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Editorial on the Research Topic

Brain connectivity, dynamics, and complexity

The contributions in this Research Topic collectively explore the nature of

functional brain connectivity and its relation to cognition, emphasizing shared

mechanisms and brain complexity. Results presented here reveal common

themes in how the brain dynamically reorganizes and adapts to task- and

disease-related perturbations.

Some of the contributions present a variety of theoretical and methodological

approaches to studying the relationship between connectivity, dynamics, and complexity.

The articles include a novel multi-fractal functional connectivity estimation to track

changes during visual pattern recognition (Stylianou et al.), a dimensionality reduction

technique to facilitate comparisons of oscillatory patterns across task paradigms and

modalities (Müller et al.), a new adaptation of the dynamic causal modeling (DCM)

approach to capture connectivity changes during more ecological tasks such as movie

watching (Nag and Uludag), a new connectivity method based on the Kuramoto

model of coupled oscillators applied to network-level fMRI data (Bauer et al.), and a

framework to study the relationship between functional connectivity and complexity (Das

and Puthankattil).

From an application perspective, contributions focus on the study of the large-

scale cortical networks supporting cognition, in health and disease, including navigation

subnetworks representing different types of spatial relation representations (Hao

et al.), changes in individual differences along the language network hierarchy and

their potential as biomarkers (Zhang et al.), the adaptation of the dorsal attention

network to demands of a spatial attention task (Machner et al.), the relationship

between memory, depression, and inter-network connectivity (Satz et al.), and the

recovery of cognitive functions and related task networks after anesthesia (Rokos

et al.).

We consider that the integration of these studies has the potential to advance our

understanding of common principles governing the dynamic and complex relationship

between brain connectivity and cognition.
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Distinct and Dissociable EEG
Networks Are Associated With
Recovery of Cognitive Function
Following Anesthesia-Induced
Unconsciousness
Alexander Rokos 1, Bratislav Mišić2, Kathleen Berkun 3, Catherine Duclos 4, Vijay Tarnal 5,
Ellen Janke 5, Paul Picton 5, Goodarz Golmirzaie 5, Mathias Basner 6, Michael S. Avidan 7,
Max B. Kelz 8, George A. Mashour 5 and Stefanie Blain-Moraes 4*

1Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada, 2Neurology and Neurosurgery, McGill
University, Montreal, QC, Canada, 3Cognitive Science, McGill University, Montreal, QC, Canada, 4School of Physical and
Occupational Therapy, McGill University, Montreal, QC, Canada, 5Department of Anesthesiology, Center of Consciousness
Science, University of Michigan Medical School, Ann Arbor, MI, United States, 6Department of Psychiatry, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, PA, United States, 7Department of Anesthesiology, Washington
University School of Medicine, St. Louis, WA, United States, 8Deparment of Anesthesiology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, United States

The temporal trajectories and neural mechanisms of recovery of cognitive function after
a major perturbation of consciousness is of both clinical and neuroscientific interest. The
purpose of the present study was to investigate network-level changes in functional
brain connectivity associated with the recovery and return of six cognitive functions
after general anesthesia. High-density electroencephalograms (EEG) were recorded
from healthy volunteers undergoing a clinically relevant anesthesia protocol (propofol
induction and isoflurane maintenance), and age-matched healthy controls. A battery
of cognitive tests (motor praxis, visual object learning test, fractal-2-back, abstract
matching, psychomotor vigilance test, digital symbol substitution test) was administered
at baseline, upon recovery of consciousness (ROC), and at half-hour intervals up to 3 h
following ROC. EEG networks were derived using the strength of functional connectivity
measured through the weighted phase lag index (wPLI). A partial least squares (PLS)
analysis was conducted to assess changes in these networks: (1) between anesthesia
and control groups; (2) during the 3-h recovery from anesthesia; and (3) for each
cognitive test during recovery from anesthesia. Networks were maximally perturbed upon
ROC but returned to baseline 30–60 min following ROC, despite deficits in cognitive
performance that persisted up to 3 h following ROC. Additionally, during recovery from
anesthesia, cognitive tests conducted at the same time-point activated distinct and
dissociable functional connectivity networks across all frequency bands. The results
highlight that the return of cognitive function after anesthetic-induced unconsciousness
is task-specific, with unique behavioral and brain network trajectories of recovery.

Keywords: brain networks, functional connectivity, electroencephalography, cognitive function, anesthesia,
partial least squares

Frontiers in Human Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 7066937

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.706693
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.706693&domain=pdf&date_stamp=2021-09-14
https://creativecommons.org/licenses/by/4.0/
mailto:stefanie.blain-moraes@mcgill.ca
https://doi.org/10.3389/fnhum.2021.706693
https://www.frontiersin.org/articles/10.3389/fnhum.2021.706693/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Rokos et al. Cognitive EEG Networks Following Anesthesia

INTRODUCTION

Following the loss of consciousness from anesthesia, the brain
can reconstitute its diverse range of cognitive functions, ranging
from sensorimotor function to reasoning and logic, to memory.
Although neural patterns associated with loss and recovery of
consciousness have been characterized using functional brain
dynamics and connectivity patterns (John et al., 2001; Lee et al.,
2013; Blain-Moraes et al., 2015; Mashour and Hudetz, 2018), the
neurocognitive trajectories associated with the reconstitution of
cognition after anesthesia-induced unconsciousness are poorly
understood. This can be attributed to the challenges associated
with studying the neural correlates of the recovering brain after
the clinical or experimental administration of general anesthesia.
Previous studies have used cognitive tests administered pre–
and post-anesthesia to compare recovery times from different
anesthetics (Larsen et al., 2000), and to track the recovery
times of various cognitive functions (N’Kaoua et al., 2002;
Allampati et al., 2019). However, in these clinical studies with
surgical patients, it is difficult to dissociate the effects of general
anesthesia from the surgical intervention, which can adversely
affect cognition through pain, inflammation, and analgesic
confounds. In most experimental studies that isolate the effects
of general anesthesia alone in healthy volunteers, the anesthetic
protocols either just cross the threshold of unresponsiveness
(Långsjö et al., 2005; Purdon et al., 2013; Blain-Moraes et al.,
2015; Chennu et al., 2016; Scheinin et al., 2021), or induce a more
profound unconsciousness for a short period of time (Banks
et al., 2020). While these experimental anesthetic protocols may
be suitable for modeling light sedation procedures (Allampati
et al., 2019), they do not model general anesthesia for a major
surgery, which animal studies have suggested can immediately
and persistently impair cognition in the post-anesthetic period
(Valentim et al., 2008; Carr et al., 2011; Avidan and Evers, 2016;
Jiang et al., 2017). To study the neurocognitive recovery profiles
under these circumstances, a protocol relevant to major surgery
is required.

To address these limitations, we developed a protocol for
healthy volunteers using a clinically relevant anesthetic regimen
to induce unconsciousness without surgical intervention (Maier
et al., 2017). High-density electroencephalography (EEG) was
recorded during the administration of the anesthetic (15 min
induction through propofol, 3 h maintenance with isoflurane),
through the recovery of consciousness, and continued for 3 h
after emergence. Isoflurane anesthesia is a halogenated ether
and was selected over other anesthetics for its heterogenous
molecular targets, which have a more profound effect on
neural dynamics through multiple neurotransmitter receptor
and channel systems. As a result, it has a slower offset in
comparison to other anesthetics, theoretically providing the best
opportunity to observe the differential recovery of cognitive
function (Hemmings et al., 2019). Previous analysis of these data
used source-localized spectral analysis, functional connectivity,
and graph-theoretical approaches to characterize brain patterns
during the recovery of consciousness and cognitive functions
(Blain-Moraes et al., 2017). While global network efficiency
distinguished between states of consciousness, it did not

track the return of various cognitive functions. Conversely,
alpha power in the superior parietal lobule only returned to
baseline 90-min after recovery of consciousness, paralleling
mean discharge-readiness times in the recovery room (Mashour
et al., 2012). This source-localized spectral characteristic
may be a biomarker for functional brain network recovery
after anesthesia; however, the specific network mechanisms
underlying the recovery of individual cognitive functions remain
unknown. Two families of intrinsic coupling have been used
to investigate the brain connectome using neurophysiological
data: envelope coupling (also referred to as amplitude coupling)
and phase coupling (Engel et al., 2013). Previous analyses
of this dataset have shown that phase coupling, specifically,
weighted phase lag index (wPLI) for the assessment of brain
functional connectivity (Vinck et al., 2011), can characterize
anesthetic-related changes in brain network function (Blain-
Moraes et al., 2017; Duclos et al., 2021). We hypothesized that
brain networks calculated with wPLI would similarly reveal
anesthetic-related changes in cognitive function after recovery
of consciousness.

Thus, the objective of the present study was to investigate
network-level changes in functional brain connectivity associated
with the recovery and return of six cognitive functions after
anesthesia: attention, sensorimotor function, memory, reasoning
and logic, abstract thinking, and maximal speed of cognitive
processing. Since source localization or neuroimaging was not
used in this study, the term ‘‘network’’ denotes a pattern of
EEG- based functional connectivity. Multivariate partial least
squares (PLS) analysis was applied to behavioral cognitive
assessments and functional connectivity networks derived from
EEG, testing the hypothesis that distinct networks could be
associated with the return of specific cognitive functions
following deep general anesthesia.

MATERIALS AND METHODS

This study was conducted at the University of Michigan
Medical School and approved by the Institutional Review
Board (HUM0071578); written consent was obtained from all
participants.

Study Population
Participants in this study were the subset of 20 healthy
volunteers from the Reconstructing Consciousness and
Cognition (ReCCognition) study (NCT01911195) evaluated
at the University of Michigan who were selected because they
underwent EEG recording with a 128-channel montage. The full
protocol for this investigation has been published (Maier et al.,
2017). All participants were class 1 physical status according
to the American Society of Anesthesiologists, between 20 and
40 years of age, and had a body mass index of <30. Participants
were excluded if they were pregnant, had a history of obstructive
sleep apnea, reactive airway, gastroesophageal reflux, asthma,
epilepsy, neuropsychiatric disorders, history or current use of
psychotropic medications, cardiac conduction abnormalities,
history of adverse reactions to anesthesia as well as family history
of neurologic, psychiatric, or adverse reactions to anesthesia.
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Pregnancy and illicit drug use were ruled out with both urine
and blood analyses.

Experimental Protocol
Participants were randomized to one of two groups: general
anesthesia with propofol and isoflurane, or wakefulness.

Anesthesia Group
Participants in the anesthesia group (n = 10) were brought
into the Operating Room, where they were outfitted with a
128-channel EEG system (Electrical Geodesics, Inc., Eugene, OR,
USA), and standard anesthesia monitors (electrocardiogram,
non-invasive blood pressure cuff, pulse oximeter). In a seated
position, participants completed a computerized neurocognitive
test battery comprised of six independent cognitive tests
(session 1). Upon completion, participants were moved to a
supine position, and anesthesia was induced with a stepwise
increase in propofol: 100 µg/kg/min for 5 min; 200 µg/kg/min
for 5 min; 300 µg/kg/min for 5 min. During induction,
participants followed a series of auditory commands delivered
every 30 s to squeeze their right or left hand twice (right
or left randomly delivered). Loss of consciousness (LOC)
was defined as the first time the participant failed to
respond to two consecutive commands. After induction,
unconsciousness was maintained by inhaling 1.3 age-adjusted
minimum alveolar concentration (MAC)—the concentration
required to prevent movement in response to surgical stimuli in
50% of the population—of isoflurane. After 3 h, isoflurane was
discontinued, and participants again listened to the same series

of auditory commands every 30 s. Recovery of consciousness
(ROC) was defined as the first time the participant responded
to two consecutive auditory commands. At ROC, defined as
t = 0, participants were returned to a seated position and
repeated the computerized neurocognitive test battery (session
2). Neurocognitive testing was repeated at t = 30, 60, 90, 120,
150 and 180 min (sessions 3–8; Figure 1A).

Control Group
Participants in the control group (n = 10) were brought into
a quiet room, where they were outfitted with the same EEG
system as the Anesthesia group, n = 1 with 64 channels
and n = 9 with 128 channels. This group followed the same
experimental protocol, however, instead of being anesthetized,
these participants remained awake by reading or watching
television. They were instructed to avoid napping and were
monitored by a research assistant to ensure compliance
(Figure 1B).

Neurocognitive Testing
During each of the eight neurocognitive testing sessions,
participants completed a series of six computerized tests selected
from the Cognition test battery (Basner et al., 2015) that reflect
a broad range of cognitive domains, ranging from sensory-
motor speed to complex executive functions. The test order was
randomized across subjects, but each subject received the tests in
the same order across sessions. We briefly describe the six tests
chosen for this study in Table 1; for full details, see Maier et al.
(2017).

TABLE 1 | Neurocognitive tests within one testing session (Basner et al., 2015).

Cognitive function Test Description Mean duration (seconds)

Sensorimotor speed Motor Praxis (MP) Sensorimotor speed was measured by asking participants to click
on 20 consecutive squares that appear randomly on the screen
(Basner et al., 2015), each successive square was smaller and
thus more difficult to track.

39.60 ± 29.25

Spatial learning and
memory

Visual Object Learning
Test (VOLT)

This task measured the participant’s memory for complex figures
by asking them to memorize 10 three-dimensional figures.
Participants were then asked to distinguish the 10 memorized
objects from a larger set of 20.

112.91 ± 24.22

Working memory Fractal-2-Back (F2B) Participants looked at a sequential 750 ms display of 62 fractal
objects and were asked to press the spacebar when the current
stimulus matched that displayed two figures before.

126.15 ± 13.21

Abstraction, concept
formation

Abstract Matching (AM) This test required participants to discern general rules from
discrete examples, measuring executive function dependent on
abstraction and concept formation. Participants were shown two
pairs of objects that varied by perceptual dimensions and were
asked to classify a target object as belonging to one of the two
pairs.

118.46 ± 53.63

Vigilant attention Psychomotor Vigilance
Test (PVT)

This 3-min version of the PVT records reaction times to visual
stimuli that occur at random inter-stimulus intervals. Subjects were
instructed to monitor a box on the screen, and hit the space bar
as fast as possible once a millisecond counter appears in the box
and starts incrementing.

201.37 ± 19.62

Visual search, spatial
memory, paired associate
learning, sensory-motor
speed

Digital Symbol
Substitution Test (DSST)

Participants were required to refer to a displayed legend to decode
specific symbols with each of the numbers from 1 to 9; during
testing, a symbol appeared on the screen, and participants were
asked to select the corresponding number as quickly as possible.
The test duration was fixed at 90 s, and the legend key was
randomly reassigned with each administration.

110.85 ± 29.24
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Electroencephalography Data Acquisition
and Preprocessing
After fitting each participant with a 64- or 128-channel
electrode net, impedances were brought to below 50 kΩ
as per manufacturer recommendations. Data were sampled
at 500 Hz, and all channels were referenced to the vertex.
Throughout each recording, an investigator experienced in
reading EEG visually monitored the data to ensure signal
integrity. EEG data was bandpass filtered between 0.1 and
50 Hz and re-referenced to an average reference. Epochs and
channels identified as containing non-physiological artifacts
were removed. Independent component analysis (ICA) was
used to remove electrooculogram (EOG) artifacts. Data were
segmented by each of the six cognitive tests, within each of the
eight recording sessions, for a total of 48 epochs per participant.
Participants with too much electrophysiological noise or an
incomplete set of neurocognitive tests were eliminated from the
participant pool, yielding a final analysis sample of n = 8 for the
Anesthesia group and n = 6 for the Control group. To facilitate
the comparison of EEG networks across participants, the set of
scalp electrodes common to all participants after data cleaning
were identified, yielding a final set of 94 EEG channels that were
used in the subsequent analyses.

Electroencephalographic Network
Analysis
We divided the EEG signal into five frequency bands—delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–50 Hz)—using Butterworth band-pass filtering. We
then constructed a functional brain network for each frequency
band within each analysis epoch using the weighted phase lag
index (WPLI; Vinck et al., 2011), which reduces the effects of
EEG volume conduction.
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where J(Cij) is the imaginary part of cross-spectrum Cij between
signals i and j. The cross-spectrum Cij is defined as ZiZ∗j , where
Zi is the complex value Fourier spectra of signal i and Zj

∗ is the
complex conjugate of Zj. WPLI ranges between 0 and 1: when the
phase of one signal always leads or lags that of the other (i.e., if
Pr{sgn(J(Cij))=1 or −1}), then WPLIij equals 1; when the phase
lead and lag relationship between the two signals is random, then
WPLIij equals 0.

Partial Least Squares (PLS) Analysis
Changes in functional connectivity patterns across the groups
and conditions were assessed using mean-centering Partial
Least Squares (PLS) analysis (McIntosh and Mišić, 2013).
This multivariate technique detects the combination of
groups/conditions and spatiotemporal patterns of neural activity
that optimally relate to each other. This analysis enabled the
isolation of networks of functional connectivity that collectively
covaried with experimental manipulations. It also enabled the
identification of the dominant, data-driven patterns without
needing to specify a priori hypotheses about the differentiation

between groups and conditions, or the specific spatiotemporal
profiles of these differences.

PLS can be used to relate two ‘‘blocks’’ or sets of variables to
each other (McIntosh and Lobaugh, 2004). We conducted three
variations of the PLS analysis, contrasting: (1) WPLI matrices
of the anesthesia and control groups during cognitive tests;
(2) WPLI matrices of all testing sessions and all cognitive tests
within only the anesthesia group; and (3) WPLI matrices from
different sessions within a single cognitive task, within only
the anesthesia group. The first variation assessed if changes in
functional connectivity networks over time were significantly
different between control and anesthesia groups. This analysis
included WPLI matrices from all participants (anesthesia and
control), all frequency bandwidths, and all analysis epochs (eight
sessions, six cognitive tests). The second variation identified
networks of functional connectivity that related to the recovery
of cognitive function after anesthetic-induced unconsciousness.
This analysis included WPLI matrices from only the anesthesia
group, all five frequency bandwidths, and all analysis epochs
(eight sessions, six cognitive tests). The third variation identified
networks that differentiated the time-varying recovery of each
of the six cognitive tests. Separate PLS analyses were conducted
for each of the six cognitive tests. Each variation three analysis
included WPLI matrices from the anesthesia group only, a single
frequency band, all sessions, and a single cognitive test.

For each variation of the PLS analysis, the covariance matrix
between the two sets of variables was computed, and decomposed
into mutually orthogonal ‘‘latent variables’’ using singular value
decomposition (SVD; Eckart and Young, 1936). Each latent
variable was expressed as a vector of design weightings, a vector
of functional connectivity weightings, and a scalar singular value
(s). The two vectors reflect a symmetrical relationship between
the experimental design component most related to the differing
functional connectivity values on the one hand, and the optimal
(in the least squares sense) network of connectivity related to
the identified experimental design components on the other.
In other words, the elements of the design weighting vectors
represent a contrast of maximal covariance between groups
and/or conditions, while the functional connectivity weightings
represent a pattern of WPLI connections and frequencies that
maximally expressed that contrast. The singular value reflects the
covariance between the design variables (groups and conditions)
and functional connectivity variables (WPLI) that are captured
by each latent variable. The effect size ranges from 0 to 100% and
reflects the proportion of cross block covariance accounted for
by each latent variable. It is calculated as the ratio of the square
of its singular value to the sum of all squared singular values
derived from the decomposition (Berman et al., 2014; Mišić et al.,
2016). A design salience (optimal contrast) is depicted for each
latent variable. This variable ranges from−1 to +1 and represents
the overall multivariate pattern of covariance attributable to each
condition (design weighting). The design saliences across all
conditions of any given contrast sum to zero.

The statistical significance of each latent variable (i.e., each
design salience contrast) was determined using permutation
tests. The group and condition labels of the WPLI matrices were
randomly permuted and the new data were subjected to SVD
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as described above, yielding a new set of singular values. These
singular values were associated with the null hypothesis that
there is no association between the EEG functional connectivity
matrix and the group or condition. This procedure was repeated
500 times to generate a sampling distribution of singular values
under the null hypothesis. The p-value for each latent variable
was estimated as the probability that singular values from the
distribution of permuted samples exceeded that from the original
non-permuted data.

The reliability of the spatiotemporal patterns associated
with each effect was estimated by calculating the standard
errors of each functional connectivity weighting using bootstrap
resampling (Efron and Tibshirani, 1986). Bootstrap samples were
generated by randomly sampling participants with replacement,
while their group and condition assignments were preserved, and
subjecting the new data to SVD as described above. This process
was repeated 500 times, generating a bootstrap distribution for
each functional connectivity weighting. The goal of this process
was to identify weightings that were stable regardless of which
participants were included in the sample. Bars that possessed
95% confidence intervals that did not contain 0 were considered
driving factors in the latent variable (i.e., significant and reliable
contributors to the design salience) and have been marked with
∗ in the figures.

The magnitude and stability of the connectivity of each
pair of electrodes to the overall network were assessed by
calculating the bootstrap ratio (bi), defined as the functional
connectivity weighting divided by its bootstrap-estimated error.
If we assume that the bootstrap distribution is approximately
unit normal (Efron and Tibshirani, 1986), the bootstrap ratios
are approximately equivalent to a Z-score. Bootstrap ratios were
thresholded at the 99% confidence interval to generate a network
of functional connectivities between EEG electrodes that reliably

express the statistical effect (pattern of functional connectivity
variance) captured by the latent variable. Positive bootstrap ratios
indicate that the associated functional connectivity network
expresses the contrast in the depicted orientation whereas
negative bootstrap ratios indicate that the network expresses the
contrast in the opposite orientation (Mišić et al., 2016).

Statistical Analysis
In order to compare cognitive recovery trajectories across
participants, scores for all cognitive tests were normalized
to 0 (performance at baseline). Normalized scores for each
cognitive test were averaged for each recording session across
anesthesia and control groups. To determine if there was
a significant change in performance across the experimental
sessions, a repeated-measures analysis of variance (ANOVA)
with a Greenhouse-Geisser correction was performed for each
cognitive test, with differences considered significant at p < 0.05.
To assess when performance on each cognitive test returned
to baseline, post hoc pairwise t-tests tests using the Bonferroni
correction were used to identify the sessions with significantly
different cognitive scores; recovery of performance was marked
at the first session where scores were not significantly different
from baseline.

RESULTS

Temporal Recovery of Cognitive
Performance Varies by Task After
Anesthesia-Induced Unconsciousness
Upon recovery from anesthesia-induced unconsciousness,
performance scores significantly decreased from baseline for
all cognitive tests, with the exception of Abstract Matching.
Performance on the remaining five cognitive tests returned to

FIGURE 1 | Outline of the experimental protocol. Eight sessions consisting of a battery of six neurocognitive tests are indicated as orange squares. (A) Anesthesia
group protocol. A baseline cognitive test battery (Session 1) was followed by a 15-min propofol induction and a 3 h anesthesia using isoflurane. Session 2 cognitive
tests commenced immediately upon recovery of consciousness (ROC), sessions 3–8 followed at 30-min intervals. (B) Control group protocol. A baseline cognitive
test battery (Session 1) followed by a 3-h period of wakefulness, where participants read a book, watched a movie, or engaged in other wakeful behavior. Sessions
2–8 were then completed at 30 min intervals. High density EEG was recorded throughout the protocol for both groups.
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FIGURE 2 | Cognitive test performance scores for the eight sessions of the neurocognitive test battery: baseline, upon recovery of consciousness (ROC), and at six
30-min intervals for 3 h post-ROC. Scores were normalized to baseline performance (0). Error bars indicate standard deviation, and ∗ indicates sessions where
scores for each cognitive test were significantly different from baseline.

baseline at varying rates (Figure 2). Motor Praxis scores returned
within 30 min; Visual Object Learning and Fractal-n-Back scores
returned within 60 min; Psychomotor Vigilance and Digital-
Symbol Substitution Task scores returned within 90 min. In the
control group, a significant difference in performance scores
was only found for the VOLT test at session eight compared
to session one (Supplementary Figure 1), demonstrating that
the changes observed in the experimental group were a direct
result of anesthesia-induced unconsciousness, and not related
to fatigue or learning effects. These results parallel the cognitive
recovery trajectories of participants in the full ReCCognition
study, wherein 30 individuals showed differential recovery times
following anesthesia of the speed and accuracy of tasks associated
with attention, complex scanning and visual tracking, working
memory, and executive function (Mashour et al., 2020).

Networks Associated With Cognition Are
Significantly Altered After Anesthesia
The first variation of the PLS analysis assessed if changes in
cognitive networks over time were significantly different between
control and anesthesia groups. Three latent variables (LV)
emerged as significant (LV1: p < 0.0005, effect size (ES) = 87%,
LV2: p = 0.04, ES = 3%, LV3: p = 0.03, ES = 0.003%). As latent
variables 2 and 3 only accounted for 3% and 0.003% of the
cross block covariance (as determined by effect size calculations)
respectively, they were excluded from subsequent analysis.

Latent variable 1 was associated with a network that
significantly differentiated anesthesia and control groups

(Figure 3). Functional connectivity networks in the control
group had negatively loaded design weightings, while those in
the anesthesia group had predominantly positively loaded
design weightings. This contrast captures a functional
connectivity network that maximally varied between the
control and anesthesia groups across all testing sessions and
demonstrates that networks activated during each cognitive
task are significantly altered after a period of profound
anesthesia-induced unconsciousness. The anesthesia group
also expressed a significant session × task interaction, which
was not observed in the control group. This interaction was
driven by the large contrast in networks across all tasks
upon recovery of consciousness, indicating that cognitive
networks are maximally altered at this point in the recovery
trajectory.

Networks Activated by Cognitive Tasks
Return to Their Baseline State 30–60 min
Following Recovery of Consciousness
One latent variable emerged as significant (LV1: p = < 0.0005;
ES = 74%) in the second variation of PLS analysis (i.e., anesthesia
only), which identified the functional connectivity network
that maximally varied across the recovery of cognitive function
after anesthetic-induced unconsciousness. The design salience
associated with this latent variable is positively loaded and
significantly different from baseline across all cognitive
tasks immediately upon recovery of consciousness (session
2) indicating that the multivariate pattern of covariance
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FIGURE 3 | The dominant latent variable (LV = 1) capturing the network of maximal functional connectivity covariance between groups (Control and Anesthesia)
across all eight testing sessions and all six cognitive tasks (PLS analysis, variation 1). Permutation testing confirmed the statistical significance of the entire design
salience (p < 0.0005), and the attributable proportion of cross block covariance (ES) was calculated to be 87%. Connections that reliably express the contrast were
identified using bootstrap ratios thresholded at 99% (see “Materials and Methods” section) and are mapped on the brain.

is maximally attributable to this testing session (i.e., the
maximal variance in the WPLI of the associated network is
seen immediately upon recovery of consciousness). Bootstrap
ratios for the associated network are positive, indicating that
the functional connectivity within the associated network
is stronger at this stage of recovery relative to baseline (the
network expresses the contrast in the depicted orientation).
The non-zero confidence intervals associated with each
cognitive task at this testing session indicate that this
condition (session 2) most reliably drives/expresses the
multivariate contrast seen within participants exposed to
anesthesia.

Brain networks associated with each cognitive task are not
differentiable from the baseline state at sessions 3 and 4
(Figure 4A). Thus, networks associated with all six cognitive
tasks returned to their baseline pattern between 30 min and
1 h following recovery of consciousness. While the networks
associated with some cognitive tests expressed a significant,
negatively loaded design salience between sessions 5–8, no
changes were consistent over consecutive sessions.

Across all five frequency bandwidths, changes in cognitive
networks post-ROC were most robustly expressed in delta,
theta, and alpha, with functional connectivity in theta having
the highest bootstrap ratios (Figure 4B). This indicates
that networks isolated from the theta band (Figure 4C)
most reliably express the contrast captured in this latent
variable across sessions following exposure to anesthesia. The
salience network associated with theta demonstrates that the
disruption of inter-hemispheric, long-range connectivity
is associated with the significant changes in cognitive

function immediately upon recovery of consciousness
(session 2).

Recovery of Cognitive Functions Activates
Distinct and Dissociable Networks
The third variation of PLS analysis identified functional
connectivity networks that maximally varied across testing
sessions (i.e., across recovery from anesthesia). These contrasts
differentiated the time-varying recovery of each cognitive test.
Within alpha and theta bandwidths, one latent variable was
significant for each cognitive test, indicating that significant
changes occurred in patterns of networks associated with
each cognitive test over the eight testing sessions (Figure 5A,
Figure 6A). The effect size for all cognitive tests is high
(Table 2), indicating that a large proportion of the cross
block covariance is captured by the latent variable. The Motor
Praxis Task has a relatively lower effect size (alpha ES = 61%,
theta ES = 68%) compared to the other five tasks. In this
task, other patterns of network changes account for a large
degree of the variability expressed by the network across time
in addition to the pattern captured by the significant latent
variable.

Design saliences and thresholded associated functional
connectivity networks corresponding to each cognitive test in
the alpha bandwidth are presented in Figure 5, and those for
the theta bandwidth in Figure 6. Data associated with the latent
variables for delta, beta, and gamma bandwidth are included
in Supplementary Figures 2–4. Across all analyses, the largest
contrast in design salience occurs at session two, immediately
upon recovery from anesthesia-induced unconsciousness.
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FIGURE 4 | The dominant latent variable (LV = 1) capturing the network of maximal functional connectivity covariance across the anesthetic protocol (five frequency
bands, eight cognitive testing sessions, consisting of six cognitive tasks; PLS analysis, variation 2). (A) Permutation testing identified a significant design salience
(optimal contrast) that captured a session × task interaction depicting the maximal covariance of function related to the recovery of cognitive function after
anesthetic-induced unconsciousness (p < 0.0005) with an attributable proportion of cross block covariance (ES) of 74%. ⌖ = non-zero bootstrap-estimated 95%
confidence interval. (B) Bootstrap ratios (BSRs) for each connection (pair of electrodes) associated with each frequency band. The higher the BSR magnitude, the
more reliably the connection expressed the contrast in its present orientation (see “Materials and Methods” section). (C) The top 1% of connections that reliably
express the contrast, determined by thresholding the BSRs.

FIGURE 5 | The dominant latent variables (LV = 1 in all cases) capturing the distinct networks of maximal functional connectivity covariance across all eight cognitive
testing sessions corresponding to each cognitive task in the alpha bandwidth (PLS analysis, variation 3). (A) Design saliences associated with network changes for
each cognitive test across all eight sessions, where each bar corresponds to a single cognitive testing session. ⌖ = non-zero bootstrap-estimated 95% confidence
interval. Permutation-estimated p-values and proportions of attributable cross block covariance (ES) associated with the significant latent variable are included in
Table 2. (B) The top 1% of connections corresponding to each cognitive test that reliably express the contrast, determined by thresholding the bootstrap ratios.
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FIGURE 6 | The dominant latent variables (LV = 1 in all cases) capturing the distinct networks of maximal functional connectivity covariance across all eight cognitive
testing sessions corresponding to each cognitive task in the theta bandwidth (PLS analysis, variation 3). (A) Design saliences associated with network changes for
each cognitive test across all eight sessions, where each bar corresponds to a single cognitive testing session. ⌖ = non-zero bootstrap-estimated 95% confidence
interval. Permutation-estimated p-values and proportions of attributable cross block covariance (ES) associated with the significant latent variable are included in
Table 2. (B) The top 1% of connections corresponding to each cognitive test that reliably express the contrast, determined by thresholding the bootstrap ratios.

Bootstrapping provided 95% confidence intervals that were
consistently non-zero at session two across all cognitive tasks
and frequency bands. As expected, this indicates that each of
these distinct cognitive networks is maximally altered upon
recovery of consciousness and that this session is reliably,
and significantly, contributing to the multivariate pattern
of covariance. The congruent directionality of the design
salience weightings (positively loaded) and bootstrap ratios
(positive values) upon recovery of consciousness indicates
that functional connectivity within these distinct networks is
significantly stronger than at baseline. This may suggest that
these networks play a significant role in the recovery of the
specific cognitive function associated with the cognitive test
driving the contrast. Strikingly, the alpha and theta networks
associated with cognitive recovery are distinct across each
of the six cognitive tests (Figure 5B, Figure 6B). In the
alpha bandwidth, all tasks except the Psychomotor Vigilance
Test have a significant negative contrast during one session
post-ROC (Figure 5A). In the theta bandwidth, all tasks
except the Motor Praxis Task have one to three sessions that
express significant negative contrast post-ROC (Figure 6A).
Given that the bootstrap ratios were positive values, the
negatively loaded design salience bars can be interpreted
as significantly weaker functional connectivity within the
associated networks at this point in recovery relative to baseline
and to the significantly positive design saliences seen at
session 2.

DISCUSSION

In this study with healthy adults exposed to a clinically
relevant anesthesia regimen, we demonstrated that six distinct
cognitive functions follow different temporal trajectories of
recovery following anesthesia, with certain cognitive functions
returning to baseline only 90–180 min following the recovery of
consciousness. These results were supported by a larger study of
60 individuals (including those in this study) showing that the
rates of recovery statistically differed among cognitive domains
upon recovery from anesthetic-induced unconsciousness
(Mashour et al., 2020). Importantly, we found that brain
networks associated with cognitive tasks are significantly altered
after a period of profound anesthesia-induced unconsciousness,
return to their baseline state 30–60 min following recovery of
consciousness, and are distinct and dissociable across various
cognitive functions.

Globally, the results from several variations of the PLS analysis
reflect well-known effects of anesthesia, namely, the impairment
and gradual recovery of cognitive functions following anesthetic-
induced unconsciousness (Larsen et al., 2000; Chen et al.,
2001). The results from our data-driven multivariate EEG
analysis provide evidence for network-level disturbances that
accompany the anesthetic-induced change in cognitive function.
Like cognitive task performance, the brain networks are
maximally altered immediately upon recovery of consciousness.
Although network-level alterations return to baseline 30–60 min
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TABLE 2 | Partial Least Squares (PLS) variation three permutation and
bootstrapping results for alpha and theta bands.

Cognitive test Latent variable 1 p - value (design
salience statistical significance)
and effect size (proportion of cross
block covariance captured)

Motor Praxis (MP) Alpha: p = 0.006, ES = 61%
Theta: p = 0.008, ES = 68%

Visual Object Learning Test (VOLT) Alpha: p = 0.008, ES = 80%
Theta: p = 0.002, ES = 90%

Fractal-2-Back (F2B) Alpha: p = 0.002, ES = 84%
Theta: p < 0.0005, ES = 93%

Abstract Matching (AM) Alpha: p < 0.0005, ES = 91%
Theta: p < 0.0005, ES = 95%

Psychomotor Vigilance Test (PVT) Alpha: p = 0.008, ES = 87%
Theta: p = 0.002, ES = 92%

Digital Symbol Substitution Test (DSST) Alpha: p = 0.002, ES = 81%
Theta: p = 0.008, ES = 91%

following ROC, cognitive test performance did not recover
until 90–180 post-ROC. These findings are consistent with our
previous analyses of this dataset, which have shown that after
ROC, neurophysiological characteristics such as source-localized
alpha power and graph theory characteristics of brain networks
return to baseline prior to the full recovery of cognitive functions
(Blain-Moraes et al., 2017).

Functional connectivity in theta bandwidth was most strongly
associated with brain network contrasts in the 3 h after recovery
of consciousness, with long-range interhemispheric connections
expressing maximal contrast immediately upon recovery of
consciousness. These findings add to the large body of literature
demonstrating anesthetic suppression of long-range functional
connectivity (Boveroux et al., 2010; Schröter et al., 2012; Barttfeld
et al., 2015). Moreover, theta band activity in frontal electrodes
has been positively linked to working memory demand (Sauseng
et al., 2005; Grunwald et al., 2014), and theta oscillations
are implicated in the coordination and integration of various
cognitive processes during working memory intensive tasks
(Sarnthein et al., 1998; Sauseng et al., 2010). We, therefore,
suggest that the increased theta connectivity network observed
during cognitive tests performance following recovery of
consciousness may represent increased recruitment of cognitive
resources to compensate for themajor perturbation of anesthesia.
Networks isolated from the alpha bandwidth also reliably express
the contrast across sessions following exposure to anesthesia.
As alpha band oscillations have been related to the inhibition
of brain activities that are not involved in a cognitive task
(Klimesch et al., 2007; Jensen and Mazaheri, 2010; Uusberg et al.,
2013), it is possible that the alpha recovery network maximizes
a limited cognitive reserve by suppressing brain activities that
are not required for the specific cognitive task. These results
may reflect the complementary and compensatory roles of theta
and alpha recovery networks in response to anesthesia-induced
perturbations in cognitive functioning.

PLS analysis of the functional connectivity networks
associated with specific cognitive tests across recovery from
anesthesia isolated distinct and dissociable networks for each
cognitive activity across all frequency bands. For example,
in the alpha bandwidth, the motor praxis and psychomotor

vigilance tasks were similarly associated with inter-hemisphere
parietal connections and long-range right frontal to left parietal
connections, while the visual object learning task was associated
with similar parietal, but left frontal to right parietal long–range
connections. The fractal n-back task was associated with short-
range connections in the left parietal, temporal and occipital
regions. Long-range connections associated with the abstract
matching task converge in parietal regions, while long-range
connections associated with the digital symbol substitution task
converged in the left frontal regions. Strikingly, these networks
do not overlap with the canonical network associated with
specific cognitive functions [e.g., the VOLT primarily activates
the frontal and bilateral anterior medial temporal cortices and
the hippocampus (Jackson and Schacter, 2004); PVT recruits
the prefrontal cortex, motor cortex, inferior parietal cortex and
visual cortex (Basner et al., 2015)]. This does not necessarily
indicate that these canonical networks are inactive. Rather,
as PLS analysis foregrounds the contrast in networks across
conditions, this indicates that the canonical networks exhibit
similar levels of connectivity across the 3 h following recovery
of consciousness. In other words, the changes in cognitive
task performance in the 3 h post-ROC are not associated with
changes in the strength or number of functional connections of
the networks typically associated with these cognitive activities.
Therefore, the present results, which show that specific networks
are differentially activated according to cognitive tasks after
recovery from anesthetic-induced unconsciousness, must be
interpreted carefully. One possibility is that these networks reflect
an adaptive, compensatory network associated with cognitive
reserve: non-traditional cognitive networks that are recruited
to maintain cognitive function when traditional networks are
disrupted (Barulli and Stern, 2013). Another possibility is that
these networks are inappropriately recruited for the cognitive
task as the brain recovers from the functional connectivity
disruption of anesthesia (Barttfeld et al., 2015). Indeed, each
network also exhibits a negative salience 60–90min post recovery
of consciousness, potentially indicating an inhibition of these
networks once baseline functional connectivity patterns are
restored. This timeline is congruent with our prior findings that
source-localized alpha power returns to baseline levels within
90 min of recovery of consciousness (Blain-Moraes et al., 2017),
and with results from a large randomized control trial assessing
different methods of monitoring intraoperative awareness,
where mean discharge-readiness times in the recovery room
were approximately 95 min (Mashour et al., 2012). Finally, these
network changes may reflect residual effects of the prolonged
exposure to anesthesia. Loss and recovery of consciousness
associated with general anesthesia have been posited to be
governed by the principle of ‘‘neural inertia’’, a neurobiological
process that maintains aroused and anesthetized states, and
creates resistance to behavioral state transitions (Friedman et al.,
2010). It is likely that, upon recovery of consciousness, the brain’s
neural inertia maintains many of the network properties that
existed immediately prior to the moment of return of behavioral
responsiveness. As a result of this neural inertia, the major
difference in functional connectivity networks observed during
the cognitive tests conducted immediately upon recovery of
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consciousness may also reflect the characteristics of the networks
involved in the return of consciousness.

Our study design offers a unique opportunity to examine
isolated brain networks associated with specific cognitive
functions. In healthy human studies, the assessment of functional
connectivity patterns associated with higher-order cognitive
tasks, such as executive function, is typically confounded by
concomitant cognitive functions, such as attention. In this
study, cognitive task performance is differentially affected
by anesthesia, particularly in the minutes immediately after
ROC. Loosely, anesthesia performs a temporal separation of
cognitive function performance much like gel electrophoresis
separates molecules, enabling us to individually examine the
component parts. The fact that these isolated cognitive functional
connectivity networks do not map onto canonical networks
may prompt a reconsideration of the relationship between
functional connectivity and cognition. Indeed, anesthesia has
been successfully used as a tool to re-examine the relationship
of functional connectivity to brain-based phenomena. In a recent
study, cholinergic stimulation of the prefrontal cortex induced
wakefulness in a rat model, despite continuous exposure to
general anesthesia (Pal et al., 2020). Surprisingly, functional
connectivity remained suppressed during the induced wakeful
period in the presence of anesthetics, which suggested that
the level of consciousness can be dissociated from cortical
connectivity. Similarly, the findings of this study suggest
that functional connectivity patterns may be dissociable from
cognitive tasks and could prompt a reevaluation of the role of
these connectivity measures in cognition.

This study has several limitations. First, the number of
participants in the study is relatively low (n = 14). The results
of PLS analysis are sensitive to signal/noise ratio (Cramer,
1993), which is decreased in this sample size by the high
inter-subject variability of brain network activity after recovery
from anesthetic-induced unconsciousness. However, the latent
variables for variations one and two of the analysis accounted for
87% and 74% of the network covariance respectively, indicating
the robustness of these results despite the smaller sample size.
In the third variation of the PLS analysis, which identified
networks that differentiated the time-varying recovery of each
cognitive test, networks associated with motor praxis (theta
and alpha) and visual object learning (alpha) explained less
than 70% of the covariance. While the results are statistically
significant, the latent networks associated with these cognitive
tests should be interpreted with caution. Second, we use a
single measure of functional connectivity—wPLI—to assess
the functional coupling of brain networks during cognitive
tests. Although we chose this measure due to its robustness
against volume conduction (Vinck et al., 2011), this may
bias our results, as other types of phase-based connectivity
or families of connectivity (e.g., envelope-based connectivity)
may identify different coupling patterns across cognitive tasks.
For example, several recent studies have demonstrated that
envelope- and phase-based measures of functional connectivity
capture different and complementary relationships between
brain regions, especially in the networks related to loss and
recovery of consciousness (Siems and Siegel, 2020; Duclos

et al., 2021). wPLI also only provides information about the
strength, not the direction, of functional coupling, which
may be investigated with other connectivity metrics such as
directed phase lag index (Stam and van Straaten, 2012). Third,
our functional connectivity networks were constructed based
on sensor-level EEG data, with the nodes of the networks
constrained to the fixed electrode positions of the EEG net. The
data were not source localized, limiting the conclusions that
can be drawn about the specific brain regions implicated in
the networks associated with the recovery of cognitive function
presented in our results. Finally, across all PLS analysis variations,
the largest contrast was uniformly driven by the cognitive testing
period immediately succeeding recovery of consciousness. While
these results align with our expectation of maximal impairment
upon return of responsiveness, the magnitude of this contrast
dwarfs the subsequent sessions, potentially masking more subtle
network changes that accompany the return to baseline cognitive
performance up to 3 h after recovery of consciousness.

The present study investigated EEG network-level changes
in functional connectivity associated with the recovery of six
cognitive functions following a clinically relevant anesthesia
regimen. Brain networks associated with cognitive tests were
significantly altered in patients recovering from anesthesia
compared to control subjects. Across 3 h post-ROC, the
cognitive networks of participants recovering from anesthesia
were most significantly altered in the theta bandwidth,
particularly in long-range interhemispheric connections. Finally,
different cognitive functions were associated with distinct and
dissociable brain network changes across the 3-h recovery
period. Collectively, these results demonstrate that cognitive
functions have distinct temporal and network-level patterns
of reconstitution following an anesthetic-induced loss of
consciousness. Future studies should aim to validate these
findings with neuroimaging techniques with an appropriate
spatial resolution to identify the specific brain regions involved in
the reconstitution of each cognitive activity following anesthesia.
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The human brain consists of anatomically distant neuronal assemblies that are
interconnected via a myriad of synapses. This anatomical network provides the
neurophysiological wiring framework for functional connectivity (FC), which is essential
for higher-order brain functions. While several studies have explored the scale-specific
FC, the scale-free (i.e., multifractal) aspect of brain connectivity remains largely
neglected. Here we examined the brain reorganization during a visual pattern recognition
paradigm, using bivariate focus-based multifractal (BFMF) analysis. For this study, 58
young, healthy volunteers were recruited. Before the task, 3-3 min of resting EEG was
recorded in eyes-closed (EC) and eyes-open (EO) states, respectively. The subsequent
part of the measurement protocol consisted of 30 visual pattern recognition trials of 3
difficulty levels graded as Easy, Medium, and Hard. Multifractal FC was estimated with
BFMF analysis of preprocessed EEG signals yielding two generalized Hurst exponent-
based multifractal connectivity endpoint parameters, H(2) and 1H15; with the former
indicating the long-term cross-correlation between two brain regions, while the latter
captures the degree of multifractality of their functional coupling. Accordingly, H(2)
and 1H15 networks were constructed for every participant and state, and they were
characterized by their weighted local and global node degrees. Then, we investigated
the between- and within-state variability of multifractal FC, as well as the relationship
between global node degree and task performance captured in average success
rate and reaction time. Multifractal FC increased when visual pattern recognition
was administered with no differences regarding difficulty level. The observed regional
heterogeneity was greater for 1H15 networks compared to H(2) networks. These results
show that reorganization of scale-free coupled dynamics takes place during visual
pattern recognition independent of difficulty level. Additionally, the observed regional
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variability illustrates that multifractal FC is region-specific both during rest and task. Our
findings indicate that investigating multifractal FC under various conditions – such as
mental workload in healthy and potentially in diseased populations – is a promising
direction for future research.

Keywords: multifractal, functional connectivity, brain networks, electroencephalography, visual pattern
recognition

INTRODUCTION

The human brain is a complex system encompassing spatially
distinct neuronal populations interconnected via an intricate
axonal grid. Functional brain networks emerge within this
anatomical circuitry, which provides the neurophysiological
basis for higher-order brain functions (Van Hoesen, 1993).
For instance, visual pattern recognition requires coordinated
interactions among disparate brain regions such as the visual
cortex, where primary processing, and the association areas
in the parietal and frontal cortices, where high-level cognitive
evaluation takes place (Van Hoesen, 1993; Kandel et al.,
2012). Based on the hypothesis that regions that exhibit
statistically similar dynamics are functionally coupled, functional
neuroimaging methods allowed the reconstruction of functional
connectivity (FC) in the brain under cognitive (Friston et al.,
1993) and motor (Biswal et al., 1995) tasks. A paradigm shift
regarding resting-state studies occurred after discovering that
even in the absence of external stimuli the brain is organized in
resting-state networks (RSNs) (Raichle et al., 2001). This resting-
state neural architecture is altered during task through a series of
activations and deactivations of brain regions (Fox et al., 2005).
Accordingly, we believe that studying the brain under mental
workload could reveal valuable information.

Due to its high spatial resolution, functional magnetic
resonance imaging (fMRI) has been commonly favored as
the gold standard imaging technique for detecting task-related
changes of FC (Fox et al., 2005; Krienen et al., 2014; Di et al., 2015;
Elton and Gao, 2015; Kaufmann et al., 2017). Nevertheless, the
low sampling frequency and the physical constraints of the fMRI
systems present themselves as limitations when more elaborate
experimental paradigms are designed. Albeit at the cost of a
lower anatomical resolution, these limitations can be overcome
using electroencephalography (EEG) owing to its high sampling
rate and easy-to-use instrumentation. This led to numerous task-
related EEG studies, ranging from traditional tasks like n-back
(Hou et al., 2018; Kaposzta et al., 2021) and face perception
(Yang et al., 2015) to more complex designs like urban navigation
(Skroumpelou et al., 2015). By using a visual pattern recognition
paradigm, Racz et al. demonstrated an increase in scale-specific
FC during task (Racz et al., 2017); though, in that study the scale-
free aspect of the connections was not taken into consideration.

Various statistical approaches have been applied and/or
developed for characterizing the linear and nonlinear aspects
of the coupled neural activities (Bastos and Schoffelen, 2016).
A common limitation of these methods is that they capture
interdependence on a single scale, despite the fact that the scale-
free (or fractal) nature of the connections has already been
demonstrated in various modalities such as EEG (Wang and

Zhao, 2012; Stylianou et al., 2021), fMRI (Ciuciu et al., 2014) and
magnetoencephalography (Achard et al., 2008). The univariate
scale-free behavior of neural dynamics has already been shown
both regionally (Popivanov et al., 2006) and globally (Stam and
de Bruin, 2004). While estimating FC at a given time scale reflect
the coupling between oscillatory (narrowband) components
at specific cross-spectrum frequencies, our current approach
assumes a significant scale-free (broadband) component of the
cross-spectrum; a signature of statistical dependency spanning
a broad range of frequencies (scales). Moreover, the true
multifractal nature of coupled dynamics was recently validated
in resting-state EEG (Stylianou et al., 2021). Scale-free FC
estimators allow for capturing how the long-term memory and
multifractality of the coupled dynamics are spatially distributed
across brain networks; topological aspects that otherwise would
remain obscured. Visual pattern recognition requires sustained
interaction between brain regions involved in the processing of
the visual information, which can be captured as increased cross-
correlations (long-term memory) in the functional connections.
Furthermore, cognitive stimulation implies a shift in FC that is
typically governed by complex nonlinear dynamics (Rabinovich
and Muezzinoglu, 2010; Werner, 2010), which might alter the
multifractal profile of FC. To the best of our knowledge, this is the
first study investigating the task-related network reorganization
using multifractal connectivity analysis.

In the current study, we examined the task-related
reorganization of FC by applying a bivariate, focus-based
adaptation of multifractal analysis on EEG records. The task of
choice was a complex pattern recognition paradigm, which has
previously shown its utility in increasing FC in the prefrontal
cortex (Racz et al., 2017). Our primary objectives were: (i) to test
the hypothesis that shifts in scale-free coupled dynamics would
occur during the transition from rest to task; and (ii) to examine
the localization of multifractal FC within each mental state. Our
secondary aim was to assess the relationship between cognitive
performance and brain network measures reconstructed from
scale-free FC estimators.

MATERIALS AND METHODS

Participants
Fifty-eight young, healthy volunteers (24.2 ± 3.4 years
of age, 28 females, 9 left-handed) with no history of
psychiatric/neurological illness were recruited for the study.
Participants were instructed to have a good night’s sleep before
the day of the experiment. All subjects provided written informed
consent prior to the measurement. The study was designed and
carried out in accordance with the Declaration of Helsinki and
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FIGURE 1 | Measurement protocol for obtaining electroencephalography
records during resting states and subsequent visual pattern recognition. First,
resting-state recordings were made in 180 s periods with eyes closed and
eyes open, respectively. Then, the subject performed a pattern recognition
task in a block of 30 trials, each consisting of a 10 s or less of active period
and a 10 s passive period. In the active period, participants were presented a
large-size image (A) and its cropped sub-region (B) and were required to click
on (A) at the position of (B) if found (The picture of Figure 1 was taken from
https://alphacoders.com/users/profile/97828).

was approved by the Regional and Institutional Committee of
Science and Research Ethics of Semmelweis University (approval
number: 2020/6).

