was
found in the present study. Fourth, regarding outcome datasets
of selenium levels, only blood selenium levels were used in the MR
analysis. So, the causal effects of IS and its subtypes on toenail
selenium levels are still unclear. Last, although our analysis
suggested no effectiveness of selenium supplementation for
patients with IS at the genetic level, large randomized controlled
trials are needed to investigate the efficacy and safety of selenium
supplementation for IS patients.

CONCLUSION

In conclusion, our bidirectional MR study provides no evidence
to support the causal links between genetically predicted selenium
levels and IS. Our results also did not support the use of selenium
supplementation for IS prevention at the genetic level. Clinical
trials with high quality and large sample size are warranted to
further elucidate the underlying association between selenium
levels and IS and the clinical benefit of selenium supplementation
for the prevention of IS.
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levels. (D) Funnel plot analysis of the causal effects of ischemic stroke on blood
selenium levels. IS, ischemic stroke; LVS, large-vessel atherosclerosis stroke; CES,
cardio-embolic stroke; SVS, small-vessel occlusion stroke; MR, Mendelian
randomization; SNP, single-nucleotide polymorphism.

REFERENCES

Adams, H. P., Bendixen, B. H., Kappelle, L. J., Biller, J., Love, B. B., Gordon, D.
L., et al. (1993). Classification of Subtype of Acute Ischemic Stroke.
Definitions for Use in a Multicenter Clinical Trial. TOAST. Trial of Org
10172 in Acute Stroke Treatment. Stroke 24, 35–41. doi:10.1161/01.str.24.
1.35

Alim, I., Caulfield, J. T., Chen, Y., Swarup, V., Geschwind, D. H., Ivanova, E., et al.
(2019). Selenium Drives a Transcriptional Adaptive Program to Block
Ferroptosis and Treat Stroke. Cell 177, 1262–1279. doi:10.1016/j.cell.2019.
03.032

Amani, H., Habibey, R., Hajmiresmail, S. J., Latifi, S., Pazoki-Toroudi, H., and
Akhavan, O. (2017). Antioxidant Nanomaterials in Advanced Diagnoses and
Treatments of Ischemia Reperfusion Injuries. J. Mater. Chem. B 5, 9452–9476.
doi:10.1039/c7tb01689a

Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S. J., Akhavan, O., Mashaghi, A.,
et al. (2019). Selenium Nanoparticles for Targeted Stroke Therapy through
Modulation of Inflammatory and Metabolic Signaling. Sci. Rep. 9, 6044. doi:10.
1038/s41598-019-42633-9

Angelova, E. A., Atanassova, P. A., Chalakova, N. T., and Dimitrov, B. D. (2008).
Associations between Serum Selenium and Total Plasma Homocysteine during
the Acute Phase of Ischaemic Stroke. Eur. Neurol. 60, 298–303. doi:10.1159/
000157884

Ansari, M. A., Ahmad, A. S., Ahmad, M., Salim, S., Yousuf, S., Ishrat, T., et al.
(2004). Selenium Protects Cerebral Ischemia in Rat Brain Mitochondria. Bter
101, 73–86. doi:10.1385/BTER:101:1:73

Bleys, J., Navas-Acien, A., and Guallar, E. (2008). Serum Selenium Levels and All-
Cause, Cancer, and Cardiovascular Mortality Among US Adults. Arch. Intern.
Med. 168, 404–410. doi:10.1001/archinternmed.2007.74

Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian Randomization
with Invalid Instruments: Effect Estimation and Bias Detection through Egger
Regression. Int. J. Epidemiol. 44, 512–525. doi:10.1093/ije/dyv080

Bowden, J., Davey Smith, G., Haycock, P. C., and Burgess, S. (2016). Consistent
Estimation in Mendelian Randomization with Some Invalid Instruments Using
aWeightedMedian Estimator.Genet. Epidemiol. 40, 304–314. doi:10.1002/gepi.
21965

Brion, M.-J. A., Shakhbazov, K., and Visscher, P. M. (2013). Calculating Statistical
Power in Mendelian Randomization Studies. Int. J. Epidemiol. 42, 1497–1501.
doi:10.1093/ije/dyt179

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7826918

Fang et al. Selenium and Ischemic Stroke

197

https://www.frontiersin.org/articles/10.3389/fgene.2022.782691/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.782691/full#supplementary-material
https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.1161/01.str.24.1.35
https://doi.org/10.1016/j.cell.2019.03.032
https://doi.org/10.1016/j.cell.2019.03.032
https://doi.org/10.1039/c7tb01689a
https://doi.org/10.1038/s41598-019-42633-9
https://doi.org/10.1038/s41598-019-42633-9
https://doi.org/10.1159/000157884
https://doi.org/10.1159/000157884
https://doi.org/10.1385/BTER:101:1:73
https://doi.org/10.1001/archinternmed.2007.74
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyt179
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Burgess, S., Thompson, S. G., and Crp Chd Genetics Collaboration (2011).
Avoiding Bias from Weak Instruments in Mendelian Randomization
Studies. Int. J. Epidemiol. 40, 755–764. doi:10.1093/ije/dyr036

Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L.,
et al. (2014). Selenoprotein P and Apolipoprotein E Receptor-2 Interact at the
Blood-brain Barrier and Also within the Brain to Maintain an Essential
Selenium Pool that Protects against Neurodegeneration. FASEB j. 28,
3579–3588. doi:10.1096/fj.14-252874

Campbell, B. C. V., De Silva, D. A., Macleod, M. R., Coutts, S. B., Schwamm, L. H.,
Davis, S. M., et al. (2019). Ischaemic Stroke. Nat. Rev. Dis. Primers 5, 70. doi:10.
1038/s41572-019-0118-8

Cardoso, B. R., Roberts, B. R., Bush, A. I., and Hare, D. J. (2015). Selenium,
Selenoproteins and Neurodegenerative Diseases. Metallomics 7, 1213–1228.
doi:10.1039/c5mt00075k

Chan, Y.-H., Siu, C.-W., Yiu, K.-H., Chan, H.-T., Li, S.-W., Tam, S., et al. (2012).
Adverse Systemic Arterial Function in Patients with Selenium Deficiency.
J. Nutr. Health Aging 16, 85–88. doi:10.1007/s12603-011-0086-5

Cornelis, M. C., Fornage, M., Foy, M., Xun, P., Gladyshev, V. N., Morris, S., et al.
(2015). Genome-wide Association Study of Selenium Concentrations. Hum.
Mol. Genet. 24, 1469–1477. doi:10.1093/hmg/ddu546

Davies, N. M., Holmes, M. V., and Davey Smith, G. (2018). Reading Mendelian
Randomisation Studies: a Guide, Glossary, and Checklist for Clinicians. BMJ
362, k601. doi:10.1136/bmj.k601

Diener, H.-C., and Hankey, G. J. (2020). Primary and Secondary Prevention of
Ischemic Stroke and Cerebral Hemorrhage. J. Am. Coll. Cardiol. 75, 1804–1818.
doi:10.1016/j.jacc.2019.12.072

Ding, J., and Zhang, Y. (2021). Relationship between the Circulating Selenium
Level and Stroke: A Meta-Analysis of Observational Studies. J. Am. Coll. Nutr.,
1–9. doi:10.1080/07315724.2021.1902880

Emdin, C. A., Khera, A. V., and Kathiresan, S. (2017). Mendelian Randomization.
Jama 318, 1925–1926. doi:10.1001/jama.2017.17219

Evans, D. M., Zhu, G., Dy, V., Heath, A. C., Madden, P. A. F., Kemp, J. P., et al.
(2013). Genome-wide Association Study Identifies Loci Affecting Blood
Copper, Selenium and Zinc. Hum. Mol. Genet. 22, 3998–4006. doi:10.1093/
hmg/ddt239

Fang, Y.-Z., Yang, S., and Wu, G. (2002). Free Radicals, Antioxidants, and
Nutrition. Nutrition 18, 872–879. doi:10.1016/s0899-9007(02)00916-4

Feigin, V. L., Roth, G. A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S.,
et al. (2016). Global burden of Stroke and Risk Factors in 188 Countries, during
1990-2013: a Systematic Analysis for the Global Burden of Disease Study 2013.
Lancet Neurol. 15, 913–924. doi:10.1016/S1474-4422(16)30073-4

Flores-Mateo, G., Navas-Acien, A., Pastor-Barriuso, R., and Guallar, E. (2006).
Selenium and Coronary Heart Disease: a Meta-Analysis. Am. J. Clin. Nutr. 84,
762–773. doi:10.1093/ajcn/84.4.762

Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J.,
et al. (2014). Heart Disease and Stroke Statistics-2014 Update. Circulation 129,
e28. doi:10.1161/01.cir.0000441139.02102.80

Hartwig, F. P., Davey Smith, G., and Bowden, J. (2017). Robust Inference in
Summary Data Mendelian Randomization via the Zero Modal Pleiotropy
assumption. Int. J. Epidemiol. 46, 1985–1998. doi:10.1093/ije/dyx102

Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., et al.
(2018). TheMR-Base Platform Supports Systematic Causal Inference across the
Human Phenome. Elife 7, e34408. doi:10.7554/eLife.34408

Hu, H., Bi, C., Lin, T., Liu, L., Song, Y., Wang, B., et al. (2021). Sex Difference in the
Association between Plasma Selenium and First Stroke: a Community-Based
Nested Case-Control Study. Biol. Sex. Differ. 12, 39. doi:10.1186/s13293-021-
00383-2

Hu, X. F., Sharin, T., and Chan, H. M. (2017). Dietary and Blood Selenium Are
Inversely Associated with the Prevalence of Stroke Among Inuit in Canada.
J. Trace Elem. Med. Biol. 44, 322–330. doi:10.1016/j.jtemb.2017.09.007

Hu, X. F., Stranges, S., and Chan, L. H. M. (2019). Circulating Selenium
Concentration Is Inversely Associated with the Prevalence of Stroke: Results
from the Canadian Health Measures Survey and the National Health and
Nutrition Examination Survey. Jaha 8, e012290. doi:10.1161/JAHA.119.012290

Kamat, M. A., Blackshaw, J. A., Young, R., Surendran, P., Burgess, S., Danesh, J.,
et al. (2019). PhenoScanner V2: an Expanded Tool for Searching Human
Genotype-Phenotype Associations. Bioinformatics 35, 4851–4853. doi:10.1093/
bioinformatics/btz469

Kho, P. F., Glubb, D. M., Thompson, D. J., Spurdle, A. B., and O’Mara, T. A. (2019).
Assessing the Role of Selenium in Endometrial Cancer Risk: A Mendelian
Randomization Study. Front. Oncol. 9, 182. doi:10.3389/fonc.2019.00182

Kim, B. J., and Kim, J. S. (2014). Ischemic Stroke Subtype Classification: an Asian
Viewpoint. J. Stroke 16, 8–17. doi:10.5853/jos.2014.16.1.8

