
EDITED BY : Ming Fan, Jiangning Song and Zhaowen Qiu

PUBLISHED IN : Frontiers in Genetics

BIOMEDICAL IMAGE OR GENOMIC 
DATA CHARACTERIZATION AND 
RADIOGENOMIC/IMAGE-OMICS

https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/journals/genetics


Frontiers in Genetics 1 September 2022 | Biomedical Image or Genomic Data

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-83250-093-4 

DOI 10.3389/978-2-83250-093-4

https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Genetics 2 September 2022 | Biomedical Image or Genomic Data

Topic Editors: 
Ming Fan, Hangzhou Dianzi University, China
Jiangning Song, Monash University, Australia
Zhaowen Qiu, Northeast Forestry University, China

Citation: Fan, M., Song, J., Qiu, Z., eds. (2022). Biomedical Image or Genomic 
Data Characterization and Radiogenomic/Image-omics. 
Lausanne: Frontiers Media SA. doi: 10.3389/978-2-83250-093-4

BIOMEDICAL IMAGE OR GENOMIC 
DATA CHARACTERIZATION AND 
RADIOGENOMIC/IMAGE-OMICS

https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/journals/genetics
http://doi.org/10.3389/978-2-83250-093-4


Frontiers in Genetics 3 September 2022 | Biomedical Image or Genomic Data

05 Editorial: Biomedical Image or Genomic Data Characterization and 
Radiogenomic/Image-Omics

Ming Fan, Jiangning Song and Zhaowen Qiu

08 Multiomics Analysis Reveals the Prognostic Non-tumor Cell Landscape in 
Glioblastoma Niches

Zixuan Xiao, Wei Zhang, Guanzhang Li, Wendong Li, Lin Li, Ting Sun, 
Yufei He, Guang Liu, Lu Wang, Xiaohan Han, Hao Wen, Yong Liu, 
Yifan Chen, Haoyu Wang, Jing Li, Yubo Fan and Jing Zhang

21 Identification and Validation of EMT-Related lncRNA Prognostic Signature 
for Colorectal Cancer

Danfeng Li, Xiaosheng Lin, Binlie Chen, Zhiyan Ma, Yongming Zeng and 
Huaiming Wang

36 Construction of a Prognostic Model in Lung Adenocarcinoma Based on 
Ferroptosis-Related Genes

Min Liang, Mafeng Chen, Yinghua Zhong, Shivank Singh and 
Shantanu Singh

45 A Unified Framework for Inattention Estimation From Resting State Phase 
Synchrony Using Machine Learning

Xun-Heng Wang and Lihua Li

56 Diagnosis of Ovarian Neoplasms Using Nomogram in Combination With 
Ultrasound Image-Based Radiomics Signature and Clinical Factors

Lisha Qi, Dandan Chen, Chunxiang Li, Jinghan Li, Jingyi Wang, Chao Zhang, 
Xiaofeng Li, Ge Qiao, Haixiao Wu, Xiaofang Zhang and Wenjuan Ma

67 The Predictive Role of Immune Related Subgroup Classification in 
Immune Checkpoint Blockade Therapy for Lung Adenocarcinoma

Xiaozhou Yu, Ziyang Wang, Yiwen Chen, Guotao Yin, Jianjing Liu, Wei Chen, 
Lei Zhu, Wengui Xu and Xiaofeng Li

79 Interaction-Based Feature Selection Algorithm Outperforms Polygenic 
Risk Score in Predicting Parkinson’s Disease Status

Justin L. Cope, Hannes A. Baukmann, Jörn E. Klinger, Charles N. J. Ravarani, 
Erwin P. Böttinger, Stefan Konigorski and Marco F. Schmidt

88 A Combined Nomogram Model to Predict Disease-free Survival in 
Triple-Negative Breast Cancer Patients With Neoadjuvant Chemotherapy

Bingqing Xia, He Wang, Zhe Wang, Zhaoxia Qian, Qin Xiao, Yin Liu, 
Zhimin Shao, Shuling Zhou, Weimin Chai, Chao You and Yajia Gu

97 A Novel Nine-Gene Signature Associated With Immune Infiltration for 
Predicting Prognosis in Hepatocellular Carcinoma

Rongqiang Liu, ZeKun Jiang, Weihao Kong, Shiyang Zheng, Tianxing Dai 
and Guoying Wang

111 BGN May be a Potential Prognostic Biomarker and Associated With 
Immune Cell Enrichment of Gastric Cancer

Shiyu Zhang, Huiying Yang, Xuelian Xiang, Li Liu, Huali Huang and 
Guodu Tang

Table of Contents

https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/journals/genetics


Frontiers in Genetics 4 September 2022 | Biomedical Image or Genomic Data

127 Predicting Treatment Response in Schizophrenia With Magnetic 
Resonance Imaging and Polygenic Risk Score

Meng Wang, Ke Hu, Lingzhong Fan, Hao Yan, Peng Li, Tianzi Jiang and 
Bing Liu

138 Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases 
in Patients With ALK-Rearranged Non-Small Cell Lung Cancer

Hua Wang, Yong-Zi Chen, Wan-Hu Li, Ying Han, Qi Li and Zhaoxiang Ye

147 Pathway-Based Analysis Revealed the Role of Keap1-Nrf2 Pathway and 
PI3K-Akt Pathway in Chinese Esophageal Squamous Cell Carcinoma 
Patients With Definitive Chemoradiotherapy

Honghai Dai, Yanjun Wei, Yunxia Liu, Jingwen Liu, Ruoying Yu, Junli Zhang, 
Jiaohui Pang, Yang Shao, Qiang Li and Zhe Yang

155 Time Course Analysis of Transcriptome in Human Myometrium 
Depending on Labor Duration and Correlating With Postpartum Blood 
Loss

Lina Chen, Yihong Luo, Yunshan Chen, Lele Wang, Xiaodi Wang, 
Guozheng Zhang, Kaiyuan Ji and Huishu Liu

169 Construction of a Novel Prognostic Signature in Lung Adenocarcinoma 
Based on Necroptosis-Related lncRNAs

Xiayao Diao, Chao Guo and Shanqing Li

https://www.frontiersin.org/research-topics/20777/biomedical-image-or-genomic-data-characterization-and-radiogenomicimage-omics#articles
https://www.frontiersin.org/journals/genetics


Editorial: Biomedical image or
genomic data characterization
and radiogenomic/image-omics

Ming Fan1*, Jiangning Song2 and Zhaowen Qiu3

1Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou,
China, 2Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
University, Melbourne, VIC, Australia, 3Institute of information Computer Engineering, Northeast
Forestry University, Harbin, China

KEYWORDS

radiomics, radiogenomics, image-omics, medical imaging, feature analysis, precision
medicine, biomarker identification

Editorial on the Research Topic

Biomedical image or genomic data characterization and radiogenomic/

image-omics

Precision medicine has emerged as a practical solution for disease care thanks to

advances in high-throughput data generation and analysis. Much of the emphasis in

discussions about precision medicine or personalized medicine has been focused on the

molecular characterization of tissues. However, as genetics differ between and within

tumors and are quite heterogeneous, molecular characterizations are limited.

Furthermore, there is no easy methodology yet to unravel why tumors with similar

characteristics respond differently to a targeted therapy.

Imaging is relatively noninvasive and is often used in routine clinical practice for

disease diagnosis, treatment, and prognosis. Medical imaging can provide a

comprehensive view of entire tumor lesions; it is commonly used in clinical practice

to monitor the progress of the cancer during treatment. The imaging includes but is not

limited to ultrasound, X-ray, computed tomography (CT), magnetic resonance imaging

(MRI), and positron emission tomography (PET).

Radiomics refers to the conversion of images to high-dimensional data and

subsequent mining for the characterization of biology and ultimately to improve

disease management for patients. Radiogenomics investigates relationships between

imaging features and genomics, which represents the correlation between the

anatomical-histological level and the genomic level.

With advanced artificial intelligence methods, especially deep learning, data

processing, feature extraction and data integration, medical image- or genomic data-

based precision medicine has been greatly improved. There are 15 papers in this Research

Topic: “Biomedical image or genomic data characterization and radiogenomic/image-

omics.” The articles focus on machine learning methods-based biomarker identification
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from genomics or biomedical imaging to predict disease

diagnosis, treatment, and prognosis.

For genomic-based biomarkers in precision medicine, we

include nine papers focused on identifying molecular signatures

by proposing machine learning algorithms in precise disease

diagnosis and treatment management. Machine learning

methods, such as gene‒gene interactions and classification/

regression models, have been developed to identify diagnostic/

prognosis biomarkers.

We present one paper on building gene signatures in cancer

prognostic analysis. Liang et al. established a ferroptosis-related

gene-based prognostic model to investigate the prognosis of lung

adenocarcinoma. Seven ferroptosis-related genes (FRGs) with

prognostic significance were identified for dividing patients with

lung adenocarcinoma into high-risk and low-risk groups. The

results demonstrate the prognostic significance of FRGs in

patients with lung adenocarcinoma, which may regulate

tumor progression through a variety of pathways.

We also present two papers that employ a gene‒gene

interaction-based machine learning algorithm in predicting

disease statuses. Cope et al. proposed a machine learning

algorithm that use large amounts of data to find gene‒gene

interactions that they showed outperformed a polygenic risk

score for predicting Parkinson’s disease status. This work

advances the state of art in prediction of susceptibility to

complex traits or diseases.

Liu et al. established oncogene Aurora kinase A (AURKA)-

related gene signatures for predicting the prognosis of patients

with hepatocellular carcinoma (HCC) by a protein‒protein

interaction network analysis. Eight AURKA-related genes were

thus identified that can effectively stratify the risk of HCC

patients with differing survival rates. Additionally, patients in

the high-risk group showed a higher percentage of immune cell

infiltration and higher immune checkpoints. The identified gene

signatures can be used as a candidate prognostic marker and

therapeutic target in patients with HCC.

We also present one paper that analyzes gene pathways in

predicting treatment response. Dai et al. investigated the roles of

the Keap1-Nrf2 and PI3K-Akt pathways in esophageal squamous

cell carcinoma (ESCC) treated with chemoradiotherapy. The

results demonstrate that patients with dysregulated PI3K-Akt

pathway exhibit a better survival outcome than patients with an

intact PI3K-Akt pathway. This study highlighted the prognostic

implications of aberrant cancer pathways in ESCC patients,

which may be valuable in guidance of chemoradiotherapy

management and treatment-induced toxicity.

We include one paper identifying lncRNA biomarkers for

cancer survival analysis. Li et al. explored the biological functions

and prognostic significance of epithelial-mesenchymal transition

(EMT)-related lncRNAs in patients with colorectal cancer

(CRC). A clinical factors and risk signature-based predictive

nomogram was established for survival analysis. This

signature was verified by predicting the immune-related

phenotype and was found to be associated with immune cell

infiltration and tumor mutation burden. This study indicated the

clinical significance of the identified 11-EMT-lncRNA signature

in predicting survival and immunotherapeutic response in CRC.

We also include papers analyzing immune subtypes in

disease management. Yu et al. identified three immune-related

subgroups for predicting immune checkpoint blockade (ICB)

therapy response in lung adenocarcinoma (LUAD). The immune

subgroup with higher infiltration scores exhibited a good

response to IBC therapy and a better survival, whereas the

subgroup with lower scores for immune checkpoint-related

genes but higher infiltration scores for suppressive immune

cells is more likey to be resistance to ICB therapy and have a

poor prognosis. The identified immune subgroup can be

promising in preoperatively discriminating LUAD patients

with differing ICB therapy responses for a better guidance in

treatment management.

Zhang et al. investigated the clinical implications of biglycan

in gastric cancer prognosis. They identified biglycan-related

differentially expressed genes (DEGs) by comparing the

expression of biglycan in gastric cancer and normal tissues.

The differential expression was verified through real-time PCR

and immunohistochemistry. The constructed nomogram can

accurately predict the survival outcomes of patients with

gastric cancer. This study demonstrates that biglycan may be

important in the occurrence and progression of gastric cancer.

Chen et al. identified human myometrial transcriptome and

established the Competing endogenous RNA (ceRNA)

regulatory network depending on labor duration. This study

highlights the roles of dynamic changes that occur at ceRNAs

during parturition in functional changes in human myometrium

at labor.

We also included one study that used multiomics biomarkers

in disease prognosis analysis. Xiao et al. aims to reveal the

prognostic nontumor cell landscape in glioblastoma niches by

a multiomics analysis. The biomarkers of nonmalignant cells in

the microenvironment of glioblastoma multiforme (GBM) were

identified, which separate patients into negative or positive

immune response clusters with significantly different survival

rates. Negative immune response markers were particularly

enriched.

We included six radiological image-based studies in

predicting tumor status, survival outcomes, metastases and

treatment response. Quantitative mining of data from

radiological images, including MRI, ultrasound and CT, was

performed, with applications in precise disease diagnosis and

prognosis analyses.

We include one paper using radiomics extracted from

ultrasound for the diagnosis of ovarian neoplasms. Qi et al.

established a nomogram integrating ultrasound-based radiomics

signatures and clinical factors, named combined clinical-

radiomics (CCR), to discriminate between benign, borderline,

and malignant serous ovarian tumors. This CCR-based model
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shows better prediction performance than a clinical factor-based

model.

We present two papers on disease treatment response

prediction based on radiomic signatures. Xia et al. developed

and validated a nomogram integrating radiomics, MRI findings,

and clinicopathological factors to predict survival in triple-

negative breast cancer patients treated with neoadjuvant

chemotherapy. The proposed signatures significantly stratified

patients into high- and low-risk groups with different survival

rates. These signatures were further validated in an external

validation group. Three indicators, including the multifocal/

centric disease status, pathological complete response status,

and Rad-score, were independently associated with survival.

The results demonstrated that the integrated signature-based

nomogram improved the accuracy of survival prediction.

Wang et al. identified MRI features for predicting

antipsychotic medication treatment outcomes in

schizophrenia. To this end, nine categories of MRI measures

and the polygenic risk score (PRS) were combined to separate the

responders and nonresponders. The results showed that the PRS

was better in prediction performance than measures of cortical

thickness, cortical volume, and surface sulcal depth but lower

than GMV, ALFF, and surface curvature.

We include one paper on brain metastasis prediction using

imaging features derived from CT. Wang et al. identified

pretreatment thoracic CT biomarkers for predicting brain

metastases in patients with ALK-rearranged non-small cell

lung cancer (NSCLC). A machine learning method was

proposed to identify the radiomic features extracted from

pretreatment thoracic CT images, which achieved good

performance in predicting brain metastases within 1 year after

detection of the primary tumor.

Wang and Li performed a unified framework for estimating

inattention, which is one of the most useful clinical symptoms

in attention deficit hyperactivity disorder (ADHD). To improve

the classical brain-behavior models, the phase synchrony

features were identified from resting state functional MRI

(fMRI) using a machine learning method. Among the brain

networks, the bilateral subcortical-cerebellum networks exhibit

the most predictive phase synchrony patterns for inattention

estimation.

We thank the authors and the reviewers for their

contribution to this Research Topic. This Research Topic of

articles may serve as an inspiring compendium for future

research in biomedical imaging or genomic data

characterization and radiogenomic/image-omics.
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Multiomics Analysis Reveals the 
Prognostic Non-tumor Cell 
Landscape in Glioblastoma Niches
Zixuan Xiao1†, Wei Zhang 2,3†, Guanzhang Li 2,3†, Wendong Li 1, Lin Li 1, Ting Sun1, Yufei He 1, 
Guang Liu1, Lu Wang1, Xiaohan Han1, Hao Wen1, Yong Liu1, Yifan Chen1, Haoyu Wang1, 
Jing Li1, Yubo Fan1*  and Jing Zhang1*

1Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for 
Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang 
University, Beijing, China, 2Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical 
University, Beijing, China, 3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma 
is not fully established yet. This study aims to present an overview of non-malignant cells 
in the complex microenvironment of glioblastoma with detailed characterizations of their 
prognostic effects. We curate 540 gene signatures covering a total of 64 non-tumor cell 
types. Cell type-specific expression patterns are interrogated by normalized enrichment 
score across four large gene expression profiling cohorts of glioblastoma with a total 
number of 967 cases. The glioblastoma multiforms (GBMs) in each cohort are hierarchically 
clustered into negative or positive immune response classes with significantly different 
overall survival. Our results show that astrocytes, macrophages, monocytes, NKTs, and 
MSC are risk factors, while CD8 T cells, CD8 naive T cells, and plasma cells are protective 
factors. Moreover, we find that the immune system and organogenesis are uniformly 
enriched in negative immune response clusters, in contrast to the enrichment of nervous 
system in positive immune response clusters. Mesenchymal differentiation is also observed 
in the negative immune response clusters. High enrichment status of macrophages in 
negative immune response clusters is independently validated by analyzing scRNA-seq 
data from eight high-grade gliomas, revealing that negative immune response samples 
comprised 46.63 to 55.12% of macrophages, whereas positive immune response samples 
comprised only 1.70 to 8.12%, with IHC staining of samples from six short-term and six 
long-term survivors of GBMs confirming the results.

Keywords: glioblastoma, tumor microenvironment, immunology, prognosis, tumor-infiltrating cells

HIGHLIGHTS

 1) A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma.
 2) Astrocytes, macrophages, monocytes, NKTs, and MSC are risk factors, while CD8 T cells, 

CD8 naive T cells, and plasma cells are protective factors.
 3) Mesenchymal differentiation is observed in the negative immune response clusters.
 4) High enrichment status of macrophages is in negative immune response clusters of glioblastomas.
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INTRODUCTION

Gliomas account for 70% of all brain tumors (Ohgaki and 
Kleihues, 2005) and are categorized into four types: Grade 
I pilocytic astrocytoma and grade II astrocytoma are low-grade 
gliomas, whereas grade III anaplastic astrocytoma and grade 
IV glioblastoma multiform (GBM) are malignant tumors 
(Kleihues et  al., 1993). The GBMs have poor prognosis with 
a median survival rate of 1 year after diagnosis and a 2-year 
survival rate of only 12.7 to 19.8% according to the 
SEER database.

Categorization of gliomas previously focused on 
histological features (Bailey and Cushing, 1927); however, 
characterization methods have shifted toward high-resolution 
molecular profiling, including identification of isocitrate 
dehydrogenase (IDH) mutation, co-deletion of chromosomal 
arms, O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation, and miR-181d expression (Jiang et al., 
2016). Additionally, new stratifications have been proposed 
using gene expression profiles or specific gene mutations 
(Phillips et  al., 2006; Ceccarelli et  al., 2016), methylation 
status (Hegi et al., 2005; Shah et al., 2011), and the presence 
of neoantigens (Zhang et  al., 2019; Sun et  al., 2021). 
Numerous studies have focused on interpreting the RNA-seq 
profiles of gliomas in an attempt to elucidate their dynamics 
and mechanisms, with studies on recurrent glioblastoma 
able to distinguish comprehensive transcriptome profiling 
in the malignant progression of human gliomas (Zhao et al., 
2017) and find critical clues of MET-related mutations (Hu 
et  al., 2018) and oncogenic fusions (Bao et  al., 2014). The 
findings of these studies have markedly advanced the 
investigation of GBM and facilitated prognostic and 
therapeutic developments, but the highly heterogeneous 
nature of GBM still often leads to the failure of extensive 
treatment regimens.

The complexity of GBM components and the immune 
microenvironment has attracted significant attention in recent 
years, with categorizations based on molecular profiling revealing 
tissue similarities between proneural, proliferative, and 
mesenchymal-type gliomas, respectively (Phillips et  al., 2006). 
Certain immune components, such as tumor-associated 
macrophages (TAMs), have been identified as regulators of 
the proneural-to-mesenchymal transition (Bhat et  al., 2013) 
and contributors to immunosuppression (Gabrilovich, 2017), 
thus leading to poor prognosis. However, a comprehensive 
characterization of non-tumor cells in the niches of primary 
glioblastoma has not been fully established. Investigations into 
the tumor components and immune microenvironment would 
help unravel the cross-talk between the immune system and 
cancer cells and allow determination of therapeutic targets for 
the development of novel cancer treatments.

In this study, we  generated a comprehensive non-tumor 
cell landscape in the microenvironment of GBM by integrating 
four large-scale gene expression profiling data cohorts of primary 
glioblastoma with gene signatures covering a total of 64 
non-tumor cell types. The GBMs in each cohort are hierarchically 
clustered into negative or positive immune response classes 

with significantly different overall survival. Additionally, 
we  investigated the risk levels associated with immune cell 
types and the enrichment of Gene Ontology (GO) terms. In 
particular, we  confirmed enrichment of a negative prognostic 
factor (macrophages) in scRNA-seq data of high-grade gliomas 
and in samples from GBM patients exhibiting short-term 
survival by immunohistochemical (IHC) staining.

MATERIALS AND METHODS

Gene Expression and Clinical Data
Four cohorts of gene expression profiles of GBM tumor tissues 
were collected from public domains including Cohort 1 (Wang 
et  al., 2016; Zhang et  al., 2019), Cohort 2 (TCGA; RNA 
sequences; Cancer Genome Atlas Research, 2008), Cohort 3 
(REMBRANDT, mRNA microarray; Gusev et  al., 2018), and 
Cohort 4 (TCGA, mRNA microarray; Brennan et  al., 2013), 
respectively. Samples that were not diagnosed as GBM or 
did not include complete gene expression or clinical data 
were removed, resulting in 75, 152, 181, and 559 samples 
in Cohorts 1, 2, 3, and 4, respectively. The single-cell RNAseq 
data of eight HGGs can be accessed through Gene Expression 
Omnibus (accession: GSE103224; Yuan et  al., 2018). Tumor 
samples were obtained from 12 glioblastomas, including from 
six short-term-survival and six long-term-survival patients. 
All research protocols and ethics comply with the Declaration 
of Helsinki. Sample collection and data analyses were approved 
by the Beijing Tiantan Hospital institutional review board 
(KY 2020–093-02), and written informed consent was obtained 
from each participant.

Gene Signatures of Immune Cells
Gene signatures (n = 540) covering 64 cell types were collected 
from multiple sources (Bindea et al., 2013; Rooney et al., 2015; 
Tirosh et al., 2016; Aran et al., 2017; Charoentong et al., 2017). 
The 64 cell types were further categorized into five groups: 
hematopoietic stem cells (HSCs) and hematopoietic cells 
(lymphoid and myeloid lineage), stromal cells, and others, as 
shown in Supplementary Material 1A,B.

Generating a Normalized Enrichment Score 
for Estimating Cell-Enrichment Status
An normalized enrichment score (NES) for the Mann–Whitney–
Wilcoxon gene set test was adapted to evaluate the enrichment 
status of cells (Frattini et  al., 2018). The NES was determined 
as follows:

 NES U
mn

= −1  

 U nm
m m

T= +
+( )
−

1
2

 

where m is the number of genes in a gene set, n is the 
number of genes outside the gene set, and T is the sum of 
the ranks of the genes in the gene set (Zhang et  al., 2019).
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Given a gene signature, the gene expression data of a 
glioblastoma tumor sample were separated into two sections 
comprising genes expressed in the gene signature and the rest 
of the genes, respectively. The Wilcoxon rank-sum test was 
then applied to calculate the NES. For each cell signature, the 
NES value was calculated to quantify the probability that the 
expression of a gene in the gene signature was greater than 
the expression of a gene outside of the gene signature. The 
higher the NES value, the more likely that the cell is enriched 
in the tumor sample.

Risk Level for Gene Signatures
Cox regression (proportional hazards regression) in the R was 
applied for every gene signature in each cohort. The protective 
factor was defined when the hazard ratio of a gene signature 
was <1, and the risk factor was defined when this was >1. 
Signatures with a p ≤ 0.05 were defined as significantly associated 
with survival (addressed as prognostic signatures below), with 
only prognostic signatures used for further analysis. If all 
prognostic signatures of one cell type were either protective 
or risk factors, they were defined as consistent factors, otherwise, 
inconsistent factors.

Stratification of Glioblastoma Patients
Hierarchical clustering of GBMs was applied to z-score 
transformed NESs of these signatures using R. Euclidean distance 
and complete method were used for clustering, and heat maps 
were drawn using the R: “pheatmap.” Kaplan–Meier survival 
analysis was performed using R: “survival” and “survminer.”

Go Enrichment Analysis
Gene Set Enrichment Analysis (GSEA; Subramanian et  al., 
2005) was performed upon negative and positive immune 
response clusters using a total of 6,166 GO terms from the 
Molecular Signatures Database (MSigDB; Liberzon et al., 2011), 
including cellular component (cc), molecular function (mf), 
and biological process (bp), followed by visualization through 
cytoscape (Shannon et  al., 2003). The results are shown in 
Supplementary Material 2A-D.

Identification of Non-Transformed Cells 
From scRNA-Seq Data
For scRNA-seq data, genes expressed in less than or equal to 
10 cells were eliminated, followed by a moving average method 
(Chung et  al., 2017) to determine chromosome expression 
patterns. The number of original molecules per cell was converted 
to log2(cpm + 1). The moving average used 100 gene lengths 
as the window, and the value for the gene in the center of 
the window was considered the average expression of the 
window. We  used the Seurat package (v.3.0; Butler et  al., 2018; 
Stuart et  al., 2019) to analyze the screened data according to 
standard procedures. Amplification of chromosome 7 and loss 
of chromosome 10 were used to differentiate malignant 
(transformed) cells from non-malignant (non-transformed) cells 
(Weller et  al., 2015).

Determination of Non-Transformed Cell 
Types
Scibet (Li et  al., 2020) was used to predict the identities of 
the non-transformed cells in the scRNA-seq data. The trained 
model “30 major human cell types,”1 including 30 major human 
cell types from 42 scRNA-seq datasets, served as the reference 
for cell type identification.

Stratification of Single-Cell Gene 
Expression Samples
To determine whether a sample in the scRNA-seq data was 
positive or negative immune response, Spearman correlation 
analysis was applied between the sample in the scRNA-seq 
cohort and the samples in the four gene expression profiling 
cohorts, respectively. Only positive correlations were retained, 
and the mean value of the correlation coefficients in each 
cohort was calculated. The fold change for a sample in the 
scRNA-seq data was calculated as the mean correlation 
coefficient of the sample in the scRNA-seq data involving 
samples in the positive immune response clusters divided by 
the mean correlation coefficients of the sample in the scRNA-seq 
data involving samples in the negative immune response 
clusters. The fold changes in the correlation coefficients 
calculated for the four cohorts were multiplied to determine 
the total fold change. A total fold change >1 indicated that 
the Spearman correlation coefficient was higher in the positive 
immune response clusters, and thus, the sample in the 
scRNA-seq data was determined as positive immune response; 
otherwise, it was designated as negative immune response 
(Supplementary Material 3).

IHC Staining for Macrophage Markers
Tumor samples used for IHC staining were obtained from 
12 GBMs, including six short-term-survival and six long-
term-survival patients. The surgically removed tumor tissues 
were stored in formalin immediately after excision and 
embedded in paraffin within 3 days. IHC staining and image 
capture were performed as previously described (Hu et  al., 
2018). The primary antibody for the detection of macrophage 
marker MS4A4A was obtained from Sigma-Aldrich 
(HPA029323; St. Louis, MO, United  States), with staining 
was performed according to manufacturer instructions. The 
proportion of positive cells was counted using ImageJ software 
(v.1.52; National Institutes of Health, Bethesda, MD, 
United  States). Clinical information and IHC staining results 
are summarized in Supplementary Material 4.

Statistical Analysis
Values of p for NES distributions in negative immune response 
and positive immune response clusters were calculated using 
Student’s t-test, and those for IHC staining percentages were 
generated from the Wilcoxon test. All analyses were conducted 
in R. Values of p ≤ 0.05 were determined as statistical significance.

1 http://scibet.cancer-pku.cn/download_references.html
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RESULTS

Stratification of Glioblastomas Based on 
Cell Type-Specific Enrichment Status
Based on a total of 540 gene signatures covering 64 cell types 
(Supplementary Material 1A), we  applied the NES algorithm 
we  previously developed (Frattini et  al., 2018) to determine 
the enrichment status of each cell type, followed by filtering 
the gene signatures with enrichment status correlated with 
overall survival (prognostic signatures). The workflow for 
stratifying samples is shown in Figure  1A. Unsupervised 
hierarchical clustering stratified samples into two significantly 
different prognostic clusters among the four cohorts (p = 0.025, 
p = 0.015, p = 0.0004, and p = 0.00056 for cohort 1–4, respectively; 
Figures 1B–E; Supplementary Figures 1A–D; Table 1). Clusters 
with patients exhibiting long-term overall survival were found 
universally enriched with CD8 T cells, whereas short-term 
overall survival clusters were characterized by enrichment of 

“stromal cells,” such as mesenchymal stem cells (MSCs). Therefore, 
we designated the long- and short-term overall survival clusters 
as positive and negative immune response, respectively. 
Additionally, we discovered that the enrichment status calculated 
from different gene signatures exhibited similar and stable 
trends for CD8 naïve T cells, common lymphoid progenitors 
(CLPs), epithelial cells, HSCs, lymphoid endothelial cells, neurons, 
natural killer T cells (NKTs), and γΔT cells (Figure  1F).

The Predicted Risk and Protective 
Landscape of Non-Tumor Cells in the 
Glioblastoma Microenvironment
To understand the prognostic effect of different cell types, 
we  estimated associations between the enrichment status of 
gene signatures and overall survival through Cox regression 
analysis across four gene expression profiling cohorts. In each 
cohort, statistically significant gene signatures with a hazard 

A

B

F

C D E

FIGURE 1 | NES-based stratification of patient survival. (A) Workflow of NES-based stratification and validation of survival time. (B–E) Kaplan–Meier survival curves 
of the NIR and PIR clusters in the four cohorts (PIR, orange; NIR, green). (F) NES distribution of four gene expression profiling cohorts of tumor tissues from GBM 
patients. Cell types and cohorts are noted. NES, normalized enrichment score; NIR, negative immune response; and PIR, positive immune response.
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ratio > 1 or < 1 were defined as risk or protective factors, 
respectively. We found that risk effects consistently agreed with 
statistically significant gene signatures for given cell types, 
including activated dendritic cells (aDCs), astrocytes, class-
switched memory (CSM) B cells, epithelial cells, fibroblasts, 
macrophages, M2 macrophages, monocytes, MSCs, NKTs, and 
plasmacytoid (p)DCs. By contrast, CD8 naïve T cells, CD8 T 
cells, endothelial cells, eosinophils, megakaryocyte–erythroid 
progenitor cells, plasma cells, and regulatory T cells (Tregs) 
were consistently estimated as being protective. Additionally, 
basophils, B cells, CD8 central memory T cells, mast cells, 
multi-potent progenitor cells, memory B cells, naïve B cell, 
and T helper 1 (Th1) cells were predicted as being protective 
according to majority of gene signatures across the four cohorts, 
whereas CD4 central memory T cells, mesangial cells, and 
pericytes were predicted as a risk by most of the gene signatures. 
Interestingly, the risk and protective effects of CD8 effector 
memory T cells, DCs, myocytes, and NK cells were inconsistent 
according to the different gene signatures (Figure  2A).

Notably, we  identified inconsistencies in some estimated risk 
or protective effects predicted by the gene signatures across the 
four cohorts. The prognostic effects of enrichment status estimated 
from one gene signature for basophils, B cells, pericytes, and 
Th1 cells were inconsistent among the four cohorts (Figures 2A,B); 
however, basophils, B cells, and pericytes were more likely to 
manifest an enrichment-dependent effect on survival time, with 
basophils and B cells being protective when highly enriched 
and pericytes presenting a risk when highly enriched.

Statistically significant signatures showed consistency across 
risk levels valued from different perspective, i.e., risk level 
NES distribution, risk factor hazard ratio, and occurrence cohort 
count. Figure  2C shows the hazard ratios for cell types 
demonstrating consistent agreement in their prognostic effects 
across all corresponding signatures in at least two cohorts. 
MSCs, pDCs, CSM B cells, and CLPs were consistent risk 
factors with relatively high hazard ratios in at least two cohorts. 
Conversely, common myeloid progenitors, CD4 naïve T cells, 
plasma cells, and CD4 T cells showed hazard ratios <1, suggesting 
potentially strong protective effects (Figure  2C). Figure  2D 
shows the group count of consistent risk levels. Astrocytes, 
MSCs, monocytes, pDCs, NKTs, macrophages, M2 macrophages, 
fibroblasts, epithelial cells, CSM B cells, and aDCs were consistent 
risk factors appearing in at least two cohorts, with astrocytes 
being significantly negatively correlated with overall survival 
in all four cohorts. CD8 T cells, Tregs, plasma cells, MEPs, 
eosinophils, endothelial cells, and CD8 naïve T cells were also 
consistent risk factors, with CD8 T cells most frequently 
identified in three cohorts; however, for risk factors identified 

in only two cohorts (i.e., Tregs), more evidence is needed to 
support these findings.

Identification of Immune Dysregulation in 
the Negative Immune Response Cluster
We then performed GSEA for the four cohorts. Enrichment 
map analysis of dysregulated GO terms revealed that those 
related to the immune system, metabolism, and organogenesis 
were highly enriched in all four cohorts (Figure  3A; 
Supplementary Figures  2A–C; Supplementary Material 2). 
Specifically, GO terms related to the immune system (defense 
response, cytokines, myeloid lineage, and lymphoid lineage cell 
regulation) were enriched in negative immune response clusters, 
suggesting uniform dysregulation of the immune response in 
negative immune response clusters. Interferon (IFN)-related GO 
terms were significantly enriched in the negative immune response 
group (Figure  3B), consistent with constitutive type I  IFNs 
(IFN-α and IFN-β) facilitating glioma-related immune escape 
(Silginer et  al., 2017), unfavorable prognosis, chemotherapy 
resistance, and more aggressive immune response (Zhu et al., 2019).

Activities associated with several interleukins (ILs), including 
IL-6, IL-8, and IL-10, were enriched in negative immune 
response clusters (Figure  3C), with IL-8 expression negatively 
correlated with GBMs survival and positively correlated with 
the expression of genes associated with the glioblastoma-initiating 
cell phenotype, as well as the possibility of GBM recurrence 
(Hasan et  al., 2019). Additionally, IL-1β contributes to cancer 
cell stemness, invasiveness, and drug resistance in glioblastoma 
(Wang et  al., 2012; Yeung et  al., 2013).

Moreover, we identified macrophage activation, differentiation, 
and chemotaxis as enriched activities in negative immune 
response clusters (Figure  3D), consistent with identification 
of macrophages as risk factors. Downregulation of major 
histocompatibility complex (MHC)-I and -II molecules is 
associated with glioma migration and invasion (Zagzag et  al., 
2005), with their altered expression associated with the negative 
immune response cluster (Figure  3E).

Majority of nervous system-associated GO terms (nervous 
system organogenesis in G1, nervous system organogenesis, 
neural function and synaptic in G2, and nervous system 
organogenesis in G4) was enriched in the positive immune 
response cluster (Figure  3A; Supplementary Figures  2B,C), 
demonstrating that regulation of the nervous system was a shared 
feature in the positive immune response cluster. This agrees 
with the proneural subtype of gliomas categorized by molecular 
profiling, in that this subtype usually demonstrated tissue similarity 
with adult and fetal brain and biological processes related to 

TABLE 1 | Hierarchical clustering results for the four cohorts.

Cohort Sample Signature Cell type PIR NIR p Data source (References)

1 75 31 18 22 53 0.02499 Wang et al., 2016; Zhang et al., 2019
2 152 51 24 67 85 0.01462 Cancer Genome Atlas Research, 2008
3 181 57 24 60 121 0.0004 Gusev et al., 2018
4 559 138 46 198 361 0.00056 Brennan et al., 2013

NIR, negative immune response; PIR, positive immune response.
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neurogenesis (Phillips et  al., 2006). Additionally, this glioma 
subtype is regarded as less malignant relative to other subtypes 
(e.g., proliferative and mesenchymal; Phillips et  al., 2006).

Mesenchymal Differentiation 
Characterized in the Negative Immune 
Response Cluster
Gliomas of the mesenchymal subtype are defined by high 
expression of chitinase 3-like 1 and MET5, as well as a high 

frequency of neurofibromatosis type 1 (NF1) mutation/deletion 
and low levels of NF1 mRNA (Verhaak et  al., 2010). The 
negative immune response clusters defined by cell-enrichment 
analysis shared an obvious similarity with this glioma subtype. 
We discovered that five stromal cell types (fibroblasts, pericytes, 
MSC, mesangial cells, and endothelial cells) exhibited a 
significantly higher NES value in the negative immune response 
cluster than in the positive immune response cluster in at 
least three cohorts (Figures  4A–E). Of note, negative immune 
response clusters with endothelial cells showed higher NESs 

A B

C D

FIGURE 2 | Risk levels according to calculated NESs. (A) NES distribution of prognostic signatures as denoted by risk levels (risk factors, orange; protective 
factors, green). (B) Variety of NES distribution within signatures. ns, p > 0.05; and ****p ≤ 0.0001. (C) Hazard ratio of consistent risk factors (>1, risk factor; <1, 
protective factor; and ∆, mean value). (D) Group count of consistent risk factors. NES, normalized enrichment score; NIR, negative immune response; ns, not 
significant; and PIR, positive immune response.
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in three cohorts but distributed between two different signatures 
(Supplementary Figure 2D). Lymphoid endothelial cells showed 
higher negative immune response enrichment in one cohort, 
with no significant differences observed in other cohorts. These 
results supported tissue similarities between negative immune 
response clusters and the mesenchymal subtype.

Furthermore, we  identified aspects related to mesenchymal 
differentiation in negative immune response clusters, with 

enrichment of activities related to tumor necrosis factor (TNF)-α 
and nuclear factor-kappaB (NF-κB) identified from three cohorts 
and all four cohorts (Figures  4F,G), respectively. Previous 
studies of glioma sphere cultures indicated that TNF-α promotes 
mouse embryonic stem cell differentiation accompanied by 
increased resistance to radiotherapy in an NF-κB-dependent 
manner (Bhat et al., 2013). Macrophages are also an important 
source of TNF-α secretion.

A

B C

D E

FIGURE 3 | GO enrichment in clusters. Enrichment map of GO terms (selected according to p < 0.05) aggregated by functions for Cohort 2 (A). Enrichments 
scores for GO terms (selected according to p < 0.05) associated with the immune-related (B) interferons, (C) interleukins, (D) macrophages, and (E) major 
histocompatibility complex (MHCs). GO, Gene Ontology; MHC, major histocompatibility complex.
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scRNA-seq and IHC Confirmation of the 
Negative Prognostic Effects of TAMs
To validate our findings, we  collected scRNA-seq data for cell-
component analysis. We classified all eight samples with available 
scRNA-seq data into negative or positive immune response 
clusters by calculating NES-based Spearman similarity between 
single-cell samples and bulk tumor samples 
(Supplementary Material 3). The results identified samples 
PJ016, PJ017, PJ032, and PJ048 as negative immune response 
and PJ018, PJ025, PJ032, and PJ035 as positive immune response.

We applied Seurat and copy number variation analyses to 
distinguish non-transformed cells from malignant transformed 
glioma cells in the scRNA-seq data. All HGGs, except PJ016, 
harbored clear amplification of chromosome 7 and loss of 
chromosome 10 (Supplementary Figures  3A–H), consistent 
with transformed tissues demonstrating large-scale copy number 

alterations and aneuploidies (Venteicher et  al., 2017; Taylor 
et  al., 2018), as well as glioblastoma often being accompanied 
with amplification of chromosome 7 and loss of chromosome 
10 (Zagzag et  al., 2005). PJ016 was found apparent loss of 
chromosomes 13 and 19, revealing that the cell population 
had indeed undergone transformation (Lee et al., 1995; Ritland 
et  al., 1995; Nakamura et  al., 2000).

The identities of non-transformed cells in the glioma 
microenvironment were then determined using Scibet (Li et al., 
2020; Figures  5A–H). We  found no immune cells in PJ016 
or PJ048 (Table 2), possibly due to the heterogeneity of different 
sampling areas. Those with a high percentage of macrophages 
(PJ017 and PJ032; 46.63 and 55.12%, respectively) belonged 
to the negative immune response cluster (Table  2), whereas 
samples with fewer macrophages (PJ018, PJ025, and PJ035; 
2.28, 1.70, and 8.12%, respectively) overlapped with the positive 

A

C

E

F G

B

D

FIGURE 4 | NES distributions in NIR and PIR clusters. (A) Fibroblasts, (B) pericytes, (C) mesenchymal stem cells (MSCs), (D) mesangial cells, and (E) endothelial 
cells. ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; and ****p ≤ 0.0001. Enrichment scores for GO terms associated with the mesenchymal differentiation-related 
cytokines (selected according to a p < 0.05; F) NF-κB and (G) tumor necrosis factor (TNF)-α. GO, Gene Ontology; MSC, mesenchymal stem cell; NES, normalized 
enrichment score; NF-κB, nuclear factor-kappaB; NIR, negative immune response; PIR, positive immune response; and TNF-α, tumor necrosis factor-α.
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immune response cluster (Table  2), confirming macrophage 
enrichment as a risk factor.

Moreover, we  confirmed the negative prognosis associated 
with macrophages IHC staining for the macrophage marker 
MS4A4A in 12 glioblastoma samples, including six from short-
term-survival and six from long-term-survival patients 
(Figure 5K; Supplementary Material 4). The short-term-survival 
samples showed a significantly higher percentage of MS4A4A-
positive cells relative to the six long-term-survival samples 
(p = 0.00051; Figures  5I,J).

DISCUSSION

In this study, we  generated a landscape of glioblastoma 
niches using four gene expression profiling cohorts of tumor 
tissues from GBMs based on the NES method. The patients 
in each cohort were divided into two categories (positive 
or negative immune response) according to hierarchical 
clustering analysis of cell type-based enrichment status and 
showing a significantly different survival (p < 0.05). The 
analysis revealed risk factors, including astrocytes, 
macrophages, monocytes, NKTs, and MSC, as well as protective 
factors, CD8 T cells, CD8 naive T cells, and plasma cells. 
Additionally, GSEA demonstrated that immune system- and 
organogenesis-related GO terms were uniformly enriched 
in negative immune response clusters, whereas positive 
immune response clusters were enriched in the nervous 
system. Moreover, significant signs of mesenchymal 
differentiation were observed in the negative immune response 
clusters, and validation using scRNA-seq analysis and IHC 
staining showed correlations between the presence of 
macrophages and negative immune response.

Potential mechanisms associated with specific cell types 
manifested consistent risk levels. Some cell types exhibited 
identical risk levels across the four cohorts and all gene 
expression signatures. Specifically, astrocytes were frequently 
observed as a consistent risk factor with a high hazard 
ratio. As an important component of the blood–brain barrier 
and the tripartite synaptic neural network, the normal 
physiological role of astrocytes involves promoting mutual 
communication with neurons. However, astrocytes can also 
develop into tumor cells and form astrocytomas. Given the 
heterogeneity of gliomas, the high frequency of astrocytes 
as a risk factor is explainable. Moreover, evidence suggests 
that tumor-reactive astrocytes can interact with glioma tumor 
cells and promote the development, invasion, and survival 
of gliomas by releasing different cytokines or regulating the 
entry and exit of calcium and hydrogen ions in cell channels 
(Guan et  al., 2018).

NKTs were also a consistent risk factor. miR-92a was 
reported to induce immune tolerance of NKTs to glioma 
cells (Tang et  al., 2014). Co-culture of glioma cells and 
NKTs showed miR-92a expressing in glioma cells played a 
key role in inducing the elevated expression of IL-6 and 
IL-10  in NKTs (Tang et  al., 2014). In the present study, 
we  found IL-6- and IL-10-related GO terms in the negative 

immune response cluster. Compared with NKTs cultured 
alone, the expression of antitumor molecules, including 
perforin, Fas ligand, and IFN-γ, was significantly reduced 
in NKTs co-cultured with glioma cells (Tang et  al., 2014). 
Moreover, IL-6 + IL-10+ NKTs exhibit a weak ability to induce 
apoptosis in glioma cells but have an immunosuppressive 
effect on CD8 T cell activity (Tang et  al., 2014).

CD8 T cells play defensive roles against cancer cells, consistent 
with the risk levels generated in the present analysis. Serologic 
analysis of antigens using recombinant cDNA expression cloning 
identified several tumor-associated antigens capable of generating 
a specific response in a variety of human cancers, including 
malignant glioma (Struss et al., 2001; Prins et al., 2003). Tumor-
related antigens can be  recognized by cytotoxic CD8 T cells 
in the context of tumors expressing MHC-I (Prins and Liau, 
2003; Yang et  al., 2004), suggesting that a T cell-dependent 
immune response might improve the outcome of glioma patients 
through an antigen-mediated immune response. This was 
supported by a clinical study of newly diagnosed glioblastoma 
patients that reported significantly attenuated CD8 T cell 
infiltration in samples from long-survival patients (>403 days) 
relative to that in samples from short-survival patients (<95 days; 
Yang et  al., 2010). These findings agreed with those of the 
present study showing that CD8 T cells were categorized as 
a protective factor.

Some cell types exhibited inconsistent risk levels. In these 
cases, it is likely that other conditions caused a shift in 
risk levels (e.g., age, co-existence with other cells, or a 
combination of other clinical symptoms). Different signatures 
of the same cell type might display different risk levels, 
suggesting the impact of cell status. To further investigate 
this concept, a specific gene in each gene signature should 
be  investigated. Other conditions, such as the presence of 
neoantigens (Zhang et  al., 2019), IDH mutation(s) (Phillips 
et  al., 2006; Parsons et  al., 2008), and MGMT methylation 
(Shah et  al., 2011), can also provide insight into conditions 
causing a shift in risk levels. Furthermore, the data used 
in this study were from primary gliomas; therefore, 
comparisons between recurrent and primary glioma samples 
would provide additional information concerning dynamics 
in the glioma microenvironment.

Myeloid lineage cells, such as monocytes and macrophages, 
were consistent risk factors in agreement with previously 
reported results (Hambardzumyan et  al., 2016). These cells 
(i.e., TAMs) account for more than 30% of the total number 
of solid tumor cells (Boussiotis and Charest, 2018, 1–3). 
Numerous studies report that the frequency of TAM detection 
is usually higher in tumors with a mesenchymal subtype 
and/or recurrent tumors (Wang et  al., 2017). Glioma stem 
cells are recently shown to release periostin, which accumulates 
in the surrounding environment of blood vessels and acts 
as an inducer of TAM chemotaxis through signaling via 
the integrin receptor αvβ3 (Zhou et al., 2015). Transforming 
growth factor (TGF)-β released by TAMs induces matrix 
metalloprotein-9 expression in glioblastoma stem cells, thereby 
increasing their invasiveness (Ye et  al., 2012). Furthermore, 
the supernatant from glioma stem cells (GSCs) inhibits the 
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phagocytic activity of TAMs and induces IL-10 and TGF-β 
secretion (Wu et  al., 2010).

Ontogeny analysis revealed that macrophages in human 
GBM can be divided into either blood-derived or tissue-resident 
variants (i.e., microglia; Wang et al., 2017). These two ontogenies 

were also found in other types of cancer and displayed different 
prognostic effects. In mouse mammary carcinoma, a distinction 
was made between monocyte-derived TAMs and resident 
mammary tissue macrophages; it was found that only the 
former contributes to the suppression of antitumor cytotoxic 
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FIGURE 5 | Cell type analysis using scRNA-seq data. (A–H) Cell type counts in scRNA-seq samples. (I) IHC staining of macrophages (NIR samples, upper; PIR 
samples, bottom). (J) Percentage of macrophages in NIR and PIR samples (according to staining for MS4A4A; scale bar: 100 μm). (K) Kaplan–Meier survival curves 
of NIR and PIR samples. IHC, immunohistochemical; LTS, long-term survival; NIR, negative immune response; PIR, positive immune response; scRNA, single-cell 
RNA; and STS, short-term survival.
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T cell responses (Franklin et  al., 2014; Pombo Antunes et  al., 
2020). Normal naïve microglial cells can reduce the ability of 
human stem cells to acquire a spheroid morphology, thereby 
adversely affecting GSCs and inhibiting the growth of gliomas. 
However, another study suggested that microglial cells or 
monocytes derived from gliomas lack such antitumor potential 
(Sarkar et  al., 2013). scRNA-seq analysis of human gliomas 
showed that blood-derived TAMs upregulate immunosuppressive 
cytokines and demonstrate an altered metabolism relative to 
microglial TAMs and that the gene signature of blood-derived 
TAMs but not microglial TAMs correlates with significantly 
inferior survival in low-grade glioma (Wu et al., 2010). Signatures 
of microglial TAMs were not included among the curated 
markers used for tumor tissue analysis; however, scRNA-seq 
analysis showed that negative immune response samples 
comprised a significantly higher macrophage: microglia ratio 
than positive immune response samples (98 vs. 34.5, respectively; 
Table  2).

CONCLUSION

We present a comprehensive characterization of non-tumor 
cells in the niches of primary glioblastoma by integrating 
four large cohorts of GBM gene expression data and 540 
gene signatures covering 64 non-tumor cells types. We  find 
that non-tumor cell type enrichment status is useful for 
stratifying glioblastomas into different prognostic groups 
(positive or negative immune response clusters). The negative 
immune response clusters are uniformly enriched with immune 
system- and organogenesis-related GO terms, whereas positive 
immune response clusters are enriched with the nervous 
system. The mesenchymal differentiation is also observed 
in the negative immune response clusters. Moreover, risk 
analysis using cell components to determine glioma niches 
helps interpret the impact of cell type on cancer prognosis. 
Astrocytes, macrophages, monocytes, NKTs, and MSC are 
found as risk factors, and CD8 T cells, CD8 naive T cells, 
and plasma cells are protective factors. Particularly, the high 
presence of macrophages in the negative immune response 
clusters is validated using scRNA-seq analysis and IHC 
staining of GBMs from independent cohorts. Future 

investigations should focus on cell types with variable risk 
levels in order to elucidate the potential mechanisms involved 
in shifts in prognostic effects. Other stratification methods 
should be established and evaluated for categorizing samples 
individually rather than as groups.
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Identification and Validation of
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Background: This study aimed to explore the biological functions and prognostic role of
Epithelial-mesenchymal transition (Epithelial-mesenchymal transition)-related lncRNAs in
colorectal cancer (CRC).

Methods: The Cancer Genome Atlas database was applied to retrieve gene expression
data and clinical information. An EMT-related lncRNA risk signature was constructed
relying on univariate Cox regression, Least Absolute Shrinkage and Selector Operation
(LASSO) and multivariate Cox regression analysis of the EMT-related lncRNA expression
data and clinical information. Then, an individualized prognostic prediction model based on
the nomogram was developed and the predictive accuracy and discriminative ability of the
nomogram were determined by the receiver operating characteristic curve and calibration
curve. Finally, a series of analyses, such as functional analysis and unsupervised cluster
analysis, were conducted to explore the influence of independent lncRNAs on CRC.

Results: A total of 581 patients were enrolled and an eleven-EMT-related lncRNA risk
signature was identified relying on the comprehensive analysis of the EMT-related lncRNA
expression data and clinical information in the training cohort. Then, risk scores were
calculated to divide patients into high and low-risk groups, and the Kaplan-Meier curve
analysis showed that low-risk patients tended to have better overall survival (OS).
Multivariate Cox regression analysis indicated that the EMT-related lncRNA signature
was significantly associated with prognosis. The results were subsequently confirmed in
the validation dataset. Then, we constructed and validated a predictive nomogram for
overall survival based on the clinical factors and risk signature. Functional characterization
confirmed this signature could predict immune-related phenotype and was associated
with immune cell infiltration (i.e., macrophages M0, M1, Tregs, CD4 memory resting cells,
and neutrophils), tumor mutation burden (TMB).

Conclusions: Our study highlighted the value of the 11-EMT-lncRNA signature as a
predictor of prognosis and immunotherapeutic response in CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common malignancy
with the second-highest cancer-related mortality worldwide. The
number of cases is expected to rise by 60% in the year 2030
worldwide. Despite the development of CRC therapies such as
surgery, radiotherapy, chemotherapy, targeted therapy,
immunotherapy, the 5-years survival rate of late stages CRC
still less than 20% (Siegel et al., 2017). Increasing data underline
that the tumor microenvironment (TME) contributes a vital role
in CRC progression, as well as in the response to therapy. In most
types of cancer, the infiltration of CD8 T cells and tumor-
infiltrating lymphocytes (TIL) in tumor beds is a biomarker
for a good prognosis (Ma et al., 2019). Similarly, the presence
of CD8 T cells in the tumor bed and infiltrating margins is
strongly associated with prognosis in CRC (Zhang et al., 2018).

Based on the mutation pattern and the ratio of MSI markers,
CRC tumors can be divided into the dMMR group and pMMR
group. In recent years, studies have shown that dMMR-MSI-H
CRC tumors have a high tumor mutation burden and can present
new antigens on major histocompatibility complex (MHC) class I
molecules, which makes them more sensitive to T cell activation
therapy, while the pMMR-MSI-L CRC tumor has a low tumor
mutation burden, with a low immune response rate (Ledys et al.,
2018). Therefore, in 2017, the Food and Drug Administration
(FDA) approved PD-1 drugs for dMMR-MSI-H mCRC patients.
Unfortunately, only about 15% of CRC patients with the dMMR-
MSI-H phenotype, and among all mCRC patients, the dMMR-
MSI-H phenotype only accounts for about 5%. Moreover, not all
CRC cases with the dMMR-MSI-H phenotype respond well to
immunotherapies (Fabrizio et al., 2018). A series of studies
showed that the effective rate of immunotherapy in CRC with
dMMR-MSI-H phenotype is only 40%, while in pMMR CRC
patients, the effective rate of immunotherapy is very low, and
recent biological advances suggest that combination therapy can
reverse this resistance (Ghiringhelli and Fumet, 2019).
Furthermore, several experimental data have shown that
tumor intrinsic factors may also modulate responses to
immunotherapy, such as genes participating in cell adhesion,
extracellular matrix remodeling, angiogenesis, wound healing,
and mesenchymal transformation (Hugo et al., 2016). As such, it
is urgent to look for biomarkers or more effective strategies based
on tumor gene-expression profiling to treat patients with various
subsets of advanced CRC.

Epithelial-mesenchymal transition (EMT) is a process in
which epithelial cells lose connection and polarity, and acquire
plasticity, migration, invasion ability, stem cell-like
characteristics, and resistance to apoptosis. It has been proved
that EMT is an important way to promote tumor cell metastasis.
Accumulating preclinical researches have confirmed that the level
of EMT contributes to the level of immunosuppression, with
more mesenchymal tumors being more resistant to
immunotherapy, and tumor immunosuppression and immune
evasion could be reversed by the EMT progress. (Terry et al.,
2017; Dongre and Weinberg, 2019).

Moreover, emerging studies revealed that EMT is regulated by a
complex regulatory network, including the typical regulation of EMT

transcription factors (EMT-TFs), noncoding RNAs, epigenetic
modification, post-translational regulation, and alternative splicing
factors (Chaffer et al., 2016; Diepenbruck andChristofori, 2016; Nieto
et al., 2016). Thus, EMT-related lncRNAs and genes may be a
promising target for future therapeutic interventions.

Currently, accumulating shreds of evidence indicated that
lncRNAs play a vital role in the progression of tumors and
can be used as robust predictors of the prognosis for cancer
patients. It has been well known that lncRNAs involved EMT
progression. For instance, in our previous study, we identified
that linc00662 was significantly increased in CRC cells and
tissues, and significantly stimulating EMT progression and
inducing tumor growth both in vivo and in vitro (Wang et al.,
2020a). Moreover, other research revealed that decreasing the
expression of linc01133 can inhibit EMT and metastasis in CRC
cells (Kong et al., 2016). Nevertheless, a single lncRNA may only
explain its partial effect on tumors, so it is very important to
comprehensively analyze the expression profile of EMT-related
lncRNAs, as well as their different pathological features and
prognostic value in CRC, which may lead to a deeper
understanding of the effect of EMT-related lncRNAs on
tumors and to propose newer treatment strategies.

In the current research, we analyzed the RNAseq data and
corresponding clinical information retrieved from the TCGA (N �
581) database to comprehensively explore the prognostic role of
EMT-related lncRNA, and an 11-lncRNA signature was
constituted and validated in the training and test cohorts.
Furthermore, we then characterized the underlying molecular
and immune profile of EMT-related lncRNAs signature in CRC.
Consequently, we found that this signature could identify different
immune infiltration states, TIDE prediction score, and MSI status
of each patient, which explains it was a promising prognostic
biomarker for CRC patients receiving immunotherapy.

METHODS

Data Acquisition
The RNA-seq reads count and clinical information were obtained
from the TCGA database (https://portal.gdc.cancer.gov/). Samples
with a survival time≥of 30 days were selected to ensure higher quality
analysis. Subsequently, 581 patients with CRC from the TCGA were
included for further analysis. Then, we retrieved somatic mutation
profiles of all tumor samples in the TCGA database.

Identification of Epithelial-Mesenchymal
Transition-Related lncRNAs
200 EMT-related genes were downloaded from the Molecular
Signature database v7.1 (MSigDB) (http://www.broad.mit.edu/
gsea/msigdb/). To identify EMT-related lncRNAs, firstly, all
lncRNAs expression data were extracted from the TCGA
database relying on the GENCODE project (http://www.
gencodegenes.org). Then, Pearson correlation analysis between
EMT-related genes and all lncRNA expression data in samples
was performed to identify the EMT-related lncRNA based on |Cor
pearson| > 0.6 and p-value < 0.01.
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Development and Validation of the
Prognostic Signature
CRC patients were randomly divided into training and test
cohorts with a 6:4 ratio. In the training cohort, univariate Cox
regression analysis was carried out to explore the relationship
between each EMT-related lncRNA expression and overall survival
(OS). Then, these lncRNAs were further analyzed by utilizing LASSO
penalized Cox proportional hazards regression to identify the best risk
model in the R package “glmnet”. Using the following formula: risk
score�(β1*G1+β2*G2+β3*G3+/+βn*Gn) to calculate the risk score
for each patient, where β is the coefficient of each lncRNA, G
represents each lncRNA expression value, and n denotes the
number of lncRNAs. Patients were classified into two risk groups
depending on themedian risk score. Moreover, the survival curve was
adopted using the Kaplan-Meier method in the R survminer package,
where the differences between the two risk groups were calculated by
the log-rank test. Meanwhile, a time-dependent receiver operating
characteristic (ROC) curve was determined using R ‘survivalROC’
package, of which the area under the curve (AUC) was calculated to
assess the accuracy of the prognostic risk signature. To further verify
the predictive performance of the prognostic signature, the risk scores
were also calculated in the testing cohort utilizing the same prognostic
formula, and the Kaplan–Meier survival curve and ROC curve were
conducted with a cutoff value of the median risk score.

