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Editorial on the Research Topic

Big Earth Data Intelligence for Environmental Modeling

Environmental modeling involves the processes of analyzing the interactions between geophysical,
biological, economic, and social systems (Ma et al., 2018; Xu et al., 2020; Zhang et al., 2020; Li et al.,
2021). Environmental modeling can be used to understand environmental systems, or for performing
interdisciplinary analysis that can support decisions and policy. Model-driven methods have remained
dominant, especially for traditional and classical problems that deal with Big Earth Data that come
from various data sources with different formats and scales. With recent breakthroughs in data
acquisition technology, Big Earth Data can provide globally established, multi-source, multi-scale,
high-dimensional, heterogeneous, high-resolution, and highly dynamic datasets. Big Earth Data, with
its emerging technologies and approaches, may be an evolution in earth observation, and it also may
allow us to use and apply them to various domains in new ways (Sudmanns et al., 2020; Zhang L et al.,
2021). At the same time, artificial intelligence is rapidly progressing thanks to advanced algorithm
architectures (He et al., 2016), powerful computing devices, and large available datasets (Deng et al.,
2009; Liu et al., 2022). The convergence between Big Earth Data and artificial intelligence could open a
new era for the advance of environmental modeling. Big Earth Data Intelligence provides new
opportunities to understand the environmental modeling of earth systems which helps to resolve
problems, such as spatiotemporal complement, data assimilation and fusion (Armstrong et al., 2019;
Liu et al., 2021; Zhang L et al., 2021; Zhang Z et al., 2021), uncertainty (Zhang et al., 2014; Zhang et al.,
2018), and model calibration. It also promotes development and presents new challenges for remote
sensing of the environment (Yuan et al., 2020).

With this topic on Big Earth Data Intelligence in environmental modeling, we try to introduce the
latest theory and methods of applying Big Earth Data to environmental science. It contains 14 papers
that demonstrate the latest research to advance the science in research areas such as forest, ocean,
ecosystem, coast, water, and weather information.

Forest mapping and modeling is an important research area for understanding environmental
modeling. The forest cover change in Africa was analyzed by a data-driven method by Xiao et al.
and the driving effects of the population, economy, and cultivated land expansion, were analyzed using
geographical spatial heterogeneity. Urban plantation tree detection is another very challenging problem
because of the irregularity in the shape of a tree canopy. The authors make an attempt to use single shot
multibox (Zheng et al.) and apply YOLOv4 (Zheng et al.) for tree detection with high-resolution remote
sensing imagery. To satisfy the temporal requirement in forest active fires, Hong et al. use a novel
convolutional neural network to learn and search for fire spot features in Himawari-8 satellite images.

The ocean attractsmuch attention from researchers for its unique role in global change. As an example
of the breadth of subjects covered, manuscripts included the attempt by Xiao et al. to generate sea surface
temperature products by fusion of microwave and infrared data. By procuring global concentrations of
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particulate carbon and nitrogen in different depths, and by analyzing
particulate organic carbon-to-nitrogen ratio variations, Xiao et al.
pointed out that ocean currents will have a more extensive and
profound impact on the ocean carbon and nitrogen cycle. By
investigating the physiological responses to different light and
nitrogen levels of sargassum muticum, Yan et al. showed that
higher light and/or nitrogen levels generally promoted the
photosynthesis and growth of the algae. In the study on the
coast, Yang et al. use the new deep architecture of vision
transformers to extract the waterline for an artificial coast, and
Xiao et al. construct a comprehensive platform based on remote
sensing images to monitor coastal tidal mudflat ecological
development. Different from the ocean, groundwater plays a role
in the ecosystem in its own way. Liang et al. carry out research on
water table depth prediction in Baoding city, North China Plain by
combining wavelet transformwith a long short-termmemory neural
network.

Big Earth Data are guiding us to take an interest in
environmental modeling in a new way. The grassland
ecosystem was modeled by an optimality-based spatial explicit
ecohydrological model at watershed scale by Chen et al., and
urban ecology was evaluated by high-resolution remote-sensing
data (Huang et al.). Furthermore, remote sensing data such as
temporal-spatial data (Ma et al.) and weather radar data (Lu et al.)
are good application scenarios for using new artificial intelligence

methods and give more support for the study of environmental
modeling.

With these issues in mind, we try to present the current state-of-
the-art theoretical, methodological, and application research on
environmental modeling using Big Earth Data Intelligence. Most
of the manuscripts are related to the topic of environmental
modeling and geospatial big data analytics. We hope that these
high-quality contributions will inspire the readers in their research.
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Lightning is an instantaneous, intense, and convective weather phenomenon that can
produce great destructive power and easily cause serious economic losses and
casualties. It always occurs in convective storms with small spatial scales and short life
cycles. Weather radar is one of the best operational instruments that can monitor the
detailed 3D structures of convective storms at high spatial and temporal resolutions. Thus,
extracting the features related to lightning automatically from 3D weather radar data to
identify lightning strike locations would significantly benefit future lightning predictions. This
article makes a bold attempt to apply three-dimensional radar data to identify lightning
strike locations, thereby laying the foundation for the subsequent accurate and real-time
prediction of lightning locations. First, that issue is transformed into a binary classification
problem. Then, a suitable dataset for the recognition of lightning strike locations based on
3D radar data is constructed for system training and evaluation purposes. Furthermore,
the machine learning methods of a convolutional neural network, logistic regression, a
random forest, and k-nearest neighbors are employed to carry out experiments. The
results show that the convolutional neural network has the best performance in identifying
lightning strike locations. This technique is followed by the random forest and k-nearest
neighbors, and the logistic regression produces the worst manifestation.

Keywords: lightning strike location, identification, convolutional neural network, 3Dweather radar, machine learning

INSTRUCTION

Lightning is a spark of electricity in the atmosphere between clouds, the air, or the ground (Maggio
et al., 2009). Its high voltage, high temperature, and other physical effects can produce great
destructive power in an instant, which is prone to damaging the personal safety of ground personnel.
In particular, lightning can easily cause damage to commercial buildings, electrical equipment,
homes. Due to the rapid economic development and the massive increase in the amount of electrical
equipment, lightning disasters have become one of the ten most serious natural disasters announced
by the International Decade for Natural Disaster Reduction (NOAA National Severe Storms
Laboratory, 2021). Moreover, lightning is a small-scale strong convective weather phenomenon,
which makes it difficult to predict accurately. Since lightning always occurs in convective storms with
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small spatial scales and short life cycles, weather radar is one of
the best operational instruments that can monitor the detailed 3D
(Three dimensional) structures of such storms at high spatial and
temporal resolutions. Thus, extracting the features related to
lightning automatically from 3D weather radar data to identify
lightning strike locations would significantly benefit future
lightning predictions.

The current research on lightning can be roughly divided into
two categories: numerical analysis and statistical methods.
Numerical analysis is a mesoscale numerical weather
prediction system that mainly uses the Weather Research and
Forecasting (WRF) Model and other models to simulate strong
convection processes and discusses the influence of different
physical parameterization schemes on the simulation effect
(NCAR Mesoscale & Microscale Meteorology Laboratory,
2021). Barthe et al. (2010) estimated total lightning by the
WRF model according to the correlation between the flash
speed and the available model parameters (e.g., ice water path,
ice mass flux product). Zepka et al. (2014) used theWRFmodel to
study potential lightning locations based on the probability of
lightning occurrence within the location of interest. Giannaros
et al. (2016) used lightning to improve convective representations
by controlling the triggers of model convection parameterization
schemes on the basis of WRF-LTNGDA. Gharaylou et al. (2020)
used the WRF-ELEC model to predict the impact of initial
conditions on lightning activity. However, the coarse temporal
and spatial resolutions used in numerical analysis method limit
their utility in accurate lightning strike location recognition tasks.

Statistical methods are usually applied to study lightning based
on prior knowledge. Combining the density-based spatial
clustering of applications with noise (DBSCAN) algorithm and
the kernel density algorithm, Chen et al. (2017) eliminated
insignificant locations with rare lightning strikes. The National
Oceanic and Atmospheric Administration (NOAA) and the
Cooperative Institute for Meteorological Satellite Studies
(CIMSS) developed the empirical probability of severe
(ProbSevere) model in 2018. It extracts information related to
thunderstorm development from several data sources
automatically to produce timely, short-term, statistical
forecasts of thunderstorm intensity (Cintineo et al., 2018).
Wang et al. (2019) established a probabilistic warning model
for strong convective weather, such as hail and lightning, by
multiple logistic linear regression. Zhang et al. (2020) presented a
density-based convective storm identificationmethod for weather
radar data. North et al. (2020) used the heat equation to define a
redistribution kernel, and a simple linear advection scheme was
shown to work well in a lightning prediction example. Yücelbaş
et al. (2021) used effective meteorological parameters to pre-
estimate distance-based lightning. Mostajabi et al. (2019) used
machine learning techniques to successfully hindcast nearby and
distant lightning hazards by looking at single-site observations of
meteorological parameters. Karami et al. (2020) presented a
machine learning-based method to locate lightning flashes
using calculations of lightning-induced voltages on a
transmission line. Zhu et al. (2021) presented a machine-
learning approach (support vector machines) to classify cloud-
to-ground and intracloud lightning. Nevertheless, these methods

use a limited number of data factors to analyze the relationships
with lightning strike locations, and the recognition effects are
often unsatisfactory.