Measurement Protocol
All measurements took place in the Department of Physiology at
Semmelweis University in a quiet room under subdued ambient
illumination. During the measurement, participants were seated
comfortably in a chair in front of a computer monitor at
an approximate distance of 0.8 m from the screen and were
instructed to refrain from moving and facial expressions as
much as possible. The measurement protocol was designed and
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States) according to a pattern recognition paradigm
modified after Racz et al. (2017). The session started with a
3-min eyes-closed (EC) period serving as a baseline, followed
by a 3-min eyes-open (EO) resting-state period, as a control
for the task state. Then, participants were engaged in a visual
pattern recognition paradigm consisting of a block of 30 trials
with active and passive periods (Figure 1). Specifically, in the
active period of a trial, the subject was allowed a maximum of
10 s to identify a sub-region of a grayscale image by clicking on its
assumed location; at that point, the active period was terminated.
The active period was immediately followed by a passive (task-
free) period, during which a gray background was displayed for
10 s. In this stimulation paradigm, a pool of 6 different grayscale
images was permutated. Each of them was shown 5 times in
total – with a different sub-region to be identified in each case –
thus yielding a total of 6 × 5 = 30 trials. To investigate the
impact of difficulty level, images were sorted into Easy, Medium
and Hard categories with 2 images in each. Their classification

was based on their complexity, defined as the file size ratio of
compressed/uncompressed images [cf. Equation 1 in Yu and
Winkler (2013)]. The order of the 30 trials was randomized
with a different permutation sequence for each participant. The
following metrics characterized the performance during pattern
recognition: (i) reaction time, defined as the time between the
beginning of the image presentation and response (left mouse
click on the image) and (ii) success, defined as 1 if the participant
correctly identified the sub-region’s location and 0 otherwise.
When the subject did not respond, the trial was considered a
failure (success = 0) and the reaction time was set to 10 s.

Data Acquisition
EEG signals were recorded by a wireless Emotive Epoc+ device
and its corresponding EmotivPRO software (Emotiv Systems
Inc., San Francisco, CA, United States). After ensuring low
electrical impedance (<20 k�), EEG signals from 14 brain
regions (10–20 standard montage locations: AF3, AF4, F3, F4, F7,
F8, FC5, FC6, T7, T8, P7, P8, O1, and O2) were recorded, at a
128 Hz sampling rate1. CMS and DRL electrodes at left and right
mastoid processes were used as reference.

Preprocessing
The EEG device applied built-in band-pass (0.2–45 Hz, digital
5th order Sinc) and notch (50 and 60 Hz) filters to the raw
data. To maximize the artifact-detection capacity of independent
component analysis (ICA), first we performed wavelet-enhanced
ICA (wICA) (Rong-Yi and Zhong, 2005; Gabard-Durnam et al.,
2018). The purpose of wICA was to exclude wavelet components
with coefficients higher than a certain threshold, resulting in the
removal of high amplitude spikes. Subsequently, we manually
excluded non-brain components, as ICA isolated them. wICA
was performed in an automated manner, while the EEGLAB
toolbox (Delorme and Makeig, 2004) was used for manual ICA.

Estimation of Multifractal Functional
Connectivity
The scale-free coupled dynamics were estimated with bivariate
focus-based multifractal analysis (BFMF), introduced by Mukli
and colleagues (Mukli et al., 2018). The applicability of BFMF
for multifractal FC estimation was demonstrated previously
(Stylianou et al., 2021). Here we only provide a summary of
the method, while further details are found in the references
mentioned above. The scaling function SXY (Figure 2) of two
EEG time series (X and Y) of length L datapoints can be
calculated as:

SXY
(
q, s
)
=

(
1
Ns

Ns∑
v = 1

|covXY (v, s) |q
)1/q

, (1)

where Ns denotes the number of bridge-detrended, non-
overlapping windows of size s (s = 2n with n being integers
ranging from 2 to 8) indexed by v. The statistical moment order

118 recordings were carried out at 256 Hz sampling rate which were downsampled
to 128 Hz prior to further preprocessing.
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FIGURE 2 | Multifractal time series analysis and its endpoint parameters. On the upper panels, a representative pair of 2048 datapoint-long EEG segments (from
Subject01) is displayed along with the windowing scheme for a smaller (s = 64, shown in yellow) and larger (s = 128, shown in purple) scale, which illustrates the
calculation of covariance scaling function [SXY (q,s) displayed in the lower panel] according to Eq. 1. The Focus (red disk) is used as a reference point when
simultaneously fitting linear models in the log-log transform of the SXY (q,s) vs s, the essential step of BFMF. The slope of each linear regression line represents the
generalized Hurst exponent [H(q)] (shown for q = –15, +2, +15). H(2) describes the long-term cross-correlation between the signals X and Y, while the degree of
multifractality (1H15) is captured in the difference between H(q) values at the extreme [i.e., minimal (–15) and maximal (15)] statistical moments.

(q) ranges from−15 to 15 with increments of 1 and the window-
wise covariance between simultaneous s-size segments of X and Y
is denoted by covXY (v, s). When q = 0, the scaling function takes
the form:

SXY (0, s) = e[
1

2Ns
∑Ns

v = 1 ln(|covXY (v,s)|)] (2)

In the special case when the whole segment is used for
obtaining the scaling function [SXY (q,L)], the sum in Eq. 1
becomes independent of q and thus, the scaling function
values of all moments converge to a so-called Focus. This
Focus serves as a reference point when regressing for the
log[SXY (q,s)] vs log[s] relationship for every q simultaneously.
In contrast with the standard approach where separate q-wise
assessments of the power-law relationship are applied, fitting
all statistical moments simultaneously results in a more robust
analysis (Mukli et al., 2015). This is achieved by enforcing
the monotonous decay of regression slopes, which represent
the generalized, q-dependent bivariate Hurst-exponent function
H(q). The special case of H(2) depicts the global long-term cross-
correlation in the coupled dynamics underlying the functional

connection. If this bivariate H(2) is greater than 0.5, then
there is functional coupling exhibiting long-term memory.
H(2) = 0.5 indicates uncorrelated, uncoupled dynamics, while
H(2) < 0.5 demonstrates anticorrelated coupling (Eke et al.,
2002; Kristoufek, 2014). 1H15, calculated as H(-15)-H(15),
captures the degree of multifractality, an indicator of the
q-wise dependence of the scaling function on large and small
covariances. The whole segment of each trial (active section +
10 s of passive period) was analyzed with BFMF. As for the
resting-state conditions, 9 non-overlapping segments of 20 s for
each of the EC and EO states were analyzed. To remove the
effect of different time lengths due to various response times, we
also performed analyses adjusted to the length of time series (see
Supplementary Material).

Assessing Multifractality
A series of statistical tests evaluated the true scale-free nature
of the connections. In short, the purpose of these tests was
to: (i) validate the power-law relationship of the connection
both in the frequency and time domains (spectral slope
and detrended cross-correlation coefficient tests, respectively),
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(ii) distinguish true from spurious multifractality (phase
randomization and shuffling tests), and (iii) determine if the
emerging coupling between the two processes is genuine or
only reflects a mere autocorrelation within each EEG signal
(bivariate-univariate Hurst comparison). This series of tests
reveal the qualitative nature of bivariate multifractality, which
is assessed independently from its quantitative changes in this
study. The complete account of the testing procedure followed
in this study was reported elsewhere (Stylianou et al., 2021).
We expanded the test yielding a distinction between extrinsic
and intrinsic multifractality referred to as bivariate-univariate
Hurst comparison. In our previous paper, only the inequality
between the bivariate Hurst exponent and the mean of the
univariate Hurst exponents comprising the connection was tested
(Stylianou et al., 2021). In the present study, we considered a
bivariate-univariate Hurst comparison test successful only when
the bivariate H(2) was lower than the mean of its univariate H(2).
This choice was made based on the fact that bivariate H(2) can
exceed the mean of univariate H(2) only due to the finite length
or non-normal distribution of the time series (Kristoufek, 2015a,
2016).

Brain Network Construction
We then proceeded with reconstructing functional networks
and analyzing their architecture. For each subject, we isolated
48 different EEG segments (9 EC, 9 EO, 10 Easy, 10 Medium
and 10 Hard). For each connection, the H(2) and 1H15 values
obtained in the 5 different states were averaged, resulting in 5
different values per subject. Altogether, 5-5 (i.e., fully connected)
networks (EC, EO, Easy, Medium, Hard) were reconstructed
for every subject, based on either their H(2) or 1H15 values.
In these analyses, we used untresholded networks as we did in
our previous studies of EEG-based functional connectivity (Racz
et al., 2018, 2019, 2020; Kaposzta et al., 2021). We characterized
network topology via the local (D) and global (D) weighted node
degrees from the H(2) and 1H15 values of each connection, since
earlier we found that in small networks, clustering coefficient
and efficiency were highly correlated with node degree (Kaposzta
et al., 2021). D represents the total connection strength of a
node, while D (the average of all D) is an indicator of the
network’s interconnectivity2. The calculations of D and D were
carried out using functions of the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Statistical Evaluation
We evaluated between-states (e.g., Hard vs EC) and within-
states (e.g., O1 vs O2 in EO) differences for both H(2) and
1H15 networks. To rule out that the observed differences
could be attributed to opening of the eyes, we included both
resting-state periods in the statistical evaluation. Therefore, the
between-states comparisons consisted of global D and local D
comparisons of the 5 different states (EC, EO, Easy, Medium,
Hard). Since the normality assumption (Lilliefors test) was

2D
∑n

i = 1 ci where n represents all possible edges of a node, while ci is the strength

[either H(2) or 1H15] of the ith connection. D =
∑N

j = 1 Dj
N where N represents all

nodes of the network, while Dj
W is the weighted degree of the jth node.

not satisfied for all distributions, we used the non-parametric
Friedman test. Subsequently, paired comparisons were used to
identify specific pairwise differences. If any of the two populations
under investigation were non-normally distributed, Wilcoxon
signed-rank test was carried out. If both distributions were
normal, a paired sample t-test was used. Benjamini-Hochberg
(BH) correction (with α = 0.05) (Benjamini and Hochberg, 1995)
was used to adjust for multiple testing. Then, we investigated
the regional differences within every state’s local D (i.e., 91
comparisons for each of the 5 states). The same statistical tests
as in the between-states comparisons were utilized. Moreover, we
estimated Kendall’s coefficient of concordance (W) of D for both
H(2) and 1H15 networks for each state.

We also contrasted the average success rate (SR) and average
reaction time (RT) between the 3 difficulty levels, applying the
same statistical pipeline as described above. Then we investigated
the plausible relationships between performance metrics and
network architecture since scale-free FC and behavioral variables
have already been shown to correlate (Ciuciu et al., 2014). In that,
we examined the effect of FC on task performance by calculating
the Spearman’s rank correlation (r) between SR-D and RT-D for
each difficulty level. Every step of our analytical pipeline was
implemented in MATLAB (version 2012, Mathworks, Natick,
MA, United States).

RESULTS

Qualitative Assessment of Bivariate
Multifractal Character
Table 1 summarizes the percentage of connections passing each
multifractal test. The 5 different states showed similar success
rates in the spectral slope, phase randomization and 1H15 part
of shuffling tests (the latter comparing the original 1H15 with
that of shuffled surrogates). On the other hand, the rest states
exhibited higher success rates in the bivariate-univariate Hurst
comparison test and passed the detrended cross-correlation
coefficient tests more frequently. Finally, comparing the original
H(2) with that of shuffled surrogates had a higher success rate in
the task states. As a result, more connections showed scale-free
characteristics in the rest states (Table 2).

TABLE 1 | Success rate of multifractality tests at the subject level
(mean ± standard deviation).

Tests

PL PR S1H15 S-H(2) DCCC Biv-Univ

EC 92 ± 7% 96 ± 4% 99 ± 2% 70 ± 18% 93 ± 4% 85 ± 18%

EO 94 ± 3% 96 ± 6% 98 ± 4% 76 ± 16% 93 ± 4% 86 ± 15%

Easy 93 ± 2% 97 ± 4% 99 ± 2% 90 ± 8% 64 ± 19% 65 ± 17%

Medium 94 ± 2% 97 ± 4% 99 ± 2% 90 ± 9% 65 ± 16% 68 ± 18%

Hard 94 ± 2% 97 ± 3% 99 ± 2% 89 ± 9% 62 ± 17% 73 ± 16%

PL, power-law test; PR, phase randomization test; S-1H15, 1H15 part of the
shuffling test; S-H(2), H(2) part of the shuffling test; DCCC, detrended cross-
correlation coefficient test; Biv-Univ, bivariate-univariate Hurst comparison.
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TABLE 2 | Percentage of connections, at the subject level (mean ± standard
deviation), that passed all multifractality assessment tests.

State

EC EO Easy Medium Hard

H(2) 48 ± 13% 55 ± 12% 31 ± 10% 34 ± 10% 35 ± 9%

1H15 46 ± 13% 53 ± 12% 30 ± 10 % 33 ± 10% 34 ± 9%

Effect of Brain State on Multifractal
Connectivity
The Friedman tests indicated a significant effect of state
(p < 0.01), and post hoc pairwise comparisons revealed that the
rest states (EC, EO) were characterized by lower D compared to
the task states (Easy, Medium, Hard) (Figures 3, 4). Additionally,
we found higher D during EO compared to EC, for both H(2)
and 1H15 networks. A similar motif emerged in the local level

comparisons, with the D of several nodes being significantly
different between the rest and task states, as well as between EC
and EO for both networks (Figure 5).

As seen in Figure 3, the H(2) networks had higher FC
in the frontal regions, while higher values of 1H15 were
observed in the occipital cortex. This regional variability was
statistically validated by the within-state comparisons, which
showed significant differences within all 5 tasks, for both H(2)
and 1H15 networks. We also observed that if the D of two nodes
in the 1H15 network were statistically different, there was a
high chance of the equivalent nodes being statistically different
in the H(2) network as well, while the opposite did not occur.
This can be easily visualized by the abundance of blue [both
H(2) and 1H15 significant] and orange (only 1H15 significant),
in contrast to the sparse red [only H(2) significant] boxes in
Figure 6. Moreover, small subject concordance appeared only in
the 1H15 networks; on the contrary, no subject agreement was
found in the H(2) networks (Table 3).

FIGURE 3 | State-dependent weighted node degree topology of H(2) and 1H15 brain networks. The color bars represent the values of the local node degrees.

FIGURE 4 | State-dependent weighted global node degree distribution of H(2) and 1H15 brain networks. Significance marked by asterisk (*). Figure was created
using Gramm (Morel, 2018).
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FIGURE 5 | Localization of significantly different weighted node degrees for every between state comparison of the H(2) and 1H15 brain networks. The colormap is
based on the absolute difference of the node degrees of the states under investigation (e.g., | DO2,EC - DO2,EO |). Only the significantly different nodes are shown.

Cognitive Performance and Its
Correlates With Functional Connectivity
The comparison of difficulty levels indicated a significant
decrease of SR in the Hard state. RT was also statistically different
between the 3 difficulty levels, with Easy having the fastest
response and Hard having the slowest (Figure 7). Furthermore,
significant (p < 0.05) positive correlations were found between
RT and D of the 1H15 networks during Easy and Hard
(Figure 8). After BH correction, these correlations were rendered
not significant.

DISCUSSION

This study investigated the scale-free coupled dynamics of brain
activity in resting state and during a visual pattern recognition
task of various difficulty levels. We employed two FC estimators
derived from bivariate focused-based multifractal analysis,
namely H(2) and 1H15. They were used for constructing brain
networks based on their multifractal connectivity for both rest
and task conditions. Our findings show that: (i) the local and
global functional connectivity measures increased during task

when compared to resting conditions, indicating a reorganization
of brain networks, and (ii) there was a substantial regional
variability within the 5 different states. However, significant
correlations were found only between the global node degree
and average reaction time during Easy and Hard tasks in the
1H15-networks.

After acquiring the BFMF measures, H(2) and 1H15, it
was essential to perform an array of multifractality assessment
tests since by default not all functional connections – or in
general, not all dynamic processes – can be assumed to have
multifractal character. Our tests showed that a considerable
fraction of the connections had true multifractal characteristics
(Table 1). Similar success rates have been found in the resting
state previously (Stylianou et al., 2021). Despite the different
channel density of the EEG devices and the different sampling
populations, similar results were obtained in these studies,
concluding that coupled dynamics between cortical regions are
indeed multifractal during rest. The extent of multifractality
decreased during task, as indicated by the lower number
of connections passing our multifractality assessment tests
(Table 2). To the best of our knowledge, this is the first study
demonstrating the true multifractal nature of coupled dynamics
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FIGURE 6 | Within-state differences of node degrees in every state. Red: only H(2) network comparison was significant, Orange: only 1H15 network comparison
was significant, Blue: both H(2) and 1H15 networks comparisons were significant.

TABLE 3 | State-dependent subject concordance, as captured by Kendall’s W.

State

EC EO Easy Medium Hard

H(2) 0.10 0.09 0.09 0.12 0.11

1H15 0.24 0.15 0.25 0.24 0.26

during complex mental tasks. This provides an opportunity
to reveal novel aspects of rest and task states using BFMF
by obtaining information that would have remained hidden
otherwise [for a demonstration, see the Supplementary Material
in Stylianou et al. (2021)].

The higher node degree in the fully connected (i.e.,
unthresholded) H(2) and 1H15 networks during task
corresponds to increased H(2) and 1H15 values of the
connections. The high values of H(2) indicate a relative shift of
the coupled dynamics toward lower frequency components. This
greater long-term memory reflects a stronger coupling between
the probed regions of the brain cortex. Conversely, Ciuciu
and colleagues found a shift of scale-free coupled fluctuations
in fMRI-BOLD signals toward the higher frequencies (i.e.,
decreasing Hurst-exponent), accompanied by a decrease in
connectivity between resting-state networks during a motor task
(Ciuciu et al., 2014). While the signs of changes were opposite,
both studies showed a positive association between H(2) and FC
change during task. This difference could possibly be attributed
to the differences in imaging modality and stimulation paradigm,

which should be further investigated in future studies. Moreover,
based on the elevated 1H15 values of the connections, we
can conclude that the coupling between recorded EEG signals
transitioned into a state with increased multifractal strength
suggesting increased nonlinearity (Ashkenazy et al., 2003).
Multifractal dynamics are characterized by increased dependency
between different time scales. As time scale relates to frequency,
one such model is formulated by assuming a relationship
between the phase of lower frequencies and the amplitude of
higher frequencies (He et al., 2010). In that, a stronger phase-
amplitude coupling is associated with higher nonlinearity as
captured by increased 1H15 (Ashkenazy et al., 2003). Taken
together, BFMF reveals that task induces a redistribution of the
long-term cross-correlation in coupled dynamics as indicated by
higher Hurst exponent and renders them more interdependent
across different time scales as manifested by increased 1H15. The
more pronounced multifractal character of the connections can
possibly be attributed to the recruitment of excitatory/inhibitory
feedback loops (Poil et al., 2012) during task, whose transient is
typically characterized by nonlinear dynamics (Rabinovich and
Muezzinoglu, 2010). The elevated coupling [increased H(2)] and
feedback loops (increased 1H15) that take place in this visual
pattern recognition paradigm can be ascribed to the enhanced
cooperation of distant brain areas involved in various aspects
of visual processing, such as recalling short-term memory and
making visual comparisons.

Both H(2) and 1H15 networks showed a significantly
increased connectivity in task states compared to EO and
EC, captured in their global and local weighted node degrees
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FIGURE 7 | Average success rate and reaction time for different difficulty levels. Significant differences are marked by asterisk (*). Figure was created using Gramm
(Morel, 2018).

FIGURE 8 | Scatter plots of the reaction time vs global node degree for Easy
(orange) and Hard (blue) task in 1H15 networks and their Spearman’s
correlation (r). Figure was created using Gramm (Morel, 2018).

(Figures 3–5). Our results agree with the findings of a previous
functional near-infrared spectroscopy study using a very similar
cognitive paradigm. Racz et al. found global weighted node
degree increased in the prefrontal cortex during task (Racz
et al., 2017), using the scale-specific Pearson’s correlation as
FC estimator. Based on these two studies, it appears that
both the scale-free and scale-specific connectivity of the brain
increases during visual pattern recognition. This indicates that
a significant reorganization of functional brain networks takes
place in response to increased mental workload. Nevertheless,
definite conclusions cannot be drawn due to the different
modalities (EEG vs functional near-infrared spectroscopy). It is
also noteworthy that FC increased during the transition from
EC to EO. Since considerable brain capacity is devoted to
visual processing, opening the eyes should substantially increase
brain network activity. Thus, the observed higher node degrees

during EO are consistent with the manifestation of increased
mental workload. It should be recalled that a shift to higher
frequencies characterizes cortical desynchronization during EO,
contrasting with the earlier interpretation of increased H(2) (i.e.,
shift to lower frequencies). We speculate that scale-free and
oscillatory components of coupled electrophysiological activity
have different origins and could be affected by the opening
of the eyes differently. Previously, we have demonstrated that
the global multifractal dynamics of FC are affected by the EC-
EO transition (Racz et al., 2018), our present study extends
these findings by revealing the local alterations in scale-free
coupled dynamics (Figure 5). Still, the mental workload of
EO was not as substantial as that of the pattern recognition
task, since the node degrees of the EO networks differed
significantly from those of the task states. On the other hand,
the 3 task states (Easy, Medium and Hard) had statistically
similar node degrees (Figures 3–5), even though the cognitive
stimulation paradigm showed a lower success rate for more
complex images (Figure 7). Similar results were found in
an n-back EEG study (Kaposzta et al., 2021), in which
there was no significant difference in the density, clustering
coefficient and efficiency of the 2-back and 3-back brain
networks. In this n-back study, the network measures decreased
during task, which is in contrast with the current findings
of increased FC. This apparent controversy in FC alterations
between tasks has already been noticed, with n-back being the
most different from the rest of the studied task conditions
(Krienen et al., 2014). The use of different FC estimators
could have impacted the reported results as well. Moreover,
for both BFMF measures, the within-state comparisons showed
apparent regional variability (Figure 6), similarly to our previous
results (Stylianou et al., 2021). In that, we saw that the
degree of multifractality (1H15) varied more than the long-
term cross-correlation [H(2)] across the brain, in all states.
Additionally, significant differences in the long-term cross-
correlation were accompanied by changes in the degree of
multifractality, in most cases. A possible explanation could
be that multifractality results from more complex dynamics
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(Tel, 1988) which tend to vary more from region to region. On
the other hand, this contradicts the findings of our previous
resting-state study, where H(2) values varied the most [cf.
Table 2 in Stylianou et al. (2021)]. The different electrode
densities of the EEG system used in these two studies (62 vs
14 channels) could well account for the observed differences.
Nonetheless, these two studies indicate that scale-free coupled
dynamics do not emerge homogenously in the brain, neither
in rest nor in task states, which is a motivation for further
studying the multifractal properties of FC at higher spatial
resolution. Furthermore, small subject concordance within the
different states was observed only for the 1H15 network
(Table 3). This agrees with a previous study (Mueller et al.,
2013), which found inter-subject FC variation localized mainly
in the high-order association cortices in the frontal and
parietal lobes, i.e., regions strongly overlapping with those we
recorded EEG from.

As to the performance metrics, the Easy state was associated
with faster RT than the Medium and Hard states, while significant
differences in the SR were observed only between Easy-Hard and
Medium-Hard (Figure 7). Even though no significant differences
in the SR were observed between Easy-Medium, the RT during
the Medium task was longer. We believe that a significant
difference in the SR between Easy-Medium could be found by
including a larger or more diverse population sample in future
studies. Furthermore, no significant associations were found
between the global node degrees and performance metrics (SR
and RT), with the exception of positive correlations between
RT and D in the Easy and Hard states of the 1H15 networks.
Similarly, in another EEG n-back study, network measures
were found significantly correlated only with RT, and not with
SR (Dai et al., 2017). This suggests that lower multifractality
corresponds to faster pattern recognition, while the subject’s
SR remains independent of scale-free coupled dynamics. These
correlations did not remain significant after BH correction,
suggesting that a larger, more representative sample of the
population could potentially reveal significant correlations even
after BH correction.

Our results derived from the main analytical pipeline are
supported by further analysis accounting for the slightly different
length of analyzed signals from the task states (Supplementary
Material). Because the multifractal profile of a time series is
influenced by its length (Grech and Pamuła, 2012; Rak and
Grech, 2018), we anticipated a similar effect on our bivariate
multifractal analysis (Kristoufek, 2015b); thus, we re-analyzed
our dataset in a pipeline adjusted to the different lengths of
analyzed pair of time series based on the different response
times. The results agree with our primary analysis, indicating that
the slightly varying signal length had no effect on the observed
patterns. We also compared the D of every state after excluding
connections that did not pass our multifractality assessment
tests. While significant differences were found between rest
and task states, they were of the opposite direction, i.e.,
D decreased during task (Supplementary Figure 1), which
can be explained by the larger number of connections that
passed our tests during rest (Table 2). However, there was
great inconsistency among the multifractality assessment tests

for every connection and task (e.g., out of the 10 Hard
segments, the connection AF4-AF3 might have passed the test
in only 4 of them). In order to avoid any bias, our main
analysis focused on unthresholded networks. Additionally, the
thresholded analysis showed significant positive correlations
between D-RT in the Easy and Medium states for both
H(2) and 1H15 networks, warranting further investigation in
future studies (Supplementary Figure 2). While a growing
number of publications investigates the FC-related differences
between the two sexes (Zhang et al., 2018; Ýçer et al., 2020),
we found no significant sex-related differences in network
architecture. Since the studies mentioned above had higher
spatial resolution (higher density EEG or fMRI recordings),
we believe that future experiments with higher number of
EEG channels might be able to reveal such differences. As
to the effect of handedness, no significant differences in D
were identified between the left- and right-handed participants
in any state (EC, EO, Easy, Medium, Hard) or network
[H(2) and 1H15]. To assess the test-retest reliability, 5 of
our subjects repeated the same experiment a few months
later. No significant differences were found in the SR and RT
between the two sessions, suggesting that our experimental
paradigm can be used in further reproducibility studies.
Finally, we found a moderate concordance between H(2)
and 1H15 values for every subject (Supplementary Table 1),
indicating a relatively constant multifractal character of the
connections. Further details of these analyses can be found in the
Supplementary Material.

Future developments based on this study should consider
the following shortcomings. Despite its sample size, the subject
cohort of our study might not have been representative of
the general population, thus limiting us in drawing more
general conclusions. All participants were young, healthy and
educated, university students or graduates. Differences observed
in the multifractal FC during task could be augmented or
attenuated if a larger cohort of volunteers participated. The
recorded EEG signals might be affected by scalp muscle
contraction (especially at the frontal and temporal sites), as
shown previously (Goncharova et al., 2003). Since the spectral
characteristics of electromyographic signals considerably overlap
with EEG, part of the results could be attributed to activity
of motor units rather than changes in local field potentials in
the brain cortex. Nonetheless, independent component analysis
can remove a significant part of these electromyographic
contaminations (Yilmaz et al., 2019). Additionally, task-related
EEG changes are not greatly affected by muscle contractions
(Boytsova et al., 2016). Because during diverse tasks different
brain network architectures emerge (Krienen et al., 2014), the
construction of more extensive cognitive stimuli with several
different paradigms should be considered. Studies found that
FC changed as subjects repeated and thus learned a task
(Lewis et al., 2009; Bassett et al., 2011), which warrants
that our future experiments investigate the effect of learning.
Additionally, the bimodality phenomenon observed in univariate
focus-based multifractal analysis (Nagy et al., 2017) can be
extended to the multifractal covariance scaling function with
multiple scaling ranges.
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As to future perspectives, it will be interesting to see
the discriminatory power of multifractal FC between rest
and task states at the individual level, which was beyond
the scope of this study. In future studies, we intend to
investigate the rest-state classification performance of BFMF
compared to other measures of brain network dynamics (Racz
et al., 2020). To reveal mechanistic background of scale-free
coupled dynamics, further clinical trials and animal models
are needed using anesthetics, antipsychotics, antiparkinsonian
and other medications (Nasrallah et al., 2017). On a final
note, a promising field where such visual pattern recognition
task could be advantageous is in attention deficit hyperactivity
disorder (ADHD) research, where brain network alterations
during spatial working memory tasks have already been revealed
(Jang et al., 2020).

CONCLUSION

In the present study, we reconstructed brain networks from
measures of scale-free coupled dynamics in resting states and
during a visual pattern recognition task estimated by our
novel bivariate multifractal analytical algorithm. Initially, we
showed that our method could capture true multifractal coupled
dynamics that varied across different brain regions. Additionally,
we saw an increase in functional connectivity during the
transition from rest (EC and EO) to task states, which was
however, independent of task difficulty. We also found higher
functional connectivity when the participants transitioned from
EC to EO. These findings could well facilitate future research
of scale-free functional connectivity studies with complex
experimental designs in healthy and diseased populations.
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Resting-State Functional
Connectivity in the Dorsal Attention
Network Relates to Behavioral
Performance in Spatial Attention
Tasks and May Show Task-Related
Adaptation
Björn Machner1,2* , Lara Braun1, Jonathan Imholz1, Philipp J. Koch1,2,
Thomas F. Münte1,2, Christoph Helmchen1,2 and Andreas Sprenger1,2,3

1 Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany, 2 Center of Brain,
Behavior and Metabolism, University of Lübeck, Lübeck, Germany, 3 Department of Psychology II, University of Lübeck,
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Between-subject variability in cognitive performance has been related to inter-individual
differences in functional brain networks. Targeting the dorsal attention network (DAN)
we questioned (i) whether resting-state functional connectivity (FC) within the DAN can
predict individual performance in spatial attention tasks and (ii) whether there is short-
term adaptation of DAN-FC in response to task engagement. Twenty-seven participants
first underwent resting-state fMRI (PRE run), they subsequently performed different tasks
of spatial attention [including visual search (VS)] and immediately afterwards received
another rs-fMRI (POST run). Intra- and inter-hemispheric FC between core hubs of
the DAN, bilateral intraparietal sulcus (IPS) and frontal eye field (FEF), was analyzed
and compared between PRE and POST. Furthermore, we investigated rs-fMRI-behavior
correlations between the DAN-FC in PRE/POST and task performance parameters. The
absolute DAN-FC did not change from PRE to POST. However, different significant
rs-fMRI-behavior correlations were revealed for intra-/inter-hemispheric connections
in the PRE and POST run. The stronger the FC between left FEF and IPS before
task engagement, the better was the learning effect (improvement of reaction times)
in VS (r = 0.521, p = 0.024). And the faster the VS (mean RT), the stronger was
the FC between right FEF and IPS after task engagement (r = −0.502, p = 0.032).
To conclude, DAN-FC relates to the individual performance in spatial attention tasks
supporting the view of functional brain networks as priors for cognitive ability. Despite
a high inter- and intra-individual stability of DAN-FC, the change of FC-behavior
correlations after task performance possibly indicates task-related adaptation of the
DAN, underlining that behavioral experiences may shape intrinsic brain activity. However,
spontaneous state fluctuations of the DAN-FC over time cannot be fully ruled out as an
alternative explanation.
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INTRODUCTION

Inter-individual differences in cognitive abilities have been
related to inter-individual differences in functional brain
networks (Baldassarre et al., 2012; Harmelech and Malach, 2013;
Finn et al., 2015). These functional networks are considered
to be shaped by lifelong learning experiences providing an
indispensable memory system for upcoming cognitive challenges
(Harmelech and Malach, 2013; Sadaghiani and Kleinschmidt,
2013). They can be assessed by analyzing spontaneous low-
frequency fluctuations of the blood-oxygen level dependent
(BOLD) signal in functional MRI, usually while the brain is at rest
(Biswal et al., 1995). Remote brain regions of temporally coherent
oscillations are regarded as functionally connected within one
resting-state network (RSN) (Lowe et al., 1998; Fox and Raichle,
2007). RSNs comprise different functional domains, e.g., motor
action, visual perception or attention, and the regions belonging
to one RSN are also activated together when the brain is actively
engaged in a related task (Smith et al., 2009).

While RSNs are reproducible across different subjects
(Damoiseaux et al., 2006), their specific functional connectivity
(FC) pattern appears to be unique and very stable in the
individual subject, almost acting as an individual “fingerprint”
(Finn et al., 2015; Osher et al., 2019). As it was first shown
for the sensorimotor network, the strength of the FC largely
accounts for the variability in behavioral responses, indicating
the RSNs’ relevance for behavior (Fox et al., 2007). Moreover,
the individual FC within (or between) RSNs has been shown
to predict individual performance (or improvement/learning) in
different cognitive tasks such as visual search (VS) (Chou et al.,
2013; Bueicheku et al., 2020), audio-/visual perception (Hipp
et al., 2011; Baldassarre et al., 2012; Sadaghiani et al., 2015; Berry
et al., 2017) or mirror drawing (Manuel et al., 2018).

Despite the stability of RSNs, within- and between-network
FCs can immediately change when a task is performed, i.e.,
when the brain changes its state from rest (“idling”) to action
(Szczepanski et al., 2013; Spadone et al., 2015). Moreover,
repetitive training or only one session of a novel task can induce
persisting reorganization of RSNs, as it has been shown for
different cognitive domains, including visual perception (Lewis
et al., 2009; Urner et al., 2013; Guidotti et al., 2015; Sarabi
et al., 2018), VS (Bueicheku et al., 2019), memory (Dresler et al.,
2017), language (Waites et al., 2005), and visuo-motor skills
(Manuel et al., 2018).

The current study focused on the dorsal attention network
(DAN) as one of the RSNs (Fox et al., 2006; Hacker et al., 2013).
The DAN is centered on bilateral regions in the frontal and
parietal cortex, including the frontal eye field (FEF) and the
intraparietal sulcus (IPS) (Fox et al., 2006; Corbetta and Shulman,
2011). These regions are recruited when attention is voluntarily
shifted to spatial locations (Corbetta and Shulman, 2002) or task-
relevant salient objects (Shulman et al., 2009) as well as during
intentional visual exploration using eye movements (Corbetta
et al., 1998). Experimental tasks that typically activate DAN
regions include the Posner paradigm assessing covert orienting
and reorienting (Posner and Petersen, 1990; Vossel et al., 2006;
Doricchi et al., 2010), the Landmark task requiring spatial

judgments (Milner et al., 1993; Fink et al., 2000; Revill et al., 2011)
and VS paradigms (Corbetta et al., 1998; Nobre et al., 2003).

Pursuing the hypothesis that RSNs represent individual
traits/priors of cognitive ability (Harmelech and Malach, 2013;
Sadaghiani and Kleinschmidt, 2013; Spadone et al., 2015), the
current study investigated whether pre-task resting-state FC
in the DAN can predict individual behavioral performance in
spatial attention tasks. Furthermore, as RSN’s are assumed to
be malleable over short (to long) temporal scales in order to
allow lifelong learning (Sadaghiani and Kleinschmidt, 2013), we
questioned whether the DAN’s FC or FC-behavior relationship
can already be changed by one training session of spatial
attention tasks.

MATERIALS AND METHODS

Participants
We recruited 29 healthy adult participants, most of whom were
students at the University of Lübeck. The inclusion criteria
encompassed right-handedness as tested by the Edinburgh
Handedness Inventory (Oldfield, 1971), a normal or corrected-
to-normal visual acuity and intact color vision as tested by
the Ishihara’s Test (Kanehara & Co., Ltd., Tokyo, Japan).
Exclusion criteria were a known neurological, psychiatric, or
ophthalmological disease.

Before participation, written informed consent according
to the Declaration of Helsinki and its later amendments was
obtained from each participant. The study was approved by the
local Ethics Committee of the University of Lübeck (14-189).

Two of the participants had to be excluded due to excessive
head motion in the MRI scanner (see section “Materials and
Methods” on quality control of rs-fMRI data), leaving 27 subjects
[female: n = 16 (59%); mean age: 24.2 ± 0.8 years, range: 19–
38 years] for final analysis.

Stimuli and Tasks
Participants viewed the stimuli on a screen (NNL LCD monitor,
NordicNeuroLab, Bergen, Norway; active TFT, 69.8 × 39.3 cm
visual area), positioned on the front end of the MRI scanner, via a
mirror that was attached to the head coil (eye-to-screen distance:
130 cm, i.e., visual area 30.1◦ × 17.2◦). A keypad with buttons
for the manual responses was fixed at the participant’s right thigh
using hook-and-loop tape.

Three different tasks were presented, each addressing a
specific subcomponent of spatial attention. The (I) Posner
task tests covert reflexive shifts of attention (orienting and
re-orienting) (Posner et al., 1984), the (II) Landmark task
visuospatial judgments (Milner et al., 1993) and the (III) VS task
(Machner et al., 2018) overt shifts of attention by exploratory eye
movements. All these tasks are known to activate the bilateral FEF
and IPS as core regions of the DAN (Corbetta et al., 1998; Fink
et al., 2000; Doricchi et al., 2010).

For our experiment, the original Posner paradigm was adapted
to the scanner environment in analogy to a previous study (Thiel
et al., 2004). The basic display showed a dark-gray background
with a light-gray diamond at the center and two light-gray square
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frames (size 2◦), positioned on the horizontal meridian at either
side with an eccentricity of 12◦ from the center. As an attentional
cue, one side of the central diamond briefly (200 ms) lighted up.
After a delay of either 150 or 400 ms (stimulus onset asynchrony),
the target (a light gray asterisk) appeared for 100 ms within one of
the two peripheral frames. The inter-trial interval varied between
1650 and 1900 ms. The participant was instructed to press the left
button on the keypad with the index finger as quick as possible
upon target appearance. One run of the Posner task included 48
valid (cue and target on the same side) and 12 invalid (target
on the opposite side as indicated by the preceding cue) trials,
corresponding to a cue validity of 80%, which allows assessment
of endogenous attention shifting (Chica et al., 2011).

The Landmark task represents a “perceptive version” of the
established line bisection task (Schenkenberg et al., 1980) but
is better suited for the scanner environment (Fink et al., 2000).
A white line (20◦ or 24◦ of visual angle) appeared on a dark-
gray background. It was pre-bisected with a vertical dash either
directly in the middle, i.e., with both parts of the line having
the same length, or with a leftward or rightward shift of either
0.25◦ or 0.5◦. The vertical dash bisecting the horizontal line was
always aligned with the screen’s center so that the absolute spatial
position of the bisection mark on the screen could not be used
as a cue for the final spatial judgment of the line length (Ellison
et al., 2004). The participants were asked to judge which half of
the line was longer or whether both were equal in length. If the
left part of the line was estimated to be longer, they should press
the left button on a keypad with their right index finger. In case
of a longer segment on the right, they should press a button with
their fourth finger and in case of equal lengths of both halves
of the line they used their middle finger. The line was presented
for 300 ms and participants had a maximum time of 2000 ms to
give their response by pressing the respective button. One run of
the Landmark task consisted of 80 trials, 32 of which showed a
correctly bisected line with both halves having the same length
(“equal”), 24 trials with a longer left segment and 24 trials with a
longer right segment.

In the VS task a computerized but naturalistic image of a desk
scene was presented, in which participants were asked to find a
paperclip (target) among different other everyday objects (e.g.,
a pen, coin, key, etc.) that served as distractors (Machner et al.,
2018, 2020a). Each VS trial started with a central fixation cross
presented on a black background, followed by the appearance
of a desk image containing 30 different objects (see Figure 1
for an example). Participants were instructed to press a response
button on a keypad as soon as they found the target. If there
was no paperclip to be found, participants were asked to press
a different button. A trial ended upon the button press or after a
maximum time of 5000 ms. One run of the VS task included 30
trials of different desk images, 80% of which contained a paperclip
(“target trials”).

Experimental Design
The experimental design is depicted in Figure 1. Before entering
the MRI scanner, subjects were briefly familiarized with the three
tasks outside the MRI scanner. In the MRI scanner, subjects
first received a structural MRI scan of the brain. Then, the

PRE resting-state fMRI run was conducted. Next, there was
the task block (total duration 24 min), in which participants
performed three runs of each task in a predefined order (see
Figure 1). Afterwards, the session was completed with a second
rs-fMRI (POST) run.

To control for adherence to the tasks as well as for wakefulness
during the rs-fMRI runs (eyes open), we continuously recorded
and monitored eye movements of the participants using an MRI-
compatible, remote eye tracker with a sampling rate at 1000 Hz
(Eyelink 1000 Plus, SR Research, Ottawa, ON, Canada). This
monitoring could exclude that participants fall asleep during the
rs-fMRI sessions, also proven by offline analyses of eye position
signals that showed only a small number of lacking eye signals in
the PRE (14± 2%) and POST (18± 3%) rs-fMRI run, which were
largely due to transient lid closure and artifacts.

Behavioral Analysis
From the Posner task, we analyzed the mean reaction time
(“RT mean”) of the responses in all the valid and invalid trials.
Furthermore, we calculated the difference in RT between the
invalid and valid trials (“RT invalid-valid”) as a more specific
indicator for attentional reorienting (Rengachary et al., 2011).
From the VS task, we analyzed the mean RT for trials, in which
a target was present and the response button was correctly
pressed. The performance in the Landmark task was assessed
by calculating the “error rate (ER).” Therefore, the number of
trials incorrectly judged was divided by the total number of trials
presented×100.

For each task, we additionally assessed the individual
improvement by calculating the difference in the subject’s RT (ER,
respectively) between the first and the last (third) run.

Structural and Functional Magnetic
Resonance Imaging
Acquisition of Imaging Data
Structural and functional MR imaging was performed at
the CBBM Core Facility Magnetic Resonance Imaging
using a 3-T Siemens Magnetom Skyra scanner equipped
with a 64-channel head-coil. First, structural images of
the whole brain using a 3D T1-weighted MP-RAGE
sequence were acquired (TR = 2300 ms; TE = 2.43 ms;
TI = 1100 ms; flip angle 8◦; 0.85 mm × 0.75 mm × 0.75 mm
resolution; 185 mm × 240 mm × 240 mm field of view;
acquisition time: 8 min).

The resting-state functional image recordings were acquired
by applying a single-shot gradient-recalled echo-planar imaging
(GRE-EPI) sequence sensitive to blood oxygen level dependent
(BOLD) contrast (480 volumes, TR = 1000 ms; TE = 30 ms;
flip angle = 60◦; in-plane resolution 3 mm × 3 mm;
204 mm × 204 mm field of view; 56 axial slices; 3 mm slice
thickness, no interslice gap; simultaneous multi-slice factor 4;
acquisition time: 8 min).

Lights were switched off during recordings. Subjects were
asked to keep their eyes open and to foveate a small red dot on
a black background. In order to minimize noise, ear plugs were
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FIGURE 1 | Experimental design.

used. Head movements were reduced by using ear pads (Multipad
Ear, Pearltec Technology AG, Schlieren/CH).

Preprocessing of Resting-State fMRI Data
Preprocessing was performed using the DPARSFA toolbox (data
processing assistant for resting-state fMRI, version 4.41; Yan
et al., 2016), while slice timing correction and further statistical
analysis was performed with the SPM12 software2 (Wellcome
Trust Centre for Neuroimaging, London, United Kingdom),
both implemented in Matlab R© 2018B (MathWorks R©, Natick,
MA, United States).

First, the first 10 time points of each data set were discarded
to allow for magnetization equilibrium and for subjects to adjust
to the environment. The next steps included: (i) correction for
differences in the image acquisition time between slices; (ii)
a six parameter rigid body spatial transformation to correct
for head motion during data acquisition; (iii) co-registration
of the structural image to the mean functional image; (iv)
gray and white matter segmentation, bias correction and
spatial normalization of the structural image to a standard
template (Montreal Neurological Institute, MNI); (v) regression
of nuisance variables from the data (including white matter
and ventricular signals, the six motion parameters determined
in the realignment procedure as well as their first derivatives,
the constant and linear trend); (vi) spatial normalization
of the functional images using the DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated Lie) method
and resampling to 3-mm isotropic voxels; (vii) spatial smoothing
with a 6 mm full-width at half-maximum Gaussian kernel. (viii)
Before the FC analyses a temporal bandpass filter was applied to
all voxel time series retaining only the low frequency spectrum
(0.01–0.08 Hz).

1https://www.nitrc.org/projects/dparsf
2http://www.fil.ion.ucl.ac.uk/spm

Quality Control of Resting-State fMRI Data and
Exclusion Due to Head Motion
The six realignment parameters, i.e., three displacements and
three elementary rotations with respect to the first image in
the EPI series, were used as an estimator for head motion.
The maximum displacements were required to be smaller than
3.0 mm and individual rotations smaller than 3.0◦. Because
instantaneous motion below this threshold can still have a major
confounding effect on rs-fMRI measures (Power et al., 2012; Van
Dijk et al., 2012), we enabled DPARSFA to scrub the data by
identifying and cutting out single motion contaminated frames
(“bad” time points). The method is based on calculating the
frame-to-frame displacement as described by Power et al. (2012),
defining a “bad” time point when the framewise displacement
threshold of >0.5 mm was exceeded and deleting the current time
point (EPI volume), the previous one and the following two. The
reduction of EPI volumes due to this cutting was required to be
less than 38% in order to leave at least 5 min of rs-fMRI data for
final analysis. Two subjects, who exceeded the cut-offs mentioned
above, were excluded from final analysis. The remaining subjects
had in the PRE rs-fMRI session on average a maximal head
motion of 0.7 mm [standard deviation (SD): 0.4 mm], a mean
framewise displacement of 0.2 mm (SD 0.1 mm), and for final
analysis a mean reduction of 5.5% (SD 9.0%) EPI volumes due
to the predefined cut-off of 0.5 mm framewise displacement. In
the POST rs-fMRI session, their maximal head motion was on
average 1.0 mm (SD 0.9 mm), the mean framewise displacement
was of 0.2 mm (SD 0.1 mm), and the cut-off defined reduction of
EPI volumes in the final analysis was 6.8% (SD 8.7%).

Definition of Regions of Interest
We defined the following regions of interest (ROIs) previously
shown to be the most relevant hubs of the DAN (Fox et al., 2006;
Corbetta and Shulman, 2011): the bilateral FEF and IPS. The

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2022 | Volume 15 | Article 75712836

https://www.nitrc.org/projects/dparsf
http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-757128 January 4, 2022 Time: 13:19 # 5

Machner et al. DAN-FC and Spatial Attention Tasks

center coordinates for the ROIs were taken from the literature,
based on previous resting-state and/or task-related fMRI studies
investigating the DAN (He et al., 2007; Hacker et al., 2013;
Machner et al., 2020b): right FEF (23, −8, 55; x, y, z in MNI
space], left FEF (−19, −8, 57) right IPS (27, −63, 54), and left
IPS (−24, −60, 54). A 6 mm radius sphere was centered on
the respective ROI coordinate, resulting in a ROI volume of
∼0.9 cm3 each.

Functional Connectivity Analyses
For the seed-based (ROI-to-voxel) FC analyses, the time courses of
all voxels within a sphere ROI were averaged and then correlated
to the time course of all the other voxels in the brain. The
resulting connectivity maps of each participant were Fisher’s
r-to-z transformed to obtain normally distributed measures
for the subsequent statistical analyses. Next, group-wise ROI-
to-voxel FC maps for each ROI and each rs-fMRI run were
generated by calculating one-sample t-test contrasts that were
corrected for multiple comparisons by applying the family-
wise error (FWE) rate at the voxel level (corrected p < 0.05).
Differences in ROI-to-voxel FC between the two rs-fMRI runs
were assessed by calculating two-sample paired t-test contrasts
(POST > PRE) for each ROI with the cluster-defining threshold
set at p < 0.001 (uncorrected), followed by a p < 0.05 FWE
correction at cluster level.

For the pairwise (ROI-to-ROI) FC analyses, the time courses of
all voxels within a sphere ROI were averaged and correlated to the
mean time course of voxels in the other sphere ROI. The resulting
Pearson correlation coefficients of the four predefined intra-
/interhemispheric ROI pairs (FEFL–FEFR, IPSL–IPSR, FEFL–
IPSL, and FEFR–IPSR) were Fisher-z-transformed before entering
further analyses.

For each participant, we also calculated one mean FC value for
the whole DAN network (“DAN-FC”) in the PRE and the POST
session by summing up the individual FC values of the predefined
ROI pairs and dividing it by their number (n = 4).

Statistics
Statistical analyses, apart from the fMRI analyses described
above, were performed using the SPSS software package (version
22.0.0.2; IBM Corp., Somer, NY, United States).

Unless otherwise reported, data in the manuscript are
presented as mean ± standard error of the mean (SEM).
Differences in the ROI-to-ROI FC values between the PRE
and the POST rs-fMRI run were assessed using paired t-tests.
Correlation analyses between rs-fMRI (ROI-to-ROI FC) and
behavioral (RT and ER, respectively) parameters were performed
using the non-parametric Spearman’s rho correlation coefficient.
The results of the rs-fMRI-behavior analyses, which tested
whether behavioral performance was correlated to the DAN-FC
in a hypothesis-driven set of four predefined ROI pairs, were
corrected for multiple comparisons by applying the Bonferroni–
Holm correction (p-value × 4). Furthermore, significant FC-
behavior correlations in one rs-fMRI session (e.g., PRE) were
tested for a significant difference to the corresponding rs-fMRI
session (e.g., POST). Therefore we assessed the interaction
FC × behavior by weighting the individual FC value with the

linear regression coefficient from the FC-behavior correlation
and subsequently performed a paired t-test on the weighted FC
between PRE and POST. Regression coefficients were calculated
using “robustfit” function within Matlab (DuMouchel and
O’Brian, 1989). This function uses iteratively reweighted least
squares to compute the coefficients, which makes it robust against
extreme values and outliers. The level of significance was set at
p < 0.05.

RESULTS

Behavioral Task Performance
The participants’ mean RT in the Posner task was 435 ± 11 ms
and there was significant improvement from the first to the
last run (d = −32 ± 6, p < 0.001). The validity effect, i.e., the
difference in RT between invalid and valid trials, was on average
32 ms ± 6. The mean RT in the VS task was 1500 ± 54 ms,
again with significant improvement over time (d = −270 ± 49,
p < 0.001). The mean ER in the Landmark task was 39 ± 1%. In
this task, the participants revealed no improvement between the
first and the last run (d =−1± 1%, p = 0.522).

Resting-State fMRI Results
Figure 2 depicts the statistical maps showing the results of the
seed-based (ROI-to-voxel) FC analysis of the four predefined
DAN-ROIs, separately for the PRE and POST rs-fMRI run.

For each of the four seeds, we consistently observed functional
connections to the (bilateral) FEF, IPS, middle frontal gyrus
(MFG), and MT+ (middle temporal complex) as well as to the
basal ganglia and the thalamus.

Statistical comparison of the different seed-based FC maps
between the PRE and the POST run did not reveal supra-
threshold voxels. Hence, FC of the predefined ROIs to whole
brain did not change significantly from PRE to POST.

