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Editorial on the Research Topic

The intricate innate immune-cancer cell relationship in the context of
tumor angiogenesis, immunity and microbiota: The angiogenic switch
in the tumor microenvironment as a key target for immunotherapies
The tumor microenvironment (TME) represents a complex multicellular network

which comprises host-derived stromal, immune and endothelial cells with potential dual

role in tumor development and dissemination. For example, immune cells have the

ability to recognize and orchestrate anti-tumor responses leading to cancer cell death,

however in the meantime they can become exhausted whereas innate immune cells can

acquire pro-tumorigenic and/or pro-angiogenic activities.

This Research Topic was designed to dissect various aspects of interactions that tumor cells

must set up with the TME to trigger tumor blood vessel proliferation, to tamper host anti-tumor
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responses and tomodulate microbiota, and to investigate feasibility to

target these pathways to improve immunotherapies.

Here, Genova et al. examines the impact that the TME can

have on immune checkpoint inhibitors (ICIs) in non-small cell

lung cancer (NSCLC). They discuss on the pro-angiogenic and

immunosuppressive role of the TME exerted by many distinct

cells as well as on multiple clinical studies focusing on alternative

immune checkpoint receptors that could lead to exhausted T

and natural killer (NK) cells and resistance to ICIs. Importantly,

they provide an update on novel predictors of response from

currently available ICI and novel therapeutic targets. In fact,

there are many promising preclinical and trials data in NSCLC,

where in parallel with classical ICIs targeting PD-1/PD-L1, new

target molecules could be used, such as: LAG-3 and TIM-3.

In turn, the review by Baci et al. takes under consideration

the role of tumor immune microenvironment in NSCLC and the

interactions between tumor cells and immune infiltrate with the

aim to define new targetable drivers of immunotherapy. In

particular, they pinpoint the effects exerted by neutrophils,

myeloid-derived suppressor cells (MDSCs), NK cells, NKT

cells, dendritic cells (DCs), Treg cells and mast cells on the

orchestration of primary resistance to ICIs. This review also

includes the discussion about the relevance of combination of

anti-angiogenic therapies with ICIs.

Concerning anti-angiogenesis therapy, Solimando et al. in their

mini-review, examine this phenomenon in metastatic castration-

resistant prostate cancer (mCRPC). Targeting angiogenesis has

failed to impact overall survival in patients with mCRPC despite

promising preclinical and early clinical data. Narrowing the gap

between the bench and bedside appears critical for developing novel

therapeutic strategies. Several other compounds with known anti-

angiogenic properties, including metformin or curcumin, are

currently investigated. Angiogenesis-targeting strategies include

biomarker-guided treatment stratification as well as combinatorial

approaches. Beyond established angiogenesis inhibitors, therapies

aiming at prostate specific membrane antigen (PSMA) have a

substantial anti-angiogenic effect, due to PSMA´s expression in

tumor vasculature.

Understanding the interactions between all the constituents

of the TME remains a challenging task. Currently most patients still

do not benefit from cancer immunotherapies notably because of

the hostility imposed by the hypoxic microenvironment

inducing immune suppression and tumor plasticity and

resistance. Khouzam et al. review the mechanisms by which

hypoxic stress impacts immune cell functions and how that could

translate to predicting response to immunotherapy. Of particular

interest is the discussion relating to how multi modal diagnostic

techniques are being aligned with in silico approaches. Along the

same line of research, Janji and Chouaib summarize the

contribution of hypoxic stress to tumor progression, and its

impact upon conventional anti-tumor therapies. However,

although increasing evidence, the acceptance that targeting

hypoxia in combination with immunotherapy might offer further
Frontiers in Immunology
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clinical benefit is less well established. HIF1a signaling is a known

modulator of multiple inflammatory cytokines and checkpoint

expressions and therefore offers new avenues to explore as

immunotherapy becomes a standard treatment.

Interestingly, Wang et al. in their review investigate the

relevance of the TME in the hepatocellular carcinoma, a cancer

with high worldwide incidence and with serious therapeutic

implications. They illustrate the possibility of targeting the TME

using immunomodulatory therapy (ICIs, new immune

checkpoints, combination of ICIs with multiple kinase

inhibitors), or oncolytic viruses or anti-angiogenesis therapies.

Taken together, the TME is not simply pro-angiogenic or pro/

anti-inflammatory, rather is a dynamic milieu of complex

interactions and cellular consequences. Of note, Xu et al. highlight

the practical application of this in their report; the particularly rare

splenic angiosarcoma is treatable with anti-PD-L1 antibody and

tyrosine kinase receptor inhibitors. Whereas this is a case report,

and full clinical trials will need to be registered and completed it offers

promise to an otherwise poor prognosis, indeed at 3 months no

metastatic colonization was observed. Of particular interest is the use

of computed tomography (CT) and magnetic resonance imaging

(MRI) to assess the efficacy of combination treatment.

Instead, Etxebeste-Mitxeltorena et al. in their review, analyze the

role of adoptive cellular immunotherapy using chimeric antigen

receptor (CAR)-modified T cells and NK cells in cancer. Whereas

CAR-T cells induce outstanding responses in a subset of

hematological malignancies, responses are much more deficient in

solid tumors. Authors describe plasticity of immune cells and how

these cells change their activity and phenotype depending on the

stimuli they receive from molecules secreted in the TME. For

example, this phenomenon could affect tumor cell phagocytosis by

macrophages,which is required to removedying tumor cells after the

attack of NK cells or CAR-T cells, and it can be avoided in the TME.

Concerning ICIs resistance in solid tumors, the review by

Roberto et al. analyzes how microbiota is affected by intestinal

microenvironment and how microenvironment alterations may

influence the response to ICIs.They showedhowdiet is emerging as

a fundamental determinant of microbiota’s community structure

and function and describe the role of certain dietary factors, as well

as the use of probiotics, prebiotics, postbiotics, and antibiotics in

modifying the human microbiota. Finally, they shed new light on

the possibility of administering fecal microbiota transplantation to

modulate the gut microbiota in cancer treatment.

Within the frame of this Research Topic, the article of

Qing et al. probed the Cancer Genome Atlas (TCGA) and the

GEO repository for gene signatures relating to angiogenesis and

immune cells infiltration and combined the transcriptomic data

with prognostic data to predict therapeutic responses. The

resultant data were used to generate a prognostic nomogram,

allowing clinicians to match tumor characteristics with potential

personalized therapeutic opportunities.

On the other hand, Zhang et al. in their work systematically

collected and evaluated the infiltration pattern of 65 immune cells.
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They constructed the immune cell pair (ICP) score basedon the cell

pair algorithm across 12 independent cancer types. The ICP score

showed reliability and efficacy in predicting the survival of patients

with gliomas, in pan-cancer samples, and six independent cancer

types. Moreover, the ICP score was correlated with the genomic

alteration features in gliomas, exhibited a remarkable association

with multiple immunomodulators that could potentially mediate

immune escape, and predicted immunotherapeutic responses with

a high sensitivity.
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Tumor Secretome to Adoptive
Cellular Immunotherapy: Reduce
Me Before I Make You My Partner
Mikel Etxebeste-Mitxeltorena†, Inés del Rincón-Loza† and Beatriz Martı́n-Antonio*

Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain

Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells
and Natural Killer (NK) cells are common immune cell sources administered to treat cancer
patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of
hematological malignancies, responses are much more deficient in solid tumors.
Moreover, NK cells have not shown remarkable results up to date. In general, immune
cells present high plasticity to change their activity and phenotype depending on the
stimuli they receive from molecules secreted in the tumor microenvironment (TME).
Consequently, immune cells will also secrete molecules that will shape the activities of
other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities
as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell
phagocytosis by macrophages, which is required to remove dying tumor cells after the
attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or
radiotherapy treatments can induce senescence in tumor cells modifying their secretome
to a known as “senescence-associated secretory phenotype” (SASP) that will also impact
the immune response. Whereas the SASP initially attracts immune cells to eliminate
senescent tumor cells, at high numbers of senescent cells, the SASP becomes
detrimental, impacting negatively in the immune response. Last, CAR-T cells are an
attractive option to overcome these events. Here, we review how molecules secreted in
the TME by either tumor cells or even by immune cells impact the anti-tumor activity of
surrounding immune cells.

Keywords: tumor secretome, SASP, senescence, immunotherapy, macrophages, CAR-T cells, NK cells, T cells
INTRODUCTION

Today, it is widely recognized that chronic inflammation is a driver of cancer (1), being estimated
that 15-20% of cancers are inflammation-related (2). This association has been observed in different
contexts, such as persistent Helicobacter pylori infection or autoimmune diseases like inflammatory
bowel disease that increase the risk of developing gastric cancer (3) or colorectal cancer (4),
respectively. Numerous studies have found associations of inflammatory markers with a higher risk
of developing cancer. For instance, 15% of patients with cardiovascular disease, after a median
follow-up of 8.3 years, developed different types of cancer whose incidence was associated with high
C-reactive protein (CRP) levels (5). In addition, IL6 levels are also associated with an increased risk
org August 2021 | Volume 12 | Article 71785018
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of developing different types of cancer (6). Moreover, IL1b
inhibition reduced CRP and IL6 levels and the incidence of
developing lung cancer in patients with atherosclerosis who had
a myocardial infarction (7).

Both immune and tumor cells promote this pro-
inflammatory microenvironment. Expressly, tumor cells release
a secretome that displays an altered composition compared to
the normal tissue from which they are derived (8). This
secretome contains cytokines, chemokines, hormones,
metabolites, and growth factors involved in cell-cell
communication, angiogenesis, hypoxia, metastasis, extracellular
matrix remodeling, and drug resistance (8, 9), where tumor cells
employ it as a mechanism of immune evasion (10–12). On the
other side, the different subsets of immune cells will also release
immunosuppressive and inflammatory factors that will shape the
tumor microenvironment (TME), promoting or inhibiting
cancer progression (13).

The anti-tumor activity of immune cells infiltrating tumors
led to the development of adoptive cellular immunotherapy
administering natural killer (NK) cells, T cells, or genetically
modified chimeric antigen receptor (CAR)-T cells in cancer
patients (14–17). Clinical results administering different
immune cells have been reviewed by others (Table 1).
However, despite promising results in these studies for some
malignancies (26), immune cells do not persist long for other
malignancies, and patients end up relapsing (27). Once immune
cells achieve the tumor, they will have to face tumor cells and
their secretome that may polarize their anti-tumor activity to a
pro-tumoral one, increasing angiogenesis and enhancing tumor
growth (28). Moreover, after chemotherapy treatment, tumor
cells can reach a senescent state, known as therapy-induced
senescence (TIS), that shapes the tumor secretome to a variety
of pro-inflammatory and angiogenic proteins known as
“senescence-associated secretory phenotype” (SASP). The SASP
may enhance the immune response at initial stages and
contribute to a favorable environment for tumor growth at late
stages (29). For example, senescent fibroblasts, much more than
pre-senescent fibroblasts, secrete VEGF that causes premalignant
and malignant epithelial cells to form tumors, suggesting that
although cellular senescence suppresses tumorigenesis early in
life, it may also promote cancer (30).

Here, we review how the tumor secretome can shape the
immune response achieving a state when immune cells no longer
recognize tumor cells and instead, they secrete proteins that
breed the TME. We will specifically focus on the impact on T
cells, CAR-T cells, and NK cells, which are currently used in
adoptive cellular immunotherapy (14–17, 31), and macrophages
Frontiers in Immunology | www.frontiersin.org 29
due to their relevant role in removing dying/senescent tumor
cells after cancer treatment (32). The impact of these molecules is
summarized in Table 2. Moreover, we will review the effect of the
tumor secretome in the immune response when tumor cells
become senescent due to chemotherapy treatments.
IMPACT OF TUMOR SECRETOME
IN THE ANTI-TUMOR ACTIVITY OF
IMMUNE CELLS

T Cells
Tumor cells with stromal cells, endothelial cells, fibroblasts, and
immune cells create a suitable TME that favors tumor
progression (79–81). The ability of T cells to infiltrate this
TME has led to the development of adoptive cellular
immunotherapy to treat cancer patients with tumor-infiltrating
lymphocytes (TILs) or CAR-T cells (14, 15, 31). Interestingly, the
TME can shape the anti-tumor activity of T cells depending on a
variety of secreted molecules. We detail here the impact of some
of these released factors.

TGF-b, a highly recognized immunosuppressive cytokine
secreted by tumor cells (33), suppresses IFN-g production by
Th1 and effector CD8 T cells, inducing the differentiation of CD4
T cells to both regulatory (T-reg) cells and Th17 cells. T-reg cells
that also release TFG-b and IL10 will further suppress the
activation of CD8 T cells, promoting tumor cell growth (34,
35). IL10 production by tumor cells down-regulates HLA-I and
HLA-II on tumor cells and HLA-II on antigen-presenting cells
(APCs), inhibiting antigen presentation becoming an escape
mechanism from immune surveillance (42, 82–84). On the
other side, cancer models have shown that IL10 also induces
intratumoral antigen presentation with infiltration and
activation of tumor-specific cytotoxic CD8 T cells expressing
IFNg and granzymes (43) (Figure 1).

A wide field of research in cancer immunotherapy consists of
inhibiting immune-checkpoint receptors on immune cells and
their ligands in tumor cells. The interaction of these receptors/
ligands modulates the activity of immune cells to limit the
development of auto-immunity and create immunotolerant T
cells. Therefore, the inhibition of these interactions with
monoclonal antibodies increases their anti-tumor activity. The
most common immune checkpoints include cytotoxic T
lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1),
T cell immunoglobulin and mucin-3 (TIM-3), B and T
lymphocyte attenuator (BTLA), lymphocyte activation gene 3
(LAG3), adenosine 2A receptor (A2AR) and T cell
immunoglobulin and ITIM domain (TIGIT) (85–91). Secreted
molecules by tumor cells impact the expression of immune-
checkpoint receptors on immune cells. For instance, release of
soluble HLA-G by tumor cells up-regulates CTLA-4, PD-1, TIM-
3, and CD95 on CD8 T cells impacting their anti-tumor activity
(44). On the other hand, cytokines released by activated immune
cells can up-regulate ligands of immune-checkpoints in tumor
cells. Thus, IFNg release by activated T cells induces PD-L1 up-
regulation in tumor cells (45) (Figure 2).
TABLE 1 | Reviews indicating clinical results with different types of immune cells
administered in immunotherapy studies in cancer patients.

Types of immune cell administered Reference

NK cells (18, 19)
CAR-T cells (20–22)
TILs: (23–25)
NK, natural killer; CAR, chimeric antigen receptor; TILs, tumor infiltrating lymphocytes.
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HLA-II over-expression by tumor cells (92) and fibrinogen-like
1 (FGL1), a protein secreted by liver cells and tumor cells (46), are
ligands of LAG-3, and their secretion impact the expression of
LAG-3 in T cells, promoting an immunosuppressive function.
TIM-3 is expressed on Th1 cells, and its interaction with its
ligand Galectin-9 (Gal-9) on tumor cells inhibits Th1 cell
responses (47) (Figure 2). Both overexpression of Gal-9 on
Frontiers in Immunology | www.frontiersin.org 310
gastric cancer cells and expression of TIM-3 on immune cells
correlates negatively with poor outcomes in cancer patients (93)
and lead to an increase in granulocytic myeloid-derived suppressor
cells that inhibit immune responses impacting tumor growth (94).

TIGIT ligands include CD155 (PVR), and the Nectin family
(95, 96) (Figure 2), which are over-expressed in many human
malignancies (97). Specifically, soluble PVR is a valuable
TABLE 2 | Impact of secreted factors in the tumor microenvironment (TME) over the different immune cell populations and description of receptors acting as eat me or
don’t eat me signals for phagocytic activity of macrophages.

Factor Type of cell Effect Reference

TGFb CD8 Suppresses IFN-g production (33)
Th1 Suppresses IFN-g production and induces differentiation to T-reg and Th17 cells. (34, 35)
PB-NK Converts cytotoxic CD56dim and CD56bright PB-NK cells into dNK-like cells. (36, 37)

Added to IL15 and IL18 the effects are enhanced. (38)
PB-NK Down-regulates NKP30, NKG2D and DAP10 and, consequently, NKG2D. (39, 40)
PB-NK At low doses up-regulates CXCR4 and CXCR3. At high doses, down-regulates NKp30, limiting NK killer activity. (41)
PB-NK In combination with hypoxia and 5-aza-2′-deoxycytidine polarizes PB-NK cells to dNK-like cells. (37)

IL10 APCs Down-regulates HLA-II on APCs inhibiting antigen presentation. (42)
CD8 Induces intratumoral antigen presentation with infiltration and activation of CD8 T cells expressing IFNg and granzymes. (43)

HLA-G CD8 Up-regulates CTLA-4, PD-1, TIM-3, and CD95. (44)
IFNg Tumor cells PD-L1 up-regulation. (45)
FGL1 CD8 LAG-3 up-regulation with T cell inhibition. (46)
Gal-9 Th1 Loss of IFNg producing cells and suppression of Th1 autoimmunity. (47)
Nectin-3 T cells and

monocytes
Promote lymphocyte transmigration through interaction with Nectin-2 on endothelial cells. (48)

Nectin-2 T cell T cell homing migration to the spleen through TIGIT interaction. (49)
PB-NK Binds to TIGIT inhibiting NK cell cytotoxicity. (50)

PVR PB-NK Binds to TIGIT inhibiting NK cell cytotoxicity. (50)
PGE2 CD8 Suppression of activity. (51)

CD4 Suppression of Th1 activity and promotion of Th2, Th17 and T-reg. (51)
PB-NK In thyroid cancer and melanoma inhibits NKG2D, NKp44, NKp30, and TRAIL suppressing NK cell cytotoxicity. (10, 52)
PB-NK In melanoma down-regulates NKp44 and NKp30 leading to NK cell inhibition. (53)
Macrophages Reduction of CCL5 production. (54)

IDO CART-19 Inhibition of CART cell activity. (55)
Lactic acid CD8 Suppresses nutrient uptake leading to impaired activation. (56)

NK Suppresses nutrient uptake leading to impaired activation. (56)
Glycodelin-A CD56 bright PB-

NK
Polarizes CD56bright into dNK-like cells. (57)

HLA-G PB-NK Induction of senescence with SASP secretion promoting vascular remodeling and angiogenesis. (58)
Hypoxia T cells Favors a glycolytic metabolism and increased lactate production, dampening T effector functions. (59)

PB-NK Avoids the ability to upregulate NKp46, NKp30, NKp44, and NKG2D in response to activating cytokines. (60)
PB-NK Degrades NK cell granzyme B by autophagy. (61)
PB-NK Reduced ability to release IFNg, TNFa, GM-CSF, CCL3, and CCL5, and preservation of immature CD56bright NK cells

expressing CCR7 and CXCR4, resembling dNK-like cells.
(62)

Macrophages Activates granulin expression in macrophages through VEGF, conferring increased angiogenic potential. (63)
Macrophages In pancreatic cancer promotes release of exosomes containing miR-301a-3p that induce M2 polarization. (64)
Macrophages Induces CXCL12 and CXCR4 expression, which modulate the migration of monocyte-derived macrophages, and TAMs. (65)

IL6 Macrophage Induces M2 polarization in colorectal cancer models. (66)
OSM Macrophage M2 polarization via mTOR signaling complex 2-Akt1. (67)
CCL2 Macrophage Recruitment of M1 to polarize them to metastasis-associated macrophages. (68)
IL34 Macrophage Increase recruitment of M2 macrophages in osteosarcoma. (69)
VEGF-A Macrophage With IL10 and IL4 secreted by tumor cells and macrophages, respectively, induced M2 polarization. (70)
Versican Macrophage Activates macrophages to release TNFa enhancing growth of tumor cells. (71)
MIF Macrophage Recruitment of macrophages through TGFb secretion by Kupffer cells that creates a fibrotic microenvironment. (72)
ST2 Macrophage M1 macrophage polarization in models of lung cancer. (73)
miR-21 Macrophage Polarization of monocytes to M2 macrophages, secretion of IL6, IL8, CCL2, and CCL5. (74)
CD47 Macrophage In tumor cells is a don’t eat me signal for macrophages. (75)
PD-1 Macrophage Don’t eat signal in macrophages. (76)
b2M subunit
(HLA-I)

Macrophage In tumor cells is a don’t eat me signal for macrophages through interaction with LILRB1. (77)

CD24 Macrophage In tumor cells is a don’t eat me signal for macrophages. (78)
August 2021 | Volume 12 | Art
PB-NK, peripheral blood NK cells; dNK, decidual NK cells; T-reg, regulatory T cell; APCs, antigen presenting cells; IFN-g, interferon-g; TGFb, transforming growth factorb; FGL1, fibrinogen-
like 1; GAL-9, galectin-9; IL, interleukin; HLA, human leukocyte antigen; miR, microRNA; OSM, oncostatin-M; VEGF, vascular endothelial growth factor; MIF, macrophages migration
inhibitory factor; ST2, suppression of tumorigenicity 2.
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biomarker for cancerdevelopment,wherehigher solublePVR levels
are detected in lung, gastrointestinal, breast, and gynecologic
cancers compared to healthy donors, being even higher at
advanced stages of the disease (98). Of interest, Nectins promote
the transendothelial migration of cells and associate with poor
prognosis and advanced disease stages in different types of cancer
(99). Soluble Nectin-4 released by cancer cells interacts with
integrin-b4 on endothelial cells, promoting angiogenesis (100). Of
interest, Nectins also mediate transendothelial migration of
immune cells (48). For instance, Nectin-2 promotes endothelial
cell migration, endothelial tube formation, and T cell homing
migration to the spleen, promoting an angiogenic function (49);
Nectin-3 expressed by T cells and monocytes binds to endothelial
cells through Nectin-2 promoting the transmigration of immune
cells (48). This angiogenic function of soluble Nectins released by
Frontiers in Immunology | www.frontiersin.org 411
tumor cells suggests an essential role of the tumor secretome
polarizing the cytotoxic activity of T cells to an angiogenic one.

Prostaglandin 2 (PGE2) is a crucialmediator of immunopathology
in chronic infections and cancer. PGE2 secreted by tumor cells
suppresses the effector functions of CD8 T cells and Th1 cells,
promotes Th2, Th17, and T-reg cell response, and inhibits the
attraction of immune cells (51). Moreover, PGE2 reduces CCL5
production by macrophages (54), which is required for IL2, IFN-g
production, and T cell proliferation (101). Recent studies revealed that
COX2/mPGES1/PGE2 pathway in tumor cells up-regulates PD-L1 in
tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs), which is followed by T cell
elimination (102).

In addition, the tumor secretome impacts the metabolic
activity of T cells through the competitive removal of essential
FIGURE 1 | Impact of tumor secretome in T cell activity. TGF-b secreted by tumor cells suppresses IFN-g production by Th1 and effector CD8 T cells, inducing the
differentiation of CD4 T cells to regulatory (T-reg) cells and Th17 cells. T-reg cells also release TFG-b and IL10 that will suppress the activation of CD8 T cells. IL10
secreted by tumor cells down-regulates HLA-II on dendritic cells, inhibiting antigen presentation. Prostaglandin 2 (PGE2) secreted by tumor cells suppresses the
functions of CD8 T cells and Th1 cells, and promotes Th2, Th17, and T-reg cell response. PGE2 reduces CCL5 production by macrophages, which is required for T
cell proliferation. Secretion of Indoleamine 2,3 dioxygenase (IDO) by tumor cells produces metabolites that inhibit T cell activity. Lactic acid produced by tumor cells
suppresses nutrient uptake by CD8 T cells.
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nutrients for T lymphocytes. In this sense, secretion of
“Indoleamine 2,3 dioxygenase” (IDO), which catalyzes
tryptophan degradation, produces metabolites that inhibit T cell
activity. In a murine lymphoma model with CAR-T cells targeting
CD19, over-expression of IDO depleted the anti-tumor activity of
CAR-T cells and inhibited the cytokine-dependent expansion of
CAR-T cells, cytokine secretion, and increased their apoptosis (55)
(Figure 1). Production of lactic acid by tumor cells also inhibits the
activity of CD8 T cells and NK cells. In detail, most tumors rely on
glycolytic metabolism to sustain rapid cell growth through the
enzyme lactate dehydrogenase-A that produces lactic acid. CD8 T
cells and NK cells undergo a similar metabolic switch activating a
glycolyticmetabolismwhen they evolve fromanaive to an activated
state. However, highly glycolytic tumor cells are superior
Frontiers in Immunology | www.frontiersin.org 512
competitors for glucose and amino acids than CD8 T cells and
NK cells. In addition, lactic acid production further suppresses
nutrient uptake by CD8 T cells and NK cells, dampening their
metabolic programs, leading to impaired activation of CD8 T cells
and NK cells with the subsequent overcoming of immune
surveillance by tumor cells (56).

CAR-T Cells, a Strategy to Inhibit the
Immunosuppressive TME and the Impact
of Tumor Secretome
Adoptive cellular immunotherapy administering CAR-T cells
has achieved outstanding and permanent responses in pediatric-
B cell hematological malignancies with persistence of CAR-T
cells over the years (26). However, in other hematological
FIGURE 2 | Impact of some secreted molecules in the TME on the expression of immunocheckpoints in T cells. The most common immune checkpoints on T cells
include programmed death 1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), T cell immunoglobulin and mucin-3 (TIM-3), T cell immunoglobulin and ITIM domain
(TIGIT) and lymphocyte activation gene 3 (LAG3), which interact with their ligands on tumor cells. IFNg release by activated T cells induces PD-L1 up-regulation in
tumor cells. TIM-3 interaction on Th1 cells with Galectin-9 (Gal-9) on tumor cells inhibits Th1 cell responses. Soluble HLA-G released by tumor cells up-regulates
PD-1, CTLA-4, and TIM-3, on T cells. CD155 (PVR), and the Nectin family are ligands of TIGIT. Soluble PVR is released by tumor cells. Soluble Nectins released by
cancer cells mediate transendothelial migration of immune cells promoting angiogenesis. HLA-II over-expression by tumor cells and fibrinogen-like 1 (FGL1) secreted
by tumor cells impact the expression of LAG-3 in T cells.
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malignancies (15, 27) and solid tumors, results have been more
inferior due to a short persistence of CAR-T cells and the barriers
that CAR-T cells have to face in the TME, such as the impact of
the tumor secretome. Fourth-generation CAR-T cells, termed
armored or TRUCK CARs, are equipped with different features
that can remodel the TME to enhance the activity of CAR-T cells.

Thus, a variety of armored CAR-T cells that secrete different
cytokines have been developed. For instance, CART-19 cells that
secrete IL12 show increased cytotoxicity and resistance to T-reg cell-
mediated inhibition, better engraftment, and enhanced anti-tumor
activity in models of B-cell malignancies (103) and ovarian cancer
(104). Of note, severe adverse events were observed in a clinical trial
with TILs secreting IL12 (105). Therefore, decreasing the amount of
cytokinesreleasedbyCARTcells, in thiscase, IL12,couldbemodulated
via different gene-expression cassettes, such as promoters in the CAR
with inducible nuclear factor of activated T cells (NFAT) binding
motifs (106). IL15 enhances the differentiation, homeostasis, and
survival of T cells and NK cells. CART-19 cells secreting IL15
demonstrated increased expansion and efficacy, with decreased
apoptosis and PD-1 expression, in models of Burkitt lymphoma
(107). CAR-T cells secreting IL18 have caused increased M1-
polarization in macrophages of the TME, depletion of M2-
macrophages and T-reg cells (108), and recruitment of endogenous
T cells (109). Nevertheless, as IL18 is pro-inflammatory, it has
pathogenic roles in autoimmune diseases (110) and might also
promote tumor progression, angiogenesis, immune escape, and
metastasis (111). CAR-T cells secreting IL7 and CCL19 have also
improved cell infiltration of dendritic cells (DCs) and survival ofCAR-
T cells (112). In addition, inhibition of TGFb is achieved by co-
expression in the CAR of a dominant-negative receptor for TGFb that
blocks TGFb signaling, increasing proliferation and persistence of
CAR-T cells in models of prostate cancer (113).

ArmoredCAR-T cells also avoid the negative impact of immune
checkpoints. Thus, in lymphoma, the TME is marked by
exacerbated lymphoid stroma activation and increased
recruitment of follicular helper T cells, resulting from the
disruption of the inhibitory checkpoint HVEM/BTLA. Secretion
ofHVEMbyCAR-T cells binds BTLA avoiding this event (114). In
addition, CAR-T cells that secrete anti-PD-L1 antibodies prevent T
cell exhaustion and recruit NK cells to the tumors (115).

Furthermore, hypoxia is found in the TME and contributes to
the rapid growth of tumor cells. Under hypoxia, glucose is
fermented to lactate. The hypoxic TME also favors a glycolytic
metabolism and increased lactate production, dampening T and
NK cell effector functions and survival (59). Thus, armored
CAR-T cells that secrete catalase (CAT-CAR) overcome
hypoxia and reactive oxygen species (ROS) present in the TME
(116). Another option to overcome these obstacles is to modify
the CAR to express anti-oxidant factors such as N-acetylcysteine
(NAC) that reduces DNA damage in CAR-T cells lowering
activation induced-cell death in CAR-T cells (117).

Decidual-Like NK Cells: An NK Cell
Population Poorly Studied in Immunotherapy
The well-recognized anti-tumor activity of NK cells has led to
many clinical studies administering either NK cells or CAR-
Frontiers in Immunology | www.frontiersin.org 613
modified NK cells, although results to date have shown mainly
safety but not a high efficacy (18). These findings suggest the
need to optimize NK cell anti-tumor efficacy. Here, we present
studies that indicate that when NK cells arrive at the TME, events
might happen that modify their killer activity.

In this regard, there are two main populations of NK cells in
peripheral blood, the mature and cytotoxic NK with
CD56lowCD16high expression, which constitutes 90% of NK
cells, and the immature and immunoregulatory NK cells
characterized by CD56highCD16low/negCD25+ expression, which
comprise approximately 10% of peripheral blood (PB)-NK (18,
19). A third transient population, known as decidual NK (dNK)
cells, present at the fetal-maternal interface during the first
months of pregnancy, representing 70% of immune cells in the
decidua. dNK cells are also known as uterine NK (uNK) cells, as
classically, uNK cells were detected by Dolichos biflorus
agglutinin (DBA) lectin staining, where DBA+ cells were
defined as dNK cells. Decidualization is triggered during
blastocyst implantation and the menstrual cycle, characterized
by a marked increase in dNK cells. dNK or uNK cells are a
dynamic population, and their origin is not clear. A recent model
proposed that there is a first wave of proliferation of tissue-
resident NK cells in the pregnant uterus at the onset of the
decidualization process. Then, a second wave involves
the recruitment of conventional PB-NK cells during the
placentation process (118, 119).

dNK cells are immune-tolerant and characterized by
CD56brightCD16−CD9+CD49a+ and Eomes+ expression (120,
121). They are angiogenic, regulate trophoblast invasion and
vascular growth during the placental developmental process and
cooperate with other cells to serve as constructive elements
during early pregnancy. dNK cells produce large amounts of
proangiogenic factors, including VEGF, PlGF, CXCL8, IL-10,
and angiogenin, critical for decidual vascularization and spiral
artery formation (122). dNK cells also express chemokine
receptors, including CXCR3, CXCR4, CCR1, CCR9, and the
integrin ITGA3 (120), and through the interaction of HLA-G on
fetal trophoblast cells with ILT2 and KIR2DL4, they secrete other
growth-promoting factors, including pleiotrophin and
osteoglycin (121). Moreover, interaction of soluble HLA-G
with KIR2DL4 induces a pro-inflammatory response in dNK
cells, activating their senescence with SASP secretion that
promotes vascular remodeling and angiogenesis in early
pregnancy (58).

This “nurturing” role of dNK cells during early pregnancy
presents many homologies to NK cells infiltrated in different
types of tumors. Thus, a subset of NK cells in non-small cell lung
cancer, squamous cell carcinoma, or colorectal cancer turns into
dNK-like cells inducing human umbilical vein endothelial cell
migration and formation of capillary-like structures (36, 123–
125). Various studies have tried to determine different factors
during early pregnancy that might be responsible for this
polarization of PB-NK cells into dNK-like cells. Results suggest
that this polarization seems more specific for CD56bright than
for CD56dim NK cells. Of interest, NK cells administered in
immunotherapy treatments undergo an in vitro expansion that
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turns them into CD56bright NK cells (17). Many of the factors
responsible for this NK polarization are present in both the
decidua and the TME, suggesting that these events occurring in
the TME might impact the growth of tumor cells. In the next
section, we detail the effect of secreted factors in the TME over
the phenotype and polarization of NK cells.

Impact of the Tumor Secretome in the
PB-NK Cell Activity and Their Transition
of Killer NK to dNK-Like Cells
Glycodelin-A is secreted in large amounts in the decidua and by
tumor cells in malignancies, such as Non-Small Cell Lung Cancer
(126), mesothelioma (127), ovarian cancer (128), and endometrial
cancer (129). Glycodelin-A converts immunoregulatory CD56bright

PB-NK cells into dNK-like cells, an effect that does not occur for
mature CD56low PB-NK cells. This mechanism occurs through
binding of Glycodelin-A to sialylated glycans on CD56bright NK cells
and causes enhanced expression of CD9, CD49a, and production of
VEGF and IGFBP-1 that regulate endothelial cell angiogenesis and
trophoblast invasion (57).

Soluble HLA-G is associated with bad prognosis in different
tumors (130–134). Of interest, soluble HLA-G mediates
polarization of PB-NK cells to dNK-like cells, with a senescent
phenotype, secretion of growth factors, and reduced killer
activity (58), thus, emerging as an essential target that can
polarize the activity of NK cells.

TGFb secretion can be beneficial at early stages and detrimental
at late-stage tumor development by remodeling the TME to favor
tumor growth (130, 135). TGFb converts both cytotoxic CD56dim

and CD56bright PB-NK cells into dNK-like cells (36, 37) (Figure 3).
Moreover, IL15and IL18 added toTGFb enhance the impact on the
polarization of PB-NK cells toward a dNK cell phenotype with
increased expression of CD9, CD49a, ITGA3, and CXCR4 (38). Of
interest, as previously mentioned, IL15 and IL18 are beneficial for
CAR-T cells (107–109), suggesting the negative role of these
cytokines when TGFb is added. Additional effects of TGFb over
NK cells include down-regulation of NKP30, NKG2D (39), and
DAP10 and, consequently, NKG2D (40) inhibiting NK cell
function (Figure 3). Of interest, this dual role of TGFb in the
TME is observed when at low doses facilitates NK cell recruitment
to the tumor by up-regulating CXCR4 and CXCR3, markers of
dNK; and at high doses, down-regulates NKp30, limiting NK killer
activity (41).

PGE2 secretion in thyroid cancer and melanoma inhibits the
expression of NKG2D, NKp44, NKp30, and TRAIL on PB-NK
cells and their functional maturation leading to suppressed NK
cell cytotoxicity (10, 52) (Figure 3). PGE2 release by cancer-
associated fibroblasts in melanoma down-regulates NKp44 and
NKp30 leading to NK cell inhibition (53). Soluble PVR and
Nectin-2 released by tumor cells bind to TIGIT on NK cells
inhibiting NK cell cytotoxicity (50).

Hypoxia is another factor present in both the decidua and the
TME. Hypoxia in the TME avoids the ability of NK cells to
upregulate NKp46, NKp30, NKp44, and NKG2D in response to
activating cytokines (60) and degrades NK cell granzyme B by
autophagy (61), impairing the ability to kill and promoting
immune evasion (Figure 3). Moreover, exposure to a
Frontiers in Immunology | www.frontiersin.org 714
combination of hypoxia, TGFb, and 5-aza-2′-deoxycytidine,
results in the polarization of PB-NK cells to dNK-like cells.
These changes are more pronounced when all the factors are
together and lead to the expression of CD9, CD49a, chemokine
receptors, and VEGF secretion that leads to dNK-like cells with
capacity to promote invasion of trophoblast cell lines and
reduced cytotoxicity. Significantly, these parameters are
reversed after returning to normal conditions, indicating the
plasticity of immune cells (37). Exposure of PB-NK cells to
hypoxia also causes reduced NK cell ability to release IFNg,
TNFa, GM-CSF, CCL3, and CCL5, and preservation of
immature CD56bright NK cells expressing CCR7 and CXCR4,
resembling dNK-like cells (62).

The impact of these tumor secreted factors occur mainly on
CD56bright PB-NK cells, and NK cells used in immunotherapy
undergo an in vitro expansion that turn them into CD56bright NK
cells (17). These events suggest that in cases that NK cells do not
achieve complete removal of tumor cells they might have
polarized into dNK-like cells. Therefore, monitoring these
changes in immunotherapy NK cell studies will provide
relevant information to improve the clinical outcome of patients.

Role of Macrophages in
Immune Surveillance
Macrophages are innate immune cells with high plasticity which
traditionally, have been classified as two extremes being either
pro-inflammatory (M1: activated) or anti-inflammatory (M2:
alternatively activated). M1 inhibits cell proliferation and causes
tissue damage, while M2 promotes cell proliferation and tissue
repair.M1andM2enableTh1, andTh2 responses, respectively, and
consequently, Th1 and Th2 cytokines regulate their activity. Thus,
M1responds to IFN-g, TNF-a, andTLR4activation, andM2to IL-4
and IL-13 (136).However,macrophages present high plasticity and
convert to a wide variety of subpopulations depending on the
stimuli they receive from the TME (63, 137). Macrophages
represent the largest population of all infiltrating leukocytes in the
tumor (138), where tumor-associatedmacrophages (TAMs),which
present an M2-like phenotype, are considered highly responsible
for tumor progression, andmany studies have focused on trying to
polarize M2-like macrophages to M1 (139). However, M2 are the
macrophages with the highest phagocytic activity against apoptotic
tumor cells (140), suggesting that removing this activity might also
be detrimental. Therefore, efforts should be directed to preserveM1
macrophage activitywhile also enhancing the phagocytic activity of
M2 macrophages. Here, we will pay special attention to the
phagocytic function of M2 macrophages to remove tumor cells
and how secreted molecules in the TME can polarize macrophages
to an M2-like or M1 phenotype.

Phagocytosis of tumor cells by macrophages is performed
after recognizing “eat me” or don’t eat me” signals that will or
will not trigger phagocytosis. “Eat me” and “don’t eat me” signals
act as ligands for phagocytic receptors that will or will not trigger
the engulfment of the target. Different studies have shown the
beneficial impact in tumor regression of inhibiting these “don’t
eat me” signals. For instance, CD47 expression in small-cell lung
cancer cells engages SIRPa on macrophages inhibiting their
phagocytic activity, which is recovered with an anti-CD47 (75).
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FIGURE 3 | Impact of tumor secretome in NK cell activity. (A) In healthy conditions, NK cells recognize transformed cells through ligands of NKG2D and the family
of NCR receptors (NKp30, NKp44, NKp46) which are over-expressed in transformed cells. Pro-inflammatory forms of cell death attract additional immune cells to
cooperate in the killing. (B) In some cases, tumor cells down-regulate ligands for NK cell receptors or the tumor microenvironment (TME) causes down-regulation of
activating NK cell receptors leading to tumor escape with additional secretion of tumor secretome. (C) When tumor escape occurs, increased tumor secretome leads
to additional changes in NK cells. Specifically, release of Glycodelin-A and HLA-G converts immunoregulatory CD56bright PB-NK cells into dNK-like cells. TGFb
converts both cytotoxic CD56dim and CD56bright NK cells into dNK-like cells; and down-regulates NK cell activating receptors limiting NK killer activity. PGE2 and
hypoxia inhibit the expression of NK cell activating receptors and their functional maturation leading to suppressed NK cell cytotoxicity. Moreover, hypoxia, preserves
immature CD56bright NK cells with expression of receptors of dNK cells, resembling to dNK-like cells. In all cases, dNK-like cells will activate angiogenesis processes.
(D) Emergence of senescent tumor cells leads to SASP secretion that attracts NK cells to mediate their clearance. (E) When the number of senescent cells
increases, the SASP also does, leading to inhibition of NK cell activity, through mechanisms, such as the interaction of HLA-E with the inhibitory receptor NKG2A in
NK cells and binding of TSP1 with CD47 that inhibit NK cell activity. PGE2 and IL6 in the SASP also down-regulate NK cell activating receptors. Moreover, therapy-
induced senescence in established tumors down-regulates NK cell activating receptors on mature NK cells and their ligands on tumor cells.
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Moreover, inhibition of CD47 in tumor cells promoted their
phagocytosis and the anti-tumor activity of CD8 T cells while
inhibiting T-reg cells (141). Blocking PD-1 expressed in TAMs
or M2-like macrophages increases macrophage phagocytosis and
reduces tumor growth (76) (Figure 4).

Furthermore, anti-PD-L1 treatment reverses the immuno-
suppressive status of the TME and enhances specific T cell anti-
tumor effects in murine models of cancer (142). Interaction of b2M
subunit of HLA-I in tumor cells with LILRB1 on macrophages
protects tumor cells from phagocytosis by TAMs, and disruption of
this interaction potentiates phagocytosis of tumor cells (77). In
ovarian cancer and triple-negative breast cancer, tumor cells evade
clearance by macrophages through over-expression of CD24 that
interacts with Siglec-10 in TAMs, and its blockade augments the
phagocytosis of CD24-expressing tumors leading to a reduction of
tumorgrowth(78).Dectin-2, aC-type lectin receptor inmacrophages
Frontiers in Immunology | www.frontiersin.org 916
resident in the liver (Kupffer cells), promotes phagocytosis of cancer
cells, avoiding liver metastasis (143) (Figure 4).

Phagocytosis requires an intimate contact of the macrophage
and the target, where the glycocalyx, a layer that surrounds the
plasma membrane containing glycolipids, glycoproteins, and
surface-associated glycosaminoglycans, acts as a barrier for
these contacts. The size and charge of this glycocalyx can be
modified and modulated by enzymes or other molecules present
on the TME to promote phagocytosis (144). Of interest, we
described that NK cells release histones that bind to and degrade
the syndecans on the glycocalyx of multiple myeloma cells (145),
suggesting that by doing this, NK cells might also promote the
phagocytosis of tumor cells by macrophages, an event observed
during fungal infection (146).

Molecules secreted in the TME will also impact promoting an
anti-inflammatory or pro-inflammatory environment that will
FIGURE 4 | Impact of tumor secretome in the phagocytic activity of macrophages. In healthy conditions macrophages phagocyte transformed cells and senescent
fibroblasts to maintain tissue homeostasis. Normally, macrophages, through release of TNFa, induce apoptosis in senescent fibroblasts, leading to expression of
phosphatidylserine in their surface, which is recognized by STAB1 on macrophages to promote their phagocytosis. In advanced stages of senescence, phagocytic activity of
macrophages is inhibited by over-expression of ligands of immune-checkpoints (CD47, PDL-1 and CD27) that interact with their receptors on macrophages (SIRPa, PD1
and SIGLEC-10). Moreover, SASP factors, including IL1a and GM-CSF, down-regulate STAB1 and TNFa expression, avoiding the phagocytosis of senescent fibroblasts by
macrophages. In addition, IL6, IL34, CCL2 and VEGFa secretion in the TME, induce M2macrophage polarization and recruitment of inflammatory monocytes that polarize to
metastasis-associated macrophages that in summary promote tumor growth. Hypoxia in established tumors also promotes the release of exosomes containing the miRNAs
miR-301a-3p and miR-21 that promote M2 polarization, and TNFa, IL6, IL8, CCL2 and CCL5 secretion impacting in higher angiogenesis, and tumor growth.
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polarize macrophages into TAMs/M2-like or M1 phenotypes. For
instance, IL6 secretion in the TME induces M2 macrophage
polarization in colorectal cancer models (66). The release of
oncostatin M in the TME is involved in M2 polarization via
mTOR signaling complex 2-Akt1 (67). At breast cancer, the
release of CCL2 by tumor cells recruits inflammatory monocytes
that polarize to metastasis-associated macrophages, which secrete
CCL3, promoting lung metastasis (68). IL34 secretion by tumor
cells binds toCSF1R inmacrophages and polarizes them toM1 and
M2 (147). Also, IL34 contributes to osteosarcoma growth by
increasing the neo-angiogenesis and recruitment of M2
macrophages (69). In a skin carcinogenesis model, VEGF-A
expression on tumor cells with IL10 and IL4 secreted by tumor
cells and macrophages, respectively, induced M2 polarization that
promoted tumorgrowth(70).Releaseof theproteglycanversicanby
lung carcinoma cells activates macrophages to release TNFa
enhancing growth of tumor cells (71) (Figure 4).

Tumor hypoxia, a feature of the TME, promotes ID4 expression
in cancer cellswhich, throughVEGF, activates increased expression
of granulin in macrophages, conferring increased angiogenic
potential (63). In pancreatic cancer cells, the presence of hypoxia
promotes the release of exosomes containing the miRNA miR-
301a-3p that binds to TLR macrophages receptors, promoting M2
polarization, TNFa, and IL6 production, creating a pro-metastatic
environment (64). Hypoxia induces CXCL12 and CXCR4
expression, which modulate the migration of monocytes,
monocyte-derived macrophages, and TAMs (65) (Figure 4). Of
interest, when hypoxia is absent in tumor cells, TAMs can enhance
tumor hypoxia and glycolysis (148), being both features that
promote tumor aggressiveness (149).

Exosomes released in liver tumors bind to macrophages through
exosome integrins and prepare the pre-metastatic niche (150). In
pancreatic ductal adenocarcinomas, tumor-derived exosomes with
macrophage migration inhibitory factor are taken by Kupffer cells
causing TGFb secretion. Consequently, a fibroticmicroenvironment
emerges that recruits macrophages, creating a liver pre-metastatic
niche (72). Of interest, the release of ST2 in Rab37 exosomes skewed
M1 macrophage polarization leading to reduced tumor growth in
models of lung cancer. Moreover, lung cancer patients with low
Rab37, low soluble ST2, and low M1/M2 ratio presented worse
overall survival (73). SNAIL, a transcription factor expressed during
epithelial-mesenchymal transition, activates the production of
tumor-derived exosomes containing miR-21 that will be
phagocyted by monocytes leading to M2 macrophages, secretion of
IL6, IL8, CCL2, and CCL5 impacting in higher angiogenesis, and
tumor growth (74) (Figure 4).

ACQUISITION OF THERAPY
INDUCED-SENESCENCE (TIS) AFTER
CHEMOTHERAPY AND ITS IMPACT ON
IMMUNE CELLS

Studies have demonstrated that chemotherapy treatment can
lead to acquired resistance and the emergence of more aggressive
Frontiers in Immunology | www.frontiersin.org 1017
tumor cells. In this regard, the tumor secretome is shaped by
chemotherapy treatment that will impact the immune response
and increase tumor aggressiveness. For instance, in breast cancer,
IL6 release after treatment converts differentiated tumor cells to
cancer stem cells through the IL6-JAK1-STAT3 pathway (151).
In non-small cell lung cancer, cisplatin induces IL6 secretion that
increases tumor progression and resistance to treatment through
up-regulation of anti-apoptotic proteins and DNA repair
associated genes (152). Paclitaxel enhances IRE1 RNase activity
that leads to the production of IL6, IL8, CXCL1, GM-CSF, and
TGFb2 in breast cancer cells contributing to the expansion of
tumor-initiating cells (153). Doxycycline treatment in squamous
cell carcinoma leads to TGFb secretion that activates the TGF-b/
SMAD pathway increasing tumorigenic potential (154).
Treatment with kinase inhibitors causes secretion of positive
mediators of the AKT pathway, including IGF1, EGF,
ANGPTL7, and PDGFD, accelerating the expansion and
dissemination of drug-resistant clones (155). Docetaxel induces
secretion of extracellular vesicle-encapsulated miRNAs,
including miR-9-5p, miR-195-5p, and miR-203a-3p, which
down-regulate the transcription factor ONECUT2, leading to
up-regulation of stemness-associated genes, that stimulate cancer
stem-like cells and resistance to therapy in breast cancer (156).

In addition, chemotherapy and radiotherapy treatments trigger
a premature state of senescence in tumor cells termed “therapy-
induced senescence” (TIS) that will shape the tumor secretome (29,
157). TIS can reactivate the cell cycle and bring on cancer daughter
cells that survive therapy more transformed than the original
population (158, 159). This secretome is unique because it is
induced by senescence, being termed senescence-associated
secretory phenotype (SASP). SASP includes various cytokines,
chemokines, growth factors, and matrix metalloproteinases, such
as IL1a, IL1b, IL6, IL8, CXCL1,CCL2,VEGF, andCXCR2 (29, 160,
161), that interfere with the paracrine activity of senescent cells. Of
interest, SASP released by tumor cells after TIS induces
transmission of senescence to non-senescent neighboring cells
(162, 163). The SASP can foster an immunosuppressive
environment favoring metastasis (160), and on the other side,
attracts immune cells including macrophages, neutrophils, and
NK cells to remove senescent cells, a process known as
“senescence surveillance” (164–167).

Moreover, cancer is associated with aging. A physiological
consequence of aging is the development of immunosenescence
due to a functional degradation of the thymus, resulting in
decreased functional naïve CD4 and CD8 T cells and a
peripheral oligo-clonal expansion of memory T cells. These
events provide a contracted T cell antigen receptor (TCR)-
repertoire diversity with secretion of SASP (29, 168).
Immunosenescence associated with aging also occurs due to
exposure to virus infections or chronic inflammation (169); and
additional factors such as nutrition, sex, genetics, previous
diseases, or tumors (170, 171). Therefore, the immune cells of
elderly cancer patients will probably be already senescent; and
moreover, SASP secretion by senescent tumor cells after
chemotherapy will accelerate this immunosenescence process
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(171). Here, we will mention some SASP factors released by tumor
cells that impact the anti-tumor immune response.

Impact of the SASP in T Cells and
Immunosenescent T Cells
Studies have shown a significant accumulation of senescent T
cells in certain types of cancer patients (172), and that tumor
SASP induces T cell senescence leading to suppression of
responses of naïve/effector T cells (173), suggesting that this
might be a strategy used by malignant cells to evade immune
surveillance. Transformed senescent T cells are in cell cycle arrest
and develop significant phenotypic alterations, such as down-
regulation or loss of CD27 and CD28.Through SASP factors
including pro-inflammatory cytokines or inhibitory molecules
like IL10 or TGFb, senescent T cells will amplify the
immunosenescence process. Moreover, the development of
exhaustion with high expression of immune checkpoints, such
as TIM-3 and other co-inhibitory receptors as CD57 or KLRG-1,
will promote replicative senescence of T cells (174).

TGFb1 and TGFb3 are early SASP factors that regulate
thymic T cell homeostasis, inhibit cytotoxic T cell proliferation,
and promote T-reg generation (175). Tumor senescent cells up-
regulate NOTCH1 and drive a TGFb-rich secretome that
suppresses the release of a pro-inflammatory SASP and
contributes to the transmission of senescence through cell-cell
interaction via NOTCH-JAG1 pathway. Of interest, NOTCH1
inhibition recovers the secretion of pro-inflammatory cytokines,
promoting lymphocyte recruitment and senescence surveillance
(176). Senescent cells, after genotoxic stress, secrete IL6 and IL8
that promote epithelial-mesenchymal transition, increasing
tumor cells’ invasiveness. Moreover, IL6 recruits myeloid cells
that inhibit T cell responses (177).

MAPK signaling is a relevant pathway that controls T cell
senescence (178) through activation of p53, p21, and p16 (179).
Recent research demonstrated that tumor-derived T-reg cells
exhibit an accelerated glucose uptake, competing with effector T
cells for glucose through TLR8 signaling, leading to MAPK
activation, which induces T cell senescence (180). Another
study showed that T-reg cells, through p38, ERK1/2 signaling,
p16, p21, and p53 induce senescence in responder naïve and
effector T cells. This event is reverted by the block of TLR8
signaling and or by specific ERK1/2 and p38 inhibition (181).
Moreover, the p53 isoforms D133p53 and p53b regulate
proliferation and senescence in human T lymphocytes. Thus,
decreased D133p53 and increased p53b expression in healthy
individuals and lung cancer patients associated with age-
dependent accumulation of senescent CD8 T cells (182).

The hypoxic TME leads to the accumulation of adenosine and
tumor-derived cAMP. This cAMP is a SASP factor that induces
T cell senescence in naïve/effector T cells. Of interest, activation
of TLR8 signaling in tumor cells reverses this event resulting in
enhanced anti-tumor immunity (183). Moreover, the
accumulation of adenosine in the TME also inhibits the anti-
tumor activity of T cells through the adenosine receptor A2AR,
which in healthy conditions regulates immune cells protecting
from inflammatory damage (184).
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CAR-T Cells
Whereas the immunosenescence process has been widely studied in
Tcells, there is a lackof information related toCAR-Tcell senescence.
It could be exciting todelve into themechanismsof senescence of this
type of cells tofindpathways to inhibit senescencewithout impacting
their anti-tumor activity. Specifically, CAR-T cells undergo a
significant in vitro expansion (185) to obtain enough CAR-T cells
to treat thepatients.This expansionmight impact thedevelopmentof
senescence due to continuous in vitro proliferation. Moreover, the
transfer of senescence from tumor cells in the TMEmediated by cell-
cell contactor through factorspresent in theSASPwill impactCAR-T
cell activity. CAR-T cells can be engineered to avoid these events.
Thus, recently,CAR-Tcells havebeenusedas senolytic agents in lung
adenocarcinoma to remove chemically induced senescent cells by
targeting the urokinase-type plasminogen activator receptor (186).

A tempting option that could be tested is to reverse early-
stage senescent CAR-T cells by blocking critical mediators of this
process, such as proteins involved in the DDR, p38, p53, p21, or
ATM (187). However, these changes could also decrease T cell
functionality by impacting other relevant functions. For instance,
p38 is involved in the induction of senescence and IFNg and
TNFa secretion (188), and its inhibition have diminished these
cytokines in different inflammation or virus infection models
(189, 190). Moreover, blockage of DDR and p53 involves a risk of
DNA damage on T cells that might induce malignancy (191).

SASP Impact in NK Cells and
Senescence Surveillance
NK cells have an essential role in the senescence surveillance of
tumor cells. Senescence surveillance is initiated by the SASP that
activates immune cells to clear senescent cells preventing tumor
initiation (167), where both macrophages and NK cells have an
important task (32, 192, 193). Proteins present in the SASP, such
as CCL2, attract PB-NK cells to remove senescent cells through
NKG2D (194). Of interest, this role of PB-NK cells removing
senescent cells is also observed by decidual uterine NK cells to
control embryo implantation. Specifically, dNK cells after being
activated by IL15, present in the SASP, target and clear decidual
cells that became senescent in an IL8 dependent manner. This
mechanism of NK cells is mediated through granule exocytosis
and involvement of NKG2D (195).

SASP secretion by senescent tumor cells up-regulates HLA-E,
the ligand of the inhibitory NKG2A NK receptor (196), and
cleave NKG2D ligands inhibiting NK cell activity (197).

Soluble Thrombospondin-1 (TSP1), released in the SASP, is
involved in Ras-induced senescence (198). Moreover, TSP1
released by tumor cells binds CD47 on NK cells inhibiting its
activity (199). CD47 is described as a relevant modulator of NK
cell function in virus infection (200). Of interest, after TIS,
binding of soluble TSP1 to CD47 causes emergence of tumor-
resistant cells and metastasis in triple-negative breast cancer
(201), and inhibits anti-melanoma NK cell activity with
reduced granzyme B and IFNg production (202) (Figure 3).

IL1b is another crucial molecule present in the SASP with a
relevant pro-tumor activity (203). In detail, IL1 signaling
controls the SASP production (204), and transmission of IL1b
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to neighboring cells induces cell senescence (205, 206). A dual
role for IL1b is observed in NK cell activity. For example, IL1b is
required by CD56bright NK cells to produce IFNg (207) to activate
pyroptosis, necessary for the anti-microbial (208) and anti-
tumor (145) activity of NK cells. In addition, IL1b released by
M1 macrophages increases NK cell cytotoxicity up-regulating
NKp44 and NKG2D and triggering IFNg production by NK cells.
Of interest, these IL1b-primed NK cells can reverse M2
macrophage polarization (209). On the other side, a negative
impact of IL1b has been described over NK activity. Thus,
tumor-derived IL1b induces accumulation of MDSCs that
impair NK cell development and functions (210). Moreover, a
higher secretion of IL1b in endometrial cancer patients
compared to healthy tissues correlates with infiltrating
CD56bright NK cells in the tumor with exhausted phenotype,
indicated by TIGIT and TIM3 expression (211).

IL6 and IL8, present in the SASP, favor the acquisition of
migration/invasion and stem-like features, increasing tumor
aggressiveness in breast cancer cells (212, 213). Moreover, IL6
also inhibits NK cytotoxic activity by down-regulating perforin
and Granzyme B (214). In esophageal squamous cell carcinoma,
tumor cells activate the STAT3 pathway on NK cells through IL6
and IL8, leading to down-regulation of NKp30 and NKG2D on
NK cells and tumor progression (215) (Figure 3). In addition,
increased levels of IL6 in the peritoneal fluid of endometriosis
patients reduced the cytolytic activity of NK cells with down-
regulation of granzyme B and perforin (216). IL8 activates and
recruits immune cells (217) but also has tumor-promoting
functions (218). IL8 is produced by CD56 bright NK cells
(219), and stimulation with IL18 and IL12 induces higher IL8
production by NK cells (220).

PGE2 secretion, present in the tumor secretome, inhibits NK
cell activity (10, 52, 53). Moreover, PGE2 is also present in the
SASP at early tumorigenesis stages, secreted by COX-2, a critical
regulator of the SASP, and promotes senescence surveillance
(221) (Figure 3).

Senescent cells show high ROS levels and lactate production
that induce and maintain cell senescence (222, 223). ROS can
present contradictory effects on the activity of NK cells.
Specifically, lactate production by metastatic colorectal cancer
cells induces mitochondrial stress, increased ROS, and apoptosis
in NK cells (224). On the other side, ROS is required for the anti-
tumor activity of NK cells (225). Moreover, TIS up-regulates
NKG2D ligands (MICA, MICB, and PVR) in an oxidant-
dependent manner, resulting in enhanced NK cell activity
against myeloma cells (226). This up-regulation of NKG2D
ligands upon oxidative stress was also observed in colon
carcinoma cells, leading to improved NK cell killing (227).
However, in established tumors, ROS down-regulates NKp46
and NKG2D on mature CD56dim NK cells inducing suppression
of NK activity against melanoma (228) and acute myeloid
leukemia cells (229). Of interest, we previously observed that
cord blood-derived NK cells reduce ROS levels in multiple
myeloma cells (230). This negative role of ROS in tumors has
led to antioxidant treatments in cellular immunotherapy studies.
For instance, as previously mentioned, in solid tumors, CAR-T
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cells modified to express the enzyme catalase presented an anti-
oxidant capacity to protect bystander T cells and NK cells (116).

All these studies suggest the beneficial and detrimental role of
the SASP at early and late stages of tumorigenesis, respectively.
As high levels of SASP inhibit NK cell activity, a strategy to treat
advanced cancer patients with cellular immunotherapy, could be
to administer senescence inhibitors to decrease the number of
senescent cells. Once reduced levels of SASP are achieved,
immune cells could be administered, that would be attracted to
remove the remaining senescent tumor cells.

Macrophages
Macrophages are attracted and stimulated by SASP factors including
MCP-1, MIP-1a, and GM-CSF to remove senescent cells (231).
Macrophages are also affectedby age-related immunosenescence and
the consequences of inflammaging, a chronic inflammation
occurring with aging, leading to macrophage dysfunction.
Increased levels of A20, a suppressor of the NFkB and MAPK
signaling, mediated this dysfunction, leading to poor NFkB and
MAPK activation following TLR stimulation (232).

There is a disparity in the impact of TIS and the SASP in
macrophage polarization and their phagocytic activity. Thus, in a
model of skin aging, macrophage activity is inhibited when there
are a high number of senescent cells (233). Specifically, through
TNFa release, macrophages induce apoptosis in senescent
fibroblasts, leading to the expression of phosphatidylserine on
their surface. Phosphatidylserine is recognized by the STAB1
receptor on macrophages to promote their phagocytosis.
However, SASP factors, including IL1a and GM-CSF, down-
regulate STAB1 and TNFa expression, avoiding the killing and
phagocytosis of macrophages, with no impact observed in the
macrophage polarization (233).