Independence of the Epithelial-Mesenchymal
Transition-Related lncRNA Signature
Univariate Cox regression analysis andmultivariate Cox regression
analysis were used to identify independence by exploiting the
lncRNA characteristics of OS and corresponding clinical
information. p < 0.05 was considered as statistically significant.

Nomogram Construction and Validation
The ‘rms’ R package was used to establish the nomogram based
on all independent prognostic factors (https://cran.r-project.org/
web/packages/rms/index.html). Then, Calibration plot curve
analysis was applied to evaluate the discrimination and the
calibration of the nomogram.

Gene Set Enrichment Analysis Enrichment
Analysis
In the signaling pathway analysis, differential expression analysis
was first performed on all genes to analyze the samples with the
high and low-risk score using the ‘DESeq2’ package of R.
Enrichment analysis to determine the signaling pathways in
which the differentially expressed genes are involved was then
carried out by using the gene set enrichment analysis (GSEA)
method based on the HALLMARK gene sets with the
‘clusterProfiler’ package of R. When p < 0.05 and FDR <0.05,
the path ways were considered as statistically significant.

Gene Mutation Analysis
In the gene mutation analysis, information on genetic alterations
was obtained from the cBioPortal database, and the quantity and
quality of gene mutations in two risk subgroups were analyzed by
utilizing the ‘Maftools’ package of R. Then, we calculated the

TMB of each patient and described the difference of TMB in two
risk subgroups.

Tumor Microenvironment Analysis
To evaluate the tumor microenvironment in CRC, we identified the
infiltration levels of 22 immune cells using the CIBERSORT
algorithm based on the expression level of all genes. First, we
uploaded the expression data of all genes to the CIBERSORTx
web portal. Next, the algorithm was run using the LM22 signature
for 1,000 permutations. The CRC samples with an output p-value <
0.05 were selected for further analysis. Moreover, the immune core
and the stromal score were calculated using the “estimate” R package.
Single sample GSEA (ssGSEA) analysis was then performed with the
‘GSVA’ package of R, to estimate the abundance of 28 immune
infiltrate cells. Additionally, TIMER 2.0 (Tumor Immune Estimation
Resource) database was used to explore the correlation of mutation
genes and immune infiltration level in CRC.

Immunotherapeutic Sensitivity With
Prognostic Signature
To further validate the predictive performance of the given
prognostic signature for the ICIs response, the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm was assigned to
assess the immunogenicity and immunotherapeutic sensitivity of
CRC patients. The results were measured by the TIDE score, which
was calculated online (http://tide.dfci.harvard.edu/). According to
the default settings, a patient with a TIDE value < 0 was defined as a
responder (positive sensitivity to immunotherapy), whereas a
patient with a TIDE value > 0 was defined as a non-responder
(negative sensitivity to immunotherapy).

Statistical Analysis
R software (R version: 3.6.3) was used to perform all data
statistical analyses. Wilcoxon test (Mann-Whitney test) was
applied to analyze continuous variables, whereas the Fisher’s
exact test or chi-square test was used to analyze the categorical
data. The survival difference was calculated with the K-M analysis
methods and the log-rank test. For all statistical analyses, p-value
less than 0.05 indicated statistical significance.

RESULTS

Identified Epithelial-Mesenchymal
Transition-Related lncRNA in CRC
To explore EMT-Related genes in CRC, we initially retrieved the
data from the MSigDB database, with the hallmark gene
sets name: HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION, we collected altogether 200 EMT-related
genes (Supplementary Table S1). Then, we carried out
correlation analysis on EMT-related genes and EMT-related
lncRNAs, and the absolute Pearson coefficient >0.6 and p-value <
0.01 was used as the screening criteria, we identified a total of
1381 EMT-related lncRNAs (Supplementary Table S2). Finally,
we merged the LncRNA expression data and clinical information
for further analysis.
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Construction and Validation of the
EMT-Related lncRNA Signature
In total, 581 eligible patients with integrated information, as well as a
survival time≥of 30 days were incorporated in the TCGA-CRC
dataset and randomly divided into two independent cohorts at a
ratio of 6:4, and 1381 EMT-related lncRNAswere included to identify
the prognostic risk model. In the univariate Cox regression analyses,
34 lncRNAswere significantly related to OS, which was considered as
potential predictors. Then, a LASSO regression algorithmwas applied
for feature selection, when the partial likelihood binomial deviation
reaches theminimum value, themost suitable tuning parameter λ for
LASSO regression is 0.055 (Figure 1A), 25 variables with non-zero
coefficients retained in the LASSO analysis (Figure 1B) were further
used for multivariate stepwise Cox regression analysis. Then, we
established an 11-lncRNA signature model through multivariate
stepwise Cox regression hazards analysis (Figure 1C). The risk
score of each patient in the training set and validation set is
calculated according to the risk formula:

Riskscore�AC010536.3p(0.295166381)+AC026369.1p
(0.256505491)+AL391095.2p(0.588758986)+AC018755.4p
(-0.363854498)+AC002456.1p(0.449864493)+AC020703.1p
(-0.887819474)+AC060234.3p(-0.871113022)+AC079070.1p
(1.188015484)+EGFLAM.AS4p(-0.851540675)+LINC01147p
(-0.551055647)+PGM5.AS1p(0.160723859).

Taking the median risk score as the cutoff value, we
categorized patients into a high-risk group and low-risk group.
As depicted in Figures 2A,B, our data showed that high-risk group
patients had a worse OS than low-risk group patients (p < 0.0001 in
the Training cohort and p � 0.024 in the testing cohort, log-rank
test). Additionally, as it showed in Figure 2C, the high expression
level of AC010536.3, AC026369.1, AL391095.2, AC002456.1,
AC079070.1and PGM5. AS1 was reported in the high-risk
group, conversely, the expression level of AC018755.4,
AC020703.1, EGFLAM. AS4 and LINC01147 were higher in the
low-risk group, which was consistent in the test cohort
(Figure 2D). Besides, it was found the OS patients in the high-
risk group have corresponded to more death cases in the training
cohort and consistent in the validation cohort (Figures 2E,F). By
drawing a ROC curve based on the risk model, the AUC value in
the training cohort was 0.778, 0.812, 0.825, and 0.655, 0.613, 0.655
in the testing cohort in 1,3,5 year prediction, indicating a good
prediction prognostic accuracy (Figures 2G,F).

To further explore the prognostic value of EMT-lncRNA
markers for CRC patients stratified by clinical variables, we
divided patients into different groups according to age, gender,
and stage, and our data showed that the risk score of CRC patients
was positively associated with the stage, but no significant
correlation with age, gender and plasma CEA level, considering
the different stratified analysis (Figures 3A–D).

Construction of the Nomogram and
Performance
To verify whether the EMT-related lncRNA signature can be used
as an independent predictor of OS, we used univariate and
multivariate Cox regression analyses. The results showed that

age, stage, and the lncRNA signature can be used as independent
predictors of OS (Figure 4A). Then, the EMT-related lncRNA
signature, age, and stage were selected for the construction of the
nomogram (Figure 4B). The AUC was 0.816,0.827,0.834
(Figure 4C) and 0.734,0.793,0.819 (Figure 4D) in the training
cohort and testing cohort in predicting 1 year, 3 years, and 5 years
OS in CRC, indicating good discrimination and as shown in
Figure 4E, the calibration plots also present high performance in
predicting 1 year, 3 years and 5 years OS in CRC. These results
indicated that the nomogram has high accuracy.

Molecular Characteristics of the
Epithelial-Mesenchymal Transition-Related
lncRNA Signature
As showed in Figure 5A, in total, 58 DEGs were obtained
after performing the difference analysis on the mRNA of the
high - and low-risk groups, including 24 up-regulated and 34 down-
regulated DEGs based on the cut-off criteria (p < 0.05 and |logFC|>1).
Then, GSEA analysis was applied to determine the significant pathway
associated with the high- and low-risk group in the training cohort,
patients in the high-risk group were mainly enriched in cancer and
tumor metastasis-related pathways, such as aptical_junction,
coagulation, epithelial-mesenchymal transition, hedgehog_signaling,
hypoxia, myog enesis and Wnt_β_catenin_signaling pathways
(Figure 5B). While patients in the low-risk group were mainly
enriched in immune response-related pathways, such as allograft_
rejection, complement, IL2_STAT5_signaling, IL_6_JAK_STAT_3
signaling, inflammatory_response, interferon_alpha_response,
interferon_gamma_response, and TNFA_signaling_via_NFKB
pathways (Figure 5C).

Besides, gene mutations were analyzed to gain further biological
insight into the high- and low-risk group in the training cohort. The
results indicated that there was no significant difference inmutation
counts between the two groups, and missense_mutation was the
most common type. Then, we selected the top 15 genes with the
highest mutation rates in two groups (Figures 6A,B), the mutation
rates of APC, TP53, TTN, KRAS, SYNE1,MUC16, PIK3CA, FAT4,
RYR2, DNAH11 were both higher than 16% in the two groups.
What is different is that the mutation rates of APC and TP53 were
higher in the high-risk group than that in the low-risk group (81 vs
73% and 64 vs55%, which led to the decreased infiltration of CD4 +
and CD8 + T lymphocytes in the high-risk group. Supplementary
Figure S3), and the mutation of CSMD3, USH2A, and NEB genes
were more common in the high-risk group, while the mutation of
DNAH5, FAT3, and FBXW7 genes were more common in the low-
risk group, Interestingly, in the TIMER 2.0 database, we found that
the high mutation rate of USH2A, and NEB genes in the high-risk
group resulted in decreased infiltration of CD4 + T lymphocytes
and CD8 + T lymphocytes in the tumor center, while increased
infiltration of Treg cells. In the low-risk group, the high mutation
rates of DNAH5, FAT3, and FBXW7 genes resulted in increased
infiltration of central CD4 + T lymphocytes and CD8 + T
lymphocytes, while decreased infiltration of Treg cells, as shown
in Supplementary Figure S1 and Supplementary Figure S2. We
then further explored whether the high - and low-risk groups were
associated with TMB, and our data demonstrated that the TMBwas
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slightly higher in the low-risk group than that in the high-risk group
(Figure 6C, p � 0.059).

Immune Characteristics of Different
Subgroups
We further evaluated the status of immune cell infiltration in
TCGA colorectal cancer transcriptome using the ssGSEA
approach, and 28 immune-related terms were incorporated to

assess the abundance of immune cells in the tumor immune
microenvironment. The results showed that 21 immune cell types
were significantly different between the two groups (Figure 7A).
Next, the CIBERSORT algorithm was performed to investigate
the immune infiltration in CRC tissues between the high-risk and
low-risk group. The results revealed that Neutrophils cells,
macrophages M1 cells, T cell CD4 memory resting cells were
more abundant in the low-risk group while macrophage M0 cells
and T cells regulatory cells were more abundant in the high-risk

FIGURE 1 | Feature selection using LASSOCOX regression andmultivariate Cox regression analysis. (A) Selection of tuning parameter (λ) in the LASSO regression
using 10-fold cross-validation via minimum criteria. (B) LASSO coefficient profiles for clinical features and 25 nonzero coefficients are selected. C.11 lncRNAs were
selected through multivariate Cox regression analysis.
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FIGURE 2 | EMT-related lncRNA signature predicts OS in patients with CRC. (A, B) Kaplan-Meier curve to verify the predictive effect of the signature in the training
and test cohort. (C, D) The heatmap of the expression profiles of members in the 11-lncRNA signature. (E, F). Distribution of risk scores per patient in the training and test
cohort. (H, G): ROC curve analysis to evaluate the diagnostic efficacy of the signature.
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group (Figure 7B). Subsequently, the ESTIMATE algorithm was
performed, and we found that estimatescore and immunescore
were much higher in the low-risk group than in the high-risk
group, while there was no significant difference in stromalscore
between the two groups. Therefore, those results indicate that
there were more immune components in TME in the low-risk
group (Figure 7C).

The Benefit of ICI Therapy in Two Different
Subgroups
As we knew, the higher TIDE prediction score represented a
higher potential for immune evasion, which indicated that the
patients were less sensitive to ICI therapy. Then TIDE was used to
assess the potential clinical efficacy of immunotherapy in two
groups. The results revealed that the low-risk group had a lower
TIDE score than the high-risk group, indicating that the low-risk
patients could benefit more from ICI therapy than those in the
high-risk group (Figure 8A). Also, we found the low-risk group

had a higher microsatellite instability (MSI) score (Figure 8B),
while the high-risk group had a higher T cell exclusion score
(Figure 8C), but there was no difference in T cell dysfunction
between the two subgroups (Figure 8D).

DISCUSSION

Even with significant advances in screening and treatment
strategies, CRC remains the second largest cause of cancer-
related death around the world (Siegel et al., 2020). Therefore,
a better understanding of CRC pathogenesis and exploring
potential biomarkers will likely yield novel insights into the
management and prognosis of CRC. In recent years, it has
been widely revealed that EMT is closely related to cancer
progression and metastasis (Mittal, 2018; Aiello and Kang,
2019), among them, abnormal development of genome,
including lncRNA and mRNA, is a typical feature of

FIGURE 3 | The association between EMT-related signature risk score and clinical factors, including. (A) Age, (B) CEA, (C) Gender, (D) Stage.
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FIGURE 4 | Nomogram for predicting overall survival (OS) of patients with CRC. (A)Multivariable analyses for each clinical feature. (B) Nomogram construction for
the 1-, three- and 5 year OS prediction for the CRC. (C, D) Evaluation of the accuracy of the nomogram in 1-, three- and 5 years by using the ROC analysis. (E)
Calibration curve for the nomogram model for predicting 1-, three- and 5 years OS.
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FIGURE 5 | Difference analysis. (A) A volcano map shows different EMT-related genes of the high - and low-risk groups. Gene Set Enrichment Analysis (GSEA) for
identifying the significant pathway associated with the high-risk group (B) and low-risk group (C).
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FIGURE 6 |Biological insight into the high- and low-risk group. (A, B) significantly mutated genes in themutated CRC samples of the high - and low-risk groups. (C)
The proportions of TME cells in the high - and low-risk groups.
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FIGURE 7 | EMT-related lncRNA clusters significantly associated with the immune microenvironment. (A, B) Statistical differences in each type of immune cell
between high-risk group and low-risk group using ssGSEA approach (A) and CIBERSORT algorithm (B). (C)Stromal score and immune score were calculated via
ESTIMATE method between high-risk group and low-risk group. (ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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regulating the tumor EMT process, in the present study, we aim
to address the prognostic value of EMT-related lncRNAs in CRC.

Based on the TCGA dataset, we established an innovative and
efficient EMT-related lncRNA signature, and then its validity was
verified on the validation set, the ROC analysis results revealed its
high prognostic value in two data set, besides, the signature
showed a significant correlation with the TNM stage,
furthermore, our data showed that low-risk group patients had
a better OS. As the EMT-related lncRNAs were considered as a
potential predictor for OS, as well as age and stage, a nomogram
was constructed based on the above factors and showed
promising performance in the 1-, three- and 5 years, which
may distinguish individualized treatment of in CRC patients.
In brief, our data revealed that a marvelous prognostic value of
our EMT-related lncRNA signature, which may provide a
theoretical basis for EMT-related targeted therapies for CRC.
Moreover, in GSEA analysis, the results indicated that different
pathways related to the progression of tumor were significantly
enriched in the low-risk group and high-risk group, however,

immune response-related pathways mainly enriched in the low-
risk group and tumor metastasis-related pathways mainly plays a
regulatory role in the high-risk group.

The EMT-related lncRNA signature was made up of 11
lncRNAs, and the molecular mechanism or prognostic value
of them has not been exposed, due to their high prognostic
value, subsequent experiments are needed to clarify their role
in CRC.

Additionally, to explore biological characteristics of the
subgroups in the training cohort, we then studied gene
mutations of the high- and low-risk group. The results showed
that missense variations were the most common type in the two
groups, and significant variation differences between the two
groups were APC and TP53, which were more common in the
high-risk group than low-risk group (81 vs 73% and 64 vs55%), In
Michael J et al. study, they revealed that APC and TP53 mutation
is the most strongly negatively associated with MSI but positively
associated with distant metastasis, which suggested a worse
prognosis (Schell et al., 2016). Furthermore, in TIMER 2.0

FIGURE 8 | (A) TIDE, (B)MSI, and T cell exclusion (C) and dysfunction score (D) in the high-risk Group and low-risk group. The score between the two subgroups
were compared through the Wilcoxon test (ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001).
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database, we found that mutations in APC and TP53 genes can
reduce the infiltration of CD4 + T lymphocytes and CD8 + T
lymphocytes. In addition, we also found that high mutations in
USH2A and NEB genes in high-risk groups lead to decreased
infiltration of CD4 + T lymphocytes and CD8 + T lymphocytes in
tumor centers and increased infiltration of Treg cells, which may
be a factor leading to the characteristics of active immune
response and low invasive tumor phenotype in patients in the
low risk group. In the low-risk group, the high mutation rate of
DNAH5, FAT3 and FBXW7 genes also led to the increase of
central CD4 + T lymphocyte and CD8 + T lymphocyte
infiltration and the decrease of Treg cell infiltration. Those
may partly explain that the higher mutation rates of APC,
TP53, USH2A and NEB genes lead to a worse survival
prognosis in the high-risk group. What’s more, it is well
known that TMB has been shown to be a potential biomarker
for predicting ICI treatment response in many tumor types
(Goodman et al., 2017; Jardim et al., 2021), our results
revealed that the TMB was slightly higher in the low-risk
group than that in the high-risk group, we thought that may
partly explain the low-risk group was more sensitive to
immunotherapy.

To further understand the immune characteristics of the two
groups. The ssGSEA method was used to further evaluate the
immune-cell infiltration status of TCGA colorectal cancer
transcriptome, and the results suggested that neutrophils,
macrophage M1 cells, T cells, and CD4 memory resting cells
were enriched in the low-risk group, while M0 cells and T cell
regulatory cells were more common in the high-risk group,
numerous studies have shown that dense infiltration of T cells,
especially cytotoxic CD8 T cells, and high density of M1
macrophages may be associated with acute inflammation,
suggesting a good prognosis (Fuchs et al., 2019; Marcelis
et al., 2020). In contrast, in many malignancies, M2
macrophages (the major subtype of macrophages) are
associated with chronic inflammation and contribute to
tumor growth and the development of aggressive phenotypes
and have been associated with adverse outcomes (Mantovani
et al., 2002; Yamaguchi et al., 2016), and it is noteworthy that
our findings support these conclusions. Furthermore, according
to the ESTIMATE algorithm, we identified that estimatescore
and immunescore were much higher in the low-risk group,
which suggests that the low-risk group had more immune
components in TME, implying a favorable immunotherapy
strategy.

It has been reported that TIDE is used to identify the
underlying factors of two mechanisms of tumor immune
escape: induction of T cell dysfunction in tumors with high
cytotoxic T lymphocyte (CTL) invasion, and prevention of
T cell invasion in tumors with low CTL levels (Wang et al.,
2020b; Fu et al., 2020; Tsukada et al., 2020), interestingly, in our
study, we also discovered that the low-risk group not only had a
higher MSI score and lower TIDE score, but also had a lower
T cell exclusion score, when compared to the high-risk group,
even if there was no difference in T cell dysfunction between the
two subgroups, those results suggested that these low-risk group
patients had lower levels of immune escape and more MSI, and

the higher mutational burden makes the tumor immunogenic
and sensitive to PD1 therapy (Lin et al., 2020).

In the current study, we employed Univariate Cox analysis and
LASSO algorithms to select significant candidate EMT-related
lncRNAs for further multivariate Cox regression to construct the
prognostic signature, and stratified analysis revealed that the
signature was significantly associated with TNM stages.
Furthermore, we used ssGSEA, CIBERSORT algorithm and
the ESTIMATE method to assess the relative immune cell
infiltrations of each sample. Differentially infiltration of
immune cells and diverse tumor mutation burden (TMB)
scores might give rise to the efficacy of lncRNA signature for
predicting the sensitivity of immunotherapy for CRC patients.
The effective signature we constructed was due to the TCGA
database with sufficient tumor samples and complete
clinical data.

Previous methods to study tumor immune
microenvironment include immunohistochemistry and flow
cytometry, both of which are inevitably limited to narrow
views when comprehensively analyzing the composition of
immune cells, and flow cytometry may lead to cytolysis of
some cell types. In this study, the gene expression profile and
clinical information of colorectal cancer were downloaded
from TCGA database, and CIBERPORT, ESTIMATE and
ssGSEA algorithm, general gene expression based
evolutionary algorithm, are used to quantify cell
components from gene expression profiles of large tissues.
Therefore, different types of infiltrating immune cells can be
quantified at the same time, so that the method avoids the
concerns of various surface markers and possible cell
separation. Of course, there are some limitations in using
public database analysis, for example, in our study, we used
the TIDE score to evaluate the potential clinical efficacy of the
signature on immunotherapy, our results suggest that the
TIDE score of the high-risk group is slightly higher than
that of the low-risk group, but there is no significant
statistical difference, this may be due to the insufficient
number of CRC cases in TCGA database. Moreover, the
signature also lacks external clinical samples to verify its
effectiveness, which is also the disadvantage of using our
method in public database, which depends on further
improvement in future work. In one word, although the
EMT-related lncRNA signature we developed is somewhat
innovative, there are some limitations: the risk signature is
established based on the TCGA public database, however, there is
no strong external data to verify the effectiveness and practicability.
Furthermore, the TCGA database was of limited size, and important
clinical information was missing, which can lead to potential basis or
errors.

CONCLUSION

Collectively, our study developed and validated an EMT-related
lncRNA signature that could be used as a certain reliable tool for
predicting individual prognosis and decision-making in the
treatment of patients with CRC.
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Background: Lung adenocarcinoma is one of the most common malignant tumors of the
respiratory system, ranking first in morbidity and mortality among all cancers. This study
aims to establish a ferroptosis-related gene-based prognostic model to investigate the
potential prognosis of lung adenocarcinoma.

Methods: We obtained gene expression data with matching clinical data of lung
adenocarcinoma from the The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases. The ferroptosis-related genes (FRGs) were downloaded
from three subgroups in the ferroptosis database. Using gene expression differential
analysis, univariate Cox regression, and LASSO regression analysis, seven FRGs with
prognostic significance were identified. The result of multivariate Cox analysis was utilized
to calculate regression coefficients and establish a risk-score formula that divided patients
with lung adenocarcinoma into high-risk and low-risk groups. The TCGA results were
validated using GEO data sets. Then we observed that patients divided in the low-risk
group lived longer than the overall survival (OS) of the other. Then we developed a novel
nomogram including age, gender, clinical stage, TNM stage, and risk score.

Results: The areas under the curves (AUCs) for 3- and 5-years OS predicted by the model
were 0.823 and 0.852, respectively. Calibration plots and decision curve analysis also
confirmed the excellent predictive performance of the model. Subsequently, gene function
enrichment analysis revealed that the identified FRGs are important in DNA replication, cell
cycle regulation, cell adhesion, chromosomal mutation, oxidative phosphorylation, P53
signaling pathway, and proteasome processes.

Conclusions:Our results verified the prognostic significance of FRGs in patients with lung
adenocarcinoma, which may regulate tumor progression in a variety of pathways.
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BACKGROUND

Lung cancer is the most commonly diagnosed malignant tumor
worldwide, whose morbidity and mortality rate rank first among
all cancers, and the severity is increasing year by year, posing a
great threat to human health (Sung et al., 2021). According to
pathological classification, the disease can be categorized as small
cell lung adenocarcinoma and non-small cell lung cancer
(NSCLC), among which, the latter accounts for about 2/3
cases (Rodríguez-Martínez et al., 2018). NSCLC can be divided
into three types, including lung adenocarcinoma, squamous cell
lung cancer, and non-small cell lung cancer, of which lung
adenocarcinoma accounts for about 40% of cases (Bender,
2014). Epidemiological data reveal that the 5-years overall
survival rate of lung cancer in all stages is as low as 15.9%
(Ettinger et al., 2013). Therefore, it is of great importance to
find biomarkers closely associated with the prognostic outcomes
of lung cancer, especially lung adenocarcinoma, as well as to
evaluate the prognosis outcome of patients with squamous cell
lung cancer through these markers, which can improve the
prognosis and formulate individualized diagnosis and
treatment (Santarpia et al., 2020).

Ferroptosis, a relatively novel kind of cell death discovered
recently, is involved in the pathophysiological process of many
diseases including tumors (Wu et al., 2019), and it is different
from apoptosis, necrosis, and autophagy due to a feature: being
iron-dependent. It is caused by the accumulation of toxic lipid
reactive oxygen species and the consumption of
polyunsaturated fatty acids (Li et al., 2020). Polyunsaturated
fatty acid is an important substrate in ferroptosis, and the C–H
bond in the diallyl group of polyunsaturated fatty acid is easily
attacked by oxidation. Compared with normal cells, cancer cells
have the phenomenon of iron ion aggregation, and the
regulation of ferroptosis from the perspective of iron
homeostasis can effectively kill tumor cells (Lei et al., 2021).
In recent years, for the treatment of advanced tumors, especially
drug-resistant tumors, inducing the death of cancer cells
through ferroptosis has become a very promising option (Xu
et al., 2021). In addition to various induction molecules, many
genes can also be markers of ferroptosis (Chen et al., 2021a). At
present, ferroptosis-related genes have shown good predictive
performance in not a few tumors, including glioma (Zhuo et al.,
2020), liver cancer (Tang et al., 2020), pancreatic cancer (Jiang
et al., 2021a), gastroenteric tumor (Angius et al., 2019), urologic
neoplasms (Liu et al., 2021), and thyroid cancer (Ge et al., 2021).
However, the relationship between FRGs and prognosis and the
outcome of patients with lung adenocarcinoma has not been
reported in depth.

Therefore, our study aims to explore the role of FRGs to
predict outcome, and on the basis of which, establish a prognostic
model to assess the prognostic outcome of patients with lung
adenocarcinoma. Based on the differentially expressed genes
(DEGs) related to ferroptosis, a prognostic model was
constructed according to the training set, and the predictive
power of the model was verified in the validation set. Finally,
we proceeded with a functional enrichment analysis to investigate
the biological mechanism of FRGs in lung adenocarcinoma.

In this study, a prognostic model consisting of seven genes
associated with ferroptosis was established with excellent
predictive power. Enrichment analysis showed that these genes
were associated with the development of lung adenocarcinoma.

METHODS

Resources and Pre-processing
The gene expression data and related clinical information of lung
tumors were extracted from the The Cancer Genome Atlas
(TCGA) database (https://genome.nih.gov/). Ferroptosis-related
gene sets were extracted from three subgroups in the ferroptosis
database (http://www.zhounan.org/ferrdb/). Edge R package
from R was used to normalize the entire data set, set |log2FC|
> 0.5 and false discovery rate (FDR) < 0.05 as the threshold to
construct a volcano map, to further obtain differentially
expressed ferroptosis-related genes.

Construction of the Prognostic Model
According to downloaded clinical data of lung adenocarcinoma
cases from TCGA, patients with an adequate follow-up time
(>30 days) were screened and divided into a training set and an
internal validation set at a ratio of 2:1. The sets were divided to
construct a prognostic model and verify the model, respectively.
In addition, two Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/) data sets are applied for external
validation of the model. Based on the training set, we
performed univariate Cox regression analysis on FRGs and
survival data and set p < 0.05 to identify differential FRGs
related to prognosis, and LASSO regression was performed to
further screen the genes. After obtaining seven target genes, a
multi-factor stepwise Cox regression was performed to analyze
their respective coefficients (βi). Finally, a risk-scoring formula
consisting of βi and gene expression level (Expi) was constructed
as follow:

Risk score � ∑
i

i�1
(βi*Expi)

According to the model, the risk score of invidual could be
acquired. In addition, the median of the risk score was set as a
critical value, and all patients included were divided into high-
and low-risk groups. To reveal the prognostic outcome difference
between the groups Kaplan–Meier survival curve was used. Then,
the above results were verified by the validation set. To further
assess the ability to predict, we conducted a subgroup analysis to
compare the OS between the two groups.

Construction of the Nomogram
We incorporated clinical features including risk score, clinical
and TNM stage, age, and gender into the final model to establish a
novel nomogram to predict the OS of patients individually. In
addition, AUC was obtained through a receiver operating
characteristic (ROC) curve to assess the accuracy of the
nomogram. Subsequently, we used the calibration chart and
decision curve analysis to verify the predictive ability of the
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model (Ge et al., 2021). The validation set was used to verify the
results obtained finally.

Gene Set Enrichment Analysis
The reference set (2. cp.kegg.v6.2. symbols.gmt, c5. all. v6.2.
symbols.gmt) was downloaded from the Molecular Signatures
Database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp),
and the number of random combinations was set as 1,000
according to the default weighted enrichment method (NPM
p < 0.05, FDR p < 0.05). The study conducted gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomics (KEGG)
analysis on the DEGs in the groups and deduced their
functions by analyzing gene sets. Therefore, this way it can be
used to clarify the question on whether the gene set shows a
statistically significant difference between the two biological
states. The study explored whether the DEGs between the two
groups are enriched during the disease progression as well.

Statistical Analysis
All statistical analyses were conducted using R version 4.1.0
(package: limma, pheatmap, survival, glmnet, survminer,
survivalROC, rms, and timeROC). Univariate and multivariate
Cox regression were used to analyze the correlation between
clinical features, risk scores, and the OS of patients. The ROC
curve, C-index, the calibration curve, and DCA curve were used
to assess the predictive power of the model. Two-tailed p < 0.05
was considered statistically significant.

RESULTS

Extraction of Ferroptosis-Related Genes in
Lung Adenocarcinoma
The gene expression result with matching clinical data of lung
adenocarcinoma (497 tumor tissues and 54 paracancerous

FIGURE 1 | (A) Ferroptosis-related genes differentially expressed in tumor and adjacent tissues; (B) Expression of ferroptosis-related genes in tumors and adjacent
tissues.

FIGURE 2 | (A) 11 Ferroptosis-related genes significantly associated with overall survival (OS) in lung adenocarcinoma; (B) Adjustment parameters in LASSO
regression model; (C) LASSO coefficient spectrum of ferroptosis-related genes.
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FIGURE 3 | (A–F) Kaplan–Meier survival analysis of patients with lung adenocarcinoma in high- and low-risk groups; (B,G) The overall survival rate and status of
patients with lung adenocarcinoma; (C,H) The distribution of risk scores; (D,I) The expression level of these seven ferroptosis-related genes in the low-risk group and the
high-risk group, the cool color represents low expression, while the warm color represents high expression; (E,J) 3-years and 5-years ROC curve analysis of the
prognostic model.
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tissues) were extracted from the TCGA database, and the
ferroptosis-related gene set (259 genes) was obtained from the
ferroptosis database. Expressionmatrices of all ferroptosis-related
genes were extracted from the TCGA dataset and differential
expression analysis was performed (Supplementary Table S1).
Seventy-two differential ferroptosis-related genes in lung
adenocarcinoma tissues and adjacent tissues were screened
out, of which 49 were upregulated, and 23 were
downregulated (Figure 1 and Supplementary Table S2).

Construction of the Prognostic Model
The patients who met an adequate follow-up time (>30 days)
were divided into training and validation sets at a ratio of 2 to 1.
In the training set, we performed univariate Cox regression on
FRGs and corresponding clinical survival data, and initially
screened 11 FRGs related to prognosis (Figure 2A). Seven
target genes were further screened by LASSO regression
analysis, namely TXNRD1, TRIB3, SLC2A1, CDKN2A, RRM2,
SLC7A11, and G6PD (Figures 2B,C). The obtained target genes
were adapted to calculate the risk score of the individual through
the Cox proportional hazard regression model (Supplementary

Table S3). The median of the risk score was set as a cut-off value,
on which basis we divided patients into two groups (Figure 3).
The Kaplan–Meier curve showed that the OS of the high-risk
group was worse than the other group (Figure 3A). The risk
curves and scatter plots can reveal the risk score and survival
status of each patient. As shown in Figures 3B,C, the mortality
and risk coefficient of the high-risk group were significantly
higher than that of the low-risk group. Figure 3D displays the
expression profile of these seven genes. The ROC curve analysis of
the 3- and 5-years OS yielded AUCs of 0.731 and 0.709,
respectively (Figure 3E). Similar results were observed using
the same process in the internal validation set (Figures 3F–J)
and external validation (GSE37745 and GSE68465)
(Supplementary Figure S1). Subgroup analysis showed that
according to age, gender, TNM stage, or clinical stage, the
prognosis of patients in the low-risk group are more favorable
(Figure 4).

Construction of the Nomogram
We then developed a nomogram, including age, gender, clinical
stage, TNM stage, and risk score, as shown in Figure 5A. The

FIGURE 4 | Subgroup analysis showed that according to age (A,B), gender (C,D), TNM stage (E–K), and clinical stage (L,M), the OS of patients in the high-risk
group was more unfavorable than that in the other group.
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ROC curve analysis of the 3- and 5-years OS of the prognostic
model yielded AUCs of 0.823 and 0.852, respectively (Figure 5B).
The established calibration chart and decision curve analysis
show that the nomogram has a favorable predictive effect
(Figures 5D–G). In the validation set, the 3- and 5-years
AUCs obtained by analyzing the ROC curve of the novel
prediction model were 0.821 and 0.800, respectively, as shown
in Figure 5C.

Gene Set Enrichment Analysis
The GO and KEGG enrichment analysis were performed on the
DEGs of the above-mentioned high-and low-risk groups
(Figure 6). The result of the analysis disclosed that the gene
set was enriched in DNA replication, cell cycle regulation, cell
adhesion, and chromosome mutation. As shown by the KEGG
pathway enrichment analysis, screened genes were deeply
involved in the cell cycle, oxidative phosphorylation, P53
signaling pathway, proteasomes, and so on. These results
may provide a direction for researchers to study the

mechanism of ferroptosis-related genes on lung
adenocarcinoma in the future.

DISCUSSION

Lung adenocarcinoma is a commonmalignant tumor with a poor
prognosis (Devarakonda et al., 2015). Predicting the outcome of
tumors is of incontestable clinical significance in the diagnosis
and treatment of patients with lung adenocarcinoma (Chen et al.,
2021b). Previous studies have shown that chest CT, serum tumor
markers, and TNM staging can be used as prognostic indicators
of lung cancer (Calvayrac et al., 2017). However, there are certain
limitations. In case of a risk of radiation exposure, the sensitivity
and specificity are relatively low (Hoseok and Cho, 2015; Welch,
2017). Therefore, it is important to find predictors that can
accurately predict the prognosis of patients with lung cancer.

According to new studies, ferroptosis has shown non-negligible
potential in cancer treatment, especially for tumors that are not

FIGURE 5 | (A) Nomogram for predicting 3-years and 5-years survival rates of patients with lung adenocarcinoma; (B) ROC curve analysis for predicting 3-years
and 5-years OS through nomogram in the training set; (C) ROC curve analysis for predicting 3-years and 5-years OS through the nomogram in the validation set; (D)
Calibration of 3-years survival rate based on the nomogram; (E) Calibration of 5-years survival rate based on the nomogram; (F) Decision curve analysis of 3-years survival
rate based on the nomogram; (G) Decision curve analysis of 5-years survival rate based on the nomogram.
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sensitive to traditional therapies (Liang et al., 2019; Proneth and
Conrad, 2019). P53 is a widely studied gene that can suppress
tumors, and inhibit the expression of cystine/glutamate antiporter

at the transcriptional level to regulate the process of ferroptosis (Xie
et al., 2017). In addition, studies have shown that the increase in
iron-dependent reactive oxygen species can cause lipid
peroxidation outside the mitochondria triggering ferroptosis,
thereby inhibiting tumor development (Liang et al., 2019). In
lung cancer, due to the upregulation of cystine/glutamate
antiporter and the decrease in iron, ferroptosis is usually
inhibited, which leads to the relapse and development of
tumors (Lai et al., 2019). Therefore, our study aims to explore
the relationshipbetween FRGs and the prognosis of patients with
lung adenocarcinoma with the described underlying mechanism.

We obtained gene expression data with clinical data of lung
adenocarcinoma from the public database. FRGs were extracted
from the ferroptosis database. First, we identified seven target genes
through DEGs and regression analysis. Multivariate Cox analysis
was adapted to calculate regression coefficients and a prognostic
model was developed, thereby dividing patients with lung
adenocarcinoma into high- and low-risk groups. We observed
that patients in the latter group lived longer OS than the other.
Furthermore, we developed a nomogram according to the outcomes
of multivariate Cox regression. ROC curve, calibration chart, and
decision curve confirmed the prediction power of the nomogram.
Compared with previous studies, the AUC value of the prognostic
model based on ferroptosis-related genes (AUC � 0.823) was higher
than that of the prognostic model based onmetabolic genes (AUC �
0.767) (Yu et al., 2020), immune genes (AUC � 0.718) (Song et al.,
2020), and autophagy genes (AUC � 0.810) (Wang et al., 2020).

A risk scoring model consisting of seven genes (TXNRD1,
TRIB3, SLC2A1, CDKN2A, RRM2, SLC7A11, and G6PD)
associated with ferroptosis was constructed. Thioredoxin
reductase (TXNRD1) is overexpressed in lung cancer cells to
maintain tumor survival, and this overexpression has been shown
to be associated with clinical outcomes (Zhu et al., 2019). Studies
have shown that TRIB3 is significantly upregulated in LUAD cell
lines and tissues. TRIB3 gene knockdown significantly inhibited
the growth and invasion of LUAD cells (Xing et al., 2020). The
progression of lung adenocarcinoma can be inhibited by
inhibiting SLC2A1 expression (Wang et al., 2017). CDKN2A is
associated with DNA methylation and is closely related to the
prognosis of patients (Tsou et al., 2007). Inhibition of RRM2 can
activate STING signaling pathway and inhibit the enhancement
of radiosensitivity of lung adenocarcinoma (Jiang et al., 2021b).
Inhibition of SLC7A11 leads to poor prognosis in KRAS-mutated
lung adenocarcinoma (Hu et al., 2020). Previous studies have
shown that G6PD is an independent prognostic factor for lung
adenocarcinoma (Nagashio et al., 2019).

Subsequently, we conducted a gene function enrichment
analysis to reveal the mechanism of ferroptosis genes on lung
adenocarcinoma. The results demonstrated that FRGs we
screened were involved in DNA replication, cell cycle
regulation, cell adhesion, chromosomal mutation, oxidative
phosphorylation, P53 signaling pathway, and proteasome
processes. Hence, FRGs can be used as predictors of lung
adenocarcinoma prognosis and may play a crucial role in lung
adenocarcinoma biology.

In conclusion, the study found seven ferroptosis-related genes
by searching the database with prognostic value for patients with

FIGURE 6 | Kyoto Encyclopedia of Genes and Genomics (KEGG)
enrichment analysis revealed that genes identified were involved in the following
processes (A) cell cycle, (B) oxidative phosphorylation, (C) P53 signaling
pathway, and (D) proteasome. Gene Ontology (GO) enrichment analysis
demonstrated that the gene set was enriched in (E) DNA replication, (F) cell cycle
regulation, (G) cell adhesion, and (H) chromosome variation.
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lung adenocarcinoma. We constructed a clinical prognostic
model of FRGs, which possesses a good effect on predicting
the survival rate of patients with lung adenocarcinoma, indicating
that FRGs can very well predict the prognosis outcome of patients
with lung adenocarcinoma, and play a crucial role in the relapse
and development of lung adenocarcinoma.
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Inattention is one of the most significant clinical symptoms for evaluating attention deficit 
hyperactivity disorder (ADHD). Previous inattention estimations were performed using 
clinical scales. Recently, predictive models for inattention have been established for brain-
behavior estimation using neuroimaging features. However, the performance of inattention 
estimation could be  improved for conventional brain-behavior models with additional 
feature selection, machine learning algorithms, and validation procedures. This paper 
aimed to propose a unified framework for inattention estimation from resting state fMRI 
to improve the classical brain-behavior models. Phase synchrony was derived as raw 
features, which were selected with minimum-redundancy maximum-relevancy (mRMR) 
method. Six machine learning algorithms were applied as regression methods. 100 runs 
of 10-fold cross-validations were performed on the ADHD-200 datasets. The relevance 
vector machines (RVMs) based on the mRMR features for the brain-behavior models 
significantly improve the performance of inattention estimation. The mRMR-RVM models 
could achieve a total accuracy of 0.53. Furthermore, predictive patterns for inattention 
were discovered by the mRMR technique. We  found that the bilateral subcortical-
cerebellum networks exhibited the most predictive phase synchrony patterns for inattention. 
Together, an optimized strategy named mRMR-RVM for brain-behavior models was found 
for inattention estimation. The predictive patterns might help better understand the phase 
synchrony mechanisms for inattention.

Keywords: predictive models, inattention, feature selection, regression algorithms, phase synchrony

INTRODUCTION

Estimating personalized cognitive or behavioral scores from neuroimaging is an interesting 
yet challenging topic nowadays (Rosenberg et  al., 2016; Shen et  al., 2017; Yoo et  al., 
2017; Rosenberg et  al., 2018; Sui et  al., 2020). The individual brain-age, Intelligence 
Quotient (IQ), attention, as well as personality can be  estimated either from structural 
or functional MRI using machine learning (Zhao et  al., 2019; Cai et  al., 2020; Lin et  al., 
2020; Munsell et al., 2020; Niu et al., 2020). Among those brain-behavior models, predicting 
individual attention from neuroimaging has drawn a significant amount of research interests 
(Rosenberg et  al., 2016, 2018; Yoo et  al., 2017). Attention is a key function in psychology. 
Attention is also  a significant feature for diagnosis of ADHD (Xiao et  al., 2016;  
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Zhao et  al., 2018; Wang et  al., 2018a,b). Inattention can 
lead to dysfunction of memory, learning, and other important 
cognitive tasks (Brown et  al., 2009; Fassbender et  al., 2011; 
Vaidya et al., 2020). Before the present time, the inattention 
scores were always estimated using clinical scales, which 
were subjective measures reported by participants (Zhang 
et  al., 2005). Furthermore, the neural mechanisms of 
inattention are still unclear to date. Therefore, it is of great 
interest to build predictive models for inattention using 
resting state fMRI.

The predictive models for inattention estimations contain 
three parts. One important component of a predictive model 
is the input features. Currently, most of the raw features 
for inattention estimations were based on linear functional 
connectivity (Rosenberg et  al., 2016; Yoo et  al., 2017). The 
nonlinear complexity (i.e., phase synchrony) remained 
unknown (Wang et al., 2017). Another important component 
is the regression algorithms. The well-established connectome-
based predictive modeling (CPM) for inattention estimation 
was based on multi-linear regression (Shen et  al., 2017). 
The comparisons of performance of different regression 
algorithms remain largely unexplored (Yoo et  al., 2017; Sui 
et  al., 2020). The third component is the model validation 
procedure. So far, most of the predictive models were evaluated 
using leave-one-out cross validation. Although several studies 
validated their models using two independent datasets, the 
N-fold cross validations might also be beneficial for inattention 
estimation (Scheinost et  al., 2019).

In addition, different preprocessing steps (i.e., global signal 
regression (GSR), data scrubbing) might have impacts on the 
brain connectivity (Li et  al., 2019a). Although the benefits of 
GSR for resting fMRI are still under debate, previous studies 
found that GSR might enhance the brain-behavior relationships 
(Murphy et  al., 2009; Wong et  al., 2012; Li et  al., 2019a). The 
data scrubbing or volume censoring methods also have impacts 
on functional connectivity features (Yan et  al., 2013; Parkes 
et  al., 2018; Li et  al., 2019b; Lindquist et  al., 2019). Therefore, 
different preprocessing steps should be considered in the brain-
behavior regression tasks. So far, the effects of different 
preprocessing procedures on estimation of inattention using 
phase synchrony remain unclear.

In this paper, we  aimed to apply a unified framework 
to estimate the personalized inattention from resting state 
phase synchrony. First, a cohort of participants with both 
inattention scores and resting state fMRI datasets were 
obtained from the ADHD-200 database. Then, the resting 
state fMRI datasets were preprocessed using different 
strategies that were with or without GSR or scrubbing. 
Third, the regional signals were obtained from the normalized 
images. Fourth, phase synchrony was derived as input for 
the regression tasks. Fifth, the inattention scores were 
estimated using different regression algorithms. Finally, the 
regression models were analyzed using 100 runs of 10-fold 
cross validations. The impacts of different preprocessing 
strategies on the regression tasks are compared in the results 
section. The predictive patterns are discussed in the 
discussion section.

MATERIALS AND METHODS

Participants and MRI Protocols
Participants in this study were obtained from the ADHD-200 
database. To be  consistent with previous studies, the samples 
from the Peking University were selected as subjects. There 
were 95 ADHD and 126 healthy controls. Each participant 
signed the consent form that was approved by the ethics 
committee of Peking University. The inattention scores were 
measured using the ADHD rating scales. For each participant, 
a high-resolution T-1 weighted anatomical MRI and a sequence 
of resting state fMRI datasets (TR = 2 s, 235 volumes) were 
acquired using a Siemens 3 T MRI scanner. The detailed 
information of MRI parameters could be  found at the website 
of ADHD-200.1

Data Preprocessing
The anatomical MRI were skull-stripped, segmented, and 
nonlinearly deformed to standard space. The resting state 
fMRI was normalized using the following procedures: dropped 
the first five volumes, slice-timing, motion correction, skull-
stripped, nuisance signal regression, temporal filtering 
(0.01–0.1 Hz), scrubbing, spatial normalization. Specially, an 
artifactual volume was marked with frame-wise displacement 
>0.5 mm or DVARS value =1. The forward volume and 
backward volume were also marked as artifactual scan points. 
The detailed information of data preprocessing could be found 
in previous works (Wang et  al., 2017, 2018b). After 
preprocessing, the regional time-courses were extracted using 
a previously well-established brain atlas that consisted of 
268 functional nodes (Shen et  al., 2013).

Phase Synchrony
The phase synchrony is a bivariate complexity measure with 
nonlinear properties. The phase synchrony has been widely 
applied in neuroscience as an alternative feature for 
conventional functional connectivity. One advantage of phase 
synchrony was the nonnegative property. Another advantage 
was the nonlinear property. The phase synchrony could 
be obtained using the following steps: (1) get the instantaneous 
phases of each time-signal using Hilbert transform;  
(2) unwarp the instantaneous phases; (3) get the instantaneous 
phase differences between each pair of time-signals;  
(4) discard the artifactual instantaneous phase differences 
if scrubbing was applied on preprocessing steps; and  
(5) compute the mean phase coherence as phase synchrony 
index (Sun and Small, 2009; Sun et  al., 2012).

Regression Models
The minimum-redundancy maximum-relevancy (mRMR) 
features (Ding and Peng, 2005) were selected using the 
praznik package.2 A number of features were detected based 
on significant correlations with inattention (p < 0.05). First, 

1 http://fcon_1000.projects.nitrc.org/indi/adhd200
2 https://cran.r-project.org/web/packages/praznik
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the number of significant inattention-correlated features 
(p < 0.05) was obtained in each cross-validation. Second, 
the numbers of features were obtained after 100 runs of 
10-fold cross-validations. Finally, the mean value of numbers 
of features was calculated for the mRMR procedure. In 
addition, the classical correlation coefficients method was 
also applied to select features (p < 0.05). The predictive 
power of inattention-correlated features with p < 0.05 and 
r > 0 was analyzed additionally. The features selected by 
the covariance between inattention and phase synchrony 
were analyzed with the number of features the same as 
that of the mRMR. The regression models were solved 
using six algorithms: the support vector regression (SVR), 
the partial least squares (PLS), the relevance vector machine 
(RVM), the ridge regression (RR), the elastic net (ENET), 
and the least absolute shrinkage and selection operator 
(LASSO). In this study, the SVR algorithm was carried out 
using the svm() function in e1071 package.3 The PLS 
algorithm was carried out using the pls () function in the 
texir package.4 The RVM algorithm was carried out using 
the rvm() function in kernlab package,5 which automatically 
solved the sigma parameter. The RR, ENET and LASSO 
algorithms were carried out using the glmnet() function 
in the glmnet package6 with alpha = 0, 0.5, and 1, respectively. 
The six algorithms used their default parameters in the R 
packages for comparisons of cross-validations. The CPM 
algorithm was carried out additionally using the MATLAB 
toolbox.7 Furthermore, the parameters were fine-tuned for 
the regression algorithms using the caret package.8 The 
RR, lasso, and ENET were analyzed using the glmnet model, 
which fine-tuned the alpha and lambda parameters. The 
PLS algorithm was analyzed using the pls model, which 
fine-tuned the number of component parameter. The support 
vector machine algorithm was analyzed using the svmLinear 
model, which fine-tuned the cost parameter.

Evaluations
In this paper, 100 runs of 10-fold cross-validations were 
applied on the regression tasks. For each run, the original 
samples were divided into 10 folds. For each fold, nine 
folds of training samples and a fold of testing samples 
were applied to build predictive models. The outputs of 
10 folds were joined together to match with the original 
inattention scores. The performance of the regression models 
was evaluated by correlation coefficients, which were 
computed using the 1,000 times of permutations test. The 
values of p were analyzed using the RVAideMemoire package.9 
The pipeline for the feature selection, regression, and 
validation procedures could be  found in Figure  1.

3 https://cran.r-project.org/web/packages/e1071/index.html
4 https://CRAN.R-project.org/package=textir
5 https://www.rdocumentation.org/packages/kernlab/versions/0.9-29
6 https://cran.r-project.org/web/packages/glmnet/index.html
7 https://github.com/YaleMRRC/CPM
8 https://topepo.github.io/caret/index.html
9 https://cran.r-project.org/package=RVAideMemoire

RESULTS

Performance of Predictive Models
Different feature selection methods and regression algorithms 
have impacts on the performance of the predictive models. 
Figure 2 shows the performance of the predictive models based 
on classical feature selection (p < 0.05). Figure  3 shows the 
performance of the predictive models based on classical feature 
selection (p < 0.05, r > 0). Figure  4 shows the performance of 
the predictive models based on covariance feature selection. 
Figure 5 shows the performance of the predictive models based 
on fine-tuning of the regression algorithms. Figure  6 shows 
the performance of the predictive models based on mRMR 
feature selection. Table 1 shows the performances of predictive 
models based on classical feature selection with GSR and 
scrubbing. Table 2 shows the performances of predictive models 
based on mRMR with GSR and scrubbing. The CPM-based 
models with GSR and scrubbing can achieve a mean accuracy 
of 0.31. The best predictive models can achieve a total accuracy 
of 0.56 based on mRMR and RVM. The PLS also exhibits 
predictive powers. The PLS based on mRMR can achieve a 
total accuracy of 0.34.

The predictive models with GSR outperform that without 
GSR. Figures 2A,B, Figures 3A,B, Figures 4A,B, Figures 5A,B 
as well as Figures 6A,B show the performance of the predictive 
models with GSR. Figures 2C,D, Figures 3C,D, Figures 4C,D, 
Figures  5C,D, as well as Figures  6C,D show the performance 
of the predictive models without GSR. The performance of 
the predictive models with GSR is significantly higher than 
that without GSR.

The predictive models without scrubbing outperform those 
with scrubbing. Figures  2A,C, Figures  3A,C, Figures  4A,C, 
Figures  5A,C as well as Figures  6A,C show the performance 
of the predictive models with scrubbing. Figures  2B,D, 
Figures  3B,D, Figures  4B,D, Figures  5B,D, as well as 
Figures  6B,D show the performance of the predictive models 
without scrubbing. The performance of predictive models with 
scrubbing is a little lower than that without scrubbing.

In addition, the predictive models without fine-tuning 
(Figure  6) outperform that with fine-tuning (Figure  5). The 
positive weighted features significantly improve the performance 
of the regression models with GSR, but remarkably reduce 
the performance of the regression models without GSR, as 
indicated in Figure  3.

Predictive Patterns Related to Inattention
Figure  7 shows the predictive patterns related to inattention 
based on the mRMR feature selection with GSR and scrubbing. 
The 268 nodes are divided into 8 functional systems according 
to a previous study (Finn et al., 2015). The 8 functional systems 
are named as the medial frontal (MF) network, frontoparietal 
(FP) network, default mode (DM) network, subcortical-
cerebellum (SC) network, motor cortex (MC) network, visual 
I  (V1) network, visual II (V2) network, and visual association 
(VA) network. With 100 runs of 10-fold feature selection 
procedures, 1,000 arrays of most predictive features are selected 
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FIGURE 1 | Pipelines for the predictive models. The raw features of phase synchrony are firstly selected by two feature selection methods. Then, the selected 
features are trained and tested using several regression algorithms. Finally, the predictive models are validated using 100 runs of 10-fold cross-validations.

A B

C D

FIGURE 2 | Performance of the predictive models with classical feature selection (p < 0.05). (A) denotes performance of the predictive models with GSR and 
scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and 
with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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as important attributes. Only features that appeared more than 
900 times are displayed in Figure 7. The most predictive brain 
regions are located in the bilateral SC network. The second 
predictive brain regions are located in the bilateral MC network. 
The right MF network is more predictive than the left MF 
network. The DM network and visual networks are less predictive 
than other networks. Both intra- and inter-hemisphere 
connections are found for inattention estimation.

DISCUSSION

In this paper, we  applied several feature selection methods 
and six regression algorithms to build predictive models for 
inattention estimation using phase synchrony. The effects of 

different preprocessing steps (i.e., GSR, scrubbing) were 
considered in computing phase synchrony. We  found that the 
RVMs based on mRMR features significantly improve the 
performance of inattention estimation from resting state phase 
synchrony. In addition, we  also found that GSR significantly 
enhanced the relationships between phase synchrony and 
inattention. Furthermore, the predictive patterns were discovered 
using mRMR methods. In summary, we  proposed a novel 
framework for inattention estimation from phase synchrony, 
which could be supplementary biomarkers for predictive models.

The performance of regression models was related to several 
procedures in inattention estimation. First, the feature selection 
methods might affect the accuracy of prediction. The features 
selected by conventional correlation coefficients were univariate 
attributes, which did not consider the relationships among 

A B

C D

FIGURE 3 | Performance of the predictive models with classical feature selection (p < 0.05 and r > 0). (A) denotes performance of the predictive models with GSR 
and scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR 
and with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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the raw features. The significant inattention-correlated features 
with positive weights (p < 0.05 and r > 0) can improve the 
performance of regression models but were dependent on GSR 
procedures. The performance of covariance-based feature 
selection was lower than that of conventional correlation-based 
models, since the covariance-based features might not be  the 
significantly inattention-correlated. To overcome this limitation, 
mRMR was proposed to select multivariate features (Ding 
and Peng, 2005). The selected features significantly improved 
the performance of inattention estimation. Second, the regression 
algorithms also affect the performance of predictive models. 
We found that in addition to RVM, the PLS was an alternative 
algorithm for inattention estimation, which was consistent 
with previous findings (Yoo et  al., 2017). Specially, we  found 
RVMs based on mRMR features outperformed the other 

methods. The results indicated that the fine-tuning procedure 
does not improve the performance of the regression models. 
The poor performance of the fine-tuning might be  caused by 
the 10-fold cross-validation procedures, since the training 
samples were different among the cross-validations. Of note, 
the RVM exhibited the best performance using automatic 
fine-tuning, implying that the sigma parameter for RVM was 
robust for different datasets. Third, the different preprocessing 
steps significantly affect the prediction. GSR significantly 
enhanced the relationships between phase synchrony and 
inattention. Scrubbing had little effect on the final results. 
The results suggested that GSR should be considered in brain-
behavioral prediction task (Li et al., 2019a). Fourth, the cross-
validations might have effect on the performance of prediction 
tasks. Here, 100 runs of 10-fold cross-validations were performed 

A B

C D

FIGURE 4 | Performance of the predictive models with covariance-based feature selection. (A) denotes performance of the predictive models with GSR and 
scrubbing. (B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and 
with scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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to evaluate the predictive models. The correlation coefficients 
were reliable and the MAE values were also stable, suggesting 
the robustness of the predictive models. In this paper, we applied 
different algorithms to build predictive models for inattention. 
After comparing with different methods, we  found that the 
mRMR-RVM strategy might be  beneficial for inattention 
estimation from neuroimaging features.

Predictive patterns related to inattention were discovered 
using mRMR feature selection. The visual networks, default 
mode networks, medial frontal network, frontoparietal network, 
subcortical-cerebellum network, as well as motor cortex exhibited 
altered phase synchrony in patients with ADHD. The predictive 
connections in visual network and motor cortex suggested that 
the sensorimotor functions might be  distinctive in ADHD 
(Zang et  al., 2007). The altered connectivity patterns in medial 

frontal network and frontoparietal network might reflect the 
inattention mechanisms in ADHD (Tao et  al., 2017). Previous 
studies found altered functional connectivity in default mode 
networks in ADHD, suggesting the abnormal resting state 
baseline activity in patients (Hoekzema et al., 2014). Decreased 
subcortical volumes were also found in ADHD compared to 
healthy controls (Lu et  al., 2019). In this study, we  found that 
the bilateral subcortical-cerebellum networks exhibited the most 
predictive phase synchrony patterns. We  also found that the 
motor cortex had the second predictive brain regions. Both 
inter- and intra-hemisphere synchrony patterns were found to 
be related to inattention. In addition, the altered phase synchrony 
exhibited asymmetry patterns. Those findings implied that the 
whole brain phase synchrony was predictive to inattention 
estimation. In summary, this study provided a new way to 

A B

C D

FIGURE 5 | Performance of the predictive models with fine-tuned parameters. (A) denotes performance of the predictive models with GSR and scrubbing. 
(B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and with 
scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.
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decode the inattention using phase synchrony and mRMR 
feature selection, which might be  beneficial for individual 
prediction of inattention.

This study has several limitations which should be  solved 
in future studies. First, the dynamic properties of functional 
connectivity remain unexplored for inattention. Novel feature 

A B

C D

FIGURE 6 | Performance of the predictive models with the mRMR feature selection. (A) denotes performance of the predictive models with GSR and scrubbing. 
(B) denotes performance of the predictive models with GSR and without scrubbing. (C) denotes performance of the predictive models without GSR and with 
scrubbing. (D) denotes performance of the predictive models without GSR and scrubbing.