Table 1 depicts the group-mean of Fisher’s z-transformed
ROI-to-ROI FC results of the different intra- and inter-
hemispheric ROI pairs, separately for the PRE and POST rs-fMRI
run. Pairwise comparisons did not reveal significant differences
between the PRE and POST rs-fMRI run (p always > 0.104).

Correlation of Behavioral and fMRI
Parameters
Correlation analyses were performed between behavioral results
(mean RT and RT improvement in the Posner and VS task, ER in
the Landmark task) and ROI pairs’ FC results in the PRE and the
POST run (Table 2).

The following significant rs-fMRI-behavior correlations were
revealed for the PRE run (Figure 3): The intra-hemispheric FC
between left FEF and IPS correlated with the RT improvement
in the VS task (r = 0.521, p = 0.024) as well as with the RT
improvement in the Posner task (r = 0.496, p = 0.052, statistical
trend). Thus, the stronger the participant’s FC between left FEF
and IPS, the better was the individual learning effect in both tasks.
Furthermore, the FC between right and left FEF was correlated
with the mean RT in VS (r = 0.527, p = 0.020), i.e., participants
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FIGURE 2 | Functional connectivity of IPS and FEF seed regions in PRE and POST run. For each of the predefined DAN-ROIs (bilateral IPS and FEF) and separately
for the rs-fMRI run before (PRE) and after (POST) task performance, group statistical FC maps were obtained using one-sample t-tests on the individual Fisher’s
z-transformed correlation maps, corrected for multiple comparisons applying a false family-wise error (FWE) at p < 0.05. Results are presented at a threshold of
T > 9.86 (equals FWE-corrected p < 0.00001), depicted on axial slices (z: 0, 30, and 60) of a MNI brain template. The predefined seed-ROIs almost uniformly show
functional connections to other DAN regions including ventral/posterior IPS and FEF, middle frontal gyrus (MFG), middle temporal complex (MT+) as well as to the
basal ganglia (BG) and thalamus (Tha).

with stronger interhemispheric FEF-FC needed on average more
time to detect the target in the VS task.

In the POST run (Figure 3), the FC between right FEF and
IPS was found to be inversely correlated with the mean RT in
VS (r = −0.502, p = 0.032). Thus, participants with faster VS
revealed stronger intrahemispheric FC in the right DAN after

TABLE 1 | Intra- and interhemispheric ROI-to-ROI functional connectivity in the
DAN before (PRE) and after (POST) task performance.

ROI pairs z-FC in PRE z-FC in POST Statistics

Inter-hemispheric

FEFL–FEFR 1.00 (0.05) 0.98 (0.05) n.s.

IPSL–IPSR 0.61 (0.05) 0.52 (0.06) n.s.

Intra-hemispheric

FEFL–IPSL 0.38 (0.04) 0.40 (0.05) n.s.

FEFR–IPSR 0.69 (0.04) 0.69 (0.06) n.s.

Whole network

DAN 0.67 (0.03) 0.65 (0.04) n.s.

Data are Fisher-z-transformed FC value (SEM).
Statistical comparison between rs-fMRI runs were performed using paired t-tests;
n.s., not significant (p > 0.05).

task performance. Moreover, the POST run FC between right
FEF and IPS was negatively correlated with the RT improvement
in the Posner task (−0.676, p < 0.001) and also the average
DAN-FC was negatively correlated with the RT improvement in
the Posner task (−0.581, p = 0.001). Hence, participants with
greater improvement in the Posner task subsequently revealed
more decreased intrahemispheric FC in the DAN.

When comparing these correlation results between PRE and
POST, the interaction FC∗behavior became significantly different
in four (p < 0.001) and showed a statistical trend (p < 0.01) in
one of the comparisons (Figure 3).

Finally, the individual difference in FC between the POST and
PRE run was correlated to the different behavioral parameters
(Table 2, POST-PRE lines). This yielded significant inverse
correlations with the RT improvement in the Posner task for
the two ROI pairs FEFL–FEFR and FEFL–IPSL as well as for the
DAN-FC (Table 2, corrected p always < 0.05).

DISCUSSION

Using rs-fMRI, we investigated the FC of and between core
regions of the DAN (FEF and IPS) before (PRE) and immediately
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TABLE 2 | Overview of all FC–behavior correlations.

ROI-to-ROI FC FEFL–FEFR FEFL–IPSL FEFR–IPSR IPSR–IPSL DAN-FC

Task performance Session r p r p r p r p r p

Posner RT mean Pre 0.114 0.573 0.043 0.832 0.108 0.592 −0.200 0.318 0.051 0.802

Post 0.389 0.045 0.263 0.185 0.098 0.628 0.073 0.716 0.225 0.260

Post–Pre 0.208 0.297 0.176 0.380 0.137 0.496 0.364 0.062 0.246 0.216

Posner RT change Run 1–3 Pre 0.469 0.013 0.354 0.070 −0.353 0.070 0.060 0.765 0.275 0.165

Post −0.299 0.130 −0.224 0.261 −0.676 0.000 −0.440 0.022 −0.581 0.001

Post–Pre −0.635 0.000 −0.563 0.002 −0.394 0.042 −0.379 0.051 −0.651 0.000

Posner RT invalid–valid Pre 0.288 0.145 −0.123 0.542 −0.235 0.238 −0.325 0.098 −0.214 0.285

Post 0.287 0.147 −0.210 0.293 −0.371 0.057 −0.370 0.058 −0.238 0.232

Post–Pre 0.072 0.721 0.030 0.882 −0.256 0.197 −0.125 0.534 −0.059 0.769

Posner RT invalid–valid Pre −0.116 0.565 0.121 0.548 0.355 0.069 −0.090 0.654 −0.023 0.909

change Run 1–3 Post 0.026 0.897 0.335 0.087 0.189 0.344 −0.106 0.598 0.079 0.694

Post–Pre 0.090 0.656 0.294 0.137 0.058 0.774 0.031 0.877 0.164 0.413

Visual Search RT mean Pre 0.527 0.005 0.085 0.672 −0.364 0.062 −0.021 0.916 0.137 0.496

Post −0.017 0.933 −0.276 0.164 −0.502 0.008 −0.366 0.060 −0.415 0.031

Post–Pre −0.367 0.060 −0.393 0.042 −0.274 0.166 −0.358 0.066 −0.454 0.017

Visual search RT Pre 0.288 0.146 0.521 0.005 −0.077 0.703 0.266 0.180 0.412 0.033

change Run 1–3 Post 0.070 0.730 0.139 0.491 −0.204 0.308 −0.185 0.356 −0.127 0.528

Post–Pre −0.101 0.617 −0.151 0.453 −0.119 0.554 −0.412 0.033 −0.281 0.155

Landmark ER mean Pre 0.329 0.094 −0.002 0.992 0.401 0.038 −0.034 0.865 0.292 0.139

Post 0.360 0.065 0.311 0.115 0.119 0.554 0.274 0.164 0.329 0.094

Post–Pre 0.026 0.896 0.323 0.100 −0.281 0.156 0.238 0.233 0.094 0.640

Landmark ER change Run 1–3 Pre 0.140 0.485 0.036 0.859 −0.091 0.650 −0.031 0.880 0.023 0.911

Post 0.047 0.814 0.159 0.428 −0.122 0.546 −0.080 0.690 −0.007 0.973

Post–Pre −0.131 0.514 0.046 0.820 −0.053 0.795 0.012 0.952 −0.051 0.800

RT, reaction time; ER, error rate; “RT invalid-valid” difference in RT between invalid and valid trials; “change Run 1–3” difference between the first and third task run;
DAN-FC, mean FC of all four ROI pairs.
p-Values are uncorrected. Bold values are significant at p < 0.05 after correction for multiple comparisons (see main text for details).

after (POST) engagement in a set of spatial attention tasks
(Posner, VS, Landmark). Beside the PRE-POST comparisons, we
analyzed FC-behavior relationships for each rs-fMRI run, i.e., the
respective correlation of ROI-to-ROI DAN-FC and behavioral
measures of task performance. Based on the hypothesis that
intrinsic functional networks determine individual cognitive
abilities we expected that (i) DAN-FC strength could predict
individual behavioral performance in spatial attention tasks.
Furthermore, following the assumption that experiences shape
functional brain networks, we expected (ii) DAN-FC to change
from PRE to POST as well as the FC-behavior relationship to
differ between PRE and POST.

Dorsal Attention Network -Functional
Connectivity Relates to Behavioral
Performance in Spatial Attention Tasks
The strength of FC in several DAN-ROI pairs was found to
be related to the behavioral performance in different tasks of
spatial attention. For example, an increased FC between left-
hemisphere DAN regions (left FEF and IPS) was associated
with better learning (improvement of RTs over time) in the
VS task. Furthermore, stronger inter-hemispheric DAN-FC
(bilateral FEF) predicted better learning (RT improvement) in

the Posner task but counterintuitively it was also correlated with
slower (not faster) RTs in the VS task. There was no significant
correlation between DAN-FC and behavioral performance in the
Landmark task. However, this task appeared to be too demanding
with high ERs (about 40% on average) and without significant
improvement (learning) over the runs. Thus, this behavioral
parameter might not have been an optimal candidate for FC-
behavior correlations.

As mentioned above, the correlations between PRE-task
DAN-FC and behavioral parameters in VS and Posner were not
unidirectional (same accounted for the POST task FC results),
i.e., stronger DAN-FC was often – but not always – associated
with better performance (faster mean RT or greater improvement
over the runs). One reason may be that the FC between brain
regions indicates a functional connection but the direction/type
of influence cannot directly be inferred (Friston, 2011), being
either beneficial (excitatory) or disturbing (inhibitory). Hence,
an increase of FC between two connected brain areas, in which
one region functionally inhibits the other, may result in worse
behavioral output, whereas the FC increase between functionally
synergistic regions can lead to better performance.

Despite some dissociations, our findings principally support
the previous proposal of RSNs representing individual traits
that may determine the personal cognitive ability of humans
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FIGURE 3 | Significant FC-behavior correlations in the PRE and POST rs-fMRI session. The z-transformed FC of several DAN-ROI pairs is correlated with measures
of behavioral performance in spatial attentions tasks (mean RT, RT improvement). For each correlation, the Spearman’s rank correlation coefficient (r) and a robust fit
(gray line) is provided as well as the respective p-value (corrected for multiple comparisons applying Bonferroni–Holm). Significant correlations are highlighted on a
gray background and marked with * (corrected p < 0.05) or (*) for a statistical trend (p < 0.1), while the non-significant counterparts in the PRE or POST condition
are shown beside on a white background.

(Harmelech and Malach, 2013; Sadaghiani and Kleinschmidt,
2013). Our results underline that such a relation is also found
for the DAN, which is recruited during behavioral engagement in
the related functional domain (visuospatial attention). Different

previous studies on the relation of pre-task FC and attentional
performance stressed the importance of between-networks FC,
specifically the functional interaction of prefrontal DAN areas
and visual cortices (Baldassarre et al., 2012), of right parietal DAN
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regions and dorsal anterior cingulate cortex belonging to the
default mode network (Bueicheku et al., 2020) or between parietal
DAN regions and remote subcortical/medial-temporal/orbito-
frontal regions belonging to several different RSNs (Chou et al.,
2013). In our study, the within-network FC of the DAN was
shown to be predictive of the individual behavioral performance
in spatial attention tasks. This confirms previous findings where
performance in a visual signal detection task was related to pre-
task FC between parietal and dorsolateral prefrontal DAN regions
(Berry et al., 2017) and that attentional performance of children
between 4 and 7 years was correlated to the individual FC in
fronto-parietal DAN regions (Rohr et al., 2017). Studies assessing
FC by use of electroencephalography (EEG-FC) also revealed the
behavioral relevance of pre-task EEG-FC in DAN regions for
attentional tasks involving audio-visual stimuli (Hipp et al., 2011)
or visuo-motor performance (learning of mirror drawing skills)
(Manuel et al., 2018). That the ongoing “spontaneous” activity in
the RSNs may even be a prerequisite for the learning of skills
is supported by a recent study using magnetoencephalography
during engagement in a motor task. It showed that performance
improvement relied on micro-offline gains acquired during the
phases of rest interspersed between bouts of motor practice
(Bönstrup et al., 2019).

In summary, our findings together with those of previous
studies underline the predictive value of both within- and
between-network FC of the DAN for the individual ability in
visuo-spatial attention.

Within-Network Functional Connectivity
of the Dorsal Attention Network Is
Stable – And Still It Seems to Adapt
Following Task Performance
As revealed by ROI-to-whole brain FC analyses, the predefined
DAN core regions (bilateral IPS and FEF) were functionally
connected with each other as well as with the bilateral MFG and
MT+, regions that are usually considered to build the DAN (Fox
et al., 2006; He et al., 2007; Hacker et al., 2013). These brain
regions are also recruited during active engagement in tasks that
require shifts of spatial attention (Corbetta and Shulman, 2002).
The ROI-to-whole brain FC as well as the ROI-to-ROI FC did not
change from the PRE- to the POST-task recording. These findings
are in line with previous studies reporting the DAN to be an inter-
individually reproducible (Fox et al., 2006) and intra-individually
highly stable RSN (Choe et al., 2015; Finn et al., 2015). The
within-network FC of the DAN remains even stable when its state
changes from rest to action, as previously shown in a study that
compared resting-state FC to intra-task FC while participants
performed a visuospatial attention task (Spadone et al., 2015).

That there was no significant change of absolute FC values
from PRE to POST in our study does not mean that the DAN is
not malleable or influenceable by experience. Of note, there was a
certain change in the DAN-FC from PRE to POST in that several
significant FC-behavior relations were only present in the PRE
but not the POST rs-fMRI session and vice versa.

Hence, there must have been some kind of reorganization
of the DAN’s FC between PRE and POST, either (I) in direct

response to the task performance or (II) spontaneously in terms
of state fluctuations. As an example, the FC-behavior relation of
right FEF-IPS FC and the mean RT in the VS task was significant
only in the POST session after task engagement, because only
then (but not before) a faster search was associated with stronger
intra-hemispheric connectivity in the right DAN. Following
hypothesis I, this may indicate an early and specific adaptation
of the DAN to the task demands. That a behavioral intervention
(i.e., one session of task performance or a several-day cognitive
training) can in principle change RSNs was previously shown
for different cognitive domains. For instance, one session of a
new language task was able to change the FC in the language
network immediately after the task (Waites et al., 2005). A 6-
weeks mnemonic training in naïve subjects induced persistent FC
changes in and between the medial temporal network, DMN, and
other RSNs, finally resembling those of memory athletes (Dresler
et al., 2017). Regarding the DAN and visuo-spatial attention,
an intense training over several days on a shape-identification
task led to changes in FC between visual cortex and frontal-
parietal DAN areas, which were correlated with learning effects
(Lewis et al., 2009). Engaging in a visual classification task
(faces or scenes) caused differential coupling between ventral
frontal cortex and category-preferential visual cortex regions in
subsequent periods of rest (Stevens et al., 2010). Furthermore,
one session of a VS task was shown to increase the FC between
the right posterior parietal cortex and the dorsolateral prefrontal
cortex (Bueicheku et al., 2019). A visuo-perceptional task training
(motion coherence discrimination) was shown to increase the FC
of MT+ as the cortical region responsible for the processing of
moving visual stimuli (Sarabi et al., 2018) but also the FC of the
hippocampus as a region involved in the consolidation of early
learning (Urner et al., 2013).

In the light of these studies, our findings of different FC-
behavior relations in the DAN before and after performance of
spatial attention tasks could be interpreted in support of task-
induced DAN-FC changes. This would underline the hypothesis
that the DAN – although intra-individually very stable – can
be shaped by learning experiences and that RSNs may serve
as a flexible, continuously updated “memory system” that helps
the individual to be better prepared for upcoming cognitive
challenges (Sadaghiani and Kleinschmidt, 2013; Manuel et al.,
2018). It is also in line with the hypothesis that RSNs may –
at least partly – be the result of learning, i.e., repetitions
of task-related co-activations of different brain regions (Miall
and Robertson, 2006; Harmelech and Malach, 2013; Guerra-
Carrillo et al., 2014), and that this rather flexible system plays
on the rigid backbone of structural connections in the brain
(Sadaghiani and Kleinschmidt, 2013).

However, following hypothesis II, there is also an alternative
explanation for the observed differences between the two rs-
fMRI sessions (PRE/POST) regarding different FC-behavior
correlations in our study: spontaneous state fluctuations over
time. Previous studies accordingly emphasized the “intrinsic
activity,” “ongoing dynamics,” or “time-varying FC” of RSNs
fluctuating over seconds and minutes independent from specific
inputs or outputs (Raichle, 2015; Sadaghiani et al., 2015; Kucyi
et al., 2018). Ongoing intrinsic fluctuations over large-scale
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networks were also shown to determine different attentional
states, such as in sustained attention and task-unrelated mind
wandering (Yamashita et al., 2021; Zuberer et al., 2021). The
extent of these fluctuations can still influence the upcoming
behavioral performance in a cognitive task explaining inter-
trial (and indirectly also inter-subject) variability (Coste et al.,
2011). Interestingly, when correlating the change in FC from
PRE to POST with behavioral performance parameters in our
cohort, smaller DAN-FC changes were associated with larger
improvement in the Posner task. Hence, one could speculate that
participants with a very stable “less fluctuating” DAN had better
learning in this specific task. This assumption is also supported by
a previous study, which showed that task-related reduction of FC
variability was associated with improved behavioral performance
in a letter recognition task (Elton and Gao, 2015).

Due to the design of our study, we cannot exclude that small
spontaneous fluctuations of DAN-FC over time finally led to
different FC-behavior correlations in the POST than in the PRE
rs-fMRI session. Task-independent spontaneous state changes
could even resolve some of the discrepancies in our FC-behavior
correlations, for instance, that stronger post-task FC between
right FEF and IPS was related to shorter RTs in VS and at the
same time to smaller RT improvement in the Posner task.

Limitations
To thoroughly disentangle task-induced changes from time-
varying spontaneous fluctuations of the RSN one would have
required a control rs-fMRI experiment without an interleaved
task performance, which was not part of this study. The modest
sample size of this study might have prevented to detect smaller
effects of PRE/POST FC changes due to a lack of statistical
power. Furthermore, significant FC-behavior correlations in a
rather small sample may be statistically inflated and may not
be replicated in larger (>2000) brain-wide association studies
(Marek et al., 2020). This also casts some doubt on the general
assumption that rs-fMRI FC strongly indexes inter-individual
differences in cognitive ability, as long as it is not replicated in
larger brain-wide association studies.

CONCLUSION

In our study, the DAN was confirmed to be an intra- and inter-
individually stable RSN. The significant association between

the DAN’s within-network FC and individual behavioral
performance in spatial attention tasks underlines its functional
relevance and gives rise to the importance of RSNs for
individual cognitive ability. Although time-varying spontaneous
fluctuations of DAN-FC cannot be fully ruled out as a
confounder, the change of the relation between DAN-FC and
behavioral performance measures following task performance
support the concept of RSNs as a flexible internal memory
system continuously shaped by learning experiences, helping
individuals to meet upcoming cognitive challenges with
improved performance.
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Previous research indicates that individuals with depressive disorders (DD) have aberrant
resting state functional connectivity and may experience memory dysfunction. While
resting state functional connectivity may be affected by experiences preceding the
resting state scan, little is known about this relationship in individuals with DD. Our
study examined this question in the context of object memory. 52 individuals with DD
and 45 healthy controls (HC) completed clinical interviews, and a memory encoding
task followed by a forced-choice recognition test. A 5-min resting state fMRI scan
was administered immediately after the forced-choice task. Resting state networks
were identified using group Independent Component Analysis across all participants.
A network modeling analysis conducted on 22 networks using FSLNets examined the
interaction effect of diagnostic status and memory accuracy on the between-network
connectivity. We found that this interaction significantly affected the relationship between
the network comprised of the medial prefrontal cortex, posterior cingulate cortex, and
hippocampal formation and the network comprised of the inferior temporal, parietal,
and prefrontal cortices. A stronger positive correlation between these two networks
was observed in individuals with DD who showed higher memory accuracy, while a
stronger negative correlation (i.e., anticorrelation) was observed in individuals with DD
who showed lower memory accuracy prior to resting state. No such effect was observed
for HC. The former network cross-correlated with the default mode network (DMN), and
the latter cross-correlated with the dorsal attention network (DAN). Considering that the
DMN and DAN typically anticorrelate, we hypothesize that our findings indicate aberrant
reactivation and consolidation processes that occur after the task is completed. Such
aberrant processes may lead to continuous “replay” of previously learned, but currently
irrelevant, information and underlie rumination in depression.

Keywords: resting state, fMRI, functional connectivity, depression, memory, default mode network, dorsal
attention network
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INTRODUCTION

Resting state neuroimaging techniques examine brain activation
and functional connectivity in the absence of stimuli or
tasks. Previous studies characterized a set of networks in
which brain regions co-activate during resting state (Beckmann
et al., 2005; Damoiseaux et al., 2006; De Luca et al., 2006;
Smith et al., 2009; Biswal et al., 2010; van den Heuvel and
Hulshoff Pol, 2010; Yeo et al., 2011; Lv et al., 2018). Resting state
functional connectivity may be related to sustained information
processing (Gusnard and Raichle, 2001) as well as environment
monitoring and internal thought processes (Buckner et al., 2008)
that can dynamically change based on the experiences preceding
the resting state scan (Daselaar et al., 2010; Sami et al., 2014;
Cecchetto et al., 2019) as well as predict task performance that
follows the resting state scan (Tambini et al., 2010; Sala-Llonch
et al., 2012; López Zunini et al., 2013; Reineberg et al., 2015).

Resting state functional connectivity is altered in a variety
of psychiatric illnesses (Greicius, 2008; Zhang and Raichle,
2010) including depressive disorders (Greicius et al., 2007;
Woodward and Cascio, 2015; Zhang et al., 2021). Depressive
disorders (DD) (e.g., major depressive and persistent depressive
disorders) are characterized by feelings of sadness, loss of interest
and motivation, fatigue, anhedonia, feelings of hopelessness,
worthlessness and guilt, as well as changes in sleeping, eating,
and overall cognitive and psychosocial functioning (First et al.,
2015). In addition, individuals with DD may experience memory
dysfunction (Burt et al., 1995; Williams et al., 2007; Hamilton
and Gotlib, 2008; Vasic et al., 2009; Gotlib and Joormann,
2010; Dillon and Pizzagalli, 2018; Ge et al., 2019). Previous
neuroimaging studies found elevated connectivity within the
default mode network (DMN) as well as between the DMN
and non-DMN regions, including the dorsal attention network
(DAN), insula, thalamus, and subgenual cingulate in individuals
with DD relative to healthy controls (HC) (Sheline et al., 2010;
Scalabrini et al., 2020). Clinical features of depression, such
as symptom severity, illness duration, medication status and,
most notably, ruminative and self-referential thought, have been
linked to disruption of the cognitive control, salience, and
default mode networks (Greicius et al., 2007; Bluhm et al., 2009;
Sheline et al., 2010; Zeng et al., 2012; Brakowski et al., 2017;
Scalabrini et al., 2020).

Mind wandering (Kucyi and Davis, 2014; Chou et al., 2017)
and experiencing self-referential thoughts (Sheline et al., 2009)
and spontaneous rumination (Rosenbaum et al., 2017) might be
related to intentional or unintentional reactivation of memory
representations that participants encountered prior to the resting
state scan and memory consolidation (Sami et al., 2014). During
memory consolidation, recently formed memories change into
stable memory representations through reorganization and
transitioning of hippocampal-dependent to neocortex supported
memories (Squire et al., 2015). Memory representations can be
reactivated during stimulus re-study (Vilberg and Davachi, 2013),
memory tests (Manelis et al., 2011), or spontaneously during rest
following stimuli encoding (Deuker et al., 2013; Wittkuhn and
Schuck, 2021). The latter is particularly relevant for the study
of psychiatric disorders as it might explain such phenomena as

depressive rumination, obsessive thoughts, and other aberrant
forms of cognition. Given that the majority of previous studies
focused on healthy individuals and administered the resting state
scan following stimulus encoding and prior to a memory test
(Tambini et al., 2010; Tambini and Davachi, 2013; Schlichting
and Prestona, 2014; Tompary et al., 2015; Murty et al., 2017),
little is known about how the accuracy of memories acquired
prior to the resting state scan is related to functional connectivity
within and between resting state networks in individuals with
DD, compared to HC.

Our study examined whether the relationship between
memory retrieval accuracy for recently encoded stimuli
and resting state functional connectivity was moderated by
diagnostic status. The experimental paradigm consisted of
the encoding phase, during which participants encountered
pictures of objects and tried to memorize them, the forced-
choice recognition task, and the subsequent resting state scan
in which the memorized stimuli were no longer relevant.
Memory encoding, retrieval, and consolidation involve the
hippocampus (Nadel and Moscovitch, 1997; Squire et al.,
2015). Considering that the hippocampus is a part of the
DMN (Buckner et al., 2008; Andrews-Hanna et al., 2010b)
that has aberrant functional connectivity in individuals with
DD (Sheline et al., 2009; Marchetti et al., 2012; Scalabrini
et al., 2020) and that individuals with DD have difficulty
disengaging from previously learned information (Xia and
Evans, 2020), we hypothesized that memory accuracy in
individuals with DD would be associated with aberrant DMN
connectivity relative to HC.

MATERIALS AND METHODS

Participants
This study was approved by the University of Pittsburgh
Institutional Review Board. Participants were recruited from the
community, universities, and counseling and medical centers
through referrals and advertisements. Written informed consent
was obtained from all participants. Participants were right-
handed, fluent in English, and matched on age, sex, and IQ.
HC had no personal or family history of psychiatric disorders.
Symptomatic participants met DSM-5 criteria for a depressive
disorder (DD) such as major depressive disorder (MDD) or
persistent depressive disorder (PDD).

Neuroimaging data were collected from 114 participants
(53 HC and 61 DD). A total of 17 participants were
excluded from the analyses due to excessive motion (>2 mm
translation; 7 HC and 5 DD), poor data quality due to
scanner noise (1 DD) or falling asleep during the resting
state scan (1 HC and 3 DD). The final sample included 45
HC and 52 DD for a total of 97 participants. Of the 52
individuals with DD, 35 were diagnosed with MDD and 17
were diagnosed with PDD. MDD and PDD differ in some
characteristics, such as symptom duration and severity, yet
display substantial overlap in symptomatology (First et al.,
2015). Of the 17 individuals with PDD, 13 had intermittent
major depressive episodes, a clinical feature making the
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symptom profiles of MDD and PDD difficult to differentiate
(Schramm et al., 2020).

Clinical Assessment
All diagnoses were made by a trained clinician and confirmed
by a psychiatrist according to DSM-5 criteria using the SCID-
5 clinical interview (First et al., 2015). We also collected
information about current depression symptoms using the
Hamilton Depression Rating Scale (HDRS-25) (Hamilton, 1960)
and lifetime dimensional symptoms of depression using the
MOODS-SR (Dell’Osso et al., 2002). A total psychotropic
medication load was calculated for each participant, with greater
numbers and doses of medications corresponding to a greater
medication load (Hassel et al., 2008; Manelis et al., 2016).
Exclusion criteria included a history of head injury, metal in the
body, pregnancy, claustrophobia, neurodevelopmental disorders,
systemic medical illness, premorbid IQ < 85 per the National
Adult Reading Test (Nelson, 1982), current alcohol/drug abuse,
the YMRS (Young et al., 1978) scores >10 at scan, and
meeting criteria for any psychotic-spectrum disorder. Table 1
reports group statistics for participants’ demographic and clinical
characteristics.

Memory Encoding and Retrieval
The experimental paradigm is depicted on Figure 1. During
encoding, participants were presented with 48 pictures of
common objects and food items (Blechert et al., 2014). To ensure
deep information processing, they were instructed to rate each
stimulus as pleasant or unpleasant (Richardson-Klavehn, 2010;
Schott et al., 2013), and to memorize the presented stimuli.
Approximately 25 min after encoding, participants performed
the forced-choice object recognition task in which they were
presented with pictures of an old (seen previously) and a novel
(not seen previously) stimulus side-by-side and were required
to select the old stimulus by pressing a corresponding button.
The task consisted of 48 trials. The set of the novel stimuli was
obtained from the same database as the set of the old stimuli
(Blechert et al., 2014) and consisted of the items that categorically
matched and visually resembled old stimuli (i.e., were from
subordinate categories of old items). The pairings of novel and
old stimuli were assigned randomly so that the old stimulus
could be paired with a similar novel stimulus (e.g., blue chair and
yellow chair), or a novel stimulus from a different category (e.g.,
bread and tomatoes). Each old stimulus had a closely resembling
novel stimulus; therefore, participants had to have a detailed
memory representation of an old stimulus to correctly identify
it as old. The memory accuracy was calculated as a percent of
correct responses relative to a total number of responses. While
participants were scanned during both the encoding and forced-
choice tasks, the neuroimaging results of these tasks will be
described in separate reports.

The scans administered between encoding and forced choice
object recognition tasks included spin-echo field maps in the
posterior-to-anterior and anterior-to-posterior phase encoding
directions (30 s each), a 7-min T1w anatomical scan, a 6.5-min
T2w anatomical scan, and a forced-choice recognition task for

face stimuli (approximately 10 min) that were encoded before the
objects in the separate task.

Resting State Scan
Immediately following the forced-choice recognition task,
participants completed a 5-min resting state scan in which they
were asked to look at the fixation star presented in the center of
the screen and to stay awake. We used an eye-tracking camera
system to monitor the participants’ wakefulness during the scan
and made a note if a participant fell asleep or kept their eyes
closed for more than 20 s. Participants also self-reported their
wakefulness after the resting state scan.

Neuroimaging Data Acquisition
The neuroimaging data were collected at the University
of Pittsburgh/UPMC Magnetic Resonance Research Center
(MRRC) using a 3T Siemens Prisma scanner with a 64-channel
head coil. The acquisition series were named according to the
ReproIn naming convention (Visconti di Oleggio Castello et al.,
2020). The EPI data were collected in the anterior-to-posterior
direction using a multi-band sequence (factor = 8, TR = 800 ms,
resolution = 2 × 2 × 2 mm, FOV = 210 mm, TE = 30 ms, flip
angle = 52◦, 72 slices, 375 volumes). High-resolution T1w images
were collected using the MPRAGE sequence (TR = 2,400 ms,
resolution = 0.8 × 0.8 × 0.8 mm, 208 slices, FOV = 256 mm,
TE = 2.22 ms, flip angle = 8◦). Field maps were collected in the AP
and PA directions using the spin echo sequence (TR = 8,000 ms,
resolution = 2 × 2 × 2 mm, FOV = 210 mm, TE = 66 ms, flip
angle = 90◦, 72 slices).

Data Analyses
Demographic and Clinical Data Analysis
The demographic and clinical characteristics were compared
between DD and HC groups using t- and chi-square tests.

Memory Retrieval Analysis
We used t-tests to compare recognition accuracy and response
time (RT) in DD vs. HC groups. RT was calculated across trials
with correct responses only.

Neuroimaging Data Analysis
Preprocessing
The DICOM images were converted to BIDS standard
using heudiconv version 0.5.4 (Halchenko et al., 2019;
RRID:SCR_017427) After that, the images were preprocessed
using fMRIPrep version 20.1.2 (Esteban et al., 2019;
RRID:SCR_016216). First, a reference volume and its skull-
stripped version were generated using a custom methodology of
fMRIPrep. Head-motion parameters with respect to the BOLD
reference (transformation matrices, and six corresponding
rotation and translation parameters) are estimated before any
spatiotemporal filtering using mcflirt (FSL 5.0.9, (Jenkinson
et al., 2002; RRID:SCR_002823). BOLD runs were slice-
time corrected using 3dTshift (Cox and Hyde, 1997), (AFNI
20160207; RRID:SCR_005927). A B0-non-uniformity map (or
fieldmap) was estimated based on two echo-planar imaging
(EPI) references with opposing phase-encoding directions, with
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TABLE 1 | Demographic and clinical characteristics.

HC UD Statistics HC vs. UD

Number of participants 45 52

Gender composition (number females) 33 42 chi2 = 0.40, p = 0.53

UD diagnoses (MDD/PDD) na 35/17 na

Age (years) 29.02 (1.00) 28.20 (0.93) t(95) = 0.60, p = 0.55

BMI 26.12 (0.69) 25.25 (0.54) t(95) = 1.01, p = 0.31

IQ (NART) 106.79 (0.81) 109.40 (1.01) t(95) = −1.97, p = 0.052

Current depression severity (HDRS-25) 1.69 (0.31) 12.81 (0.98) t(95) = −10.18, p < 0.001

Current mania severity (YMRS) 0.267 (0.12) 1.17 (0.20) t(95) = −3.69, p < 0.001

Lifetime depression (MOODS-SR) 2.09 (0.34) 18.65 (0.57) t(95) = −24.05, p < 0.001

Illness Onset (year of age) na 14.90 (0.50) na

Number of participants taking Antidepressants na 34 na

Number of participants taking Mood stabilizers na 2 na

Number of participants taking Antipsychotics na 1 na

Number of participants taking Benzodiazepines na 7 na

Number of participants taking Stimulants na 4 na

A mean number of psychotropic medications na 1.10 (0.14) na

A mean total medication load na 1.40 (0.19) na

Number of participants with comorbid diagnoses na 34 na

FIGURE 1 | Experimental paradigm.

3dQwarp (Cox and Hyde, 1997) (AFNI 20160207). Based on
the estimated susceptibility distortion, a corrected EPI (echo-
planar imaging) reference was calculated for a more accurate
co-registration with the anatomical reference. The BOLD
reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) (Dale et al., 1999; RRID:SCR_001847)
which implements boundary-based registration (Greve and
Fischl, 2009). Co-registration was configured with six degrees
of freedom. The BOLD time-series were resampled onto the
following surfaces (FreeSurfer reconstruction nomenclature):
fsaverage. The BOLD time-series (including slice-timing
correction) were resampled onto their original, native space
by applying a single, composite transform to correct for
head-motion and susceptibility distortions. These resampled
BOLD time-series will be referred to as preprocessed BOLD
in original space, or just preprocessed BOLD. The BOLD
time-series were resampled into standard space, generating a

preprocessed BOLD run in MNI152NLin2009cAsym space.
Automatic removal of motion artifacts using independent
component analysis (ICA-AROMA) (Pruim et al., 2015)
was performed on the preprocessed BOLD on MNI space
time-series after removal of non-steady state volumes and
spatial smoothing with an isotropic, Gaussian kernel of
6 mm full-width half-maximum (FWHM). Corresponding
“non-aggressively” denoised runs were produced after such
smoothing. Additionally, the aggressive noise-regressors were
collected and placed in the corresponding confounds file. All
resamplings were performed with a single interpolation step
by composing all the pertinent transformations (i.e., head-
motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output
spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels
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FIGURE 2 | Processing pipeline for the resting state data analysis.

(Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

While fMRIPrep automatically extracts the three global signals
within the CSF, the WM, and the whole-brain masks, they
are extracted prior to removal of motion artifacts using ICA-
AROMA (Pruim et al., 2015). Therefore, instead of using the
automatically generated values, we extracted these signals after
running the ICA-AROMA (from the files with the suffix “space-
MNI152NLin6Asym_desc-smoothAROMAnonaggr_bold”) and
regressed the CSF and WM from preprocessed resting state
data. After that, the data were band-pass temporal filtered (0.01–
0.1 Hz). The processing pipeline is depicted in Figure 2.

Group-Level Independent Component Analysis
The preprocessed, registered-to-MNI-space and band-pass
filtered BOLD images described above served as input files to
MELODIC group-ICA (Beckmann et al., 2005). We limited
the number of components discovered by MELODIC to 30 to
obtain large-scale networks. MELODIC uses a mixture model
and the loss function to estimate the probability for a voxel to
belong to the “active” or to the “background noise” classes. We

implemented a default threshold of 0.5 that “places an equal loss
on false positives and false negatives” (Beckmann and Smith,
2004) to obtain thresholded group-ICA components. Prior
to performing any between-group statistical analyses, these
thresholded group-ICA components (3D spatial maps) were
cross-correlated with Yeo’s 7-network solution maps (Yeo et al.,
2011) using fslcc, a tool that estimates spatial similarities between
ICA outputs and/or other volumetric data. The group-ICA
components whose cross-correlation values exceeded 0.2 were
retained for the further analyses. The remaining components
were visually examined for usability. The components that
followed WM tracts, or resembled physiological noise were
removed from the analyses.

Within- and Between-Network Analysis
All analyses were conducted on thresholded independent
component maps. Within-network connectivity was assessed
with a dual regression which generated both subject-specific
component time courses and subject-specific spatial maps as
output. Dual regression automatically utilizes randomize [with
5000 permutations and threshold free cluster enhancement
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(TFCE) to correct for multiple comparisons] for non-parametric
permutation testing (Winkler et al., 2014) to perform a diagnostic
status-by-memory accuracy interaction analysis in this study.

The time courses generated by dual regression were fed
into FSLNets (v0.6) to estimate between-network connectivity
(Smith et al., 2013). FSLNets was run using aggressive component
denoising and a full correlation. FSLNets uses network modeling
in which each variable (in our case, each ICA component)
is a node in the model and each connection between any
two nodes is an edge. FSLNets produces a node × node
matrix of correlation coefficients that represent the strength
of connections (edge strength) between any two selected
nodes. The effect of the diagnostic status-by-memory accuracy
interaction on edge strength was tested using randomize
with 5000 permutations and TFCE to correct for multiple
comparisons corrected-p < 0.05. To correct for the number of
estimated contrasts (n = 2), we used a Bonferroni corrected
p < 0.025.

Exploratory Analysis
Because the effects identified in the analyses described above
could be related to severity of current or lifetime depression
symptoms as well as the use of medications, we conducted
exploratory analyses to examine the associations between severity
of current (HDRS-25) and lifetime depression (MOODS-SR
depression scale), as well as the age of depressive disorder onset,
illness duration, current mood episode duration, and a total
medication load with all significant effects identified in the resting
state analyses. The exploratory analyses were conducted only
in the DD group.

To further examine the heterogeneity of our patient
population, we compared clinical, behavioral, and neuroimaging
characteristics in individuals with DD who are diagnosed with
MDD vs. those diagnosed with PDD, as well as in individuals with
DD with and without comorbid diagnoses.

Finally, since we administered the forced-choice recognition
test for faces prior to the recognition test for objects, we
conducted an exploratory analysis to examine the relationship
between accuracy on the facial recognition task with accuracy
on the object recognition task and on the overall functional
connectivity model.

RESULTS

Demographic and Clinical Data Analysis
The two groups did not significantly differ in age, sex,
or IQ (Table 1). Individuals with DD, compared to HC,
had significantly higher scores of current depression severity
measured by HDRS-25, lifetime depression measured by
MOODS-SR, and current mania symptoms measured by YMRS
(p < 0.001).

Memory Retrieval Analysis
The two groups did not significantly differ in recognition
accuracy [HC = 76.3 (1.8); UD 76.9 (1.9), t(95) = −0.22, p = 0.8]

FIGURE 3 | Spatial maps of 22 selected network components. Network
labels are based on cross-correlation with Yeo et al. (2011) and values in
parentheses indicate the cross-correlation coefficient. ** denotes the two
components whose connectivity was related to diagnostic status-by-memory
accuracy interaction.

and recognition RT [HC = 968 (25) msec; UD = 1010 (21) msec,
t(95) = −1.36, p = 0.18].

Resting State Data Analysis
Of the 30 independent components, 21 cross-correlated with
Yeo’s 7-network solution (Yeo et al., 2011) with at least 0.2
(Figure 3). During further visual examination, we identified a
component that was comprised of regions in the basal ganglia.
Even though this component did not correlate with any of Yeo’s
networks, we retained it for the further analyses. The remaining
eight components followed white matter pathways, represented
the cerebellum, or followed patterns of physiological noise and,
therefore, were excluded from the further analyses.

Dual regression did not reveal any significant effects
of diagnosis-by-memory accuracy interaction on functional
connectivity in any of 22 independent components.

FSLNets revealed that the strength of connectivity between
the independent component (IC) 7 that cross-correlated with
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FIGURE 4 | The diagnosis-by-memory accuracy interaction effect on the
edge strength between the DMN and DAN in individuals with DD and HC.

the DMN and the IC6 that cross-correlated with the DAN
(Figure 4) was significantly associated with the interaction
between diagnostic status and memory accuracy (p = 0.0156).
A post hoc analysis showed that this effect was driven by
the positive correlation between the connectivity strength and
memory accuracy in individuals with DD (t = 4.1, p = 0.00016).
Specifically, the individuals with DD who had more accurate
memory for objects had a positive relationship between the
DMN and DAN connectivity. However, those with less accurate
memory had a negative relationship (anticorrelation) between the
DMN and DAN. In HC, the DMN-DAN relationship was not
significantly associated with memory accuracy (t = −1.8, p = 0.07)
and, on average, was not different from 0 [one-sample t-test:
t(44) = −0.66, p = 0.5].

Exploratory Analyses
Exploratory analyses investigated whether recognition accuracy
and the connection strength between the DMN and DAN were
associated with clinical variables in individuals with DD. Neither
accuracy nor connection strength between the DMN and DAN
were related to current or lifetime depressive symptom severity,
age of DD onset, medication load, or duration of current mood
episode (all p-values > 0.05).

Analyses investigating difference between MDD and PDD
revealed that the two groups did not significantly differ in their
current or lifetime depressive symptom severity, age of illness
onset, or medication load (all p-values > 0.05; Table 2). Further,
the two disorders did not significantly differ in recognition
accuracy [MDD: 77.3 (2.2)%; PDD: 76.2 (13.8)%, t(50) = 0.26,
p = 0.8] and recognition RT [MDD: 1010 (22) msec; PDD:
1019 (48) msec, t(50) = −0.2, p = 0.84]. Importantly, the linear
regression analysis that predicted the DMN-DAN connectivity

strength from memory accuracy yielded significant results in the
MDD only sample [F(1,33) = 4.5, p = 0.04], as well as in the
PDD only sample [F(1,15) = 13.6, p = 0.002], which paralleled
the findings for the whole DD sample.

Individuals with DD with comorbid disorders had
significantly higher lifetime depression severity than those
without comorbid disorders based on the MOODS (Dell’Osso
et al., 2002) assessment [t(50) = 3.3, p < 0.005]. Other clinical,
behavioral, and connectivity measures were not related to the
presence of comorbid disorders.

Finally, although the memory accuracy for faces significantly
correlated with memory for objects across all participants
(r = 0.52, p < 0.001), it was significantly lower than the memory
accuracy for objects [t(96) = −9.6, p < 0.001]. Memory accuracy
for faces was not associated with the presence of DD diagnosis.
Importantly, the connectivity values were not related to the
interaction between diagnostic status and memory accuracy for
faces [F(1,93) = 1.64, p = 0.2].

DISCUSSION

In this study, we investigated the interaction effect of diagnostic
status (DD vs. HC) and the strength of memory representations
acquired prior to the resting state scan on within- and between-
network resting state connectivity. The results indicated that
diagnostic status moderated the relationship between memory
accuracy and the DMN-DAN connectivity strength. Specifically,
the DMN and DAN anticorrelated in the individuals with DD
who had lower recognition memory accuracy, but positively
correlated in those with DD who had higher recognition memory
accuracy. In contrast, the DMN and DAN connectivity was
not associated with memory accuracy in HC. We hypothesize
that the distinct relationship between memory accuracy and the
DMN-DAN connectivity in individuals with DD could indicate
aberrant memory reactivation and consolidation processes in
depressive disorders because the resting state scan was acquired
immediately after the stimulus recognition and was conducted
within a timeframe of continued memory consolidation, the
results were correlated with memory performance, and one of the
networks included bilateral hippocampus.

The DMN increases in activation during rest (Buckner et al.,
2008; Smith et al., 2009; Raichle, 2015) and supports perception-
independent (Smallwood et al., 2013) and internally oriented
cognition, such as autobiographical memory (Andrews-Hanna
et al., 2010a), abstract representation of task details in ongoing
thought processes (Sormaz et al., 2018), future-oriented thought
(Xu et al., 2016), and spontaneous cognition (Buckner et al., 2008;
Andrews-Hanna et al., 2010a). In contrast, the DAN increases in
activation during cognitive task performance and is implicated
in top-down control of attention (Corbetta and Shulman, 2002;
Vossel et al., 2014). While the DMN typically anticorrelates
with the DAN (Fox et al., 2005; Buckner et al., 2008; Hampson
et al., 2010), the degree of such anticorrelation may vary across
cognitive states (Dixon et al., 2017) and environmental factors
(Qian et al., 2020). For example, one study reported that the
regions in these networks co-activated during task preparation
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TABLE 2 | Demographic and clinical characteristics of individuals diagnosed with major depressive (MDD) and persistent depressive (PDD) disorders.

MDD PDD Statistics MDD vs. PDD

Number of participants 35 17

Gender composition (number females) 29 13 chi2 = 0.03, p = 0.86

Age (years) 27.32 (0.89) 30.02 (2.14) t(50) = −1.38, p = 0.18

BMI 25.18 (0.67) 25.4 (0.92) t(50) = −0.19, p = 0.85

IQ (NART) 109.12 (1.3) 109.95 (1.55) t(50) = −0.38, p = 0.7

Current depression severity (HDRS-25) 11.57 (1.17) 15.35 (1.67) t(50) = −1.85, p = 0.07

Current mania severity (YMRS) 1.31 (0.27) 0.88 (0.27) t(50) = 0.99, p = 0.33

Lifetime depression (MOODS-SR) 18.51 (0.76) 18.94 (0.81) t(50) = −0.35, p = 0.73

Illness Onset (year of age) 14.69 (0.51) 15.35 (1.11) t(50) = −0.63, p = 0.53

Number of participants taking Antidepressants 22 7 na

Number of participants taking Mood stabilizers 0 2 na

Number of participants taking Antipsychotics 1 0 na

Number of participants taking Benzodiazepines 4 3 na

Number of participants taking Stimulants 4 0 na

A mean number of psychotropic medications 1.00 (0.14) 1.29 (0.31) t(50) = −1.02, p = 0.31

A mean total medication load 1.29 (0.19) 1.65 (0.43) t(50) = −0.9, p = 0.37

Number of participants with comorbid diagnoses 20 14 na

but “anti-correlated” during task performance (Koshino et al.,
2014). Another study found that the DMN and working memory
network (that included the regions comprising the DAN in our
study) co-activated during encoding and retrieval phases of a
working memory task but anticorrelated during the maintenance
phase of this task (Piccoli et al., 2015). Our study contributes to
this line of research by showing that the relationship between the
DMN and DAN is associated with psychopathology and memory
accuracy in the task immediately preceding the resting state scan.

Resting state functional connectivity may reflect experiences
acquired prior to the resting state scan (Daselaar et al.,
2010; Sami et al., 2014; Cecchetto et al., 2019). Specifically,
one study has demonstrated that the patterns of activation
observed during encoding can spontaneously reactivate during
a subsequent resting state scan (Deuker et al., 2013). Consistent
with the memory consolidation theories (McClelland et al., 1995;
Squire et al., 2015), consolidation starts in the hippocampus
and continues in the neocortex, including the PFC. Given
that more accurate memory in individuals with DD, but
not HC, was associated with a stronger positive relationship
between the DMN (that included the bilateral hippocampus)
and DAN (that included the PFC and parietal regions) during
the subsequent resting state scan, we hypothesize that these
findings indicate aberrant spontaneous memory reactivation
and consolidation in these individuals. This pattern of results
may indicate that HC disengaged from the task when the
task was over, while the individuals with DD who accurately
memorized the stimuli in the task were not able to do so.
The latter individuals might experience spontaneous reactivation
and “replay” of memories even in the absence of direct
stimulation. Individuals with more accurate memories might
reactivate those memories more than individuals with less
accurate memories. Future studies should directly test the
spontaneous memory reactivation and consolidation hypothesis
because these memory processes could be a neurobiological

basis for depressive rumination, which is a repetitive internal
thinking pattern focusing on negative experiences and affect
(Holtzheimer and Mayberg, 2011). While we did not directly
examine memory reactivation at rest or ruminative processes,
the previous literature on rumination supports this idea
and suggests a relationship between rumination, resting state
functional connectivity, and depression. For example, in
depressed individuals, this phenomenon was positively associated
with functional connectivity in the anterior DMN (Zhu
et al., 2012; Lois and Wessa, 2016), negatively associated with
functional connectivity in the cortical DMN regions (Rosenbaum
et al., 2017), and was associated with more variable functional
connectivity between medial prefrontal cortex and insula (Kaiser
et al., 2016). Future studies are needed to clarify and test
the hypothesized relationship between rumination and memory
reactivation and consolidation processes proposed here.

The findings from exploratory analyses in the individuals
with DD revealed that the memory accuracy and DMN-DAN
correlation were not significantly related to current or lifetime
depressive symptom severity, the use of psychiatric medications,
age of illness onset, comorbid diagnoses, or diagnosis of MDD
vs. PDD in the individuals with DD. While these findings are
indicative of general reorganization of connectivity between
brain networks in individuals with DD, future studies need to
examine other factors affecting the DMN-DAN connectivity in
affected individuals.

One limitation of this study is the relatively short duration of
the resting state scan. A longer scan time is preferable because
it provides more reliable estimates of functional connectivity
(Birn et al., 2013). However, longer scan times also increase
the likelihood of a participant falling asleep during the scan,
which would affect resting state functional connectivity (Soehner
et al., 2019). Sleep disturbance is one of the clinical symptoms
of DD; therefore, staying awake during a longer resting state
scan may be especially challenging for individuals with DD.
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Another limitation of this study is the lack of a baseline resting
state scan performed prior to stimulus encoding or between
encoding and memory retrieval. Many studies that examined
the relationship between resting state functional connectivity
and task performance included an additional resting state
scan prior to task performance to capture baseline functional
connectivity to better distinguish “trait-like” from “task-related”
changes. However, determining the baseline in individuals with
mood disorders might be challenging because there is no way
to eliminate bias or interference from previous experiences
and thus, baseline resting state data may still be affected by
rumination or thoughts about previous experiences. Although
we hypothesized that our findings might be related to aberrant
reactivation and consolidation processes in the individuals with
DD, our study was not designed to directly measure consolidation
processes. Future studies should modify the existing experimental
paradigm by adding a baseline resting state scan between
encoding and memory retrieval as well as the second memory test
after the resting state scan to test the consolidation hypothesis.
Future studies should also incorporate rumination surveys and
inquire about the specific thought content that participants
experience during rest to discern how ruminative or other
thinking patterns are related to basic memory consolidation
processes in depression. In this study, we used the pictures
of neutral everyday objects. However, the notion of “neutral”
stimuli should be interpreted with caution in mood disorders
research because affected individuals tend to misinterpret neutral
stimuli as emotional (Manelis et al., 2019). Future studies
should specifically examine the relationship between resting state
functional connectivity and memory for positive vs. negative
information immediately preceding the resting state scan.