Weather radar is one of the most effective instruments for
monitoring the occurrence of lightning. It can be used to
indirectly identify the electrification process within a
developing thunderstorm because grapples and hail particles
return large reflectivity echoes (Wei and Hsieh, 2020). As
highly reliable data in the field of meteorological detection,
radar data have been widely considered by meteorologists, and
many explorations and practices have been carried out. Lu et al.
(2017) presented a spatial lattice model based on sampling
particles that was proposed to support both the representation
and analysis of meteorological information. A 3D modeling
strategy was used for weather radar data analysis (Lu et al.,
2018). Based on the data of nine weather radar slices at
different elevations, Wang et al. (2018) used a convolutional
neural network model to identify the spatial structures of three-
dimensional abnormal clouds when hail lands. Jiang et al. (2019)
utilized multisource convolutional neural networks to extract the
features of various weather-related data obtained from Doppler
radar to identify thunderstorms and gales. Ling et al. (2020)
proposed a new method based on stacked autoencoders to
identify abnormal weather radar echo images. Li et al. (2020a)
built a dataset from weather radar echo images using different
depth models, such as a simple convolutional neural network
(CNN), a recurrent neural network (S-RCNN), and a
spatiotemporal recurrent convolutional neural network (ST-
RCNN). The recognition performances of the learning models
on thunderstorms and gales were compared. Zhou et al. (2020)
proposed a new semantic segmentation-based deep learning
network for cloud-to-ground lightning nowcasting named
LightningNet. This model conducts reliable lightning
nowcasting by using multisource data.

As mentioned above, the current related experiments are
largely based on two-dimensional projection radar data or
regenerated product radar data. In fact, when weather radar
equipment is working, it scans in the surrounding three-
dimensional space, and the obtained radar data have obvious
three-dimensional characteristics. These studies ignore the
potential three-dimensional characteristics in radar data. It is
difficult to restore the real three-dimensional spatial data scene
around a target, which has caused relevant research to have
certain deficiencies. Machine learning can extract hidden
feature information from multidimensional data, and the
recognition of lightning strike locations based on three-
dimensional radar detection data has become possible.

In this article, we first transform the problem of identifying
lightning strike locations into a classification problem. Then, a
sliding window is used to construct a lightning feature dataset
based on three-dimensional weather radar data and lightning
location data. Furthermore, logistic regression, a random forest,
k-nearest neighbors, and a convolutional neural network are
employed to identify lightning strike locations. The
contribution of this paper is a first attempt to apply deep
learning methods to the identification of lightning strike
locations based on 3D radar data, thereby laying the
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foundation for subsequent accurate and real-time lightning
location predictions. This work is expected to provide a new
method for mitigating and preventing meteorological and
lightning disasters.

The rest of this paper is organized as follows. In Data, we
introduce the utilized data and the study area. InMethodology, we
provide the details of establishing the dataset based on lightning
location data and three-dimensional weather radar data and
briefly introduce the classification algorithms used, including
logistic regression, a random forest, k-nearest neighbors and a
convolutional neural network. In Experiments, we present the
experimental setup and results. Finally, we conclude and discuss
future research directions in. Conclusions and suggestions for
future work.

DATA

Data and Preprocessing
Lightning location data and three-dimensional weather radar data
are provided by the Ningbo Meteorological Bureau. Lightning
location data is obtained by the ADTD (Advanced TOA and
Direction system) lightning location systems, and ADTD is
ground-based advanced time of arrival and direction systems
cloud-to-ground lightning detection sensors. At present, the
system in the meteorological department has been widely used in
China. Its detection efficiency is between 80 and 90%, and the error is
generally several hundred meters to several kilometers. The single
station detection radius of the lightning positioning system is
approximately 300 km (Shi, 2016; Xu and Zhou, 2017). The
lightning data contain fields denoting the time, location (latitude

and longitude), polarity effect, peak intensity, steepness, and other
information of the ground flash return process, providing great help
when studying lightning activity. In this article, lightning data with
intensities less than 10 KA are removed, and those whose
corresponding radar combined reflectance (CR) grid values are
less than 10 DBZ are also eliminated to ensure data accuracy.
After preprocessing, the lightning location data are used as the
ground truth. There is a clear correlation between the occurrence of
lightning and radar echoes top heights and echo intensity
(Michimoto, 1991; Futyan and Del Genio, 2007). At the same
time, weather radar data is considered to be reliable detection
data in the meteorological field. Some scholars have used radar
data to predict lightning data. Therefore, we used radar echo data to
identify lightning, hoping to provide preliminary research for
lightning prediction based on radar data.

The weather radar data used in this paper are scanned and
generated by the S-band Doppler weather radar system. Doppler
weather radar has a high temporal-spatial resolution (1 km/
6 min). It provides information about the positions and
intensities of precipitation particles and particle motion
information. Therefore, it is an effective tool for monitoring
microscale and mesoscale convective systems and plays an
essential role in detecting severe weather. Weather radars
perform a 3D scan of the atmosphere. A radar system scans a
full volume every 5–6 min. It scans starting from the lowest
elevation angle and then increases the scanning angle gradually.
Finally, it provides data at nine elevation angles according to a
certain scanning strategy. Each elevation scan forms a cone with
an output of 2D raster data of the same size, and all 2D raster data
created at different elevation angles constitute 3D raster data with
a strict vertical alignment (Han et al., 2019). In this article, 3D

FIGURE 1 | Geographical locations of Ningbo.
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weather radar data are used as input data to identify lighting
strike locations.

Study Area
Ningbo is a sub-provincial city in northeastern Zhejiang
Province, People’s Republic of China, as shown in Figure 1.
The spatial extent is (28° 51’ - 30° 33′N; 120° 55’ - 122° 16′ E). It is
bounded on the east by the East China Sea and the Zhoushan
Archipelago, on the north by Hangzhou Bay (across which it faces
Jiaxing and Shanghai), on the west by Shaoxing, and on the south
by Taizhou. Thunderstorms frequently occur in Ningbo, and the
direct economic losses caused by lightning strikes are as high as
millions of yuan each year. Therefore, Ningbo is selected as the
study area in this article.

METHODOLOGY

Establishing the Dataset
First, the lightning data and radar data should be matched
spatially and temporally. A full radar scan generates one

complete set of radar volume data, consuming approximately
5–6 min. Thus, for a specific complete radar volume dataset, the
lightning data that occur during the period of the radar data
scan are selected, and those beyond the spatial extent of the
specific radar data are removed to ensure spatial consistency.
Then, the final selected lightning data and the specific radar data
form one group in which the lightning data and the radar data
are well matched spatially and temporally. Therefore, the
dataset in this article is constructed based on groups by the
sliding window strategy. First, based on the radar reflectivity
raster data, a sliding window with a size of M ×N (M is the size of
the row, N is the size of the column) is set up to obtain the
feature samples. Each feature sample contains nine layers of
radar reflectivity raster data within the sliding window (with a
size of M×N). Second, if one or more lightning data points are
located on the center grid of the sliding window, the sample in
this sliding window is labeled 1 (with lightning). Otherwise, the
corresponding sample is labeled 0 (without lightning). Figure 2
illustrates the extraction of feature data with lightning (samples
labeled 1). After the traversal of the sliding window, a dataset
with labels of 1 or 0 is established.

FIGURE 2 | Extraction of feature data with lightning.

FIGURE 3 | Flowchart of the lightning identification solution used in this article.
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We collect 30,447 samples labeled 1 and 493,557 samples
labeled 0 for a total of 524,004 samples from July to September.
These data are processed and packaged to build a 3D spatial
dataset. We divide into training sets and test sets, and were
randomly scrambled during the training. The test subset
contained samples for the second half of September 2018
(104,800 samples), whereas the training set included the
remaining samples.