Kolominsky-Rabas, P. L., Weber, M., Gefeller, O., Neundoerfer, B., and
Heuschmann, P. U. (2001). Epidemiology of Ischemic Stroke Subtypes
According to TOAST Criteria. Stroke 32, 2735–2740. doi:10.1161/hs1201.
100209

Krishnamurthi, R. V., Feigin, V. L., Forouzanfar, M. H., Mensah, G. A., Connor,
M., Bennett, D. A., et al. (2013). Global and Regional burden of First-Ever
Ischaemic and Haemorrhagic Stroke during 1990-2010: Findings from the
Global Burden of Disease Study 2010. Lancet Glob. Health 1, e259–e281. doi:10.
1016/S2214-109X(13)70089-5

Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L.
G., et al. (2009). Effect of Selenium and Vitamin E on Risk of Prostate Cancer
and Other Cancers. JAMA 301, 39–51. doi:10.1001/jama.2008.864

Malik, R., Chauhan, G., Chauhan, G., Traylor, M., Sargurupremraj, M., Okada, Y.,
et al. (2018). Multiancestry Genome-wide Association Study of 520,000
Subjects Identifies 32 Loci Associated with Stroke and Stroke Subtypes. Nat.
Genet. 50, 524–537. doi:10.1038/s41588-018-0058-3

Mark, S. D., Wang, W., Mark, J. F., Fraumeni, J. F., Li, J.-Y., Taylor, P. R., et al.
(1998). Do nutritional Supplements Lower the Risk of Stroke or Hypertension?
Epidemiology 9, 9–15. doi:10.1097/00001648-199801000-00005

Mehta, S. L., Kumari, S., Mendelev, N., and Li, P. A. (2012). Selenium Preserves
Mitochondrial Function, Stimulates Mitochondrial Biogenesis, and Reduces
Infarct Volume after Focal Cerebral Ischemia. BMC Neurosci. 13, 79. doi:10.
1186/1471-2202-13-79

Merrill, P. D., Ampah, S. B., He, K., Rembert, N. J., Brockman, J., Kleindorfer, D.,
et al. (2017). Association between Trace Elements in the Environment and
Stroke Risk: The Reasons for Geographic and Racial Differences in Stroke
(REGARDS) Study. J. Trace Elem. Med. Biol. 42, 45–49. doi:10.1016/j.jtemb.
2017.04.003

Mirończuk, A., Kapica-Topczewska, K., Socha, K., Soroczyńska, J., Jamiołkowski,
J., Kułakowska, A., et al. (2021). Selenium, Copper, Zinc Concentrations and
Cu/Zn, Cu/Se Molar Ratios in the Serum of Patients with Acute Ischemic Stroke
in Northeastern Poland-A New Insight into Stroke Pathophysiology. Nutrients
13, 2139. doi:10.3390/nu13072139

Palmer, T. M., Lawlor, D. A., Harbord, R. M., Sheehan, N. A., Tobias, J. H.,
Timpson, N. J., et al. (2012). Using Multiple Genetic Variants as Instrumental
Variables for Modifiable Risk Factors. Stat. Methods Med. Res. 21, 223–242.
doi:10.1177/0962280210394459

Phipps, M. S., and Cronin, C. A. (2020). Management of Acute Ischemic Stroke.
BMJ 368, l6983. doi:10.1136/bmj.l6983

Rayman, M. P. (2012). Selenium and Human Health. The Lancet 379, 1256–1268.
doi:10.1016/S0140-6736(11)61452-9

Rees, K., Hartley, L., Day, C., Flowers, N., Clarke, A., and Stranges, S. (2013).
Selenium Supplementation for the Primary Prevention of Cardiovascular
Disease. Cochrane Database Syst. Rev. 2013, CD009671. doi:10.1002/
14651858.CD009671.pub2

Sanmartin, C., Plano, D., Font, M., and Palop, J. A. (2011). Selenium and Clinical
Trials: New Therapeutic Evidence for Multiple Diseases. Cmc 18, 4635–4650.
doi:10.2174/092986711797379249

Saxton, R. A., and Sabatini, D. M. (2017). mTOR Signaling in Growth, Metabolism,
and Disease. Cell 168, 960–976. doi:10.1016/j.cell.2017.02.004

Scheiber, I. F., Mercer, J. F. B., and Dringen, R. (2014). Metabolism and Functions
of Copper in Brain. Prog. Neurobiol. 116, 33–57. doi:10.1016/j.pneurobio.2014.
01.002

Stranges, S., Marshall, J. R., Trevisan, M., Natarajan, R., Donahue, R. P., Combs, G.
F., et al. (2006). Effects of Selenium Supplementation on Cardiovascular Disease
Incidence and Mortality: Secondary Analyses in a Randomized Clinical Trial.
Am. J. Epidemiol. 163, 694–699. doi:10.1093/aje/kwj097

Stranges, S., Navas-Acien, A., Rayman, M. P., and Guallar, E. (2010). Selenium
Status and Cardiometabolic Health: State of the Evidence. Nutr. Metab.
Cardiovasc. Dis. 20, 754–760. doi:10.1016/j.numecd.2010.10.001

Tsai, C.-F., Thomas, B., and Sudlow, C. L. M. (2013). Epidemiology of Stroke and
its Subtypes in Chinese vs white Populations: a Systematic Review. Neurology
81, 264–272. doi:10.1212/WNL.0b013e31829bfde3

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7826919

Fang et al. Selenium and Ischemic Stroke

198

https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1096/fj.14-252874
https://doi.org/10.1038/s41572-019-0118-8
https://doi.org/10.1038/s41572-019-0118-8
https://doi.org/10.1039/c5mt00075k
https://doi.org/10.1007/s12603-011-0086-5
https://doi.org/10.1093/hmg/ddu546
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1016/j.jacc.2019.12.072
https://doi.org/10.1080/07315724.2021.1902880
https://doi.org/10.1001/jama.2017.17219
https://doi.org/10.1093/hmg/ddt239
https://doi.org/10.1093/hmg/ddt239
https://doi.org/10.1016/s0899-9007(02)00916-4
https://doi.org/10.1016/S1474-4422(16)30073-4
https://doi.org/10.1093/ajcn/84.4.762
https://doi.org/10.1161/01.cir.0000441139.02102.80
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.7554/eLife.34408
https://doi.org/10.1186/s13293-021-00383-2
https://doi.org/10.1186/s13293-021-00383-2
https://doi.org/10.1016/j.jtemb.2017.09.007
https://doi.org/10.1161/JAHA.119.012290
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.1093/bioinformatics/btz469
https://doi.org/10.3389/fonc.2019.00182
https://doi.org/10.5853/jos.2014.16.1.8
https://doi.org/10.1161/hs1201.100209
https://doi.org/10.1161/hs1201.100209
https://doi.org/10.1016/S2214-109X(13)70089-5
https://doi.org/10.1016/S2214-109X(13)70089-5
https://doi.org/10.1001/jama.2008.864
https://doi.org/10.1038/s41588-018-0058-3
https://doi.org/10.1097/00001648-199801000-00005
https://doi.org/10.1186/1471-2202-13-79
https://doi.org/10.1186/1471-2202-13-79
https://doi.org/10.1016/j.jtemb.2017.04.003
https://doi.org/10.1016/j.jtemb.2017.04.003
https://doi.org/10.3390/nu13072139
https://doi.org/10.1177/0962280210394459
https://doi.org/10.1136/bmj.l6983
https://doi.org/10.1016/S0140-6736(11)61452-9
https://doi.org/10.1002/14651858.CD009671.pub2
https://doi.org/10.1002/14651858.CD009671.pub2
https://doi.org/10.2174/092986711797379249
https://doi.org/10.1016/j.cell.2017.02.004
https://doi.org/10.1016/j.pneurobio.2014.01.002
https://doi.org/10.1016/j.pneurobio.2014.01.002
https://doi.org/10.1093/aje/kwj097
https://doi.org/10.1016/j.numecd.2010.10.001
https://doi.org/10.1212/WNL.0b013e31829bfde3
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Verbanck, M., Chen, C.-Y., Neale, B., and Do, R. (2018). Detection of Widespread
Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian
Randomization between Complex Traits and Diseases. Nat. Genet. 50,
693–698. doi:10.1038/s41588-018-0099-7

Wei, W.-Q., Abnet, C. C., Qiao, Y.-L., Dawsey, S. M., Dong, Z.-W., Sun, X.-D., et al.
(2004). Prospective Study of Serum Selenium Concentrations and Esophageal
and Gastric Cardia Cancer, Heart Disease, Stroke, and Total Death. Am. J. Clin.
Nutr. 79, 80–85. doi:10.1093/ajcn/79.1.80

Wen, Y., Huang, S., Zhang, Y., Zhang, H., Zhou, L., Li, D., et al. (2019).
Associations of Multiple Plasma Metals with the Risk of Ischemic Stroke:
A Case-Control Study. Environ. Int. 125, 125–134. doi:10.1016/j.envint.2018.
12.037

Wu, Q., Sun, X., Chen, Q., Zhang, X., and Zhu, Y. (2021). Genetically Predicted
Selenium Is Negatively Associated with Serum TC, LDL-C and Positively
Associated with HbA1C Levels. J. Trace Elem. Med. Biol. 67, 126785. doi:10.
1016/j.jtemb.2021.126785

Xiao, Y., Yuan, Y., Liu, Y., Yu, Y., Jia, N., Zhou, L., et al. (2019). CirculatingMultiple
Metals and Incident Stroke in Chinese Adults. Stroke 50, 1661–1668. doi:10.
1161/STROKEAHA.119.025060

Yavorska, O. O., and Burgess, S. (2017). MendelianRandomization: an R
Package for Performing Mendelian Randomization Analyses Using
Summarized Data. Int. J. Epidemiol. 46, 1734–1739. doi:10.1093/ije/
dyx034

Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., and Crichton, R. R. (2004).
Iron, Brain Ageing and Neurodegenerative Disorders. Nat. Rev. Neurosci. 5,
863–873. doi:10.1038/nrn1537

Zhao, J., Ming, J., Hu, X., Chen, G., Liu, J., and Yang, C. (2020). Bayesian Weighted
Mendelian Randomization for Causal Inference Based on Summary Statistics.
Bioinformatics 36, 1501–1508. doi:10.1093/bioinformatics/btz749

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Fang, Liu, Zhang, Pei, Gao, Zhao, Zhang, Yang, Song and Xu. This
is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 78269110

Fang et al. Selenium and Ischemic Stroke

199

https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1093/ajcn/79.1.80
https://doi.org/10.1016/j.envint.2018.12.037
https://doi.org/10.1016/j.envint.2018.12.037
https://doi.org/10.1016/j.jtemb.2021.126785
https://doi.org/10.1016/j.jtemb.2021.126785
https://doi.org/10.1161/STROKEAHA.119.025060
https://doi.org/10.1161/STROKEAHA.119.025060
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1038/nrn1537
https://doi.org/10.1093/bioinformatics/btz749
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The Association Between Vitamin C
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West China Second University Hospital, Sichuan University, Chengdu, China, 4Department of Orthopedics, Research Institute of
Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China

In recent years, many studies have indicated that vitamin C might be negatively associated
with the risk of cancer, but the actual relationship between vitamin C and cancer remains
ambivalent. Therefore, we utilized a two-sample Mendelian randomization (MR) study to
explore the causal associations of genetically predicted vitamin Cwith the risk of a variety of
cancers. Single-nucleotide polymorphisms (SNPs) associated with vitamin C at a
significance level of p < 5 × 10–8 and with a low level of linkage disequilibrium (LD) (r2
< 0.01) were selected from a genome-wide association study (GWAS) meta-analysis of
plasmid concentration of vitamin C consisting of 52,018 individuals. The data of the GWAS
outcomes were obtained from United Kingdom Biobank, FinnGen Biobank and the
datasets of corresponding consortia. In the inverse-variance weight (IVW) method, our
results did not support the causal association of genetically predicted vitamin C with the
risk of overall cancer and 14 specific types of cancer. Similar results were observed in
sensitivity analyses where the weighted median and MR-Egger methods were adopted,
and heterogeneity and pleiotropy were not observed in statistical models. Therefore, our
study suggested that vitamin C was not causally associated with the risk of cancer. Further
studies are warranted to discover the potential protective and therapeutic effects of vitamin
C on cancer, and its underlying mechanisms.