In summary, we have demonstrated that connectivity
strength between the DMN and DAN during resting state
was significantly associated with the interaction between
participants’ diagnostic status (DD or HC) and memory
accuracy in the task preceding the resting state scan. We
hypothesize that these differences may relate to aberrant
memory consolidation in depression, which may in turn
be a basis for depressive rumination and an inability to
disengage from thoughts and feelings associated with previous
experiences. Understanding the relationship between resting
state connectivity and previous experiences may inform the
development of interventions strategies alleviating repetitive
and intrusive thoughts in depression. However, future studies

are needed to clarify the relationship between post-encoding
and retrieval DMN-DAN resting state functional connectivity,
memory consolidation, and rumination.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

This study was approved by the University of Pittsburgh
Institutional Review Board. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

SS acquired the data, evaluated data quality, analyzed and
interpreted the data, and drafted and critically evaluated the
manuscript. YH curated the data organization and analyses and
drafted and critically evaluated the manuscript. RR and ML
acquired the data, evaluated data quality, and critically evaluated
the manuscript. MP curated the study development, interpreted
the data, and critically evaluated the manuscript. HS curated
the study development, participants’ recruitment, and evaluation,
and critically evaluated the manuscript. AM obtained funding,
designed the study, acquired the data, evaluated data quality,
analyzed and interpreted the data, and drafted and critically
evaluated the manuscript. All authors have read and approved
the final version of the manuscript and agreed to be accountable
for all aspects of this work.

FUNDING

This work was supported by grants from the National Institutes
of Health R01MH114870 to AM.

ACKNOWLEDGMENTS

We thank participants for taking part in this research study.

REFERENCES
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., and Buckner, R. L.

(2010a). Evidence for the default network’s role in spontaneous
cognition. J. Neurophysiol. 104, 322–335. doi: 10.1152/jn.00830.
2009

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner,
R. L. (2010b). Functional-anatomic fractionation of the brain’s
default network. Neuron 65, 550–562. doi: 10.1016/j.neuron.2010.
02.005

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M. (2005). Investigations
into resting-state connectivity using independent component analysis. Philos.
Trans. R. Soc. B Biol. Sci. 2005:1634. doi: 10.1098/rstb.2005.1634

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component
analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imag.
23, 137–152. doi: 10.1109/TMI.2003.822821

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R.,
et al. (2013). The effect of scan length on the reliability of resting-state fMRI
connectivity estimates. Neuroimage 83, 550–558. doi: 10.1016/j.neuroimage.
2013.05.099

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).
Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA
107, 4734–4739. doi: 10.1073/pnas.0911855107

Blechert, J., Meule, A., Busch, N. A., and Ohla, K. (2014). Food-pics: An image
database for experimental research on eating and appetite. Front. Psychol.
2014:617. doi: 10.3389/fpsyg.2014.00617

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 74976753

https://doi.org/10.1152/jn.00830.2009
https://doi.org/10.1152/jn.00830.2009
https://doi.org/10.1016/j.neuron.2010.02.005
https://doi.org/10.1016/j.neuron.2010.02.005
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1109/TMI.2003.822821
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1016/j.neuroimage.2013.05.099
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.3389/fpsyg.2014.00617
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-749767 February 15, 2022 Time: 14:19 # 10

Satz et al. Memory and Resting State

Bluhm, R., Williamson, P., Lanius, R., Théberge, J., Densmore, M., Bartha, R., et al.
(2009). Resting state default-mode network connectivity in early depression
using a seed region-of-interest analysis: Decreased connectivity with caudate
nucleus. Psychiatry Clin. Neurosci. 63, 754–761. doi: 10.1111/j.1440-1819.2009.
02030.x

Brakowski, J., Spinelli, S., Dörig, N., Bosch, O. G., Manoliu, A., Holtforth, M. G.,
et al. (2017). Resting state brain network function in major depression –
Depression symptomatology, antidepressant treatment effects, future research.
J. Psychiatr. Res. 2017:7. doi: 10.1016/j.jpsychires.2017.04.007

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default
network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124,
1–38. doi: 10.1196/annals.1440.011

Burt, D. B., Zembar, M. J., and Niederehe, G. (1995). Depression and memory
impairment: a meta-analysis of the association, its pattern, and specificity.
Psychol. Bull. 117, 285. doi: 10.1037/0033-2909.117.2.285

Cecchetto, C., Fischmeister, F. P. S., Reichert, J. L., Bagga, D., and Schöpf, V. (2019).
When to collect resting-state data: The influence of odor on post-task resting-
state connectivity. Neuroimage 191, 361–366. doi: 10.1016/j.neuroimage.2019.
02.050

Chou, Y. H., Sundman, M., Whitson, H. E., Gaur, P., Chu, M. L., Weingarten,
C. P., et al. (2017). Maintenance and representation of mind wandering during
resting-state fMRI. Sci. Rep. 7:722. doi: 10.1038/srep40722

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/
nrn755

Cox, R. W., and Hyde, J. S. (1997). Software tools for analysis and visualization of
fMRI data. NMR Biomed. 10, 171–178. doi: 10.1002/(SICI)1099-1492

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis: I.
Segmentation and surface reconstruction. Neuroimage 9, 179–194. doi: 10.1006/
nimg.1998.0395

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J.,
Smith, S. M., et al. (2006). Consistent resting-state networks across healthy
subjects. Proc. Natl. Acad. Sci. USA 103, 13848–13853. doi: 10.1073/pnas.
0601417103

Daselaar, S. M., Huijbers, W., de Jonge, M., Goltstein, P. M., and Pennartz, C. M. A.
(2010). Experience-dependent alterations in conscious resting state activity
following perceptuomotor learning. Neurobiol. Learn. Mem. 93, 422–427. doi:
10.1016/j.nlm.2009.12.009

De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., and Smith, S. M.
(2006). fMRI resting state networks define distinct modes of long-distance
interactions in the human brain. Neuroimage 29, 1359–1367. doi: 10.1016/j.
neuroimage.2005.08.035

Dell’Osso, L., Armani, A., Rucci, P., Frank, E., Fagiolini, A., Corretti, G., et al.
(2002). Measuring mood spectrum: Comparison of interview (SCI-MOODS)
and self-report (MOODS-SR) instruments. Compr. Psychiatry 2002:29852. doi:
10.1053/comp.2002.29852

Deuker, L., Olligs, J., Fell, J., Kranz, T. A., Mormann, F., Montag, C., et al. (2013).
Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci.
33, 19373–19383. doi: 10.1523/JNEUROSCI.0414-13.2013

Dillon, D. G., and Pizzagalli, D. A. (2018). Mechanisms of memory disruption in
depression. Trends Neurosci. 2018:6. doi: 10.1016/j.tins.2017.12.006

Dixon, M. L., Andrews-Hanna, J. R., Spreng, R. N., Irving, Z. C., Mills, C., Girn,
M., et al. (2017). Interactions between the default network and dorsal attention
network vary across default subsystems, time, and cognitive states. Neuroimage
147, 632–649. doi: 10.1016/j.neuroimage.2016.12.073

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat. Methods 2019:2354. doi: 10.1038/s41592-018-0235-4

First, M. B., Williams, J. B. W., Karg, R. S., and Spitzer, R. L. (2015). Structured
clinical interview for DSM-5—Research version (SCID-5 for DSM-5, research
version; SCID-5-RV). Washingt. D.C: American Psychiatric Association.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and
Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005:102. doi:
10.1073/pnas.0504136102

Ge, R., Torres, I., Brown, J. J., Gregory, E., McLellan, E., Downar, J. H., et al. (2019).
Functional disconnectivity of the hippocampal network and neural correlates

of memory impairment in treatment-resistant depression. J. Affect. Disord. 253,
248–256. doi: 10.1016/j.jad.2019.04.096

Gotlib, I. H., and Joormann, J. (2010). Cognition and depression: Current status
and future directions. Annu. Rev. Clin. Psychol 2010:305. doi: 10.1146/annurev.
clinpsy.121208.131305

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric
disorders. Curr. Opin. Neurol. 2008:5. doi: 10.1097/wco.0b013e328306f2c5

Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna,
H., et al. (2007). Resting-state functional connectivity in major depression:
abnormally increased contributions from subgenual cingulate cortex and
thalamus. Biol. Psychiatry 62, 429–437. doi: 10.1016/j.biopsych.2006.09.020

Greve, D. N., and Fischl, B. (2009). Accurate and robust brain image alignment
using boundary-based registration. Neuroimage 48, 63–72. doi: 10.1016/j.
neuroimage.2009.06.060

Gusnard, D. A., and Raichle, M. E. (2001). Searching for a baseline: Functional
imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694. doi:
10.1038/35094500

Halchenko, Y., Goncalves, M., Castello, M. V., Ghosh, S., Hanke, M., DaeAmlien,
I., et al. (2019). nipy/heudiconv: v0.5.4 [0.5.4]. San Francisco: GitHub. doi:
10.5281/ZENODO.2653784

Hamilton, J. P., and Gotlib, I. H. (2008). Neural substrates of increased memory
sensitivity for negative stimuli in major depression. Biol. Psychiatry 63, 1155–
1162. doi: 10.1016/j.biopsych.2007.12.015

Hamilton, M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry
23, 56–62. doi: 10.1136/jnnp.23.1.56

Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., and Constable, R. T. (2010).
Functional connectivity between task-positive and task-negative brain areas
and its relation to working memory performance. Magn. Reson. Imag. 28,
1051–1057. doi: 10.1016/j.mri.2010.03.021

Hassel, S., Almeida, J. R., Kerr, N., Nau, S., Ladouceur, C. D., Fissell, K., et al.
(2008). Elevated striatal and decreased dorsolateral prefrontal cortical activity
in response to emotional stimuli in euthymic bipolar disorder: no associations
with psychotropic medication load. Bipolar. Disord. 10, 916–927. doi: 10.1111/
j.1399-5618.2008.00641.x

Holtzheimer, P. E., and Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression
and its treatment. Trends Neurosci. 2011:4. doi: 10.1016/j.tins.2010.10.004

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1016/S1053-
8119(02)91132-8

Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J.,
et al. (2016). Dynamic resting-state functional connectivity in major depression.
Neuropsychopharmacology 41, 1822–1830. doi: 10.1038/npp.2015.352

Koshino, H., Minamoto, T., Yaoi, K., Osaka, M., and Osaka, N. (2014). Coactivation
of the default mode network regions and working memory network regions
during task preparation. Sci. Rep. 4:5954. doi: 10.1038/srep05954

Kucyi, A., and Davis, K. D. (2014). Dynamic functional connectivity of the default
mode network tracks daydreaming. Neuroimage 100, 471–480. doi: 10.1016/j.
neuroimage.2014.06.044

Lanczos, C. (1964). Evaluation of noisy data. J. Soc. Ind. Appl. Math. Ser. B Numer.
Anal. 1, 76–85. doi: 10.1137/0701007

Lois, G., and Wessa, M. (2016). Differential association of default mode network
connectivity and rumination in healthy individuals and remitted MDD patients.
Soc. Cogn. Affect. Neurosci. 11:85. doi: 10.1093/scan/nsw085

López Zunini, R. A., Thivierge, J. P., Kousaie, S., Sheppard, C., and Taler, V. (2013).
Alterations in resting-state activity relate to performance in a verbal recognition
task. PLoS One 2013:8. doi: 10.1371/journal.pone.0065608

Lv, H., Wang, Z., Tong, E., Williams, L. M., Zaharchuk, G., Zeineh, M., et al. (2018).
Resting-state functional MRI: Everything that nonexperts have always wanted
to know. Am. J. Neuroradiol. 39, 1390–1399. doi: 10.3174/ajnr.A5527

Manelis, A., Almeida, J. R. C., Stiffler, R., Lockovich, J. C., Aslam, H. A., and
Phillips, M. L. (2016). Anticipation-related brain connectivity in bipolar and
unipolar depression: A graph theory approach. Brain 139, 2554–2566. doi:
10.1093/brain/aww157

Manelis, A., Hanson, C., and Hanson, S. J. (2011). Implicit memory for object
locations depends on reactivation of encoding-related brain regions. Hum.
Brain Mapp. 32, 32–50. doi: 10.1002/hbm.20992

Frontiers in Human Neuroscience | www.frontiersin.org 10 February 2022 | Volume 16 | Article 74976754

https://doi.org/10.1111/j.1440-1819.2009.02030.x
https://doi.org/10.1111/j.1440-1819.2009.02030.x
https://doi.org/10.1016/j.jpsychires.2017.04.007
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1037/0033-2909.117.2.285
https://doi.org/10.1016/j.neuroimage.2019.02.050
https://doi.org/10.1016/j.neuroimage.2019.02.050
https://doi.org/10.1038/srep40722
https://doi.org/10.1038/nrn755
https://doi.org/10.1038/nrn755
https://doi.org/10.1002/(SICI)1099-1492
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1016/j.nlm.2009.12.009
https://doi.org/10.1016/j.nlm.2009.12.009
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1016/j.neuroimage.2005.08.035
https://doi.org/10.1053/comp.2002.29852
https://doi.org/10.1053/comp.2002.29852
https://doi.org/10.1523/JNEUROSCI.0414-13.2013
https://doi.org/10.1016/j.tins.2017.12.006
https://doi.org/10.1016/j.neuroimage.2016.12.073
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1016/j.jad.2019.04.096
https://doi.org/10.1146/annurev.clinpsy.121208.131305
https://doi.org/10.1146/annurev.clinpsy.121208.131305
https://doi.org/10.1097/wco.0b013e328306f2c5
https://doi.org/10.1016/j.biopsych.2006.09.020
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1038/35094500
https://doi.org/10.1038/35094500
https://doi.org/10.5281/ZENODO.2653784
https://doi.org/10.5281/ZENODO.2653784
https://doi.org/10.1016/j.biopsych.2007.12.015
https://doi.org/10.1136/jnnp.23.1.56
https://doi.org/10.1016/j.mri.2010.03.021
https://doi.org/10.1111/j.1399-5618.2008.00641.x
https://doi.org/10.1111/j.1399-5618.2008.00641.x
https://doi.org/10.1016/j.tins.2010.10.004
https://doi.org/10.1016/S1053-8119(02)91132-8
https://doi.org/10.1016/S1053-8119(02)91132-8
https://doi.org/10.1038/npp.2015.352
https://doi.org/10.1038/srep05954
https://doi.org/10.1016/j.neuroimage.2014.06.044
https://doi.org/10.1016/j.neuroimage.2014.06.044
https://doi.org/10.1137/0701007
https://doi.org/10.1093/scan/nsw085
https://doi.org/10.1371/journal.pone.0065608
https://doi.org/10.3174/ajnr.A5527
https://doi.org/10.1093/brain/aww157
https://doi.org/10.1093/brain/aww157
https://doi.org/10.1002/hbm.20992
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-749767 February 15, 2022 Time: 14:19 # 11

Satz et al. Memory and Resting State

Manelis, A., Huppert, T. J., Rodgers, E., Swartz, H. A., and Phillips, M. L. (2019).
The role of the right prefrontal cortex in recognition of facial emotional
expressions in depressed individuals: fNIRS study. J. Affect. Disord. 2019:6.
doi: 10.1016/j.jad.2019.08.006

Marchetti, I., Koster, E. H. W., Sonuga-Barke, E. J., and De Raedt, R. (2012). The
Default Mode Network and recurrent depression: A neurobiological model of
cognitive risk factors. Neuropsychol. Rev. 22, 229–251. doi: 10.1007/s11065-012-
9199-9

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: Insights
from the successes and failures of connectionist models of learning and
memory. Psychol. Rev. 102, 419–457. doi: 10.1037/0033-295X.102.3.419

Murty, V. P., Tompary, A., Adcock, R. A., and Davachi, L. (2017). Selectivity
in postencoding connectivity with high-level visual cortex is associated with
reward-motivated memory. J. Neurosci. 37, 537–545. doi: 10.1523/JNEUROSCI.
4032-15.2016

Nadel, L., and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia
and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227. doi: 10.1016/
S0959-4388(97)80010-4

Nelson, H. E. (1982). National Adult Reading Test (NART): Test manual. Florida:
Academica.

Piccoli, T., Valente, G., Linden, D. E. J., Re, M., Esposito, F., Sack, A. T., et al. (2015).
The default mode network and the working memory network are not anti-
correlated during all phases of a working memory task. PLoS One 10:123354.
doi: 10.1371/journal.pone.0123354

Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., and
Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for
removing motion artifacts from fMRI data. Neuroimage 2015:64. doi: 10.1016/
j.neuroimage.2015.02.064

Qian, S., Zhang, J., Yan, S., Shi, Z., Wang, Z., and Zhou, Y. (2020). Disrupted
anti-correlation between the default and dorsal attention networks during
hyperthermia exposure: an fMRI Study. Front. Hum. Neurosci 14:564271. doi:
10.3389/fnhum.2020.564272

Raichle, M. E. (2015). The brain’s default mode network. Annu. Rev. Neurosci
2015:14030. doi: 10.1146/annurev-neuro-071013-014030

Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman,
N. P., and Banich, M. T. (2015). Resting-state networks predict
individual differences in common and specific aspects of executive
function. Neuroimage 104, 69–78. doi: 10.1016/j.neuroimage.2014.
09.045

Richardson-Klavehn, A. (2010). Priming, automatic recollection, and
control of retrieval: toward an integrative retrieval architecture,
in: the act of remembering: toward an understanding of
how we recall the past. 2010:202. doi: 10.1002/978144432
8202.ch7

Rosenbaum, D., Haipt, A., Fuhr, K., Haeussinger, F. B., Metzger, F. G., Nuerk, H. C.,
et al. (2017). Aberrant functional connectivity in depression as an index of state
and trait rumination. Sci. Rep. 7:2211. doi: 10.1038/s41598-017-02277-z

Sala-Llonch, R., Pena-Gomez, C., Arenaza-Urquijo, E. M., Vidal-Pineiro, D.,
Bargallo, N., Junque, C., et al. (2012). Brain connectivity during resting state and
subsequent working memory task predicts behavioural performance. Cortex 48,
1187–1196. doi: 10.1016/j.cortex.2011.07.006

Sami, S., Robertson, E. M., and Chris Miall, R. (2014). The time course of task-
specific memory consolidation effects in resting state networks. J. Neurosci. 34,
3982–3992. doi: 10.1523/JNEUROSCI.4341-13.2014

Scalabrini, A., Vai, B., Poletti, S., Damiani, S., Mucci, C., Colombo, C., et al.
(2020). All roads lead to the default-mode network—global source of DMN
abnormalities in major depressive disorder. Neuropsychopharmacology 45,
2058–2069. doi: 10.1038/s41386-020-0785-x

Schlichting, M. L., and Prestona, A. R. (2014). Memory reactivation during rest
supports upcoming earning of related content. Proc. Natl. Acad. Sci. USA 111,
15845–15850. doi: 10.1073/pnas.1404396111

Schott, B. H., Wüstenberg, T., Wimber, M., Fenker, D. B., Zierhut, K. C.,
Seidenbecher, C. I., et al. (2013). The relationship between level of processing
and hippocampal-cortical functional connectivity during episodic memory
formation in humans. Hum. Brain Mapp. 2013:21435. doi: 10.1002/hbm.21435

Schramm, E., Klein, D. N., Elsaesser, M., Furukawa, T. A., and Domschke,
K. (2020). Review of dysthymia and persistent depressive disorder: history,

correlates, and clinical implications. Lancet Psychiatry 2020:997. doi: 10.1016/
S2215-0366(20)30099-7

Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder,
A. Z., et al. (2009). The default mode network and self-referential processes
in depression. Proc. Natl. Acad. Sci. USA 106, 1942–1947. doi: 10.1073/pnas.
0812686106

Sheline, Y. I., Price, J. L., Yan, Z., and Mintun, M. A. (2010). Resting-state functional
MRI in depression unmasks increased connectivity between networks via the
dorsal nexus. Proc. Natl. Acad. Sci. USA 107, 11020–11025. doi: 10.1073/pnas.
1000446107

Smallwood, J., Tipper, C., Brown, K., Baird, B., Engen, H., Michaels, J. R., et al.
(2013). Escaping the here and now: Evidence for a role of the default mode
network in perceptually decoupled thought. Neuroimage 69, 120–125. doi: 10.
1016/j.neuroimage.2012.12.012

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E.,
et al. (2009). Correspondence of the brain’s functional architecture during
activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045. doi: 10.1073/
pnas.0905267106

Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller,
K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends
Cogn. Sci. 2013:16. doi: 10.1016/j.tics.2013.09.016

Soehner, A. M., Chase, H. W., Bertocci, M. A., Greenberg, T., Stiffler, R., Lockovich,
J. C., et al. (2019). Unstable wakefulness during resting-state fMRI and its
associations with network connectivity and affective psychopathology in young
adults. J. Affect. Disord. 2019:66. doi: 10.1016/j.jad.2019.07.066

Sormaz, M., Murphy, C., Wang, H., Hymers, M., Karapanagiotidis, T., Poerio,
G., et al. (2018). Correction: Default mode network can support the level of
detail in experience during active task. Proc. Natl. Acad. Sci. USA 115, E11198.
doi: 10.1073/pnas.1817966115

Squire, L. R., Genzel, L., Wixted, J. T., and Morris, R. G. (2015). Memory
consolidation. Cold Spring Harb. Perspect. Biol. 7:21766. doi: 10.1101/
cshperspect.a021766

Tambini, A., and Davachi, L. (2013). Persistence of hippocampal multivoxel
patterns into postencoding rest is related to memory. Proc. Natl. Acad. Sci. USA
110, 19591–19596. doi: 10.1073/pnas.1308499110

Tambini, A., Ketz, N., and Davachi, L. (2010). Enhanced brain correlations during
rest are related to memory for recent experiences. Neuron 65, 280–290. doi:
10.1016/j.neuron.2010.01.001

Tompary, A., Duncan, K., and Davachi, L. (2015). Consolidation of associative and
item memory is related to post-encoding functional connectivity between the
ventral tegmental area and different medial temporal lobe subregions during an
unrelated task. J. Neurosci. 35, 7326–7331. doi: 10.1523/JNEUROSCI.4816-14.
2015

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the
brain network: A review on resting-state fMRI functional connectivity. Eur.
Neuropsychopharmacol. 2020:8. doi: 10.1016/j.euroneuro.2010.03.008

Vasic, N., Walter, H., Sambataro, F., and Wolf, R. C. (2009). Aberrant functional
connectivity of dorsolateral prefrontal and cingulate networks in patients with
major depression during working memory processing. Psychol. Med. 39, 977–
987. doi: 10.1017/S0033291708004443

Vilberg, K. L., and Davachi, L. (2013). Perirhinal-hippocampal connectivity during
reactivation is a marker for object-based memory consolidation. Neuron 79,
1232–1242. doi: 10.1016/j.neuron.2013.07.013

Visconti di Oleggio Castello, M., Dobson, J. E., Sackett, T., Kodiweera, C., Haxby,
J. V., Goncalves, M., et al. (2020). ReproNim/reproin 0.6.0. San Francisco:
GitHub. doi: 10.5281/ZENODO.3625000

Vossel, S., Geng, J. J., and Fink, G. R. (2014). Dorsal and ventral attention systems:
Distinct neural circuits but collaborative roles. Neuroscientist 20, 150–159. doi:
10.1177/1073858413494269

Williams, J. M. G., Barnhofer, T., Crane, C., Hermans, D., Raes, F., Watkins, E., et al.
(2007). Autobiographical memory specificity and emotional disorder. Psychol.
Bull. 2007:122. doi: 10.1037/0033-2909.133.1.122

Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., and Nichols,
T. E. (2014). Permutation inference for the general linear model. Neuroimage
2014:60. doi: 10.1016/j.neuroimage.2014.01.060

Wittkuhn, L., and Schuck, N. W. (2021). Dynamics of fMRI patterns reflect sub-
second activation sequences and reveal replay in human visual cortex. Nat.
Commun 12:2. doi: 10.1038/s41467-021-21970-2

Frontiers in Human Neuroscience | www.frontiersin.org 11 February 2022 | Volume 16 | Article 74976755

https://doi.org/10.1016/j.jad.2019.08.006
https://doi.org/10.1007/s11065-012-9199-9
https://doi.org/10.1007/s11065-012-9199-9
https://doi.org/10.1037/0033-295X.102.3.419
https://doi.org/10.1523/JNEUROSCI.4032-15.2016
https://doi.org/10.1523/JNEUROSCI.4032-15.2016
https://doi.org/10.1016/S0959-4388(97)80010-4
https://doi.org/10.1016/S0959-4388(97)80010-4
https://doi.org/10.1371/journal.pone.0123354
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.3389/fnhum.2020.564272
https://doi.org/10.3389/fnhum.2020.564272
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1016/j.neuroimage.2014.09.045
https://doi.org/10.1016/j.neuroimage.2014.09.045
https://doi.org/10.1002/9781444328202.ch7
https://doi.org/10.1002/9781444328202.ch7
https://doi.org/10.1038/s41598-017-02277-z
https://doi.org/10.1016/j.cortex.2011.07.006
https://doi.org/10.1523/JNEUROSCI.4341-13.2014
https://doi.org/10.1038/s41386-020-0785-x
https://doi.org/10.1073/pnas.1404396111
https://doi.org/10.1002/hbm.21435
https://doi.org/10.1016/S2215-0366(20)30099-7
https://doi.org/10.1016/S2215-0366(20)30099-7
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.0812686106
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1016/j.neuroimage.2012.12.012
https://doi.org/10.1016/j.neuroimage.2012.12.012
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1016/j.tics.2013.09.016
https://doi.org/10.1016/j.jad.2019.07.066
https://doi.org/10.1073/pnas.1817966115
https://doi.org/10.1101/cshperspect.a021766
https://doi.org/10.1101/cshperspect.a021766
https://doi.org/10.1073/pnas.1308499110
https://doi.org/10.1016/j.neuron.2010.01.001
https://doi.org/10.1016/j.neuron.2010.01.001
https://doi.org/10.1523/JNEUROSCI.4816-14.2015
https://doi.org/10.1523/JNEUROSCI.4816-14.2015
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1017/S0033291708004443
https://doi.org/10.1016/j.neuron.2013.07.013
https://doi.org/10.5281/ZENODO.3625000
https://doi.org/10.1177/1073858413494269
https://doi.org/10.1177/1073858413494269
https://doi.org/10.1037/0033-2909.133.1.122
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1038/s41467-021-21970-2
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-749767 February 15, 2022 Time: 14:19 # 12

Satz et al. Memory and Resting State

Woodward, N. D., and Cascio, C. J. (2015). Resting-state functional connectivity in
psychiatric disorders. JAMA Psychiatry 2015:484. doi: 10.1001/jamapsychiatry.
2015.0484

Xia, J., and Evans, L. H. (2020). Neural evidence that disengaging memory retrieval
is modulated by stimulus valence and rumination. Sci. Rep. 101, 1–11. doi:
10.1038/s41598-020-64404-7

Xu, X., Yuan, H., and Lei, X. (2016). Activation and connectivity within the default
mode network contribute independently to future-oriented thought. Sci. Rep.
2016:21001. doi: 10.1038/srep21001

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead,
M., et al. (2011). The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/
jn.00338.2011

Young, R. C., Biggs, J. T., Ziegler, V. E., and Meyer, D. A. (1978). A rating scale
for mania: reliability, validity and sensitivity. Br. J. Psychiatry 133, 429–435.
doi: 10.1192/bjp.133.5.429

Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., et al. (2012).
Identifying major depression using whole-brain functional connectivity: A
multivariate pattern analysis. Brain 135, 1498–1507. doi: 10.1093/brain/
aws059

Zhang, D., and Raichle, M. E. (2010). Disease and the brain’s dark energy. Nat. Rev.
Neurol. 2010:198. doi: 10.1038/nrneurol.2009.198

Zhang, Y., Wu, W., Toll, R. T., Naparstek, S., Maron-Katz, A., Watts,
M., et al. (2021). Identification of psychiatric disorder subtypes from
functional connectivity patterns in resting-state electroencephalography.
Nat. Biomed. Eng. 5, 309–323. doi: 10.1038/s41551-020-
00614-8

Zhu, X., Wang, X., Xiao, J., Liao, J., Zhong, M., Wang, W., et al. (2012).
Evidence of a dissociation pattern in resting-state default mode
network connectivity in first-episode, treatment-naive major depression
patients. Biol. Psychiatry 71, 611–617. doi: 10.1016/j.biopsych.2011.
10.035

Conflict of Interest: HS receives royalties from Wolters Kluwer, royalties and
an editorial stipend from APA Press, and served as a consultant for Intracellular
Therapeutics and Medscape/WebMD.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Satz, Halchenko, Ragozzino, Lucero, Phillips, Swartz and Manelis.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 February 2022 | Volume 16 | Article 74976756

https://doi.org/10.1001/jamapsychiatry.2015.0484
https://doi.org/10.1001/jamapsychiatry.2015.0484
https://doi.org/10.1038/s41598-020-64404-7
https://doi.org/10.1038/s41598-020-64404-7
https://doi.org/10.1038/srep21001
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1192/bjp.133.5.429
https://doi.org/10.1093/brain/aws059
https://doi.org/10.1093/brain/aws059
https://doi.org/10.1038/nrneurol.2009.198
https://doi.org/10.1038/s41551-020-00614-8
https://doi.org/10.1038/s41551-020-00614-8
https://doi.org/10.1016/j.biopsych.2011.10.035
https://doi.org/10.1016/j.biopsych.2011.10.035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


ORIGINAL RESEARCH
published: 03 March 2022

doi: 10.3389/fncom.2022.729556

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2022 | Volume 16 | Article 729556

Edited by:

Ruben Sanchez-Romero,

Rutgers University, United States

Reviewed by:

Adrián A. P. A. Ponce-Alvarez,

Pompeu Fabra University, Spain

Sebastiano Stramaglia,

University of Bari Aldo Moro, Italy

*Correspondence:

Afra Wohlschläger

afra.wohlschlaeger@tum.de

Received: 23 June 2021

Accepted: 28 January 2022

Published: 03 March 2022

Citation:

Bauer LG, Hirsch F, Jones C,

Hollander M, Grohs P, Anand A,

Plant C and Wohlschläger A (2022)

Quantification of Kuramoto Coupling

Between Intrinsic Brain Networks

Applied to fMRI Data in Major

Depressive Disorder.

Front. Comput. Neurosci. 16:729556.

doi: 10.3389/fncom.2022.729556

Quantification of Kuramoto Coupling
Between Intrinsic Brain Networks
Applied to fMRI Data in Major
Depressive Disorder
Lena G. Bauer 1, Fabian Hirsch 2,3, Corey Jones 2,3, Matthew Hollander 2,3, Philipp Grohs 1,4,

Amit Anand 5, Claudia Plant 1,6 and Afra Wohlschläger 2,3*

1 Research Network Data Science, University of Vienna, Vienna, Austria, 2Departement of Neuroradiology, Klinikum Rechts

der Isar, Technical University of Munich, Munich, Germany, 3 TUMNIC, Klinikum Rechts der Isar, Technical University of

Munich, Munich, Germany, 4 Faculty of Mathematics, University of Vienna, Vienna, Austria, 5Center for Behavioral Health,

Cleveland Clinic, Cleveland, OH, United States, 6 Faculty of Computer Science, University of Vienna, Vienna, Austria

Organized patterns of system-wide neural activity adapt fluently within the brain to

adjust behavioral performance to environmental demands. In major depressive disorder

(MD), markedly different co-activation patterns across the brain emerge from a rather

similar structural substrate. Despite the application of advanced methods to describe

the functional architecture, e.g., between intrinsic brain networks (IBNs), the underlying

mechanisms mediating these differences remain elusive. Here we propose a novel

complementary approach for quantifying the functional relations between IBNs based on

the Kuramoto model. We directly estimate the Kuramoto coupling parameters (K) from

IBN time courses derived from empirical fMRI data in 24 MD patients and 24 healthy

controls. We find a large pattern with a significant number of Ks depending on the

disease severity score Hamilton D, as assessed by permutation testing. We successfully

reproduced the dependency in an independent test data set of 44 MD patients and 37

healthy controls. Comparing the results to functional connectivity from partial correlations

(FC), to phase synchrony (PS) as well as to first order auto-regressive measures (AR)

between the same IBNs did not show similar correlations. In subsequent validation

experiments with artificial data we find that a ground truth of parametric dependencies on

artificial regressors can be recovered. The results indicate that the calculation of Ks can

be a useful addition to standardmethods of quantifying the brain’s functional architecture.

Keywords: Kuramoto model, functional connectivity, synchronization, fMRI, major depressive disorder (MDD)

1. INTRODUCTION

The human brain is a complex adaptive system in which a stable neuronal substrate of gray and
white matter architecture allows for a vast array of cognitive sets. At any moment integrative
overall network interaction defines attainable cognitive sets as well as the degree of flexibility to
react to outer stimuli (Sporns et al., 2004; Deco et al., 2008; Breakspear, 2017). Empirically, on the
one hand a structural connectome can be described (Sporns et al., 2005), and complementary to
that functional imaging allows for assessing the functional architecture which is in parts defined by
processes of chemical connectivity depending on the status of the various transmitter systems of the

57

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.729556
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.729556&domain=pdf&date_stamp=2022-03-03
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:afra.wohlschlaeger@tum.de
https://doi.org/10.3389/fncom.2022.729556
https://www.frontiersin.org/articles/10.3389/fncom.2022.729556/full


Bauer et al. Quantification of Kuramoto Coupling Coefficients

brain (Shine et al., 2019). Different measures have been proposed
to quantify the complex interplay of brain areas measured
with functional magnetic resonance imaging (fMRI) including
statistical measures of coherence (functional connectivity;
Friston, 2011), phase coherence (Glerean et al., 2012; Deco and
Kringelbach, 2016; Cabral et al., 2017), and models of first order
auto-regressive representation (Liégeois et al., 2017, 2019). Still
a full understanding of how a brain state arises from neuronal
underpinnings of structural and chemical connectivity remains
elusive. Alternative approaches might help to fill into this gap.
Table 1 contains all abbreviations used in this paper.

The Kuramoto model of coupled oscillators (Okuda and
Kuramoto, 1991) has been introduced to neuroscience as one
potential generative model governing fluctuating oscillations in
large-scale cortical circuits (Breakspear et al., 2010; Cocchi et al.,
2016). The model poses that the differences in time course phases
between any two oscillators are causal to phase readjustments at
both ends (Okuda and Kuramoto, 1991).

While classical functional connectivity analyses look for first
order statistical associations, the application of the Kuramoto
model to fMRI data employs a more specific, yet simple,
biophysiological model, i.e., it addresses the issue of a slow BOLD
response to fast neuronal processes. As depicted in Figure 1A

an event of fast neuronal firing in one region would cause an
attraction of the phase of the fMRI signal in a second region
receiving excitatory neuronal projections from the first one.
Conversely, repetitive inhibitory impact from one region onto
the other on a fast time scale would cause phase repulsion on the
fMRI time scale. In this broader conceptualization, the Kuramoto
coupling strengths can serve as empirical measures even without
the assumption that the brain regions are perfect oscillators.

The overall energy landscape, which determines the likelihood
of any pattern of simultaneously active brain regions (Okuda
and Kuramoto, 1991; Shine, 2020), depends on the individual
coupling strengths (see Figure 1B). Minor, but widespread
modifications in the coupling strengths result in changes of this
landscape and thereby in a notably different spectrum of co-
activations. These ultimately have to be understood as different
brain processes, i.e., alterations in thought and behavior. The idea
is illustrated in a conceptual sketch in Figure 1C. In this view
Kuramoto coupling between brain areas could for instance be
changed by underlying changes in the transmitter system status
which impacts on the amount of fast firing. The model, therefore,
might offer a distinct complementary approach to other existing
ones based on an appealing generative model.

Major depressive disorder (MD) is associated with experiences
of depressed mood, with impaired cognition, energy loss,
vegetative symptoms, and suicidal thoughts (American
Psychiatric Association, 2013). This spectrum of diverse
symptoms suggests a likely involvement of several distinct
neural circuits in creating an aberrant brain state (Northoff,
2016). MD is not associated with a major focal brain lesion,
but is frequently associated with alterations in synaptic,
chemical rather than structural connectivity, in particular with
monoamine dysfunction, which has been investigated in detail
in animal and human models of depression (Cooper et al.,
1991; Delgado et al., 1994; Hamon and Blier, 2013). Most

TABLE 1 | Abbreviations.

Section Abbreviation Meaning

Connectivity K Kuramoto coupling parameters

Measures FC Functional connectivity from partial correlations

(I)PS (Instantaneous) phase synchrony

AR First order auto-regressive measures

Neuroscience fMRI Functional magnetic resonance imaging

MD Major depressive disorder

MDE Major depressive episode

HC Healthy controls

IBN Intrinsic brain network

BG Basal ganglia network

Ham-D Hamilton Rating Scale for Depression

Methods ICA Independent component analysis

KM Kuramoto model

ODE Ordinary differential equation

LES Linear equation system

Simulation IC Inside correlation pattern coefficients

BC Bridging coefficients

RC Reference coefficients

antidepressants act on monoamine re-uptake mechanisms or
monoamine post-synaptic receptors (Anand and Charney, 1997).
Monoamine transmitter systems are mainly centrally controlled
by brainstem nuclei, which exert wide spread influence via
broad projections to nearly all cortico-limbic regions (Goldman-
Rakic et al., 1989; Robbins and Arnsten, 2009; Jacob and
Nienborg, 2018). Although they may be central to the generative
mechanisms determining pathological alterations of the brain’s
energy landscape their direct impact on fMRI measures is
difficult to establish. Therefore, a method investigating moderate
but wide spread changes in the brain’s functional architecture
focussing on causal impact of brain regions onto each other
might be of use.

In the present study we present a novel approach which
consists of the direct estimation of Kuramoto coupling
parameters (K) from empirical data (section 2.2). Statistical
analysis is designed (section 2.4) to assess significance based
not on individual coupling parameters, but on whole sets of
couplings, which is in line with the underlying assumptions.
The focus, therefore, shifts away from spatial localization toward
modifications of the dynamics of the brain as a system. We
use an exploratory data set to detect dependencies of K on
clinical severity. These specific hypotheses are then tested in
an entirely independent larger test data set, which underwent
identical preprocessing. Specifically, within the initial exploratory
analysis, we apply this method to intrinsic brain networks
(IBNs) in a collective of patients with major depressive disorder
(MD) and matched healthy controls, and compare it to three
other measures (section 2.3): (i) functional connectivity via
partial correlations (FC), (ii) phase synchrony (PS), and (iii)
parameters of a first order auto-regressive model (AR). We
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FIGURE 1 | Sketch of the model assumption. (A) Excitatory neuronal firing from IBN1 on a fast time scale leads to an earlier signal rise in IBN2 which effectively means

a phase readjustment in the slow BOLD time course of the targeted IBN. Conversely, inhibitory firing would lead to a phase adjustment in the form of phase repulsion.

(B) Pair-wise Kuramoto phase couplings of IBNs, symbolized by spring constants (here undirected), determine network-wide dynamics and are altered in pathology

(compare red vs. green). (C) Energy landscape on a very reduced subspace of only two IBNs. Different activation constellations of the two IBNs (x- and y-axis) are

associated with different energy levels (z-axis). Intrinsic information flow between the IBNs favors selective co-activations and penalizes others. The red circle indicates

an arbitrary intrinsic state (i.e., co-activation constellation between IBNs), red lines indicate trajectories from this state which are favored by the landscape, red arrows

indicate a set of states likely to be attained under the prevailing structural and synaptic conditions. The landscape is based on the underlying neuronal and synaptic

connectivity. Minor adjustments to an overall stable energy landscape (compare left and right) may impact on fast firing intensity and thereby on Kuramoto coupling

parameters Ki,j . This might allow for or subdue more versatile co-activation patterns. Widely projecting transmitter systems bear the potential of widespread moderate

adjustments to the energy landscape.

then test if significant findings on K can be recovered in
the independent test data set. We hypothesize that Ks show
wide spread alterations with severity of pathology. By a set
of simulations (section 4, Appendix A) we test the ability of
our method to recover parametric dependencies and delineate
scenarios in which parametric dependencies of Ks on external
variables are accessible to the methodology.

2. MATERIALS AND METHODS

2.1. Empirical Data of Resting State fMRI in
Patients With Major Depressive Disorder
and Healthy Controls
2.1.1. Participants

2.1.1.1. Exploratory Data Set
Data was acquired in 25 patients with recurrent MD and 25
age matched control subjects. One patient and one control had
to be excluded due to image artifacts, resulting in 24 subjects
per group. Mean age in the MD group was 48y [min/max:

23y/79y, 13 female], and 44y [min/max: 26y/68y, 14 female]
in the control group. All patients received medication at the
time of scanning. Supplementary Table 1 provides details on
demographic and clinical characteristics. Participant data have
been used in several previous studies (Manoliu et al., 2014;
Meng et al., 2014; Ries et al., 2018, 2019). To render results of
the IBN determination more robust 25 young healthy control
(HC) participants (age 19–32, right handed) were included
into the independent component analysis described below. All
participants gave informed consent in accordance with the in-
house ethics committee of the Klinikum rechts der Isar, TU
Munich. Patients were recruited at the psychiatry department of
the Klinikum rechts der Isar, TU Munich. Clinical assessment,
including DSM IV (American Psychiatric Association, 2000) and
Hamilton Rating Scale for Depression (Ham-D, Hamilton, 1960),
was performed by two experienced psychiatrists [Structured
Clinical Interview for DSM-IV (SCID) inter-rater reliability of
95%]. HCs were recruited by word-of-mouth advertising. MD
was the primary diagnosis for all patients, with all of them
meeting criteria for a current major depressive episode (MDE)
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with an average current episode length of 16 weeks (SD= 7),
an average Ham-D score of 21.8 (SD= 7.1). The mean duration
of MD was 16.72 years (SD = 10.20), the mean number
of episodes 6 (SD = 3). Exclusion criteria for patients were
psychotic symptoms, schizophrenia, schizo-affective disorder,
bipolar disorder, and substance abuse. Exclusion criteria for
all participants were pregnancy, neurological or severe internal
systemic diseases, and general contraindications for MRI. All
patients were medicated (for details see Meng et al., 2014) except
for one patient who was free of any psychotropic medication
during MRI assessment.

All participants underwent 10 min of rs-fMRI with the
instruction to keep their eyes closed and not to fall asleep.

2.1.1.2. Test Data Set
All subjects were included in the study after signing an informed
consent form approved by the Investigational Review Board
(IRB) at Indiana University School of Medicine and at the
Cleveland Clinic Foundation.

One hundred seven medication-free MD subjects and 51 HCs
were recruited as part of a study of young adult MD subjects
at high and low risk for bipolar disorder. Out of the 107 MD
subjects 28 subjects were excluded due to excessive motion,
falling asleep during scanning, incomplete or lacking data, and
poor data quality. Thirty-five further subjects were excluded from
the statistical analysis due to inconsistent imaging parameters,
and mild symptoms of mania as assessed by a score of more
than 1 on the Young Mania Rating Scale (YMRS). Out of the
51 HCs 10 subjects were excluded due to excessive motion,
falling asleep during scanning, incomplete or lacking data, and
poor data quality or family history of psychiatric illness. Four
further subjects were excluded from statistical analysis due to
inconsistent scanning parameters. Data of the extended patient
data set without restrictions on YMRS and inconsistent imaging
parameters were processed and included into the independent
component analysis described below.

Finally, 44 patients (age: mean [min/max] 24y [18y/30y],
33 females) and 37 healthy controls (age: mean [min/max]
24y [18y/30y], 22 females) were included into the statistical
analysis. See Supplementary Table 1 for a detailed presentation
of demographic and clinical characteristics. A subgroup of the
collective was part of a previous investigation (Wohlschläger
et al., 2018). Both patients and HCs were paid $25 for
screening and $75 for MRI scan. All subjects underwent a
detailed structured diagnostic interview—Mini Neuropsychiatric
Interview (MINI) that generated a DSM-IV diagnosis (Sheehan
et al., 1997). Inclusion criteria for MD were: (1) between 15 and
30 years and able to give voluntary informed consent; (2) satisfy
DSM-IV-TR criteria for MD using a structured interview; (3)
never met criteria for mania or hypomania; (4) 17-item Ham-D
> 18 and < 25; (5) Young Mania Rating Scale (YMRS) (Young
et al., 1978) score < 10; (6) satisfy safety criteria to undergo an
MRI scan; (7) able to be managed as outpatients during the study,
ascertained by the following—(i) Clinical Global Severity Scale
< 5 i.e., moderately ill, (ii) no significant suicidal or homicidal
ideation or grossly disabled.

All participants underwent 6:16 min of rs-fMRI with the
instruction to keep their eyes open and to look at a fixation cross.

2.1.2. MRI Data Acquisition

2.1.2.1. Exploratory Data Set
All measurements were performed on a 3T MR scanner
(Achieva, Philips, Netherland) using an 8-channel phased-
array head coil. T1-weighted anatomical images were obtained
from a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence (FoV= 240× 240 mm2, 170 slices). FMRI
data were obtained from a gradient echo planar imaging (EPI)
sequence (TR/TE = 2, 000/35 ms, 32 slices, slice thickness = 4
mm, 300 volumes). For the additional data set of young subjects
respective parameters were: T1 (FoV = 480 × 480 mm2, 340
slices), fMRI (TR/TE = 2, 007/30 ms, 36 slices, slice thickness =
3 mm; 300 volumes).

2.1.2.2. Test Data Set
Measurements were acquired at Cleveland Clinic Main Campus
using 3T Siemens Prisma MR Scanner. T1-weighted anatomical
images were obtained from a MPRAGE sequence (FoV = 240×
256 mm2, 160 slices). FMRI data were obtained from an EPI
sequence (TR/TE =2, 800/29 ms, 39 slices, slice thickness = 3.5
mm, 132 volumes). To limit the head motion scans at Cleveland
Clinic were acquired with subjects fitted with a bite bar.

2.1.3. Preprocessing
During preprocessing particular care was taken to address
physiological as well as movement artifacts. Effects of heart beat
and breathing were quantified from the data using Physiologic
Estimation by Temporal ICA (PESTICA) (Beall and Lowe, 2007),
and a physiologic noise removal tool, RETROICOR (Glover
et al., 2000). During this step instantaneous effects of heart beat
and respiration are corrected for. Estimates of the cardiac and
respiratory rates can be retrieved. There were no significant
group differences in both measures. Because it has been shown
that magnitude of cardiac and respiratory rate can have delayed
effects within the BOLD signal (Birn et al., 2008; Chang
et al., 2009) respective regressors were calculated and accounted
for within the subsequent procedures (see below). Movement
correction was optimized with slice-based realignment using
slice-oriented motion correction (SLOMOCO) (Beall and Lowe,
2014). No significant group differences in volume-wise or slice-
wise mean motion were detected (see Supplementary Table 1).
Further preprocessing steps included coregistration to the T1
image, slice time correction, spatial normalization, and spatial
smoothing with the full width at half maximum (FWHM) of the
Gaussian filter 8×8×8 mm3 (SPM12, https://www.fil.ion.ucl.ac.
uk/spm/).

2.1.4. IBN Time Course Preparation
Exploratory and test data sets of the preprocessed data were each
entered into independent component analyses (ICA) and each
separated into 75 spatially independent components (Calhoun
et al., 2001) based on the Infomax-algorithm and implemented
in the fMRI Toolbox (GIFT, http://www.icat.sourceforge.net)
which was run 20 times through ICASSO to ensure stability
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of the estimated components. For both data sets group average
components were back-projected on the single-subject data. Via
multiple spatial regression 20 of the 75 independent components
in the exploratory data set and 28 of the 75 independent
components in the test data set were identified as neuronally
meaningful IBNs with correlation coefficients above 0.15 to the
spatial templates of the IBNs as described in Allen et al. (2011).
The IBNs are presented in the Supplementary Figures 1, 2. Time
courses from these IBNs for each subject were corrected for
effects of white matter signal, and signal from the cerebrospinal
fluid, and additionally for effects of the respiratory (Birn
et al., 2008), and the cardiac (Chang et al., 2009) response
functions, by regression. The latter two functions compensate
for delayed effects of variations in respiratory and breathing
rates on the BOLD signal. In order to select a frequency band
affected by dynamical changes in the patient group, metastability
was calculated for a range of frequency bins (Ries et al.,
2019) as described in the Supplementary Material (section 1.3)
(Figure 3). Frequency bin 3 displayed significant reduction in
metastability in the patients. Based on this finding, time courses
were bandpass filtered to a narrow frequency band of 0.05–
0.075 Hz in preparation for a subsequent Hilbert transformation
(Córdova-Palomera et al., 2017) using a Butterworth filter of
order 7. The FC andARmeasures are not based on phase analysis,
therefore, the frequency range does not have to be that strongly
reduced. Here the less stringent, commonly used frequency band
of 0.01–0.1 Hz (Zang et al., 2007) was chosen as band pass filter.

2.2. Calculation of Kuramoto Coupling
Coefficients
This section describes the methodological concepts which we will
use to analyze the coupling behavior in our data sets. Table 2
gives an overview of the most important notation used in the
following sections.

2.2.1. Kuramoto Model
First, we consider the Kuramoto model (KM) (Kuramoto, 1975;
Acebrón et al., 2005). This is a system of ordinary differential
equations (ODEs) describing the temporal change of the phases
ϕ1, . . . ,ϕr of r oscillators, which are coupled by the sine of their
phase differences:

ϕ̇i(t) =
∂ϕi(t)

∂t
= ωi+

C

r

r
∑

j=1

Ki,j sin(ϕj(t)− ϕi(t)) = f (t,ϕi(t))

i = 1, . . . , r. (1)

Here, ϕi(t) is the phase angle of the i–th oscillator at time
point t and ωi is the eigenfrequency of the i-th oscillator. The
only parameters in this model are the coupling coefficients
Ki,j describing the connection between oscillator i and j. In
this model couplings between each and every oscillator are
considered, whichmatches our assumption of wide-spread effects
and simultaneous involvement of all IBNs. The coupling strength
C can be set to 1 since it is an equal scaling for theKi,j parameters.
Note, that the model can attain different forms. The choice of this
form is discussed in the Supplementary Material (section 2.1).

TABLE 2 | Notation.

Notation Meaning

X Bold capital letters indicate matrices

x bold small letters indicate vectors

X,x Non bold capital or small letters indicate real numbers

X Three dimensional matrix

xi i−th row of a matrix X

Xi,j (i, j)−th entry of a matrix X

xi i−th entry of a vector x

s Number of subjects

r Number of IBNs per subject

T Number of measure points in the recording

K Notation for the measure “Kuramoto coupling parameters” for

empirical data analysis

K
o, Ko, Ko

i,j Original random coefficient matrices/matrix/matrix entry for the

simulations

K
c, Kc, Kc

i,j Manipulated coefficient matrices/matrix/matrix entry with induced

correlations on score

K
res, Kres, Kres

i,j Resulting Kuramoto coefficient matrices/matrix/matrix entry

calculated with our model

ωi Eigenfrequency of the i−th oscillator/IBN

d Overall coupling parameter

n Noise level weight

N, Ns, Nas Correlation patterns

M, Min/out Individual coefficient weight matrix (“mask matrix”)

Each subject in our data set has r time courses x(t)
representing the activity in r IBNs. The use of this model for
our time series data x(t) first requires the extraction of the
instantaneous phases ϕ(t) for each time course.