During the training period, the extracted feature data (samples
labeled 1 or 0) are fed into various classification algorithms to train
a two-class classification model. Furthermore, the trained model is
applied to identify the new samples. If the output of the
classification result is 1, it proves that there is lightning in the
sample. If the output is 0, there is no lightning in the sample.
Figure 3 shows an overview of the solution used in this paper. It
should be noted that thisM×N sliding window can be set according
to the specific application. For example, in this article, we set this
sliding window size to 5 × 5 (5 columns and five rows).

Classification Algorithms
The identification of lightning strike locations by weather radar
data is regarded as a classification problem. We utilize some
frequently-used binary classification algorithms, namely, logistic
regression (LR) (Wright, 1995; Kleinbaum et al., 2002), K-nearest
neighbors (KNN) (Dudani, 1976; Kramer, 2013), a random forest
(RF) (Liaw andWiener, 2002; Pal, 2005) and a convolutional neural
network (CNN) (Wang, et al., 2019; Sothe et al., 2020), to conduct
our experiments based on the dataset constructed in the previous
section. The following is a brief introduction of these approaches.

Logistic regression (LR): LR is essentially a classification
method (Cheng et al., 2006). To solve a classification problem,
the model is trained according to some known training sets, and
then the classes of the new data are predicted. The goal of LR is to
find a decision boundary with a sufficient degree of
discrimination so that the two categories can be well
separated. In this paper, the parameters we used in LR are set
as follows, penalty is L2 regularization, Inverse of regularization
strength is 1, the maximum number of iterations for the solver to
converge is 500, and a binary problem fits for each label.

K-nearest neighbors (KNN): KNN is a classification algorithm
(Liu et al., 2019). To determine the category of an unknown
sample, KNN uses all the samples of the known categories as

references and calculates the distances between the unknown
sample and all the known samples. The K known samples that are
closest to the unknown sample are selected. According to the
majority-voting rule, the unknown sample and the K-nearest
samples are classified into one category. The parameters of KNN
are we set to: the number of neighbors is 9, leaf size is 5, the
number of parallel jobs to run for neighbors search is 1.

Random forest (RF): RFs are commonly used in regression and
classification, as they improve the prediction accuracy of the
resulting model without significantly increasing the amount of
required calculations (Gao et al., 2019; Li et al., 2020b). An RF is
not sensitive to multivariate common linearity, the results are
relatively robust to missing data and unbalanced data, and it can
effectively predict the effects of up to thousands of explanatory
variables. The parameters of the RF in this article are we set as: the
number of trees in the forest is 100, the maximum depth of the
tree is 5, random_state is the seed used by the random number
generator set to 2.

Convolutional neural network (CNN): A CNN is a type of
feedforward neural network that includes convolution
calculations and has a deep structure (Lei et al., 2019; Wan
et al., 2019). In deep learning, CNNs have achieved great
success in image classification. CNNs possess the ability to
characterize learning; they can classify input information
according to its hierarchical structure and identify similar
features at different locations in space. In this paper, the
CNN structure contains three parts: an input layer, a hidden
layer, and an output layer. The input layer can handle
multidimensional data. We put the training dataset into the
input layer. The hidden layer is the core of the CNN, including
the convolutional layer, pooling layer and fully connected layer.
For classification problems, the output layer returns the
probability that the input image belongs to a certain
category. For us, the output of the output layer is the
probability of a lightning strike location.

Figure 4 shows the overall CNN architecture used in this
article. The CNN has seven layers, two convolutional layers and
two pooling layers that appear alternately. There are three fully
connected (FC) layers connected to the last feature map. Finally,
the fully connected layers output the final classification results.
The size of the dataset input into the CNN is 9 × 5×5, and the
filter size is set to 9 × 1×1 (here, nine refers to the weather radar
data at nine different heights). 9 × 5×5 in the first layer means that
this layer has nine different elevation radars and that each level
has a size of 5 × 5.9 × 4×4 in the second layer means that the
feature map generated after sample pooling has a size of 9 × 4×4.
Other layers are similar ultimately fully connected layer (FC)
output results. We use the cross-entropy loss as the objective

FIGURE 4 | Architecture of the CNN used in this study.

TABLE 1 | Confusion matrix.

Identified class

Strike Nonstrike

Actual Class Strike TP FN
Nonstrike FP TN
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function for training the CNN. For optimization, the Adam
optimizer is leveraged to train the network, the batch size is
64, and the number of epochs is set to 100. The learning rate is
0.001. Note that different from conventional machine learning
approaches, CNNs can be directly applied to radar images
without needing the handcrafted features above.

EXPERIMENTS

Experimental Setup
In this paper, we conduct comparative experiments with the dataset
generated in Methodology. For these classification methods, the
training set is employed for model training, and the test set is

TABLE 2 | The results are shown in different models.

Classifier Precision FPR Recall Accuracy F-measure ROC AUC P-R

LR 0.749 0.251 0.391 0.958 0.513 0.691 0.328
KNN 0.763 0.237 0.558 0.965 0.644 0.774 0.448
RF 0.835 0.165 0.538 0.967 0.654 0.765 0.475
CNN 0.842 0.158 0.604 0.967 0.703 0.798 0.534

The bold value is the best value in each column.

FIGURE 5 | Lightning locations observed and identified by the CNN model on September 20, 2018 (In upper, the blue dot represents the observed lightning. In
lower, the dark blue dot (Miss_lightning) is miss identified lightning, the gray dot (False_lightning) represents the falsely reported lightning, and the red dot represents the
correctly identified lightning.).
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used to verify the lightning classification results. In brief, the purpose
is to explore the classification outcomes, which are regarded as the
identification results of the lightning strike locations.

In addition, all classification algorithms utilized in this article are
executed in the python37 environment. These machine learning
methods (LR, the RF and KNN) are developed using the scikit-learn
(sklearn) library. Sklearn is a simple and efficient tool for predictive
data analysis. PyTorch’s is used to efficiently implement the CNN
approach. The CNN uses a GPU to accelerate the computation
process. Moreover, the hardware environment contains a Core i7-
9500 (2.6 GHz) CPU and a GeForce GTX 1065 GPU.

Performance Criteria
A confusion matrix can be used to assess the accuracy of binary
classification results (Stehman, 1997). The confusion matrix
shown in Table 1 is used. In Table 1, Tp and TN represent
the numbers of true positive and true negative cases, respectively,
while FP and FN denote the numbers of false positive and false
negative cases, respectively (Pakdaman et al., 2020). In Table 1,
‘‘strike’’ and ‘‘nonstrike’’ indicate the lightning strike and non-
lightning-strike events, respectively.

Based on Table 1, to evaluate the performance of the proposed
algorithms, seven conventional criteria are considered: precision,
false positive rate (FPR), recall, accuracy, F-measure, area under
the curve (AUC), and precision-recall (P-R) (Pakdaman et al.,
2020; Luque et al., 2019; Sofaer et al., 2019). Precision is
intuitively the ability of a classifier to not label a negative
sample as positive and can be calculated by:

Precision � TP
TP + FP

(3)

False positive rate (FPR): The proportion of real negative
examples predicted to be positive can be calculated by:

FPR � FP
FP + TP

(4)

Recall is the ability of the classifier to find all the positive samples
and can be calculated by:

Recall � TP
TP + FN

(5)

Accuracy is the proportion of the correct predictions to the total
number of predictions:

Accuracy � TP + TN
TP + FN + FP + TN

(6)

The F-measure can be interpreted as a weighted average of the
precision and recall, where the best F-measure is 1 and at the
worst is 0. The relative contributions of precision and recall to the
F-measure are equal. The formula for the F-measure is:

F −measure � 2*
precision p recall
precision + recall

(7)

The area under the receiver operating characteristic curve
(ROCAUC) is defined as the area enclosed by the coordinate axes
under the ROC curve (Luque et al., 2019). The value of this area
cannot be greater than 1. The value range of the AUC is between
0.5 and 1. The closer the AUC is to 1.0, the higher the authenticity
of the detection method; when it is equal to 0.5, the authenticity is
lowest, and the method has no application value.

Precision-recall (P-R) is a useful measure of prediction success
when the classes are very imbalanced (Sofaer et al., 2019; Saito
and Rehmsmeier, 2015). When the number of positive samples is
seriously less than the number of negative samples, the P-R curve
can more intuitively express the differences between models than
other metrics, which is more appropriate. Since the collected
dataset contains unbalanced data, P-R is required. In this paper,
we use the area under the P-R curve to express the P-R curve.