TABLE 1 | Performance of predictive models based on classical feature 
selection with GSR and scrubbing.

Algorithms r MAE RMSE

RR 0.3 ± 0.03 5.95 ± 0.06 6.9 ± 0.06
ENET 0.12 ± 0.05 6.5 ± 0.14 7.6 ± 0.15
LASSO 0.11 ± 0.05 6.57 ± 0.14 7.74 ± 0.16
PLS 0.33 ± 0.01 5.83 ± 0.05 6.91 ± 0.05
RVM 0.27 ± 0.02 6.01 ± 0.05 6.97 ± 0.05
SVR 0.32 ± 0.02 5.94 ± 0.04 6.85 ± 0.04

TABLE 2 | Performance of predictive models based on mRMR with GSR and 
scrubbing.

Algorithms r MAE RMSE

RR 0.31 ± 0.03 5.92 ± 0.07 6.87 ± 0.07
ENET 0.14 ± 0.05 6.52 ± 0.19 7.77 ± 0.2
LASSO 0.13 ± 0.05 6.6 ± 0.21 7.88 ± 0.22
PLS 0.32 ± 0.02 5.9 ± 0.06 6.98 ± 0.06
RVM 0.53 ± 0.01 5.42 ± 0.03 6.28 ± 0.04
SVR 0.28 ± 0.03 6.12 ± 0.03 6.98 ± 0.03
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extraction methods for dynamic phase synchrony should 
be  investigated for inattention estimation. Second, the 
performance of the inattention estimations should be improved 
with novel feature selection methods and regression algorithms. 
Third, the mRMR features could not reflect the positive or 
negative correlations between phase synchrony and inattention. 
Fourth, the regression models should be  tested using an 
independent dataset, although the regression models were 
well-validated using 100 runs of 10-fold cross-validations. 
Fifth, there were different MRI protocols for the samples, 
which should be  scanned with the same MRI scanner and 
parameters. In summary, the feature extraction models, feature 
selection methods, regression algorithms, and testing procedures 

should be  improved to enhance the performance and the 
generalization ability of the regression models for individual 
inattention estimation.

CONCLUSION

This paper applied different algorithms to build the predictive 
models for inattention from resting state fMRI. We also analyzed 
the impacts of different preprocessing steps on the predictive 
models. The RVMs based on mRMR features significantly 
improve the performance of inattention estimation from resting 
state phase synchrony. We  also found that PLS might be  an 

FIGURE 7 | Predictive patterns of phase synchrony for inattention. MF stands for the medial frontal network. FP represents the frontoparietal network. DM means 
the default mode network. SC denotes the subcortical-cerebellum network. MC represents the motor cortex network. V1 denotes the visual I network. V2 denotes 
the visual II network. VA stands for the visual association network.
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alternative method for brain-behavioral prediction tasks. In 
addition, the GSR strengthens the relationships between 
neuroimaging features and behavioral scores. In summary, 
we  proposed a unified framework for brain-behavioral models 
based on phase synchrony. We also found an optimized strategy 
named mRMR-RVM for inattention estimation.
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Objectives: To establish and validate a nomogram integrating radiomics signatures from
ultrasound and clinical factors to discriminate between benign, borderline, and malignant
serous ovarian tumors.

Materials and methods: In this study, a total of 279 pathology-confirmed serous ovarian
tumors collected from 265 patients between March 2013 and December 2016 were used.
The training cohort was generated by randomly selecting 70% of each of the three types
(benign, borderline, and malignant) of tumors, while the remaining 30%was included in the
validation cohort. From the transabdominal ultrasound scanning of ovarian tumors, the
radiomics features were extracted, and a score was calculated. The ability of radiomics to
differentiate between the grades of ovarian tumors was tested by comparing benign vs
borderline and malignant (task 1) and borderline vs malignant (task 2). These results were
compared with the diagnostic performance and subjective assessment by junior and
senior sonographers. Finally, a clinical-feature alone model and a combined clinical-
radiomics (CCR) model were built using predictive nomograms for the two tasks.
Receiver operating characteristic (ROC) analysis, calibration curve, and decision curve
analysis (DCA) were performed to evaluate the model performance.

Results: The US-based radiomics models performed satisfactorily in both the tasks,
showing especially higher accuracy in the second task by successfully discriminating
borderline and malignant ovarian serous tumors compared to the evaluations by senior
sonographers (AUC � 0.789 for seniors and 0.877 for radiomics models in task one; AUC
� 0.612 for senior and 0.839 for radiomics model in task 2). We showed that the CCR
model, comprising CA125 level, lesion location, ascites, and radiomics signatures,
performed the best (AUC � 0.937, 95%CI 0.905–0.969 in task 1, AUC � 0.924, 95%
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CI 0.876–0.971 in task 2) in the training as well as in the validation cohorts (AUC � 0.914,
95%CI 0.851–0.976 in task 1, AUC � 0.890, 95%CI 0.794–0.987 in task 2). The calibration
curve and DCA analysis of the CCR model more accurately predicted the classification of
the tumors than the clinical features alone.

Conclusion: This study integrates novel radiomics signatures from ultrasound and clinical
factors to create a nomogram to provide preoperative diagnostic information for
differentiating between benign, borderline, and malignant ovarian serous tumors,
thereby reducing unnecessary and risky biopsies and surgeries.

Keywords: radiomics, serous ovarian tumor, ultrasound, classification, nomogram, image analysis

INTRODUCTION

Histologically, serous tumors are the most prevalent ovarian
tumors, representing 70% of the cases. (Javadi et al., 2016;
Brett et al., 2017; Lheureux et al., 2019; Lisio et al., 2019). Such
tumors can be classified into benign, borderline, and
malignant lesions that exhibit distinct clinicopathological
characteristics owing to which they exhibit differences in
terms of therapeutic schemes, and prognoses. Benign tumors,
which are usually slow-growing, respond well to conventional
treatments. In contrast, the borderline serous ovarian tumors
might be malignant potential, necessitating fertility-sparing
surgery for fertile women who desire it. (du Bois et al., 2016;
Chui et al., 2019). Moreover, therapy for ovarian cancer
usually involves surgery and platinum/taxane doublet-
based chemotherapy. (Lisio et al., 2019; Kuroki and
Guntupalli, 2020). The diagnosis of serous ovarian tumors
is difficult without incisional or aspiration biopsy. However,
the varied characteristics of the serous ovarian tumors make
it challenging to diagnose between borderline and malignant
ovarian tumors using fine-needle aspiration. (Kuroki and
Guntupalli, 2020). Therefore, it is crucial to develop a
non-invasive and accurate preoperative identification
technique for ovarian tumors for appropriate treatment
planning by avoiding inadequate excision or surgical
overtreatment, especially for premenopausal patients
wanting to retain their fertility.

Adnexal ultrasound, a non-invasive, low-cost, and safe
procedure, is currently the first-line imaging modality for
ovarian tumor screening and diagnosis. Even though such
pattern-recognition-based classification of ovarian masses into
benign or malignant tumors demands much expertise, (Van
Holsbeke et al., 2010; Dakhly et al., 2019), there is a shortage
of expert examiners. Radiomics offers automatic extraction of
mineable high-dimensional quantitative data from clinical
images, thereby bypassing the need for human intervention,
and shows great promise in tumor detection, diagnosis, and
prognostic evaluation. (Chiappa et al., 2020; Mayerhoefer
et al., 2020). Several researchers have recently employed
radiomics features based on MRI, CT and ultrasound to
evaluate the clinical outcomes of ovarian cancer patients.
(Rizzo et al., 2018; Lu et al., 2019; Zhang et al., 2019;
Veeraraghavan et al., 2020; Yao et al., 2021).

This study utilizes a two-step radiomics classification of serous
ovarian tumors based on the imaging and builds a nomogram
combining the clinical factors to distinguish benign, borderline,
and malignant ovarian tumors.

MATERIALS AND METHODS

Patients and Study Design
This study was in accordance with the Declaration of Helsinki.
The Ethics Committee of Tianjin Medical University Cancer
Hospital approved this retrospective study (Approval No.
bc2021114), and informed consent was waived. All the clinical
and biodatas have been anonymized. We enrolled 412 patients
with ovarian tumor from Tianjin Medical University Cancer
Institute and Hospital (Tianjin, China). All patients were
enrolled between March 2013 to December 2016. Patients with
mucinous tumor, endometrioid tumor, clear cell cancer,
metastatic cancer and the tumor with poor quality ultrasound
images were excluded from the study. In total, 265 patients
meeting the inclusion criteria were enrolled consecutively in
our study. The samples comprised 106 ovarian cystadenomas,
65 borderline tumors, and 108 ovarian malignancies, all of which
were pathologically confirmed to be serous. Of the tumors we
eventually included, the ultrasound images of 28 tumors were
from 14 patients who had bilateral ovarian tumor (7 patients with
bilateral borderline serous tumors, seven patients with bilateral
ovarian serous cancer). The patient data included age, age at
menarche, CA125 level (range: 5.11–5000 IU/L), location of the
lesion (unilateral or bilateral), family history of cancer, and
ascites. The inclusion criteria were as follows: 1) histological
diagnosis of benign, borderline, and malignant ovarian serous
tumors; 2) availability of preoperative US images suitable for
diagnostic analysis; 3) US scanning performed before
neoadjuvant therapy or surgical resection. The exclusion
criteria included the following: 1) no US results or the ovarian
mass was not completely visible in the image; 2) mucinous, clear
cell, endometrioid, metastatic cancer (Figure 1).

In a two-step decision-making approach, two tasks were
performed to train and validate the ability to distinguish
between benign vs borderline and malignant (task 1) and
borderline vs malignant (task 2). A clinical-feature alone
model and a combined clinical-radiomic (CCR) model were
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built using predictive nomograms for each task. During the
development of these tasks, we used a fixed 70%/30% training/
validation cohort split. A 10-fold cross-validation was done to
evaluate the true diagnostic potential of this method.

Ultrasound Imaging and Segmentation
All ultrasound images were acquired using a Philips iU22/
HD11 (California, United States) ultrasound machine with a
5–12 MHz probe and retrieved from the picture archiving and
communication systems (PACS) for image segmentation and
analysis at our institution (Figure 2A). The boundary of
lesions manually segmented using ImageJ (https://imagej.
nih.gov/ij/) by a sonographer with more than 8 years of
experience. When the boundary was not determined,
another experienced sonographer was consulted for a final
opinion. The two sonographers were blind to the pathological
and clinical information.

Radiomics Signature Construction
Eight hundred and fifty-five radiomics features, including shape,
gray-scale histograms, texture, and wavelet features, were extracted
automatically from each segmented region of interest using an in-
house software written in MATLAB R2018b (MathWorks, Inc.,
Natick, Massachusetts). Detailed information on the feature
extraction algorithms is provided in Supplemental Table S1.

For each task, we followed a three-step procedure to
identify the reliable radiomic features. First, the Wilson

test was used to identify features highly related to the
biomarkers with a significance of less than 0.05 (p < 0.05).
Pearson correlation matrices were used to assess the
correlation between the features where a correlation
coefficient greater than 0.8 was considered redundant. One
of two features with a lower p-value was excluded. Next, the
minor absolute shrinkage and selection operator (LASSO)
regression method was used to select the most useful
prognostic combination of features followed by the
computation of the radiomics score (Radscore) for each
patient through a linear combination of selected features
weighted by their respective coefficients.

Human Readout
All images from the validation cohort were in random order
subjected to critical evaluation by a senior (LCX, with 8 years of
working experience) and a junior sonographer (LJH, with 2 years
of working experience) in the ultrasound department, where each
of them had carried out over 200 scans of ovarian ultrasound
images per year. Both readers were blinded to the clinical
information, study design, and background.

Nomogram Construction
Clinical factors, including age, CA125 level, lesion location,
family history of cancer, ascites, and Radscore, were evaluated
using univariate analysis in the training set. Variables with p <
0.05 in the univariate analysis were included in the multivariate

FIGURE 1 | Flowchart of patient recruitment and experiments design.
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logistic analysis. The clinical and CCR models were built using
these clinical variables with or without a Radscore for each task.
These models were presented in the form of a nomogram.

Statistical Methods
In this study, the continuous variables were presented as the mean
(± standard deviation), and categorical variables were recorded as
numbers and percentages. The chi-square test, Fisher’s exact test,
or Wilcoxon sum-rank test were used to identify categorical
variables for the univariate analysis. Binary logistic regression
analysis was used for multivariate analysis. Based on the factors
mentioned above, the multivariate logistic regression model was
adopted to establish two nomograms for diagnosing ovarian
neoplasms: clinical-feature alone model vs CCR model. The
performance of the nomogram was evaluated based on
diagnostic accuracy, sensitivity, and specificity of receiver
operating characteristic (ROC) curves and calibration curves.
The difference in the area under the curve (AUC) between the
training and validation datasets was tested using the p-value of
integrated discrimination improvement (IDI) and Delong’s (D)
test, and the 95% confidence intervals (CI) were calculated.

All statistical analyses were conducted using the R software
(version 6.1, R Foundation for Statistical Computing, Vienna,
Austria). A two-tailed differencewas considered significant at p< 0.05.

RESULTS

Evaluation of the Clinical Parameters of the
Patients
The clinical features of patients in the training and validation
cohorts for the two tasks were summarized in Tables 1, 2. We
observed a significant difference in the CA125 level, lesion
location, and ascites between benign and non-benign serous
ovarian lesions in the training cohort (Table 1). As shown in
Table 2, age, CA125 level, and ascites significantly differed
between the borderline and malignant serous ovarian tumors.

A Comparative Analysis of the Diagnostic
Performances of the Radiomics Model, the
Senior and Junior Sonographer
In task 1, LASSO was used to evaluate the diagnostic capability of
17 potential informative predictors (Supplementary Figures
S1A, C), and the outputs were to Radscore calculation
formula (Supplemental Material). We observed that the
differences in the Radscore values between the benign and
non-benign serous ovarian tumors in the training and
validation cohorts were statistically significant (p < 0.001,
Supplementary Figures S2A, B). The ROC curve analysis of

FIGURE 2 | Representative ultrasound images of benign, borderline and malignant ovarian serous tumors (A). The asterisk indicates the tumor boundary. The red
marker line indicates the region of interest (ROI). ROC curve analysis comparing the diagnosis of the senior and junior sonographer and radiomics in task 1 (B) and
task 2 (C).
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the radiomics model showed AUCs of 0.907 (95% CI
0.863–0.950) and 0.877 (95% CI, 0.798–0.957) in the training
and validation sets, respectively revealed no significant
differences (D � 0.633; p � 0.5278). Next, we evaluated the
diagnostic capability of the two sonographers to draw our
comparative analysis. Figure 2B; Table 3; Supplementary
Table S2 showed the diagnostic performance of the junior
sonographer, senior sonographer, and radiomics model,
respectively. A statistically significant difference between the
junior sonographer and the radiomics model (D � 3.611; p <
0.001) was observed. However, there was no statistically
significant difference between the performances of the senior
sonographer and the radiomics model (D � 1.473; p � 0.141).

In Task 2, 22 potential informative predictors were explored
using the LASSO method (Supplementary Figures S1B, D).
Differences in the Radscore value between the borderline and
malignant serous ovarian tumors in the training and validation
cohorts were statistically significant (p < 0.001, Supplementary
Figures S2C, D). The ROC curves of the radiomics model showed
AUCs of 0.891 (95% CI 0.833–0.950) and 0.839 (95% CI
0.725–0.952) in the training and validation cohorts,
respectively, with no significant difference between them (D �
0.607; p � 0.546). Figure 2C; Table 3; Supplementary Table S2
showed the diagnostic performance of the junior sonographer,
senior sonographer, and radiomics model, respectively. There
was a statistically significant difference between the performances

TABLE 1 | Clinical characteristics of patients in training and validation cohorts in task 1

Characteristics Training cohorts p-value Validation cohorts p-value

Benign (n = 76) Non-benign (n = 120) Univariate
analysis

Multivariate
analysis

Benign (n = 30) Non-benign (n = 53)

Age# 51.2 ± 13.4 48.0 ± 13.5 0.102 — 49.1 ± 16.1 49.7 ± 11.2 0.861
Age at menarche# 14.6 ± 1.77 14.6 ± 1.85 0.869 — 14.6 ± 1.52 14.7 ± 1.69 0.119
CA125 level (IU/L), No (%) — — <0.001* <0.001* — — <0.001*
0 75 (98.7) 73 (0.6) — — 0 (0.0) 26 (49.1) —

1 1 (1.3) 47 (0.4) — — 30 (100.0) 27 (50.9) —

Tumor side, No (%) — <0.001* 0.002* — — <0.001*
Bilateral 15 (19.7) 69 (56.7) — — 4 (13.3) 34 (64.5) —

Unilateral 61 (80.3) 52 (43.3) — — 26 (86.7) 19 (35.9) —

Family history of cancer, No (%) — 0.161 — — — 0.789
Yes 14 (18.4) 34 (28.3) — — 8 (26.7) 17 (32.1) —

No 62 (81.7) 86 (71.7) — — 22 (73.3) 36 (67.9) —

Ascites, No (%) — — <0.001* <0.001* — — 0.001*
Yes 0 (0.0) 39 (32.5) — — 30 (100.0) 36 (67.9) —

No 76 (100.0) 81 (67.5) — — 0 (0.0) 17 (32.1) —

Note: Non-benign, borderline and malignant tumors, # mean ± SD, ≤500 IU/L, 0; >500 IU/L, 1. SD, standard deviation. *p value < 0.05.

TABLE 2 | Clinical characteristics of patients in training and validation cohorts in task 2

Characteristics Training cohorts p-value Validation cohorts p-value

Borderline (n = 45) Malignant (n = 77) Univariate analysis Multivariate
analysis

Borderline (n = 20) Malignant (n = 31)

Age# 43.8 ± 14.0 52.3 ± 9.06 <0.001* <0.001* 36.7 ± 13.0 53.7 ± 12.2 <0.001*
Age at menarche# 14.2 ± 2.02 14.8 ± 1.49 0.084 — 14.0 ± 1.86 15.2 ± 1.95 0.039*
CA125 level (IU/L), No (%) — 0.001* 0.003* — — 0.312
0 35 (77.8) 35 (45.4) — — 6 (30.0) 15 (48.4) —

1 10 (22.2) 42 (54.5) — — 14 (70.0) 16 (51.6) —

Tumor side, No (%) — 0.432 — — — 1
Bilateral 24 (53.3) 48 (62.3) — — 12 (60.0) 18 (58.1) —

Unilateral 21 (46.7) 29 (37.7) — — 8 (40.0) 13 (41.9) —

Family history of cancer, No (%) — 0.639 — — — 0.201
Yes 12 (26.7) 25 (32.5) — — 3 (15.0) 11 (35.5) —

No 33 (73.3) 52 (67.5) — — 17 (85.0) 20 (64.5) —

Ascites, No (%) — — <0.001* 0.006* — — 0.125
Yes 5 (11.1) 33 (42.9) — — 16 (80.0) 17 (54.8) —

No 40 (88.9) 44 (57.1) — — 4 (20.0) 14 (45.2) —

Note: # mean ± SD. ≤500 IU/L, 0; >500 IU/L, 1. SD, standard deviation. *p value < 0.05.
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of the junior/senior sonographer and the radiomics model
(senior: D � 3.5, p < 0.001; junior: D � -4.640, p < 0.001).

By comparing the results from the 10-fold cross-validation run
of the models built above to the results obtained on the fixed
training/validation split, we found that the performance estimates
were comparable for both the tasks with no indication of
substantial overfitting (Supplementary Table S3).

Construction and Validation of the
Nomogram
Next, we utilized the features mentioned above for each task to
perform multivariate logistic regression analysis to construct the
two models for diagnosing ovarian neoplasms, thereby leading to
the generation of two nomograms, the clinical-feature alone
model (Figure 3D and Figure 4D) and the combined clinical-
radiomic (CCR) model (Figure 3A and Figure 4A).

For task 1, Figure 3, Figure 5 and Table 3 showed the
calibration curve and performance of the clinical-alone and
CCR models. The ROC curves of the clinical-alone model
showed AUCs of 0.817 (95% CI 0.765–0.868) and 0.855 (95%
CI 0.786–0.924) in the training and validation cohorts,
respectively (Figures 5A,C), with no significant difference
between them (D � -0.88079; p � 0.3796). The ROC curves of
the CCRmodel showed AUCs of 0.937 (95% CI 0.905–0.969) and
0.914 (95% CI 0.851–0.976) in the training and validation
cohorts, respectively (Figures 5A,C), with no significant
difference between them (D � 0.6394; p � 0.524). The
calibration curve indicating the prediction from the two
models (solid line) closely followed the 45-degree line in the
training and validation cohorts, suggesting good diagnostic
accuracy (Figures 3B,C for the CCR model and Figures 3E,F
for the clinical alone model).

For task 2, the CCR performed satisfactorily in the training (AUC
0.924 [95%CI 0.876–0.971]) and the validation (AUC 0.890 [95%CI
0.794–0.987]) cohorts, respectively (Figures 5B,D), with no
significant difference between them (D � 0.607; p � 0.546). The
ROC curves of the clinical-feature alone model showed AUCs of
0.815 (95% CI 0.740–0.890) and 0.829 (95% CI 0.706–0.950) in the
training and validation cohorts, respectively, with no significant
difference between them (D � −0.189, p � 0.85). The calibration

curve suggested good diagnostic accuracy for the CCR model
(Figures 4B,C), which was slightly worse for the clinical-feature
alone model (Figures 4E,F).

Difference in the Prediction Performance
Between the Clinical Alone Model and
Combined Clinical-Radiomic Model
As shown in Table 3 and DCA curves (Figure 6), the CCRmodel
showed a relatively better predictive performance than the
clinical-feature alone model for two tasks (task 1: IDI � 0.154,
95% CI: 0.078–0.231, p < 0.001; task 2: IDI � 0.815, 95% CI:
0.066–0.303, p � 0.002). The decision curves indicated that using
the clinical features combined radiomics nomogram to predict
types of serous ovarian cancer adds more benefit than the clinical-
feature alone model.

DISCUSSION

In this study, we divided the three-class classified (benign vs
borderline vs malignant tumors) ovarian neoplasms into two
categories, i.e., benign vs borderline and malignant (task 1) and
borderline vs malignant (task 2). First, two US-imaging-based
radiomics models were established for each task. The diagnostic
efficiency of the radiomics models was compared with that of
junior and senior sonographers to evaluate their integrity. Both
tasks of radiomics analysis showed satisfactory performance,
especially in task 2, indicating higher accuracy than the
experienced sonographer at identifying borderline ovarian
tumors. Then, the combined clinical-radiomics CCR model
was established for each task, where the CCR models
significantly outperformed the clinical models.

To date, US-based examinations were considered the
primary imaging technique for preoperative prediction of
ovarian tumors. (Di Legge et al., 2017). Benign serous ovarian
tumors are typically simple smooth-walled unilocular or
multilocular cystic masses, (Virgilio et al., 2019), whereas
serous borderline ovarian tumors tend to form cystic masses
with profuse papillary projections. (Timor-Tritsch et al.,
2019). Moreover, serous ovarian tumors form large,

TABLE 3 | Diagnostic performance comparison among the senior sonologist, the junior sonologist, radiomics, clinics and combination of radiomics and clinics in the
validation cohort of each task.

AUC
(95%CI)

ACC
(95%CI)

SEN
(95%CI)

SPE
(95%CI)

Task 1 senior 0.789 (0.695–0.883) 0.795 (0.692–0.876) 0.697 (0.511–0.838) 0.860 (0.726–0.937)
junior 0.699 (0.595–0.803) 0.699 (0.588–0.795) 0.568 (0.396–0.725) 0.804 (0.656–0.901)
Radiomics 0.877 (0.798–0.957) 0.843 (0.747–0.914) 0.758 (0.574–0.883) 0.900 (0.774–0.963)
Clinics 0.855 (0.786–0.924) 0.807 (0.706–0.886) 0.684 (0.512–0.820) 0.911 (0.779–0.971)
Combination 0.914 (0.851–0.976) 0.880 (0.790–0.941) 0.813 (0.630–0.821) 0.922 (0.803–0.975)

Task 2 senior 0.612 (0.478–0.747) 0.647 (0.501–0.776) 0.563 (0.306–0.792) 0.686 (0.506–0.826)
junior 0.521 (0.392–0.650) 0.569 (0.423–0.707) 0.429 (0.188–0.703) 0.622 (0.448–0.771)
Radiomics 0.839 (0.725–0.952) 0.824 (0.691–0.916) 0.923 (0.621–0.996) 0.790 (0.622–0.899)
Clinics 0.829 (0.706–0.950) 0.784 (0.647–0.887) 0.714 (0.477–0.878) 0.833 (0.645–0.937)
Combination 0.890 (0.794–0.987) 0.863 (0.737–0.943) 0.842 (0.595–0.958) 0.875 (0.701–0.959)

AUC area under the receiver operator characteristic curves, ACC accuracy, SEN sensitivity, SPE specificity.
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complex, solid, and cystic masses irregular, thick cystic walls
with septations, necrosis, and solid mural nodules. (Moro
et al., 2017). However, these imaging features are not specific
and, to a certain extent are subject to the diagnostic
experience of the sonographer. Nevertheless, conventional
imaging evaluation by manual assessment of lesions by expert
sonographers relying on semantic features provides a wealth
of information on tumor heterogeneity, despite having a few
drawbacks.

In this era of personalized and targeted oncology, radiomics
enabled digitally encrypted medical images to be transformed
into numerous quantitative features that provide information on
tumor pathophysiology. (Bolton et al., 2012; Jiang et al., 2018;
Mayerhoefer et al., 2020; Jian et al., 2021). To date, only one study
has reported discriminating between benign and malignant
ovarian tumors by computerized ultrasound image analysis
using deep neural networks (DNNs). (Christiansen et al.,
2021). However, distinguishing the borderline tumors using

FIGURE 3 |Nomograms and calibration curves of the combined clinical-radiomic (CCR) and clinical alonemodel in task 1. The nomograms were constructed in the
training cohort. (A)Nomogram in the CCRmodel. (B, C)Calibration curves in the training and validation cohort of the CCR nomogram, respectively. (D)Nomogram in the
clinical alone model. (E, F) Calibration curves in the training and validation cohort of the clinical alone nomogram, respectively.
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DNNs remains largely unexplored. Additionally, some reports
have indicated that the MRI radiomics model can achieve higher
accuracy in discriminating benign ovarian lesions from
malignancies and between type I and type II ovarian epithelial
cancer. (Zhang et al., 2019; Qian et al., 2020). Pan et al. developed
a nomogram model that combined CT radiomics and semantic
features, which could be used for imaging biomarkers (radiomic
and semantic features) to classify serous and mucinous types of

ovarian cystadenomas. (Pan et al., 2020). Song and colleagues
established classification predictive tasks constructed from
radiomics features extracted from dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) pharmacokinetic
protocol from 104 ovarian lesions to discriminate between
benign, borderline, and malignant ovarian tumors. In
consistence with our results, radiomics analysis based on the
DCE-MRI pharmacokinetic protocol demonstrated good

FIGURE 4 | Nomograms and calibration curves of the CCR and clinical alone model in task 2. The nomograms were constructed in the training cohort. (A)
Nomogram in the CCRmodel. (B, C)Calibration curves in the training and validation sets of the CCR nomogram, respectively. (D)Nomogram in the clinical alone model.
(E, F) Calibration curves in the training and validation cohort of the clinical alone nomogram, respectively.
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differentiation between benign, borderline andmalignant ovarian
tumors in both two- and 3-class classification predictive tasks.
(Song et al., 2020). To our knowledge, this is the first attempt to
predict benign, borderline, and malignant ovarian serous tumors
using radiomics features based on US images. The results of the
10-fold cross-validation confirmed those performance estimates,
indicating no substantial overfitting.

Imaging features alone are often insufficient to determine the
diagnosis and management of ovarian neoplasms. Hence,
clinicians also consider the clinical context, including age,
serological indicators, and familial risk factors, to make
decisions. CA125 could serve as a critical serum biomarker for
diagnosing and monitoring the relapse of serous ovarian cancer.
(Matulonis et al., 2016). Ascites contain various cellular and
acellular components that are known to facilitate metastasis
and contribute to chemoresistance in ovarian serous cancer.
(Ford et al., 2020). It is known that age is one of the most
important poor prognostic markers for ovarian cancer. The
incidence of ovarian cancer in women under 55 years of age is
lower than that in women older than 55 years (Ma et al., 2019).
Borderline and malignant serous ovarian tumors are more likely
to occur in both ovaries. As expected, in this study cohort, the
CA125 level was higher in the borderline and malignant serous

ovarian tumor group than in the benign group. More borderline
and malignant serous ovarian tumor cases were associated with
ascites and showed involvement of both ovaries. (Jayson et al.,
2014; Gershenson, 2017). We included these easily obtained
clinical risk factors and US-based radiologic factors together
with CA125 levels in our model development process. The
improved nomogram model performed significantly better
than the radiomics model or clinical model alone. The success
of the nomogram model supported the idea that combining
imaging features with complementary information from
clinical reports that reflect the global outlook of the tumor is
more helpful in the differential diagnosis of benign, borderline,
and malignant serous ovarian tumors.

It is worth noting that the associations between the clinical
variables and pathological diagnosis were discrepant in the
training and validation cohorts. For example, CA125 level and
ascites showed p values less than 0.05 in the training cohort, but
they were not significantly associated with pathological diagnosis
in the validation cohort of task 2. This result shows that clinical
factors may be vulnerable to variations in data sets. However,
radiomics features were consistently associated with pathological
diagnosis and had accurate discriminative ability across all
datasets.

FIGURE 5 | ROC curves of the training and validation cohort in task 1 (A, C) and task 2 (B, D).
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However, the present study has some limitations. First, this
was a retrospective study conducted in a single hospital with
limited sample size. External multi-center validation in a larger
cohort is needed in the future to improve the radiomics analysis.
Second, because ovarian tumors comprise benign, borderline, and
malignant lesions, discrimination results among the three
categories need to be obtained directly. Therefore, the need of
the hour is a 3-class classification task of radiomics analysis based
on US imaging, which will be developed in the future.

CONCLUSIONS

In conclusion, the current study presents a nomogram
constructed from the US-based radiomics signature, clinical
risk factors, and serum biomarkers. It could provide
complementary diagnostic information to differentiate between
benign, borderline, andmalignant ovarian serous tumors, thereby
contributing to reducing the number of unnecessary and risky
biopsies and surgeries.
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Background: In lung adenocarcinoma (LUAD), the predictive role of immune-related
subgroup classification in immune checkpoint blockade (ICB) therapy remains largely
incomplete.

Methods: Transcriptomics analysis was performed to evaluate the association between
immune landscape and ICB therapy in lung adenocarcinoma and the associated
underlying mechanism. First, the least absolute shrinkage and selection operator
(LASSO) algorithm and K-means algorithm were used to identify immune related
subgroups for LUAD cohort from the Cancer Genome Atlas (TCGA) database (n �
572). Second, the immune associated signatures of the identified subgroups were
characterized by evaluating the status of immune checkpoint associated genes and
the immune cell infiltration. Then, potential responses to ICB therapy based on the
aforementioned immune related subgroup classification were evaluated via tumor
immune dysfunction and exclusion (TIDE) algorithm analysis, and survival analysis and
further Cox proportional hazards regression analysis were also performed for LUAD. In the
end, gene set enrichment analysis (GSEA) was performed to explore the metabolic
mechanism potentially responsible for immune related subgroup clustering.
Additionally, two LUAD cohorts from the Gene Expression Omnibus (GEO) database
were used as validation cohort.

Results: A total of three immune related subgroups with different immune-associated
signatures were identified for LUAD. Among them, subgroup 1 with higher infiltration
scores for effector immune cells and immune checkpoint associated genes exhibited a
potential response to IBC therapy and a better survival, whereas subgroup 3 with lower
scores for immune checkpoint associated genes but higher infiltration scores for
suppressive immune cells tended to be insensitive to ICB therapy and have an
unfavorable prognosis. GSEA revealed that the status of glucometabolic
reprogramming in LUAD was potentially responsible for the immune-related subgroup
classification.
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Conclusion: In summary, immune related subgroup clustering based on distinct immune
associated signatures will enable us to screen potentially responsive LUAD patients for ICB
therapy before treatment, and the discovery of metabolism associated mechanism is
beneficial to comprehensive therapeutic strategies making involving ICB therapy in
combination with metabolism intervention for LUAD.

Keywords: lung adenocarcinoma, immune related subgroups, immune checkpoint blockade therapy,
transcriptomics analysis, glucometabolic reprogramming

INTRODUCTION

Lung cancer is one of the most common type of malignancies
worldwide, and is the leading cause of cancer-related death
among men and women globally (Siegel et al., 2021). Non-
small cell lung cancer (NSCLC), which includes squamous cell
carcinoma, adenocarcinoma and large cell carcinoma, accounts
for more than 80% of all primary lung cancers (Kano et al., 2020).
Within NSCLC, adenocarcinoma is the most common
histological subtype (Zhang et al., 2020). Despite great
improvements in LUAD treatment in recent decades,
particularly molecular-targeted therapeutic strategies, such as
tyrosine kinase inhibitors (TKIs) treatment targeting epidermal
growth factor receptor (EGFR) and/or anaplastic lymphoma
kinase (ALK) (Ge and Shi, 2015), the prognosis for LUAD
patients remains poor with a 5-years survival rate of only 15%
(Siegel et al., 2021). Fortunately, as an emerging therapeutic
approach for tumor, immunotherapy, such as immune
checkpoint blockade (ICB) therapy, is increasingly approved to
be effective for LUAD (Huang et al., 2020a). Cytotoxic
T-lymphocyte antigen 4 (CTLA-4) and programmed cell death
protein 1/programmed cell death ligand 1 (PD-1/PD-L1) are
crucial immune checkpoints to maintain homeostasis for
immune response (Meyers and Banerji, 2020). Actually,
attenuated anti-tumor immune response or induced
immunosuppression in local tumor microenvironment (TME)
partially result from excessive negative immune response
mediated by immune checkpoints (Anichini et al., 2020). ICB
therapy aims to enhance anti-tumor immune response by
inhibiting detrimental immunosuppression induced by
immune checkpoint in TME.

Owing to heterogeneity existing in LUAD and development of
acquired resistance to ICB therapy, the overall performance of ICB
therapy in clinical practice for LUAD is far from satisfactory (Pathak
et al., 2020). As one of the most immunological cancer type,
immunological surveillance, immunoediting and immune escape
play a critical role in LUAD development and progression (Song
et al., 2020). Screening for potentially responsive LUAD patients to
ICB therapy before treatment by using an effective immunoligical
biomarker is beneficial to remarkably improve the outcome of LUAD
patients with ICB therapy (Wu et al., 2020). Tumor-infiltrating
lymphocyte (TIL) score and PD-L1 expression in TME are
previously suggested as potential biomarkers to select potentially
sensitive subpopulation to ICB therapy prior to treatment and to
predict survival for LUADpatients (Gascón et al., 2020; Jin et al., 2020;
Hashemi et al., 2021). However, evaluations for the status of TIL and
PD-L1 are currently non-standardized and limited by tissue samples

availability. A comprehensive analysis of the immune associated
signature in TME enable a further understanding of the interplay
between local immune status and tumor immunotherapy
responsiveness (Park et al., 2020; Wang et al., 2020).

“Omics” techniques which are characterized by high-throughput
interfaces are able to investigate complex biological systems in order to
identify molecular signatures responsible for the complicated
biological phenotype (Gillette et al., 2020; Lazarou et al., 2020). In
the present investigation, bioinformatics analyses based on ribonucleic
acid (RNA) sequencing (RNA-seq) data and clinical information from
Cancer Genome Atlas (TCGA) database were performed to
comprehensively explore the predictive role of immune associated
signature in therapeutic responsiveness to ICB therapy for LUAD.

FIGURE 1 | Theworkflow of this study. Briefly, immune related subgroup
clustering was performed by using LASSO algorithm and K-means algorithm.
After characterization of the immune associated signatures of the identified
subgroups, TIDE algorithm analysis was performed to predict the
potential sensitivities to ICB therapy. Meanwhile, survival analysis and further
Cox proportional hazards regression analysis were also performed for LUAD.
In the end, GSEA was performed to explore the metabolic mechanism
potentially responsible for immune related subgroup clustering.
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First, immune related subgroup clusteringwas performed by using the
least absolute shrinkage and selection operator (LASSO) algorithm
and K-means algorithm. Second, the immune associated signatures of
the identified subgroups were characterized by evaluating the status of
immune checkpoint associated genes and the immune cells
infiltration. Then, potential responses to ICB therapy were
predicted via tumor immune dysfunction and exclusion (TIDE)
algorithm analysis, and the relationship between the immune
associated signature based on the aforementioned immune related
subgroup classification and potential sensitivities to ICB therapy were
determined. Additionally, survival analysis and further Cox
proportional hazards regression analysis were also performed for
LUAD, and gene set enrichment analysis (GSEA) was performed
to explore the metabolic mechanism potentially responsible for
immune related subgroup clustering. In the end, two microarray
data sets from the Gene Expression Omnibus (GEO) database were
used as validation cohorts in the study. The work flow of this study
was shown in Figure 1.

Transcriptomics analysis of the association between immune
associated signature and ICB therapy in LUAD not only explains
for the heterogeneity in the reactivity to ICB therapy partially from an
immunological perspective, but also provide potentially promising
biomarker or target to direct sensitive LUAD patients screening prior
to ICB therapy and combination therapy strategy making involving
ICB therapy in combination with metabolism intervention.

MATERIALS AND METHODS

Data Acquisition
The RNA-seq data sequenced on the Illumina RNA sequencing
platform for LUAD samples from TCGA samples were download
from the Cancer Genomics Browser of the University of California

Santa Cruz (UCSC) Xena (https://xena.ucsc.edu/public) (Cline et al.,
2013). Then, log2 (x+1) transformed HT-seq counts data and
Fragments Per Kilobase Million (FPKM) data were selected for
further analysis. The corresponding phenotype and survival
information were also downloaded from the UCSC Xena. The
latest gene ID annotation file (gencode.v32. annotation.gtf) was
downloaded from the GENCODE database (http://www.
gencodegenes.org) (Frankish et al., 2019) for Entrez gene ID and
Ensembl gene ID transformation. Finally, after matching the TCGA
sample ID in RNA-seq with the corresponding phenotype and
survival information, a total of 572 LUAD samples in TCGA
database were included in the study. Meanwhile, a total of 824
genes directly involved in immunological processes were collected
using the Immunome database (Breuer et al., 2013). In addition,
Microarray data for 398 LUAD samples in GSE72094 and 442 LUAD
samples in GSE68465 were also acquired from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The corresponding gene chip
annotation messages and clinical messages of this two data sets were
downloaded using the R package GEOquery (Davis and Meltzer,
2007). The clinicopathological characteristics of LUAD patients from
the training and validation sets were summarized in Table 1.

Data Preprocessing and Immune Related
Subgroup Clustering
RNA-seq data and microarray data for LUAD from public database
were first standardized for further analysis. “Combat” algorithm
(Johnson et al., 2007) of R package sva (Leek et al., 2012) was
employed to reduce the batch effect which may lead to deviations
and bias to unrelated biological or scientific differences between
subgroups (Leek et al., 2010). To filter out the missing values,
intersective genes were selected from the TCGA cohort, GSE72094
cohort, GSE68465 cohort and Immunome database in the current
study. Based on the expression of intersective genes for LUAD cohort
from the TCGA database, LASSO algorithm and 10-fold cross
validation method in R package glmnet (Friedman et al., 2010)
were used to select the optimal gene set of the immune associated
genes for immune related subgroup clustering. The total within sum
of square and average silhouette width were calculated using R
package factoextra to identify the best number of clustering.
K-means algorithm, a classical unsupervised learning algorithm of
artificial intelligence, was used for sample clustering in R software
version 3.6.0 (https://www.r-project.org/) by 10 iterations with at least
30 samples for each subgroup. Moreover, consensus matrix analysis
was performed in each data set to validate the clustering number, and
consensus matrices were generated using the R package
ConsensusClusterPlus (Wilkerson and Hayes, 2010). The principal
component analysis (PCA) plot of the clustered samples were also
drawn in the present study.

Evaluation of Immune Cell Infiltration
Scores and Immune Checkpoint Associated
Genes Scores in Tumor Microenvironment
as the Immune Associated Signature
Immune cell Abundance Identifier (ImmuCellAI) (Miao et al., 2020),
a gene set signature-based method, was used to evaluate the

TABLE 1 | Clinicopathological characteristics of LUAD patients from the training
and validation sets.

Characteristics TCGA GSE68465 GSE72094

Training set Validation set Validation set

Patient numbers 751 443 442
Age 65.2 ± 10.0 64.4 ± 10.1 69.2 ± 9.3
Gender — — —

Male 342 223 202
Female 409 220 240

Tumor stages — — —

Not reported 10 — 28
I 409 — 265
II 176 — 69
III 118 — 63
IV 38 — 17

Race — — —

Not reported 70 129 45
Caucasian 581 295 399
African 84 12 13
Asian 16 7 3

Smoking history — — —

Not reported 22 94 74
Never 108 49 33
Ever 621 300 335
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infiltration scores of immune cells in the TMEof LUAD. ImmuCellAI
is capable of precisely estimating the abundance of 24 types of
immune cell, including 18 T-cell subsets (CD4+, CD8+, CD4+

naïve, CD8+ naïve, central memory T (Tcm), effector memory T
(Tem), Tr1, induced regulatory T cells (iTreg), natural regulatory
T cells (nTreg), Th1, Th2, Th17, Follicular helper T cells (Tfh),
cytotoxic T cells (Tc), mucosal-associated invariant T cells (MAIT),
exhausted T cells (Tex), gamma delta T (γδ T), and natural killer T
(NKT) cells) and six other important immune cells (B cells,
macrophages, monocytes, neutrophils, dendritic cell (DC), and
natural killer (NK) cells). In addition, it was reported that
ImmuCellAI can estimate the abundance of immune cells with
superior accuracy to other methods, especially on many T-cell
subsets. Immune checkpoint associated genes, such as CTLA4,
CD28, CD80, CD86, CD274 (PD-L1) and PD-1 (PDCD1), were
selected from previous relevant studies focusing on the correlation
between these genes and LUAD development, progression and
prognosis.

Prediction of Potential Sensitivity to
Immune Checkpoint Blockades Therapy for
Lung Adenocarcinoma Patients Based on
Immune Related Subgroup Classification
Tumor immune dysfunction and exclusion (TIDE) algorithm (Fu
et al., 2020) was used to calculate the potential possibility to respond to
ICB therapy for LUAD patients based on immune related subgroup
classification. Generally, TIDE analysis mainly consists of scores for
TIDE, immune dysfunction, immune exclusion and several immune
associated cells and effector molecules. Among which, negative score
for TIDE suggests a lack of immune evasion phenotype.Meanwhile, T
dysfunction score shows how a gene interacts with cytotoxic T cells to
influence patient survival outcome, and the T cell exclusion score
assesses the gene expression levels in immunosuppressive cell types
that drive T cell exclusion. Scores for suppressive immune cells, such
as cancer associated fibroblasts (CAF), myeloid-derived suppressor
cell (MDSC), M2 macrophage indicate immune evasion or
immunosuppression, suggesting a low possibility to respond to
ICB therapy. Whereas, scores for effector immune cells, associated
effector molecular and immune checkpoint associated genes, such as
CD8+T cells, interferon-γ (IFN-γ) and PD-L1 (CD274) represent a
potential sensitivity to ICB therapy. Additionally, immune related
subgroup clustering, immune associated cells infiltration, immune
checkpoint associated genes and clinicopathologic parameters, such as
age, gender, pathological TNM stages, tumor stages in LUAD were
also evaluated and analyzed between different immune related
subgroups to perform a Cox proportional hazards regression analysis.

Gene Set Enrichment Analysis (GSEA) to
Explore the Underlying Mechanism
Responsible for the Immune Related
Subgroup Clustering of Lung
Adenocarcinoma
GSEA is a bioinformatics analysis to determine whether a prior
defined set of genes shows statistically significant and concordant
differences between two groups (Sun et al., 2020). GSEA version

4.1.0, was used, the number of permutations was set to 1,000, and
FDR <0.05 was the screening threshold. Given a close
relationship between glucose metabolism reprogramming in
tumor and anti-tumor immunomodulation, glucose
metabolism process associated gene signatures, including the
process of glycolysis, gluconeogenesis, tricarboxylic acid (TCA)
cycle and oxidative phosphorylation (OXPHOS) in mitochondria
were compared between the identified immune related subgroups
(subgroup 1 vs subgroup 3) to explore the underlying mechanism
responsible for the immune related subgroup clustering
of LUAD.

Statistical Analysis
The differences of immune associated signatures existed between
immune related subgroups, such as the expression of immune
check point genes and the infiltration scores of immune
associated cells, were evaluated by using Kruskal-Wallis test.
Before that, Shapiro-Wilk test and Tukey’s test were used to
evaluate the status of normal distribution, and F test was used to
perform homogeneity tests of variances. In addition, a survival
analysis (overall survival) using Kaplan-Meier method was
performed for LUAD patients, and the log-rank test was used
to compare the differences of survival existed between the
immune related subgroups aforementioned. Furthermore,
univariate Cox proportional hazards regression analysis was
performed to determine the correlation between survival and a
variety of factors, including clinicopathologic parameters and
immune associated signature factors. Afterwards, significantly
associated factors were selected for further multivariate Cox
proportional hazards regression analysis to determine
independent risk factors. A p-value under 0.05 was considered
to indicate a statistically significant difference. Data was analyzed
using R software version 3.6.0. Multiple testing was corrected
using the Benjamini-Hochberg’s false rediscovery rate (FDR).

RESULTS

Immune-Associated Subgroup Clustering
for Lung Adenocarcinoma From the Cancer
Genome Atlas Database
The LASSO algorithm and 10-fold cross-validation were used to
extract the optimal subsets of immune associated genes based on
Immunome database for immune related subgroup clustering of
LUAD cohort from TCGA database. As shown in Figure 2A, the
optimal λ which have the minimum mean square error was
selected by 10-fold cross validation. LASSO coefficient profile
of the selected subsets of immune associated genes (n � 11) at the
optimal λ for immune related subgroup clustering of LUAD was
depicted in Figure 2B. To optimize the average silhouette width
and the total within sum of square, the optimal number of
clustering was set with k � 3 (Figures 2C,D). Based on this
clustering, LUAD cohort (n � 572) from TCGA was divided into
subgroup 1 (n � 252), subgroup2 (n � 188) and subgroup 3 (n �
132). The consensus matrix and the principal component analysis
(PCA) plots of this immune related subgroup classification when
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k � 3 was shown in Figure 2E and Figure 2F, respectively. The
results about this clustering were further validated in GSE72094
and GSE68465 data sets (Supplementary Figure S1).

Characterization of Immune Associated
Signature Based on Immune Related
Subgroup Clustering of Lung
Adenocarcinoma
In the current investigation, immune checkpoint associated genes
and immune cell infiltration scores were used to represent the
immune associated signature of each of the immune related
subgroups of LUAD. The status of immune checkpoint
associated genes, such as CTLA4, CD28, CD80, CD86, PD-L1
(CD274) and PD-1 (PDCD1), were first evaluated for LUAD
based on the aforementioned immune related subgroup
clustering. As demonstrated in the heatmap (Figure 3A), the
levels of these immune checkpoint associated genes were
significantly different between the three subgroups (p < 0.05).
Box plots were also used to show the differences in each of these

immune checkpoint associated genes between the three
subgroups (Figure 3B). Generally, subgroup 1 tended to have
significantly higher expression levels of immune checkpoint
associated genes in comparison with other subgroups,
particularly with subgroup 3. Next, immune cell infiltration
estimation was performed by using ImmuCellAI. As shown in
Figure 3C, the general infiltration score was higher in subgroup1
in contrast with other subgroups, and a total of 16 immune cell
infiltration scores were found to be statistically different between
the three immune-related subgroups. In detail, the infiltration
scores for effector immune cells, such as CD8+ cells and cytotoxic
cells, were found to be statistically higher in subgroup 1 than that
in other subgroups, whereas CD8 naive cell infiltration score was
relatively lower in subgroup 1 compared to other subgroups.
Meanwhile, the cell infiltration scores for suppressive immune
cells, such as natural regulatory T cells (nTreg) and induced
regulatory T cells (iTreg) were significantly higher in subgroup 3
than that in the other subgroups. (Figure 3D). Similar results
with regard to the characterization of immune associated
signature based on immune related subgroup clustering of

FIGURE 2 | Immune associated subgroup clustering of LUAD by using the LASSO and K-means algorithm. (A) LASSO regression model with 10-cross validation
was used to select the optimal λ (dash line) which have the minimum mean square error (red dots). (B) LASSO coefficient profiles of the selected subsets of immune
associated genes at the optimal λ (grey line) for immune related subgroup clustering of LUAD. (C) The curve of average silhouette width under corresponding cluster
number k, and the maximum of average silhouette width was achieved when k � 3. (D) The curve of total within sum of squared error curve under corresponding
cluster number k, and it reached the “elbow point” when k � 3. (E) The consensus clustering of immune related subgroup of LUAD when k � 3. (F) The PCA plot of
clustered samples in the LUAD, where samples in subgroup-1 (n � 252) are shown in red, subgroup-2 (n � 188) in green and subgroup-3 (n � 132) in blue.
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LUAD were also validated in GSE72094 and GSE68465 data sets
(Supplementary Figure S2 and Supplementary Figure S3).

Estimation of Potential Sensitivity to
Immune Checkpoint Blockades Therapy for
Lung Adenocarcinoma Based on Immune
Related Subgroup Clustering
Tumor immune dysfunction and exclusion (TIDE) algorithmwas
used to evaluate the potential sensitivity to ICB therapy for LUAD
patients included in different immune related subgroups. As
shown in the heatmap (Figure 4A), the TIDE analysis
associated scores were significantly different between the three
subgroups (p < 0.05). Based on the TIDE analysis, a higher
potential sensitivity to ICB therapy was suggested for

subgroup 1 which was with higher scores for TIDE,
dysfunction, CD8+ cells, and interferon-γ (IFN-γ), but with
lower scores for exclusion, M2 macrophage and MDSC in
comparison with that in subgroup 3 (Figure 4B). Similarly,
this TIDE analysis results were also validated in GSE72094
data sets (Supplementary Figure S3). GSE68465 data set was
not used as validation cohort to perform TIDE analysis and
survival analysis because of the lack of information for CD274.

Survival Analysis and Cox Proportional
Hazards Regression Analysis for Lung
Adenocarcinoma
With regard to survival analysis for LUAD, the Kaplan Meier
curves were drawn and the log-rank test was performed in

FIGURE 3 |Characterization of immune associated signatures of the identified immune related subgroups of LUAD. (A) As shown in the gene expression heatmap,
the levels of immune checkpoint associated genes, including CTLA4, CD28, CD80, CD86, CD274 (PD-L1) and PDCD1 (PD-1), were significantly different between the
identified immune related subgroups of LUAD (p < 0.05). (B) Box plots were also shown to demonstrate the differences in each of these included immune checkpoint
associated genes between the three subgroups. Generally, subgroup 1 tended to have higher expression levels of immune checkpoint associated genes in
comparison with other subgroups (p < 0.05). (C) ImmuCellAI was used to evaluate the immune cell infiltration scores in the TME of LUAD. As shown in the heatmap,
immune cell infiltration scores were found to be statistically different between the three immune related subgroups. The general infiltration score was remarkably higher in
subgroup 1 in comparison with other subgroups, particularly with subgroup 3. (D) Box plots were also shown to indicate the differences between the three subgroups
with regard to the infiltration scores of several representative immune cells. The infiltration scores of positive immune response, such as CD8+ cells and cytotoxic cells,
were significantly higher in subgroup 1 than that in the other subgroups. Whereas, the infiltration scores of negative immune response, such as natural regulatory T cells
(nTreg) and induced regulatory T cells (iTreg), were found to be statistically higher in subgroup 3 than that in other subgroups.
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this study. As demonstrated in Figure 4C, subgroup 3 tended
to have an unfavorable prognosis in comparison with that of
subgroup 1. Then, univariate Cox proportional hazards
regression analysis was performed to identify the
significant factors influencing the overall survival (OS) of
LUAD. Among all the included factors, including the
clinicopathologic parameters, immune checkpoint
associated genes, immune cell infiltration scores, TIDE
algorithm scores and immune related subgroup
classification, a total of eight factors were proved to be
significant risk factors influencing survival of LUAD
(Table 2). Afterwards, all the eight factors were included
in further multivariate Cox proportional hazards regression
analysis to identify independent risk factors for LUAD. As
shown in the forest plots (Figure 4D), immune related
subgroup clustering, tumor stage and B cell infiltration
were suggested as potential independent factors influencing
OS of LUAD (p < 0.05). The results of survival analysis and
Cox proportional hazards regression analysis in validation

data set (GSE72094) were also shown in Supplementary
Figure S4.

Potential Metabolism Associated
Mechanism Responsible for Immune
Related Subgroup Clustering of Lung
Adenocarcinoma
Based on the immune related subgroup clustering (subgroup 1 vs
subgroup 3), gene set enrichment analyses (GSEA) was
performed on LUAD data set from the TCGA database using
the gene sets significantly associated with glucose metabolism,
including the process of glycolysis (Figure 5A), tricarboxylic acid
(TCA) cycle (Figure 5B), gluconeogenesis (Figure 5C), oxidative
phosphorylation (OXPHOS) in mitochondria (Figure 5D). FDR
(Q value) < 0.05 was set as the screening threshold. As shown, the
upward parabolas indicated that all the included processes of
glucose metabolism was enhanced in subgroup 1 in contrast with
that in subgroup 3. Glucose metabolic reprogramming was

FIGURE 4 | TIDE analysis and survival analysis for LUAD based on immune related subgroup clustering. (A) TIDE analysis was used to evaluate the potential
sensitivity to ICB therapy for LUAD patients. As shown in the heatmap, the TIDE analysis associated scores were significantly different between the three subgroups (p <
0.05). (B) Based on the TIDE analysis, a higher potential sensitivity to ICB therapy was suggested for subgroup 1 which was with higher scores for TIDE, dysfunction,
CD8+ cells and interferon-γ (IFN-γ), but with lower scores for exclusion, M2 macrophage and MDSC in comparison with that in subgroup 3. (C) Kaplan Meier
analysis was performed to estimate the survival of LUAD. As shown, subgroup 3 tended to have an unfavorable prognosis in comparison with subgroup 1 and subgroup
2. (D) A total of 8 factors were included in further multivariate Cox proportional hazards regression analysis to identify independent risk factors for LUAD after an univariate
Cox proportional hazards regression analysis. As shown in the forest plots, immune associated subgroup clustering, tumor stage and B cells infiltration were suggested
as potential independent factors influencing overall survival (OS) of LUAD (p < 0.05).
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suggested as one of the underlying mechanisms for immune
related subgroup clustering of LUAD. The results of GSEA
analysis in validation data set (GSE72094 and GSE68465) were
also shown in Supplementary Figure S5.

DISCUSSION

As an emerging therapeutic approach for malignancies, tumor
immunotherapy, particularly for ICB therapy, is increasingly
proved to be effective for LUAD patients (Huang et al., 2020a;
Kano et al., 2020). However, a remarkable improvement in overall

response rate and prognosis for LUAD patients is still not achieved
due to the inherent intertumoral and intratumoral heterogeneity and
the development of acquired resistance to ICB therapy (Jin et al., 2020;
Song et al., 2020). To address this issue, a promising biomarker which
is capable of predicting therapeutic efficiency before treatment is
needed to screen potential responsive subpopulation prior to
treatment and monitor the therapeutic efficiency during the
process of treatment (Meyers and Banerji, 2020). Tumor-immune
relationship plays an important role in tumor development and tumor
progression, and tumor immune microenvironment (TIM) is widely
accepted as a significant factor influencing therapeutic efficiency of
ICB therapy (Song et al., 2020;Wang et al., 2020). Specifically, tumor-
infiltrating lymphocytes (TILs) score (Gascón et al., 2020; Hashemi
et al., 2021) and PD-L1 status (Wu et al., 2020) were previously
suggested as potential biomarkers to be applied in clinical practice for
LUAD. However, its translation from bench to bedside is largely
limited by the dependence on tissue sample availability and the non-
standardization for evaluation of TIL score and PD-L1 expression.
Though previous studies tried to use immunophenotypic subtype
classification based on immune signature to address this issue (Song
et al., 2020; Wang et al., 2020; Xu et al., 2020), a systematic and
comprehensive analysis (Seo et al., 2018; Zhang et al., 2020) is still
required to determine the correlation between immune landscape
based on immune related subgroup clustering and therapeutic
reactivity to ICB therapy, and the underlying mechanism is of
necessity to be explored (Huang et al., 2020b; Giannone et al.,
2020). Previous studies from Chen YS. et al. (Xu et al., 2020) and
Chen KX. et al. (Seo et al., 2018) performed immune related subgroup
classification by using computational algorithms, however, an
elaborated immune landscape characterization for distinct immune
related subgroups were inadequate. Even though results from Xing Y.
et al. (Song et al., 2020) and Kim Y. et al. (Xu et al., 2020) suggested a
potential implication of immune subtype classification for ICB
immunotherapy in lung cancer, a comprehensive analysis of the
potential response to ICB immunotherapy for lung cancer, such as
TIDE algorithm, was actually lacked. In the present investigation, we
focused on both the elucidation of different immune signatures and
prediction of potential response to ICB therapy for lung
adenocarcinoma based on immune related subgroup clustering by
using K-means algorithm, a classical unsupervised learning algorithm
of artificial intelligence. More importantly, we conducted GSEA
analysis to explore metabolism associated mechanism potentially
responsible for immune related subgroup clustering of LUAD,
particularly emphasized on the glucometabolic mechanism to shed
light on comprehensive treatment strategy involving ICB
immunotherapy in combination with glucose metabolism
intervention.