2.2.2. Hilbert Transform
The Hilbert transform (Hahn, 1996) denoted by H{x(t)} returns
a version of the original time series shifted by π

2 . Considering the
analytical signal xa(t)=x(t)+ i ·H{x(t)}, we can then represent the
time series in an amplitude-phase representation.

x(t) = a(t) · cos(ϕ(t)) (2)

with the instantaneous amplitude a(t)=|xa(t)| and the
instantaneous phase ϕ(t)= 6 xa(t).

2.2.3. Numerical Solution Method
The usual way of utilizing an ODE model such as the KM, is
to set the model parameters (in this case the Ki,j) suitable for
the domain application and subsequently calculate a solution
that fulfills the model equations (i.e., the functions ϕ1, . . . ,ϕr)
with a numerical solver. This has been done previously in
Neuroscience (Stramaglia et al., 2017)—also for the Kuramoto
model (Schmidt et al., 2015). There exist many numerical
approximation methods. One of the most basic approaches is
Euler’s method (Epperson, 2013). The approximation of the
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solution is calculated step-wise according to the following rule

ϕi(s+ 1) = ϕi(s)+ f (s,ϕi(s)). (3)

with the iteration steps s and s + 1 and a step size h chosen as
1. Discussion about this choice and also the choice of the Euler
method as a numerical solution method can be found in the
Supplementary Material (section 2.2).

In this work, we are already given phase courses from the
recordings (i.e., the functions ϕ1, . . . ,ϕr). The time courses
in our experiments are filtered to a very narrow frequency
band. Therefore, we can model the eigen-frequencies ωi as the
mean frequency ω̄ of the respective frequency band. Another
option would be to estimate each eigen-frequency from the
largest peak in the frequency profile of each time course via
fast Fourier transform (FFT). Our codes provide both options.
Unless mentioned otherwise, all our experiments were conducted
using a fixed mean eigen-frequency. Given all phase and eigen-
frequency values, we are able to choose a reverse engineering
approach. We assume that the KM can describe synchronization
or coupling respectively of our given data and utilize formula (3)
to calculate the KM parameters Ki,j which optimally fit our data.

2.2.4. Goal
Our goal is the estimation of the coupling coefficients Ki,j of
model (1) considering the given phase courses (ϕ1(t), . . . ,ϕr(t),
t=1, . . .T) and eigen-frequencies (ωi) of the IBN time series. The
coefficients may be interpreted as the coupling strengths between
the time series and, therefore, between the IBNs of a subject. We
proceed as follows.

2.2.5. Linear Equation System
By transforming the time series xi(t) of each IBN of a participant
using the Hilbert transformation, we get an amplitude-phase
representation of each time series

xi(t) = ai(t) · cos(ϕi(t)) t = 0, . . . ,T − 1. (4)

This way we obtain the actual time course of the phases ϕi(t)
of the time series xi(t), i=1, . . . , r. So instead of simulating the
synchronization of initial phase values of a subject’s time series,
we assume that synchronization of the phases is explainable by
the above Kuramoto model (1). Considering the phase values
ϕi(t), t=0, . . . ,T−1 of a single time course of a single subject and
plugging in those phase values into Equation (3) leads to linear
equations of the form

ϕi(s+ 1) = ϕi(s)+ ωi+
1

r

r
∑

j=1

Ki,j sin(ϕj(s)− ϕi(s)),

s = 0, . . . ,T − 2. (5)

In our exploratory data set, we have T = 300 measure points
in the recording and each of the s = 24 subjects per group has
recordings for r = 20 IBNs. Thus, we obtain 299 (# time steps)
equations for 20 (# IBNs) unknown variables Ki,j, j=1, . . . , 20 for
each IBN of each subject. This results in total in 400 coefficients
Ki,j, i, j=1, . . . , 20 for one subject. Note again, that time steps are

labeled as s=0, 1, 2, . . . , 299 corresponding to iterations while the
values correspond to time points t=0, 2, 4, . . . , 598 in seconds.
The equations can be rearranged to the form of a linear equation
system (LES)

Si · ki = bi, (6)

with Si ∈ R
299×20, ki ∈ R

20, and bi ∈ R
299. The system matrix

Si will, however, have one zero column, which corresponds to
the coefficient Ki,i. We have to eliminate this column in order
to obtain a system matrix with full rank. Accordingly, we reduce
the number of unknowns by not solving for Ki,i, but determining
it instead. As it represents the coupling between an IBN to itself,
we simple set the value to 1 (any constant would suffice). Thus,
we will determine 380 coefficients per subject. Details about the
entries of Si and bi as well as the derivation of the entries can be
found in the Supplementary Material (section 2.3).

2.2.6. Solving the LES
Since the LES (6) is over-determined, i.e., the number of
equations is larger than the number of variables, we can not
simply invert the non-squared system matrix Si. We solve the
over-determined LES optimal with respect to the ℓ2 norm by
building the normal equations (Gauß, 1809; Abdulle andWanner,
2002).

STi Si
︸︷︷︸

Ŝi

·k̂i = STi · bi
︸ ︷︷ ︸

b̂i

. (7)

The symmetric matrix Ŝi ∈ R
19×19 is regular and can, therefore,

be inverted to obtain a unique solution k̂i ∈ R
19, where it holds

||Si · k̂i − bi||
2
ℓ2

= min
x∈R19

||Si · x− bi||
2
ℓ2

(8)

Derivations of the normal equations to yield the optimal
solution in the sense of Equation (8) are given in the
Supplementary Material (section 2.4). In order to solve the
equations simultaneously for all IBNs of one subject, we build a
block diagonal equation matrix, and append the inhomogeneity
terms resulting in

S =








S1 0 · · · 0

0 S2 · · · 0
...

...
. . .

...
0 0 · · · S20








(9)

b =








b1
b2
...

b20








(10)

We calculate the solution k̂ ∈ R
380 of the LES

ST · S · k̂ = ST · b (11)
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by a simple matrix inversion

k̂ = (ST · S)−1 · ST · b (12)

Finally, we set the resulting Kuramoto coupling coefficients for

one subject kres : = k̂. We perform these steps for each subject
which provides us with 380 coefficients Kres

i,j , i, j=1, . . . , 20, i 6= j

per individual. The vector kres can be reshaped to a Kuramoto
coupling matrix Kres of size 20 × 20 by putting the coefficient
estimating the coupling between IBN i to IBN j in the (i, j)−th
entry and filling up the diagonal with ones. This can nicely
be visualized by a heat map (see Supplementary Figure 4 for
an example visualization). Gathering all Kuramoto coupling
coefficient for all subjects in a group results in a three dimensional
matrix object of size s × r × r, which we term K

res. This object
contains the calculated Kuramoto coupling coefficient, which are
given the marker name K in Introduction (section 1), Results
(section 3.1) and Discussion (section 5) in the context of the
empirical data sets.

All calculations were implemented in Matlab R2018a1. Scripts
are available via the following link: https://doi.org/10.6084/m9.
figshare.13352399.

2.3. Calculation of Reference Coupling
Measures
2.3.1. Partial Correlations (FC)
Time course data were filtered to a frequency band of 0.01–0.1
Hz (Zang et al., 2007). Partial correlations between each and any
of the IBNs were calculated from the time courses of all IBNs
using Matlab.

2.3.2. Phase Synchrony (PS)
Time course data were filtered to a frequency band of 0.05–0.075
Hz (as in the calculation ofK) in preparation for the subsequently
conducted Hilbert transformation (Córdova-Palomera et al.,
2017). PS were calculated pairwise from the phase time courses
between each and any of the IBNs according to

PSi,j = med(IPSi,j(t)) = med(cos(ϕj(t)− ϕi(t))) (13)

Here, med(·) is the median function across time applied to the
instantaneous phase synchrony IPS(t) (Zarghami et al., 2020) and
ϕi(t) is the phase angle of the i–th oscillator at time point t given
in rad.

2.3.3. Coefficients of a First Order Auto-Regressive

Model (AR)
Time course data were filtered to a frequency band of 0.01–0.1 Hz
(Zang et al., 2007). Calculation of the auto-regressive coefficients,
including auto-regression within one and the same time course,
were performed using the scripts available from Liégeois et al.
(2019) according to their Equation (1):

x(t) = AR× x(t − 1)+ ǫ(t) (14)

1https://www.mathworks.com/.

2.4. Statistical Analysis
2.4.1. Set-Level Statistics
Wewere particularly interested in wide spread changes of Ks and
the control measures across the whole brain. We therefore tested
whether the number of individual correlations depending on a
regressor (Ham-D) were likely to occur by chance. To this, we
compared the sizes of sets containing couplings with statistically
significant dependencies on the regressor against the distribution
of set sizes derived from random permutations of K-values.

In detail, we assessed the significance of sets of Ki,js showing
moderate associations to a parametric regressor per group
via the number of these association. We calculated Spearman
correlations per individual coupling to a given regressor, and
counted the number of significant correlation at a threshold of
Pu < 0.05, uncorrected for multiple comparisons. Subsequently,
all couplings were permuted within each subject of the group
and we repeated the correlation procedure yielding a number
of chance correlations and, therefore, chance set sizes at the
threshold of Pu < 0.05. By repeating this procedure we produced
a distribution of the number of chance set sizes, to which we
compared the actual set size (see Figure 2). We generated a P-
value from the percentage of chance set sizes larger than the
actual set size. The script accounts for the fact, that matrices can
be symmetric (FC, PS) or non-symmetric (K, AR). A number of
500 permutations yielded stable results for the P-values.

We performed similar tests on the set-level for finding
sets of significant couplings versus zero and sets of significant
couplings showing group differences, by replacing the correlation
procedure with Wilcoxon signed rank and Wilcoxon rank sum
test, respectively.

Data deviating more than two standard deviations
from the mean were regarded as outliers. All procedures
were implemented in Matlab including parts of the script
sig_permtest.m (http://commdetect.weebly.com/).

Corrections for multiple comparisons was necessary, because
we performed correlations on two regressors (Ham-D, Age) in
three versions (bi-directional, positive, negative) in the patient
group, amounting to a Bonferroni factor of 6. In the control
group we only analyzed the age regressor in the three versions,
amounting to a Bonferroni factor of 3. In all other tests of
couplings versus zero or between groups we corrected the
threshold for significance by a Bonferroni factor of 3 for the three
directions of the test always performed. P-values reported for the
test data set are not corrected for multiple comparisons.

In the exploratory data set, dependencies of coupling sets
with age were found for PS in patients as well as healthy
controls [MD: bi-directional (i): Pu=0.004, positive (ii): Pu=0.022,
negative (iii): Pu=0.008; HC: bi-directional (i): Pu=0.036, positive
(ii): Pu=0.046, negative (iii): Pu=0.092, uncorrected for multiple
comparisons]. No such sets were found for K and AR. Therefore,
all set-level statistics for FC and PS were corrected for age by
regressing out age from each individual coupling. There was no
significant dependence on sex for any coupling measure.

We investigated correlations of K with mean headmotion and
cardiac rate. In the patient group of the exploratory data set we
detected a correlation of head motion with sets of Ks. This is
discussed detail in Supplementary Material (section 4.1). There
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FIGURE 2 | Analysis pipeline on empirical data. (Left) From correlations of all individual coupling parameters to a parametric score across subjects, moderately

significant correlations (blue) vs. non-significant correlations (gray) are detected. (Middle) The number of these correlating couplings (“set size”) is compared to the

distribution of the set sizes derived from permutations of the couplings. (Right) Sets of couplings reaching significance are displayed.

were no other significant correlations of K with movement or
cardiac rate.

2.4.2. Phase Randomized Surrogates
Significant dependence of the coupling measures K and PS on
regressors was additionally assessed by using phase randomized
surrogates to eliminate any estimation bias. Time course phases
were randomized while preserving their power spectra by the
following steps (Ponce-Alvarez et al., 2015): (i) each time course
underwent Fourier transformation, (ii) the phase values were
replaced by values from a random uniform distribution between
−π and π , and (iii) in order to return to the time domain an
inverse Fourier transform was applied. K and PS calculation
was applied to the phase randomized data sets. Significance of
set-level correlation was tested against 500 phase randomizations.

3. RESULTS

3.1. Results on Empirical fMRI Data in
Patients With Major Depression and
Healthy Controls
3.1.1. Sets of Ks Show Particular Dependence on

Disease Severity
Wewanted to see if there were sets of specificKs exhibiting group
differences or parametric dependencies in the exploratory data
set. We used a permutation approach to estimate the probability
of the number of couplings showing moderate dependence on
either group or a parametric regressor occurring by chance
(see Figure 2). This approach allows for detecting parametric
dependencies with opposite signs in different couplings. The
tests were, therefore, performed separately (i) irrespective of
the direction of associations between couplings and parametric
regressor or group, (ii) for positive associations, or (iii)
negative associations.

With regards to group differences, none could be detected
from the Ks. FC provided a set of couplings being at trend
(Pc=0.063) in the contrast of type (ii), i.e., they displayed

higher values in the patient group than in controls (see
Supplementary Figure 8, section 4.2). No other significant or
trending sets were found.

Contrasting to the lack of overall group difference, Ks yielded
sets of couplings displaying significant parametric dependence on
the regressor of interest in the patient group.

Sets of Ks were significantly depending on the Ham-D score
in the patient group (see Figures 3A,B and Table 3, showing
the uncorrected P-values). The dependence was mainly driven
by a positive correlation of type (ii) (Pc=0.012), meaning that
Ks increased with higher disease severity, but a set including
both ways of dependence, i.e., of type (i) was also significant
(Pc=0.006). The set with negative dependence on Ham-D of
type (iii) was not significant (Pc=0.096). We checked for set-
level significance of the dependence on the Ham-D score when
the eigenfrequencies in equation (1) are calculated from the
data. This method yielded very similar results (i) Pc=0.012, (ii)
Pc=0.036, (iii) Pc=0.11.

All other analyses of FC, PS, and AR in patients and controls
yielded no significant results in the dependence on Ham-D.

A significant negative correlation was found between the
coupling K from the salience network onto the basal ganglia
network (Pc=0.002) to Ham-D after rigorous Bonferroni
correction for 380 multiple comparisons. This coupling was
the only one showing a significant dependence on a score
under investigation.

The re-assessment of set dependence on Ham-D in the test
data set shows that the association of K to this external regressor
can be recovered in the test data set.

4. VALIDATION

The K couplings did not significantly differ from zero.
Nevertheless, on a set level, dependencies to clinical severity
scores could be detected in two independent empirical data
sets. As an additional validation of the capabilities of our novel
method, we conducted experiments with synthetically generated

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 72955664

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Bauer et al. Quantification of Kuramoto Coupling Coefficients

FIGURE 3 | Set-level results. Sets of couplings of statistically significant size were detected in the exploratory data set within the patient group: K significantly

depended on Ham-D in (A) the bi-directional test, mainly driven by (B) positive correlations. Left side plots depict the individual significant correlations of couplings on

the regressor in blue and in gray otherwise. Note that indicated regressions in this figure were fitted to data excluding outliers (non filled markers). Middle plots depict

the chance distribution on set sizes, with the actual data indicated by the blue vertical line. The right plot displays those connections constituting the significant set.

Color varies with direction of correlation: bi-directional (grey), positive (green), line width scales with correlation coefficient ρ. Dots marking the IBNs are two-fold for

outbound (orange) and inbound (teal) couplings, scaling in size with overall coupling strength toward all other IBNs. (A) Patient group: K vs. Ham-D. (B) Patient group:

K vs. Ham-D (positive dependence).

data. More specifically, we simulated phase courses, where we
induce a dependence in the data generating coupling parameters
on an independent score. Our hypothesis is, that our model
should be able to detect these dependencies in the generated
data. The purpose of these experiments is not to prove our
method superior in comparison to other methods, but they
should serve as a proof of concept, that induced dependencies
can be recovered by our method.

4.1. The Simulation Model
We generate a synthetic data set for s subjects with r IBNs
and T measure points each. We utilize the Kuramoto model to
simulate the data, but we alter model (1) in various aspects to
fit our purpose of generating phase courses. The simulated phase
courses for one subject are the solution functions of the following
Kuramoto model:

ϕ̇i(t) =
∂ϕi(t)

∂t

= ωi +
d

r

r
∑

j=1

Ki,j ·Mi,j · sin(ϕj(t)− ϕi(t))+ n · εi(t)

i = 1, . . . , r. (15)

As shown several parameters are included in the model
now. First, we include eigen-frequencies ωi for the oscillators.
These are the driving forces hindering synchronization. The
coupling coefficients Ki,j are the second forces determining
synchronization behavior between each two oscillators i and j,
i.e., K ∈ R

r×r . The parameter d is a positive weight for the
coupling coefficients, which acts equally on all coefficients and
can be seen as an overall coupling strength. The additional weight
Mi,j acts individually on each single coefficient, i.e., M ∈ R

r×r .
Furthermore, we include noise εi(t) in our model which is also
weighted with an intensity level n.

To obtain simulated phase courses, we have to solve the
system of ODEs. As the numerical solver of the ODE system,
we choose not to work with the same as when calculating
the coefficients (i.e., Euler’s method). This prevents to simply
get out what we put in. The solver used for the simulations
is the classical Runge-Kutta algorithm (Schwarz and Köckler,
2011) also called RK-4. Providing initial values ϕi(0), i=1, . . . , r,
the Runge Kutta method iteratively yields the phase courses.
A detailed formulation of the RK-4 method is given in the
Supplementary Material (section 3.1).
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TABLE 3 | Set level statistics.

MD HC

EXPL. Ham-D Age Age

All (pos.neg.) All (pos.neg.) All (pos.neg.)

K 0.001 (0.002/0.016) n.s. (n.s./n.s.) n.s. (n.s./n.s.)

<0.001 (0.004/<0.001) n.s. (n.s./n.s.) n.s. (n.s./n.s.)
†

FC n.s. (n.s./n.s.) n.s. (n.s./0.080) <0.001 (0.003/0.005)

PS n.s. (n.s./n.s.) 0.004 (0.022/0.008) 0.036 (0.046/0.092)

n.s. (n.s./n.s.) <0.001 (0.018/<0.001) 0.046 (0.022/n.s.)
†

AR n.s. (n.s./n.s.) n.s. (n.s./n.s.) n.s. (n.s./n.s.)

TEST

K 0.006 (0.002/0.12)

0.022 (0.032/0.19)
†

P-values, not corrected for multiple comparisons, from permutation testing indicating

the significance of the size of a set appearing by chance, for bi-directional test (“all”),

or including only positive (“pos.”) or only negative (“neg.”) correlations. For the exploratory

data sets P-values surviving multiple comparisons correction, with Bonferroni factors 3

and 6 for HC and MD, respectively, are indicated in bold print. FC and PS were corrected

for age in all tests, except for vs. age itself. For the test data set the table provides the P-

values derived from re-assessing the significant or close to significant dependencies from

the exploratory data set in the test data set.
†
Statistical testing was performed against

measures calculated from phase randomized surrogates. n.s., not significant.

4.2. Simulation Procedure
For best possible comparability, we generate 20 time courses with
300 time points for 24 subjects. Therefore, we have to provide our
data generating pipeline with the parameters as explained above.
This includes matrices � ∈ R

20×24 and 80 ∈ R
20×24 containing

the 20 eigenfrequencies and initial phase values for each subject—
which are both randomly initialized—, the weight matrix M ∈

R
20×20, and the weights d ∈ R

+ and n ∈ R
+ for the coefficients

and noise. We randomly initialize coupling coefficient matrices
K ∈ R

20×20 and an independent score value s ∈ R (representing
the Ham-D) for each subject. Across subjects, the coefficients will
not be significantly correlated with this independent score, but
we can manipulate each subjects coefficient matrix, such that a
certain portion of the coefficients shows very high positive or
negative correlation (see Figure 4A). By inserting dependencies
on s for specific coefficients, this results in a correlation pattern,
as can be seen in Figure 4B, where coefficients between regions
from 1 to 13 show distinct correlations compared to others.
The resulting manipulated coefficient matrices for all subjects
K

c ∈ R
24×20×20 are then also provided for the data generating

procedure. An example of a generated phase course can be seen
in Supplementary Figure 5.

For the 24×20×300 generated phase course data a Kuramoto
coupling coefficient matrix is calculated for each subject with
our Kuramoto coupling estimation model, which results in 24
matrices of size 20× 20 (Kres). To account for the randomness in
the initialization of � and 80, we repeat the simulation pipeline
for six different random phase and eigenvalue initializations and
perform evaluations in account of these six runs, i.e., medians
of P-values. We equidistantly set d and n within a limited value
ranges and make calculations with all combinations of theses

two parameters while keeping the other parameters fixed. The
simulation process is quite run time intensive, therefore, we
choose the number of runs to stay within amoderate run time but
at the same time account to a certain degree for the randomness
of the initialization. For the cluster permutation test on the
resulting K

res, bi-directional correlations were considered with
a number of 100 permutations.

4.3. Exemplary Result on Simulated Data
One result can be seen in Figure 4D. Each cell of the heatmap
shows the median P-value of the cluster permutation test over
the six runs for one combination of (n, d). The correlation
pattern of the data generating coupling coefficients corresponds
to Figures 4A,B, respectively. The weights in M are chosen as
shown in Figure 4C, i.e., couplings are only considered in the
data generation, if they show a significant correlation. As we can
observe, the induced dependence on the independent score s can
indeed be recovered, when the relation of noise to coupling is in
a certain range.

In Appendix A, the full simulation design, parameter choices,
pipeline, and results are explained in detail. Additional results are
also given in the Supplementary Material.

5. DISCUSSION

In the present study we showed that Kuramoto coupling
parameters estimated from empirical data relate to a clinical
scores indicating disease severity in patients with major
depressive disorder. The findings acquired from the K-values
differ qualitatively from findings with other methods for
quantification of functional connectivity and, therefore, rather
provide complementary information.While the variability within
single K-values is minor, significantly larger sets of Ks relate to
external scores. The findings are in line with the initial hypothesis
which puts wide-spread coupling changes into context with
chemical connectivity alterations at the synapses. The data
provide an initial indication that parametric changes of the K-
values can be discussed in context of pathological alterations of
brain function in major depressive disorder (MD). By analyzing
artificial data with a ground truth of parametric dependence in
the couplings, we prove the ability of our analysis pipeline to
recover this dependence within a reasonable parameter space of
the model.

A number of recent studies highlight the explanatory power
of following the trajectories of fMRI co-activation patterns from
time point to time point via analysis of inter-regional connectivity
measures (Gu et al., 2015; Braun et al., 2018; Liégeois et al.,
2019). Gu et al. (2015) analyze how activity spread along a known
structural connectome in a step-wise re-iterated way favors easy
to reach states of co-activation patterns over hard to reach states.
While this analysis excludes variability due to the impact of
chemical transmission in activity flow, it demonstrates that co-
activation states observed from fMRI can, in principle, be tracked
back to the magnitude of activity flow among the whole set of
brain areas from one iteration step to the next. Relating to the
latter concept, Liégeois et al. (2019) show in a recent study that
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FIGURE 4 | One exemplary result of the simulation procedure. By inserting dependencies on the data generating coupling coefficients (A) we can generate a certain

correlation pattern (B). Emphasizing the influence of the significant couplings in the data generating process (C) allows to retrieve the dependencies with our method

(D), when the noise to data ratio is in a certain range. (A) Correlations in ascending order for the random initial coefficients and after explicit insertion of parametric

dependence. (B) Correlation pattern. (C) Weight matrix M. (D) Median P-values over the six runs for all (n,d) combinations. (P < 0.05 black).

parameters estimated for the first order auto-regressive model
from fMRI data possess a much higher capacity of explaining
variance in behavioral data than a static model. For this, they used
a large data set of resting state fMRI data and behavioral scores
from the Human Connectome Project. Similarly in dementia,
analysis of dynamic fluctuations yields more specific results
than analysis of static functional connectivity (Moguilner et al.,
2021). Following an alternative approach, parameters of the Ising
model can be estimated from empirical data (Nguyen et al.,
2017) in an application which is particularly apt for processes
on the neuronal level based on binary processes of firing vs. no
firing or brain states under anesthesia which involve cortical up-
and down-states.

Within the present study we modified the step-wise strategy
for analyzing trajectories by replacing actual activity percolation
between brain regions over a time scale of seconds by a different
model of spring-like attraction/repulsion between time courses
of different brain regions by estimating the respective (directed)
spring constants as Kuramoto coupling parameters. By this,
we attempt to capture effects of fast neuronal firing on slow
fMRI signal. The Kuramoto model has been used in many fields
of research to investigate synchronization behavior as it is the
most popular and most studied model for this phenomenon.

The model can take on many different forms by adding or
leaving out parameters. We decided to choose Euler’s method
for the following reasons: for once, it is the simplest method.
Furthermore, we only consider a very short time span (T=300)
alleviating stability issues, but foremost, we do not use the model
for solution generation/simulation but for coefficient estimation.
Therefore, the method is appropriate. For future work, however,
other methods like the trapezoid method, implicit Euler’s method
or Runge-Kutta methods could be considered as well. When
solving the linear equation system, the solution does not exist a-
priori, since the number of equations will in general not be equal
to the number of unknown variables. Ill-posedness in the sense
that we have less equations than unknown variables will hardly
occur, since this would mean that we have less measure points
from the recordings than we have IBNs (In our case this meant,
that we have <20 measure points, which further meant that our
recording was less than about 40 s long). For the over-determined
case, however, we need a strategy to find a unique solution that
is optimal in a certain sense. The common approach is to solve
such problems by finding the best solution in a least-squared
error sense. The problem could be proposed in a more general
manner, such that different norms than the ℓ2-norm are possible.
However, interpretability is more difficult in other spaces and
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distances than Euclidean spaces. Therefore, we solve our problem
with the normal equations optimizing the ℓ2-norm, although
other approaches could also be considered in the future.

We show a correlation of the Ham-D score, assessing clinical
disease severity, to K, which can very clearly be confirmed in
the test data set. The nature of the correlation in exploratory as
well as test data set is bipartite with a positive and a negative
contribution. Positive correlation indicates that the amplitudes
in a set of K values increase with increasing disease severity
and vice versa. All IBNs included into the analysis contribute to
the dependence on Ham-D (except for one in the exploratory
data set) indicating a broad change within the inter-regional
communication in clinically severe states. In the exploratory
data set the directed coupling from the salience network onto
the basal ganglia network shows a strong negative correlation
to Ham-D. A tendency of a reduced input from the salience
network into the basal ganglia matches well with hypotheses
of compromised reward processing and anhedonia which is
discussed in combination with the dopamine dysregulation
hypothesis (Szczypiński and Gola, 2018; Whitton et al., 2020).
The correlation of this particular coupling to Ham-D though is
not reproduced in the test data set. Our results indicated that
clinical severity of MD is associated to a mild change of cross-
regional IBN interactions across the whole cortex and sub-cortex.

All our analyses aimed at wide-spread changes. We were able
to retrieve global patterns of dependence. The sensitivity of the
approach to localized focal changes would need to be addressed
with a different appropriate data set.

Using a simulation experiment we provide a proof of
principle that our method is able to recover a ground truth,
in which a large number of Ki,js depend on an artificial
external regressor. Notably, this parametric dependence is not
associated to a systematic deviation of the Ki,js from zero.
The simulations indicated that increased overall Kuramoto
coupling facilitates the re-discovery of the coupling from
the data. Conversely, an increasing noise level decreases
the ability of our method to recover the ground truth
(Supplementary Figure 3). A stronger directional bias in the
couplings as well as a strong contrast in coupling dependence
on the external regressor between an intrinsically coupled cluster
versus the outside of the cluster, also benefit the detection of
the parametric dependence. Notably, we only investigated one
type of ground truth, although the artificial data simulation
leaves a lot of options for design choices. The size of the
generated data set was chosen to allow for comparability to
the empirical exploratory data set. Also the choices for the
eigenfrequencies and the magnitude of the coupling coefficients
for the simulation was guided by the empirical data. The
magnitude of the coefficients has subordinate impact, as this
can—to a certain degree—later be scaled with the appropriate
weight d.

The most interesting design choices concern the correlation
pattern shape N. The possibilities here are highly diverse. First,
the shape itself can be varied, i.e., which IBNs are involved and in
which constellation. Additionally, the number of IBNs within the
network, the intensity, pattern, and trend (“gradual progression”
vs. “plateau” as for our experiments) of the correlations might

be altered. Also the mask matrices used in our synthetic data
experiments are only a choice of many more possible variations.

The power of our analysis pipeline for recovering the ground
truth of actually parametrically manipulated couplings was
limited in the considered simulation settings. Most positives
were found in the “boundary” group of couplings, which crossed
from one IBN, affected by parametrically dependent coupling to
other regions, to another IBN, not affected by any parametrically
dependent coupling to other regions. For the analysis of empirical
data sets this implies that the reliability of recovering the exact
couplings is low, which are actually parametrically dependent on
the regressor under concern. More reliable information can be
retrieved from the IBNs involved in the set themselves rather than
the couplings. We would like to emphasize, that the proposed
simulation pipeline and the presented results should be seen
as a proof of concept, that it is possible to retrieve parametric
dependencies, rather than a validation procedure, since it is
impossible to have access to the ground truth of a real world
data set. It is important to note, that we did find the induced
dependencies in certain scenarios despite the large amount of
possible parameter combinations, which supports that we did not
find this by chance.

Our approach allows for an estimate of Kuramoto coupling
parameters from empirical data and therefore contrasts with
other studies which apply generative models in order to simulate
and study arising activity dynamics, which are subsequently put
in relation to empirical data. This kind of approaches has, e.g.,
been followed employing the Kuramoto model (Breakspear et al.,
2010; Sadilek and Thurner, 2015; Schmidt et al., 2015), the Ising
model (Stramaglia et al., 2017), and other spin glass models
(Hudetz et al., 2014).

6. CONCLUSION

In summary, we present a novel method for analyzing functional
connectivity from fMRI resting state data. Our initial analysis
on empirical data indicates that the method provides novel
results, which are complementary to other methods established
in the field. The focus of the presented analysis pipeline
lies on assessing wide spread connectivity changes relating to
the brain state and might be useful in the analysis of the
relation to slow changing chemical connectivity. The results
proved to be robust to a re-test in an entirely independent
data set. We further support the validity of our empirical
findings by using simulated data, containing a ground truth,
in that we show the ability of the method to retrieve this
ground truth. Future studies are needed to extend and validate
our findings.
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Background: Functional connectivity and complexity analysis has been discretely

studied to understand intricate brain dynamics. The current study investigates

the interplay between functional connectivity and complexity using the Kuramoto

mean-field model.

Method: Functional connectivity matrices are estimated using the weighted phase lag

index and complexity measures through popularly used complexity estimators such as

Lempel-Ziv complexity (LZC), Higuchi’s fractal dimension (HFD), and fluctuation-based

dispersion entropy (FDispEn). Complexity measures are estimated on real and simulated

electroencephalogram (EEG) signals of patients with mild cognitive-impaired Alzheimer’s

disease (MCI-AD) and controls. Complexity measures are further applied to simulated

signals generated from lesion-induced connectivity matrix and studied its impact. It is a

novel attempt to study the relation between functional connectivity and complexity using

a neurocomputational model.

Results: Real EEG signals from patients with MCI-AD exhibited reduced functional

connectivity and complexity in anterior and central regions. A simulation study has also

displayed significantly reduced regional complexity in the patient group with respect to

control. A similar reduction in complexity was further evident in simulation studies with

lesion-induced control groups compared with non-lesion-induced control groups.

Conclusion: Taken together, simulation studies demonstrate a positive influence of

reduced connectivity in the model imparting a reduced complexity in the EEG signal.

The study revealed the presence of a direct relation between functional connectivity and

complexity with reduced connectivity, yielding a decreased EEG complexity.

Keywords: functional connectivity, complexity, Kuramoto model, MCI-AD, EEG

INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases affecting the
elderly population (Jeong, 2004). Electroencephalogram (EEG) studies, especially non-linear
dynamics, are gaining popularity as a potential tool for the early detection of AD. An early diagnosis
of the disease could aid in early interventions against the disease, subsequently increasing the
quality of life. The three hallmark features from the non-linear/linear analysis of EEG signals of
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patients with AD are the slowing of EEG signals and reduction of
functional connectivity and complexity (Dauwels and Cichocki,
2011). Recent studies with EEG signals have revealed the presence
of reduced functional connectivity (Das and Puthankattil, 2020)
and reduced complexity in the early stages of AD [mild cognitive-
impaired AD (MCI-AD)] (Nimmy John et al., 2018).

Functional connectivity represents the correlation of neural
activity among different brain regions through statistical
interdependence measures. It provides the indices for functional
integration between segregated cortical regions and has been
correlated with aging (Varangis et al., 2019), learning (Veroude
et al., 2010), and neurological disorders (Orekhova et al., 2014;
Engels et al., 2015; Sargolzaei et al., 2015). The concept of
complexity could be interpreted in different ways. Commonly
used EEG complexity measures explain the complexity as a
measure of the degree of randomness or degree of freedom
associated with the system. However, complex behavior in a
non-linear system could be exhibited with fewer degrees of
freedom (Wackerbauer et al., 1994). Generally, a high and
low entropy (i.e., random and regular order) system would
have lower complexity, and an intermediate system would have
higher complexity (Wackerbauer et al., 1994; Tononi et al.,
1998).

A reduction in connectivity and complexity in MCI-AD/AD
could be attributed to atypical non-linear neurodynamics in
the brain (Jeong, 2004). Atypical non-linear dynamics in MCI-
AD/AD brain could arise from pathophysiological changes due
to the presence of tangles, alteration in synaptic couplings,
and neuronal death (Nestor et al., 2004; Hornero et al.,
2009). The AD brain has shown the presence of modest
degrees of lesions with medial temporal lobe atrophy as a
significant indicator in multiple studies (Visser et al., 2002;
Clerx et al., 2013; Dhikav et al., 2014). Structural and functional
connectivity studies in AD have revealed a reduction in the
connectivity between different regions of the brain, converging
into a network disconnection hypothesis (Delbeuck et al., 2003;
Brier et al., 2014; Kundu et al., 2019). The disconnection
hypothesis explains a neurodegenerative model with edges in
the network model displaying a reducing trend of connectivity
strength (Brier et al., 2014). Several research studies have
related the reduction in the complexity measures to the
decreased cortical connectivity, resulting in the diminished
flexibility of the neural system to reach different information
processing states (Babiloni et al., 2004; Al-nuaimi et al.,
2018; Nobukawa et al., 2019). However, studies exploring
the relation between complexity and functional connectivity
are limited. This article attempts to explore the relation
between functional connectivity and complexity using the
Kuramoto mean-field model in the MCI-AD condition. The
study also utilizes a lesion model to examine its impact on the
network dynamics.

The Kuramoto model is a popularly used neurocomputational
model based on weakly coupled limit-cycle oscillators. Nodes
of the networks are defined by differential equations and edges
by the cortical connectivity. The dynamics of the model could
simulate data that have physiological properties similar to

macroscopic features found in neurophysiological signals like
EEG (Breakspear et al., 2010). One of the major advantages
of the neurocomputational model based on Kuramoto would
be the direct utilization of the connectivity matrix. One of the
common applications of the Kuramoto model is in analyzing
the structural–functional correlation of the brain to understand
cortical dynamics (Finger et al., 2016; Lee and Frangou, 2017).
The Kuramoto model has also been applied to studies on
anesthesia (Schartner et al., 2015), consciousness (Ibáñez-molina
et al., 2018; Lee et al., 2019), mind wandering (Ibáñez-molina
et al., 2016), lesion (František et al., 2015; Jos et al., 2018),
and complexity (Escudero et al., 2015). The studies generally
used diffusion tensor tractography data for the connectivity
pattern in the Kuramoto model (Escudero et al., 2015; Jos et al.,
2018; Lee et al., 2019). The current study proposes to utilize
functional connectivity data instead of structural connectivity
data in the Kuramoto model to study the relationship between
functional connectivity and complexity. Previous studies have
utilized the Kuramoto model to study the relation between
structural connectivity and complexity (Jos et al., 2018). We
have used the Kuramoto model to validate the reduction of
functional integration caused by the pathological process inMCI-
AD, which would result in the reduction of the complexity score.
The computational study also uses a lesion model in which edges
originating from one specific region of the cortex are set to
the lowest value. Lesions preferentially in the central part of a
network could be a possible network lesionmodel in developing a
neurocomputational model of AD (Aerts et al., 2016). The lesion
model is exploited to study the impact of reduced connectivity
with the complexity parameter.

Electroencephalogram studies reveal a gradual reduction
in connectivity and complexity with the progression of the
disease. This study analyzes the occurrence of the possible
relation between connectivity and complexity in the context
of the EEG signal simulation. It could be elucidated that
reduction of connectivity could result in relatively isolated neural
activities in the cortex that could influence the complexity
of the system. This study explores the relation between
connectivity and complexity through simulated EEG signals
generated from the functional connectivity matrix of patients
and controls. Complexity metrics were applied to real and
simulated EEG signals to study the variation. The study also
simulated EEG signals from the connectivity matrix with an
induced lesion to study its characteristics. The steps followed
in the study are represented in the form of a flowchart
in Figure 1. The functional connectivity matrix from EEG
signals was estimated using the weighted phase lag index
(WPLI) (Vinck et al., 2011). WPLI is an efficient connectivity
measure that indices the phase relation between brain regions
with minimal interference through volume conduction. The
complexity analysis was performed using Lempel-Ziv complexity
(LZC), Higuchi’s fractal dimension (HFD), and fluctuation-
based dispersion entropy (FDispEn), where LZC and HFD are
commonly used EEG complexity measures. FDispEn is a recent
approach to measure dynamic variability in the fluctuation of
EEG signals.
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FIGURE 1 | The analytic plan followed in the study. (A) The alpha band of the EEG signals was extracted through wavelet transform. (B) The connectivity matrix was

generated from the alpha band of EEG signal utilizing weighted PLI. (C) Kuramoto’s mean-field model was simulated with 21 oscillators. (D) Functional connectivity

matrix and coupled non-linear oscillators form the neurocomputational model used in the study. (E) Simulated EEG signals being generated from the

neurocomputational model. (F) Non-linear analysis was performed with metrics: LZC, HFD, and FDispEn. (G) Statistical analysis was performed on the estimates of

non-linear analysis on real and simulated EEG signals separately.

METHODOLOGY

Data Collection
Electroencephalogram data for the analysis were collected from
15 healthy controls and 13 subjects with MCI-AD. The sample
population consists of participants from both genders in the
age group of 57–75 years. Clinical dementia rating (CDR),
Mini-Mental Scale Examination (MMSE), and Addenbrooke’s
cognitive examination (ACE) were used to rate dementia in
MCI-AD. Patients with MCI-AD with the CDR score ≤1 were
selected for the study. The mean and standard deviation of
the various parameters of the sample population along with a
significant difference between the groups considered in the study
are provided in Table 1. Data acquisition was carried out at Sree
Chithra Tirunal Institute of Medical Sciences and Technology,
Trivandrum, Kerala, India. Ethical committee sanction was
accorded for the study. Written and informed consent from
patients and controls were obtained for the study.

Electroencephalogram data were acquired through a 32-
channel digital acquisition system (NicVue, Nicolet-Viking,
USA). EEG data from 21 electrode locations (Fp1, Fp2, F3, F4,
C3, C4, P3, P4, O1, O2, T1, T2, F7, F8, T3, T4, T5, T6, Fz, Cz,
and Pz) were preprocessed using simultaneous low-pass filtering
and total variation denoising (LPF/TVD) algorithm (Selesnick
et al., 2014). The signals were recorded with a sampling frequency
of 400Hz. EEG data were recorded for a duration of 5min

TABLE 1 | Mean and standard deviation of parameters in control and patient with

mild cognitive-impaired Alzheimer’s disease (MCI-AD).

Sample

size (n)

Age (years) Sex MMSE ACE

Control 15 65.18 ± 3.15 7 males,

8 females

29.31 ± 1.03 92.47 ± 4.76

Patient 13 67.78 ± 6.10 7 males,

6 females

23.92 ± 4.15 63.85 ± 8.45

Significant

difference

– p = 0.09 – p = 0.0001 p = 0.0002

in the eyes open resting state. For the targeted lesion study,
EEG data channels were clustered into three groups, namely,
anterior (i.e., Fp1, Fp2, F7, F3, Fz, F4, and F8), central (i.e., T3,
C3, Cz, C4, and T4), and posterior (i.e., T5, P3, Pz, P4, T6,
O1, and O2). The alpha band of the EEG signals was extracted
using wavelet transform. Wavelet transform is a multi-resolution
decomposition method. The technique requires the selection of
an appropriate wavelet function for the signal to be decomposed
into different frequency scales. Wavelet “db10” was used in
this study as it has given a good correlation coefficient with
most of the signals acquired from the sample population. The
functional connectivity analysis is performed through WPLI as
a connectivity measure. The connectivity matrix thus generated
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was then fed into the Kuramoto model for generating simulated
EEG signals. Complexity measures of LZC, HFD, and FDispEn
were applied in real EEG signals and simulated EEG signals to
study the variation.

Functional Connectivity
Weighted phase lag index (Vinck et al., 2011) is the
weighted version of PLI. PLI is a measure to quantify phase
synchronization and indexes, the asymmetry of the distribution
of relative phase around zero. It is motivated by the fact that
non-zero phase difference occurs only through the result of
true interaction. Thus, the measure is invulnerable to volume
conduction and depends only on the phase difference. To
increase the sensitivity to small signals and to mitigate the effect
of noise, Vinck et al. have proposed some adjustments in PLI,
yielding WPLI. In WPLI connectivity measure, phase leads or
lags are weighted by the magnitude of the imaginary part of the
complex cross-spectrum.

WPLIxy =

1
n

∑n
t = 1

∣
∣imag

(

Sxyt
)∣
∣ sgn(imag(Sxyt))

1
n

∑n
t = 1

∣
∣imag(Sxyt)

∣
∣

(1)

In this equation, Sxy indicates the cross-spectral density between
x and y time series data at time point t in the complex plane xy.
Sgn is the sign function (−1,+1, or 0).

Kuramoto Model
The Kuramoto model is used to mimic the dynamics of
synchronization of activity between brain regions of MCI-
AD and control. The model consists of a set of coupled
differential equations. The model defines the dynamics of N
identical oscillators.

dθi

dt
= ωi+k

N
∑

j = 1

aijsin(θj−θi) (2)

where N is the number of oscillators (nodes) in the model. Each
node is equated to different electrode locations in the brain. θi is

the phase of ith oscillator on its limit cycle. In this study, ( dθi
dt
)

represents the rate of change of the phase of ith oscillator. The
variables ω and k denote the natural frequency and coupling
strength of the oscillator network, respectively. The behavior of
the system is strongly determined by the parameter k. When
the system has k >kcriticalvalue, the system reaches a state of
global synchrony. Similarly, when k<kcritical value, the system
exhibits a low value of global synchrony. Thus, kcritical defines the
bifurcation in the system dynamics. When k is poised near the
kcriticalvalue, the system displays complex behavior. The variable
aij denotes the connectivity matrix.

The degree of synchrony in the coupled oscillators can be
measured through an order parameter r(t).

r (t) e−iψ(t) =
1

N

N
∑

j = 1

e−iθ j(t) (3)

FIGURE 2 | Sensitivity plot of three complexity measures as a function of

coupling strength k of Kuramoto order parameter.

The order parameter takes the value from 0 to 1 and measures
the phase coherence of N oscillators. The order parameter of
1 represents perfectly synchronized oscillators and 0 represents
perfectly unsynchronized oscillators. The symbol ψ represents
the average phase of collective oscillators.

EEG Simulation
The Kuramoto model implemented in this study uses 21
oscillators to simulate 21-channel electrode locations. The
connectivity matrix obtained fromWPLI measure on 21 channel
EEG signals is used as the connection strength aij. WPLI
measure was extracted from the alpha band of patients and
controls during the eyes open protocol. WPLI operates on phase
space and estimates maximally weighting ±90◦ phase difference
between different EEG channels. It essentially detects phase lag
interactions from a complex coupled system like the brain. Since
the connection strength matrix aij is the connectivity strength
estimated from the functional connectivity data instead of the
structural connectivity data, the value of coupling strength k is
kept constant at 1. Figure 2 provides the sensitivity plot between
the mean complexity measure and coupling strength. A variation
in the coupling value of k in the Kuramoto model alters the
global connectivity strength. Complexity measures used are LZC,
HFD, and FDispEn. From the sensitivity plot, the complexity
estimates were nominally altered by the change in the coupling
parameter. To ensure uniformity among the simulation studies
for conducting a comparative analysis, the coupling strength was
maintained at a constant value of 1. Since the Kuramoto model
utilized in the study uses functional connectivity data, the data
matrix is also inclusive of the bias from time delay, the weighted
contribution from different sources, and the weighted reduction
while passing through different layers of the brain.

The simulationmodel uses a frequency range (ω) that matches
the frequency of the alpha band. The alpha band was specifically
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chosen in this study as this band was significantly affected in
multiple functional connectivity studies conducted in AD/MCI-
AD (Miraglia et al., 2016; Afshari and Jalili, 2017; Das and
Puthankattil, 2020; Duan et al., 2020). The natural frequency of
the coupled oscillators (fi = ωi

2π ) is randomly assigned with
the distribution of mean and standard deviation of 10Hz and
2Hz, respectively.

xi (t) =

N = 21
∑

i = 1

sinθi(t) (4)

In this study, xi (t) is the simulated EEG signal. The model
was simulated to produce 15,000 sample points with Euler’s
integration scheme of h to be 0.1. Initial 1,000 sample points
were discarded as the initial condition. The simulation is repeated
15 times with connectivity matrices of patients with MCI-AD,
healthy controls, and lesion-induced controls. The connectivity
matrices were averaged across patients with MCI-AD, healthy
controls, and lesion-induced controls.

Lesion Model
The popular hypothesis explaining AD pathology is the network
disconnection model (Brier et al., 2014). For progressive
neurodegenerative diseases such as Alzheimer’s, the hub regions
are preferentially vulnerable to lesions (Aerts et al., 2016). Hubs
in the topologically central regions were likely to be more
vulnerable to a pathological process like AD. In this study,
the lesion in the topologically central region of the network
is simulated by the reduction of connectivity strength. Thus,
the lesion simulates a transformed network with limited edge
strength, specifically in the topological central region. Edges
originating in the central region of the brain (i.e., T3, C3,
Cz, C4, and T4) were replaced with constant edge strength of
0.1 to simulate the effect of a lesion. The introduction of the
lesion could significantly alter the functional dynamics, possibly
influencing the complexity score of the system. The constant edge
strength of 0.1 was specifically chosen as it is the lowest non-
zero connectivity strength in the averaged connectivity matrix
over the patient population. The connectivity strength in the
averaged patient matrix varied between 0.1 and 0.6. The selection
of 0.1 edge strength could accentuate the difference between the
matrices. This resulted in the reduction of the mean connectivity
strength of the control matrix from 0.5575 to 0.2454. The
study generated lesioned network from the connectivity matrix
generated from the controls.

Complexity measures were estimated from the real EEG
signals of patients and controls and simulated EEG signals of
patients, controls, and lesion-induced control signals.

Complexity Measures
Electroencephalogram complexity has been studied in the
context of different neurological disorders and in healthy controls
to gain insights into the dynamical property of the brain.
LZC, HFD, and FDispEn had provided reliable conclusions
in studies related to neurological diseases. LZC estimates
the compressibility of EEG data and HFD measures fractal

characteristics in EEG data. FDispEn estimates the uncertainty of
the signal through the difference between the adjacent elements
of the dispersion pattern.

Lempel-Ziv Complexity
Lempel-Ziv complexity is derived from the compressibility of the
binary data (Lempel and Ziv, 1976). This measure could reveal
the regularity and randomness in high-dimensional non-linear
systems and is widely used in biomedical applications (Aboy
et al., 2006). EEG signals are binarized using a threshold level and
then analyzed for LZC. The median value in the EEG data sample
is selected as the threshold level. Data sample above the threshold
is equated to 1 and below the threshold level to 0. The resulting
binary segment is scanned for different patterns. The counter c(n)
is increased by one unit when a new pattern is encountered in the
scanning process (Zhang et al., 2001).

limn→∞c (n) = b (n) =
n

log2n
(5)

In this equation, n is the length of the binary sequence and b (n)
provides the upper bound of c (n) . c (n) is normalized as follows:

C (n) =
c(n)

b(n)
(6)

After normalization, the complexity measure (C (n)) reflects the
rate of occurrences of new patterns with an increase in time.

Higuchi’s Fractal Dimension
Higuchi’s fractal dimension measures the self-similarity (scale-
free behavior) of a system. In a time-series data, FD could
range from 1 to 2, with a higher value indicating higher
signal complexity. EEG data show fractal properties with
statistical similarity at different time scales. In this study, the
fractal dimension algorithm has been selected as it provides a
good approximation of fractal dimension in EEG signals. The
algorithm uses a small number of data points to approximate the
mean length of the curve. HFD had been successfully utilized
by Gómez et al. (2009) and Smits et al. (2016) in order to
analyze EEG.

An EEG signal
[

y (1) , y (2) , . . . . . . ..y (N)
]

with a sample
length of N can be divided into k length sub-data as

ymk :y (m) ,y
(

m+k
)

,y
(

m+2k
)

,. . . . . ...y

(

m+int

[
N−m

k

]

k

)

(7)

In this equation, k is constant, andm = 1, 2, . . . .k. The [ ] is the
Gauss’ notation and length Lm(k) of each curve ym

k
is calculated

as follows:

Lm (k)=
1

k

[

N− 1

int
[
N−m
k

]

k

(
∑int

[
N−m
k

]

i = 1

∣
∣y (m+ik)−y

(

m+(i− 1)k
)∣
∣

)
]

(8)
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The mean of Lm(k) is computed to estimate HFD.

HFD=
1

k

k
∑

m = 1

Lm(k) (9)

For the HFD calculation, k involved in the estimation
was optimized at 18 and 6 for real and simulated EEG
signals, respectively.

Fluctuation-Based Dispersion Entropy
Fluctuation-based dispersion entropy is a recent approach
based on Shannon entropy and symbolic dynamics (Azami
and Escudero, 2018). It is an efficient method to measure
dynamic variability in real-time neurological data. The measure
is relatively faster, insensitive to noise, and detects simultaneous
amplitude and phase variations. Dispersion entropy (DispEn)
uses a mapping function that transforms the EEG data to a
new time series data of symbolic sequences with fewer elements
(Azami and Escudero, 2018; Nieto-Del-amor et al., 2021). It
estimates the regularity of the patterns with similar dispersion
patterns. FDispEn captures the difference between adjacent
elements of the dispersion pattern.