Keywords: vitamin c, cancer, GWAS, SNP, Mendelian randomization

INTRODUCTION

Vitamin C, also called ascorbic acid, is a water-soluble vitamin commonly considered an electron
donor with an antioxidant function that can eliminate fatal reactive oxygen species (ROS) (Lane and
Richardson, 2014). On the other hand, vitamin C can also be a pro-oxidant at a pharmacological
plasma concentration (Padayatty and Levine, 2016). In recent years, many researchers have indicated
that vitamin Cmight be negatively associated with the risk of cancer (Bo et al., 2016; Aune et al., 2018;
Jenkins et al., 2021), but the actual relationship and the underlying mechanisms of vitamin C in the
pathogenesis or therapeutic effect of cancer remain ambivalent.

Cancer is the second-leading cause of death in the USA and causes approximately 600,000
deaths each year (Islami et al., 2020). Thus, prevention and treatment of cancer are of vital
importance. Although cancer is known to be associated with some genetic and environmental

Edited by:
Guiyou Liu,

Tianjin Institute of Industrial
Biotechnology (CAS), China

Reviewed by:
John Frederick Pearson,

University of Otago, New Zealand
Cheryl D. Cropp,

Samford University, United States

*Correspondence:
Lang Qin

cacier@163.com
Hongjing Wang

whjscdx@163.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 02 February 2022
Accepted: 07 April 2022
Published: 05 May 2022

Citation:
Chen H, Du Z, Zhang Y, Li M, Gao R,

Qin L and Wang H (2022) The
Association Between Vitamin C and
Cancer: A Two-Sample Mendelian

Randomization Study.
Front. Genet. 13:868408.

doi: 10.3389/fgene.2022.868408

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8684081

ORIGINAL RESEARCH
published: 05 May 2022

doi: 10.3389/fgene.2022.868408

200

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.868408&domain=pdf&date_stamp=2022-05-05
https://www.frontiersin.org/articles/10.3389/fgene.2022.868408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.868408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.868408/full
http://creativecommons.org/licenses/by/4.0/
mailto:cacier@163.com
mailto:whjscdx@163.com
https://doi.org/10.3389/fgene.2022.868408
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.868408


factors and different cancers may have different risk factors,
some studies suggested that vitamin C may also influence the
development of cancer. However, previous studies have
yielded inconclusive findings on the potential impact of
vitamin C on cancer. One systematic review and
dose–response meta-analysis study revealed that when the
concentration of vitamin C in blood increased to 50 μmol/L,
the relative risk (RR) for total cancer risk was 0.74 (95%
confidence interval (CI): 0.66–0.82) (Aune et al., 2018). On
the other hand, another systematic review that included 19
trials did not support the positive effect of vitamin C
supplementation in patients with cancer on their clinical
status and overall survival (van Gorkom et al., 2019). In
addition, the relationship between vitamin C and cancer
risk may be different in different types of cancer. Vitamin C
has been linked to a lower risk of renal cell carcinoma,
esophageal cancer, colon cancer, breast cancer, endometrial
cancer, and cervical cancer (Bandera et al., 2009; Park et al.,
2010; Fulan et al., 2011; Jia et al., 2015a; Bo et al., 2016).
However, some studies also suggested that supplementary
intake of vitamin C had no relationship with the risk of
pancreatic cancer, bladder cancer, prostate cancer, cervical
cancer, and ovarian cancer (Jiang et al., 2010; Chen et al., 2015;
Cao et al., 2016; Hua et al., 2016; Long et al., 2020). Therefore,
the causal role of vitamin C in the development of cancers
remains unclear and warrants future studies.

A Mendelian randomization (MR) study uses genetic
variation, typically single-nucleotide polymorphisms (SNPs),
associated with an exposure to assess its potential causal
relationship with an outcome. Compared with traditional
observational studies, the MR study provides relatively more
convincing evidence for detecting the association between the
exposure and the outcome. The MR study can minimize the
potential bias generated by potential confounding factors and
reverse causality and will not be affected by disease progression
because the genetic variants that are used as instrument
variables (IVs) in the MR study are strongly and solely
related to the exposure (Little, 2018). Using two-sample MR
analysis, many studies have found a potential relationship
between many risk factors and the risk of cancer (Larsson

et al., 2020; Yuan et al., 2020). However, the causal association
between vitamin C and the risk of cancer has not yet been fully
established using MR analysis. A recent MR study did not
support the association between vitamin C and five types of
cancer, including lung, breast, prostate, colon, and rectal
cancer (Fu et al., 2021), but whether there are causal
associations between vitamin C and other types of cancer
remains unclear.

Therefore, in this study, we aimed to comprehensively explore
the causal associations of genetically predicted vitamin C with the
risk of different types of cancer by utilizing a two-sample
MR study.

MATERIALS AND METHODS

Study Design
In order to obtain reliable results from a two-sample MR study,
the genetic variants used in this study should be in conformity
with three principles (Figure 1), including the relevance
assumption, independence assumption, and exclusion
restriction assumption, which means these genetic variants
should be strongly related to the exposure (i.e., vitamin C), be
not associated with confounding factors of the
exposure–outcome relationship, and have an effect on the
outcome (i.e., cancer) only through the exposure and not any
other pathway (Little, 2018).

Genetic Instrumental Variables for
Vitamin C
The SNPs associated with vitamin C were selected from a
genome-wide association study (GWAS) meta-analysis of
vitamin C (Zheng et al., 2021) consisting of 52,018 individuals
from the following studies: 10,771 participants from the Fenland
study (Ashor et al., 2017); 16,841 participants from the European
Prospective Investigation into Cancer and Nutrition (EPIC)-
InterAct study (Consortium, 2011); 16,756 participants from
the EPIC Norfolk study (Day et al., 1999) (excluding
duplicated samples with EPIC-InterAct); and 7,650

FIGURE 1 | Overview of the design and three key assumptions of the Mendelian randomization study. IVs, instrument variables; SNPs, single-nucleotide
polymorphisms.
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participants from the EPIC-CVD study (Danesh et al., 2007)
(excluding duplicated samples with EPIC-InterAct or EPIC-
Norfolk). A total of 11 independent SNPs were reported to be

related to vitamin C at the genome-wide significance level (p < 5 ×
10−8). Since rs7740812 was correlated (r2 < 0.01) in linkage
disequilibrium (LD) analysis, the remaining 10 SNPs were
included to establish the genetic IVs for vitamin C (Table 1).

Genetic Association Datasets for Cancer
Overall cancer and ten types of site-specific cancer were
included as cancer outcomes in our MR study (Table 2).
GWAS summary statistics on overall cancer and nine site-
specific cancers, including lung, breast, colon, rectum, kidney,
bladder, prostate, ovarian, and uterine/endometrial cancer,
were obtained from the United Kingdom Biobank dataset.
Summary statistics of GWAS on overall cancer and
malignant neoplasm of the bronchus and lung, breast,
pancreas, colon, rectum, kidney, bladder, prostate, ovary,
and corpus uteri were acquired from the FinnGen Biobank
database. Summary statistics of GWAS on lung cancer were
obtained from the International Lung Cancer Consortium
(ILCCO) (Wang et al., 2014). Summary statistics of GWAS
on breast cancer were obtained from the Breast Cancer
Association Consortium (BCAC) (Michailidou et al., 2017).
GWAS summary statistics on pancreatic cancer were obtained
from the Pancreatic Cancer Cohort Consortium (PanScan1)
(Amundadottir et al., 2009). The GWAS summary of prostate
cancer was derived from the Prostate Cancer Association
group to Investigate Cancer Associated Alterations in the
Genome (PRACTICAL) (Schumacher et al., 2018).
Summary statistics of GWAS on ovarian cancer were
obtained from the Ovarian Cancer Association Consortium
(OCAC) (Phelan et al., 2017). In this study, we extracted the
effect estimates and standard errors for each of the 10 vitamin
C–related SNPs from the meta-GWAS summary statistics of
overall cancer risk and site-specific cancer risk.

TABLE 1 | Vitamin C SNPs used to construct the instrument variable.

Chr Position SNP Effect
allele

Other
allele

EAF Beta SE Gene p Value F Statistics

1 2330190 rs6693447 T G 0.551 0.039 0.006 RER1 6.25E-
10

42.25

2 220031255 rs13028225 T C 0.857 0.102 0.009 SLC23A3 2.38E-
30

128.4444

5 138715502 rs33972313 C T 0.968 0.36 0.018 SLC23A1 4.61E-
90

400

5 176799992 rs10051765 C T 0.342 0.039 0.007 RGS14 3.64E-
09

31.04082

11 61570783 rs174547 C T 0.328 0.036 0.007 FADS1 3.84E-
08

26.44898

12 96249111 rs117885456 A G 0.087 0.078 0.012 SNRPF 1.70E-
11

42.25

12 102093459 rs2559850 A G 0.598 0.058 0.006 CHPT1 6.30E-
20

93.44444

14 105253581 rs10136000 A G 0.283 0.04 0.007 AKT1 1.33E-
08

32.65306

16 79740541 rs56738967 C G 0.321 0.041 0.007 MAF 7.62E-
10

34.30612

17 59456589 rs9895661 T C 0.817 0.063 0.008 BCAS3 1.05E-
14

62.01563

Abbreviations: Chr, chromosome; SNP, single-nucleotide polymorphism; EAF, effect allele frequency; SE, standard error.

TABLE 2 | Characteristics of included studies or consortia of cancer.