Three distinct immune related subgroups were classified for
LUAD in the current study based on RNA-seq data set from
TCGA database (n � 572) by using a K-means algorithm. Among
the classification, subgroup 1 was characterized by higher levels of
immune checkpoint associated genes and higher cell infiltration scores
for immune associated effector cells, and tended to be more sensitive
to ICB therapy and have a favorable prognosis. Whereas, subgroup 3
with lower levels of immune checkpoint associated genes but higher
cell infiltration scores for immune associated suppressive cells was
found to be less responsive to ICB therapy and have a poor prognosis.

TABLE 2 | Univariate Cox proportional hazards regression analysis of the
prognostic factors for overall survival of LUAD.

Characteristics HR 95% CI P Value

Clinical features — — —

Gender 1.05 0.79–1.41 0.72
Pathologic_T 1.18 1.09–1.27 < 0.01*
Pathologic_N 1.36 1.2–1.55 < 0.01*
Pathologic_M 0.98 0.9–1.07 0.68
Age 1.01 0.99–1.02 0.30
Tumor_stage 1.24 1.17–1.32 < 0.01*

Immune_subgroups 1.24 1.03–1.48 0.02*
Gene mutation — — —

TP53 1.21 0.91–1.63 0.19
EGFR 1.4 0.94–2.1 0.10
KRAS 1.13 0.82–1.56 0.46

TIDE — — —

TIDE 1.03 0.74–1.45 0.84
IFNG 1.13 0.84–1.52 0.42
CD274 1.16 0.85–1.57 0.35
CD8 0.72 0.54–0.97 0.02*
Dysfunction 0.85 0.63–1.14 0.26
Exclusion 1.31 0.98–1.77 0.07
CAF 1.11 0.83–1.49 0.47
TAM.M2 0.97 0.72–1.31 0.86

ImmuCellAI — — —

CD4_naive 0.81 0.52–1.25 0.33
CD8_naive 0.9 0.67–1.21 0.49
Cytotoxic 0.92 0.69–1.23 0.58
Exhausted 0.92 0.68–1.23 0.55
Tr1 0.8 0.59–1.07 0.12
nTreg 1.18 0.88–1.58 0.26
iTreg 1 0.75–1.34 0.99
Th1 7.42 0.69–79.79 0.09
Th2 1.24 0.92–1.65 0.15
Th17 1.36 1.02–1.83 0.03*
Tfh 0.67 0.5–0.9 < 0.01*
Central_memory 1.11 0.83–1.5 0.47
Effector_memory 1.16 0.71–1.89 0.54
NKT 0.85 0.63–1.14 0.27
MAIT 0.93 0.7–1.25 0.63
DC 0.94 0.7–1.26 0.66
B_cell 0.6 0.45–0.82 < 0.01*
Monocyte 6.25 0.84–46.22 0.07
Macrophage 0.9 0.37–2.18 0.82
NK 1.04 0.78–1.39 0.78
Neutrophil 1.2 0.9–1.6 0.22
Gamma_delta 1 0.74–1.33 0.98
CD4_T 0.8 0.59–1.07 0.12
CD8_T 0.81 0.6–1.08 0.15
InfiltrationScore 0.82 0.62–1.1 0.19

Bold value indicates that the differences between groups were statistically significant.
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Presumedly, subgroup 1 represented an immune-hot or with an
immunocompetent TME with a higher infiltration score and an
immunocompetent subtype which was possibly associated with a
potential response to ICB therapy and a favorable prognosis.Whereas,
subgroup 3 was considered as an immunodeficient or
immunosuppressive landscape with a lower infiltration score or
with an immunosuppressive subtype, suggesting a potential
resistance to ICB therapy and an unfavorable prognosis. With
respect to subgroup 2, a median subtype with a mixture of
characteristics of subgroup 1 and subgroup 3 was considered.
After Kaplan Meier analysis and Cox proportional hazards
regression analysis, the immune related subgroup clustering was
found to be an independent risk factor influencing the OS of
LUAD patients. In the end, the GSEA analysis revealed that the
metabolic reprogramming status in LUAD is potentially one of the
underlyingmechanisms for the distinct immune associated signatures
based on the immune related subgroup clustering (Hensley et al.,
2016; Faubert et al., 2017; Smolle et al., 2020). The enhanced glucose

metabolism in subgroup 1 was consistent with the immune-hot
landscape and a relatively immunocompetent subtype, whereas the
decreased glucose metabolism in subgroup 3 suggested an
immunodeficient landscape and/or an immunosuppressive subtype.
Validation LUADcohorts from external GEOdatabasewere also used
to confirm the aforementioned results. To sum up, the present
investigation provided a deep understanding of the interaction
between tumor cells and surrounding immune cells (Kareva and
Hahnfeldt, 2013; Speiser et al., 2016) and shed light on an
improvement in ICB therapy or derived combination treatment
for LUAD involving ICB therapy and metabolism intervention
treatment.

As we know that, metabolic reprogramming and
immunomodulation are two hallmarks of tumor (Hanahan and
Weinberg, 2011). From a metabolic perspective, both tumorigenesis
and immunoregulation are intricately associated with metabolic
reprogramming. Specifically, the metabolic interplay between tumor
cells and infiltrating immune cells significantly contributes to tumor

FIGURE 5 | Glucose metabolic reprogramming was suggested as one of the underlying mechanisms for immune related subgroup clustering of LUAD. Based on
the immune related subgroup clustering (subgroup 1 vs subgroup 3), GSEA was performed by using the gene sets significantly associated with glucose metabolism,
including processes of (A) glycolysis (Normalized Enrichment Score (NES) � 2.29, p < 0.01, Q < 0.05), (B) tricarboxylic acid (TCA) cycle (NES � 1.86, p < 0.01, Q < 0.05),
(C) gluconeogenesis (NES � 1.74, p < 0.01, Q < 0.05) and (D) oxidative phosphorylation (OXPHOS) in mitochondria (NES � 1.98, p < 0.01, Q < 0.05) (NES � 1.98,
p < 0.01, Q < 0.05). FDR <0.05 was set as the screening threshold. An upward parabola indicated that the indicated process was enhanced in subgroup 1 in contrast
with subgroup 3. The barcode plot indicates the position of the genes in each gene set; red and blue colors represent positive and negative Pearson’s correlation with
subgroup classification.
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progression and tumor immunosuppression. As reported previously,
metabolic competition between tumor cells and surrounding immune
cells (Chang et al., 2015) and an accumulation of a variety ofmetabolite
caused by metabolic reprogramming (Feng et al., 2017) in TME are
partially responsible for immune landscape remodeling. Even though
improvement in ICB therapy for LUAD in recent decades, a potential
marker for effective stratification of LUAD patients before treatment
and a promising target for associated molecular targeted therapy in
combination with ICB therapy are expected to bring out breakthrough
to clinical management for LUAD. The heterogeneity in metabolism
status of LUAD was previously described (Hensley et al., 2016) and
further confirmed by metabonomics analysis by investigation from
others (Lazarou et al., 2020; Zhao et al., 2020). Additionally, multi-
omics analysis based on single cell sequencing data also recovered a
close correlation between immune status and metabolic
reprogramming (Kim et al., 2020; Xiao et al., 2020; Zhong et al.,
2021). Therefore, ICB therapy combinedwithmetabolism intervention
is expected to improve the prospect of LUAD treatment.

In spite of the innovation and valuable results mentioned above
with respect to this study, a few limitations existing in the current
investigation is noteworthy. First, the TCGA database mainly
comprises Caucasian population, while validation cohort from
GEO database mostly consists of Asian patients, thus racial bias
was not inevitable in this study. To attenuate this bias, two external
validation cohorts from GEO database were used to validate the
results. Then, as actual sensitivity to ICB therapy for LUAD was not
available in this study because the clinical information regarding to
ICB therapy was mostly not provided in TCGA and GEO databases,
only potential reactivity to ICB therapy for LUADwas evaluated based
on TIDE analysis. In the end, the correlation between immune
associated signature and sensitivity to ICB therapy and underlying
metabolic reprogramming-associated mechanism were not further
validated by basic research in vitro and clinical investigation in vivo,
which is what we aim to do in future.

CONCLUSION

In the current investigation, a novel immune related subgroup
clustering by an unsupervised learning model was identified for
LUAD. Distinct immune associated landscape based on this

clustering was significantly correlated with potential sensitivity
to ICB therapy and prognosis for LUAD. GSEA analysis revealed
that the heterogeneity in metabolic reprogramming is potentially
one of the underlying mechanisms responsible for the correlation
between immune landscape and potential reactivity to ICB
therapy for LUAD. The immune related subgroup clustering
based on the transcriptomics analysis will enable us to screen
potentially responsive LUAD patients to ICB therapy.
Additionally, metabolism intervention is a promising approach
to improve the therapeutic efficiency of ICB therapy for LUAD.
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GLOSSARY

ANN artificial neural network

ALK anaplastic lymphoma kinase

CTLA-4 cytotoxic T-lymphocyte antigen 4

CLP common lymphoid progenitor

CAF cancer-associated fibroblast

DC dendritic cell

DBSCAN density-based spatial clustering of applications with noise

EGFR epidermal growth factor receptor

FDR false rediscovery rate

GEO Gene Expression Omnibus

GSEA single-sample gene set enrichment analysis

HR hazard ratio

ICBs immune checkpoint blockades

IFN-γ interferon-γ

ImmuCellAI Immune cell abundance identifier

LASSO least absolute shrinkage and selection operator

LUAD lung adenocarcinoma

MAIT mucosal-associated invariant T

MDSC myeloid-derived suppressor cell

NK natural killer

NKT natural killer T

NSCLC non-small cell lung cancer (NSCLC)

OS Overall survival

OXPHOS oxidative phosphorylation

PD-1/PD-L1 programmed cell death protein 1/programmed cell death
ligand 1

PCA principal components analysis

RNA-seq RNA sequencing

SVM support vector machine

TCA tricarboxylic acid

Tc cytotoxic T

TCGA the Cancer Genome Atlas

Tex exhausted T cells

TIDE tumor immune dysfunction and exclusion

TIL tumor-infiltrating lymphocyte

TIM tumor immune microenvironment

TKIs tyrosine kinase inhibitors

TME tumor microenvironment

Treg Regulatory T
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Interaction-Based Feature Selection
AlgorithmOutperforms Polygenic Risk
Score in Predicting Parkinson’s
Disease Status
Justin L. Cope1, Hannes A. Baukmann1, Jörn E. Klinger1, Charles N. J. Ravarani 1,
Erwin P. Böttinger2, Stefan Konigorski 2 and Marco F. Schmidt1*

1biotx.ai GmbH, Potsdam, Germany, 2Digital Health Center, Hasso Plattner Institute for Digital Engineering, University of
Potsdam, Potsdam, Germany

Polygenic risk scores (PRS) aggregating results from genome-wide association studies are
the state of the art in the prediction of susceptibility to complex traits or diseases, yet their
predictive performance is limited for various reasons, not least of which is their failure to
incorporate the effects of gene-gene interactions. Novel machine learning algorithms that
use large amounts of data promise to find gene-gene interactions in order to build models
with better predictive performance than PRS. Here, we present a data preprocessing step
by using data-mining of contextual information to reduce the number of features, enabling
machine learning algorithms to identify gene-gene interactions. We applied our approach
to the Parkinson’s Progression Markers Initiative (PPMI) dataset, an observational clinical
study of 471 genotyped subjects (368 cases and 152 controls). With an AUC of 0.85 (95%
CI � [0.72; 0.96]), the interaction-based prediction model outperforms the PRS (AUC of
0.58 (95% CI � [0.42; 0.81])). Furthermore, feature importance analysis of the model
provided insights into the mechanism of Parkinson’s disease. For instance, the model
revealed an interaction of previously described drug target candidate genes TMEM175
and GAPDHP25. These results demonstrate that interaction-based machine learning
models can improve genetic prediction models and might provide an answer to the
missing heritability problem.

Keywords: epistasis, machine learning, feature selection, parkinson’s disease, PPMI (parkinson’s progression
markers initiative)

INTRODUCTION

The need to understand how to predict phenotypes from genetic data is becoming ever-more
important for the prediction of disease risk for individuals and for plant and animal breeding as well
as for genome editing. Polygenic risk scores (PRS), simple additive models, are the state of the art in
the investigation of the genetic architecture of complex traits or diseases, and, more importantly, in
the prediction of disease susceptibility. (Wray et al., 2007; Evans et al., 2009; International
Schizophrenia Consortium et al., 2009). A Polygenic Risk Score is calculated for a given
individual as the weighted sum of the number of risk allele single nucleotide polymorphisms
(SNP) for which the individual was tested. The weights used in this calculation are the regression
coefficients from a prior genome-wide association study (GWAS).
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Importantly, PRS models are not optimized for predictive
performance. (Chatterjee et al., 2013; Dudbridge, 2013). There are
three reasons for this:

(1) Due to the current limited sample size of discovery GWAS
datasets (<1,000,000 individuals), biologically relevant rare
variants with small effect sizes cannot be detected.
Additionally, the limited sample sizes of discovery GWAS
can lead to biased PRS models that might not perform well in
populations with ancestry different to that of the discovery
dataset. (Reisberg et al., 2017; Duncan et al., 2019).

(2) It has been shown that statistically significant outcome-
associated SNPs are not automatically good predictors of
that outcome. (Lo et al., 2015).

(3) It has been reported that genetic effects discovered in
genome-wide association studies do not sum to the
estimate of the heritability of the trait derived from twin
studies. (Yang et al., 2010). This has been called the missing
heritability problem in GWAS. (Manolio et al., 2009). Besides
potentially missing relevant rare variants and suboptimal
SNP selection based on p-values, classical PRS models ignore
complex gene-gene interactions, also known as epistasis, of
the trait or disease due to their simple additive structure.

The concept of epistasis was first described more than
100 years ago. (Bateson, 1906). Statistical epistasis, as observed
in genome-wide association studies, is genetic variance that can
be attributed to gene interaction and is defined as a function of the
allele frequencies in a population. Detection of epistasis in
discovery GWAS and modeling its impact is challenging
because of linkage disequilibrium (LD), replication of
identified gene-gene interactions in validation datasets, model
complexity, and high dimensionality. (Wei et al., 2014).

Machine learning algorithms that improve automatically
through the use of data represent an opportunity to find gene-
gene interactions in order to build models with better predictive
performance than PRS. Nevertheless, in a recent study, a PRS
model outperformed five machine learning algorithms (Naïve
Bayes classifier, regularized regression, random forest, gradient
boosting, and support vector machine) that were used to build
predictive models for coronary artery disease status. (Gola et al.,
2020).

Here we revisit the potential of machine learning algorithms to
predict disease status compared to a PRS model. For this purpose,
we adopt the Parkinson’s Progression Markers Initiative (PPMI)
dataset (Marek et al., 2011, 2018) (https://www.ppmi-info.org) as
this dataset has been intensively analyzed and is broadly available
for replication studies. We explore two machine learning
approaches in particular, which complement those applied by
Gola et al.: deep learning and interaction-based feature selection.
The first approach, deep learning, employs artificial neural
networks to discover automatically from raw data the
representations needed for classification. Despite not being
widely used in the field of genomics, there is work on
applying deep learning to GWAS: Romero et al., 2016 predict
genetic ancestry by introducing a multi-task architecture
including a parameter prediction network, thereby

considerably reducing the feature space under consideration.
The second approach, interaction-based feature selection, also
drastically reduces the feature space–in this case, by leveraging
contextual information obtained via data mining, allowing for the
testing of a small set of complex hypotheses containing
interactions of multiple variants. Further details concerning
these approaches are described in the Methods section,
following a presentation of the results of our investigation below.

RESULTS

Data Preparation
For all 471 subjects in the PPMI database (368 cases and 152
controls) subject genotyping information was collected from two
complementary genotyping chips (NeuroX and ImmunoChip).
After careful quality control and harmonization, we merged that
information into a single dataset with 369,036 variants and 436
individuals (296 cases and 140 controls). The data was then split
into three disjoint sets: a training set (n � 367) for training
predictive models; a validation set (n � 33) for so-called
hyperparameter tuning, and a test set (n � 36) for model
evaluation. Training and validation are described in further
detail below for each approach as appropriate. In all cases,
evaluation metrics were calculated on the basis of bootstrap
resampling with 104 iterations.

Genome-Wide Association Study
A genome-wide association (GWA) analysis was performed on
the training data. The Manhattan plot of the p-values resulting
from the analysis is shown in Figure 1. Seven single nucleotide
polymorphisms (SNPs) showed p-values less than 10–4 (Table 1).

Polygenic Risk Score
To calculate the PRS, seven different p-value thresholds (0.001,
0.05, 0.1, 0.2, 0.4, and 0.5) for the subjects in the training,
validation and test set were used. The PRS of the subjects in
the training set were then used to train a separate logistic
regression classifier for each p-value threshold. Receiver
operating characteristics (ROC) curves were used to evaluate
classifier performance relative to the validation data. The classifier
with the highest mean area under the curve (AUC) was that
which had been trained on the PRS resulting from the
0.05 p-value threshold, comprising the weighted sum of 57
different SNPs. This classifier was finally evaluated relative to
the test data set, where the mean AUC was 0.58 with a 95%
confidence interval from 0.42 to 0.81 Figure 3. Table 2 presents
these results, along with the estimates of accuracy, sensitivity, and
specificity corresponding to the optimal Youden’s index of 0.21.

Deep Learning
We applied Romero et al.‘s approach to the PPMI dataset, again
using the training data set to train competing networks with
distinct hyperparameter settings and the validation data set to
select between these networks. When evaluated relative to the test
data set, the mean AUC of the final deep learning model was 0.67
(95% CI � [0.47; 0.83]) and the optimal Youden index
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corresponding to the accuracy, sensitivity, and specificity
measures reported in Table 2 was 0.29.

Feature Selection and LASSO Regression
A set of less than 100 polygenic hypotheses were generated
using the interaction-based feature selection approach
applied to the training data, as described in the Methods
section below. (See also an overview of our approach in
Figure 3.). These hypotheses were summarized in a term
that was used to build a LASSO regression model on the
basis of the validation data. (Tibshirani, 1996). The
predictive performance of this model, based on 47 SNPs in
several different interaction terms, was then evaluated

relative to the test set Figure 4. The mean area under the
curve (AUC) for the LASSO model with prior feature
selection was 0.85 [95% CI � (0.72; 0.96)] and the optimal
Youden index corresponding to the accuracy, sensitivity, and
specificity measures reported in Table 2 was 0.61. A LASSO
model without prior feature selection that was built for
comparison was evaluated in the same manner but did not
deliver outcomes that were significantly better than chance
(Table 2), in line with Gola et al. (2020) s results for
regularized regression.

Exploring the feature selection based model with its interactive
terms provides insights about the genes associated with
Parkinson’s disease. An annotation of all 47 SNPs in our

FIGURE 1 |Manhattan plot of negative decadic logarithm of p-values for SNPs as determined by SAIGE analysis. Variants identified by Lasso with feature selection
are highlighted in red and green if they increase or decrease disease risk, respectively. Variants highlighted in orange occur in both protective and risk-enhancing groups
of SNPs, depending on their genotype. Most of these biologically meaningful variants would have been missed by using a simple p-value cutoff.

TABLE 1 | PPMI GWAS results identified seven SNPs with a p-value < 10–4. Positions and rs IDs according to Human Genome Reference hg19 (GRCh37).

Chr Pos SNP Id rs Id Gene p-value

1 173,266,578 imm_1_171,533,201 rs4916319 TNFSF4 (upstream) 0.000083
2 209,087,335 exm2261159 rs4675743 0.000046
5 156,376,703 exm498917 rs6873053 TIMD4 (downstream) 0.000092
6 133,716,974 rs212805 rs212805 EYA4 0.000074
17 25,895,033 imm_17_22,919,160 rs4795747 0.000015
18 5,479,093 rs7238186 rs7238186 EPB41L3 (downstream) 0.000007
19 57,909,872 exm1513284 rs4801478 ZNF548 0.000040

TABLE 2 | Performance comparison of all models.

Method AUC [95% CI] Accuracy Sensitivity Specificity Youden’s index

PRS 0.56 [0.42; 0.81] 0.60 0.62 0.56 0.21
Deep learning 0.67 [0.47; 0.83] 0.60 0.42 0.88 0.29
LASSO w/feature selection 0.85 [0.72; 0.96] 0.81 0.81 0.80 0.61
LASSO w/o feature selection 0.51 [0.39; 0.63] 0.62 0.87 0.09 0.12
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model can be found in the Supplementary Information. An
exciting result from this analysis of the PPMI dataset is the
statistical interaction of variants rs3822019 on chromosome

four in gene TMEM175, coding for a potassium channel in late
endosomes, and rs17022,452 on chromosome 2, close to the
coding region of GAPDHP25, glyceraldehyde-3 phosphate

FIGURE 2 | Receiver operating characteristic (ROC) curves of feature selected machine learning model (A) and polygenic risk score (B). The AUC of the feature
selected model with 0.85 [95% CI � (0.72; 0.96)] is better than the AUC of the PRS with 0.56 [95% CI � (0.42; 0.81)].

FIGURE 3 | Our feature selection consists of two complementary modules that are in feedback with each other. The contextual module uses information mined
from the scientific literature, pathway libraries and protein co-expression data and an evaluation module that estimates predictive power of a feature based on that
contextual information. The selected features can be used to build prediction models with standard machine learning algorithms.
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FIGURE 4 | Coefficients determined by Lasso with feature selection for SNPs and groups of SNPs. Negative values (green) indicate protective (combinations of)
variants, positive values (red) mark risk variants. The respective genotypes of each variant are indicated by one-letter codes of the bases, where the first letter
corresponds to the reference allele, and the second corresponds to the observed, alternative allele.
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dehydrogenase pseudogene 25. rs3822019 is an intron variant
that has been linked to Parkinson’s disease. (Nalls et al., 2014).

DISCUSSION

We analyzed the PPMI dataset and built predictive models
using polygenic risk scores, a deep learning algorithm for
genomic data (Romero et al., 2016), and LASSO regression
with and without interaction-based feature selection to reduce
the hypothesis space. The PRS model comprises 57 SNPs and
showed an AUC of 0.58 whereas the deep learning model had
an AUC of 0.67. Notably, the deep learning model consists of
abstract embeddings instead of single SNPs like the PRS.
Therefore, identification of disease-associated SNPs and
further insights into the disease mechanism are not possible
here. The LASSO regression model built on interactions
containing only 47 SNPs that were discovered via the use of
contextual information outperformed the other predictive
models with an AUC of 0.85. Beyond that, the approach
was able to associate new variants with the disease that
would not have shown up under an additive approach such
as PRS.

We investigated how the combinations of the relevant
genotypes rs3822019_TT (TMEM175) and rs17022,452_GG
(GAPDHP25) split the individuals into cases and controls
(Table 3). All subjects that are homozygous for rs3822019_TT
are affected by PD. Furthermore, most individuals heterozygous
for this variant (rs3822019_TT) or homozygous for
rs17022,452_GG are cases (76.4 and 75.0%, respectively).
These results support the relevance of the association between
these variants and PD status.

The TMEM175/GAK/DGKQ locus was the third strongest risk
locus in a GWA study of Parkinson’s disease (Krohn et al., 2020)
and has been described as a potential drug target. (Diogo et al.,
2018; Jinn et al., 2019). Deficiency in the potassium channel
TMEM175 results in unstable lysosomal pH, which leads to
decreased lysosomal catalytic activity and increased
α-synuclein aggregation, among other effects. As a potassium
channel, TMEM175 has a high potential as a druggable target and
a tractable therapeutic strategy has been proposed. (Jinn et al.,
2017).

GAPDH has been targeted with the investigational drug
Omigapil for prevention of PD, ALS, congenital muscular

dystrophy and myopathy. The drug has been shown to protect
against behavioural abnormalities and neuro-degeneration in
animal models of Parkinson’s disease. However, PD
development has been terminated due to lack of benefit.
(Olanow et al., 2006).

There seem to be various causes of Parkinson’s disease, yet the
pathogenesis of this disease appears to be converging on common
themes—oxidative stress, mitochondrial dysfunction, and protein
aggregation—all of which are tightly linked to autophagy.
(Lynch-Day et al., 2012). Both TMEM175 (Jinn et al., 2019)
and GAPDH (Butera et al., 2019) regulate autophagy. Disturbed
expression of autophagy genes in blood of PD patients. (Lynch-
Day et al., 2012).

To summarize, we here present an approach to apply machine
learning algorithms to high-dimensional genomic data using a
contextual knowledge based feature selection. PRSmodels require
a large set of SNPs, which leads to overfitting and limits their use
in clinical practice. We generated more parsimonious models
overcoming these limitations–with only 47, partly interacting
SNPs, our model was able to outperform a PRSmodel based on 57
SNPs for Parkinson’s disease. Analysis of feature importance of
our model identified a gene-gene interaction of TMEM175 and
GAPDHP25. TMEM175 has been described as a potential drug
target and further information on its mechanism of action could
be invaluable. A recently discovered interaction with pseudogene
GAPDHP25 could provide helpful insights. In conclusion,
applying machine learning algorithms to feature-selected
genomic data led to an interaction-based model with better
predictive performance than PRS and has paved the way for
the generation of new insights into disease mechanisms.

METHODS

Parkinson’s Progression Marker Initiative
Dataset
The Parkinson’s Progression Marker Initiative (PPMI) dataset
(https://www.ppmi-info.org) contains 471 subjects (368 cases and
152 controls), and for each subject, genotyping information
collected from two complementary chips (NeuroX and
ImmunoChip) is available. (Marek et al., 2011). After careful
quality control and harmonization (e.g., genome build
conversion, strand alignment) as described in the literature
(Marees et al., 2018), we merged that information into a single
dataset with 380,939 variants in total.

After this initial data harmonization, an additional set of
quality control steps were performed on variants and
individuals that aimed to remove biases that could affect the
downstream analysis. First, SNPs and individuals were filtered
based on their missingness in the dataset. This ensured the
exclusion of SNPs that had a high proportion of subjects
where genotyping information was unavailable or of poor
quality. Similarly, individuals where a large proportion of
SNPs could not be measured were excluded. This step was
achieved by setting the missing call rate threshold to 0.02
(i.e., >2%); as a result, 6,084 variants and 22 people were
removed. SNP filtering was performed before individual filtering.

TABLE 3 | PD cases and controls among bearers of the respective genotype
combinations of the identified variants rs3822019 and rs17022,452.

Genotype combination Cases Controls

rs3822019_TT/rs17022,452_GG 0 0
rs3822019_TT/rs17022,452_GA 6/100% 0
rs3822019_TC/rs17022,452_GG 2/50% 2/50%
rs3822019_TT/- 7/100% 0
-/rs17022,452_GG 7/87.5% 1/12.5%
rs3822019_TC/rs17022,452_GA 27/87.1% 4/12.9%
rs3822019_TC/- 68/73.9% 24/26.1%
-/rs17022,452_GA 66/75% 22/25%
-/- 113/56.5% 87/43.5%
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With high missing call rates filtered, all variants not on
autosomal chromosomes were removed (5,731 variants). This
was followed by the identification and removal of variants
deviating from Hardy-Weinberg equilibrium, which can
indicate genotyping errors. These variants were identified in a
two-stage process whereby we first applied a threshold of 1e-6
exclusively to controls, followed by a threshold of 1e-10 applied to
all samples, leading to the removal of 0 and 202 variants,
respectively.

Next, individuals were filtered based on their heterozygosity
rates, which can indicate sample contamination. Individuals
deviating by more than 3 standard deviations from the mean
of the rate of all samples (13 individuals) were removed. To assess
the heterozygosity rate per sample, variants in linkage
disequilibrium were first extracted, scanning the genome at a
window size of 50 variants, a step size of 5, and a pairwise
correlation threshold of 0.2.

Finally, relatedness between individuals was ascertained
through the calculation and assessment of their respective
identity by descent coefficients (IBD). Only one individual in a
related pair would be kept, although in this case, no related
individuals were identified and so none were removed.

The final quality-controlled dataset contained 369,036 variants
and 436 individuals passing the various filters.

GENOME-WIDE ASSOCIATION STUDY

As a preliminary step, a genome-wide association (GWA)
analysis was performed with the R package SAIGE (Zhou
et al., 2018) to test individual variants for their association
with Parkinson’s disease.

Polygenic Risk Score
The PRS was constructed by using PLINK (Purcell et al., 2007)
following the guidelines provided by Choi et al. (Choi et al.,
2020) and the accompanying tutorial (https://choishingwan.
github.io/PRS-Tutorial/plink/). The clumping cut-off of r2 was
0.1. For all subjects in the training, validation and test sets,
seven distinct risk scores were calculated, corresponding to
seven potential p-value thresholds (0.001, 0.05, 0.1, 0.2, 0.4, 0.
5). The seven risk scores for the subjects in the training set were
then used to train seven separate logistic regression classifiers
(one for each p-value threshold) using the glm function in R
(www.R-project.org). These classifiers were evaluated relative
to the validation data set, leading to the selection of the
classifier based on the PRS calculated using the p-value
threshold of 0.05. The predictions of this final classifier
were then evaluated relative to the test set.

Deep Learning
The deep learning prediction model was built using a Diet
Network according to the procedure described by Romero
et al. (Romero et al., 2016) The model is composed of three
networks: one basic and two auxiliary networks. After a basic
discriminative network with optional reconstruction path,
follows a network that predicts the input fat layer parameters,

and finally, a network that predicts the reconstruction fat layer
parameters. The official code can be found here: https://github.
com/adri-romsor/DietNetworks.

Feature Selection
The interaction-based feature selection approach that we
adopt organizes data mined from journal articles, pathway
libraries, protein co-expression libraries, and drug candidate
libraries (e.g., dbSNP, ClinVar, OMIM, Reactome, STRING
database) into a hierarchical knowledge graph, which
generates disease-specific hypotheses based on interactions
of genetic variants (Figure 1). Each interaction’s predictive
power is determined using the training data set and the glm
function in R (www.R-project.org). If an interaction predicts
disease status well, the graph is incentivized to ‘fine-tune’ the
hypothesis by comparing a set of very similar hypotheses. If a
hypothesis has little or no predictive power, the graph is not
incentivized to explore it or similar hypotheses further and will
instead propose hypotheses containing different variants.
(Klinger et al., 2021). This learning process is driven by
gradient descent, meaning that it converges when the
average performance of the new multi-variant hypothesis
does not increase. After convergence, the selected features
are used to build prediction models with standard machine
learning algorithms, such as LASSO regression (Friedman
et al., 2010).

LASSO Regression
LASSO (least absolute shrinkage and selection operator)
regression models were computed by using the glmnet
package (https://glmnet.stanford.edu/index.html) for R (www.
R-project.org) and its function cv.glmnet with five-fold cross-
validation in order to avoid overfitting. (Friedman et al., 2010).
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A Combined Nomogram Model to
Predict Disease-free Survival in
Triple-Negative Breast Cancer
Patients With Neoadjuvant
Chemotherapy
Bingqing Xia1,2, He Wang3, Zhe Wang4, Zhaoxia Qian1, Qin Xiao2, Yin Liu2, Zhimin Shao2,
Shuling Zhou2, Weimin Chai5, Chao You2* and Yajia Gu2*

1International Peace Maternity and Child Health Hospital, Shanghai, China, 2Shanghai Cancer Center, Fudan University,
Shanghai, China, 3Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China,
4Shanghai United Imaging Medical Technology Co., Ltd., Shanghai, China, 5Ruijin Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai, China

Background: To investigate whether the radiomics signature (Rad-score) of DCE-MRI
images obtained in triple-negative breast cancer (TNBC) patients before neoadjuvant
chemotherapy (NAC) is associated with disease-free survival (DFS). Develop and validate
an intuitive nomogram based on radiomics signatures, MRI findings, and
clinicopathological variables to predict DFS.

Methods: Patients (n � 150) from two hospitals who received NAC from August 2011 to
May 2017 were diagnosed with TNBC by pathological biopsy, and follow-up through May
2020 was retrospectively analysed. Patients from one hospital (n � 109) were used as the
training group, and patients from the other hospital (n � 41) were used as the validation
group. ROIs were drawn on 1.5 T MRI T1W enhancement images of the whole volume of
the tumour obtained with a 3D slicer. Radiomics signatures predicting DFS were identified,
optimal cut-off value for Rad-score was determined, and the associations between DFS
and radiomics signatures, MRI findings, and clinicopathological variables were analysed. A
nomogram was developed and validated for individualized DFS estimation.

Results: The median follow-up time was 53.5 months, and 45 of 150 (30.0%) patients
experienced recurrence and metastasis. The optimum cut-off value of the Rad-score was
0.2528, which stratified patients into high- and low-risk groups for DFS in the training
group (p＜0.001) and was validated in the external validation group. Multivariate analysis
identified three independent indicators: multifocal/centric disease status, pCR status, and
Rad-score. A nomogram based on these factors showed discriminatory ability, the
C-index of the model was 0.834 (95% CI, 0.761–0.907) and 0.868 (95% CI,
0.787–949) in the training and the validation groups, respectively, which is better than
clinicoradiological nomogram(training group: C-index � 0.726, 95% CI � 0.709–0.743;
validation group: C-index � 0.774,95% CI � 0.743–0.805).
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Conclusion: The Rad-score derived from preoperative MRI features is an independent
biomarker for DFS prediction in patients with TNBC to NAC, and the combined radiomics
nomogram improved individualized DFS estimation.

Keywords: radiomics, neoadjuvant chemotherapy, nomogram, triple-negative breast cancer, disease-free survival

INTRODUCTION

Triple-negative breast cancer (TNBC) is a clinical challenge because
of its invasive nature, high risk of distant metastasis, and poor
prognosis. Compared with other breast cancer patients, TNBC
patients are 2–3.5 times more likely to have distant recurrence
(Fatayer et al., 2016). It has been demonstrated that the probability of
a pathological complete response (pCR) is higher in TNBC patients
who receive neoadjuvant therapy (NAC) (close to 31% at present)
than in patients with other molecular subtypes, suggesting that NAC
improves DFS in this group of patients (Houssami et al., 2012).
However, pCR alone is not enough to predict the long-term
recurrence-free survival rate of patients with TNBC, and an
efficient prognostic biomarker is urgently needed to help stratify
patients and create treatment guidelines.

Recently, some studies have indicated that radiomics can be
used to obtain a series of related parameters to quantify the
heterogeneity of lesions and shows promise for improving
tumour prognosis. In previous studies, the radiomics
nomogram provided a promising prediction of neoadjuvant
chemotherapy efficacy in breast cancer patients based on
pretreatment MRI images (Bian et al., 2020; Chen et al., 2020).
Another study reported that the radiomics signature(Rad-score)
could be used for DFS prediction in HER-2-positive invasive
breast cancer treated with NAC, and the radiomics-
clinicoradiologic-based nomogram may potentially be useful
for personalized treatment strategies (Li et al., 2020). However,
there is no relevant research on TNBC.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has excellent sensitivity and good specificity for
breast cancer diagnosis and plays an important role in
characterizing the heterogeneity of tumours. Most studies
involving radiomics analysis only use the initial enhancement
phase of DCE-MRI, and the additional value of radiomics
calculated from later enhancement images was limited.
Nevertheless, the radiomics features derived from the phases
of multiple DCE-MRI images cannot be ignored, which may
imply more information changing over time points.

The purpose of this study was to investigate whether the
radiomics derived from all DCE-MRI phases obtained in
TNBC patients before NAC are associated with DFS and to
compare the combined radiomics nomogram and the
clinicoradiological nomogram for their abilities in predicting
DFS in patients with TNBC treated with NAC.

MATERIALS AND METHODS

The institutional review board approved this two-institution
study and retrospective radiomics data analysis (approval No:

2004216-14), and the requirement for written informed consent
was waived.

Patients
Between August 2011 and May 2017, a total of 150 patients from
two hospitals were enrolled according to the inclusion criteria.
The inclusion criteria included 1) oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) were all negative according to a
core-needle biopsy performed before treatment (the HER2
score (2+) obtained based on immunohistochemistry and gene
amplification was confirmed with fluorescence in situ
hybridization), 2) patients who received NAC and underwent
a final surgery, and 3) patients who underwent an examination
using the same machine (Aurora Dedicated Breast MRI System,
USA, Aurora). The exclusion criteria included the following: 1)
patients who did not undergo a magnetic resonance examination
before treatment, 2) patients whose lesions were hardly identified
on breast MR images, 3) patients with confirmed systemic
metastasis, 4) patients with no final pathological results after
treatment, and 5) patients who were lost to follow-up after
operations. Finally, all patients were required to undergo an
MR examination within 30 days before neoadjuvant therapy.
The following information was also recorded for all patients:
age, menopausal status, start date of NAC, clinical stage, pre-
NAC-T stage and N stage, tumour histologic type, Ki67, surgery
type, and date of progression (local recurrence and distant
metastasis) to determine duration (months) of DFS. DFS was
calculated from the date of surgery to the date of breast cancer
recurrence and metastasis, the last confirmation of no evidence of
disease, or the most recent follow-up examination.

Magnetic Resonance Imaging
Before treatment, all MR scans were performed with an
AURORA 1.5T breast magnetic resonance machine (Aurora
Dedicated Breast MRI System, United States, Aurora). The
patients underwent this procedure in the prone position with
both breasts naturally suspended in a dedicated breast coil. The
scanning range included the bilateral breasts and axillary regions.
DCE-MRI was performed using axial T1-weighted fat
suppression (TE/TR � 5 ms/29 ms, slice thickness � 1.5 mm
with no gap, FOV � 360 mm, matrix � 360 × 360) and
consisted of one precontrast and three consecutive
postcontrast dynamic series. Gd-DTPA was injected into the
dorsal hand vein via a bolus injection (0.1 mmol/kg) at a rate of
2.0 ml/s. The scanning time for each phase was approximately
2 min.

All medical images and clinical records were independently
reviewed by two radiologists specializing in breast imaging
diagnosis (with 5 and 15 years of experience, respectively). The
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morphologic manifestations (such as mass or nonmass
enhancement and TIC curve) of each lesion were determined
according to the 2013 Breast Imaging Reporting and Data System
(BI-RADS) MR imaging lexicon standard proposed by the
American College of Radiology.

Tumour Masking and Inter-Observer
Reproducibility Evaluation
ROIs were manually drawn by the radiologist on the whole
volume of the tumours (including the necrotic regions) with
3D Slicer software (https://www.slicer.org). The 3D segmentation
ROIs of the whole tumour were first created on the first post-
contrast DCE images and then propagated to the pre-contrast
and the other two post-contrast series of DCE images. For
multifocal/centric and nonmass enhancement tumours, ROIs
were drawn over all lesions. Examples of 3D segmentation are
shown in Figure 1. Figure 1A is MR images of TNBC with
multifocal/centric masses. The green area represents the scope of
ROI delineation, and each lesion is delineated by layers.

Figure 1B is MR images of TNBC with non-mass lesions.The
green area is delineated by ROI and delineated according to the
scope of enhancement.

Using 50 randomly selected samples, the interobserver
reproducibility of ROI detection and radiomic feature
extraction was measured. Two experienced radiologists (BQX
and QX) described the ROI independently, and then the radiomic
features extracted from the above two ROIs were compared to
obtain the interclass correlation coefficient. An ICC score greater
than 0.8 was interpreted as satisfactory agreement. The ICC for
the radiomic features was defined as high (ICC ≥ 0.8), medium
(0.8 > ICC ≥ 0.5) or low (ICC < 0.5).

Treatment Regimen and Criteria for pCR
and Recurrence
All patients received paclitaxel sequential/combined anthracycline
neoadjuvant chemotherapy with or without platinum. The median
duration of NAC was 4 (range, 4–8) months. pCR was defined as
ypT0/is and ypN0, which indicate the absence of residual invasive

FIGURE 1 | Examples of 3D segmentations of Triple-negative breast cancers.
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carcinoma in breast tissues with or without ductal carcinoma in
situ and the absence of any residual cancer in the sampled axillary
lymph nodes. A pathological response was determined by senior
breast pathologists. Recurrence was defined as local-regional
(confined to the ipsilateral breast or chest wall and/or axillary,
infraclavicular or supraclavicular lymph nodes) and distant
metastasis (to other parts of the body or the contralateral
breast). Breast cancer recurrence was confirmed by biopsy, and
metastasis was confirmed by biopsy when appropriate or on the
basis of an imaging assessment, including PET/CT and other
imaging modalities.

Radiomics Analysis, Feature Selection and
Rad-Score
The radiomics signature included 1316 radiomics features that
were extracted from the training group by the PyRadiomics
package in Python software (v. 3.6, Python Software
Foundation, https://www.python.org/). All these features were
classified into 3 groups (Table 1). To characterize the textural
changes observed on DCE images over time series, we measured
ten new sequential features for each texture feature described in
group b (Supplementary Table S1). All these features have been
applied in previous radiomics studies (Li et al., 2020). Forward
stepwise regression was applied to select features. Rad-score was
calculated for each patient via a linear combination of selected
features that were weighted by their respective coefficients.
Feature selection was achieved using the Statistics Toolbox in
MATLAB (v. R2018a; MathWorks, Natick, MA).

STATISTICAL ANALYSIS

We compared patient characteristics using commercially available
statistical software (IBM SPSS 24.0). When appropriate, significant
differences between the training and validation groups were
assessed by the Chi-square test, Fisher’s test or t-test. A two-
sided p value of less than 0.05 indicates a significant difference. The
Rad-scores were divided into two groups (high-risk vs low-risk)
using receiver operating characteristic (ROC) curve analysis
according to optimal cut-off value determined by maximizing
the Youden index (sensitivity + specificity-1). Significant

variables in the univariate Cox proportional hazard model (p <
0.05) were included in the multivariate analysis. The combined
radiomics nomogram incorporated the radiomics signature and
various independent risk factors based on multivariate analysis in
the training group and was then validated in the validation group.
The predictive ability and discriminatory performance of each
established model were evaluated using an index of probability of
concordance (C-index), and the C-index between the predicted
probability and actual outcome was calculated to evaluate the
predictive ability and discrimination of the model (Wolbers
et al., 2009). The value of the C-index ranges from 0.5–1.0, with
0.5 indicating random chance and 1.0 indicating perfectly accurate
discrimination. The nomograms were subjected to bootstrapping
validation (1000 bootstrap resamples) to obtain a relatively
corrected C-index.

RESULTS

Patient Characteristics
The clinicopathological and MR imaging characteristics of the
training and validation groups with TNBC are listed in Table 2.
Except for the clinical stage, pre-NAC N stage and pCR status, there
were no differences between the training and validation groups. The
median follow-up time was 54 months (range, 1–101 months)
for the training group and 48 months (range, 1–88 months) for
the validation group. There were 45 (30.0%) recurrences, 30
(20.0%) in the training group and 15 (10.0%) in the validation
group, including 35 patients with distant metastasis (one also
had additional local-regional recurrence), 8 with local-regional
recurrence only, and 2 with contralateral breast cancers.

Radimics Analysis, Rad-Score Building and
Validation
The ICC for radiomic features between the two radiologists BQX
and QX ranged from 0.8732 to 0.9671. Two radiologists generally
reached a consensus on the delineations. To verify the importance
of the new features, two different Radimics models were
delevoped. Model 1 only uses the features derived from the
first postcontrast phase, while Model 2 uses the features
derived from all dynamic phases, including the new features.

TABLE 1 | Three groups of extracted features.

Group Number
(features)

Description

a Shape features on DCE (DCEshape) 14 The 14 shape-based features were calculated based on the first postcontrast DCE images
b Texture features based on DCE images with 4 time

series (DCEtexture)
372 The 93 texture features (including 18 first-order features, 24 grey-level co-occurrence

matrix (GLCM) features, 16 grey-level run length matrix (GLRLM) features, 16 grey-level
size zone matrix (GLSZM) features, 5 neighbouring grey tone difference matrix (NGTDM)
features, and 14 grey-level dependencematrix (GLDM) features) were calculated based on
these four series image sets to yield 372 features

c Sequential features based on DCE images
(DCEsequential)

930 The first six features, including mean, variance, kurtosis, skewness, energy, and entropy,
were extracted for each individual subject. The other four features, including Kendall-tau-b,
conservation, stability, and dispersion, were calculated for the interactive information
between the current subject and the remainder of the subjects. Therefore, a total of 930
DCEsequential features were extracted from 93 texture features
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The results for the two models are shown in Table 3. Model 2
achieved a predictive accuracy of 85.4%, sensitivity of 50.0%,
specificity of 97.6%, PPV of 88.0%, and NPV of 85.0%, which was
more robust than Model 1. Finally, Model 2 was selected for the
following study.

In Model 2, six textural features were selected for predicting
DFS after forward stepwise regression selection, and the Rad-score
calculation formula is presented:y � 0.25688+(−0.12986)×
Skewness_glcm_Imc1+(−0.13965)×Entropy_firstorder_RootMean
Squared+(−0.094626)×Entropy_ngtdm_Busyness+0.10472×Kendall-
tau-b_glcm_Idmn+(−0.23802)×Conservation_glcm_Difference
Average+0.2713×Conservation_ngtdm_Complexity. The above
selected features are all from group c (DCEsequential). There
was a significant difference in Rad-scores between the recurrence
and no recurrence groups (p＜0.001) in the training group. The
median Rad-score was 0.2349 (range, −0.3165 to 0.9846;
interquartile range, 0.1038–0.3812). The optimum cut-off value
generated by the ROC curve was 0.2528, and the AUC was
0.852 (95% CI, 0.773–0.932). Using this threshold value, patients
were classified into a high-risk group (Rad-score ≥ 0.2528) and a
low-risk group (Rad-score < 0.2528). Kaplan-Meier curves showed
that the radiomics signature was associated with DFS in the training
group (p < 0.001), and this finding was confirmed in the validation
group (p < 0.001) (Figure 2).

Univariate and Multivariate Analyses of the
Risk Factors for RFS
The results of the univariate and multivariate analyses of the
risk factors for RFS in the training group are shown in Table 4.
A higher Rad-score, multifocal/centric lesions, nonmass
lesions, ILC/MIPC histological type, non-pCR and
lymphovascular invasion were associated with worse DFS.
Furthermore, in the multivariate Cox analysis, a higher Rad-
score (DFS odds ratio 26.685; 95% CI 6.654–107.010; p �
0.000), multifocal/centric lesions (DFS odds ratio, 2.522; 95%
CI, 1.160–5.481; p � 0.020), and pCR status (DFS odds ratio,
0.285; 95% CI, 0.100–0.810; p � 0.019) remained independent
prognostic factors (Table 4).

Radiomics Nomogram Building and
Validation
The C-index of the two kinds of nomogram models for the
prediction of DFS in the training group and validation group
is shown in Table 5. A combined radiomics nomogram was
developed based on multifocal/centric disease status, pCR

TABLE 2 | Comparison of clinical and pathological and pretreatment MR imaging
characteristics between training and validation groups.

Characteristics Training
group (n = 109)

Validation
group (n = 41)

p

Age, mean (SD), y 47.3 ± 11.1 48.6 ± 13.3 0.545
Menopausal status 0.322
Premenopausal 63(57.8) 20(48.8)
Postmenopausal 46(42.2) 21(51.2)
Clinical Stage 0.007a

II 83(76.1) 22(53.7)
III 26(23.9) 19(46.3)
Pre-NAC T-stage 0.061
T1 10(9.2) 4(9.8)
T2 68(62.4) 16(39.0)
T3 22(20.2) 14(34.1)
T4 9(8.3) 7(17.1)
Pre-NAC N-stage 0.032a

N0 38(34.9) 10(24.4)
N1 55(50.5) 21(51.2)
N2 7(6.4) 9(22.0)
N3 9(8.3) 1(2.4)
Pathological type 0.575
IDC 105(96.3) 41(100.0)
ILC,IMPC 4(3.7) 0(0.0)
KI-67 0.090
≤14% 6(5.5) 6(14.6)
＞14% 103(94.5) 35(85.4)
Surgery type 0.075
Breast conservation 21(19.3) 3(7.3)
Mastectomy 88(80.7) 38(92.7)
Features at MR imaging 0.455
Mass 86(78.9) 30(73.2)
Nonmass 23(21.1) 11(26.8)
Kinetics 0.684
Washout 104(95.4) 38(92.7)
Plateau or persistent 5(4.6) 3(7.3)
Multi-focal/centric disease 0.695
Present 31(28.4) 13(31.7)
Absent 78(71.6) 28(68.3)
pCR 0.022a

Yes 46(42.2) 9(22.0)
No 63(57.8) 32(78.0)
Lymphovascular invasion 0.052
Present 23(21.1) 15(36.6)
Absent 86(78.9) 26(63.4)
Disease-free survival 0.280
Yes 79(72.5) 26(63.4)
No 30(27.5) 15(36.6)

Data are expressed as n(%) unless otherwise specified.
The p values for age were determined by t test, while other p values were determined by
Chi square or Fisher exact tests, as appropriate.
aindicate statistical significance (p＜0.05).
IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMPC, invasive
micropapillary carcinoma; pCR, pathological complete response.

TABLE 3 | Summary of radiomics model1 and model2 results.

Accuracy Sensitivity Specificity PPV NPV

Model1 (1st PC phase) 76.6%(74.3–78.0) 17.4%(10.7–21.4) 97.1%(95.1, 98.8) 68.1%(50.0–83.3) 77.3%(76.0–78.2)
Model2 (All phases, 1pre-contrast and 3 PC phases 85.4%(84.4–86.2) 50.0%(46.4–50.0) 97.6%(96.3–98.8) 88.0%(82.4–93.3) 85.0%(84.8–85.1)

Confidence intervals are in parenthesis. Above two models were performed using a fine Gaussian support vector machine and conducted using 5-fold cross validation to overcome
overfitting. The procedure was repeated for ten rounds to average the estimates of performance.
PC, post-contrast; PPV, positive predictive value; NPV, negative predictive value.
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status, and Rad-score to predict the DFS rate for NAC among
TNBC patients (Figure 3). A total score was obtained by
adding each single score to estimate the 2-/3-/5-years DFS
probability. The C-index was 0.834 (95% CI, 0.761–0.907) and

0.868 (95% CI, 0.787–0.949) in the training and validation
groups, respectively, indicating that the combined radiomics
nomogram had better discriminatory capability than the
clinicoradiological nomogram.

FIGURE 2 | Kaplan–Meier survival analyses according to the radiomics signature with low-risk and high-risk patients in training and validation groups.

TABLE 4 | Univariate and multivariate analysis of disease-free survival in training group.

Characteristics Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Age,＜35 years versus ≥35 years 1.775 0.538–5.855 0.346
Menopausal status, premenopausal versus postmenopausal 1.661 0.810–3.404 0.166
Clinical Stage, II versus III 1.529 0.700–3.340 0.287
Pre-NAC Tstage(T1 reference) 0.306
T2 3 0.354–25.439 0.314
T3 5.143 0.547–48.365 0.152
T4 7.2 0.622–83.342 0.114
Pre-NAC Nstage(N0 reference) 0.248
N1 1.322 0.512–3.41 0.564
N2 4.296 0.806–22.9 0.088
N3 0.403 0.044–3.669 0.42
Pathologic type, IDC versus ILC, IMPC 5.330 1.602–17.735 0.006a 0.851 0.210–3.445 0.821
KI-67, ≤20% versus ＞20% 0.452 0.137–1.493 0.193
Surgery type, Breast conservation versus Mastectomy 2.252 0.683–7.426 0.182
Features at MR imaging, Mass versus Nonmass 2.454 1.145–5.262 0.021a 1.565 0.639–3.832 0.327
Kinetics, Washout versus Plateau or persistent 0.659 0.090–4.84 0.682
Multi-focal/centric disease, Present versus Absent 3.177 1.549–6.517 0.002a 2.522 1.160–5.481 0.020a

pCR, Yes versus No 0.232 0.089–0.608 0.003a 0.285 0.100–0.810 0.019a

Lymphovascular invasion, Present versus Absent 2.254 1.054–4.820 0.036a 0.995 0.402–2.461 0.991
Rad-score 52.829 14.821–188.300 0.000a 26.685 6.654–107.010 0.000a

OR, odds ratio; CI, confidence interval; pCR, pathological complete response.
aindicate statistical significance (p ≤ 0.05).

TABLE 5 | Performance of the two nomogram for prediction of disease-free survival.

Nomogram Training Validation

C-index 95%CI C-index 95%CI

Combined Radiomoics nomogram 0.834 0.761–0.907 0.868 0.787–0.949
Clinicoradiological nomogram 0.726 0.709–0.743 0.774 0.743–0.805

C-index,index of probability of concordance; CI, confidence interval.
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DISCUSSION

In our study, we demonstrated the prognostic value of multiphase
CE-MRI radiomics features for patients with TNBC treated with
NAC. In addition, we developed a combined radiomics model that
incorporates the radiomics signature and MRI and pathology
findings for the individualized prediction of DFS in TNBC
patients who underwent NAC. Compared with the
clinicoradiological nomogram, the combined radiomics
nomogram had superior prognostic performance in DFS estimation.

For feature extraction and selection, we measured ten new
sequential features to characterize the textural changes observed on
DCE images over time series. These features have not previously
been used or described in the domain of breast radiomics except in
Li et al. (2020) and Xie et al. (2019) studies, who used new features
to differentiate different subtypes of breast cancer and predict DFS
in patients with HER2-positive breast cancer treated with NAC.
We compared two models to investigate whether the accuracy of
the radiomics model was significantly improved after adding new
features. Roberto et al. (LoGullo et al., 2020) andGibbs et al. (2019)
both demonstrated that delayed postcontrast phases did not add
any significant discriminative value to the analysis, which is
inconsistent with our research results. The reason may be that
we added new sequential features, but they did not include them,
and the subjects of their study were subcentimetremasses that were
much smaller than ours lesions. Furthermore, the sequential
texture features derived from dynamic phases may capture
information on both spatial heterogeneity and tumour
perfusion, which is more valuable in predicting DFS than
differentiating benign and malignant lesions.

In our study, the final Rad-score calculation formula included six
potential features all from the new sequential features. The six
selected radiomics features comprised one from skewness, two
from entropy, one from Kendall-tau-b and two from

conservation. Among them, other studies have also emphasized
the importance of skewness and entropy in reflecting the
heterogeneity of tumours. Kendall-tau-b and conservation were
calculated from interactive information between the current
subject and the remainder of the subjects, which means that if
the changes increased, the Rad-score increased, indicating a worse
prognosis. One possible interpretation is that this change may be
related to the high perfusion of the tumours, and tumours with
abundant blood supply tend to be more heterogeneous and have a
worse prognosis. Attentionally, three of the six selected features were
GLCM (grey level cooccurrence matrix), and two were NGTDM
(neighbourhood grey-tone difference matrix). At present, GLCM is
themost widely used texture extractionmethod, which has also been
confirmed in assessing tumour heterogeneity and plays a very
important role in various fields. The basic principle of the GLCM
is based on spatial correlation between neighbouring pixels.
NGTDM represents contrast, which is determined by changes in
intensity between a target voxel and the surrounding neighbours
and then enables the calculation of the apparent difference between
neighbouring regions of voxel intensities. Contrast is also related to
tumour heterogeneity; tumours with poor prognosis tend to have
higher contrast (Sun andWee, 1983). Our results also showed that
the Rad-score had a promising high value for predicting DFS,
which was confirmed by Kaplan–Meier survival curves in the
training group (p < 0.0001) and in the validation group (p <
0.0001). Interestingly, the cut-off value (Rad-score � 0.2528. for
predicting DFS was similar to QL’s study (Rad-score � 0.2523),
regardless of TNBC or HER2-positive breast cancer with NAC.

There were differences in clinical stage, pre-NAC N stage and
pCR status between the training and validation groups, which
might be associated with differences in study populations with
different hospitals. In the validation group, the later the clinical
stage, the more difficult it was to achieve pCR. Various previous
studies have confirmed that a tumour’s response to neoadjuvant

FIGURE 3 | The developed nomogram for predicting disease-free survival in triple-negative breast cancer patients after neoadjuvant chemotherapy.
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therapy provides prognostic information. The attainment of a
pCR after NAC and surgical resection improved the DFS rate of
patients (Houssami et al., 2012), (Cortazar et al., 2014; Chen et al.,
2017; Symmans et al., 2017), consistent with our study. However,
42.2% of the patients in the training group received pCR after
NAC, and this rate is higher than those reported in other studies
(Houssami et al., 2012), potentially because we ruled out patients
who did not undergo surgery and did not finish a complete NAC
regimen. Interestingly, in the training group, multifocal/centric
lesions were identified as independent predictors for the DFS of
TNBC after NAC. Many studies (Duraker and Çaynak, 2014;
Lang et al., 2017) have demonstrated that multifocal/centric foci
exhibit more biologically aggressive behaviour than has been
observed for unifocal breast cancer, and this could influence
DFS and OS. Although the multifocal/centric lexicon was not
included in BI-RADS, these patients should receive more
attention during postoperative follow-up. While Park et al.
(2018a) found that N-stage was a predictor of DFS in breast
cancer, our analysis failed to support these findings, possibly due
to differences in study populations. In addition, the features at
MR imaging(mass vs nonmass) was not associated with DFS in
multivariate analysis of variance in our study, which was
consistent with the study of Tahmassebi et al. (2019).

The prognostic ability of radiomics signatures has been
demonstrated in many studies. For example, Li et al. (2016)
suggested that image-based radiomics features may be helpful in
assessing the risk of breast cancer recurrence. Park et al. (2018b)
demonstrated that Rad-scores generated from radiomics
signatures based on preoperative MRI have prognostic value.
In our study, we analysed preoperative MRI findings in TNBC, a
special pathological type of breast cancer, and supported the
notion that the Rad-score helps stratify patients, and patients
from high-risk groups need more careful follow-up management.

In this study, we developed a radiomics signature-based
nomogram for the individualized prediction of recurrence in
patients with TNBC after NAC. The nomogram incorporates
three components of a radiomics signature with six selected
features, including pCR status and MR findings indicating
multifocal/centric lesions, which is promising to facilitate
individualized predictions and the prediction of follow-up
needs in patients with poor outcomes with regard to DFS.

Our study has several limitations. First, this is a retrospective
study. Second, most of the patients were examined usingMR after
a biopsy, which might have affected assessments. Third, we
discuss only DCE images in our study, and further prospective
studies should include a variety of breast MR imaging protocols,
such as T2W, DWI, and DCE-MRI.