Algorithm for the FDispEn calculation for a given univariate
data sample yj

(

j = 1 . . . . . .N
)

of length N is as follows:

1. The time series yj is mapped with a mapping function to c
classes. The classes are labeled as 1–c. A number of linear
and non-linear mapping functions can be utilized for this
process. Each sample is grouped to its nearest class based
on its amplitude. A classified signal uj

(

j = 1 . . . . . .N
)

is
thus obtained.

2. With an embedding dimension (m), and time
delay (d) multiple time series, of length m,

um,c
i =

{

uci , u
c
i+d

, . . . . . . uc
i+(m−1)d

}

for each

i = 1, 2, . . . ..N − (m − 1)d are generated. Each um,c
i

is mapped to its dispersion pattern (Azami and Escudero,
2018). The number of possible dispersion patterns for each
um,c
i is cm.

3. FDispEn calculates the difference between adjacent
dispersion patterns. For a vector length of m − 1, each
element changes from –c + 1 to c − 1. Thus, the number
of fluctuation-based dispersion patterns for each um,c

i is

(2c− 1)m− 1 .
4. The relative frequency of each (2c− 1)m−1 dispersion

patterns is calculated. It is used for the calculation of
the FDispEn value of the input time series based on
Shannon’s entropy.

The study usedm = 3 and c = 3 as the embedding dimension
and number of classes, respectively, for the estimation of FDispEn
(Azami and Escudero, 2018).

STATISTICS

The Student’s t-test has been used to investigate the significant
difference between the patient and the control group. Normality

in the data was ensured using the Shapiro-Wilk test. As the
results from simulation experiments did not meet parametric
assumptions, the Wilcoxon rank-sum (Mann-Whitney) test, a
non-parametric test, has been used for simulated EEG signals. A
false discovery rate (FDR) correction was applied across multiple
comparison studies.

RESULTS

In this study, the complexity analysis was carried out in real and
simulated EEG signals to explore the relation between functional
connectivity and complexity in the context of MCI-AD under
resting eyes open conditions. The mean connectivity strength of
control, patient, and lesion-induced connectivity matrices was
0.5575, 0.4945, and 0.2454, respectively. The study performed
three statistical investigations, namely, (1) comparison between
real EEG signals of MCI-AD and healthy controls, 2) comparison
between simulated EEG signals of patients with MCI-AD and
healthy controls, and 3) comparison between simulated EEG
signals from control and lesion-induced control. Results from
these analyses are described in the following subsections. The
ANOVA test conducted between real and simulated EEG signals
displayed a significant difference of p= 0.0001.

Comparison Between Real EEG Signals of
Patients With MCI-AD and Healthy Controls
The complexity measures of LZC, HFD, and FDispEn were
used to analyze EEG signals of patients with MCI-AD and
healthy controls. It was observed from the analysis of all the
three complexity measures that the patients with MCI-AD have
reduced complexity with respect to the control group. Reduction
in complexity was displayed in anterior (p = 0.001), posterior (p
= 0.005), and central (p = 0.001) regions for the LZC measure.
However, significantly reduced complexity was observed only in
the central region (p = 0.05), employing the HFD metric. Lower
values of the FDispEn value were obtained for the anterior (p
= 0.05) and central (p = 0.05) regions. Bar chart plots for the
values computed for LZC, HFD, and FDispEn for patients with
MCI-AD and controls across the three regions are displayed
in Figures 3–5, respectively. It is observed from the plots that
the MCI-AD condition is accompanied by a reduction in EEG
complexity. Additionally, the central region of theMCI-AD brain
has displayed reduced complexity for all the EEG complexity
measures employed.

Comparison Between Simulated EEG
Signals of Patients With MCI-AD and
Healthy Controls
Complexity measures are calculated from simulated EEG signals
generated from the Kuramoto mean-field model utilizing
connectivity network of patients and controls. The analysis
has revealed a reduction in complexity estimates in simulated
EEG signals of patients with respect to that of the simulated
EEG signals from controls. A bar chart plot of mean values of
LZC complexity measured across three regions, anterior, central,
and posterior, is shown in Figure 6. A significant reduction
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FIGURE 3 | A bar chart plot of mean LZC values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

FIGURE 4 | A bar chart plot of mean HFD values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

in the complexity score was observed for the anterior (p =

0.006) and central (p = 0.006) regions. However, a significant
difference was not visible for HFD and FDispEn measures. The
reduction in complexity measure on simulated patient EEG
channels indicated that the signals have become more regular
and less complex than the simulated control EEG signals. This
study indicated that lesser functional connectivity registered
in patient matrix leads to a reduced patient EEG complexity
estimate with respect to control. The results thus imply that
connectivity between the limit cycle oscillator in the Kuramoto
model has a direct effect on complexity values in the subsequently
generated signal.

Comparison Study Between Simulated
EEG Signals of Controls and
Lesion-Induced Control Signals
Lesion-induced connectivity patterns were generated by
replacing the connectivity score of the edges joining the central

FIGURE 5 | A bar chart plot of mean FDispEn values of real EEG signals of

patients with MCI-AD and controls computed for anterior, central, and

posterior regions.

FIGURE 6 | Mean LZC values calculated from simulated EEG data channels of

patient and control group across anterior, central, and posterior regions.

region by a value of 0.1. This would result in a transformed
connectivity pattern with lowered connectivity score. A
comparative study was conducted between simulated EEG
signals generated from control and lesion-induced control
signals. The results revealed a reduction in complexity values
in the simulated EEG signals obtained from the lesion-induced
control connectivity matrix in comparison with the simulated
EEG signals generated from the connectivity matrix of the
controls. Bar chart plots of mean complexity values of LZC,
HFD, and FDispEn measures from control and lesion-induced
control signals are shown in Figures 7–9, respectively. A
significant difference was observed for LZC values in anterior
(p = 0.001) and central (p = 0.005) regions. Reduced values
of HFD were obtained for the central region (p = 0.006) with
no significant statistical difference in the anterior and posterior
regions. FDispEn has revealed differences in the central (p =

0.06) and posterior (p = 0.09) regions. From the analysis, it is
apparent that the introduced lesion has induced a significant
reduction in complexity values.
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FIGURE 7 | Mean LZC values calculated from simulated EEG data channels of

control and lesion-induced control signals across anterior, central, and

posterior regions.

FIGURE 8 | Mean HFD values calculated from simulated EEG data channels

of control and lesion-induced control signals across anterior, central, and

posterior regions.

The EEG complexity analysis carried out on the signals from
patients with MCI-AD and controls revealed a reduction in
complexity in the patient group with respect to the controls.
Results from the comparative study between simulated EEG
signals of patients with MCI-AD and healthy controls and
between simulated EEG signals from control and lesion-induced
control, ascertain a positive relation between reduced EEG
complexity to reduced connectivity pattern.

DISCUSSION

In this study, the relation between two prominent features,
namely, functional connectivity and complexity of MCI-
AD, are explored. The study investigates the influence of
brain connectivity on EEG complexity by employing a
phenomenological model of MCI-AD. The study employed
functional connectivity matrix of patients with MCI-AD and
the control group to generate simulated EEG signals using
the Kuramoto mean-field model. Complexity measures are
calculated from real and simulated EEG signals. The study also
explored the effect of an induced lesion in the connectivity
pattern and its resultant effect on complexity values. The

FIGURE 9 | Mean FDispEn values calculated from simulated EEG data

channels of control and lesion-induced control signals across anterior, central,

and posterior regions.

functional connectivity matrix is calculated using WPLI.
Popularly used complexity measures in EEG signal analysis such
as LZC and HFD together with the novel entropy measure of
fluctuation-based dispersion were used for EEG signal analysis.

Complexity analysis is performed to understand the amount
of uncertainty or irregularity in data. The complexity aspect of
neurological data has been explored with the hypothesis that
complexity in the data indicates the adaptability of the system
to function in varying environments. It further hypothesizes that
the effect of a pathological process could hamper adaptability
and would be reflected in the complexity estimates. The brain
may exhibit increased or reduced complexity as a result of
underlying pathology. Deviation in the mean complexity score
observed in the patient group in comparison to a healthy control
population could be the result of the detrimental effects of the
underlying condition. Complexity studies conducted in the brain
have shown this deviation with an increase in the complexity
in the case of schizophrenia (Takahashi et al., 2010; Fernández
et al., 2013; Ibáñez-molina et al., 2018), in normal aging (Anokhin
et al., 1996) and a decrease in the complexity with MCI-AD in
this study. In this study, the complexity scores of the patient
were compared with that of the control group to study the
deviation. The study reveals that alternations in the complexity
estimates have their onset in the early phases of AD. All the
three complexity measures of LZC, HFD, and FDispEn revealed
a reduction in complexity in the EEG signals in patients with
MCI-AD in comparison to the control group.

The reduction of EEG complexity estimates in patients is
an indication of the EEG waveforms becoming more regular
and less complex. It is suggestive of the possible effect of
the MCI-AD-related pathological process, disintegrating the
functional coupling and enabling neuronal bodies to behave
more independently generating simple predictable waveforms
(Jeong, 2004; Dauwels and Cichocki, 2011). The study has
further revealed that the reduction in complexity estimates was
significant in the anterior and central regions of the MCI-AD
brain. The result is in agreement with previous studies conducted
in AD (Dauwels and Cichocki, 2011; Smits et al., 2016; Al-nuaimi
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et al., 2018; Nesma et al., 2018; Nobukawa et al., 2019) and
in limited studies conducted in early AD (Labate et al., 2013;
Zhu et al., 2017). Histopathological studies in early AD and AD
have shown the presence of atrophy in the medial temporal lobe
and the association cortices (Chetelata and Baron, 2003; Teipel
et al., 2006). The evidence of change revealed in this study in the
anterior and central regions is inclusive of frontal and temporal
lobes that account for the memory and non-memory impairment
observed in the prodromal phase of AD (Chetelata and Baron,
2003; Teipel et al., 2006; Dauwels and Cichocki, 2011).

Along with the reduction of complexity, reduction in
functional connectivity is a hallmark feature of the EEG analysis
in AD (Dauwels and Cichocki, 2011). The functional connectivity
analysis in this study is carried out using the WPLI. The
connectivity analysis based on WPLI revealed a reduction
in mean connectivity strength in the patient group. Several
electrophysiological studies have extensively explored AD-
related changes revealing a reduction in connectivity (Babiloni
et al., 2004; Engels et al., 2015; Afshari and Jalili, 2017; Triggiani
et al., 2017) and complexity (Dauwels and Cichocki, 2011; Labate
et al., 2013; Smits et al., 2016; Al-nuaimi et al., 2018; Nesma
et al., 2018) discretely, without analyzing the influence of one
over the other. The results from the current study disclose
a positive influence between the two features of functional
connectivity and complexity accomplished through the study
of the Kuramoto model. A reduction in values of complexity
estimates was observed for the simulated EEG signal from the
patients with MCI-AD when matched with the controls. In
addition, results from the simulated EEG analysis from lesion-
induced controls and controls provide a similar inference. From
the simulated EEG signals analysis, it was observed that reduced
complexity has been consecutively associated with the group
having a reduced connectivity score. Simulated EEG signal from
lesion-induced control is an attempt to simulate the effect of the
discontinuous network in MCI-AD. The Kuramoto model could
generate a more disconnected set of EEG signals by reducing the
connectivity strength from the edges originating from the central
region of the connectivity matrix. Thus, from the comparative
studies, it is evident that the functional connectivity matrix holds
intricate relation with the signal complexity estimated.

The relation between connectivity and complexity could be
understood with the help of the meta-stability concept. The
meta-stability concept in the brain provides the theoretical
foundation to explain how complex features emerge and are
capable of information processing, data transmission, and
storage. The Kuramoto model essentially describes a phase
model that can exhibit spontaneous translations from random
incoherent phases to collective synchrony as the coupling
parameter passes through a critical threshold value. The coupling
parameter in the metastable region allows the model to simulate
data that resemble brain data with features of spontaneous
transition between multiple transient states. The reduction in
the connectivity/coupling in the coupled system of oscillators
could have enabled the individual oscillators to behave more
incoherently, thus reducing the “meaningful structural richness”
(Costa et al., 2005) of the simulated signal. Accordingly, the
reduction in the complexity could be related to the decline in

the capability of the system to visit a wide repertoire of possible
states, thus affecting the adaptability of the brain to varying
environmental conditions.

Several complexity measures have been applied to study
EEG signals over the years. The distinction between meaningful
structural richness and randomness in the system remains
unclear as both systems are capable of generating unpredictable
and irregular signals. Complexity is defined as an intermediate
stage between randomness and order. Complexity measures
used in this study, LZC, HFD, and FdispEn, capture different
aspects of the system dynamics. LZC and FDispEn measure the
regularity index of a dynamical system through the amount of the
uncertainty element. FDispEn is based on Shannon entropy and
estimates dynamical variability through dispersion patterns. LZC
estimates are based on scanning the symbolic representation of
time series data for new patterns. It is a useful means to estimate
the bandwidth of random process and harmonic variability in
a quasi-periodic signal (Aboy et al., 2006). HFD captures the
signal at different scales and investigates the self-similarity in the
time series data. HFD is insensitive to stereotypical or repetitive
signals. Therefore, it is possible to have a signal with a low
LZC value with high HFD if the signal is a disordered signal
composed of similar patterns (Jos et al., 2018). The complexity
measures LZC, HFD, and FDispEn are capable of measuring
certain aspects of “structural richness” in the signal. From the
results of simulation studies, it is discerned that the regional
complexity score is influenced by the introduction of lesion in
the connectivity matrix. Thus, the reduction in coordination with
multiple coupling strength in the simulation of EEG signal could
have resulted in reduction in “meaningful structural richness”
or complexity.

Mixed patterns of both positive (Nobukawa et al., 2020)
and negative correlation (Mcdonough and Nashiro, 2014; Jos
et al., 2018) between connectivity and complexity have been
reported in few studies conducted on neurophysiological and
simulated data. A recent study observed a positive correlation
between connectivity and complexity in AD (Nobukawa et al.,
2020). The current study supports this result with an abstract
modeling approach to the MCI-AD condition. However, it
should be noted that it is yet to be fully understood whether the
reduction of connectivity and complexity could be the result of
a direct association or is the by-product of diverse neurological
activities in the MCI-AD brain. One of the major limitations
of the study is that the Kuramoto model used in the study
is a fairly simple model and would not be able to reconstruct
all the characteristic features of the EEG signal. Furthermore,
this model used a limited number of oscillators to simulate
the signal. Despite this, the comparison analysis by using the
complexity analysis showed that the model could fairly simulate
EEG signals at a similar level of complexity as a real EEG signal.
This study suggests that the reduction of functional integration
between brain regions caused by the loss of connectivity could
be one of the possible reasons for the reduction of richness
or complexity in the EEG signals. Future studies could use
the results from this study to understand the neurodynamics
behind the electrophysiological observation in EEG under MCI-
AD conditions.
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CONCLUSION

The study attempted to analyze the relation between functional
connectivity and complexity by modeling theMCI-AD condition
with the help of the Kuramotomodel. EEG signals from theMCI-
AD condition have shown altered neurodynamics, displaying a
reduction in the estimates of connectivity and complexity. From
the studies using the Kuramato model, it was found that the
connectivity of the coupled oscillators has a direct influence on
the complexity of the generated signal. A significant observation
from the results of the study is the possible direct influence
of reduced connectivity between brain regions in lowering the
complexity score of the EEG signal.
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Recent studies have shown that the brain functional connectome constitutes

a unique fingerprint that allows the identification of individuals from a group.

However, what information encoded in the brain that makes us unique

remains elusive. Here, we addressed this issue by examining how individual

identifiability changed along the language hierarchy. Subjects underwent fMRI

scanning during rest and when listening to short stories played backward,

scrambled at the sentence level, and played forward. Identification for

individuals was performed between two scan sessions for each task as well

as between the rest and task sessions. We found that individual identifiability

tends to increase along the language hierarchy: the more complex the task

is, the better subjects can be distinguished from each other based on their

whole-brain functional connectivity profiles. A similar principle is found at the

functional network level: compared to the low-order network (the auditory

network), the high-order network is more individualized (the frontoparietal

network). Moreover, in both cases, the increase in individual identifiability

is accompanied by the increase in inter-subject variability of functional

connectivities. These findings advance the understanding of the source of

brain individualization and have potential implications for developing robust

connectivity-based biomarkers.

KEYWORDS

brain fingerprint, functional connectivity, language hierarchy, fMRI, individual
identification

Introduction

For a long time, neuroimaging studies on human brains have been primarily
concerned with the generic principles of brain function that are shared across people,
with relatively little attention paid to inter-subject variability. In the seminal work
conducted by Finn et al., individual variability in brain functional organization was
found to be both robust and reliable (Finn et al., 2015). It is possible to identify a target
subject from a sample database by computing the spatial similarity of the target subject’s
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brain functional connectivity (FC) profile against the FCs’ of the
database ones, similar to a “fingerprint.” Following this work,
further studies have detected various brain features that may
act as a “fingerprint” (Liu et al., 2018, 2020; Sareen et al., 2021),
proposed novel methods to improve the accuracy of individual
identification (Amico and Goni, 2018; Cai et al., 2021), and
related the brain fingerprinting features to behavioral traits
(Kaufmann et al., 2017).

Yet, what makes our brains unique remains
poorly understood. Understanding the source of brain
individualization is important for several reasons. First, it will
provide critical information for improving the accuracy of
individual identification. Second, it will help establish the link
between individual differences in brain function and individual
differences in cognition and behavior, which in turn may have
important implications in precision medicine. Finally, it can
provide valuable information for evaluating to what extent
the group-level results about brain function can be applied to
unknown individuals.

Currently, only a few studies have explored factors that
potentially influence individual identifiability, including: (i) the
temporal window used to compute FC profiles. It has been
reported that the greater identifiability occurred at longer time
scales (Van De Ville et al., 2021); (ii) the anatomical loci. Across
the whole brain, the connectivity profiles of the frontoparietal
network and medial frontal networks were most distinctive for
individuals (Amico and Goni, 2018); and (iii) factors affecting
fMRI data which might be unique to individuals and stable
enough across time, including global signals (Chen and Hu,
2018), head motion and brain anatomy (Finn et al., 2015).

The above work has been mainly focused on the
physiological or structural aspects of the brain. Few
studies have examined the roles of the functional aspects
of the brain in individual identification. In particular, are
the high-order functions (such as those supporting story
comprehensions) or the low-order functions (such as those
supporting auditory perception) of the brain more critical for
individual identifiability? There are at least two possibilities:
on the one hand, an individual’s brain involved in low-order
functions may show a high degree of stability across time,
therefore facilitating individual identification; on the other
hand, brains involved in high-order functions may vary greatly
among people, thus making individual discrimination easier.

A further question is, how important are those task-
evoked neural processes compared to task-independent intrinsic
processes in distinguishing individuals? Several studies have
performed individual identifications across resting states and
obtained a high accuracy of above 90% (Finn et al., 2015;
Horien et al., 2019). In comparison, identifications made
across the resting state and a set of tasks typically produced
lower accuracies ranging from about 60% to 85% (Kaufmann
et al., 2017; Amico and Goni, 2018). Among the many factors
(such as the characteristics of head motion and data length)

potentially accounting for the differences in identification
accuracy, one possibility is that, under resting states, subjects are
actually engaged in a set of active mental processes, including
unconstrained verbally mediated thoughts, monitoring, and
episodic and autobiographical retrieval processes (Binder,
2012). Therefore, the results of identification across resting
states might come from a combination of contributions from
both state-independent and state-specific neural processes.
Instead, the results of rest-task identification may better
capture the contribution of state-independent processes to brain
individualization. Yet, no study has systematically investigated
the contribution of state-independent, low-order and high-
order processes to brain fingerprints.

This study addresses the above two questions by tapping
into the hierarchical nature of language. In our experiment, each
subject underwent a resting-state fMRI scan, then listened to
stories played backward, stories scrambled at the sentence level,
and stories played forward during fMRI scanning. For each of
the three tasks, brain imaging data were acquired from two
separate scan sessions. The three tasks were assumed to involve
increasingly complex cognitive processes, while the resting state
was used to create a baseline condition. For the backward-
played speech, which would appear as meaningless audio
streams, subjects should be mainly engaged in low-level acoustic
analysis. For the sentence-scrambled story, subjects would need
to additionally recognize single words and combine words
into sentences (termed as “middle-level linguistic/semantic
operations”). For the intact story, in addition to the perceptual
and linguistic/semantic computations, subjects would need to
combine single sentences into coherent mental models that
allow for inferences and conceptual associations. We termed
these processes recruited specifically by story comprehension as
“high-level conceptual processes.”

To investigate the contribution of low-order and high-order
functions of the brain to individual identification, we predicted
subjects’ identities across two scan sessions corresponding to the
same task, and then compared the success rates (SRs) among
the three task conditions. The state-independent neural process
(the baseline) is assumed to play a role in both resting and task
states. To assess its contribution, we conducted identifications
between the resting session and each task session. Finally, to
understand why individual identifiability may differ along the
language hierarchy, we compared the degree of within-subject
stability and inter-subject variability of FCs among the four
conditions (including the three task conditions and condition
of rest-task pairs).

We first performed individual identification based on the
whole-brain functional connectomes. To establish a closer
relationship between task-evoked brain functions and individual
identifiability, we further conducted individual identification
using FC profiles of single functional networks. Three
networks known to be critically involved in speech processing
were investigated, including a primary auditory network, a
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perisylvian language network and a frontoparietal network
(Price, 2010). In addition, the default mode networks (DMN)
which have been suggested to be actively engaged in resting
states and a set of high-order functions are also examined
(Yeshurun et al., 2021).

Materials and methods

Subjects

A total of 30 college students (females, aged between 18
to 35 years) who were native Chinese speakers and proficient
in English participated in this study. The criterion applied to
screen participants included: (i) having passed the Test for
English Majors-Band 8; (ii) scoring above 7 on the International
English Language Testing System (IELTS); or (iii) scoring above
95 on the Test of English as a Foreign Language (TOEFL).
The data of three subjects were excluded from further analyses
due to excessive head movements (more than 3 mm or 3
degrees) during one or more sessions of the fMRI scanning. All
subjects were right-handed and had no history of neurological,
psychiatric or language disorders.

Experimental procedure

Stimuli for the experiment were generated from a set of
cartoon stories (each lasting ∼60 s) told by two female Chinese
speakers during fMRI scanning. Each story was told in both
Chinese and English. A noise-canceling microphone (FOMRI-
III, Optoacoustics Ltd., Or-Yehuda, Israel) was used to record
the speech. The recordings were further de-noised offline using
Adobe Audition CS6 (Adobe Systems Inc., United States). Three
types of audio clips (lasting 60–62 s) were created from those
recordings. The first type of audio clip was the raw stories
played forward (intact). The second type (sentence-scrambled)
was created by randomly shuffling the sentences of the first half
of a story and keeping the second half intact. The third type
(backward) was created by presenting the first half of a story
waveform-reversed in time and keeping the second half intact.
For the latter two conditions, the intact parts of the stories were
not included in the analyses. A more detailed description of the
stimuli presentation is provided in the Supplementary material
(Supplementary Figures 1, 2).

Each subject underwent five fMRI scan sessions over 2 days.
On the first day, following an 8-min resting-state scan session,
subjects listened to backward-played stories and sentence-
scrambled stories (presented in separate blocks) during two
successive scan sessions. On the second day, subjects listened to
intact stories during two successive scan sessions (Figure 1). The
contents of stories differed between successive sessions.

Half of the subjects were exposed to the Chinese version
of audio clips and the other half were exposed to the English

version. As bilingualism is not the focus of the current study,
we pooled the two subgroups of data together. This study was
undertaken with the understanding and written consent of each
subject and was approved by the Institutional Reviewer Board of
Beijing Normal University.

MRI acquisition

Imaging data were collected with a 3T Siemens Trio
scanner in the MRI Center of the Beijing Normal University
in China. For the functional scan, a gradient echo-planar
imaging sequence was applied with the following parameters:
repetition time = 2,000 ms, echo time = 30 ms, flip
angle = 90◦, field of view = 220 mm2, 33 interleaved
slice, voxel size = 3.125 mm3

× 3.125 mm3
× 4 mm3.

Additionally, high-resolution T1 structural images
were acquired using an MPRAGE sequence. The
parameters were: repetition time = 2,530 ms, echo
time = 3.39 ms, flip angle = 7◦, FOV = 256 mm2, and
voxel size = 1.0 mm3

× 1.0 mm3
× 1.33 mm3.

Imaging data preprocessing

The fMRI imaging data were preprocessed using DPARSF
(Yan and Zang, 2010),1 which integrates the preprocessing
modules of Statistical Parametric Mapping (SPM12).2 The
steps of preprocessing included slice timing adjustment and
realignment for head-motion correction, spatial normalization
to the Montreal Neurological Institute (MNI) space, resampling
into a voxel size of 3 mm3

× 3 mm3
× 3 mm3, and smoothing

with an isotropic Gaussian kernel (FWHW = 7 mm). The
preprocessed images were further detrended, nuisance variable
regressed, and high-pass filtered (1/128 Hz). The nuisance
variables included the five principal components of signals in the
white matter and cerebrospinal fluid masks (Behzadi et al., 2007)
and Friston’s 24 motion parameters (including each of the six
motion parameters of the current and preceding volume, plus
each of these values squared) (Friston et al., 1996).

Data analysis

Functional connectivity estimation
Identification for individual subjects was made based on

their brain FC profiles and performed across two sessions
of the same task and across the rest and each of the task
sessions. For each task session, the time series corresponding
to the task blocks were extracted. Before the data extraction,

1 http://rfmri.org/dpabi

2 http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 1

Experimental design (A) and fMRI scanning scheme (B). Each subject underwent a resting-state fMRI scanning, then followed by three tasks:
listening to short stories presented waveform-reversed in time (backward), stories scrambled at the sentence level, and stories played forward
(intact). The resting state and three tasks were assumed to engage increasingly complex processes along the language hierarchy. For each of
the three tasks, the brain imaging data were collected from two successive scan sessions.

the time series of each brain subregion were normalized in
time using z-score. The data were shifted back in time by 4 s
to account for the hemodynamic lag of blood-oxygen-level-
dependent (BOLD) signals. As previous studies have shown that
data length can influence the accuracy of identification (Van De
Ville et al., 2021), we extracted an equal number of time points
(N = 32) from each session. This number was determined by
the maximum data length of the backward and the scrambled
conditions.

To estimate FC, we partitioned the whole brain into 368
subregions using the Shen-368 Atlas (Salehi et al., 2020; Luo
and Constable, 2022). This was a fine-grained atlas obtained by
integrating the parcellation of cortex from Shen et al. (2013),
subcortex from the anatomical Yale Brodmann Atlas (Lacadie
et al., 2008), and cerebellum from Yeo et al. (2011). Pearson
correlation coefficients between each possible pair of subregions
were computed, resulting in a 368 by 368 connectivity matrix
(Figure 2A). This was done for each subject and each condition,
such that each subject had a total of seven connectivity matrices
representing connectivity patterns during resting and the three
tasks (two matrices for each task).

Identification using whole-brain functional
connectivities

To detect the contribution of the four types of information
to brain individualization, we conducted identification for
individuals across time using the pairing scheme illustrated in

Figure 2B. Specifically, to detect the task-independent intrinsic
processes (the baseline level), identification was conducted
across the resting state session and each of the six task sessions.
To detect the auditory perceptual processes (the low level),
identification was conducted across the two sessions of the
backward condition. To detect the linguistic/semantic processes
(the middle level), identification was performed across the two
sessions of the sentence-scrambled condition. Finally, to detect
the conceptual processes (the high level), identification was
performed across the two sessions of the intact condition. For
each level, the FCs derived from one scanning session served as
the database and another session served as the target. The two
sessions then changed the roles (Figure 2B).

To predict subjects’ identities, an identifiability matrix was
defined as Pearson’s correlations between the database and the
target (Amico and Goni, 2018). The main diagonal elements
of the matrix represent the FC similarity of the same subjects
across sessions, referred to as I_self. The off-diagonal elements
of the matrix, averaged by columns, represent the FC similarity
of subjects (from the database session) with other subjects (from
the target session). This was referred to as I_other. The result
of I_self minus I_other was referred to as I_diff, which reflects
the identifiability of individual subjects for a given fold of
identification (Figure 2C).

In addition to the I_diff which served as a continuous
variable to quantify the identifiability of individual subjects, we
also calculated the group-level SR of identification. For a given
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FIGURE 2

The procedure of data analysis. (A) The whole brain was partitioned into 368 parcels. Time series corresponding to the task blocks were
extracted and concatenated to compute the functional connectivity (FC). (B) To detect the contribution of task-independent brain processes,
we paired the resting scan with each of the six task scans for the identification. To detect the contribution of low- and high-order brain
processes, for each task condition, we paired the two successive scan sessions corresponding to the same task. (C) To predict subjects’
identities, the FCs from a database set were correlated with the FCs from the target set, resulting in an identifiability matrix. Based on this matrix,
we obtained the within-subject FC similarity (quantified by the I_self), between-subject FC similarity (quantified by the I_other), individual
identifiability (quantified by the I_diff, which is computed by I_self minus I_other), and the group-level success rate of identification.

subject, if the I_self was larger than every other element on
the same row in the identifiability matrix, the identification was
successful, otherwise it failed. In other words, if a subject’s FCs
in the database showed greater similarity with his/her own FCs
than with any other subjects in the target set, the identification
succeeded. This procedure was iterated over all subjects. The
accuracy of identification was measured as the percentage of
subjects whose identities were correctly predicted out of the total
number of subjects in the group (Finn et al., 2015).

We first evaluated the identifiability index (I_diff) and
SR for each pair separately and then averaged the results of
corresponding pairs into one.

Statistical analysis
Non-parametric permutation tests were performed to assess

whether the obtained identification accuracy was significantly
above chance. In the permutation, the subjects’ identities of the
target set were randomly assigned and then the identification
was performed. This procedure was repeated 1,000 times to
create a null distribution for each session pair. Then for each
condition, the null distributions of identification pairs were
combined and the maximum SR from the null distributions
was extracted as the threshold for the given condition. In
addition, Chi-squared tests were applied to compare the SR of
identification among the four conditions.

Comparison of within- and between-subject
similarity

The success of individual identification mainly depends
on how similar was the connectome patterns of a given

subject with his/her own FCs (quantified by the I_self) and
with the FCs of other subjects (quantified by the I_other).
To gain insights into the potential differences in individual
identification along the language hierarchy, we compared the
two variables among the four conditions using paired t-tests.
Multiple comparisons were corrected using a false discovery rate
(FDR) at Q = 0.05.

Identification based on single functional
networks

In the above analyses, the whole-brain connectome
may encode not only task-related information, but also
multiple task-unrelated neurophysiological processes as
well as task-free intrinsic processes. To establish a closer
relationship between task-related processes and individual
identifiability, we further performed the identification
based on the FC profiles of single functional networks.
Currently, most brain functional networks reported in the
literature are created from resting-state fMRI data. To
more accurately detect those functional networks closely
involved in the language task, we conducted brain network
parcellation using an independent data set involving 61
subjects listening to a 10-min real-life story while undergoing
fMRI scanning. Applying a recently-developed technique
(Ji et al., 2019; Barnett et al., 2021), a group-mean 368
by 368 FC matrix was clustered into 15 networks. Details
of network partition are presented in the Supplementary
material. The four networks of interest, including the auditory,
language, DMN and frontoparietal networks were selected
via visual inspection and validated by comparing with
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corresponding templates on Neurosynth3 in terms of spatial
overlap.

Tests for the robustness of results
Functional connectivities assessed with a different
brain atlas

To test the robustness of the major findings, we re-analyzed
the data by assessing the functional connectomes using the
Schaefer atlas which partitioned the brain into 400 areas
(Schaefer et al., 2018). Then we assessed individual identifiability
along the language hierarchy based on 400 by 400 FC matrices.

Identification using a different strategy of condition
pair and longer data length

To validate the main results, we adopted a different strategy
of condition pair to assess individual identifiability, which
allowed us to use more time points to compute FCs. Given
the hierarchical nature of language, it is reasonable to assume
that, in addition to the state-independent intrinsic activities,
those state-specific processes engaged in the low-level task (e.g.,
listening to the backward-played story) are also engaged in the
high-level task (e.g., listening to the intact story) (as illustrated
in Figure 1A). Thus, the degree of similarity of subjects’ FCs
between the low- and the high-level tasks should mainly depend
on the low-level task, which in turn would largely determine
whether a subject can be identified between the conditions.
Nevertheless, we noted that while the shared components of
low- and high-level tasks can improve the accuracy through
shared state-specific contribution, differences between state-
specific activities could reduce the performance. In this way,
changes in identification accuracy between conditions may
underestimate the contribution of the targeted processes (the
shared state-specific processes).

Following the above logic, we combined one dataset of the
intact condition with the dataset of the rest, the backward,
the sentence-scrambled, and the second intact conditions
separately. Then identification was conducted between the two
datasets for each of the four pairs. We predicted that the
identifications of the rest-intact, backward-intact, scrambled-
intact and intact-intact conditions should follow a similar
pattern as the identification of the rest-task, backward-
backward, scrambled-scrambled and intact-intact sessions.

For each condition, a total of 64 time points were extracted
to compute FCs. For the backward and sentence-scrambled
conditions, this was done by concatenating the corresponding
time series from two scan sessions. For the intact condition, this
was done by concatenating the corresponding time series from
two blocks. For the resting state, the first 64 time points were
extracted. Time series were normalized within a session before
the concatenation.

3 https://www.neurosynth.org

Results

Individual identifiability along the
language hierarchy based on
whole-brain functional connectivities

Based on the whole-brain FC patterns, we predicted subjects’
identities across the rest and each of the six task sessions with
a mean accuracy of 62.9% (the baseline, ranging from 44.44
to 85.19% across pairs), which was much higher than the best
performance (22.2%) from the permutation test (Figures 3A,B).
Across the two sessions for the backward condition, which
was presumed to involve low-level acoustic processing, the
mean SR of identification was 85.2% (ranging from 81.48 to
88.89%). Across the two sessions for the sentence-scrambled
condition, which was presumed to involve additionally middle-
level linguistic and semantic processing, the mean SR of
identification dropped slightly to 83.3% (ranging from 81.48 to
85.19%). The greatest SR was achieved across the two sessions
for the intact condition (mean = 90.74%, ranging from 88.89
to 92.59%), which was presumed to involve further high-level
conceptual processing.

For all three task conditions, the SR of individual
identification across two sessions was significantly higher
than that of the baseline (p < 0.005, by Chi-squared test).
Nevertheless, the differences in SR among the three task
conditions were not statistically significant (p > 0.25).

The analysis of the I_diff revealed a similar pattern: the
individual identifiability increased along the language hierarchy,
and the I_diff for all three tasks was greater than that of the
baseline, but had no statistically significant differences among
the three tasks (Figure 3C).

Changes in within- and
between-subject similarity along the
language hierarchy

To gain insights into why the individual identifiability
varied along the language hierarchy, we compared the degree of
within- and between-subject similarity (quantified by the I_self
and I_other, respectively) in FC patterns across corresponding
sessions. The within-subject similarity (or stability) in whole-
brain FC profiles was the greatest across the two sessions for the
sentence-scrambled condition, next for the backward condition,
and the weakest for the intact condition (Figure 3D). This
pattern was partially consistent with our prediction that the
functional brains involved in the low-order tasks varied less
across time than the brains involved in high-order tasks. The FC
profiles within subjects were the least stable across the rest-task
sessions (the baseline condition), which was significantly lower
than that of all three task conditions (p< 10−4, by paired t-test).
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FIGURE 3

(A) The result of individual identification along the language hierarchy based on whole-brain FCs. (B) The success rate of identification across all
possible pairs of sessions. Grids marked by colors are the interests of this study. The bar plot shows the group-level success rates averaged
across corresponding pairs for the four conditions. (C) Individual identifiability quantified by I_diff. (D) Within- and between-subject similarity
across sessions quantified by I_self and I_other, respectively. The asterisk indicates a significant difference between two conditions at p < 0.05
after FDR correction. The error bars denote the standard deviation of means.

The distribution of between-subject similarity resembled
that of within-subject similarity. That is, compared to the
higher-level intact condition, subjects were more similar to each
other in their brain FCs under the lower-level backward and the
sentence-scrambled conditions (p < 10−3) (Figure 3D). This
pattern was consistent with our prediction that the functional
brain involved in higher-order functions is more variable across
people. Still, compared to three task conditions, the brain FCs
varied more between subjects across the rest and task states
(p < 10−3).

Together, those results suggest that the greater individual
identifiability across the task sessions than that across the
rest and task sessions might be related to the more stable
brain FCs across the task sessions. The greater individual
identifiability under the high-order condition than that under
the low-order conditions might be related to the larger between-
subject variability.

Network-based identification

The whole-brain FCs during tasks may be shaped by both
task-related and task-unrelated processes, such as intrinsic

activities or physiological noises. To gain more insights into
the task-related information that potentially makes our brains
distinguishable, we performed the identification using the FCs
of functional networks.

Among the four examined networks, the auditory network
achieved the lowest identification accuracies (ranging between
14.8 and 48.1%) under all four conditions. Further analyses
showed the within-subject similarity in network FC profiles
was the largest in the auditory network, especially under the
backward condition. At the same time, the between-subject
similarity in FC profiles was also the largest in this network.
In other words, different subjects seemed to have similar FCs
in the auditory network across sessions, potentially leading to
the low SR in identification. The language network achieved
SRs ranging from 32.1 to 59.2%, which also tended to increase
along the hierarchy: the performance was lowest for the
baseline, better for subjects under the backward condition, and
the best for subjects under the sentence-scrambled condition,
which then dropped down slightly for subjects under the
intact condition. The DMN achieved SR ranging from 43.5 to
74.1%. The best performance obtained by this network was
for subjects under the backward condition. The frontoparietal
network performed the best (ranging from 61.1 to 92.6%) in
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distinguishing individuals under most conditions. Consistent
with the performance of the language network and the whole-
brain connectome, the frontoparietal network also distinguished
individuals with increasing accuracies along the hierarchy
(Figures 4A,B).

When averaging the results over networks, the individual
identifiability of the four conditions was ordered as
baseline < backward < scrambled < intact. This pattern
was in line with the results obtained from the whole-brain
connectome (Figure 4C). When averaging the results over
conditions, the SR of networks was ordered as auditory
network < language network < DMN < frontoparietal. Further
analyses showed, compared with the other three networks, there
was significantly lower between-subject similarity (or higher
inter-subject variability) in the FCs profiles of the frontoparietal
network (Figure 4D).

The results of validations

Reproduce the findings with a different brain
atlas

Applying the Schaefer atlas to assess the brain connectivities,
we obtained a similar pattern of individual identifiability as
the main analyses. The SR of identification increased along
the language hierarchy: 56.17% for the baseline, 81.48% for
the backward condition, 85.19% for the sentence-scrambled
condition, and 87.04% for the intact condition.

Identification using a different strategy to pair
conditions

The analyses using a different strategy to pair conditions
for identification yielded a similar picture as the main analyses.
The SR in identifying individuals between the rest and intact
conditions was the lowest (70.37%), which increased to 84.26%
between the backward and intact conditions. It then dropped
slightly to 83.3% between the sentence-scrambled and the intact
conditions and rose to 100% between the two sessions of the
intact condition. We note that the overall SRs were higher than
those of the main analyses, likely due to the use of more data
points to compute the FCs.

Discussion

Establishing the link between individual differences in
the brain with the differences in cognition, behavior, and
dysfunctions is a major goal of cognitive neuroscience. To fulfill
this goal, the neuroscientific community, which has been mainly
focused on the generic patterns of brain activities shared across
the population, is now moving forward to characterize brain
patterns that are robust and unique to individuals. Existing
studies have discovered a set of brain features that can be used to

distinguish individuals from each other and may serve as “brain
fingerprints.” However, what is the information encoded in the
brain that makes us unique remains elusive.

To understand the source of functional brain
individualization, we explored the degree of individual
identifiability along the language hierarchy. Subjects were
scanned with fMRI during a resting state and when listening
to backward-played, sentence-scrambled, and intact stories.
For each task, the imaging data were collected from two scan
sessions. Extracting the whole-brain FC profiles as features, we
found that the individual identifiability tends to increase along
the language hierarchy. The identification between the resting
state and each of the task states achieved an average SR of 62.9%
(the baseline). The mean SR across the two sessions for the
backward condition (the low level) increased to 85.2%, which
decreased slightly for the scrambled condition (83.3%) (the
middle level), and then rose to 90.7% for the intact condition
(the high level). This pattern was also observed when using
the FCs of single networks (the language network and the
frontoparietal network) to characterize individuals. In addition,
we obtained a similar pattern by employing a different brain
atlas to compute the brain connectome and by applying a
different strategy of condition pairing for the identification.

Increased individual identifiability
along the language hierarchy

Using whole-brain FCs as features, we identified individuals
across the resting and task sessions with an average SR greater
than 60%. This performance is close to the results of previous
studies which examined the individual identifiability across
resting states and a set of tasks involving emotion, motor,
memory, and language processing (Finn et al., 2015; Kaufmann
et al., 2017). Together with previous studies, our work suggests
that the state-independent, intrinsic processes are the major
contributor to brain fingerprints.

Compared to the baseline, the SR in identifying subjects
under the backward condition (the low-level) improved
significantly by about 22%. One possibility is that this
improvement reflected the direct contribution of low-order
acoustic processing to brain fingerprints. However, when
looking into single functional networks, the auditory network
only obtained an identification accuracy of 44% for this
condition, which was the worst among the four networks.
Instead, it was the DMN that showed the highest SR (74%)
in identifying individuals under the backward condition.
These results seem to argue against the possibility of a
direct contribution, suggesting that the low-order auditory
perceptual process per se may not provide critical information
in characterizing individuals. Alternatively, we propose that the
presence of audio streams may constrain the activities of the
auditory network as well as other brain networks (especially

Frontiers in Human Neuroscience 08 frontiersin.org

89

https://doi.org/10.3389/fnhum.2022.982905
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-982905 September 14, 2022 Time: 7:56 # 9

Zhang et al. 10.3389/fnhum.2022.982905

FIGURE 4

The results of individual identification based on single functional networks. (A) The spatial map of the selected functional networks and the
individual identifiability, within- and between-subject similarity in the FC profiles of each network. (B) The success rate of each network in
identifying individuals under each condition. (C) The success rate and the within- and between-subject similarity for each condition, averaged
by networks. (D) The success rate and the within- and between-subject similarities for each network, averaged by conditions.

the DMN) as a whole, leading to a high degree of within-
subject stability in brain connectivities across sessions (as can
be seen in Figures 4A,C). This may explain the significant
improvement in identifying individuals based on the whole-
brain FCs.

Compared to the low-level condition, the SR in identifying
individuals under the sentence-scrambled condition (the middle
level) based on whole-brain FCs decreased slightly by about 2%.
However, when taking the FCs of single functional networks
as features, both the language network and the frontoparietal
network performed better in identifying individuals under the
scrambled condition than that under the backward condition.
This pattern was also found in the averaged performance
across the four networks. The increase in identifiability was
accompanied by the increase in within-subject stability and a
slight drop in inter-subject variability. These results suggest
that, compared to listening to the meaningless backward-played
story, comprehending sentences may help to blur irrelevant
features (background noises), therefore enhancing those key

individual features meanwhile making subjects’ FCs more
similar to one another.

The greatest SR was obtained for the identification of
individual subjects under the intact condition (the high
level). Compared to the other two task conditions, there
was greater inter-subject variability and slightly lower within-
subject stability in brain FCs under the intact condition. The
increased individual identifiability may be related to the fact that
comprehending stories requires the integration of information
over a longer time scale than did the two lower-level tasks. This
is consistent with previous findings that the best identification
emerges at longer time scales (Van De Ville et al., 2021).

The differences among networks in
distinguishing individuals

Among the four networks, the auditory networks
consistently showed the lowest SR in discriminating subjects
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under all four conditions. Further analyses revealed that,
while the within-subject FC similarity was the greatest, the
inter-subject FC variability was the least in the auditory network
among the four networks. The low inter-subject variability (or
high inter-subject similarity) in the auditory network across
the language hierarchy is consistent with previous findings
(Lerner et al., 2011), which likely explains the comparatively
poor performance of this network in distinguishing individuals.

The condition-averaged SR derived from the language
network was higher than that derived from the auditory network
but lower than that derived from the DMN. In comparison with
the auditory network, both the language network and the DMN
were characterized by greater inter-subject variability but lower
within-subject stability.

The frontoparietal network consistently showed the best
performance in identification under all conditions except for the
backward condition. Under the intact condition, identification
using the FCs of the frontoparietal network alone performed
even better than that using the whole-brain FCs. Moreover,
similar to the whole-brain FC profiles, the SR obtained using the
FC profiles of the frontoparietal network also increased along
the language hierarchy. Still, this increase was accompanied
by the increase in inter-subject variability rather than within-
subject stability of FCs. These findings are consistent with
previous reports about a high degree of individualization (Finn
et al., 2015; Amico and Goni, 2018; Horien et al., 2019) and
inter-subject variability in the frontoparietal network (Mueller
et al., 2013). Our study extends previous work by suggesting
that the special role of the frontoparietal network in individual
identification is likely owing to its function rather than its
anatomical features.

Limitations and implications

One limitation of the current study is the small sample of
subjects and the short data length used to compute the FC.
Despite that we have validated the main results with the analysis
using a different data length (32 versus 64 time points), future
studies based on a larger sample size are required to replicate
our findings and evaluate the effect of data length (stimuli
duration). Besides, all the subjects recruited in this study are
females. Whether the results can be extended to males remains
to be tested. Finally, while we observed that the more complex
cognitive task and the network associated with higher-level
cognitive functions tended to better distinguish individuals,
most of the changes in identification accuracy did not reach
statistical significance. Although this trend was reproducible
across the analyses with different brain atlas and different
strategies of condition pair, more work is needed to establish that
this trend is meaningful rather than arbitrary.

Despite the above limitations, the current study may provide
useful implications for future research. First, we demonstrated
that, during the high-order story comprehension task, the brain

functional connectivities are quite different across subjects but
stable enough across time within the same subjects. Meanwhile,
on the low-order perceptual task, the brain connectivities were
quite stable across time and similar across individuals. These
results imply that, for low-order functions, conclusions about
the brain obtained from a relatively small pool of subjects can be
generalized to larger groups. However, for high-order functions,
averaged brain patterns obtained from a small sample may not
well represent the general principles of brain function. However,
if properly exploited, individual differences in brain activities on
high-order tasks can provide useful information that is beyond
what can be captured by those group-mean focused approaches
(Liu et al., 2020).

Second, in line with previous work (Mueller et al.,
2013; Finn et al., 2015; Amico and Goni, 2018), this study
highlights the special role of the frontoparietal network in
characterizing individuals. In addition, we found that the
individual distinguishing ability of the frontoparietal network
increased with the complexity of tasks. Based on these findings,
we speculate that executive processes, which are the typical
function of the frontoparietal network and demands for it
usually increase with the complexity of tasks, might be the
core factor underlying inter-individual differences in the brain
and behavior. Future studies aiming to manipulate brain states
to maximize individual differences may give priority to tasks
involving executive processes.

Conclusion

This study demonstrated that individual identifiability
tended to increase along the language hierarchy: the more
complex the task was, the better subjects were distinguished
from each other based on their functional brain data. A similar
principle was also found at the functional network level:
compared to the low-order network (the auditory network),
the high-order network was more individualized (the DMN
and frontoparietal networks). Moreover, in both cases, the
increase in individual identifiability was accompanied by the
increase in inter-subject variability of the FC profiles. The two
folds of results together suggest that, compared to the low-
order functions, the high-order functions of the brain are
more important in making us unique. At the same time, task-
independent neural processes seem to contribute more than
task-evoked neural processes to brain individualization. What
is exactly encoded in the task-independent brain activities and
its function in cognition and behavior remain an open question.
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Humans can flexibly represent both categorical and coordinate spatial

relations. Previous research has mainly focused on hemisphere lateralization

in representing these two types of spatial relations, but little is known about

how distinct network organization states support representations of the two.

Here we used dynamic resting-state functional connectivity (FC) to explore

this question. To do this, we separated a meta-identified navigation network

into a ventral and two other subnetworks. We revealed a Weak State and

a Strong State within the ventral subnetwork and a Negative State and a

Positive State between the ventral and other subnetworks. Further, we found

the Weak State (i.e., weak but positive FC) within the ventral subnetwork was

related to the ability of categorical relation recognition, suggesting that the

representation of categorical spatial relations was related to weak integration

among focal regions in the navigation network. In contrast, the Negative

State (i.e., negative FC) between the ventral and other subnetworks was

associated with the ability of coordinate relation processing, suggesting that

the representation of coordinate spatial relations may require competitive

interactions among widely distributed regions. In sum, our study provides the

first empirical evidence revealing different focal and distributed organizations

of the navigation network in representing different types of spatial information.
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categorical spatial relation, coordinate spatial relations, network organization,
functional connectivity, dynamics
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Introduction

Understanding spatial relations is hard for artificial
intelligence, but easy for human being. Spatial relationships
are critical to the formation of cognitive maps in navigation.
We can use flexible representations to encode spatial relations
either categorically, such that concerns the spatial layout formed
by relative positions of objects (e.g., a house located in the
left of the oak); or as coordinates, such that refers to the
spatial locations in terms of metric units (e.g., a house located
2.5 m from the oak) (Kosslyn, 1987). The categorical spatial
relationships capture abstract or general relations among object,
such as “under”; by contrast, the coordinate spatial relationships
reflect the exact metric or precise distance between objects.
As evidenced in other domains, such as number (Feigenson
et al., 2004; Pica et al., 2004) and color (Kay and Regier,
2003), there are profound distinctions between categorical
and coordinate representations (Holden et al., 2010). Do the
representations of categorical and coordinate spatial relations
have distinct underlying neural substrates? Large majority of
relevant neuroimaging studies concentrated on discovering the
hemispheric lateralization dissociation between the two types
of spatial relation representations in the prefrontal or parietal
cortex, which based on making very basic task designs by using
lines, crosses, or dots (Kosslyn et al., 1989; Trojano et al.,
2002; Slotnick and Moo, 2006; van der Ham et al., 2009, 2013).
However, a fundamental question remaining unclear is how
distinct neural substrates in the large-scale navigational system
underpinned the categorical and coordinate spatial relations.