Type of Cancer Source Year Sample size Population

Overall cancer UKBB 2018 461311 European
FinnGen Biobank 2020 96499 European

Bronchus and lung UKBB 2018 361194 European
FinnGen Biobank 2020 96499 European
ILCCO 2014 27209 European

Breast UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European
BCAC 2017 228951 European

Pancreas PanScan1 2009 3,835 European
FinnGen Biobank 2020 96499 European

Colon UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Rectum UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European

Kidney UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European

Bladder UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Prostate UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European
PRACTICAL 2018 140254 European

Ovary UKBB 2018 463010 European
FinnGen Biobank 2020 96499 European
OCAC 2017 66450 European

Uterus/endometrium UKBB 2018 462933 European
FinnGen Biobank 2020 96499 European

Abbreviations: UKBB, United Kingdom, biobank; ILCCO, international lung cancer
consortium; BCAC, breast cancer association consortium; PanScan1, Pancreatic
Cancer Cohort Consortium GWAS; PRACTICAL, prostate cancer association group to
investigate cancer-associated alterations in the genome; OCAC, ovarian cancer
association consortium.
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TABLE 3 | Associations between genetically predicted vitamin C and risk of cancer.

Type
of cancer

Data
source

Number
of SNPs

Inverse variance weighted MR-Egger Simple mode Weighted median Weighted mode

Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P Or
(95%CI)

P

Overall cancer UKBB 10 0.998 (0.992–1.004) 0.452 1.003 (0.994–1.012) 0.562 0.991 (0.977–1.006) 0.28 1.002 (0.994–1.009) 0.663 1.003 (0.995–1.011) 0.492
FinnGen
Biobank

7 1.046 (0.839–1.304) 0.692 1.107 (0.779–1.573) 0.596 1.073 (0.731–1.574) 0.732 1.076 (0.848–1.367) 0.546 1.077 (0.834–1.392) 0.59

Bronchus and
lung

UKBB 10 0.999 (0.998–1.001) 0.323 1.000 (0.997–1.003) 0.982 0.996 (0.993–1.000) 0.058 1.000 (0.998–1.002) 0.795 1.000 (0.998–1.002) 0.889
FinnGen
Biobank

7 1.035 (0.355–3.017) 0.95 2.274 (0.522–9.903) 0.323 1.414 (0.388–5.156) 0.618 1.517 (0.582–3.957) 0.394 1.590 (0.561–4.505) 0.416

ILCCO 9 1.014 (0.690–1.491) 0.943 1.259 (0.678–2.340) 0.49 1.174 (0.757–1.820) 0.494 1.075 (0.830–1.391) 0.586 1.078 (0.829–1.402) 0.592
Breast UKBB 10 1.002 (0.999–1.005) 0.15 1.002 (0.998–1.007) 0.362 0.999 (0.993–1.006) 0.826 1.002 (0.998–1.006) 0.292 1.002 (0.998–1.007) 0.301

FinnGen
Biobank

7 0.842 (0.470–1.507) 0.562 0.516 (0.246–1.079) 0.139 0.780 (0.381–1.598) 0.523 0.669 (0.430–1.041) 0.075 0.652 (0.420–1.012) 0.105

BCAC 8 1.046 (0.931–1.176) 0.447 1.039 (0.862–1.252) 0.704 1.002 (0.826–1.215) 0.985 1.042 (0.948–1.146) 0.389 1.053 (0.951–1.166) 0.355
Pancreas PanScan1 4 1.440 (0.556–3.731) 0.452 0.612 (0.058–6.485) 0.723 1.253 (0.289–5.439) 0.783 1.249 (0.417–3.746) 0.691 1.173 (0.339–4.060) 0.818

FinnGen
Biobank

7 0.783 (0.230–2.672) 0.697 0.873 (0.120–6.358) 0.898 1.043 (0.130–8.376) 0.969 0.721 (0.177–2.925) 0.647 0.897 (0.210–3.830) 0.888

Colon UKBB 6 0.997 (0.994–0.999) 0.003 1.000 (0.987–1.013) 0.986 0.997 (0.993–1.001) 0.167 0.997 (0.994–1.000) 0.048 0.997 (0.993–1.001) 0.164
FinnGen
Biobank

7 0.624 (0.269–1.445) 0.271 0.590 (0.151–2.297) 0.481 0.633 (0.138–2.889) 0.576 0.616 (0.252–1.503) 0.287 0.619 (0.256–1.497) 0.328

Rectum UKBB 6 0.998 (0.996–1.001) 0.164 0.993 (0.980–1.006) 0.342 0.998 (0.993–1.002) 0.39 0.998 (0.995–1.001) 0.157 0.997 (0.993–1.001) 0.227
FinnGen
Biobank

7 0.831 (0.278–2.490) 0.741 1.287 (0.252–6.556) 0.774 0.361 (0.064–2.027) 0.291 0.971 (0.273–3.457) 0.964 1.055 (0.252–4.418) 0.944

Kidney UKBB 5 1.001 (0.999–1.003) 0.348 1.008 (0.996–1.019) 0.296 1.002 (0.998–1.005) 0.405 1.002 (0.999–1.004) 0.168 1.002 (0.999–1.006) 0.319
FinnGen
Biobank

7 1.019 (0.258–4.032) 0.979 3.268 (0.566–18.852) 0.243 1.411 (0.226–8.812) 0.725 1.875 (0.555–6.342) 0.312 1.936 (0.606–6.192) 0.308

Bladder UKBB 5 0.999 (0.997–1.002) 0.568 1.005 (0.993–1.017) 0.475 1.000 (0.996–1.004) 0.921 1.000 (0.998–1.003) 0.869 1.001 (0.997–1.004) 0.759
FinnGen
Biobank

7 1.177 (0.316–4.384) 0.808 3.023 (0.489–18.67) 0.287 1.916 (0.276–13.28) 0.535 1.694 (0.527–5.442) 0.376 2.039 (0.638–6.515) 0.275

Prostate UKBB 9 1.000 (0.996–1.004) 0.966 1.000 (0.989–1.011) 0.995 1.002 (0.995–1.009) 0.59 1.000 (0.995–1.005) 0.937 1.001 (0.996–1.007) 0.661
FinnGen
Biobank

7 1.393 (0.899–2.156) 0.138 1.491 (0.779–2.854) 0.282 1.389 (0.612–3.150) 0.462 1.396 (0.826–2.362) 0.213 1.428 (0.831–2.455) 0.245

PRACTICAL 10 0.966 (0.886–1.054) 0.438 0.974 (0.850–1.116) 0.715 0.984 (0.823–1.177) 0.863 0.980 (0.880–1.091) 0.709 0.986 (0.876–1.108) 0.814
Ovary UKBB 5 0.998 (0.996–1.000) 0.04 0.996 (0.984–1.007) 0.526 0.997 (0.994–1.001) 0.192 0.998 (0.995–1.000) 0.052 0.997 (0.994–1.000) 0.17

FinnGen
Biobank

7 0.957 (0.260–3.519) 0.947 0.470 (0.068–3.254) 0.479 1.247 (0.124–12.539) 0.857 0.685 (0.148–3.172) 0.628 0.655 (0.117–3.652) 0.646

OCAC 8 0.928 (0.792–1.088) 0.358 0.801 (0.638–1.006) 0.105 1.093 (0.797–1.498) 0.599 0.891 (0.739–1.074) 0.227 0.857 (0.712–1.033) 0.149
Uterus/
endometrium

UKBB 5 1.000 (0.998–1.002) 0.809 1.004 (0.992–1.016) 0.527 1.000 (0.996–1.003) 0.973 1.000 (0.997–1.003) 0.948 1.000 (0.997–1.003) 0.889
FinnGen
Biobank

7 1.230 (0.488–3.101) 0.661 2.922 (0.743–11.488) 0.185 0.862 (0.134–5.553) 0.881 1.864 (0.607–5.723) 0.276 1.940 (0.661–5.696) 0.273

Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; UKBB, UK biobank; ILCCO, international lung cancer consortium; BCAC, breast cancer association consortium; PanScan1, Pancreatic Cancer
Cohort Consortium GWAS; PRACTICAL, prostate cancer association group to investigate cancer-associated alterations in the genome; OCAC, ovarian cancer association consortium.
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Statistical Analysis
An MR analysis was performed utilizing 10 vitamin C–related
SNPs as IVs to evaluate the association of vitamin C with overall
cancer risk and site-specific cancer risk. We used the inverse-
variance weight (IVW) method with random effects to
implement the primary MR analysis. The odds ratio (OR) and
95% CI for risk of overall cancer and site-specific cancer were
estimated.

We then performed sensitivity analyses, including MR-Egger
regression, simple mode, weighted median, and weighted mode
methods to determine whether the IVs can influence cancer only
through their effect on vitamin C. To test bias from pleiotropic
effects, we used MR-Egger regression. In addition, the slope
coefficient from an Egger regression provided a reliable
estimate of any causal effect (Bowden et al., 2015). The
weighted median method could provide a consistent
assessment of the finding if more than half of the weight
comes from valid IVs (Bowden et al., 2016). When the most
common horizontal pleiotropy value was zero regardless of the
type of horizontal pleiotropy, we performed the simple mode
method to offer a consistent assessment (Bowden et al., 2016). In
addition, the weighted mode requires that the largest subset of
instruments identifying the same causal effect estimates is
contributed by valid IVs (Hartwig et al., 2017). A pleiotropy
test was also performed to test whether IVs had horizontal
pleiotropy. We also applied the MR-Pleiotropy Residual Sum
and Outlier (MR-PRESSO) analysis to determine the horizontal

pleiotropy and correct the potential outliers (Verbanck et al.,
2018). In addition, we utilized Cochran’s Q test on the IVW and
MR-Egger estimates to test the heterogeneity of the causal
estimates. We also used a leave-one-out sensitivity test to test
whether the MR outcome was sensitive to its related IV. MR and
sensitivity analyses were performed in R (version 4.0.2) using the
Two-Sample MR package (version 0.5.5) and the MRPRESSO
package (version 1.0).

RESULTS

Our findings did not support the causal association between
vitamin C and the risk of overall cancer in the UK Biobank and
FinnGen Biobank (OR: 0.998, 95% CI: 0.992–1.004, p = 0.452,
and OR: 1.046, 95% CI: 0.839–1.304, p = 0.692, respectively). The
results of MR-Egger, weighted median, simple mode, and
weighted mode analyses were similar to those of the IVW
(Table 3). In sensitivity analysis, heterogeneity was not
detected (Supplementary Table S1). In addition, we did not
detect horizontal pleiotropy via pleiotropy tests andMR-PRESSO
analysis (Supplementary Tables S2, S3). A scatter plot of the
association between vitamin C and overall cancer is shown in
Supplementary Figure S1.

When analyzing the causal relationship between vitamin C
and different types of cancer, our IVW results did not support the
causal association between vitamin C and the risk of any of the

FIGURE 2 | Causal effect estimates of vitamin C on cancer outcomes. SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidence interval; UKBB, UKn
Biobank; ILCCO, International Lung Cancer Consortium; BCAC, Breast Cancer Association Consortium; PanScan1, Pancreatic Cancer Cohort Consortium GWAS;
PRACTICAL, Prostate Cancer Association group To Investigate Cancer-Associated Alterations in the Genome; OCAC, Ovarian Cancer Association Consortium.
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ten types of cancer, including malignant neoplasm of the
bronchus and lung, breast, pancreas, colon, rectum, kidney,
bladder, prostate, ovary, and endometrium (Figure 2). Using
MR-Egger, weighted median, simple mode, and weighted mode
methods, we obtained similar results to those of IVW, which did
not support the causal association between vitamin C and any
type of cancer (Table 3).