In a model of thyroid cancer, monocytes exposed to
conditioned media from senescent thyrocytes and thyroid
tumor cells, undergo M2-like polarization displaying tumor-
promoting. These events were related to the production of
PGE2 (234). In liver fibrosis and cirrhosis, hepatic stellate cells
made senescent by carbon tetrachloride treatment produce
cytokines that recruit M1 macrophages, promoting a tumor-
suppressive environment. However, in the absence of p53, a
promoter of senescence, the released secretome induces M2
polarization, enhancing premalignant cells’ proliferation (235).
In a model of pancreatic cancer with oncogene-induced
senescence, the SASP factor CXCL1 activates CXCR2 that leads
to recruitment of M1 macrophages, inhibiting carcinogenesis.
However, oncogene-induced senescence and SASP are bypassed
at late stages, and M2 macrophages are recruited to enhance the
proliferation of the transformed pancreatic cancer cells (236).
IMPACT OF THE TYPE OF CELL DEATH
ACTIVATED IN THE TUMOR SECRETOME

Finally, we call the reader’s attention to the type of cell death
activated in tumor cells after the attack of immune cells in
adoptive cellular immunotherapy. Inflammatory forms of cell
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death include pyroptosis, which activates the NLRP3
inflammasome, leading to IL1b production (237). As previously
mentioned, IL1 signaling controls the SASP production (204). Of
interest, CAR-T cells and NK cells used in adoptive cellular
immunotherapy activate pyroptosis when they encounter the
tumor cell (145, 238). These events suggest that the
consequences of this IL1b release should be considered.
Expressly, inflammasome activation and pyroptosis execution
represent a double edge-sword in cancer immunotherapy, as on
one side, pyroptosis executes cell death. On the other side,
pyroptosis and IL1b production activate multiple signaling
pathways and inflammatory mediators that promote tumor
growth and metastasis in cancer models (239, 240), triggering
TAMs to boost tumor angiogenesis (241). Moreover, the role of
pyroptosis is highly relevant to attracting other immune cells
through IL1b and IL18 secretion. These events are observed in
microbial infections, where pyroptosis attract immune cells to kill
the previously trapped pathogen and remove the infected cell (208,
242). In adoptive cellular immunotherapy, removing dead tumor
cells after being killed by immune cells is required, suggesting an
advantage of pyroptosis in this context.
CONCLUSIONS

To conclude, adoptive cellular immunotherapy has emerged as a
promising treatment to treat cancer patients in the last years.
However, results still need to be improved in a variety of
malignancies. Immune cells present a high capacity of
plasticity when they receive stimuli from secreted molecules in
the TME. Thus, if immune cells do not remove tumor cells,
Frontiers in Immunology | www.frontiersin.org 1320
tumor secretome could modify their killer activity to an
angiogenic or immunosuppressive one. A highly relevant
aspect that needs to be considered to avoid these events is an
efficient removal by macrophages of dying/dead tumor cells
after the attack of immune cells, such as NK cells or CAR-T
cells. Of interest, NK cells present additional functions to
their classic killer activity that might help in this tumor cell
surveillance. Inflammatory forms of cell death activated by in
vitro expanded immune cells might also impact these processes.
In summary, to achieve complete and permanent responses in
cancer patients treated with adoptive cellular immunotherapy, all
these aspects together need to be considered and count on the
activity of the whole immune response and not just one immune
cell population.
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The human microbiota and its functional interaction with the human body were recently
returned to the spotlight of the scientific community. In light of the extensive
implementation of newer and increasingly precise genome sequencing technologies,
bioinformatics, and culturomic, we now have an extraordinary ability to study the
microorganisms that live within the human body. Most of the recent studies only
focused on the interaction between the intestinal microbiota and one other factor.
Considering the complexity of gut microbiota and its role in the pathogenesis of
numerous cancers, our aim was to investigate how microbiota is affected by intestinal
microenvironment and how microenvironment alterations may influence the response to
immune checkpoint inhibitors (ICIs). In this context, we show how diet is emerging as a
fundamental determinant of microbiota’s community structure and function. Particularly,
we describe the role of certain dietary factors, as well as the use of probiotics, prebiotics,
postbiotics, and antibiotics in modifying the human microbiota. The modulation of gut
microbiota may be a secret weapon to potentiate the efficacy of immunotherapies. In
addition, this review sheds new light on the possibility of administering fecal microbiota
transplantation to modulate the gut microbiota in cancer treatment. These concepts and
how these findings can be translated into the therapeutic response to cancer
immunotherapies will be presented.

Keywords: microbiota, immunotherapy, immune checkpoint inhibitors (ICIs), fecal microbiota transplantation
(FMT), diet, nutrients
INTRODUCTION

Over the past few decades, significant progress has been achieved in cancer treatment, with
immunotherapy becoming a research hotspot in recent years (1). The last years have seen
unprecedented clinical responses and rapid drug development, accumulating reports of advanced
cancer patients defying the odds and achieving complete remissions with immunotherapy
treatments (2).
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Immunotherapy is a powerful strategy to treat cancer by
harnessing the body’s immune system to generate or augment an
immune response against it (3). This is accomplished by either
training resident immune cells to recognize and eliminate cells
bearing tumor specific antigens, providing external stimuli to
enhance immune mediated tumor cell lysis or abrogating signals
directed by tumor cells to dampen immune responsiveness (4).
Both cellular and molecular components of the tumor
microenvironment can affect the efficacy of immunotherapy (5).

The tumor microenvironment has been recognized as a key
factor in tumor development and progression (6). Many of its
components influence cancer cell malignant behavior, within its
three-dimensional structure (1, 2). Non-malignant cells include
immune cells, cells of the vasculature and lymphatic system,
cancer-associated fibroblasts, pericytes, and adipocytes (7). The
communication between cell types is driven by an extremely
complex network of cytokines, chemokines, growth factors, other
inflammatory mediators, and matrix remodeling enzymes (8).

The intestinal microbiota is the collection of all
microorganisms (eukaryotes, bacteria, virus) living in human
gastrointestinal tract. Microbiome may be very different between
individuals, and it is constantly influenced by age, nutrition,
antibiotic use, smoking, alcohol. There is a continuous
interaction and interplay between microbiome and the
immune system, and the microbiota seems to play a role in the
pathogenesis of various inflammatory diseases such as NASH,
inflammatory bowel disease and obesity (9).

The human microbiome has recently been described as a
component of various tumor microenvironments, due to its
ability to impair tumor cell metabolism by maintaining a
healthy mucosal barrier, to induce inflammation, and to
produce genotoxins and different bacterial metabolites (10). It
has been estimated that the total number of bacteria in the 70 kg
average human male is 3.8·1013 and that 10% of metabolites
found in mammalian blood are derived from the gut microbiota
(11, 12). Indeed, humans and their microbiome are considered to
form a composite organism, a so-called holobiont, that defines
humans together with their connected microbial network,
instead of merely autonomous eukaryotic organisms (13, 14).
Furthermore, a clear interplay between the local microbiome, the
intestinal epithelium, and resident immune cells has recently
begun to emerge, where all participants actively foster
gastrointestinal homeostasis. In this system, bacterially derived
metabolites serve as important signals that continuously
contribute to the proper function of the epithelial barrier and
immune cells (14).

Over the last decade, researchers have found a consistent
connection between a dysfunctional gut microbiota (dysbiosis)
and various cancers, such as cancers of the urinary tract, cervix,
skin, airways, colon, breast, and lymphomas (10, 15).
Considering that the primary characteristics of microbiota
dysbiosis are alterations of bacterial species and the increase of
pathogenic bacteria (16), studying the microbial communities in
the tumor microenvironment may shed light on the role of host-
bacteria interactions in cancer.
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The relation between cancer and microbiota is also influenced
by other factors. Out of the multiple host-endogenous and host-
exogenous factors involved in the modulation of the composition
of gut microbiota, such as diseases, drugs, and smoke (17), diet
emerges as a pivotal determinant of its community structure and
function (18). Considering that the populations of dominant
species within the human colonic microbiota can potentially be
modified by dietary intake to influence health (19), the responses
of the gut microbiota to various factors are considered to be a
valuable tool to exploit in order to develop new strategies to
promote human health.

Therefore, it is important to identify gut resident bacteria.
Metagenomics and culturomics are the tools used to study
human microbiota, to understand and detect gut microbes, to
identify their specific role in the microenvironment and correlate
all data with clinical specifical situations (20, 21).

Considering the increasing interest in the microbiota
composition of oncological patients, the aim of this review is to
analyze the role of microbiota in cancer promotion, its effects on
the immune system and its emerging role as a response modulator
to immunotherapy-based cancer treatments. In this perspective,
this review focuses on understanding how the diet and the use of
probiotics, prebiotics, postbiotics and antibiotics might modify the
composition of the gut microbiota and, consequently, the
therapeutic response to cancer immunotherapies (Figure 1).
THE ROLE OF MICROBIOTA
IN TUMORIGENESIS

Given the variability of gut microbiota between individuals due
to external influences such as diet (22), host genetic background
and other environmental factors, many studies employed both
tumor and normal tissue samples taken from the same
individual, in order to provide a more accurate view of the
tumor-associated shifts in the microbiome (22, 23). The general
conclusion is that tumor microenvironments harbor
microbiomes dist inct from those of normal t issue
microenvironments. Various analyses consistently showed
variation in the bacterial phyla abundance when comparing the
matched normal and tumor tissues, demonstrating that there is
indeed a cancer-associated signature in the tumor microbiome
(24–26).

Gut microbiota can be divided into 3 clusters according to the
effects of the microbes on the human body: beneficial, neutral,
and pathogenic (27). The first group comprehends
Bifidobacterium and Lactobacillus, which can protect the
intestinal tract, produce beneficial metabolites, and detoxify the
human gut. Neutral microbes, such as Enterococcus, have dual
characteristics, being beneficial to human health in normal
growth conditions and being able to cause different degrees of
diseases when exceeding a certain standard growth or transferred
to other parts of the body (28). Pathogenic microbes, such as
Salmonella andHelicobacter pylori, secrete toxins and thus might
cause disease (29).
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The gut microbiota has differential effects on tumorigenesis, in
fact bacteria may be tumour suppressive for cancer, especially at
distal sites by releasing metabolites and immune modulators such
as histone deacetylase (HDACi), hypoxia induced factor (HIF),
interkeukin-10 (IL-10) that enrich gut barrier function and have an
antioxidant effect (30). Moreover, it is important to consider the
Frontiers in Immunology | www.frontiersin.org 329
role of TME and the gut mucosal barrier: the increased permeability
of gut mucosal barrier is correlated with inflammation and
development of cancer. Literature data describes a link between
integrity of gut mucosal barrier and differential faecal bacteria (31).

Lacking bacterial diversity in the intestine is the key feature
for many intestinal and extraintestinal disorders. Considering
FIGURE 1 | Microbiota and immunotherapy resistance. This figure summarizes the main topics discussed in the review. (A) Different genera such as Fusobacterium
nucleatum, Pseudomonas aeruginosa, Helicobacter Pylori and Bacillus fragilis were studied for their implication in cancer pathogenesis, causing inflammatory and/or
immune response, DNA damage and modulating cell proliferation. (B) Microbiota influences the response to checkpoint inhibitors therapy: the enrichment of fecal
microbiota with Akkermansia muciniphila, Faecalibacterium spp and Bifidobacterium spp correlates with a positive response to PD-1 immune-checkpoint blockade,
while a higher abundance of Bacteroidales correlates with a deficient response to the same treatment. (C) Different dietary nutrients modify the response to
immunotherapy, ranging from fecal microbiota transplantation to the use of postbiotics, with increasingly precise effects on the treatment response.
August 2021 | Volume 12 | Article 704942
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the evident differences in the nutrient composition of the tumor
microenvironment and the metabolic activity of microbiota,
there is an unquestionable metabolic interaction between the
tumor and its own microbiota (32). It is suggested that
tumorigenesis is promoted by a combination of intestinal
microbiota alterations (e.g., increased abundance of Escherichia
coli and Fusobacterium nucleatum), rather than a difference in
the abundance of a specific strain (33).

New evidence points to the association between the gut
microbiota and the development and progression of
gastrointestinal cancers such as colorectal cancer and
hepatocellular carcinoma (34), as well as cancers of the
respiratory system, where microbiota’s dysbiosis in heavy
smokers, together with the epithelial integrity loss, could
initiate inflammation in lung cancer (35). Moreover, the
relationship between human microbiota and other types of
cancers, such as breast cancer, is starting to emerge (36).

As an example of the role of microbiota in cancerogenesis,
here it is described the hypothesis that emerged to explain the
contribution of bacteria to colorectal cancer (CRC)
carcinogenesis. On one hand, the presence of a dysbiotic
microbial community with pro-carcinogenic features can
remodel the microbiome towards pro-inflammatory responses
and epithelial cell transformation, thus leading to cancer. On the
other hand, the “driver-passenger” theory states that the so-
called “bacteria drivers” could initiate CRC by inducing epithelial
DNA damage leading to tumors with indigenous ability to
promote the proliferation of “passenger bacteria”, by means of
a growth advantage in the tumoral microenvironment (37, 38).
These bacteria hardly colonize a healthy colon and cannot breach
the intact colon wall, but they can easily invade a broken colon
wall in the context of adenoma or carcinoma (37, 39). A highly
diverse gut microbiota might be a key feature of a healthy gut, a
balance between driver and passenger bacteria might create a
species-rich ecosystem which is able to deal with environmental
stresses that promote CRC (40).

Different studies aimed to identify potential “driver” bacteria.
Bradyrhizobium japonicum was found to be increased in lung
cancer patients with early-stage tumors (stages I and II) when
compared to patients with advanced-stage tumors (III and IV)
(41). Moreover, in patients with breast cancer, the analysis of 16S
rRNA showed a higher relative abundance of Bacillus spp.
compared with healthy samples, and Methanobacteriaceae was
richer in malignant disease compared to benign disease (42, 43).
The abundances of driver and passenger bacteria may serve as a
primary indicator of cancer initiation risk and development.

Suspected Role-Players in Carcinogenesis
The human gut microbiota is dominated by 3 primary phyla:
Firmicutes (30%-50%), Bacteroidetes (20%-40%) and
Actinobacteria (1% - 10%). Some strict anaerobes, as well as
Bacteroides, Eubacterium, Bifidobacterium, Fusobacterium,
Peptostreptococcus and Atopobium (44), constitute a major
portion of the gut microbiota, while facultative anaerobes, such
as Lactobacilli, Enterococci, Streptococci and Enterobacteriaceae,
represent a minor proportion (45).
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During their phylogenetic evolution, bacteria progressively
acquired virulence factors that conferred pathogenicity. In this
regard, bacteria developed the ability to penetrate the gut
mucosal barrier, as well as the ability to adhere to and invade
intestinal epithelial cells, using flagella, pili, and adhesins (46–
48). These virulence factors are considered to be one of the
elements that determine disease-promoting and pro-
carcinogenic effects of pathogens (49).

Intestinal bacteria contribute to carcinogenesis in different
ways, causing inflammatory and/or immune response, DNA
damage and modulating cell proliferation. Different genera
were studied to prove their implication in cancer pathogenesis,
especially in CRC. A recent study showed how colorectal cancer
samples were dominated by Firmicutes, Bacteroidetes, and
Proteobacteria (22). Tumors showed an enrichment of
Proteobacteria and a depletion of Firmicutes and Bacteroidetes,
underlining the evident and significant changes in these phyla
between the normal and cancer states. There was also an increase
in the phylum Fusobacteria in the tumor-associated microbiome
(22). The important findings were that two of the genera that
have been found to be enriched in the tumor microbiome,
Providencia and Fusobacteria, are already known to be
pathogenic. Moreover, Fusobacteria has been implicated in
CRC by many other studies (50, 51). The presence of species
belonging to the genera Providencia and Fusobacterium in the
tumor microenvironment may suggest that they could have a
role in oncogenesis or tumor progression, or that the tumor’s
niche favors them.

Several studies suggest that Fusobacteria is likely a cancer
driver and its carcinogenic mechanism has been unveiled (52,
53). The discovery of Providencia in the tumor microbiome is
interesting as it produces an immunogenic lipopolysaccharide
that participates in epithelial barrier dysfunction and endothelial
apoptosis (54). These factors generally lead to gastroenteritis, but
its association with the tumor environment may suggest that it
should be studied as a cancer-promoting pathogen. Interestingly,
Fusobacteria and Providencia share many important phenotypic
characteristics such as the ability to damage colorectal tissue and
to encode several virulence genes that are responsible for
lipopolysaccharide biosynthesis, which are also significantly
increased in the tumor microenvironment (22).

In the same way, certain CRC-associated Escherichia coli
strains acquired virulence factors, such as the afa and eae
adhesins, which conferred the ability to adhere to and invade
the intestinal epithelium (55, 56). E. Coli is indeed a common gut
commensal bacterium, but it has been shown to be able to
colonize the colonic mucosa; it increases mucosal permeability
through the activation of Wnt mitogenic signaling, it damages
the DNA and interferes with the DNA repair process, hence
inducing CRC development (57).

Other common pathogenic bacteria have been studied for
their association with carcinogenesis. A study showed that CRC
patients and precancerous lesions had a higher expression level
of Salmonella flagella antibodies than healthy controls, with diet
differences being one of the mediating factors, suggesting a
potential link between Salmonella and CRC (58). Furthermore,
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Salmonella can secrete the effector protein AvrA to promote
acetylation and ubiquitination of target proteins. AvrA inhibits
b-catenin degradation, maintains b-catenin stability, and
promotes intestinal epithelial cell proliferation, thereby
facilitating tumorigenesis, increasing tumor diversity, and
driving tumor progression (59).
THE INFLUENCE OF MICROBIOTA ON
CHECKPOINT INHIBITORS RESPONSE

It has recently been shown that gut microbiota influences the
host immune response to different cancer therapies, such as
radiotherapy, chemotherapy, stem cell transplant and
immunotherapy, by upsetting drug metabolism, the anti-
tumor effects and the toxicity of the medications currently
used (60).

ICIs immunotherapy is based on using natural and artificial
components in order to promote or induce the natural immune
system to neutralize cancer cells (61, 62). Since the introduction of
ICIs, there has been a change in the treatment of advanced cancer
by introducing immunotherapy as a recognized first and second-
line therapies. ICIs are monoclonal antibodies which target
inhibitory receptors on the surface of T cells. Checkpoint
blockade therapies release the inhibitory mechanism that control
T-cell mediated immunity. The immune checkpoints are
inhibitory pathways of immune cell that are important to
regulate immune response and maintaining self-tolerance.

Once T cells are activated, they strengthen the immune
system and boost an immune-mediated eradication of cancer
cells (63). Immune checkpoints expressed on cytotoxic and
regulatory T cells include programmed cell death protein-1
(PD-1 or CD279) and cytotoxic T lymphocyte associated
antigen 4 (CTLA-4 or CD152) (64, 65) that interact with
ligands cluster differential 80 (CD80), cluster differential 86
(CD86) and programmed death ligand-1 (PDL-1) on antigen
presenting cells (APCs). ICIs prevent receptors and ligands from
binding to each other, interrupting signals. In line with these
considerations, the host immune system provides a powerful
therapeutic target, thanks to its ability to precisely focus on
tumor cells (66).

Despite the abovementioned advantages of immunotherapy,
patients respond to ICIs heterogeneously and with a short-term
efficacy (67). The reason why some tumors lack response is still
unclear, although it probably depends on antigenicity and
adjuvanticity defects, which are key factors in shaping the
immunogenicity of tumor cells (68). Despite the fact that
several biomarkers (PD-L1 expression, tumor-infiltrating
lymphocytes, mutational burden, immune gene signatures and
microsatellite instability) have been proposed, their sensibility
and sensitivity are limited (69). Given that tumors with a high
number of somatic mutations are more responsive to
immunotherapies than the ones with a lower rate, the level of
somatic mutations seems to be a crucial factor (70).

Preliminary data indicate that enteric microbiota may affect
the efficiency of immunotherapy (71). It is well known that gut
Frontiers in Immunology | www.frontiersin.org 531
microbiota can modulate the peripheral immune system and that
its diversity plays a crucial role in the maturation, development
and function of both the innate and the adaptive immune
systems (66, 72). Given the crosstalk between gut microbiota
and immunity and considering that T cell infiltration of solid
tumors, such as metastatic melanoma, is associated with
favorable outcomes (73), microbiota could be considered as an
important modulator of response to immunotherapy.

Along these lines, remarkable studies have demonstrated how
the gut microbiota and its composition play a major role in the
response to immunotherapy with ICIs, targeting the PD-1 and
the CTLA-4 (74, 75).

With regards to the influence of gut microbiota on therapies
targeting the PD-1/PD-L1 axis, Sivan et al. have provided
important insights from murine models in 2015 (74). Indeed,
they have demonstrated how genetically similar mice with
different microbiota composition exhibited significant
immune-mediated differences in melanoma growth rate. The
intratumoral CD8+ T cell accumulation was found to be
significantly lower in mice with a more aggressive tumor
growth and a remarkable reduction in the difference of
antitumor immunity was shown after cohousing, suggesting an
environmental influence. Moreover, fecal suspensions derived
from mice with less aggressive tumor growth were able to delay
tumor growth and to enhance the induction and infiltration of
tumor-specific CD8+ T cells in the other group of mice, thus
supporting a microbe-derived effect. Microbiota composition
could also influence the response to immunotherapy with
antibodies targeting PD-L1. These abovementioned data
support the idea that microbiota might be a source of
intersubjective heterogeneity regarding spontaneous antitumor
immunity and therapeutic effects of antibodies targeting the PD-
1/PD-L1 axis.

A related research revealed how the antitumor effects of
CTLA-4 blockade depend on distinct Bacteroides species, with
a lack of response to CTLA-4 blockade in antibiotic-treated or
germ-free mice (75). The analysis of microbiota composition
showed Bifidobacterium being positively associated with
antitumor T cell responses. Furthermore, Bifidobacterium-
treated mice showed better tumor surveillance compared to
their non-Bifidobacterium treated counterparts, together with a
high increase of tumor-specific T cells in the periphery and a
significant increase of antigen-specific CD8+ T cells within the
tumor (74).

On the other hand, the treatment itself may affect microbiota
composition. Indeed, in patients with metastatic melanoma,
Ipilimumab can alter the abundance of gut Bacteroides spp. with
an immunogenic power, especially B. thetaiotaomicron and B.
fragilis, which, in turn, can affect its therapeutic effect. Feces rich in
B. fragilis (except B. distasonis or B. uniformis) were negatively
associated with tumor dimension after the therapy. Hence, the
efficacy of CTLA-4 blockade is influenced by the microbiota
composition (75). The gut microbiome and antibiotic therapies
appear to impact the response to adoptive cell therapies in murine
models (76, 77) and preliminary studies on haematological and
solid tumor case series seem to align with this data (78).
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Recent studies on humans have reported an unexpected role of
specific members of the gut microbiota as predictors of response to
immunotherapy in a distinctive series of epithelial tumors (NSCLC,
renal cell carcinoma, and urothelial carcinoma) and melanoma
patients (79–81). Routy et al. recently demonstrated how patients
with epithelial tumors that responded to PD-1 blockade had
differential composition of gut bacteria, being enriched in
Akkermansia and Alistipes. Moreover, by performing a fecal
microbial transplantation in mice it was demonstrated how there
were enhanced responses related to the responders’ fecal material. In
addition, the efficacy of anti-PD-1 in GF mice receiving non-
responders’ transplantation could be restored by the administration
of Akkermansia muciniphila alone or in combination with
Enterococcus hirae (79). Regarding metastatic melanoma, a study
by Gopalakrishan et al. revealed that responders to anti-PD-1 therapy
not only had a significantly higher diversity of bacteria in their gut
microbiota, but also had a higher relative abundance of Clostridiales,
Ruminococcaceae, and Faecalibacterium spp. On the other hand,
non-responders had significantly lower diversity of gut bacteria and a
higher abundance of Bacteroidales. The composition of microbiota
was related to the expression of cytotoxic T cell markers and the
mechanism of antigen processing and presentation, which was
increased in the first group of patients (80). In addition, another
study has shown how the transplantation of stool to germ-free mice
could improve the efficacy of anti-PD-L1 immunotherapy in mice that
received responder-stool by increasing the density of CD8+ T-cells and
reducing FoxP3+ CD4+ Tregs in the tumor microenvironment.

Given the recent findings of the microbiota being a significant
modulator of response to ICIs, important insights are provided
into the possibility of intervening on the composition of the
intestinal microbiota to affect the ability to modulate antitumor
immune responses. The crosstalk between microbiota and the
immune system may allow a microbiota-based selection of
patients that might benefit from a specific immunotherapy
treatment, boosting their anticancer response. The prospect of
being able to manipulate gut microbiota in order to modify the
response to checkpoint inhibitors, serves as a continuous
stimulus future research.

The Microbiota Modulation
of Drug Resistance
Besides regulating the response to checkpoint blockade therapies,
gut microbiota can also take part in resistance to this kind of
treatment, crowding out its therapeutic benefits. Xiaochang Xue
et al. indicated that commensal bacteria act in a direct way on our
immune cells, down-regulating the intestinal miR-10a
expression. As they have shown, E. coli and flagellated A4
commensal bacteria manage to recognize and engage TLR1/2,
TLR4, TLR5, TLR9 and NOD2 on dendritic cells (DCs), resulting
in a down-regulation of miR-10a via the MyD88-dependent
pathway (82). Considering that miR-10a inhibits DC
production of IL-12/IL-23p40, miR-10a itself acts as a negative
regulator of both innate and adaptive immune responses to
microbiota (82). It is known that IL-12/IL-23p40 gene has a
key role in the stimulation of Th1 cell-mediated immune
responses and cytotoxic activity of CD8+ T and natural killer
Frontiers in Immunology | www.frontiersin.org 632
cells (83). Thus, their absence threatens the effectiveness of the
anticancer immune response.

Furthermore, both Gram-positive and Gram-negative
bacteria are able to produce extracellular vesicles (EVs), which
carry carbohydrates, signaling molecules, metabolites, proteins,
DNA, RNA, in order to create a cell-to-cell communication
through the transport of their content (84). Bacterial EVs contain
short RNAs (85) (sRNAs) and miRNA-sized sRNAs (msRNAs)
(86), which have regulatory functions as well as miRNA in
eukaryotic cells. Different studies (87, 88) confirm that the
exchange of information between bacterial EVs and host cells
through the modulation of the gene expression, might be
involved in inducing resistance to chemotherapy and
immunotherapy. On the other hand, even human intestinal
epithelial cells release miRNAs encapsulated in EVs, which, as
it has been demonstrated by S. Liu et al., may promote the
growth F. nucleatus and E. coli, in order to maintain a
physiological balance of our intestinal microbiota (89).

In conclusion, it is clear that there is a mutual influence
between bacteria and human host cells, thus, it is conceivable
that further studies could provide additional findings to better
understand EV-mediated inter-cell communication and,
perhaps, a new opportunity to reduce the resistance to cancer
therapies by using specific probiotics, antibiotics or focusing on
the composition of microbiome to personalize therapies.
THE IMPACT OF FOOD ON
GUT MICROBIOTA

Diet
The contribution of diet to the modulation of microbiota and its
crucial role in orchestrating the host–microbiota crosstalk is evident
since the beginning of a human life when there is a microbiota-
dependent relationship between milk oligosaccharides and growth
promotion (90). This crosstalk between diet and microbiota
continues and becomes more complex with the increased
bacterial richness associated with the introduction of solid foods
(91), and keeps affecting our lives until the end, with a decreased
richness in the microbiota of frail ageing populations living in long-
stay care, probably due to reduced food diversity (92).

A study demonstrated how the gut microbiome can respond
to dietary interventions in humans in a rapid, diet-specific
manner and how a diet composed entirely of animal products
is able to trigger enrichment in bile-tolerant bacteria (Alistipes,
Bilophila and Bacteroides) and depletion in Firmicutes that
metabolize plant polysaccharides (Roseburia, Eubacterium
rectale and Ruminococcus bromii) (93). Some more
metagenomic and metabolomic analyses confirmed this trade-
off between protein fermentation and degradation in protein-
rich, animal-based diets, as opposed to carbohydrate
fermentation and amino acid biosynthesis in plant-based diets
(94). For example, the elimination of animal fats in the human
diet was associated with a decrease in harmful Bacteroidales
bacteria (95).
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One of the dietary components that has shown to have a
significant impact on the microbiota’s composition is fiber.
Indeed, taking into consideration the different diet styles, it
was shown how administering to mice a typical Western-style
diet, that contains a relatively lower amount of fiber, could
reduce the amount of Bifidobacterium and the gut microbiota
diversity, leading to increased penetrability, and a reduced
production rate of the inner mucus layer (96). Another study
in healthy human volunteers (97), showed how the reduction in
the amount of fiber intake led to a statistically significant
reduction in the abundance of Faecalibacterium prausnitzii and
Roseburia spp, which were positively correlated with the
proportion of butyrate during both baseline normal diets.
Moreover, a chronic lack of dietary fiber intake could lead to a
reduced diversity in the gut microbiota (98). Preliminary data
suggest that diet fiber intake could even impact the likelihood of
response to anti-PD-1 treatment (99), providing interesting
insights into the possible role of diet in the response to
cancer therapies.

Many other dietary nutrients were studied for their roles in
the modulation of gut microbiota, for example major groups of
polyphenols assayed in both in vitro and preclinical studies have
shown their ability to modulate the gut microbiota to a beneficial
pool characterized by the abundance of Bifidobacterium,
Lactobacillus, Akkermansia, and Faecalibacterium sp (100).
Resveratrol is a naturally occurring polyphenol produced by
some dietary botanicals, including red grapes (101), as a self-
defence agent. Together with its cardio-protective and neuro-
protective properties, it also serves as an antitumoral agent (102)
which has shown the ability to induce antioxidant enzymes that
attenuate oxidative stress (103).

Given the importance of these bacteria and their implications
in cancer therapy, it is possible that diet could improve the
patients’ outcomes through the modulation of their microbiome.
Furthermore, considering that diet interacts with the human
‘holobiont’ in a person-specific way, being able to obtain multiple
parameters from the host and its resident microbiota could assist
in devising precision dietary interventions (104). This would
provide a safe and simple opportunity for assessing the
implication of microbiota and downstream immune
manipulation in cancer patient populations.

Ongoing trials are currently exploring the impact that diet
could have on the gut microbiota of oncologic patients. A
randomized clinical trial that started in 2013 (NCT02079662)
is currently studying how an integrative oncological program,
that aims to make changes in the patients’ lifestyles and
behaviors, including dietary recommendations and meal
delivery, could influence long-term treatment results in
patients with stage III breast cancer initiating radiotherapy.
Interestingly, longitudinal gut and oral microbiome samples,
along with a battery of questionnaires, are listed as secondary
outcomes in order to better gauge how the microbiome might
change in relation to behavioral patterns in cancer patients. A
second trial (105) was designed to investigate fiber
supplementation in patients with a previous history of
colorectal cancer, through supplementation of beans into the
Frontiers in Immunology | www.frontiersin.org 733
normal diet for 8 weeks, to measure shifts in bacterial
populations after a diet alteration. Even though both studies
are not finalized yet, they will provide valuable information on
how lifestyle factors can modulate the gut microbiome and its
interaction with diet. A better understanding of the impact that
diet has on microbiota will likely be key to the future of clinical
and public health approaches to cancer.

Probiotics
Despite the impact of dietary nutrients seems relatively simple
and fast to design, it may be hard to monitor the patient’s
compliance in dietary description intake; the effect of food on the
microbiota might be modest and heavily host related. An
alternative method that could provide much more control
towards microbial manipulation could be the administration
of probiotics.

Probiotics are living microorganisms that, when balanced in
terms of quantity, grant beneficial effects to the host (106). It is
well-established that probiotics act in different ways to prevent
the colonization of pathogens, such as Clostridium difficile and
Staphylococcus aureus, and, consequently, dysbiosis (107).
Indeed, probiotics antagonize pathogen colonization by
competing for nutrients (108), sticking to the epithelial cell
surfaces or to the mucus (109) and creating clusters with
pathogens themselves (110). They also have a role in
producing metabolites, such as lactic acid, acetic acid and
bacteriocins, which are able to lower luminal pH (111) and
unleash a direct antimicrobial activity (112), in order to inhibit
pathogen growth.

There has been an increasing interest towards probiotics
potential role in improving antitumor immunity, considering
their ability to repress colonic inflammation and to stimulate
immunosurveillance (113).

Bifidobacterium and Lactobacillus are two of the most active
probiotics, which have been identified as regulators of gut
homeostasis (114, 115). Moreover, other probiotics improve
gut barrier function, by restoring epithelial integrity (116). An
innovative approach could consist of administering probiotics
before, during, or after potentially “microbiota-disrupting” or
“microbiota-modulated” treatments. There have been several
clinical trials administering probiotics in CRC patients. One
that was completed in 2017 (117), aimed to unveil the change
in fecal and tumor microbiota from the baseline, after using
probiotics containing strains of L. acidophilus and B. lactis. The
results showed an increased abundance of butyrate-producing
bacteria (above all Faecalibacterium and other Clostridiales)
within the tumor, and its associated non-tumor colonic
mucosa and stool. This is a demonstration that probiotic
therapy can change colonic mucosa. Some other ongoing trials
are assessing the impact of probiotic therapy on different types of
cancer, including the change on CD8+ T cell infiltrate in patients
with stage I-III breast cancer (NCT03358511), and thus,
providing a perspective for a future better understanding of
their influence on microbiome.

Nevertheless, even though probiotics are deemed safe and
well-tolerated by healthy subjects, in patients with damaged
August 2021 | Volume 12 | Article 704942

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Roberto et al. The Challenge of Immunotherapy Resistance
intestinal barrier or compromised immunity, such as cancer
patients, their physiological protection may fail (118), resulting
in bacteremia, fungemia, endocarditis, liver abscess and
pneumonia (119). In fact, many of the ongoing trials
mentioned before, have focused on safety endpoints. There is
definitely wide variability regarding the stability and composition
of the available probiotic therapies’ formulations (120), and
despite caution should be taken towards their use in cancer
patients, the use of probiotics is not absolutely forbidden (113).

Prebiotics
Prebiotics, introduced by Gibson and Roberfroid in 1995, are
non-viable food components, which can stimulate the growth
and the activity of specific gut bacteria, improving the host’s
health (121).

Probiotics produce some kinds of prebiotics, such as short-
chain fatty acids (SCFAs) (122). SCFAs are indeed produced by
several bacteria in the gut that ferment fibers. Many SCFAs, such
as acetate, butyrate and propionate, are important in maintaining
intestinal homeostasis (123). Because of their ubiquitous
presence, they are being studied for their potential as universal
metabolic regulators of the immune system. Among them, it has
been noticed that butyrate has a relevant role in CRC patients,
inducing the apoptosis of cancer cells and inhibiting
inflammation as well as oxidative stress (124). Though, it
needs to be considered that every host has a different genetic
background, which may interfere with butyrate beneficial
effects (125).

Furthermore, prebiotic oligosaccharides with a low grade of
polymerization may induce CD4+ T cells to produce IFN-g and
IL-10 (126). Besides, two different studies in which mice with a
transplantable liver tumor have received inulin or oligofructose
together with subtherapeutic doses of six chemotherapeutics,
pointed out boosted chemotherapeutic effects and observed an
increased lifespan (127, 128).

Despite the positive effects mentioned above, Singh et al. have
also reported a harmful microbial fermentation as a result of
prebiotic supplementation (129). Firstly, they tried to examine
whether inulin has a mitigating effect towards metabolic
syndrome in Toll-like receptor 5 (TLR5) knockout mice.
Unfortunately, even though a long-term inulin enriched diet
alleviates metabolic dysfunctions, concurrently, it promotes
cholestasis and necroinflammation, and therefore it can induce
hepatocellular carcinoma (HCC). However, a constant
supplementation of inulin in drinking water revealed to trigger
hepatic inflammation and fibrosis, but it did not promote tumor
development. Additionally, similar effects have been induced by
other soluble fiber, such as pectin and fructo-oligosaccharide, in
contrast with some non-fermentable and insoluble fiber, such as
cellulose, for instance. Interestingly, Clostridia species are highly
present in mice which develop an HCC and a depletion in
butyrate-producing bacteria has been reported to reduce the
incidence of the hepatocellular carcinoma in TLR5 knockout
mice (129).

In conclusion, the above submissions suggest that prebiotic
fermentation and butyrate production have a partial
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contribution in the hepatocellular carcinoma development,
although not being the decisive driver (113).

Postbiotics
In addition to probiotics and prebiotics, an interesting role in the
modulation of gut homeostasis and patients’ outcome is played
by postbiotics, which are soluble products and metabolites
derived from microorganisms (130). Instead of relying on
bacteria supported by prebiotics or introduced through
probiotics, postbiotics represent the microbial product itself,
thus surpassing the bacteria (131). Despite the advantage of
not being dependent on the cultivation of specific microbiota
compositions, further characterization of postbiotic mechanism
of action is still required.

In fact, it has been noted that S. thermophilus (132) and E. coli
(133) generate supernatants, which protect rat gut from 5-FU-
induced mucositis. In addition, p40, a soluble protein produced by
Lactobacillus rhamnosus GG, avoids cytokine-induced epithelial
apoptosis, prevents gut barrier dissolution (134, 135) and raises
immunoglobulin A secretion (136). Moreover, an example of a
molecule that can induce an immune phenotype in the absence of
the microorganism is polysaccharide A (PSA) derived from
Bacterioides fragilis. A study reported how this prominent human
commensal can direct the conversion of CD4+ T cells into Foxp3+
Treg cells with the immunomodulatory molecule being
polysaccharide A. Interestingly, polysaccharide A administration
alone was sufficient to induce expansion of Tregs and to increase the
production of anti-inflammatory IL-10 in mice via TLR2 activation.
Furthermore, PSA was not only able to prevent, but also cure
experimental colitis in animals (137). Despite microbial products
are considered to be adjuvants stimulating the immune response,
this study provides an insight into their ability to promote immune
suppression as well.

Moreover, as mentioned before, SCFAs are gut microbiota-
derived bacterial fermentation products that are being studied
for their effect on the immune system. A study demonstrated
how short-chain fatty acids regulate the size and function of the
colonic Treg pool and protect against colitis in a Ffar2-
dependent manner in mice (138). Another study showed that
butyrate, produced by commensal microorganisms during starch
fermentation, facilitated extrathymic generation of Treg cells and
de novo Treg-cell generation in the periphery was potentiated by
propionate (139).

In oncologic patients, postbiotics induce antitumor effects
(140). In support of this possibility, a study published by Konishi
et al. in 2016, showed that Lactobacillus casei ATCC334
supernatant contained a powerful tumor-suppressive molecule,
identified as ferrichrome. Ferrichrome treatment could induce
apoptosis through the activation of c-jun N-terminal kinase
(JNK). Interestingly, despite the tumor-suppressive effect of
ferrichrome on colon cancer cells was found to be greater than
or equal to that of conventional CRC drugs, this postbiotic
showed less of an effect on healthy intestinal cells (140).

Overall, these data demonstrate that exogenous bacterial
metabolites mediate the communication between the
commensal microbiota and the immune system and can be
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utilized to influence immune activity in order to maintain
homeostasis and promote health.

The putative mechanisms of actions of probiotics, prebiotics
and postbiotics are shown in Figure 2.

Antibiotics
Even though probiotics and prebiotics bring numerous
modifications to the human gut microbiota, unluckily, all their
benefits are transient (141–144). Evidence sustains that intestinal
microbiota alterations, provided by antibiotics injection, result in
an enduring loss of the original human microbiota diversity
(145). Considering that patients’ response to immunotherapy
partly depends on the varied composition of their microbiota, a
loss in terms of abundance and types of microorganism species
could affect therapeutic outcome.

A retrospective study investigated the negative association
between the administration of antibiotics and ICIs. Patients that
were recently given antibiotic therapy (ATB) had shorter
Progression Free Survival (PFS) and Overall Survival (OS)
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when compared to those who did not receive ATB (146).
Furthermore, the combination of ATBs and proton pump
inhibitors has also been associated with gut dysbiosis,
decreased bacterial richness, and the promotion of T-cell
tolerance (147). It seems that antibiotic treatment might
reduce the efficacy of ICIs by modifying the patient’s
microbiota (80).

Ipilimumab is a wholly human monoclonal antibody against
CTLA-4 that was approved in 2011 for the treatment of
unresectable and metastatic melanoma, as well as adjuvant
treatment for melanoma (148). It was found that patients on
treatment with Ipilimumab developed antibodies against some
elements of gut microbiota (149). On the other hand, a
combination of broad-spectrum antibiotics, such as Ampicillin,
Colistin and Streptomycin could compromise the antitumoral
effects of CTLA–4–specific antibodies, suggesting that gut
microbiota is crucial to set up the best anticancer treatment
outcome through CTLA-4 blockade (75). Indeed, it has been
shown that the administration of antibiotics interferes with the
A
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FIGURE 2 | Putative mechanisms of actions of probiotics, prebiotics and postbiotics. Some kinds of probiotic, such as Bifidubacterium, Lactobacillus,
Faecalibacterium and Clostridiales, may take an active role in maintaining gut homeostasis by: (A) preventing the proliferation and colonization of pathogens by
competing for nutrients and microenvironment; (B) releasing antimicrobial peptides (such as lactic acid, acetic acid and bacteriocins) with a direct bactericidal effect
and, indirectly, by lowering luminal pH. Moreover, probiotics induce an increase of mucin production, promote epithelial restoration and can enhance the expression
of tight junctions. Prebiotics (inulin, oligofructose, soybean and oat fiber, pectin and non-digestible carbohydrates), derived from probiotics, (C) produce postbiotics
through a fermentation process. Among prebiotics, Butyrate not only has an anti-inflammatory and antioxidative effect, but also an apoptotic effect against cancer
cells, in CRC patients. (D) Oligosaccharides with a low grade of polymerization, directly absorbed by gut epithelium, stimulate T-cell CD4+ to release IFN-g and
IL-10. Postbiotics, prebiotics-derived products, on the one hand, (E) play a cytotoxic role against cancer cells, which increase their apoptosis; on the others
(F) Lactobacillus rhamnosus GG and Bacteriodes fragilis, for instance, provide the wellness of the intestinal epithelium by inhibiting apoptosis of normal epithelial
cells and raising the level of Ig A, IFN-g and IL-10.
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clinical benefit of anti-CTLA-4 therapy in mouse models and
also PD-1-based immunotherapy both in mice and in humans
(75, 79, 150). In a study involving a group of 74 patients with a
stage IV melanoma, 10 of them received ATB 30 days prior to the
administration of ICI, while the rest of the group has been treated
with a single-agent ICI, among Pembrolizumab, Nivolumab and
Ipilimumab, as first-line therapy. Patients of the ATB group had
a PFS and an OS meaningfully shorter than those in the non-
ATB group (151).

Another study examined the impact of broad-spectrum
antibiotic treatments administered 1 month before the
initiation ICI to 3 months thereafter, in patients with
metastatic non-small cell lung cancer. Interestingly, a shorter
duration of ATB did not impact patient prognosis when
compared with a longer course, bringing light on the potential
importance of the duration of antibiotic treatments (152). The
abovementioned data suggest that the duration of broad-
spectrum antibiotic treatments with respect to the initiation of
ICI-based immunotherapy is important.

In conclusion, it needs to be considered that patients that
need antibiotic therapies may have an enfeebled immune system
and are therefore more likely to be subjected to bacterial
infections and to be refractory to anticancer immunotherapy.
Consequently, in order to reduce the negative impact of ATB on
ICI treatments, it will be important to define the specific
antibiotics that are more likely to negatively impact on the
clinical outcome. Thus, using prebiotics and probiotics during
ATB might be solicited to reduce the negative impact on
microbiome composition induced by antibiotic therapy.

Fecal Microbiome Transplantation
Fecal microbiota transplantation (FMT) represents the most
direct way to affect microbiota, using complete normal human
flora as a therapeutic probiotic mixture of living organisms. This
type of bacteriotherapy has a longstanding history in animal
health and is used against chronic infections of the bowel,
including those infected by Clostridium difficile resistant to
conventional therapies as well as other patient populations
(153). Nonetheless, fecal microbiota transplantation is also one
of the most used ways to prove that microbiota is able to upset
the outcome of immunotherapy (74, 75, 80, 154–156).

Several studies aimed to show the impact of fecal microbiota
transplantation in mice. Germ-free or antibiotic-treated mice
that had received a fecal microbiota transplantation from
patients who had a response to immune-checkpoint blockade,
were enriched in CD45+ and CD8+ T cells, indeed correlating
with a positive response to PD-1 immune-checkpoint blockade
(80, 157) (Figure 3). On the other hand, fecal microbiota
transplantation with feces from non-responders led to
resistance to ICIs, with tumors having a high density of
immunosuppressive CD4+ Treg cells (157).

Moreover, mice transplanted with feces from responders
developed a higher response to anti-PD-L1 therapy (80, 154).
It is noteworthy that, when fecal microbiota is enriched with A.
muciniphila, as well as with Faecalibacterium spp and
Bifidobacterium spp (80, 157), it correlates with a positive
response to PD-1 immune-checkpoint blockade in patients
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with various types of tumors. Thus, Bifidobacterium in the gut
is positively related to anti-tumor activity, especially by
stimulating CD8+ T cells and DCs (60). In line with these
observations, the use of antibiotics is related to lower clinical
efficiency of immune-checkpoint blockade in different kinds of
tumor tested in mice and patients (157).

Furthermore, clinical FMT trials are being considered in patients
with both hematologic malignancies and solid tumors. The single-
arm study “ODYSSEE” (158), explored the use of autologous fecal
microbiota transplantation in acute myeloid leukemia patients
treated with intensive chemotherapy and antibiotics. The aim was
to restore the balance of their intestinal microbiome and thereby
eradicate treatment-induced multidrug resistant bacteria, infection-
related complications, as well as sequelae to the gastrointestinal
tract. Moreover, in a Phase 1 clinical trial, FMT from patients
that responded to immunotherapy is being administered to
refractory patients with metastatic melanoma and unresectable
stage III melanoma who failed at least one line of PD-1
blockade (159).

Recently, Baruch et al. reported the first-in-human clinical
trials to test whether fecal microbiota transplantation can affect
the response to anti–PD-1 immunotherapy in melanoma
patients. In their phase 1 clinical trial, they investigated the
safety and feasibility of FMT and the combination of FMT and
reinduction of anti–PD-1 immunotherapy in 10 patients with
anti–PD-1–refractory metastatic melanoma. They observed
clinical responses in three patients, with FMT being associated
with favorable changes in immune cell infiltrates and gene
expression profiles in both the gut lamina propria and the
tumor microenvironment (160). The design of new additional
trials is currently underway, in order to test the hypothesis that
the modulation of the gut microbiota can improve the response
to treatment with ICIs (80).

These interesting preliminary findings offer compelling
evidence for the ability of FMT to affect immunotherapy
response in cancer patients, supporting the concept of
overcoming resistance to immunotherapy by modulating the
gut microbiota.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The microbiome era has begun, and we have obtained substantial
results on the influence of microbiota on cancer progression and
treatment, including ICIs. The crosstalk between the host
immune system and microbiota may allow a microbiota-based
selection of patients that might benefit from a specific
immunotherapy treatment, boosting their anticancer response.
However, more studies on the topic are needed in order to better
elucidate the microbial communities that colonize the tumor
microenvironment, as well as the approaches to modulate the
composition of gut microbiota.

Many dietary nutrients were studied for modulating gut
microbiota, with fiber having shown a significant impact on
the maintenance of microbiota diversity and the response to
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anti-PD-1 treatment. Since patients’ compliance might be hard
to monitor and the effect of food on microbiota might be modest
and heavily host related. An alternative method that could
provide control towards gut homeostasis could be the use of
prebiotic, postbiotic, probiotic and the administration of specific
therapeutic schemes, for example with antibiotics. However,
broader research is needed to determine the impact of these
environmental factors on cancer therapy.

Satisfactory results offer compelling evidence on the ability of
FMT to affect immunotherapy response in cancer patients.
Further clinical trials with the use of FMT in cancer patients
during ICIs are needed to better identify a strategy to overcome
resistance to immunotherapy and improve patients’ outcomes.
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Exploring the individual microbial profile and having a clear
understanding of its interactions with various environmental
factors could be a useful step to better modulate the gut
microbiota. The prospect of being able to manipulate gut
microbiota in order to modify the response to checkpoint
inhibitors and set up personalized strategies serves as a
continuous stimulus future research.
AUTHOR CONTRIBUTIONS

The authors contributed equally to this review. All authors
contributed to the article and approved the submitted version.
FIGURE 3 | The gut microbiota modulates the response to PD-1 blockade therapy. (A) The enrichment of fecal microbiota with Akkermansia muciniphila,
Faecalibacterium spp and Bifidobacterium spp correlates with a positive response to PD-1 immune-checkpoint blockade in patients with various types of tumors.
(B) A fecal microbiota transplantation from responders into tumor-bearing mice correlates with increased antitumor CD8+ T cells in the tumor and improved
response to anti–PD-1 therapy. (C) On the other hand, the higher abundance of Bacteroidales correlates with a deficient response to PD-1 blockade therapy in
humans. (D) Mice receiving FMT from non-responders show poor anti-tumor response to anti–PD-1 therapy, and tumors show a higher density of
immunosuppressive CD4+ Treg cells.
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Tumor-infiltrating immune cells (TIICs) have become an important source of markers for
predicting the clinical outcomes of cancer patients. However, measurements of cellular
heterogeneity vary due to the frequently updated reference genomes and gene
annotations. In this study, we systematically collected and evaluated the infiltration
pattern of 65 immune cells. We constructed the Immune Cell Pair (ICP) score based on
the cell pair algorithm in 3,715 samples and across 12 independent cancer types, among
which, the ICP score from six cancer types was further validated in 2,228 GEO samples.
An extensive tumorigenic and immunogenomic analysis was subsequently conducted. As
a result, the ICP score showed a robust reliability and efficacy in predicting the survival of
patients with gliomas, in pan-cancer samples, and six independent cancer types. Notably,
the ICP score was correlated with the genomic alteration features in gliomas. Moreover,
the ICP score exhibited a remarkable association with multiple immunomodulators that
could potentially mediate immune escape. Finally, the ICP score predicted
immunotherapeutic responses with a high sensitivity, allowing a useful tool for
predicting the overall survival and guiding immunotherapy for cancer patients.

Keywords: immune cell, glioma microenvironment, cell pair algorithm, immunotherapy, prognostic model
Abbreviations: TIICs, tumor-infiltrating immune cells; ICP, immune cell pair; NK, natural killer; GEO, Gene Expression
Omnibus; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; RMA, robust multichip average; FPKM,
fragments per kilobase million; TPM, transcripts per kilobase million; SNV, single-nucleotide variant; SNP, single-nucleotide
polymorphism; INS, insertion; DEL, deletion; ROC, receiver operating characteristic; AUC, area under the curve; CNV, copy
number variation; MSI, microsatellite instability; HRD, homologous recombination deficiency; CTA, cancer testis antigen;
APM, antigen processing and presenting machinery; TCR, T cell receptor; IFNG, interferon gamma; ISG.RS, interferon
stimulated genes resistance signature; IFNG.GS, IFNG hallmark gene set; CYT, cytotoxic activity; GEP, T cell-inflamed gene
expression profile; ICB, immune checkpoint blockage.
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INTRODUCTION

Tumor-infiltrating immune cells (TIICs), including T cells, B
cells, macrophages, and natural killer (NK) cells, represent the
major components of immune response against a tumor (1).
TIICs not only regulate the immunosurveillance and survival of
cancer (2), but also accelerate tumor progression by creating a
permissive microenvironment that stimulates tumor growth (3).
Accumulating evidences have demonstrated that TIICs were
associated with the clinical outcomes in various cancer types,
including breast cancer (4), ovarian cancer (5), pancreatic tumor
(6), lung adenocarcinoma (7), head and neck squamous
cell carcinoma (8), and melanoma (9). However, efforts are
still needed for a deep understanding of the immune
activity of TIICs in the tumor microenvironment. So far,
classic methods estimating TIICs include flow cytometry,
immunofluorescence, and RNAseq. However, unified results
may appear due to the different intervention factors in each
method or different reference genomes. It should be noted
that the fraction of each TIICs is within a relatively stable
range. Thus, investigating the ratio of different TIICs is
interesting and promising in optimizing the research about
tumor microenvironment.

Previous studies have elucidated the tumor microenvironment
in different cancer types, among which, glioma is one of the most
common and malignant brain tumor with leading cancer-caused
death rates. Currently, the clinical outcome of glioma patients is
still dismal (10). Notably, glioma patients with similar clinical
features tend to have a different prognosis due to the high level of
heterogeneity, which greatly sets back the prospect for the
prognosis of glioma patients. Previous studies have successfully
extracted the TIICs from gliomas, aiming to provide a convincing
evidence of the existence of abundant TIICs in gliomas
microenvironment and provide important insights into
immunotherapeutic approaches (11). The abundant available
datasets of gliomas also facilitate the investigation on gliomas.
Altogether, developing a TIIC-based signature in glioma and
some other malignant cancer types can help in determining the
prognostic value of TIICs, furthermore, improve the efficiency of
immunotherapeutic approaches that activate the tumor-specific
immune response.

In this study, 65 immune cell types were incorporated into the
construction of the prognostic signature, the abundance of which
was estimated in the glioma cohort and six independent cancer
types to identify the immune cell types with an optimal
prognostic value. Then, the immune cell pair (ICP) score was
constructed based on the infiltration level of the identified
results. ICP score was found to significantly correlate with the
overall survival in glioma patients, six independent cancer types,
and pan-cancer samples. Moreover, the ICP score profoundly
correlates with various tumorigenic mutations in glioma patients
and could sensitively predict the response to immunotherapy
targeting immune checkpoints. This novel immune scoring
system enables an in-depth understanding of tumor infiltrating
immune cells and improves the clinical management of
glioma patients.
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MATERIALS AND METHODS

Datasets Collecting and Preprocessing
Pan-cancer data and the corresponding clinical datasets were
collected from the Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas
(TCGA; https://xenabrowser.net/). The glioma gene expression
profiles and the corresponding clinical datasets were collected
from the GEO, TCGA, and Chinese Glioma Genome Atlas
(CGGA; http://www.cgga.org.cn/). A total of 5,230 pan-cancer
samples of 12 independent cancer types were included in this
study. A total of 3,715 glioma patient samples were collected
from 14 cohorts. Cohorts with more than 50 glioma samples
were included and cohorts with incomplete information on the
overall survival of patients were excluded. In total, 2,228 samples
of 12 cohorts consisting of 6 independent cancer types were from
the GEO. The information of the platforms and numbers of
samples of each cohort is provided in Table S1.

Raw data from the GEO datasets were generated using
Affymetrix and Agilent. The robust multichip average (RMA)
algorithm was used to perform quantile normalization and
background correction of the raw data from Affymetrix. The
consensus median polish algorithm was used for the final
summarizing of oligonucleotides for each transcript in the
Affymetrix software. Limma software was used for processing
the raw data from Agilent. RNA-sequencing data were
downloaded from the TCGA and CGGA data portals, and the
fragments per kilobase million (FPKM) values were transformed
into transcripts per kilobase million (TPM) values that had a
similar signal intensity with the RMA-standardized values from
the GEO datasets (12). R package sva was used to remove the
computational batch effect among each cohort. Each cohort was
processed and normalized independently.

Immune Cell Signature Collection
Immune cell signatures were collected from diverse publicly
available resources through a manually extensive literature
search (13–22). Literatures with the reference genome of
immune cells over the last 15 years were screened out. A total of
65 immune cell signatures were finally integrated by combining
the gene sets of the same immune cell type from different
literatures and excluding non-immune and non-stromal cell
types. These 65 immune and stromal cells included B cells, CD8
T cells, DCs, Macrophages, Neutrophils, Th1 cells, Th2 cells, Mast
cells, NK cells, Erythrocytes, Melanocytes, Megakaryocytes,
Fibroblasts, Astrocytes, Basophils, Monocytes, Endothelial cells,
et al. (Table S2). Thus, this immune cell signature was considered
to be reliable and comprehensive.

Development of a Reliable Prognostic
Signature in Glioma
A prognostic signature was constructed based on stable immune
infiltrating cells. The R package GSVA was applied to implement
the single sample gene set enrichment analysis (ssGSEA) for
calculating the immune enrichment score of 65 immune cell
signatures in three glioma datasets, TCGALGGGBM-RNAseq
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(656 samples), CGGA311 (311 samples), and GSE108474 (414
samples), respectively (23). Univariate Cox analysis was
performed on the 65 immune cell signatures to select the
overlapped prognosis-associated immune cell types whose
expression was significantly associated with patient OS
(P < 0.05) in these three glioma datasets. Prognosis-associated
immune cell types (Ci) were paired with all immune infiltrating
cell types (Cj). For a cell pair started with Ci, Ci and Cj,
Score_ij = 1 (exp_Ci – exp_Cj > 0) and Score_ij = 0 (exp_Ci –
exp_Cj < 0). C-index was adopted to estimate the performance of
each Score_ij and find out the Score_ij with the statistically
significant p-value and highest C-index (16). For each Ci,
Score_ij was identified with the highest C-index. For the
obtained cell pairs, cell pairs were sorted with the HR > 1 and
duplicate cell pairs were removed. Then, the ICP score was
calculated as the sum of these selected Score_ij:

ICP score = S Score_ij

ICP score was then validated in all included 14 glioma cohorts
and the Xiangya cohort.

Genomic Alterations in the Immune Cell
Pair Score
Somatic mutations and somatic copy number alternations
(CNAs) which corresponded to the glioma samples with RNA-
seq data were downloaded from TCGA. GISTIC analysis was
adopted to determine the genomic event enrichment. CNAs
associated with the two ICP score groups and the threshold
copy number at alteration peaks were obtained using GISTIC 2.0
analysis (https://gatk.broadinstitute.org). The R package
TCGAbiolinks was used for downloading the somatic mutation
data derived from the WES data acquired by Mutect2 (24).
Somatic mutations including the single-nucleotide variant
(SNV), single-nucleotide polymorphism (SNP), insertion
(INS), and deletion (DEL) were analyzed and visualized using
the R package maftools (25). Based on the ascending order of the
p-value, 30 most differentially mutated genes were detected using
Fisher’s exact test. CoMEt algorithm was used to detect the co-
occurrence and mutually exclusive mutations.

Prediction of the Immune Cell Pair Score
in Immunotherapy Response
The IMvigor210 cohort, a urothelial carcinoma cohort treated
with the anti‐PD‐L1 antibody atezolizumab, was included for the
prediction of response to immunotherapy (26). The melanoma
dataset (GSE78220) was also used to predict the response to anti-
PD-1 (pembrolizumab or nivolumab) immunotherapy (27).
Based on the Creative Commons 3.0 License, complete
expression data and clinical data were downloaded from http://
research-pub.Gene.com/IMvigor210CoreBiologies. Raw data
were normalized using the DEseq2 R package, and the count
value or FPKM normalized value were transformed into the
TPM value. ICP score was then constructed independently in
these two datasets.
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Development of a Reliable Prognostic
Signature in Other Cancer Types
Subsequently, the prognostic signature was constructed
independently based on stable immune infiltrating cells in 12
cancer types from the pan-cancer data in TCGA. Univariate Cox
analysis was used to select the prognosis-associated immune cell
types whose expression was significantly associated with patient
OS in each of the 12 cancer types (P < 0.05), respectively.
Prognosis-associated immune cell types (Ci) were paired with
all immune infiltrating cell types (Cj). For a cell pair starting with
Ci, Ci and Cj, Score_ij = 1 (exp_Ci – exp_Cj > 0) and Score_ij = 0
(exp_Ci – exp_Cj < 0). C-index was adopted to estimate the
performance of each Score_ij and find out the Score_ij with the
statistically significant p-value and highest C-index (16). For
each Ci, Score_ij was identified with the highest C-index. For the
obtained cell pairs, cell pairs were sorted with the HR > 1 and
duplicate cell pairs were removed. Then, the ICP score was
calculated as the sum of these selected Score_ij:

ICP score = S Score_ij

Twelve datasets of six representative cancer types were selected
for further validation of the ICP score established in each
cancer type.

RNA Sequencing
RNAstore-fixed tumor tissues from 48 glioma patients were
collected for sequencing. RNA was sheared followed by
sequencing library preparation using the NEBNext Ultra RNA
Library Prep Kit. The Phusion High-Fidelity RNA polymerase, the
Index (X) Primer and the Universal PCR primers. After target
region capture by biotin-labeled probes, the captured libraries
were sequenced on an Illumina Hiseq platform to generate 125/
150 bp paired-end reads. In-house perlscripts were used to process
raw data (raw reads). Then, reads containing adapter and ploy-N,
and low-quality reads were removed to obtain clean data (clean
reads). Reference genome and gene model annotation files were
obtained from the genome website. Index of the reference genome
was built using Hisat2 v2.0.5 and paired-end clean reads were
aligned to the reference genome. FeatureCounts v1.5.0-p3 was
then used to count the read numbers mapped to each gene. TPM
value of each gene was calculated on the basis of the gene length
and reads count.