CONCLUSION

In conclusion, the results of our study show that the identified
Rad-score has the potential to be used as a biomarker for risk
stratification for DFS in patients with TNBC after NAC. In
addition, our results show that a radiomics nomogram that
incorporates a radiomics signature and MRI and
clinicopathological findings can be used to facilitate the
individualized prediction of recurrence in patients with TNBC
after NAC and surgery. This type of quantitative radiomics
prognostic model of breast cancer could be useful for
precision medicine and could affect patient follow-up strategies.
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Background: Hepatocellular carcinoma (HCC) is one of the most common malignant
tumors worldwide, and its prognosis remains unsatisfactory. The identification of new and
effective markers is helpful for better predicting the prognosis of patients with HCC and for
conducting individualized management. The oncogene Aurora kinase A (AURKA) is
involved in a variety of tumors; however, its role in liver cancer is poorly understood.
The aim of this study was to establish AURKA-related gene signatures for predicting the
prognosis of patients with HCC.

Methods: We first analyzed the expression of AURKA in liver cancer and its prognostic
significance in different data sets. Subsequently, we selected genes with prognostic value
related to AURKA and constructed a gene signature based on them. The predictive ability
of the gene signature was tested using the HCC cohort development and verification data
sets. A nomogram was constructed by integrating the risk score and clinicopathological
characteristics. Finally, the influence of the gene signature on the immune
microenvironment in HCC was comprehensively analyzed.

Results:We found that AURKA was highly expressed in HCC, and it exhibited prognostic
value. We selected eight AURKA-related genes with prognostic value through the protein-
protein interaction network and successfully constructed a gene signature. The nine-gene
signature could effectively stratify the risk of patients with HCC and demonstrated a good
ability in predicting survival. The nomogram showed good discrimination and consistency
of risk scores. In addition, the high-risk group showed a higher percentage of immune cell
infiltration (i.e., macrophages, myeloid dendritic cells, neutrophils, and CD4+T cells).
Moreover, the immune checkpoints SIGLEC15, TIGIT, CD274, HAVCR2, and
PDCD1LG2 were also higher in the high-risk group versus the low-risk group.

Conclusions: This gene signature may be useful prognostic markers and therapeutic
targets in patients with HCC.

Keywords: AURKA, gene signature, hepatocellular carcinoma, prognosis, immune infiltration, nomogram
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INTRODUCTION

According to global data, hepatocellular carcinoma (HCC) is the
most common primary liver tumor and the third most common
risk factor for cancer-related deaths worldwide (Sung et al., 2021).
In 2020, there were approximately 906,000 newly diagnosed
patients with liver cancer worldwide and approximately
830,000 liver cancer-related deaths (Sung et al., 2021). The
main causes of liver cancer include hepatitis virus infection,
smoking, alcoholic cirrhosis, chemical drugs, and aflatoxin
infection (Forner et al., 2018). Approximately 400,000 people
die annually in China, accounting for >50% of liver cancer-
related deaths globally (Chen et al., 2016). Early-stage HCC is
insidious and difficult to detect; consequently, a large number of
patients already have advanced-stage disease at the time of
diagnosis. At present, liver cancer is mainly treated by
surgical resection, supplemented by other methods, such as
ablation therapy, targeted therapy, and immunotherapy
(Hartke et al., 2017). However, even with timely
intervention, the recurrence and mortality rates remain high
due to the high degree of malignancy in liver cancer, rapid
disease progression, and poor prognosis (Li et al., 2015) There
are numerous markers used for predicting the prognosis of
patients with liver cancer; nevertheless, their effectiveness is
currently limited. Therefore, there is an urgent need to identify
more effective biomarkers for predicting the prognosis of
patients with liver cancer.

Aurora kinase A (AURKA) is a member of the Aurora kinase
family, which consists of AURKA A, B, and C (Carmena and
Earnshaw, 2003). Human AURKA is located on chromosome
20q13 and encodes a protein of 403 amino acids. It mainly
regulates mitotic spindle formation, stability, and chromosome
segregation, and plays an important role in cell cycle regulation
(Lindon et al., 2016). The abnormal expression of AURKA can
lead to chromosomal abnormalities and instability of the cell
genome, which is a risk factor for tumor formation (Wu et al.,
2018). AURKA is abnormally expressed in a variety of tumors
and regulates tumor proliferation, migration, invasion, and
metastasis (Yan et al., 2016) In addition, it is involved in
multiple signaling pathways, such as the TP53 pathway, Ras/
mitogen-activated protein kinase (MAPK) pathway and NFKB
pathway (Katayama et al., 2004; Briassouli et al., 2007; Umstead
et al., 2017). Previous studies have confirmed that AURKA is
related to the prognosis of a variety of cancers (breast, colorectal,
pancreatic, gastric, and head and neck) and may be a therapeutic
target (Jeng et al., 2004; Reiter et al., 2006; Zhang et al., 2015).

Investigations showed that AURKA played an important role
in liver cancer progression. Jeng et al. confirmed that AURKAwas
overexpressed frequently and correlated with high grade and high
stage in HCC (Jeng et al., 2004). Lu et al. reported that AURKA
mediated c-Myc’s oncogenic effects in HCC (Lu et al., 2015).
Zhang et al. revealed AURKA promoted chemoresistance
through targeting NF-kappaB/microRNA-21/PTEN signaling
pathway in HCC (Zhang et al., 2014). Chen et al. suggested
that AURKA promoteed cancer metastasis through regulating
epithelial-mesenchymal transition and cancer stem cell
properties in HCC (Chen et al., 2017). However, the specific

mechanism of AURKA in HCC is still not very clear and needs to
be further explored.

Thus far, no study investigated the role of AURKA gene and
AURKA-related prognostic genes in liver cancer. It is well
established that the tumor immune microenvironment
influences tumor progression (Locy et al., 2018). Currently, the
immunological value of AURKA in liver cancer has not been
reported. In this study, we first analyzed its clinical value in HCC
and selected prognostic genes associated with AURKA.
Furthermore, we developed an AURKA-related gene signature
in HCC. Next, we constructed a nomogram by combining risk
scores and clinical characteristics. Finally, we evaluated the
relationship between the gene signature and tumor immunity
in HCC.

METHODS

Identification of AURKA as a Differentially
Expressed Gene (DEG)
The RNA-seq data of LIHC patients from The Cancer Genome
Atlas (TCGA, http://gdc.cancer.gov/) database and three datasets,
including GSE14323 (HCC, n � 55; normal, n � 60), GSE14520
(HCC, n � 225; normal, n � 220) and GSE25097 (HCC, n � 268;
normal, n � 289), from Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) database was downloaded to
analysis the AURKA expression in LIHC patients. Gene
expression levels were normalized by Robust Multi-Array
Average (RMA).

Differential gene expression analysis of mRNAs was
performed based on TCGA database. Limma package of R
software (R version 3.6.2) was used to conduct differential
gene expression analysis. The adjusted p-value was analyzed to
correct for false positive results in TCGA or GTEx. “Adjusted p <
0.05 and Log (Fold Change) >1 or Log (Fold Change) <−1” were
regarded as the thresholds of differential expression of mRNAs.
The study flowchart was presented in Figure 1.

Protein-Protein Interaction Network and
Gene Enrichment Analysis
STRING (version 11.0; http://string.embl.de/) is an open-access
biological database that predicts comprehensive interactions of
genes at the protein level from multiple organisms including
Homo sapiens (Mering et al., 2003). To screen AURKA-related
genes, we used STRING to explore AURKA-related genes as well
as conduct PPI network analysis on AURKA-related genes. The
protein–protein interactions (PPI) with medium confidence >0.4
were regarded as significant.

To further confirm the underlying function of potential
targets, the data were analyzed by functional enrichment. Gene
Ontology (GO) is a widely-used tool for annotating genes with
functions, especially molecular function (MF), biological
pathways (BP), and cellular components (CC). Kyoto
Encyclopedia of Genes and Genomes (KEGG) Enrichment
Analysis is a practical resource for analytical study of gene
functions and associated high-level genome functional
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information. ClusterProfiler package (version: 3.18.0) in R was
employed to analyze the GO function of potential targets and
enrich the KEGG pathway. p < 0.05 was set as the cut-off
criterion.

Identification of Prognostic Genes
Gene Expression Profiling Interactive Analysis (GEPIA) is an
interactive web application based on The Cancer Genome Atlas
(TCGA) and Genotype-Tissue Expression databases (Tang et al.,
2017). We used the Gene Expression Profiling Interactive
Analysis to screen the prognostic value of AURKA and
AURKA-related genes. The identification of prognostic genes
was based on the following criteria: 1) significant differences in
gene expression levels between normal liver samples and liver
tumor samples and 2) significant association of the gene with
both overall survival (OS) and disease-free survival (DFS) of
patients with liver hepatocellular carcinoma (LIHC). p-values
<0.05 denoted statistically significant differences.

Development and Validation of the Gene
Signature
Primary screening of the LIHC data from TCGA database was
performed for missing data. After deleting the samples with
missing data, The available LIHC data from the TCGA
database (340 samples) was divided into two subsets: a
training set (n � 240) and a validation set (n � 100) randomly
using the random function of Microsoft Excel program. The
training set was used to train a predictive model and the test set
was applied for validation. Another database International
Cancer Genome Consortium (ICGC) (dcc.icgc.org) was also
used as validation set.

Identified prognostic genes were submitted to the multivariate
Cox regression model to calculate each prognostic gene’s
coefficient and risk scores. We used X-tile plot (version 3.6.1,
http://www.tissuearray.org/rimmlab) to determine the optimum
cutoff of AURKA-related gene signature risk score. X-tile which
could calculate the best cut-point of sub-populations, is a
software developing by team Rimm Laboratory from Yale
University (Camp et al., 2004). A train set and two validation
sets were divided into three sub-groups using the same best
cut-off value. Risk score analysis, including risk score
distribution, survival status, and gene expression heatmap
among sub-groups were performed. Kaplan–Meier curves
were analyzed using Kruskal-Wallis test and visualized
through GraphPad Prism (version 8.0). Receiver operating
characteristic (ROC) curve analysis was performed to assess
the predictive value of AURKA-related gene signature. The
clinical characteristics of three cohorts were shown in
Table 1. The correlation among clinicopathological
characteristics and risk groups were analyzed by the chi-
square test. For sample sizes of less than 40 or theoretical
frequencies (T) of less than 1, Fisher exact probability
method was used.

Distribution of Somatic Mutations
To identify the somatic mutations of patients with LIHC, we
downloaded single-nucleotide polymorphism (SNV) data and
clinical follow-up information from TCGA database. The
downloaded single-nucleotide polymorphism data were
organized in the multiple alignment (MAF) format and
visualized using the “maftools” package in R software. The
horizontal histogram showed the genes with the highest
frequency of mutation.

FIGURE 1 | Flow chart of the study.
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Immune Infiltration Analysis
To explore the associations between different subgroups and
immune cells infiltration, we employed Tumor Immune
Estimation Resource (TIMER), which is a useful resource for
comprehensive analysis of tumor-infiltrating immune cells (Li
et al., 2017). The infiltration of six type of immune cell, including
B cell, Macrophage, Myeloid dendritic cell, Neutrophil, T cell
CD4+ and T cell CD8+, were calculated. SIGLEC15, IDO1,
CD274, HAVCR2, PDCD1, CTLA4, LAG3 and PDCD1LG2
were selected to be immune checkpoints and the expression
values of these eight immune checkpoints among sub-groups
were explored. Differences between the three groups were
assessed using the Kruskal-Wallis test. p < 0.05 was considered
statistically significant. All the above analysis methods and R
package were implemented by R foundation for statistical
computing (2020) version 4.0.3 and software packages ggplot2
and pheatmap.

Construction and Validation of a Prognostic
Model
A nomogram model was constructed to predict the probability of
survival at 3 and 5 years for liver cancer patients. Briefly, the
prognostic value of the clinicopathological characteristics for OS
was estimated through univariate and multivariate Cox
regression analyses in both training set and validation set. The
performance of the risk model was validated by internal

validation and external validation. Internal validation was
performed by bootstrap Cox proportional regression analysis
based on 1,000 bootstrap samples. Validation set was
conducted based on another HCC patients from the TCGA
database. Those parameters with p-values <0.05 in both
training set and validation set were identified as potential
prognostic factors, which were were included in multivariate
Cox regression model and visualized using R package “rms.”
The Calibration curves were plotted to analyze the diagnostic
performance of the nomogram. The ROC curve were conducted
to determine the clinical value of the nomogram.

RESULTS

AURKA mRNA Level in HCC Samples
The results of the DEG analysis are shown in Figure 2. In TCGA
database, a total of 421 HCC samples were selected for the DEG
analysis. The analysis showed that the AURKA gene was
upregulated (log2 fold change >1.5 and adjusted p-value
<0.05), which indicated that the mRNA expression levels of
AURKA differ significantly between normal liver tissue and
liver cancer tissue. The mRNA expression levels of AURKA
were also determined using three Gene Expression Omnibus
data sets (GSE14323, n � 115; GSE14520, n � 445; and
GSE25097, n � 557). The results also showed that AURKA
was significantly highly expressed in HCC.

TABLE 1 | Clinical characteristics of HCC cohorts.

Clinical features Training
set (n = 240)

Validation
set (n = 100)

ICGC-LIRI-JP (n = 243)

Age <50 45 21 15
≥50 195 79 228

Gender Female 80 28 61
Male 160 72 182

T Early (T1+T2) 176 76 -
Late(T3+T4) 63 23 -
Unknown 1 1 -

N N0 172 67 -
N1+N2 2 1 -
Unknown 66 32 -

M M0 171 73 -
M1 1 2 -
Unknown 68 25 -

Stage Stage I/II 166 71 146
Stage III/IV 60 23 97
Unknown 14 6 0

Grade G1 38 14 -
G2 114 47 -
G3 76 35 -
G4 9 3 -
Unknown 3 1 -

Recurrence yes 134 44 -
no 106 56 -

RiskGroup low risk 135 49 199
mid risk 78 40 37
high risk 27 11 7

Status Alive 148 69 199
Dead 92 31 44
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PPI Network Analysis
According to the predictive results of the Search Tool for the
Retrieval of Interacting Genes (STRING) database, another ten
genes were identified as AURKA-related genes with significant
interaction, namely targeting protein for Xklp2 (TPX2), cyclin
dependent kinase 1 (CDK1), polo like kinase 1 (PLK1), DLG
associated protein 5 (DLGAP5), cell division cycle 20
(CDC20), baculoviral IAP repeat containing 5 (BIRC5),
transforming acidic coiled-coil containing protein 3
(TACC3), centromere protein A (CENPA), cyclin B2
(CCNB2), and ubiquitin conjugating enzyme E2 C
(UBE2C). The protein-protein interaction (PPI) network of
AURKA and AURKA-related genes was constructed and
visualized using the online STRING database (Figure 3A).

The Gene Ontology (GO) enrichment analysis was composed
of three parts: GO biological process (GO-BP), GO cellular
component (GO-CC), and GO molecular function (GO-MF).
In GO-CC (Figure 3B), these genes were enriched in condensed
nuclear chromosome, centromeric region, mitotic spindle, and
spindle pole. In GO-BP (Figure 3C), AURKA and its related
genes were significantly enriched in mitotic nuclear envelope
disassembly, positive regulation of ubiquitin protein ligase
activity, and anaphase-promoting complex-dependent catabolic
process. In GO-MF (Figure 3D), genes were mainly enriched in
protein serine/threonine kinase activity, protein
heterodimerization activity, and protein kinase binding. For
the Kyoto Encyclopedia of Genes and Genomes pathway
analysis, nine pathways (Figure 3E) were observed, namely

FIGURE 2 | AURKA expression. (A) Volcano plot of all DEGs. AURKA gene was identified. (B) Histogram of GSE14323, GSE14520 and GSE25097.

FIGURE 3 | PPI network of AURKA and AURKA-related genes. (A–D) GO analysis of AURKA and AURKA-related genes. (E) KEGG pathway analysis of AURKA
and AURKA-related genes.
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progesterone-mediated oocyte maturation, oocyte meiosis, cell
cycle, TP53 signaling pathway, forkhead box O (FOXO) signaling
pathway, ubiquitin-mediated proteolysis, cellular senescence,
viral carcinogenesis, and human T-lymphotropic virus type I
(HTLV−I) infection.

Development and Validation of a Nine-Gene
Signature
The results of the identification of prognostic genes are shown in
Figure 4. According to the screening strategy and criteria

described above, two AURKA-related genes, namely CCNB2
(OS Log-rank p > 0.05) and UBE2C (OS Log-rank p > 0.05),
were excluded. Eight other AURKA-related genes were
significantly highly expressed in HCC tissue compared with
normal liver tissue and correlated with prognosis.

The AURKA and the other eight AURKA-related genes
were used to construct a risk model. The risk score was
calculated through multivariate regression analyses. The
cutoff value of the risk score was identified using the
X-tile software. According to the results, the HCC samples
were divided into three subgroups. The cutoff values of the

FIGURE 4 | Identification of prognostic genes. AURKA, BIRC5, CDC20, PLK1, TPX2, CDK1, CENPA, DLGAP5 and TACC3 gene expression levels were
significantly higher in HCC patients, and these nine genes are related to overall survival and disease-free survival in HCC.
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risk score were 0.17 and 0.95. HCC samples with a risk score
<0.17 and >0.95 classified into the low- and high-risk groups,
respectively. The remaining samples were assigned to the
moderate-risk group.

The details of the risk model showed in Figure 5, which
revealed that higher risk scores were associated with higher
expression levels of the nine-gene signature. Furthermore,
higher risk scores also indicated worse OS. These results
were similar in both the training and other two
validation sets. Collectively, these results suggest that the
risk model had potential value in predicting the prognosis

of HCC. Furthermore, as the ROC curves showed, the
area under the ROC curve (AUC) of the training
set and two validation sets were higher than 0.5, which
indicated that AURKA-related gene signature risk
model had important value in predicting prognosis
(Figures 5D–F).

The clinicopathological characteristics among the risk groups
in training set were shown in Table 2. Age, T stage, pathological
TNM (pTNM) stage, grade, recurrence, and survival endpoint
were significantly different between the three risk groups
(p < 0.05).

FIGURE 5 | The prognostic significance of the nine-gene risk scoring model. (A) The distribution of risk scores and survival status of liver cancer patients in the
training set. HCC Patients with a higher risk score have a lower overall survival rate. (B,C) The distribution of risk scores and survival status of liver cancer patients in
validation set. A higher risk score in HCC patients also have a lower overall survival rate. (D–F) The ROC curves of the training set and two validation sets.
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Somatic Mutation Results
Figure 6 illustrates the somatic landscape of the three risk
subgroups. Information on the mutation status of each gene in
each sample was shown in the waterfall plot, where different
colors with specific annotations at the bottom indicated the
various types of mutation. The barplot above the legend
exhibited the number of mutations. The results showed that
CTNNB1 was the most commonly mutated gene in the low-
risk group. Tumor protein p53 (TP53) was the most frequently
mutated gene in both the moderate- and high-risk groups. Hence,
we further grouped the HCC samples into two groups based on
the TP53 mutation status. A total of 101 and 241 HCC samples
were assigned to the TP53 mutant- and wild-type groups,
respectively. The survival analyses of both the TP53 mutant-
and wild type cohorts yielded similar results. Higher risk scores
were associated with worse prognostic outcome (p < 0.05).

Association Between Risk Score and
Immune Infiltration
We further investigated differences in the degree of immune
infiltration in various risk groups. Using the TIMER database, we
evaluated the immune cell infiltration in samples from the three
aforementioned groups. As shown in Figure 7, we found that the
level of immune cell infiltration (macrophages, myeloid dendritic
cells, neutrophils, and CD4T cells) was significantly different
between the three groups. To further investigate the levels of
immune cell infiltration on the gene level, the following eight
immune-related genes were selected: sialic acid binding Ig like
lectin 15 (SIGLEC15), T cell immunoreceptor with Ig and ITIM
domains (TIGIT), CD274, hepatitis A virus cellular receptor 2
(HAVCR2), programmed cell death 1 (PDCD1), cytotoxic
T-lymphocyte associated protein 4 (CTLA4), lymphocyte
activating 3 (LAG3), and programmed cell death 1 ligand 2
(PDCD1LG2). We compared the expression levels of

immune-related genes among the three risk groups. The
results are shown in Figure 8. Except for CTLA4, LAG3, and
PDCD1, the expression levels of the other five immune-related
genes differed significantly between the three groups. Overall, the
high-risk group showed significantly higher levels of immune
gene expression and immune cell infiltration compared with the
other groups.

Construction and Evaluation of the
Nomogram Model
As shown in Table 3, we performed the univariate and
multivariate analyses using the SPSS software (version 23.0;
IBM Corporation, Armonk, NY, United States) to identify
independent prognostic factors predicting OS in patients with
HCC. In the training data set, the risk score, T stage, M stage,
pTNM stage, and recurrence were identified as independent
prognostic factors. The results of the testing and training data
sets were similar. Overall, the risk score, T stage, and pTNM stage
were identified as independent prognostic factors in both
data sets.

Hence, we used age, T stage, N stage, M stage, pTNM stage,
recurrence, and risk group as estimated factors in the
construction of our model. A nomogram was constructed to
estimate the probabilities for three- and 5-year survival.
Calibration curves analysis showed that the new nomogram
model had good predictive accuracy (Figure 9B).
Furthermore, the new nomogram model achieved an area
under the curve (AUC) of 0.78 at 5 years, which was better
than that of a model without the gene signature (AUC � 0.73)
or pTNM stage (AUC � 0.70) (Figure 9C).

DISCUSSION

The prognosis of patients with HCC varies greatly. The 5-year
survival rate after resection of early HCC can be as high as 70%,
whereas that of patients with vascular invasion or advanced HCC
is markedly lower (Mazzaferro et al., 2011; Grandhi et al., 2016).
Therefore, the use of effective prognostic indicators can promptly
identify high-risk patients and assist in implementing
individualized treatment to improve the prognosis.

In the present study, we found that the AURKA gene was
highly expressed in HCC and an independent prognostic risk
factor. The GO analysis of AURKA and related genes indicated
that these genes are involved in a variety of biological process,
including nuclear chromosome condensation, centromeric
regions, mitotic spindle and spindle poles, mitotic nuclear
envelope disassembly, and ubiquitin protein ligase activity.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis showed that AURKA and related genes regulate the
progression of HCC throughmultiple pathways, such as the TP53
signaling pathway and FOXO signaling pathway. Numerous
studies have demonstrated that the TP53 signaling pathway is
involved in the development of a variety of tumors and plays a
regulatory role in tumor immunity (Stegh, 2012; Blagih et al.,
2020; Muñoz-Fontela et al., 2016). The role of the FOXO

TABLE 2 | Correlation among risk groups with clinical features in training set.

Clinical features Risk group p value

Low Mid High

Age <50 23 12 10 0.0339
≥50 112 66 17

Gender Female 42 29 9 0.6639
Male 93 49 18

T Early (T1+T2) 113 52 11 <0.001
Late (T3+T4) 21 26 16

N N0 90 59 23 1
N1+N2 1 1 0

M M0 90 58 23 1
M1 1 0 0

Stage Stage I/II 106 49 11 <0.001
Stage III/IV 21 24 15

Grade G1+G2 98 45 9 0.0002
G3+G4 36 31 18

Recurrence Yes 72 23 11 0.0031
No 63 55 16

Status Alive 96 42 10 0.0009
Dead 39 36 17
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signaling pathway in tumors has also received extensive attention
(Farhan et al., 2017; Coomans de Brachène and Demoulin, 2016).
In general, the enrichment analysis revealed some potential
mechanisms and possible pathways of AURKA and its related
genes in HCC. In addition, it provided some new ideas for the
treatment of patients with HCC.

Among the nine genes associated with AURKA, eight genes
(BIRC5, CDC20, PLK1, TPX2, CDK1, CENPA, DLGAP5, and
TACC3) were identified as prognostic genes in HCC. Therefore,
we used these nine genes to construct the AURKA-related gene
signature for the prediction of prognosis of patients with liver
cancer. In gastric cancer, high expression of BIRC5 promotes
gastric cancer metastasis and is associated with poor prognosis
(Zou et al., 2019). However, in lung cancer, high expression of
BIRC5 may prolong OS and DFS (Vischioni et al., 2004). In
pancreatic cancer, CDC20 can promote tumor cell proliferation
and affect the progression of pancreatic cancer (Chang et al.,
2012). CDK1 is considered a synthetic target for KRAS-mutated

FIGURE 6 | Association between somatic mutation and risk score. (A) Overview of somatic mutations in different risk groups. (B) Comparison of AURKA
expression between TP53 mutation group and Tp53 wild group. (C) Kaplan-Meier survival analysis of the different risk groups of TP53 mutation. (D) Kaplan-Meier
survival analysis of the different risk groups of Tp53 wild.

FIGURE 7 | Association between risk score and immune infiltration.
Macrophage, Myeloid dendritic cell, Neutrophil and CD4+T cell are
significantly high in high risk score groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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tumors and has been identified as a prognostic marker in
numerous types of cancer (Sung et al., 2014; Costa-Cabral
et al., 2016). CENPA plays a key role in cell mitosis. Of note,
it is abnormally expressed in tumors and regulates tumor cell
activity (Valdivia et al., 2009). DLGAP5 expression is regulated by
the ubiquitin-proteasome pathway and participates in tumor cell
migration and invasion (Hsu et al., 2004). PLK1 is a key regulator
of mitosis and is involved in multiple stages of mitosis (De et al.,
2018). Downregulation of PLK1 can inhibit the invasion and
metastasis of esophageal cancer cells (Li et al., 2014). In colorectal
cancer, PLK1 may promote the growth, invasion, and metastasis
of colorectal cancer cells through the PDKI-PLK1-MYC signaling

pathway (Tan et al., 2013). TACC3 can activate the Akt/RAS/
mitogen-activated protein kinase kinase/extracellular
signal–regulated kinase (Akt/RAS/MEK/ERK) signaling
pathway to promote the malignant transformation of cells
(Burgess et al., 2018). High TACC3 expression has been found
in a variety of tumors and is closely related to poor prognosis
(Wang et al., 2017). TPX2 is mainly involved in centrosomal
maturation and spindle formation (Gruss and Vernos, 2004). In
gliomas, MiR-1294 can target TPX2 to inhibit tumor cell
proliferation and enhance sensitivity to chemotherapy (Chen
et al., 2018). Several previous studies have successfully
constructed multi-gene signatures for risk stratification and
prognosis prediction in HCC (Zhou et al., 2020; Ouyang et al.,
2020). In this study, we constructed a new nine-gene signature to
predict the prognosis of patients with liver cancer. This gene
signature was verified using an internal verification data set. Gene
signatures can effectively classify patients into high-, moderate-,
and low-risk groups. Higher risk scores in the training and
validation data sets indicated a poor prognosis in HCC.
Finally, we constructed a personalized nomogram based on
the risk scores, with a concordance index of 0.78.

As an important tumor suppressor gene, TP53 plays a vital
role in cell cycle regulation. TP53 mutation is a common
mutation in tumors and the most important mutation in liver
cancer. This mutation can promote the proliferation, migration,
and invasion of tumor cells and increase resistance to drugs
(Warren et al., 2013). We divided the HCC cohort of TCGA data
set into two groups (TP53 mutation and wild type) and
investigated the relationship between the gene signature and
these two groups. We found that the gene signature could
effectively predict the risk of patients in the TP53 mutation

TABLE 3 | Univariate and multivariate Cox regression analyses of risk factors associated with overall survival.

HCC cohorts Univariable analyses Multivariable analyses

p HR 95.0% CI p HR 95.0% CI

Validation set Age 0.418 1.012 0.984–1.041
Gender 0.149 0.592 0.29–1.207
T stage 0 4.017 1.925–8.38 0 8.257 2.168–31.451
N stage 0.04 8.998 1.107–73.152 0.908 1.143 0.118–11.109
M stage 0.088 3.602 0.825–15.724 0.259 4.284 0.343–53.561
pTNM_stage 0 4.602 2.114–10.017 0.003 5.318 1.778–15.907
grade 0.205 0.601 0.273–1.322
recurrence 0.635 1.193 0.575–2.476
Low risk group 0.001 0.019
Mid risk group 0.005 3.936 1.515–10.224 0.033 5.677 1.151–27.994
High risk group 0 8.064 2.687–24.201 0.005 11.994 2.119–67.908

Training set
Age 0.399 1.007 0.991–1.023
Gender 0.65 0.906 0.592–1.387
T stage 0 2.428 1.595–3.697 0.028 1.968 1.078–3.594
N stage 0.824 1.253 0.173–9.092 0.517 1.95 0.258–14.738
M stage 0.012 13.563 1.763–104.315 0.003 26.515 2.979–236.021
pTNM_stage 0 2.281 1.464–3.554 0 2.281 1.464–3.554
grade 0.17 1.349 0.88–2.068
recurrence 0.016 1.754 1.111–2.769 0.048 1.967 1.005–3.851
Low risk group 0 0
Mid risk group 0.009 1.842 1.169–2.905 0.084 1.854 0.92–3.734
High risk group 0 4.85 2.702–8.706 0 5.262 2.311–11.981

FIGURE 8 | Association between risk score and immune checkpoint.
SIGLEC15, TIGIT, CD274, HAVCR2 and PDCD1LG2 expression mainly
expressed in the high-risk score group. *p < 0.05; **p < 0.01; ***p < 0.001.
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group, thereby effectively classifying these patients into low-,
moderate-, and high-risk groups. Numerous recent studies have
also confirmed the close relationship between TP53 mutation
and tumor immunity (Long et al., 2019; Wu et al., 2020; Sun
et al., 2020). Based on the immunoprognostic model established
by TP53 mutation, Long et al. found that the levels of T cell
follicular helper proteins, T cell regulatory proteins, and
macrophages M0 were higher in the high-risk HCC group
versus the other groups (Long et al., 2019). Notably, the
expression of immune checkpoints CTLA4, PDCD1, and
T-cell immunoglobulin mucin family member 3 (TIM3) were
also higher in the high-risk group. The investigators suggested
that TP53 mutations significantly reduced the immune response
in liver cancer.

Immune cell infiltration affects tumor progression. Numerous
immunotherapies have been used to regulate immune cells in
tumors. Therefore, we investigated the immune cell infiltration in
different risk groups. We found that the numbers of
macrophages, myeloid dendritic cells, neutrophils, and CD4+

T cells differed significantly in different risk score groups.
Higher risk scores were linked to higher numbers of these
four types of immune cells. Macrophages play a dual role in
the tumor microenvironment, promoting tumor formation and
development as well as inhibiting tumor growth (Kim and Bae,
2016). It has been confirmed that the degree of macrophage
infiltration in the tumor microenvironment is related to
prognosis (Conway et al., 2016). It is currently thought that
neutrophils in the tumor microenvironment directly kill or

FIGURE 9 | The prognostic nomogram with the risk score in HCC. (A) A nomogram for predicting 3- and 5-year survival possibilities of HCC. (B) The calibration
curve of 3-year and 5-year survival. (C) Time-dependent receiver operating characteristic (ROC) curves for gene signature and TNM stage.
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stimulate the immune system to inhibit tumor cells and can also
promote immune escape of tumor cells (Kim and Bae, 2016).
Myeloid dendritic cells mainly play an antigen-presenting role to
activate T cells and induce immune responses (Garris and Luke,
2020). CD4+ T cells mainly support CD8+ T toxic lymphocytes
and enhance their anti-tumor immune effect (Ghiringhelli et al.,
2006). Our results showed differences in the distribution of
immune cells in the tumor microenvironment among the
different risk groups and revealed the underlying reason for
the poor prognosis observed in the high-risk group. To the
best of our knowledge, this is the first study to investigate the
relationship between AURKA and related genes and tumor
immunity.

Immune checkpoint inhibitors are a new approach to the
treatment of tumors. Several immune checkpoint inhibitors have
been used effectively in the treatment of liver cancer (Liu and Qin,
2019). In this study, we also assessed the relationship between the
risk score and immune checkpoints. The results found that the
expression of the five immune checkpoints (SIGLEC15, TIGIT,
CD274, HAVCR2, and PDCD1LG2) varied in different risk
groups. Higher risk scores were associated with higher
expression of the five immune checkpoints. These five
immune checkpoints play an important role in the activation
of T cells. PDCD1LG1 and PDCD1LG2 are the two ligands of
PDCD1. In the tumor microenvironment, PDCD1 on the surface
of immune cells binds to the PDCD1LG1 and PDCD1LG2
receptors on the surface of tumor cells to activate a series of
signal factors in immune cells. This process initiates a series of
signaling factors in immune cells to inhibit T cell activation and
promote T cell failure, thus helping tumor cells to evade
immunosurveillance (Barclay et al., 2018; Ai et al., 2020).
SIGLEC15 is a newly discovered immune checkpoint. Wang
et al. reported that high expression of SIGLEC15 in tumors
can significantly inhibit the activity of T cells (Wang et al.,
2019). Furthermore, the inhibition or knockout of
SIGLEC15 expression can improve the anti-tumor ability of
T cells in mice (Wang et al., 2019). HAVCR2 is thought to play
a dual role, inducing immune tolerance and promoting tumor
cell apoptosis (Das et al., 2017). TIGIT is mainly expressed on

T cells and natural killer cells. Joller et al. observed significant
T cell proliferation in TIGIT-knockout mice (Joller et al.,
2011). The expression of these immune checkpoints
significantly affects tumor prognosis. At present, the use of
single immune checkpoint blockers or combinations of these
agents has shown good efficacy in different tumors (Darvin
et al., 2018).

This study is characterized by several limitations. Firstly, all
analyses were based on public databases. The specific
mechanisms of AURKA and related genes in liver cancer have
not been thoroughly investigated. Furthermore, the gene
signature was associated with immune infiltration and
immune checkpoint expression in HCC and affected the
prognosis of patients with this disease. Further studies are
needed to examine the value of gene signatures in immune
invasion and prognosis in HCC.

In summary, we found that nine AURKA-related genes with
prognostic value can be used as prognostic markers for liver
cancer. The gene signature based on AURKA successfully
classified patients with liver cancer into high-, moderate- and
low-risk groups. Hence, the gene signature can may be an
effective marker for the prognosis of HCC. In addition, the
risk score was related to immune cell infiltration and immune
checkpoint expression in HCC.
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BGN May be a Potential Prognostic
Biomarker and Associated With
Immune Cell Enrichment of Gastric
Cancer
Shiyu Zhang, Huiying Yang, Xuelian Xiang, Li Liu, Huali Huang and Guodu Tang*

1Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Background: Biglycan (BGN) plays a role in the occurrence and progression of several
malignant tumors, though its role in gastric cancer (GC) remains unclear. The objective of
this study was to investigate BGN expression, its role in GC prognosis, and immune
infiltration.

Material and Methods: Gene expression data and corresponding clinical information
were downloaded from TCGA and GTEx, respectively. We compared the expression of
BGN in GC and normal tissues and verified the differential expression via Real-Time PCR
and immunohistochemistry. BGN-related differentially expressed genes (DEGs) were
identified. Additionally, the relationships between BGN gene expression and
clinicopathological variables and survival in patients with GC were also investigated
through univariate and multivariate Cox regression analyses. Finally, we established a
predictive model that could well predict the probability of 1-, 3-, and 5-years survival in GC.

Results: We found a significantly higher expression of BGN in GC than that in normal tissues
(p < 0.001), which was verified by Real-Time PCR (p < 0.01) and immunohistochemistry (p <
0.001). The 492 identified DEGs were primarily enriched in pathways related to tumor genesis
and metastasis, including extracellular matrix (ECM)-receptor interaction, focal adhesion
pathway, Wnt signaling, and signaling by VEGF. BGN expression was positively correlated
with the enrichment of the NK cells (r = 0.620, p < 0.001) and macrophages (r = 0.550, p <
0.001), but negatively correlated with the enrichment of Th17 cells (r = 0.250, p < 0.001). BGN
expression was also significantly correlated with histologic grade (GI&G2 vs. G3, p < 0.001),
histologic type (Diffuse type vs. Tubular type,p < 0.001), histologic stage (stage I vs. stage II and
stage I vs. stage III, p < 0.001), T stage (T1 vs. T2, T1 vs. T3, and T1 vs. T4, p < 0.001) and
Helicobacter pylori (HP) infection (yes vs. no, p < 0.05) in GC. High BGN expression showed
significant association with poor overall survival (OS) in GC patients (HR = 1.53 (1.09–2.14), p =
0.013). The constructed nomogram can well predict the 1-, 3-, and 5-years overall survival
probability of GC patients (C-index = 0.728).

Conclusion: BGN plays an important role in the occurrence and progression of GC and is
a potential biomarker for the diagnosis and treatment of GC.

Keywords: biomarker, prognostic index, bioinformatics analysis, gastric cancer, immune infiltration
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INTRODUCTION

Gastric cancer (GC) is considered to be the fifth most common
malignancy and the third leading cause of cancer-related deaths
(Chen et al., 2016; Bray et al., 2018) worldwide. Disappointingly,
most patients with stomach cancer are diagnosed with advanced
cancer because they lack specific symptoms (Van Cutsem et al.,
2016). Because of the poor prognosis of patients with advanced
GC, it is imperative to develop new strategies to improve the
survival rate of this disease.

Expression of BGN (Biglycan), the gene as proteoglycan-I, was
first detected in bone tissue (Gallagher, 1989). BGN is a member
of the small leucine-rich proteoglycans (SLPRs) gene family and
encodes a protein core that is modified to form a glycoprotein
(Chen et al., 2020). BGN is a key component of the ECM; it
participates in scaffolding the collagen fibrils and mediates cell
signaling (Appunni et al., 2021). Existing studies have
demonstrated the role of BGN in tumor proliferation,
adhesion and invasion (Cooper and Giancotti, 2019;
Hisamatsu et al., 2020; Moreno-Layseca et al., 2019; Yousefi
et al., 2021). BGN could induce the epithelial-mesenchymal
transition (EMT) of diverse malignancies and is necessary and
sufficient to mediate the pro-EMT effect in pancreatic ductal
adenocarcinoma (Thakur et al., 2016). BGN is regulated by the
transforming growth factor-beta (TGFB) signaling pathway, a key
regulator of the EMT process (Yang et al., 2021). Moreover, BGN
is believed to enhance the ability of endometrial cancer cells to
migrate and invade tissue (Sun et al., 2016) and is also considered
a potential EMT biomarker of colorectal cancer (Li et al., 2017).
Existing research findings strongly suggest an important role of
BGN in the development of tumors. Immunotherapy of tumors
has been one of the hot topics in recent years. Several studies have
documented significant effects of immunotherapy on tumors
(Zhang et al., 2015; Marrelli et al., 2016; Shitara et al., 2019);
however, there is no report on immunotherapy of BGN in GC.
Moreover, the role of BGN in the prognosis of GC and how BGN
affects the immune infiltration of GC remain poorly understood.

In this study, we analyzed the difference in BGN expression
between GC and normal patients in the online database by
bioinformatics analysis. Thereafter, differentially expressed
genes (DEGs) associated with BGN were identified. DEG-
related functional enrichment analysis, Gene Set Enrichment
Analysis (GSEA) analysis, and immune infiltration analysis
were also carried out. We also explored the relationship
between BGN gene expression and clinicopathological
variables and survival in patients with GC. Finally, a predictive
model that could well predict the probability of 1-, 3-, and 5-years
survival in GC was established.

MATERIALS AND METHODS

Data Sources
Gene expression data and corresponding clinical information for
GC, which included 375 tumor tissues and 32 normal tissues,
were downloaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). Table 1, Table 2

shows the characteristics of patients with GC from the TCGA
database. The gene expression of 174 normal tissues was
downloaded from GTEx through UCSC XENA (http://xena.
ucsc.edu). Fragments Per kilobase per Million (FPKM)
RNAseq data were converted into transcripts Per Million reads
(TPM), and log2 translated for subsequent analysis. All tissue
samples with incomplete clinical data were excluded.

BGN Differential Expression in Pan-Cancer
and GC Tissues
We downloaded TPM RNAseq data for tumor tissues (TCGA)
and normal tissues (TCGA and GTEx) from the UCSC XENA.
The differential expression between tumor and normal tissues
was tested by Wilcoxon Rank Sum Test and visualized through
boxplots and scatter plots. We also used Receiver Operating
Characteristic (ROC) curve to determine the diagnostic value
of BGN gene expression for GC.

Real-Time PCR of BGN Expressions in GC
and Adjacent Tissues
Tumor and para-cancer biopsy tissues were collected from 12
consecutive patients that were diagnosed with GC for the first
time from the Endoscopy Center of the First Affiliated Hospital of
Guangxi Medical University. The body tissues were immediately
immersed in RNA protection solution and rapidly stored in a
refrigerator at −80°C. No patient was diagnosed with any other
malignancy, nor had they received any treatment for the tumor.

RNA Extraction and Quantitative Real-Time
PCR (qRT-PCR)
Total RNA of tissues was extracted using Trizol reagent (R0016,
Beyotime Biotechnology Co., Ltd., Shanghai, China, according to
the manufacturer’s instructions. Complementary DNAs(cDNAs)
were generated from 1 µg RNA PrimeScript™ RT Reagent Kit
with gDNA Eraser (RR047A, Takara Bio, Inc.). RT-PCR was
conducted via the FastStart Universal SYBR Green Master (ROX)
(Roche) in the Applied Biosystems QuantStudio TM Real-PCR
System (Q6). Human BGN primers were utilized, and the relative
mRNA expression was determined using the comparative Ct
method with Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as the reference gene. The primer sequences were
as follows:

BGN-forward: 5′-TGACTGGCATCCCCAAAGAC-3′
BGN-reverse: 5′-GAGTAGCGAAGCAGGTCCTC-3′
GAPDH-forward: 5′-GTCAGCCGCATCTTCTTT-3′
GAPDH-reverse: 5′-CGCCCAATACGACCAAAT-3′

Immunohistochemistry
From January 2018 to September 2020, the tumors and adjacent
tissues of 80 consecutive patients with GC after surgery in Suqian
First People’s Hospital were collected. Patients who had received
radiation or chemotherapy prior to surgery and had other
malignancies were excluded from the study. After dewaxing,
hydration, and thermal repair, the primary antibody against BGN
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(ab209234, Abcam, 1:2000) was incubated overnight at 4°C followed
by incubation with detection polymer for 40min at room
temperature. 3,3′-Diaminobenzidine DAB (P0202, Beyotime
Biotechnology co.) was used for signal detection. The images
taken under the microscope were analyzed using the IHC profiler
plugin of ImageJ software (Varghese et al., 2014). Finally, SPSS
version 23.0 software was used to statistic the results.

Identification of DEGs Between High and
Low Expression Groups of BGN
According to the mean value of BGN expression, the data from the
TCGA cohort were divided into high expression group and low

expression group, and the DESeq2 package (Love et al., 2014) was
used for differential analysis. DEGs were defined as having a p.adj
<0.05 and |logFC|>1.5. The details of theDEGswere visualized using
the volcano map.

Functional Enrichment Analysis of DEGs
After ID conversion of identified DEGs via or.Hs.eg.db package,
further functional enrichment analysis was performed through
clusterProfiler package (Yu et al., 2012). Enrichments that satisfied
the following conditions were considered significant: p.adj<0.05, and
q-value<0.2. DEGs results were employed for gene-set enrichment
analyses (GSEA) and building gene-set enrichment plots against the
Molecular Signatures Database (MSigDB) hallmark gene sets through

TABLE 1 | The clinical characteristic of Gastric Cancer.

Characteristic Levels Overall

N 375
Gender, n (%) Female 134 (35.7%)

Male 241 (64.3%)
Age, n (%) ≤ 65 164 (44.2%)

>65 207 (55.8%)
T stage, n (%) T1 19 (5.2%)

T2 80 (21.8%)
T3 168 (45.8%)
T4 100 (27.2%)

N stage, n (%) N0 111 (31.1%)
N1 97 (27.2%)
N2 75 (21%)
N3 74 (20.7%)

M stage, n (%) M0 330 (93%)
M1 25 (7%)

Histological type, n (%) Diffuse Type 63 (16.8%)
Mucinous Type 19 (5.1%)
Not Otherwise Specified 207 (55.3%)
Papillary Type 5 (1.3%)
Signet Ring Type 11 (2.9%)
Tubular Type 69 (18.4%)

Pathologic stage, n (%) Stage I 53 (15.1%)
Stage II 111 (31.5%)
Stage III 150 (42.6%)
Stage IV 38 (10.8%)

Histologic grade, n (%) G1 10 (2.7%)
G2 137 (37.4%)
G3 219 (59.8%)

Residual tumor, n (%) R0 298 (90.6%)
R1 15 (4.6%)
R2 16 (4.9%)

Primary therapy outcome, n (%) PD 65 (20.5%)
SD 17 (5.4%)
PR 4 (1.3%)
CR 231 (72.9%)

H pylori infection, n (%) No 145 (89%)
Yes 18 (11%)

Barretts esophagus, n (%) No 193 (92.8%)
Yes 15 (7.2%)

Anatomic neoplasm subdivision, n (%) Antrum/Distal 138 (38.2%)
Cardia/Proximal 48 (13.3%)
Fundus/Body 130 (36%)
Gastroesophageal Junction 41 (11.4%)
Other 4 (1.1%)

Age, median (IQR) 67 (58, 73)

R0, No visible or microscopic tumor residue; R1, No visible, but microscopic residual tumor; R2, Visible tumor residue; CR, Complete response; PR, Partial response; SD, Stable disease;
PD, Progressive disease.
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TABLE 2 | BGN expression levels in 33 cancers and normal tissues.

Cancers Groups Cases (n) Median Mean SD SE W value p value

ACC Normal 128 7.343 7.26 0.923 0.082 8172 < 0.001
Tumor 77 6.139 5.99 1.3 0.148

BLCA Normal 28 6.128 6.15 0.876 0.166 4289 0.029
Tumor 407 6.801 6.781 1.66 0.082

BRCA Normal 292 6.396 6.357 0.944 0.055 26339.5 < 0.001
Tumor 1099 8.537 8.397 1.084 0.033

CESC Normal 13 8.134 7.765 1.141 0.317 3047 0.001
Tumor 306 6.439 6.421 1.524 0.087

CHOL Normal 9 7.301 7.344 0.525 0.175 77 0.015
Tumor 36 8.033 8.093 0.922 0.154

COAD Normal 349 4.953 5.008 1.43 0.077 23468.5 < 0.001
Tumor 290 6.663 6.57 1.586 0.093

DLBC Normal 444 0.692 0.937 0.918 0.044 120 < 0.001
Tumor 47 6.668 6.373 1.394 0.203

ESCA Normal 666 5.449 5.469 1.17 0.045 16232 < 0.001
Tumor 182 7.309 7.478 1.416 0.105

GBM Normal 1157 4.252 4.213 0.894 0.026 2708 < 0.001
Tumor 166 7.288 7.238 1.027 0.08

HNSC Normal 44 5.226 5.365 1.466 0.221 3849.5 < 0.001
Tumor 520 7.499 7.392 1.489 0.065

KICH Normal 53 7.619 7.31 1.633 0.224 3143 < 0.001
Tumor 66 5.115 5.301 1.139 0.14

KIRC Normal 100 7.668 7.58 1.351 0.135 13892.5 < 0.001
Tumor 531 8.799 8.589 1.356 0.059

KIRP Normal 60 7.518 7.339 1.477 0.191 11940.5 < 0.001
Tumor 289 6.349 6.42 1.728 0.102

LAML Normal 70 0.604 0.714 0.542 0.065 5826.5 0.646
Tumor 173 0.731 0.942 0.969 0.074

LGG Normal 1152 4.249 4.208 0.891 0.026 136652 < 0.001
Tumor 523 5.114 5.367 1.222 0.053

LIHC Normal 160 7.068 7.082 0.787 0.062 43486 < 0.001
Tumor 371 5.844 5.797 1.742 0.09

LUAD Normal 347 8.61 8.551 0.992 0.053 118430 < 0.001
Tumor 515 8.079 7.978 1.087 0.048

LUSC Normal 338 8.673 8.626 0.954 0.052 124402 < 0.001
Tumor 498 7.754 7.646 1.283 0.058

MESO Tumor 87 9.419 9.347 1.451 0.156 − −

OV Normal 88 5.938 5.973 1.227 0.131 10400.5 < 0.001
Tumor 427 7.063 7.046 1.443 0.07

PAAD Normal 171 4.535 4.645 1.365 0.104 961.5 < 0.001
Tumor 179 9.262 8.96 1.173 0.088

PCPG Normal 3 7.449 7.465 0.276 0.159 336 0.497
Tumor 182 7.195 7.231 1.162 0.086

PRAD Normal 152 6.951 6.88 1.146 0.093 40731.5 0.133
Tumor 496 6.777 6.785 1.027 0.046

READ Normal 318 5.075 5.096 1.434 0.08 6420.5 < 0.001
Tumor 93 6.717 6.745 1.51 0.157

SARC Normal 2 6.951 6.951 0.004 0.003 − −

Tumor 262 9.046 8.692 1.898 0.117
SKCM Normal 813 6.711 6.804 1.121 0.039 178330.5 0.054

Tumor 469 6.905 6.939 1.355 0.063
STAD Normal 206 4.383 4.58 1.398 0.096 5987 < 0.001

Tumor 375 7.664 7.601 1.368 0.067
TGCT Normal 165 6.33 6.431 0.736 0.057 10324 0.004

Tumor 154 6.82 6.913 1.708 0.138
THCA Normal 338 7.84 7.682 1.003 0.055 126239.5 < 0.001

Tumor 512 6.909 6.839 1.116 0.049
THYM Normal 446 0.696 0.959 0.975 0.046 698.5 < 0.001

Tumor 119 6.381 6.193 1.806 0.166
UCEC Normal 101 7.483 7.393 0.979 0.097 13701 < 0.001

Tumor 181 6.162 6.195 1.531 0.114
UCS Normal 78 7.556 7.563 0.821 0.093 1690 0.018

Tumor 57 8.198 7.999 1.436 0.19
UVM Tumor 79 6.54 6.415 1.115 0.125 − −

Bold indicates statistically significant, that is, a p value less than 0.05.
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the R package, clusterProfiler, and significance was set as an adjusted
p < 0.05 and FDR<0.25.

Immune Infiltration
After converting the level 3 HTSe1-FPKM format RNAseq
data from the stomach adenocarcinoma (STAD) project of
TCGA to TPM format, log2 conversion was performed. After
normal tissue samples were removed, data from a total of 375
STAD samples were retained for subsequent analysis. The
relative tumor infiltration levels of immune cell types were
quantified using ssGSEA of clusterProfilerpackage (Yu et al.,
2012) to quantify the relative tumor infiltration levels of
immune cell types, and the marker genes of immune cell
types for single-sample gene-set enrichment analysis
(ssGSEA) were obtained from published signature gene lists
(Bindea et al., 2013). Spearman’s Correlation Test was
adopted to determine a correlation between BGN and the
immune infiltration levels and the association of

immune infiltration with the different expression groups
of BGN.

Clinical Correlation Analysis of BGN in
Patients With GC
For TCGA data, Wilcoxon signed Rank-Sum test and logistic
regression analyses were used to evaluate the relationship
between BGN expression and clinicopathological variables.
Moreover, univariate and multivariate Cox regression
analyses were used to compare the effects of BGN
expression and other clinicopathological variables on the
overall survival of GC patients. Multivariate Cox regression
analysis was used to examine the independent factors
affecting the prognosis of GC.

Furthermore, we collected clinicopathological data from 80
patients who underwent immunohistochemistry to evaluate the
relationship between BGN expression and clinicopathological

FIGURE 1 |Differential expression of BGN in different tumors and BGN-related differentially expressed genes (DEGs). (A) Differential expression of BGN of different
cancers compared with normal tissues in the TCGA and GTEx database. (B,C) Differential expression of BGN in STAD. (D) ROC curve was used to calculate the
diagnostic predictive value of BGN expression between STAD and normal tissues. Significance marker: ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. The
abbreviations for 33 cancers are as follows: Adrenocortical carcinoma (ACC); Bladder Urothelial Carcinoma (BLCA); Breast invasive carcinoma (BRCA); Cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC); Cholangiocarcinoma (CHOL); Colon adenocarcinoma (COAD); Lymphoid NeoplasmDiffuse Large
B-cell Lymphoma (DLBC); Esophageal carcinoma (ESCA); Glioblastoma multiforme (GBM); Head and Neck squamous cell carcinoma (HNSC); Kidney Chromophobe
(KICH); Kidney renal clear cell carcinoma (KIRC); Kidney renal papillary cell carcinoma (KIRP); Acute Myeloid Leukemia (LAML); Brain Lower Grade Glioma (LGG); Liver
hepatocellular carcinoma (LIHC); Lung adenocarcinoma (LUAD); Mesothelioma (MESO); Ovarian serous cystadenocarcinoma (OV); Pancreatic adenocarcinoma
(PAAD); Pheochromocytoma and Paraganglioma (PCPG); Prostate adenocarcinoma (PRAD); Rectum adenocarcinoma (READ); Sarcoma (SARC); Skin Cutaneous
Melanoma (SKCM); Testicular Germ Cell Tumors (TGCT); Thyroid carcinoma (THCA); Thymoma (THYM); Uterine Corpus Endometrial Carcinoma (UCEC); Uterine
Carcinosarcoma (UCS); Uveal Melanoma (UVM).
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variables. Chi-square tests were used to evaluate the relationship
between gender, pathological type, residual tumor status, and BGN
expression. Fisher’s exact tests were used to evaluate the relationship
between pathologic stage, T stage, N stage, primary treatment
outcome, and BGN expression. Wilcoxon signed Rank-Sum test
was used to evaluate the relationship between age and BGN
expression.

Construction and Verification of Nomogram
The identified independent factors associated with GC
prognosis were used to construct a nomogram that
predicted the probability of 1-, 3-, and 5-years survival in
patients with GC. The prognostic data were obtained from a
study by Jianfang Liu(Liu et al., 2018). Nomogram was
constructed by R package with the survival and rms

package. The Harrell’s concordance index (C-index) was
used to quantify the predictive accuracy, which ranges
from 0.5 (no predictive power) to 1 (perfect prediction).
Furthermore, calibration plots were generated to examine
the performance characteristics of the predictive nomogram.

RESULTS

BGN Differential Expression in Pan-Cancer
and GC Tissues
Significant differential expression of BGN was documented in
most of the 33 cancers, including in STAD (Figure 1A). The
expression of BGN in GC (375 cases from TCGA) was
significantly higher than in normal tissues (32 para-cancer

FIGURE 2 | The results of Real-Time PCR and Immunohistochemistry. (A) BGN expression in normal tissue (200X). (B) BGN expression in gastric cancer tissue
(400X). (C) BGN expression in normal tissue (200X). (D) BGN expression in gastric cancer tissue (400X). (E) Relative BGN mRNA level in normal and GC tissues. GC:
Gastric cancer. **, p < 0.01.
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FIGURE 3 | Volcano plot of the DEGs, Functional enrichment analysis and GSEA analysis. (A): (E) Volcano plots of the DEGs. Blue represent down-regulated
DEGs, red represent up-regulated DEGs. (B): The top three items enriched in biological processes (BP), cellular component (CC), molecular function (MF), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) of DEGs. (C–H): Enrichment plots from the gene set enrichment analysis (GSEA). NES, normalized enrichment score;
p.adj, adjusted p-value; FDR, false discovery rate.
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TABLE 3 | GO and KEGG enrichment analysis.

Ontology ID Description Gene ratio Bg ratio p Value p.adjust q value

BP GO:0043062 extracellular structure organization 51/305 422/18670 1.31e-29 4.07e-26 3.36e-26
BP GO:0030198 extracellular matrix organization 47/305 368/18670 2.24e-28 3.47e-25 2.86e-25
BP GO:0043588 skin development 38/305 419/18670 7.95e-18 8.20e-15 6.77e-15
BP GO:0070268 cornification 20/305 112/18670 1.66e-15 1.28e-12 1.06e-12
BP GO:0008544 epidermis development 36/305 464/18670 8.33e-15 5.16e-12 4.26e-12
CC GO:0062023 collagen-containing extracellular matrix 65/318 406/19717 7.31e-46 1.93e-43 1.72e-43
CC GO:0005788 endoplasmic reticulum lumen 28/318 309/19717 1.66e-13 2.19e-11 1.96e-11
CC GO:0044420 extracellular matrix component 12/318 51/19717 2.28e-11 2.00e-09 1.79e-09
CC GO:0005604 basement membrane 14/318 95/19717 3.83e-10 2.53e-08 2.26e-08
CC GO:0005581 collagen trimer 13/318 87/19717 1.37e-09 7.25e-08 6.47e-08
MF GO:0005201 extracellular matrix structural constituent 41/290 163/17697 3.73e-37 1.45e-34 1.21e-34
MF GO:0048018 receptor ligand activity 36/290 482/17697 2.71e-14 5.28e-12 4.41e-12
MF GO:0005539 glycosaminoglycan binding 22/290 229/17697 2.93e-11 3.79e-09 3.17e-09
MF GO:0005518 collagen binding 13/290 67/17697 5.41e-11 5.26e-09 4.40e-09
MF GO:0061134 Peptidase regulator activity 21/290 219/17697 8.66e-11 6.74e-09 5.63e-09
KEGG hsa04974 Protein digestion and absorption 17/134 103/8076 6.74e-13 1.31e-10 1.17e-10
KEGG hsa04512 ECM-receptor interaction 10/134 88/8076 1.70e-06 1.66e-04 1.48e-04
KEGG hsa04510 Focal adhesion 12/134 201/8076 1.20e-04 0.008 0.007
KEGG hsa00980 Metabolism of xenobiotics by cytochrome P450 7/134 77/8076 2.71e-04 0.013 0.012
KEGG hsa05204 Chemical carcinogenesis 7/134 82/8076 4.00e-04 0.016 0.014

FIGURE 4 | The correlation between BGN expression and immune infiltration. (A) Correlation between the relative abundances of immune cells and BGN
expression level. The size of dots is positively related to the absolute value of Spearman’s R. (B-D) The difference of immune cells (Macrophages, NK cells, and Th17
cells) between the high and low expression groups based on the median value of BGN expression. (E–G) The correlation of immune cells (Macrophages, NK cells, and
Th17 cells) between the high and low expression groups based on median value of BGN expression.
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tissues from TCGA and 174 normal tissues from GTEx) (p <
0.001) (Figure 1B). Similarly, the comparison of 27 tumor tissues
in TCGA with the corresponding para-cancer tissues also showed
significant expression of BGN in tumor tissues (Figure 1C).