In sensitivity analysis of vitamin C and site-specific cancer, our
results did not reveal substantial heterogeneity except for that in
lung cancer and breast cancer (Supplementary Table S1), and a
pleiotropy test using the MR-Egger intercept did not detect any
pleiotropy across the studies (Supplementary Table S2). In MR-
PRESSO analysis, we did not detect horizontal pleiotropy except
for the association between vitamin C and lung cancer in the
ILCCO dataset (Supplementary Table S3). We further found
that rs174547 was a potential outlier (p < 0.01), and after omitting
rs174547, vitamin C was still not associated with the risk of lung
cancer (OR: 0.999, 95% CI: 0.998–1.001, p = 0.481). Details of the
leave-one-out sensitivity test are displayed in Supplementary
Table S4. A scatter plot of the association between vitamin C and
10 types of site-specific cancer is shown in Supplementary
Figures S2–S11.

DISCUSSION

The prevention and therapeutic effects of vitamin C on cancer
have been debated for decades. In this MR study, we
demonstrated that vitamin C was not causally associated with
the risk of cancer. In particular, our findings did not support the
causal association between vitamin C and the risk of overall
cancer or any specific type of cancer, including colon cancer and
ovarian cancer, and the risk of malignant neoplasm of the
bronchus and lung, breast, pancreas, colon, rectum, kidney,
bladder, prostate, ovary, and uterine/endometrium. MR-Egger
regression, simple mode, weighted median, and weighted mode
methods showed similar findings. In addition, in sensitivity
analysis, heterogeneity and horizontal pleiotropy were not
detected in most of our studies.

In general, our findings were in line with those of previous
studies aimed at investigating the association between vitamin C
and cancer. A recent systematic review included 19 clinical trials
that did not support the protective effect of vitamin C
supplementation in patients with cancer on their clinical status
and overall survival (van Gorkom et al., 2019). One meta-analysis
included three studies that indicated vitamin C had no significant
effect on lung cancer incidence (Cortés-Jofré et al., 2020). Ameta-
analysis that included 20 observational studies did not support
the relationship between vitamin C intake and the risk of
pancreatic cancer (Hua et al., 2016). Another meta-analysis of
three prospective cohort studies did not observe an association
between vitamin C intake and the risk of renal cell carcinoma (Jia
et al., 2015b). A meta-analysis involving 16 studies indicated no
effect of vitamin C on reducing the risk of ovarian cancer (RR:
0.95, 95% CI: 0.81–1.11) (Long et al., 2020). In addition, for
prostate cancer, a meta-analysis that summarized nine RCTs
found no relationship between vitamin C intake and the

incidence of prostate cancer (RR: 1.45, 95% CI: 0.92–2.29)
(Jiang et al., 2010). However, some of our results were
inconsistent with those of several observational studies. At the
same time, a meta-analysis involving 13 cohort studies suggested
that supplementary intake of vitamin C could reduce the risk of
colon cancer (RR: 0.81, 95% CI: 0.71–0.92) (Park et al., 2010).
Moreover, targeting female-specific tumors, supplementary
intake of vitamin C could reduce the risk of cervical neoplasia
(OR: 0.58, 95% CI: 0.44–0.75) (Cao et al., 2016). In addition,
another meta-analysis included 12 studies suggesting that vitamin
C could prevent endometrial cancer (OR: 0.85, 95% CI:
0.73–0.98) (Bandera et al., 2009). But, most of the available
clinical studies were cross-sectional, case-control, and cohort
studies, the results of which were easily affected by known and
unknown confounding factors and reverse causality (Bandera
et al., 2009; Bo et al., 2016). Heterogeneity was detected in most of
the studies. In addition, case-control studies were also affected by
recall and selection biases. The current study used MR analysis,
which utilized genetically predicted SNPs as IVs for the exposure,
to explore the causal relationship between exposure and outcome
that could minimize the effect of the potential confounders and
reverse causality. Therefore, the findings of high-quality MR
studies could be more convincing than those of the
aforementioned observational studies. One previous MR study
assessed the relationships between plasma vitamin C levels and
five types of cancer, including lung, breast, prostate, colon, and
rectal cancer. Similar to our findings, the use of vitamin C
supplements was not causally associated with the risk of these
types of cancer (Fu et al., 2021).

Previous experiments have well-investigated the
therapeutic effects of vitamin C and confirmed that vitamin
C is capable of killing cancer cells in vitro and shrinking tumor
size in vivo. Multiple pathways might be involved in the
antitumor effect of vitamin C, including targeting redox
imbalance, acting as an epigenetic regulator and modifying
hypoxia-inducible factor 1 (HIF1) signaling (Cimmino et al.,
2017; Ngo et al., 2019). But, there were few experimental
studies that supported the prevention effect of vitamin C on
the risk of cancer (Reczek and Chandel, 2015). In that case,
vitamin C seemed to be unable to reduce cancer incidence but
could act as an additional therapeutic agent for cancer
treatment. Moreover, even with the usage of supplementary
vitamin C, the plasma vitamin C concentration among a
healthy population was likely unable to reach the dose of
vitamin C utilized in experiments in vivo and in vitro,
which led to the fact that supplementary vitamin C intake
failed to reduce the risk of cancer in the general population.

The current study had several advantages and disadvantages.
A major strength of this study was the MR study design, which
could diminish confounding and reverse causality. Second, in this
study, we broadly assessed the causal relationship of plasma
vitamin C concentrations with the overall and a wide range of
different types of cancer with a large number of cancer cases.
Third, for each type of cancer, we validated our results in at least
two datasets, which improved the robustness of our findings.
However, there were also several limitations to the present study.
First, the sample sizes of several types of cancer cases were small,
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resulting in low precision in the assessment. In that case, we
might have ignored some weak associations. To deal with the
problem, for those MR results generated from GWASs with small
sample sizes, we validated the findings using another GWAS with
a larger sample size. It should also be noted that the analyses are
limited by the potential of the GWAS studies from which the IVs
have been identified. In addition, in our study, the IVs were
extracted from the largest GWAS study of vitamin C, and the
F-statistics for the IVs were over 10, which could reduce the
potential weak instrument bias. Second, our analyses were based
on GWAS of European ancestry, and the results may be different
in different ancestries; hence, our results might not be
generalizable to all populations. Third, our study could only
determine the causal relationship between circulating vitamin
C levels and cancer risk but did not investigate the therapeutic
effect of vitamin C on cancer.

CONCLUSION

This MR study did not support the causal association between
vitamin C and the risk of overall or any specific types of cancer.
Although previous observational studies and experiments
confirmed an anticancer effect of vitamin C, these results
might be influenced by confounding factors and were
unable to illustrate the actual connection between vitamin C
and cancer. Therefore, further studies are warranted to explore
the relationship between vitamin C and the risk of cancer.
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Findings resulting fromwhole-genome sequencing (WGS) have markedly increased due to
the massive evolvement of sequencing methods and have led to further investigations
such as clinical actionability of genes, as documented by the American College of Medical
Genetics and Genomics (ACMG). ACMG’s actionable genes (ACGs) may not necessarily
be clinically actionable across all populations worldwide. It is critical to examine the
actionability of these genes in different populations. Here, we have leveraged a
combined WES from the African Genome Variation and 1000 Genomes Project to
examine the generalizability of ACG and potential actionable genes from four diseases:
high-burden malaria, TB, HIV/AIDS, and sickle cell disease. Our results suggest that
ethnolinguistic cultural groups from Africa, particularly Bantu and Khoesan, have high
genetic diversity, high proportion of derived alleles at low minor allele frequency (0.0–0.1),
and the highest proportion of pathogenic variants within HIV, TB, malaria, and sickle cell
diseases. In contrast, ethnolinguistic cultural groups from the non-Africa continent,
including Latin American, Afro-related, and European-related groups, have a high
proportion of pathogenic variants within ACG than most of the ethnolinguistic cultural
groups from Africa. Overall, our results show high genetic diversity in the present
actionable and known disease-associated genes of four African high-burden diseases,
suggesting the limitation of transferability or generalizability of ACG. This supports the use
of personalized medicine as beneficial to the worldwide population as well as actionable
gene list recommendation to further foster equitable global healthcare. The results point
out the bias in the knowledge about the frequency distribution of these phenotypes and
genetic variants associated with some diseases, especially in African and African ancestry
populations.

Keywords: actionable gene, incidental finding, whole-genome sequencing, next-generation sequencing, genetic
diversity, population genetics actionable gene, population genetics
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INTRODUCTION

NGS analysis contributed to the improvement of patient
treatment and clinical care. This development has bridged the
gap between healthcare and genomics. Furthermore, variant
calling is an important aspect of genomics studies as
polymorphism information can be used to influence the
discovery of actionable pathogenic variants and therefore
impact important clinical decisions. Currently, the definition
of actionable pathogenic variants varies among scholars (Bope
et al., 2019).

The Clinical Genome Resource (ClinGen) presents
actionability as clinically prescribed interventions to a genetic
disorder that is effective for prevention, lowered clinical burden
or delay for a clinical disease, or improved clinical treatments and
outcomes in a previously undiagnosed adult (Hunter et al., 2016).
On the other hand, the 100,000 Genomes Project protocol
presents actionable genes as variants that can significantly
prevent (or result in illness or disability that is clinically
significant, severely life-threatening, and clinically actionable)
disease morbidity and mortality, if identified before symptoms
become apparent. However, in any case, the classification of
variants to be clinically actionable or not dependent and can
only emerge during the process of seeking ethical approval for the
study (Hunter et al., 2016).

Overall, in the current literature and most annotation
databases, the classification of pathogenicity differs (Sherry
et al., 2001; Wang et al., 2010; Landrum et al., 2016; McLaren
et al., 2016). Dorschner et al. (1016) leveraged exome data of
European and African populations to dissect actionable
pathogenic variants, and the result shows that actionable
pathogenic variants were disproportionate between European
and African populations with an estimated frequency of
approximately 3.4 and 1.2%, respectively. This indicates a
deficit in the identification or categorization of pathogenic
variants in African populations. A similar study conducted by
Amendola et al. (2015) also confirmed the findings of Dorschner
et al. (1016). One approach to define actionability is to combine
many annotation pipelines during filtering and prioritization of
mutations, in which casting vote can be applied respectively to
allow better prediction of the targeted variant (Lebeko et al., 2017;
Bope et al., 2019). Furthermore, on top of ethical approval, the
ancestral/derived minor allele frequency of the variants,
segregation evidence, and the number of patients affected with
the variants and their status as a de novo mutation can highly be
considered.