Until now less attention has been paid to direct
comparison between categorical and coordinate spatial
relations representation under navigational system, and mix
results are reported. The only known studies identify greater
activation in the parietal cortex in the categorical condition,
and higher activation in the medial temporal lobe (MTL) and
dorsal striatum in the coordinate condition during spatial
navigation (Baumann et al., 2012; Baumann and Mattingley,
2014); however, another study finds that the anterior temporal
gyrus processes the categorical spatial information, and the left
angular and inferior frontal gyrus processes more coordinate
spatial information (Amorapanth et al., 2010). Importantly,
neuropsychological studies provide some insight about some
brain regions are conjointly and others distinctly recruited
in the categorical and coordinate spatial relations. Within
the scope of categorical/coordinate distinction, these shared
and distinct activation regions mainly restrict to a small
number of navigation-related regions of interest. On the
one hand, the MTL has been found to play a central role in
representing both categorical and coordinate spatial relations.
For categorical spatial relations, patients with hippocampal
damage are impaired in recognizing the relative relations
among mountains (Hartley et al., 2007; Urgolites et al., 2017),
and bilateral posterior hippocampus (HIP) are activated

more highly for correct than incorrect recognition of ordinal
location relations (Hannula and Ranganath, 2008). In addition,
a recent study demonstrates greater activation in the left
parahippocampal gyrus and retrosplenial cortex for processing
of spatial relations than locations (Blacker and Courtney, 2016).
Similarly, for coordinate spatial relations, the activation in
either anterior or posterior HIP has been found correlated with
the Euclidean distance (Evensmoen et al., 2013; Sherrill et al.,
2013; Howard et al., 2014) path distance (Howard et al., 2014)
and environment size (Baumann and Mattingley, 2013), and
closer locations/items have higher neural pattern similarity
in the HIP (Nielson et al., 2015; Deuker et al., 2016). On the
other hand, compared with categorical spatial relations, more
distributed regions beyond the MTL have been demonstrated
to represent the coordinate spatial relations. For example, the
medial prefrontal and medial posterior parietal regions show
increased activation with closer distance to the goal (Spiers
and Maguire, 2007; Viard et al., 2011), and the PCUN, insula,
and anterior cingulate cortex show higher activation with
further distance to the goal (Viard et al., 2011). In addition,
distance-related adaptation effect is observed in the left inferior
insula, anterior superior temporal sulcus, and right inferior
temporal sulcus (Morgan et al., 2011). Taken together, existing
evidence seems to suggest that the representation of categorical
spatial relations mainly converges on the MTL, while the
representation of coordinate spatial relations may also involve
other spatial-related regions beyond the MTL (Ekstrom and
Yonelinas, 2020).

Notably, it is increasingly recognized that different functions
of the MTL may arise from its distinct intrinsic connectivity
profiles with diverse cortical regions (Mahon and Caramazza,
2011; Sormaz et al., 2017). Yet, limited studies investigated the
neural differences based on the intrinsic functional connectivity
(FC) nature of the spatial relations. One suggestive study shows
higher resting-state FC between the HIP and lingual gyrus
is related to better ordinal relations memory (Sormaz et al.,
2017). However, it remains unclear how different intrinsic
connectivity patterns among the MTL and other spatial-related
regions support representations of categorical and coordinate
spatial relations in spatial navigation, respectively. Based on
previous findings, we hypothesize that (1) the representation
of categorical spatial relations would be mainly related to
interactions within the MTL regions and (2) the representation
of coordinate spatial relations would be related to more
distributed interactions among navigation-related regions.

To test these two hypotheses, we used the meta-identified
navigation network across the brain with the Neurosynth
(Yarkoni et al., 2011), and decomposed it into a ventral
subnetwork containing the MTL and other two subnetworks
with a modularity analysis (Hao et al., 2016; Kong et al.,
2016). Then, we characterized the intrinsic FC within the
ventral subnetwork and that between the ventral and other
subnetworks. Recent studies adopting dynamic FC approach
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have unveiled the time-varying nature of resting-state FC,
indicating some degree of multi-stability for dynamic FC with
multiple typical network states recurring during resting-state
(Hutchison et al., 2013; Allen et al., 2014). The recurring
FC states may manifest endogenous neural dynamics that are
believed to underlie the flexibility of cognition and behavior,
with different FC states relating to different cognitive functions
(Shine et al., 2016). That is, representation of categorical and
coordinate spatial relations may be associated with different
dynamic FC states of the navigation network. Therefore, we
calculated the FC matrices of all sliding time windows during
resting-state and clustered them into typical dynamic FC states
within the ventral subnetwork and between the ventral and
other subnetworks, respectively. After MRI scanning, we used
an ordinal scene recognition task to measure representation
of categorical spatial relations, and distance test to measure
representation of coordinate spatial relations. Finally, we
correlated properties of the typical dynamic FC states with
behavioral performances in the two tasks to examine whether
and how distinct dynamic network states were associated with
representations of categorical and coordinate spatial relations.

Materials and methods

Participants

Two hundred and twenty-six students (age range: 19–
24; mean age = 21.66, SD = 1.00 years, 108 males) were
recruited from Beijing Normal University, Beijing, China to
participate in this study. This sample size is comparable with
previous work (Wang et al., 2016; Hao et al., 2021) and exceeds
prior fMRI studies in most cases. None of the participants
reported a history of neurological or psychiatric disorders.
This study is part of an ongoing project (Gene Environment
Brain and Behavior) (Kong et al., 2017; Zhen et al., 2017). All

experiments were in accordance with the ethical standards of
the Institutional Review Board of Beijing Normal University and
written informed consent was obtained from each participant
before the experiment. One participant was excluded due to
more than 0.2 mm in mean framewise displacements of the head
motion.

Behavior tasks

The behavior tasks were tested outside of the MRI
scanner in a separate behavioral session, after the participants
underwent MRI scanning.

Assessment of categorical spatial
relations

We assessed the participants’ ability to represent categorical
spatial relations with an ordinal scene recognition task adapted
from Hartley et al. (2007). The stimuli were all computer-
generated landscapes, with four mountains varying in shape
and size surrounded by a distant semicircular mountain range
(Figure 1). There were 20 trials which were randomly mixed
in the task. In the study phase of each trial, participants were
required to study an image at the center of the screen for 2 s.
Then after a delay of 2 s with fixation, two images from a
novel viewpoint were presented in the test phase, including one
target image which preserved all topographic information from
the study image and one non-target image with the locations
of two mountains exchanged with each other. The location
of the target image on the left or right was randomized. The
participants were asked to identify the target image as quickly
and accurately as possible, by pressing “F” when the target
image was on the left and “J” when the target image was on
the right. Critically, the categorical spatial position among the

FIGURE 1

The ordinal scene recognition task to assess categorical spatial relations. Left panel: Example of a single trial. The participants were asked to
identify the target image as quickly and accurately as possible in the test phase. Right panel: Examples of the study and test images. Two images
were presented in the test phase, one of which was the target image and the other was the non-target image. The target image preserved all
ordinal information from the study image but with a novel viewpoint. For the non-target image, the locations of two mountains were
exchanged to the study image.
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four mountains extracted from the study images, which were
interrupted in the non-target images. Then, we averaged the
reaction times (RTs) of the correct trials for each participant.
For visualization and enhancing readability, we converted these
RTs into speed values using the classic formula: speedi = (Max–
RTi)/(Max–Min), where i refer to each participant, and Max and
Min correspond to the maximum and minimum RT across all
participants (Hao et al., 2017). The speed values were used as
the ordinal scene recognition scores.

Assessment of coordinate spatial
relations

According to the Lopez et al. (2020), we assessed the ability
to represent coordinate spatial relations with the distance test.
For the most noticeable way to assess the mentally represented
distances is to compare the landmarks with each other (Lopez
et al., 2020). The participant was presented with two well-known
landmarks (i.e., buildings or statues) in the Beijing Normal
University campus and required to choose the one closer to the
building where the experiment was conducted (i.e., the starting
point). It’s reasonable that coordinate judgments were made
when representing distances metrically. Specifically, we used
two surveys, which measured both the optimal path distance and
straight-line Euclidean distance. For the optimal path distance
survey, the participant was asked to select the optimal routes
and avoid dead ends to assess the distances between the starting
point and the landmarks; while in the Euclidean distance survey,
the participant was asked to estimate the straight-line distances
between the starting point and the landmarks. Each survey
contained nine items, including eighteen prominent landmarks.
Before the formal test, participants were provided with two
practice items to familiarize with the task and were given
feedback on each item. No feedback was provided in the formal
test. We averaged the number of correct items of the path
distance and Euclidean distance surveys as the distance score for
each participant.

All participants had lived in the campus for more than
2 years at the time of the test. To ensure that all participants
were familiar with the landmarks, they underwent a familiarity
testing, in which they rated their degree of familiarity with each
landmark on a scale ranging from one “very unfamiliar” to seven
“very familiar.” The high mean score (6.10 ± 0.70) indicates
relatively very familiar to all landmarks for each participant.

Image acquisition and preprocessing

MRI scanning was conducted on a Siemens 3T scanner
(MAGENTOM Trio, a Tim system) with a 12-channel phased-
array head coil at Beijing Normal University Imaging Center for
Brain Research, Beijing, China. T2∗-weighted functional images

in resting state were acquired using a gradient-echo, echo-planar
imaging (EPI) sequence (TR = 2 s, TE = 30 ms, FA = 90◦, number
of slices = 33, voxel size = 3.125 mm × 3.125 mm × 3.6 mm,
number of volumes = 240). During resting state scans, the
participants were instructed to close their eyes, keep still,
remain awake, and not think about anything systematically.
Of note, each participant was asked whether he/she had
fallen asleep during the scanning when the scan was finished.
Those who reported having fallen asleep were required
to rescan the resting-state imaging. In addition, high-
resolution T1-weighted structure images were acquired using
a magnetization-prepared rapid gradient-echo (MPRAGE)
sequence (TR/TE/TI = 2,530/3.39/1,100 ms, FA = 7◦,
matrix = 256 × 256, voxel size = 1 mm × 1 mm × 1.33 mm,
number of volumes = 128) for each participant.

For each participant, image preprocessing was conducted
using FSL (FMRIB software Library1). Steps included the
removal of the first four volumes for image stabilization, head
motion correction (by aligning each volume to the middle
volume of the image with MCFLIRT), spatial smoothing (with
a Gaussian kernel of 6 mm full-width at half-maximum), grand-
mean intensity normalization, and the removal of linear trend.
Next, a band-pass temporal filter (0.01–0.1 Hz) was applied to
reduce low-frequency drifts and high-frequency noise. Then,
the physiological noise (such as cardiac and respiratory cycles),
and nuisance signals from the white matter, global gray
matter average, cerebrospinal fluid, six head motion correction
parameters, and first derivatives of these signals were regressed
out (Fox et al., 2005; Biswal et al., 2010). The residual time series
obtained were registered to the MNI standard space with using
FLIRT and then used for the dynamic FC analyses. The strength
of the intrinsic FC between two regions was estimated using the
Pearson’s correlation coefficients of the residual rs-fMRI time
series.

Functional organization of the
navigation network

Considering the complexity of navigation system, we used
a meta-analysis approach named Neurosynth (Yarkoni
et al., 2011), to identify 23 highly navigation-relevant
regions involving in navigation (Hao et al., 2021). After
the preprocessing, we first computed the Fisher z-transformed
Pearson correlation coefficients between the residual time series
of each pair of the defined regions for each participant. To
detect how interconnected regions formed functionally module
structure in the navigation network, we conducted a modularity
analysis on the averaged correlation matrix across participants.
Specifically, we used the community Louvain algorithm in

1 http://www.fmrib.ox.ac.uk/fsl
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the brain connectivity toolbox (version 2017-01-15, Rubinov
and Sporns, 2010). For the Louvain algorithm, we choose the
default resolution parameter gamma = 1 and executed it in the
MATLAB. Considering the conceptual advantages of unequal
importance of positive and negative weights, we adopted an
asymmetric modularity measure to avoid biased thresholding
of the networks. Then, we ran the algorithm 1,000 times and
obtained the auto-generated optimal community structure
with a module partition number of three. Further spatial
examination found that one of the modules contained most
of well-established navigational specific regions in the MTL
(e.g., the hippocampal formation and retrosplenial complex)
(Ekstrom et al., 2017; Qiu et al., 2019), which was labeled as the
ventral subnetwork. The other two modules contained a set of
general cognitive regions in frontal and parietal cortex (e.g., the
inferior parietal lobe and middle frontal gyrus).

Dynamic functional connectivity state
clustering and statistics

We characterized the dynamic FC by using sliding time-
window correlation among the identified regions in navigation
network. For each participant we constructed a tapered
window by convolving a rectangular window (width = 50 s/25
TRs) in steps of 1 TR, which resulting in 212 windows
during rs-fMRI scanning. We chose the typical window size
between 30 and 60 s, which was found to well balance the
susceptibility to spurious fluctuations for short window lengths
and categorical insensitivity to variability for long window
lengths in empirical studies (Allen et al., 2014; Leonardi and
Van De Ville, 2015; Zalesky and Breakspear, 2015). Following
previous classic work, tapering window shape was suggested
to better suppress spurious correlations and reduce sensitivity
to outliers in categorically short time segments. The weighted
Pearson correlation was adopted to calculate the FC for reducing
the noise induced by the limited number of data points available
in each time window (Zalesky et al., 2014). To estimate the
dynamic FC within ventral subnetwork (dWNC), we computed
the correlations between each pair of regions within the ventral
subnetwork for each time window. Similarly, to characterize the
dynamic FC between ventral and other subnetworks (dBNC),
we extracted the correlations between each region in the ventral
subnetwork and each region in the other subnetworks. Finally,
all time windows were concatenated across all participants,
resulting in 47700 (212 × 225) FC windows for dWNC and
dBNC, respectively.

To detect the representative FC patterns for the dWNC,
we applied the k-means clustering method on the concatenated
FC matrix consisting of all participants’ time windows (Lloyd,
1982; Allen et al., 2014; Nomi et al., 2016). Following previous
work in dynamics, the k-means algorithm was evaluated across
values of k ranging from 2 to 10 using the silhouette metric,

which measures how similar a FC window is to its own cluster
compared to other clusters (Hutchison and Morton, 2015). The
k-means clustering was repeated for 500 times with random
initialization of centroid positions and produced the highest
silhouette score with the value of k = 2. As a result, each time
window for dWNC was assigned to one of the two typical
dynamic FC states (clusters) for further analyses. Further, we
calculated the frequency (i.e., the proportion of all 212 windows
assigned to a particular state) and mean duration (i.e., the
average number of consecutive windows assigned to a particular
state) to describe each typical dynamic FC state. Likewise, we
clustered the time windows for dBNC across all participants into
two typical FC states and described their frequencies and mean
durations in the same way.

Behavioral correlation with dynamic
functional connectivity states

The most essential nature of these typical dynamic states is
their FC strength. Thus, we calculated the mean FC strength
of each typical dynamic FC state for each participant, which
was the averaged FC value for all windows assigned to a
particular state. First, to examine how dynamic organization
within the ventral subnetwork was related to representations
of categorical and coordinate spatial relations, we conducted
partial correlation analyses between the mean FC strength
of each typical dWNC FC state and scores in the ordinal
scene recognition test and the distance test, respectively.
The same correlation analyses were performed between the
mean FC strength of each typical dBNC FC state and two
behavioral scores to examine how dynamic interactions between
subnetworks supported representations of the two types of
spatial relations. Several confounding factors were controlled.
First, age and gender were included as control variables. Second,
the framewise displacement (FD; mean = 0.09, SD = 0.03)
(Power et al., 2012) was included as a control variable for head
motion. Third, the familiarity of all landmarks was added as
a control variable when performing the correlation analyses
regarding the distance test.

Results

In the present study, we used the Neurosynth-defined
navigation network with 23 regions widely distributed in the
medial temporal, parietal, and frontal cortex (Hao et al., 2021),
which was aligned to another meta-analysis studies (Boccia et al.,
2014, 2017; Ekstrom et al., 2017; Gona and Scarpazza, 2019).
To refine the potential differences in navigation organization
underlying between the representations of categorical and
coordinate relations, we conducted a modularity analysis on the
averaged FC matrix of the navigation network and obtained
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an optimized structure of three modules (Figure 2), with a
modularity index (Q) of 0.50, indicating a strong modular
structure in the navigation network (Newman and Girvan,
2004). The three modules almost fit well with three distinct
pathways in the dorsal visual stream that mainly targets to
the MTL involved in navigation, and projects to the prefrontal
and premotro cortex involved in spatial working memory
and visually guided action, respectively (Kravitz et al., 2011).
Most important, the ventral subnetwork included bilateral
HIP, parahippocampus gyrus (PHG), retrosplenial complex
(RSC), lingual gyrus (LING), fusiform gyrus (FFG), and the
right middle occipital gyrus (MOG), which were well-known
navigational regions reported in previous studies (Epstein and
Kanwisher, 1998; Maguire et al., 1998; Spiers and Maguire, 2006;
Epstein, 2008; Epstein et al., 2017). Other subnetworks were
widely characterized in many cognitions with general function,
including bilateral superior parietal gyrus (SPG), Inferior
parietal lobe (IPL), precuneus (PCUN), the right angular gyrus
(ANG), superior frontal gyrus (SFG), and left precentral gyrus
(PreCG), middle frontal gyrus (MFG), supplementary motor
area (SMA), and a third module including the left MOG. Further
examination found that the left MOG module consisted of
multiple clusters, including some inferior parietal lobule voxels,

a few superior parietal lobule voxels in Juelich Histological
atlas and some superior lateral occipital cortex (LOC) voxels in
Harvard-Oxford cortical structural atlas.

Next, we explored the representative states for dWNC using
a clustering method. Stable clustering of all concatenated dWNC
FC matrices was obtained, showing the highest silhouette
value when k = 2. The resulting two clustering FC matrices
represented the centroids of all matrices assigned to each cluster
and putatively reflected the two typical FC states within the
ventral subnetwork. As shown in Figure 3, we found that
the two FC states showed different FC strength among the
ventral regions, that is, one state showed relative weak FCs
(mean = 0.28; SD = 0.051; named as Weak State), while the other
showed strong FCs (mean = 0.62; SD = 0.05; named as Strong
State; Weak vs. Strong, t224 = −101.65, p< 0.001). Notably, both
the Weak and Strong State showed FC strength significantly
higher than 0 (Weak State: t224 = 83.32, p < 0.001; Strong
State: t224 = 185.94, p< 0.001), indicating functional integration
within ventral subnetwork. Then, the Weak State had a higher
frequency than the Strong State (Weak State: 0.54, Strong State:
0.46; t224 = 3.62, p < 0.001). Finally, the Weak State showed
longer mean duration (12.34 ± 6.51 windows) than the Strong
State (10.05 ± 4.36 windows; t224 = 3.85, p < 0.001).

FIGURE 2

Separating the navigation network into the ventral and other two subnetworks. Three modules identified using modular analysis: ventral
subnetwork (red) including most well-established regions for navigation and other two subnetworks (green and blue) including multiple regions
in the dorsal parietal-frontal lobe.
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FIGURE 3

Properties of representative dynamic functional connectivity (FC) states within the ventral subnetwork (dWNC) and those between ventral and
other subnetworks (dBNC). (A) Weak State and Strong State for dWNC. Weak State showed higher frequency, longer mean duration, and weaker
FC strength than Strong State. (B) Negative State and Positive State for dBNC. The two states showed no difference in frequency or mean
duration. Error bars indicate SEM. ***p < 0.001.

Similarly, we adopted clustering analysis and revealed two
typical states for all concatenated dBNC matrices. Specifically,
one state showed significantly negative FCs between the ventral
and other subnetworks (mean = −0.18, SD = 0.06; t224 = −48.48,
p < 0.001; named as Negative State), indicating competitive
interactions between subnetworks. In contrast, another state
showed significantly positive FC (mean = 0.13, SD = 0.05;
t224 = 36.47, p < 0.001; named as Positive State), indicating
cooperative interactions between subnetworks. Apparently, two
typical states showed significantly different mean FC strengths
(t224 = −66.54, p < 0.001). There is no significant difference
between the Negative and Positive States in frequency (Negative
State: 0.49, Strong State: 0.51; t224 = −0.75, p = 0.45) or mean
duration (Negative State: 11.22 ± 4.86 windows, Positive State:
11.51 ± 5.12 windows; t224 = −0.57, p = 0.57).

After depicting these typical states, we then explore how the
mean FC strength of each typical dynamic FC state associates
with behavioral performance of categorical and coordinate
spatial relations. The descriptive statistics of behavioral tests
were summarized in Table 1. There was no correlation between
the speed scores and distance scores (r = −0.09, p = 0.20).
On the one hand, for the dWNC, we examined how Weak
State or Strong State were relevant to individual differences in
representation of categorical spatial relations. To do this, we
assessed the participants’ representation of categorical spatial
relations by using an ordinal scene recognition task. We found
the mean FC strength of the Weak State, not the Strong
State, had a significant negative correlation with speed scores
(0.71 ± 0.18), after controlling for age, gender, head motion
(Weak State: r = −0.19, p = 0.016, Bonferroni correction; Strong

State: r = −0.05, p = 0.42; Figure 4). These results suggested that
weak integration among the ventral regions during resting-state
was an optimal state for representation of categorical spatial
relations. Next, we checked the association between dWNC FC
states and participants’ ability to represent coordinate spatial
relations. We didn’t find any correlations between distance
scores and mean FC strength of the Weak State or Strong
State (Weak State: r = 0.02, p = 0.78; Strong State: r = 0.02,
p = 0.76). To sum up, these results confirm hypothesize 1, that
is, representation of categorical spatial relations was related to
weak dynamic integration within the ventral subnetwork.

On the other hand, we investigated whether the FC
states of dBNC were associated with the representation of
coordinate spatial relations. We found that the mean FC

TABLE 1 Demographic information and descriptive statistics of
behavioral tests.

n 226

Sex (M/F) 108/118

Age 21.66 ± 1.00

Categorical spatial relations

Ordinal scene recognition task RT (s) 2.84 ± 1.077

Speed 0.71 ± 0.183

ACC 0.79 ± 0.136

Coordinate spatial relations

Sense of distance score 5.28 ± 0.925

Path distance 6.19 ± 1.564

Euclidean distance 4.37 ± 2.139

Familiarity 6.10 ± 0.704
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FIGURE 4

The relationship between mean functional connectivity (FC) strength of typical FC states and behavioral performance of representing categorial
and coordinate spatial relations (Bonferroni correction). (A) Weaker mean FC of Weak State within the ventral subnetwork was related to higher
speed in ordinal scene recognition based on representation of categorical spatial relations. (B) Stronger negative FC of Negative State between
the ventral and other subnetworks was associated with higher distance scores based on representation of coordinate spatial relations. The
speed score and distance score were standardized.

strength of the Negative State, rather than the Positive State,
was negatively correlated with the distance scores (5.28 ± 0.93),
after controlling for age, gender, head motion, familiarity with
landmarks (Negative State: r = −0.18, p = 0.028, Bonferroni
correction; Positive State: r = −0.11, p = 0.11). These results
suggested that stronger competitive interaction between the
ventral and other subnetworks during resting-state was an
optimal state for representation of coordinate spatial relations.
Further, we checked the relationship between dBNC states and
the representation of categorical spatial relations. We didn’t find
the mean FC strength of the Negative State or Positive State
had correlation with speed scores (Negative State: r = 0.14,
p = 0.16; Positive State: r = 0.06, p = 0.35). In sum, these results
confirmed hypothesize 2, that is, representation of coordinate
spatial relations was related to dynamic interactions between the
ventral and other subnetworks.

Discussion

In the current study, we investigated the dissociable dynamic
FC states underlying the representations of categorical and
coordinate spatial relations in the large-scale organization of
navigation network. First, we separated the navigation network
into a ventral subnetwork containing the MTL regions and
other two subnetworks with a modularity analysis. Then, we
identified the Weak State and Strong State for dynamic FC
within the ventral subnetwork and found that the Weak State
was related to the performance of ordinal scene recognition
based on categorical relations, suggesting that the representation
of categorical spatial relations was related to weak integration

among focal regions within the ventral subnetwork. In contrast,
we identified the Negative State and Positive State for dynamic
FC between the ventral and other subnetworks and found
that the Negative State was associated with the distance
test scores assessing coordinate relations, suggesting that the
representation of coordinate spatial relations may require
competitive interactions among widely distributed regions
between the ventral and dorsal subnetworks. Overall, our study
provides the first empirical evidence at the network level
revealing dissociation of focal and distributed organizations
of the navigation network in representing different types of
spatial information, which may illuminate the mechanisms for
understanding scenes containing multiple objects.

Importantly, our study revealed dynamic organizations of
the navigation network during resting-state. First, we revealed
two opposite FC states for interactions between the ventral and
other two subnetworks, a positive state and a negative state.
Previous studies using static FC methods reported only positive
connectivity between the ventral and dorsal networks. For
instance, the RSC was functionally connected with widespread
parieto-frontal regions including the posterior cingulate cortex,
the PCUN, and SFG (Boccia et al., 2017). Intriguingly, for the
first time we revealed that FCs between the ventral and other
subnetworks alternated between a positive and a negative state,
suggesting that cooperative interactions between subnetworks
are accompanied by periods of competitive interactions between
them during resting-state. While the positive state may promote
efficient communication between the subnetworks, the negative
state may constrain the information flow between them,
contributing to the functional specialization of the ventral
subnetwork. Additionally, we revealed a weak state and a strong
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state for FCs within the ventral subnetwork. Previous findings
have reported wide-spread positive resting-state FCs among
ventral subnetwork regions, such as the HIP, parahippocampal
place area, RSC, and occipital place area (Kong et al., 2016;
Silson et al., 2016; Boccia et al., 2017). Our results enriched
previous findings by showing that integration within the
ventral subnetwork also alternated between two typical states
with different FC strength, a strong state and a weak state,
each potentially exploited to varying degrees by navigational
behaviors. While the strong state indicated highly synchronized
activity among the ventral subnetwork regions, the weak state
exhibited loose synchronization activity among the regions.

Further, identification of different dynamic FC states is
critical to reveal the association between spatial relation
representations and organizations of the navigation network,
since our results indicated that spatial relation representations
were associated with FC states of only some but not all
time periods during resting-state. Specifically, representation of
categorical spatial relations was only associated with the Weak
State, but not the Strong State, within the ventral subnetwork; in
contrast, representation of coordinate spatial relations was only
related to the Negative State, but not the Positive State, between
the ventral and other subnetworks. The associations between
spatial relationship representations and specific dynamic FC
states were concealed when FCs of all time windows were taken
as static and invariant.

The dissociation of representations of categorical
and coordinate spatial relations lies in two aspects. First,
representation of categorical spatial relations was mainly related
to the ventral subnetwork, while representation of coordinate
spatial relations was related to interactions between the ventral
and other subnetworks. Although some studies have suggested
the potential dissociable neural bases between the hippocampal
formation and parietal cortex underlying representations of the
two types of spatial relations, accumulating research showed
different results and indicated the dissimilarity might didn’t be
confined to the specific regions. Broad regions were found be
involved in the two kinds of spatial relations. The MTL has been
found to play a central role in representing both categorical and
coordinate spatial relations (Howard et al., 2014; Blacker and
Courtney, 2016; Deuker et al., 2016; Urgolites et al., 2017), and
the prefrontal and posterior parietal regions are also involved
in coordinate spatial relations (Spiers and Maguire, 2007;
Morgan et al., 2011; Viard et al., 2011). Our results extended
previous studies by comparing the dynamic FC nature of the
two types of spatial relations from the network organization
level. Representation of categorical spatial relations has been
considered as an integrated cognitive process including
extracting environment layout in the PPA, encoding location
information in the HIP, and updating viewpoint information in
the RSC. It’s reasonable that the dynamic cooperation of ventral
navigation regions supports the representation of categorical
spatial relations. In contrast, representation of coordinate

spatial relations requires precise distance information between
landmarks, possibly involving both spatial processing and
high-level cognitive functions such as executive control and
attention modulation, which may be supported by dynamic
communication between the ventral and dorsal subnetworks.

Another dissociation of representations of the two types of
spatial relations lies in that weak integration among the ventral
regions during resting-state was optimal for representation
of categorical spatial relations, while competitive interaction
between the ventral and other subnetworks was optimal
for representation of coordinate spatial relations. It can be
speculated that the moderate integration among the ventral
regions may support an optimal balance between effective
communications among these regions and maintenance of
independent function of individual regions. In contrast,
the competitive interactions between the ventral and other
subnetworks are important for precise representation of
coordinate spatial relations. In line with this result, we have
found in a previous study that stronger integration of the IPS
with other regions in the navigation network was associated with
poor ability of executive control (Hao et al., 2017). Thus, we
speculated that competitive interactions between the ventral and
parietal-frontal subnetworks might be related to better ability of
executive control or other high-level cognitive functions, which
brings better representation of coordinate spatial relations.

Our study revealed different dynamic network organization
states in relation to the representations of categorical and
coordinate spatial relations. It is worth noting that the
distinction of allocentric and egocentric spatial processing
constitutes another vital classification, which concerns about the
frame of reference with respect to navigator or environment.
The allocentric-egocentric dichotomy may partly overlap with
the categorical-coordinate dichotomy. It will be still necessary
for future studies to further determine the relationship between
the two dichotomy systems (Jager and Postma, 2003; Baumann
and Mattingley, 2014; Ruotolo et al., 2019). Several important
issues are unaddressed for future research. First, the present
study characterized dynamic organizations of the navigation
network by clustering FC states of all time windows into
typical FC states, and future study needs to examine how more
quantitative characteristics in dynamic network organization,
such as flexibility and module allegiance, are related to spatial
relation representation (Chai et al., 2016). Noteworthy, although
we didn’t find any sub-modules for the ventral network in
the weak state, it still inspires further studies to explore
the functional significance of possible sub-modules in the
ventral network with more sensitive measures. Second, Deco
et al. (2011) propose that dynamic network configuration is
constrained by the underlying stable anatomical skeleton, and
it’s important to explore the link between anatomical structure
and resting-state functional dynamics. Third, the negative
correlation between the ventral and dorsal subnetworks should
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be interpreted with caution, considering the debate that global
signal regression may introduce artifactual anti-correlations
(Fox et al., 2005; Murphy et al., 2009; Cole et al., 2010; Murphy
and Fox, 2017). Forth, the role of MOG module seems to be
special. Further research would be valuable to examine the
temporal variability at the nodal level and subnetwork level in an
integrated manner (Zhang et al., 2016; Sun et al., 2019), which
helps to better reveal the functional specificity of navigation
network regions. Finally, the dynamic FC patterns revealed
in our study provide new insights than constant connectivity
patterns in conventional analysis, and future studies with
the dynamic approach in developing brain may provide new
understanding of brain maturation and plasticity.
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The music of the hemispheres:
Cortical eigenmodes as a
physical basis for large-scale
brain activity and connectivity
patterns

Eli J. Müller1,2,3*†, Brandon R. Munn1,2,3†, Kevin M. Aquino1,2,

James M. Shine3 and Peter A. Robinson1,2

1School of Physics, The University of Sydney, Sydney, NSW, Australia, 2Center for Integrative Brain

Function, The University of Sydney, Sydney, NSW, Australia, 3Brain and Mind Center, The University

of Sydney, Sydney, NSW, Australia

Neuroscience has had access to high-resolution recordings of large-scale

cortical activity and structure for decades, but still lacks a generally

adopted basis to analyze and interrelate results from di�erent individuals

and experiments. Here it is argued that the natural oscillatory modes of

the cortex—cortical eigenmodes—provide a physically preferred framework

for systematic comparisons across experimental conditions and imaging

modalities. In this framework, eigenmodes are analogous to notes of a musical

instrument, while commonly used statistical patterns parallel frequently

played chords. This intuitive perspective avoids problems that often arise in

neuroimaging analyses, and connects to underlying mechanisms of brain

activity. We envisage this approach will lead to novel insights into whole-brain

function, both in existing and prospective datasets, and facilitate a unification

of empirical findings across presently disparate analysis paradigms and

measurement modalities.

KEYWORDS

eigenmodes, resting state networks, principal components, independent

components, brain dynamics, brain connectivity

1. Introduction

Recent technological advances have seen a huge increase in data recorded from the

brain, and in their spatial and temporal resolution, revealing striking complexity of

neural activity up to whole-brain scales. In response, neuroscientists have attempted to

compactly characterize these data, often decomposing signals into statistically derived

components that maximize statistical independence, explained variance, or fidelity to

anatomical and cytological features. Methods such as independent component analysis

(ICA), principal component analysis (PCA), and clustering (McKeown and Sejnowski,

1998; Fischl et al., 2004; Desikan et al., 2006; Triarhou, 2007; Thomas Yeo et al.,

2011; Abeysuriya and Robinson, 2016; Shine et al., 2019) typically produce 5–20

robust large-scale spatial patterns (Van De Ven et al., 2004; Damoiseaux et al., 2006)
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including the visual, attention, and default-mode ‘resting state

networks’ (RSNs), and permit data classification and comparison

between subjects and experiments. However, comparison

between approaches and protocols is difficult, because of the

lack of obvious compatibility of different experimental and

data-processing choices, and most rely on ‘black-box’ statistical

approaches that do not consider the sources or mechanisms

behind the signals being analyzed. These factors limit their

utility for understanding brain dynamics and one is motivated

to seek a means to compactly represent large-scale brain activity

and structure that is researcher- and protocol-independent,

linked to physical mechanisms, and general enough to enable

comparisons across different subjects and imaging modalities.

We argue that the natural oscillatory modes of the physical

cortex (i.e., its spatial eigenmodes), analogous to the notes

of a stringed instrument, represent the optimal basis set

for the systematic decomposition of cortical neural activity.

First, their physical interpretation as mutually independent

‘notes’ produced by the cortex provides an intuitive basis for

understanding brain activity in a way that separates spatial and

temporal structure. Furthermore, this basis provides a compact

representation of neural dynamics with an ordering that is

grounded in the physical structure of the brain and independent

of stimuli. Second, if eigenmodes are the fundamental “notes” of

the brain, one can then view the robust large-scale brain patterns

identified by statistical means as akin to frequently played

musical chords, each comprising a characteristic combination of

notes. This viewpoint enables us to explain classical findings in

whole-brain neuroimaging, such as the alternating engagement

of the default-mode and attentional RSNs (Fox et al., 2005),

as discussed below. Finally, eigenmodes provide insight into

the structure of the cortex and how low-order modes can

facilitate interareal communication in the absence of direct

physical connection.

2. Notes of the cortex: Eigenmodes

The eigenmodes of a physical system typically comprise

spatial patterns that oscillate at characteristic frequencies. For

example, when a violin is plucked, or a drum is struck, natural

frequencies are excited, each corresponding to a spatial pattern

of displacement of the string or drumhead. Before being plucked,

a violin string remains at rest in its equilibrium position, as seen

in Figure 1A. Both ends of the string are fixed, so when it is

plucked they remain stationary (they are termed zeros or nodes)

while the rest of the string oscillates. The first three oscillatory

modes are shown in Figure 1A, ordered by their number of zeros

(and thus by spatial frequency). Significantly, eachmode extends

over the whole string and every point on the string is part of

every mode. In the temporal domain, each spatial eigenmode

generates a note whose frequency is determined by the string’s

physical properties, but constrained by its geometry because

an integer number of half-wavelengths must fit exactly within

its length.

Eigenmodes of any system are intrinsic to that system and

are determined by its dynamics and geometry independently

of any particular inputs or stimuli. Moreover, in a broad class

of systems, eigenmodes are mutually independent and any

arbitrary spatial pattern can be expressed as a weighted sum of

eigenmodes. These properties make eigenmodes so useful that

they have become ubiquitous throughout mathematics, science,

and engineering, starting with Fourier’s work more than 200

years ago (Fourier, 1822). Indeed, moving between coordinate-

space and modal representations is essential to obtain maximal

insight into almost any physical system.

In the case of the cortex, the closed cortical surface imposes

a geometric constraint in two dimensions (2D) that determines

the spatial structure of its eigenmodes. The resonant frequencies

of brain rhythms are then set by a combination of this constraint

and local dynamics, analogously to the case of the 1D violin

string. Any pattern of brain excitation and structure can then be

expressed in terms of these eigenmodes, including spontaneous

and evoked brain activity (Nunez, 1989; Robinson et al., 2001;

Gabay and Robinson, 2017; Mukta et al., 2020) and underlying

brain connectivity (Robinson et al., 2014, 2016; Gao and

Robinson, 2020).

The spatial structure of eigenmodes of the cortex (termed

spatial eigenmodes for brevity) have been shown to be well

approximated by assuming a governing wave equation and

thus solving the Helmholtz equation on a cortical hemisphere

(Nunez, 1989; Robinson et al., 2001; Pinotsis et al., 2013; Gabay

and Robinson, 2017; Mukta et al., 2020).

∇2u(r) = −k2u(r), (1)

where r denotes spatial location. In this approximation,

spatial eigenmodes u(r) of brain activity are eigenfunctions

of the Laplace-Beltrami operator ∇2 with eigenvalues k2; this

equation can be solved on cortical surfaces, such as ones

estimated via MRI, using finite element methods (see Robinson

et al., 2016; Gabay and Robinson, 2017 for mathematical details).

Figure 1B shows examples of the spatial eigenmodes of an

average cortical surface (Fischl, 2012).

As for other systems, cortical eigenmodes are mutually

independent, so each provides independent spatial information.

They are naturally ordered from low spatial frequency (globally

uniform) to high spatial frequency (localized features), with

the lowest modes having the longest-lived oscillations. When

spontaneous or task-related activity with spatial structure given

by a function g(r), where r is position, is decomposed into a sum

overmodes, the coefficient c of amode u is given by the following

integral over all r in the cortex:

c =

∫

u(r)g(r)dr, (2)

Frontiers inHumanNeuroscience 02 frontiersin.org

107

https://doi.org/10.3389/fnhum.2022.1062487
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Müller et al. 10.3389/fnhum.2022.1062487

FIGURE 1

Eigenmode basis and dynamics. (A) Equilibrium position (top) and the lowest three eigenmodes of a violin string, ordered by increasing spatial

frequency, showing zeros (nodes) and antinodes. (Note: we do not use “node” to denote an artificially discretized point on the cortex.) The solid

dots indicate the clamped ends and solid and dashed curves show string positions half an oscillation apart in each case. (B) Lowest eigenmodes

of an average cortical surface. Rows display cortical modes ordered by spatial frequency (more nodal lines) and warm and cool colors show

positive and negative values relative to the mean at one extreme of an oscillation. (C) Human BOLD power (amplitude-squared) spectrum of

eigenmodes during rest. The lower eigenmodes contribute the most power to ongoing neural activity. (D) Initial position of a plucked violin

string and its mapping to the first four eigenmodes. (E) Subsequent evolution of mode amplitudes. (F) Subsequent evolution of displacement of

several points along the violin string, analogous to regions-of-interest. (G) The C major chord is made up of a superposition of the notes C, E,

and G, which have the frequency ratio 4:5:6; time series appear below. (H) Eigenmodes of the human cortex (top row) are analogous to “notes”

of the cortex and statistically derived modes (bottom row, PCA modes here) are analogous to commonly recurring “chords” of cortical activity.

(I) Analogously to music, cortical patterns can be decomposed into eigenmodes, whose amplitudes are its ‘fingerprint’. In this example we

approximate Margulies’s principal “gradient” pattern (chord) (Margulies et al., 2016) via its dominant constituent eigenmodes (notes). (The term

(Continued)
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FIGURE 1 (Continued)

gradient derives from the fact that it is calculated from quantities that have spatial gradients although it is not itself the gradient of any quantity.)

(J) Eigenmode decomposition of the seven resting-state networks (RSNs) of Thomas Yeo et al. (2011). The first two columns show the RSNs

formed by clustering correlations and weighted by the confidence of each point’s attribution to its cluster to avoid spurious enhancement of

high-order mode amplitudes by sharp edges. The third and fourth columns show each RSN reconstructed from its dominant four eigenmodes.

The fifth column shows the modal amplitudes of each RSN, from which the dominant modes were identified.

which is termed the projection of g onto u. The lowest

modes are found to dominate the dynamics (Nunez, 1989;

Robinson et al., 2001; Wingeier et al., 2001; Mukta et al.,

2020), as illustrated by the power spectrum of human

blood-oxygen-level-dependent (BOLD) activity during rest

in Figure 1C. This explains why only 5–20 robust spatial

patterns are identified by statistical means. A useful feature

of Equation (2) is that it integrates over short-scale noise,

and hence tends to suppress it, thereby removing the main

motivation for thresholding.

When stimuli enter the brain (or when a violin string

is plucked), eigenmodes are excited with initial amplitudes

given by Eq. (2), with g(r) representing the initial stimulus.

These amplitudes then decay at the damping rates appropriate

to each mode (Mukta et al., 2020). Figure 1D illustrates the

dynamics of a violin string that is plucked (i.e., release

from an initial triangular shape) and its approximation by

just the lowest four nonzero eigenmodes. We see that this

provides a good approximation of the shape of the string,

both then and at later times. Additionally, the subsequent

temporal dynamics of the string is described by exponentially

decreasing mode amplitudes, as shown in Figure 1E. In

contrast, the time evolution of displacements of various

points along the violin string—an analog of region-of-interest

(ROI) time-series—gives a more complicated and obscure

picture, as seen in Figure 1F. This result highlights the

benefits of representing complex brain dynamics via its spatial

eigenmodes and we expect these representations will expand

functional insights.

3. Music of the cortex: Notes and
chords

Music involves vibrational modes of instruments, excited

at various frequencies and times. A chord such as C major

has a complex periodic waveform that comprises superposed

sine waves at the frequencies of the individual notes C, E,

and G, as shown in Figure 1G. An electronic synthesizer

constructs chords in just this way, but a musician plays

chords directly, rather than exciting individual sine waves.

Some chords are very common in particular pieces of music

and thus may be more easily detected in statistical analyses

than less common isolated notes. Each chord has a unique

temporal signature but shares notes with other chords,

establishing a fundamental interdependence. Hence, while

chords provide a useful and efficient way to capture recurring

musical motifs, an understanding of the underlying notes is

essential to facilitate comparisons and groupings of chord

families and links to the mechanisms by which instruments

generate sound.

The above points lead to a direct analogy with the brain:

if cortical eigenmodes correspond to its notes [Figure 1H

(top)] then large-scale statistically detected patterns of recurrent

brain activity can be viewed as its chords [Figure 1H

(bottom)]. Frequently recurring patterns likely emerge from

similar ‘plucking’ via related external stimuli or endogenous

changes (e.g., large-scale neuromodulation). This view is

consistent with the pervasive visual (sensory) and attentional

(neuromodulatory) patterns seen in whole-brain imaging

data (Thomas Yeo et al., 2011).

Any cortical pattern can be uniquely decomposed into

eigenmodes, as illustrated in Figure 1I. Figure 1J (left) shows the

seven widely cited RSNs of Yeo et al., where the confidence of

each region’s attribution to a particular RSN has been used to

spatially smooth the patterns to remove artifactual sharp edges

(Thomas Yeo et al., 2011). The reconstruction of each RSN

using the four dominant (highest amplitude) eigenmodes in each

case is shown, reflecting differing combinations of eigenmodes

[Figure 1J (right)]. Interestingly, the default mode RSN and

the dorsal attention RSN project with opposite sign onto the

dominant low spatial frequency modes (eigenmodes 2–4; i.e.,

those with a single nodal line), so when any of these three

eigenmodes oscillates, the default-mode and the dorsal-attention

RSNs will oscillate 180◦ out of phase, thus providing a simple

mechanistic explanation for the finding that these RSNs are

temporally anticorrelated (Greicius et al., 2003; Fox et al., 2005).

We expect that eigenmode analysis will facilitate further

such mechanistic insights into patterns of whole brain activity

detected via various imaging methods (Atasoy et al., 2016).

Furthermore, eigenmodes may explain a similar axis of

separation that has been demonstrated in functional-MRI data

using diffusion embedding (Margulies et al., 2016). Follow-

up work by Raut et al. (2021) has also shown that a very

similar spatial pattern is found in the oscillatory phase-

shifts observed relative to subject arousal levels measured

via respiratory variation. This phase relationship may be

mechanistically interpreted in terms of physical eigenmodes; i.e.,

arousal is coincident with the promotion of a particular family of

oscillatory eigenmodes.
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FIGURE 2

(A) The first non-uniform eigenmode of a string contains three zeros (nodes) and two antinodes that oscillate in antiphase. (B) The first three

non-uniform eigenmodes of the cortex—each has a single nodal line. (C) The local amplitude (magnitude) of the first non-uniform eigenmode

of a string shows a possible communication channel between each antinode. (D) The local amplitude of the first three non-uniform cortical

eigenmodes supports communication along rostrocaudal, dorsoventral, and mediolateral axes.

4. Modal communication channels

Spatial eigenmodes offer a potential channel to mediate

communication between distant brain regions. Equation (2)

shows that modes are most easily excited where |u(r)| is largest;

i.e., at antinodes; likewise, their influence on local activity is

largest at antinodes. Hence, each mode provides a channel for

preferential communication between regions centered on its

antinodes, as illustrated in Figures 2A,C for the second mode of

a violin string.

Applying this idea to the lowest cortical modes, we

see that the first (uniform) mode mediates communication

approximately equally between all regions of the cortex, thus

providing a means for any region to access the typical level of

excitation of the brain as a whole. The next three modes have

a single nodal line each with a pair of antinodes. Figures 2B,D

shows that these are aligned along the rostrocaudal axis,

the dorsoventral axis, and the mediolateral axis of the brain

hemisphere. Each of these modes can thus preferentially mediate

communication along one of these principal axes. Oscillatory

activity transmitted in this way may provide a large-scale

analog of the communication-through-coherence mechanism

originally introduced at short scales by invoking roughly 40

Hz gamma oscillations to preferentially excite responses at

particular phases (Fries, 2005). Here we argue that modal

oscillations could also enhance responses at particular spatial

locations defined by the antinodes of spatial cortical eigenmodes.

To illustrate these points, consider the first mode in

Figure 2B with rostro-caudal orientation. This mode’s antinodes

are in prefrontal cortex and posterior sensory cortex, with a

nodal line running through somatomotor cortex. This provides

a communication channel between sensory and prefrontal

regions that only weakly involves intermediate zones. These

intermediate zones thus interact little with this mode. The

analogy with a violin string is helpful in seeing that this is not

problematic, the second mode seen in Figure 1A peaks at two

points (Figure 1C) with a zero at the center, despite the string

being continuous through the zeros.

Neural activity is dominated by only a few low order

eigenmodes, as shown in Figure 1C. These modes are

continuous, accessible everywhere in the brain, and integrate

over fine scale structure and inputs. We thus speculate

these dominant modes play an important role in supporting

cognition and states of consciousness by providing channels

for communication between distal cortical regions that do not

necessarily possess direct physical connections.

Finally, the spatial patterns of the eigenmodes suggest

a novel stimulation strategy to effectively and deliberately

manipulate large-scale cortical activity— plucking a violin

string near antinodes of a given eigenmode will have the

greatest impact on the amplitude of that eigenmode. This

suggests that systems for measurement or stimulation could

usefully exploit eigenmode structures—particularly those of the

low-order dominant eigenmodes. Indeed, key features of the

empirically observed evoked response of the brain to spatially

localized impulse stimuli are found to be well described by

only a few eigenmodes (Mukta et al., 2020). This insight

is relevant for transcranial magnetic stimulation and other
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stimulation technologies used to probe cognition and treat

pathologies. The power of systems that can excite low level

eigenmodes may also help to explain how small but widely

projecting neuromodulatory sources, such as the adrenergic

locus coeruleus and nucleus basalis of Meynert (Shine et al.,

2021; Wainstein et al., 2022), can have a large effect on cortical

dynamics. We suggest that future experiments investigate

how the neuromodulatory systems interact with cortical

eigenmodes and that this may assist in optimizing cortical

stimulation protocols.

5. Concluding remarks

In this manuscript we have outlined various advantages of a

cortical eigenmode basis of the brain:

(i) Eigenmodes satisfy the main criteria for an optimal basis

set in that they are readily interpretable and leverage the

intuitive understanding of natural resonances or notes of

the cortex—equivalent to notes of a string.

(ii) A key goal of neuroscience is to unify theories of brain

activity, function, and structure. First and foremost this

requires recordings and analysis of brain activity to

be generalizable and thus comparable across recording

sessions, different tasks, subjects, and measurement

methods. In neuroimaging this has been approached

via “resting-state networks” and popular parcellation

schemes (Thomas Yeo et al., 2011; Gordon et al., 2016;

Schaefer et al., 2018); however, as we discussed in

previous sections, these are often constructed via ad

hoc statistical measures, which limits interpretability and

prevents standardization. In the worst case, each new

approach requires the research community to establish

mutual interpretability between it and all others—an

overall burden that scales as the square of the total number

of methods in use. However, much as English often serves

as a common language through which other languages can

be translated, eigenmodes provide a route by which only

a single extra interpreter is required for each new method

(or language, analogously) added. In other words, cortical

eigenmodes can serve as a common basis through which to

interrelate new findings and existing knowledge.

(iii) Eigenmodes are easily generalizable, independent of

stimuli and experimental choices, and result from the

brain’s structure—avoiding the artificial warping and

thresholding required for analyses via parcellations and

artificially discretized networks. As such, eigenmodes

remain applicable regardless of future improvements

in resolution and accuracy of brain measurements

and imaging.

(iv) Eigenmodes provide insight into the whole-brain function

with parallel communication channels possible between

cortical areas with no direct physical connection.

(v) Eigenmodes offer a simple explanation to the perplexing

finding that the dorsal attention network and default

mode network are anticorrelated. And further a cortical

pattern revealed in fMRI data separating primary sensory

and association areas, which has been recapitulated in

oscillatory phase shifts tied to subject arousal, can be simply

interpreted as an arousal evoked family of oscillatory

cortical eigenmodes.

The eigenmodes in this work are considered purely for the

cortex, and an identical set exists for each hemisphere. This

presents an exciting opportunity to extend eigenmode analysis

to subcortical loci including key structures such as the thalamus,

hippocampus, and cerebellum.

The above advantages favor the wider adoption of

eigenmodes in neuroscience that will provide both theoretical

and empirical insight, as it has done for the fields of physics,

mathematics, and engineering, thereby opening up exciting

opportunities for future work.
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Functional MRI (fMRI) is an indirect reflection of neuronal activity. Using generative

biophysical model of fMRI data such as Dynamic Causal Model (DCM), the underlying

neuronal activities of different brain areas and their causal interactions (i.e., effective

connectivity) can be calculated. Most DCM studies typically consider the effective

connectivity to be static for a cognitive task within an experimental run. However,

changes in experimental conditions during complex tasks such as movie-watching

might result in temporal variations in the connectivity strengths. In this fMRI

simulation study, we leverage state-of-the-art Physiologically informed DCM (P-

DCM) along with a recurrent window approach and discretization of the equations

to infer the underlying neuronal dynamics and concurrently the dynamic (time-

varying) effective connectivities between various brain regions for task-based fMRI.

Results from simulation studies on 3- and 10-region models showed that functional

magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD)

responses and effective connectivity time-courses can be accurately predicted

and distinguished from faulty graphical connectivity models representing cognitive

hypotheses. In summary, we propose and validate a novel approach to determine

dynamic effective connectivity between brain areas during complex cognitive tasks

by combining P-DCM with recurrent units.