Statistical Analysis
Kaplan-Meier curves with log-rank test were used to assess
survival difference between groups. The univariate and
multivariate Cox regression analyses were performed to detect
the prognostic factors. Pearson correlation analyses were used to
calculate correlation coefficients. The cutoff value of ICP scores
was calculated using the R package survminer. Based on the
dichotomized ICP scores, patients were grouped as with high or
low ICP score in each data set. Data was visualized using the R
package ggplot2. OncoPrint was used to delineate the mutation
landscape of TCGA by the maftools R package (28).
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All survivorship curves were generated using R package
survminer. All statistical analyses were conducted using R
software. P < 0.05 was considered statistically significant.
RESULT

Construction of the Immune Cell Pair
Score and Its Prognostic Value
A total of 65 immune cell types were collected from publicly
available resources and analyzed for the construction of ICP score.
In total, 38 overlapped prognosis-associated immune cell types
were identified by univariate Cox analysis performed on the 65
immune cell types in TCGA, CGGA, and GSE108474, respectively
(Table S3). ICP score was calculated based on the predictive
performance of each cell pair constituted from 38 prognosis-
associated immune cell types and all 65 immune cell types
(Figure 1A). Glioma patients were classified into high ICP score
group and low ICP score group based on the cutoff value of the
ICP scores calculated using the R package survminer. High ICP
score was a prognostic marker for poor clinical outcomes in pan-
glioma samples from TCGA, CGGA, and GSE108474 (log-rank
test, p < 0.001; Figures 1B–D, respectively). High ICP score was
also a prognostic marker for poor clinical outcomes in LGG, and
GBM samples from TCGA (log-rank test, p < 0.001, p = 0.00195,
respectively; Figure S2A), CGGA (log-rank test, p < 0.001,
respectively; Figure S2B), and GSE108474 (log-rank test,
p < 0.001, p = 0.05947; Figure S2C). Moreover, a high ICP
score correlated with a worse survival probability in the Xiangya
cohort (log-rank test, p < 0.001; Figure 1E, Table S4). The receiver
operating characteristic (ROC) analyses with the Area Under the
Curve (AUC) of 0.795 confirmed that ICP score was a prognostic
biomarker in predicting the survival status of glioma patients
(Figure 1F). Further, ICP score was a prognostic biomarker in
predicting the 1-year, 3-year, and 5-year survival of glioma
patients, which the AUC of ROC curve was 0.868, 0.879, and
0.801, respectively (Figure 1G). The prognostic value of ICP score
was further verified in all 3,715 glioma samples included in this
study (Figure 2A) and in each of the glioma datasets (Figure 2B).
ICP score could significantly stratify the survival of glioma
patients. The univariate Cox analyses confirmed that ICP score
was a hazardous factor in glioma (Figure 3A).

Validation of the Immune Cell Pair Score
in Other Cancer Types
To further confirm the efficacy and stability of the prognostic
signature from the 65 immune cell types, ICP score was
developed in 12 cancer types from TCGA, respectively. ICP
score predicted a worse survival outcome in all of the 12 cancer
types included (Figure 3C), and the univariate Cox analyses
confirmed that ICP score was a hazardous factor in all of the 12
cancer types (Figure 3B). We then performed the validation of
ICP score in six most representative cancer types (Table S5). As
expected, ICP score was associated with a worse overall survival
in breast cancer (Figure 4A), melanoma samples (Figure 4B),
Head and Neck squamous cell carcinoma samples (Figure 4C),
Frontiers in Immunology | www.frontiersin.org 446
Pancreatic adenocarcinoma samples (Figure 4D), Lung
adenocarcinoma samples (Figure 4E), and Liver hepatocellular
carcinoma samples (Figure 4F).

Genomic Features of the Immune Cell Pair
Score Groups in Glioma
Somatic mutation analysis and copy number variation (CNV)
were performed using the TCGA dataset to explore the genomic
traits of the two ICP score groups. A global CNV profile was
obtained by comparing the two ICP score groups (Figure 5A,
Table S6). According to somatic mutation analysis, mutations in
EGFR (30%), TTN (24%), PTEN (29%), and TP53 (23%) were
most highly enriched in the high ICP score group (Figure 5B). In
comparison, IDH1 (77%), TP53 (48%), ARTX (33%), and CIC
(20%) mutations were enriched in the low ICP score group
(Figure 5C). Missense mutation was the predominant gene
alteration type in all these genes except for ATRX, in which
frame-shifting deletion was the most common type.

Different types of somatic mutations, including the single-
nucleotide variant (SNV), single-nucleotide polymorphism
(SNP), insertion, deletion, and intergenic region (IGR), were
analyzed using the R package maftools. Silent, nonsense,
missense, intronic, 5’ and 3’ UTR mutations were more common
in the high ICP score group than in the low ICP score group
(Figure S3A). While the frequencies of insertion and deletion were
not statistically different between the two ICP score groups, SNPs
were significantly more common in the high ICP score group
(Figure S3B). Among the detected SNVs, C>T appeared to be the
most commonmutation in the high ICP score group (Figure S3C).
The T to A, C to T,t and C to A mutations occurred more
frequently in the high ICP score group than in the low ICP score
group. The top 30 most differentially expressed mutated cancer-
related genes between the two ICP groups are listed in Figure S3D.
Common carcinogenic pathways were more active in the high ICP
score group (Figure S3E). The strongest co-occurrent pairs of gene
alteration in the high ICP score group were PTEN-TP53, RB1-
TP53, TTN-CALN1, and TTN-FLG, which showed that TP53,
PTEN, RB1, and TTN are functionally linked (Figure S3F). On the
other hand, the most mutually exclusive pairs in the low ICP score
group were CIC-TP53 and EGFR-IDH1 (Figure S3F).
Furthermore, the AUC of ICP score for predicting the mutation
status of IDH, CALN1, RB1, EGFR, and PTEN were 0.936, 0.826,
0.835, 0.81, and 0.841, respectively (Figure 5D).

Potential Intrinsic Immune Escape
Mechanisms Related to the Immune
Cell Pair Score
The intrinsic immune escape mechanism was reported to mainly
include three aspects: immune checkpoint molecules, tumor
immunogenicity, and antigen presentation capacity (29). We
first explored the association between ICP score and immune
checkpoint molecules which are classified into seven groups,
including antigen-presenting, co-stimulator, co-inhibitor, and
cell adhesion proteins and receptors, ligands, and others (3, 26).
The increasing ICP score positively correlated with the expression
of most immune checkpoint molecules (Figure 6A). In addition,
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A
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E F G

FIGURE 1 | (A) Flow diagram of the cell pair algorithm. Kaplan–Meier curves for the two ICP score groups in (B) TCGA, (C) CGGA, and (D) GSE108474,
respectively. Log-rank test, P < 0.001. (E) Kaplan–Meier curves for the two ICP score groups in the Xiangya cohort. Log-rank test, P < 0.001. (F) ROC curve
measuring the sensitivity of ICP score in predicting the survival status of the patients. The area under the ROC curve was 0.795. (G) ROC curve measuring the
sensitivity of ICP score in predicting the 1-year, 3-year, and 5-year survival of the patients. The area under the ROC curve was 0.868, 0.879, and 0.801, respectively.
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ICP score had a significant positive relationship with some classical
immune checkpoint molecules, including PDCD1, CD274,
PDCD1LG2, TIGIT, HAVCR2, IDO1, and LAG3 in Xiangya
cohort (Figure 6B).

A series of factors associated with tumor immunogenicity was
then assessed (Table S7). The high ICP score group exhibited a
Frontiers in Immunology | www.frontiersin.org 648
lower microsatellite instability (MSI) and homologous
recombination deficiency (HRD) (Figure 7A, Figure S4A).
High ICP score group presented a higher level of intratumor
heterogeneity, nonsilent mutation rate, number of segments,
aneuploidy score, and fraction altered, all of which were
significant indicators for genome alteration (Figure 7B,
A B

FIGURE 2 | (A) Kaplan–Meier curves for the two ICP score groups in all glioma samples. Log-rank test, P < 0.001. (B) Kaplan–Meier curves for the two ICP score
groups in all collected glioma datasets. Log-rank test, P < 0.05.
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FIGURE 3 | (A) Univariate cox regression analyses to estimate the clinical prognostic value between the low/high ICP score groups in independent glioma datasets.
(B) Univariate cox regression analyses to estimate clinical prognostic value between low/high ICP score groups in 12 independent cancer types in TCGA. The length of
the horizontal line represents a 95% confidence interval for each group. The vertical dotted line represents the hazard ratio (HR) in all patients. (C) ICP score was
developed in 12 independent cancer types in TCGA. Kaplan–Meier curves for two ICP score groups in 12 cancer types. Log-rank test, P < 0.001. BLCA, Bladder
Urothelial Carcinoma; BRCA, breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; HNSC, Head and Neck squamous
cell carcinoma; KIRC, Kidney renal clear cell carcinoma; LAML, Acute Myeloid Leukemia; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC,
Lung squamous cell carcinoma; MESO, Mesothelioma; PAAD, Pancreatic adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma.
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FIGURE 4 | Validation of ICP score in 6 representative cancer types. (A) Kaplan–Meier curves for the two ICP score groups in the BRCA dataset, GSE103091. Log-
rank test, P = 0.01615. (B) Kaplan–Meier curves for the two ICP score groups in the SKCM dataset, GSE65904. Log-rank test, P < 0.001. (C) Kaplan–Meier curves
for the two ICP score groups in the HNSC dataset, GSE65858. Log-rank test, P = 0.00921. (D) Kaplan–Meier curves for the two ICP score groups in the PAAD
datasets, GSE57495, GSE71729, and GSE79668. Log-rank test, P = 0.00541, P = 0.01145, and P < 0.001, respectively. (E) Kaplan–Meier curves for the two ICP
score groups in the LUAD datasets, GSE30219, GSE31210, GSE37745, GSE68465, and GSE72094. Log-rank test, P = 0.01055, P = 0.00141, P = 0.02505,
P = 0.01457, and P < 0.001, respectively. (F) Kaplan–Meier curves for the two ICP score groups in the LIHC dataset, GSE76427. Log-rank test, P = 0.01108.
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FIGURE 5 | Genomic features of ICP score. (A) GISTIC 2.0 distribution of gain or loss of function mutation in gliomas with high and low ICP score. Chromosomal
locations of peaks of significantly recurring focal amplifications (red) and deletions (blue) are presented. (B) List of the most frequently altered somatic mutation
genes in the high ICP score group. (C) List of the most frequently altered somatic mutation genes in the low ICP score group. (D) ROC curve measuring the
sensitivity of ICP score in predicting IDH, CALN1, RB1, EGFR, and PTEN mutation status. The area under the ROC curve was 0.936, 0.826, 0.835, 0.81, and
0.841, respectively.
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Figures S4B–D). Cancer testis antigen (CTA) and neoantigens
were a vital source of tumor-specific antigens, and they were
significantly different between the ICP score groups (Figures
S4F–H). In term of antigen presentation capacity (Table S7), the
high ICP score group presented a higher antigen processing and
presenting machinery (APM) score and T cell receptor (TCR)
(Figure 7C, Figures S4I, J). Stroma signatures including TGF-
beta response, leukocyte fraction, CD8, interferon gamma
(IFNG), interferon stimulated genes resistance signature
(ISG.RS), and IFNG hallmark gene set (IFNG.GS) were higher
in the high ICP score group (Figures S4K–P).
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Immune Cell Pair Score Predicted
Immunotherapeutic Responses
Immunotherapy is innovating the treatment of several solid cancer
types. The response rates of tumor to PD-1 inhibition are reported
to be correlated with the TMB (30), Cytotoxic activity (CYT) (31),
and T cell-inflamed gene expression profile (GEP) (32). To explore
the predictive value of ICP score in immunotherapeutic response,
we analyzed the correlation between ICP score and the above three
immune markers. High ICP score group was found to have a
higher TMB level (Figure 7D), CYT level (Figure 7E), and GEP
level (Figure 7G). Furthermore, ICP score had a significantly
A

B

FIGURE 6 | ICP score correlated with immune checkpoints. (A) Heatmap illustrating the expression pattern of immune checkpoints in ICP score. (B) Scatter plots
depicting a positive correlation between ICP score and eight classical immune checkpoints, including PDCD1, CD274, PDCD1LG2, TIGIT, CTLA4, HAVCR2, IDO1,
and LAG3. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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positive correlation with CYT (Figure 7F) and GEP (Figure 7H).
The ability of the ICP score to predict the response of patients to
immune-checkpoint therapy was explored by assigning the
IMvigor210 cohort patients (urothelial carcinoma dataset) to
different ICP score groups (Table S8). Patients receiving
atezolizumab as the anti‐PD‐L1 therapy with a high ICP score
exhibited a significantly shorter OS compared to patients with a
low ICP score (Figure 7I). Patients with a low ICP score exhibited
Frontiers in Immunology | www.frontiersin.org 1153
better immunotherapeutic responses (Figure 7J). ICP score was a
prognostic biomarker in predicting patient survival status in the
IMvigor210 cohort (Figure 7K). In the melanoma dataset,
GSE78220, patients receiving either pembrolizumab or
nivolumab as the anti-PD-1 therapy with a high ICP score also
exhibited a significantly shorter OS compared to patients with a
low ICP score (Figure 7L; Table S9). Likewise, patients with a low
ICP score exhibited better immunotherapeutic responses
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FIGURE 7 | The predictive value of ICP score in immunotherapy. (A) MSI score in high and low ICP score. (B) APM score in high and low ICP score. (C) Intratumor
Heterogeneity in high and low ICP score. (D) TMB expression differences in high and low ICP score. Differences between groups were compared through the
Wilcoxon test (Wilcoxon, P < 0.001). (E) CYT and (G) GEP expression differences in high and low ICP score. Differences between groups were compared through
the Wilcoxon test (Wilcoxon, P < 0.001). Scatter plots depicting a positive correlation between ICP score and (F) CYT and (H) GEP. Pearson Correlation Coefficient
R = 0.529 and 0.727, respectively. (I) Kaplan–Meier curves for the two ICP score groups in the IMvigor210 dataset. Log-rank test, P < 0.001. (J) ICP score in
groups with different anti–PD-1 clinical response status (CR, PR, SD, PD). Differences between groups were compared by Kruskal-Wallis test (Kruskal-Wallis,
P = 0.0053). (K) ROC curve measuring the sensitivity of ICP score in predicting the survival status of patients in the IMvigor210 dataset. The area under the ROC
curve was 0.642. (L) Kaplan–Meier curves for the two ICP score groups in the GSE78220 dataset. Log-rank test, P < 0.001. (M) ICP score in groups with different
anti–PD-1 clinical response status (CR/PR and SD/PD). Differences between groups were compared by Wilcoxon test (Wilcoxon, P = 0.0014). (N) ROC curve
measuring the sensitivity of ICP score in predicting the survival status of patients in the GSE78220 dataset. The area under the ROC curve was 0.863. (O) TIDE
value and response to immunotherapy of patients with ICP score. Fisher’s test, P < 0.001.
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(Figure 7M). ICP score was also a prognostic biomarker in
predicting patient survival status in the GSE78220 dataset
(Figure 7N). Meanwhile, the TIDE analyses proved that a high
ICP score was less sensitive to anti-PD1 therapy and anti-CTLA4
therapy (Figure 7O).
DISCUSSION

Tumor infiltrating immune cells have been critical in
tumorigenesis by exerting the two-sided effect that both
regulates the immunosurveillance of cancer and creates a
favorable microenvironment for cancer cell survival. Previous
studies have demonstrated the prognostic value of several TIICs
in different cancer types (33, 34). However, the overall survival
under the influence of TIICs in cancers have not been adequately
determined and a consensus-oriented prognostic signature
regarding TIICs has not been reached. Moreover, considering
the differences in the reference genomes and gene signatures of
immune cells used for quantifying RNA-sequencing data, multiple
previous prognostic models may have limitations in the cross-
validation of different transcriptional datasets or different cancer
types. The measurements of cellular heterogeneity vary due to the
frequent updated version of annotation for immune cells and
reference genome, which may impede their extensive application
and set back the prospect for clinical practice (Figure S5) (35, 36).
To resolve this issue, we collected and integrated 65 immune cells
to establish a robust and comprehensive prognostic signature with
the concept of cell pair. As mentioned in the method section, we
focused on the relative expression level of immune cells for the
quantification of the ICP score, which extensively reduced the
effect of the updated annotation of the reference genome,
eliminated the need for data normalization, and increased the
accuracy in designing the signature.

In this study, given the malignancy of gliomas and abundant
publicly available datasets, ICP score was first established in
glioma samples. ICP score could significantly stratify the overall
survival of glioma patients from TCGA and CGGA. Based on the
sequencing data from Xiangya, high ICP score was associated with
a worse survival in glioma patients. Consistently, high ICP score
predicted a worse survival in the other 15 external glioma datasets.
The independent establishment of ICP score was performed in 12
representative cancer types including BLCA, BRCA, CESC,
HNSC, KIRC, LAML, LIHC, LUAD, LUSC, MESO, PAAD,
SARC, and SKCM, all of which proved the predictive value of
ICP score. The univariate cox regression analysis proved that ICP
score was a hazardous marker in both glioma samples and 12
independent cancer types. Furthermore, six most representative
cancer types including BRCA, SKCM, HNSC, PAAD, LUAD, and
LIHC were selected for the validation of the ICP score. As
expected, ICP score served as a hazardous marker, and the
predictive value of ICP score was stable in all of the 12 GEO
datasets. The findings above proved the generality and reliability of
ICP score in predicting the prognosis of cancer patients.
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Furthermore, the genomic features of ICP score were
annotated in gliomas. The present study finds that the IDH1
missense mutations are overrepresented in the low ICP score
group (77%), in accordance with previous findings that IDH
mutations are more enriched in low grade gliomas and confer
better survival outcomes in glioma patients (37). Likewise, tumor
suppressor TP53, inhibiting GBMmalignancy (38), was found to
be more frequently mutated in the low ICP score group (48%).
Conversely, EGFR, which is the most enriched mutated gene in
the high ICP score group (30%) and whose alteration occurs in
less than 6% of the low ICP score group as identified by somatic
mutation analysis, has been reported to be frequently activated in
GBM and predict worse survival outcomes in glioma patients
(39). Another critical oncogene, PTEN (33), also had higher
mutation rates in the high ICP score group (29%), implying a
more malignant feature of the high ICP score group. Commonly
mutated cancer-related genes were found to be more frequently
expressed in high ICP score group, with PTEN-TP53, RB1-TP53,
TTN-CALN1, and TTN-FLG being the strongest co-occurrent
pairs of gene alteration. PTEN (40), TP53, RB1 (41), CALN1
(42), EGFR (43), and TTN (44) have been previously reported to
play a role in tumorogenesis, in which ICP score exhibited a high
sensitivity in predicting the mutation status of IDH, CALN1,
RB1, EGFR, and PTEN. Thus, ICP score may be a potential
predictor for the oncogenic process.

The potential immune escape mechanisms of ICP score were
summarized and underlined. Immune checkpoint blockage (ICB)
therapy targeting immune checkpoint molecules have demonstrated
remarkable benefits (45). The significant correlation between ICP
score and classical immune checkpoint molecules such as PDCD1,
CD274, TIGIT, and LAG3 suggested that ICP score could be an
effective indicator for immune checkpoint blockage (ICB) therapy
(46–49). Moreover, high ICP score prominently participated in the
regulation of immunomodulators for tumor immunogenicity and
antigen presentation capacity. Low MSI, a diagnostic phenotype
with more malignancy of cancer (50), was more significantly
correlated with a high ICP score. High ICP score was also
detected with higher Intratumor Heterogeneity, a diagnostic
phenotype with more malignancy of cancer (51). Additionally, a
high ICP score had the distinct biological characteristics regarding
stroma signatures such as TGF-beta response, leukocyte fraction,
and ISG.RS compared with a low ICP score, and these stroma
signatures have previously been proved to facilitate the immune
escape of cancer (52). The findings above suggested a novel
orientation for the inclusion of ICP score as the indicators
of immunosuppression.

Immunotherapy, represented by ICB, has become increasingly
promising in tumor treatment. Notably, the IMvigor210 cohort
and the melanoma dataset (GSE78220) treated with the anti‐PD‐
L1 antibody atezolizumab have demonstrated remarkable clinical
outcomes (26, 27). ICP score was then validated in these two
datasets regarding its predictive value of the response to
immunotherapy. As expected, a high ICP score correlated with a
worse survival in both cohorts and predicted a worse response to
immunotherapy. Further, high ICP score correlated with higher
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levels of TMB, CYT, and GEP, all of which are valuable markers in
predicting immunotherapeutic response. Taken together, our
findings revealed the robust value of ICP score in predicting
immunotherapy efficacy.

Of note, more comprehensive analysis of multi-omics
analysis about the functional annotation of immune signature
will greatly complement the findings in this study and ensure the
prospective application of the ICP scoring system. To the best of
our knowledge, we are the first one to collect the comprehensive
immune cell types in cancer and introduce the concept of cell
pair for the establishment of a robust immune signature. The
relative stable ratio of TIICs regarding their abundance in tumor
microenvironment ensures the extensive application and high
sensitivity of this immune signature, and will undeniably help
understand tumor microenvironment and TIICs effects
on immunotherapy.
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In the last decade, the treatment of non-small cell lung cancer (NSCLC) has been
revolutionized by the introduction of immune checkpoint inhibitors (ICI) directed against
programmed death protein 1 (PD-1) and its ligand (PD-L1), or cytotoxic T lymphocyte
antigen 4 (CTLA-4). In spite of these improvements, some patients do not achieve any
benefit from ICI, and inevitably develop resistance to therapy over time. Tumor
microenvironment (TME) might influence response to immunotherapy due to its
prominent role in the multiple interactions between neoplastic cells and the immune
system. Studies investigating lung cancer from the perspective of TME pointed out a
complex scenario where tumor angiogenesis, soluble factors, immune suppressive/
regulatory elements and cells composing TME itself participate to tumor growth. In this
review, we point out the current state of knowledge involving the relationship between tumor
cells and the components of TME in NSCLC as well as their interactions with
immunotherapy providing an update on novel predictors of benefit from currently
employed ICI or new therapeutic targets of investigational agents. In first place,
increasing evidence suggests that TME might represent a promising biomarker of
sensitivity to ICI, based on the presence of immune-modulating cells, such as Treg,
myeloid derived suppressor cells, and tumor associated macrophages, which are known
to induce an immunosuppressive environment, poorly responsive to ICI. Consequently,
multiple clinical studies have been designed to influence TME towards a pro-immunogenic
state and subsequently improve the activity of ICI. Currently, the mostly employed approach
relies on the association of “classic” ICI targeting PD-1/PD-L1 and novel agents directed
org January 2022 | Volume 12 | Article 799455157
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on molecules, such as LAG-3 and TIM-3. To date, some trials have already shown
promising results, while a multitude of prospective studies are ongoing, and their results
might significantly influence the future approach to cancer immunotherapy.
Keywords: NSCLC, PD-1/PD-L1, CTLA-4, tumor microenvironment (TME), immune checkpoint inhibitors,
dysfunctional T cells, immunotherapy
1 INTRODUCTION

In the last decades, a remarkable shift in the clinical management
of non-small cell lung cancer (NSCLC) patients has been driven
by the introduction of immune checkpoint inhibitors (ICI)
targeting the axis involving programmed death protein 1 (PD-
1) and its ligand (PD-L1). The introduction of these agents
brought to unprecedented durability in the responses compared
to chemotherapy. Notably, the most relevant benefit with single-
agent ICI in NSCLC is observed in the case of patients whose
tumor is characterized by high expression of PD-L1 (≥50%).
Indeed, the anti-PD-1 agents pembrolizumab and cemiplimab,
as well as the anti-PD-L1 agent atezolizumab, have achieved
improved outcomes in terms of response and survival compared
to chemotherapy in randomized phase III trials involving
previously untreated patients affected by advanced NSCLC
with high PD-L1 expression; conversely when PD-L1
expression is lower than 50% the advantage of PD-1 or PD-L1
inhibitors employed as single agent in first-line over platinum-
based chemotherapy is limited, and this observation was
confirmed in sub-group analyses of patients with PD-L1
between 1-49% enrolled in the KEYNOTE 042 and IMPOWER
110 trials (1–4). In order to improve the outcomes of patients
with low or absent PD-L1 expression, anti-PD-1/PD-L1 agents
have been employed in combination with either chemotherapy
or with other ICI, such as agents targeting the cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4). In the randomized,
phase III KEYNOTE 189 and KEYNOTE 407 trials, which
involved patients with advanced non-squamous and squamous
NSCLC, respectively, the addition of pembrolizumab to
platinum-based chemotherapy resulted in improved outcomes
in terms of response and survival over chemotherapy alone (5, 6).
Notably, the advantage deriving from the combination of
immunotherapy and chemotherapy was independent from the
expression of PD-L1, including those patients whose tumor did
not express PD-L1 at all (7, 8). More recently, the combination of
the anti-PD-1 agent nivolumab and anti-CTLA-4 agent
ipilimumab associated with two cycles of platinum-based
chemotherapy achieved improved outcomes compared to first-
line chemotherapy in the randomized, phase III CheckMate 9LA
trial. Even in this case, the experimental combination achieved
superior results irrespective of PD-L1 expression (7).

In spite of these impressive results, patients receiving ICI,
either alone or as part of combination regimens, are destined to
eventually experience disease progression associated with
acquired resistance; furthermore, a non-negligible proportion
of patients receiving ICI do not respond to treatment in spite of
high PD-L1 expression. Indeed, response rate with single-agent
org 258
pembrolizumab was 44.8% in KEYNOTE 024 (hence more than
half of the patient population did not achieve partial response)
(2); furthermore, in EMPOWER-LUNG 1, 18% of the patients
randomized in the cemiplimab arm experienced disease
progression as best response during treatment in spite of high
PD-L1 expression (1). Hence, new combination approaches are
warranted. Tumor microenvironment (TME) represents an
element of increasing interest for the development of cancer
immunotherapy as potential source of predictive factors for
treatment with ICI or even as an additional therapeutic target
by itself. TME consists of a heterogeneous population of cancer
cells, immune cells, vessels, stroma, signaling mediators and
extracellular matrix proteins (8). The presence of a chronic
inflammatory environment in lung cancer (9) may alter or
deviate immune cell differentiation, resulting in an imbalance
of anti-tumor activity, thus favoring tumor evasion (8) and later
on, resistance to ICI (10). In this context, TME might represent a
relevant source of predictive biomarkers for ICIs, as well as a
potential target for novel therapeutic strategies. Therefore, in this
review we will point out the role of TME in the treatment of
NSCLC with immunotherapy, either as a predictor of benefit
from currently employed ICI or as therapeutic target from
investigational agents. Furthermore, we will explore the
potential impact of combinations including “classic” ICI and
novel agents under clinical investigation. To this aim, we
evaluated indexed publications on PubMed and abstracts
presented at the most relevant scientific meetings.
2 TUMOR MICROENVIRONMENT

Studies on NSCLC TME based on histological and
immunological analyses of the primary tumor have been
difficult due to the limited availability of tissue because the
majority of patients are diagnosed in advanced disease and are
therefore inoperable. Nevertheless, different studies described a
TME characterized by the presence of tumor infiltrating
lymphocytes (TILs), which have been exploited to define
prediction tools for patient’s survival and response to therapy.
The presence of lymphocytes in the tumor area represents an
independent prognostic factor for patient’s survival, with intense
lymphocytic infiltration predicting longer survival (11, 12). In
particular, CD8+T cells and M1-macrophages correlate with
positive prognosis (12). The distribution of lymphocytes within
the tumor evaluated through tissue microarrays revealed that
high density of T lymphocytes (CD4+ and CD8+) in the tumor
stroma correlated with better prognosis (12, 13). Beside this, it
has been suggested that the presence of high density CD8+T cells
January 2022 | Volume 12 | Article 799455
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in resected NSCLC may be considered as an additional marker to
the tumor–node–metastasis classification (TNM-Immunoscore)
(14, 15).

It is getting clearer that the reasons for the resistance to ICI
must be sought in the tumor tissue, in the complex network of
interactions that exist between tumor cells and TME (10). The
presence of TILs, macrophages and dendritic cells (DC) may
recall a hot TME potentially responsive to immunotherapy.
Unfortunately, only a proportion of patients possess a hot
TME, while more frequently cold (very few TILs) or ‘altered’
(TILs mainly at the edge of the tumor) TME have been observed
(16). Spatial histology combined with exome and RNA-
sequencing analyses on 100 patients from the TRACERx
cohort helped to define that tumors with more than one
immune cold region had a higher risk of relapse, regardless of
tumor size and stage (17). Low TILs are also correlated with
limited efficacy of ICI treatment and resistance to
immunotherapy (14).

2.1 T and NK Cells Exhaustion
NSCLC is characterized by high levels of somatic non-
synonymous mutations defined as tumor mutation burden
(TMB), with higher numbers of mutations in metastases than
in primary lung tumors (18–20). Mutations may originate neo
antigens, which may be recognized by cytotoxic T cells in the
TME, resulting in the development of an antitumor response.
Although high infiltrated tumors might be advantaged in
recognizing neo antigens, the presence of high TILs rather
immunosuppressive or dysfunctional abolishes the possibility
of that responses. In a recent published paper CD8+PD-L1+
TILs were associated with increased tumor burden constituting a
hot but immunosuppressive TME, but patients with these
characteristics were more likely to obtain a good response to
Frontiers in Immunology | www.frontiersin.org 359
anti-PD-1 therapy (21, 22). Using single-cell transcriptomics,
Caushi et al., studied the transcriptional programs of mutation-
associated neoantigens (MANA)-specific TILs from tumors of 20
patients, which received nivolumab +/- ipilimumab, enrolled in
the clinical trial NCT02259621. MANA-specific CD8+ T cells
were more numerous in the tumor than in normal lung. MANA-
specific T cells from responsive patients showed higher
expression of genes associated with memory (IL7R and TCF7)
and effector functions (GZMK), while MANA-specific T cells
from non-responsive patients expressed mainly genes associated
with T cell dysfunction such as TOX2, CTLA4, HAVCR2 and
ENTPD1 (22).

The presence of alternative immune checkpoint receptors
leading to a progressive and profound T-cell exhaustion has
been correlated with resistance to ICI (Figure 1). Dysfunctional,
‘burned-out’ CD8+ TILs (Ebo) were identified using single-cell
mass cytometry and tissue imaging technologies from 25 patients
with resectable and 35 patients with advanced NSCLC. Ebo TILs
accumulated in the TME, show high proliferation rate and
activation markers but produce low amount of interferon-
gamma (IFNg). The presence of these cells expressing high
levels of PD-1, TIM-3 and LAG-3 was associated with
resistance to cancer immunotherapy (23). The lymphocyte
activation gene-3 (LAG-3; CD223) is an inhibitory immune
receptor expressed on NK, activated T and B cells and exerts
its inhibitory action by binding class II MHC. Regulatory T cells
(Treg) cells expressing LAG-3 are more active, while LAG-3
expression in cytotoxic T lymphocytes (CTL) is associated with
decreased proliferation and activity. T cell immunoglobulin and
mucin domain protein 3 (TIM-3), similarly to LAG-3, is an
inhibitory receptor frequently detected upregulated on NSCLC
TILs during tumor progression and is associated with an exhausted,
burned phenotype of TILs and resistance to ICI (23, 24).
FIGURE 1 | Schematic representation of the main cells in tumor microenvironment involved in NSCLC resistance to ICI. Up-regulation of alternative immune checkpoints
on cytotoxic CD8+ T cells impairs recognition and killing of tumor cells. Myeloid derived suppressor cells (MDSC), tumor associated macrophages (TAM)-M2 and CD4+ T
Regulatory (Treg) cells through cytokine and soluble factors contribute to the inhibition of the immune responses. Blue and red arrows indicate stimulation and killing,
respectively. New targets for on-going clinical trials are highlighted by a green flash.
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In patients with NSCLC PD-1, TIM-3, CTLA-4, LAG-3, and
BTLA inhibitory receptors were detected on TILs with a gradual
and continuous upregulation during tumor progression, in 24
tumor lesions (24).

In NSCLC the accumulation of NK cells is observed, mainly
constituted by non-cytotoxic CD56brightCD16− NK cells, a subset
endowed with immunoregulatory properties (25, 26). NK cell
dysfunction, as well as T cell exhaustion, has also been observed
(Figure 1). PD-1 is expressed not only on activated T cells, but
also on NK cells, and its interaction with anti-PD-1 ICI enhances
immune function. In a randomized controlled trial in patients
with PD-L1+ NSCLC the combination of in vitro expanded
allogenic NK cells with anti-PD-1 improved overall survival
(OS) and progression-free survival (PFS), compared to single
anti-PD-1 treatment, without adverse events associated with NK
cell therapy [NCT02843204 (27)]. Killer-cell immunoglobulin-
like receptors (KIR) are molecules expressed on the surface of
NK cells that, through the engagement of MHC class I ligands
expressed on cancer cells, generate inhibitory signals to NK cells.
The final result of such interaction is NK cell inactivation (28).
He et al. showed that among 11 NSCLC patients treated with
nivolumab, 45.5% (n=5) displayed KIR expression in the tumor
tissue and in 2 out of 5 increased after treatment with anti-PD-1
ICI (29). However, the authors do not clearly identify NK cells
among TILs and analyzed only a small number of patients, thus
further studies are needed to point out a real role for KIR in
ICI resistance.

2.2 Immunosuppression
Frequently, TME is characterized by the presence of cells
endowed with immune suppressive activities and an
association with resistance to ICI has been reported, in cancer
(10, 30, 31). Treg, myeloid derived suppressor cells (MDSC), and
tumor associated macrophages (TAM)-M2 through a cytokine
network contribute to the inhibition of the immune responses
thus inducing immune suppression (Figure 1). Treg cells inhibit
T cell responses in different ways, and, in general, are associated
with poor clinical outcomes in lung cancer patients (32).
Recently, an increase in PD-1+Treg has been detected in
patients non-responsive to anti-PD-1/PD-L1 ICI in a study
evaluating patients with NSCLC (n=27) and other solid
cancers. The authors demonstrated that the balance of PD-1
expression between CD8+ T cells and Treg cells in the TME can
predict the clinical effectiveness of ICI therapies better than PD-
L1 expression or TMB. Anti-PD-1/PD-L1 ICI, while recovering
dysfunctional PD-1+CD8+ T cells, may enhance PD-1+ Treg
cell-mediated immunosuppression (33). In a previous study on
73 NSCLC patients treated with anti-PD-1/PD-L1 ICI, the
density of PD-L1+ Treg in the TME was indicated as an
additional prediction biomarker of response to ICI (34), thus
Treg warrant consideration as a therapeutic target to augment
the clinical efficacy of ICI in lung cancer.

MDSC can affect TME inducing immunosuppression in
many different ways: i) producing nitric oxide (NO) and
reactive oxygen species (ROS); ii) eliminating key nutrition
factors for T cells from the microenvironment, such as L-
arginine, and L-tryptophan; iii) interfering with T cells homing
Frontiers in Immunology | www.frontiersin.org 460
and trafficking; iv) inducing up-regulation of checkpoint; v) and
releasing immune regulatory molecules, such as adenosine,
Vascular endothelial growth factor (VEGF)-alpha and
inhibitory cytokine (interleukin (IL)-10) (35). MDSC, like Treg
cells, express CD39 and CD73 ectonucleotidases that in tandem
convert ATP into adenosine which is considered an important
mediator of immune suppression in the TME (36) (Figure 1).
MDSC expressing CD39 and CD73 were found in tumor tissue
of NSCLC patients and positively correlated to disease
progression but chemotherapy significantly reduced these cells
(37). The role of MDSC in lung cancer outgrowth and ICI
therapy has been deeply investigated in preclinical studies in
mice (38–40). These studies show that MDSC promote lung
cancer metastasis and that their inhibition may overcome
resistance to ICI.

The role of TAM has been explored in a cohort of 187 NSCLC
patients, mostly treated with ICI. CD163+CD33+PD-L1+ M2-
TAM were detected in lesions of patients experiencing
hyperprogression. These cells possess an epithelioid
morphology (alveolar macrophage-like) and form clusters
within neoplastic foci (41). Low CD8+PD-L1+ T cells, and low
CD68+CD163+ M2-TAM were predictive for positive response
in 33 stage II-IV NSCLC patients treated with ICI (42). By DNA-
based quantitative immunofluorescence and confocal
microscopy, most PD-L1+ cells are CD68+ macrophages and
high cell counts of PD-L1+CD68+ macrophages in the TME has
been associated with better OS in 81 patients treated with anti-
PD-1 (YTMA404 cohort) (43).

Kargl et al., found that neutrophil content in the TME
negatively correlated with the presence of CD8+ and CD4+ T
cells and with Th1 and Th17 subsets, but not with Treg cells,
implicating a potential immune suppressive role for neutrophils
in NSCLC (44, 45). Data from preclinical studies in IL-17:K-Ras
mutated transgenic mice demonstrated that resistance to anti-
PD-1 therapy is abrogated by neutrophil depletion,
reconstituting T cell activation (46). The role of neutrophils in
the resistance to ICI in NSCLC patients still remains to
be addressed.

2.3 Angiogenesis
Angiogenesis, with abnormal vasculature is part of TME and is a
hallmark of cancer associated with development, proliferation and
metastasis (47–49). Vascular endothelial growth factor/vascular
endothelial growth factor receptor (VEGF/VEGFR) are a family of
proteins that play an essential role in tumor induced angiogenesis
promoting vascular permeability by regulating the differentiation,
migration, proliferation and survival of microvascular endothelial
cells (48). VEGF proteins can inhibit the maturation,
differentiation, and antigen presentation of professional Antigen
Presenting Cells (APC), DC, NK, and T cells, while improving the
suppressive effect of Treg, TAM, and MDSC (Figure 1). A
comprehensive review on VEGF and its targeting in association
with ICI has been published yet in 2021 by Ren et al. (48).
Targeting VEGF-A has been exploited in patients to reduce
resistance to immunotherapy by combining bevacizumab (anti-
VEGFA antibody) with atezolizumab (NCT02366143) and
chemotherapy, showing a significant improvement of PFS and
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OS of patients with metastatic lung cancer (50). This clinical
response was independent from PD-L1 expression and genetic
alteration status of tumors, and strongly supports a role of
angiogenesis in the resistance to ICI.

2.4 Tertiary Lymphoid Structures
NSCLC are often associated with the presence of ‘Tertiary
Lymphoid Structures’ (TLS). TLS may occur at both the
margins and the core of tumors, are spatially well-organized
and are composed of T and B cell zones and germinal centers
(51). Some authors have correlated the presence of B cells in TLS
with favorable outcomes (52–56). In particular, Tang et al.
observed an increase in TLS area and B cell proportion within
TLS in lung cancer patients with resectable tumors and found a
correlation with longer survival rates (56). Since presence and
composition of TLS might be influenced by chronic
inflammation, TLS from patients who had undergone resection
for lung cancer were analyzed, comparing patients with chronic
obstructive pulmonary disease (COPD) and those without.
Notably, the samples from patients with underlying COPD
were characterized by reduced TLS and reduced germinal
centers compared to samples from patients without COPD.
Follow-up demonstrated poorer survival for patients with
fewer TLS, especially among COPD patients (56). These
findings imply that chronic inflammation might result in
reduced immunological responses against tumorigenesis, but
studies on TLS role in ICI resistance need to be pursued for
NSCLC patients.

2.5 Tumor Driver Mutations and TME
Tumor intrinsic mechanisms, such as specific driver mutations
may affect NSCLC resistance to ICI therapy. In particular, D’
Incecco et al. found that PD-1+ tumors are characterized by
KRAS mutations, whereas PD-L1+ tumors are mainly EGFR
mutated (57). EGFR mutated NSCLC exhibited reduced CD8+
lymphocyte infiltration, while KRAS mutant displayed higher
CD8+ T cells, as detected using tissue microarray (58). By single-
cell RNA sequencing on NSCLC tissue harboring EGFR
mutation, myeloid and T cells, mainly exhausted, and Treg,
were the most abundant immune cells identified (59). The
reasons for the weak response of EGFR-positive NSCLC
patients to ICI are still not fully understood. EGFR mutated
tumors have lower somatic mutations and number of
neoantigens (60), display an uninflamed TME, which may
explain the poor efficacy of ICI compared to EGFR-wild type
(61). The role of EGFR mutation on the upregulation of PD-L1
expression is still controversial (62). STK11/LKB1 alterations
confer to NSCLC resistance to PD-1 blockade, in a study
conducted on 66 patients with PD-L1+ tumors receiving anti-
PD-1/PD-L1 therapy (63). In particular, STK11/LKB1 alterations
were frequently associated to KRAS mutations and with low
TILs, reduced PD-L1 expression and high TMB (63). In a genetic
engineered mouse model bearing KRAS and STK11/LKB1
mutations a massive recruitment of immunosuppressive
neutrophils and increase in the expression of exhaustion
marker on T cells was detected (64).
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Resistance to ICI may also be driven by loss of antigen
presentation occurring in antigen presenting cells or cancer
cells within the TME, and is frequently associated with
acquired genetic mutations, such as loss of heterozygosity
(LOH) in HLA loci, mutation of HLA genes, and modulation
of HLA gene expression (65, 66).

Recently, Bagaev et al. have developed a multi-omics and
robust analytical platform to classify, reconstruct, and visualize
the entire tumor composition (67). They took into consideration
genomic and transcriptomic analyses that evaluate the tumor
(mutations of DNA repair genes, and cell cycle regulation) and
the TME (the major functional components and immune,
stromal, and other cellular populations) as a whole for different
cancers. They defined four distinct TME subtypes predictive of
response to immunotherapy [Immune-Enriched, Fibrotic (IE/F);
Immune-Enriched, Non Fibrotic (IE); Fibrotic (F); Depleted (D)]
based on melanoma that were conserved across at least 20
additional cancers, including lung cancer [n=27 (67)]. Subtype
IE had significantly longer OS and PFS compared to F and D,
with F being the worst, in melanoma. Lung cancer patients with
TME subtype IE demonstrated the longest OS. Genetic
alterations, such as EGFR in lung cancer, were associated to F
and D TME subtypes.
3 IMMUNE RELATED SIGNATURES

In the last decade great efforts have been made to identify reliable
predictive TME-based signatures for lung cancer immunotherapy.
Currently, one of the most powerful prognostic tools in oncology
is “immunoscore” (IS) based on the numbering of T lymphocytes
within the tumor (68). This tool is a digital tumor tissue-based test
that estimates patient’s prognosis on immune cell infiltration (i.e.,
CD3/CD45RO, CD3/CD8, or CD8/CD45RO). Specifically, IS
measures the subpopulations of T cells in the center and
periphery of the tumor and provides a score ranging from IS 0
with a low density of immune cells to IS 4 with a high density in
both regions. This test, initially validated on colorectal cancers
(68), has shown great promise as a supplement to the classification
of lymph node metastases (TNMs) in a number of cancers,
including NSCLC (69). In particular, numerous studies have
shown that a high IS score correlates with better survival (70–
73). In addition, CD8+ TIL has also been described as a powerful
biomarker in discriminating patients with a significantly longer
PFS after ICI treatment; this association was strengthened when IS
was integrated with tumor PD-L1 expression, suggesting that the
combination of these markers could be a reliable biomarker for
immunotherapy (74). Gene signatures, an alternative approach to
characterize the TME on the transcriptomic profiling, have
recently gained a great interest in the scientific community. The
TME signature consists of lists of genes indicative of the presence
of a given population of immune/stromal cells and/or descriptive
of a particular state of TME-cell activation.

With the advent of high-throughput technologies (i.e.
microarray and more recently RNA seq) capable of screening
the whole transcriptome of the tumor bulk, an increasing
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number of computational algorithms have been developed for
the prediction of non-cancer cell infiltration (Table 1) (75, 79,
82, 85, 86, 88, 89).

Despite each algorithm varies in terms of computational
approach, the output consists of a score based on tumor-
infiltrating immune and/or stromal cells, allowing a better
comprehension of the mechanisms underlying cancer immunity
and their potential role in the response to ICI. The output scores
consist of TME signature allowing a comprehension of the intra
tumoral heterogeneity as well as the inter-sample comparisons.
Among the most relevant studies on the evaluation of the cancer
immune landscape using the gene expression profile, the Cancer
Genome Atlas Network project deserves to be mentioned (90). The
consortium performed a large immuno-genomic study of over
10,000 tumors across 33 cancers by integrating the mRNA
expression profile with DNA copy number and mutational
status. Then, applying a combination of computational
algorithms, the authors characterized the TME in six major
immune subtypes defined as follows: 1) wound healing, 2) IFN-
dominant, 3) inflammatory, 4) lymphocyte depletion, 5)
immunologically silent, and 6) TGF-b dominant. Lung
neoplasms were mainly enriched in the first three subtypes; in
particular, squamous cell carcinomas (SCCs) showed an
enrichment of ‘wound healing’ (defined by high angiogenic gene
expression, elevated proliferation rate and Th2 cell bias for adaptive
immune infiltrate) and ‘IFN-dominant’ (depicted by high M1/M2
macrophage ratio polarization and a strong CD8 signal such as a
high diversity TCR) subtypes. In contrast, lung adenocarcinoma
(ADC) showed greater enrichment of ‘INF dominant’ and
‘inflammatory’ (characterized by elevated Th17 and Th1 genes,
low/moderate tumor cell proliferation, and low levels of
aneuploidy) subtypes. A similar extensive bioinformatic strategy
was also performed by Charoentong et al. who, by integrating DNA
and RNA data over 8,000 patients across 20 solid cancers, defined
an immunophenoscore, able to discriminate patients more
responsive to ICI (81). In particular, the predictive score provides
information on some relevant immunogenomic characteristics
such as TIL composition, cancer antigen profiles and tumor
heterogeneity. Another pan-cancer study that examined the TME
gene profile aimed at predicting clinical response to PD-1 blockade,
was performed by Ayers in 2017 (91). The authors, starting from a
small pilot study including 19 patients with metastatic melanoma
undergoing anti-PD-1 ICI, profiled the expression of 680 tumor
and immune genes using the digital platformNanoString nCounter
(91, 92). Through a rigorous multi-step validation, they defined an
18-gene score, named ‘Tumor Inflammation Signature’ (TIS), that
included genes linked to cytotoxic cells, antigen presentation, and
IFNg activity. More recently, the prognostic value of the TIS score
was also evaluated in the 9,083 tumor gene expression profiles
downloaded from the Cancer Genome Atlas (TCGA) database
(980 from lung cancers) (93). As already reported in the previous
study, tumors with known clinical sensitivity to ICI such as
NSCLC, showed generally higher TIS scores. In addition, the TIS
score showed a stronger prediction for identifying patients with
clinical sensitivity to ICI than TMB status, especially in tumors with
low TMB variability, such as SCC. In the wake of these intriguing
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findings, an exponential number of studies have profiled TME
genes on lung cancers by identifying highly specific and accurate
signatures capable of predicting molecular subtypes more sensitive
to anti-PD-L1/PD1-based therapies (94–97). For example, Higgs
et al. identified an IFNg signature, focused on 4 genes already
included in the previous TIS such as IFNg, LAG3, CXCL9 and PD-
L1 (94). IFNg-positive signature patients showed higher overall
response rates and better PFS and OS with the anti-PD-L1
durvalumab, regardless of tissue PD-L1 status. In addition,
several studies downloaded RNA datasets from public databases
and using mathematical models each score was then tested in
independent validation sets to improve prediction performance
(97–101). Chaoqi Zhang et al. using more than 1,500 RNA data
from ADC tumors, tested 60 costimulatory molecule genes on 502
cases. Then, applying a step-wise method, they filtered the
combination of 5 genes which was validated on ten independent
sets. The costimulatory molecule 5 gene-based signature identified
two risk groups with distinct inflammatory profiles and immune
infiltrate, through a computational method. ‘High-risk’ patients
had a significantly higher proportion of activated NK cells, DC,
neutrophils, macrophages M0, resting DC, and Treg. ‘Low-risk’
patients had a high proportion of memory B cells, resting CD4
memory T cells, and gamma delta T cells. According to the profiles,
the authors indirectly predicted that high-risk patients could
benefit from immunotherapy (98).

3.1 Novel Emerging Signature
Despite the impressive results, the tissue-based immune
signatures require the collection of representative tumor
specimens and can therefore be limited by inadequate samples
or by intra-tumoral heterogeneity, commonly described in
NSCLC. To date, radiomics represents one of the most
promising across the emerging predictive biomarkers for ICI.
Radiomics is a high-throughput extraction of features from
medical images using computer algorithms, aimed at providing
quantitative information on tissue composition that otherwise
cannot be detected through simple observation (102, 103).
Ideally, radiomics can be considered as a virtual biopsy with
the advantage of being a totally non-invasive tool, which allows
the evaluation of the tumor and its microenvironment, the
characterization of intra-tumoral heterogeneity and a dynamic
monitoring. One of the first application of the radiomics in the
characterization of molecular heterogeneity of lung cancers
dated in 2012. The authors compared images from
preoperative computed tomography (CT) and Positron
Emission Tomography/Computed Tomography (PET/CT)
from a cohort of 26 NSCLC patients with tissue gene
expression profiles (radiogenomics) identifying significant
correlations (104). In the last decade, a growing number of
studies have investigated the potential clinical utility of
radiomic features (RFs) providing radiomic-based signatures
for precision diagnosis as well as the prediction of gene
mutations (105–107). In addition, the radiomic approach has
also been applied to decipher lung TME (108, 109). Recently,
Chen and colleagues, applying the least absolute shrinkage and
selection operator (LASSO) and logistic regression to CT images
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from 120 patients, extracted 462 RFs. The combined model,
including RFs, clinical and morphological data, showed an
optimal prediction power for PD-L1 expression levels and
TMB status (110). A number of studies also reported image-
based signatures predictive to ICI response or outcome (111, 112).
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Very recently, Yang and colleagues used pretreatment CT
images, from 92 patients treated with an ICI, to select 88 RFs.
Then, the authors, developed two nomogram-based models,
integrating RFs with clinical pathological characteristics and
demonstrated good performances in identifying patients with a
TABLE 1 | Current state-of-art computational tools.

Name Year Type Output Web-server Code

CIBERSORT
(75)

2015 DB Fractions of the immune cell-types defined by the signature matrix provided in input
and corresponding p-value

https://cibersort.
stanford.edu/
(registration
required)

External R package:
https://github.com/icbi-
lab/immunedeconv

CIBERSORTx
(76, 77)

2019 DB (i) custom gene signature matrix computed from scRNA-seq or bulk sorted RNA-seq
data (ii) cell type proportion inferred from GEPs by using the computed (or provided)
gene signature matrix (iii) cell-type specific GEPs.

https://
cibersortx.
stanford.edu
(registration
required)

N.A.

EPIC
(78)

2017 DB Fractions of (i) individual non-malignant cell-types for which a GEP is provided (ii) all
the other non-characterized (cancer) cell types grouped together.
The package provides reference GEPs for B, CD4 T, CD8 T, NK, CAFs, Endothelial,
Macrophages, Monocytes, Neutrophils.

http://epic.
gfellerlab.org

R package:
https://github.com/
GfellerLab/EPIC

ESTIMATE
(79)

2013 SB Two scores representing the level of immune and stromal cells. A derived level of
tumor purity.

N.A. R package: https://
bioinformatics.
mdanderson.org/
estimate/

Gene signature of
infiltrating
Leukocytes
(80)

2017 SB 60 GS for 14 immune cell types (B, CD45, Cytotoxic, Exhausted CD8, Macrophages,
Mast cells, Neutrophils, NK, NK CD56dim, T, Th1, Treg, CD8, CD4) derived testing
gene signatures from the literature.

N.A. R code for reproducing
the analysis as
supplementary material
of the paper.

Immunophenoscore
(81)

2017 SB 782 GS for 28 immune cell types (T, Tcm, Tem, activated, central memory, CD4+,
CD8+, gamma delta T, Th1, Th2, Th17, Treg, Tfh, activated, immature, and memory
B, machrophage, monocytes, mast cells, esosinophils, neutophils, acitvated,
monocytes, and immature DC, NK, NKT, MDSC). An aggregate score, tarmed
immunophenoscore, quantifying tumour immunogenicity.

https://tcia.at R package:
https://github.com/icbi-
lab/Immunophenogram

MCP-Counter
(82)

2016 SB Abundance score for 8 immune cell types (T cells, CD8+ T cells, NK cells, cytotoxic
lymphocytes, B cell lineage, monocytic lineage cells, myeloid dendritic cells, and
neutrophils) and 2 stromal cell types (endothelial cells and fibroblasts)

http://134.157.
229.105:3838/
webMCP/

R package:
https://github.com/
ebecht/MCPcounter

QuanTIseq
(83)

2019 DB Absolute fractions for 10 immune cell types (B cells, M1 and M2 macrophages,
monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, Treg cells, and
myeloid dendritic cells) and abundance of the remaining uncharacterized cells.

N.A. Pipeline:
http://icbi.at/quantiseq
(Raw FASTQ data
allowed)
R package:
https://bioconductor.org/
packages/release/bioc/
html/quantiseqr.html

TIP
(84)

2018 Both (I) 23 immune activity score computed based on 178 signature genes. This score
quantifies the activity status of the 7-step immunity cell-cycle.
(II) Relative proportion of tumor-infiltrating immune cells computed by CIBERSORT. If
microarray GEPs are provided the original signature matrix with 22 cell-types is used;
if RNA-seq data are provided a dedicated signature matrix with 24 cell-types is used.

http://biocc.
hrbmu.edu.cn/
TIP/

R package: https://
github.com/dengchunyu/
TIP

TIMER
(85, 86)

2016 DB Relative abundance of 6 immune cell types: B cells, CD4 T cells, CD8 T cells,
neutrophils, macrophages, dendritic cells.

https://cistrome.
shinyapps.io/
timer/

R package:
http://cistrome.org/
TIMER/download.html

TIMER 2.0
(87)

2020 Both Results and comparison from TIMER, xCell, MCP-counter, CIBERSORT, EPIC,
quanTIseq

http://timer.
cistrome.org/

External R package:
https://github.com/icbi-
lab/immunedeconv

Xcell
(88)

2017 SB GS score for 64 immune and stroma cell types corrected for spillover effects. https://xcell.ucsf.
edu/

R package: https://
github.com/dviraran/
xCell
January 2022 | Vo
Two groups of methods exist namely signature-based (SB) and deconvolution-based (DB) approaches. SB approaches identify a set of genes whose expression is characteristic of a
specific type of cell. Then, a score is defined to quantify the abundance of each cell type based on the expression of the corresponding signature genes. DB approaches formulate the
problem as a mathematical deconvolution, that is the tissue gene expression profile (GEP) is written as the weighted sum of precomputed typical expression profiles of the considered cell-
types. The unknown weights are then estimated by using a proper regression technique. For each tool we report: the year of publication of the paper; the method DB and SB approaches;
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durable response and a longer PFS (113). In another
retrospective study, Khorrami et al. applying a machine
learning approach, compared the delta radiomic texture
(DelRADx) of CT patterns both in the tumor and peritumoral
regions between the baseline and the post-treatment scans of 139
advanced patients receiving ICI. The combination of eight
identified DelRADx features were predictive of response to ICI
therapy and of OS (114). Similarly, a new algorithm ‘TMB
radiomic biomarker’ (TMBRB) combining deep learning
technology to CT images from 327 NSCLC patients
distinguished tumors with a High-TMB versus a Low-TMB
value. TMBRB, in a cohort of 123 patients treated with an ICI
resulted an optimal predictor in terms of both OS (HR: 2.33, 95%
CI: 1.14 to 4.77) and PFS (HR: 1.90, 95%CI: 1.14 to 3.19) (115).
Recently, DelRADx features resulted predictive of response to
ICI therapy, prognostic of improved OS, and correlated with TIL
density (114).
4 IMMUNOBIOLOGY OF LUNG CANCER

Several lines of evidence highlight the roles of both innate and
adaptive immune components in the elimination phase of cancer
immunoediting process. The adaptive branch of the immune
system has been demonstrated as the prominent mechanism able
to eliminate cancer cells through the recognition of tumor
antigen in the context of MHC complex (116).

Tumor associated antigens (TAA) overexpressed in lung
cancer are MUC-1, CEA, NY-ESO, MAGE-A3 (117–119). Due
to their expression in normal cells, these antigens are considered
less immunogenic and more likely to induce tolerance,
furthermore tumors expressing these antigens seem less
responsive to ICI.

Conversely, tumor specific antigens (TSA) are unique to
tumor cells and should result from non-synonymous somatic
mutations thus represent the ideal antigens for cellular
immunotherapy (120, 121). Several reports have demonstrated
that tumors with a high TMB, like NSCLC, possess a high
number of neoantigens. Among the various somatic mutations
noted, some occur in driver genes including in TP53, KRAS,
CDKN2A, ARID1A, NOTCH1, MYC, SMARCA4 and RB1 (122,
123). Neoantigens can be recognized by TILs. Accordingly,
neoantigen density has been shown to correlate with a
favorable prognosis and higher CTL content (124) as well as,
with benefit from ICI (125). Despite being extremely challenging,
neoantigen-specific cells have been successfully identified in
NSCLC patients by using the Mutation Associated NeoAntigen
Functional Expansion of Specific T-cells (MANAFEST) platform
(126). CTL specific for peptides derived from oncogenic driver
mutations such as TP53 R248L (22), or BRAF N581I (127) have
been found.

Cancer vaccines aim at boosting T cell and B cell-mediated
response against TAA or TSA. Several clinical trials are currently
evaluating different vaccines in lung cancer patients and specific
target antigens (e.g. MAGE-A3, CEA, mesothelin, RAS, NY-
ESO-1, telomerase, WT1), as well as immunomodulatory
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enzymes such as Indoleamine 2,3-dioxygenase (IDO) and
Arginase-1 (119, 128). Interestingly, some of these cancer
vaccines have been recently administered also in combination
with ICI in phase I/II studies (i.e. NCT04908111, NCT02879760,
NCT03562871), even if no data regarding effectiveness has been
released yet.

Tumor neoantigens are highly specific to tumors of an
individual patient and not expressed on normal cells, thus able
to evoke robust tumor-specific T cell responses (129). To date,
several clinical trials are ongoing investigating personalized
neoantigen-based vaccines alone or in combination with anti-
PD-1, -PD-L1 and/or -CTLA-4 antibodies in various tumor
types, comprising NSCLC (130). Neoantigens can be identified
by multiple bioinformatic technologies, mainly based on whole-
exome sequencing computational algorithms for antigen
prediction. Personalized vaccines are being developed and
employed in different formulations, such as synthetic long
peptide (SLP), DNA, RNA, DC-based, and associated to viral
and bacterial vectors (131). Recently, data from a phase Ib trial of
personalized neoantigen therapy (NEO-PV-01, NCT02897765)
plus nivolumab in patients with Advanced Melanoma, NSCLC
(n=18), or Bladder Cancer was released, demonstrating that this
type of regimen was safe and did not lead to treatment-related
serious adverse events. In addition, the data demonstrated that
the vaccine was able to trigger an effective T cell response against
neoantigens in all vaccinated patients. Interestingly, the vaccine
evoked a T cell response also to neoantigens not included in the
vaccine formulation (epitope spread) (132).

Targeting of tumor antigens has been also pursued by
adoptive transfer of tumor-reactive T Cells (ACT). Upon
isolation from the patient, natural or in-vitro-modified T cells
are expanded ex vivo and reintroduced into the patient to
enhance T cell responses and kill tumor cells. ACT therapies
include the adoptive transfer of TILs, or of engineered T cells that
possess retargeted specificity and higher affinities for tumor
antigens, such as engineered affinity-enhanced abTCR or
chimeric antigen receptors (CAR). Compared to vaccine-based
strategies, ACT provides patient with already competent effector
cells, thus overcoming the requirement of T-cell priming in
patients who are often immune compromised and tolerant to
cancer antigens. Current strategies for targeting advanced
NSCLC include adoptive transfer of engineered T cells directed
against specific TAA, such as NY-ESO-1/LAGE-1, also in
combination with ICI (NCT03709706), as well as personalized
adoptive cell therapy where neoantigen-specific T cells from
individual tumors are identified, expanded ex vivo, and then re-
injected in patients (NCT04596033). Despite being very
promising, TCR-based ACT may suffer from certain
disadvantages. abTCR-based targeting approaches remain
susceptible to tumor escape arising through immunoediting
processes that select tumor clones unable to present antigens
due to impairment in MHC-class I expression or to interference
with antigen presentation (66, 133). More recently, by analyzing
next-generation sequencing data derived from previous early-
stage NSCLC and matched brain metastases, McGranahan et al.
found that 40% of early-stage NSCLC displayed LOH and that
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metastases had an even higher prevalence of such genetic
alteration. Interestingly, HLA-LOH in metastasis was
associated with an elevated non-synonymous mutation rate,
suggesting LOH as an immune escape mechanism that
prevents presentation of neoantigens (134). To circumvent the
loss of MHC and antigen presentation, transduction of patient’s
T cells with chimeric antigen receptors (CAR) recognizing intact
cell surface proteins represents an alternative approach to
redirect T cell specificity. However, exploitation of CAR T cell
technology in solid tumors still presents many hurdles. In order
to overcome these limitations, CAR-T cells have now been
engineered to enhance tumor infiltration, induce the
remodeling of the TME and endogenous immune response, and
disrupt immunosuppressive axes (135). This is the case, for
example, of an early phase I clinical trial which exploits the
possibility to use CAR-T cells directed against mesothelin
(MSLN) further engineered to secrete, locally, anti-PD-1
ant ibodies in NSCLC and mesothe l ioma pat i ent s
[NCT04489862 (136)]. The possibility to target EGFR expressed
by NSCLC cells has been also investigated by the use of anti-
EGFR CAR T, further modified to express C-X-C Chemokine
receptor type 5 (CXCR5), in a phase I clinical study
(NCT04153799). Although these trials estimate to recruit small
numbers of patients, results will be very important to define the
safety and the toxicity of these approaches.