Furthermore, based on the expression profile of TCGA in
tumor and normal tissues, a ROC curve of BGN for the diagnosis
of GC was plotted. Figure 1D shows that in the prediction of
tumor and normal outcomes, the variable BGN showed high
accuracy (AUC = 0.945, CI = 0.915–0.975).

Real-Time PCR and Immunohistochemistry
We further verified the BGN expression level using RT-PCR
(Figure 2E, p = 0.0068) and IHC (Figures 2A–D). The results
were consistent with those in the TCGA database, indicating
significantly higher levels of BGN expression in GC than that in
normal tissues.

DEGs Identification, Functional Enrichment
Analysis and GSEA Analysis of DEGs
The volcano map shows the expression of identified DEGs
between groups with high and low BGN expression
(Figure 3A). of all the 492 DEGs. Of them, 207 were up-
regulated, and 285 were down-regulated genes.

In terms of Biological Process (BP), most of the DEGs were
enriched in extracellular structure organization, extracellular
matrix (ECM) organization, and skin development. In terms
of cellular components (CC), DEGs were mostly enriched in
the collagen-containing ECM, endoplasmic reticulum lumen, and
ECM components. In terms of molecular functions (MF), the
DEGs also showed significant association with ECM structural
constituent, receptor-ligand activity, and glycosaminoglycan
binding. Furthermore, they were found mainly enriched in
three KEGG pathways, including protein digestion and

TABLE 4 | Correlation analysis between BGN and immune cells.

Gene Immune cells Spearman
correlation coefficient

p Value

BGN NK cells 0.620 <0.001
BGN Macrophages 0.550 <0.001
BGN iDC 0.419 <0.001
BGN Tem 0.371 <0.001
BGN pDC 0.363 <0.001
BGN Mast cells 0.362 <0.001
BGN Th1 cells 0.356 <0.001
BGN DC 0.348 <0.001
BGN Eosinophils 0.280 <0.001
BGN CD8 T cells 0.279 <0.001
BGN Cytotoxic cells 0.272 <0.001
BGN Th17 cells −0.250 <0.001
BGN TFH 0.246 <0.001
BGN TReg 0.219 <0.001
BGN NK CD56dim cells 0.218 <0.001
BGN Tgd 0.216 <0.001
BGN T cells 0.163 0.002
BGN T helper cells −0.160 0.002
BGN Neutrophils 0.142 0.006
BGN aDC 0.107 0.038
BGN B cells 0.106 0.040
BGN NK CD56bright cells −0.069 0.185
BGN Tcm 0.061 0.237
BGN Th2 cells −0.057 0.267

Bold indicates statistically significant, that is, a p value less than 0.05.

TABLE 5 | Details of immune cell enrichment score in BGN high expression group and low expression group.

Immune cells Enrichment scores in high and low expression groups p value

High (mean ± SD) Low (mean ± SD)

Macrophages 0.501 ± 0.061 0.44 ± 0.066 <0.001
NK cells 0.47 ± 0.031 0.433 ± 0.036 <0.001
Th17 cells 0.218 ± 0.111 0.266 ± 0.12 <0.001
aDC 0.394 ± 0.114 0.378 ± 0.119 0.159
B cells 0.231 ± 0.1 0.218 ± 0.112 0.107
CD8 T cells 0.575 ± 0.022 0.564 ± 0.023 <0.001
Cytotoxic cells 0.401 ± 0.095 0.36 ± 0.101 <0.001
DC 0.36 ± 0.108 0.304 ± 0.102 <0.001
Eosinophils 0.391 ± 0.037 0.373 ± 0.039 <0.001
iDC 0.433 ± 0.059 0.395 ± 0.054 <0.001
Mast cells 0.247 ± 0.087 0.188 ± 0.09 <0.001
Neutrophils 0.31 ± 0.092 0.289 ± 0.087 0.030
NK CD56bright cells 0.408 ± 0.053 0.412 ± 0.061 0.265
NK CD56dim cells 0.236 ± 0.072 0.208 ± 0.074 0.001
pDC 0.544 ± 0.1 0.487 ± 0.103 <0.001
T cells 0.392 ± 0.113 0.368 ± 0.114 0.042
T helper cells 0.578 ± 0.027 0.587 ± 0.029 0.004
Tcm 0.411 ± 0.04 0.406 ± 0.039 0.240
Tem 0.432 ± 0.039 0.406 ± 0.039 <0.001
TFH 0.335 ± 0.042 0.316 ± 0.048 <0.001
Tgd 0.239 ± 0.041 0.23 ± 0.053 0.010
Th1 cells 0.361 ± 0.051 0.328 ± 0.057 <0.001
Th2 cells 0.376 ± 0.032 0.375 ± 0.037 0.815
TReg 0.421 ± 0.127 0.376 ± 0.134 0.002

Bold indicates statistically significant, that is, a p value less than 0.05.
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absorption, ECM-receptor interaction, focal adhesion pathway
(Figure 3B; Table 3). GSEA analysis revealed the following BGN-
related enrichment pathways: collagen formulation,
immunoregulatory interactions between a lymphoid and a
non-lymphoid cell, focal adhesion, ECM glycoproteins, Wnt
signaling, and signaling by vascular endothelial growth factor
(VEGF), as shown in Figures 3C–H.

Correlation Between BGN Expression and
Immune Infiltration
The BGN expression showed positive correlation with the
enrichment of the NK cells (r = 0.620, p < 0.001) and
macrophages (r = 0.550, p < 0.001) but negative correlation
with the enrichment of Th17 cells (r = -0.250, p < 0.001)
(Figures 4A–G; Table 4). The enrichment score of
macrophages (High: 0.501 ± 0.061, Low: 0.44 ± 0.066, p <
0.001) and NK cells (High: 0.47 ± 0.031, Low: 0.433 ± 0.036,
p < 0.001) in the group with high BGN expression was
significantly higher than that in the group with low BGN
expression, while the enrichment score of Th17 cells (High:
0.218 ± 0.111, Low: 0.266 ± 0.12, p < 0.001) in the group with
high BGN expression was significantly lower than that in the
group with low BGN expression (Table 5). The details of immune
cell enrichment score in the BGN high expression group and low
expression group are shown in Table 5.

Relationship Between BGN Expression and
Clinicopathological Variables
BGN expression was remarkably correlated with histologic
grade (Figure 5A, GI&G2 vs. G3, p < 0.001), histologic type
(Figure 5B, Diffuse type vs. Tubular type, p < 0.001),
histologic stage (Figure 5C, stage I vs. stage II and stage I
vs. stage III, p < 0.001), T stage (Figure 5D, T1 vs. T2, T1 vs.
T3, and T1 vs. T4, p < 0.001) and Helicobacter pylori (HP)
infection (Figure 5G, yes vs. no, p < 0.05) in gastric cancer

(GC). However, the following clinicopathological features
showed no significant association with BGN expression: M
stage, N stage, residual tumor, gender, age, primary
therapy outcome, and Barrett’s esophagus (Figures 5F,H–L,
p > 0.05).

The results in Table 6 showed that BGN expression was
remarkably correlated with pathologic stage (p = 0.008), T
stage (p = 0.001), histologic type (p < 0.001), and histological
grade (p = 0.025) in 80 GC patients who underwent
immunohistochemistry, but was not significantly associated
with gender (p = 0.802), N stage (p = 0.232), residual tumor
(p = 0.323), primary therapy outcome (p = 0.655), anatomic
neoplasm subdivision (p = 0.905), and age (p = 0.600).

Association With BGN Expression and
Prognosis of Patients With GC
The results of survival analysis revealed significant association
of greater BGN expression with poor Overall Survival (OS) in
GC patients (Figure 6A, HR = 1.53 (1.09–2.14), p = 0.013), but
no significantly association with Disease Specific Survival
(DSS) (Figure 6B, HR = 1.43 (0.94–2.19), p = 0.095), and
Progress Free Interval (PFI) (Figure 6C, HR = 1.27
(0.89–1.81), p = 0.189).

In order to eliminate the influence of other clinicopathological
variables on OS of GC, multivariate Cox regression analysis was
performed to identify independent factors affecting OS of GC.
Table 7 and Figure 6D show that pathologic stage (stage I &II vs.
stage III &IV, HR (95% CI) = 1.604 (1.022–2.517), p = 0.040),
primary therapy outcome (CR vs. PD &SD &PR, HR (95% CI) =
4.594 (2.938–7.182), p < 0.001), age (≤65 vs. >65 years, HR (95%
CI) = 1.654 (1.089–2.514), p = 0.018), histologic grade (G1 &
G2 vs. G3, HR (95% CI) = 1.576 (1.014–2.451), p = 0.043), and
BGN (low vs. high, HR (95%CI) = 1.798 (1.183–2.732), p = 0.006)
had significant correlation with OS rates in patients with GC.
However, BGN expression showed no association with poor DSS
and DSS PFI (Tables 8; Tables 9).

FIGURE 5 | Association with BGN expression and clinicopathological characteristics. (A) Histologic grade, (B) Histological type, (C) Pathologic stage, (D) T stage
(E)N stage, (F)Mstage, (G)H pylori infection, (H)Residual tumor, (I)Gender, (J) Age, (K) Primary therapy outcome, and (L) Barretts esophageal in GC patients in TCGA
cohort. TCGA, The Cancer Genome Atlas; GC, gastric cancer.
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Construction and Validation of Nomogram
A nomogram to predict 1-, 3-, and 5-years’ OS probability was
constructed on the basis of multivariate Cox regression analysis.
In it, five variables, namely pathologic stage, primary therapy
outcome, age, histologic grade, and BGN expression level, were
used. Figure 7A depicts 11 rows in the nomogram, with the rows
ranging from 2 to 6 representing the above variables. The
points of the five variables were added up to the total points,
which were displayed in row 7 and corresponded to the linear
predictor in the prediction of 1-, 3-, and 5-years survival
probability in row 8. The C-index was used to quantify the
predictive accuracy, ranging from 0.5 (no predictive power) to
1 (perfect prediction). The C-index of this nomogram was
0.728 (0.705–0.752), indicating that the prediction was in

good agreement with the actual survival probability. The
nomogram calibration plot (Figure 7B) also suggests that
the nomogram was well-calibrated, with the mean predicted
probabilities close to observed probabilities.

DISCUSSION

In the current study, we compared the expression level of BGN in
tumor tissues from TCGA and normal tissues from TCGA and
GTEx. The results demonstrated differential expression of BGN
in most of the 33 tumors and significant expression in GC tissues.
Similar results were obtained on comparison of the GC tissues in
TCGA with the matched normal tissues. The expression level of
BGN in GC tissues was significantly higher as compared with
normal tissues (p < 0.001). RT-PCR and IHC also verified this
association (p < 0.01). The AUC of the ROC curve to predict the
diagnostic value of BGN for GC was 0.945 (0.915–0.975),
suggesting greater expression of BGN expression in GC
diagnosis. The above results suggest that BGN may be a new
biomarker for GC.

In addition, 492 BGN-related DEGs, including 207 up-
regulated and 285 down-regulated genes, were identified. GO
and KEGG enrichment analyses on DEGs were also done. In
terms of BP, DEGs were mostly enriched in extracellular structure
organization, ECM organization, and skin development. In terms
of CC, DEGs were mostly enriched in collagen-containing ECM,
endoplasmic reticulum lumen, and ECM components. Also, the
DEGs were significantly associated with ECM structural
constituent, receptor-ligand activity, and glycosaminoglycan
binding in terms of MF. DEGs showed significant enrichment
in three KEGG pathways of protein digestion and absorption,
ECM-receptor interaction, focal adhesion. ECM plays a key role
in the cell microenvironment and in maintaining normal cell
activity (Giussani et al., 2019). Recent studies have shown a close
correlation of ECM to tumor progression, including in the
avoidance of apoptosis, the regulation of cell growth, the
promotion of tumor angiogenesis, and the acquisition of
invasion and metastasis ability (Pickup et al., 2014; Poltavets
et al., 2018; Eble and Niland, 2019). The disorder of collagen, a
key component of ECM, correlates with malignant tumor
(Levental et al., 2009). Changes in the levels of metabolites
related to protein digestion and absorption also have a key
role in the development of cancer (Mo et al., 2020). GSEA
enrichment analysis revealed that BGN-related DEGs were
significantly enriched in collagen formulation (Nissen et al.,
2019), immunoregulatory interactions between a lymphoid
and a non-lymphoid cell (Sautès-Fridman et al., 2019), focal
adhesion (Eke and Cordes, 2015), ECM glycoproteins (Mohan
et al., 2020), Wnt signaling (Bugter et al., 2021), and signaling by
VEGF (Apte et al., 2019), which were significantly related to the
tumor. Considering the above findings, we speculate that BGN-
related genes may be involved in the occurrence and progression
of GC, and BGN may be a potential therapeutic target for GC.

Immunotherapy of tumors has been one of the hot topics over
recent years. The use of Trastuzumab as immunotherapy has
been shown to prolong overall survival in patients with HER2-

TABLE 6 | The relationship between BGN expression and clinicopathological
variables in 80 patients underwent immunohistochemistry.

Characteristic Low High p

n 40 40 0.802
Gender (M/F), n (%)
F 10 (12.5%) 12 (15%)
M 30 (37.5%) 28 (35%)
Pathologic stage, n (%) 0.008
I 11 (13.8%) 2 (2.5%)
II 16 (20%) 14 (17.5%)
III 13 (16.2%) 24 (30%)
T stage, n (%) 0.001
T1 12 (15%) 1 (1.2%)
T2 5 (6.2%) 4 (5%)
T3 23 (28.7%) 32 (40%)
T4 0 (0%) 3 (3.8%)
N stage, n (%) 0.232
N0 10 (12.5%) 11 (13.8%)
N1 12 (15%) 5 (6.2%)
N2 7 (8.8%) 12 (15%)
N3 11 (13.8%) 12 (15%)
Histological type, n (%) < 0.001
Diffuse Type 6 (7.5%) 22 (27.5%)
Mucinous Type 1 (1.2%) 5 (6.2%)
Papillary Type 6 (7.5%) 5 (6.2%)
Signet Ring Type 8 (10%) 6 (7.5%)
Tubular Type 19 (23.8%) 2 (2.5%)
Histological grade, n (%) 0.025
G1 & G2 24 (30%) 13 (16.2%)
G3 16 (20%) 27 (33.8%)
Residual tumor, n (%) 0.323
R0 26 (32.5%) 31 (38.8%)
R1 & R2 14 (17.5%) 9 (11.2%)
Primary therapy outcome, n (%) 0.655
CR 27 (33.8%) 32 (40%)
PD 8 (10%) 5 (6.2%)
PR 2 (2.5%) 1 (1.2%)
SD 3 (3.8%) 2 (2.5%)
Anatomic neoplasm subdivision, n (%) 0.905
Antrum 8 (10%) 8 (10%)
Cardia 15 (18.8%) 13 (16.2%)
Fundus/Body 15 (18.8%) 18 (22.5%)
other 2 (2.5%) 1 (1.2%)
Age (years), meidan (IQR) 63 (58, 70.5) 66 (58, 71.25) 0.600

R0, No visible or microscopic tumor residue; R1, No visible, but microscopic residual
tumor; R2, Visible tumor residue; CR, Complete response; PR, Partial response; SD,
Stable disease; PD, Progressive disease.
Bold indicates statistically significant, that is, a p value less than 0.05.
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positive GC (Shitara et al., 2019). In several clinical trials (Zhang
et al., 2015), adoptive cell therapy has also demonstrated
promising results against GC. A high incidence of somatic
mutations in GC patients suggests ideal candidacy of
Trastuzumab for immunotherapy (Marrelli et al., 2016). These
results give us more confidence in the treatment of stomach

cancer. However, due to the high complexity of the immune
microenvironment of GC, the identification of biomarkers
associated with GC require greater attention in the future
(Zhao et al., 2019). The BGN expression was positively
correlated with the enrichment of the NK cells (r = 0.620,
p < 0.001) and macrophages (r = 0.550, p < 0.001) but was

FIGURE 6 | The association between BGN expression and prognosis of patients with Gastric Cancer. (A) Overall Survival. (B) Disease Specific Survival. (C)
Progress Free Interval. (D) Results of multivariate Cox regression analysis of the relationship between Overall Survival and clinicopathological variables in patients with
gastric cancer. HR: Hazard Ratio. CI: Confidence Interval.

TABLE 7 | Univariate regression and multivariate survival method (Overall Survival) of prognostic covariates in patients with Gastric Cancer

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Pathologic.stage 347
Stage I&Stage II 164 Reference
Stage III&Stage IV 188 1.947 (1.358–2.793) <0.001 1.604 (1.022–2.517) 0.040
Primary.therapy.outcome 313
CR 231 Reference
PD&SD&PR 86 4.228 (2.905–6.152) <0.001 4.594 (2.938–7.182) <0.001
Residual.tumor 325
R0 298 Reference
R1&R2 31 3.445 (2.160–5.494) <0.001 1.261 (0.689–2.310) 0.452
Age 367
≤ 65 164 Reference
>65 207 1.620 (1.154–2.276) 0.005 1.654 (1.089–2.514) 0.018
Histologic.grade 361
G1&G2 147 Reference
G3 219 1.353 (0.957–1.914) 0.087 1.576 (1.014–2.451) 0.043
Gender 370
Female 134 Reference
Male 241 1.267 (0.891–1.804) 0.188
Race 320
White 238 Reference
Asian&Black or African American 85 0.801 (0.515–1.247) 0.326
BGN 370
Low 188 Reference
High 187 1.494 (1.070–2.087) 0.019 1.798 (1.183–2.732) 0.006

R0, No visible or microscopic tumor residue; R1, No visible, but microscopic residual tumor; R2, Visible tumor residue; CR, Complete response; PR, Partial response; SD, Stable disease;
PD, Progressive disease.
Bold indicates statistically significant, that is, a p value less than 0.05.
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TABLE 8 | Univariate regression and multivariate survival method (Progress Free Interval) of prognostic covariates in patients with Gastric Cancer

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Pathologic.stage 349
Stage I&Stage II 164 Reference
Stage III&Stage IV 188 1.676 (1.154–2.435) 0.007 1.202 (0.787–1.834) 0.395
Primary.therapy.outcome 315
CR 231 Reference
PD&SD&PR 86 8.041 (5.465–11.832) <0.001 8.297 (5.319–12.941) <0.001
Residual.tumor 326
R0 298 Reference
R1&R2 31 3.469 (2.127–5.656) <0.001 1.384 (0.797–2.401) 0.248
Age 369
≤ 65 164 Reference
>65 207 0.858 (0.603–1.221) 0.395
Histologic.grade 363
G1&G2 147 Reference
G3 219 1.540 (1.057–2.245) 0.025 1.632 (1.064–2.503) 0.025
Gender 372
Female 134 Reference
Male 241 1.638 (1.099–2.440) 0.015 1.404 (0.889–2.217) 0.145
Race 322
White 238 Reference
Asian&Black or African American 85 1.061 (0.688–1.637) 0.787
BGN 372
Low 188 Reference
High 187 1.280 (0.897–1.825) 0.174

R0, No visible or microscopic tumor residue; R1, No visible, but microscopic residual tumor; R2, Visible tumor residue; CR, Complete response; PR, Partial response; SD, Stable disease;
PD, Progressive disease.
Bold indicates statistically significant, that is, a p value less than 0.05.

TABLE 9 | Univariate regression and multivariate survival method (Disease Specific Survival) of prognostic covariates in patients with Gastric Cancer

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

Pathologic.stage 331
Stage I&Stage II 164 Reference
Stage III&Stage IV 188 2.146 (1.352–3.404) 0.001 1.500 (0.874–2.575) 0.141
Primary.therapy.outcome 310
CR 231 Reference
PD&SD&PR 86 8.697 (5.439–13.908) <0.001 9.129 (5.214–15.984) <0.001
Residual.tumor 314
R0 298 Reference
R1&R2 31 5.142 (3.014–8.771) <0.001 1.901 (1.022–3.534) 0.042
Age 346
≤ 65 164 Reference
>65 207 1.211 (0.797–1.840) 0.371
Histologic.grade 340
G1&G2 147 Reference
G3 219 1.338 (0.862–2.078) 0.194
Gender 349
Female 134 Reference
Male 241 1.573 (0.985–2.514) 0.058 1.338 (0.765–2.341) 0.307
Race 305
White 238 Reference
Asian&Black or African American 85 1.097 (0.656–1.836) 0.724
BGN 349
Low 188 Reference
High 187 1.444 (0.945–2.206) 0.089 1.528 (0.931–2.510) 0.094

R0, No visible or microscopic tumor residue; R1, No visible, but microscopic residual tumor; R2, Visible tumor residue; CR, Complete response; PR, Partial response; SD, Stable disease;
PD, Progressive disease.
Bold indicates statistically significant, that is, a p value less than 0.05.
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negatively correlated with the enrichment of Th17 cells. This
indicates that the improvement of innate immunity is
accompanied by the decrease of adaptive immunity.
Macrophages, a type of immune cell present in large
numbers in most tumor types, play an important
regulatory role in promoting the development of
malignancy (Noy and Pollard, 2014). Macrophages were
recruited by inflammatory signals released by cancer cells
in primary and metastatic tumors and differentiated into
tumor-associated macrophages (TAMs) that promote
tumor progression (Qian et al., 2011; Arwert et al., 2018).
A large number of Th17 cell infiltrates were reported in
different tumor types, including ovarian cancer (Miyahara
et al., 2008), hepatocellular carcinoma (Zhang et al., 2009),
colorectal cancer (Tosolini et al., 2011), and multiple
myeloma (Prabhala et al., 2010). An abundance of Th17

cells in hepatocellular carcinoma and colorectal cancer
showed association with poor prognosis (Kryczek et al.,
2009). The results indicate that in the occurrence and
development of GC, numerous immune cell infiltration
changes occur, which may play a certain regulatory role.

BGN expression showed a significant correlation with
histologic grade, histologic type, histologic stage, T stage,
and Helicobacter pylori (HP) infection in patients with GC.
Thus, GC patients with high BGN expression may have poorer
histological types, lower tumor differentiation, more
advanced tumor development, and may show greater
association with HP infection. Furthermore, survival
analysis suggested a significant correlation of high BGN
expression with poor OS. Multivariate Cox regression
analysis was conducted to exclude the influence of other
variables. This analysis also showed that pathologic stage,

FIGURE 7 | A quantitative method to predict GC patients’ probability of 1-, 3-, and 5-years OS. (A) A nomogram for predicting the probability of 1-, 3-, and 5-years
OS for GC patients. (B) Calibration plots of the nomogram for predicting the probability of OS at 1, 3, and 5 years. GC, gastric cancer; OS, overall survival.
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primary therapy outcome, age, histologic grade, and BGN
expression level are independent risk factors for OS in GC.
These findings strongly suggest the key role of BGN in the
development of GC, leading to a poor prognosis of GC.

A nomogram was established to predict 1-, 3-, and 5-years
survival probability of GC patients by including the above five
independent survivorship risk factors, namely pathologic stage,
primary therapy outcome, age, histologic grade, and BGN
expression. Our nomogram can predict the OS probability of
GC patients very well (C-index = 0.728). The calibration map
shows that the nomogram’s predicted OS probability matches the
actual probability. Because of the very uncertain prognosis of
tumor patients, understanding the risk stratification of patients
with tumors correctly (Gratian et al., 2014) becomes crucial. Our
nomogram based on independent factors related to the survival of
GC patients can predict the OS probability of GC patients and can
be widely used in clinical practice Cs-Szabó et al., 1995,
Vuillermoz et al., 2004.

CONCLUSIONS AND LIMITATIONS

Overall, the findings of the current research are summarized
below:

First, we reported and verified the differential expression of
BGN in GC and normal tissue and concluded that the occurrence,
progression, and prognosis of GC were significantly correlated
with BGN. Second, BGN is a good biomarker for the proper
diagnosis of GC. Third, BGN-related changes in the tumor
microenvironment and immune invasion may play an
important role in the occurrence and progression of GC.
Finally, as our nomogram could predict the survival
probability of GC patients, it may be widely used in clinical
practice. Due to the limited conditions, we could not study
molecular subtypes. This issue will be addressed in future
research.
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Background: Prior studies have separately demonstrated that magnetic resonance
imaging (MRI) and schizophrenia polygenic risk score (PRS) are predictive of
antipsychotic medication treatment outcomes in schizophrenia. However, it remains
unclear whether MRI combined with PRS can provide superior prognostic
performance. Besides, the relative importance of these measures in predictions is not
investigated.

Methods:We collected 57 patients with schizophrenia, all of which had baseline MRI and
genotype data. All these patients received approximately 6 weeks of antipsychotic
medication treatment. Psychotic symptom severity was assessed using the Positive
and Negative Syndrome Scale (PANSS) at baseline and follow-up. We divided these
patients into responders (N = 20) or non-responders (N = 37) based on whether their
percentages of PANSS total reduction were above or below 50%. Nine categories of MRI
measures and PRSs with 145 different p-value thresholding ranges were calculated. We
trained machine learning classifiers with these baseline predictors to identify whether a
patient was a responder or non-responder.

Results: The extreme gradient boosting (XGBoost) technique was applied to build binary
classifiers. Using a leave-one-out cross-validation scheme, we achieved an accuracy of
86%with all MRI and PRS features. Other metrics were also estimated, including sensitivity
(85%), specificity (86%), F1-score (81%), and area under the receiver operating
characteristic curve (0.86). We found excluding a single feature category of gray matter
volume (GMV), amplitude of low-frequency fluctuation (ALFF), and surface curvature could
lead to amaximum accuracy drop of 10.5%. These three categories contributedmore than
half of the top 10 important features. Besides, removing PRS features caused a modest
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accuracy drop (8.8%), which was not the least decrease (1.8%) among all feature
categories.

Conclusions: Our classifier using both MRI and PRS features was stable and not biased
to predicting either responder or non-responder. Combining with MRI measures, PRS
could provide certain extra predictive power of antipsychotic medication treatment
outcomes in schizophrenia. PRS exhibited medium importance in predictions, lower
than GMV, ALFF, and surface curvature, but higher than measures of cortical
thickness, cortical volume, and surface sulcal depth. Our findings inform the
contributions of PRS in predictions of treatment outcomes in schizophrenia.

Keywords: schizophrenia, treatment prediction, XGBoost, polygenic risk score, magnetic resonance imaging

1 INTRODUCTION

Pharmacological therapy has long been the cornerstone of
schizophrenia management, which aims to relieve psychotic
symptoms, such as delusions, hallucinations, and disorganized
thinking, et al. (Kane and Correll, 2010; Patel et al., 2014;
Tarcijonas and Sarpal, 2019). Whereas, the treatment
outcomes of antipsychotic medications generally vary
significantly. According to statistics, approximately 10–30% of
schizophrenia patients achieve little symptomatic amelioration
after receiving multiple trials of typical antipsychotics.
Meanwhile, an additional 30–60% of patients with
schizophrenia show partial or inadequate improvement in
psychotic symptoms (Patel et al., 2014). Further, the long-term
disease courses in schizophrenia are even heterogeneous, which
are formulated over time (Tarcijonas and Sarpal, 2019). There are
twelve treatment trajectories summarized in an over 20-years
follow-up study involving more than 500 patients with
schizophrenia (Huber et al., 1980). The great variations of
treatment outcomes are also confirmed in more recent studies
(Carbon and Correll, 2014; Tarcijonas and Sarpal, 2019).
Although varying degrees of remission are acquired in a great
number of patients with schizophrenia, substantial evidence
suggests that antipsychotic medications can lead to various
adverse effects (Muench and Hamer, 2010; Patel et al., 2014;
Stroup and Gray, 2018). To date, no clinical reliable quantitative
markers can be employed to accurately predict the treatment
response to antipsychotic medications of a patient with
schizophrenia. Therefore, to avert unnecessary side effects,
enable early intervention, and adopt appropriate treatments, it
is critical to identify prognostic measures that can inform
individual treatment outcomes in advance.

Toward this target, considerable efforts are made to identify
predictors of antipsychotic treatment outcomes. Recently,
magnetic resonance imaging (MRI) has been broadly applied
in psychiatry researches, which provides quantitative in vivo
measures of the brain (Quinlan et al., 2020; Voineskos et al.,
2020; Kraguljac et al., 2021). Particularly, one significant area of
these applications is the prediction of antipsychotic treatment
responses or outcomes in patients with schizophrenia. Overall, a
large number of studies focused on structural MRI measures. A
longitudinal study of individuals with first-episode schizophrenia

reported that the ventricular volume was significantly increased
in patients with poor treatment outcomes, which was not
observed in better treatment outcome patients and healthy
controls (Lieberman et al., 2001). Another independent
longitudinal study confirmed this and found schizophrenia
patients with poor treatment outcomes had greater lateral
ventricular enlargement over time (Ho et al., 2003). In a cross-
sectional comparison study, conducted in schizophrenia patients
with poor outcomes, favorable outcomes, and healthy individuals,
poor outcome patients showed significantly smaller cerebral gray
matter particularly in prefrontal regions, and increased volume in
the lateral and third ventricles (Staal et al., 2001). A voxel-based
comparison analysis of gray matter volume revealed that non-
responder schizophrenia patients demonstrated a more severe
atrophy pattern than responder patients, particularly in the
superior and middle frontal gyri (Quarantelli et al., 2014).
Compared with non-resistant schizophrenia patients,
treatment-resistant patients showed a significant decrease of
thickness in the left dorsolateral prefrontal cortex (Zugman
et al., 2013). Cortical gyrification in bilateral insula, left
frontal, and right temporal regions were significantly decreased
in non-responder patients with first-episode schizophrenia
compared with responders (Palaniyappan et al., 2013). Besides,
non-responders had smaller thickness in the occipital lobe and
smaller asymmetry in the frontal region compared with
responders (Szeszko et al., 2012).

In addition to structural MRI, resting-state functional MRI has
also been shown to provide prognostic markers. Functional
connectivity was one of the most fully investigated measures.
Using a seed-based approach, functional connectivity of the
striatum with the dorsolateral prefrontal cortex, anterior
cingulate, and limbic regions such as the hippocampus and
anterior insula, were observed positively correlated with
improvement of antipsychotic treatment in patients with first-
episode schizophrenia. This relationship was converse when
functional connectivity changed to the striatum with the
parietal lobe (Sarpal et al., 2015). The prognostic capability of
striatal connectivity was also demonstrated in other studies
(Sarpal et al., 2016, 2017). Increased functional connectivity in
the default mode network (DMN) with the ventromedial
prefrontal cortex was found associated with greater efficacy of
treatment using olanzapine in schizophrenia (Sambataro et al.,
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2010). Besides, functional connectivity of the superior temporal
cortex was utilized to successfully predict antipsychotic treatment
responses in first-episode drug-naïve schizophrenia patients (Cao
et al., 2020). Apart from static functional connectivity, dynamic
functional connectivity within DMN regions was proved with the
most predictive power of symptom change in schizophrenia
compared with other common measures (Kottaram et al.,
2020). Several other resting-state functional MRI derived
measures were also examined to establish their relationships
with treatment outcomes in schizophrenia, such as regional
homogeneity (Gao et al., 2018) and amplitude of low-
frequency fluctuation (Cui et al., 2019).

Schizophrenia is a highly polygenic disorder with thousands of
associated risk loci, with mostly small effects (Smeland et al.,
2020). Polygenic risk score (PRS) is a measure to assess an
individual’s genetic liability to schizophrenia, which is
calculated by combining total risk alleles with corresponding
weights derived from genome-wide association study results
(Choi et al., 2020). In a recent study, PRS was verified as a
predictor of antipsychotic efficacy in first-episode schizophrenia.
Patients with higher PRS tended to be treatment non-responders
than those with lower PRS (Zhang et al., 2019). However, it
remains unclear whether PRS can markedly improve
prognostication on the basis of MRI-derived predictors. If
indeed better prediction performance is acquired when
combining PRS and neuroimaging predictors, the precedence
of the predictive capability of these predictors requires to be
investigated.

In the present study, we worked on the problem and
hypothesized that PRS can provide additional prognostic
power combined with MRI predictors. We collected a total of
57 patients with schizophrenia, which were divided into
responders and non-responders according to their 6 weeks of
antipsychotic treatment outcomes. Various neuroimaging and
PRS features were calculated. We constructed machine learning
classifiers with these baseline features to identify responders or
non-responders. Particularly, we concentrated on 1) performance
comparison of a classifier trained using a combination of MRI
and PRS features with a classifier trained using single MRI
features; 2) relative importance or contributions of these
features to predictions.

2 MATERIALS AND METHODS

2.1 Participants and Clinical Assessments
Individuals with schizophrenia (N = 97, before screening) were
recruited from Peking University Sixth Hospital and Beijing
Huilongguan Hospital, whose imaging data were all obtained
on a 3.0T Siemens TrioTim MRI scanner. Diagnoses were made
by qualified clinicians using the Structured Clinical Interview for
DSM-IV. All participants had no history of other DSM-IV Axis I
disorders, neurological disorders, cognitive deficits, severe
physical diseases, serious head trauma, substance abuse or
dependence, and electroconvulsive therapy within the last
6 months. Each individual was treated with only a single
second-generation antipsychotic drug, although the specific

drug is not totally the same across patients (mainly including
risperidone and clozapine). The study was approved by the
Medical Research Ethics Committees of the local hospitals. All
individuals or their guardians provided written informed consent.
Participants were excluded if their clinical assessments at baseline
or follow-up were incomplete, or they lacked sMRI, rsfMRI, or
genotype data. Quality control (QC) for rsfMRI data was
completed by examining the framewise displacement (FD)
(Power et al., 2012). Individuals who had a mean FD greater
than 0.3 mm were precluded. Besides, subjects were also excluded
if they failed to genotyping QC. In total, 57 subjects remained
after the screening.

The symptom severity of patients with schizophrenia was
evaluated using the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1987) by trained clinical psychiatrists.
Baseline assessments were completed within 1 week of image
acquisition. Follow-up assessments were performed after
approximately 6 weeks of antipsychotic treatment. Table 1
shows demographics and clinical characteristics.

2.2 Image Acquisition and Preprocessing
All images were acquired on a 3.0T Siemens TrioTim scanner. Two-
dimension echo-planar imaging (EPI) was used for rsfMRI data with
parameters: repetition time (TR) = 2000ms; echo time (TE) = 30ms;
flip angle (FA) = 90o; field of view (FOV) = 220 × 220mm2; matrix
size = 64 × 64; voxel dimensions = 3.4375 × 3.4375 × 4.6 mm3; 240
volumes, and 33 slices. For T1-weighted (T1w) structural images,
three-dimension magnetization-prepared rapid gradient-echo
(MPRAGE) sequence was performed with parameters: TR =
2,530ms; TE = 3.5 ms; FA = 7o; inversion time (TI) = 1,100ms;
voxel dimensions = 1 × 1 × 1mm3; matrix size = 256 × 256 × 192.

Preprocessing of rsfMRI data was performed using the
BRANT toolkit (Xu et al., 2018, https://github.com/kbxu/
brant). In brief, several standardized procedures were carried
out, including discarding the first ten timepoints, slice timing
correction, realignment, coregistration, spatial normalization to
Montreal Neurological Institute (MNI) space, resampling,
regressing out nuisances of linear trends, global signal as well
as head-motion parameters, and performing temporal band-pass
filtering at 0.01–0.08 Hz.

2.3 Genotype Data Acquisition and
Preprocessing
The procedures of genotype data collection and preprocessing
were elaborately described in our previous studies (Liu et al.,
2017; Hu et al., 2021). Briefly, for all individuals, ethylene diamine
tetraacetic acid (EDTA) anti-coagulated venous blood samples
were obtained, from which genomic DNA data were extracted
using the EZgene Blood gDNAMiniprep Kit. The whole-genome
genotyping was carried out on Illumina Human
OmniZhongHua-8 BeadChips with the standard Illumina
genotyping protocol.

Genotype processing and QC was implemented using PLINK
version 1.07 (Purcell et al., 2007), following the subsequent steps:
1) excluded subjects with missing genotype rates more than 0.05;
2) identified subject pairs with highly similar genotypes and
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removed the one who had a greater missing genotype rate; 3)
removed single nucleotide polymorphisms (SNPs) if their
missing genotype rates greater than 0.05, with a minor allele
frequency less than 0.01, and significantly deviated from Hardy-
Weinberg Equilibrium (p < 0.001); 4) used EIGENSTART
(Patterson et al., 2006; Price et al., 2006) for principal
component analysis (PCA) on linkage disequilibrium (LD)
pruned set of autosomal SNPs, which were obtained from LD
pruning and removing five long-range LD regions using the
HapMap phase three reference data set (Thorisson et al.,
2005). Outliers of samples with more than six SD were
excluded after achieving 10 principal components; 5)
imputation was completed using SHAPEIT (Delaneau et al.,
2011) and IMPUTE2(Howie et al., 2009) referred to the 1,000
Genomes phase one dataset. The autosomal SNPs with
imputation quality scores greater than 0.8 were further analyzed.

2.4 Predictors and Clinical Outcome
We calculated diverse predictors (features) based on imaging and
genotype data and divided subjects into responder and non-
responder groups according to clinical outcomes.

2.4.1 Responder and Non-responder
For each individual, the clinical outcome was measured by
percentage reduction of PANSS total score relative to baseline,
which was calculated as follows:

Δ � PANSSbaseline − PANSSfollowup
PANSSbaseline − 30

× 100%

The subtracted value of 30 in the denominator indicates a
minimum score of “no symptoms” assessed using PANSS. We
defined an individual as a responder in case that the patient
achieved a at least 50% reduction of PANSS total score. Subjects
not satisfying this criterion were regarded as non-responders. The
cut-off threshold was specified at 50%, given that this value roughly
reflects a “much improved” condition for acutely ill and non-
refractory patients from a clinical perspective (Leucht et al., 2009).
Although the statistical powermight be reduced when dichotomizing
the continuous clinical outcome, it provides a clear and interpretable
measure instead (Lewis, 2004; Kottaram et al., 2020).

2.4.2 Gray Matter Volume
Voxel-based morphometry analysis was performed using the
VBM8 toolbox (Matsuda et al., 2012, http://dbm.neuro.uni-

jena.de/vbm8/), which runs within the SPM8 software (https://
www.fil.ion.ucl.ac.uk/spm/software/spm8/). For each subject, the
native T1w image was segmented into tissue images of gray
matter, white matter, and cerebrospinal fluid, which were then
registered to the standard MNI space through non-linear
deformation using the high dimensional DARTEL algorithm
(Ashburner, 2007). All non-brain tissues were removed in the
process. Smoothing was not applied. Each segmented image had a
voxel size of 1.5 mm with a resolution of 121 × 145 × 121. Quality
control was completed by displaying slices for segmented images
and inspecting sample homogeneity. For each gray matter image,
we extracted mean gray matter volumes from each of the brain
parcellations defined in the Brainnetome atlas (Fan et al., 2016,
https://atlas.brainnetome.org/download.html), resulting in a total
of 246 regional values.

2.4.3 Cortical Morphologies
Cortical reconstruction was performed on raw T1w images using
FreeSurfer version 6.0 (Dale et al., 1999, https://surfer.nmr.mgh.
harvard.edu/fswiki/rel6downloads). For each individual, this
process estimated various vertex-based cortical surface
morphological measures. Quality control was performed by
visually examining any errors in the whole reconstruction
process. To precisely match cortical locations among subjects,
we aligned each reconstructed cortical surface with the fsaverage
template, which had 163,842 vertices per hemisphere. We
selected five cortical morphologies in the study, including
surface area, curvature, sulcal depth, thickness, and volume. As
with GMV, we used the Brainnetome parcellations to extract
averaged cortical values, resulting in 210 values for each measure.
The atlas is already resampled to fsaverage space. Finally, for each
individual, we calculated 210 (number of cortical parcellations) ×
5 (number of measures) values in total.

2.4.4 Amplitude of Low-Frequency Fluctuation
ALFF is a rsfMRI measure that quantifies the amplitude of
spontaneous low-frequency fluctuations of time series signals
(Zang et al., 2007). We used the BRANT toolkit to estimate a
voxel-based ALFF map for each individual. To be specific, the fast
Fourier transform algorithm was first applied to transform time
series into the frequency domain and the corresponding power
spectrum was achieved. Next, square root values were calculated
at each frequency within the spectrum. ALFF was defined as the
mean square root across the frequency range of 0.01–0.08 Hz.
The rsfMRI data were not performed temporal band-pass

TABLE 1 | Demographics and clinical information of participants.

Individuals with schizophrenia (N = 57)

— Responder (N = 20) Non-responder (N = 37) p value

Age (years) 25.22 ± 5.4 28.35 ± 7.3 0.10
Sex (male/female) 7/13 20/17 0.27
PANSS total score at baseline 76.90 ± 8.3 79.21 ± 7.8 0.31
PANSS total score at follow-up 44.15 ± 12.4 65.29 ± 8.1 4.30e-10
Percentage reduction of PANSS total score 71.19 ± 27.1% 28.05 ± 13.2% 1.18e-10
Chlorpromazine equivalent dosage (mg/day) 418.42 ± 280.6 531.03 ± 367.9 0.27

PANSS, positive and negative syndrome scale; Data were shown as mean ± standard deviation.
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filtering before estimating ALFF maps to avoid possible effects.
Finally, each ALFF map was normalized by subtracting the global
mean then dividing by the global standard deviation to eliminate
inter-subject biases. Likewise, we extracted mean values from
ALFF maps based on the Brainnetome atlas and obtained 246
regional values for each individual.

2.4.5 Regional Homogeneity
ReHo measures the similarity between the time series in a given
voxel and those in its 26 neighboring voxels based on Kendall’s
coefficient of concordance (Zang et al., 2004). It is a reflection of
synchronization between the time series of a given voxel and its
neighbors. We also used the BRANT toolkit to calculate the ReHo
map for each subject. Normalization was performed on each
ReHo map by dividing the global mean intensity. As with the
ALFF map, for each individual, we extracted 246 values from the
ReHo map according to the Brainnetome atlas.

2.4.6 Functional Connectivity
For each subject, whole-brain FCs were calculated based on the
Brainnetome atlas. We first extracted the mean time series from
each of the 246 brain regions defined in the atlas. Then we
calculated Pearson’s correlations between the extracted time
series of each region pair. Particularly, there were (246 × 245)/
2 = 30,135 unique pairs of regions. We obtained 30,135 FCs for
each subject, which was substantially greater than the number of
total individuals (N = 57). Thus we further performed
dimensional reduction by applying PCA on FCs from all
subjects and achieved 50 principal components, accounting for
95% amount of variance.

2.4.7 Genetic Characteristics
We calculated step-wise polygenic risk scores (PRSs) for each
individual with identical procedures in our prior study (Hu et al.,
2021). The PRSs were computed using PLINK version 1.07
(Purcell et al., 2007) and genome-wide association study
(GWAS) data from a large number of Chinese individuals (Li
et al., 2017). Of note, our study cohort was independent of
subjects from the GWAS study, despite they matched in
ancestries. We established a list of separate p-value threshold
ranges to aggregate SNPs. Specifically, we set step lengths of 0.001
and 0.01 for [0, 0.05) and [0.05, 1) intervals, respectively. The left
square bracket and the right parenthesis denoted inclusion and
exclusion cut-off values, separately. Consequently, there were 145
PRSs computed for each individual with distinct SNP inclusion
thresholds: [0, 0.001), [0.001, 0.002), . . ., [0.049, 0.05), [0.05,
0.06), [0.06, 0.07), . . ., [0.99, 1).

2.5 Classification
We sought to build classification models from a combination of
features derived from imaging and genotype data to predict
whether a patient with schizophrenia was a responder or a
non-responder after receiving 6 weeks of antipsychotic treatment.

2.5.1 Model Building, Training, and Testing
To deal with this prediction problem, we employed extreme
gradient boosting (XGBoost) (Chen and Guestrin, 2016) to

build binary classifiers to predict individual treatment
outcomes. XGBoost is a scalable machine learning system for
tree boosting and is publicly available as an open-source package
(https://github.com/dmlc/xgboost). We chose the XGBoost
method mainly for its significant and broadly recognized
impact on various machine learning and data mining
challenges (Chen and Guestrin, 2016), as well as its successful
applications in brain imaging prediction tasks (Torlay et al., 2017;
Sharma and Verbeke, 2020).

We calculated several categories of predictors (features): 1)
GMV with 246 regional values, 2) cortical morphologies of
surface area, curvature, sulcal depth, thickness, and volume,
each of which had 210 values, 3) rsfMRI measures of ALFF
(246 values), ReHo (246 values), and FC (50 values), as well as 4)
145 genetic features of PRS. In total, 1983 features were
computed. All these categories of features were combined to
train XGBoost classifiers. Given the modest sample size of the
studied cohort, we applied a leave-one-out cross-validation
(LOOCV) strategy to validate classifier performance, which is
supposed appropriate for small datasets and used in similar tasks
(Cao et al., 2020; Kottaram et al., 2020). Specifically, iteratively
held out one subject for validation, and used the rest to train the
model until all the subjects were validated once. The eventual
result was computed by taking the mean of all the subject
validations. Several established measures were calculated for
evaluations of classification performance, including accuracy,
sensitivity, specificity, F1-score, and area under the receiver
operating characteristic curve (ROC-AUC).

It is known XGBoost models tend to contain larger
hyperparameter sets compared with basic machine learning
classifiers, such as logistic regression, support vector machine,
et al. Thus hyperparameter tuning is of great importance to
leverage the maximum power of this method. Originally, all
parameters were assigned to default values. We tuned one
parameter each time and kept the others constant to examine
changes in classifier performance as the variation of the specified
parameter by performing repetitive LOOCV procedures. In this
way, we identified which parameters were relatively important
that significantly influenced classifier performance, and which
parameters had minor impacts on model performance. We also
estimated certain value ranges for each of these crucial
parameters. Of note, these value ranges were determined
separately, which we considered might constitute a possible
optimal searching space. Finally, we concentrated on these
significant parameters and performed a fine-grained grid
search on the estimated value ranges. Besides, due to the
imbalanced sample sizes between responders and non-
responders, we calculated the sample weights that were
inversely proportional to class frequencies and applied them
when fitted models.

2.5.2 Feature Importance
A valuable benefit of using the XGBoost method is that it
automatically provides estimates of feature importance from a
trained predictive model. Generally, we can directly retrieve
importance scores for each feature, which measure how useful
or valuable each feature is in the construction of the boosting tree
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model. The importance can be quantified using several metrics
provided by XGBoost, such as gain, coverage, weight, total gain,
total coverage.We specified the gain metric for our models, which
is supposed as the most relevant attribute to interpret the relative
importance of each corresponding feature. A feature is considered
more important for generating a prediction if its gain value is
higher compared to another feature.

In addition to estimating feature importance through the
trained classifier itself, we also evaluated the contributions of
feature categories. Specifically, we removed one feature category,
such as GMV or cortical thickness, and used all the remaining
features to reconstruct predictive models with identical
procedures as our main analysis in which all feature categories
were used. We determined the contribution of each feature
category by evaluating performance change (e.g., accuracy)
between each newly built classifier and our main model. If
removing a feature category led to a maximum decrease in
performance, then this feature category was considered to
contribute most to predictions.

3 RESULTS

3.1 Predicting Treatment Response in
Schizophrenia
Individuals with schizophrenia were reasonably defined as
responders (N = 20) or non-responders (N = 37) according to
their amelioration degrees of overall symptom severity, which
was assessed using PANSS total score, after accepting 6 weeks of
antipsychotic medications treatment. The responders and non-
responders were matched in age and sex. There were also no
significant differences between the two groups in baseline PANSS
total score and chlorpromazine equivalent dosage (Table 1). We
calculated a multitude of predictors (features), spanning
categories of 1) structural imaging (GMV; cortical
morphologies of surface area, curvature, sulcal depth,
thickness, and volume), 2) functional imaging (ALFF; ReHo;
FC), and 3) genetic characteristics (step-wise PRS). Combined
with both imaging and genetic features, we constructed binary
machine learning classifiers using the XGBoost method to predict
individual treatment outcomes (i.e., responder or non-

responder). We applied a leave-one-out cross-validation
(LOOCV) scheme to validate model performance, and
reported several estimated classification metrics to provide a
comprehensive evaluation. The XGBoost classifiers were
trained with carefully hyperparameters fine-tuning processes.
Table 2 shows the optimal hyperparameters set for LOOCV.

We observed the classification accuracy reached a relatively
high score of 86% (Table 3). There were eight misclassified
individuals altogether, of which 4 subjects were near the cut-
off boundary of treatment outcomes (i.e., the 50% threshold). The
corresponding percentage reductions of PANSS total score of
these four subjects were 45, 43, 40, and 48%. Particularly, several
additional metrics that quantify model performance exceeded
80% (Table 3), including sensitivity (85%), specificity (86%), F1-
score (81%), ROC-AUC (0.86). Meanwhile, the ROC curve
demonstrated our classification results were far higher than
the chance level (Figure 1). Taken together, our classifiers had
high predictive power and were not biased to a certain class.

3.2 Evaluating Feature Contributions
To quantify feature importance, we selected the classifier that
performed the best on the LOOCV procedure (hyperparameter
values of this model were given in Table 2). After retraining the
classifier on the whole dataset, we directly obtained the importance
score of each feature from the ‘feature_importances_” attribute in the
fitted model. Typically, a higher importance score implied the
corresponding feature was relatively more important in
predictions. Among the top 10 important features, nine features
were derived from structural imaging, which involved categories of
GMV, cortical thickness, cortical volume, surface sulcal depth, and
surface curvature. There was only one functional imaging feature
(i.e., ALFF), and no genetic features existed (Table 4). Particularly, the
GMV in a certain region of the left inferior frontal gyrus (labeled 31
corresponded to the Brainnetome atlas) ranked the first important.
When examining the top 100 important features, all the 10 feature
categories were involved (Figure 2). More than half of these 100
features belonged to three categories, which were GMV, ALFF, and
cortical thickness containing 27, 14, and 13 features respectively.

Besides, we further evaluated the prediction contributions of
each feature category. In brief, after iteratively removing one
feature category, we built XGBoost classifiers with the remaining

TABLE 2 | Optimal hyperparameters set of XGBoost classifier for leave-one-out cross-validation.

Parameters Description Value

n_estimators Number of boosting rounds 50
max_depth Maximum tree depth for base learners 2
learning_rate Boosting learning rate 0.12
booster Specify which booster to use: gbtree, gblinear, or dart gbtree
gamma Minimum loss reduction required to make a further partition on a leaf node of the tree 0.01
subsample Subsample ratio of the training instance 0.90
colsample_bytree Subsample ratio of columns when constructing each tree 0.30
colsample_bylevel Subsample ratio of columns for each level 0.50
colsample_bynode Subsample ratio of columns for each split 0.30
reg_alpha L1 regularization term on weights 0.10
reg_lambda L2 regularization term on weights 1.65
scale_pos_weight Balancing of positive and negative weights 2.50

Other hyperparameters not listed in the table were set to default values. The description referred to the XGBoost documentation at https://xgboost.readthedocs.io/en/latest/index.html.
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features following the main analyses to investigate how the
performance changed. We found removing any one of these
10 feature categories could lead to a performance drop (Table 5).
Specifically, four quantitative metrics including accuracy,
sensitivity, F1-score, ROC-AUC decreased consistently, in
which the sensitivity measure dropped the most with an
average of 21.5%. The specificity had a slight increase (at most
5.4%) in three of the 10 classifiers, indicating a higher bias existed
in the three models. In terms of accuracy, the categories of GMV,
ALFF, and surface curvature contributed the most to predictions,
given removing one of these three categories led to a maximum

drop in accuracy score (10.5%). The cortical volume was the least
important, since removing this category caused a minimal
accuracy decrease (1.8%). PRS exhibited medium importance,
excluding of which led to a modest accuracy drop (8.8%).

4 DISCUSSION

Tremendous evidence has suggested that neuroimaging data
coupled with machine learning techniques can provide
favorable utilities of prognostic predictions in psychiatric

TABLE 3 | Performance of predicting individual treatment outcomes with all imaging and genetic features.

Performance metrics Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) ROC-AUC

Classification results 85.96 85 86.49 80.95 0.86

ROC-AUC, area under the receiver operating characteristic curve. Responder/non-responder = 20/37.

FIGURE 1 | Prediction performance was quantified using the receiver
operating characteristic curve. The orange solid line reflected actual
classification results, and the blue dashed line indicated the chance level.

TABLE 4 | Top 10 important features obtained from the XGBoost classifier trained on the whole dataset.

Rank Feature category Atlas region number Description Importance score

1 GMV 31 IFG_L_6_2 0.04138
2 Cortical thickness 157 PoG_L_4_2 0.03584
3 GMV 14 SFG_R_7_7 0.03205
4 ALFF 119 PhG_L_6_6 0.03048
5 Cortical thickness 42 OrG_R_6_1 0.03028
6 Cortical volume 189 MVOcC _L_5_1 0.02930
7 GMV 15 MFG_L_7_1 0.02723
8 Surface sulcal depth 210 LOcC _R_2_2 0.02637
9 Surface curvature 152 PCun_R_4_3 0.02594
10 Surface curvature 169 INS_L_6_4 0.02591

IFG, inferior frontal gyrus; PoG, postcentral gyrus; SFG, superior frontal gyrus; PhG, parahippocampal gyrus; OrG, orbital gyrus; MVOcC, medioventral occipital cortex; MFG, middle
frontal gyrus; LOcC, lateral occipital cortex; Pcun, precuneus; INS, insular gyrus. L (R), left (right) hemisphere. The atlas region number corresponded to the Brainnetome parcellation (Fan
et al., 2016).

FIGURE 2 | The number of features belonged to each category among
the top 100 important features. The y axis represented feature categories. The
values labeled on the right of the bars were actual feature numbers.
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disorders, including schizophrenia (Janssen et al., 2018). A recent
relevant study investigated the ranking of predictive capabilities
of multiple neuroimaging and clinical measures when predicting
the relative change of symptom severity in schizophrenia at 1-
year follow-up (Kottaram et al., 2020). The evaluated
neuroimaging predictors included structural imaging measures
of cortical thickness and gray matter volume as well as functional
imaging derived measures of static and dynamic resting-state
connectivity. From the aspect of genetic factors, another recent
study examined the relationship between polygenic risk scores
(PRSs) and antipsychotic drug treatment outcomes in patients
with schizophrenia (Zhang et al., 2019). However, it remains
unclear 1) whether neuroimaging combined with PRS can
provide better prognostic performance than merely using
neuroimaging features; and 2) which category of neuroimaging
predictors or PRS provides the most accurate prognostic power,
and what is the ranking of their importance or contributions. To
address these issues, we collected a cohort of patients with
schizophrenia (N = 57), all of which had baseline
neuroimaging and genotype data. All these patients received
about 6 weeks of antipsychotic medication treatment.
Psychotic symptoms were assessed using PANSS at baseline
and follow-up. The patients were grouped into responders or
non-responders according to their percentages of PANSS total
reduction. We calculated various predictors, including 1) six
structural imaging measures (GMV; cortical morphologies of
surface area, curvature, sulcal depth, thickness, and volume);
2) three resting-state functional imaging measures (ALFF;
ReHo; FC), and 3) step-wise PRS. We trained binary machine
learning classifiers with these baseline features to identify whether
a patient with schizophrenia was a responder or non-responder.

Overall, we achieved an accuracy of 86% when predicting
antipsychotic drug treatment outcomes (i.e., responders or non-
responders) of patients with schizophrenia using all feature
categories (Table 3). As far as we know, this performance
exceeds the vast majority of results in previous studies and is
also more than reported in a recent study (Kottaram et al., 2020).
The performance was evaluated using a LOOCV procedure,
considering our modest sample size (N = 57). Although this
scheme is supposed to yield unstable estimates of predictive
performance (Varoquaux et al., 2017), it is frequently
employed in numerous neuroimaging studies, especially in

those with relatively small sample sizes (Cao et al., 2020;
Kottaram et al., 2020). Specifically, in small datasets, LOOCV
can provide sufficient data for training compared with other
k-fold cross-validation schemes. In addition to accuracy, we
found all other estimated classifier metrics were also at a
relatively higher level (Table 3), such as sensitivity (85%),
specificity (86%), F1-score (81%), ROC-AUC (0.86)
(Figure 1). These extra quantifications further demonstrated
our classifier was stable and not biased to predicting either
responder (N = 20) or non-responder (N = 37).

We examined the top 10 important features in predictions and
found nine of themwere structural imagingmeasures, including three
GMV, two cortical thickness, two surface curvature, one cortical
volume, and one surface sulcal depth, one was functional imaging
measure of ALFF (Table 4). PRS features were not of top 10
importance. The three GMV features were all extracted from the
frontal lobe regions, including inferior, superior, and middle frontal
gyri. Particularly, GMV in the inferior frontal gyrus was the most
prominent predictor. Previous studies have revealed GMV reductions
in the frontal lobe regions were associated with poor antipsychotic
medication treatment in patients with schizophrenia (Staal et al., 2001;
Quarantelli et al., 2014; Tarcijonas and Sarpal, 2019). Consistently,
significant reductions of GMV in the superior andmiddle frontal gyri
were observed in non-responders (Quarantelli et al., 2014). The two
cortical thickness features were estimated from the postcentral gyrus
in the parietal lobe and the orbital gyrus in the frontal lobe. However,
these two regions were discrepant with prior reported regions of the
occipital gyrus (Szeszko et al., 2012) and the dorsolateral prefrontal
cortex (Zugman et al., 2013). The remaining five features were barely
investigated in similar studies, which covered regions of the left
parahippocampal gyrus (ALFF), left medioventral occipital cortex
(cortical volume), right lateral occipital cortex (surface sulcal depth),
right precuneus, and left insular gyrus (surface curvature). When
focusing on the top 100 significant predictors, we found all feature
categories were involved (Figure 2). Particularly, the top three
categories that contained the most features were GMV, ALFF, and
cortical thickness, comprising 27, 14, and 13 features respectively.
Thus it was straightforward to explain the results that excluding GMV
or ALFF features caused the most performance drop of accuracy
(10.5%; Table 5). Notably, removing surface curvature features also
led to themaximumdecrease of accuracy (i.e., 10.5%). Collectively, we
considered that GMV, ALFF, and surface curvature features had

TABLE 5 | Prediction performance of classifiers trained with features after removing certain categories.