Results Analysis
We conduct experiments using the constructed dataset to
compare the performance of the four models, namely, LR,

FIGURE 6 | Lightning locations observed and identified by the CNNmodel on September 21, 2018 (In Figure 6A, the blue dot represents the observed lightning. In
Figure 6B, the dark blue dot (Miss_lightning) is miss identified lightning, the gray dot (False_lightning) represents the falsely reported lightning, and the red dot represents
the correctly identified lightning).
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KNN, RF, and a CNN. The precision, false positive rate (FPR),
recall, accuracy, F-measure, area under the curve (AUC), and
precision recall (P-R) values of the test samples produced by the
three models are recorded as the final results. For these indicators,
smaller FPRs are better, and the larger the other metrics are, the
better they are.

Table 2 shows that the model with the best performance in
term of recognizing the lightning strike locations is the CNN,
followed by the RF and KNN, and LR has the worst performance.
The CNN has the best precision, recall, accuracy, and F-measure,
and it has the lowest FPR at 0.158. More importantly, the AUC
and P-R performance of the CNN is far superior to that of other
models. P-R is an important model identification indicator. The
area under the PR curve yielded by the CNN is 0.534, which is
0.059 higher than those of the other best-performingmodels. This
shows that CNN can not only better obtain the hidden data
features among the multilayer radar data but also has better
model ability and can adapt to complex multidimensional data.
Notably, the RF performs best aside from the CNN. Its P-R and
other criteria (except Recall and AUC) are the best among the
three machine learning methods, indicating that the RF is also an
effective algorithm and has a certain effect on identifying
lightning strikes. Among all the methods, LR performs worst.
Not only are its AUC and P-R the worst, but its FPR is the highest
among those of all the models, which shows that LR has difficulty
dealing with the identification of lightning strike locations.

In addition, all models have high accuracy, but the PR values of
the LR model, DT model, and KNN model do not perform well.
This means that when identifying lightning strikes, accuracy
alone cannot measure the true accuracy of the given model.
This may be due to the imbalance between positive and negative
samples in the created dataset. It is undeniable that the CNN
model has the best recognition effect, and we use it for a
subsequent case analysis.

Case Study 1–September 20, 2018
To verify the CNN model, we apply the model in a real
environment. Under the influence of convective cloud clusters,
intense lightning activities occurred in Ningbo in northeastern
Zhejiang Province of China on September 20, 2018. The China
Meteorological Administration (CMA) Public Meteorological
Service Centre issued a lightning warning. Therefore, the
weather radar data obtained from Ningbo at 10:54 (Universal
Time) on that day are selected for use.

Lightning is not particularly stable and normally drifts. The
deviation of the thunderstorm center is less than 5%, and the
accuracy of the identification location is within the acceptable
(Huang et al., 2019). In order to better quantify and evaluate the
recognition results of the model, we believe that the identified
lightning strike location within 1 km around the lightning strike
location is also effective.

Figure 5 shows the observed lightning strike position and the
result identified by the CNNmodel. The upper part of the figure is
the distribution of the observed lightning strike position, and the
lower part is the result of the CNN model identification. The
average probability of correct hit, miss identified, false identified
for this case amounted to 0.763, 0.235, 0.237. It can be seen that

the CNN can identify the approximate locations of lightning, and
the model has a good recognition effect with respect to
concentrated lightning, which proves that it is feasible to use a
CNN combined with radar data in a real environment to identify
lightning. However, the disadvantage is that the range of lightning
strike locations identified by the CNN is larger than the actual
landing area. These situations may be due to the fact that the
model training samples are not sufficient or that some lightning
cannot be detected by lightning positioning equipment. It is also
possible that we have overlooked certain parameters that have
important impacts on lightning recognition. Furthermore,
another shortcoming is that the CNN model is not ideal for
the recognition of discrete lightning location data. Some scattered
lightning bolts are not recognized.

Case Study 2–September 21, 2018
On August 23, 2018, a few thunderstorms occurred in south
ningbo. We chose the radar data at 06:48 UTC that day for the
examination. Figure 6 shows Lightning locations observed and
identified by the CNN model. Figure 6A shows the observed
lightning strike locations. and Figure 6B shows the results of
lightning strikes identified by the CNN. The average probability
of correct hit, miss identified, false identified for this case
amounted to 0.725, 0.271, 0.275. In this case, the CNN model
also can identify the approximate location of the lightning strike
locations, but the identification results of the discretely
distributed lightning points are poor and cannot be prepared
for identification. Nevertheless, it is possible to use the CNN
model to identify lightning strike locations.

CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

In this article, we convert the problem of identifying lightning
strike locations into a binary classification problem, and a sliding
window strategy is utilized to construct a dataset suitable for the
identification of lightning strike locations based on 3D weather
radar data. Then, based on the constructed dataset, four common
classification algorithms (LR, an RF, KNN and a CNN) are applied
to explore the identification of lightning strike locations. The
results show that the CNN has the best performance in terms
of the identification of lightning strike locations. Its precision is
0.842, the recall is 0.604, the accuracy is 0.967, the FPR is 0.158, and
the area under the P-R curve is also outstanding at 0.534. The CNN
is followed by the RF and KNN, LR has the worst performance.
This proves that a deep learning method can conduct autonomous
learning of spatial feature data with the support of a large amount
of multidimensional data and can obtain more hidden data
information relationships than other approaches. Lightning
strike location recognition based on three-dimensional radar
detection data is efficient and can be used to a certain extent.
However, because the occurrence of lightning is a relatively low-
probability event, it is difficult to identify with weather radar data.
The essence of this situation is an imbalanced classification
problem. When constructing the dataset, we lack the
consideration of a balanced sampling design, which to a certain
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extent causes the problem of too large a lightning strike location to
being identified by the CNN model. In the future, the impact of
unbalanced samples on the identification of lightning strike
locations will be considered. In addition, with the rapid
development of deep learning, an increasing number of
methods and technologies can be applied to the recognition of
lightning strikes. Other modeling methods may be able to obtain
better results with respect to the recognition of lightning strikes.
We need to evaluate these numerous methods in the future. We
hope to obtain a more accurate method for identifying lightning
strike locations and reduce the false positive rate of lightning
detection to provide certain decision-making support for
disaster prevention and mitigation.
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Integration of One-Pair
Spatiotemporal Fusion With Moment
Decomposition for Better Stability
Yaobin Ma1,2, Jingbo Wei2* and Xiangtao Huang3

1School of Resources, Environmental and Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource
Utilization, Ministry of Education, Nanchang University, Nanchang, China, 2Institute of Space Science and Technology, Nanchang
University, Nanchang, China, 3Jiangxi Center for Data and Application of High Resolution Earth Observation System, Nanchang,
China

Spatiotemporal fusion has got enough attention and many algorithms have been
proposed, but its practical stability has not been emphasized yet. Observing that the
strategies harnessed by different types of algorithms may lead to various tendencies, an
integration strategy is introduced to make full use of the complementarity between different
types of spatiotemporal fusion algorithms for better fusion stability. In our method, the
images fused by two different types of methods are decomposed into components
denoting strength, structure, and mean intensity, which are combined separately involving
a characteristic analysis. The proposed method is compared with seven algorithms of four
types by reconstructing Landsat-8, Landsat-7, and Landsat-5 images to validate the
effectiveness of the spatial fusion strategy. The digital evaluation on radiometric, structural,
and spectral loss illustrates that the proposed method can reach or approach the optimal
performance steadily.

Keywords: spatiotemporal fusion, Landsat, MODIS, multispectral, fusion, FSDAF

1 INTRODUCTION

Satellite images with dense time series and high spatial resolution are eagerly needed for remote
sensing of abrupt changes in Earth, while they are hardly obtained due to physical constraints and
adverse weather conditions (Li et al., 2019). Spatiotemporal fusion algorithms were developed to
combine images of different temporal and spatial resolutions to obtain a composite image of high
spatiotemporal resolution, which have been put to practice to monitor floods (Tan et al., 2019b) or
forests (Chen et al., 2020). The spatiotemporal fusion process usually involves two types of remote
sensing images. One type has high temporal and low spatial resolution (hereinafter referred to as low-
resolution images), such as MODIS images. The other type has high spatial and low temporal
resolution (hereinafter referred to as high-resolution images), such as Landsat images. The one-pair
fusion is mostly studied for its convenience that only one pair of known images is required. The one-
pair spatiotemporal fusion algorithms can be classified into four types, namely, weight-based,
unmixing-based, dictionary pair–based, and neural network–based, as will be discussed.