Besides T cells, also NK cells are suitable for engineering
with CAR constructs. NK cells equipped with CAR have
demonstrated safety, such as a lack or minimal cytokine release
syndrome and neurotoxicity, in an autologous setting. CAR-NK
cells can also kill targets in a CAR-independent manner (137).
Clinical trials evaluating CAR-NK cells for the treatment of solid
tumors have been started also in NSCLC (NCT02839954). This
phase I/II trial uses CAR-NK cells specific for MUC-1 antigen
expressed by different cancers, including NSCLC. Because
activated NK cells, similarly to T cells, can express immune
checkpoint molecules (e.g., PD-1, LAG-3, and TIM-3) that might
inhibit NK anti-tumor responses their blockade with ICI could
be envisaged in order to reinvigorate cytotoxic activity
(138–140).
5 NOVEL IMMUNOTHERAPEUTIC
APPROACHES

Since TME is able to greatly influence immune response through
complex pathways, its components represent promising targets
for investigational agents. Current immune-oncology research
is focusing on the association of “classic”, acknowledged ICI,
such as anti-PD-1/PD-L1 and anti-CTLA-4 agents, with
investigational compounds, either directed at TME molecules
or at newly discovered immune checkpoints. The aim of these
novel combinations is to overcome the resistance to ICI and
hence improve survival of NSCLC patients. The currently
available information on these agents have been reported in
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the following sub-sections. Notably, as most clinical studies are
still ongoing, they have been resumed in Table 2.

5.1 Targeting Emerging Immune
Checkpoints
Recently, several novel immune checkpoints with potential
therapeutic have been identified, and the most promising
molecules appear to be LAG-3, TIM-3, B7-H3, and TIGIT.

LAG-3 direct targeting is exploited by the use of a soluble
dimeric recombinant LAG-3 (Eftilagimod alpha or IMP321), that
stimulates DC through MHC class II molecules and induces
sustained immune responses together with anti-PD-1, in patients
with previously untreated unresectable or metastatic NSCLC
(NCT03625323). Other approaches use bispecific antibodies
targeting on one hand LAG-3 and on the other PD-1
(NCT04140500; NCT03219268), rather than single-agent
compounds (NCT03250832; NCT03849469). More recently, the
anti-LAG-3 antibody relatlimab (BMS-986016) has been assessed in
the randomized, phase III trial RELATIVITY-047 in which 714
treatment-naïve patients affected by metastatic melanoma were
randomized to receive nivolumab plus relatlimab or nivolumab
plus placebo. Median PFS (the primary end-point) was significantly
longer in the combination arm compared to the control arm (10.1
vs. 4.6 months; HR= 0.75; p= 0.0055); furthermore, the combination
was well tolerated in terms of safety with no unexpected toxicities.
Notably, RELATIVITY-047 is the first randomized study to
demonstrate clinical benefit of dual LAG-3 and PD-1 inhibition
in a solid tumor (141). Following these results, additional studies
involving the dual blockade in other solid tumors, including
NSCLC, are currently ongoing (NCT04623775) (Table 2).

TIM-3, apart from CTL, NK and Treg, is also expressed on DC
and macrophages (in which its expression favors M2
polarization) (142). Monoclonal antibodies targeting TIM-3
either alone or in association with anti-PD-1 are under
investigations in different clinical trials in solid tumors
(NCT03652077; NCT02608268) (Table 2). Additionally, the use
of bispecific antibodies capable to bind to both TIM-3 and PD-1 is
being explored in ongoing trials specifically involving NSCLC
patients (NCT03708328; NCT04931654). The safety and
tolerability of combinations including anti-TIM-3 and anti-PD-
1 with platinum-based doublet chemotherapy are currently being
assessed in NCT03307785, and data collection is still on-going.
Combination therapies simultaneously targeting TIM-3, PD-1
and LAG-3 immune checkpoint have also been evaluated for
advanced cancers (NCT04641871). To date, only few clinical data
are available for NSCLC. In a single-arm, phase II dose-expansion
part of a phase I/II study, 33 patients (including 16 patients with
melanoma and 17 with NSCLC), who were progressing after PD-
1/PD-L1 blockade, received MBG453 (anti-TIM-3) and
spartalizumab (anti-PD-1) until progression, death, or
unacceptable toxicity. The combination resulted generally safe,
but with limited activity in the setting of NSCLC and melanoma
patients who had previously received ICI (143). Although
definitive data are still immature, other early reports suggest
that the combination of anti-TIM-3 (TSR-022) and anti-PD-1
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TABLE 2 | Ongoing clinical trials.

anti-LAG3 and ICI

NCT number Trial Status Phase Total
Estimated
enrollment

Investigator First
Submitted

Date

Last
Update
Posted
Date

NCT03625323 Combination Study With Soluble LAG-3 Fusion
Protein Eftilagimod Alpha (IMP321) and
Pembrolizumab in Patients With Previously Untreated
Unresectable or Metastatic NSCLC, or Recurrent PD-
X Refractory NSCLC or With Recurrent or Metastatic
HNSCC (TACTI-002) - TACTI-002
Keynote-PN798 (Other Identifier: Merck Sharp &
Dohme Corp)

Recruiting Phase
II

183 Frederic Triebel August 10,
2018

April 9,
2021

NCT04140500 Dose Escalation Study of a PD1-LAG3 Bispecific
Antibody in Patients With Advanced and/or Metastatic
Solid Tumors

Recruiting Phase
I

320 Reference Study
ID: NP41300
www.roche.com/
about_roche/
roche_worldwide.
htm

October
28, 2019

July 22,
2021

NCT03219268 A Study of MGD013 in Patients With Unresectable or
Metastatic Neoplasms

Active, not recruiting Phase
I

353 Bradley Sumrow,
MD MacroGenics

July 17,
2017

August 9,
2021

NCT03250832 Study of TSR-033 With an Anti-programmed Cell
Death-1 Receptor (PD-1) in Participants With
Advanced Solid Tumors (CITRINO)

Active, not recruiting Phase
I

111 GSK Clinical Trials
Glaxo SmithKlin

August 16,
2017

May 18,
2021

NCT04641871 Sym021 in Combination With Either Sym022 or
Sym023 in Patients With Advanced Solid Tumor
Malignancies

Active, not recruiting Phase
I

200 Nehal Lakhani,
MD
START Midwest

November
24, 2020

May 14,
2021

NCT03849469 A Study of XmAb®22841 Monotherapy & in
Combination w/Pembrolizumab in Subjects w/
Selected Advanced Solid Tumors (DUET-4)

Recruiting Phase
I

242 Benjamin
Thompson, MD,
PhD
Xencor, Inc.

February
21, 2019

May 5,
2021

NCT04623775 A Study of Relatlimab Plus Nivolumab in Combination
With Chemotherapy vs. Nivolumab in Combination
With Chemotherapy as First Line Treatment for
Participants With Stage IV or Recurrent Non-small
Cell Lung Cancer (NSCLC)

Recruiting Phase
II

520 Bristol-Myers-
Squibb

November
10, 2020

August 25,
2021

anti-TIM-3 and ICI

NCT03708328 A Dose Escalation and Expansion Study of
RO7121661, a PD-1/TIM-3 Bispecific Antibody, in
Participants With Advanced and/or Metastatic Solid
Tumors

Recruiting Phase
I

280 Clinical Trials
Hoffmann-La
Roche

October
17, 2018

July 19,
2021

NCT04931654 A Study to Assess the Safety and Efficacy of
AZD7789 in Participants With Advanced or Metastatic
Solid Cancer

Not yet recruiting Phase
I

81 AstraZeneca June 18,
2021

July 16,
2021

NCT03652077 A Safety and Tolerability Study of INCAGN02390 in
Select Advanced Malignancies

Active, not recruiting Phase
I

40 John Janik, MD
Incyte Corporation

August 29,
2018

March 17,
2021

NCT04641871 Sym021 in Combination With Either Sym022 or
Sym023 in Patients With Advanced Solid Tumor
Malignancies

Active, not recruiting Phase
I

200 Nehal Lakhani,
MD
START Midwest

November
24, 2020

May 14,
2021

NCT02817633 A Study of TSR-022 in Participants With Advanced
Solid Tumors (AMBER)

Recruiting Phase
I

369 GSK Clinical Trials
GlaxoSmithKline

June 29,
2016

June 8,
2021

NCT03307785 Previous Study | Return to List | Next Study
Study of Niraparib, TSR-022, Bevacizumab, and
Platinum-Based Doublet Chemotherapy in
Combination With TSR-042

Active, not recruiting
Has results

Phase
I

58 GSK Clinical Trials
GlaxoSmithKline

October
12, 2017

May 10,
2021

NCT02608268 Phase I-Ib/II Study of MBG453 as Single Agent and in
Combination With PDR001 in Patients With Advanced
Malignancies

Active, not recruiting Phase
I
Phase
II

252 Novartis
Pharmaceuticals

November
18, 2015

July 19,
2021

NCT03099109 A Study of LY3321367 Alone or With LY3300054 in
Participants With Advanced Relapsed/Refractory
Solid Tumors

Active, not recruiting Phase
I

275 Eli Lilly and
Company

April 12,
2017

September
5, 2021

(Continued)
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anti-LAG3 and ICI

CT number Trial Status Phase Total
Estimated
enrollment

Investigator First
Submitted

Date

Last
Update
Posted
Date

anti-B7-H3 and ICI

CT02475213 Safety Study of Enoblituzumab (MGA271) in
Combination With Pembrolizumab or MGA012 in
Refractory Cancer

Active, not recruiting Phase
I

145 Stacie Goldberg,
M.D.
MacroGenics

June 18,
2015

April 14,
2021

CT02381314 Safety Study of Enoblituzumab (MGA271) in
Combination With Ipilimumab in Refractory Cancer

Completed Phase
I

24 Stacie Goldberg,
M.D.
MacroGenics

March 6,
2015

March 25,
2019

CT03729596 MGC018 With or Without MGA012 in Advanced Solid
Tumors

Recruiting Phase
I
Phase
2

182 Chet Bohac,
PharmD MD MSc
MacroGenics

November
2, 2018

April 28,
2021

anti-TIGIT and ICI

CT04995523 A Study to Assess the Safety and Efficacy of
AZD2936 in Participants With Advanced or Metastatic
Non-small Cell Lung Cancer (NSCLC) (ARTEMIDE-01)

Not yet recruiting Phase
I
Phase
II

147 AstraZeneca August 9,
2021

August 9,
2021

CT04952597 Study of Ociperlimab Plus Tislelizumab Plus
Chemoradiotherapy in Participants With Untreated
Limited-Stage Small Cell Lung Cancer

Recruiting Phase
II

120 BeiGene July 7,
2021

July 30,
2021

CT04746924 A Study of Ociperlimab With Tislelizumab Compared
to Pembrolizumab in Participants With Untreated
Lung Cancer

Recruiting Phase
III

605 Mark Socinski,
MD
Advent Health
Orlando

February
10, 2021

June 14,
2021

CT04672356 A Study to Evaluate the Safety, Tolerability and
Efficacy of IBI939 in Combination With Sintilimab in
Patients With Advanced Lung Cancer

Recruiting Phase
I

20 Ying Cheng
Jilin Province
Cancer Hospital

December
17, 2020

February
21, 2021

CT04294810 A Study of Tiragolumab in Combination With
Atezolizumab Compared With Placebo in
Combination With Atezolizumab in Patients With
Previously Untreated Locally Advanced Unresectable
or Metastatic PD-L1-Selected Non-Small Cell Lung
Cancer (SKYSCRAPER-01)

Recruiting Phase
III

560 Hoffmann-La
Roche

March 4,
2020

July 20,
2021

CT04791839 Safety and Efficacy of Zimberelimab (AB122) in
Combination With Domvanalimab (AB154) and
Etrumadenant (AB928) in Patients With Previously
Treated Non-Small Cell Lung Cancer

Recruiting Phase
II

30 Daniel
MorgenszternM.D.
Washington
University School
of Medicine

March 10,
2021

August 11,
2021

CT04672369 A Study to Evaluate the Efficacy of IBI939 in
Combination With Sintilimab in Patients With
Advanced NSCLC

Not yet recruiting Phase
I

42 Ying Cheng
Jilin Province
Cancer Hospital

December
17, 2020

December
17, 2020

CT04866017 Tislelizumab Plus BGB-A1217 Versus Tislelizumab
Versus Durvalumab When Co-administered With
Concurrent Chemoradiotherapy (cCRT) in Lung
Cancer

Recruiting Phase
III

900 Yalan Yang, MD
BeiGene

April 29,
2021

July 1,
2021

anti-KIRs and ICI

CT03347123 A Study of Epacadostat and Nivolumab in
Combination With Immune Therapies in Subjects With
Advanced or Metastatic Malignancies (ECHO-208)

Completed Phase
I
Phase
II

11 Incyte Corporation November
20, 2017

April 19,
2021

anti-NKG2A and ICI

CT03822351 Durvalumab Alone or in Combination With Novel
Agents in Subjects With NSCLC (COAST)

Active, not recruiting Phase
II

189 AstraZeneca December
19, 2018

August 4,
2021

(Continued)

ABLE 2 | Continued
Frontiers in Immu
nology | www.frontiersin.org
 1167
 January 2022 | Vo
lume 12 | Ar
ticle 799455

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Genova et al. TME in NSCLC Resistance to ICI

Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7994551268
TABLE 2 | Continued

anti-LAG3 and ICI

NCT number Trial Status Phase Total
Estimated
enrollment

Investigator First
Submitted

Date

Last
Update
Posted
Date

Targeting immune suppression and ICI

NCT03621982 Study of ADCT-301 in Patients With Selected
Advanced Solid Tumors

Recruiting Phase
I

95 ADC Therapeutics August 9,
2018

July 13,
2021

NCT04396535 Docetaxel With or Without Bintrafusp Alfa for the
Treatment of Advanced Non-small Cell Lung Cancer

Recruiting Phase
II

80 Alex A Adjei
Mayo Clinic in
Rochester

May 20,
2020

May 4,
2021

NCT02903914 Arginase Inhibitor INCB001158 as a Single Agent and
in Combination With Immune Checkpoint Therapy in
Patients With Advanced/Metastatic Solid Tumors

Active, not recruiting Phase
I
Phase
II

260 Sven Gogov, MD
Incyte Corporation

September
16, 2016

March 23,
2021

NCT03322540 Pembrolizumab Plus Epacadostat vs Pembrolizumab
Plus Placebo in Metastatic Non-Small Cell Lung
Cancer (KEYNOTE-654-05/ECHO-305-05)

Completed Phase
II

154 Lance Leopold,
MD
Incyte Corporation

October
26, 2017

January 6,
2021

NCT03343613 A Study of LY3381916 Alone or in Combination With
LY3300054 in Participants With Solid Tumors

Terminated (Study
terminated due to
strategic business
decision by Eli Lilly and
Company.)

Phase
I

60 Eli Lilly and
Company

November
17, 2017

June 9,
2020

NCT02298153 A Study of Atezolizumab (MPDL3280A) in
Combination With Epacadostat (INCB024360) in
Subjects With Previously Treated Stage IIIB or Stage
IV Non-Small Cell Lung Cancer and Previously
Treated Stage IV Urothelial Carcinoma (ECHO-110)

Terminated (Study
halted prematurely and
will not resume;
participants are no
longer being examined
or receiving
intervention.)

Phase
I

29 Hiroomi Tada, MD
Incyte Corporation

November
21, 2014

December
11, 2017

NCT03562871 IO102 With Pembrolizumab, With or Without
Chemotherapy, as First-line Treatment of Metastatic
NSCLC

Active, not recruiting Phase
I
Phase
II

108 James Spicer, MD
ProfGuy’s
Hospital

June 20,
2018

May 19,
2021

NCT03502330 APX005M With Nivolumab and Cabiralizumab in
Advanced Melanoma, Non-small Cell Lung Cancer or
Renal Cell Carcinoma

Recruiting Phase
I

120 Harriet Kluger,
MD
Yale University

April 18,
2018

December
22, 2020

NCT04306900 TTX-030 in Combination With Immunotherapy and/or
Chemotherapy in Subjects With Advanced Cancers

Recruiting Phase
I

185 Trishula
Therapeutics, Inc.

March 13,
2020

September
30, 2021

NCT03884556 TTX-030 Single Agent and in Combination With
Immunotherapy or Chemotherapy for Patients With
Advanced Cancers

Recruiting Phase
I

100 Trishula
Therapeutics, Inc.

March 1,
2019

May 3,
2021

Targeting Angiogenesis and ICI

NCT04900363 A Trial of AK112 (PD-1/VEGF Bispecific Antibody) in
Patients With NSCLC

Recruiting Phase
I/II

360 Caicun Zhou, MD May 25,
2021

May 25,
2021

Targeting cancer cell death and ICI

NCT03775486 Study of Durvalumab+ Olaparib or Durvalumab After
Treatment With Durvalumab and Chemotherapy in
Patients With Lung Cancer (ORION)

Active, not recruiting Phase
II

401 Myung-Ju Ahn,
MD

December
14, 2018

April 28,
2020

NCT03976323 Study of Pembrolizumab With Maintenance Olaparib
or Maintenance Pemetrexed in First-line (1L)
Metastatic Nonsquamous Non-Small-Cell Lung
Cancer (NSCLC) (MK-7339-006, KEYLYNK-006)

Active, not recruiting Phase
III

792 Merck Sharp &
Dohme Corp.

June 6,
2019

May 18,
2021

NCT03976362 A Study of Pembrolizumab (MK-3475) With or
Without Maintenance Olaparib in First-line Metastatic
Squamous Non-small Cell Lung Cancer (NSCLC, MK-
7339-008/KEYLYNK-008)

Recruiting Phase
III

735 Merck Sharp &
Dohme Corp.

June 6,
2019

October 1,
2021

NCT03307785 Study of Niraparib, TSR-022, Bevacizumab, and
Platinum-Based Doublet Chemotherapy in
Combination With TSR-042

Active, not recruiting Phase
I

58 Tesaro, Inc. October
12, 2017

May 10,
2021
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(TSR-042) has shown activity in NSCLC patients progressing on
previous anti-PD-1 therapy (142). Additionally, the anti-TIM-3
agent LY3321367 was employed alone (23 patients) or in
combination with the anti-PD-1 antibody LY3300054 (18
patients) in a phase Ia/Ib trial (NCT03099109) (Table 2). Both
combination and single-agent were well tolerated, and single-
agent treatment with LY3321367 achieved > 20% tumor
regression in two patients, one of which, affected by small cell
lung cancer, was later confirmed as a partial response (144).

B7-H3, also known as CD276, is a transmembrane protein
frequently expressed by cancer cells, and is considered an
immune-checkpoint molecule exploited by cancer cells to
escape immune system recognition. B7-H3 expression was
hypothesized to be potentially involved in resistance to anti-
PD-1/PD-L1 blockade in NSCLC (145). So far, 3 clinical trials
assessed the possible use of an antibody to target B7-H3 in
association with anti-PD-1 or anti-CTLA-4 in advanced,
previously treated solid tumors (NCT03729596; NCT02475213;
NCT02381314), while other studies are exploring the possibility
to target B7-H3 by using Chimeric Antigen Receptor T Cells
(CAR-T) (NCT03198052; NCT04842812). All these studies are
currently ongoing.

T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is
expressed by activated CD8+ and CD4+ T cells, NK, Treg, and
potently inhibits innate and adaptive immunity (146). While the
mechanism of action of TIGIT has to be elucidated yet, the
molecule is known to bind CD155, thus preventing its binding
to the immune activator receptor CD226, down-regulating NK
and T cells function. Furthermore, TIGIT is known to induce M2
macrophage differentiation (147). To date, the most promising
anti-TIGIT agent in NSCLC is represented by tiragolumab.
Recently, this agent has been evaluated in combination with
atezolizumab in the CITYSCAPE trial. In this randomized,
double-blind, phase II study, 135 previously untreated patients
with advanced NSCLC positive for PD-L1 expression (≥1%) were
randomized to receive tiragolumab plus atezolizumab or placebo
plus atezolizumab as first-line treatment. In the intent-to-treat
(ITT) population, objective response rate (ORR) was higher in the
tiragolumab-atezolizumab arm compared to placebo-
atezolizumab (37% vs. 21%). In sub-group analyses, the ORR
advantage was confirmed in the subset of patients with PD-L1
expression ≥50% (ORR: 66% vs. 24%), while in the sub-group of
patients with PD-L1 expression ranging from 1-49%, no
advantage in terms of ORR was observed for the combination
compared to placebo arm (16% vs. 18%). Similarly, a significant
advantage in PFS was observed in the sub-group with PD-L1
≥50% (median PFS not reached in the experimental arm
compared to 4.11 months in the placebo arm; HR= 0.30), while
no difference was observed in the sub-group with PD-L1 ranging
from 1-49% (4.04 months vs. 3.58 months; HR= 0.89) (148).

With regards to other investigational agents, a currently
ongoing phase II study aims to set safety and efficacy of
zimberelimab (anti-PD-1) in combination with domvanalimab
(anti-TIGIT) and etrumadenant (selective, A2A and A2B
adenosine receptor, small-molecule antagonist) in previously
treated 30 NSCLC patients (NCT04791839) (Table 2). This is
Frontiers in Immunology | www.frontiersin.org 1369
an interesting approach to reduce inhibition of T and NK cells
due to immune checkpoints and reduce adenosine
mediated immunosuppression.

KIR expression in NSCLC was correlated to resistance to anti-
PD-1 ICI (149). In a phase I-II clinical trial safety, tolerability,
and efficacy of Epacadostat (IDO1 inhibitor), nivolumab (anti-
PD-1), and lirilumab (anti-KIRD2) combination was evaluated
on 11 patients with solid tumors (NCT03347123) (Table 2).
Results are awaited with interest, though the number of patients
included in the trial is small. Notably, increasing interest has
raised towards the Natural-killer group 2 member A (NKG2A)
receptor, which is typically expressed on NK cells and is
characterized by inhibitory functions, although its mechanism
of action is not yet fully disclosed (150). Recently, in the open-
label, randomized, phase II COAST trial, 189 patients affected by
inoperable, stage III NSCLC candidate for maintenance after
chemo-radiation were randomized to receive either durvalumab
(the current standard of care anti-PD-L1 agent) alone,
durvalumab plus oleclumab (an anti-CD73), or durvalumab
plus monalizumab (an anti-NKG2A). In the experimental arm
including durvalumab plus monalizumab, ORR (the primary
end-point) was superior than the standard arm including
durvalumab alone (37.1% vs. 25.4%; Odds Ratio= 1.77).
Similarly, durvalumab plus monalizumab achieved longer PFS
compared to durvalumab alone at the interim analysis (15.1 vs.
6.3 months; HR= 0.65), thus suggesting a promising clinical role
for the combination of PD-L1 and NKG2A inhibition (151).

5.2 Targeting Immune Suppression
Since the immune system is regulated by severa l
immunosuppressive mechanisms, which represent interesting
targets for novel agents designed to improve the activity of
“classic” ICI. Such mechanisms and pathways are globally
mediated by inflammatory regulators, metabolic regulators, as
well as immunosuppressive cells within the TME, such as Treg
and TAM (Table 2 and Figure 1).

5.2.1 Manipulation of Inflammatory Regulators
Cyclooxygenase (COX)-2 is frequently expressed by NSCLC and
is required for prostaglandins synthesis, which are known to
induce FoxP3+ Treg cells (152). Targeting COX-2 to inhibit Treg
cells expansion and mediated immunosuppression has been
exploited in several clinical trials using inhibitors in association
with chemotherapy. Unfortunately, results did not meet the
expectations. More specifically, in the GEmcitabine-COxib in
NSCLC (GECO) study, the addition of oral rofecoxib to
cisplatin-gemcitabine was associated with significantly
increased rate of adverse events, including diarrhea, weight
loss, constipation, fatigue and pain, as well as severe cardiac
ischemia, without evidence of survival advantage (153). In the
CALGB 30801 trial, 312 patients affected by unresectable NSCLC
expressing COX-2 at immunohistochemistry assay were
randomized to receive platinum-based chemotherapy with
either celecoxib or placebo; the study was closed early due to
futility as the addition of celecoxib failed to improve PFS over
chemotherapy plus placebo (154).
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While prospective data involving the use of ICI and COX
inhibitors are limited, in a recent paper Wang et al. reported that
the concomitant usage of COX inhibitors during ICI therapy for
patients with NSCLC improved patients’ outcomes in terms of
response (ORR at 6 months 73.7% vs 33.3%, p=0.036) and time
to progression (HR 0.45; 95% CI 0.21 to 0.97; p=0.042), albeit
these results were observed retrospectively in a cohort of 37
patients (155).

Targeting of TGF-b in association with ICI has been
investigated using a bifunctional fusion protein (bintrafusp;
M7824) consisting of the extracellular domain of TGF-b
receptor II fused to an anti-PD-L1 in patients with NSCLC in
a phase I trial. The expansion cohort of the trial included 80
NSCLC patients previously treated with platinum-based
chemotherapy who were randomized at a one-to-one ratio to
receive either bintrafusp alfa 500 mg or the recommended phase
2 dosage of 1200 mg every 2 weeks. The ORR was 17.5% and 25%
in the 500 mg and 1200 mg dose, respectively; notably, ORR was
higher in the sub-group of patients with PD-L1 expression ≥80%
(ORR: 85.7%). The treatment was relatively well tolerated, with
69% of patients experiencing adverse events, including 23 out of
80 patients experiencing grade ≥3 adverse events (156). Other
new studies are ongoing: in a phase II trial (NCT04396535)
(Table 2) docetaxel is administered with or without bintrafusp
alfa in treating patients after progressing on a combination of
anti-PD-1/PD-L1 and chemotherapy; in a phase III trial
(NCT03631706) the efficacy of bintrafusp alfa will be
compared with pembrolizumab in patients with high PD-L1-
tumor expression and no genetic alterations.

5.2.2 Manipulation of Metabolic Mediators
Notably, some metabolic mediators, such as adenosine, arginine,
and tryptophan (and its catabolic products) are involved in
several immune-regulatory pathways, usual ly with
immunosuppressive activity; hence, the pathways involving
these molecules represent a promising target for immune-
modulating treatments.

CD39/CD73 expressed on Treg and MDSC cells are
considered another potential therapeutic target (36), indeed,
multiple clinical trials designed to explore the activity of
antibodies targeting either CD39 or CD73 in association with
ICI alone or with chemotherapy are currently active and
recruiting (NCT04306900, NCT03884556). Recently, results of
the aforementioned COAST trial have been reported at the
European Society of Medical Oncology (ESMO) Congress
2021; one of the treatment arms included in the trial was
durva lumab plus olec lumab (an ant i-CD73) . This
investigational combination was superior to durvalumab alone
both in terms of ORR (38.3% vs. 25.4%; Odds Ratio= 1.83) and
PFS (median not reached vs. 6.3 months; HR= 0.44) (151).

Arginase depletes arginine from tumor milieu and is
produced by MDSC and neutrophils. Arginine is a
fundamental amino acid which is required for optimal T cell
functions (35); therefore, inhibition of arginase in association
with ICI is apparently a potentially useful therapeutic approach
for cancer immunotherapy. INCB001158 is a new inhibitory
molecule of arginase, currently under investigation in a phase I
Frontiers in Immunology | www.frontiersin.org 1470
clinical trial both as a single agent and in combination with
“classic” ICI in patients with advanced/metastatic solid tumors
[(157) NCT02903914] (Table 2). Results involving NSCLC have
not been published yet, but the first data from patients with
colorectal cancer indicate a good tolerability of INCB001158 in
association with pembrolizumab and an increase in CD8+ T cells
accumulation within the tumor (158, 159).

IDO1 and tryptophan 2,3-dioxygenase 2 (TDO2) catalyze the
kynurenine metabolic pathway which leads, through tryptophan
depletion in TME, to the generation of immune-tolerant DC and
Treg, while the catabolic products kynurenines exert toxic
activity on cytotoxic T cells (160, 161). Combination of
epacadostat and pembrolizumab have largely disattended
previous expectations in melanoma, and subsequently a phase
II clinical trial investigating its potential activity in combination
with pembrolizumab alone for treatment-naïve PD-L1 high
(≥50%) NSCLC patients has been discontinued due to lack of
advantage compared to pembrolizumab alone (NCT03322540).
However, combinations of anti-PD-1 with other IDO-1
inhibitors (BMS-986205, NLG-919, navoximod/GDC-0919),
dual IDO/TDO inhibitors (RG70099 and IOM-D) as well as
indoximod are in clinical development (NCT03343613,
NCT03322540, NCT02298153, NCT03562871) (Table 2).

5.2.3 Manipulation of Immunoregulatory Cells
One possible approach for improving immune response to
tumor relies in the modulation of immunoregulatory cells
within the TME, with specific reference to immunosuppressive
cells, which might be managed either directly (e.g. by depletion)
or by reducing their proliferation (e.g. by use of inhibitors).

Since Treg are the immunosuppressive cells more frequently
associated to resistance to ICI, the possibility of disrupting Treg
function in association with ICI has been pursued. One possible
approach is represented by the use of anti-CD25 antibody to
deplete Treg in cancer. Currently, a single-arm phase Ib clinical
trial exploiting the inhibition of Treg in association with
pembrolizumab in different cancers, including NSCLC, is open
for recruitment (NCT03621982). Patients enrolled in this study
will receive ADCT-301/Camidanlumab tesirine, which is an anti-
CD25 antibody–drug conjugate; the agent will be employed
either alone or in combination with pembrolizumab.
Preclinical studies demonstrated that this molecule would
efficiently deplete Treg and cause immunogenic cell death and
would concomitantly increase the number of activated tumor-
infiltrating CD8+ T effector cells (162).

Recently, the results of a phase I trial involving the CD40
agonist APX005M (sotigalimab) and cabiralizumab, an inhibitor
of colony stimulating factor-1 receptor (CSF1R), were published.
Notably, CSF1R signaling is known to facilitate recruitment and
activation of TAM and is associated with lower levels of cytotoxic
lymphocytes, thus favoring an immunosuppressive environment
(163); CD40 is a member of the TNF receptor super-family and
is known to facilitate T cell activation and support a pro-
inflammatory environment, including macrophage polarization
towards M1 (164). In the trial, 26 patients with solid tumors,
including 12 melanomas, 1 NSCLC, and 13 renal cell carcinomas,
who had progressed on anti-PD-1/PD-L1 treatment, were
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treated in dose-escalating cohorts of APX005M with fixed doses
of cabiralizumab, with or without nivolumab. The combination
was generally tolerated and the observed results globally
encourage further research involving combinations designed to
polarize TME towards a pro-inflammatory pattern (164–166).

Another promising therapeutic target is represented by
chemokine receptor type 4 (CCR4) known to stimulate the
enrollment of Treg, thus promoting an immunosuppressive
TME; hence, inhibiting CCR4 might result in Treg depletion
and reversion towards immunogenic microenvironment.
Mogamulizumab (anti-CCR4 antibody) has been evaluated in
combination with anti-PD-1/PD-L1 or anti-CTLA-4 in two
phase I trials. In the first trial, 96 patients with solid tumors
received nivolumab plus escalating doses of mogamulizumab; the
combination was generally safe, with mostly mild and moderate
adverse events and no unexpected toxicities, and moderately
active in terms of response, with 4 out of 15 patients with
hepatocellular carcinoma achieving partial response. Among
the 15 patients with NSCLC, 3 partial responses and 3 disease
stabilizations were observed as best response (167). In the other
phase I trial, 40 patients with solid tumors were included in dose-
escalation cohorts of mogamulizumab concurrently with dose
escalation of durvalumab or tremelimumab, and further 24
patients were included in dose-expansion cohorts. Although
the combination treatment was generally well tolerated, the
observed antitumor activity of mogamulizumab with either
durvalumab or tremelimumab was modest across the different
solid tumors involved (168).

5.3 Targeting Angiogenesis
Anti-angiogenic agents have been a mainstay among cancer
therapies, with several compounds approved for multiple
malignancies, either as “pure” anti-angiogenic agents, such as
antibodies (bevacizumab, ramucirumab), or as multi-targeted
agents active on angiogenesis as well as different molecular
pathways (nintedanib, sunitinib, and others). The cornerstone
of anti-angiogenic agents is currently represented by activity on
VEGF and its receptors. Following the large use of angiogenesis-
disrupting agents, great interest has developed toward the use of
combinations of ICI and anti-angiogenic drugs. One notable
difficulty associated with this approach lies in the necessity of
equilibrium when formation of blood vessels is manipulated.
Indeed, neo-angiogenesis promoted by tumor cells is typically
chaotic and composed by disorganized and tortuous blood
vessels characterized by excessive permeability, which results in
increased interstitial fluid pression and ultimately reduced
perfusion and oxygenation. Disrupting this process might
result in transient normalization of blood circulation, thus
facilitating the recruitment of lymphocytes. On the other hand,
when anti-angiogenesis effects proceed, leucocytes have more
difficulties in terms of accessibility to tumor mass, potentially
resulting in less TILs (169). Notably, it has also been observed
that high expression of VEGF results in increased proportion of
immature DC, which promote immune tolerance, and Treg;
furthermore, it has been suggested that VEGF might have a role
in polarizing macrophages to M2 phenotype (169, 170). Recent
updates on pre-clinical rationale and clinical experience with
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anti-VEGF agents and ICI have been comprehensively
summarized by Ren et al. (48). The combination of the anti-
VEGFR2 (ramucirumab) plus pembrolizumab in NSCLC was
evaluated in a phase Ia/Ib trial. In an expansion cohort of the
study, 11 out of 26 NSCLC patients (42.3%) experienced
grade ≥3 treatment-related adverse events, the most frequent
being hypertension (4 patients; 15.4%), which was consistent
with the expected toxicity from ramucirumab; furthermore, 2
patients (7.7%) experienced myocardial infarction. Notably,
ORR was 42.3% in the whole cohort, and patients with PD-L1
≥50% achieved an ORR= 56.3%, compared to 22.2% achieved by
the other patients. Similarly, median PFS was not reached for
high PD-L1 expressors, while it was 4.9 months for patients with
PD-L1 = 1-49% (171).

The combination of bevacizumab plus chemo-immunotherapy
with atezolizumab, carboplatin, and paclitaxel was assessed in the
large, randomized, phase III trial Impower150. In this study, which
enrolled 1202 patients, the combination including bevacizumab
achieved superior outcomes compared to the arm containing only
bevacizumab, carboplatin, and paclitaxel, both in terms of PFS (8.3
vs. 6.8 months; HR= 0.62; p<0.001) and OS (19.2 vs. 14.7 months;
HR= 0.78; p=0.02) (172). Notably, the trial included a small,
although non-negligible sub-group of patients with activating
mutations of EGFR, which are known to be associated with poor
response to ICI. In this sub-population (124 patients), the
combination of chemo-immunotherapy plus bevacizumab was
associated with increased OS (median not reached at the time of
analysis) over chemotherapy and bevacizumab alone (18.7
months), thus suggesting a potential effect of anti-angiogenesis
plus ICI and chemotherapy in a population typically not suitable for
treatment with ICI alone (173).

Finally a new and interesting approach targeting VEGF
investigated the possible therapeutic efficacy of AK112, a PD-1/
VEGF bispecific antibody, in patients with advanced NSCLC.
The study is currently recruiting and its results are
awaited (NCT04900363).

5.4 Targeting Cancer Cell Death
The possibility to target and inhibit Poly (ADP-ribose)
polymerases (PARPs), thus triggering cell death in association
with ICI to activate T cells represents an additional promising
therapeutic approach; however, published data in NSCLC are
still limited so far. In the phase II, JASPER trial, 38 patients
affected by advanced NSCLC were divided in two cohorts (cohort
1: PD-L1 ≥50%; cohort 2: PD-L1=1-49%) and received first-line
treatment with pembrolizumab plus niraparib. The primary end-
point, ORR, was 56.3% in cohort 1 (9/16 evaluable patients) and
20.0% in cohort 2 (4/20 evaluable patients); with regards to
survival outcomes in cohort 1 and cohort 2, median PFS was 8.4
months and 4.2 months, respectively, while OS was not reached
and 7.7 months, respectively. Notably, 35.3% and 23.8% of
patients in cohort 1 and cohort 2 experienced serious
treatment-related adverse events. The authors concluded that
the combination of pembrolizumab and niraparib is active in
advanced NSCLC with high PD-L1 expression (174).

While published data involving PARP-inhibitors and ICI are
still limited, several clinical trials are currently ongoing and might
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produce interesting results in the upcoming months. With regards
to olaparib, the ongoing phase II ORION trial (NCT03775486), is
evaluating the efficacy and safety of a maintenance with olaparib
plus durvalumab combination compared to durvalumab alone in
patients affected by stage IV NSCLC not progressing after a first-
line of platinum-based chemotherapy plus durvalumab.
Furthermore, two other phase III trials are evaluating the
combination of pembrolizumab plus olaparib in NSCLC
patients (NCT03976323, NCT03976362) (Table 2).

Finally, an ongoing phase I clinical trial aims to study the
combination of niraparib (another PARP-inhibitor), TSR-022
(anti-TIM-3), bevacizumab, and platinum-based doublet
chemotherapy with TSR-042 (anti-PD-1) in advanced or
metastatic cancers, including NSCLC (NCT03307785)
(Table 2). The mail goal of this study is to determine
tolerability and safety of such combinations for subsequent
phase II development.
6 DISCUSSION

To date, ICI are the standard of care, either as monotherapy or in
combination, for advanced non-oncogene-addicted NSCLC
patients. However, a portion of patients do not benefit from
these treatments and it is increasingly clear that reverting T or
NK cytotoxic cell dysfunctional state with anti-PD-1/PD-L1 and/
or anti-CTLA-4 may not be enough and needs to be improved.
Indeed, increasing evidences sustain the role of new additional
inhibitory immune checkpoint molecules, such as TIM-3, LAG-
3, and TIGIT, in order to overcome the resistance to ICI (141,
144, 148). More importantly, the presence of an immune
suppressive TME, mainly composed by Treg, MDSC and M2-
TAM, in which cytotoxic cells reinvigorated by ICI act, is still a
limitation for their anti-tumor activity, thus being acknowledged
as another mechanism of resistance to ICI (32, 33, 37, 42, 43).
Nonetheless, the identification of TILs with antigen specificity in
the TME indicates that tumor recognition may occur and may
lead to tumor growth control in the presence of an appropriate
immune context (22). Further studies using multiplex
histopathological, immunofluorescence and single-cell
transcriptomics analyses are required to better define
additional soluble mediators, cell to cell, and spatial
relationships within the TME, that might collaborate to confer
resistance to ICI. Moreover, an open question is how to select
which patient will respond to treatment. Consequently, defining
reliable biomarkers capable of predicting efficacy is a
fundamental requirement. Currently, a number of TME-based
scores both directly on tumor tissue visualization or indirectly
through deductive techniques (e.g. gene expression profiles and
radiomic feature extraction), have been tested as predictor of ICI
efficacy in the lung cancer. Among these, PD-L1 expression by
immunohistochemistry is still the only valid bio-marker widely
used for the selection of suitable patients for anti-PD-1
treatment. Unfortunately, a number of issues are unresolved,
such as the high intra-tumoral heterogeneity of PD-L1 which
could prevent proper evaluation in small tumor biopsies, and
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pathologist interpretation is still a relevant factor (175). Gene
signatures are now under development and show, for example,
how an inflammatory state or the enrichment of the IFN
pathway are predictors of a benefit from anti-PD-1/PD-L1
treatments. These predictive models have shown an optimal
ability to retrospectively discriminate a benefit in disease
response or progression, but prospective multi-institutional
studies on larger patient cohorts are needed to ensure their
reliability in a clinical setting.

To date multiple trials are currently ongoing with the aim of
evaluating the use of novel agents in combination with ICI to
overcome resistance (141–144, 146, 148). While these agents
vary in terms of specific mechanism of action and some are
explicitly designed to target additional immune checkpoints,
other compounds are more specifically designed to interfere
with TME (151, 153–156, 167, 171, 174). These approaches
pursue the stimulation of a more pro-inflammatory
microenvironment, usually by manipulating the proportion of
immune cells populating the TME. More specifically their aim is
the reduction of Treg and immature DC, while simultaneously
favoring macrophage polarization toward an M1 differentiation
rather than M2. It is important to stress that much of our current
knowledge on resistance mechanisms and its biomarkers is
derived from melanoma studies, and further studies, specific to
lung cancer, are required.

Most clinical data are still limited so far, however, some
interim results and safety data from phase I trials are already
available and appear to be quite encouraging, especially when
multi-modality approaches involving combinations of “classic”
anti-PD-1/PD-L1 or CTLA-4 agents and novel immune-
modulating drugs are employed. Data from ongoing clinical
trials identify new interesting and promising drugs, such as
tiragolumab (anti-TIGIT antibody) that in association with
atezolizumab demonstrated higher ORR compared to placebo-
atezolizumab (148). Other promising agents include
monalizumab (anti-NKG2A antibody) and oleclumab (anti-
CD73 antibody), both demonstrating to be superior to
durvalumab alone, in terms of ORR and PFS (151). Similarly,
other innovative immunotherapies, such as CAR-T or CAR-NK
with selected tumor antigen specificity seem promising, and
might represent a novel and effective approach to solid tumors
(NCT04489862, NCT04153799, NCT02839954) (136, 137).

In the near future, we can expect that at least some of the
currently investigated novel agents targeting additional immune
checkpoints or components of the TME will proceed toward late
phases of clinical research and eventually be approved. One
potential issue will be represented by proper patient selection for
receiving one among the different regimens that are available
(single-agent PD-1 or PD-L1 inhibitor, chemotherapy plus PD-1/
PD-L1 inhibitor, dual checkpoint blockade with PD-1 and CTLA-4
inhibitor plus chemotherapy), or among the regimens that might
become available in the following months or years (such as PD-1
inhibitor plus TIGIT inhibitor, PD-1 inhibitor plus PARP inhibitor,
among others). This is a most likely scenario for the next future, and
we can also hypothesize that one strong focus of the upcoming
research will be dedicated to the identification of predictive
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biomarkers of efficacy for the current and future regimens,
eventually in addition or in replacement of PD-L1 expression.
While the approach considering specific biomarkers and agents is
intuitive (e.g. BRCA mutations and PARP inhibitors) and is easily
accepted and adopted by pulmonary oncologists we have to
consider that the addition of novel tissue-based biomarkers to the
current panels of molecular alterations (which are expected to
enlarge in their turn) might be severely limited by the amount of
available adequate samples, especially since tissue will be consumed
by routine molecular analyses. Furthermore, small biopsies might
not be effectively representative of the complex interactions between
the whole tumor and the immune system, and these interactions
may change during time.

In conclusion, the exploitation of TME for the development of
novel therapeutic strategies involving the components of TME,
might represent the future of cancer immunotherapy. Moreover, the
development of algorithms integrating clinical, histological, genetic,
and radiomic features could help clinicians in patient management
in defining specific personalized therapies comparable to what has
been successfully done in oncogene-driven NSCLC.
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Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels
the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and
genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME),
adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions
that act to dampen immune cell function. Through its impact on key cancer hallmarks and
by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell
escape from the mounted immune response. The tumor cell-immune cell crosstalk in the
context of a hypoxic TME tips the balance towards a cold and immunosuppressed
microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless,
evidence is emerging that could make hypoxia an asset for improving response to ICI.
Tackling the tumor immune contexture has taken on an in silico, digitalized approach with
an increasing number of studies applying bioinformatics to deconvolute the cellular and
non-cellular elements of the TME. Such approaches have additionally been combined with
signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune
relationship. In this review we will be highlighting the mechanisms by which hypoxia
impacts immune cell functions and how that could translate to predicting response to
immunotherapy in an era of machine learning and computational biology.

Keywords: hypoxia, tumor microenvironment, immune microenvironment, tumor plasticity, genetic instability,
immunogenicity, hypoxia signature
INTRODUCTION

Solid tumors manifest in a microenvironment that harbors an array of cellular and non-cellular
factors, cycling through various environmental pressures, which contribute to shaping a tumor’s
immunological features (1). Hypoxia is an early event in tumor evolution that has been shown to
both directly and indirectly impact this tumor immune microenvironment (TIME), with much of
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the evidence leaning towards an immunosuppressive influence
(2–4). In addition, this condition of low oxygen is implicated in
enabling tumor aggressiveness by providing tumor cells with a
metabolic advantage (5) and by modulating autophagy (6).
Hypoxia also promotes stemness and epithelial-mesenchymal
transition (EMT) (7), genomic instability (8), and angiogenesis
(9), thus contributing to all cancer hallmarks.

The repercussions of hypoxia in the TME occur through both
hypoxia inducible factor (HIF)-dependent and independent
mechanisms. HIF proteins are heterodimers composed of a
constitutive b-subunit and an inducible a-subunit (HIF-1a,
HIF-2a or HIF-3a). Under normal oxygen tension, HIF-1a
and HIF-2a subunits are hydroxylated by prolyl hydroxylase
(PHD), resulting in their subsequent ubiquitylation by the Von
Hippel-Lindau tumor-suppressor protein (VHL), a component
of an E3 ubiquitin ligase complex, and degradation by the
proteasome (10). In hypoxic cells, HIF proteins are stabilized
and in turn regulate the transcription of downstream genes,
thereby modulating the microenvironmental stimuli within a
tumor. The result is an acidic, nutrient deprived and immune-
hostile microenvironment that is resistant to immunotherapy (2,
11). Indeed, limiting hypoxia in the TME in preclinical models
has shown considerable improvement in the response to immune
checkpoint inhibitors (ICI) (12, 13).

While there is emerging evidence of HIFs enhancing the
activation status of immune cells in the TME (14–16), hypoxia is
also known to mitigate their infiltration rate and function (3, 4).
The TME comprises a slew of immune cell types, including those
derived from the innate arm of the immune system, namely
natural killer cells (NK) cells, macrophages and dendritic cells
(DCs); as well as those belonging to the adaptive arm, including
CD8+ effector T cells and CD4+ helper T cells. NK cells provide
major histocompatibility complex (MHC)-unrestricted
cytotoxicity against tumor cells (17). They also contribute to
the sensitization of tumor cells to effector T cell killing by
secreting the interferon, IFN-g which acts on tumor cells
upregulating their MHC and immunoproteasome expression
(18, 19). With respect to macrophages, there is mounting
evidence on the marked heterogeneity among populations
resulting in a spectrum of macrophage subtypes with varying
transcriptional sates (20, 21). This is contrary to the original
binary model, wherein it is generally accepted that tumor
associated macrophages (TAMs) display the so-called M2-like
phenotype, which exhibits pro-tumorigenic features; while M1
macrophages have tumoricidal function and are classically
activated (20). Dendritic cells are another subset of innate
immune cells, classified as antigen presenting cells, that given
the presence of co-stimulatory molecules and the correct
cytokine environment, work to prime and activate T cells
against tumor cells (22, 23). With respect to adaptive immune
cells, the CD8+ effector T cells, or cytolytic T cells (CTLs) take
the reigns as they are involved in direct tumor cell death through
the induction of apoptosis and through cytokine secretion (24).
The CD4+ T cells, on the other hand, exist as various subsets,
among which the T helper 1 (Th1) subset is the most studied and
is known to contribute antitumor activity by both direct killing
Frontiers in Immunology | www.frontiersin.org 280
and cytokine release; while regulatory T cells (Treg) and T helper
2 (Th2) cells constitute immunosuppressive subsets (24).

Hypoxia’s involvement in reprogramming the TME to one that
is conducive to immune resistance has been evidenced multiple
times, however exploring the intricacies of the hypoxia-immune
cell relationship in vivo has been a challenge. The coupling of
signatures reflecting the degree of a tumor’s hypoxic state with
computational algorithms that can delineate its respective immune
composition could uncover unexplored pathways and
mechanisms of immune resistance. This is crucial given that an
in depth understanding of the interplay between hypoxia-driven
tumor cell remodeling and the immune contexture could aid in the
betterment of patient response to immunotherapy. In this review,
a link will be woven between the survival strategies taken up by
tumor cells under hypoxic conditions and their impact on the
immune microenvironment. In addition, recent findings from in
silico analysis and the application of such tools to address hypoxia
and the TIME will be discussed.
HYPOXIA METABOLICALLY
REPROGRAMS THE TUMOR
MICROENVIRONMENT EXCLUDING AND
PERTURBING IMMUNE CELL FUNCTION

The increased requirement for oxygen and nutrients within the
hypoxic TME breeds a metabolic switch that works to nurture
tumor survival, while posing as a functional barrier to the
sustainability and activity of an anti-tumor immune response.
When levels of molecular oxygen become too low to sustain
mitochondrial adenosine triphosphate (ATP) production, a
transition occurs from oxidative phosphorylation to glycolysis.
This is supported by HIF-1a-induced upregulation of glucose
transporters, which enhance the influx of glucose, that is in turn
shuttled through the glycolytic pathway thanks to the HIF-1-
mediated transactivation of key regulatory glycolytic enzymes,
while inhibiting the tricarboxylic acid (TCA) cycle (5). As a
byproduct of glycolysis, hypoxic cells concomitantly experience
high levels of intracellular lactate and hydrogen ions. To
overcome the eventual acidification of the cell, HIF-1a induces
the expression of transporters and carbonic anhydrases to expel
them (5, 25). The net effect is a glucose depleted and acidic TME
with a pH as low as 5.8 to 6.5 (5, 26) and lactate concentrations
reaching up to 30 mM, that is ten times higher than normal
tissue (27). In such a TME, the anti-tumorigenic function of
immune-activating cel ls is thwarted, while that of
immunosuppressive cells is advocated.

Just like cancer cells, cytotoxic T cells also rely on glucose for
aerobic glycolysis, which is itself necessary for their effector
function (28); however, in the TME tumor cells outcompete T
cells for glucose, thus inhibiting their antitumor activity (29).
Glucose metabolism is further integral to the inflammatory
phenotype in macrophages, the maturation and function of
dendritic cells and NK cell activation (24, 30). Paradoxically,
the immunosuppressive Tregs gain a metabolic advantage in a
February 2022 | Volume 13 | Article 828875
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glucose deprived TME since they are less dependent on glucose
as an energy source (31). Similarly, while Treg is resistant to the
high lactate levels in the extracellular milieu (31), both NK cells
and CD8+ T cells are encumbered by it. In vitro studies have
shown that NK cell cytotoxicity and cytokine production are
suppressed by high lactate and low pH levels (32, 33), as is CTL
survival and function (4, 33). Lactate was shown to perturb DC
maturation (34) and to drive Treg polarization from naïve T cells
(35). Other immunosuppressive cells are likewise affected by the
high lactate concentrations. The infiltration level of the T cell-
and NK cell- suppressor, myeloid-derived suppressor cells
(MDSC) is increased by tumor lactate (32). Tumor-derived
lactate also induces the polarization of TAMs into the M2-like
immunosuppressive phenotype (36) and treatment of a
macrophage cell line with lactate promoted gain of M2-like
features and downregulated the expression of cytokines, TNF-
a and IL-12, secreted by M1 TAM (37). In addition, the acid-
labile interferon, IFN-g is rendered dysfunctional in this hostile
TME, which in turn halts the maturation of anti-tumor M1
macrophages and promotes the differentiation of T helper cells to
tumor promoting Th2 cells (38).

Apart from its impact on glucose metabolism, hypoxia
interferes with amino acid and lipid metabolism, which are
also essential for fueling cancer cell’s survival and modulating
the immune contexture. The availability of the nonessential
amino acid, glutamine, as well as other amino acids
including tryptophan and arginine, which are vital for T cell
function, can additionally be modulated by hypoxia. In
particular, in vitro experiments showed that the deprivation
of glucose or glutamine, which results in low a-ketoglutarate
(a-KG), skewed CD4+ T cell differentiation in favor of
immunosuppressive Treg cells (39). On the other hand,
glutamine blockade in vitro and in tumor-bearing mice left
CD8+ T cells metabolically intact and functional, while
suppressing oxidative and glycolytic metabolism of cancer cells,
leading to nutrient depletion, attenuated hypoxia, and acidosis in
mice (40). This divergent response was attributed to the effector
T cells using alternative sources as supplement for their long-
lived, highly activated phenotype (24, 40). The opposite changes
in cancer cells and effector T cells touch on a metabolic plasticity
among the two that can be harnessed as an additional checkpoint
for immunotherapy (24, 40). With respect to tryptophan,
hypoxia has been shown to induce the expression of the rate
limiting enzyme in its catabolism, indoleamine 2,3-dioxygenase 1
(IDO1). In macrophages, this resulted in suppressed T cell
proli feration, coupled with enhanced expansion of
immunosuppressive Tregs (41). Furthermore, IDO1 depletes
tryptophan inducing an amino acid starvation response that
promotes T cell anergy (42). While hypoxia was also shown to
induce IDO-1 in DC (43), an opposite effect was reported in
cancer cell lines of ovarian (44), cervical and glioblastoma (45)
origins. Furthermore, the functional ortholog of IDO, TDO2
(tryptophan-2,3-dioxygenase), was found to be significantly
downregulated in a HIF-1a dependent manner in glioblastoma
cells exposed to hypoxia (46). TDO2 expressing cells in hypoxia
were able to rescue T cell proliferation that is otherwise
Frontiers in Immunology | www.frontiersin.org 381
suppressed under normoxic conditions (46). The interplay
between hypoxia and tryptophan metabolism is clearly riddled
with controversial evidence, nonetheless, targeting IDO, as well
as other players in the tryptophan catabolic pathway is being
investigated in various clinical trials, alone or in combination
with immune checkpoint inhibitors (47). In terms of arginine, it
is metabolized rapidly by activated T cells and supplementing
them with increased arginine levels was shown to enhance their
anti-tumor activity in vivo (48). On the other hand, low arginine
levels have been shown to suppress activating receptors of NK
cells, like NKp30 and NKp46, to reduce the ability of NKs to
produce IFN-g and to impair their proliferation (24). Hypoxia
has been shown to upregulate the expression of the two main
enzymes in arginine metabolism, arginase 1 (ARG1) and the
inducible nitric oxide synthase (iNOS), on MDSCs. This was in a
HIF-1a-dependent manner and resulted in the differentiation of
MDSCs into M2-like TAMs (49). MDSCs thereby compete with
T cells for the utilization of this crucial amino acid, inhibiting T
cell proliferation (50). Furthermore, in vitro coculture of
macrophages with T cells in hypoxia promoted an increase in
iNOS and ARG1 that resulted in T cell inhibition (51).
Interestingly, another mechanism that leads to the induction of
ARG1 on the surface of MDSCs may also be modulated by HIF1
and that is through the increased production of prostaglandin E
(PGE). The inducible cyclooxygenase-2 (COX-2) in tumor cells
leads to increased expression of PGE2, which has been shown to
maintain the expression of ARG1 on the surface of MDSCs (52).
COX-2 and the increase in PGE2 has also been shown to occur in
a HIF-1a dependent manner, inhibiting the maturation of DC
and enhancing the suppressive capacity of Tregs (53). Therefore,
hypoxia could be compounding the depletion of arginine in the
TME and the accompanying immunosuppression.

Along with its interference with nutrient uptake and their
metabolism, hypoxia has been widely implicated in sending ATP
metabolism into overdrive, which further feeds into an
immunosuppressive outcome. In an inflammatory setting,
extracellular ATP can be released by stressed and dying cells as
well as activated monocytes and is involved in immune
activation (54). The safety switch to halt the activated immune
response and prevent damage of healthy tissue involves the
phosphohydrolysis of extracellular ATP to adenosine; a process
predominantly regulated by the two membrane-bound
nucleotidases, CD39 and CD73 (54). Of interest, both
ectonucleotidases are abundantly expressed in the TME and
are additionally upregulated through a HIF-1a dependent
mechanism in hypoxia (55). This is highly relevant in
amplifying the immunosuppressive nature of the hypoxic
TME, since adenosine possesses immune-dampening
properties, repressing T cell effector function while stabilizing
the suppressive function of Tregs (56). The immunosuppressive
effects of extracellular adenosine have been well documented and
are executed through the binding of this ligand to the Gs-
protein-coupled receptors A2aR, expressed on the surface of
monocytes, lymphocytes, NK cells and DC, as well as A2bR,
which is most prominently expressed on DCs and macrophages
(54, 56). Through these two purinergic receptors, adenosine
February 2022 | Volume 13 | Article 828875
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triggers cyclic AMP (cAMP) accumulation. Within immune
effector cells an increase in this intracellular signaling molecule
results in an accumulation of an array of immunosuppressive
molecules, including IL-10, TGF-b, PD-1 and CTLA-4, as well as
the downregulation of key effector factors, such as IL-2, IFN-g
and perforin, which ordinarily participate in a pro-immune
response (57). Hypoxia can further modulate adenosine levels
through HIF-1a-dependent inhibition of adenosine kinase
activity required to generate adenosine monophosphate
(AMP), which in turn maximizes extracellular adenosine
accumulation and depletes ATP levels in the cell (58). Indeed,
the Hypoxia-Adenosine-Adenosine receptor axis represents
various pharmacological targets and preclinical data support
the rationale of combining A2aR blockade with hypoxia
targeting strategies to reinvigorate the NK and T cell mediated
anti-tumor immune response (59). Present data thereby suggests
supplementing this combinational approach to current
immunotherapeutic options to potentiate their efficacy (59).
HYPOXIA-MEDIATED AUTOPHAGY
PLAYS A DOUBLE ROLE IN THE
IMMUNE RESPONSE

There is broad consensus that hypoxic stress in the tumor
microenvironment activates autophagy mediated adaptation to
low oxygen, however, autophagy outcome is still controversial and
is observed as a double agent both promoting or suppressing tumor
development commensurate to tumor type and staging which is
strongly correlated to the therapeutic response. In fact, autophagy
can mediate adaptive survival response to hypoxia (60–62) or a
nonapoptotic programmed cell death called autophagy cell death
(63, 64). Clinical data suggests a direct correlation between
autophagy influx and tumor development. High Beclin-1
expression was linked with poor prognosis in advanced human
nasopharyngeal carcinoma and colorectal adenocarcinoma samples
(65, 66). Moreover, high autophagy turnover tumors were less
sensitive to treatments in comparison with low autophagy
turnover (67). As hypoxia-mediated autophagy induces more
resistance to tumors in response to therapies than normoxic cells
(68), a dual synergic treatment with autophagy inhibitors is
suggested (69). During hypoxia, autophagy is induced through the
activation of the HIF-1a which upregulated BCL2 Interacting
Protein 3 (BNIP3) and BNIP3L, rendering Beclin-1 free to
promote its interaction with VPS34 and the formation of
autophagolysosomes (6). Alternatively, hypoxia induced
autophagy can be mediated independently of HIF-1a through the
UnfoldedProteinResponse (UPR)(70)or through theenergy sensor
AMP-activated protein kinase (AMPK) (64).

It has now been well documented that tumor lesions form,
progress, and respond to therapy in the setting of a complicated
interaction with the host immune system (71, 72). Data from
genetically engineered mouse models demonstrated that
autophagy influx influences the tumor cells as well as the
immune cells in the TME (73, 74). Thus, autophagy machinery is
Frontiers in Immunology | www.frontiersin.org 482
suggested as a potential beneficial pharmacological and genetic
target to mitigate anti-tumor immune responses (75–79) with
some successful preclinical data. Notably, immune cells’
activation, differentiation and proliferation can be modulated by
autophagy, which mediates promotion or inhibition of tumor
development. Under hypoxic condition, as in tumors, immune
cells experience hypoxia and have to adjust their metabolic needs
and may do so through autophagy machinery which plays a
plethora of action of immune cells to regulate anti-tumor
immune reaction. CD8+ cells differentiation to cytotoxic T
lymphocytes (80), their infiltrating and stemness preservation
(81), T cells differentiation to Th cells, iNKT cells survival,
differentiation and proliferation (82), DCs and B cells
development (82), Treg cells survival, stability and immune
tolerance (83), monocytes differentiation into macrophages and
polarization and the number of macrophages as well (84), MDSCs
growth and the establishment of T cell memory (85–87) are
enhanced by autophagy. However, autophagy negatively regulates
neutrophils development and induces their degradation (88).