In this study, we provide a broad assessment of the possible
actionability of variants known to be associated with the top four
burden African diseases and a list of actionable genes from the
American College of Medical Genetics and Genomics (ACMG)
using WGS data of 20 worldwide ethnolinguistic cultural groups.
This work aims to 1) perform variant join calling on publicly
available data from the African Genome Variation and the 1000
Genomes Project to examine the evolutionary variation of
pathogenic mutation; 2) perform disease-gene population
structure; and 3) examine the heterozygosity ratio, the
proportion of ancestral/derived alleles, and the distribution of

minor allele frequencies based on selected known disease-genes
from four predominant African burden diseases, HIV/AIDS,
malaria, TB, and sickle cell disease, and a set of known
actionable genes across 20 worldwide ethnolinguistic cultural
groups. These diseases have uniquely shaped ethnolinguistic
culturally specific groups and continental-specific genomic
variations, and therefore offer unprecedented opportunities to
map disease genes.

Our results in support with previous findings indicate higher
genetic diversity in ethnolinguistic cultural groups from Africa,
based on four African burden diseases and associated actionable
genes. The results suggest the limitation of transferability or
generalizability and support the use of personalized medicine
as beneficial to each worldwide population or ethnolinguistic
cultural group. In addition, our results point out the bias in the
knowledge about the frequency distribution of these phenotypes
and genetic variants associated with some diseases, especially in
African and African ancestry populations, suggesting further
examination of actionable gene lists to improve equitable
global healthcare.

RESULTS

Based on the initial sample description of populations and
country labels and leveraging the population culture and
ethnolinguistic information (Gudykunst and Schmidt, 1987;
Michalopoulos, 2012), we grouped 4,932 samples from their
country labels into 20 independent ethnolinguistic cultural
groups (Supplementary Table S1) and performed an
independent joint call (see Materials and Methods), resulting
in 90, 641, and 235 curated polymorphisms. We leveraged the
dbSNPS database in extracting SNPs associated with 77, 50, 75,
460, and 114 genes known to be associated with tuberculosis,
malaria, sickle cell disease, HIV, and ACMG’s actionable genes,
respectively (Table 1), to examine the generalizability and
actionability of these disease-associated genes from 20
worldwide ethnolinguistic cultural groups.

Disease and Actionable Gene-Specific
Population Structure
To better characterize the genetic relatedness, we first conducted
principal component analysis (PCA) on whole-genome SNPs
across all these 20 ethnolinguistic cultural groups
(Supplementary Figure S1). Regardless of ethnolinguistic

TABLE 1 | Number of SNPs after quality control (QC) in each group of genes
associated with HIV, TB, SCD, malaria, and actionable genes.

SNP Gene Disease

649,078 114 ACG
2,735,797 460 HIV
265,427 50 Malaria
4,455,648 75 SCD
2,513,341 77 TB
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cultural groups, the results in Supplementary Figure S1 show a
clear separation between African, European, Indian, and Eastern
Asian groups. Second, based on the extracted disease-specific
SNPs of different diseases, among these 20 different worldwide
ethnolinguistic cultural groups (Materials and Methods), we
performed principal component analysis (PCA). This PCA
produces a set of orthogonal axes for which the remaining
variances in the data are maximized by each successive
dimension. Supplementary Table S2 illustrates the genetics
distance (Fst) based on disease-specific variants among these
20 ethnolinguistic cultural groups. We present our gene-specific
population structure results for HIV (Figure 1A), TB
(Figure 1B), malaria (Figure 1C), sickle cell anemia
(Figure 1D), and ACG (Figure 1E). Our results show that
HIV variation is observed among Bantu, African–American,
Khoesan, and Afro-related ethnolinguistic cultural groups,
while the European group is clustering together (Figure 1A).
Most ethnolinguistic cultural groups from Africa have the highest
HIV gene-specific frequency (Figure 1A), confirming that HIV
infection has a high incidence or prevalence among
ethnolinguistic cultural groups from Africa compared to other
ethnolinguistic cultural groups. Moreover, a variation in HIV-
specific genes shows little overlap between/within ethnolinguistic
cultural groups. The first principal component (PC) separates the
European-related ethnolinguistic cultural group cluster and the
African-related ethnolinguistic cultural cluster from one end to
the other with the Afro-Asiatic ethnolinguistic cultural groups,
the African–American, and one part of the Latin-Americans in
the middle. The second principal component separates the

European-related ethnolinguistic cultural cluster and the East
Asian ethnolinguistic cultural group from one end to the other
with the United Kingdom/United States–Indian group, the South
Asian, and one part of the Latin-American ethnolinguistic
cultural group in the middle. We also observe a cline between
each axis. The dispersion of samples of HIV-specific genes along
the lines suggests the existence of an admixture which may have
occurred between ethnolinguistic cultural groups located on the
same line and added to a strong local adaptation of HIV-specific
genes among ethnolinguistic cultural groups located in the
middle of each cline. One interesting observation is the
intersection of the Latin-American ethnolinguistic cultural
group with the Afro-Asiatic ethnolinguistic cultural groups on
one side and the United Kingdom/United States–Indian and
South Asian ethnolinguistic cultural groups on the other side
which may indicate either a possible existence of HIV-specific
actionable genes overlapping between these mentioned
populations or a differing effect of these genes across these
ethnolinguistic cultural groups. As for HIV, a variation in TB-
specific genes was observed among Bantu and Khoesan and Afro-
related ethnolinguistic cultural groups (Figure 1B), while
European groups are clustering together, except in North
European (explaining the known high incidence of TB in
Central and North Europe). As the same observation for TB is
similar to HIV, then the same comment applies for TB as well.
Malaria-specific worldwide ethnolinguistic cultural groups’
genetic structure (Figure 1C) shows that ethnolinguistic
cultural groups from Africa and African–American
ethnolinguistic cultures are still separated from the rest of the

FIGURE 1 | Principal component analysis (PCA) of genes associated with (A)HIV-specific, (B) TB-specific, (C)malaria-specific, (D) sickle cell disease-specific, and
(E) ACG-specific SNPs and plots of the first and second eigenvectors for 20 ethnolinguistic cultural groups.
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other ethnolinguistic cultural groups. United Kingdom/
United States–Indians and Afro-related, Latin-American, and
all Europeans are clustering together based on malaria-specific
genes, low prevalence, and/or absence of malaria in their
geographic regions, indicating that the malaria-specific genes
found in one of these aforementioned populations may not be
found in the other population. East/South Asians are clustering
apart from ethnolinguistic cultural clusters from Africa and
Europe continents. While it is known that malaria has a high
prevalence among African and Asian populations, the separate
cluster between them may indicate different patterns of linkage
disequilibrium, geographic location, and genetic variation in
malaria-specific genes. As expected, since malaria and sickle
cell disease are known to be genetically correlated, similar
results for Malaria are observed with sickle-cell disease-specific
genes (Figure 1D). The population structure on ACG-specific
genes reveals that Africa and European-related ethnolinguistic
cultural groups, East-Asian ethnolinguistic cultural groups, and
United Kingdom/United States–Indian and South Asian
ethnolinguistic cultural groups are separated and clustered in
three different clusters (Figure 1E). We observed that
African–American and Afro-related ethnolinguistic cultural
groups are in the convex of these three clusters (Figure 1E),
justifying that they are the result of the admixture of these
ethnolinguistic cultural groups considered geographic ancestral
populations. In addition, Latin-America is close to European and
South Asian clusters, as seen from the results of the admixture,
and they are mainly in the convex between East-Asian, South-
Asian, and European groups, and a bit distant to the
ethnolinguistic cultural groups from Africa. This result

indicates that the transferability or generatability of the
actionability of these ACG genes may have differing effects
across 20 worldwide ethnolinguistic cultural groups.

Proportion of Pathogenic Polymorphisms
Within Disease-Associated Genes
Ethnolinguistic cultural groups from Africa including Bantu and
Latin-American and Afro-related groups have a considerable
high proportion of pathogenic variants in these HIV-specific
genes (Figure 2A). We observe that the Khoesan ethnolinguistic
cultural group has a high proportion of pathogenic variants
within TB-specific genes (Figure 2B). Latin-American, Afro-
Asiatic, and African ancestry (African diaspora)-related
ethnolinguistic cultural groups have a high proportion of
pathogenic variants (Figure 2B). The low proportion of
pathogenic variants is observed across all malaria-specific
genes in Bantu, Afro-Asiatic, and Latin-American
ethnolinguistic cultural groups (Figure 2C); however, except
for toll-like receptor 9 (TLR9), FREM3, IL4, ICAM-1, and
nitric oxide synthase 1 (neuronal), the Bantu-related
ethnolinguistic cultural groups and Latin-Americans have a
high proportion of pathogenic variants (Figure 2C). Bantu,
Afro-related ethnolinguistic cultural groups, and Latin
America have a similar low proportion of pathogenic variants
in most of the sickle cell disease-specific genes, except in MY O
7B, CPS1, COL6A3, MTRR, SLC22A5, ABCC1, and RPL3L
(Figure 2D). We observed a considerable high proportion of
pathogenic variants within ACG-specific genes from
ethnolinguistic cultural groups out of the African continent

FIGURE 2 | Proportion of pathogenic variants within (A) HIV-specific, (B) TB-specific, (C) malaria-specific, (D) sickle cell disease-specific, and (E) ACG-specific
(actionable genes) genes among all 20 ethnolinguistic cultural groups.
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including Latin America, Afro-Asiatic, and European-related
ethnolinguistic cultural groups (Figure 2E), while few genes
show a high proportion of pathogenic variants in Niger-Bantu
and African–American groups (Figure 2E).

Distribution of Gene-Specificity in SNP
Frequencies
We observed variations in the distribution of MAF at rare
variants within MAF bin 0.0–0.05 among these 20
ethnolinguistic cultural groups in four African burden diseases
(Supplementary Figures S2A–D) and ACMG’s actionable genes
(Supplementary Figure S2E). BTNL2, MOS, CDSN, USP18,
MCM8, OAS1, COG4, CCL3L1, HLA-G, HLA-E, STT3A,
TMED2, and USP18 have HIV gene-specificity in SNP
frequencies ranging between 5 and 15% (Figure 3A) and those
ethnolinguistic cultural groups from Africa have the highest. A
total of 33 genes have TB gene-specificity in SNP frequencies
between 5 and 20% of which all ethnolinguistic cultural groups
from Africa have the highest (Figure 3B), suggesting that these
genes may harbor common effects and contributions to TB
among African ethnolinguistic cultural groups. The
distribution of malaria gene-specificity in SNP frequencies
from Figure 3C suggests that four genes include GYPB,
FCGR2A, IL13, and FREM3 with gene-specificity ranging
between 4 and 15%, while all sickle cell disease-related genes
(Figure 3D) show low gene-specificity in SNP frequencies
ranging between 0.1 and 0.3% among all 20 ethnolinguistic
cultural groups, but all ethnolinguistic cultural groups from

Africa have the highest frequencies. The distribution of ACG-
gene-specificity in SNP frequencies in Figure 3E indicates that all
ACG genes have gene-specificity in SNP frequencies lower than
0.4% in all 20 ethnolinguistic cultural groups. However, the gene-
specificity in SNP frequencies from most of the ethnolinguistic
cultural groups from Africa are higher than those from non-
African ethnolinguistic cultural groups, supporting a potential
difference effect and contribution of these actionable genes
among worldwide ethnolinguistic cultural groups.
Supplementary Table S3 shows the details of gene-specificity
in SNP frequencies of these ACG and disease burdens across all
these 20 ethnolinguistic cultural groups.