Weight-based methods search similar pixels within a window in the given high-resolution images
and predict the values of central pixels with weights linear to the inverse distance. Gao et al. (2006)
proposed the spatial and temporal adaptive reflectance data fusion model (STARFM) with the
blending weights determined by spectral difference, temporal difference, and location distance,
which is the earliest weight-based method. STARFM was subsequently improved for more complex
situations, resulting in the spatiotemporal adaptive algorithm for mapping reflectance change

Edited by:
Peng Liu,

Institute of Remote Sensing and Digital
Earth (CAS), China

Reviewed by:
Costica Nitu,

Politehnica University of Bucharest,
Romania

Guang Yang,
South China Normal University, China

Jining Yan,
China University of Geosciences

Wuhan, China
Xinghua Li,

Wuhan University, China

*Correspondence:
Jingbo Wei

wei-jing-bo@163.com

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 27 June 2021
Accepted: 01 September 2021

Published: 11 October 2021

Citation:
Ma Y, Wei J and Huang X (2021)

Integration of One-Pair Spatiotemporal
Fusion With Moment Decomposition

for Better Stability.
Front. Environ. Sci. 9:731452.

doi: 10.3389/fenvs.2021.731452

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 7314521

ORIGINAL RESEARCH
published: 11 October 2021

doi: 10.3389/fenvs.2021.731452

17

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2021.731452&domain=pdf&date_stamp=2021-10-11
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
http://creativecommons.org/licenses/by/4.0/
mailto:wei-jing-bo@163.com
https://doi.org/10.3389/fenvs.2021.731452
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2021.731452


(STAARCH) (Hilker et al., 2009) and enhanced STARFM
(ESTARFM) (Zhu et al., 2010). When land cover type change
and disturbance exist, the former can improve the performance of
STARFM and the latter can improve the accuracy of STARFM in
heterogeneous areas. There are other methods in this category,
such as modified ESTARFM (mESTARFM) (Fu et al., 2013), the
spatiotemporal adaptive data fusion algorithm for temperature
mapping (SADFAT) (Weng et al., 2014), the rigorously weighted
spatiotemporal fusion model (RWSTFM) (Wang and Huang,
2017), and the bilateral filter method (Huang et al., 2013).

Unmixing-based methods work out the abundance matrix of
endmember fractions by clustering on the known high-
resolution images. The first unmixing-based spatiotemporal
method may be the multisensor multiresolution technique
(MMT) proposed by Zhukov et al. (1999). Later, Zurita-Milla
et al. (2008) introduced constraints into the linear unmixing
process to ensure that the solved reflectance values were positive
and within an appropriate range using the spatial information of
Landsat/TM data and the spectral and temporal information of
medium resolution imaging spectrometer (MERIS) data to
generate images. Wu et al. (2012) proposed a spatiotemporal
data fusion algorithm (STDFA) that extracts fractional covers
and predicts surface reflectance under the rule of least square
errors. Xu et al. (2015) proposed an unmixing method that
includes the prior class spectra to smoothen the prediction
image of STARFM within each class. Zhu et al. (2016)
proposed the flexible spatiotemporal data fusion (FSDAF) (Li
et al., 2020b) where a thin plate spline interpolator is used. The
enhanced spatial and temporal data fusion model (ESTDFM)
(Zhang et al., 2013), the spatial and temporal reflectance
unmixing model (STRUM) (Gevaert and Javier Garcia-Haro,
2015), and the modified spatial and temporal data fusion
approach (MSTDFA) (Wu et al., 2015b) were also proposed
along the framework.

Separately, dictionary pair–based methods introduced
coupled dictionary learning and nonanalytic optimization to
predict missing images in the sparse domain, where the coded
coefficients of high- and low-resolution images are very similar,
given the over-complete dictionaries being well designed. Based
on this theory, Huang and Song (2012) proposed the sparse
representation–based spatiotemporal reflectance fusion model
(SPSTFM), which may be the first to introduce dictionary
pair–learning technology from natural image super-resolution
into spatiotemporal data fusion (Zhu et al., 2016). SPSTFM was
developed for predicting the surface reflectance of high-
resolution images through jointly training two dictionaries
generated by high-resolution and low-resolution difference
image patches and sparse coding. After SPSTFM, Song and
Huang (2013) developed another dictionary pair–based fusion
method, which uses only one pair of high-resolution and low-
resolution images. The error-bound-regularized semi-coupled
dictionary learning (EBSCDL) (Wu et al., 2015a) and the fast
iterative shrinkage-thresholding algorithm (FISTA) (Liu et al.,
2016) are also proposed based on this theory. We have also
investigated this topic and proposed sparse Bayesian learning and
compressed sensing for spatiotemporal fusion (Wei et al., 2017a;
Wei et al., 2017b).

Recently, dictionary learning has been replaced with
convolutional neural networks (CNNs) (Liu et al., 2017) for
sparse representation, which are used in the neural
network–based methods to model the super-resolution of
different sensor sources. Dai et al. (2018) proposed a two-layer
fusion strategy, and in each layer, CNNs are employed to exploit
the nonlinear mapping between the images. Song et al. (2018)
proposed two five-layered CNNs to deal with the problem of
complicated correspondence and large spatial resolution gaps
between MODIS and Landsat images. In the prediction stage,
they design a fusion model consisting of the high-pass
modulation and a weighting strategy to make full use of the
information in prior images. These models have small numbers of
convolutional layers. Li et al. (2020a) proposed a learning method
based on CNNs to effectively obtain sensor differences in the bias-
driven spatiotemporal fusion model (BiaSTF). Many new
methods are subsequently proposed, such as the deep
convolutional spatiotemporal fusion network (DCSTFN) (Tan
et al., 2018), enhanced DCSTFN (EDCSTFN) (Tan et al., 2019a),
the two-stream convolutional neural network (StfNet) (Liu et al.,
2019), and the generative adversarial network–based
spatiotemporal fusion model (GAN-STFM) (Tan et al., 2021).
It is expected that when a sequence of known image pairs are
provided, the missed images can be predicted with the
bidirectional long short-term memory (LSTM) network
(Zhang et al., 2021).

Although spatiotemporal fusion has received wide attention
and a lot of spatiotemporal fusion algorithms were developed
(Zhu et al., 2018), the stability of algorithms has not been
emphasized yet. On the one hand, the selection of base image
pairs greatly affects the performance of fusion, as has been
addressed in Chen et al. (2020). On the other hand, the
performance of an algorithm is constrained by its type. This
could be explained with FSDAF (Zhu et al., 2016) and Fit-FC
(Wang and Atkinson, 2018), which are among the best
algorithms. The linear model of Fit-FC projects the phase
change, which can approach good fitness for the homogeneous
landscapes. However, the nearest neighbor and linear upsampling
methods used to model spatial differences in Fit-FC are too much
rough, and the smoothing in the local window accounts for
insufficient details. FSDAF focuses on heterogeneous or
changing land covers. Different prediction strategies are used
to adapt to heterogeneous and homogeneous landscapes. The
thin plate spline for upsampling interpolation shows admirable
fitness to the spatial structure. However, it is challenging for the
abundance matrix to disassemble the homogeneous landscapes
due to the long tail data. An unchanged area may be incorrectly
classified as a heterogeneous landscape or changed areas may not
be discovered, which leads to wrong prediction directions. To
sum up, Fit-FC excels well at predicting homogeneous areas,
while FSDAF excels at heterogeneous areas.

The combination of different algorithms is a way to improve
the performance consistency in different scenarios. For example,
Choi et al. (2019) proposed a framework called the consensus
neural network to combine multiple weak image denoisers. Liu
et al. (2020) proposed a spatial local fusion strategy to decompose
images of different denoised images into structural patches and
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reconstruct them. The combined results showed overall
superiority than any other single algorithm. These strategies
can be transplanted to the results of spatiotemporal fusion to
improve the stability of practice.

Observing the complementarity of different spatiotemporal
fusion algorithms, in this study, we propose a universal approach
to improve the stability. Specifically, the results of FSDAF and Fit-
FC are merged with the structure-based spatial integration
strategy and the advantages of different algorithms are
expected to be retained. The CNN-based methods are not
integrated because deep learning has limited performance for a
single pair of images, and the unclear theory makes it difficult to
locate advantages. Extensive experiments demonstrated that the
proposed combination strategy outperforms state-of-the-art one-
pair spatiotemporal fusion algorithms.

Our method makes the following contributions:

1) The stability issue of spatiotemporal fusion algorithms is
investigated for the first time.

2) A fusion framework is proposed to improve the stability.
3) The effectiveness of the method is proved by comparing with

different types of algorithms.

The rest of this article is organized as follows. Section 2
introduces the FSDAF model and the Fit-FC model in detail.
Section 3 summarizes the fusion based on the spatial structure.
Section 4 gives the experimental scheme and results visually and
digitally, which is followed by discussion in Section 5. Section 6
gives the conclusion.

2 RELATED WORK

In this section, the FSDAF and Fit-FC algorithms are detailed for
further combination.