Similarly to its dual impact on tumors development,
autophagy can be observed as immune-simulator or immune-
suppressor in the context of immune-mediated tumor
elimination (88). It even becomes more complex when tumors
are submitted to hypoxic stress. Understanding the contribution
of hypoxia-induced autophagy in immune response to tumors is
instrumental for better shaping therapeutic strategies. Thus,
many studies showed the implication of multiple signaling
pathways in hypoxia inducing autophagy to downregulate
immune responses. Hypoxia-induced autophagy can attenuate
NK cells anti-tumor activity. Loss of HIF-1a in NK cells blocks
tumor growth (89) and hypoxia upregulation of HIF-1a in NK
cells is dependent on PI3K/mTOR signaling pathway activation
in response to cytokine receptor gamma chain, reducing NK cells
tumor suppressive function (90). Moreover, hypoxia can modify
the transcriptome of NK cells, regulating their immunoactivity
and influencing their migration which may profoundly influence
their infiltrating capacity in tumor tissues (91). Once X-
irradiated, NK cells became more resistant and maintain killing
capacity under hypoxic conditions (92). Recently, data
demonstrated a strong correlation between attenuated NK cell
cytotoxicity and a decreasing level of phosphorylated STAT3 and
ERK through protein tyrosine phosphatase SHP-1 (Src
homology region 2 domain-containing phosphatase-1)
activation (93). Both STAT3 and ERK phosphorylation is
increased in pre-activated hypoxic NK cells which restores
their proliferation under hypoxic conditions (94). In contrast,
hypoxia-induced autophagy attenuates CTL-mediated tumor
degradation by activating the Src Kinase, which phosphorylates
STAT3 in a HIF-1a dependent manner (95, 96). Simultaneously,
HIF-1a induces autophagy thought the Beclin-1- BNIP3- Bcl-2
axis, resulting in the degradation of the SQSTM1/p62 protein
responsible for the degradation of p-STAT3 leading to its
accumulation in cells (97, 98) and preventing CTL attacks.
Concomitantly, STAT3 expression promotes HIF-1a
expression and modulates hypoxia-induced EMT in esophageal
squamous cell cancer (99). Moreover, hypoxia-induced
February 2022 | Volume 13 | Article 828875
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autophagy degrades NK-derived Granzyme B in tumor cells
through the autophagy sensor Inositol 1,4,5-Trisphosphate
Receptor Type 1 (ITPR1), thus impairing NK-mediated tumor
cell degradation (100). Furthermore, hypoxia-induced
autophagy has been associated with destabilization of the
immune synapse between the NK and the tumor cells through
decreasing the level of connexin 43 leading to impairment of NK
killing efficacy (101, 102).
HYPOXIA-DRIVEN TUMOR PLASTICITY
AND HETEROGENEITY INCITE
IMMUNE ESCAPE

Epithelial to Mesenchymal Transition
(EMT) and Stemness in the TME
Optimum oxygen levels are essential to maintain tissue
homeostasis. When oxygen sensing mechanisms or when
oxygen levels decrease, a cascade of molecular events escalates
a multitude of responses. Stabilization of HIF-1a ensues
molecular changes that initiate EMT. EMT is characterized by
an increase in cell migration, invasion, production of
extracellular matrix (ECM) and resistance to apoptosis (103).
Specific transcription factors are activated by HIF-1a to mediate
EMT phenotypes, these include SNAIL SLUG, TWIST1, ZEB1,
SIP1/ZEB2 (104). Additional pathways that have been shown to
be involved in the hypoxia-mediated EMT include TGF-b, Wnt/
b-catenin, hedgehog and Notch (104).

The process of EMT in cancer cells endows them with stem
cell features. These newly formed cancer stem cells (CSCs) result
in a heterogeneous cancer cell population. CSCs just like normal
tissue stem cells can adapt a quiescent cellular state,
characterized by a cell cycle arrest with reduced metabolic
activities (105). In addition, CSCs have the capacity to self-
renew and differentiate, as such they are credited for tumor
growth, invasive growth, and metastasis at distal sites (106). The
quiescent state of CSCs contributes to their resistance to
therapeutic drugs (105). However, targeting CSCs requires an
understanding of the several developmental signaling pathways
that function to mediate and maintain their self-renewal and
differentiation, these include TGF-b/BMP, Notch, Wnt,
Hedgehog, FGF, and IGF (107). These signaling pathways are
interconnected and overlapping and are present at crossroads
that feedback into the hypoxia axis: TGF-b/SMAD3 pathway can
be activated by HIF1 and at the same time it results in the
stabilization of HIF1 by suppressing PHD levels (104). Notch
interacts with HIF-1a to turn on expression of genes important
in maintaining the undifferentiated cell state (108). In addition,
Notch signaling regulates SNAI1 as well as hypoxia-induced cell
motility and invasion (108). Wnt/b-catenin signaling has a pro-
EMT effect in cells under hypoxia (109). Furthermore, HIF‐1a
knockdown abolishes hedgehog pathway activation (110).
Finally, FGF induces HIF-1a expression (111).

Identifying cancer stem cells relies on the expression of
unique markers on their cell surface. Depending on the cancer
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type these include EpCAM, ALDHA1, Lgr5, CD13, CD24, CD26,
CD47, CD49f/Integrin alpha 6, CD66c, CD90, CD166, CD271,
CD105, CD44, CD133, CD117/c-kit, CD138, CD151 and CD166
(112). CD44 and CD133 are the most widely used markers.
CD44 is a transmembrane glycoprotein that is expressed in solid
and hematological cancers, it mediates stromal interaction and has
different activation states upon binding to its ligand hyaluronan
(HA). In this context, CD44 has been shown to be active on cancer
cells and not in normal cells (113). CD44 constitutes a potential
marker to enhance targeted therapy, indeed in breast cancer
CD44-doxorubicin conjugated aptamers inhibited selective cell
proliferation of CD44 expressing cells (114). CD133 is a
transmembrane glycoprotein expressed in several tumors. A
variety of promising immunotherapeutic strategies have been
developed to target CD133 expressing cells (115).

Impact of Plasticity and Heterogeneity
on Tumor Immune Escape
Hypoxia-driven tumor plasticity and heterogeneity may have
substantial impact on immunosuppression and cancer immune
evasion (116). The pioneer study of Ye and colleagues previously
revealed that hypoxia-induced EMT of hepatocellular carcinoma
cells can promote an immunosuppressive TME by stimulating the
release of the CCL20, leading to the production of IDO by
monocyte-derived macrophages, which in turn suppressed T cell
proliferation and promoted the expansion of immunosuppressive
regulatory T cells (41). In fact, there are many known potential
factors such as TGF-b contributing to hypoxia-driven tumor
immune escape (3, 7) evoking features of cancer stem cells and
tumor epithelial-mesenchymal plasticity. We previously showed
that the stemness-associated transcription factor NANOG is
induced by hypoxic stress; not only conferring stemness
properties to carcinoma cells, but it also increases TGF-b
expression and secretion, thereby promoting infiltration of
immunosuppressive cells in the murine B16 melanoma model
(117). We also showed that hypoxic stress can promote EMT
programs enhancing immune evasion of NSCLC carcinoma cells
(118). In the human IGR-Heu model, the tumor population was
found to be highly heterogeneous following hypoxic stress, with an
important fraction of cells conserving marked epithelial features.
The mesenchymal cancer clones were found to have increased
intrinsic TGF-b pathway activity and increased capacity to resist
attacks by immune cytotoxic effector cells compared to the more
epithelial clones, as reflected by reduced cancer cell susceptibility
to CTL and NK cell-mediated lysis. To note, heterogeneity also
exists within the mesenchymal clones. For instance, the expression
of the receptor tyrosine kinase AXL could mark cancer clones with
pronounced immune evasion capacity in association with reduced
expression of ICAM1, ULBP1, and MHC class I levels in cells
(119). It is interesting to consider that AXL expression can be
upregulated by many intrinsic as well as extrinsic factors including
hypoxia (120, 121). Published data have been unclear across
different cancer systems and models. Research is still needed to
decrypt the regulatory events controlling the expression of AXL
and more generally of the TAM (Tyro3 Axl Mertk) family
receptors. On the other hand, AXL activity has been shown to
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support a hypoxic state in carcinoma cells by stabilizing tumoral
HIF-1a through cooperation with HER2 (122). In a murine Her2+
breast cancer model, this cooperative event greatly contributed to
shaping an immunosuppressed TME, while Axl targeting led to
improving anti-Pd-1 treatment efficacy.

Work by Zhang and colleagues revealed that HIF-1a can
stimulate CD47 expression in breast cancer cells gaining
stemness features, which also serves as a mechanism to evade
phagocytosis by innate immune cells such as macrophages (123).
The CD47 SIRP interaction hampers the “eat me signal” on
macrophages impairing phagocytosis. Another study found that
the CD47 gene is a direct target of EMT-associated transcription
factors SNAI1 and ZEB1 (124). Moreover, CD47 and PD-L1 can
act synergistically to sustain resistance and immunosuppression
(123). Interestingly, carcinoma cells with stemness features
certainly exhibit immunogenicity profiles that differ from well-
differentiated carcinoma cells with consequences on tumor
immunogenicity, neo-antigen expression and the anti-tumor
immune response (125). Complex interactions between the
different contingents should also be highlighted. For instance,
Faget et al. showed that neutrophils in lung tumors alter
angiogenesis and immunotherapy efficacy by promoting tumor
hypoxia and partial EMT of carcinomas as events of a vicious
cycle maintaining an immunosuppressed pro-tumoral
microenvironment (126).

Thus, several studies have demonstrated the role of hypoxia
mediated-EMT and plasticity on tumor immune escape,
although with variability in terms of the mechanisms and cell
types involved. It will be important to better integrate the
intratumor heterogeneity parameter in future investigations.
Another important challenge will be to translate this
information into the clinic with safe effective strategies.

Hypoxia-Dependent Modulation of Cancer
Cell Glycosylation as a Mediator of
Immune Escape
Another aspect of cancer cells that ismodified by hypoxia and plays
a role in the modulation of the immune response is glycosylation.
Addition of glycans is a posttranslational modification that
regulates the activity of as many as 50% of human genes, making
it one of the most important regulators of gene expression. In
tumors, abnormal glycosylation gives rise to a glycol-profile that
perpetuates key cancer hallmarks of proliferation, EMT,
angiogenesis, invasion, and metastasis (127, 128). Moreover,
immune response itself is highly controlled by glycosylation [as
reviewed in (129)]. Altered glycan residues on cancer cell surface,
usually related to increased or unusual sugar components, give rise
to tumor-associated carbohydrate antigens (TACAs) which are
weakly immunogenic, and thus may serve as an immune escape
strategy (130–132). Glycosyltransferases and glycosidases that add
and remove sugar residues, respectively, are highly modulated by
hypoxia in a tumor-dependent fashion (127, 128). In addition,
hypoxia contributes to increasing specific structures involved in
tumor invasion and immune escape (127, 128). In particular, the
highly hypoxic muscle-invasive bladder cancer (MIBC)
overexpresses the cancer-associated carbohydrate antigen sialyl-
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Tn(STn),whichhasbeenreported tobeat least inpart due toaHIF-
1a-dependent cell survival strategy that favors cell migration and
invasion (133). Recently, through the application of
glycoproteomics in bladder cancer, the same group demonstrated
cell surface expression of an ordinarily intracellular protein, homer
homolog 3 (HOMER3), carrying short-chain O-glycans that are
characteristic of membrane proteins (134). They further reported
that under glucose deprivation and hypoxic conditions, HOMER3
contributed to the tumor cell’s invasive capacity. Of interest, cell-
surface expression of this protein was associated with significantly
worse survival in MIBC patients. Furthermore, while HOMER3
expression was not cancer-specific, STn and HOMER3 did not co-
express in healthy tissue, suggesting that HOMER3-STn could be a
tumor-specific biomarker that can be used to target the more
aggressive cancer cell populations residing in the hypoxic TME
(134). Similarly, some cancer-specific glycoconjugates, like N-
glycolyl (NeuGc) GM3 gangliosides, are promising therapeutic
targets, as their increased expression is characteristic in tumors
and almost not present in healthy human tissues (135).
Gangliosides are glycosphingolipids containing sialic acid
residues and their expression can be induced by hypoxia (136).
While the exactmechanism isunknown,hypoxiahas beenshown to
induce the sialic acid transporter, sialin (137). In addition, despite
humans lacking the functional enzyme responsible for N-glycolyl
(NeuGc) GM3 synthesis, hypoxia upregulates the succinate
dehydrogenase subunit B (SDHB) of the mitochondrial
respiratory complex II, which is hypothesized to provide the
deleted iron/sulfur catalytic domain of the enzyme, restoring its
functionality (138). Gangliosides, and in particular GM3(NeuGc),
have been showed to play a key role in suppressing the antitumor
immune response and therefore serve as neoantigens that can be
targeted by immunotherapy (135). Indeed, given that they can also
induce antibody responses, several clinical trials are ongoing to use
them as anti-cancer vaccine antigens, as has recently been reviewed
(135, 139).
ROLE OF HYPOXIA IN ANGIOGENIC
SWITCH AND PRO-ANGIOGENIC MILIEU
MODULATION OF IMMUNE RESPONSE

Initially, a growing tumor remains avascularised and relies on the
diffusion of oxygen and nutrients from surrounding tissues (140)
or reprograms metabolically to survive hostile, O2 and nutrient
limited environment (as discussed above). However, upon
progression a phenotypic change in cancer cells occurs, termed
angiogenic switch when balance of secreted factors moves from
anti- towards proangiogenic. This event causes dramatic change
in the tumor milieu that primarily induces angiogenesis (141).
Previously mentioned HIF-1a stabilization in response to
hypoxia activates in cancer cells not only adaptation to low
pO2 but also production of one of the most potent proangiogenic
factors, vascular endothelial growth factor (VEGF). Other
proangiogenic factors secreted by cancer cells include fibroblast
growth factor (FGF) family, interleukin-8 (IL-8), epidermal
growth factor (EGF) and platelet-derived growth factor
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(PDGF) (142). In response to such milieu [and, also hypoxia
itself, reviewed elsewhere (143)], in order to supply the growing
tumor, endothelial cells (ECs) from surrounding tissues are
activated to form new vessels. However, due to dysregulation
of proangiogenic response in cancer cells, the forming vessels are
disturbed, as a consequence of pathological angiogenesis,
contributing even more to cancer progression (144).

Pathological Endothelium and
Consequences for Immune Homing
Cancer-associated, pathological vessels are characterized by
leakiness and disturbed shape causing uneven vascularization
of the tumor mass. Cellular and ECM composition of cancer-
associated vessels are altered, which limits their barrier functions
causing uncontrolled transport of nutrients, oxygen, and drugs.
Consequently, due to abnormalities, newly formed vessels are
not able to restore physiological level of oxygen within the tumor,
and hypoxia sets in. Impaired perfusion and increased interstitial
pressure of cancer vessels were shown to negatively affect
leukocyte trafficking (145). Additionally, composition of
immune homing receptors is altered in cancer-associated
endothelial cells, which affects the infiltration of the tumor
with leukocytes. In a steady state, ECs remain quiescent,
regulate blood flow and barrier functions of the endothelium,
however upon activation, for example in response to
inflammation, expression of adhesion molecules changes,
allowing leukocyte trafficking into the organ. On one hand,
pro-inflammatory molecules, like TNF-a or IL-1a, which can
be secreted by cancer cells, activate ECs. On the other, pro-
angiogenic factors (VEGF, bFGF) were shown to reduce the
amount of adhesion molecules on ECs (146). These dual effects
are reflected in leukocyte trafficking through the tumor
endothelium. It was shown that vessels present in the tumors
lose P-selectin that limits the infiltration of leukocytes, making
tumors inaccessible for the immune response (147). High VEGF
levels were linked to lower levels of ICAM1 and T cell infiltration
(145). This is affected by anti-cancer treatment, as ipilimumab
plus bevacizumab could restore ICAM/VCAM expression on
ECs, enhancing infiltration of cytotoxic lymphocytes (148). On
the other hand, levels of E-selectin were increased in tumoral
vessels in breast cancer and were also present in surrounding
inflamed adipose tissue vasculature (149). Expression of this
adhesion molecule allowed monocyte infiltration; however, these
monocytes could be TAMs as their presence predicted poor
survival. In pancreatic cancer, upregulation of adhesion proteins
on the endothelium, including E-selectin, MAdCAM-1 and
VCAM-1, allowed increased infiltration of Tregs (150). E-
selectin was shown to favorably promote infiltration of non-
protective Th2- polarized cells (151). Immune infiltrate can also
be shaped due to the production of chemokines by tumor
endothelial cells (TECs). ECs in the TME were characterized
by downregulation of immuno-attractant molecules (CCL2,
CCL18, IL-6) (152), additionally further limiting the leukocyte
infiltration. At the same time, TECs were described to possess a
specific secretory profile, including IL-4, -13, -6, -8, and TNF-a,
which can modulate immune responses (153). Another way ECs
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can affect immune cells is by directly interacting with them, for
example through PD-L1. It was shown that endothelial PD-L1 is
increased in several cancers in comparison to healthy tissue,
which coincided with lower infiltration of T cells and dominance
of Tregs (154).

Therefore, alteration of adhesion molecule patterns and levels
of secreted factors in TECs can mediate selective infiltration of
immunosuppressive leukocytes promoting tumor growth or
make the tumor impenetrable for protective immune cells (so
called “cold”, uninflamed tumors). This points to the role of ECs
as contributors to shaping the immunosuppressive TME.

Immune-Modulating Role of VEGF and
Other Pro-Angiogenic Factors
Apart from themodulatory role onECs, proangiogenic factorswere
shown to affect immune cells’ function. It was observed that VEGF
can directly expand Tregs, recruit MDSC and inhibit DC
maturation (155). VEGFR is selectively present on Tregs and not
effector T cells, which explains homing of immunosuppressive cells
into proangiogenic TME (156). It is also a known factor promoting
Th2 responses that are usually not protective in cancer.
Additionally, VEGF induces expression of immunosuppressive
PD-1 on T lymphocytes (157). Another proangiogenic factor with
strong immunomodulatory potential is FGF (158). It was shown to
polarize macrophages into M2 subtype (159) and expand MDSCs
(160). Interestingly, anti-FGF treatment caused broader T-cell
receptor repertoire, probably due to increased cancer cells
apoptosis (161) that shows an additional aspect that can be
altered by proangiogenic and immunomodulatory molecules.
Similarly, however less studied, activities were reported for PDGF.
This growth factor is an important regulator of angiogenesis,
especially during development (162), and tends to increase during
EMT in cancer cells (163). It can inhibit maturation of DCs and
induce IL-10 producing T cells with regulatory phenotype (164). A
strongly angiogenic chemokine, IL-8 (165), affects several immune
cells, mostly by promoting their adhesion to the endothelium and
subsequent migration towards inflamed tissue. However, it was
observed that IL-8 mediates recruitment into the tumor of MDSCs
and N2, pro-tumoral neutrophils (166), pointing to the potential
immunomodulating action of this chemokine.

To sum up, angiogenic switch and consequently pathological
angiogenesis on several levels affect immune response. As factors
shaping TME, they contribute to induction of immunosuppression
and/or allow the tumor to remain immunoevasive, both by not
alleviating hypoxia and maintaining a pro-angiogenic and
immunomodulatory milieu.
THE HIDDEN POTENTIAL OF HYPOXIA-
MODULATED GENETIC HETEROGENEITY
IN EVOKING AN IMMUNE RESPONSE

In the tumor microenvironment, hypoxia is often associated with
genomic instability through downregulation of DNA repair
processes and replication signaling mechanisms. Although the
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DNA damage sensing and signaling mechanisms are on high-
alert for recognition of plausible DNA damage under acute/
chronic hypoxia, the DNA repair pathways such as homologous
recombination, Non-Homologous End Joining (NHEJ) and
mismatch repair, are downregulated (8). The effect of hypoxia
on DNA repair pathways and related genes has been reviewed
elsewhere (167–169). In contrast, chronic hypoxia/anoxia for
longer durations can induce replication stress due to
downregulation of ribonucleotide reductase and depletion of
deoxyribonucleotides (170). The downregulation of these
processes contributes to genetic heterogeneity in tumors through
induction of chromosomal instability, point mutations, and
genome-doubling events (8). Hypoxia induced structural
changes (large deletions, copy number aberrations, duplications,
and truncations) are substantially higher than single nucleotide
alterations, according to a recent study examining the pan-cancer
data sets (171). Hypoxia is associated with increased mutational
load and hypoxia associated early mutations occur in key driver
genes like BCL2, TP53, MYC, PTEN and VHL (171). Although
driver mutations contribute to clonal development of tumors,
branching mutations are the major cause of intratumor genetic
heterogeneity and play a key role in drug resistance (172). In a
clinical setting, irrespective of the tumor type, branched evolution
remains the norm and influence the tumor’s evolutionary
trajectory (173). The contribution of hypoxia to branched
evolution of tumors can be extrapolated from a study done by
Gerlinger and coworkers analyzing the effect of VHL driver
mutations in clear cell renal cell carcinomas (ccRCC). VHL
mutations are seen in 80% of the ccRCC and contribute to
constant pseudohypoxia phenotype (174, 175). Using multi-
region sequencing and phylogenetic analysis, the study revealed
that the inactivation of the VHL gene through mutations/
methylation were a founder event in the trunk of the
phylogenetic trees (176) and showed a heterogeneity in genomic
landscape among the subclones with wide-ranging clinical outcome.
In vitro experimental studies have shown that hypoxia induces a
panoply of single nucleotide variations and contributes to
microevolution of tumors. However, in a clinical setting, it is
noted that chromosomal instability is a major contributor of
tumors heterogeneity and a major determinant of clinical
outcome in cancers (177). Hypoxia exerts selection pressure to
accelerate the adaptation of more competent chromosomally
unstable tumor clones in several ways (178). Hypoxia triggers the
selection of mutant clones (for example, TP53-mutated tumors) by
allowing them to evade apoptotic mechanisms (179). A hypoxic
microenvironment promotes cell competition and metastases by
HIF-1amediated epithelial-mesenchymal transition (178). Hypoxia
drives the immune-escape of tumors by inducing the expression of
immune checkpoint inhibitors and controlling the antigen
presenting mechanisms (180). Genome-doubling events associated
with hypoxia have been found in vitro in melanoma cells with an
increase in levels of tetraploid cells, however, such events in clinical
samples are not well understood (181).

Inactivation of DNA repair pathways can lead to significant
increase in tumor mutational burden (182, 183). The
contribution of DNA repair and replication processes to
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genomic instability under hypoxic conditions is clearly evident
from the defective homologous recombination and defective
mismatch repair related mutational signatures (171). Single
base substitution signatures and insertion and deletion
signature analysis reveals that high-hypoxia is associated with
clonal mutations in tumors rather than subclonal mutations
(171). Furthermore, hypoxia is associated with increase in
APOBEC activity and cyclic hypoxia induced replication stress
provides single stranded DNA substrates for APOBEC mediated
mutagenesis in breast, lung, and colorectal cancers (184).

Increased neoantigen load renders the tumor immunogenic
with increased infiltration of lymphocytes leading to better
clinical response to ICI in non-small cell lung cancer,
melanoma, colorectal adenocarcinoma (185). In a breast cancer
model, recent research from our group found that tumor hypoxia
increased tumor mutational load and potential neoantigens
(186). Using publicly available datasets, Bhandari and
coworkers revealed that high-hypoxia is associated with
increased TMB at pan-cancer level (171). However, clinical
evidence on hypoxia-induced TMB and neoantigen burden is
lacking. On the contrary, tumor hypoxia leads to an ‘immune-
cold’ environment. Hypoxic tumor microenvironment is
associated with immune evasion through expression of
immune checkpoints (programmed death ligand -1),
downregulation of type-I interferon signaling, shedding of
antigen presenting molecules (MHC class I), enrichment of
immunosuppressive cytokines and aggregation of immune
suppressive cells (MDSC and Tregs) in the TME (187). In this
regard, recent attempts to target hypoxic cells selectively with
hypoxia activated prodrugs have yielded encouraging results
with a significant antitumor response to immune checkpoint
blockade. Jayaprakash and coworkers, using transgenic
adenocarcinoma of the mouse prostate (TRAMP-C2),
demonstrated that hypoxia targeting through Evofosfamide
restored the T cell infiltration within the tumor and enhanced
the response to immune checkpoint blockade (12). A study by
Lequeux and coworkers investigated the inhibition of HIF-1a
activity on cytotoxic immune cell infiltration into B16-F10
melanoma, and found an increase in infiltration of NK and
CD8+ effector T cells and a significantly increased response to
anti-PD-1 blockade (13). A comprehensive understanding of
hypoxia induced mutational burden, neoantigen load will be
crucial for enhancing the immunotherapy response in ICI
resistant tumors.
UNRAVELING THE HYPOXIA-IMMUNE
CONTEXTURE IN SILICO: THE HITS AND
THE MISSES

The methods utilized thus far to study the immune contexture
and degree of hypoxia in tumors have mainly done so separately.
Regarding tumor infiltrating immune populations, imaging
techniques including immunohistochemistry (IHC) and
fluorescence microscopy, as well as cytometry-based methods,
February 2022 | Volume 13 | Article 828875

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abou Khouzam et al. Dual Effect of Hypoxia and Immune Surveillance
using cell/population-specific antibodies have been the standard
approach (188). For hypoxia, in addition to IHC which is used to
check hypoxia induced proteins (like CAIX and GLUT1), various
imaging techniques, such as positron emission tomography
(PET), oxygen-enhanced (OE) magnetic resonance imaging
(MRI), as well as blood oxygen level dependent (BOLD) and
tissue oxygen level dependent (TOLD) MRI, have been utilized
(9, 106). The focus of this section, however, is the uprise of in
silico approaches to simultaneously navigate both the immune
and hypoxic aspects of the TME.

In the last decade, the application of hypoxia gene signatures
to reflect the degree of tumor hypoxia has taken the literature by
storm with published signatures covering almost every solid
tumor type (9, 106). In addition to that, there has been an
escalating number of papers focused not only on designating the
hypoxic state of a tumor, but also interrogating the immune
populations and immune activation status of that tumor
depending on its hypoxic phenotype (189–197). The process
generally entails first deriving a hypoxia signature in the cancer
type of interest, which often takes the route of narrowing down a
list of hypoxia-related differentially expressed genes (DEGs)
between normal and tumor tissue, then determining which
genes are correlated with patient prognosis, be it overall
survival or disease-free survival. The top genes and the factor
by which they influence survival are then put together in a
formula to calculate the risk score. Each sample is then allocated
to the high-risk or low-risk group depending on their expression
of the signature genes and whether their score is greater or less
than the median risk score of the entire cohort. The score in this
case is not only reflective of the hypoxic state of the tumor but is
also associated with worse patient prognosis. An alternate
strategy has also been used to group patients into high and low
hypoxia groups based on their hypoxia score (197). The hypoxia
score is calculated according to their expression levels of the
hypoxia signature genes alone, without incorporating a risk
parameter. Here again, the distribution is based on the
variation from the median expression of the signature genes,
and higher score is associated with worse survival. In either case,
the next step has been to apply different tools or immune
signatures to compare the two groups to make conclusions on
the immune microenvironment in the context of hypoxia.

Several computational tools exist that rely on a tumor’s bulk
transcriptomic data to enumerate its existing immune
populations (188, 198). These tools employ both a selected
statistical framework as well as a base signature matrix or gene
set representing the immune cell types of interest to deduce the
tumor’s respective immune phenotype (188, 199). The statistical
framework is a variation of one of two primary algorithms,
enrichment, or deconvolution. Gene set enrichment gives a
semiquantitative score describing the enrichment of a cell type
of interest in a sample based on the ranking of cell-type specific
marker genes compared to all other genes present (198). A
variation of that algorithm is single-sample GSEA (ssGSEA), in
which the enrichment score is computed to represent the
coordinately upregulated or downregulated genes within a
single sample (198, 200). On the other hand, deconvolution
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algorithms consider the transcriptome profile of a heterogenous
sample as a linear mixture of gene expression levels of distinct
cell types. The unknown cell fraction of interest can then be
estimated by determining the weighted contribution of each gene
to a signature matrix that includes the cell-type specific
expression profiles (198). In this way, tools based on the
deconvolution algorithm give quantitative estimates of relative
cell fractions; however, given that in a heterogeneous sample cell
types having higher amounts of total mRNA will have a stronger
contribution to the mixture, such cell types may be
overestimated (198).

An important determinant for the effective estimation of the
immune cell populations is the quality and accuracy of the gene
set or base signature matrix being incorporated by the
computational tool (201, 202). For example, Estimation of
STromal and Immune cells in MAlignant Tumours using
Expression data (ESTIMATE) uses a gene set derived from the
overlap between gene expression profiles (GEPs) of normal
hematopoietic samples and genes associated with the quantity
of immune cells infiltrating tumor tissue (203). This gene set
constitutes the immune signature and is used to give a tumor
sample an immune score. The tool also has a gene set
representing the stromal signature and uses that to give the
same sample a stromal score. The combination of the two scores
indicates the ESTIMATE score, or tumor purity.

With respect to deconvolution-based tools, the first base
signature matrices to be used were derived from microarray data
conducted on FACS-derived subsets of cells originating from
peripheral blood mononuclear cells (PBMCs) of healthy
individuals, or in vitro stimulated and differentiated cells (204,
205). These result in suboptimal coverage of cellular phenotypes in
complex tissues and prevent the discovery of possible new cellular
states, as well as gene expression profiles that are cell-type specific
(206). Furthermore, tools based on such base matrices, are only
compatible with microarray derived gene expression profile of a
tumor sample. Such tools, include Cell-type Identification By
Estimating Relative Subsets Of RNA Transcripts (CIBERSORT),
which can be applied with a leukocyte signature matrix
representing 22 immune cells to deconvolute and resolve the
relative fractions of these cells in complex tissue (205). To
overcome the stated limitations, an upgraded computational
framework of CIBERSORT, termed CIBERSORTx, has been
formulated using cell type-specific reference profiles derived
from single cell RNA sequencing, allowing cross-platform
normalization and in silico cell purification (206). Starting form
RNA expression profiles of intact whole tissue samples, the cell-
type-specific GEPs and abundance of each cell type can then be
accurately inferred (206). Indeed, this tool is heralded as a digital
cytometer that negates the need for physical dissociation, living
material or antibodies, yet manages to give a detailed portrait of
tissue components from bulk RNA admixtures (206).

In addition to ESTIMATE, CIBERSORT and CIBERSORTx,
other commonly used tools include Microenvironment Cell
Populations (MCP)-counter, which computes an abundance
estimate of eight different immune cell types and two stromal
cells (fibroblasts and endothelial cells) (207); as well as the
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webtool Tumor IMmune Estimation Resource (TIMER), which
provides the proportions of six immune cells, CD4+ and CD8+ T
cells, B cells, DCs, macrophages, and neutrophils in the tissue of
23 tumor types from The Cancer Genome Atlas (TCGA) (208).
One more tool of interest is ImmuCellAI (Immune Cell
Abundance Identifier) that uses signatures to give abundance
estimates on 24 immune cells including 18 subtypes of T cells, as
well as B cells, DCs, monocytes, NK cells, macrophages, and
neutrophils. Both RNA-Seq and microarray expression data are
compatible with this tool (209). A final tool worth mentioning
here is TIDE, which stands for Tumor Immune Dysfunction and
Exclusion. This tool goes beyond determining the immune status
of a tumor and potential immune escape. It was developed to use
gene expression profiles of cancer samples to predict response to
ICI by reporting on both immune and stromal cellular elements,
a tissue agnostic interferon gamma signature, as well as the
enrichment scores of ICI biomarkers, microsatellite instability
and PD-L1, among others (210).

Table 1 represents select studies that have used one or a
combination of the computational approaches to annotate the
tumor immune microenvironment and merged that with a
hypoxia gene signature to distinguish the more hypoxic from
the less hypoxic tumors. As evident from the table, every
signature consists of its own set of genes, even if it was derived
from the same tumor type, with minimal overlap with other
signatures. The conclusions of most papers underscore the
immunosuppressive power of hypoxia in bladder cancer (189,
213), breast cancer (214), colorectal cancer (CRC) (191, 216, 217),
head and neck squamous cell carcinoma (218), hepatocellular
carcinoma (HCC) (221–223), lung cancer (195, 225, 226),
melanoma (196), oral squamous cell carcinoma (227),
osteosarcoma (229), ovarian carcinoma (230) and pancreatic
ductal adenocarcinoma (PDAC) (197, 231). In the case of
bladder cancer, two other studies determined the presence of
high infiltration of immune cells in the high-risk group and found
positive correlations between immune score and the risk score
(190, 212). The authors also showed that despite the presence of
both tumor-promoting and tumor-antagonizing immune cells, the
risk score was positively correlated with immune checkpoints. One
study even went on to report a potentially enhanced response of
the high-risk group to immunotherapy (190). With respect to
CRC, the only contradictory study included a single cohort and
only focused on GSEA and the ESTIMATE score, not considering
immune populations (215). In terms of HCC, one study reported a
higher immune score in the high-risk group (219) as well as a
significant infiltration of immune cells in this group which also
showed enhanced predicted response to ICI (220). In a study that
integrated 11 independent HCC cohorts, not a single immune cell
population could be significantly differentiated in a consistent
manner between the low-risk and high-risk groups, highlighting
the complexity of the factors determining immune cell infiltration
(194). It is difficult to make any conclusion on the findings in renal
cell carcinoma, as all three studies included a single cohort
respectively and reported distinct findings (232–234) (Table 1).

It is clear that to resolve the discrepancies identified for even
the same tumor type, a validated hypoxia gene signature should
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be utilized to score the tumor and the in silico analysis of the
immune contexture should be done using signatures that reflect
the immune state of the specific cancer type. The tools utilized thus
far apply gene expression profiles obtained from immune cells of
healthy PBMCs or tissue, meanwhile based on the complexity of
mechanisms governing the activation state of immune cells, a
cancer-specific approach would provide a more accurate
representation of the immune contexture. This would ultimately
enhance thequality of thefindingsbeing generated fromthese tools,
making them more consistent and having higher accuracy.
Furthermore, one downside remains with the inability of such
tools to give information about the localization of the reported
immune populations in the tumor mass. This spatial dimension is
intercalatedwith the global functional state of the immune response
and is now being investigated with advanced techniques, including
single cell transcriptomics using slide sequencing (235), as well as
multiplex immunofluorescence imaging using the CODEX®

System (236). Therefore, despite the simplicity and ease of use of
current computational tools, they should not be used as a
standalone analysis platform to conclude on the immune
activation state of a tumor.
DISCUSSION

To date, clinical benefit from cancer immunotherapy has been
limited to a minority of patients. Achieving benefit in the
majority of patients necessitates a wholistic understanding of
anti-tumor response mechanisms and both the cell-intrinsic and
extrinsic molecules involved in primary, adaptive, as well as
acquired resistance to immunotherapy. In this regard, it has
become clear that the TME is likely to play a crucial role in
cancer response to treatment. In fact, the growth and progression
of cancer cells depend not only on their malignant potential, but
also on the multidirectional interactions of cellular and
metabolic components of tumor microenvironment. It is
widely admitted that novel and continuously evolving
pathological entities arise as a result of the interactions among
tumor cells and stromal cells during cancer progression.

As previously reported, many cellular, molecular, and
metabolic elements of the TME are emerging as attractive
targets for therapeutic approaches (47, 59, 115, 122). In this
respect, the existence of hypoxia in solid tumors is associated,
not only with tumor invasion and metastasis, but also with a
heightened risk of treatment failure and patient mortality and is
currently attracting significant interest. Accumulating evidence
indicates that hypoxia plays a key role in promoting the
acquisition of tumor resistance to various antitumor immune
effectors (26). Tumor hypoxia allows tumor cells to escape CTL-
and NK -mediated killing through in part the activation of
autophagy (97, 237, 238) and modulates the composition and
function of the immune infiltrate (97, 237, 238). Hypoxic zones in
tumors have also been reported to attract immunosuppressive cells
such as MDSCs, tumor-associated macrophages and regulatory T
cells. In addition, the association of hypoxia with cancer stemness
in the tumor microenvironment of different cancer types is widely
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TABLE 1 | Studies applying computational tools to investigate the immune landscape of tumors classified based on hypoxia signatures.

s.n Cancer Hypoxia Signature Cohort
Number‡

Immune
Investigation

Method

High-Risk Group
(Hypoxia-High)

Low-Risk Group
(Hypoxia-Low)

Reference

1 ACC* 3 genes (CCNA2, COL5A1,
EFNA3)

1 CIBERSORT Resting NK cell Activated NK cell (211)

2 BLCA 8 genes (AKAP12, ALDOB,
CASP6, DTNA, HS3ST1,
JUN, KDELR3, STC1)

3 CIBERSORT M0 and M1 macrophages (189)

3 BLCA# 4 genes (ANXA2, COL5A1,
GALK1, HS3ST1)

1 ESTIMATE;
ssGSEA

Immune and stromal scores positively correlated with risk score (212)
Activated CD4 T cell, activated CD8 T cell,
central memory CD8 T cell, effector
memory CD8 T cell, gamma delta T cell,
follicular helper T cell, Th1, Th2, aDC, pDC,
activated B cell, immature B cell, memory
B cell, NK cell, NK T cell, Treg,
macrophage, MDSC, mast cell, monocyte,
neutrophil, eosinophil

Th17, CD56bright NK cell

4 BLCA# 16 genes (AKAP12, ANKZF1,
CASP6, CCNG2, GALK1,
GAPDH, HDLBP, HEXA,
HS3ST1, SDC4, SLC2A1,
SLC2A3, SRPX, STC1,
VEGFA, WISP2)

2 ssGSEA CD8 T cell, NK cell, DC, Th1 (190)
Risk score positively related to T cell inflamed score and enrichment scores of
immunotherapy-positive gene signatures

5 BLCA# 7 genes (ALDOB, EGFR,
FOXO3, GPC1, SDC4,
SLC2A3, VEGFA)

1 CIBERSORT Resting mast cell, neutrophil, resting CD4
memory T cell

Follicular helper T cell, CD8 T
cell, plasma cell

(213)

6 BC 13 genes (ADM, ALDOA,
CDKN3, LDHA, MIF,
MRPS17, NDRG1, P4HA1,
PGAM1, SLC2A1, TPI1,
TUBB6, VEGFA)

1 ImmuCellAI nTreg cell, iTreg cell CD8 T cell, CD4 T cell (214)

7 CRC 5 genes (ARL4C, CARS2,
PSMD12, PTTG1IP, SEC61G)

1 GSEA;
ESTIMATE

Enriched immune pathways (215)
Positively correlated with immune score and stromal score

8 CRC 12 genes (CASP6, CYB5R3,
DTX3L, FAM117B, IRF1,
MBTD1, MINPP1, ORAI3,
TNFAIP8, TRAF3, PRELID2,
ZBTB44)

2 ESTIMATE;
CIBERSORT

Treg, M2 macrophage Higher immune and stromal
scores; CD4 T cell, M1
macrophage

(216)

9 CRC 4 genes (ALDOB, ALDOC,
GPC1, SLC2A3)

2 CIBERSORT M0 macrophage (217)

10 CRC 356 genes 4 CIBERSORT M0 and M2 macrophages CD8 T cell, resting NK, resting
CD4 memory T cell

(191)

11 GC# 2 genes (EFNA3, SERPINE1) 2 ESTIMATE;
ssGSEA

Higher immune and stromal scores; Treg,
macrophage, neutrophil, mast cell

(192)

12 Glioma# 5 genes (GAPDH, HK2, JUN,
LDHA, VEGFA)

2 CIBERSORT Resting CD4 memory T cell, Treg, resting
NK cell, M0 macrophage, neutrophil

(193)

13 HNSCC 24 genes (AMPD3,
BHLHE40, COL5A1, CP,
CSRP2, CXCR4, DDIT4,
DUSP1, ERRFI1, F3, GPC4,
HS3ST1, IL6, ISG20, MAFF,
PGM2, PIM1, PLAC8,
PPP1R3C, S100A4, SDC2,
SELENBP1, SERPINE1,
SRPX)

1 CIBERSORT Activated DC, M0 macrophage, eosinophil,
activated mast cell, resting NK cell, resting
CD4 memory T cell

Memory B cell, CD8 T cell,
resting mast cell, Treg, follicular
helper T cell, activated CD4
memory T cell, gamma delta T
cell, plasma cell, activated NK
cell

(218)

14 HCC 4 genes (ENO1, GAPDH,
LDHA, SLC2A1)

1 ESTIMATE
CIBERSORT

Higher immune score; Treg, M0
macrophage, neutrophil

Activated NK cell, M1
macrophage, resting mast cell

(219)

15 HCC# 24 genes (ACOT7, ADM,
ALDOA, ANGPTL4, BNC1,
CA9, CDKN3, COL4A6,
ENO1, FOSL1, GNAI1,
LDHA, MIF, MRPS17,
NDRG1, P4HA1, PGAM1,
PGK1, SDC1, SLC16A1,

1 meta-
cohort
(from 3
datasets)

MCP-counter;
ssGSEA; TIDE

CD4 T cell, activated CD8 T cell, iDC, aDC,
CD56bright and CD56dim NK cell, gamma
delta T cell, immature B cell, macrophage,
mast cell, MDSC, NK T cell, pDC, follicular
helper T cell, Th1, Th2; Three times higher
response to ICI

Eosinophil, neutrophil, Treg,
Th17

(220)

(Continued)
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TABLE 1 | Continued

s.n Cancer Hypoxia Signature Cohort
Number‡

Immune
Investigation

Method

High-Risk Group
(Hypoxia-High)

Low-Risk Group
(Hypoxia-Low)

Reference

SLC2A1, TPI1, TUBB6,
VEGFA)

16 HCC# 21 genes (ADM, BNIP3,
BNIP3L, CA9, EGLN3,
GDF15, GYS1, HCAR3,
HILPDA, HK2, INSIG2, JUN,
KDM3A, PFKFB4, PLIN2,
PTPRH, SLC2A3, SMAD3,
SPAG4, TMEM45A, WSB1)

11 ESTIMATE;
CIBERSORT

3 cohorts: higher stromal score; 6 cohorts:
higher immune score; 6 cohorts: activated
CD4 memory T cell; 5 cohorts: activated
mast cell; 5 cohorts: M0 macrophage

6 cohorts: resting CD4 memory
T cell; 5 cohorts: resting mast
cell; 3 cohorts: NK cell

(194)

17 HCC# 3 genes (CDCA8, PDSS1,
SLC7A11)

1 CIBERSORT M0 macrophage, memory B cell, follicular
helper T cell

(221)

18 HCC 10 genes (APEX1, ATR,
CTSA, DNAJC5, ENO1, EPO,
HMOX1, LDHA, NDRG1,
PER1)

1 CIBERSORT M0 macrophage, Treg, neutrophil,
eosinophil

Resting mast cell, resting CD4
memory cell, M1 macrophage,
monocyte

(222)

19 HCC 4 genes (DCN, DDIT4,
NDRG1, PRKCA)

2 ssGSEA Activated B cell, activated CD8 T
cell, effector memory CD8 T cell,
Treg, Th1, CD56bright NK cell,
NK cell, NK T cell, eosinophil,
macrophage, mast cell, MDSC,
monocyte, pDC

(223)

20 NSCLC* 11 genes (AMPD3, DDX11,
FANCI, HIF-3a, IDE, LRP8,
NOLC1, PAIP1, PDCD2,
PSMF1, SNAPC5)

1 ESTIMATE;
ssGSEA

Higher immune score; DCs,
aDCs, iDCs, pDCs, HLA, B cell,
mast cell, neutrophil, T helper
cell, T cell co-inhibition, T cell
co-stimulation, TILs, Type II IFN
response

(224)

21 NSCLC 4 genes (ANGPTL4, PFKP,
SLC2A1, XPNPEP1)

2 CIBERSORT Activated CD4 memory T cell, resting NK
cell, M0 and M1 macrophages

Memory B cell, resting CD4
memory T cell, monocyte,
resting DC, resting mast cell

(195)

22 NSCLC 18 genes (ADM, BIK, DDIT3,
ENO1, EPAS1, FGF3,
GAPDH, MIF, NFKB1, PFKP,
PGK1, PLAUR, SPP1, STC1,
TEK, TFRC, TGFA, XRCC6)

1 ssGSEA Activated CD4 T cell, CD56bright NK cell,
memory B cell, Th2

Activated B cell, activated CD8 T
cell, central memory CD4 T cell,
effector memory CD8 T cell,
eosinophil, immature B cell, iDC,
pDCs, macrophage, mast cell,
MDSC, monocyte, NK cell,
neutrophil, follicular helper T cell,
Th1, Th17

(225)

23 NSCLC# 7 lncRNAs (AC010980.2,
AC022784.1, AC079949.2,
AC090001.1, AL161431.1,
LINC00707, LINC00941)

1 CIBERSORT Neutrophil, M0 and M2 macrophages Monocyte (226)

24 SKCM 11 genes (CP, DPYSL4,
EGFR, FBP1, FOXO3,
IGFBP1, ISG20, KIF5A,
PPARGC1A, S100A4, SDC3)

2 CIBERSORT Treg, mast cell; 1 cohort: resting CD4
memory T cell, monocyte

Activated CD4 memory T cell,
M1 macrophage; 1 cohort: CD8
T cell, plasma cell

(196)

25 OSCC# 4 genes (ALDOA, P4HA1,
PGK1, VEGFA)

1 CIBERSORT M0 macrophage, mast cell Naïve B cell, CD8 T cell, follicular
helper T cell, Treg, neutrophil

(227)

26 OS* 2 genes (P4HA1, DCN) 2 ssGSEA DC, pDC, macrophage,
neutrophil, TIL

(228)

27 OS 4 genes (EFNA1, P4HA1,
STC2, MAFF)

2 CIBERSORT Resting CD4 memory T cell (229)

28 OVC# 9 genes (ALOX5AP, ANXA1,
IGFBP2, LAG3, PLK3,
SLC1A1, SREBF1, SREBF2,
TGFB1)

1 CIBERSORT;
TIMER

Activated CD4 memory T cell, gamma-
delta T cell, activated NK, neutrophil, M1
and M2 macrophages

Resting CD4 memory T cell,
follicular helper T cell, Treg, aDC,
resting mast cell; Higher MHC
and antigen presenting
molecules

(230)

29 PDAC# 8 genes (DDIT4, LDHA, MXI1,
NDRG1, P4HA1, PGK1,
SLC2A1, VEGFA)

2 CIBERSORTx M0 macrophage CD8 T cell; Higher immune
score and cytolytic index§

(197)
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admitted. Therefore, controlling hypoxic stress to avoid tumor
resistance and to reshape the hypoxic immunosuppressive TME in
order to improve cancer immunotherapy remains a relevant
challenge. Developing pharmacological agents to modulate HIF-
1a signaling pathway is still attracting significant interest in the
field of oncoimmunology. Several sub-types of drugs have been
reported to inhibit HIF-1a activity including inhibitors of HIF-
1a/HIF-1b dimerization (for example, acriflavine) (239, 240).
Very recently, we demonstrated that suppression of the
transcriptional activity of HIF-1a resulted in an increased
infiltration of NK cells and CD8+ T cells in the tumor
microenvironment of melanoma (13). Hypoxia could therefore
be a potential immunometabolic checkpoint with prognostic value
by regulating the TME and affecting the interaction between
tumor cells and immune cells.

It is now well established that high expression of clonal tumor
neoantigens correlates with an upregulation of lymphocyte
infiltration within a tumor, enhanced patient survival and a
prolonged response to immunotherapy. Recently, others and we
have demonstrated that hypoxia interferes with genetic instability by
inducing DNA damages, inducing DNA repair alteration (186) and
presumably the emergence of tumor neoantigens. While the main
predictive biomarkers for immunotherapy involve microsatellite
instability/defective mismatch repair (MSI/dMMR), and tumor
mutational burden, based on our previous reports and those of
other teams, tumor hypoxia should be also be exploited as a
potential biomarker to predict immunotherapy outcomes.

A deeper understanding of the role of hypoxia in killer cell
induction and migration, immune suppression and EMT could
enable the creation of more highly refined, innovative and
Frontiers in Immunology | www.frontiersin.org 1391
integrative immunotherapies, targeting tumor plasticity and
heterogeneity and aiding in overcoming the inherent constraints
of currently applied anticancer therapies. In addition to the known
hypoxic signatures reported, we believe that the design of
minimally- or even non-invasive techniques able to predict
treatment efficacy and tumor recurrence through algorithm-
based modeling of network dynamics and by generating models
based on artificial intelligence, or through the integration of
“omics”, must be considered in the field of oncoimmunology.
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TABLE 1 | Continued

s.n Cancer Hypoxia Signature Cohort
Number‡

Immune
Investigation

Method

High-Risk Group
(Hypoxia-High)

Low-Risk Group
(Hypoxia-Low)

Reference

30 PDAC 4 genes (ENO3, LDHA,
PGK1, PGM1)

2 CIBERSORT M2 macrophage, resting NK cell CD8 T cell, naive B cell (231)

31 RCC 9 lnRNA (AC002070.1,
AC008760.2, AC084876.1,
AC147651.1, FOXD2-AS1,
ITPR1-DT, LINC00944,
LINC01615, LINC02027)

1 CIBERSORT Plasma cell, follicular helper T cell, Treg M2 macrophage, resting DC,
resting mast cell

(232)

32 RCC 4 lnRNA (AC026462.3,
COMETT, EMX2OS, HAGLR)

1 TIMER;
ESTIMATE

B cell, CD4 T cell, CD8 T cell, DC, macrophage, neutrophil positively
correlated with risk score

(233)

Higher immune and stromal scores
33 RCC# 8 genes (BCL2, KDELR3,

KLF6, PCK1, PLAUR,
PPARGC1A, RORA, WSB1)

1 CIBERSORT Treg, CD8 T cell, follicular helper T cell,
plasma cell, M0 macrophage, activated NK
cell

Resting CD4 memory,
monocyte, M1 macrophage,
resting mast cell, resting NK cell

(234)
February 2022 | Volume 13 | Art
‡Number of independent patient cohorts analyzed with indicated method to investigate immune tumor microenvironment.
#Studies reporting higher immune checkpoint inhibitors or immunosuppressive cytokines or both in High-risk group.
*Studies reporting higher immune checkpoint inhibitors or immunosuppressive cytokines or both in Low-risk group.
§Immune score calculated based on an eighteen gene tumor inflammation signature. The cytolytic index calculated based on the geometric mean of the GZMA (granzyme A) and PRF1
(perforin-1) produced by activated cytolytic CD8+ T cells (197).
s.n, serial number; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BC, breast cancer; CRC, colorectal cancer; GC, gastric cancer; HNSCC, head and neck
squamous cell carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung cancer; SKCM, skin cutaneous melanoma; OSCC, oral squamous cell carcinoma; OS,
osteosarcoma; OVC, ovarian carcinoma; PDAC, pancreatic ductal adenocarcinoma; RCC, renal cell carcinoma; lnRNA, long non-coding RNA; CIBERSORT, Cell-type Identification By
Estimating Relative Subsets Of RNA Transcripts; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumours using Expression data; GSEA, gene set enrichment analysis;
ssGSEA, single-sample GSEA; MCP-counter, Microenvironment Cell Populations-counter; TIMER, Tumor IMmune Estimation Resource; ImmuCellAI, Immune Cell Abundance Identifier;
DC, dendritic cell; aDC, activated DC; iDC, immature DC; pDC, plasmacytoid DC; Th1, type 1 T helper cell; Th2, type 2 T helper cell; Th17, T helper 17 cell; Treg, regulatory T cell; iTreg,
induced Treg; nTreg, natural Treg; HLA, human leukocyte antigen; TIL, tumor infiltrating leukocytes; IFN, interferon; MHC, major histocompatibility complex.
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Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been
extensively investigated as a promising druggable biological process. Nonetheless,
targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC
despite promising preclinical and early clinical data. This discrepancy prompted a literature
review highlighting the tumor heterogeneity and biological context of Prostate Cancer
(PCa). Narrowing the gap between the bench and bedside appears critical for developing
novel therapeutic strategies. Searching clinicaltrials.gov for studies examining
angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific
angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several
other compounds with known anti-angiogenic properties – such as Metformin or
Curcumin – are currently investigated. In general, angiogenesis-targeting strategies in
PCa include biomarker-guided treatment stratification – as well as combinatorial
approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at
PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial
anti-angiogenic effect – due to PSMA´s abundant expression in tumor vasculature.

Keywords: Prostate adenocarcinoma, PCa, angiogenesis inhibitors, TKI, immunotherapy, tumormicroenvironment,
clinical trials, PSMA
INTRODUCTION

The biological context of angiogenesis and prostate cancer (PCa) inspired a plethora of research,
specifically in metastatic PCa and more specifically in castration-resistant disease (CRPC), the clinical
stage in which the majority of clinical trials on angiogenesis inhibition was performed (1). Metastatic
PCa is an androgen-driven and -dependent cancer (2), with androgen deprivation therapy (ADT)
being the primary treatment. Despite high response rates – practically 90% of patients initially respond
to hormone therapy – the vast majority will end up relapsing (3) in a predictable and irreversible
manner. There has been a fair amount of research to try to analyze the mechanisms of progression to
CRPC, which is the lethal phenotype of metastatic PCa – and current evidence suggest a function of
org February 2022 | Volume 13 | Article 842038199
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clonal selection and adaptation by androgen receptor (AR)-
dependent and independent mechanisms (4).

Indeed, ADT together with next generation hormonal agents
such as Abiraterone (5) and Enzalutamide (6) still represent the
foundation of systemic PCa treatment. Beyond hormone therapy,
approved chemotherapy regimens mainly consist of Docetaxel and
Cabazitaxel as microtubule inhibitors (7–9). Regarding bone as a
favorite localization of PCa metastasis (10–12), therapeutic
(combination) approaches include Radium-223 (13). In recent
years, PCa treatment has rapidly developed towards precision
oncology by addressing two novel target pathways: DNA repair
and Prostate-specific membrane antigen (PSMA)-related
signaling. Regarding DNA repair, cancers with mutations in
BRCA1/2 (Breast Cancer Associated Genes 1 and 2) can be
treated with PARP (Poly-ADP-Ribose-Polymerase) inhibitors
originally established in Ovarian Cancer (14, 15). For PSMA,
strategies include radioligand therapy as a theragnostic approach
performed by nuclear medicine specialists (16).

Beyond these established and approved cancer therapies, this
review aims to address an obvious treatment gap – given the
crucial role of angiogenesis for PCa development and
progression. Despite this fundamental promise reflected by in
vitro and preclinical evidence, phase III trials with angiogenesis
inhibitors failed to meet clinical endpoints.
PROSTATE CANCER AND VEGF-
MEDIATED ANGIOGENESIS – PROMISES
AND CHALLENGES

About 50 years ago, Folkman and colleagues highlighted the
importance of angiogenesis and neovascularization for tumor
growth – reasoning that targeting tumor blood vessels might
prove beneficial for patients with cancer (17). Meanwhile, state-
of-the-art techniques highlighted the crucial but not completely
understood link between angiogenesis (endothelial cells) and
tumor immunity (18). For PCa, histopathology pinpoints high
micro-vessel density and increased VEGF (Vascular Endothelial
Growth Factor) expression compared to non-neoplastic
conditions. Moreover, VEGF levels are associated with higher
tumor stages as well as advanced grading and plasma VEGF is
increased in metastatic PCa versus localized disease (19–21).
Higher VEGF expression evaluated by immunohistochemistry
has also been associated with reduced disease-specific survival in
patients with PCa (22). In addition, levels of urinary VEGF were
associated with worse survival (23) and elevated plasma VEGF/
sVCAM-1, a vascular cell adhesion molecule, correlated with
worse outcome (24).

In principle, many drugs and angiogenic target structures
known from other solid and hematological malignancies are
available for PCa (25–30). As a consequence, clinical trials
combined antiangiogenic agents with Taxanes in mCRPC (31);
however, not a single drug combined with Docetaxel showed a
statistically significant success in terms of outcome (32).
Therefore, clinicians started trials in less symptomatic patients,
Frontiers in Immunology | www.frontiersin.org 2100
investigating compounds as single agents. Unfortunately, all of
these phase III trials with thousands of patients were collectively
negative for OS – despite promising biological preclinical as well
as promising phase II trials. Despite efforts studying more than
1,000 patients, the combination of Bevacizumab or Aflibercept
with chemotherapy showed no improvement compared to
chemotherapy alone (33, 34). Sunitinib as a single agent
compared to prednisone showed no improvement, either (35).

Making it even worse, Lenalidomide treatment resulted in a
sobering scenario (36): While effective in several hematologic
conditions (37–40), combination treatment of patients with PCa
(Lenalidomide+Docetaxel +Prednisone) led to a significantlyworse
OS compared to treatment with Docetaxel and Prednisone (36).
Another surprising and quite sobering example is Cabozantinib, an
oral inhibitor of Tyrosine Kinases includingMET andVEGFR2, two
major drivers of malignant progression in several neoplasia (41–47),
which did not guarantee an OS advantage in patients with PCa (48).
Indeed, Cabozantinib showed anti-angiogenic and antitumor effects
in a wide range of preclinical tumor models (49–51), also blocking
progression of PCa xenografts in soft tissue and bone (52–54).
Additionally, Cabozantinib affected key actors of the bone niche –
with reduction in osteoclasts and biphasic effects osteoblasts, while
altering bone remodeling with increased volume in mice (55). MET
andVEGFR2 cooperate to promote tumor survival, thereby boosting
angiogenesis via improved tumor blood flow and improved
oxygenation. Moreover, MET promotes migration and invasion,
also facilitating the escape from hypoxic areas. Consequently, bone
metastases are associated with high levels of MET expression. In
specific, MET expression increased with androgen deprivation in
preclinical models and with progression and metastasis in bone and
lymph nodes (56). Promising early phase II trial results from bone
scans upon combined Docetaxel and Cabozantinib treatment
showed activity in 300 patients (48, 57). Soft tissue effects were also
present, with objective response and significant progression-free
survival (PFS) benefit (48). Improvement in pain and reduction of
narcotics corroborated these initial results (58). These data were
paralleledbya reductionof circulating tumorcells (57),while keeping
activity in subjects heavily pretreated with Docetaxel, Abiraterone
and/or Enzalutamide (48, 57). The lowest effective dose of these
studies was 40 mg/day (59). Nevertheless, within phase III trial,
Cabozantinib did not perform better than Prednisone (60). The dose
and the stage of disease could have been the cause for this failure.
CURRENT CLINICAL TRIALS ON ANTI-
ANGIOGENESIS IN PROSTATE CANCER

To determine the status quo of clinical trials investigating anti-
angiogenesis in PCa, we performed a database research on
clinicaltrials.gov. As of September 2021, a total sum of 866
actively recruiting interventional trials were registered for
patients suffering from PCa. As outlined in Table 1, only a
minority of clinical trials investigated the effects of angiogenesis
inhibitors/Tyrosine kinase inhibitors. Specifically, we identified
20 clinical trials addressing angiogenesis inhibition. While some
February 2022 | Volume 13 | Article 842038
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studies aim to identify predictive biomarkers for future clinical
stratification in entity-independent trials (NCT02465060,
NCT03878524), others combine angiogenesis inhibition with
immune checkpoint blockade – e. g. CONTACT-02 trial
investigating Cabozantinib in combination with Atezolizumab
in patients with mCRPC (NCT04446117). Of note, other studies
Frontiers in Immunology | www.frontiersin.org 3101
include patients in different stages, such as metastatic castration
sensitive disease (CABIOS phase I trial, NCT04477512) and even
localized disease in a neoadjuvant setting before Radical
Prostatectomy (SPARC phase II trial, NCT03964337).

Beyond this relatively small number of trials directly aiming
at tumor vessels, we found several studies investigating
TABLE 1 | Recruiting interventional trials examining anti-angiogenesis in prostate cancer (PCa) registered within clinicaltrials.gov database (December 2021).