Feature categories
used

Number of
features

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) ROC-AUC

No GMV 1737 75.44 65 81.08 65 0.73
No surface area 1773 77.19 65 83.78 66.67 0.74
No surface curvature 1773 75.44 60 83.78 63.16 0.72
No surface sulcal depth 1773 78.95 65 86.49 68.42 0.76
No cortical thickness 1773 80.70 65 89.19 70.27 0.77
No cortical volume 1773 84.21 70 91.89 75.68 0.81
No ALFF 1737 75.44 60 83.78 63.16 0.72
No ReHo 1737 77.19 55 89.19 62.86 0.72
No FC 1933 77.19 60 86.49 64.86 0.73
No PRS 1838 77.19 70 81.08 68.29 0.76
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relatively higher prognostic utilities compared to other feature
categories. We observed that removing PRS features gave rise to a
modest accuracy drop (8.8%), which was not the least decrease (1.8%)
among all categories. This pointed out that PRS features can provide
extra prognostic power combined with MRI features, and yet their
importance or contributions were betweenminimum andmaximum,
inferior to certain MRI measures such as GMV, ALFF, and surface
curvature.

There were a few considerations when dealing with predictors and
clinical outcomes.We prepared variousMRI features, aiming to cover
as many measures as possible that were reported in prior relevant
studies. We assumed that combining these features would be of great
benefit to prognostication since each identified measure could
provide certain prognostic information. In our study, although
nine MRI measures were computed, more than any previous
study used, some were still needed to be examined. For example,
the dynamic resting-state functional connectivity measure within the
default mode network was demonstrated as the most single accurate
predictor of symptom severity change in schizophrenia (Kottaram
et al., 2020). As for PRS calculation, it is known that the p-value
threshold is critical given that only those SNPs with a GWAS
association p-value below the threshold are included in the
procedure (Choi et al., 2020). To avoid potential thresholding
effects and duplication of SNPs, 145 step-wise PRSs were
calculated as in our previous study (Hu et al., 2021). We defined
patients with schizophrenia as responders or non-responders based
on their reductions of PANSS total score, which is commonly applied
in current practice (Leucht et al., 2009; Cao et al., 2020). However, this
approach only focuses on the relative change of PANSS total scores
between follow-up and baseline but ignores the actual symptom
severity, which can not reflect a clinically significant change. For
example, a patient remains highly symptomatic even achieving a 50%
reduction of PANSS total score from 120 to 60. Thus it is necessary to
further assess whether our features are prognostic of symptom
severity (above or below a clinically meaningful cut-off) at follow-
up. Another problem is the selection of threshold values, which
determines whether a patient is a responder or non-responder. We
chose a threshold of 50% in the study, which indicates a much-
improved condition for acute patients (Leucht et al., 2009). Different
thresholds were proved crucial to clinical trials (Leucht et al., 2007).
Therefore, future studies should evaluate prognostications for non-
thresholded (i.e., regression analyses) or various fine-step thresholds
of PANSS total reductions.

Several limitations need to be considered. First, our sample of
patients with schizophrenia was limited for machine learning
algorithms, especially for the powerful XGBoost technique (Chen
and Guestrin, 2016), which contains more hyperparameters than
simple methods such as support vector machines. Although we
applied a rational cross-validation strategy, the danger of
overfitting can not be eliminated (Varoquaux et al., 2017;
Varoquaux, 2018). Larger independent sample replication is
required to evaluate the generalizability of our methods. Second,
ourMRImeasures were all calculated based on the Brainnetome atlas
(Fan et al., 2016). The choice of brain atlases should not be arbitrary,
since it could lead to different results such as in discrimination
analysis (Zang et al., 2021). Although we employed a fine-grained

parcellation, which contains information on both anatomical and
functional connections, comparisons between various brain atlases
need to be accomplished. Third, our prediction study just focused on
PANSS total reduction, however, it is essential to investigate whether
reductions of PANSS subscales (i.e., positive, negative, and general
psychopathology) or even specific symptom dimensions could be
predicted.

5 CONCLUSION

Polygenic risk score for schizophrenia can provide certain
prognostic power when combined with neuroimaging features
to predict 6 weeks of antipsychotic medication treatment
outcomes in patients with schizophrenia. The relative
importance of the polygenic risk score in predictions is
between maximum and minimum, lagging behind some
neuroimaging measures such as gray matter volume, the
amplitude of low-frequency fluctuation, and surface curvature.
Overall, our findings inform contributions of the polygenic risk
score in machine learning studies that aim to predict treatment
outcomes in schizophrenia.
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Objective: To identify CT imaging biomarkers based on radiomic features for predicting
brain metastases (BM) in patients with ALK-rearranged non-small cell lung cancer (NSCLC).

Methods: NSCLC patients with pathologically confirmed ALK rearrangement from
January 2014 to December 2020 in our hospital were enrolled retrospectively in this
study. Finally, 77 patients were included according to the inclusion and exclusion criteria.
Patients were divided into two groups: BM+were those patients who were diagnosed with
BM at baseline examination (n = 16) or within 1 year’s follow-up (n = 14), and BM− were
those without BM followed up for at least 1 year (n = 47). Radiomic features were extracted
from the pretreatment thoracic CT images. Sequential univariate logistic regression,
LASSO regression, and backward stepwise logistic regression were used to select
radiomic features and develop a BM-predicting model.

Results: Five robust radiomic features were found to be independent predictors of BM.
AUC for radiomics model was 0.828 (95% CI: 0.736–0.921), and when combined with
clinical features, the AUC was increased (p = 0.017) to 0.909 (95% CI: 0.845–0.972). The
individualized BM-predicting model incorporated with clinical features was visualized by
the nomogram.

Conclusion: Radiomic features extracted from pretreatment thoracic CT images have
the potential to predict BM within 1 year after detection of the primary tumor in patients
with ALK-rearranged NSCLC. The radiomics model incorporated with clinical features
shows improved risk stratification for such patients.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mortality
worldwide. Non-small cell lung cancer (NSCLC) accounts for
85% of all lung cancer incidence (Molina et al., 2008).
Approximately 10%–20% of NSCLC patients have brain
metastases (BMs) at initial presentation (Schuette, 2004;
Khalifa et al., 2016). Another 25%–50% will develop BMs
during the course of their disease (Langer and Mehta, 2005).
It has been reported that 91% of BMs were diagnosed within
1 year of initial diagnosis of the primary tumor for patients with
lung cancer (Schouten et al., 2002). For stage I–III NSCLC
patients, the median time from treatment to onset of BMs as
the first site of progression was 12 months (Bajard et al., 2004).
NSCLC patients with BMs traditionally have a poor prognosis
with a median survival of 7 months (Sperduto et al., 2010).

Anaplastic lymphoma kinase (ALK) rearrangements are driver
mutations seen in about 3%–5% NSCLC (Gainor et al., 2013). The
incidence of BMs is higher in patients with ALK-rearranged
NSCLC: among those patients, up to 50%–60% will develop
BMs during the course of their disease (Zhang et al., 2015).
Crizotinib was the first ALK inhibitor developed and has
demonstrated improved outcomes in patients with ALK-positive
advanced NSCLC in comparison with chemotherapy (Solomon
et al., 2014). However, the intracranial efficacy of crizotinib is poor,
due to poor blood–brain barrier penetration (Costa et al., 2011).
Second- and third-generation ALK inhibitors have shown better
but variable intracranial control. Besides, prophylactic cranial
irradiation has been discussed as a strategy to reduce the
incidence of BM in NSCLC (Carolan et al., 2005; Pechoux et al.,
2016). Therefore, developing biomarkers to predict patients at
higher risk of BM might be significant in helping identify sub-
groups who need early detection of BM by close observation and
benefit from intensification of systemic therapy, which is crucial for
improving outcomes.

Tumor phenotypic differences can be quantified in CT images
using radiomic features. Radiomics refers to high-throughput
extraction of quantitative image features, which provide a
comprehensive description of tumor phenotypes and
heterogeneity (Kumar et al., 2012; Lambin et al., 2012).
Biomarkers based on radiomic features have been reported to
be associated with clinical outcomes and underlying genomic
patterns (Chen et al., 2017). In recent years, studies have been
performed on the predictive value of radiomic features for tumor
progression and distant metastases in NSCLC (Fried et al., 2014;
Coroller et al., 2015; Fan et al., 2019; Xu et al., 2019; Kakino et al.,
2020; Sun et al., 2021). However, to date, research using a radiomics
approach based on thoracic CT images to predict BM for ALK-
rearranged NSCLC has been rarely reported (Xu et al., 2019). The
purpose of this study was to identify CT imaging biomarkers using
radiomic features extracted from pretreatment thoracic CT images
for predicting BM in patients with ALK-rearranged NSCLC,
focused on BM within 1 year after initial detection of the
primary tumor.

MATERIALS AND METHODS

Study Population and Clinical Data
NSCLC patients with pathologically confirmed ALK rearrangement
from January 2014 to December 2020 in our hospital were enrolled
retrospectively in this study. Patients were consecutively included
according to the following inclusion criteria: (1) pathologically
confirmed NSCLC with ALK rearrangement; (2) available
pretreatment thoracic CT images on picture archiving and
communication system (PACS) performed less than 1 month
before the pathologic sampling were collected; and (3) available
brain MRI/PETCT/CT examination data at diagnosis of NSCLC
and during follow-up to confirm the status of BMs. Patients who
met any of the following criteria were excluded: (1) with other
malignant neoplasms; (2) unsatisfactory CT image quality such
as severe respiratory motion artifacts; and (3) loss to follow-up
within 1 year and without BM at the last follow-up.

FIGURE 1 | Flowchart of the patient selection process.
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Finally, 77 patients were included in the study. Patients were
divided into two groups: BM+ were those patients who diagnosed
BM at baseline examination (n = 16) or within 1 year’s follow-up
(n = 14), and BM−were those without BM followed up for at least
1 year (n = 47) (Figure 1).

Clinicopathologic features were extracted from patient
medical records, including age at diagnosis, sex, smoking
status, pathological type, and TNM stage. Tumors were staged
according to the new eighth edition of the Union for International
Cancer Control and American Joint Committee on Cancer TNM
classification system (Detterbeck et al., 2017).

CT Acquisition, Image Segmentation, and
Feature Extraction
Pretreatment chest CT examinations were performed using one
of the three multi-detector CT systems: Somatom Definition AS+
(Siemens Medical Solutions), Light speed 16 (GE Healthcare), or
Discovery CT750 HD (GE Healthcare) scanner. Scanning
parameters were as follows: tube voltage, 120 kVp; tube
current, 150–200 mA with automatic exposure control;
reconstruction thicknesses and intervals were 1.5 mm or
1.25 mm; reconstruction kernel was B30f/Standard for
mediastinal window, and B70f/Lung for lung window.

The tumors were segmented using a semi-automatic approach
by one radiologist and reviewed by another one, both of whom
had experience in thoracic CT diagnosis for more than 10 years.
They were both blinded to the clinical data and pathologic
information except for lung cancer diagnosis. 3D Slicer
V4.11.01 (Fedorov et al., 2012), an open-source image
processing software, was used to segment the tumors on the

images with reconstruction kernel of B70f/Lung and extract
three-dimensional (3D) Radiomic features.

Features are grouped as follows: (1) First-order features: These
describe the voxel intensity distribution in the delineated ROI.
They are usually calculated based on the intensity histogram,
including energy, entropy, skewness, kurtosis, uniformity, mean,
minimum, and maximum intensity values. (2) Shape features:
descriptors of the two- and three-dimensional shape and size of
the ROI. (3) Textural features: These contain gray-level co-
occurrence matrix (GLCM), gray-level dependence matrix
(GLDM), gray-level run length matrix (GLRLM), gray-level size
zone matrix (GLSZM), and neighborhood gray tone difference
matrix (NGTDM). They are computed on the analysis of the three-
dimensional directions within the tumor and the consideration of
the spatial location of each voxel in the ROI (Shafiq-Ul-Hassan et al.,
2017; Xu et al., 2020). (4)Wavelet-based features: These are extracted
after applying a series of wavelet filtration to the images. The wavelet
transform decomposes the original image into low-and high-
frequencies, focusing the features on different frequency ranges
within the tumor volume (Rios Velazquez et al., 2017). Finally, a
total of 851 features were extracted, including 14 shape features,
18 first-order features, 75 texture features (24 GLCM, 14 GLDM, 16
GLRLM, 16 GLSZM, and 5 NGTDM), and 744 wavelet-based
features (Supplementary Table S1).

Feature Selection, Radiomic Signature
Building, and Development of Prediction
Model
Univariate logistic regression analysis was preliminarily used to
screen and identify potential predictors from radiomic features.
Then, radiomic features with p < 0.05 in univariate analysis were
further screened by the least absolute shrinkage and selection
operator (LASSO) regression method. Tenfold cross-validation
was used for selecting features in the LASSO model via

TABLE 1 | Demographic and clinical features of the patients.

Clinical features BM+ BM− Total p-value

Age, mean ± SD, years 52.23 ± 12.85 55.68 ± 9.19 54.34 ± 10.81 0.208
Age distribution 0.743
≤60 20 (66.7) 33 (70.2) 53 (68.8)
>60 10 (33.3) 14 (29.8) 24 (31.2)

Sex, N (%) 0.522
Female 15 (50.0) 27 (57.4) 42 (54.5)
Male 15 (50.0) 20 (42.6) 35 (45.5)

Smoking status, N (%) 0.217
Never 22 (73.3) 28 (59.6) 50 (64.9)
Ever 8 (26.7) 19 (40.4) 27 (35.1)

Pathology, N (%) 0.140
Adenocarcinoma 29 (96.7) 40 (85.1) 69 (89.6)
Other 1 (3.3) 7 (14.9) 8 (10.4)

T stage, N (%) 0.001
T1/T2 12 (40.0) 37 (78.7) 49 (63.6)
T3/T4 18 (60.0) 10 (21.3) 28 (36.4)

N stage, N (%) <0.001
N0/N1 3 (10.0) 27 (57.4) 30 (39.0)
N2/N3 27 (90.0) 20 (42.6) 47 (61.0)

Abbreviations: BM, brain metastases.
Bolded values indicate a statistically significant result.

1http://www.slicer.org.
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minimum criteria. In addition, multivariate logistic regression using
a backward elimination strategy was performed to eliminate the
redundant features. Finally, the prediction model was established
based on the simplified radiomic features with beta values included
in the backward stepwise regression as the standardized regression
coefficients. A radiomics score (Rad_score) was calculated for each
patient via a linear combination of selected features weighted by their
regression coefficients. To provide the clinician with a quantitative
tool to predict the individual probability of BM within 1 year after

detection of NSCLC, we also built a nomogram incorporated with
clinical features.

Statistical Analyses
Statistical analyses were conducted by R software (V3.6.2)2.
For the potential clinical prognostic factors, the Student’s

FIGURE 2 | Feature selection using the least absolute shrinkage and selection operator (LASSO) regression method. (A) The dotted vertical line was plotted at the
value selected by the 10-fold cross-validation viaminimum criteria (the value of lambda with the lowest partial likelihood deviance). (B) Selection of the tuning parameter
(lambda) in the LASSO regression using 10-fold cross-validation via minimum criteria.

TABLE 2 | Multivariate logistic regression analyses of radiomic features.

Radiomic features Beta value Odds ratio (95% CI) p-value AUC

Original.GLCM.contrast −0.027 0.973 (0.942–1.006) 0.109 0.600
Wavelet_LHH.GLCM.clusterShade 0.046 1.047 (1.012–1.083) 0.009 0.666
Wavelet_LLH.GLSZM.smallAreaEmphasis −30.675 0 (0.000–0.045) 0.014 0.632
Wavelet_HLH.firstorder.maximum 0.004 1.004 (1.000–1.007) 0.071 0.657
Wavelet_LLL.firstorder.skewness −0.355 0.701 (0.498–0.985) 0.041 0.656

Abbreviations: CI, confidence interval; AUC, area under the receiver operating characteristic curve.

2http://www.r-project.org.
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t-test was used to compare the age of the two groups, and the
other clinical features were compared using chi-square or
Fisher’s exact test, where appropriate. The diagnostic efficacy
of the clinical, radiomic, and the combined model were
analyzed by the receiver operating characteristic (ROC)
curve of the subjects, and the differences between the area
under the curve (AUC) were compared using DeLong’s test.
All tests were two-sided. A p-value < 0.05 was defined as
significant for all the tests, except that in multivariate logistic
regression with backward elimination strategy, a p-value < 0.1
was considered significant so that potential predictors were
less likely to be eliminated from the prediction model.

RESULTS

Clinical Features
The patients’ clinical data are presented in Table 1. There were
significant differences in T stage (p = 0.001) and N stage (p <
0.001) between the two groups. Those patients with a higher T

or N stage tend to have BM within 1 year after detection of
NSCLC.

Radiomic Signature Building
Radiomic signature was built via three sequential steps. Firstly,
a total of 112 radiomic features associated with BM (p < 0.05)
were preliminarily identified by univariate logistic regression
analysis (Supplementary Table S2). Then, ten radiomic
features remained after conducting LASSO regression
(Figure 2). Eventually, five robust radiomic features were
found to be independent predictors of BM by using a
backward stepwise logistic regression (Table 2). A detailed
description of the features is presented in Supplementary S1.
The prediction model based on the five radiomic features was
built, and Rad_score was calculated for each patient. The
Rad_score calculation formula was as follows:

Rad_score = Wavelet_LHH.GLCM.ClusterShade * 0.0459−
Original. GLCM.Contrast * 0.0270−Wavelet_LLH.GLSZM.
SmallAreaEmphasis * 3.6752 + Wavelet_HLH.Firstorder.
Maximum * 0.0036−Wavelet_LLL.Firstorder.Skewness * 0.3551.

FIGURE 3 | Receiver operating characteristic (ROC) curves for prediction of brain metastases using a clinical model (pink line), a radiomic model (black line), and a
model that combined Radiomics score (Rad_score) and clinical features (blue line).
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Development of an Individualized Prediction
Model
To illustrate the potential ability for BM prediction, we compared
the models developed by radiomic features, clinical variables, and
a combination of them. As shown in Figure 3, AUC for the
radiomics model was 0.828 (95% CI: 0.736–0.921), which showed
no significant difference (p = 0.785) with the clinical model (AUC
= 0.810, 95% CI: 0.712–0.908), and when combined with clinical
features, the AUC of the radiomics model was increased (p =
0.017) to 0.909 (95% CI: 0.845–0.972). The combined model was
also superior to the clinical model alone (p = 0.028). The
individualized BM-predicting model incorporated with clinical
features is visualized by the nomogram (Figure 4). The process
involved in the development of the prediction model is shown
with a flowchart (Figure 5).

DISCUSSION

In this study, we developed a radiomics model with five
independent predictors out of 851 candidate radiomic features
extracted from pretreatment thoracic CT images for predicting
BM within 1 year after detection of the primary tumor in patients
withALK-rearranged NSCLC, which showed a good performance
with an AUC of 0.828. Furthermore, incorporating the radiomics
signature with clinical features resulted in a significant

improvement of predictive power with an excellent model
performance (AUC = 0.909). We also built an easy-to-use
nomogram that facilitates the individualized prediction of BM.

Age, T/N stage, pathological type, tumor genes, and other
clinical features have been reported as risk factors or potential
predictors of BMs. Patients with younger age (≤60 years), later
T/N stage, adenocarcinoma, or non-squamous NSCLC are
associated with a higher risk of BM (Robnett et al., 2001;
Bajard et al., 2004; Carolan et al., 2005; Shi et al., 2006; Ji
et al., 2014; Won et al., 2015). Epidermal growth factor
receptor (EGFR) mutation was also reported to be a potential
risk factor of BM (Shin et al., 2014; Shin et al., 2016). Compared
with EGFRmutant patients, BMs were more common in patients
with ALK rearrangement (Kang et al., 2014). Published data on
risk factors of BM concerning the clinical features of ALK-
rearranged NSCLC are minimal (Costa et al., 2015; Johung
et al., 2016). Patients of this molecular subtype of NSCLC are
relatively young (Yamamoto et al., 2014). While Costa et al. found
younger age was associated with BM (Costa et al., 2015), no
significant association between age and BM was found by Johung
et al. (2016). In our study, most of the patients were younger than
60 years (68.8%); though patients in the BM+ group appeared
younger than those in the BM− group (52.23 vs. 55.68 years), no
significant difference was presented. Like previous studies (Bajard
et al., 2004; Ji et al., 2014; Won et al., 2015), we also found that
later T/N stage was associated with a higher risk of BM. Though

FIGURE 4 | Nomogram developed with the radiomics score (Rad_score) and clinical features incorporated.
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up to 96.7% of patients in BM+ group were adenocarcinoma, no
significant association was found between pathological type and
BM. It might due to the high prevalence of adenocarcinoma
(89.6%) in this cohort, which is consistent with a previous report
where adenocarcinoma accounts for most cases (85.3%) of ALK-
rearranged NSCLC (Barlesi et al., 2016).

On account of the limited value of the clinical prognostic factors
in predicting BM in this specific patient subset with a high
incidence of BM, developing other biomarkers to build an
optimal prediction model is necessary. Radiomics, as a non-
invasive method developed in recent years, may potentially
improve predictive accuracy in oncology. We found that five
radiomic features, including one texture
feature (Original.GLCM.Contrast), two wavelet-transformed
texture features (Wavelet_LHH.GLCM.ClusterShade and
Wavelet_LLH.GLSZM.SmallAreaEmphasis), and two wavelet-
transformed first-order features (Wavelet_HLH.Firstorder.
Maximum and Wavelet_LLL.Firstorder.Skewness), were
independent predictors of BM in patients with ALK-rearranged

NSCLC. The radiomics signature incorporated with clinical
features yielded significantly improved predictive performance
compared to both the radiomics model and the clinical model
alone. Maximum and Skewness measure the maximal intensity of
the histogram and the asymmetry of the histogram from the mean,
respectively. Texture features are known to be most closely
correlated with tumor heterogeneity and prognosis among all
radiomic features, while wavelet-based features are the results
of filter transformation of intensity and texture features (Chen
et al., 2017). GLCM, ClusterShade, and Skewness (original or
filtered) have been reported to be predictors of distant metastases
in NSCLC (Coroller et al., 2015; Huynh et al., 2017; Kakino et al.,
2020). Sun et al. (2021) also found that GLCM and GLSZM
features were predictors of BM as the first failure in patients with
curatively resected locally advanced NSCLC. Although
differences exist in study objective and implementation, it
implies that such features may serve as a risk factor of distant
metastases, including BM for NSCLC. Further investigation is
needed to explore the extensibility and universal applicability of
these radiomic features for NSCLC with other driver gene
mutations or distant metastases of other sites.

Recently, Xu et al. (2019) tried to build a radiomic signature to
predict pretreatment BM for stage III/IV ALK-positive NSCLC
patients and found that only one radiomic feature
(W_GLCM_LH_Correlation) was an independent predictor
(training set: AUC = 0.687, test set: AUC = 0.642), which also
exhibited reposeful performance in predicting BM during follow-up
(stage III: AUC= 0.682, stage IV: AUC= 0.653). However, due to the
low positive rate (27 patients with pretreatment BM out of 132
patients) in their research, splitting data to the training set and test
set and further dividing patients without BM at baseline examination
into groups of different stages subsequently reduced sample size,
which would mitigate statistical power compared to the initial
cohort. To overcome this, we combined the patients with BM at
baseline examination and within 1 year’s follow-up into the BM+
group. We then used a cross-validation approach, which employs
repeated data-splitting to prevent overfitting while simultaneously
generating estimates of the model coefficients. This process is almost
equivalent to data-splitting in producing validated model
coefficients. Still, its use of data is more efficient than a
dichotomous split into training and test sets (Harrell et al., 1996).
However, there remains a high risk of a false-positive result due to
the multiplicity of testing with the number of features tested (Fried
et al., 2014). Additionally, recent studies have revealed that BM can
occur even in patients with early-stage NSCLC or in those without
any symptoms (Shi et al., 2006; Ando et al., 2018). Therefore, we did
not intentionally exclude the patients with early stage. Actually, in
the BM+ group, 40% were T0/1 stage, and 10% were N1/2 stage at
the initial diagnosis.

There are several limitations to this study. First, due to the low
incidence of ALK rearrangement and the high proportion of loss
to follow-up, the sample size of our study was relatively small.
Therefore, we only performed internal cross-validation, and the
independent model assessment could not be committed to avoid
overfitting. Expanded sample size and external multicenter
validation are necessary for further investigation to confirm
our findings. Second, the CT acquisition and reconstruction

FIGURE 5 | Flowchart of the process involved in the development of the
prediction model.
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parameters were not consistent for all the cases due to the
different CT scanners we used. However, radiomics was able
to detect a solid signal to predict BM despite the variability. In
addition, because some patients did not undergo enhanced CT in
the present study, we used plain CT images to extract the
radiomic features to keep the sample size as large as possible,
which may have an effect on the segmentation of the tumor.

In conclusion, our preliminary study indicates that radiomic
features derived from pretreatment thoracic CT images may
function as non-invasive biomarkers for predicting BM in
patients with ALK-rearranged NSCLC. Furthermore, the
radiomics model incorporated with clinical features shows
improved risk stratification for such patients, allowing
individualized treatment to reduce the risk of BM and
improve survival.
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Pathway-Based Analysis Revealed the
Role of Keap1-Nrf2 Pathway and
PI3K-Akt Pathway in Chinese
Esophageal Squamous Cell
Carcinoma Patients With Definitive
Chemoradiotherapy
Honghai Dai 1, Yanjun Wei2, Yunxia Liu1, Jingwen Liu3, Ruoying Yu3, Junli Zhang3,
Jiaohui Pang3, Yang Shao3,4, Qiang Li1* and Zhe Yang1*

1Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,
2Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China, 3Nanjing
Geneseeq Technology Inc, Nanjing, China, 4School of Public Health, Nanjing Medical University, Nanjing, China

Esophageal squamous cell carcinoma (ESCC) is the major type of EC in China.
Chemoradiotherapy is a standard definitive treatment for early-stage EC and
significantly improves local control and overall survival for late-stage patients. However,
chemoradiotherapy resistance, which limits therapeutic efficacy and treatment-induced
toxicity, is still a leading problem for treatment break. To optimize the selection of ESCC
patients for chemoradiotherapy, we retrospectively analyzed the clinical features and
genome landscape of a Chinese ESCC cohort of 58 patients. TP53was the most frequent
mutation gene, followed by NOTCH1. Frequently, copy number variants were found in
MCL1 (24/58, 41.4%), FGF19 (23/58, 39.7%), CCND1 (22/58, 37.9%), and MYC (20/58,
34.5%). YAP1 and SOX2 amplifications were mutually exclusive in this cohort. Using
univariate and multivariate analyses, the YAP1 variant and BRIP1mutant were identified as
adverse factors for OS. Patients with PI3K-Akt pathway alterations displayed longer PFS
and OS than patients with an intact PI3K-Akt pathway. On the contrary, two patients with
Keap1-Nrf2 pathway alterations displayed significantly shortened PFS and OS, which may
be associated with dCRT resistance. Our data highlighted the prognostic value of aberrant
cancer pathways in ESCC patients, which may provide guidance for better
chemoradiotherapy management.

Keywords: ESCC (Esophageal squamous cell carcinoma), Keap1-Nrf2 pathway, PI3K-Akt pathway,
chemoradiotherapy, pathway-based analysis

INTRODUCTION

Esophageal carcinoma (EC) is the ninth most common cancer and remains the sixth leading cause of
cancer death worldwide (Bray et al., 2018). Esophageal squamous cell carcinoma (ESCC) and Esophageal
adenocarcinoma (EAC) are two major subtypes of EC and account for 90% of EC cases worldwide. On
the other hand, different histological types of EC distributed varied around theworld. ESCC contributes to
90% of all esophagus carcinomas each year in China, whereas EAC is mainly reported in North America
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and Europe (Abnet et al., 2018). Frequent consumption of hot
beverages, a common lifestyle in China, results in a higher potential
of ESCC, whereas people with gastroesophageal reflux, following a
Western pattern diet, andwith smoking behavior often have a higher
risk of ADC (Dent et al., 2005). The 5-year survival rate of EC
patients with only esophagus cancer is 47%, while the rate decreases
to 25% if the tumor has spread to the surrounding organs or lymph
nodes (Viale, 2020). Due to the poor prognosis and survival in EC,
there is a strong demand for studying prognosis-related factors and
seeking better treatment for patients with EC (Tustumi et al., 2016).
The pathological pattern of Chinese EC provided us a unique
opportunity to study the molecular mechanism underlying ESCC
pathogenesis and disease outcomes.

Definitive chemoradiation therapy has been employed as the
standard first-line therapy for ESCC patients. However, intolerance
to radiotherapy and/or resistance to chemoradiotherapy was
frequently observed with a high possibility of recurrence. The
target therapy drug trastuzumab is the only HER2 monoclonal
antibody approved by the FDA as a first-line drug along with
chemotherapy for ESCC patients. Ramucirumab, an angiogenesis
inhibitor that targets the VEGF/VEGFR2 pathway, has also been
approved for EAC therapy (Yang et al., 2020). In addition,
immunotherapy has been extensively evaluated in esophageal
cancer. Nivolumab and pembrolizumab are two immune
checkpoint inhibitors that target the PD-1/PD-L1 pathway
approved by the FDA. Nivolumab (mOS � 10.9) has been
confirmed to reduce the risk of death by 23% compared to
chemotherapy alone (mOS � 8.4) in the phase
3 ATTRACTION-3 trial (mOS � 10.9) (Takahashi et al., 2021).
These novel treatments have brought tremendous benefits to
patients with a much longer survival time and better prognosis.
Hence, the field of research on finding more targets for immune
pharmaceuticals and targeted therapy is well worth exploring, and
thus increasing the beneficial population.

It is well known that some signaling pathways altered across
various tumor types, while others were highly associated with certain
types of cancer, such as the oxidative stress response pathway in
squamous cell carcinoma (Choe et al., 2021). For ESCC patients,
definitive chemoradiotherapy is a standard therapy for non-
resectable tumors. Pathways related to oxidative/electrophilic
stress, like the cell cycle and Keap1-Nrf2 pathways, are therefore
highly important for these patients to regulate exogenous stress from
reactive oxygen species (ROS)/electrophiles induced by
chemotherapy and radiotherapy. Here, we analyzed the
alterations of ten canonical cancer-related pathways in this
Chinese ESCC cohort (Sanchez-Vega et al., 2018). The ten
pathways are cell cycle, PI3 kinase/Akt, Keap1-Nrf2, Notch, p53,
Myc, Hippo, b-catenin/Wnt, RTK-RAS, and TGFβ signaling. Some
pathways significantly correlated with the prognosis, which might
aid in stratifying patients for better treatment management.

MATERIALS AND METHODS

Patients and Sample Collection
A total of 65 patients with ESCC were enrolled from the Tumour
Research and Therapy Center, Shandong Provincial Hospital

Affiliated to Shandong First Medical University, from 2016 to
2020 for retrospective analysis. Six patients were excluded from
this study owing to their low-quality tissue samples, and one
patient was excluded because no detectable mutation was found
in this patient’s sample (Supplementary Figure S1). Eventually,
58 patients were included in the study. All patients were
diagnosed with unresectable locally advanced ESCC or
advanced ESCC (stages II-IV, American Joint Committee on
Cancer, seventh edition) and underwent standard definitive
chemoradiotherapy (dCRT). For each patient, a somatic
formalin-fixed paraffin-embedded (FFPE) tissue biopsy was
performed before definitive chemoradiotherapy. All tumor
tissue samples with at least 10% tumor cell content were
subjected to targeted panel sequencing using a 422-gene panel.
This study was approved by the Ethical Review Board of the
Shandong Provincial Hospital Affiliated to Shandong First
Medical University.

DNA Extraction and Library Preparation
The process from DNA extraction to library construction to
target enrichment was performed in a CLIA-certified and CAP-
accredited laboratory as previously described (Fang et al., 2019;
Dai et al., 2020). In brief, genomic DNA from FFPE tissue was
extracted using a QIAamp DNA FFPE Tissue Kit (Qiagen). DNA
quantitation was then performed by using a QubitTM dsDNAHS
Assay Kit for each sample, with its quality been identified by a
NanoDropTM 2000 Spectrophotometer. Then we constructed
the library for Illumina sequencing from fragmented dsDNA,
using a KAPA HyperPrep kit (KAPA BIOSYSTEMS). The main
steps of library preparation include end-repair and A-tailing,
adapter ligation, and library amplification. The end-repair and
A-tailing steps prepare end-repaired DNA, and 3’ A-tailing
prepares double-stranded DNA. Adapter ligation attaches
synthesized oligonucleotides as adapters to one or both ends
of targeted DNA fragments. The final step of library preparation
performs a low-bias and high-fidelity polymerase chain reaction
(PCR) to amplify the targeted sequences carrying proper
adapters, accompanied with an AMPure XP agent (Beckman
Coulter) for purification. The customed xGen lockdown probes
panel, containing 422 refined cancer-related genes, was further
used to enrich the targeted genes. Subsequently, the prepared
library was quantified using a KAPA Library Quantification Kit
(KAPA BIOSYSTEMS), and the size distribution of each sample
was calculated by Bioanalyzer 2100 (Agilent Technologies).

DNA Sequencing With Quality Control
Targeted enriched libraries from the last step were sequenced
using the Illumina HiSeq4000 Sequencing System to a mean
coverage depth of at least 250×. The output BCL files (image data)
from sequencing system were then demultiplexed and converted
into readable FASTQ files by BCL2Fastq Conversion (version
1.8.4) from Illumina. Fastp (0.20.0; https://github.com/
OpenGene/fastp/) was responsible for removing low-quality
bases (base quality score Q30 < 30), trimming adapters, and
read pruning. Qualified data were then mapped to the reference
human genome (hg19 37d5) using a Burrows–Wheeler Aligner
(BWA-mem, v0.7.12; https://github.com/lh3/bwa/) to produce
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bam files. The bam files were further sorted and then filtered into
the final mapped file through the process of reads deduplication,
local realignment, and base quality recalibration using Sambamba
(v1.3; https://lomereiter.github.io/sambamba/) software. By
comparing the consistency of SNP-associated signatures
between tissue cell-free DNA and negative control in the
Genome Analysis Toolkit (GATK 4.0.0; "https://software.
broadinstitute.org/gatk/") contamination module, the samples
were matched to each patient, as well as the DNA
contamination score was estimate.

Mutation Calling and Annotations
The fully qualified sequencing data were then processed to a series
of software for single-nucleotide variations (SNVs), insertion/
deletion mutations, fusion, and copy number variation (CNV)
detection. VarScan2 (Koboldt et al., 2012) was performed for
detecting somatic mutations. Calls with a threshold of ≥1%
mutant allele frequency (MAF) and ≥3 reads from both
directions were retained. From these variant calls, SNPs in
normal samples were filtered based on a list of sources,
including dbSNP (Sherry et al., 2001), ClinVAR (Landrum
et al., 2016), 1,000 Genome database (Genomes Project et al.,
2015), 65,000 exomes project (ExAC) (Karczewski et al., 2017),
COSMIC (v70) (Forbes et al., 2015), SIFT (Ng and Henikoff,
2003), and the laboratory’s SNP database of pre-existing
population. ANNOVAR (Wang et al., 2010) was used to
annotate all these SNVs. For somatic mutations, calls were
removed if they were present in >1% populations in 1,000
Genome database or in ExAC. The resulting list was further
filtered through an in-house mutation list of common sequencing
errors. Additionally, a variant with >20% abundance in the
normal sample, likely an artifact, was also removed from the
mutation list. Structural variants were detected using FACTERA
with default parameters (Newman et al., 2014). And the CNVs
were detected by ADTEx (GPLv3; http://adtex.sourceforge.net/),
both with default parameters. The threshold for CNV loss was 0.
65 and 2.0 for the CNV gain.

Mutation Description and Statistical
Analysis
Oncoplots, constructed by R (4.0.3), were used to view the overall
mutation landscape of ESCC patients in this study. Progression-
free survival (PFS) was defined from the date of pathological
diagnosis of esophageal carcinoma (EC) to the time of disease
progression, worsening, or the last follow-up before progression.
Overall survival (OS) started from EC diagnosis to the date of
death or the last follow-up. The Kaplan–Meier method was used
to estimate these two outcome measures among different genetic
groups, different physiological populations, and selected
pathways, followed by a stratified log-rank test for evaluating
any differences. Subsequently, univariate Cox hazard models
were further performed to define any prognostic factors
affecting PFS and OS in this cohort. Statistically significant
factors (p-value ≤0.1) defined in the single factor analysis were
reviewed in detail. The beta coefficient in the pathway-related
univariate analysis was the degree of change in the outcome (PFS

or OS) for every 1-unit change in the number of pathway gene
expression.

RESULTS

Clinical Characteristics and Mutation
Landscape of ESCC Patients
The basic characteristic of 58 enrolled ESCC patients is shown in
Supplementary Table S1. More than half of patients in the
cohort were older than 60 years (55.17%), with a median age
of 63 (range: 41–83) years. Forty-six patients (79.31%) were male,
and only 12 (20.69%) were female. Around sixty-eight percent
(39/58) of the patients were smokers, and fifty percentage had a
history of alcohol consumption (29/58). More than half of the
patients were diagnosed with stage III (36/58, 62.07%) ESCC, and
16 patients (16/58, 27.59%) were in stage II, with additional six
patients (6/58, 10.34%) in stage IV.

In these Asian ESCC patients, TP53 (54/58, 93.1%) was the
most frequent mutation gene, followed by NOTCH1 (30/58,
51.7%) (Figure 1). Amplification of MCL1 (24/58, 41.4%),
FGF19 (23/58, 39.7%), CCND1 (22/58, 37.9%), and MYC (20/
58, 34.5%) was the four dominant types of CNV identified in this
ESCC cohort. As previously mentioned, FGF19 and CCND1 were
often co-amplified since they were both at adjacent locations on
chromosome 11q13. Interestingly, YAP1 and SOX2
amplifications were mutually exclusive to each other in these
ESCC patients (Figure 1). A similar negative correlation of the
protein expression level in YAP1 and SOX2was also found in vivo
and in vitro of pancreatic neoplastic cells (Seo et al., 2013;
Murakami et al., 2019).

Gene Alterations Associated With Disease
Outcomes in ESCC Patients
In this cohort, the YAP1 variant and BRIP1 mutant were
identified as adverse factors for PFS and OS in univariate
analysis. In multivariate analysis, the YAP1 variant and BRIP1
mutant were significantly associated with OS but not with PFS
(Supplementary Table S2). The Kaplan–Meier plot revealed
that median PFS (mPFS) and median OS (mOS) of patients
with the YAP1 variant was 8.61 and 12.55 months,
respectively, which were significantly shorter than that of
YAP1 wild-type patients (Figures 2A,B). ESCC patients
with the BRIP1 mutant also displayed worse outcomes than
ones with the BRIP1 wild type, achieving an mPFS of
5.87 months and an mOS of 11.38 months (Figures 2C,D).
SOX2 amplification, which was mutually exclusive to YAP1 in
this cohort, did not reach statistical significance in univariate
analysis (Figures 2E,F).

Prognosis Value of Cancer-Associated
Pathways in ESCC
Pathway analysis was performed according to the genes in ten
cancer-associated pathways in the literature (Supplementary
Table S3) (Sanchez-Vega et al., 2018). The individual genes in
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each included pathway are listed in Supplementary Table S1.
Around 93% of this EC cohort harbored TP53 signaling pathway
alterations. Altered NOTCH (72.41%), RTK-RAS (68.97%), and
cell cycle (53.45%) pathway genes were identified in more than
50% of the total cases (Supplementary Figure S2 and
Supplementary Table S3). EC patients with mutations in the
Keap1-Nrf2 pathway had much shorter (n � 2, mPFS � 2.75, beta
� 3.48, p < 0.0001, HR (95% CI � 32.5 (4.48–235)) PFS than wild-
type patients (n � 56, mPFS � 16.2) (Figure 3A). Similarly,
mutations in this pathway also increased the risk of unfavorable
OS (n � 2, beta coefficient � 29, p < 0.0001) compared to the wild-
type counterpart (n � 56, mOS � 26.0) (Figure 3B). This
observation was also validated using an independent cohort of
88 ESCC patients with OS information (Song et al., 2014). As
shown in Supplementary Figure S3, seven patients had the
altered Keap1-Nrf2 pathway with a significantly shortened OS
compared to patients with the intact Keap1-Nrf2 pathway (p �
0.039).

In contrast to Keap1-Nrf2 pathway aberrations, patients with
mutations in the PI3K-Akt pathway displayed a longer PFS (n �
26, mPFS � 22, beta � 0.74, p � 0.0337, and HR (95% CI) � 0.48
(0.24–0.96) and longer OS (n � 26, mOS � 34.69, beta � 0.71, p �
0.0495, and HR (95% CI) � 32.5 (0.24–1.01). Comparatively,
wild-type patients achieved a shorter PFS (n � 32, mPFS � 9.8)
and OS (n � 32, mOS � 17.68) (Figures 3C,D). In patients with

PI3K-Akt pathway alterations, three were found with altered
PTEN and seven were found with altered PIK3CA. Patients
with PIK3CA mutation tend to have longer PFS and OS than
patients with wild-type PIK3CA. The altered PTEN did not show
association with PFS or OS in this cohort (Supplementary
Figure S4).

A representative case of an ESCC patient with NFE2L2
mutation is shown in Figure 3E. The patient was a 49-year-
old male diagnosed with stage IV ESCC. He was identified with
NFE2L2 D29G mutation at an allele frequency (AF) of 48.19%
before treatment. The RB1 frameshift mutation and TP53 G262V
were identified at an AF of 52.13 and 37.25%, respectively, at the
same time. The tumor quickly progressed after 2.89 months of
dCRT and metastasized to distant lymph nodes. Eventually, the
patient died after 5.91 months of chemoradiotherapy and
chemotherapy.

DISCUSSION

In this study, we retrospectively studied the clinical features
and cancer genomes of 58 patients with inoperable ESCC
tumors, intending to identify prognostic biomarkers for
Chinese ESCC patients. Among all the baseline clinical
characteristics, gender appeared to be an independent

FIGURE 1 |Mutational pattern in Chinese ESCC patients. The upper oncoplot shows themutational landscape of patients in this cohort. The lower oncoplot shows
that YAP1 gain and SOX2 gain are mutually exclusive to each other. No patient had both amplifications at the same time.
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prognostic factor, which was in accord with the previous study
(Pandeya et al., 2013). The high frequency of gene
amplification was another genetic feature observed in
esophageal squamous cell carcinoma. In our cohort, 75.9%
(44/58) patients had at least one gene amplified.MCL1 (24/58,
41.4%), FGF19 (22/58, 37.9%), CCND1 (22/58, 37.9%), and
MYC (20/58, 34.5%) were the four dominant amplified genes.
Besides, YAP1 and SOX2 were found to be exclusively
amplified in different patients in this cohort. By further
reviewing the prognosis of patients with/without YAP1 and
SOX2 amplification, patients without double amplification
were found to have the best PFS and OS. The group of

patients with SOX2 amplification and the group with YAP1
amplification both obtained shorter PFS and OS, which
consistent with the previous study (Dai et al., 2020).

Interestingly, the exclusion of YAP1 amplification and SOX2
amplification was only reported in one mouse model study that
Yap loss intended to induce acute metabolic stress, leading to
epigenetic reprogramming with SOX2 upregulation (Murakami
et al., 2019). Most other studies showed that YAP1 is co-amplified
with SOX2 by YAP1 binding to SOX2’s enhancer region, and
SOX2 may in turn restore YAP1 by antagonizing the Hippo
pathway in maintaining cell stemness and leading to poor
prognosis. The cooperation of YAP1 and SOX2 was detected

FIGURE 2 | Survival analysis of ESCC patients with YAP1 mutation, BRIP1 variation, and SOX2 mutation. (A) Kaplan–Meier plot showing PFS of the subgroup
patients with YAP1 mutation versus patients without YAP1 mutation. (B) Kaplan–Meier plot showing OS of the subgroup patients with YAP1 mutation versus patients
without YAP1 mutation. (C) Kaplan–Meier plot showing PFS of the subgroup patients with BRIP1 mutation versus patients without BRIP1 variation. (D) Kaplan–Meier
plot showing OS of the subgroup patients with BRIP1 mutation versus patients without BRIP1 variation. (E) Kaplan–Meier plot showing PFS of the subgroup
patients with SOX2 amplification versus patients without SOX2 mutation. (F) Kaplan–Meier plot showing OS of the subgroup patients with SOX2 amplification versus
patients without SOX2 mutation.
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FIGURE 3 | Survival analysis of ESCC patients with altered oncogenic pathways. (A) Kaplan–Meier plot for PFS of ESCC patients with an intact or altered Keap1-
Nrf2 pathway. (B) Kaplan–Meier plot for OS of ESCC patients with an intact or altered Keap1-Nrf2 pathway. (C) Kaplan–Meier plot for PFS of ESCC patients with an
intact or altered PI3K-Akt pathway. (D) Kaplan–Meier plot for OS of ESCC patients with an intact or altered PI3K-Akt pathway. (E) Representative case of a patient with
Keap1-Nrf2 pathway alterations.
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in various cancer types, including osteosarcoma, urothelial
cancer, and HNSCC (head and neck squamous cell
carcinoma) (Murakami et al., 2019; Omori et al., 2019). Thus,
behind the scenes of mutual exclusion for SOX2 amplification and
YAP1 amplification of these patients in this study, there lies a
unique unknown molecular mechanism of ESCC tumorigenesis,
distinguished from other cancer types, which needs further
investigation.

Of the two pathways identified as potential prognostic
biomarkers of ESCC, the Keap1-Nrf2 pathway is known for
inducing chemoradioresistance (Taguchi and Yamamoto,
2017; Zhang et al., 2018). One of the major roles of Nrf2 is
to initiate cytoprotective responses under oxidant stress by
binding to and activating the antioxidant response element
(ARE) in the modular regions of its downstream targets
(Kansanen et al., 2013). In addition, Nrf2 promotes cell
proliferation and metabolic reformation by triggering
metabolic genes. On the other hand, Keap1 can inhibit the
Keap1-Nrf2 pathway by suppressing the expression of Nrf2.
Under oxidative stress and electrophilic stress, the
confirmation of Keap1 is reconstructed due to alterations
in its cysteine residues. Newly synthesized Nrf2 can bypass
Keap1 and translocate into the nucleus by Keap1 protein
inactivation or Keap1-Nrf2 complex disruption (Kansanen
et al., 2013). Here, the two patients carrying mutations in
the Keap1-Nrf2 pathway exhibit poor disease outcomes with
shorter PFS and OS compared to Keap1-Nrf2 pathway wild-
type patients. The rapid progression of patients carrying
abnormalities in the Keap1-Nrf2 pathway in other cancer
types was reported in several studies (Zoja et al., 2014;
Goeman et al., 2019). Due to the limited number of
patients with altered Keap1-Nrf2 pathways in this study,
further research is needed to identify whether activating
mutations of the Keap1-Nrf2 pathway is a potential chemo-
radioresistance–related biomarker for patients receiving
dCRT therapy.

PIK3CA mutation was a commonly reported factor for
treatment and prognosis in ESCC patients, but conflicting
conclusions were drawn across studies (Wada et al., 2006;
Shigaki et al., 2013; Wang et al., 2014). Our studies showed a
favorable prognosis among the patients with muted PI3K
pathways. The PI3K-AKT pathway is considered one of the
master regulators for cancer and ideal targets for anticancer
drugs (Yang et al., 2019). It is known to play an important
role in the development and progression of many solid cancers
(Song et al., 2011; Jiao and Nan, 2012; Vredeveld et al., 2012).
Further in vivo study or expansion of cohort size was needed to
confirm our results.
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Time Course Analysis of
Transcriptome in Human Myometrium
Depending on Labor Duration and
Correlating With Postpartum Blood
Loss
Lina Chen†, Yihong Luo†, Yunshan Chen, Lele Wang, Xiaodi Wang, Guozheng Zhang,
Kaiyuan Ji* and Huishu Liu*

Guangzhou Key Laboratory of Maternal-Fetal Medicine, GuangzhouWomen and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China

The maintenance of coordinated powerful episodic contractions of the uterus is the crucial
factor for normal labor. The uterine contractility is gradually enhanced with the progression
of labor, which is related to the gene expression of the myometrium. Competing
endogenous RNA (ceRNA) can also regulate the gene expression. To better
understand the role of ceRNA network in labor, transcriptome sequencing was
performed on the myometrium of 17 parturients at different labor durations (0–24 h).
From this, expression levels of mRNA, long non-coding RNA (lncRNA), circular RNA
(circRNA), and microRNA (miRNA) were correlated with labor duration. Then, targeting
relationships between mRNAs, lncRNAs, circRNAs, and miRNAs were predicted, and the
ceRNA regulatory network was established. The mRNA expression patterns associated
with cervical dilation and postpartum bleeding were further investigated. This analysis
identified 932 RNAs positively correlated with labor duration (859 mRNAs, 28 lncRNAs,
and 45 circRNAs) and 153 RNAs negatively correlated with labor duration (122mRNAs, 28
lncRNAs, and 3 miRNAs). These mRNAs were involved in protein metabolism, transport,
and cytoskeleton functions. According to the targeting relationship among these ceRNAs
and mRNAs, a ceRNA network consisting of 3 miRNAs, 72 mRNAs, 2 circRNAs, and 1
lncRNA was established. In addition, two mRNA expression patterns were established
using time-series analysis of mRNA expression in different phases of cervical dilation. A
ceRNA network analysis for blood loss was performed; postpartum bleeding was closely
related to inflammatory response, angiogenesis, and hemostasis. This study identified
human myometrial transcriptome and established the ceRNA regulatory network
depending on labor duration and highlighted the dynamic changes that occur at
ceRNAs during parturition, which need to be considered more in the future to better
understand how changes in gene expression are relevant to functional changes in human
myometrium at labor.

Keywords: labor duration, cervical dilation, postpartum blood loss, myometrium, transcriptome, expression
regulation
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INTRODUCTION

During labor, the myometrium undergoes a series of sustained
and powerful contractions to deliver the baby, a process that
produces biochemical and structural changes in the myometrium.
The first stage of labor contains the latent phase and the active
phase. The latent phase is characterized by slow cervical dilation
and varies in duration. As labor progresses, the cervix dilates
more rapidly, commonly commences from 4 cm dilation, and the
intensity of uterine contractions increases which leads into the
active phase, with regular and strong uterine contractions
(Friedman, 1955; Krapohl et al., 1970; Liao et al., 2005).
Changes in uterine myometrial contractility are underpinned
by complex and highly regulated processes, cell structure, and
signaling of the myometrium (Li et al., 2021), such as an increase
in contractile proteins and changes in glycolytic and oxidative
enzymes (Breuiller-Fouche et al., 2006; Wray et al., 2019).

RNA sequencing (RNA-seq) is currently one of the most
commonly used methods for high-throughput analysis of gene
expression. In previous studies, the complete transcriptome
profiles of human myometrium in both quiescent and active
states have been sequenced (Ackerman et al., 2021; Chan et al.,
2014). Differential analyses of the myometrial transcriptome
profiles at different states of cervical dilatation and fetal
membrane rupture (ROM) emphasized that a single state of
the myometrial transcriptome was unable to represent the
physiological dynamic process of labor, and that the different
stages of labor are needed to be characterized (Lai et al., 2021).
The gene expression in the myometrium may also be influenced
by the duration of labor. However, the issue has received little
attention and the evidence is inadequate.

In addition, mRNA expression alone is insufficient to elucidate
the effects of labor duration on gene expression, as the translation
of functional proteins is prone to post-transcriptional regulation.
Non-coding RNAs (ncRNAs), including lncRNA, circRNA, and
miRNA, play an important role in the post-transcriptional
regulation of mRNA. miRNAs function by binding to target
mRNA, thus degrading mRNA or inhibiting its translation
(Ambros, 2004). lncRNA and circRNA can competitively bind
to miRNA through their miRNA responsive elements, thereby
effectively controlling the subsequent post-transcriptional
regulation of miRNA, reducing the inhibition of miRNA on
mRNA expression, and acting as competing endogenous RNA
(ceRNA) (Kopp et al., 2018; Zhang et al., 2020). ncRNA has key
roles in the governance of myometrial contractility. Previous
studies have shown that miRNAs, such as miR-200 family and
miR-199a/214 cluster, participated in the hormonal regulation of
myometrial quiescence and contractility during pregnancy and
labor through the regulation of inflammation- and contraction-
associated gene expression (Renthal et al., 2013). lncRNA has
been considered to be the most frequent, prevalent, and abundant
novel class of human genes (Guttman et al., 2012). Illumina®
microarray of myometrium identified 1,692 lncRNAs, of which
13 were differentially expressed (Romero et al., 2014). Despite the
importance of ncRNA in the myometrium during labor, there is
little information about ncRNA at different phases of labor and
lack of regulatory analysis of ncRNA and mRNA.

Cesarean section increases the amount of bleeding after
delivery, compared to vaginal delivery (Misme et al., 2016).
The most common cause of bleeding is uterine atony
(Breathnach et al., 2009), and the main mechanism for
preventing excessive bleeding is uterine myometrial
contraction and thrombosis. Myometrial muscle fibers stretch
in different directions during uterine contractions, squeezing the
large blood vessels and therefore controlling bleeding. Pregnancy
is primarily a hypercoagulable state to prevent postpartum
hemorrhage, and defects in coagulation pathways may also
lead to excessive bleeding (Oyelese et al., 2010). The function
of the uterine myometrium is closely related to bleeding after
delivery. Studies on the correlation between the functions of the
myometrium and bleeding at the transcriptome level would help
to find the molecular mechanisms of the myometrium in
regulating bleeding after delivery.

This study aims to provide a comprehensive workflow and
analysis of the expression of ncRNA and mRNA in human term
gestation pregnancy myometrium. A correlation analysis
approach was used to screen RNAs associated with labor
duration or postpartum bleeding, and an analysis of their
functions and regulations was performed to reveal the
biochemical and structural dynamics of the myometrium in
labor, so as to identify effective targets for real-time
monitoring of labor.

MATERIALS AND METHODS

Subjects and Tissue Collection
A total of 17 lower uterine segment samples were collected from
singleton, nulliparous women undergoing cesarean deliveries at
different labor durations, including 2 non-labor (labor duration
of 0 h) and 15 spontaneous term in labor (labor duration of
5–24 h). The tissue samples in this study overlapped with those in
our previous publication (Chen et al., 2021), a study analyzing
mRNA differences between non-laboring (n = 10) and laboring
(n = 10) myometrial samples, in which mRNA data from 2
randomly selected non-laboring and 10 laboring samples were
used. Five additional myometrial samples at different labor
durations were collected, forming a cohort with a labor
duration of 0–24 h. The clinical details of patients gathered
using clinical phenotype and statistical testing are presented in
Supplementary Table S1. This research was approved by the
Ethics Committee of Guangzhou Women and Children Medical
Center (No. 201915401), and the informed consent form was
signed by every participant.

The participants underwent a cesarean section for indications
of breech, fetal distress, or cephalopelvic disproportion, with no
pregnancy (pre-labor) complications, placenta previa, or uterine
fibroids. Labor was defined as regular palpable contractions
(assessed using cardiotocography) and cervical dilation
(assessed by digital examination). Each patient’s labor duration
was documented from labor start to cesarean section. The starting
point was determined using cardiotocography and by digital
examination after self-reporting regular contractions.
Postpartum blood loss included bleeding from fetal delivery to

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8121052

Chen et al. Time-Course of Labor Myometrial Transcriptome

156

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2 h postoperation. The quantitative postpartum bleeding was
calculated by measuring the blood in the aspirator during
operation and the blood in the blood-soaked gauze or nursing
pad postoperation (Wilcox et al., 1959). Vaginal speculum
examination was used for determining fetal membrane rupture
status (ROM).

Myometrial tissue samples were obtained from the lower
uterine segment during cesarean section after delivery of the
fetus and placenta. Tissue samples were immediately washed with
phosphate-buffered saline (Sigma) to reduce the amount of blood,
and the attached decidua and adipose tissue were removed using
surgical scissors and then dissected into pieces of approximately
100 mg and immersed in RNAlater solution (Sigma) to be snap
frozen in liquid nitrogen and stored at −80°C.

Total RNA Extraction
For each sample, total RNAs were extracted from a minimum of
60 mg myometrium tissues, and detailed steps were as stated in
our previous study (Chen et al., 2021). All samples (including
those from previous study) were sequenced for mRNA and non-
coding RNA.

mRNA and Long Non-coding RNA Library
Construction and Sequencing
Methods for library construction are as stated in our previous
study (Chen et al., 2021). The qualified libraries were pair end
sequenced on the BGISEQ-500 System (BGI-Shenzhen, China).
HISAT2 (v2.0.4) and RSEM (v1.2.12) were used to map and
count the reads of mRNA and lncRNA with the reference of
human genome (H. sapiens, GRCh38) and transcriptome
(Ensembl, release 84) (Kim et al., 2015; Li et al., 2011). All the
datasets presented in this study were deposited in Genome
Sequence Archive (GSA) repository with accession number
PRJCA009585.

miRNA Library Construction and
Sequencing
Total RNAs were separated using polyacrylamide gel
electrophoresis (PAGE). The 15% TBE-urea gel was
compounded and pre-runned for 15–30 min at 200 V, RNA
ladder and total RNA sample were mixed with gel loading
dye, respectively, and then heated at 65°C for 5 min. The
entire RNA ladder and total RNA sample were loaded onto
the gel, and the gel was run at 200 V for 1 h. Small RNA
regions corresponding to the 18–30 nt bands in the marker
lane (14–30 ssRNA Ladder Marker, TAKARA) were excised
and recovered. Then the small RNAs were ligated to
adenylated 3’ adapters which were annealed to unique
molecular identifiers (UMI), followed by the ligation of 5’
adapters. The adapter-ligated small RNAs were transcribed
into cDNA and subsequently enriched using PCR. The target
fragments of 110–13 bp were selected using agarose gel
electrophoresis and purified using a QIAquick Gel Extraction
Kit (QIAGEN, Valencia, CA). The library was checked for the
distribution of fragments size using the Agilent 2100 bioanalyzer

and quantified using real-time quantitative PCR (qPCR)
(TaqMan Probe). The final ligated PCR products were
sequenced using the BGISEQ-500 platform (BGI-Shenzhen,
China). The cleaned reads were mapped to the miRBase with
Bowtie2 (Langmead et al., 2009), and cmsearch (Nawrocki et al.,
2013) was performed for Rfammapping. The miRDeep2 software
was used to predict novel miRNA by exploring the secondary
structure (Friedländer et al., 2008). All the datasets presented in
this study were deposited in Genome Sequence Archive (GSA)
repository with accession number PRJCA009585.

circRNA Library Construction and
Sequencing
Total RNAs were treated with DNase I and a Ribo-off rRNA
Depletion Kit (Vazyme, Inc.) to degrade DNA and ribosomal
RNA, respectively. Linear RNA was removed using RNase R
(Epicentre, lnc). Purification was performed using Agencourt
RNAClean XP magnetic beads. A tailing mix and RNA index
adapters were added to perform end repair. The PCR products
were denatured and circularized using the splint oligo sequence.
Single-strand circular DNA was formatted as the final library. The
library was checked for the distribution of fragments size using the
Agilent 2100 bioanalyzer and quantified using BMG microplate
reader (OMEGA). Finally, the qualified libraries were pair end
sequenced on the BGISEQ-500 (BGI-Shenzhen, China). The
software CIRI and find_circ is used to predict circRNA (Gao et al.,
2015; Memczak et al., 2013). All the datasets presented in this study
were deposited in Genome Sequence Archive (GSA) repository with
accession number PRJCA009585.