2.1 FSDAF
The FSDAF algorithm (Zhu et al., 2016) predicts high-resolution
images of heterogeneous regions by capturing gradual and abrupt
changes in land cover types. FSDAF integrates ideas from
unmixing-based methods, spatial interpolation, and STARFM
into one framework. FSDAF includes six main steps.

Step 1: The unsupervised classifier ISODATA is used to
classify the high-resolution image at time t1, and the class
fractions Ac are calculated as

Ac(i) � Nc(i)/M, (1)

where Nc(i) is the number of high-resolution pixels belonging to
class c within the ith low-resolution pixel andM is the number of
high-resolution pixels within one low-resolution pixel.

Step 2: For every band of the two low-resolution images Ct1

and Ct2 captured at time t1 and t2, respectively, the reflectance
changes ΔC are used to estimate the temporal change of all
classes ΔFc with the following:

ΔC(i) � Ct2(i) − Ct1(i) � ∑L
c�1

Ac(i) · ΔFc, (2)

where L denotes the number of classes.

Step 3: The class–level temporal change is used to obtain the
temporal prediction image FTP

t2
at time t2 and calculate the

residual R with the following:

FTP
t2

ji( ) � Ft1 ji( ) + ΔFc, (3)

R(i) � ΔC(i) − 1
M

∑m
j�1

FTP
t2

ji( ) − Ft1 ji( )( )⎡⎢⎢⎣ ⎤⎥⎥⎦. (4)

Here, Ft1 is the known high-resolution image at time t1 and ji is
the coordinate of the jth high-resolution pixel within the ith low-
resolution pixel.

Step 4: The thin plate spline (TPS) interpolator is used to
interpolate the low-resolution image Ct2 to obtain the spatial
prediction image FSP

t2
at time t2.

Step 5: Residual errors were distributed based on temporal
prediction FTP

t2
and spatial prediction FSP

t2
,

CW ji( )� FSP
t2

ji( )−FTP
t2

ji( )−R(i)( ) ·HI ji( )+R(i), (5)

W ji( ) � CW ji( )/∑M
j�1

CW ji( ), (6)

r ji( ) � M · R(i) ·W ji( ). (7)

Here, HI denotes the homogeneity index, CW denotes the weight
coefficient, W denotes the normalized weight coefficient, and r
denotes the weighted residual value. The range of HI is set to (0,
1), and a larger value represents a more homogeneous landscape.

The prediction of the total change of a high-resolution pixel
between time t1 and t2 is predicted as

ΔF ji( ) � r ji( ) + ΔFc. (8)

Step 6: The final result F̂t2 is obtained with the information in
neighborhood as

F̂t2 ji( ) � Ft1 ji( ) +∑N
k�1

Wk · ΔF(k). (9)

Here,Wk is the neighborhood similarity weight for the kth similar
pixel andN is the number of similar pixels. For a pixel Ft1(ji), after
the N similar pixels are selected, Wk is calculated with the
normalized inverse distance as

Wk � 1/dk( )/∑N
k�1

1/dk( ), (10)

where the distance dk is defined with the spatial locations between
Ft1(ji) and Ft1(k).

A w × w sized window is centered around Ft1(ji) and searched
for the pixels with a similar spectrum to the center pixel. The
spectral difference sdk between Ft1(ji) and Ft1(k) in its
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neighboring window is defined with the ℓ2 norm where all bands
are involved, that is,

sdk �
∑
b

Ft1(k, b) − Ft1 ji, b( )[ ]2/B√
, (11)

where b denotes the band number and B denotes the number
of bands.

After all the spectral differences in a window are obtained, the
firstN pixels with smallest values (including the center pixel itself)
are identified as spectrally similar neighbors. These pixels will be
used to update the value of the central pixel with weights
according to their distances from the window’s center dk,

dk � 1 +

loc Ft1(i)( ) − loc Ft1(k)( )���� ����2√

/(w/2), (12)

where loc(·) denotes the 2-dimensional coordinate values and w
is the window size.

FSDAF predicts high-resolution images in heterogeneous
areas by capturing both gradual and abrupt land cover type
changes and retaining more spatial details. However, it cannot
capture small type changes in land covers. The smoothness within
each class lessens the intra-class variability. The classification
accuracy of unsupervised algorithms will also affect the results as
very large images cannot be clustered effectively. To conclude, the
performance of FSDAF is dominated by the unmixing process of
the global linear unmixing model.

2.2 Fit-FC
Wang and Atkinson (2018) proposed the Fit-FC algorithm based
on the linear weight models for spatiotemporal fusion. It uses
the low-resolution images at time t1 and t2 to fit the linear
coefficients and then applies the coefficients to the
corresponding high-resolution images at time t1. In order to
eliminate the blocky artifacts caused by large differences in
resolution, it performs spatial smoothing of fitting values and
error values based on neighborhood similar pixels. Fit-FC
includes four main steps.

Step 1: Parameters of linear projection are estimated from low-
resolution images, and the low-resolution residual image r is
calculated. For every band of the two low-resolution images
Ct1 and Ct2 captured at time t1 and t2, respectively, a moving
window is used to extract blocks Bt1(i) and Bt2(i) for the ith
location. Given that two groups of pixels Bt1(i) and Bt2(i) in the
local window are known, the least square error is minimized to
fit the linear model

Bt2(i) � a(i)Bt1(i) + b(i), (13)

where a(i) and b(i) are the estimated weight and bias for the ith
location.

After the linear coefficients are obtained, the low-resolution
residual image r is calculated pixel-by-pixel with the following
equation:

r(i) � Ct2(i) − a(i)Ct1(i) − b(i). (14)

Step 2: The matrix of two linear coefficients and residuals are
upsampled to the ground resolution of the known high-
resolution image. The nearest neighboring interpolation is
used for linear coefficients, and the bicubic interpolation is
used for residuals.
Step 3: The initially predicted high-resolution image ~Ft2 at time
t2 is calculated with the following equation:

~Ft2 ji( ) � a ji( ) · Ft1 ji( ) + b ji( ), (15)

where ji is the coordinate of the jth high-resolution pixel within
the ith low-resolution pixel and a (ji) and b (ji) are the upsampled
linear coefficients at the same location as the known high-
resolution pixels Ft1(ji).

Step 4: Using information in neighborhood to obtain the final
result F̂t2,

F̂t2 ji( ) � ∑n
k�1

Wk
~Ft2 ji( ) + r ji( )[ ], (16)

where r (ji) is the upsampled residual values at the same location
as the known high-resolution pixels Ft1(ji). Wk is the
neighborhood similarity weight for the kth similar pixel, which
is calculated in the same way to FSDAF as is shown in Eq. 10.

Fit-FC performs well in maintaining spatial and spectral
information and is especially suitable for situations where
there is a strong time change and the correlation between low-
resolution images is small. However, the fused image smoothens
spatial details for visual identification.

3 METHODOLOGY: COMPONENT
INTEGRATION

In this section, the structure-based spatial integration strategy by Liu
et al. (2020) is adopted to combine the images fused by FSDAF and
Fit-FC. According to Liu et al. (2020), an image patch can be viewed
from its contrast, structure, and luminance, which is valuable to find
local complementarity. However, the patch size in the study by Liu
et al. (2020) is not suitable for spatiotemporal applications because,
under the goal of data fidelity, current fusion algorithms may
produce large errors such that the brightness and contrast of
small patches are unreliable. Although the local enhancement can
improve visual perception, it may lose data fidelity. Therefore, the
decomposition is performed in the whole image. The flowchart of
the proposed combination method is outlined in Figure 1.

An image x can be decomposed in the form of moments into
three components, namely, strength, structure, and mean
intensity,

x � x − μx
���� ����2 · x − μx

x − μx
���� ����2 + μx

� ‖~x‖2 · ~x
‖~x‖2 + μx

� c · s + l,

(17)
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where ‖ · ‖2 denotes the l2 norm of a matrix, μx is the mean value,
and ~x � x − μx represents a zero-mean image. The scalar l � μx,
c � ‖~x‖2, and the unit-length matrix s � ~x/‖~x‖ roughly represent
the strength component, structure component, and mean
intensity component of x, respectively.

Each fused image can have its own components through
decomposition. By integrating the components of multiple
fusion results, the new components may outbreak the
limitations of different fusion types. The merging strategy will
be discussed in detail below.