Trial
Identifier

Stage/Entity Title/characteristics Treatment Comment

NCT01567800 PCa Prostate Hypoxia FAZA 18F-FAZA Hypoxia-specific PET tracer
NCT02465060 Advanced Cancer MATCH screening trial;

Phase II
(…), Sunitinib, (…) Biomarker-driven Basket trial for

various compounds
NCT02484404 Advanced solid tumors Phase I/II Combinations of Cediranib, Durvalumab and

Olaparib
Cediranib: pan-VEGFR inhibitor

NCT02643667 Localized PCa Phase I/II Ibrutinib before Radical Prostatectomy Ibrutinib: BTK inhibitor; Neoadjuvant
setting

NCT03170960 Advanced solid tumors Phase I/II Cabozantinib ± Atezolizumab
NCT03385655 PCa Phase II (…), Savolitinib, (…) Biomarker-driven therapy

stratification
NCT03556228 PCa and other malignancies Phase I VMD-928 VMD-928: TrkA inhibitor
NCT03845166 Advanced solid tumors Phase I XL092 AND Atezolizumab OR XL092 AND

Avelumab
XL092: Tyrosine Kinase inhibitor
(incl. VEGFR2)

NCT03866382 Rare genitourinary tumors Phase II Cabozantinib AND Nivolumab AND
Ipilimumab

Metastatic Prostate Small Cell
Neuroendocrine CA

NCT03878524 Advanced Cancer SMMART; Phase I (…), Bevacizumab, Cabozantinib, Sorafenib,
Sunitinib, (…)

Biomarker-driven Basket trial for
various compounds

NCT03964337 PCa before surgery SPARC; Phase II Neoadjuvant Cabozantinib
NCT04159896 mCRPC Phase II ESK981 AND Nivolumab ESK981: Pan-VEGFR/TIE2 inhibitor
NCT04446117 mCRPC CONTACT-02; Phase III Cabozantinib AND Atezolizumab
NCT04477512 mCSPC CABIOS; Phase I Cabozantinib AND Abiraterone/Prednisone

AND Nivolumab
NCT04514484 Advanced Cancer AND HIV infection Phase I Cabozantinib AND Nivolumab
NCT04521686 Advanced solid tumors with IDH1

mutations
Phase I LY3410738 LY3410738: IDH1 inhibitor

NCT04631744 mCRPC Phase II Cabozantinib
NCT04635059 PCa: biochemical recurrence BLAST; Phase II Pacritinib Pacritinib: JAK/FLT3 inhibitor
NCT04742959 Advanced solid tumors Phase I/II TT-00420 ± Nab-Paclitaxel TT-00420: Tyrosine Kinase inhibitor

(incl. VEGFRs)
NCT04848337 Advanced/metastatic neuroendocrine

PCa
PLANE-PC; Phase II Lenvatinib AND Pembrolizumab Lenvatinib: VEGFR inhibitor

Further compounds with known anti-angiogenic properties
NCT02935205 CRPC Phase I/II Indomethacin AND Enzalutamide
NCT00268476 mCSPC STAMPEDE; Phase II/III (…), Metformin, (…)
NCT01864096 low-risk PCa under Active Surveillance MAST; Phase III Metformin
NCT02064673 PCa after Radical Prostatectomy Phase III Curcumin
NCT02176161 PCa after therapy and a high-risk

setting
Phase II Metformin

NCT02804815 PCa and other malignancies after
curative therapy

Phase III Aspirin

NCT03031821 PCa with indication for ADT PRIME; Phase III Metformin AND ADT
NCT03535675 PCa: PSA recurrence after definitive

treatment
Phase III Muscadine Grape extract Patient pre-selection according to

genotype
NCT03769766 low-risk PC under Active Surveillance Phase III Curcumin
NCT03819101 CRPC PEACE-4; Phase III Acetylsalicylic acid ± Atorvastatin
NCT03899987 PCa before Radical Prostatectomy Phase II Aspirin AND Rintatolimod ± interferon-alpha

2b
NCT04300855 PCa under Active Surveillance Phase II Green Tea Catechins (Sunphenon)
NCT04519879 PCa: recurrent/therapy-naive Phase III White Button Mushroom extract
NCT04536805 PCa: relapse in previously irradiated

Prostate bed
REPAIRGETUGP16;
Phase I/II

Metformin AND Radiation

NCT04597359 PCa under Active Surveillance Phase II Green Tea Catechins
February
Ctr, Control; CRPC, castration-resistant Prostate Cancer; CSPC, castration-sensitive Prostate Cancer; mCRPC, metastatic castration-resistant Prostate Cancer; mCSPC, metastatic
castration-sensitive Prostate Cancer; ADT, Androgen deprivation therapy.
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compounds known to have additional anti-angiogenic effects
(bottom part of Table 1). Curcumin, Green Tea Catechins and
Metformin were among the substances identified. For
Metformin, a tumor suppressive role was shown in several
cancer entities (61). Moreover, adjuvant Metformin intake was
associated with improved outcome in Clear Cell Renal Cell
Carcinoma patients treated with Tyrosine Kinase inhibitors in
two independent cohorts (62, 63). One reason for this protective
effect could be the role of Metformin as a mitochondrial
inhibitor. Interestingly, recent evidence implies a prominent
role for mitochondrial signaling not only in Clear Cell Renal
Cell Carcinoma (64), but also in high-grade PCa (65).
Potentially, angiogenesis inhibition could be more effective in
patients suffering from PC when combined with adjuvants such
as Metformin.
Frontiers in Immunology | www.frontiersin.org 4102
DISCUSSION

From a histopathological and preclinical perspective, there is
convincing evidence for a significant role of angiogenesis in PCa
development andprogression. For example,VEGFR2was shown to
mark PCa caseswith a high risk of progression (30, 66). In addition,
angiogenesis-related microRNAs such as let-7, miR-195 and miR-
205 (67) are also deregulated and play prominent roles in PCa (68–
70).However, no angiogenesis-specific inhibitor hasmet its clinical
endpoint in phase III trials (see Figure 1A). Consequently,
angiogenesis inhibitors currently do not play a role in PCa
treatment guidelines. As shown by our database search on
clinicaltrials.gov, several clinical trials are currently recruiting
patients with PCa to address the discrepancy between promising
preclinical findings and sobering clinical trial results.
A

B

D

C

FIGURE 1 | The clinical challenge of angiogenesis inhibition in Prostate Cancer (PCa). (A) Despite promising preclinical evidence from histopathological and in vitro
analyses, phase III clinical trials with angiogenesis inhibitors failed to meet clinical endpoints. (B, C) Main strategies aiming to leverage the impact of angiogenesis
inhibition are biomarker-aided identification of PC patient subgroups most susceptible towards anti-angiogenesis (B) and combinatorial approaches (C). Moreover,
several established PCa therapies partly exhibit anti-angiogenic effects as mode of action (D).
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Current Therapeutic Strategies to Narrow
the Gap Between Bench and Bedside
As illustrated in Figure 1, two main strategies aim to establish
therapeutic anti-angiogenesis in patients with PCa. Within the
first strategic approach, clinicians are searching for PCa
subgroups most susceptible towards angiogenesis inhibition
(Figure 1B). It is tempting to assume that targeting tumor
neovascularization could be more efficient when used early in
the course of disease (71) in order to prevent metastases (44, 72).
In line with this assumption, clinicians examine effects in PCa
subgroups other than mCRPC. Specifically, SPARC investigates
Cabozantinib in a neoadjuvant setting. PCa patients suffering
from biochemical recurrence are currently recruited for the
BLAST trial, which investigates the JAK/FLT3 inhibitor
Pacritinib. Moreover, the CABIOS trial recruits CSPC patients
receiving Cabozantinib, Abiraterone and Nivolumab (thereby
also representing the second strategic approach of combinatorial
therapies). Up to now, neither predictive nor response
biomarkers have been established to stratify PCa patients
regarding anti-angiogenic therapy (18, 26). Of note, most
biomarker-driven trials trying to meet the needs are not PCa-
specific. Recruiting patients suffering from advanced cancer, the
MATCH screening trial constitutes a biomarker-driven basket
study for various compounds including Sunitinib. In a similar
setting, SMMART investigates compounds such as Bevacizumab,
Cabozantinib, Sorafenib and Sunitinib.

As a second strategic approach to narrow the gap between
bench and bedside (Figure 1C), clinicians and researchers
combine angiogenesis inhibitors with other established cancer
compounds. Most of the respective trials identified by our search
teamed angiogenesis inhibitors with immune checkpoint
inhibitors (ICI) – e. g. Cabozantinib and Atezolizumab
(CONTACT-02 trial). However, the primary rationale of these
approaches is not to establish anti-angiogenesis as a treatment
option for PCa, but to break therapy resistance towards ICI
(73–75).
Frontiers in Immunology | www.frontiersin.org 5103
BRCA in Metastatic Prostate Cancer -
Recommendations and Perspectives
As a second bullet point to envision next steps narrowing the gap
between the bench and bedside, it is important to highlight that
genetic alterations of BRCA2 and BRCA1 occur in metastatic PCa
with a frequency of 13% and 5.3% for the somatic component, and
0.3% and 0.9% for the germline component, respectively (76, 77).
Germline mutations in BRCA2 are associated with pathways also
related to VEGF signaling (78). Thus, phase II and III studies
investigating effect on PFS and ORR in mCRPC hold promise to
further elucidate the complex relationship of disease biology, since
genomic alterations and several genes are screened (Table 2).
TRITON2 and GALAHAD studies showed objectives and PSA
responses in patients with BRCA1/2 alterations employing
Rucaparib and Niraparib, respectively (79, 80). Nonetheless, the
Profound trial testing Olaparib, confirmed that BRCA2 is the most
frequently altered gene and with BRCA1 and ATM genes allowed to
reach a radiographic PFS improvement of Olaparib treated over
control (HR.34 P<.0001, CI.25-.47). Those results are remarkable
since checkpoint inhibitorsmay have limited efficacy in PCa as single
agents; thus, combination approaches are being examined to
potentially improve their efficacy in this as in other urological
diseases (30, 44). The hypothetical synergism between PARP
inhibitors and ICI is centered on evidence that DNA damage
resulting from PARP inhibition triggers the cGAS-STING pathway
(81), which consequently boosts the interferon signaling, leading to
enhanced immunogenicity (82).There is also rationale for anadditive
effect in cancers with highmicrosatellite instability (MSI) and BRCA
mutations (83). Moreover, cancers with CDK12mutations are often
sensitive toPARPinhibitors - andpreclinical andbiologicaldata from
patients with PCa showed that CDK12 inactivation is related to
increased burden of neoantigens, which can in turn enhance the
immunogenicity (84). ICIholdanti-mCRPCactivitypotential inhigh
degree of MSI. Indeed, the KEYNOTE-365 trial comparing
Pembrolizumab plus Olaparib in biomarker-unstratified mCRPC
subjects after prior taxane-based regimen uncovered that 36.6% of
TABLE 2 | Trials screening genes involved in prostate cancer (PCa) registered within clinicaltrials.gov database (December 2021). See text for details.

PROFOUND TRITON 2 GALAHAD

Drug Olaparib 300 mg bid Rucaparib 600 mg bid Niraparib 300 mg qd
Study
design

Phase III Phase II Phase II

Population mCRPC progression to ARSI mCRPC progression to ARSI and taxane mCRPC progression to
ARSI and taxane

Primary
objective

rPFS in pts with alterations in ATM, BRCA1, BRCA2 ORR and PSA response (≥50% decline) in pts with DDR
alterations

ORR in patients with bi-
allelic BRCA1/2 alterations

Specimen
tested

Tumor tissue central Plasma or tumor tissue central/local Plasma central

Test used FoundationOne® FoundationOne®

FoundationACT®

Local

Resolution-HRD®

Genes
screened

ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK1,
CHEK2, FANCL, PALB2, PPP2RA, RAD51B, RAD51C,
RAD51D, RAD54L

ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK2,
FANCA, NBN, PALB2, RAD51, RAD51B, RAD51C,
RAD51D, RAD54L

ATM, BRCA1, BRCA2,
BRIP1, CHEK2, FANCA,
HDAC2, PALB2

Genomic
alteration
required

Mono- and Bi- allelic alterations in DDR genes Mono- and Bi- allelic alterations in DDR genes Bi- allelic alterations in
DDR genes
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individuals obtained a PSA response (85). TheKEYLYNK-010 phase
III study has been designed to deeper elucidate the combination of
Pembrolizumab plus Olaparib in patients with mCRPC in a
biomarker-unselected population after progression on androgen-
deprivation therapy and androgen receptor signaling inhibitor (86).
In line with this, Nivolumab plus Rucaparib in the phase II
CheckMate 9KD trial focusing on mCRPC revealed that best
response rates were among BRCA2 mutated cases and that the
combination was not efficient in individuals without homologous
recombination mutations (87). Statistically powered studies aiming
to corroborate these hypothesis-generating results are needed.
Nonetheless, based on the available data, the FDA approved both
Niraparib and Rucaparib as well as Olaparib in May 2020 (88).
Nonetheless, EMA approved Olaparib for the treatment of patients
with mCRPC and BRCA1/2 mutations, either germline or somatic
after progression following a prior line including a hormonal agent,
based on the results published byHussainM. et al. (89). Collectively,
the BRCA mutational status assessment in mCRPC is not merely a
predictor of response toPARP inhibition, but is rather a biomarker of
aggressiveness and therefore can sketch a disease phenotype for
whom additional biomarker might be added (90). Indeed, BRCA
status might also predict a decreased taxane sensitivity compared to
Abiraterone and Enzalutamide, nonetheless confirmatory trials are
also needed.

Targeting Angiogenesis Without
Specific Inhibitors – Established
and Evolving Therapies
While our database search on clinicaltrials.gov revealed a limited
number of studies with specific inhibitors of angiogenesis, a plethora
of trials investigated compounds such as antiandrogens, PARP
inhibitors and PSMA-directed agents. At first sight, these
approaches might not appear tightly related to tumor angiogenesis.
Yet, recent findings imply that all these strategies obtain a significant
anti-angiogenic component. Regarding AR-related signaling, a
growing amount of literature investigates the complex crosstalk
with VEGF-mediated pathways in cancer (91). As mentioned, for
PARP inhibitors such as Olaparib, an anti-angiogenic effect besides an
anti-mCRPC is widely accepted (14, 92, 93). Moreover, FGF
(Fibroblast Growth Factor) and its receptors (FGFRs) play
prominent pro-angiogenic roles in several malignancies, including
PCa (94, 95). Consequently, the FGFR inhibitor Erdafitinib is
currently investigated in patients with CRPC as a single drug
(NCT04754425) and combined with Abiraterone or Enzalutamide
in patients with CRPC (NCT03999515).

Metronomic (low-dose) chemotherapy is another well-
described therapeutic strategy to target tumor-associated neo-
vasculature in various cancer entities. Frequent and regular
administration of chemotherapeutic agents at doses constituting a
fraction of theMTD (maximum tolerated dose) was shown to have
substantial therapeutic effects – especially on tumor endothelium.
Moreover, these regimens frequently exhibited favorable toxicity
profiles (96, 97). For PCa, clinical evidence highlights the potential
ofmetronomic therapies especially inmCRPC: studies investigated
metronomic Cyclophosphamide in combination with Docetaxel
(98) or in heavily pretreated patients after Docetaxel or
Abiraterone/Enzalutamide (99–102) – showing effectiveness and
Frontiers in Immunology | www.frontiersin.org 6104
good tolerability. In addition, researchers examined the efficacy of
metronomic application of Vinorelbine (103) and metronomic
Cyclophosphamide, Celecoxib and Dexamethasone in patients
suffering from mCRPC (104). Interestingly, metronomic
Cyclophosphamide application also induced an immune reaction
(in terms of T cell reactivation) in patients with biochemical
recurrence (105). Although the mode of action of metronomic
therapies is not completely understood, a recent study identifiedkey
genes which were associated with (metronomic) Topotecan dosing
in PCa cell lines (106).

Regarding PSMA, receptor expression not only exists on the
surface of PCa cells. Instead, tumor-associated endothelium
frequently displays robust levels of PSMA in various cancer
entities (107–109). Future research must show the impact of
targeting PSMA in terms of anti-angiogenic activity – for PCa but
also for other entities with PSMA-positive tumor endothelium.
Given the rationale of adding angiogenesis inhibitors to ICI in order
to break resistance towards immune-based approaches (73–75), it
also appears tempting to assume that targetingPSMAcouldhave an
impact on the immunogenicity of PCa.

In a nutshell:While specific angiogenesis inhibitors currently do
not have an established role in PCa, targeting tumor angiogenesis
and tumor-associated blood vessels probably is part of established
PCa therapies – especially regarding PSMA-directed approaches.

CONCLUSION

Targeting angiogenesis with specific inhibitors unfortunately has
failed to impactOS inpatientswithmCRPCdespite promisingearly
data – and despite convincing clinical activity in several other
malignancies. This discrepancy highlights the importance of the
microenvironment niche, as PCa is characterized by substantial
inter- and intra-patient heterogeneity and adaptive biology.
Therapeutic strategies to overcome this challenge include
biomarker-guided screening for patient subgroups most likely to
benefit from anti-angiogenesis. Moreover, several trials investigate
combinatorial approaches. Beyond specific angiogenesis inhibitors,
approved compounds such as antiandrogens, PARP inhibitors and
PSMA-targeting approaches probably also have a substantial anti-
angiogenic impact in PCa biology.
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Background: Immunotherapy has evolved as a critical option to treat diverse cancers.
The active response to immunotherapy relies on the unique interaction between cancer
and the tumor microenvironment (TME). Angiogenesis is one of the hallmarks of cancer.
However, the association between angiogenesis and clinical outcome, immune cell
infiltration, and immunotherapy remains unknown in gastric cancer (GC).

Methods: We systematically assessed 36 angiogenesis-associated genes (AAGs) and
comprehensively identified the correlation between angiogenesis and transcriptional
patterns, prognosis, and immune cell infiltration. The AAG_score was applied to
quantify the angiogenesis subtypes of each patient. We then evaluated their values in
prognostic prediction and therapeutic responses in GC.

Results: We discussed the mutations of AAGs in GC specimens from genetic levels and
identified their expression patterns from TCGA and GEO cohorts. We determined two
different molecular subtypes and observed that AAG mutations were related to patients’
clinicopathological characteristics, prognosis, and infiltrating TME. Next, an AAG_score
for predicting overall survival (OS) was established and its reliable predictive ability in GC
patients was confirmed. Furthermore, we created a highly reliable nomogram to facilitate
the clinical viability of the AAG_score. A low AAG_score, characterized by elevated
microsatellite instability-high, mutation burden, and immune activation, demonstrated a
superior OS. Additionally, the AAG_score was remarkedly correlated with the cancer stem
cell index and drug susceptibility.

Conclusion: Collectively, we identified a prognostic AAG signature for GC patients. This
signature may contribute to clarifying the characteristics of TME and enable the
exploration of more potent immunotherapy strategies.

Keywords: gastric cancer, angiogenesis, prognosis, tumor microenvironment, immunotherapy
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INTRODUCTION

Immunotherapy is a blooming treatment modality for diverse
tumors, and its effectiveness against tumors is being confirmed by
a growing body of clinical studies (1–3). Common
immunotherapeutic strategies include ICP inhibitors (ICIs),
therapeutic antibodies, and cell therapy. The studies of ICIs for
PD-1, PD-L1, and CTLA-4 are emerging and clinical reports have
proven their safety and effectiveness (4, 5). However, persistent
benefits were only realized in a minority of patients. Accumulative
studies demonstrate that the tumor microenvironment (TME) is
responsible for the aggressive behaviors of tumors and affects the
tumor response for immunotherapy (6). The TME consists of
various factors, including tumor cells, blood vessels, infiltrating
immune cells, stromal cells, tissue fluid, and cytokines (7). The
formation of new blood vessels is a hallmark of TME and is
characterized by continuous and disordered. Typically, tumor cells
promote angiogenesis and inflammation, thus evading the
surveillance and clearance of the immune system (8). Therefore,
global analysis of the relationship between angiogenesis and TME
can discover different neoplastic immunophenotypes and boost the
predictive power of immunotherapy.

Gastric cancer (GC), a prevalent malignancy, has a rapid
increase in incidence annually (9). Despite advances in
chemotherapeutic regimens for advanced GC, such as 5-FU-based
regimen and platinum-based regimen, chemotherapy effects remain
unsatisfactory, with overall survival (OS) struggling to exceed 2
years (10, 11). Accordingly, targeted therapy is a future development
direction to target GC. In recent years, various targeted drugs have
been developed, however, overall results remain disappointing (12).
Immunotherapy offers additional options for GC patients and
brings hope for the treatment of GC. Although immunotherapy
has brought huge benefits to GC patients, it has also been found that
specific types of patients benefit from immunotherapy (13). It is
necessary to develop valuable biomarkers that can classify patients
with different characteristics into diverse groups and predict the
effect of immunotherapy.

Angiogenesis is one of the crucial elements to support tumor
growth and development, and various angiogenic factors tend to
be overexpressed (14). Recently, the inhibition of angiogenesis
has emerged as an encouraging therapeutic option, particularly
for tumors where conventional treatment is unavailable (15).
However, the majority of the present studies are focused on
identifying the role of individual angiogenesis-associated genes
(AAGs) on the progression and prognosis of GC. In addition,
Expression proteins of AAGs are often used as therapeutic
targets for tumors, and exploring the relationship between
AAGs and tumor innate immune may contribute to further
combining targeted therapy and immunotherapy (16, 17).

We systematically analyzed the expression of AAGs and their
impact on the development, prognosis, TME, and therapeutic
response of GC patients. We identified three distinct angiogenesis
subgroups in GCwith the TCGA database and GEO database. Next,
we assessed the molecular characteristics, prognostic significance,
and infiltrating immune cell intensities of the identifying
angiogenesis clusters. Furthermore, we obtained an AAG_score
Frontiers in Immunology | www.frontiersin.org 2110
that accurately predicted the clinical outcome of GC patients and
immunotherapeutic effect. We expect that this study will contribute
to the development of viable immunotherapies for GC.
MATERIALS AND METHODS

Data Collection
The RNA expression data, somatic mutation data, CNV files, and
corresponding clinicopathological information of GC were
retrieved from the TCGA-STAD program, and GSE84337 from
the GEO repository was utilized to acquire clinical parameters
and normalized gene expression data (18). Samples lacking
significant clinicopathological or survival information were
excluded from further analysis. 36 AAGs were obtained from
the MSigDB Team (Hallmark Gene set) (Table S1).

Consensus Clustering Analysis of AAGs
Consensus clustering was employed to define distinct
angiogenesis-related patterns by the k-means algorithms (19).
The quantity, as well as consistency of clusters, were built by the
consensus clustering algorithm, which is available in the
“ConsensuClusterPlus” package (20). 1000 iterations were
performed to ensure the stability of these categories. To
identify the biological functional differences in AAGs, gene set
variation analysis (GSVA) was conducted with the KEGG gene
set (c2.cp.kegg.v7.4) (21).

Association Between Molecular Patterns
With the Clinical Characteristics and
Prognosis of GC
To determine the clinical significance of the clusters generated by
consensus clustering, we investigated the association between
molecular patterns, clinical features, and survival outcomes. The
clinical variables included age, gender, T-stage, and N-stage.
Moreover, the differences in OS between different patterns were
evaluated with Kaplan–Meier analysis obtained by the “survival”
and “survminer” packages (22).

Relationship of Molecular Patterns With
TME in GC
We assess the immune and stromal scores of GC patients with
the ESTIMATE algorithm (23). Next, the levels of 22 immune
cell subtypes of each patient were computed with the
CIBERSORT algorithm (24). The infiltrating fractions of
immune cells were also identified with a single-sample gene set
enrichment analysis (ssGSEA) algorithm (25). We then
evaluated the association between the two subsets on PD-1,
PD-L1, and CTLA-4 expression.

Identification of DEGs and Functional
Enrichment Analysis
To identify DEGs in the distinct angiogenesis subgroups, we used
the “limma” package with criteria of |log2-fold change (FC)| ≥ 1
and p-value < 0.05. On the basis of these DEGs, GO and KEGG
analysis was carried out with the “clusterProfiler” package (26).
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Development of the Angiogenesis-
Associated Prognostic AAG_Score
An AAG_score was constructed to quantitatively assess
angiogenesis in individual GC patients. The expression data of
DEGs from distinct angiogenesis clusters were standardized
across GC specimens and the intersect genes were selected.
The differential assessment demonstrated that there are 234
DEGs between the two angiogenesis clusters. Next, we
conducted univariate Cox regression (uniCox) analysis for
DEGs. Survival-related genes were retained for further analysis.
We carried on principal component analysis (PCA) to generate
angiogenesis-associated gene scores with the following
algorithm: AAG_score = expression of a gene [1] ×
corresponding coefficient [1] + expression of a gene [2] ×
corresponding coefficient [2] + expression of gene [n]
× corresponding coefficient [n].

Clinical Significance and Classification
Analysis of the Prognostic AAG_Score
The relevance of the AAG_score to clinical variables was
investigated. To identify whether AAG_score was an
independent prognostic predictor, we conducted uniCox and
multivariate Cox regression (multiCox) analysis for all cohorts.
Then, we conducted a classification analysis to explore whether
the AAG_score remains its predictive reliable in distinct
subgroups based on multiple clinical variables. Furthermore,
the infiltrating levels of immune cells and immune checkpoint
(ICP) were compared in the different risk score subgroups.
Additionally, we examined the correlations between
AAG_score and tumor mutation burden (TMB) score,
microsatellite instability (MSI) score, and cancer stem cells
(CSC) score.

Establishment of a Predictive Nomogram
A nomogram was depicted to provide valuable clinical
predictions for HCC patients with their risk scores and other
clinicopathological characteristics, particularly about 1-, 3-, and
5-year OS. Next, we performed calibration curve analysis and
decision curve analysis (DCA) to verify the clinical reliability of
the established nomogram.

Mutation and Drug Sensitivity Analysis
To identify the mutational profiles of GC patients between
different risk groups, the mutation annotation format (MAF)
from the TCGA database was created with the “maftools”
package (27). We also assessed tumor immune dysfunction
and exclusion (TIDE) and immunophenotype score (IPS) for
GC patients in the two groups. To investigate the clinic
performance of chemotherapy agents in patients, we computed
the semi-inhibitory concentration (IC50) values of common
drugs with the “pRRophetic” package (28).

Statistical Analysis
R software (version 4.1.2) and its relevant packages are applied to
process, analyze and present the data. A two-sided P <0.05 was
deemed valuable.
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RESULTS

Genetic Mutation Landscape of
AAGs in GC
We first identified the expression levels of the 36 AAGs in tumor
specimens and normal specimens with the TCGA-STAD dataset.
A total of 26 DEGs were found, and most of the DEGs were
abundant in the tumor samples (Figure 1A). A protein-protein
interaction (PPI) analysis through the string website was
established to reveal the interactivity of DEGs, which indicated
that VEGFA, SPP1, POSTN, VTN, COL3A1, and TIMP1 were
hub genes (Figure 1B). Next, we determined the incidence of
CNVs and somatic mutations of 36 AAGs in GC. As depicted in
Figure 1C, 147 of 433 (33.95%) GC samples presented genetic
mutations, and the findings suggested VCAN as the gene with
the highest mutation incidence, followed by ITGAV and
COL5A2, among the 36 AAGs. Furthermore, we explore CNV
mutational incidence, which indicated that 36 AAGs
demonstrated evident CNV alterations (Figure 1D). Figure 1E
displays the site of CNV alterations of 36 AAGs on
chromosomes. We summarized that CNV may serve a
regulative role in the expression of AAGs. The findings
indicated a substantial difference in the genomic background
and expression levels of AAGs between GC and normal specimens,
suggesting the potential role of AAGs in GC tumorigenesis.

Generation of Angiogenesis Subgroups
in GC
The detailed flowchart of this work is shown in Figure S1. 804
GC patients from TCGA-STAD and GSE84437 were enrolled in
this study to reveal the relationship between angiogenesis and
tumorigenesis. Complete information of these patients was listed
in Table S2. The prognostic values of 36 AAGs in GC patients
were identified with uniCox and Kaplan–Meier analysis
(Table S3). Next, the correlation network of AAG interactions,
regulator relationships, and their survival significance in GC
patients was presented in Figure 2A, and Table S4.

To further determine the relationship between expression
patterns of AAGs and GC subtypes, we performed a consensus
clustering analysis to classify GC patients according to the
expression levels of these AAGs. Our findings indicated that
the optimal clustering variable was 2 (Figure 2B), and GC
patients in the entire cohort were well dispersed in cluster A (n=430)
and cluster B (n=378). The result of PCA analysis also confirmed the
excellent intergroup distribution (Figure 2C). Furthermore, the OS
time of the two clusters was discussed, and a significant survival
difference was observed (Figure 2D). Additionally, as displayed in
Figure 2E, the genomic expression and clinicopathological variables of
both clusters were compared, and a substantial difference of AAGs
expression and clinical features were identified.

Characteristics of the TME in
Different Subgroups
According to the findings of GSVA analysis, cluster A was
abundant in cancer-associated pathways (multiple cancer such
as renal cell carcinoma, glioma, prostate cancer, and melanoma)
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and metastasis-associated pathways (regulation of cell adhesion
molecules cams, ECM receptor interaction, and focal adhesion)
(Figure 3A and Table S5). To identify the relationship between
AAGs and the TME of GC, we explore the infiltrating levels of 23
human immune cell subpopulations in the two clusters with the
CIBERSORT algorithm (Table S6). As shown in Figure 3B, a
substantial enrichment difference of most immune cells between
both clusters was noticed. The enrichment levels of activated B
cell, activated CD8 T cell, activated DC cell, CD56bright NK cell,
gd T cell, immature B cell, immature DC cell, MDSC,
macrophage, mast cell, NK T cell, NK cell, plasmacytoid DC
Frontiers in Immunology | www.frontiersin.org 4112
cell, regulatory T cell, T follicular helper cell, and type 1 T helper
cell were markedly higher in the cluster A than cluster B, while
the opposite performance of neutrophil was observed. Moreover,
the expression of three critical ICPs (PD-1, PD-L1, and CTLA-4)
was notably greater of cluster A than cluster B (Figures 3C–E).
And TME scores could evaluate the abundance of immune and
stromal elements in TME, we further executed the ESTIMATE
algorithm to obtain the TME scores in the different clusters,
including stromal score, immune score, and estimate score. The
findings indicated patients in cluster A had higher TME
scores (Figure 3F).
A

B C

D E

FIGURE 1 | Genetic mutational landscape of AAGs in GC. (A) Expression distributions of DEGs between GC and normal tissues. (B) The PPI network acquired
from the STRING database among the DEGs. (C) Genetic alteration on a query of AAGs. (D) Frequencies of CNV gain, loss, and non-CNV among AAGs. (E) Circus
plots of chromosome distributions of AAGs. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
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Identification of Gene Subgroups Based
on DEGs
To investigate the underlying biological activity of angiogenesis
subgroups, we obtained 234 angiogenesis clusters-associated
DEGs with the “limma” package and conducted functional
enrichment analysis (Table S7). These angiogenesis subgroups-
Frontiers in Immunology | www.frontiersin.org 5113
associated DEGs were mainly enriched in metastasis-associated
biological processes (Figure 4A). KEGG analysis demonstrated
the abundance of cancer- and metastasis-associated pathways
(Figure 4B), implying that angiogenesis serves as a crucial factor
in the modulation of tumor metastasis. Then, we performed
uniCox analysis to determine the survival significance of these
A B

C

E

D

FIGURE 2 | AAG subgroups and clinicopathological and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (A) A
network of correlations including AAGs in the TCGA cohort. (B) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (C) PCA analysis
indicating an obvious difference in transcriptomes between the two subgroups. (D) Univariate analysis showing 36 AAGs correlated with OS. (E) Differences in
clinicopathologic characteristics and expression levels of AAGs between the two distinct subgroups.
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genes, and 204 genes were extracted with a criterion of p < 0.05
(Table S8). To investigate specific adjustment mechanisms, a
consensus clustering method was utilized to separate patients
into different gene clusters (Clusters A-C) on the basis of
prognostic genes (Figure S2). Kaplan-Meier analysis
demonstrated that patients in cluster A had the shortest OS time,
whereas patients in cluster C had the superior OS time (Figure 4C).
Additionally, angiogenesis gene cluster A patterns were related to
advanced T- andN-stage (Figure 4D). The angiogenesis gene clusters
demonstrated substantial discrepancies in AAGs expression, as
expected from the angiogenesis subgroups (Figure 4E).

Development and Validation of the
Prognostic AAG_Score
The AAG_score was created on the basis of cluster-associated
DEGs. The GC patients were randomly assigned into a training
cohort (n=402) or a test cohort (n=402) at a ratio of 1:1. LASSO
and multivariate Cox (multiCox) analysis for 204 angiogenesis
cluster-associated prognostic DEGs were conducted to establish
an optimal predictive model (Figure S3). Ultimately, we
acquired two genes (MMP11 and APOD), and the AAG_score
was accessed as described: Risk score = (0.1347* expression of
MMP11) + (0.1099* expression of APOD). Figure 5A displayed
the patients’ distribution in the two angiogenesis clusters, three
gene clusters, and two AAG_score groups.
Frontiers in Immunology | www.frontiersin.org 6114
We discovered a substantial difference in the AAG_score of the
angiogenesis clusters and gene clusters (Figures 5B, C). We
observed the highest AAG_score in gene cluster A and the lowest
AAG_score in gene cluster C, implying a low AAG_score may be
correlated with immune activation-associated characteristics.
Based on the abovementioned survival analysis, we identified that
higher risk scores of both classifications were correlated with worse
survival. Furthermore,Kaplan-Meier analysis in the training cohort
indicated that low-risk patients had a better OS over high-risk
patients (Figure 5D), and the AUCs of 1-, 3-, and 5-years OS were
0.611, 0.627, and 0.622, respectively (Figure 5E). PCA analysis
revealed a clear distribution between the two risk groups
(Figure 5F). The risk plot of AAG_score indicated that as
AAG_score increased, OS time decreased while mortality rise
(Figures 5G, H). Additionally, a heatmap of selected genes was
presented in Figure 5I.

To evaluate the predictive robustness of AAG_score, we
obtained AAG_score of the test cohort and entire cohort (Figures
S4,S5).Thepatientswere also assigned intodifferent risk subgroups
depending on the median score of the training cohort. Similarly,
survival analysis presented a superior OS of low-risk patients
compared to high-risk patients. Prediction of the 1-, 3-, and 5-
year survival probability suggested that the AAG_score still had
excellent AUC values, implying that the AAG_score had a great
performance to assess the prognosis of GC patients.
A B

C ED F

FIGURE 3 | Correlations of tumor immune microenvironments and two GC subgroups. (A) GSVA of biological pathways between two distinct subgroups. (B)
Abundance of 23 infiltrating immune cell types in the two GC subgroups. (C–E) Expression levels of PD-1, PD-L1, and CTLA-4 in the two GC subgroups. (F)
Correlations between the two GC subgroups and TME score. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
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Clinical Correlation Analysis of the
Prognostic AAG_Score
To determine the relationship of the AAG_score with
clinicopathological features, we discussed the interaction
between AAG_score and diverse clinical parameters (age,
gender, T-stage, N-stage, and survival status). We found
increased risk scores in the higher T- and N-stage (Figure S6).
Furthermore, the independent prognostic value of AAG_score
for GC patients was evaluated. We performed uniCox and
multiCox analyses to explore prognostic independence of
multiple clinical factors. As presented in Figure S7, age, T-
stage, N-stage, and risk score in the training cohort
demonstrated significant differences, which were concordant
Frontiers in Immunology | www.frontiersin.org 7115
with the findings available in the test cohort and entire cohort
(Figure S7). Moreover, to further explore the prognostic
significance of AAG_scores in GC patients, the patients were
assigned into different subgroups based on clinical parameters.
Overall, the high-risk patient’s survival was generally poorer
compared to low-risk patients (Figure S8).

Construction of a Nomogram to Predict
Patients’ Prognosis
Due to the high correlation between risk scores and patients’
prognosis, we incorporated clinical parameters to establish a
nomogram. This nomogram was utilized to estimate 1-, 3-, and
5-year OS for GC patients (Figure 6A). The calibration
A B

C

E

D

FIGURE 4 | Identification of gene subgroups based on DEGs. (A, B) GO and KEGG enrichment analyses of DEGs among two angiogenesis subgroups. (C)
Kaplan–Meier curves for OS of the three gene clusters. (D) Relationships between clinicopathologic features and the three gene clusters. (E) Differences in the
expression of 36 AAGs among the three gene clusters. (p < 0.01 **; p < 0.001 ***).
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curves of this established nomogram presented great accuracy
between actual observations and predicted values (Figure 6B).
Furthermore, we estimated the AUC values of these clinical
factors for predicting OS at 1-, 3-, and 5-year, respectively. As
shown in Figures 6C–E, the AUC values were as expected,
implying this nomogram had an excellent predictive ability for
prognosis. Moreover, we also found that this prognostic
model with diverse clinical factors presented more net
benefits for predicting the prognosis (Figures 6F–H).
Additionally, we also compared AAG_scores and previously
reported prognostic prediction models (29, 30), and the results
showed AAG_scores had a superior predictive performance
(Figure S9).
Frontiers in Immunology | www.frontiersin.org 8116
Assessment of TME and Checkpoints in
Distinct Groups
The CIBERSORT algorithm was utilized to evaluate the
correlat ion between AAG_score and immune cel ls
abundance. As depicted in Figure 7A, the AAG_score was
positively associated with the infiltration of regulatory T cells,
resting mast cells, M0 macrophages, M2 macrophages, and
resting dendritic cells, while the opposite performance was
observed in relationship with AAG_score and follicular
helper T cells, CD8 + T cells, activated memory CD4 + T
cells, plasma cells, resting NK cells, neutrophils, and activated
dendritic cells. Moreover, the AAG_score was positively linked
to stromal score, and immune score (Figure 7B). We then
A B C

D E F

G H I

FIGURE 5 | Construction of the AAG_score in the training cohort. (A) Alluvial diagram of subgroup distributions in groups with different AAG_scores and clinical
outcomes. (B) Differences in AAG_score between the two angiogenesis clusters. (C) Differences in AAG_score between the three gene clusters. (D) Kaplan–Meier
analysis of the OS between the two groups. (E) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the AAG_score.
(F) PCA analysis based on the prognostic signature. (G, H) Ranked dot and scatter plots showing the AAG_score distribution and patient survival status. (I)
Expression patterns of 2 selected prognostic genes in high- and low-risk groups.
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explore the correlation between the selected genes in the
prognostic signature and the enrichments of immune cells.
We concluded that the majority of immune cells were closely
related to the selected genes (Figure 7C). Additionally, we
assessed the relationship between ICPs and this prognostic
signature. Figure 7D demonstrates that 24 ICPs were
discrepantly represented in the two risk subgroups, such as
PD-1, LAIR1, and VTCN1.

Association of AAG_Score With TMB, MSI,
and CSC Score
Numerous studies revealed that TMB and MSI were valuable
predictive indicators for tumor immune response, and patients
with high TMB or high MSI can benefit from ICP inhibitors (31–
33). Our findings demonstrated a higher TMB in the low-risk
groups over high-risk groups (Figure 8A), suggesting that low-
risk patients may benefit more from immunotherapy. A negative
Frontiers in Immunology | www.frontiersin.org 9117
correlation of AAG_score and TMB was also observed with
Spearman correlation analysis (Figure 8B). To explore the
impact of TMB status on prognosis in GC patients, we also
conducted survival analysis across different TMB subgroups.
High-TMB patients had a superior prognosis than low-TMB
patients (Figure 8C). Subsequently, we combined TMB and
AAG_score for survival analysis of GC patients, and the
prognostic benefit in the high-TMB group was eliminated by
the AAG_score (Figure 8D). Similarly, correlation evaluation
demonstrated that a low AAG_score was linked to MSI-H
pattern, while a high AAG_score was related to the
microsatellite stable (MSS) pattern (Figures 8E, F). These
results also suggested that low-risk patients may be more
sensitive to immunotherapy. Furthermore, we integrated the
AAG_score and CSC score to evaluate their latent relevance in
GC. The relationship between AAG_score and CSC score was
presented in Figure 8G. We summarized that AAG_score was
A B

C D E

F G H

FIGURE 6 | Construction and validation of a nomogram. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of GC patients in the entire cohort. (B) ROC curves
for predicting the 1-, 3-, and 5-year ROC curves in the entire cohort. (C–E) The time−dependent ROC curves of the nomograms compared for 1−, 3−, and 5−year
OS in GC, respectively. (F–H) The DCA curves of the nomograms compared for 1−, 3−, and 5−year OS in HCC, respective.
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negatively related to the CSC score, suggesting that GC cells with
lower AAG_score had more prominent stem cell characteristics
and a lower level of cell differentiation. Additionally, we
investigated the distribution differences of the somatic
mutations between AAG_score patterns in the TCGA-STAD
dataset. As presented in Figures 8H, I, the mutation incidences
of TP53, TTN, MUC16, ARID1A, LRP1B, and SYNE1 were
higher than or equal to 20% in GC patients in two risk groups.
Interestingly, these genes were mutated at a greater possibility in
the low-risk group versus the high-risk group.
Frontiers in Immunology | www.frontiersin.org 10118
Drug Sensitivity Analysis
For unresectable GCpatients, chemotherapy, targeted therapy, and
immunotherapy may limit tumor progression and improve
patients’ prognoses (34). To assess the immune response of GC
patients, we calculated TIDE scores and IPS scores to predict
patients’ response-ability. As shown in Figures 9A–E, low-risk
groupshad a lowerTIDEscore andahigher IPS score, implying that
low-risk patientsmaybemore sensitive to immunotherapy (35, 36).
Next, to identify the efficacyofAAG_score as a biomarker topredict
therapeutic response in GC patients, we estimated the IC50 values
A

B

D

C

FIGURE 7 | Evaluation of the TME and checkpoints between the two groups. (A) Correlations between AAG_score and immune cell types. (B) Correlations
between AAG_score and both immune and stromal scores. (C) Correlations between the abundance of immune cells and selected genes in the prognostic model.
(D) Expression of immune checkpoints in the high and low-risk groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).
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of 138 drugs in TCGA-STAD patients.We discovered that patients
with low AAG_scores may positively react to ATRA, gefitinib,
gemcitabine, obatoclax.Mesylate, paclitaxel, sorafenib, and
bosutinib, while patients with high AAG_scores maybe respond
better to docetaxel, shikonin, KU.55933, and multiple targeted
therapy agents, including axitinib, dasatinib, erlotinib, imatinib,
lapatinib, and nilotinib (Figures 9F–L). Overall, these findings
indicated that AAGs were correlated with drug sensitivity.
DISCUSSION

Angiogenic cytokines are critical pro-angiogenesis drivers, as
well as important immune regulators. Angiogenic cytokines can
regulate angiogenic switches as activators or inhibitors during
Frontiers in Immunology | www.frontiersin.org 11119
tumor progression in GC (37). And angiogenic cytokines
secreted by GC cells activate endothelial cells and autocrine
loops to modulate tumor development (38). Additionally,
angiogenic cytokines contribute to immune suppression by
inhibiting antigen-presenting cells and immune effector cells,
or by activating suppressing immune cells (such as Treg and
tumor-associated macrophages). These suppressive immune
cells can in turn stimulate angiogenesis, resulting in a vicious
pattern of impaired immune activation (39). Accumulative
evidence has demonstrated the inevitable association between
angiogenesis and intrinsic immunity, and angiogenesis targeting
may serve a critical role in enhancing cancer immunotherapy
(40, 41). However, numerous reports have only emphasized a
single AAG or a specific immune cell subtype. Therefore, it is
necessary to further clarify the holistic impact and TME
A B C

D E F

G H I

FIGURE 8 | Comprehensive analysis of the AAG_score in GC. (A, B) Relationships between AAG_score and TMB. (C) Kaplan–Meier analysis of the OS between
the low- and high-TMB groups. (D) Survival analysis among four patient groups stratified by both TMB and AAG_score. (E, F) Relationships between AAG_score
and MSI. (G) Relationships between AAG_score and CSC index. (H, I) The waterfall plot of somatic mutation features established with high and low AAG_scores.
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infiltration features regulated by the combinatorial action of
diverse AAGs.

In this research, we identified the transcriptional alterations
and expression of AAGs on the basis of the TCGA–STAD
cohort. Despite the low mutational intensity of AAGs, most of
them are up-regulated in GC patients and associated with
prognosis. We then divided GC patients into two angiogenesis
subgroups (Cluster A and B) with the unsupervised clustering
approach. There were obvious discrepancies in clinical outcomes,
immune infiltrations, and functions between the two subgroups.
Gene mutations in GCmay serve a leading role in the response to
immunotherapy. Based on the DEGs related to the subgroups
signature, three gene clusters with different clinical features,
immune activities, and functions were created for GC. By
LASSO Cox regression, AAG_score was established to quantify
the angiogenesis subgroups. The cluster A and gene cluster A
with the poorest clinical outcomes had the greatest AAG_score
among AAG_clusters and three gene clusters. Interestingly,
patients with a high AAG_score had unfavorable OS,
suggesting that a high AAG_score could predict an
unfavorable prognosis. Angiogenesis is involved in the
malignant behavior of diverse tumors, including GC (42, 43).
Frontiers in Immunology | www.frontiersin.org 12120
Consistently, our GSEA findings demonstrated that cancer- and
metastasis-associated pathways were markedly enriched,
confirming the existing conclusions.

AAG_score was remarkedly relevant to clinicopathological
features of GC. After controlling confounding parameters, the
results indicated that AAG_score was an independent predictor
for GC patients’ survival outcomes. ROCs validated its predictive
robustness for 1-, 3-, and 5-year OS. Recently, an angiogenesis-
associated risk score has been established for the clinical
outcomes of GC patients. Accordingly, AAG_score may have a
reliable predictive capacity for patients’ prognoses. The
aggregation of gene mutations results in carcinogenesis, which
is associated with neo-angiogenesis. Our results proved that
there was a significant discrepancy in genomic alterations
between low and high AAG_scores. Higher TMB has been
validated to be related to a better prognosis for GC patients,
consistent with our findings (44). The clinical outcomes in the
low AAG_score group were evidently superior to those in the low
TMB groups, suggesting AAG_score could be utilized to
independently predict the responsiveness of immunotherapy.

Immune interactions are critical characteristics of tumorigenesis
and therapeutic target for GC. Stromal cells and immune cells are
A CB D
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FIGURE 9 | Relationships between AAG_score and therapeutic sensitivity. (A–D) IPS in different AAG_score groups. (E) TIDE in different AAG_score groups. (F–L)
Relationships between AAG_score and chemotherapeutic sensitivity. (p < 0.01 **).
February 2022 | Volume 13 | Article 843077

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qing et al. Angiogenesis-Associated Genes in Gastric Cancer
the primary elements of the TME, and immune and stromal scores
are related to clinic characteristics and prognosis in GC (45, 46). We
calculated these scores with the ESTIMATE algorithm and found
that a high AAG_score group obviously presented higher immune
and stromal scores than a low AAG_score group. This suggested
that angiogenesis could be associated with the involvement of the
TME, thus regulating neoplastic occurrence and development. We
identified that higher enrichment of T cells (T helper, CD 4+ and
CD 8+T cells) and DCs were correlated with low AAG_score. The
enrichment of Tregs, inhibiting the anti-tumor immunoreactivity,
was related to poor survival (47). This is concordant with our
findings of abundant Tregs in the TME of patients with
high AAG_scores. Previous reports also demonstrated that
angiogenesis factors may serve as immune modulators, and the
immune system could participate in carcinogenesis by inducing
pathological vascularization (48, 49). Therefore, targeting
angiogenesis may be a valuable regulative strategy for
immunotherapy of GC.

At present, GC is gradually resistant to chemotherapy (50). This
study identified the potential sensitive drugs for patients in different
AAG_socre groups, and the combination of these drugs and
targeting angiogenesis may contribute to alleviating drug
resistance and improving clinical outcomes. Furthermore, the
effectiveness of immunotherapy requires specific biomarkers as a
predictive pattern. TIDE and IPS signatures have been created to
evaluate ICIs response. Accordingly, we observed that GC patients
with low AAG_scores displayed low TIDE scores and positive
responsiveness for anti-PD1 and anti-CTLA-4 therapy. Elevated
levels of diverse immune cell infiltration were also found in low
AAG_scores. This demonstrates that AAG_score has the potential
to determine patients who have a better response for ICB.

This study has several limitations. Data from public databases
are obtained retrospectively, and inherent selection bias may affect
their robustness. And additional clinical variables should be
introduced into the study to fully explore the clinical value of
AAG_scores. Furthermore, extensive prospective studies and
complementary in vivo and in vitro experimental studies are
necessary to gain insight into the relationship between risk scores
and TME, thus confirming our findings.
Frontiers in Immunology | www.frontiersin.org 13121
CONCLUSION

Briefly, our systematic analysis of AAGs demonstrates a
comprehensive regulatory strategy, and thus influences TME,
prognosis, and clinical characteristics of GC patients. We also
clarify the potency of AAGs as a biomarker of therapeutic
response. Our study reveals the critical clinical significance of
AAGs and offers a valuable basis for further researches on
personalized therapy in GC patients.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.
AUTHOR CONTRIBUTIONS

All authors contributed to the study’s conception and design.
XQ, WX, and SL performed data collection and analysis. XQ and
WX wrote the manuscript. YZ polished and revised the
manuscript. All authors commented on previous versions of
the manuscript and read and approved the final manuscript.
FUNDING

This study was supported by the National Natural Science
Foundation of China (No. 81872255, 62041101), Jiangsu
Provincial Maternal and child health scientific research project
(No. F202005) and the Key Medical Talents Foundation of
Jiangsu Province (No. 2016KJQWZDRC-03).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.843077/
full#supplementary-material
REFERENCES
1. Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, et al. Safety, Efficacy and

Tumor Mutational Burden as a Biomarker of Overall Survival Benefit in
Chemo-Refractory Gastric Cancer Treated With Toripalimab, a PD-1
Antibody in Phase Ib/II Clinical Trial NCT02915432. Ann Oncol (2019) 30
(9):1479–86. doi: 10.1093/annonc/mdz197

2. Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K,
et al. Neoadjuvant Immunotherapy Leads to Pathological Responses in
MMR-Proficient and MMR-Deficient Early-Stage Colon Cancers. Nat Med
(2020) 26(4):566–76. doi: 10.1038/s41591-020-0805-8

3. Sheih A, Voillet V, Hanafi LA, DeBerg HA, Yajima M, Hawkins R, et al.
Clonal Kinetics and Single-Cell Transcriptional Profiling of CAR-T Cells in
Patients Undergoing CD19 CAR-T Immunotherapy. Nat Commun (2020) 11
(1):219. doi: 10.1038/s41467-019-13880-1

4. Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A,
Baradaran B. Colon Cancer Therapy by Focusing on Colon Cancer Stem
Cells and Their Tumor Microenvironment. J Cell Physiol (2020) 235(5):4153–
66. doi: 10.1002/jcp.29337
5. Saleh R, Taha RZ, Toor SM, Sasidharan Nair V, Murshed K, Khawar M, et al.
Expression of Immune Checkpoints and T Cell Exhaustion Markers in Early
and Advanced Stages of Colorectal Cancer. Cancer Immunol Immunother
(2020) 69(10):1989–99. doi: 10.1007/s00262-020-02593-w

6. Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor
Microenvironment for Cancer Immunotherapy. Mol Cell (2020) 78(6):1019–
33. doi: 10.1016/j.molcel.2020.05.034

7. Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic Interplay in
the Tumor Microenvironment. Cancer Cell (2021) 39(1):28–37. doi: 10.1016/
j.ccell.2020.09.004

8. Jin MZ, Jin WL. The Updated Landscape of Tumor Microenvironment and
Drug Repurposing. Signal Transduct Target Ther (2020) 5(1):166.
doi: 10.1038/s41392-020-00280-x

9. Thrift AP, El-Serag HB. Burden of Gastric Cancer. Clin Gastroenterol Hepatol
(2020) 18(3):534–42. doi: 10.1016/j.cgh.2019.07.045

10. Biondi A, Lirosi MC, D'Ugo D, Fico V, Ricci R, Santullo F, et al. Neo-Adjuvant
Chemo(Radio)Therapy in Gastric Cancer: Current Status and Future
Perspectives. World J Gastrointest Oncol (2015) 7(12):389–400. doi: 10.4251/
wjgo.v7.i12.389
February 2022 | Volume 13 | Article 843077

https://www.frontiersin.org/articles/10.3389/fimmu.2022.843077/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.843077/full#supplementary-material
https://doi.org/10.1093/annonc/mdz197
https://doi.org/10.1038/s41591-020-0805-8
https://doi.org/10.1038/s41467-019-13880-1
https://doi.org/10.1002/jcp.29337
https://doi.org/10.1007/s00262-020-02593-w
https://doi.org/10.1016/j.molcel.2020.05.034
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1016/j.ccell.2020.09.004
https://doi.org/10.1038/s41392-020-00280-x
https://doi.org/10.1016/j.cgh.2019.07.045
https://doi.org/10.4251/wjgo.v7.i12.389
https://doi.org/10.4251/wjgo.v7.i12.389
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qing et al. Angiogenesis-Associated Genes in Gastric Cancer
11. Russo AE, Strong VE. Gastric Cancer Etiology and Management in Asia and
the West. Annu Rev Med (2019) 70:353–67. doi: 10.1146/annurev-med-
081117-043436

12. Patel TH, Cecchini M. Targeted Therapies in Advanced Gastric Cancer. Curr
Treat Options Oncol (2020) 21(9):70. doi: 10.1007/s11864-020-00774-4

13. Zhao Q, Cao L, Guan L, Bie L, Wang S, Xie B, et al. Immunotherapy for
Gastric Cancer: Dilemmas and Prospect. Brief Funct Genomics (2019) 18
(2):107–12. doi: 10.1093/bfgp/ely019

14. Viallard C, Larrivee B. Tumor Angiogenesis and Vascular Normalization:
Alternative Therapeutic Targets. Angiogenesis (2017) 20(4):409–26.
doi: 10.1007/s10456-017-9562-9

15. El-Kenawi AE, El-Remessy AB. Angiogenesis Inhibitors in Cancer Therapy:
Mechanistic Perspective on Classification and Treatment Rationales. Br J
Pharmacol (2013) 170(4):712–29. doi: 10.1111/bph.12344

16. Ramjiawan RR, Griffioen AW, Duda DG. Anti-Angiogenesis for Cancer
Revisited: Is There a Role for Combinations With Immunotherapy?
Angiogenesis (2017) 20(2):185–204. doi: 10.1007/s10456-017-9552-y

17. YuWD, Sun G, Li J, Xu J, Wang X. Mechanisms and Therapeutic Potentials of
Cancer Immunotherapy in Combination With Radiotherapy and/or
Chemotherapy. Cancer Lett (2019) 452:66–70. doi: 10.1016/j.canlet.
2019.02.048

18. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson
A, et al. A Survey of Best Practices for RNA-Seq Data Analysis. Genome Biol
(2016) 17:13. doi: 10.1186/s13059-016-0881-8

19. Sabah A, Tiun S, Sani NS, Ayob M, Taha AY. Enhancing Web Search Result
Clustering Model Based on Multiview Multirepresentation Consensus Cluster
Ensemble (Mmcc) Approach. PLoS One (2021) 16(1):e0245264. doi: 10.1371/
journal.pone.0245264

20. Seiler M, Huang CC, Szalma S, Bhanot G. ConsensusCluster: A Software Tool
for Unsupervised Cluster Discovery in Numerical Data. OMICS (2010) 14
(1):109–13. doi: 10.1089/omi.2009.0083

21. Hanzelmann S, Castelo R, Guinney J. GSVA: Gene Set Variation Analysis for
Microarray and RNA-Seq Data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-
2105-14-7

22. Rich JT, Neely JG, Paniello RC, Voelker CC, Nussenbaum B, Wang EW. A
Practical Guide to Understanding Kaplan-Meier Curves. Otolaryngol Head
Neck Surg (2010) 143(3):331–6. doi: 10.1016/j.otohns.2010.05.007

23. Meng Z, Ren D, Zhang K, Zhao J, Jin X, Wu H. Using ESTIMATE
Algorithm to Establish an 8-mRNA Signature Prognosis Prediction System
and Identify Immunocyte Infiltration-Related Genes in Pancreatic
Adenocarcinoma. Aging (Albany NY) (2020) 12(6):5048–70. doi: 10.18632/
aging.102931

24. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling
Tumor Infiltrating Immune Cells With CIBERSORT. Methods Mol Biol
(2018) 1711:243–59. doi: 10.1007/978-1-4939-7493-1_12

25. Huang L, Wu C, Xu D, Cui Y, Tang J. Screening of Important Factors in the
Early Sepsis Stage Based on the Evaluation of ssGSEA Algorithm and ceRNA
Regulatory Network. Evol Bioinform Online (2021) 17:11769343211058463.
doi: 10.1177/11769343211058463

26. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R Package for Comparing
Biological Themes Among Gene Clusters. OMICS (2012) 16(5):284–7.
doi: 10.1089/omi.2011.0118

27. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: Efficient
and Comprehensive Analysis of Somatic Variants in Cancer. Genome Res
(2018) 28(11):1747–56. doi: 10.1101/gr.239244.118

28. Geeleher P, Cox N, Huang RS. Prrophetic: An R Package for Prediction of
Clinical Chemotherapeutic Response From Tumor Gene Expression Levels.
PLoS One (2014) 9(9):e107468. doi: 10.1371/journal.pone.0107468

29. Ren H, Zhu J, Yu H, Bazhin AV, Westphalen CB, Renz BW, et al.
Angiogenesis-Related Gene Expression Signatures Predicting Prognosis in
Gastric Cancer Patients. Cancers (Basel) (2020) 12(12):3685. doi: 10.3390/
cancers12123685

30. Zheng S, Zhang Z, Ding N, Sun J, Lin Y, Chen J, et al. Identification of the
Angiogenesis Related Genes for Predicting Prognosis of Patients With Gastric
Cancer. BMC Gastroenterol (2021) 21(1):146. doi: 10.1186/s12876-021-
01734-4

31. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-
Tumor Genomic Biomarkers for PD-1 Checkpoint Blockade-Based
Frontiers in Immunology | www.frontiersin.org 14122
Immunotherapy. Science (2018) 362(6411):eaar3593. doi: 10.1126/
science.aar3593

32. Liu L, Bai X, Wang J, Tang XR, Wu DH, Du SS, et al. Combination of TMB
and CNA Stratifies Prognostic and Predictive Responses to Immunotherapy
Across Metastatic Cancer. Clin Cancer Res (2019) 25(24):7413–23.
doi: 10.1158/1078-0432.CCR-19-0558

33. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY,
et al. Tumor Mutational Load Predicts Survival After Immunotherapy Across
Multiple Cancer Types. Nat Genet (2019) 51(2):202–6. doi: 10.1038/s41588-
018-0312-8

34. Digklia A, Wagner AD. Advanced Gastric Cancer: Current Treatment
Landscape and Future Perspectives. World J Gastroenterol (2016) 22
(8):2403–14. doi: 10.3748/wjg.v22.i8.2403

35. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T Cell
Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat
Med (2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

36. Mei J, Xing Y, Lv J, Gu D, Pan J, Zhang Y, et al. Construction of an Immune-
Related Gene Signature for Prediction of Prognosis in Patients With Cervical
Cancer. Int Immunopharmacol (2020) 88:106882. doi: 10.1016/
j.intimp.2020.106882

37. Hsieh HL, Tsai MM. Tumor Progression-Dependent Angiogenesis in Gastric
Cancer and Its Potential Application. World J Gastrointest Oncol (2019) 11
(9):686–704. doi: 10.4251/wjgo.v11.i9.686

38. Nienhuser H, Schmidt T. Angiogenesis and Anti-Angiogenic Therapy in
Gastric Cancer. Int J Mol Sci (2017) 19(1):43. doi: 10.3390/ijms19010043

39. Rahma OE, Hodi FS. The Intersection Between Tumor Angiogenesis and
Immune Suppression. Clin Cancer Res (2019) 25(18):5449–57. doi: 10.1158/
1078-0432.CCR-18-1543

40. Rivera LB, Bergers G. Intertwined Regulation of Angiogenesis and Immunity by
Myeloid Cells. Trends Immunol (2015) 36(4):240–9. doi: 10.1016/j.it.2015.02.005

41. Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen,
Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int J Mol
Sci (2018) 19(3):859. doi: 10.3390/ijms19030859

42. Sajib S, Zahra FT, Lionakis MS, German NA, Mikelis CM. Mechanisms of
Angiogenesis in Microbe-Regulated Inflammatory and Neoplastic Conditions.
Angiogenesis (2018) 21(1):1–14. doi: 10.1007/s10456-017-9583-4

43. Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis,
Functions and Role in Tumor Angiogenesis. Front Oncol (2020) 10:581007.
doi: 10.3389/fonc.2020.581007

44. Cai H, Jing C, Chang X, Ding D, Han T, Yang J, et al. Mutational Landscape of
Gastric Cancer and Clinical Application of Genomic Profiling Based on
Target Next-Generation Sequencing. J Transl Med (2019) 17(1):189.
doi: 10.1186/s12967-019-1941-0

45. Quail DF, Joyce JA. Microenvironmental Regulation of Tumor Progression
and Metastasis. Nat Med (2013) 19(11):1423–37. doi: 10.1038/nm.3394

46. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L.
Targeting the Tumor Microenvironment: Removing Obstruction to
Anticancer Immune Responses and Immunotherapy. Ann Oncol (2016) 27
(8):1482–92. doi: 10.1093/annonc/mdw168

47. Goschl L, Scheinecker C, Bonelli M. Treg Cells in Autoimmunity: From
Identification to Treg-Based Therapies. Semin Immunopathol (2019) 41
(3):301–14. doi: 10.1007/s00281-019-00741-8

48. Ribatti D, Crivellato E. Immune Cells and Angiogenesis. J Cell Mol Med
(2009) 13(9A):2822–33. doi: 10.1111/j.1582-4934.2009.00810.x

49. Minton K. Connecting Angiogenesis and Autoimmunity. Nat Rev Immunol
(2019) 19(10):596–7. doi: 10.1038/s41577-019-0217-5

50. Garrido M, Fonseca PJ, Vieitez JM, Frunza M, Lacave AJ. Challenges in First
Line Chemotherapy and Targeted Therapy in Advanced Gastric Cancer.
Expert Rev Anticancer Ther (2014) 14(8):887–900. doi: 10.1586/
14737140.2014.915194

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
February 2022 | Volume 13 | Article 843077

https://doi.org/10.1146/annurev-med-081117-043436
https://doi.org/10.1146/annurev-med-081117-043436
https://doi.org/10.1007/s11864-020-00774-4
https://doi.org/10.1093/bfgp/ely019
https://doi.org/10.1007/s10456-017-9562-9
https://doi.org/10.1111/bph.12344
https://doi.org/10.1007/s10456-017-9552-y
https://doi.org/10.1016/j.canlet.2019.02.048
https://doi.org/10.1016/j.canlet.2019.02.048
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1371/journal.pone.0245264
https://doi.org/10.1371/journal.pone.0245264
https://doi.org/10.1089/omi.2009.0083
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.otohns.2010.05.007
https://doi.org/10.18632/aging.102931
https://doi.org/10.18632/aging.102931
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1177/11769343211058463
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.3390/cancers12123685
https://doi.org/10.3390/cancers12123685
https://doi.org/10.1186/s12876-021-01734-4
https://doi.org/10.1186/s12876-021-01734-4
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1158/1078-0432.CCR-19-0558
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.3748/wjg.v22.i8.2403
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1016/j.intimp.2020.106882
https://doi.org/10.1016/j.intimp.2020.106882
https://doi.org/10.4251/wjgo.v11.i9.686
https://doi.org/10.3390/ijms19010043
https://doi.org/10.1158/1078-0432.CCR-18-1543
https://doi.org/10.1158/1078-0432.CCR-18-1543
https://doi.org/10.1016/j.it.2015.02.005
https://doi.org/10.3390/ijms19030859
https://doi.org/10.1007/s10456-017-9583-4
https://doi.org/10.3389/fonc.2020.581007
https://doi.org/10.1186/s12967-019-1941-0
https://doi.org/10.1038/nm.3394
https://doi.org/10.1093/annonc/mdw168
https://doi.org/10.1007/s00281-019-00741-8
https://doi.org/10.1111/j.1582-4934.2009.00810.x
https://doi.org/10.1038/s41577-019-0217-5
https://doi.org/10.1586/14737140.2014.915194
https://doi.org/10.1586/14737140.2014.915194
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qing et al. Angiogenesis-Associated Genes in Gastric Cancer
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Qing, Xu, Liu, Chen, Ye and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
Frontiers in Immunology | www.frontiersin.org 15123
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
February 2022 | Volume 13 | Article 843077

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Salem Chouaib,

Institut Gustave Roussy, France

Reviewed by:
Luigi Cerbone,

Gustave Roussy Cancer Campus,
France

Carolina Alves Costa Silva,
Gustave Roussy Cancer Campus,

France

*Correspondence:
Li Lin

linli010120@163.com
Chuanhao Tang

gallanttang@126.com
Jun Liang

liangjun1959@aliyun.com

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Oncology

Received: 04 November 2021
Accepted: 01 February 2022
Published: 03 March 2022

Citation:
Xu W, Wang K, Gu W, Nie X, Zhang H,
Tang C, Lin L and Liang J (2022) Case

Report: Complete Remission With
Anti−PD−1 and Anti−VEGF Combined
Therapy of a Patient With Metastatic

Primary Splenic Angiosarcoma.
Front. Oncol. 12:809068.

doi: 10.3389/fonc.2022.809068

CASE REPORT
published: 03 March 2022

doi: 10.3389/fonc.2022.809068
Case Report: Complete
Remission With Anti−PD−1 and
Anti−VEGF Combined Therapy of
a Patient With Metastatic Primary
Splenic Angiosarcoma
Weiran Xu1†, Kai Wang2†, Wenguang Gu3, Xinxin Nie4, Hao Zhang4, Chuanhao Tang1*,
Li Lin1* and Jun Liang1*

1 Department of Oncology, Peking University International Hospital, Beijing, China, 2 Department of Laboratory Medicine, Beijing
Haidian Hospital, Beijing, China, 3 Department of Medicine, Geneplus-Beijing, Beijing, China, 4 Department of Medical Affairs,
Shanghai Junshi Biosciences Co., Ltd., Beijing, China

Primary splenic angiosarcoma (PSA) is a rare malignancy with poor prognosis. At present,
little study is available on immunotherapy in PSA. Here, we report a case of a patient with
metastatic PSA who was treated with programmed death-1 (PD-1) inhibitors and vascular
endothelial growth factor (VEGF) tyrosine kinase inhibitors combined therapy and
achieved complete response (CR). The patient was a 57−year−old woman with three
liver metastases. She was treated with seven cycles of toripalimab plus anlotinib.
Programmed death-ligand 1 (PD-L1) immunohistochemistry and next-generation
sequencing was performed, and the PD-L1 tumor proportion score was 75%. Finally,
she achieved CR after six cycles of the combined therapy regimen. No serious adverse
events were detected. To the best of our knowledge, this is the first clinical evidence that
anti-PD-1 plus anti-VEGF therapy might be a promising option for patients with metastatic
PSA. However, more clinical trials are needed to verify this conclusion.