Gene-Specific in Proportion of Derived
Alleles and Relationship Between Derived
and Ethnolinguistic Cultural-Specific Minor
Allele Frequency
Derived alleles are more often minor alleles (<50% allele
frequency) and associated with risk than ancestral alleles (32).
As for the variation observed in the distribution of MAF at rare
variants at low ethnolinguistic and cultural-specific minor allele
frequencies (ranging between 0.0 and 0.1, Supplementary Figure
S3), high variation in the proportion of derived alleles can be
observed in HIV (Supplementary Figure S3A), TB
(Supplementary Figure S3B), malaria (Supplementary Figure
S3C), and sickle cell disease (Supplementary Figure S3D), and a
set of actionable genes (Supplementary Figure S3E) across all
ethnolinguistic cultural groups from Africa compared to the rest

FIGURE 3 |Gene-specificity in SNP minor allele frequency: the distribution of the minor allele frequency at the gene level (A) HIV, (B) TB, (C)malaria, (D) sickle cell
disease, and (E) ACG (actionable genes) among all ethnolinguistic cultural groups.
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of the other ethnolinguistic cultural groups, and that most of the
ethnolinguistic cultural groups from Africa have the highest
proportion of derived alleles in the range of minor allele
frequency bin (0.0–0.1) (Supplementary Figure S3A),
indicating that different mutations and possible selections
occurred in rare variants within genes associated with these
four African burden diseases, and ACMG’s actionable genes
play critical roles and that ethnolinguistic and cultural-specific
risk alleles may differentially contribute to the phenotypic
variations and clinical outcomes.

To obtain gene-specific proportions of derived alleles, derived
allele frequencies were aggregated for all SNPs associated with
each of these disease-specific genes (see Materials and Methods).
For all African burden diseases including HIV (Figure 4A), TB
(Figure 4B), malaria (Figure 4C), and sickle cell diseases
(Figure 4D), we observe that Latin America and most of
Afro-Asiatic, Bantu, and Khoesan ethnolinguistic cultural
groups have a considerable and consistently high proportion
of gene-specific derived alleles. We observe a consistent high
ACG-gene-specific allele in Latin America and most Afro-related
ethnolinguistic cultural groups following most of European-
related ethnolinguistic cultural groups (Figure 4E), while a
low ACG-gene-specific allele is observed in most of African
ethnolinguistic cultural groups. One can expect actionable
genes to have a high proportion of derived alleles; however,
this is not the case for most of African ethnolinguistic cultural
groups, indicating that the current ACG genes were primarily
tailored for non-African ethnolinguistic cultural groups. A full list
of the ethnolinguistic and cultural gene-specific proportions of
derived alleles based on genes associated with these four African

burden diseases and ACMG’s actionable genes can be found in
Supplementary Table S4.

Genetic Diversity: Observed and Expected
Heterozygosity
Gene diversity consists of two elements including the abundance
(or evenness) of the alleles and the number of alleles. The
abundance (or evenness) of the alleles and the number of
alleles would increase the expected heterozygosity. If an
ethnolinguistic cultural group consists of an excess of
homozygotes for different alleles, this leads to low-observed
heterozygosity. In Figure 5, we observe that ethnolinguistic
cultural groups from Africa, particularly Bantus and Khoesan,
have the highest gene diversity in HIV, TB, malaria, sickle cell
disease, and ACG-associated variants (Supplementary Table S5).
This result supports the highest genetic diversity found in
individuals and communities across the African continent and
that the use of personalized medicine will be beneficial to both the
continent and world.

DISCUSSION

In this study, we conducted a joint call of 4,932 samples
representing 20 worldwide ethnolinguistic cultural groups
(Supplementary Table S1), to examine the generalizability
and actionability of 77, 50, 75, 460, and 114 genes known to
be associated with tuberculosis, malaria, sickle cell disease, HIV,
and ACG, respectively (Table 1). To examine the generalizability

FIGURE 4 | (A)HIV, (B) TB, (C)malaria, (D) sickle cell disease, and (E) ACG gene-specific proportion of derived alleles across 20 worldwide ethnolinguistic cultural
groups.
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and actionability of genes, we investigated the distribution of
(Bope et al., 2019) gene-specificity in SNP frequencies, (Hunter
et al., 2016), gene-specificity in the proportion of derived alleles,
and (Sherry et al., 2001) gene-specificity in pathogenic mutations.
In addition, population-specific genetic structures and expected
heterozygosity were observed in all associated SNPs within genes.

The results of HIV/TB indicated that ethnolinguistic cultural
groups including Bantu, Latin American, and Afro-Asiatic have the
highest proportion of pathogenic variants based on 483 HIV-
specific genes. From 77 TB-specific genes, we observed that
Latin American and Afro-Asiatic ethnolinguistic cultural groups
have the highest proportion of pathogenic variants, important
among all African and African diaspora ethnolinguistic cultural
groups, and only Khoesan has a high proportion of pathogenic
variants within TB-specific genes. Most ethnolinguistic cultural
groups from Africa (Bantu and Khoesan) have the highest HIV
and TB gene-specific frequency, indicating that HIV disease risk is
prevalent among African ethnolinguistic cultural groups compared

with other ethnolinguistic cultural groups. Our result identifies
BTNL2,MOS,CDSN,USP18,MCM8,OAS1,COG4, CCL3L1,HLA-
G, HLA-E, STT3A, TMED2, and USP18 to have HIV gene-
specificity in SNP frequencies ranging between 5 and 15% and
those ethnolinguistic cultural groups from Africa have the highest.
In addition, 33 genes have TB gene-specificity in SNP frequencies
ranging between 5 and 20% of which all African ethnolinguistic
cultural groups have the highest frequencies. This suggests that
these genes may harbor a common effect and contribution to TB/
HIV among African ethnolinguistic cultural groups. Furthermore,
HIV/TB gene-specificity has a high proportion of derived alleles at
low minor allele frequency (0.0–0.1) from African ethnolinguistic
cultural groups and that these proportions of derived alleles vary
among African ethnolinguistic cultural groups, suggesting a
possible challenge in enabling cross-population actionable gene
transferability and possible implementation of precision
medicine within different ethnolinguistic cultural groups from
Africa.

FIGURE 5 | Plot expected heterozygosity as a function of observed heterozygosity per gene of specific diseases within ethnolinguistic cultural groups.
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The results of malaria and sickle cell disease indicate the absence
of pathogenic variants in most of the European-related
ethnolinguistic cultural groups and a low proportion of
pathogenic variants across all malaria-specific genes in Bantu,
Afro-Asiatic, and Latin American ethnolinguistic cultural groups,
except for toll-like receptor 9 (TLR9), FREM3, IL4, ICAM-1, and
nitric oxide synthase 1 (neuronal), indicates that Bantu and Latin
America ethnolinguistic cultural groups have a high proportion of
pathogenic variants. Furthermore, Bantu, Afro-Asiatic, and Latin
American ethnolinguistic cultural groups have a similar low
proportion of pathogenic variants in most sickle cell disease-
specific genes, except in MY O 7B, CPS1, COL6A3, MTRR,
SLC22A5, ABCC1, and RPL3L. We identify four genes including
GYPB, FCGR2A, IL13, and FREM3 with malaria gene-specificity in
SNP frequencies ranging between 4 and 15%, while all sickle cell
disease-related genes have low gene-specificity in SNP frequencies
ranging between 0.1 and 0.3% among all 20 ethnolinguistic cultural
groups, but all African and diaspora ethnolinguistic cultural groups
have the highest in that range.

The result on ACG showed a considerably high proportion of
pathogenic variants within ACG-specific genes from non-African
ethnolinguistic cultural groups including Latin American, Afro-
Asiatic, and European compared to most of African-related
ethnolinguistic cultural groups. This result justifies and
indicates that the actionability of these ACG genes may have
heterogeneous effects on worldwide ethnolinguistic cultural
groups, unraveling cross-ethnic group transferability and
generalizability to diverse ethnic groups, particularly African
from ACG-specific actionable genes daunting. Our result
indicates that all ACG genes have gene-specificity in SNP
frequencies lower than 0.4% in all 20 ethnolinguistic cultural
groups. However, the gene-specificity in SNP frequencies from
most of African ethnolinguistic cultural groups are higher than
those from non-African ethnolinguistic cultural groups,
supporting the potential common effect and contribution of
these actionable genes to non-African ethnolinguistic cultural
groups. A high ACG-gene-specific derived allele was observed in
Latin-American and most Afro-related ethnolinguistic cultural
groups following most of European-related ethnolinguistic
cultural groups, while a low ACG--specific derived allele is
observed in most of African ethnolinguistic cultural groups.

We leveraged the dbSNP database to extract SNPs associated
with these genes per disease. The obtained SNPs per disease were
thus extracted from the whole phased data containing 4,932
samples of these 20 ethnolinguistic cultural groups, yielding
five disease-specific phased haplotype datasets. From these
phased haplotype data, we conducted disease gene-specific
population structure, and we examined the distribution and
relationship of derived and minor allele frequency and
estimated the expected and observed heterozygosity.

The result of this study suggests significant genetic variations
among all non-European ethnolinguistic cultural groups, mostly
African ethnolinguistic cultural groups, while all European
ethnolinguistic cultural groups are genetically and consistently
clustering together based on these diseases or actionable-specific
variants, suggesting limitations of cross-population transferability of
actionable or medically relevant genes, given the exceptional

polygenicity of human traits. Furthermore, the result indicates that
African and African diaspora ethnolinguistic cultural groups,
particularly Bantus and Khoesan ethnolinguistic cultural groups,
have the highest gene diversity in HIV, TB, malaria, sickle cell
disease, and ACG-associated variants. This supports the highest
genetic diversity found in individuals and communities across the
African continent. Based on these findings, the use of personalized
medicine including African genomics will be beneficial to both the
continent and world. One of the limitations of this finding is that
although these results depend greatly on laboratory experiments, the
distribution of actionable genes across populations may depend on
continuous genetic diversity, natural selection, and genetic drift. Such
study paves the way for a continuous analysis of disease-specific
actionable genes and their genetic mechanism underpinning those
diseases.

CONCLUDING REMARKS

In conclusion, our findings suggest the highest genetic diversity in
African ethnolinguistic cultural groups in the four African
burden diseases and ACMG’s actionable genes, and that the
distribution of gene-specificity (Bope et al., 2019) in SNP
frequencies (Hunter et al., 2016), in the proportion of derived
alleles, and (Sherry et al., 2001) in pathogenic mutations based on
the obtained 77, 50, 75, 460, and 114 genes was known to
associate with tuberculosis, malaria, sickle cell disease, HIV,
and ACMG’s actionable genes, respectively, indicating
significant variation across 20 worldwide ethnolinguistic
cultural groups. This suggests (Bope et al., 2019) the limitation
of transferability or generalizability; however, the use of
personalized medicine will be beneficial to both the African
continent and worldwide (Hunter et al., 2016), enabling a
recommendation for an African-specific actionable list of
genes which will further improve African and diaspora
healthcare.