The visibility of the image structure largely depends on the
contrast, which is directly related to the intensity component.
Generally, the higher the contrast, the better the visibility.
However, too much contrast may lead to unrealistic
representation of the image structure. All input images in this
study are generated by spatiotemporal fusion algorithms, and
their contrasts are usually higher than those of real images. This is
reflected in the residual calculation of FSDAF and Fit-FC where
stochastic errors are injected as well as details. Consequently, the
image with the lowest contrast has the highest fidelity. Therefore,
the desired contrast of the composite images is determined by the
minimum contrast of all input images, that is, the fusion results of
FSDAF and Fit-FC,

ĉ � min c1, c2( ) � min ~x1‖ ‖2, ‖~x2‖2( ), (18)

where ~x1 and ~x2 represent the zero-mean fusion images of FSDAF
and Fit-FC, respectively.

The structure component is defined by the unit matrix s. It is
expected that the structure of the fused image can represent the
structures of all the input images effectively, which is calculated
with the following:

ŝ � ∑
i

Wisi/∑
i

Wi, (19)

where Wi is the weight to determine the contribution of the ith
image by its structural component si.

To increase the contribution of higher-contrast images, a
power-weighting function is given by the following:

Wi � ~xi‖ ‖p, (20)

where p ≥ 0 is a norm limited in 1, 2, or ∞.
The value of p is adaptive to the structure consistency of the

input images, which is measured based on the degree of direction
consistency R as

R � ∑
i

~xi

���������
���������/∑i ~xi‖ ‖. (21)

The norm p is empirically set to 1 when R ≤ 0.7, ∞ when R ≥
0.98, and 2 otherwise.

The structural strategy is dedicated to the combination of
FSDAF and Fit-FC. For the heterogeneous areas, Fit-FC predicts
weak details, while the results of FSDAF are rich and relatively
accurate. When the above method is used, the structure of FSDAF
accounts for a large proportion. For the homogeneous landscapes,
Fit-FC predicts fewer details in a more accurate way, while the

results of FSDAF are richer but not accurate. In this case, the two
images are mixed in a relatively similar ratio to achieve a tradeoff
between detail and accuracy.

The intensity component can be estimated with weights as

l̂ � ∑
i

wili/∑
i

wi. (22)

Here, wi is the weight normalized with the Gaussian function as
given below:

wi � exp − μi − μc( )2
2σ2i

( ), (23)

where μi and σ2i are the mean value and variance of the ith image,
respectively. μc is a constant approaching the mid-intensity value.
The typical value of μc is 0.5, which is far higher than the mean
value of a linearly normalized remote sensing image for visual
improvement.

After the combined values ĉ, ŝ, and l̂ are calculated, the target
image is restored with the following:

x̂ � ĉ · ŝ + l̂. (24)

The integration strategy is performed band by band, which
requires the maximum and minimum normalization of all the
input images in unified thresholds.

4 EXPERIMENT

4.1 Experimental Scheme
The datasets for validation are the Coleambally irrigation area
(CIA) and Lower Gwydir Catchment (LGC) that were used in
Emelyanova et al. (2013). CIA has 17 pairs of Landsat-7 ETM
+ and MODIS images, and LGC has 14 pairs of Landsat-5 TM
and MODIS images. Four pairs of Landsat-8 images are also
used for the spatiotemporal experiment, which were captured
in November 2017 and December 2017. The path number is
121, and the row number is 41 and 43. These images have six
bands, of which the blue, green, red, and near-infrared (NIR)
bands are reconstructed. All images are cropped to the size of
1200 × 1200 at the center to avoid the outer blank areas. For
the CIA and LGC datasets, four pairs of images were used for
training and four pairs of images were used to validate the
accuracy. For the Landsat-8 dataset, 2 pairs of images were
used for training and the other 2 pairs of images were used to
validate the accuracy. In each dataset, the two adjacent pairs of
images are set as the known image pair and prediction image
pair, respectively. The dates of the predicted images are
marked in Tables 1–6.

To judge the effectiveness of the proposed method, some state-
of-the-art algorithms are compared, including STARFM (Gao
et al., 2006), SPSTFM (Huang and Song, 2012), EBSCDL (Wu
et al., 2015a), FSDAF (Zhu et al., 2016), Fit-FC (Wang and
Atkinson, 2018), STFDCNN (Song et al., 2018), and BiaSTF
(Li et al., 2020a). STARFM and Fit-FC use linear weights.
FSDAF is an unmixing-based method. SPSTFM and EBSCDL
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TABLE 1 | RMSE evaluation of radiometric error for the CIA dataset.

Image Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.0903 0.0381 0.0177 0.0186 0.0181 0.0165 0.0160 0.0189 0.0186 0.0156
1 Green 0.0685 0.0285 0.0120 0.0120 0.0119 0.0110 0.0108 0.0118 0.0123 0.0102
2001 Blue 0.0406 0.0236 0.0109 0.0109 0.0110 0.0104 0.0097 0.0112 0.0111 0.0098
1109 NIR 0.2166 0.0476 0.0350 0.0324 0.0349 0.0313 0.0312 0.0415 0.0378 0.0292

All 0.1040 0.0809 0.0212 0.0203 0.0213 0.0192 0.0190 0.0242 0.0226 0.0180

Red 0.1413 0.0225 0.0275 0.0275 0.0260 0.0251 0.0250 0.0272 0.0263 0.0248
2 Green 0.1029 0.0145 0.0180 0.0185 0.0171 0.0164 0.0168 0.0181 0.0170 0.0164
2001 Blue 0.0677 0.0105 0.0147 0.0148 0.0142 0.0137 0.0137 0.0154 0.0140 0.0138
1204 NIR 0.2539 0.0313 0.0386 0.0380 0.0373 0.0357 0.0355 0.0452 0.0387 0.0351

All 0.1414 0.0853 0.0264 0.0263 0.0253 0.0243 0.0243 0.0289 0.0259 0.0240

Red 0.1002 0.0378 0.0224 0.0239 0.0223 0.0203 0.0204 0.0251 0.0233 0.0199
3 Green 0.0825 0.0327 0.0139 0.0152 0.0143 0.0127 0.0124 0.0151 0.0150 0.0122
2002 Blue 0.0517 0.0225 0.0114 0.0116 0.0113 0.0105 0.0102 0.0114 0.0117 0.0103
0222 NIR 0.2724 0.0606 0.0351 0.0341 0.0332 0.0324 0.0330 0.0394 0.0353 0.0324

All 0.1267 0.0998 0.0227 0.0229 0.0220 0.0208 0.0210 0.0252 0.0232 0.0206

Red 0.1070 0.0302 0.0186 0.0178 0.0184 0.0169 0.0166 0.0200 0.0190 0.0164
4 Green 0.0817 0.0210 0.0130 0.0121 0.0121 0.0114 0.0117 0.0124 0.0122 0.0112
2002 Blue 0.0461 0.0167 0.0121 0.0117 0.0119 0.0115 0.0115 0.0123 0.0121 0.0113
0317 NIR 0.2524 0.0727 0.0341 0.0304 0.0331 0.0306 0.0304 0.0377 0.0358 0.0297

All 0.1218 0.0922 0.0214 0.0195 0.0207 0.0193 0.0192 0.0231 0.0220 0.0188

TABLE 2 | RMSE evaluation of radiometric error for the LGC dataset.

Image Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.1149 0.0381 0.0173 0.0236 0.0179 0.0155 0.0180 0.0166 0.0183 0.0150
1 Green 0.0937 0.0285 0.0141 0.0196 0.0145 0.0126 0.0144 0.0131 0.0147 0.0120
2004 Blue 0.0631 0.0236 0.0121 0.0158 0.0124 0.0111 0.0106 0.0102 0.0119 0.0101
0502 NIR 0.2131 0.0476 0.0242 0.0318 0.0258 0.0224 0.0221 0.0239 0.0259 0.0214

All 0.1212 0.0665 0.0175 0.0235 0.0184 0.0160 0.0168 0.0167 0.0184 0.0152

Red 0.1224 0.0225 0.0238 0.0470 0.0292 0.0210 0.0196 0.0586 0.0291 0.0175
2 Green 0.0951 0.0145 0.0149 0.0225 0.0166 0.0138 0.0142 0.0223 0.0161 0.0127
2004 Blue 0.0701 0.0105 0.0120 0.0159 0.0115 0.0094 0.0144 0.0277 0.0112 0.0085
1025 NIR 0.2154 0.0313 0.0483 0.1086 0.0739 0.0335 0.0193 0.0429 0.0620 0.0209

All 0.1257 0.0589 0.0286 0.0607 0.0410 0.0215 0.0171 0.0404 0.0356 0.0156

Red 0.0846 0.0378 0.0300 0.0398 0.0301 0.0297 0.0290 0.0292 0.0309 0.0288
3 Green 0.0742 0.0327 0.0254 0.0341 0.0256 0.0253 0.0245 0.0252 0.0260 0.0245
2004 Blue 0.0513 0.0225 0.0184 0.0239 0.0187 0.0183 0.0179 0.0182 0.0189 0.0173
1212 NIR 0.1253 0.0606 0.0402 0.0540 0.0408 0.0408 0.0401 0.0395 0.0412 0.0392

All 0.0839 0.0489 0.0296 0.0395 0.0299 0.0297 0.0290 0.0291 0.0304 0.0286

Red 0.0968 0.0302 0.0141 0.0173 0.0145 0.0134 0.0132 0.0181 0.0149 0.0129
4 Green 0.0882 0.0210 0.0114 0.0137 0.0113 0.0103 0.0107 0.0134 0.0111 0.0098
2005 Blue 0.0642 0.0167 0.0114 0.0123 0.0106 0.0100 0.0119 0.0118 0.0102 0.0096
0113 NIR 0.2120 0.0727 0.0299 0.0406 0.0313 0.0301 0.0272 0.0384 0.0317 0.0275

All 0.1153 0.0706 0.0184 0.0239 0.0189 0.0180 0.0171 0.0230 0.0191 0.0167

TABLE 3 | RMSE evaluation of radiometric error for the Landsat-8 dataset.