Keywords: primary splenic angiosarcoma, PD-1 inhibitor, immunotherapy, anti-VEGF therapy, complete remission
INTRODUCTION

Primary splenic angiosarcoma (PSA) is a rare and aggressive tumor with poor prognosis and a high
rate of liver metastasis. The typical symptom of PSA is left upper abdomen pain (1–3); other
symptoms include weakness or fatigue, fever, chest pain, weight loss, and bleeding (1, 4).
Splenectomy is the only potentially curative treatment for patients with early-stage PSA. In
addition, some patients with distant metastasis may receive emergency splenectomy due to
splenic rupture.

Although some case reports have reported the potential benefit of systemic therapy in PSA,
traditional chemotherapy have limited efficacy in metastatic PSA (1, 5). In recent years,
programmed death-1 (PD-1) inhibitors have significantly improved the long-term survival of
patients with various tumors (6, 7). Moreover, vascular endothelial growth factor (VEGF) tyrosine
kinase inhibitors (TKIs) have shown promising effects in patients with angiosarcoma (8).
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Here, we report a case of a metastatic PSA patient with high
expression of programmed death-ligand 1 (PD-L1) who reached
complete response (CR) after anti−PD−1 and anti−VEGF
combination therapy.
CASE REPORT

The patient was a 57−year−old woman who was diagnosed with
PSA in 2020. She presented to a local hospital with left-sided
upper abdominal pain for three hours.

There was no bloating, nausea, or vomiting. No family cancer
history was noted. Abdominal contrast-enhanced computed
tomography (CT) showed spontaneous rupture of a spleen
neoplasm and abdominal hemorrhage, three suspicious
lesions in the liver were also detected. One day later, an
emergency splenectomy was performed. The postoperative
immunohistochemical staining results were as follows: CD31
(+), CD34(+), EGFR (+), CK (−), P63(−), CK20(−), CK5/6(−),
Syn (−), and CK7(−). The final pathologic results confirmed the
diagnosis of angiosarcoma (Figure 1). Positron emission
tomography-CT (PET-CT) was performed 1 month after
surgery, demonstrating three hypermetabolic foci in the liver,
which were diagnosed as hepatic metastases and correspond to
the same lesions initially found in CT. No other distant
metastases were identified.

One month later, she was referred to our hospital for further
care. PD-L1 staining with a 22C3 antibody was performed, and
the results indicated high PD-L1 expression [tumor proportion
score (TPS)=75%]. Moreover, we performed next-generation
sequencing of 1021 cancer-related genes using tumor tissue
and matched lymphocyte samples. The results suggested
microsatellite-stable (MSS). No germline pathogenic or likely
Frontiers in Oncology | www.frontiersin.org 2125
pathogenic variants were identified, but eight somatic mutations
(MYC, TP53, TSC2, BRD2, MAP2K4, NCOR1, PTEN, FAS) were
found in this patient. She finally received combined anti-VEGF
and anti-PD-1 inhibitor treatment in 3-week cycles, with 240 mg
toripalimab admitted intravenously on day 1 of each cycle and
10 mg anlotinib given daily on days 1 to 14 of each cycle. Adverse
reactions, including grade 1 myelosuppression and grade 2
diarrhea, were noted. However, no serious adverse events were
observed in this patient.

The efficacy of the combination treatment was assessed using
CT and magnetic resonance imaging scans. Tumor load was
evaluated at baseline and after every two cycles of treatment
using response evaluation criteria in solid tumors (RECIST)
guidelines (version1.1). In total, seven cycles of the combined
treatment were delivered. The patient exhibited a favorable
response to our combined regimen. The evaluation of efficacy
after two and four cycles was partial response. The tumor shrank
approximately 70% after four cycles of treatment. Surprisingly,
our patient finally achieved CR after six cycles of treatment
(Figure 1). PET-CT was performed to confirm CR after the
seventh cycle, and no 18F-fluorodeoxyglucose elevation was
detected in the original metastatic sites. The patient declined
further treatment for personal reasons. Three months after the
final cycle of treatment, imaging examinations revealed no
evidence of tumor relapse. As the influence of COVID-19, the
patient did not come to our hospital regularly for re-examination
since then.
DISCUSSION

PSA is a kind of malignancy that derived from the splenic
vascular endothelium with an extremely low incidence. Fewer
FIGURE 1 | (A) H&E stain from postoperative tumor tissue (10X magnification). (B) Immunohistochemical staining for PD-L1 in postoperative tumor tissue. (C–J)
Timelines of imaging changes.
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than 300 cases of PSA have been reported to date. The average
age at diagnosis is 50–60 years (9, 10). As previously reported, the
median survival time of metastatic PSA is approximately one
year. Rupture of the spleen and distant metastasis are considered
poor prognostic factors (11).

Because of the rarity of the disease, there is no standard
treatment protocol. Furthermore, there are no randomized
clinical trial data to support a systemic treatment regimen for
metastatic PSA. Based on the literature of other sarcomas, some
researchers have attempted several first-line chemotherapy
regimens, including paclitaxel, anthracycline, doxorubicin, and
ifosfamide (12–15). Unfortunately, the overall response rate was
relatively low.

Combination treatment with antiangiogenic drugs and
immune checkpoint inhibitors has been demonstrated to be
effective in multiple malignancies (16). The underlying
mechanism involves normalization of the tumor vessels through
anti-VEGF therapy, which might improve the infiltration of
tumors by activating effector T cells and subsequently convert
the immunosuppressive tumor microenvironment (TME) into an
immune-active TME (17, 18).

There have been several case reports regarding the
combination therapy of antiangiogenic drugs and immune
checkpoint inhibitors in sarcomas. A patient with metastatic
undifferentiated pleomorphic sarcoma received pembrolizumab
and pazopanib after multiple lines of therapy and had a partial
response for 9 months (19). In addition, a patient with recurrent
intestinal follicular dendritic cell sarcoma received sintilimab
plus lenvatinib as third-line treatment and achieved a
progression-free survival of 7 months (20). Several clinical
trials have also explored the combination therapy in sarcoma.
A phase II single-arm study of pembrolizumab plus lenvatinib in
previously treated classic Kaposi sarcoma is in progress (https://
www.clinicaltrialsregister.eu/ctr-search/search?query=2020-
004426-36).Toripalimab is a newly developed monoclonal
antibody that blocks PD-1. Clinical trial data have exhibited a
promising antitumor activity of toripalimab in metastatic
sarcoma and other malignancies (21, 22). Anlotinib is a novel
TKI targeting VEGF1-3 and has shown encouraging effects in
Frontiers in Oncology | www.frontiersin.org 3126
sarcoma (23, 24). A Phase II clinical trial (NCT04172805) is
aimed to test the safety and effectiveness of anlotinib and
toripalimab in soft tissue sarcoma. However, the results have
not been published (https://clinicaltrials.gov/ct2/show/
NCT04172805). In our patient, we innovatively attempted
toripalimab and anlotinib combined therapy for metastatic
PSA, and the regimen was surprisingly effective and
well-tolerated.

High expression of PD-L1 predicts better efficacy of
immunotherapy in several cancers (25, 26). A previous study
found that the positive rate of PD-L1 was approximately 60% in
angiosarcoma, and the differentiation level of the tumor was
significantly associated with the PD-L1 status (27). The TPS of
our patient was as high as 75% and the tumor rapidly decreased
in size after several cycles of combined treatment.

Of note, we performed next-generation sequencing of tumor
tissue and further analyzed angiosarcoma datasets from The
Cancer Genome Atlas (TCGA). TCGA data showed the
mutation frequencies of these genes in angiosarcoma patients
(Figure 2). We further analyzed the correlation between the
expression of these genes and the tumor mutational burden
(TMB) in angiosarcoma cases from the TCGA database. Finally,
we observed that PTEN mutation was negatively correlated with
TMB (Figure 3).

We also found that some gene mutations of our patients were
correlated with the efficacy of immunotherapy. TSC2was associated
with T cell exhaustion inhibition, which upregulated PD-L1 on
tumors (28). The TP53 mutation status was related to the survival
benefit of PD-1 inhibitors in non-small cell lung cancer (29).
NCOR1 mutation was reported as a potential positive biomarker
to predict the efficacy of immunotherapy in bladder cancer (30).
However, we also identified negative predictors of immunotherapy
in our patient, such as PTEN mutation (31). This gene alteration
reduces CD8-positive T cells in the immune microenvironment,
leading to an inadequate response to PD-1 inhibitors.

Surprisingly, our patient quickly achieved CR during
toripalimab plus anlotinib treatment and had no serious
adverse events. Our case suggests that anti-PD-1 plus anti-
VEGF therapy might be a promising option for metastatic PSA
FIGURE 2 | Analysis of the patients’ mutation genes in TCGA sarcoma data.
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patients with high expression of PD-L1. However, clinical trials
are warranted to confirm the efficacy of this regimen for
these patients.
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Mixtes de Recherche (UMR) 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Villejuif, France,
3 Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates

Almost all solid tumors display hypoxic areas in the tumor microenvironment associated
with therapeutic failure. It is now well established that the abnormal growth of malignant
solid tumors exacerbates their susceptibility to hypoxia. Therefore, targeting hypoxia
remains an attractive strategy to sensitize tumors to various therapies. Tumor cell
adaptions to hypoxia are primarily mediated by hypoxia-inducible factor-1 alpha
(HIF-1a). Sensing hypoxia by HIF-1a impairs the apoptotic potential of tumor cells, thus
increasing their proliferative capacity and contributing to the development of a chaotic
vasculature in the tumor microenvironment. Therefore, in addition to the negative impact
of hypoxia on tumor response to chemo- and radio-therapies, hypoxia has also been
described as a major hijacker of the tumor response by impairing the tumor cell
susceptibility to immune cell killing. This review is not intended to provide a
comprehensive overview of the work published by several groups on the multiple
mechanisms by which hypoxia impairs the anti-tumor immunity and establishes the
immunosuppressive tumor microenvironment. There are several excellent reviews
highlighting the value of targeting hypoxia to improve the benefit of immunotherapy.
Here, we first provide a brief overview of the mechanisms involved in the establishment of
hypoxic stress in the tumor microenvironment. We then discuss our recently published
data on how targeting hypoxia, by deleting a critical domain in HIF-1a, contributes to the
improvement of the anti-tumor immune response. Our aim is to support the current
dogma about the relevance of targeting hypoxia in cancer immunotherapy.
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INTRODUCTION

In solid tumors, the establishment of hypoxia in the tumor
microenvironment relies on the failure of abnormal vasculature
to meet increasing oxygen demands from rapidly proliferating
cancer cells. Therefore, within the same tumor, the O2 level
varies depending on the quality and the integrity of blood vessels.
Several areas in the tumor microenvironment can be identified
according to the oxygenation level of tumor tissue: well
oxygenated, poorly oxygenated, and non-oxygenated or
necrotic areas (1) (Figure 1). In addition to the tumor size and
the quality of the tumor vascularization, the different levels of O2

in the microenvironment of different tumors rely on the initial
physiological oxygenation levels observed in the corresponding
healthy tissue and on the degree of the tumor heterogeneity.
Figure 2 shows the oxygen levels (reported as a percentage) in
several tumors and corresponding healthy tissues. The
percentage of O2 in healthy tissues range from 9.5% (observed
in kidney healthy tissue) to 3.5% (reported in healthy prostate
tissue). Hence, the average of O2 in the healthy tissues reported
in Figure 2 is 5.9%. The oxygen levels in the corresponding
tumors range from 2.5% (observed in rectal tumor) to 0.3%
(reported in liver and prostate tumors). Therefore, the average of
O2 in the tumors reported in Figure 2 is 1.3%. Based on these
values, most tumors exhibit median oxygen levels below 2%. The
term of normoxia should not be used to describe the oxygenation
level in healthy tissues, however, it can defines the O2 level in
tissue culture flasks where the oxygenation is about 20-21%. The
term of physioxia is more appropriate to describe the
oxygenation status in healthy tissues as previously reported (2).
Therefore, it is important to control the O2 in cell culture settings
to mimic as far as possible the O2 levels found in healthy and
tumor tissues.

The mechanism of cell adaptation to hypoxia is currently well
described. William G. Kaelin Jr., Sir Peter J. Ratcliffe, and Gregg
L. Semenza were awarded the Nobel Prize in Medicine 2019 in
recognition of their seminal discovery on the molecular
mechanisms and signaling pathways by which cells sense and
adapt to hypoxia.
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While the negative impact of hypoxia on tumor response to
conventional chemo- and radiotherapy is now well recognized
(3, 4), an accumulating new body of data highlights its
involvement in tumor resistance to immunotherapy (5). Here, we
describe recent evidence on how hypoxia plays a role as a culprit of
immunotherapy failure. We will mainly discuss our recent
experimental and preclinical evidence data showing that strategies
targeting hypoxia can provide the basis for innovative combination
therapies that may improve the immunotherapeutic efficacy.
Hypoxia-inducible factors (HIFs) are essential transcription
factors mediating cell adaptation to hypoxia, and thus we will first
briefly describe how HIFs expression and stability are regulated
under hypoxia in tumor cells.
HYPOXIA INDUCIBLE FACTORS -
MECHANISMS OF REGULATION
AND STABILITY

HIFs are heterodimer complexes consistent of an O2-inducible
alpha subunit and constitutively expressed beta subunit (HIF-1b/
ARNT). Three alpha subunits have been identified: HIF-1a,
HIF-2a, and HIF-3a. The well-studied alpha subunit is HIF-
1a and contains N-terminal basic-helix-loop-helix (bHLH)
required for DNA interaction. There are also two Per-Arnt-
Sim (PAS) domains (PASa and PASb) essential for
heterodimerization with HIF-1b. Two oxygen-dependent
degradation domains (ODDD) have been identified in the N-
terminal (N-ODDD) and C-terminal (C-ODDD) parts of the
protein in addition to two transactivation domains (TADs). One
overlaps with the C-ODDD, and the second is found in the C-
terminal part (6).

Under normoxic conditions, HIF-1a is continuously
synthesized, but it is rapidly degraded by the ubiquitin–
proteasome system (UPS). The short half-life of HIF-1a under
normoxia is less than five minutes (7). The basal expression level
of HIF-1a under normoxia is low, but varies in different cells.
Such variations depend on the rate of HIF-1a synthesis (O2-
FIGURE 1 | Graphic representation of the different areas in the tumor microenvironment according to the oxygenation level (percent of O2): Well oxygenated, poorly
oxygenated, and non-oxygenated or necrotic areas. Enlargement of a blood vessel section in the poorly oxygenated hypoxic area shows defect in the organization of
endothelial cells and pericytes’ coverage. Enlargement of a blood vessel section in the well oxygenated area shows well-structured endothelial cells and pericytes’ coverage.
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independent mechanism) and the rate of HIF-1a degradation
(O2-dependent mechanism).

The degradation of HIF-1a under normoxia depends on its
hydroxylation on proline residues located at positions 402 and/or
564 in the ODDD by prolyl hydroxylase domain protein 2
(PHD2). Thus, hydroxylated HIF-1a binds to von Hippel-
Lindau (pVHL) protein, which is part of the E3 ubiquitin-
protein ligase complex. It is subsequently subjected to
degradation by the UPS [reviewed in (8)].

The enzymatic activity of PHD2 requires O2 as a substrate,
and thus the protein becomes inactive in hypoxic cells (9).
Therefore, HIF-1a is no longer hydroxylated under low O2

pressure; as a result, its interaction with pVHL and subsequent
degradation by UPS are blocked. Thus, the failure of the
mechanism involved in HIF-1a degradation under hypoxia
leads to its accumulation in the cytoplasm, translocation to the
nucleus, and interaction with HIF-1b. The heterodimer HIF-1a/
HIF-1b binds to the hypoxia-responsive element (HRE) motif
found in the promoter of several genes involved in several
biological processes that tolerate cellular adaptation to hypoxia
and confer a survival benefit to tumor cells.

HIF-2a displays similar DNA binding and dimerization
domains as HIF-1a, but these differs in the transactivation
domains (10). Therefore, the hydroxylation of HIF-2a is also
regulated in an oxygen-dependent manner (11). Both HIF-1a
and HIF-2a regulate common downstream target genes, but
each can also regulate specific genes (12). Unlike HIF-1a and
HIF-2a, HIF-3a lacks the transactivation domain. It can inhibit
the activity of HIF-1a and HIF-2a (13), and HIFs are involved in
the regulation of several microRNAs (HRM) (14) and
chromatin-modifying enzymes (15). HIFs can directly regulate
more than 800 genes involved in several biological functions as
revealed by ChIP-seq analysis and genome-wide chromatin
immunoprecipitation combined with DNA microarrays (ChIP-
on-chip) (16, 17). The expression of downstream target genes is
achieved by binding HIF-1a to 50-base pair cis-acting hypoxia
responsive element (HRE) motifs found in their enhancer and
promoter regions (18). The HRE motif contains the core
sequence 5’-[A/G]CGT-3’, which is usually ACGTG (19).
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Considering the preferential binding of the heterodimer
complex HIF-1a/HIF-1b to specific bases in the 5’ and 3’ ends
of the HRE motif, the following HRE consensus sequence [T/G/
C][A/G]CGTG [CGA][GTC][GTC][CTG] has been
described (19).
STRATEGIES FOR TARGETING HYPOXIA -
CHALLENGES AND OPPORTUNITIES

Inhibiting hypoxia has inspired significant interest because it can
improve therapeutic outcomes. Strategies used to inhibit hypoxia
rely on bio-reductive prodrugs (20) or inhibitors targeting
pathways upon which the survival of hypoxic cells depends
(21). However, targeting HIF-dependent pathways is extremely
challenging because various signaling pathways converge on—
and emerge from—HIFs (22). Additional approaches have been
proposed consisting of targeting HIFs directly. Although
considerable efforts have been undertaken to identify selective
inhibitors of HIFs, enthusiasm has been tempered by the reality
that transcription factors, including HIFs, seem to be
“undruggable” or at least no selective drugs inhibiting HIFs
have been identified.

Considering the well-described molecular mechanism of HIF-
1a protein activity, various strategies have been proposed to
impair such activity. Such mechanisms inhibit HIF-1a protein
synthesis or stabilization; they can also prevent HIF-1a/b
heterodimerization or HIFs/DNA binding (23).
INHIBITING HYPOXIA BY PREVENTING
HIF-1a/b, HETERODIMERIZATION
REGULATES PRO-INFLAMMATORY
CHEMOKINES AND IMPROVES THE
BENEFIT OF IMMUNOTHERAPIES

In a highly hypoxic and PD-1-resistant B16-F10 melanoma
mouse model (24, 25), we recently reported that inhibiting
FIGURE 2 | Summary of the oxygen level (reported as a percentage) in the healthy tissue and corresponding tumor of different organs.
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hypoxia by preventing HIF-1a/b heterodimerization in a mouse
melanoma model drives immune cells into the tumor
microenvironment and improves anti-PD-1- and vaccine-based
immunotherapies (26). Using CRISPR/Cas9 technology, we
showed that the deletion (in HIF-1a) of the domain
responsible for the interaction with HIF-1b still leads to the
accumulation of the protein in hypoxic cells; however, this
remarkably inhibits its transcription activity as demonstrated
by suppressing the expression of well-known HIF-1a
downstream target genes CAIX, VEGF, and Glut1. Similar to
the full-length HIF-1a (HIF-1aFL), the deleted HIF-1a
(hereafter reported to as HIF-1aDel) accumulated in the
cytoplasm of hypoxic cells. However, unlike HIF-1aFL, HIF-
1aDel displayed a defect in the nuclear translocation as seen via
confocal microscopy analysis. By assessing the tumor growth in
vivo, we showed a significant decrease in the growth and weight
of B16-F10 tumors expressing HIF-1aDel versus those expressing
HIF-1aFL. Such effects were observed in immunocompetent but
not in immunocompromised NOD scid gamma (NSG) mice
lacking mature B, T, and NK cells (26). These data emphasize
that targeting hypoxia in tumors inhibits tumor growth via the
immune system. Indeed, we revealed a significant increase in the
infiltration of CD45+, NK, CD4+, and CD8+ cells into HIF-1aDel

versus HIF-1aFL (Figure 3). These data strongly suggest that
targeting the transcription activity of HIFs can switch the
microenvironment of tumors from cold non-inflamed/not-
infiltrated into hot inflamed and infiltrated by cytotoxic
immune cells.
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The infiltration and trafficking of immune cells to the tumor
microenvironment relies on the establishment of a chemokine
network. The recruitment of T cells and natural killer (NK) cells
into the tumor can be achieved by chemokines CXCL9, 10, 11, 16
as well as CX3CL1. CCL19 and 21 can promote the recruitment
of DCs into T-cell priming sites, thus leading to T-cell activation
(27). CXCL16 has been associated with the infiltration of tumor-
infiltrating lymphocytes (TILs) and better prognosis in colorectal
cancer (28). We previously reported that driving NK cells to
melanoma tumors depends on the release of CCL5 to the tumor
microenvironment by tumor cells (29). Other studies showed
that the chemokines CCL2, 3, 4, and 5 as well as CXCL9 and 10
were involved in T-cell migration into a melanoma tumor
microenvironment (30). By assessing the chemokine network
in HIF-1aDel tumors, we see that the increased infiltration of
major cytotoxic immune cells described above was associated
with the release of proinflammatory chemokines in the tumor
microenvironment—notably CCL5 and CCL2. Therefore, we
believe that targeting the transcriptional activity of HIF-1a in
tumor cells contributes to the establishment of an inflammatory
microenvironment, which helps recruit cytotoxic immune
effector cells.

The translational value of our study is underlined by the
data generated in preclinical mouse model and using a cohort
of melanoma patients. Treatment of melanoma-bearing
mice with acriflavine, reported to prevent HIF-1a/HIF-1b
heterodimerization, improved immunotherapy strategies based
on TRP-2 peptide vaccination and anti-PD-1 antibody. We
FIGURE 3 | Impact of targeting the transcription activity of Hif1a on driving immune cells into melanoma tumor microenvironment. Hypoxic melanoma are
“cold” poorly infiltrated by immune cells. Deletion, in Hif1a, of the domain responsible for the formation of a heterodimer with Arnt by CRISPR/Cas9 gene-
editing technology, prevents its transcription activity. In hypoxic cells expressing deleted Hif1aDel, the pro-inflammatory (C-C motif) ligand 5 chemokine (Ccl5)
is overexpressed by a mechanism which is not fully understood. The release of Ccl5 by tumor cells in the tumor microenvironment drives major cytotoxic
immune cells and contributes to the establishment of pro-inflammatory “hot” tumor.
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further showed that melanoma patients having low Winter
hypoxia score survive better and show increased CCL5 as well
as high tumor infiltration by NK and CD8 T-cells versus those
having a high hypoxia score.
HIF-1a INDUCES TUMOR ESCAPE FROM
IMMUNE SURVEILLANCE BY
UPREGULATING THE EXPRESSION OF
IMMUNECHECKPOINTS AND ACTIVATING
VARIOUS SURVIVAL PATHWAYS IN
TUMOR CELLS

Accumulating evidence points to a critical role of HIFs in
regulating various immune checkpoints [reviewed in (31)].
Briefly, HIF-1a binds directly to the HRE motif in the
promoter of PD-L1 gene and induces its expression in various
cancer cells such as melanoma, lung, breast, and prostate cancer.
Such overexpression resulted in tumor escape from immune
surveillance (32, 33) (Figure 4). Similarly, the constitutive
accumulation of HIF-2a in clear cell renal cell carcinoma
(ccRCC), due to the mutation status of VHL, facilitates PD-L1
upregulation (34). In addition to tumor cells, HIF-1a also
operates in the immune suppressive cells present in hypoxic
tumor microenvironment. In MDSCs, HIF-1a directly
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upregulates PD-L1 expression resulting in impaired cytotoxic
T lymphocytes (CTL) activity (32).

VISTA is an additional immune checkpoint regulated by
HIF-1a. VISTA is expressed on several myeloid cells
infiltrating hypoxic tumors including CD11bhighGr1+ MDSCs.
The recruitment of MDSCs to the tumor microenvironment is
mediated by hypoxia-dependent upregulation of stromal-derived
factor 1 (SDF1, CXCL12) (35). HIF-1a, but not HIF-2a, binds to
VISTA and induces its expression—this process in turn
suppresses T-cell proliferation and activity (36) (Figure 4).

CD47 is an inhibitory immune checkpoint expressed on the
cell surface of tumor cells and involved in blocking the
phagocytosis following the interaction with its ligands: signal
regulatory protein a (SIRPa) and thrombospondin-1 (TSP-1).
These two proteins are expressed on the surface of macrophages
and dendritic cells (37). CD47/SIRPa or TSP-1 interaction
delivers a strong “don’t eat me” signal to block phagocytosis
(38). Upregulation of CD47 is associated with the expression of
HIF-1a downstream target genes. The expression of CD47 is
upregulated by HIF-1a in triple-negative breast cancer cells
resulting in a stem cell phenotypic switch through which
cancer cells escape from phagocytosis (39). The upregulation of
CD47 by hypoxia has also been reported in pancreatic
adenocarcinoma (40, 41) (Figure 4).

In addition to regulating the expression of immune
checkpoints and the establishing immunosuppressive tumor
FIGURE 4 | Role of HIF-1a in the regulation of immune checkpoints expression in both tumor and immune cells. In hypoxic microenvironment, HIF-1a binds to the
HRE motifs found in the promoters of PD-L1, CD47 and VISTA. As a result, HIF-1a-depenedent overexpression of PD-L1 and CD47 in tumor cells leads to tumor
escape from CTL-mediated killing and macrophage-mediated phagocytosis, respectively. In MDSC, HIF-1a-dependent upregulation of PD-L1 and VISTA increases
their immunosuppressive properties in the tumor microenvironment. bHLH, basic-helix-loop-helix; PAS, Per-Arnt-Sim domains; Pro, Proline residue; N- and C-ODDD,
NH2-terminal and COOH-terminal Oxygen-Dependent Degradation Domains; N- and C-TAD, NH2-terminal and COOH-terminal transactivation domain.
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microenvironment, the accumulation of HIF-1a in tumor cells
decreases tumor cell susceptibility to CTL-mediated lysis
through several mechanisms [reviewed in (31)]. Briefly, these
mechanisms include the activation of autophagy (24, 42), the
upregulation of stem cell self-renewal transcription factor Nanog
(43, 44), and the induction of microRNA (miR)-210 involved in
repressing the non-receptor protein tyrosine phosphatase type 1
(PTPN1), homeobox A1 (HOXA1), and tumor protein p53-
inducible protein 11 (TP53I11) (45).

Hypoxia also impairs NK-mediated killing of tumor cells by
downregulating and/or shedding the major histocompatibility
complex (MHC) class I polypeptide-related sequence A (MICA)
on the surface of cancer cells (46, 47). In hypoxic tumor cells, the
activation of autophagy leads to the degradation of the serine
protease granzyme B (GZMB) released by NK cells. This in turn
led to tumor escape from NK-mediated killing (48, 49).

In addition of NK cells, hypoxia also impacts the activity of T
cells. Briefly, under hypoxia, activated T cells are able to adapt
changes in energy supplies by switching their metabolism to
glycolysis and regulating extracellular-adenosine receptor
signaling. Such adaptation alter the balance between T helper 1
cells and T helper 2 cells and results in impairing the anti-tumor
immune response [reviewed in (50)]. In this context, it should be
highlighted that hypoxia-dependent regulation of A2A
adenosine receptor (A2AR)–mediated signaling is considered
as one of the major mechanisms of the establishment of
immunosuppressive tumor microenvironment [reviewed
in (51)]
TARGETING HYPOXIA: A
TRICKY APPROACH

Several reports indicate that the increased tumor aggressiveness
is partially associated from hypoxia-induced genomic instability.
It is currently well established that tumor cells exposed to
hypoxic stress are able to acquire genetic instability through
altered translation of DNA repair proteins. Therefore, hypoxic
tumor cells display defective repair as well as an increased
mutation rate. It is widely admitted that PD-L1 expression,
tumor mutation burden (TMB) development, immune cell
infiltration at the tumor site and neoantigen load are all
thought to be influenced by tumor genomic instability (52).
Clearly a more holistic approach that considers the complexity of
hypoxia effects to better discriminate between the beneficial roles
of hypoxic stress from the hostile ones is crucial. Given the dual
effect of hypoxia, a clear understanding of how hypoxic stress
induces tumor resistance and genomic instability resulting in an
increased tumor immunogenicity is of paramount importance
for identifying the time window of hypoxia targeting to improve
cancer immunotherapy. Nevertheless, there is currently a Phase
III clinical trial (NCT04195750) aiming to compare the efficacy
and safety of HIF-2a inhibitor MK-6482 (also known as
WELIREG) with the mTOR inhibitor everolimus in previously
treated advanced ccRCC patients. Among the patients enrolled
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in the trial are those treated with anti–PD-1/PD-L1 or VEGF-
targeted therapy which are randomly assigned to MK-6482 or
everolimus arm. The estimated study completion will be in 2025.
WELIREG or MK-6482 is the first inhibitor approved in U.S.
which reduces the transcription and expression of HIF-2a target
genes associated with cellular proliferation, angiogenesis and
tumor growth.
CONCLUDING REMARKS

This review provides an additional clue supporting the role of
targeting hypoxia in improving the benefit of cancer
immunotherapy. Hypoxia has long been considered an
attractive target to overcome resistance and improve the
benefits to various therapies including immunotherapy.
Numerous strategies have been proposed to inhibit hypoxia
and target the transcription activity of HIF-1a such as the
development of hypoxia-activated prodrugs or small molecules
interfering with the transcription activity of HIFs (53–55).
Several experimental studies offer preclinical proof-of-concept
that strategies targeting hypoxia can improve the therapeutic
benefits of current cancer therapies. However, there are still no
approved drugs that selectively target hypoxia or HIF-dependent
pathways despite they have clear anticancer effects. Obviously,
such lack of selectivity does not disqualify these drugs as
anticancer agents, but it becomes challenging to attribute the
potential effect observed in patients to their anti-hypoxic
properties. Nevertheless, the failure of developing selective
drugs could be attributed to the biological complexity of HIF-
1a pathways. Indeed, HIF-1a controls a highly complex network
connecting several signaling pathways and various overlapping
mechanisms in tumor cells and other cells in the tumor
microenvironment. Such properties make HIF-1a undruggable.
Therefore, we strongly believe that better dissecting hypoxia-
inducible responses and understanding HIF-dependent signaling
would lead to novel targets and new treatment opportunities.

The key role of hypoxia in hijacking the anti-tumor immune
response is now firmly grounded in a substantial body of
research. Therefore, the use of hypoxia modulators—especially
those interfering with the transcription activity of HIF-1a—
holds much promise for improving the therapeutic benefit of
cancer immunotherapies. There is no doubt that combining
hypoxia modulators with cancer immunotherapy approaches
provide a unique opportunity for innovative combination
strategies. Additional efforts are needed for highly selective
hypoxia inhibitors, which remain an unmet need and are
among the greatest challenges in cancer therapy.
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Despite some significant therapeutic breakthroughs leading to immunotherapy, a high
percentage of patients with non-small cell lung cancer (NSCLC) do not respond to
treatment on relapse, thus experiencing poor prognosis and survival. The unsatisfying
results could be related to the features of the tumor immune microenvironment and the
dynamic interactions between a tumor and immune infiltrate. Host–tumor interactions
strongly influence the course of disease and response to therapies. Thus, targeting host-
associated factors by restoring their physiologic functions altered by the presence of a
tumor represents a new therapeutic approach to control tumor development and
progression. In NSCLC, the immunogenic tumor balance is shifted negatively toward
immunosuppression due to the release of inhibitory factors as well as the presence of
immunosuppressive cells. Among these cells, there are myeloid-derived suppressor cells,
regulatory T cells that can generate a tumor-permissive milieu by reprogramming the cells
of the hosts such as tumor-associated macrophages, tumor-associated neutrophils,
natural killer cells, dendritic cells, and mast cells that acquire tumor-supporting
phenotypes and functions. This review highlights the current knowledge of the
involvement of host-related factors, including innate and adaptive immunity in
orchestrating the tumor cell fate and the primary resistance mechanisms to
immunotherapy in NSCLC. Finally, we discuss combinational therapeutic strategies
targeting different aspects of the tumor immune microenvironment (TIME) to prime the
host response. Further research dissecting the characteristics and dynamic interactions
within the interface host–tumor is necessary to improve a patient fitness immune response
and provide answers regarding the immunotherapy efficacy, with the aim to develop more
successful treatments for NSCLC.

Keywords: non-small cell lung cancer, tumor microenvironment, immunotherapy, immune checkpoint inhibitors,
anti-angiogenic therapies
org July 2022 | Volume 13 | Article 9148901137

http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.914890&domain=pdf&date_stamp=2022-07-06


Baci et al. Targeting Host-Related Factors in NSCLC
INTRODUCTION

Lung cancer has become a leading cause of cancer death
worldwide. The global incidence sees polarized differences
according to the economic development of different countries.
There is a decrease in the incidence among men in high-income
countries due to public health measures and a gradual and
progressive increase in both genders in low-income countries
where public health initiatives for smoking cessation have lagged
and access to healthcare is scarce (1–3). During the first decade of
the present century, the outcomes of at least a subset of patients
have seen substantial improvements, thanks to a general
understanding of disease biology, the application of predictive
biomarkers, and refinements in specific treatments (4).

Non-smal l cel l lung cancer (NSCLC) represents
approximately 85% of all lung cancer cases. It includes three
major histologic classifications: adenocarcinoma (ADC),
representing the most common subtype of lung cancer,
followed by squamous-cell carcinoma (SCC) and large-cell
carcinoma (LCC) (5).

Treatment is highly dependent on many parameters of the
patient, particularly their general functional status,
comorbidities, the tumor stage, and the molecular features of
the disease. The primary treatment for stages I and II and in
selected cases for stage III A disease is curative surgery,
chemotherapy, radiation therapy (RT), or a combined modality
approach. Postoperative adjuvant cisplatin-based chemotherapy
is recommended in patients with completely resected stage II–
IIIA disease and selected patients with stage IB disease (6).
However, this therapy is associated with only a 16% decrease
in the risk of disease recurrence or death; for 5 years, it is
associated with a 5% decrease in the risk of death (7, 8).

Systemic therapy is pursued in the cases of patients with stage
IV disease and in presence of metastases or in the presence of
relapse after initial management.

Over a median follow-up of approximately five years, the
percentage of patients who have disease recurrence or who die
after surgery remains high (ranging from 45% among patients
with stage IB disease to 76% among those with stage III disease),
regardless of the use of postoperative chemotherapy (8). The
opportunity for improving survival is pronounced in early-stage
disease and is driving studies integrating targeted therapies and
immune checkpoint inhibitors (ICIs). As a result, after the
revolutionary data on the metastatic setting of epidermal
growth factor receptor (EGFR) inhibitors (9–13), we,
nowadays, have the impressive results of the Adaura trial,
which led to an important improvement of disease-free
survival (DFS) in a subset of patients with EGFR-mutated
early-stage lung cancer when osimertinib was added as an
adjuvant treatment to the main treatment for the duration of 3
years (14). Unfortunately, this subgroup is limited to only
patients with EGFR-targetable mutations.

From the past decade to the present, with additional
activating genomic alterations such as those affecting anaplastic
lymphoma kinase (ALK), ROS1 proto-oncogene receptor
tyrosine kinase, class 1 B-Raf proto-oncogene (BRAF)
mutations (V600), mesenchymal-epithelial transition factor
Frontiers in Immunology | www.frontiersin.org 2138
(MET), and neurotrophic receptor tyrosine kinase (NTRK)
ALK, ROS1, B-Raf V600, MET, and NTRK alterations and the
availability of an increasing number of specific tyrosine-kinase
inhibitors (TKIs) of various generations, the proportion of
patients with an improved prognosis has further increased
(15–17).

The second pilar of the modern treatment of metastatic
NSCLC is taken by immunotherapy (PD-1 and PD-L1
monoclonal antibodies), which is nowadays in the frontline of
treatment in oncogenic driver–negative NSCLC and has
produced response and survival rates that were unreachable a
few years ago (18, 19).

Patients whose tumors express PD-L1 in at least 50% of the
cells are more likely to attain a response and survive longer if
treated with these compounds.

After breakthrough immune checkpoint inhibitor data in an
advance setting, we now have the first results of immunotherapy
in an adjuvant setting. The study IMpower 010 (20) addressed
some of the unmet needs for adjuvant treatment oncodriver-
negative tumors, adding immunotherapy in the plethora of new
approvals in the early setting of NSCLC for patients expressing
PD-L1 >1% on tumor cells (20).

In the meantime, immunotherapy continues to demonstrate a
significant overall survival (OS) benefit in advanced NSCLC. In
particular, pembrolizumab or atezolizumab monotherapies are
superior to first-line chemotherapy in tumors with a higher
expression of the PD-L1 molecule (21, 22). Interestingly,
different chemo-immunotherapy combinations have been
shown to be superior to chemotherapy, regardless of PD-L1
expression (23, 24).

Even though immunotherapy can produce great and long-
lasting results, not all NSCLC patients seem to benefit from this
approach (25). Many attempts have been made to identify
predictive biomarkers to select responding patients who would
benefit from ICIs. Tumor mutational burden (TMB) is a critical
predictive factor for response to immunotherapy, but the
available results need further confirmation in prospective
randomized trials (26). A critical factor underlying the poor
response to immunotherapies is the heterogeneity in the immune
cell response to NSCLC and the existence of multiple
mechanisms mediating tumor immune suppression (27).
Indeed, a limited knowledge of the characteristics of the TME,
to a great extent, hinders the development of new targets for
immunotherapy. Here, we review the biological functions of
immune cells within the tumor immune microenvironment
(TIME) and their roles in cancer immunotherapy and discuss
the perspectives of the basic and translational studies for
improving the effectiveness of the clinical use.
OVERVIEW OF NSCLC TUMOR
IMMUNE MICROENVIRONMENT

Taking advantage of new technologies (e.g., single-cell RNA
sequencing), multiple ongoing studies are now identifying new
subtypes of tumor-associated immune cells to predict the clinical
efficacy of different immunotherapy approaches. The study of
July 2022 | Volume 13 | Article 914890
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immune tumor cell contexture in cancer patients to target the
multiple immune-suppressive factors might ameliorate response
rates and contribute to develop the era of personalized immune-
based therapies. The immune cell populations present in the
TIME possess both tumor-killing potentials and may
alternatively promote or suppress immune cell activity.
Tolerogenic immune cell populations such as regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) create an
immune-suppressive milieu that, in turn, favors the polarization
toward a protumor phenotype of other immune cells such as
neutrophils, dendritic cells (DCs), and natural killer (NK) cells
(Figure 1 and Table 1). Understanding these immunologic states
and the mechanisms underpinning them may provide the key to
restore an effective anti-tumor immune response and improve
the survival rate of NSCLC patients.

Neutrophils
Neutrophils are considered the first line of innate immune
defense and are recognized as a critical targetable cellular
feature of NSCLC TIME (28). Several preclinical and clinical
studies have linked neutrophil trafficking and degranulation with
various stages of tumor progression and the attenuation of
Frontiers in Immunology | www.frontiersin.org 3139
treatment efficacy (29, 30). A high neutrophil/lymphocyte ratio
(NLR) is now considered as a useful predictor associated with a
negative clinical outcome, as well as with poor responsiveness to
PD-1-/PD-L1 inhibitors (30). In accordance, Gentles et al.
discovered that the neutrophil transcript signature was the
strongest predictor of mortality and major infiltrating immune
cells in adenocarcinoma NSCLC patients (31). In attempts to
provide a clear description of the immune cell types present in
NSCLC, Kargl et al. implicated neutrophils as the most abundant
and dominant immune-suppressive factors associated with the
depletion of CD4+ and CD8+ T lymphocytes within TIME (32).
Consistent with previous findings, another study demonstrated a
positive correlation between an increased tumor burden, high
levels of neutrophil-related cytokines, and a dampened T-cell
response associated with reduced CD3+CD8+ T-cell infiltration
(33). However, the recruitment of neutrophils to the tumor
microenvironment might depend on NSCLC subtypes and the
smoking status, and larger studies are needed to define their role
and association with survival (34).

Neutrophils in cancer consist of multiple heterogeneous cell
populations and retain plasticity. A high expression of lectin-type
oxidized LDL receptor 1 (LOX-1) distinguishes PMN-MDSCs
FIGURE 1 | Immunosuppressive milieu within the tumor immune microenvironment (TIME) of NSCLC. Immunotherapy resistance is marked by an immunosuppressive TIME
and includes tumor-derived factors, infiltration of T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), and mast cells that, in turn, favor the polarization toward
a protumor phenotype of other immune cells such as neutrophils, dendritic cells (DCs), and natural killer (NK) cells. Figure created with http://biorender.com.
July 2022 | Volume 13 | Article 914890



TABLE 1 | NSCLC immune landscape: anti- and pro-tumorigenic phenotypes and activities of immune cell populations within the tumor microenvironment.

Anti-tumor properties Pro-tumor properties

IFN-g, IL1 and TNF-a-mediated stimulation of immune response;
ROS-mediated tumor killing;

Promote CD4+ T cell responses

NA

NA MMP9, NE, VEGF-mediated tumor metastasis and invasion;
IL10, TGF-b, ARG1, NETs-mediated immune suppression;
Suppression of NK cells and CD8+ T cells immune response

NA

MMPs, VEGF -mediated angiogenesis, invasiveness and
metastasis; IL10, TGF-b, IDO, ARG1, and PGE-mediated
immunosuppression; Suppression of NK cells, DCs the

functions; Suppression of CD8+ T cells antitumor response;
Tregs differentiation and expansion

Cytotoxic-mediated apoptosis of cancer cells;
DCs maturation by releasing IFN-g;

NA

NA Anergic NK cells-mediated tumor immune evasion;
Angiogenesis induction releasing VEGF, PlGF, CXCL8;

Suppression of DCs and CD8+ T cells functions

Killing of CD1d+ tumor cells; IFN-g-mediated stimulation of CD8+

T cells immune response; Activation of NK cells
NA

IFN-g-mediated suppression of tumor growth IL13-mediated immunosuppression

Th1 cytotoxic immune response;
Stimulation of CD8+ T cells immune response;

NA

Antigen presentation to T cells Immunosuppression

NA Suppression of CD8+ T cells mediated immune response

Promote CD4+ T cell responses MMPs, chymase and tryptase-mediated metastasis;
VEGFA-mediated angiogenesis

genase; LOX-1, Lectin-like oxidized low-density lipoprotein (LDL) receptor-1; mDCs, mature dendritic cells; MDSCs, Myeloid-
traps; NK, natural killer; NKT, natural killer T; PMN-MDSCs, Polymorphonuclear-MDSCs; TANs, tumor-associated neutrophils;
tor-alpha; Treg, Regulatory T; VEGF, vascular endothelial growth factor; a-GalCer, glycolipid a-galactosylceramide.
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Tumor immune
microenvironment

(TIME)

Cell
subpopulations

Cell markers

Neutrophils

N1 TANs CD11b+, CD66b+, CD15+, CD16+, HLA-DR−, TNF-ahigh, CXCR2low,
CXCL8low

N2 TANs CD11b+, CD66b+, CD15+, CD16+, HLA-DR−, TNF-alow, CXCR2high,
CXCL8high, ARG1high

MDSCs

M-MDSCs CD11b+, CD15−, CD14+, HLA-DR−/low, S100A9+, CD33+, ILT3high

PMN-MDSCs CD11b+, CD14−, CD15+, CD66b+, HLA-DR−/low, Lox-1+

NK cells

Cytotoxic
NK cells

CD56dim, CD16+, Perfhigh, GRZhigh, TNF-ahigh, IFN-ghigh, NKG2Dhigh

Immature/
decidua-like
NK Cells

CD56bright, CD16low/−, Perf low, IFN-g low, TNF-alow NKG2Ahigh, NKG2Dlow,
CTLA-4+, PD-1+, CD9+, CD49a+, CXCL8+

NKT cells
Type I NKT TCR binding with a a-GalCer, CD3+, CD4+, CD8+, CD56+, CD161+

Type II NKT TCR bindings with sulfatide-loaded CD1d, CD3+

DCs
mDCs HLA-DR+, CD80+, CD83+, CD86+, CD208/DC-LAMP+

iDCs HLA-DRlow, CD80low, CD83low, CD86low, CD208/DC-LAMPlow

Tregs
CD3+, CD4+, CD25+, FoxP3+, CTLA4+, CD127low, PD-1+,

CTLA-4+, CD39+, CD73+

Mast cells FcϵR1a+, FcgRIIb/CD32+, CD117/c-kithigh, CD203c+, Tryptase+, CD103+

ARG1, arginase-1; HLA, human leukocyte antigen; iDCs, immature dendritic cells; IDO, indoleamine 2,3-dioxy
derived suppressor cells; MMP-9, matrix metalloproteinase-9; NA, not applicable; NETs, neutrophil extracellular
TGF-b, Transforming growth factor-beta; TIME, Tumor immune microenvironment; TNF-a, tumor necrosis fac
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from neutrophils (Table 1) (35). LOX-1+ PMN-MDSC numbers
increased with anti-PD-1 therapy in non-responders, suggesting
immunosuppressive functions in patients with NSCLC (36). A
poor NSCLC prognosis and recurrence after surgery have been
associated with increased circulating CD15+ LOX-1+ PMN-
MDSCs, thus displaying potential as a diagnostic marker for
NSCLC. In patients with advanced stages of lung cancer, there
have been reports of the accumulation of low-density neutrophils
(LDNs), CD66b+ PMNs, a subset of circulating neutrophils based
on their sedimentation properties (37). Following tumor tissue
infiltration and under specific tumor microenvironment cues,
TANs can acquire a tumor- suppressive (N1) phenotype or
become tumor-promoting/tolerogenic (N2) (Figure 1 and
Table 1). At the early stages of tumor development, N1 TANs
predominate. A cytotoxic action of TANs and tumor regression
was reported in a recent work employing a patient-derived
xenograft (PDX) mouse model of early-stage NSCLC that
received anti-PD-1 ICI, as a monotherapy or with cisplatin (38).

However, tumor growth, together with a shifted balance between
IFN-b and TGF-b, can favor N2 neutrophils and/or PMN-MDSC
accumulation. The release of tumor recruitment–soluble factors,
such as CXCL8, CXCL1, CXCL5, CXCL7, IL-6, and IL-1b,
enhances immunosuppressive neutrophil chemotaxis through
CXCR2 sensing, found to be highly expressed in NSCLC patients
(39, 40). In a murine lung cancer model, CXCR1/2 neutrophil
receptor inhibition granted access to CD8+ T cells to the
malignant tumor. Notably, the IFN-g signature was restored, thus
overcoming neutrophil-mediated immunosuppression and an
associated mitigation of the effectiveness of PD-1-targeted
immunotherapy (41). N2 TANS enhances the immunosuppressive
milieu by expressing high levels of PD-L1, arginase-1 (ARG1),
reactive oxygen species (ROS), nitric oxide (NO), IL-10, and TGF-
b1, shaping the tumor landscape and impairing T-cell-mediated
cytotoxicity (42) The expression of both CXCL8 and Arg-1 by
neutrophils is correlated with ICI therapy failure and poor prognosis
in NSCLC (43, 44). N2 TANs also increase angiogenesis by releasing
pro-angiogenic factors such as vascular endothelial growth factor
(VEGF), enhance extracellular matrix (ECM) remodeling, and
foster a pre-metastatic niche formation by directly acting as the
primary source of proteolytic enzymes (45, 46). High levels of an
MMP9:tissue inhibitor of metalloproteinase-3 (TIMP-3) ratio
have been found significantly elevated in NSCLC biopsies.
Furthermore, neutrophil elastase (NE) and myeloperoxidase
(MPO) high degranulation induce the formation of neutrophil
extracellular traps (NETs), directly implicated in metastasis (47,
48) (Figure 1). Accordingly, NETs are involved in a vascular
endothelium injury mediated by an inflammatory response (48),
as well as the wrapping and shielding of tumor cells from
cytotoxicity mediated by CD8+ T cells and NK cells (47, 49).
The Inhibition of NETosis sensitizes tumors to PD-1 plus CTLA-4
inhibition (47).

Several therapeutic strategies to suppress N2 tumor-
promoting phenotypes or reactivate their cytotoxic features
toward cancer cells are in preclinical and clinical phases of
evaluation (28). Main neutrophil- targeting approaches
neutralize tumor-derived chemokines, promoting their influx
Frontiers in Immunology | www.frontiersin.org 5141
within the tumor microenvironment and conversion to an
MDSC-like phenotype/N2 TANS. Two recent studies suggested
that targeting MDSCs via the antagonism of GM-CSF and fatty
acid transport protein 2 (FATP2) by using lipofermata decreased
ROS and PGE2-levels and their immunosuppressive functions in
tumor-bearing mice (50, 51). Importantly, FATP2 enhanced
anti-PD-L1 tumor immunotherapy and inhibited tumor
progression (50, 51). Metformin also targets FATP2, disabling
the suppressive capacity of granulocytic myeloid-derived
suppressor cells eliciting Th1 and cytotoxic T lymphocytes
(CTLs) responses (52). Retrospective studies suggest the
synergist ic actions of metformin and conventional
chemotherapy, improving the survival and outcomes
o f pa t i en t s wi th NSCLC (53 , 54) . Targe t ing key
immunosuppressive factors in TIME such as TGF-b1 and
chemokine receptors CXCR1/2 through pharmacological
antagonists represent some of the strategies to block the
immunosuppressive milieu, leading to tumor growth and the
nonsuccess of immunotherapies.
Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) represent a group of
heterogeneous cells derived from immature myeloid progenitors
with strong immunosuppressive features and functions.
According to their phenotypic and morphological features,
MDSCs have been classified into two major subsets: monocytic
MDSCs (M-MDSCs) expressing CD14 and granulocytic or
polymorphonuclear (PMN-MDSCs) expressing CD15 and
CD66b; both types express CD33 in addition to CD11b with
the absence of HLA-DR (Table 1). Even though PMN-MDSCs
and neutrophils share similar phenotypic cell surface markers in
humans, they have a distinct unique transcriptomic/phenotypic
profile and functions that reflect the different roles within the
tumor setting: PMN-MDSC but not neutrophils display
immunosuppressive activities (55–57). A specific expression of
LOX-1, fewer granules, and a reduced expression of CD16 can
distinguish PMN-MDSCs phenotypically from neutrophils
(Table 1) (35, 57, 58). In addition, neutrophils are high-density
cells, whereas PMN-MDSCs are enriched in a low-density
mononuclear cell fraction (55, 59). On the other hand, M-
MDSCs can be distinguished from monocytes by detecting
MHC class II, expressed only on monocytes (HLA-DR+) (60).

M-MDSCs and PMN-MDSCs share similar features; both
enable immune response suppression but use different
immunosuppressive mechanisms. For instance, PMN-MDSCs
express high levels of ROS and low levels of NO, whereas M-
MDSCs are the opposite. M-MDSCs preferentially exert their
immunosuppressive functions by releasing IL-10, TGF-b, iNOS,
and Arg-1 (56, 61).

Several studies have reported an accumulation of M-MDSCs
in NSCLC patients (62–64). An increased pool of
CD11b+CD14⁻CD15+CD33+ MDSCs and decreased CD8+ T
cytotoxic lymphocytes have been reported in the peripheral
blood of NSCLC patients (65). Another study reported a
correlation between a subset of MDSC CD14+S100A9+, T-cell
July 2022 | Volume 13 | Article 914890
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suppression mediated by arginase, iNOS, IL-13/IL-4Ra axis, and
poor response to chemotherapy (66). Goeje et al. described
increased levels of MDSCs expressing immunoglobulin-like
transcript 3 (ILT3), identified as CD11b+CD14− CD33+CD15+

HLA-DR−ILT3high, associated with the immunosuppressive
function of ILT3 on DCs and with reduced survival (67).

MDSCs are recruited to the tumor site via chemokines such as
CCL2 and CXCL8 (68, 69). Of notice, CXCL8 is linked to the
recruitment and activation of MDSCs and neutrophils. Indeed,
the serum levels of CXCL8 may predict the responses to
immunotherapies (68, 70, 71). TGF-b signaling has also been
reported to promote the recruitment of MDSCs into tumors (72)
and directly induce the generation of CD39+CD73+ myeloid cells
in NSCLC patients via the activation of mTOR-HIF-1 signaling
(73, 74) (Figure 1). CD39+CD73+ MDSCs are a distinct
immunosuppressive subset, and their frequency in NSCLC
patients may be sufficient to predict the chemotherapeutic
response (74).

MDSCs are the largest producer of indoleamine 2,3-
dioxygenase (IDO), directly acting on the immunosuppressive
pathway of anti-tumor CD8+ T lymphocytes and the increase of
Treg cell activity in the lung tumor microenvironment (75)
(Figure 1). In a preclinical model of lung cancer, it was
demonstrated that MDSC-associated IDO modulates the in
vivo and ex vivo differentiation of B regulatory cells (Bregs), an
IL-10 producing subset of B cells, found to be reduced in tumor-
bearing IDO deficient mice (IDO-/-) (76). The anti-immune
functions of MDSCs involve different mechanisms such as the
production of NO, ROS, and the elimination of arginine required
for T lymphocyte functions. In a KrasG12D GEMM of a lung
adenocarcinoma model, the suppression of MDSC arginase
activity by an ARG1 inhibitor restored T-cell function by
increasing arginine (77). MDSCs could also enhance
angiogenesis and metastasis through the production of MMP9
and VEGF (Figure 1). A tight association of PMN-MDSC
number with a patient response to the ICI anti-PD-1 has been
reported (36). An enhanced APC activity and increased
frequency of CD8+ T or NK intracytoplasmic expression of
IFN-g, perforin, and granzyme were found following MDSC
depletion (36). Accordingly, another study demonstrated an
increased number and function of NK- and T-cell effectors in
the tumor and enhanced therapeutic vaccination responses after
the depletion of MDSCs (78). Therefore, the inhibition of MDSC
functions represents the key therapeutic solution to restore anti-
tumor T lymphocyte effector responses and successful
immunotherapy. Until today, only a few preparations endorsed
by the U.S. Food and Drug Administration (FDA) have been
described to have prominent effects on the recruitment and
function of MDSCs (e.g., ATRA, vitamin D, gemcitabine, and
bevacizumab). Considering the promising results of targeting
MDSCs in murine models of lung cancer, various clinical trials
are now ongoing in NSCLC patients (NCT02922764;
NCT03846310; NCT03801304; NCT04262388). Breakthroughs
in this research area should promote the rational design of new
strategies to target MDSCs to improve clinical responses to
current immunotherapies.
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Natural Killer Cells
NK cells represent innate effector lymphocytes with abilities to
counteract or limit both tumor cells and virus-infected cells (79).
In humans, the cell surface expression of the CD56 marker is the
main phenotype marker for NK cells in association with a
negative lineage-defining signature (CD3−, CD14−, CD19−, and
TCR−), whereas in mice, it is the NK1.1 marker. NK cells do not
need specific antigen stimulation but are activated toward
neoplastic or stressed cells through the fine balance between
multiple invariant activating and inhibitory receptors. The major
inhibitory receptors are represented by the killer cell
immunoglobulin–like receptor (KIR) family, which represents
17 distinct genes endowed with a high polymorphism, and the
CD94/NKG2A heterodimer. Recognizing MHC Class I (MHC-I)
molecules on a target cell, inhibitory receptors block NK cell
activation (80).