MATERIALS AND METHODS

Data Description and Quality Check
The data Binary Alignment Map (BAM) files were obtained from
the 1000 Genomes Project (1KGP) (Siva, 2008) and the African
Genome Variation Project (AGVP) (Gurdasani et al., 2015),
which has recently characterized the admixture across 18
ethnolinguistic groups from sub-Saharan Africa as shown in
Supplementary Table S1. A quality control check was
conducted on the BAM files using SAMtools (Li et al., 2009).
After quality check, a total of 2,504 BAM files from the 1000
Genomes Project and 2,428 BAM files from the AGVP were
retained. Based on initial sample description population and
country labels, we used the population culture and
ethnolinguistic information (Gudykunst and Schmidt, 1987;
Michalopoulos, 2012) to group populations from the country
label into 20 ethnolinguistic cultural groups (Supplementary
Table S1). Supplementary Figure S1 illustrates the genetics
relatedness and variation of these 20 ethnolinguistic cultural
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groups, supporting previous findings (Siva, 2008; Chimusa et al.,
2015; Gurdasani et al., 2015; Choudhury et al., 2020), and
Supplementary File 1 illustrates the genetics distance (Fst)
based on disease-specific variants among the 20 ethnolinguistic
cultural groups.

Variants Discovery Analysis and Annotation
LoFreq, a variant calling tool, was used to conduct joint calls
across 4,932 samples in 20 worldwide ethnolinguistic cultural
groups. The resulting variant sets of all 4,932 samples in the VCF
file were filtered using SAMtools, and 4,932 samples remained
and were considered for downstream analysis.

The resulting joint call VCF file of 4,932 samples and samples were
split into 20 VCF files per ethnolinguistic cultural group as listed in
Supplementary Table S1. The independent gene-based annotation
for each VCF dataset to determine whether SNPs cause protein-
coding change and produce a list of amino acids that are affected was
conducted using ANNOVAR (Wang et al., 2010). The following
setting was used in ANOVA: the population frequency and
pathogenicity for each variant were obtained from 1000 Genomes
exome, Exome Aggregation Consortium (ExAC), targeted exon
datasets, and COSMIC. Gene functions were obtained from
RefGene, and different functional predictions were obtained from
ANNOVAR’s library, which contains up to 21 different functional
scores including SIFT (Ng et al., 2006), LRT (Schwarz et al., 2010),
MutationTaster (Reva et al., 2011), MutationAssessor (Shihab et al.,
2013), FATHMMand FATHMM-MKL (Liu et al., 2011), RadialSVM
(Choi and Chan, 2015), LR (Kim et al., 2017), PROVEAN (Kim et al.,
2017), MetaSVM (Dong et al., 2015), MetaLR (Rentzsch et al., 2018),
CADD (Davydov et al., 2010), GERP++ (Quang et al., 2014), DANN
(Jagadeesh et al., 2016), M-CAP (Ionita-Laza et al., 2016), Eigen (Lu
et al., 2015), GenoCanyon (Adzhubei et al., 2010), Polyphen2-HVAR
and HDIV (Doerks et al., 2002), PhyloP (Garber et al., 2009), and
SiPhy (Loh et al., 2016a). In addition, conservative and segmental
duplication sites were included, and the dbSNP code and clinical
relevance were reported in dbSNP. From each resulting functional
annotated dataset, we independently filtered for the predicted
functional status, of which each predicted functional status is of
“deleterious” (D), “probably damaging” (D), “disease-causing-
automatic” (A), or “disease-causing” (D). The selection of
mutations was carried out using the following approach: first, the
casting vote approach was implemented in our custom Python script,
to retain only a variant if it had at least 17 predicted functional status
“D” or “A” out of 21 was used and second, the retained variants from
each dataset were further filtered for rarity, exonic variants, and
nonsynonymous mutations and with a high-quality call as described
previously, yielding a final candidate list of predicted mutant variants
in each subject group, including the replication group. We report on
the aggregated SiPhy score from all identifiedmutant SNPs within the
gene. The following sections provide details on how SNPs were
mapped to genes.

Phased and Haplotypes Inference
To increase the accuracy, the resulting VCF file, containing 4,932
samples of 20 ethnolinguistic cultural groups, was used to further
conduct quality control in removing all structured, indel, multi-
allelic variants and those with a low minor allele frequency (MAF

<0.05) prior to phasing. We first phased and inferred the
haplotypes using Eagle (Loh et al., 2016b) from the resulting
curated data. We further compared site discordances between
these haplotype panels and independently with their original VCF
file before phasing. The only site with phase switch-errors showed
discrepancies in MAF and was removed.

Disease- and Actionable Gene-Specific
Population Structure
We obtained the list of genes, known as medically actionable, and
Actionable Genome Consortium (ACG) from https://www.coriell.
org/1/NIGMS/Collections/ACMG-73-Genes. The list of genes
associated with four major African diseases including malaria,
TB, HIV, and sickle cell disease was collected from the GWAS
Catalog (https://www.ebi.ac.uk/gwas/), and the extraction was based
on phenotype classification and from databases such DisGeNET
http://www.disgenet.org/and literature. We obtained 50, 77, 460, 75,
and 114 genes known to be associated with tuberculosis, malaria,
sickle cell anemia, HIV, and ACG, respectively. We leveraged the
dbSNP database to extract SNPs associated with these genes per
disease, as shown in Table 1. The obtained SNPs per disease were
extracted from the whole phased data containing 4,932 samples of
these 20 ethnolinguistic cultural groups, yielding five disease-specific
phased haplotype datasets (Table 1).

To evaluate the extent of substructures within disease-specific
polymorphism across worldwide ethnolinguistic cultural groups, we
leverage each constructed disease-specific phased haplotype dataset,
to perform genetic structure analysis based on principal component
analysis (PCA) using smartpca, part of the EIGENSOFT 3.0 package
(Patterson and Price, 2006). Genesis software http://www.bioinf.wits.
ac.za/software/genesis was used to plot PCA.

Proportion of Ancestral/Derived Alleles
Among Risk-Conferring Alleles
Each of these four disease-specific phased haplotype datasets was
used to analyze the fraction of derived and ancestral alleles and at-
risk alleles within each ethnolinguistic cultural group. A previous
work showed that derived alleles are more often minor alleles
(<50% allele frequency) and associated with risk than ancestral
alleles (Gorlova et al., 2012). Therefore, we define risk alleles as
follows: if a gene is reported to increase the risk of disease (odd
ratio >1) from either the DisGeNET or GWAS Catalog, the risk
allele was defined as a minor allele (for all SNPs associated with
the gene); otherwise (odd ratio <1), it is defined as a major allele
(for all SNPs associated with the gene).

The SNP ancestral alleles were downloaded from the Ensembl,
a 59 comparative 32 species alignment (Paten et al., 2008), and we
further checked the SNPs for those present in the dbSNP
database. Each of these four disease-specific phased haplotype
datasets was further annotated using the VCFtools “fillOaa” script
(Danecek et al., 2011) with the ancestral allele recorded using the
“AA” INFO tag. For each disease-specific dataset, we determined
the proportion of risk alleles that were ancestral or derived alleles.
We first computed, for each SNP, the fraction of the ancestral allele,
which was calculated by dividing the number of times the defined
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risk allele matched with the ancestral allele by the total number of
copies of all alternative alleles across all samples (within each
ethnolinguistic cultural group per disease) for a particular SNP.
The fraction of the derived allele is equivalent to one minus the
fraction of the ancestral allele. As mentioned earlier, derived alleles
are more often minor alleles and associated with risk rather than
ancestral alleles. Therefore, we investigated the relationship between
the fraction of derived alleles, at-risk alleles, and ethnolinguistic
cultural group SNP minor allele frequency. To this end, the
alternative (minor) alleles were categorized into six bins, (0–0.05,
>0.05–0.1, >0.1–0.2, >0.2–0.3, >0.3–0.4, and >0.4–0.5) with respect
to each ethnolinguistic cultural dataset frequencies and
independently computed the fractions of derived alleles in each
bin. Furthermore, we computed the fraction of ancestral/derived
alleles for all these known disease-specific genes. To this end, we
aggregated the fraction of ancestral/derived alleles at the SNP-based
level to gene, considering all SNPs located within the genes’
downstream or upstream region (Chimusa et al., 2015).

Distribution of Minor Allele Frequency and
Gene-Specificity in SNP Frequencies
To examine the extent of common variants across these 20
ethnolinguistic cultural groups within a specific disease (TB, HIV,
sickle cell anemia, and malaria) and known actionable genes from
ACG, the distribution of the minor allele frequency was investigated.
To this end, the proportion of minor alleles was categorized into six
bins (0–0.05, >0.05–0.1, >0.1–0.2, >0.2–0.3, >0.3–0.4, and >0.4–0.5)
with respect to each ethnolinguistic cultural group with a disease.
The minor allele frequency (MAF) per SNP for each category was
computed using Plink software (Purcell et al., 2007). Furthermore,
the fraction of gene-specific in SNP frequency for each gene was
computed. To this end, the fraction of gene-specific SNP frequency
was computed, assuming that SNPs in upstream and downstream
within a gene region are close and possibly in linkage disequilibrium
(LD). Minor allele frequency per SNP has aggregated a gene level.

Aggregating SNP Summary Statistics at the
Gene Level
SNP-specific allele frequencies or the proportion of ancestral/
derived alleles from SNPs 40 kb downstream and upstream
within a gene region as per the dbSNP database were
aggregated (Chimusa et al., 2016). Under the null hypothesis,
frequency/proportion Pκ (k = 1,..., L) with a continuous
distribution is uniformly distributed at the interval [0,1]. It
follows that a parametric cumulative distribution function F
can be chosen, and Pκ can be transformed into quantile

according to qκ � F−1(Pκ). The combined frequency/

proportion CP � ∑L

κ
�1 Pκ�
L

√ is a sum of independent and
identically distributed random variables Pκ. To account for the
independence assumption, given the correlation among
neighboring genomic markers (Chimusa et al., 2016), we
implement the Stouffer–Liptak method accounting for spatial
correlations among SNPs within a gene or SNPs within a given
sub-network. The overall statistic can be obtained by P � ϕ(CP),

in which ϕ is the cumulative distribution function of the standard
normal distribution.

Key Points
• Personalized medicine including African genomics will be
beneficial both to the continent and worldwide.

• Generalizability and transferability of actionable genes are
challenging but will improve clinical population healthcare.

• Investigating the distribution of gene-specificity in SNP
frequencies, gene-specificity in proportion of derived
alleles, and gene-specificity in burden of pathogenic
mutations will reveal population-specific actionable genes.
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