KEYWORDS

dynamic effective connectivity, neuroscience, graphical models, BOLD fMRI, causality

1. Introduction

Functional Magnetic Resonance Imaging (fMRI) non-invasively measures neural activity
indirectly via changes in the hemodynamic response (i.e., changes in cerebral blood flow and
volume). Local blood brain flow increases when the neuron increases its activity in the presence
of a stimulus or intrinsically to support the increased metabolic demand and subsequently
oxygenated blood displaces deoxygenated blood (Buxton et al., 2004; Stefanovic et al., 2004;
Uludağ et al., 2004). This leads to a rise in the blood oxygenation level-dependent (BOLD)
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response during stimulation before the response typically falls
to a post-stimulus undershoot below the initial baseline and
ultimately returns to baseline. The BOLD signal is not only used
to map task-correlated brain activity or study brain physiology
in individual voxels but also used to study functional and
effective connectivity (Friston, 2011; Goldenberg and Galván,
2015; Kuhnke et al., 2021; Underwood et al., 2021). Functional
connectivity is another term for instantaneous BOLD signal
correlations during resting-state of remote voxels and brain areas
(van den Heuvel and Pol, 2010; Friston, 2011; Shakil et al.,
2016). However, functional connectivity methods typically are
not utilized to infer causal relationships between these voxels
(Friston, 2011). In contrast, effective connectivity utilizes causal
connectivity graphs on the neuronal level representing a specific
cognitive hypothesis for a task and a local generative model
numerically describing the underlying BOLD signal physiology
(Friston, 2011).

One prominent approach for effective connectivity is the
Dynamic Causal Model (DCM) (Friston et al., 2003; Stephan
et al., 2008; Moran et al., 2009; Havlicek et al., 2015). The basic
idea behind DCM is to treat the brain as a nonlinear dynamical
system and the observations (e.g., whole-brain fMRI signals) as
indirect reflections of the signal of interest (e.g., the local neuronal
activity and their connections). Using Bayesian model inversion
(Ulrych et al., 2001; Friston et al., 2003), the local neuronal,
effective connectivity values, and the vascular parameters can be
estimated (Friston et al., 2003; Havlicek et al., 2015). The variants
of DCM include stochastic DCM (Daunizeau et al., 2009), non-
linear DCM (Stephan et al., 2008), spectral DCM (Moran et al.,
2009) and physiologically informed DCM (P-DCM) (Havlicek
et al., 2015). The P-DCM is the state-of-the-art model, which
is inspired by experimental observations about the physiological
underpinnings of the fMRI signal. It overcomes the limitations
of earlier DCMs, such as inaccurate modeling of the initial
overshoot and the post-stimulus undershoot, observations which
are typically present in the time courses of task-based fMRI BOLD
signals.

Dynamic Causal Model studies typically consider the causal
interactions between brain areas to be fixed for an entire experimental
run. However, experimental conditions can change with time within
a run, for example when a subject is watching a movie, and
consequently it is expected that the connectivity strengths between
disparate brain regions also vary with time. In the recent years,
more and more studies utilize these time-varying stimuli to study
cognitive processes in the human brain (see, for example, Finn,
2021). To capture the dynamic nature of functional connectivity
in resting-state, Dynamic Functional Connectivity (DFC) studies
using sliding windows were proposed (Chang and Glover, 2010;
Kiviniemi et al., 2011; Jones et al., 2012; Shakil et al., 2016).
This is done by finding the statistical correlations amongst
different brain area-specific resting-state fMRI BOLD time-series
(Cribben et al., 2012; Handwerker et al., 2012; Calhoun et al.,
2014; Monti et al., 2014; Shakil et al., 2016). However, as this
analysis is done on the level of observations and, hence, does
not utilize a generative model of the BOLD signal, DFC does
not provide an assessment of the underlying neuronal mechanisms
reflected in the fMRI BOLD responses (Stephan et al., 2010;
Friston, 2011).

In this study, we propose a P-DCM based Dynamic Effective
Connectivity approach the for modeling underlying neuronal

dynamics in task-based fMRI. Our approach consists of sliding
(recurrent) overlapping windows to capture the entire extent of
fMRI BOLD time-series in a sequential manner. For each window,
we have used discretized P-DCM with different parameter sets
(i.e., connectivity variables, neuronal and vascular parameters)
for different windows following a recurrence (from the previous
window). Finally, for each such recurrent unit, we perform model
inversion (parameter estimation) until convergence.

2. Methods

To determine time varying connectivity, we combined two
approaches: discretized Physiologically informed Dynamic Causal
Model (dP-DCM) and Recurrent Unit (RU).

2.1. discretized Physiologically informed
Dynamic Causal Model (dP-DCM)

Physiologically informed Dynamic Causal Model (P-DCM) for
fMRI was introduced by Havlicek et al. (2015) to describe the
link between hidden neuronal activity and measured BOLD signals,
overcoming the physiological limitations of previous Dynamic
Causal Models (DCMs). The drawbacks of previous models
included inaccurate modeling of initial overshoot and post-stimulus
undershoot, which are temporal features typically observed in task-
based fMRI BOLD signals.

The DCM approaches consist of a forward generative model
and a backward model or inference (Friston et al., 2003; Havlicek
et al., 2015). The P-DCM forward model (see Havlicek et al., 2015)
consists of a two-state excitatory-inhibitory neuronal model which
incorporates adaptive neuronal dynamics, capable of reproducing
local field potential time courses as observed with invasive
electrophysiology; neurovascular coupling is described as a feed-
forward mechanism, and cerebral blood flow and volume can be
uncoupled; and finally, Havlicek et al. also derived new parameters
for the BOLD signal equation. Importantly, it has been shown that
the different physiological assumptions of P-DCM compared with
previous DCM approaches can lead to different estimated effective
connectivity values (please see Havlicek et al., 2017b, for details).

To utilize RUs, we used a discretized version of P-DCM. For
simplicity, instead of locally linearize the matrix exponential (Ozaki,
1992), we have used the Euler’s method.

dz(t)
dt
=

z(t +1t)− z(t)
1t

(1)

Where z ∈ {xE, xI , a, f, v, q}, xE the excitatory and xI the inhibitory
neuronal response, a the vasoactive signal, f the normalized cerebral
blood flow response, v the normalized cerebral blood volume
response, q the normalized deoxyhemoglobin content and 1t the
difference between two adjacent time-points.

2.1.1. Neuronal component
The neuronal component estimates excitatory and inhibitory

neuronal dynamics by modeling intra-regional and inter-regional
neuronal interactions. The discretized neuronal component
consisting of both excitatory (xE) and inhibitory neuronal states (xI)

Frontiers in Human Neuroscience 02 frontiersin.org114

https://doi.org/10.3389/fnhum.2023.1001848
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1001848 February 25, 2023 Time: 15:37 # 3

Nag and Uludag 10.3389/fnhum.2023.1001848

is given as (here and below, please see Havlicek et al., 2015, for the
corresponding continuous variable equations):

xE (t +1t) = (1− σ1t) · xE (t)− (µ1t) · xI (t)+ (c1t) · u(t)
(2a)

xI (t +1t) = (λ1t) · xE (t)+ (1− λ1t) · xI(t) (2b)

Equation 2a refers to the excitatory neuronal dynamics and
2b refers to the inhibitory neuronal dynamics. σ denotes the self-
connectivity whose magnitude determines the temporal scaling of
the neuronal dynamics. λ is the inhibitory gain factor that controls
relative amplitude of the inhibitory activity with respect to the
excitatory activity and the temporal smoothness. µ represents the
inhibitory-excitatory connection, which regulates the temporary
imbalance of the excitatory activity due to the inhibition. λ and µ
are also deciding the rate, at which the activity of excitatory neuronal
response drops from its initial peak to the plateau level and its return
from the post-stimulus dip to the baseline value.

A discretized version of the multivariate form of the two-state
connectivity equation (Havlicek et al., 2015) based on the neuronal
component (described in the equations 2a and 2b) is given as:

XE (t +1t) = (I+1tψ)XE (t)+ (1tψ−)XI (t)+ (1tC)Ud(t)
(2c)

XI (t +1t) = (1tC)XE (t)+ (I− 1tC)XI(t) (2d)

for which

ψij = Aij +
∑M

m = 1 B
(m)
ij um (t) ,

ψ−ij = 0,
Cij = 0,

 ∀ i 6= j,

ψii = −σ e
(
σ̃ +

∑M
m = 1 b(m)ii um(t)

)
,

ψ−ii = −µe
(
µ̃i +

∑K
k = 1 b(k)µi uµk(t)

)
,

Cii = λe
(
λ̃i +

∑L
l =1 b(l)λi uλl(t)

)


A is the connectivity matrix [whose off-diagonal elements encode

connections between regions whereas diagonal elements encode self-
connections (Havlicek et al., 2015)], B denotes the matrix consisting
of the additive modulatory effects controlled by modulatory inputs
um(t), and ψ is the total connectivity matrix. The direct input
stimulus matrix is given as Ud(t). The context dependent inputs
are represented as uµ k(t) and uλ l(t), which are scaled by region-
specific parameters bµ i

(k) and bλ i
(l), and together they modulate

the inhibitory-excitatory connections and inhibitory gain factors,
respectively. These factors are encoded in the matrix given by C. I
is the identity matrix. In the above equations (derived from Havlicek
et al., 2015), the parameters σ̃,µ̃,̃λ represent self-connectivity,
inhibitory-excitatory connection, and inhibitory gain, respectively,
and σ, µ, λ are the corresponding constant scaling factors (please
refer to Havlicek et al., 2015 for further details). Equations 2c and 2d
can be represented in matrix form as follows:

[
XE(t+1t)
XI(t+1t)

]
=

[
I+ 4tψ 1tψ−

1tC I− 1tC

][
XE (t)
XI (t)

]
+

[
1tC

0

]
Ud(t)

(2e)

X(t +1t) = WXX(t)+ WUUd(t) (2f)

In the equation 2f, X represents the excitatory and inhibitory
neuronal variables stacked together in a matrix form, WX and WU
represent the collective matrices of individual weight matrices of X(t)
and Ud(t), respectively.

2.1.2. Feedforward neurovascular coupling (NVC)
component

Neurovascular coupling is the relationship between local
neuronal activity and subsequent changes in CBF occurring through a
complex sequence of coordinated events involving neurons, glia, and
vascular cells. That is, neuronal excitation/inhibition leads to arterial
vasodilation/vasoconstriction associated with increased/decreased
CBF (Zonta et al., 2003; Uludağ et al., 2004; Lauritzen, 2005; Devor
et al., 2007; Attwell et al., 2010)—with the result that the CBF time
course is a smoothed version of the neuronal activity. Considering the
constraint of linear relationship between synaptic activity and blood
flow, the discretized version of feedforward NVC component can be
given as:

a (t +1t) = (1− ϕ1t) ·a (t)+ (1t) ·xE(t) (3a)

f (t +1t) = (φ1t) ·a (t)+ (1− χ1t) ·f (t)+ χ1t (3b)

Here, a(t) is the time-varying vasoactive signal responsible for
transforming the excitatory neuronal response xE(t) to the CBF
response f (t). The set of equations 3a and 3b acts as a positively
constrained low-pass filter of the neuronal dynamics as regulated
by vasoactive signal decay (ϕ), vasoactive signal gain (φ) and blood
inflow signal decay (χ ).

The above set of equations in matrix form can be written as:

[
a(t+1t)
f (t+1t)

]
=

[
1− ϕ1t 0
φ1t 1− χ1t

] [
a(t)
f (t)

]
+

[
1t
0

]
xE (t)

+

[
0
χ1t

]
(3c)

2.1.3. Hemodynamic component
The CBF response f (t) acts as an input to the post-capillary

vessels, which are represented by an expandable venous balloon.
The system of equations governing the hemodynamics describes the
interaction between blood inflow f (t), blood outflow fout(t), blood
volume v(t) and deoxyhemoglobin content q(t) as they flow through
the venous balloon. The discretized version of the set of equations is
given as:

v (t +1t) = v (t)+ 1t·
[

f (t)− fout(v, t)
tMTT

]
(4a)

q (t +1t) = q (t) ·
[

1−
1t·f out(v, t)

tMTT·v(t)

]
+ 1t·

f (t) ·E(f )
tMTT ·E0

(4b)

E
(
f
)
= 1− (1− E0)

1/f (4c)

These equations are following mass balance principles: The
blood volume v(t) depends on the difference between the blood
inflow f (t) and the blood outflow fout(t). The deoxyhemoglobin
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FIGURE 1

(A) Simulated BOLD fMRI time-courses for R1 along with two overlapping windows each of 12 s duration which moves from left to right. The time course
between 0 and 20 seconds has been magnified to show the overlap of two successive windows. The stride of each overlapping window is 1 s.
(B) Unfolded version of the discretized Physiologically informed Dynamic Causal Model (dPDCM)-recurrent unit (RU) architecture through time. For ith

window for which the input is ui and the output is yi. The set of hidden variables from the 0th window, g0 are being fed to the next window. Thus, a
recurrence is followed and the same unit with different parameter values is being repeated time and again till the final window. (C) Overall schematic
representation of each dP-DCM recurrent unit consisting of neuronal, neurovascular, hemodynamic, and blood oxygenation level-dependent (BOLD)
components. These components include respective latent variables, whose states are updated according to the associated equations (shown on the
right, also refer to Equation 8). xE2 i and xE1 i refer to excitatory populations from regions 1 to 2, respectively. These regions are connected at the
excitatory level. For each region, an inhibitory population exists, given by xI1 i. Neuronal responses are the resultant of neuronal activity (due to the
application of input stimulus) generated at the neuronal component. These excitatory responses induce vasoactive signals si, which increase the blood
flow fi. Changes in blood flow cause changes in blood volume (vi) and deoxyhemoglobin content (qi). Finally, these two hemodynamic states together
yield BOLD response yi.

content q(t) depends on the difference between the delivery rate
of deoxyhemoglobin into the venous compartment and the rate of
clearance of deoxyhemoglobin from the tissue. The scaling factor
tMTT denotes the mean transit time that blood takes to pass through

the veins. E(f ) represents the oxygen extraction fraction and E0 is
the net oxygen extraction at rest. [Please note that it is easy to use
a different relationship between E and f. However, for consistency
with previous papers (Havlicek et al., 2015), we employ equation (4c)
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FIGURE 2

Workflow of discretized Physiologically informed Dynamic Causal
Model (dP-DCM)-recurrent unit (RU).

for this relationship]. In addition to this steady-state relationship,
some studies indicate a tight temporal association (but not necessarily
mechanistic coupling) between CBF and cerebral metabolic rate of
oxygen (CMRO2) (Buxton and Frank, 1997; Masamoto et al., 2008;
Zappe et al., 2008; Havlicek et al., 2017a).

2.1.4. Balloon model with viscoelastic effect
Instead of using the steady state flow-volume relationship as used

in the earlier versions of DCMs as in Friston et al. (2003), Stephan
et al. (2008), Havlicek et al. (2015) considered the original balloon
model with viscoelastic effect. It was experimentally revealed in
Mandeville et al. (1998) that the steady-state power law relationship
does not adequately describe the temporal properties of the CBF-
CBV relationship (see Uludağ and Blinder, 2018, for a recent review).
The post-stimulus BOLD undershoot, for example, is primarily
due to slow recovery of venous CBV to baseline rather than a
metabolic effect [(Buxton, 2012), but see van Zijl et al. (2012)

for opposing view]. Considering the dynamic viscoelastic effect
term leads to:

fout (v, t) = v (t)
1
α + τ ·

dv (t)
dt

=
1

τ + tMTT
·

(
tMTT ·v(t)

1
α + τ ·f (t)

)
(5a)

Here, α is Grubb’s exponent, which describes the stiffness of the
vessel. The value of α was experimentally found to be about 0.38
(Grubb et al., 1974; Chen and Pike, 2009) but lower values have
also been found, especially for short stimuli (see Uludağ and Blinder,
2018, for an overview). τ indicates the viscoelastic time constant,
which controls the duration of transient adjustment of the shape of
the venous balloon. The value of the viscoelastic time constant τ is
non-zero and thus cerebral blood outflow follows a different curve
than the inflow, resulting in a temporal uncoupling of CBF and CBV.

Combining equations 4a, 4b, 4c, and 5 in matrix form we get,

[
v(t+1t)
q(t+1t)

]
=

[
1 0

(
4t

tMTT
−

τ4t
τ+tMTT

)
−

tMTT4t
τ+tMTT

0 0 0

0 1 0 0 tMTT4t
tMTT (τ+tMTT )

τ4t
tMTT (τ+tMTT )

4t
tMTT

]



v(t)
q(t)
f (t)

v(t)
1
α

q(t)v(t)
1
α

v(t)
q(t)f (t)

v(t)(
1−(1−E0)

1
f (t)

E0

)
f (t)


(5b)

Combining equations 3c and 5b we get,


a (t +1t)
f (t +1t)
v (t +1t)
q(t +1t)

 =


1− ϕ1t 0 0 0 0 0
φ1t 1− χ1t 0 0 0 0

0
(
4t

tMTT
−

τ4t
τ+tMTT

)
1 0 − tMTT4t

τ+tMTT
0

0 0 0 1 0 tMTT4t
tMTT (τ+tMTT )

0 0
0 0
0 0
τ4t

tMTT (τ+tMTT )
4t

tMTT
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a (t)
f (t)
v(t)
q(t)

v(t)
1
α

q(t)v(t)
1
α

v(t)
q(t)f (t)

v(t)(
1−(1−E0)

1
f (t)

E0

)
f (t)



+


1t
0
0
0

 xE (t)+


0
χ1t

0
0

 (5c)

The above equation 5c can be further simplified in matrix form
to:

H (t +1t) = WHθH (H (t))+ WHXxE (t)+ ωH (5d)

for which

H (t) =


a (t)
f (t)
v (t)
q(t)

 (5e)

and

θH (H (t)) =
[

a (t) f (t) v (t) q (t) v (t)
1
α

q(t)v(t)
1
α

v(t)
(5f)

q(t)f (t)
v(t)

(
1−(1−E0)

1
f (t)

E0

)
f (t)

]T

WH is weight matrix of the neurovascular coupling,
hemodynamic and Balloon model parameters collectively given
by H (Equation 5e), WHX is the column matrix connecting the
excitatory neuronal response xE with H and ωH is the constant term.
θH(H(t)) is the column matrix consisting of the combination of the
variables as shown in the equation 5f.

2.1.5. BOLD signal component
The BOLD signal y(t) is determined by v(t) and q(t).

y (t) = V0

[
k1·
(
1− q(t)

)
+ k2·

(
1−

q(t)
v(t)

)
+ k3· (1− v(t))

]
(6a)

k1 = 4.3·ϑ0·E0·TE, (6b)

k2 = ε· r0·E0·TE,

k3 = 1− ε

Here, V0 is the resting venous blood volume fraction and k1,
k2, k3 are dimensionless constants, which are dependent on the
physiological properties of brain tissue and acquisition parameters
of the Gradient Echo (GE) sequence. ε refers to the ratio of intra-
to extravascular fMRI signal contributions. ϑ0 symbolizes the field-
dependent frequency offset at the outer surface of the magnetized
blood vessel for fully deoxygenated blood. r0 is the regression slope of
the relation between the variations in intravascular signal relaxation
rate and alterations in oxygen saturation. TE denotes the echo time

(in ms). The first term in the equation 6a describes the relationship
of the extravascular signal and the deoxyhemoglobin content, the
second term of the intravascular signal and the ratio between
deoxyhemoglobin content and venous blood volume, and the third
term depicts the volume-weighted balance between extravascular and
intravascular signals. The values of the parameters in Equation (6b)
for various field strengths can be found in Havlicek et al. (2015).

The above equation 6a can be written in the following matrix
form:

y (t) =
[
−V0k1 −V0k2 −V0k3

] q (t)
q(t)
v(t)

v (t)

+ V0(k1 + k2 + k3)

(6c)

y (t) = WBOLDθBOLD

([
q (t)
v(t)

])
+ ωBOLD (6d)

In total, the discretized P-DCM (dP-DCM) can be represented
using the following set of equations:

dP − DCM = (7)
X(t +1t) = WXX(t)+ WUUd (t)

H (t +1t) = WHθH (H (t))+ WHXxE (t)+ ωH

y (t +1t) = WBOLDθBOLD

([
q (t +1t)
v(t +1t)

])
+ ωBOLD

2.2. Time varying calculations of the
model parameters

We have partitioned the time-series (including the inputs and
the observed/measured BOLD fMRI responses) into N number of
overlapping windows. Each such overlapping window i of duration M
seconds moves from left to right as demonstrated in the Figure 1A.
Please note that for illustration purposes the window size (M) is
chosen to be 12 s in the Figure 1A. However, it can be easily adjusted
and optimized for any given signal-to-noise ratio of the time series.
The time course between 0 and 20 s has been magnified to show
the overlap of two successive windows centered at 6th second and
7th second, respectively. Considering the total number of samples in
a window being T, we have M = T1t. Thus, for every second, we
have T/M = 1/1t samples (sampling frequency). The stride of these
overlapping windows has been set to 1 s.

An unfolded version of the P-DCM-Recurrent Unit architecture
through time is shown in the Figure 1B. For ith window, the input
stimulus to the unit is ui and the output fMRI BOLD response from
the unit is yi. Each unit corresponds to one window and has four
sub-units (components), namely, neuronal, neurovascular Coupling,
hemodynamic and BOLD signal components (Figure 1C).

Every unit has two operations: (a) Forward Model and (b)
Backward Model or Model Inference. In the Forward model, the
model parameters and variables are initialized, and the fMRI BOLD
response of the model is computed. To reduce the error between
the calculated response and the observed fMRI BOLD response, we
use model inference (as a part of the generative modeling technique)
to update the parameters iteratively using gradient descent (Curry,
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1944) until convergence is achieved (typically for 200 iterations or
predefined tolerance threshold, usually 10−6). The unit has a similar
structure to that of a vanilla Recurrent Neural Network (RNN)
(Rumelhart et al., 1985), in which the same unit is being used again
and again but with different set of inputs to get different sets of hidden
variables and outputs. Please note that in the Forward modeling
step, for the first window, we follow zero-mean initializations of the
connectivity parameters as recommended by Friston et al. (2003),
Havlicek et al. (2015). This has been done owing to the following
reasons: (i) to ensure stability of the system (Friston et al., 2003), (ii)
we compare task modulation with control condition, and therefore
only the changes in baseline connectivity are of interest.

For any window i, we employ a dP-DCM-RU, which takes in
input stimuli (for that window) and fits output BOLD responses
(for the same window). In doing so, latent (e.g., neuronal,
hemodynamic, vascular) responses are generated and parameters
(e.g., connectivity) are inferred. Therefore, for any window i
(i ∈ {0, 1, 2, . . ., N–1}), this set can be represented as:
gi = {Xi, Hi,WXi,WU i,WH iWHXiWBOLDi}(see Figures 1B, C and
Equation 8 below). The values of these parameters serve as the
starting values or initializations for the next, i.e., (i + 1)th window.
In other words, the parameters for window (i + 1) are initialized with
the predicted values for its previous window i, preserving continuity
between adjacent windows. It is to be noted that before performing
model inversion, we do zero-padding with half-window length on
each end of the data so that we can cover the entire extent of the
actual signal. Therefore, the computed connectivity at every window
is centered at that window.

The output of each dP-DCM recurrent unit is the fMRI BOLD
response. A recurrence is being followed because the same unit with
different parameter values repeatedly performs the same task or
operation (on input sequences) till the final window.

Dynamic effective connectivity is estimated using overlapping
windows. That is, partitioning the time-series (including the inputs
and the observed/measured BOLD fMRI responses) into N number
of overlapping windows such that ∀ i ∈ {0, 1, 2, . . ., N–1}, we get:

dP − DCMi = (8)
Xi(t +1t) = WXiXi(t)+ WU iUdi (t)

Hi (t +1t) = WH iθH i (Hi (t))+ WHXixEi (t)+ ωH i

yi (t +1t) = WBOLDiθBOLDi

([
qi (t +1t)
vi(t +1t)

])
+ ωBOLDi

A schematic illustrating the updates of the neuronal,
neurovascular, hemodynamic, and BOLD variables (following
the above Equation 8) in each dPDCM recurrent unit has been
shown in the Figure 1C. Our proposed workflow has also been
demonstrated in Figure 2 in a nutshell.

3. Simulations set-up and results

To check the face validity of the approach, first, we simulated
connectivity profiles for 3- and 10-region graphical models
(representing cognitive hypotheses), to show the ability of dP-DCM-
RU to estimate dynamic effective connectivity and to distinguish
different causal functional graphs using model evidence for a simple
and a complex case, respectively.

3.1. Three-region model

3.1.1. Case a: Time-varying connectivity
This model comprises three regions (R1, R2, and R3) (as shown in

Figure 3A). A sinusoidal input u is applied to R1 which then activates
R2 and R3. Area-specific time-varying fMRI BOLD responses, given
as a percentage signal change are shown in the Figure 3B. The colored
boxes correspond to the recurrent window size for each of these time
courses.

3.1.1.1. Forward simulation
In this example, we have considered a fast-varying connection

from R1 to R2 and a slow-varying connection from R1 to R3.
The assumed connectivity time courses between R1 and R2 and
between R1 and R3 are shown in Figure 4A (colored plots).
Supplementary Table 1A shows the piece-wise continuous functions
used to simulate the connectivity values. The effective connectivity as
a function of time (t) is denoted as eff_conn(t). Using the simulated
connectivity pattern, we get the corresponding area-specific fMRI
BOLD responses as shown in the Figure 4B (colored plots). The value
of 1t is 1/32s for all simulations (Wang et al., 2018). For all other
parameters of the model, we please see Supplementary Table 1B (also
please refer to Supplementary Table 1A of Havlicek et al., 2015).

3.1.1.2. Model inversion
For this model inversion, we assume the same connectivity graph

as was used for the forward simulation. In Figure 4, the black dashed
lines represent the predicted estimates from the model on top of
the colored ground truth (i.e., forward simulated) values. It can be
noticed that for both connectivity time courses (Figure 4A) and
fMRI BOLD responses (Figure 4B) the fitting is highly accurate,
with slight inaccuracies in the effective connectivity estimates during
the initial rise and during return to baseline, indicating that sharp
increases or decreases are smoothed out in the BOLD signal and
model inversion.

The Normalized Root Mean Squared Error [NRMSE
(Shcherbakov et al., 2013)]1 value averaged over the two
connections (R1 and R2, R1 and R3) is 2.14% and the NRMSE
value averaged over the fMRI BOLD responses from the three
regions (R1, R2, and R3) is 0.91%. We have repeated the above
simulation set-up for a higher frequency input and have done
corresponding model inversion, whose results have been provided in
the Supplementary Section 1.1.1.

3.1.1.3. Model comparison
To show a noticeable difference in performance between

two models during model comparison, we have considered an
additional scenario. In this scenario, we have considered 2 competing
hypotheses models m1 and m2 as shown in Figures 5A, B. In m1,
driving input u1 (in red) is applied to R1, which is connected to
both R2, and R3. Feedback connection exists from R2 to R1, which is
influenced by modulatory input u2 (in purple). In m2, driving input u1
is applied to R1, which is connected to R2, which in turn is connected
to R3. Feedback connection exists from R3 to R2. Connection from
R2 to R3 is modulated by input u2. Hypothesis model m1 has been
used for generating the ground truth BOLD data.

1 NRMSE is defined as the ratio of Root Mean Squared Error (RMSE) to the
difference between the maximum and minimum values of the ground truth
data (Shcherbakov et al., 2013).
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FIGURE 3

Three-region model and corresponding area-specific simulated functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent
(BOLD) responses. (A) Three-region model for which connections exist from Region 1 (R1) to Region 2 (R2) and from Region 1 (R1) to Region 3 (R3). The
sinusoidal input u is applied to R1 and then activity propagates to both R2 and R3. The model inside the white circle (with black border) shows the
internal sample model representation of R2. (B) Corresponding area-specific simulated fluctuating fMRI BOLD time courses with windows centered at
the 30th second. The gray horizontal line represents the duration of the input stimulus.

FIGURE 4

Predicted estimates along with the ground truth values for Case a. The black dashed lines represent the predicted responses and the colored time
courses are the ground truth values. (A) Connectivity time courses, (B) area-specific functional magnetic resonance imaging (fMRI) blood oxygenation
level-dependent (BOLD) time courses each expressed as a percentage change in response. The gray horizontal bar represents the stimulus duration.

3.1.1.3.1. Predictions using m1 and m2

In Figures 5A, B, the black dashed lines represent the predicted
estimates from the model on top of the colored ground truth
(simulated) values.

For m1, it can be noticed that the fitting of the BOLD responses
is accurate for all three regions (Figure 5A). The NRMSE value for
this reconstructed fMRI BOLD time-series with respect to the ground
truth time-series is 1.45%. For m2, the errors of the predicted BOLD
responses are higher compared to those of m1 (Figure 5B). This

can be attributed to the absence of feedback connection from R2 to
R1 in model m2. The NRMSE value2 thus has increased to 10.31%.
Hence, in terms of accuracy, m1 performed better than m2,1NRMSE

2 In noiseless cases, as in some of the current simulations, Free Energy
(Friston et al., 2003) formulation cannot be utilized. Instead, NRMSE values
between the fits (with respect to ground truth) obtained using different models
can be used to indicate, which model is more accurate than the other. NRMSE
is independent of the signal strength or amplitude and therefore, a more robust
indicator of accuracy (while comparing different models) than RMSE.
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FIGURE 5

Competing hypotheses models (A) m1 (ground truth model) and (B) m2 (randomly chosen model) along with the corresponding area-specific functional
magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) responses. The black dashed lines represent the predicted responses
and the colored time courses are the ground truth values. The red and purple arrows represent direct and modulatory inputs, respectively.

(= NRMSEm2–NRMSEm1 = 8.86%) is high. This demonstrates that
our method is able to adequately distinguish between two cognitive
hypotheses.

In addition to the above m2, we have the also evaluated
performances of 10 more three-region models with randomly chosen
configurations (Supplementary Section 1.1.2). 1NRMSE values of
these models with respect to m1 (Supplementary Figure 2) clearly
show that m1 is superior in terms of performance and m2 is one of
the less inferior models in the group (m2–m12).

3.2. 10-region model

In a typical fMRI experiment, more than three brain areas are
active. Thus, to demonstrate scalability, we evaluated a 10-region
model as shown in the Figure 6 (center). The connectivity graph
for the forward simulation is illustrated in the Supplementary
Figure 4 (colored plots). Two time-varying inputs u1 and u2 (see
Supplementary Figure 3) are applied to R1 and R2, respectively (see
Figure 6 for the time courses). There is a delay of 20 s between these
two inputs (see Supplementary Figure 3). Activity then propagates
from R1 and R2 to the remaining regions.

3.2.1. Forward simulation
The assumed connectivity time courses are shown in the

Supplementary Figure 4 (colored plots). Using the model and the
connectivity time courses, we get the corresponding area-specific
fMRI BOLD responses.

3.2.2. Model inversion
In both Figure 6 and Supplementary Figure 4, the black dashed

lines represent the predicted estimates from the model on top

of the colored ground truth (simulated) values. The prediction
has a low NRMSE value (averaged over all the 10 regions) of
1.17%. The predicted connectivity time courses are also shown
in Supplementary Figure 4. As can be seen, the predictions
follow the ground truth time courses very closely for all brain
areas.

3.2.3. Model comparison
For model comparison purposes, we additionally performed

model inversion for randomly selected model m2 as shown in
Figure 7 (center).

3.2.3.1. Prediction using m2

In Figure 7, the black dashed lines represent the predicted
estimates from the model on top of the colored ground truth
(simulated) values. Please notice that for fMRI BOLD responses the
reconstruction and hence the fitting is good in the earlier brain areas,
such as R1 and R2, but the discrepancies become more pronounced
and errors larger for the later brain areas. The predicted connectivity
time-courses are shown in Supplementary Figure 5. The NRMSE
value (averaged over all the regions) for this reconstructed fMRI
BOLD time-series with respect to the ground truth time-series
is 25.75%. Hence, in terms of accuracy, m1 performed better
than m2, 1NRMSE (= NRMSEm2–NRMSEm1 = 24.58%) is high
showing that our method can sufficiently differentiate between
two cognitive hypotheses. Additionally, we have also considered
another 10-region model with reciprocal connections and have
performed corresponding model inversion with a randomly chosen
configuration as shown in the Supplementary Section 3, confirming
that m1 can be distinguished from a model with erroneous
connectivity graphs.
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FIGURE 6

Functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) time courses for 10-region model where connections exist
between R1 to R3, R3 to R8, R1 to R5, R1 to R6, R1 to R7, R2 to R6, R2 to R4, R4 to R9, and R4 to R10. Two time-varying inputs u1 and u2 are applied to R1
and R2, respectively. The black dashed lines represent the predicted responses, and the colored lines represent the simulated time courses.

FIGURE 7

Predicted area-specific functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) time courses along with the ground
truth values for m2 which is a randomly chosen model. The black dashed lines represent the predicted responses and the colored time courses are the
ground truth values. There are fitting inconsistencies for R3, R4, R5, R6, R7, R8, R9, and R10 fMRI BOLD time courses.

4. fMRI BOLD time courses with
measurement noise

In this case, we have used two models- a Three-region model
(from “section 3.1.1 Case a: Time-varying connectivity”) as a
simple model and a 10-region model (from “section 3.2.1 Forward
simulation”) as a complex model. Here, the fMRI BOLD time

courses are noisy with measurement or physical noise being present.
Measurement or physical noise is an external noise which gets added
to the signal while it is being acquired. For simulation purposes,
this measurement noise used by us is a zero mean gaussian random
noise with varying levels of standard deviation. Contrast-to-Noise
Ratio (CNR) values were computed with respect to the ground truth
values for fMRI BOLD responses. It is worth noting that we have
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defined CNR as the ratio between the standard deviation of the signal
and the standard deviation of the noise (Definition four of CNR,
Welvaert and Rosseel, 2013) and this definition is consistent with the
previous DCM works (Friston et al., 2003; Frässle et al., 2017)3.

The extracted fMRI time series stem from Principal Component
Analysis (PCA) over numerous voxels in local volumes of interest
which suppresses noise (Frässle et al., 2017). Therefore, as outlined
in Frässle et al. (2017), the typical CNR levels (SNR in DCM
terminology, see footnote 3 for further clarification) of fMRI time
series used for DCM are three or more. It is to be noted that this
value is highly dependent on the tasks and brain areas investigated.
That is, for some tasks and/or brain areas, DCM and its variants
and the derived connectivity values are unreliable. This is already
true for DCM estimating only one connectivity profile for a run
and even more so for estimation of time-varying connectivity. Please
note that this is also true for estimation of time-varying functional
connectivity using resting-state. That is, it is not our claim that
our approach (and no other statistical approach) will work for any
task and/or brain area or any MRI acquisition parameters (such as
field strength, sequence, etc.) but only if certain conditions, such
as CNR levels, are met that time-varying effective connectivity can
be estimated using our approach. Therefore, we have conducted the
simulations for 3- and 10-region models with different CNR values
[CNR = (1, 3, 5, 10, 20)] and repetition times [TR = (4, 2, 1, 0.25,
0.1 s)]. In each case, we resampled (via linear interpolation) the
timeseries to sampling frequency of 32 Hz resulting in an increase
in the number of samples4. Using our method, we did model
inversions for each of these settings for both three-region and 10-
region models. We compared the estimated effective connectivity
time courses to those of the simulated ground truth using Normalized
Root Mean Squared Error (NRMSE), expressed as a percentage (%)
as shown in Figure 8. We repeated the above setup for 10 runs
with newly sampled noise and reported the mean and standard
deviations (s.d.) of the NRMSE values over these 10 runs in
Figure 8.

We make the following two major observations for both three-
region (Figure 8A) and 10-region (Figure 8B) models:

(i) The respective NRMSE values decrease with increase in the
CNR levels for each TR setting. Moreover, at any TR value we observe
that the standard deviations decrease with an increase in the CNR
level, as expected. This indicates that the reliability of predictions
increases toward high CNR values (i.e., when the data is less noisy).

(ii) The corresponding NRMSE values decrease with a decrease
in the TR value for each CNR level. Notably, at any CNR level,
the standard deviations also typically decrease with a decrease in
the TR value (i.e., when the sampling rate is high) indicating more
reliable predictions.

3 There exist several definitions of SNR and CNR: SNR is typically defined
as the ratio of the mean of the fMRI signal to the standard deviation during
baseline. However, the one that is predominantly used in the DCM literature is
given as the ratio between the standard deviation of the signal and the standard
deviation of the noise. This definition is the same as the Definition 4 of CNR in
Welvaert and Rosseel, 2013. Therefore, following Welvaert and Rosseel, 2013,
we will be using CNR terminology in our paper.

4 We have used linear interpolation technique for upsampling/resampling.
Other interpolation/resampling methods (cubic, spline, etc.) and resampling
frequencies have not been explored and it is beyond the scope of the current
paper.

5. Discussion

The fMRI signal is an indirect reflection of neuronal activity,
mediated by neurovascular coupling and hemodynamics. Generative
models describe the biophysical basis underlying fMRI and present
a framework to interpret empirical observations. Through model
inversion, generative models enable investigations of underlying
neuronal dynamics and functional integration in the brain. One
such state-of-the-art generative model is the Physiologically informed
Dynamic Causal Modeling (P-DCM, Havlicek et al., 2015). Most
existing DCM studies (Friston et al., 2003; Stephan et al., 2008; Moran
et al., 2009; Havlicek et al., 2015) typically consider the effective
connectivity to be static for a cognitive task within an experimental
run. However, experimental conditions can vary with time, especially
in cases of complex stimuli, e.g., movie, music, etc. Consequently,
the connectivity strengths between disparate brain regions involved
in processing these complex stimuli may fluctuate with time. Please
note that in the conventional DCM framework (Friston et al., 2003;
Stephan et al., 2008; Moran et al., 2009), it may also be possible to
model dynamic connectivity by utilizing dynamic B or C matrices
(please refer to Equations 2a–f for definition of B and C). However,
such an approach requires prior knowledge of the time-varying
connectivity profiles and just estimates the strength of these dynamic
connectivity predictors. In contrast, our method does not require
prior knowledge of connectivity profiles.

In the recent years, there has been an increasing number
of studies to elucidate the dynamic (functional) connectivity in
fMRI by investigating the temporal correlations of resting-state
BOLD fluctuations in distributed brain areas (Cribben et al., 2012;
Handwerker et al., 2012; Calhoun et al., 2014; Monti et al., 2014).
In such Dynamic Functional Connectivity (DFC) studies, one of
the predominant methods is to employ a sliding window-based
approach to find the time-varying correlations (Chang and Glover,
2010; Kiviniemi et al., 2011; Jones et al., 2012). However, lacking a
generative model, the correlations between the areas are determined
on the level of observations but not on the level of the underlying
causes (Stephan et al., 2010). In contrast, DCM accounts for the
indirect nature of the BOLD signal and fits BOLD signals in the
different ROIs using a system of differential equations (Friston et al.,
2003; Stephan et al., 2008; Havlicek et al., 2015, Havlicek et al., 2017b).

In this paper, we have introduced discretized Physiologically
Informed Dynamic Causal Model with Recurrent Units (dP-DCM-
RU) to characterize dynamic effective connectivity of various
brain regions during tasks. This method is a combination of two
approaches, namely, a Euler based discretization technique and
a recurrent sliding window approach for dynamically modeling
fMRI BOLD responses and for exploring the causal interactions
between different neuronal populations. To validate, we have carried
out simulations with 3- and 10-region models. To that end, we
have decomposed effective connectivity into static and dynamic
components. The static component acts as a baseline component
and the dynamic component varies with time sinusoidally. However,
please note that our recurrent window-based parameter estimation
method can predict any connectivity profiles.

For the Three-region model, we have considered two different
connectivity graphs. Using the first example, we have simulated
noiseless time-varying effective connectivity between the regions. The
results show that the fits of fMRI BOLD responses and the effective
connectivity have low error values, compared to the ground truth
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FIGURE 8

Normalized Root Mean Squared Error (NRMSE) (mean ± s.d.) expressed as a % vs. CNR for. (A) Three-region model and (B) 10-region model for five
different repetition time (TR) settings.

(i.e., forward simulated) BOLD responses. This is not a trivial result
as even assuming the correct connectivity graphs does not guarantee
model invertibility due to potential ill-posed problem.

To show a noticeable difference in performance between models
during model comparison, we have selected another example
scenario (Three-region model) with feedback from R2 to R1
modulated by an input (i.e., the ground truth model, m1) and 11
randomly chosen models for comparison. Results show that the
randomly chosen models did not perform well in terms of fitting
accuracy values (given by NRMSE) relative to the ground truth model
(m1). The results indicate a clear distinction between the hypothesis
models and demonstrates that the dP-DCM-RU approach does not
necessarily guarantee a good fit to any BOLD signal and is therefore
capable of distinguishing models.

Typically, more than three brain regions are active during a
complex cognitive task. Therefore, to illustrate a more complex
case, we have performed simulations for a 10-region model (also
see 10-region model example with reciprocal connections in the
Supplementary Section 3). Results clearly suggested that the method
was able to predict effective connectivity with low error values
and to fit fMRI BOLD responses with high accuracy. We did
model a competing 10-region connectivity graph (hypothesis model)
for comparison. Model inversion results demonstrated that this
randomly chosen hypothesis model was unable to reconstruct fMRI
BOLD signals accurately leading to large deviation values from the
ground truth fMRI BOLD responses, in particular, in areas most
distant from the input areas. In this 10-region example (“section
3.2 10-region model”), we did not provide any delay between the
input and connectivity (e.g., R1 to other regions). However, the
window/duration of connectivity and input do not necessarily have
to match. That is, connectivity from a certain brain region to another
brain region may change from baseline value later than the input
depending on the experiment (for such an example, please refer to
“section 3.1.1 Case a: Time-varying connectivity”).

In addition, we have considered noisy scenarios by adding
measurement noise (see “section 4 fMRI bold time courses with
measurement noise”). We have conducted simulations for 3- and
10-region models with different Contrast-to-Noise Ratio (CNR)

values [CNR = (1, 3, 5, 10, 20)] and repetition times [TR = (4,
2, 1, 0.25, 0.1 s)]. We observed that the connectivity prediction
error decreases and the reliability of predictions increases with an
increase in CNR and a decrease in TR values, respectively (see
Figure 8). Depending on the threshold for accuracy used, estimation
of dynamic connectivity using our method may be prohibited (the
same argument also applies for dynamic functional connectivity
calculation). In the cases of low CNR and high TR values, standard
denoising procedures may be used, which may lead to less erroneous
and more reliable parameter estimates.

One of the foremost limitations of DCM in general is that they are
restricted to a fixed number of regions because of their computational
demand (Frässle et al., 2017). In particular, the number of coupling
parameters (i.e., connectivities) grows quadratically with the number
of nodes, and therefore the computational time required to invert
these models grows exponentially with the number of free parameters
(Seghier and Friston, 2013; Frässle et al., 2017). Since our method is
based on the P-DCM framework, the above problem also persists in
our case. Additionally, the windowing scheme makes the approach
even more computationally intensive. Furthermore, higher-order
integrators are potentially slow in practice and computational
(memory) requirements become even larger because of explicit
Jacobian-based update schemes, which are evaluated numerically
at each time point (Friston et al., 2003). Therefore, to increase
computational speed and reduce memory, we utilize the lower-
order Euler method. However, a disadvantage of the Euler method
compared to higher order ODE solvers is lower numerical accuracy.
Nevertheless, the numerical errors can be kept low for small step size
1t values. Following Wang et al. (2018), we have assessed the impact
of different step sizes for the three-region model. As illustrated in
the Supplementary Figure 10, NRMSE is the lowest (with a value
of 0.82%) for 1t = 1/32 s and it increases (more than linearly) with
step-size (e.g., for 1t = 1/4 s, NRMSE = 19.97%). Hence, we selected
1t = 1/32 s for all our simulations.

Another challenge for dP-DCM-RU is the selection of optimal
window size. If the window sizes are too large, then the transients
may not be captured, whereas too small window sizes may lead to
overfitting of the model (Sakoğlu et al., 2010; Shakil et al., 2016).
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We investigated the effect of window sizes on the (three-region)
model performance given in terms of NRMSE (%). Supplementary
Figure 11 shows that for a window size of 5 s, NRMSE is low (1.45%),
whereas model performance substantially degrades for a window size
of 11 s (NRMSE increases to 22.68%). However, the window size
can be easily adjusted to the complexity of the experimental design.
A 5 s window size worked well for varying connectivity chosen in
our simulations (Supplementary Figure 11). Please note that—as the
BOLD signal can be represented as a smoothing kernel—very fast
neuronal dynamics cannot be recovered by fMRI for any window size,
independent of acquisition speed and analysis method (Polimeni and
Lewis, 2021).

Park et al. (2018), Zarghami and Friston (2020) have proposed
dynamic functional connectivity estimation frameworks for resting
state fMRI (rs-fMRI). Park et al. (2018) utilized discrete cosine
transform eigenvariates and Hierarchical Parametric Empirical Bayes
(PEB) approach (Friston et al., 2016) to model dynamic functional
connectivity at two levels. In the first level, they have inverted
a spectral DCM (spDCM) separately for each window to obtain
(within-window) connectivity parameters. Subsequently, in the
second level they have applied PEB to estimate between-window
effects on these connectivity parameters. Motivated by the nonlinear
dynamical systems theory, Zarghami and Friston (2020) proposed a
hybrid generative framework consisting of Hidden Markov Model
(HMM), PEB and spDCM (discrete and continuous hierarchical
models) to explain metastable dynamics in the brain via modeling the
temporal evolution of different connectivity states. Their paradigm
utilized the variational message passing technique, for which the
HMM provided Bayesian model averages for the intermediate PEB
level, which successively supplied priors to each spDCM. In this
manner, by assigning an itinerant prior to the state-transition
matrix, they estimated the transition and state-dependent effective
connectivity parameters. On the contrary, our approach (“section
2.2 Time varying calculations of the model parameters”) neither
requires “two-level” connectivity estimation nor involves a “hybrid”
generative approach. Furthermore, these previous studies have
typically considered larger window sizes for their estimations, which
they have shown to work well for rs-fMRI. It is important to note that
in contrast to our approach, these works do not capture the entire
temporal extent of connectivity dynamics (i.e., connectivity values
do not exist for all time-points) and are only suitable for tracking
slow dynamics (Park et al., 2018, Zarghami and Friston, 2020).
Furthermore, our method considers the stride of the overlapping
windows to be 1 s and, therefore, covers the entire extent of the
signal (in the order of seconds), and is able to track relatively faster
dynamics (as demonstrated in Figure 4, where we have considered
slow and fast varying connectivities). Finally, our work deals with
task-based fMRI and not rs-fMRI.

Another recent work (Wang et al., 2018) utilizing Recurrent
Neural Networks (RNNs) (Rumelhart et al., 1985; Hochreiter and
Schmidhuber, 1997) proposed a biophysically interpretable DCM-
RNN. Although both dP-DCM-RU and DCM-RNN take inspiration
from the recurrence concept as in RNNs, DCM-RNN differs from
dP-DCM-RU in many aspects: In their method, they have used
Truncated Backpropagation Through Time (TBPTT) for computing
parameter updates, whereas we have simply used gradient descent
as done in standard DCM implementations (Havlicek et al., 2015).
Their definition of recurrence is the same as in standard RNNs
utilizing segmented batches. Therefore, they have used multiple
batches in parallel (as in deep learning) and updated model

parameters via TBPTT. To ensure that the gradients obtained by
TBPTT are reliable, each of these segments has to be sufficiently
long and the sampling time has to be sufficiently small. Since
they use parallel batches for parameter update, the gradients
may often not be accurate (Wang et al., 2018). This is because
each of those batches does not represent the characteristic of
the whole signal. Due to this batch parallel processing, they can
only estimate static connectivity. In our case, the recurrence lies
between the successive P-DCM units. We do sequential processing
of each such unit estimating time-varying connectivity parameters.
Furthermore, unlike DCM-RNN, we have used the state-of-the-
art DCM model, i.e., P-DCM (Havlicek et al., 2015) in our
framework instead of Single-State DCM (S-DCM) (Friston et al.,
2003). Finally, the authors of DCM-RNN claimed that their model
can be extended for complex paradigms such as movie watching
using representations of the complex stimuli. However, at this stage
their model cannot estimate dynamic connectivity without further
modifications.

One of the major DCM steps is to conduct a Model
Selection (using group Bayes factor) between several alternative
competing models to establish which model accounts best for
the experimental observations. After selection of the optimal
model, making further inferences about its parameter estimates
(e.g., connectivity) is typically not done in DCM studies and
usually some statistical values (e.g., mean) of the parameter
estimates for the group is reported (Stephan et al., 2009). However,
inferences about model parameters can still be made with either
a fixed effects or a random effects approach. For fixed effects
parameter inference, a common way is to use Bayesian average
(for example “DCM average” function in SPM) (Friston et al.,
1994). For random effects parameter inference, subject-specific
parameter estimates can be used with a classical frequentist
test, such as a paired t-test (between model parameters) or
repeated measures ANOVA in case of multiple sessions per subject
(Stephan et al., 2009).

It is important to note that our proposed method is not
necessarily restricted to block designs. Naturalistic stimulus typically
comprises block (e.g., fluctuation of light intensity) and event-related
(e.g., presence of face for a limited period of time) components.
However, that due to sluggishness of the hemodynamic response, very
fast events may not be detected, similarly as in standard fMRI data
and analysis. Please note that our approach can be used with arbitrary
time-varying inputs and the choice of sinusoidal inputs (in our
simulations) is for illustrative purposes and can easily be modified.

In our approach, the estimates from the previous window serve
as the initial values (and not constraints) for the next window.
Therefore, the model gets a good starting point which makes it easier
to optimize. However, for any window, model inversion is performed
independently, therefore, an estimation error in the previous window
will unlikely be reflected in the next window. Furthermore, for
optimization we have resorted to using the conventional gradient
based scheme, i.e., gradient descent. Although gradient descent can
potentially be slow, it has a better generalization performance (Zhou
et al., 2020). Alternatively, one can use momentum based (Sutskever
et al., 2013) or adaptive algorithms (Kingma and Ba, 2015) to further
speed up performance while maintaining accuracy (Ruder, 2016).
Nonetheless, we have not explored different optimization algorithms
and strongly feel that it is beyond the scope of the current paper since
this is a general topic for all DCM and model inversion approaches
and not specific to our paper. To summarize, when a subject is
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exposed to a complex stimulus (e.g., watching a movie), human brains
show dynamic effective connectivity between remote areas on the
neuronal level, which can be indirectly measured using fMRI and
which can be effectively recovered using the d-PDCM-RU approach.
In the future, we will demonstrate the validity of our method in
clinical and cognitive neuroscience studies.
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