When MHC-I are lost, or their expression is diminished, and
this is the case of most tumor developments, NK cells become
more susceptible to activation through the involvement of
multiple activating receptors such as NKp30, NKp46, NKp44,
CD16, NKG2D, DNAX accessory molecule1 (DNAM1), 2B4,
and NKp80. Human peripheral blood NK cells can be classified
into two subsets in relation to the expression of CD56 and CD16
markers: CD56dimCD16+ NK cells (comprising 90%–95% of total
blood NK cells), characterized by their cytotoxic activity exerted
by perforin and granzyme release and mediating antibody-
dependent cellular cytotoxicity (ADCC) and CD56brightCD16–

NK cells (5%–10% of total circulating NK cells), endowed with
the capacity of proinflammatory cytokine production, such as
IFN-g and TNF-a and regulatory cytokines like IL-10 (81).

In NSCLC, it has been reported that intratumor NK cells
profoundly modify their phenotype and functions, with the
expansion of a CD56brightCD16– NK cell subset, impairment of
cytotoxicity, inhibition of IFN-g release, and acquisition of pro-
angiogenic features (Table 1) (82, 83). This tumor-dependent
NK cell subset has similarities with a different NK cell subset
termed decidual NK (dNK) cells that was identified within
dec idua . Th i s dNK ce l l subse t was iden t ified as
CD56superbrightCD16– NK cell, and it was shown to be an
important regulatory cell in the maternal–fetal interface
because of its ability to release not only several pro-angiogenic
cytokines and growth factors such as VEGF, PlGF, and CXCL8
but also IFN-g, which are essential to driving the spiral artery
formation during the embryo development (84).

Also, in the context of other types of solid cancers, NK cells
accumulating within the tumor microenvironment had immature
features and a CD56brightCD16low/−Perflow phenotype (Table 1).

Several soluble factors derived from tumor cells or
neighboring innate immune or stromal cells can inhibit and
alter NK-cell functions such as TGF-b, PGE2, IDO, adenosine,
and IL-10 (85).

We were the first to characterize the decidual-like
CD56brightCD16− of NSCLC patients with the ability to release
pro-angiogenic factors: VEGF, PlGF, and CXCL8 (Figure 1)
(Table 1). The NK-cell subset had the in vitro ability to trigger
human umbilical vein endothelial cell (HUVEC) migration and
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the formation of capillary-like structures (86, 87). These peculiar
functions are not restricted to the intratumoral NK cells but are
also present in their peripheral blood counterpart, suggesting
that vascular network induction occurs at a systemic level, too.
Moreover, these pro-angiogenic features were detected at a
higher intensity in NK cells from patients with squamous cell
carcinomas than those with adenocarcinomas. Interestingly, the
expansion of pro-angiogenic and decidual-like NK cells was also
detected in malignant pleural effusions, colorectal cancer, and
prostate cancer patients (88–90).

Recently, Russick et al. analyzed the gene expression profile of
intratumoral NK cells and found that in comparison to non-
tumorous NK cells, immune cells had a significant decrease of
sphingosine-1-phosphate receptor 1 (S1PR1) and CX3CR1 with
a concomitant increase of CXCR5 and CXCR6. Intriguingly, they
also showed that intratumoral NK cells express inhibitory
molecules: CTLA-4 and killer cell lectin like receptor (KLRC1),
together with a high expression of CD69 and NKp44, conferring
inhibitory capabilities in the context of TIME (91). Indeed, the
co-culturing of purified NSCLC NK cells with tumor cells and
CD11c+ peripheral blood autologous DC in the presence of LPS
resulted in the impairment of DC maturation expressed as a
percentage of MHC class II and CD86 on DCs. Interestingly, this
phenomenon was partially counteracted by the addition of
CTLA-4-blocking antibodies. However, the precise mechanism
is still not clear, and beyond CTLA-4 expression, other
mechanisms could be involved, such as yet-unidentified
secreted molecules from NK-cell-derived tumor cells. However,
in a tumor mouse model, another possible mechanism of NK-
cell-dependent DC inhibition has been identified via PD-L1 with
PD-1 expressed on DCs (92).

Moreover, a high intratumor density of NK cells is correlated
with an improved clinical outcome only in patients with a low
infiltration of CD8+ T cells, while in patients with elevated CD8+

T lymphocyte counts, NK cells conferred a negative impact (91).
At later stages, lung tumoral NK cells showed significantly
attenuated cytotoxicity, the reduction of levels of granzyme B,
perforin, CD107a, IFN-g, TNF-a, cytotoxic receptor CD27,
activating receptor NKG2D, and a higher expression of the
inhibitory receptor NKG2A (93).

Natural Killer T Cells
Natural killer T cells (NKT) cells are a subset of heterogeneous
innate-like T lymphocytes CD1d-restricted, recognizing lipid
antigens and co-expressing both the T-cell receptor and NK-
cell markers, such as CD56, CD16, and NKp46 in humans and
NKp46 and NK1.1 in mice. NKT cells can be subdivided into two
major subsets: type I and type II NKT cells according to TCR
rearrangements and glycolipid reactivity (94, 95).

Type I or invariant NKT (iNKT) cells are cytotoxic cells that
express an invariant TCRa chain rearrangement, whereas TCRb
chains present a restricted repertoire. These cells include several
subsets called NKT1, NKT2, and NKT17, with similarities to
Th1, Th2, and Th17 T-cell subsets, respectively. Type II NKT
cells, conversely, display a more diverse repertoire of Va
rearrangements (96, 97). Whereas it is well documented that
iNKT cells participate in the anti-tumor response (98), type II
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NKT cells, on the contrary, enhance tumor growth and
metastasis, thus indicating a pro-tumor activity.

The predominant anti-tumor feature of iNKT cells mainly
resides in their capacity to release large amounts of Th1
cytokines, such as IFN-g, in addition to their ability to kill
CD1d-positive tumor cells (99, 100) (Table 1).

Several studies have shown a relationship between the
number and activity of iNKT cells and clinical outcomes,
making these cells an interesting therapeutic tool against
cancer development and metastasis (99, 101).

However, in NSCLCs, it has been shown that iNKT cells were
diminished both in blood and in bronchial lavage samples from
patients (102). Moreover, the lung CD1d expression is lowered in
NSCLC patients and weak CD1d mRNA expression is
significantly associated with poor prognosis. Together, this
could indicate a role played by these cells in immunity against
NSCLC (102). In vitro studies using DNA methyltransferase and
histone deacetylase inhibitors on two CD1d-negative NSCLC cell
lines: A549 and SK-MES-1, showed the induction of CD1d
expression and cytotoxicity directed toward them by iNKT
cells, making epigenetic manipulation an interesting
immunotherapeutic approach against NSCLC.

A study protocol was mentioned in an ongoing exploring
phase I/II clinic trial on 30 patients with EGFR mutation–
positive stage III/IV NSCLC that will evaluate the efficacy and
safety of using allogeneic CD3+CD8+ iNKT cells in combination
with EGFR-TKIs such as gefitinib (103).

Dendritic Cells
Dendritic cells (DCs) are antigen-presenting cells (APCs) and
consist of three major subsets: myeloid conventional DC1s
(cDC1s), myeloid conventional DC2s (cDC2s), and
plasmacytoid DCs (pDCs) (104). Several lines of evidence
point out that all DC subsets have the capacity to trigger anti-
tumor T- cell responses and that DC1s need cooperativity with
the other DC subsets (105). Interestingly, it has been shown that
DC1s regulate the response to ICIs in mouse models and
correlated with better OS in patients with cancer; however,
DC1s can be expanded in tumors that resist checkpoint
treatment, suggesting that these cells may be altered in their
functions (106). Maier et al., using single-cell RNA sequencing in
human and mouse NSCLC specimens identified a type of DCs
nominated “mature DCs abundant in immunoregulatory
factors” (mregDCs), which possessed both immunoregulatory
genes (Cd200, Cd274, and Pdcd1lg2) and maturation genes
(Cd40, Ccr7, and Il12b). The mregDC function was detected in
both DC1 and DC2 subsets upon interaction with tumor
antigens and can exert a dual role, both regulatory and
immunogenic. It has been shown that the two key steps crucial
for regulatory effects driven by mregDCs were the upregulation
of PD-L1 and of IL-12, the first was under the control of the
receptor tyrosine kinase AXL while the second under the control
of IL-4 signaling (106).

Moreover, immature DCs (imDCs), which are present
sometimes in high numbers in the tumor microenvironment,
can coordinate an immunosuppressive microenvironment
together with other innate cells, such as Tregs, MDSCs, and
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TAMs (Figure 1 and Table 1) (107, 108). Several lung patients
could present tertiary lymphoid structures in the stroma of
NSCLC, representing a well-organized compartment with
lymphocytes and a rise in the density of DC-LAMP+ mature
DCs, suggesting that these structures might participate in
antitumoral immunity. Indeed, several studies showed that
these structures were associated with a favorable clinical
outcome, together with a Th1 cytotoxic immune response and
effective infiltrating CD8+ T cells (109, 110).

Interestingly, Inoshima et al. reported an immunohistochemical
study in which they analyzed 132 lung cancer specimens showing
that a high expression of VEGF and microvessel density is
associated with low intratumoral DC infiltration and worse
prognosis, whereas low VEGF and high DC are correlated with a
better prognosis (111). VEGF that could be produced not only by
tumor cells but also by TAMs and NK cells, in addition to having a
role in tumor vascular formation, also has a role as an inhibitory
molecule for several classes of immune cells, including DCs.
Therefore, the subtle regulatory mechanisms involved in the
TIME between NK and DC interactions, not yet fully elucidated,
as seen above via CTLA-4 or PD-1 on NK cells, could underlie the
divergent functions of DCs and, in some cases, therefore lead to
negative outcomes for the immune response, that is, the expansion
of TAMs and Tregs, with a protumoral effect (91, 92).
Mast Cells
Mast cells are bone marrow–derived immune cells with multiple
protective functions against invading microorganisms and
harmful agents. These long-lived immune cells exert their
regulatory functions in immunity and inflammation by
producing key inflammatory mediators, such as tryptase,
VEGF, IL-10, TGF-b1, and MMP9, and the relevant data of
their anti-tumor or pro-tumor features have been reported
(Figure 1 and Table 1). Interestingly, Fontanini et al.
investigated the relationship between tumor angiogenesis and
survival in 407 NSCLC patients (112). In this study, a worse
prognosis was significantly correlated with the increase of the
tumor blood vessel network. However, in 2007, a meta-analysis
did not confirm an independent prognostic role of vascular
density in patients with non-metastatic-treated NSCLC
patients (113). The expression of VEGF-A, VEGF-C, and
VEGFR-1 was associated with a worse outcome in patients
with NSCLC (114). A significant prognostic value of the
overexpression of FGF-2 has been reported in patients with
operable NSCLC (115). Mast cells are correlated with
angiogenesis and a poor outcome in lung adenocarcinoma
(116, 117). Angiogenesis assessed by microvessel counts is
related with a poor outcome in stage I NSCLC (112, 118–120).
Other authors have shown no significant correlations with
respect to survival in patients with NSCLC for microvessel
density or mast cell infiltration. (121–127). Niczyporuk et al.
did not show any correlation between the mast cell count,
microvascular count, and survival rate in NSCLC (128). There
is no correlation between intratumoral mast cells and
angiogenesis in NSCLC (129) and between mast cells and
survival in NSCLC (125).
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Mast cells present in tumor cell islets are correlated with a
marked survival advantage in NSCLC (130). Indeed, whereas
mast cell numbers are similar in the tumor stroma of patients
with surgically resected NSCLC with no difference to their
survival status, there is a substantial survival advantage when
mast cells are localized within the clusters of tumor epithelial
cells or tumor cell islets (130, 131).

Furthermore, Tomita et al. (132) and Welsh et al. (130)
determined a strict correlation between the number of mast
cells and a good prognosis in NSCLC. Mast cells have a pro-
tumorigenic effect on lung tumor cell lines and an anti-
tumorigenic effect in vivo (133). Conversely, Stoyanov et al.
(133) have reported a significant effect of mast cells and
histamine in enhancing NSCLC cell proliferation in vitro,
whereas in the Lewis lung mouse carcinoma model, they have
found that mast cells are crucial negative regulators of
cancer development.

Tregs
Regulatory T lymphocytes (Tregs) are involved in the
homeostasis of the immune system, inhibiting autoimmune
disorders. Moreover, these cells collaborate with other cells and
factors in establishing immunosuppressive TIME (Figure 1)
(134–136).

The transcription factor forkhead box P3 (FoxP3) is crucial
for peripheral naïve T cells to become competent Treg cells
(Table 1). In lung cancer, Foxp3+ Tregs, which suppress auto-
reactive T cells to maintain immunological self-tolerance and
inhibit autoimmunity, are associated with advanced tumor
growth and poor prognosis (137–139). In patients with
NSCLC, augmented numbers of blood and intratumoral Tregs
are correlated with worse prognosis and a higher risk or
recurrence (140).

Several investigations reported significantly higher percentages
of CD4+CD25+FoxP3+ Tregs in patients with advanced metastatic
NSCLC compared to healthy donors (141–144), whereas the high
percentage of CD152+CD4+CD25highFoxP3+ Tregs is correlated
with a more advanced stage of disease (141, 145). Moreover, two
studies reported a prognostic value of blood CD4+FoxP3+ Tregs in
stage I–III NSCLC patients (146, 147).

In NSCLC patients, CD4+CD25+ Treg subtype functions were
associated with their FoxP3, CTLA-4, and IL-7Ra expression,
and their blood levels were correlated with the clinical outcome
of the patients. Conversely, no difference was found in the
percentage of CD4+CD25+FoxP3+ Treg between the entire
NSCLC patients and healthy donors (148). Interestingly Tao
et al. (139) demonstrated that in NSCLC, there was no significant
relationship between the Treg number and the tumor Foxp3
status. However, increased numbers of Tregs were associated
with worse overall and relapse-free survival, whereas there was
no correlation between the tumor FoxP3 status and survival. In
the meantime, when FoxP3+ cells were detected within the
tumor, the Treg expansion was correlated with the attenuation
of worse prognosis. Conversely, the patients in which there was
no tumor FoxP3 expression and elevated Treg count had
significantly worse overall and relapse-free survival.
Collectively, these findings suggest that tumor FoxP3
July 2022 | Volume 13 | Article 914890



Baci et al. Targeting Host-Related Factors in NSCLC
expression has a better prognostic potential in NSCLC and that,
in combination with intratumoral Tregs, the absence of the
tumor FoxP3 is correlated with high-risk patients.
THE LUNG TIME AS A TARGET
FOR THERAPY

The microenvironment of lung cancers is heterogeneous and
plays an important role in determining the outcome. The lungs
present a unique milieu in which tumors progress in synergy
with the TIME, as evidenced by the regions of aberrant
angiogenesis, inflammation, and hypoxia. The altered
vasculature seen in lung cancers contributes to hypoxia and
makes it difficult to efficiently deliver agents through the
bloodstream. Hypoxia is associated with an increased risk of
metastases as well as resistance to radiation therapy and perhaps
chemothe r apy . Neu t roph i l s domina t e th e tumor
microenvironment of NSCLC, suppressing T cells and
promot ing immunosuppress ion . The mul t i f ace ted
microenvironment of lung tumors represents many potential
targets for the development of novel anticancer agents. As with
other cancers, in NSCLC, chronic inflammation represents a
major risk factor for the development and progression of cancer.

Tumor-infiltrating CD8+ T lymphocytes were associated with
improved anti-tumor immunity, as well as with better prognosis
in the advanced stage of NSCLC patients (149). Other cell types,
such as TAMs and TANs and their subtypes, have their own
prognostic effects in NSCLC (150). Furthermore, Tuminello et al.
demonstrated the positive role of CD8+ T cytotoxic cells, CD20+

B cells, and NK cells with survival in patients with early
resectable NSCLC (151).

The assessment of tumor inflammation is also of interest, but
again, various approaches are being pursued, including a
histological assessment of immune cell infiltrates and the
mRNA-based expression signatures of immune-related genes.
Increased numbers of antitumor CD8+ and CD4+ T cells have
been associated with responding tumors and improved survival,
whereas elevated frequencies of Tregs render tumors refractory
to immune effector cells (152). The altered vasculature in NSCLC
contributes to hypoxia and makes it difficult to efficiently deliver
agents through the bloodstream. We have a variety of clinically
applicable agents that can modulate the TIME in a way that
might improve the response to cytotoxic therapy.

Molecular-targeted therapy represents a fundamental aspect
in the treatment of advanced NSCLC. In the past few years, the
identification of new molecular subtypes, the search for tumor
driver gene mutations, and the development of molecular
targeted drugs, such as agents that are able to suppress tumor
angiogenesis and regulate tumor immune response, have been
the main directions of NSCLC research, clinical diagnosis,
and treatment.

In metastatic NSCLC, cytotoxic chemotherapy has been
replaced with targeted therapy or immunotherapy. The gene
mutation status of EGFR in the tumor tissues of NSCLC is closely
related to the efficacy of the TKIs. Getifinib was the first EGFR-
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TKI tested in patients with advanced NSCLC. The discovery of
EGFR mutations provided the biological explanation for the
clinical predictors of response to EGFR-TKIs (153). Virtually, all
EGFR mutation patients developed acquired resistance to
therapy. EMT is implicated in mediating resistance to EGFR
inhibitors, chemotherapy, and other targeted drugs in lung
cancer (154). In NSCLC, invasive tumor growth is associated
with a desmoplastic stroma reaction and the upregulation of
EMT markers at the invasive front (155). The inflammatory
component of the tumor microenvironment stimulates EMT in
lung cancer by contributing to hypoxia, angiogenesis, and the
different regulations of miRNAs (156).

Second-generation EGFR TKIs, including afatinib,
dacomitinib, and neratinib, have been developed with the
intent to delay or overcome acquired resistance (157). Afatinib
and dacomitinib resulted in more efficacy than gefitinib in terms
of progression-free survival (PFS) and the response rate, whereas
gefitinib is associated with fewer side effects (157).

Immunotherapy with anti-PD-1/PD-L1 antibodies has
modified the treatment of locally advanced and metastatic
NSCLC. The approval of the anti-PD-1 agent pembrolizumab
as a standard-of-care first-line treatment in selected patients has
made PD-L1 immunohistochemistry a mandatory test in all
patients with advanced NSCLC. Immunotherapy alone
(pembrolizumab) or in combination with chemotherapy
(pembrolizumab or atezolizumab) is the standard of care for
first-line therapy in stage IV NSCLC.

In the mouse models of lung cancer, the anti-PD-L1 approach
is associated with a rise in exhausted CD8+ T lymphocytes (158).
At the same time, enhanced numbers of PD-1+CD8+ T
lymphocytes were correlated with reduced survival in stage II
and III patients (149). The increased expression of CD38 on T
cells after PD-1/PD-L1 ICI favors to acquired resistance by
inhibiting CD8+ T lymphocyte proliferation and inducing an
exhausted phenotype (159). Koh et al. (160) analyzed the
correlation between Foxp3+ T cells with clinical outcomes
before and after anti-PD-1 immunotherapy in patients with
advanced NSCLC and found that a higher frequency of blood
Tregs 1 week after immunotherapy was associated with
prolonged PFS and OS when compared with patients with a
low frequency of Tregs. In the meantime, a high expression of
TGF-b was correlated with high levels of Tregs and with a
favorable clinical outcome.
ANTI-ANGIOGENIC THERAPIES

Angiogenesis has been strictly related with occurrence,
proliferation, and metastasis (161). Targeting the angiogenesis
process has been reported to be efficacious in diverse types of
cancers, including NSCLC (22). Abnormal vasculature
participates in the tumor escape. Anti-angiogenetic agents can
normalize blood vessels and thereby reset the TIME from
immunosuppressive into immunoreactive. Therefore,
combining immunotherapy with anti-angiogenics seems to be
a promising strategy for cancer treatments.
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The mechanisms appear to be complex and quite a vicious circle
where the abnormality of angiogenesis causes an increase in acidity,
hypoxia, and interstitial pressure (161, 162), which, later on, are
associated with modifications at the molecular and genetic level in
blood vessel formation and proliferation, and thus exacerbating and
feeding a hostile tumor microenvironment.

In clinical terms, we already have a few monoclonal
antibodies approved by the FDA and EMA for the treatment
of various cancer types (bevacizumab-binding to VEGF-A,
ramucirumab-targeting VEGFR2). By inhibiting the interaction
between the VEGF and VEGFR or targeting downstream
signaling, these compounds could block tumor angiogenesis.
Their efficacy has been proven as a combination therapy with
other cytotoxic agents (carboplatin and paclitaxel plus
bevacizumab (163), or docetaxel plus ramucirumab (164);
meanwhile, as a monotherapy, it showed a limited therapeutic
effect in cancer treatment (165).

Ideally, anti-angiogenesis reduces thevascular supply, and
thereby impairs tumor cell replication by starving the tumor,
but this phenomenon could also decrease the delivery of
combination drugs.

Some recent attempts have been taken to solve this paradox.
“Vessel normalization” stands at the basis of resetting the
perfusion function and structure, enhancing the antitumor
immune response by implementing immune cell infiltration
(165–168). This procedure gives promises for anti-angiogenesis
combined therapies.

Nonetheless, due to the cancer heterogeneity and the multiple
aspects of the TIME, the global response rates to ICI therapy are
still limited (169). One major factor decreasing the efficacy of ICIs
seems to be the elevated recruited numbers of immunosuppressive
cells and scarce infiltration of effector cells into the TIME (170).

Latest studies have indicated that pro-angiogenic factors in
the tumor microenvironment favor and trigger the development
of immunosuppressive cells, and in the meantime, neo vessels
impair the infiltration of immune effector cell cancer (171–173).

The use of ICIs in combination with anti-angiogenic agents is
hypothesized to be a promising strategy to enhance the global
therapeutic efficacy.

There is a progressive and increased understanding on the
possible effectivity of anti-angiogenic and IO combination.
Nowadays, there are many preclinical and clinical trials
suggesting that angiogenesis affects the TIME toward an
immunosuppressive state by modifying the recruitment of
immune cells (174–178). Later, clinical studies supported that
the inhibition of the VEGF/VEGFR signaling can restore the
anti-tumor T effector response (172). The use of bevacizumab
(avastin) resulted in enhanced cytotoxic T lymphocyte functions
in NSCSL as well as in CRC patients (179, 180).

It is well established that TIME is a complex, time-evolving
ecosystem consisting not only of tumor cells but also of immune
cell blood vessels, stroma cells, and different soluble factors,
which turn off antitumor immune responses and favor ineffective
immunotherapies (181).

Overstimulation by VEGF signaling in cancer leads to
abnormal angiogenesis characterized by increased interstitial
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fluid pressure, hypoxia, and acidosis. This phenomenon leads
to the suppression of the antitumor response through multiple
distinct mechanisms (182, 183).

Hypoxia facilitates the infiltration of suppressive immune
cells (Tregs, MDSCs, TAMs, and imDCs) by inducing the
expression of chemokines (like CSF1, GM-CSF, IL-6, and IL-
10) that recruit these immune cells (184); on the other hand, it
also inhibits the infiltration of effector T cells through the
activation of VEGF (185).

The stimulation and regulation of several key immune cells of
TIME such as DCs, MDSCs, Tregs, and TAMs are under the
control of VEGF signaling (186, 187). Immunosuppressive
factors IL-10, IDO, and TGF-b released by these suppressive
immune cells increase even more the immunosuppressive status
of TIME (188).

Noteworthy, the inhibition of the VEGF signaling impairs the
recruitment of suppressive cells into the tumor microenvironment
and, at the same time, increases the infiltration of effector T cells
(189). This fact implies that anti-VEGF/VEGFR therapy not only
targets the blood vessel function but has the capacity to reactivate
antitumor immune responses (173).

In addition to the above negative effects played by VEGF,
another effect is related to their capacity to influence an
enhanced expression of PD-1, Tim3, and CTLA-4 on activated
CD8+ T lymphocytes (190). Moreover, VEGF inhibition could
result in enhanced IFN-g production and consequently the
induction of PD-L1 expression on tumor cells. This
phenomenon provides a strong promise for the anti-angiogenic
and ICI drug combined treatment (172, 173).

Currently, we already have the clinical data of a phase III trial
Impower 150 (191), which showed a clinical benefit of the
combination of IO and bevacizumab plus chemotherapy in
NSCLC; in the meantime, other clinical trials are ongoing to
assess the safety and efficacy of this new combination therapy in
NSCLC (NCT01454102 (CM 012), NCT03689855 (RamAtezo-
1), NCT03836066 (TELMA), and others.
IMMUNOTHERAPEUTIC APPROACHES

Current ICIs directed to CD28-CTLA4/B7 and PD-1/PD-L1 can
unleash the power of T cells toward cancer cells by eliminating
negative signals that block T-cell functions (192) (193, 194).

Several immune cells such as T cells, NK cells, B cells, and
monocytes express PD-1 (195).

Monoclonal antibodies against PD-1, PD-L1, and CTLA-4 are
the most used ICIs for NSCLC patients. A number of PD-1, PD-
L1, and CTLA-4 inhibitors, including pembrolizumab (196),
nivolumab (197), atezolizumab (198), durvalumab (199),
avelumab (200), and ipilimumab (201), have been approved
for the treatment of advanced NSCLC.

The anti-PD-1 agent pembrolizumab is approved for use as
first- and second-line therapy in patients with advanced NSCLC
whose tumors express PD-L1 in immunohistochemistry analysis.
Nivolumab (anti-PD-1) and atezolizumab (anti-PD-L1) are both
indicated for use as second-line therapies regardless of PD-L1
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expression. Durvalumab (anti-PD-L1) is approved as a
maintenance therapy in patients with unresectable stage III
NSCLC whose disease has not progressed following concurrent
platinum-based chemoradiotherapy.

Five randomized phase II–III trials testing three ICIs
(nivolumab, pembrolizumab, and atezolizumab), all showed a
clinically and statistically significant advantage over the same
standard comparator docetaxel (21, 22, 197, 202, 203)

ICIs were tested in locoregional NSCLC. A phase III trial
demonstrated that adjuvant durvalumab in stage III NSCLC
non-progressing after concomitant chemo-radiotherapy
improved not only PFS but also OS (204).

Pembrolizumab and nivolumab approval is strictly related
with a positive PD-L1 expression.

Checkpoint inhibitors can be used as a combination therapy
or as a monotherapy in first- and second-line treatments. The
Pacific trial (205) brought immunotherapy in a locally advanced
setting and later on, with the publication of IMpower 010 (20),
immunotherapy will probably be a practice changing even in
early-stage lung cancer.
CHALLENGES AND FUTURE DIRECTIONS

A prognostic role of many TIME biomarkers is not yet part of the
current clinical practice, so further investigations that include
larger patient cohorts will be necessary.

ICI alone or in combination with chemotherapy or in
combination with other ICIs should be the first-line treatment
of choice for patients with advanced NSCLC who do not have
contraindications to immunotherapy and whose tumors do not
harbor actionable driver mutations. Advances with
immunotherapy have offered patients with lung cancer
substantial improvements in survival and the quality of life.
However, better predictive biomarkers are required to ameliorate
the benefit of immunotherapy, and further investigations are
needed to find out the mechanisms of resistance to ICIs and how
to overcome it. Whereas the PD-1 and PD-L1 ICIs have received
accelerated FDA approvals, the development of predictive and
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prognostic biomarkers for these agents have lagged far behind
and remains a crucial area for future research.

The ability to increase the clinical benefit for higher numbers
of NSCLC patients and preventing drug resistance will be
essential prerequisites to achieve in the near future and related
to the acquisition of more knowledge of the induced mechanisms
underlying effective antitumor effector responses. The next step
will be to better identify patients at the risk of primary or
acquired resistance and use increasing amounts of translational
research data to develop more effective combination therapies,
making the promise of ICIs available to all patients with NSCLC.
This is the only way to achieve further advances in cancer
immunotherapy and succeed in making the promise of ICIs
for all patients.
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The incidence of liver cancer is extremely high worldwide and poses a serious

threat to human life and health. But at present, apart from radiotherapy,

chemotherapy, liver transplantation, and early resection, sorafenib was the

main systemic therapy proven to have clinical efficacy for unresectable liver

cancer (HCC) until 2017. Despite the emerging immunotherapy in the past

decade with immune inhibitors such as PD - 1 being approved and applied to

clinical treatment, there are still some patients with no response. This review

aims to elucidate the mechanisms underlying the tumor microenvironment of

hepatocellular carcinoma and thus analyze the effectiveness of targeting the

tumor microenvironment to improve the therapeutic efficacy of hepatocellular

carcinoma, including the effectiveness and feasibility of immunotherapy, tumor

oncolytic viruses and anti-vascular proliferation therapy.

KEYWORDS

hepatocellular carcinoma, tumor microenvironment, immunotherapy, intestinal
microorganisms, oncolytic viruses, anti-vascular proliferation
Introduction

Liver cancer is one of the most common and deadly malignancies worldwide (1), and

hepatocellular carcinoma accounts for 90% of all liver cancers (2), and is an abnormal

and malignant proliferation of liver cells, with an estimated one million cases of liver

cancer per year by 2025 (3). Hepatocellular carcinoma often develops in the context of

underlying liver injury (4), and is closely associated with chronic liver disease. Patients

with chronic liver disease are often accompanied by liver inflammation, fibrosis and

abnormal hepatocyte regeneration, and these abnormalities may lead to cirrhosis, and

cirrhosis increases the risk of hepatocellular carcinoma (1). Risk factors for liver cancer

are extensive and include HBV infection, HCV infection, aflatoxin B1 exposure, excessive

alcohol intake, non-alcoholic fatty liver, diabetes mellitus, obesity, smoking etc. (5).
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Surgery is the most effective treatment (6), ultrasound combined

with serum AFP test is sensitive and specific for early stage liver

cancer surveillance and specificity is high (7). If detected at an

early stage, it can be treated invasively (8),however, most

patients are diagnosed only when the tumor is too advanced

to be treated by surgical resection, in situ liver transplantation or

local percutaneous tumor ablation (9), thus leading to a poor

prognosis for hepatocellular carcinoma. Local therapy is the

most common first-line treatment methods, including

percu taneous loca l ab la t ion , chemoembol i za t ion ,

radioembolization, and external irradiation therapy. Arterial

embolization can be used for patients with tumors that are not

amenable to radical resection or ablation, without extrahepatic

spread and with intact liver function (9). For patients with

unresectable hepatocellular carcinoma, The tyrosine kinase

inhibitor (TKI) sorafenib is the primary approved systemic

therapy as of 2017 (10). Although the clinical treatment of

HCC has improved greatly in recent years, the prognosis is

relatively poor, due to the lack of efficient treatment for hepatic

malignancies and due to the complexity of the tumor

microenvironment. For patients with advanced diagnosis of

HCC, the survival rate is not high, so further research and

analysis are still needed to find a better treatment for

hepatocellular carcinoma.

The tumor microenvironment is the site of rapid tumor

progression. Various factors in the tumor microenvironment cause

abnormal vascular proliferation and immunosuppression, leading to

rapid progression of hepatocellular carcinoma. By targeting the

tumormicroenvironment, and applying immunotherapy alone

or in combination with immunoregulation, the state of

immunosuppression is transformed into the state of immune

stimulation to kill tumor cells. Lysozyme virus directly destroys

tumor cells, but also modulates immunity and destroys the

tumor vascular system. Anti-vascular endothelial growth

factor inhibitors are applied to inhibit abnormal vascular

proliferation and block tumor cell nutrient supply, alleviating

immunotherapy resistance. These therapies have shown

satisfactory efficacy in the treatment of hepatocellular

carcinoma and have expanded the idea of hepatocellular

carcinoma treatment. This essay searched the PubMed

database for the mechanisms of tumor microenvironment

generation and the treatment of hepatocellular carcinoma in

the past decade, and summarizes the mechanisms and clinical

applications of emerging immunotherapies, oncolytic virus

therapies and anti-vascular proliferation therapies in

recent years.
Tumor microenvironment

The tumor microenvironment is the cellular environment of

tumorigenesis, which is involved in regulating the occurrence,
Frontiers in Oncology
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development, invasion and metastasis of malignant tumors, and

plays a very important role in the development of hepatocellular

carcinoma (HCC).

Hypoxia in the tumor microenvironment is thought to be an

important driver of hepatocellular carcinoma progression (11).

Hypoxia arises from insufficient blood supply due to the

combination of excessive proliferation of malignant cells and

insufficient vascularization during tumor cell progression (12).

Hypoxia can further promote malignant cell proliferation, and

experimental results have demonstrated that tumor cells activate

PI3K/AKT signaling pathway under hypoxia (13), leading to

malignant over proliferation and radiotherapy resistance of

cancer cells. Hypoxia also affects immune cells, reconstitutes

the tumor immune microenvironment (TIM), suppresses the

expression of immune T cells and NK cells, and promotes the

expression of immunosuppressive cytokines (12). For example,

activation of hypoxia-inducible factor 1a can upregulate PD-L1

expression (14), creating an immunosuppressive environment,

thus protecting tumor cells from recognition and clearance by

the host immune system, and ultimately leading to tumor escape

and immune tolerance.

Abnormal proliferation of blood vessels in the tumor

microenvironment is another major risk factor for the

progression of hepatocellular carcinoma. HCC is a highly

angiogenic cancer (15), angiogenesis plays a large role in

tumor growth, early metastasis, and poor survival. The tumor

microenvironment (TME) system is complex and consists

mainly of cellular and non-cellular components. Cellular

components including hepatic stellate cells, fibroblasts,

immune cells and endothelial cells (ECs). Non-cellular

components include growth factors (such as fibroblast growth

factor (FGF), hepatocyte growth factor (HGF) and vascular

endothelial growth factor (VEGF)), protein hydrolases,

extracellular matrix (ECM) proteins, and inflammatory factors

(16). Activated hepatic stellate cells secrete angiogenic growth

factor, which together with vascular endothelial growth factor

(VEGF) stimulates angiogenesis, forming a new vascular system

within the TME (17) and providing various nutrients for

tumor growth.

In addition, hepatic stellate cells are activated in the presence

of liver injury and secrete large amounts of transforming growth

factor-b (TGF-b), a key immunosuppressive cytokine involved

in liver regeneration, inflammation and fibrosis, promoting

fibrosis, cirrhosis, and ultimately liver cancer (18). Activated

hepatic stellate cells recruit Tregs by suppressing lymphocytes,

overexpressing PD-1 cells and promoting immune tolerance,

and inhibits the activation of CD8+ T cells by reducing the IL -2/

IL-2R T cell signaling pathway and promoting the production of

myeloid-derived suppressor cells (MDSC) through the

mediation of CD54 (18). Tregs cells as well as myeloid-derived

suppressor cells (MDSC) are considered to be immune cells that

promote tumor growth in the tumor microenvironment (19),
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and thus these are critical for tumor progression, metastasis

and invasion.

Another player in TME is exosomes, small vesicular

structures that act as communication mediators between

cancer and non-cancer cells in the tumor microenvironment

(20), containing multiple components such as DNA, RNA and

proteins (15). These substances are involved in the growth and

metastasis of hepatocellular carcinoma, promote angiogenesis,

regulate the inflammatory microenvironment, evade immune

surveillance (16), and promote tumor development. For

example, Exosome MIRs induce epithelial-mesenchymal

transition as well as angiogenesis, which are involved in

different processes of hepatocellular carcinoma metastasis (21).

And it has been demonstrated that miR-32-5p, delivered by

drug-resistant cellular exosomes activates the PI3K/Akt

pathway, which leads to multidrug resistance in hepatocellular

carcinoma through angiogenesis and EMT, and becomes

another obstacle to hepatocellular carcinoma treatment (22).

Additional features of TME are low pH and the accumulation of

adenosine, which favors tumor cell progression while being

inhibitory to immune cells (12), thus participating in the

development of an immunosuppressed state. It is worth to

mention that exosomes are also considered as therapeutic

vectors, and the delivery of miR-150-3p-rich exosomes to

HCC cells may have therapeutic applications (23).

To briefly summarize, various factors in the tumor

microenvironment cause abnormal vascular proliferation and

immunosuppression, resulting in hepatocellular cell carcinoma

progressing rapidly in the tumor microenvironment (Figure 1).

Therefore, in the treatment of hepatocellular carcinoma, targeted

interventions can be made to address the characteristics of the

tumor microenvironment.
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Immunomodulatory therapy

Because the tumor microenvironment is in a state of

immunosuppression and protects tumor cells from escaping and

from the attack of immune cells, to control and treat liver cancer,

immunity should be regulated and the immunosuppressive

environment should be reversed. Immunotherapy is gaining

worldwide acceptance as a new standard of care for hepatocellular

carcinoma (HCC). Using targeted cytotoxic T Immune checkpoint

inhibition of lymphocyte-associated protein-4 (CTLA-4) and anti-

programmed cell death protein-1 (PD-1) cancer immunotherapy

with pharmaceutical preparations (ICIs) (24), changing the

traditional sorafenib treatment mechanism, and as an adjuvant

therapy to a certain extent, the recurrence rate has been reduced

(25), expanding the treatment ideas for liver cancer and improving

the survival rate (26).

PD-1 is an important immunosuppressive checkpoint

molecule, mainly expressed on the surface of activated T cells,

B cells and NK cells. The binding of PD-1 and its ligand PD-L1

inhibits the activation of T cells (27), decreases autoimmunity

and protects tumor escape. PD-1/PD-L1 immune checkpoint

blockade enhances the immune function of tumor-specific CD8

+ T cells for immune attack on tumors (28). Currently, PD-1

monoclonal antibody nivolumab, Pembrolizumab has been

approved by the FDA as a second-line treatment for sorafenib

failure (26). Nivolumab also prove the efficacy and safety in the

treatment of unresectable HCC (29). In addition, several anti-

pd-1 antibodies tislelizumab, camrelizumab and anti-PD-L1

monoclonal antibodies durvalumab, atezolizumab, avelumab

have also shown more satisfactory efficacy in clinical trials (30).

CTLA-4 is a protein receptor expressed mainly on T

regulatory (Treg) cells. Treg cells, a subset of CD4+ T cells,
FIGURE 1

Schematic diagram of tumor microenvironment formation mechanism.
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can block T cell responses, and blocking CTLA-4 reverses the

suppression of T cell activation signaling, making it a potential

immunotherapeutic approach (31). The anti-CTLA-4

monoclonal antibodies tremelimumab, ipilimumab is being

continuously investigated in the treatment of HCC. A small

phase II lead trial (NCT01008358) of the anti-CTLA-4

monoclonal antibody tremelimumab was tested in HCV-

infected patients with advanced HCC and showed good partial

response (PR) and stable disease (SD) rates and was well

tolerated (32).

In addition to PD-1/PD-L1 and CTLA-4, it is essential to

explore some new immune checkpoints. LAG3, TIGIT, TIM-3,

VISTA, B7-h3, BTLA, have been shown to be promising

therapeutic targets that may have opportunities for clinical

application in the future (33). Particularly LAG3, as inhibition

of LAG3 not only activates CD8+ cytotoxic T cells but also

downregulates immunosuppressive regulatory Treg cells (31).

PVRL1/TIGIT pathway plays an important role in HCC

progression role, and TIGIT is a promising target against PD1

inhibitor resistance (34). TIM-3 is expressed in tumor cells and

immune cells. The interaction of TIM-3 with its ligand has been

shown to induce T cell suppression. Therefore, blocking TIM-3

expression leads to Tcell proliferation and cytokine production,

which triggers immune activation (35). In addition, co-

expression of TIM3 and PD1 makes it another attractive target

for targeted cancer immunotherapy, and co-blockade of TIM3

and programmed cell death1 (PD1) can lead to a reduction in

tumor volume in preclinical models, warranting further study in

the clinic (36).

Targeted agents and checkpoint inhibitors are the only drugs

approved for systemic treatment of advanced HCC (37). Despite

the remarkable clinical success of immune checkpoint therapy,

with significant clinical efficacy found for CTLA-4 and PD-1,

low response rates and the development of drug resistance in

some patients remain issues that need to be addressed.

Hypothesized that one of the main reasons for ineffective and

resistant PD-1/PD-L1-targeted immunotherapy is that the

regulation of PD-L1 is influenced by multiple. For example, in

recent studies, USP22 was found to strongly interact with PD-L1

in vitro and in vivo, inducing PD-L1 deubiquitination, thereby

preventing proteasomal degradation of PD-L1 and stabilizing its

protein expression levels, counteracting the effects of anti-PD-L1

drugs (38). USP22 is an identified oncoprotein that is highly

expressed in hepatocellular carcinoma (HCC) but not in other

types of cancer. USP22 can promote multidrug resistance

(MDR) in hepatocellular carcinoma cells by activating the

SIRT1/AKT/MRP1 pathway , which contr ibutes to

tumorigenesis and progression of hepatocellular carcinoma.

This gives us a hint that USP22 may be a potential target that

could reverse multidrug resistance (MDR) in HCC in the clinic

(39). MEF2D promotes tumor growth, metastasis and

angiogenesis, affects tumor cells and even the tumor

microenvironment, increases PD-L1 expression in HCC cells,
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and suppresses CD8+ T cell-mediated antitumor immunity.

SIRT7 blockade can reduce the dual effect of PD-L1 on

hepatocellular carcinoma cell proliferation and decrease anti-

tumor immunity through MEF2D regulation, providing a basis

for the development of combined SIRT7 inhibitors and anti-pd

-(L)1 drugs for the treatment of hepatocellular carcinoma (40).

This is a direction worth investigating in the future. It also

suggests that immune combination applications are likely to be

an effective measure to improve this situation.
Combination of PD-1/PD-L1 inhibitors
and CTLA-4 inhibitors

Combination immunotherapy enhances the anti-tumor

effects of PD-1/CTLA-4 dual blockers (41). Nivolumab +

ipilimumab and durvalumab + tremelimumab are currently

approved by the FDA for the treatment of patients with

advanced HCC and have achieved better clinical outcomes

compared to single agents (26). Nivolumab + ipilimumab is a

widely studied combination immunotherapy (42). Data

published in ASCO 2019 showed that the anti-Pd-1 antibody

nivolumab combined with the anti-CTLA -4 antibody

ipilimumab induced complete pathological remission within 6

weeks in 29% of patients with resectable HCC (43).
Immunotherapy combined with MKIs

MKIs such as sorafenib, regorafenib and sunitinib are now

used in first and second line treatment of HCC. Their

mechanism of action targets multiple kinases by inhibiting

various proteins of the VEGF receptor, platelet-derived growth

factor, STAT3 and kinase cascades (43). Tyrosine kinase MET is

considered an excellent target for hepatocellular carcinoma

treatment (44). However, the efficacy of

sorafenib is limited by the development of drug resistance,

the major neuronal isoform of RAF, BRAF and MEK pathways

play a critical and central role in HCC escape from TKIs activity.

A possible strategy could be the combination of RAS/RAF/MEK/

ERK pathway inhibitors with other pathways inhibitors, But

further clinical studies are needed (45). The growth of HCC cells

after sorafenib resistance has been shown to be ameliorated

using dual inhibition of Akt and Met, enhancing the effect of

sorafenib, but has not been evaluated in patient-derived

xenografts (46), and the HGF/MET axis is also considered to

be an important pathway for tumor treatment (47). The

combination of immunotherapy with tyrosine kinase inhibitors

MKIs has been increasingly explored in recent years.

Experiments by Li et al. found that MET-mediated

phosphorylation and activation of GSK3B resulted in reduced

PDL1 expression, and that the combination of anti-PD1 and

anti-PD-L1 with MET inhibitors, such as the MET inhibitors
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tivantinib and capmatinib, increased PD-L1 expression. And

compared with treatment with MET inhibitor or anti-pd1 alone,

the duration of both drugs significantly inhibited hepatocellular

carcinoma cell growth and prolonged survival time in mice.

Treatment of HCC mice with sunitinib in combination with

anti-PD-1 resulted in better treatment response and more

pronounced tumor regression (43).
Immunotherapy combined with
regulation of intestinal microbes

The human intestinal microbiota consists of a complex

community of microorganisms, the largest micro-ecosystem in

the human body, including archaea, bacteria, viruses, fungi, etc.,

which work together to regulate nutrition, metabolism and

immunity (48). The intestine and liver share a common origin

in the foregut, and although the liver has no direct contact with

intestinal microorganisms, it has a close relationship through the

biliary tract, hepatic portal vein, and bile secretions that

coordinate and interact with each other (49), and play a vital

role in disease and health status. Growing evidence from

experimental and clinical studies suggests that gut microbes

play an important role in the development and treatment of liver

cancer (50). First, during HCC development and progression,

intestinal microorganisms promote the formation of the tumor

microenvironment (TME), with the main mechanisms being

dysbiosis and leaky gut (51). Dysregulation results in a more

permeable intestinal barrier, and a leaky gut allows bacterial

metabolites and microbial associated molecular patterns

(MAMPs) to translocate and reach the liver (8). It was also

found that in China, patients with persistently elevated total

serum bile acids had a significantly higher risk of developing

HCC, and that bile acids may play an important role in the

progression of the underlying liver disease that leads to liver

cancer (52). Bound primary bile acids are associated with an

increased risk of HBV and HCV-associated HCC, but higher

secondary bile acid levels are not associated with an increased

risk of HCC (53), corroborating the link between bile acids and

hepatocellular carcinoma.

Promisingly, the use of antibiotics, prebiotics and probiotics

can be used to regulate intestinal flora and prevent the

development of liver cancer (54). Fecal microbiota

transplantation (FMT) has been shown in mice to restore

intestinal flora diversity and reduce the risk of nonalcoholic

steatohepatitis (NASH) developing hepatocellular carcinoma

(HCC) (55). Despite the lack of data on the impact of FMT on

HCC, fecal microbiota transplantation could be a potential

treatment option for NAFLD/NASH progression and could be

considered as an augmentation strategy with immune

checkpoint inhibitors applied together. Host response to ICIs

(PD-1/PD-L1 blockade or CTLA-4 inhibition) may be

influenced by the composition of the gut microbiome (48).
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Stool specimens from immune-responsive patients had higher

intestinal flora diversity than specimens from non-responsive

patients diversity of intestinal flora (56). Intestinal flora can

indirectly affect PD-1 and PD-L1 expression through local or

systemic modulation of immune responses, enhancing the

antitumor efficacy of PD-1 and PD-L1 blockade therapy (57).

The gut microbiota may influence the antitumor immune

response through innate and adaptive immunity, but the effect

of the gut microbiota on the immune checkpoint inhibitor

response has not been validated in HCC and needs to be

extensively studied (58).

In addition, combination immunotherapy with CAR-T cells

and checkpoint blockade is thought to be the next

immunotherapy frontier as it provides the two elements

necessary for strong immune responses: CAR-T cells, which

provide the infiltrate and PD-1/PD-L1 blockade, which can

ensure sustained T cell persistence and function (59).

Immunotherapy can also be combined with other local

treatments, such as combined local ablation, local radiation

therapy, transcatheter arterial chemoembolization (TACE), etc.

Local treatment not only destroys the primary tumor, but also

stimulates the release of tumor antigens, thus improving the

efficiency of immune response in liver cancer (60). A number of

clinical trials of immunotherapy and topical treatment clinical

trial studies are also underway (61). Although, the clinical

efficacy of immunotherapy is very promising, clinical immune-

related adverse events (IRAE), and the lack of prognostic

markers are still non-negligible issues that need further clinical

exploration in the future (62).
Use of oncolytic viruses

Viral therapy was first applied in the 19th century, and was

introduced as a treatment for cancer due to the observation that

tumors appeared to regress after infection with viruses and the

consideration that viruses might have a therapeutic effect on

tumors (63). Oncolytic viruses can be divided into two broad

categories, those that occur naturally and those that have been

genetically modified by humans. Naturally occurring OVs

include eutherovirus (Reo), Newcastle disease virus (NDV),

enterovirus and measles virus (MV), and microvirus H-1 (H-

1PV or Parvoryx), which are used in their native form.On the

other hand, human modified viruses, such as herpes simplex

virus (HSV), adenovirus (Ad), and cowpox virus (VV), are

genetically modified viruses (64).
Targeted regulation of tumor
microenvironment by oncolytic viruses

Oncolytic viruses (OVs) are a class of biological agents with

tumor-selective and replication capabilities (65). This therapy is
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a new and promising treatment for many different types of

cancer. Oncolytic viruses is able to selectively replicate and

destroy tumor cells, causing tumor cell lysis and subsequent

release of viral progeny and tumor cell components, and is able

to leave healthy cells unharmed (66). In addition to direct

and specific destruction of tumor cells, Oncolytic viruses

can also modulate immunity as well as disrupt the tumor

vascular system, with multiple effects on the tumor

microenvironment (Figure 2).

Induction of immune response
After entering tumor cells, OVs can induce systemic anti-

tumor immune responses and induce innate and adaptive

immune responses. Upon infection of hepatocellular

carcinoma cells by OVs, viral replication leads to endoplasmic

reticulum stress and genotoxic stress in cancer cells, releasing

tumor-associated antigens TAAs, pathogen-associated

molecular pattern molecules PAMPs and damage-associated

molecular pattern molecules DAMPs, enhancing the activation

of antigen presenting cells (APCs), which leads to the activation

of immune cells such as dendritic cells, natural killer cells,

macrophages and neutrophils, and inflammatory signaling

(67). On the other hand, due to viral replication, activation of

antiviral pathways, induction of cytokines and type I IFN,

together mediating the activation of immune cells. Activated

immune cells, NK cells, in the presence of chemokines such as

IL-12, IL-2 and IFN-a/b, metastasize to the tumor area and

release IFN-g, TNF-a and CD107 to exert anti-tumor effects.

Mature dendritic cells can initiate T cells in the background of
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MHC I and II molecules cells, triggering CTL killing of tumor

cells through TNF-TNFR signaling, perforin/granzyme pathway.

Regarding the regulation of adaptive immunity, according to

Twumasi-Boateng et al. it is believed that oncolytic viruses are

involved in the entire process of T cell initiation, transport,

infiltration, activation and eventual killing of tumors, ultimately

reversing immunosuppression and creating a micro-realm of

immune stimulation. Therefore, the combination of OVs with

tumor immunotherapy can overcome the immune inhibition in

TME, thus greatly improving the effect of anti-cancer treatment

(68, 69). But there is an important issue, and the number of

potential combinations with immunotherapy is enormous, and

which combination is most effective requires ongoing

research (70).

Disruption of tumor vascular system
There is evidence that poxvirus strains are able to directly

destroy infected tumor-associated endothelial cells and replicate

within their system, leading to vascular collapse. In a phase II

clinical trial, JX-594, a transgenic expression of a recombinant

Wyeth poxvirus strain, was used in patients with hepatocellular

carcinoma and showed that JX-594 caused acute tumor vascular

rupture and reduced tumor perfusion in these patients and was

maintained for at least 8 weeks, with no toxicity to normal blood

vessels or wound healing noted (71).

In addition to promoting tumor vessel collapse, oncolytic

vaccinia virus has recently been found to have antiangiogenic

effects. By directly lysing tumor-associated endothelial cells

(ECs), oncolytic viruses can reduce the level of vascular
FIGURE 2

Multiple effects of oncolytic viruses on the tumor microenvironment.
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endothelial growth factor (VEGF) and thus exert anti-

angiogenic effects. Vascular endothelial growth factor (VEGF)

levels were significantly reduced in infected tumors after viral

treatment, and VEGF production was also reduced in adjacent

uninfected cells; therefore, a combination of oncolytic viruses

and additional anti-angiogenic therapy may improve treatment

outcomes (72).
Clinical application of oncolytic viruses

Reo (73) is a member of the family Reooviridae and is an

envelope-free double-stranded RNA virus (64). Induction of

interferon (IFN) secretion and innate immune activation in

human primary liver tissue in the absence of cytotoxicity and

independent of viral genome replication. Meanwhile, Reo-

induced cytokine response can effectively inhibit HCV

replication and is supported by its clinical potential as a

combined antiviral and antitumor therapy in HCC caused by

HCV virus infection (74). It is worth noting that some studies

have shown that to avoid potential side effects, try to avoid

taking oral (75).

Cowpox virus (VV), a double-stranded DNA virus, is

currently the most widely studied OVs for the treatment of

hepatocellular carcinoma, and its mutant Pexa-Vec, also known

as JX-594, is currently being evaluated in a phase III clinical trial

in hepatocellular carcinoma (NCT02562755) (65). Preclinical

studies of hepatocellular carcinoma lysing herpes simplex virus

(oHSV) show that oHSV is highly selective for killing

hepatocellular carcinoma (76).

However, to date, only three OVs have been approved globally

for the treatment of advanced cancer (77). Despite the multi-

mechanism therapeutic effect of OVs, the number of patients

fully responding to OV monotherapy is small, so the effect of

monotherapy is limited. It is continuously proven that the

combination of OVs with other treatment modalities can unlock

the therapeutic potential and improve the therapeutic efficacy (75).

In addition to the combination of immunotherapy and anti-

angiogenesis inhibitors we mentioned earlier, epigenetic

dysregulation also plays a key role in hepatocarcinogenesis by

altering gene expression through various mechanisms (78), so the

combination of epigenetic modulators can also be considered (63).

In addition to this, it can be used in combination with pericyte

transfer (ACT), chimeric antigen receptor T cells (CAR-T) (79),

bispecific T cell conjugates (BiTEs), and cancer vaccines (69).
Efficacy and safety of oncolytic viruses

OVs are a drug with great therapeutic potential, but there are

still many issues that need to be addressed, such as viral

transmission, dosing, antiviral immunity, etc. (80). In solid
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tumors, OVs must bypass a series of barriers to reach the

tumor site, so overcoming the physical barriers of the tumor

microenvironment such as the extracellular matrix (ECM) to

viral delivery is a great challenge. ECM consists of proteoglycans

that can block the anticancer drug in solid tumors distribution.

Therefore, during treatment, ECM degrading enzymes including

collagenase and hyaluronidase can be administered to achieve

ECM reorganization and promote the spread of the virus within

the tumor on the one hand, and OVs expressing ECM degrading

enzymes can be designed for use on the other hand. Pre-existing

immunity to the virus also reduces the effectiveness of oncolytic

viruses therapy and can be circumvented by increasing the dose

of systemic administration of OVs and co-administration of

cyclophosphamide (64). In order to better target hepatocellular

carcinomawith oncolytic viruses, it has been demonstrated that the

use of a cationic galactosylated polymer (Gal32-b-Agm29) as a

vector allows systemic delivery of oncolytic viruses in

hepatocellular carcinoma cell lines. OVs complexed with Gal32-

b-Agm29 enables easier entry of viral cells into hepatocellular

carcinoma cells, enhances viral replication, and ultimately leads

tohepatocellular carcinomacell lysis and the occurrence of a higher

immunogenic cell death induction program (81). More future

research is needed on how to safely address other clinical studies.
Anti-anomalous proliferation of
blood vessels

Hepatocellular carcinoma is a highly vascularized tumor. At

the tumor site, hypoxia induces tumor cells and stromal cells to

secrete a variety of pro-angiogenic factors, such as vascular

endothelial growth factor (VEGF), basic fibroblast growth

factor (bFGF), and matrix metalloproteinase (MMP) (82),

leading to vascular proliferation, and the abnormally

proliferating vessels provide tumor development providing

nutrients for tumor development. The theory is that

controlling the rate of angiogenesis so that tumor growth lacks

nutritional support will slow down the growth of the tumor. The

VEGF pathway is not only a key regulator of tumor angiogenesis,

but also has the ability to inhibit the infiltration and function of

cytotoxic T lymphocytes by affecting immune cells in the

myeloid and lymphoid lineages (83). VEGF inhibits the

maturation of dendritic cells (DCs) by activating NF-kB and

suppresses the activation of T cells by promoting the production

of indoleamine 2,3-dioxygenase (IDO), as well as the induction

of Treg cells. VEGF also regulates immunity in hepatocellular

carcinoma by inducing the expression of immunosuppressive

receptors, including PD-1, lymphocyte activation gene 3, T-cell

immunoglobulin and mucin domain 3 (82), promoting CD8+ T-

cell failure and tumor escape free escape (Figure 3). Therefore,

anti-angiogenic therapy can be an idea for the treatment of liver

cancer. Anti-angiogenesis can induce normalization of tumor
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vascular structure, remove blood vessels necessary for tumor

growth and metastasis, and also promote antigen presentation

and activation of cytotoxic CD8+ t cells (84), reprogramming the

tumor immune microenvironment (85) and transforming

immunosuppression into immune stimulation, thus improving

the immunosuppressive microenvironment of tumors.

However, anti-VEGF antibody monotherapy has failed to

produce satisfactory antitumor efficacy in human HCC patients

so far (84). Therefore, a combination of anti-angiogenic therapy

and immunotherapy can be considered, where on the one hand

immunotherapy enhances the efficacy of vascular endothelial

factor inhibitors, on the other hand vascular endothelial factor

inhibitors alleviate resistance to immunotherapy.

Atezolizumab (anti-PD-L1) and bevacizumab (vascular

endothelial growth factor (VEGF) inhibitor) have been shown

to be efficacious (86, 87), and their combination has

demonstrated antitumor activity and safety in a phase 1b trial

in patients with unresectable hepatocellular carcinoma. In

patients with unresectable hepatocellular carcinoma,

atezolizumab and bevacizumab had better overall survival and

progression-free survival than sorafenib (28, 88), and the

combination of atezolizumab + bevacizumab had longer

progression-free survival than atezolizumab treatment

alone (89).

Lenvatinib is a multitargeted inhibitor of multiple growth

factor receptors, including vascular endothelial growth factor

receptor (VEGFR), fibroblast growth factor receptor (FGFR),

platelet-derived growth factor receptor (PDGFR), and the proto-

oncogenes RET and KIT (90). Abnormally activated FGF

signaling can directly drive cell proliferation and survival,
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promoting tumor angiogenesis and progression. Lenvatinib

inhibits the vascular endothelial growth factor receptor and

fibroblast growth factor bodies, and this dual-target inhibition

effect enhances the antitumor activity of anti-Lenvatinib in

HCC, while also strengthening the efficacy of PD -1

antibodies. A growing body of evidence suggests that

Lenvatinib in combination with anti-PD-1 antibody

significantly inhibits tumor growth in vivo, induces long-term

immune memory, and has no significant adverse effects (91).

Preliminary data from a clinical trial showed an objective

remission rate (ORR) of 46% for Lenvatinib in combination

with pembrolizumab (PD-1 antibody), with better response rates

and duration of response (90). In July 2019, based on the results

of KEYNOTE-524/Study 116 (NCT03006926), the FDA

announced the approval of Lenvatinib in combination with

pembrolizumab for the treatment of HCC (92). In addition,

the efficacy of nivolumab and Lenvatinib has been confirmed,

but more data are needed to validate (83).

It is worth noting that if anti-VEGF therapy causes excessive

vascular pruning, it will aggravate tumor hypoxia, so we should

reasonably apply anti-VEGF drug doses to normalize

dysfunctional tumor vessels, improve tumor perfusion and

alleviate tumor hypoxia (85).
Discussion

As a serious global health problem with poor prognosis and

high mortality rate, there has been tremendous progress in

recent years in understanding the pathogenesis, early detection
FIGURE 3

Schematic diagram of the mechanism of tissue hypoxia-induced VEGF-promoted tumor vascular proliferation and immunosuppression.
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and diagnosis (93), staging and treatment of hepatocellular

carcinoma (94). Research advances in the use of molecularly

targeted agents (MTAs) and immune checkpoint inhibitors have

significantly improved the prognosis of patients with this disease

(95), demonstrating superior survival benefits, durable

responses, and a manageable safety profile in advanced HCC.

Oncolytic viruses, cancer vaccines (96), pericyte therapy (97),

photothermal therapy (PTT) and photodynamic therapy (PDT)

(98), and nanotechnology are also being explored. However, due

to the specific immune tolerance of the liver (99) and the

complexity of the tumor microenvironment, the treatment of

hepatocellular carcinoma remains a great challenge, and

continuous research, including single-cell sequencing, is

needed in the future to explore new immunotherapeutic

targets and personalized treatment protocols (100). In addition

to this, the development of diagnostic, prognostic and biomarker

prediction for hepatocellular carcinoma and other cancers using

artificial intelligence is an exciting prospect (101). The role of

menopausal hormones in reducing the risk of liver cancer still

needs to be explored (102). With the development of science and

technology and the advancement of research methods, the

efficacy of treatment for liver cancer is also expected to be

improved in the future.
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