Identification of Labor Duration or Blood
Loss–Correlated RNAs
In RNA-seq data analysis, fragments per kilo base per million
mapped reads (FPKM) and reads per million mapped reads
(RPM) are two kinds of normalized expression units to
remove technical biases such as the depth of sequencing and
gene length. FPKM considers the sequencing depth and gene
length for normalization and is suitable for paired-end RNA-seq
protocols where gene length fluctuates greatly, such as mRNA,
lncRNA, and circRNA sequencing (Conesa et al., 2016; Trapnell
et al., 2010). RPM considers the sequencing depth but not the
transcript length normalization and is suitable for sequencing
protocols where reads are generated irrespective of gene length,
such as miRNA-seq, as miRNA lengths are typically between 20
and 24 bp (Campbell et al., 2015). In this study, the expression
levels of mRNAs, lncRNAs, and circRNAs were presented as
FPKM values; the expression levels of miRNAs were presented as
RPM values. RNAs with extremely low abundance (average
FPKM/RPM of 17 samples <1) were excluded.

The correlation between RNA expression levels and labor
duration or blood loss was calculated using the “cor.test”
function of Pearson correlation in R (v4.1.1), with p-value <
0.01 as the threshold for statistical significance. The “pheatmap”
and “ggplot2” R packages were used to draw heat map
(SCR_016418 and SCR_014601; https://scicrunch.org/
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resources). A scatter plot of RNA expression values was drawn
using Microsoft Excel.

Gene Function Annotation
Gene ontology (GO) and signaling pathway analysis were
conducted on the significantly correlated mRNAs using
DAVID v6.8 and KOBAS-i online tools, respectively (Bu et al.,
2021; Huang et al., 2009), to annotate the biological processes
(BP), cellular component (CC), molecular function (MF), and the
signaling pathways. GO enrichment analysis and the network
construction were performed using ClueGO plug-in of Cytoscape
v3.7.2 software (Shannon et al., 2003). Fisher’s exact test is
adopted to measure the gene enrichment in annotation terms;
a p-value < 0.05 was considered to be significantly GO enriched.
A corrected p-value < 0.05, corrected by Benjamini–Hochberg
method, was considered to be significantly enriched.

circRNA/lncRNA-miRNA-mRNA ceRNA
Network Construction
The three correlated miRNAs were selected as the hub
components, and the interaction relationships between
miRNAs and mRNAs were predicted using microT-CDS
(Paraskevopoulou et al., 2013), with a threshold of 0.8.
miRNAs that interacted with circRNAs were predicted using
the circBank Database (Liu et al., 2019). miRNAs that interacted
with lncRNAs were predicted using LncBase v2 of Experimental
module (Paraskevopoulou et al., 2016). The three miRNAs
targeting mRNAs, circRNAs, and lncRNAs were then selected
by overlapping with correlated RNAs. The circRNA/
lncRNA–miRNA–mRNA ceRNA network was visualized using
Cytoscape v3.7.2 software based on the targeting relationships.

mRNA Expression Profile Time Series
Clustering
The degree of cervical dilation was divided into three phases:
cervical dilation = 0 cm (non-labor), cervical dilation <4 cm (the
latent phase of the first stage of labor), and cervical dilation ≥4 cm
(the active phase of the first stage of labor) (Friedman, 1996). All
identified mRNAs were clustered using Short Time-Series
Expression Miner (STEM) v1.3.13 (Ernst et al., 2006).
Expression profiles of mRNAs were clustered based on FPKM
value changes over different cervical dilation phases; the
maximum number of model profiles was set to 50, and the
maximum unit change in model profiles between time points
was set to two. A corrected p-value < 0.01 was considered to be
significantly enriched. The mRNA relative expression values can
be exported from the STEM. The gene expression at the first time
point was set to zero, representing the baseline of gene expression.

RESULTS

Clinical Characteristics of the Participants
Our study recruited 17 primigravida women with singleton
pregnancies. The median and range of labor duration, cervical

dilation, and postpartum blood loss were 12 (0–24) h, 3 (0–10)
cm, and 330 (250–620) ml, respectively. The indications for
caesarean section included the following: fetal distress (n = 9),
breech (n = 2), and cephalopelvic disproportion (failure to
progress) (n = 6). The clinical details of patients were gathered
by the clinician.

Identification of Labor Duration–Correlated
mRNAs
Myometria were collected from 17 parturients undergoing
different phases of labor. To identify genes whose expression
levels were gradually up- or down-regulated following the
duration of labor, the correlation between mRNA expression
and labor duration was calculated. The results showed that 859
mRNAs were positively correlated with labor duration and 122
mRNAs were negatively correlated (Figure 1B, Supplementary
Table S2). There were some known labor-associated players
including (but not limited to) mRNA-encoding proteins
involved in the breakdown of extracellular matrix (matrix
metalloproteinase 25, MMP25) (Flores-Pliego et al., 2015), cell
extracellular matrix interactions (collagens type IV alpha 6
COL4A6) (Shchuka et al., 2020), and calcium signaling
regulation (calcium/calmodulin-dependent protein kinase I,
CAMK1, and ID, CAMK1D) (Papandreou et al., 2004). The
top two mRNAs with the highest positive correlation
coefficient (R) with labor duration were glutaredoxin-3
(GLRX3) and CTD nuclear envelope phosphatase 1 regulatory
subunit 1 (CNEP1R1). While the top two mRNAs negatively
correlated with labor duration were membrane-associated
guanylate kinase, WW And PDZ domain containing 2
(MAGI2) and myocyte enhancer factor 2D (MEF2D)
(Figure 1C). These findings suggested that substantial
transcriptional changes occurred in the myometrium during
labor and gene expression changes depended on labor duration.

To better comprehend the functions of these labor
duration–correlated mRNAs, we carried out GO and KEGG
pathway enrichment analyses. The results of GO enrichment
in positively correlated mRNAs revealed that the most enriched
BP GO terms were associated with protein metabolic process,
especially protein ubiquitination. In addition, vesicle-mediated
transport and exosomal secretion were also significantly enriched.
The CC GO enriched terms showed that these genes were mostly
involved in the composition of nucleoplasm and cytoplasm. In
MF GO terms, these genes were significantly enriched for the
binding of protein, ribosome, and RNA (Figure 2A,
Supplementary Table S3). Meanwhile, in GO analysis of
mRNAs negatively correlated with labor duration, the mRNAs
were mainly concentrated in the BP of ion transport and actin
regulation, and in CC constituting cytoskeleton components such
as T-tubule, costamere, cortical actin cytoskeleton, adherens
junction, and sarcolemma, the MF terms were enriched in
calmodulin and actin binding (Figure 2B, Supplementary
Table S4). The two groups of mRNAs with expression levels
positively or negatively correlated with labor duration were
enriched in different GO terms, indicating that biological
processes such as material transportation, metabolism, and cell
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structure were dynamically changing during labor. The KEGG
enrichment analysis of the labor duration–correlated mRNAs
showed that multiple pathways were associated with metabolism,
immune, and hypoxia response (Figure 2C, Supplementary
Table S5), indicating that the gene expression was constantly
being regulated during labor, as detected.

Labor Duration–Related ceRNA Regulatory
Network Construction
ncRNAs including lncRNA, circRNA, and miRNA play
important roles in post-transcriptional regulation, which
ultimately affects mRNA translation (Panni et al., 2020). To
explore the regulatory effect of ncRNAs on mRNA during
labor, we identified lncRNA, circRNA, and miRNA expression
levels that were significantly correlated with labor duration using
high-throughput sequencing and correlation analysis. The
lncRNA/circRNA-miRNA-mRNA regulatory network was
further established.

A total of 56 lncRNAs correlated with labor duration (28
positively correlated and 28 negatively correlated), 45 circRNAs

positively correlated with labor duration, and three miRNAs
negatively correlated with labor duration (Figure 3A,
Supplementary Table S6). lncRNA, circRNA, and mRNA all
have response elements to bind miRNA directly, which enables
them to communicate with and co-regulate each other by
competing for binding to the shared miRNAs. Based on the
ceRNA theory (Panni et al., 2020), the three miRNAs were
defined as the core nodes of the regulatory network, and their
target lncRNA, circRNA, and mRNA were predicted through the
database. These predicted targets then overlapped with the
identified labor duration–correlated lncRNAs, circRNAs, and
mRNAs, which were regarded as elements of the ceRNA
regulatory network. Finally, there were 75 interaction pairs
predicted between three miRNAs and 72 mRNAs, two
interaction pairs predicted between one miRNA (hsa-miR-
146a-5p) and two circRNAs (hsa_circ_0000897 and
hsa_circ_0085849), and one interaction pair predicted between
miRNA and lncRNA (hsa-miR-206 and SNHG1). lncRNA/
circRNA–miRNA–mRNA ceRNA regulatory networks were
constructed based on their targeting relationships. There were
three mRNAs (SLC8A1, ZNF207, and GUCY1A2) that can be

FIGURE 1 | Labor duration–correlated mRNAs expression. (A) Overall study design and workflow. (B) Heat map of expression of labor duration–correlated
mRNAs. Data associated with this figure can be found in Supplementary Table S2. (C) The expression trend of mRNAs at different labor durations.
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targeted by two miRNAs (Figure 3B), which were important
nodes of the network. The two circRNAs and one lncRNA of the
regulatory networks were all positively correlated with labor
duration (Figure 3C), which might be key regulatory ncRNAs
for parturition.

Time-Series Analysis of mRNA With
Cervical Dilation
Uterine muscle contraction during labor is closely related to cervical
dilation. In the latent phase, uterine muscle contractions progress
slowly. Then, the speed of dilation accelerates after 4 cm dilation,

and when the myometrium reaches an active phase, the
contractions become stronger and more regular. In order to
identify mRNAs with significant changes in expression between
latent and active phases in labor, we analyzed the time-series
characteristics of RNA expression in the myometrium during
labor with a cutoff of 4 cm cervical dilation. STEM, a tool for
the analysis of short-time series gene expression data, was used to
cluster and visualize possible changes in the profiles of all 19094
detectedmRNAs at three cervical dilation phases: non-labor (n = 2),
in labor dilation <4 cm (n = 8), and in labor dilation ≥4 cm (n = 7).
There were six significant cluster expression patterns (red and green
profiles) in the classified analysis results. In most of the significant

FIGURE 2 | Labor duration–correlated mRNAs function annotation. (A) Bar diagram of partial GO term clusters of positively correlated labor duration mRNAs. (B)
Bar diagram of partial GO term clusters of negatively correlated labor duration mRNAs. (C) Bubble diagram of significantly enriched pathways for labor
duration–correlated mRNAs.
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profiles, mRNA expressions followed the same trend, either up- or
down-regulated, into the active phase. It is worth noting that the
mRNA expression in profile 1 did not follow the same trend, but

was down-regulated at dilation <4 cm phase followed by returning
to the baseline at dilation≥4 cmphase (Figure 4A). Considering the
latent phase (labor dilation <4 cm) which was the beginning of the

FIGURE 3 | Labor duration–correlated circRNA/lncRNA–miRNA–mRNA ceRNA network. (A) Heat map of expression of labor duration correlated miRNAs,
lncRNAs, and circRNAs. Data associated with this figure can be found in Supplementary Table S6. (B) Labor duration correlated ceRNA network. (C) The expression
trend of ncRNAs in ceRNA network at different labor durations.
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labor (the first stage of labor), the mRNAs transiently down-
regulated at this phase in profile 1 and raised the possibility that
some mRNAs might function specifically in triggering labor onset.
STEM analysis was performed only on those cases that did not
exhibit failure to progress or only on those failed to progress, and
the results showed similar mRNA expression temporal trends.
Specifically, for profile 1 in Figure 4A, the “up-down” pattern of
change in gene expression was also observed in the samples from
other two groups (Supplementary Figure S1A,B).

There were 493 mRNAs in profile 1 which were expressed
more than two-fold changes in the two phases during labor, and
the mRNA relative expression values (compared with group A)
were exported from the STEM analysis tool (Supplementary
Table S7). Further pathway analyses indicated that mRNAs
which specifically down-regulated at dilation <4 cm phase
were mainly enriched in transcription, metabolism of proteins
and lipids, SUMOylation, and transportation (Figure 4B,
Supplementary Table S8). GO enrichment analysis showed
these mRNAs were enriched in transcription, chromosome
repair, regulation of cellular component organization and
macromolecule biosynthetic process, and insulin receptor

signaling pathway via phosphatidylinositol 3-kinase
(Figure 4C). These findings suggested that metabolic and
transcriptional regulations were important for the initiation
of labor.

Identification of Blood Loss–Correlated
RNAs
The total amount of postpartum bleeding was quantified, and the
correlation between bleeding volume and RNAs expression was
analyzed. A total of 120 mRNAs were positively correlated and 19
mRNAs were negatively correlated with blood loss (Figure 5A,
Supplementary Table S9). Functional enrichment analysis of the
mRNAs correlatedwith postpartumbleeding revealed that these genes
were associated with multiple coagulation-related functions and
pathways. The mRNAs positively correlated with blood loss were
enriched in cell migration, cellular response to fibroblast growth factor
stimulus, and inflammatory response. CCGO terms focused on blood
microparticle and haptoglobin–hemoglobin complex. In MF GO
terms, protein binding, interleukin-8 receptor activity, and
ubiquitin protein ligase activity were significantly enriched

FIGURE 4 | Analysis of mRNAs expression temporal trends and functions in different phases of cervical dilatation. (A) STEM analysis of the mRNAs expression
temporal trends pattern. The top number indicates the serial number of patterns and the bottom number indicates p-value. Colored profiles indicate significant clustered
(p < 0.01) and the same color represents a similar expression pattern. Colored models meant a statistically significant number of genes were enriched. (B) Bubble
diagram of partial significantly enriched pathways for mRNAs with more than two-fold change in expression in STEM profile 1. (C) ClueGO plot of enriched BP GO
annotation for mRNAs with more than two-fold change in expression in STEM profile 1.
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(Figure 5B, Supplementary Table S10). The pathways were enriched
in hemostasis, voltage-gated Ca2+ channels, and immune system
(Figure 5C, Supplementary Table S11). In addition, it was found
that there were multiple functions related to immune and

inflammatory responses, such as T cell differentiation, chemotaxis,
and cytokine–cytokine receptor interaction. The functions of ferrous
iron transmembrane transport and magnesium ion binding were also
enriched significantly (Figures 5B,C). These results highlighted the

FIGURE 5 | Postpartum bleeding correlated mRNAs function annotation. (A)Heat map of expression of postpartum bleeding–correlated mRNAs. Data associated
with this figure can be found in Supplementary Table S9. (B) Bar diagram of partial GO term clusters of positively (orange) and negatively (blue) correlated postpartum
bleeding mRNAs. (C) Bubble diagram of significantly enriched pathways for postpartum bleeding–correlated mRNAs.
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important roles of coagulation and contraction in blood loss
during labor.

To further explore the regulatory effect of ncRNAs on mRNAs
related to postpartum blood loss, ncRNAs that correlated with blood
loss were identified. A total of 297 ncRNAs were positively correlated
with blood loss, including three miRNAs, 15 lncRNAs, and 279
circRNAs. Seven RNAs were negatively correlated with blood loss,
including one miRNA and six lncRNAs (Figure 6A, Supplementary
Table S12). Based on the predicted interaction relationships of the
blood loss–correlated RNAs, a regulatory network consisting of four

miRNAs, 22 mRNAs, and 21 circRNAs was constructed. The mRNA
PTBP3 and circRNAhsa_circ_0062994were the nodes of the network
targeting two miRNAs, respectively (Figure 6B), suggesting their role
as possible key regulators for postpartum blood loss.

DISCUSSION

Labor, a physiologic and continuous process, is traditionally
divided into three stages. The first stage refers to the interval

FIGURE 6 | Postpartum bleeding-correlated circRNA/lncRNA–miRNA–mRNA ceRNA network. (A) Heat map of expression of Postpartum bleeding-correlated
miRNAs, lncRNAs, and circRNAs. Data associated with this figure can be found in Supplementary Table S12. (B) Postpartum bleeding–correlated ceRNA network.
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between the onset of labor and full cervical dilatation. In the first
stage, the myometrial contraction gradually becomes intense and
regular, and the cervix gradually dilates (Liao et al., 2005). In this
study, the transcriptome (both mRNA and ncRNA) of the
myometrium from different labor durations and cervical
dilation was sequenced. It was a time-course analysis that
detailed a novel workflow for observing time-dependent
changes in myometrial tissue gene expression for ceRNA
network analysis during first stage labor over the course of
24 h, and a separate analysis was conducted for cervical
dilation and postpartum blood loss status with the same study
cohort. Our study presented both mRNA and ncRNA
transcriptome data for each study participant, and found
postpartum blood loss was correlated with changes in
myometrial gene expression. Some genes and pathways closely
related to labor durations and cervical dilation may be important
targets for regulating myometrial contraction.

A variety of differentially expressed genes between the in
labor and not in labor myometrium have been identified in
previous studies. The roles of extracellular matrix interaction
and calcium signal regulation in the myometrium during
labor have been confirmed (Liao et al., 2005). In our
analysis, mRNA-encoding proteins known to be involved
in functions such as MMP25, COL4A6, CAMK1, and
CAMK1D were also found to be associated with labor
duration. In correlation analysis, a total of 981 mRNAs
were identified to have expression levels significantly
varied with the time of labor duration. In STEM analysis
for the same samples, there were 493 mRNAs down-regulated
in the latent phase and then up-regulated in the active phase,
as shown in profile 1 derived from the STEM analysis. Many
of these mRNAs were enriched in gene expression–related
pathways or biological processes such as RNA degradation
and transport, transcription, and protein ubiquitination,
indicating that during labor, the genes expressed in the
myometrium were constantly being regulated along with
the process of labor.

The constant regulation of gene expression in the
myometrium during labor resulted in the changes of
numerous biological functions. According to the results of
functional enrichment analysis of the labor
duration–correlated mRNAs, metabolic process was found to
be the most prominent enrichment. The myometrium undergoes
hypertrophy during pregnancy, storing large amounts of
glycogen, lipid, and protein in preparation for labor (Scheepers
et al., 2001). The biological processes of glucose and lipid
metabolism, which were the main energy supplies, were
significantly enriched in mRNAs positively correlated with
labor duration. Labor is an energy-intensive process, and an
up-regulation of glucose and lipid metabolism can support the
intense contraction of the myometrium. Our previous
metabolomic profile analysis of myometrium showed that
metabolism increased during labor, especially lipolysis and
fatty acid oxidation (Qian et al., 2021).

As for protein metabolism, the most significant functions and
pathways were protein ubiquitination and deubiquitination,
which were enriched by mRNAs positively correlated with

labor duration and mRNAs in STEM profile 1, suggesting a
potential association to autophagy, as the results showed that
the expression of autophagy-related mRNAs also increased
during the active phase. Our previous studies showed that
autophagy was activated in human myometrium during labor
(Wang et al., 2020). Autophagy may serve as protection during
transient ischemia and hypoxia caused by uterine contraction
(Yan et al., 2013). Studies have shown that there was a complex
cross-talk between ubiquitin-proteasome system and autophagy.
Protein ubiquitination mediates autophagy and controls the
initiation, execution, and termination of autophagy along with
deubiquitination (Chen et al., 2019; Shaid et al., 2013). Thus, we
speculate that myometrial autophagy may begin to prepare in the
latent phase and occur in the active phase. The functions enriched
by the mRNAs transiently down-regulated at the latent phase,
such as deubiquitination, autophagy, and vesicle-mediated
transport, might participate in triggering labor onset.

ceRNA network, which has been proved to be ubiquitous in
post-transcriptional regulation of gene expression,
interconnects encoding and non-encoding RNAs regulation
and works with other cellular and molecular regulation
mechanisms (Tay et al., 2014). ceRNA networks were
previously reported in carcinogenesis (Ala, 2021), yet it is
unclear in the myometrium during labor. The ceRNA network
constructed in this study demonstrated the regulatory
relationship among different kinds of transcripts correlated
with labor duration. We identified three mRNAs that formed
the connection points of the whole network; specifically
SLC8A1, GUCY1A2, and ZNF207. SLC8A1 encodes
sodium/calcium exchanger protein, which contributes to
Ca2+ transport during excitation–contraction coupling in
muscle (Shattock et al., 2015). GUCY1A2 encodes the α2
subunit of soluble guanosine cyclase (sGC), and the sGC-
catalyzed production of cyclic guanosine phosphate (cGMP)
is involved in the relaxation of smooth muscle in human vas
deferens and airways (Britt et al., 2015; Da et al., 2012).
ZNF207 encodes kinetochore- and microtubule-binding
protein that participates in spindle assembly by blocking
ubiquitination and proteasomal degradation of mitotic
checkpoint protein BUB3 (Jiang et al., 2014). These mRNAs
and the other RNAs communicating with them may regulate
the contraction and metabolism of the myometrium during
labor, though further investigation is still needed.

Postpartum hemorrhage, a complicated multifactorial process,
remains a leading cause of maternal morbidity and mortality. The
common causes of excessive bleeding are uterine atony (70%),
retained placenta, genital tract injuries, and coagulopathy
(Oyelese et al., 2010). According to the results of our
transcriptome profiles in different amounts of bleeding after
delivery, a number of differentially expressed RNAs were
identified. Most of these mRNAs were positively correlated with
bleeding volume and markedly enriched functions and pathways of
coagulation, inflammatory response, and blood vessel endothelial
cell proliferation. Inflammation and wound healing are closely
related to the vascular endothelium, and vascular endothelial
growth factor is a key factor that regulates this process (Stanley
et al., 2015). Our results showed a positive correlation between
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inflammatory response and blood vessel endothelial cell alteration
and the amount of postpartum blood loss. Eight genes were
associated with hemostatic pathways (SELL, CAPZB, SLC16A3,
PDPN, TNFRSF10B, SH2B2, NFE2, and TNFRSF10D), which
provided novel insights for the prevention and management of
postpartum hemorrhage. Case–control studies including patients
with postpartum hemorrhage are needed to confirm our findings.
The mechanism through which these genes regulate hemostasis in
labor requires further studies in animal experiments.

There are several limitations in this study that should be noted.
Due to the difficulty of myometrium tissue collection, the
transcriptome data were derived from a limited number of
samples, and these myometrium variables (labor duration and
blood loss) were not evenly distributed for each time point. The
study will benefit from validation of results with larger sample
cohorts, which requires further research. In this study, six
participants underwent failure to progress. Failure to progress
was due to many reasons. In our study, the cases of “failure to
progress” were all clinically considered to be caused by
cephalopelvic disproportion instead of primary uterine atony.
The assessment of the labor start time primarily relied on routine
clinical method (determined using cardiotocography and by
digital examination after self-reporting regular contractions);
therefore, it was nearly impossible to record the precise time
point when the labor started, even though all the participants
were hospitalized before labor started. Similarly, blood loss was
estimated using routine measurement methods, which were a mix
of uterine bleeding from caesarean incision and postoperative
vaginal bleeding. In addition, transcriptome data were derived
from total RNA of the whole myometrial tissues, and we were
unable to determine which type of cell in the humanmyometrium
contributed to the significant changes in gene expression
identified from its data sets. Single-cell omics can provide a
better investigation of the cell-specific changes in the
myometrium, which could help to identify appropriate targets
for future clinical interventions.

By utilizing RNA-seq with advanced bioinformatics
techniques, we have shown that there were significant changes
in the transcription levels in the myometrium at different phases
of labor. Then we analyzed the functions and pathway alterations
and constructed a regulatory network of parturition. Our study
presented a method of participants’ selection criteria of labor
duration and cervical dilation status. Transcriptome and its
ceRNA network correlated with labor duration and blood loss
provided certain potential key RNAs for subsequent molecular
mechanism research, which could help determine the causes of
changes in human myometrium function during physiological
and pathological labor.
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Construction of a Novel Prognostic
Signature in Lung Adenocarcinoma
Based on Necroptosis-Related
lncRNAs
Xiayao Diao, Chao Guo and Shanqing Li*

Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China

Background: Long non-coding RNAs (lncRNAs) are drawing increasing attention as
promising predictors of prognosis for lung adenocarcinoma (LUAD) patients. Necroptosis,
a novel regulated mechanism of necrotic cell death, plays an important role in the biological
process of cancer. The aim of this study was to identify the necroptosis-related lncRNAs
(NRLRs) in a LUAD cohort and establish a necroptosis-related lncRNA signature (NRLSig)
to stratify LUAD patients.

Methods: NRLRs were identified in LUAD patients from The Cancer Genome Atlas
(TCGA) database using Pearson correlation analysis between necroptosis-related genes
and lncRNAs. Then the NRLSig was identified using univariate Cox regression analysis and
LASSO regression analysis. Assessments of the signature were performed based on
survival analysis, receiver operating characteristic (ROC) curve analysis and clustering
analysis. Next, a nomogram containing the NRLSig and clinical information was developed
through univariate and multivariate Cox regression analysis. Further, functional enrichment
analysis of the selected lncRNAs in NRLSig and the association between NRLSig and the
immune infiltration were also evaluated.

Results: A 4-lncRNA signature, incorporating LINC00941, AP001453.2, AC026368.1,
and AC236972.3, was identified to predict overall survival (OS) and stratify LUAD patients
into different groups. Survival analysis, ROC curve analysis and clustering analysis showed
good performance in the prognostic prediction of the lncRNA signature. Then, a
nomogram containing the NRLSig was developed and showed satisfactory predictive
accuracy, calibration and clinical usefulness. The co-expressed genes of selected NRLRs
were enriched in several biological functions and signaling pathways. Finally, differences in
the abundance of immune cells were investigated among the high-risk group and low-risk
group divided by the NRLSig.

Conclusion: The proposed NRLSig may provide promising therapeutic targets or
prognostic predictors for LUAD patients.

Keywords: necroptosis, long non-coding RNA, prognostic signature, lung adenocarcinoma, overall survival
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INTRODUCTION

Lung cancer is one of the most common malignancies and the
leading cause of cancer-associated deaths worldwide (Siegel et al.,
2020). Non-small cell lung cancer (NSCLC) is the most frequently
reported subtype, accounting for approximately 85% of all lung
cancer cases (Meza et al., 2015). NSCLC includes three main
histological subtypes: adenocarcinoma, squamous cell carcinoma
and large cell carcinoma (Zappa andMousa, 2016). Among them,
Lung adenocarcinoma (LUAD) is the most prevalent histotype.
Although diagnostic techniques and therapeutic strategies have
been developed for LUAD patients, the 5-year overall survival
(OS) rate of them remains only 15% (Miller et al., 2012).
Therefore, it is urgent to identify some novel effective
diagnostic markers, therapeutic targets, and prognostic factors
to offer early diagnosis, timely treatment, and precise prediction
for LUAD patients.

Tumorigenesis and drug resistance are often attribute to
resistance to apoptosis in most tumors (Johnstone et al., 2002;
Pan et al., 2021). This phenomenon calls for identifying strategies
to induce non-apoptotic approaches of programmed cell death as
promising novel therapeutics in cancer (Tang R. et al., 2020).
Necrosis used to be recognized as a completely opposite form of
cell death compared to apoptosis (Linkermann and Green, 2014).
However, necroptosis, an alternative regulated cell death, can be
elicited by the activation of various signaling pathways, tumor
microenvironmental stresses, or multiple chemotherapeutic drugs
(Huang et al., 2013; Lalaoui et al., 2015; Galluzzi et al., 2018).
Emerging evidence illustrates that necroptosis act as a crucial
approach in the regulation of biological processes of tumor,
including oncogenesis, progression, metastasis, cancer immunity,
and cancer subtypes (Stoll et al., 2017; Seehawer et al., 2018).
Manipulating or targeting the necroptotic pathway may also play
an important role for bypassing resistance of apoptosis, supporting
anti-cancer immunity in cancer therapy and predicting prognosis for
cancer patients (Gong et al., 2019).

Long non-coding RNAs (lncRNAs), non-protein-coding
transcripts longer than 200 ribonucleotides, play a pivotal role
in gene regulation (Agostini et al., 2020). LncRNAs participate in
various biological processes, such as immune, metabolism,
infection, and more (Gibb et al., 2011; Tan et al., 2021). In
addition, lncRNAs exert these functions by interacting with
other molecules such as RNA, DNA, and proteins (Md Yusof
et al., 2020). In recent years, with the development of high-
throughput sequencing techniques, increasing studies have
demonstrated many non-coding genes play an important role
in the development and progression of tumors. LncRNAs have
also been revealed to function as regulators in cancer biology,
including proliferation, invasion, and metastasis (Hung et al.,
2014; Kim et al., 2014), as well as tumor angiogenesis or
lymphangiogenesis (Prensner et al., 2014; He et al., 2018).
Notably, it has been revealed that several lncRNAs may act as
mediators regulating necroptosis in different tumors. For
example, lncRNA H19, as a precursor of miR-675, regulates
necroptosis via miR-675 in hepatocellular carcinoma (Harari-
Steinfeld et al., 2021). Moreover, 16 lncRNAs associated with
necroptosis were also identified in gastric cancer patients through

bioinformatic analysis (Zhao et al., 2021). However, only small
amount of lncRNAs, especially the NRLRs, have been
functionally or prognostically well-characterized. Therefore, it
is valuable to identify key lncRNAs closely related to necroptosis
with prognosis significance in LUAD.

In present study, the lncRNAs expression profiles of LUAD
patients were collected from public database. We then developed
a necroptosis-related lncRNA signature (NRLSig) and
systematically evaluated the associations of necroptosis-related
lncRNAs (NRLRs) with the prognosis and clinical or pathological
characteristics of LUAD patients. Moreover, we established a
nomogram that incorporates the NRLSig and clinical factors to
further stratify these patients. The high-risk group and low-risk
group identified by NRLSig were compared based on various
factors, including tumor-infiltrating immune cells and principal
component analysis (PCA). Finally, functional enrichment
analysis was also conducted to explore the potential
mechanism of the selected lncRNAs. This study revealed the
prognostic value of NRLRs in LUAD and constructed a
prognostic model to evaluate prognosis of LUAD patients.

MATERIALS AND METHODS

Data Collection
The RNA transcriptome datasets of 535 LUAD patients, including
535 tumor samples and 59 adjacent normal samples, were obtained
from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov). The detailed clinicopathological information, including
survival status, survival time, age, gender, TNM stage, T stage, N
stage, and M stage, were also downloaded from the above dataset.
Only LUAD patients with clear survival time and survival status
were included in the study. Patients whose OS was less than 30 days
in the TCGA-LUADdatabase were excluded to reduce statistical bias
in this analysis. With corresponding clinical information, the LUAD
patients who fit the criteria above were divided into a training set and
validation set randomly in a 1:1 ratio by using the “caret” R package.

Identification of Necroptosis-Related
lncRNAs in Lung Adenocarcinoma
According to the lncRNAs annotation file obtained from the
GENCODE (https://www.gencodegenes.org/) (Derrien et al.,
2012), 14,128 lncRNAs were acquired from the RNA
transcriptome datasets of the TCGA-LUAD. The differentially
expressed lncRNAs between LUAD and normal tissues were
identified in the TCGA cohort with false discovery rate (FDR)
< 0.05 and |Log2 fold change (FC)| ≥ 1 (Glickman et al., 2014).
The differential expression analysis was conducted using the
“limma” package. To visualize the screening results for
differentially expressed lncRNAs, we also plotted the heatmap
and volcano plot using the “pheatmap” R package. Moreover,
necroptosis-related genes (NRGs) were identified from two
sources. 159 NRGs were extracted in the necroptosis pathway
(hsa04217) from the KEGG PATHWAY database (https://www.
kegg.jp/). 67 NRGs were obtained from literature research (Zhao
et al., 2021). Finally, a total of 204 NRGs were included for
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FIGURE 1 | The flow chart of key steps in this study.

FIGURE 2 |Construction of the signature incorporating necroptosis-related lncRNAs. The heatmap (A) and the volcano plot (B) of differentially expressed lncRNAs
in LUAD patients. (C,D) The LASSO coefficient profiles of the 7 lncRNAs at different tuning parameters (λ), 10-fold cross-validation to filtrate candidate necroptosis-
related lncRNAs in LASSO regression analysis. (E) The Sankey diagram of the correlation between necroptosis-related genes (NRGs) and lncRNAs. The left bar
represents the NRGs. The median bar represents the selected lncRNAs. The right bar represents the correlations between NRGs and lncRNAs generated from the
Pearson correlation analysis.
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subsequent research after integrating intersection from these two
gene sets (Supplementary Table S1). Pearson correlation analysis
was conducted between the differentially expressed lncRNAs and
204 NRGs (with the |Correlation Coefficient| > 0.3 and p < 0.001)
to identify NRLRs using the “limma” package.

Establishment of the Prognostic
Necroptosis-Related lncRNA Signature for
Lung Adenocarcinoma
According to the corresponding survival information of LUAD
cases in the training set, univariate Cox analysis for association
with OS was conducted to identify the prognostic NRLRs. Finally,
the lncRNAs with p value < 0.05 were selected to further establish
the NRLSig through the least absolute shrinkage and selection
operator (LASSO) regression algorithm using the “glmnet”
package in R software (Tibshirani, 1997; Simon et al., 2011),
and 10-fold cross-validation was utilized to filtrate candidate
NRLRs and identify the penalty parameter (λ), corresponding to
the minimum value of partial likelihood deviance. A risk
signature was then developed based on the risk coefficients
and the expression levels of optimal prognostic lncRNAs. The
prognostic risk score formula was constructed as follows:

Risk score � ∑
n

i�1
coefficientspExpression of NRLRs(i)

Assessment of the Prognostic Signature
Incorporating Necroptosis-Related
lncRNAs
LUAD patients in the training set were identified into high-risk
group and low-risk group according to the median value of the
risk score. Kaplan–Meier survival analysis was performed to
evaluate the survival difference between these two groups
using the “survival” and “survminer” R packages. The
discrimination performance of the NRLSig was also evaluated
through the time-dependent receiver operating characteristic
(ROC) curve analysis using “timeROC” R package. The
consistent formula and cutoff point (the median of risk scores
in the training set) were also used to calculate the risk score of
each patient in internal validation set and divided into high-risk
group and low-risk group. Then, survival analyses and ROC curve
analyses were conducted in the validation set and the entire
TCGA-LUAD dataset. In addition, principal component analysis
(PCA) was performed using “limma” and “scatterplot3d”
packages to estimate the clustering ability of prognostic
signature. Besides, Kaplan–Meier survival analysis was
conducted to examine prognostic significance in each
subgroup categorized by clinicopathological features.

Development and Assessment of the
Nomogram Containing
Necroptosis-Related lncRNA Signature
We further identified whether the risk score generated from the
NRLSig and clinicopathological predictors, including age, gender,
TNM stage, T stage, N stage, and M stage, were independent
prognostic predictors of OS in the entire set through univariate
and multivariate Cox regression analysis. Then, we formulated a
nomogram based on identified independent variable factors using
the “rms” R package. Moreover, the prognostic value of the
nomogram was evaluated by the Kaplan–Meier survival analysis
based on the high-risk group and low-risk group divided by the
median value of the risk score, generated from the nomogram. The
discrimination and calibration of the nomogram was estimated in
the entire TCGA-LUAD dataset by the ROC curves and calibration
curves. Besides, the decision curve analysis (DCA) was utilized to
evaluate the clinical usefulness of the model through calculating the
net benefits at different threshold probabilities.

Functional Enrichment Analysis and
Immune Cell Characteristic Analysis
To explore the biological functions of the selected lncRNAs in
NRLSig, we identified the protein-coding genes significantly
associated with these lncRNAs from the TCGA dataset
through co-expression network analysis. The |Pearson
correlation coefficients| > 0.5 and p < 0.001 were considered

TABLE 1 | Clinical features of selected lung adenocarcinoma (LUAD) patients in
TCGA dataset. TCGA, The Cancer Genome Atlas.

Characteristic
N (477) %

N
(477)

%

Gender
Male 220 46.1
Female 257 53.9

Age, years
≤65 230 48.2
>65 247 51.8

TNM stage
Stage I 253 53.0
Stage II 113 23.7
Stage III 78 16.4
Stage IV 25 5.2
Unknown 8 1.7

T stage
T1 159 33.3
T2 254 53.2
T3 43 9.0
T4 18 3.8
Unknown 3 0.6

N stage
N0 307 64.4
N1 90 18.9
N2 67 14.0
N3 2 0.4
Unknown 11 2.3

M stage
M0 447 93,7
M1 26 5.5
Unknown 4 0.8

Survival status
Alive 320 67.1
Dead 157 32.8
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as criteria for significantly correlation. We further performed
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses of the NRGs to
investigate the functions of the genes selected above. The
functions or pathways with p-Value < 0.05 were regarded as
significantly enriched. Functional enrichment analysis was
performed using the “clusterProfiler” R package.

The CIBERSORT (Newman et al., 2015; Chen et al., 2018) and
TIMER (Li J. et al., 2020; Li T. et al., 2020) algorithms were
utilized to analyse the abundances of tumor-infiltrating immune
cells among the each LUAD patients in the TCGA dataset.
Moreover, the abundances for 22 types of immune cells of the
patients in the high-risk group and low-risk group stratified by
the NRLSig, including naive CD4+ T cells, resting memory CD4+

T cells, activated memory CD4+ T cells, naive B cells, memory
B cells, plasma cells, CD8+ T cells, follicular helper T cells,
regulatory T cells, gamma delta T cells, M0 macrophages, M1
macrophages, M2 macrophages, resting natural killer cells,
activated natural killer cells, monocytes, resting dendritic cells,
activated dendritic cells, resting mast cells, activated mast cells,
eosinophils, and neutrophils, were compared and visualized using
the CIBERSORT algorithm. In addition, the association between
the NRLSig and immune infiltration cells, including B cells, CD4+

T cells, CD8+ T cells, dendritic cells, macrophages, and
neutrophils, were also analyzed using the TIMER algorithm.

Tissue Sample Collection and Lung
Adenocarcinoma Cell Culture
A total of 12 pairs of LUAD tissues and noncancerous adjacent
tissues (NAT) were collected from patients who had undergone
surgical resection at the Department of Thoracic Surgery, Peking
Union Medical College Hospital (Beijing, China). Written
informed consent was obtained from all patients before

collection. This study was approved by the Institutional Ethics
Review Committee at Peking Union Medical College Hospital
and was conducted in accordance with recognized ethical
guidelines. All samples were stored at −80°C.

All human LUAD cell lines (A549,H1299, and PC9) and human
bronchial epithelial cell line (BEAS-2B) were purchased from the
American Type Culture Collection (ATCC). A549 and BEAS-2B
cells were cultured in DMEM medium (Gibco). H1299 and PC9
cells were cultured in RPMI 1640medium (Gibco). All mediumwas
supplemented with 10% fetal bovine serum (BI). All cells were
maintained in a humidified incubator with 5% CO2 at 37°C.

RNA Extraction and qRT-PCR Analysis
Total cellular and tissue RNA was extracted using Trizol reagent
(Takara Bio, Japan) following the manufacturer’s protocols.
Then, RNA samples were reverse transcribed by Hiscript III
Reverse Transcriptase kit (Vazyme, Nanjing, China) and
corresponding RNA expression was evaluated by qRT-PCR
with ChamQTM Universal SYBR qPCR Master Mix kit
(Vazyme). GAPDH acted as the internal reference for
normalization. The detailed sequence of primers used were
listed in Supplementary Table S2.

Statistical Analysis
All statistical analyses were conducted using the R software,
version 4.0.2 (https://www.r-project.org). Pearson correlation
analysis was used to analyze the correlation between NRGs
and NRLRs. Differences in the proportions of clinical
characteristics, such as age, gender, and T stage, were analyzed
by the chi-squared test. The Mann-Whitney U test was
implemented to compare the expression of genes or lncRNA,
and abundance of tumor-infiltrating immune cells. Univariate
Cox regression analysis and LASSO regression analysis or
multivariate Cox regression were conducted to define the

FIGURE 3 | Distribution of LUAD patients stratified by the necroptosis-related lncRNA signature (NRLsig). (A–C) The distribution of low-risk group and high-risk
group LUAD patients divided by the NRLsig in the training, validation, and entire set, respectively. (D–F) Survival statuses of patients in different groups stratified by the
NRLsig in the training, validation, and entire set, respectively. (G–I) Heatmap of expression statuses of the selected necroptosis-related lncRNAs in the training,
validation, and entire set, respectively.
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optimal prognostic factor for OS. The OS between high-risk
group and low-risk group was compared using the Kaplan-
Meier analysis with the log-rank test. All statistical tests were
two-tailed, and p < 0.05 was considered statistically significant.

RESULTS

Identification of Necroptosis-Related
lncRNAs in Lung Adenocarcinoma Patients
The flow chart for the risk signature development and subsequent
analyses is illustrated in Figure 1. A total of 535 LUAD patients
with RNA sequencing data were included in present study.
Among 14,128 lncRNAs identified, 696 differentially expressed
lncRNAs were significant between tumor and adjacent normal
tissues (Figures 2A,B). According to these lncRNAs and 204
NRGs, NRLRs were identified through Pearson correlation
analysis (|Correlation Coefficient| > 0.3 and p < 0.001).
Finally, 88 NRLRs were selected for subsequent analyses
(Supplementary Figure S1).

Construction of the Prognostic
Necroptosis-Related lncRNA Signature for
Lung Adenocarcinoma Patients
To develop the NRLSig for predicting the survival status of LUAD
patients, a total of 477 patients, whomeet the inclusion and exclusion
criteria, were randomly grouped into a training set (238 patients) and
a validation set (239 patients) in a 1:1 ratio. The baseline
characteristics of the entire TCGA-LUAD patients are
summarized in Table 1. Based on the transcription profile of
NRLRs, 7 NRLRs were found associated with the OS of LUAD
patients in univariate Cox proportional hazards regression analysis.
The lncRNAs with p-Value < 0.05 were selected for LASSO
regression analysis to further identify optimal prognostic lncRNAs.
Finally, a 4-lncRNA signature was constructed based on the optimal
value of λ (Figures 2C,D). According to the coefficient values, the
formula of the NRLsig was presented as follows: risk score �
(0.0286 × LINC00941) + (0.0226 × AP001453.2) + (0.0328 ×
AC026368.1) + (−0.0499 × AC236972.3). Besides, in the
Sankey diagram, we identified 22 NRGs were positively

FIGURE 4 | Assessments of the necroptosis-related lncRNA signature (NRLsig). (A–C) Kaplan–Meier survival analysis curves of the high-risk group and low-risk
group stratified by NRLsig in the training, validation, and entire TCGA-LUAD set, respectively. (D–F) Time-dependent ROC curves at 3- and 5-year follow-up in the
training, validation and entire TCGA-LUAD set, respectively. Principal component analysis (PCA) of the low-risk group and high-risk group stratified by the whole-genome
(G), necroptosis-related genes (H), and the NRLsig (I).
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correlated to the selected NRLRs, while STAT5B, CHMP6 and
STUB1 were negatively associated with the lncRNAs
(Figure 2E).

The risk score of each patient was calculated based on the
formula in the training set, validation set, and entire set, and the
median of risk scores, as the determined cutoff value, were used
to classify patients into a low-risk group or high-risk group
(Figures 3A–C). The distribution of survival status in each set
was plotted in Figures 3D–F. These figures illustrated that
increasing risk score was positively associated with
accumulating number of patients with poor prognoses. The
expression levels of the lncRNAs selected in the signature were
also showed in Figures 3G–I. Survival analyses illustrated that
the patients in high-risk group possessed significantly lower
survival rate compared to patients in the low-risk group in all
three sets (p < 0.001, p = 0.01 and p < 0.001, respectively, Figures
4A–C). The AUC of the NRLSig at 3- and 5-year also showed a
good discriminative performance in the training set, validation
set, and entire set (Figures 4D–F). As depicted in Figures 4G,H,
the high-risk group and low-risk group could not be effectively
identified using the whole genome or necroptosis-related genes;
however, LUAD patients could be clearly classified into high-
risk or low-risk group using NRLSig (Figure 4I), further
supporting the performance of the lncRNA signature.
Survival analysis in subgroups was also conducted and
showed significant differences in prognosis among the low-
risk group and high-risk group, except for TNM stage III-IV and

M1 stage patients, which suggested that the prognostic signature
was applicable to different subtypes of LUAD patients
(Supplementary Figures S2A–L). All these assessments
indicated that NRLSig is a reliable independent prognostic
risk factor for patients with LUAD.

Development and Performance
Assessment of the Nomogram
Incorporating the Necroptosis-Related
lncRNA Signature
The risk score calculated from the NRLSig and several clinical
candidate factors were evaluated by the univariate and
multivariate Cox regression algorithm in the entire LUAD
set. Univariate Cox regression analysis revealed that the risk
score of the signature was correlated with the OS of LUAD
patients (p < 0.001, Figure 5A). Multivariate Cox regression
analysis further demonstrated that the risk signature was an
independent prognostic factor for predicting the OS of LUAD
patients (p < 0.001, Figure 5B). We also performed time-
dependent ROC curves of 1-year OS, and the AUC value for
the risk score generated from the NRLSig was 0.682, which
was higher than other clinical predictors, further supporting
the discriminative power of NRLSig for predicting survival
status in LUAD (Figure 5C). All variables which were
significant (p < 0.05) in the multivariate Cox regression
analysis were included in the predictive model. Finally, a

FIGURE 5 | Development of the nomogram based on the risk scores calculated from the signature. (A,B) The predictors extracted by univariate and multivariate
Cox analyses. (C) Time-dependent ROC curves for predicting overall survival at 1 year by risk score, age, gender, stage, T stage, M stage, and N stage. (D) A prognostic
nomogram was developed to predict the 3- and 5-year survival for LUAD patients.
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nomogram to predict the 3- and 5-year OS was constructed
incorporating the risk score generated from the NRLSig and
the TNM stage (Figure 5D).

Based on the risk scores calculated by the nomogram, LUAD
patients in the entire set were classified into different risk groups
by the median value of the risk score. Figure 6A shows that low-
risk group patients possessed significantly better prognoses than
those in the high-risk group (p < 0.001). The result of DCA
demonstrated that majority of the red dashed curve was in the
area above the gray and the black solid lines, illustrating a higher
net benefits could be acquired by using the nomogram to make
decision (Figure 6B). In addition, the ROC analyses showed
satisfactory discrimination performance of the model with an
AUC of 0.756, and 0.740 at 3- and 5-year follow-up (Figure 6C).
Further, a good agreement between the nomogram prediction
and actual observation was illustrated via calibration curves
(Figures 6D,E). Consequently, promising predictive value was
revealed for this prognostic integrated nomogram.

Functional Enrichment Analysis and
Immune Infiltration Analysis
To investigate the potential biological functions and the immune
infiltration status associated with NRLRs, we performed co-
expression analysis to screen out the NRLRs-related protein-

coding genes. Only LINC00941 has been investigated in previous
studies (Wang et al., 2019; Wu et al., 2021). Therefore, the
functional enrichment analysis focused on this necroptosis-
related lncRNA, LINC00941. |Pearson correlation coefficients|
> 0.5 and p < 0.001 as the criteria selected 12 protein-coding genes
from the RNA transcriptome data of the TCGA-LUAD. Among
these protein-coding genes, the expression of these genes was
positively associated with the expression of LINC00941, except
for TMEM125 and NKX2-1 (Supplementary Figure S3A). As
shown in Figure 7A, the GO functional enrichment analysis
demonstrated that the correlated genes were mainly clustered in
several biological processes or molecular functions such as
extracellular matrix organization, extracellular structure
organization, transcription regulator complex, and intronic
transcription regulatory region sequence-specific DNA
binding. At the same time, KEGG terms of correlated genes
were significantly enriched in several signaling pathway such as
extracellular matrix-receptor (ECM-receptor) interaction,
toxoplasmosis, and focal adhesion pathway (Figure 7B).
Altogether, these analyses suggested that the NRLRs-related
protein-coding genes may be mainly correlated with tumor
migration and metastasis in LUAD.

The abundances of tumor-infiltrating immune cells were
estimated by TIMER and CIBERSORT algorithms. The results
generated from the TIMER algorithm demonstrated that the six

FIGURE 6 | Assessment of the nomogram incorporating the risk scores generated from the signature. (A) Kaplan–Meier survival analysis curves of the high-risk
group and low-risk group divided by the nomogram in TCGA-LUAD set. (B)Decision curve analysis evaluating the clinical usefulness of the nomogram for LUAD patients
(C) Time-dependent ROC curves at 3- and 5-year follow-up. The calibration curves show the prediction of the nomogram for 3-year (D) and 5-year (E).
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kinds of immune cell infiltration were negatively correlated with
the risk score calculated by the NRLSig, though only B cells and
dendritic cells showed significant association with the prognosis
of LUAD patients (Supplementary Figures S4A–F). Moreover,
the boxplots from the CIBERSORT algorithm showed that
abundances of resting memory CD4+ T cells, monocytes, M2
macrophages, resting dendritic cells, and resting mast cells were
markedly enriched in the high-risk group compared to the low-
risk group. On the contrary, the abundances of activated memory
CD4+ T cells, activated natural killer (NK) cells, and M0
macrophages in the high-risk group were significantly lower
than in the low-risk group (Figure 7C). In summary, the
association between the risk scores generated from the NRLSig
and tumor-infiltrating immune cells were assessed, and the
results demonstrated that the risk level of LUAD patients was
related to the distribution difference of immune infiltration cells.

Validation of Necroptosis-Related lncRNAs
Expression in Cell Lines and Tissue
Samples
The expression levels of selected NRLRs were further evaluated
and validated in cell lines and tissues. As illustrated in Figure 8A,
the expression levels of LINC00941, AP001453.2, and
AC026368.1 were significantly higher in LUAD cell lines,

including A549, H1299, and PC9, than those in human
normal lung epithelial cells (BEAS-2B), while AC236972.3
exhibited the opposite trend. We also evaluated the expression
level of these 4 lncRNAs in 12 pairs of LUAD tissues and NAT.
Consistent expression trends were observed in these tissue
samples. LINC00941, AP001453.2, and AC026368.1 showed
higher expression levels in LUAD tissues than in NAT, but
the expression of AC236972.3 was significantly lower in tumor
tissues than in NAT (Figures 8B–E). These results further
confirmed the correctness of the above bioinformatics analyses.

DISCUSSION

In recent years, with the development of next-generation
sequencing, accumulating non-coding RNAs and protein-
coding genes have been identified as prognostic predictor for
cancer patients (Borad et al., 2016; Lagana et al., 2016; Li N. et al.,
2020). In current clinical practice, the traditional staging system
may not be optimal for individualized prognostic prediction for
LUAD patients (Yao et al., 2021). Thus, it is urgently needed to
investigate biomarkers related to tumor diagnosis and prognosis.
LncRNAs, a kind of non-protein-coding RNAs, are widely
expressed in different tissues and participate in various kinds
of biological processes in malignant tumors. Necroptosis, a novel

FIGURE 7 | Functional enrichment analysis and the characteristics of immune infiltration of different groups defined by the signature. The GO terms (A) and KEGG
terms (B) enriched by the co-expressed genes related to necroptosis-related lncRNA. (C) Differences in abundance of tumor-infiltrating immune cells among two risk
groups stratified by the necroptosis-related lncRNA signature.
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form of regulated cell death, possesses a mechanistic resemblance
to apoptosis and a morphological resemblance to necrosis.
Several potential lncRNAs have been identified as the
regulators for necroptosis. Therefore, NRLRs have also
attracted plenty of attention for promising prognostic value
in LUAD.

To the best of our knowledge, this is the first study to identify
and comprehensively analyze prognostic NRLRs in LUAD. A
signature based on 4 NRLRs and a predictive model
incorporating this signature were developed in the present
study, and this nomogram showed higher discriminatory
accuracy for predicting OS of LUAD patients compared to
models constructed in previous studies (Liu and Yang, 2021;
Yao et al., 2021). Additionally, we also investigate the enriched

biological functions and immune infiltration status related to
NRLRs in LUAD cohort.

According to the Sankey diagram, we identified 4 lncRNAs that
were related to 25 NRGs. Among these NRGs, dynamin 1-like
(DNM1L), a regulator of necroptosis by activating mitochondrial
fission, was correlated with LINC00941 and AC026368.1 (Remijsen
et al., 2014). It also suggests a potential pivotal role in tumorigenesis
and progression of NSCLC (Furukawa et al., 2005). Peptidylprolyl
isomerase A (PPIA), associated with AP001453.2, is an intracellular
protein released early in the process of necroptosis and has been
identified to be a biomarker for this form of cell death (Cabello et al.,
2021). Sirtuin 3 (SIRT3), which is related to AC236972.3, can inhibit
the proliferation of human small-cell lung cancer cells by promoting
apoptosis and necroptosis (Tang X. et al., 2020). Moreover,

FIGURE 8 | Validation of the expression of the selected necroptosis-related lncRNA in cell lines and tissues. (A) The relative expression of 4 necroptosis-related
lncRNAs in lung adenocarcinoma cell lines (A549, H1299, and PC9) with human bronchial epithelial cell line (BEAS-2B). (B–E) The relative expression of LINC00941,
AP001453.2, AC026368.1, and AC236972.3 in 12 pairs of lung adenocarcinoma tissue samples. *p < 0.05; **p < 0.01.
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LINC00941 was reported that its overexpression could accelerate
tumor progression in NSCLC via miR-877-3p/VEGFA axis (Ren
et al., 2021). The biological function ormechanism of other lncRNAs
are still unclear. The understanding of these newly identified
lncRNAs needs further mechanistic study.

To explore the potential functions or mechanisms of the
lncRNAs in NRLSig, co-expression network analysis and
functional enrichment analysis were conducted. The GO
enrichment analysis illustrated that the co-expressed genes
significantly enriched in several functions. First, a large amount
of co-expressed genes was associated with organization of
extracellular matrix (ECM). Genetic and epigenetic changes in
lung cancer may lead to the conversion of ECM, such as
misexpression of collagens, proteases and integrins in the tumor
microenvironment, which could consequently cause tumor
progression (Götte and Kovalszky, 2018; Paolillo and Schinelli,
2019). In addition, NK2 homeobox 1 (NKX2-1) and aryl
hydrocarbon receptor nuclear translocator-like (ARNTL2) both
act as a transcription regulator. Loss of NKX2-1 could lead to the
recruitment of tumor-associated neutrophils which promote the
proliferation of lung squamous cell (Mollaoglu et al., 2018), and
high expression of ARNTL2, which could drive metastatic self-
sufficiency and predict poor prognosis for LUAD patients (Brady
et al., 2016). Moreover, integrin subunit alpha 6 (ITGA6) could
regulate lung differentiation in stress response by mediating cell
adhesions to laminin (Sanchez-Esteban et al., 2006). Furthermore,
several KEGG terms were also enriched. Laminin subunit gamma 2
(LAMC2), enriched in most of the KEGG signaling pathways in
present study, was found to promote tumor proliferation,
metastasis, and vascular regeneration through ECM-receptor
interaction and focal adhesion (Wang et al., 2020).

We found that the abundances of activatedmemory CD4+ T cells
and activatedNK cells were significantly lower in the high-risk group
compared to the low-risk group, while M2 macrophages were
enriched in the high-risk group. This phenomenon suggested that
the high-risk group patientsmay possess deteriorated immune status
and immune function. A previous study revealed that interleukin 12
(IL-12) could promote the proliferation and tumor suppression of
memory CD4+ T cells presenting in the tumor microenvironment
(TME) of lung cancer (Broderick et al., 2005). NK cells, an effecter
lymphocyte of the innate immune system, could control tumor
proliferation andmetastatic spread (Sivori et al., 2021). Further, since
M2 macrophages could secrete a series of anti-inflammatory
molecules to function as pro-tumoral factors, high abundance of
tumor-infiltratingM2macrophages was associated with unfavorable
prognosis of NSCLC patients (Jackute et al., 2018). In general, the
dysregulation of the immune status of TME may lead to a
discrepancy in survival prognosis among the high-risk group and
low-risk group stratified by the prognostic NRLSig.

Several limitations in our study still need to be considered, though
we applied many methods to adjust and validate our signature. First,
as this was a retrospective study based on public databases, some
information related to lung cancer may be unavailable, such as
smoking status. Second, we used a single data source in this
study. Though we applied internal validation to test our findings,
whether the performance of themodel in an external cohort would be
similarly satisfactory still require further validation. In this study, the

RNA expression data and survival information of 163 LUADpatients
had been retrieved from the GSE3141 series and GSE37745 series
matrices from Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). However, we could not acquire
sufficient information of lncRNAs in the GEO cohort because the
scale of commercial sequencing data from theGEOdataset wasmuch
smaller compared to the size of RNA sequencing data from the
TCGA dataset. Third, the in vitro and in vivo experiments will be
required to further elucidate the biological mechanism or prognostic
value of NRLRs in LUAD.

In conclusion, we proposed a signature, constructed based on
4 lncRNAs biomarkers, that could independently predict the
prognosis of LUAD patients. Moreover, the possible biological
functions and immune status of the 4 NRLRs could provide novel
insights for further research on the molecular mechanisms of
tumorigenesis and progression of LUAD. In all, the NRLRs
identified in this study may offer promising therapeutic targets
or prognostic predictors for LUAD patients.
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