Data Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.0374 0.0202 0.0093 0.0082 0.0087 0.0081 0.0079 0.0089 0.0094 0.0078
1–41 Green 0.0416 0.0158 0.0074 0.0064 0.0070 0.0067 0.0067 0.0060 0.0073 0.0066
2017 Blue 0.0281 0.0127 0.0075 0.0062 0.0072 0.0070 0.0072 0.0070 0.0069 0.0069
1219 NIR 0.1784 0.0584 0.0227 0.0220 0.0211 0.0210 0.0209 0.0544 0.0244 0.0204

All 0.0714 0.0700 0.0133 0.0126 0.0125 0.0123 0.0122 0.0279 0.0140 0.0119

Red 0.0435 0.0259 0.0090 0.0091 0.0086 0.0083 0.0084 0.0108 0.0095 0.0080
2–43 Green 0.0505 0.0211 0.0078 0.0079 0.0068 0.0068 0.0073 0.0086 0.0075 0.0067
2017 Blue 0.0302 0.0150 0.0061 0.0051 0.0056 0.0056 0.0059 0.0056 0.0058 0.0055
1219 NIR 0.2326 0.0727 0.0265 0.0230 0.0228 0.0229 0.0252 0.0474 0.0265 0.0236

All 0.0892 0.0925 0.0148 0.0132 0.0130 0.0130 0.0141 0.0248 0.0148 0.0132
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TABLE 4 | SSIM evaluation of structural discrepancy for the CIA dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.8861 0.8917 0.8873 0.9062 0.8953 0.8805 0.8808 0.9064
1 Green 0.8911 0.9063 0.8989 0.9134 0.9036 0.8989 0.8912 0.9154
2001 Blue 0.8860 0.9092 0.9009 0.9143 0.9046 0.8958 0.8951 0.9150
1109 NIR 0.9849 0.9874 0.9843 0.9882 0.9872 0.9791 0.9807 0.9894

All 0.9125 0.9240 0.9183 0.9309 0.9232 0.9141 0.9124 0.9319

Red 0.8325 0.8544 0.8539 0.8673 0.8694 0.8507 0.8465 0.8704
2 Green 0.8586 0.8685 0.8730 0.8885 0.8734 0.8719 0.8676 0.8841
2001 Blue 0.8701 0.8865 0.8865 0.9010 0.8837 0.8799 0.8830 0.8948
1204 NIR 0.8243 0.8558 0.8457 0.8558 0.8470 0.8073 0.8337 0.8549

All 0.8482 0.8684 0.9667 0.8800 0.8705 0.8546 0.8597 0.8780

Red 0.9570 0.9542 0.9557 0.9654 0.9631 0.9486 0.9506 0.9658
3 Green 0.8840 0.8910 0.8868 0.9080 0.9004 0.8782 0.8770 0.9096
2002 blue 0.8821 0.9007 0.8968 0.9153 0.9067 0.8962 0.8884 0.9154
0222 NIR 0.8750 0.9021 0.8960 0.9016 0.8932 0.8724 0.8844 0.8985

All 0.9010 0.9132 0.9103 0.9236 0.9172 0.9005 0.9018 0.9238

Red 0.9000 0.9229 0.9098 0.9230 0.9212 0.8979 0.9023 0.9242
4 Green 0.8945 0.9248 0.9187 0.9263 0.9186 0.9159 0.9137 0.9253
2002 Blue 0.8930 0.9318 0.9212 0.9299 0.9176 0.9146 0.9156 0.9270
0317 NIR 0.9112 0.9397 0.9230 0.9338 0.9286 0.9041 0.9097 0.9338

All 0.8999 0.9299 0.9185 0.9285 0.9216 0.9084 0.9107 0.9277

TABLE 5 | SSIM evaluation of radiometric error for the LGC dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.8809 0.8726 0.8760 0.9059 0.8915 0.8949 0.8763 0.9070
1 Green 0.8823 0.8711 0.8777 0.9086 0.8991 0.9002 0.8785 0.9123
2004 Blue 0.8882 0.8856 0.8833 0.9126 0.9129 0.9064 0.8855 0.9194
0502 NIR 0.8555 0.8436 0.8460 0.8788 0.8784 0.8606 0.8475 0.8851

All 0.8772 0.8674 0.8713 0.9017 0.8957 0.8913 0.8725 0.9061

Red 0.9203 0.8207 0.8809 0.9467 0.9597 0.6999 0.8833 0.9614
2 Green 0.8573 0.7822 0.8139 0.8840 0.9007 0.7155 0.8166 0.9018
2004 Blue 0.9240 0.8987 0.9193 0.9573 0.9469 0.7557 0.9209 0.9667
1025 NIR 0.6395 0.4610 0.5004 0.7611 0.8629 0.6366 0.5304 0.8607

All 0.8377 0.7428 0.7821 0.8891 0.9190 0.7057 0.7910 0.9243

Red 0.6315 0.5527 0.6220 0.6128 0.6290 0.6461 0.6217 0.6317
3 Green 0.6316 0.5504 0.6207 0.6109 0.6295 0.6384 0.6234 0.6300
2004 Blue 0.6139 0.5499 0.6062 0.6038 0.6156 0.6361 0.6080 0.6261
1212 NIR 0.6249 0.5497 0.6219 0.6219 0.6213 0.6174 0.6232 0.6371

All 0.6252 0.5498 0.6176 0.6122 0.6240 0.6347 0.6188 0.6312

Red 0.8946 0.8868 0.8927 0.9078 0.9074 0.8602 0.8929 0.9114
4 Green 0.8916 0.8851 0.8899 0.9103 0.9060 0.8562 0.8917 0.9135
2005 Blue 0.8748 0.8756 0.8793 0.8985 0.8915 0.8433 0.8813 0.9042
0113 NIR 0.8572 0.8458 0.8528 0.8667 0.8843 0.8154 0.8532 0.8833

All 0.8797 0.8724 0.8790 0.8961 0.8973 0.8438 0.8800 0.9032

TABLE 6 | SSIM evaluation of radiometric error for the Landsat-8 dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.9752 0.9811 0.9776 0.9809 0.9814 0.9780 0.9721 0.9817
1–41 Green 0.9251 0.9524 0.9435 0.9471 0.9415 0.9541 0.9267 0.9461
2017 Blue 0.9791 0.9865 0.9788 0.9810 0.9791 0.9853 0.9820 0.9810
1219 NIR 0.9056 0.9090 0.9160 0.9190 0.9095 0.8933 0.8810 0.9191

All 0.9467 0.9572 0.9543 0.9573 0.9534 0.9529 0.9411 0.9575

Red 0.9800 0.9821 0.9801 0.9835 0.9818 0.9811 0.9735 0.9837
2–43 Green 0.9842 0.9871 0.9871 0.9890 0.9863 0.9854 0.9839 0.9890
2017 Blue 0.9778 0.9866 0.9803 0.9824 0.9780 0.9864 0.9787 0.9810
1219 NIR 0.9126 0.9377 0.9361 0.9369 0.9118 0.9290 0.9165 0.9272

All 0.9641 0.9738 0.9712 0.9734 0.9650 0.9707 0.9636 0.9705
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are based on the coupled dictionary learning. STFDCNN and
BiaSTF were recently proposed that use the CNNs and deep
learning.

The default parameter settings were kept for all competing
algorithms. For STFDCNN, the SGD optimizer was used in
the training, the batch size was set as 64, the training iterated

300 epochs with the learning rate of the first two layers set to
1 × 10−4 and the last layer to 1 × 10−5, and the training images
were cropped into patches with a size of 64 × 64 for learning
purposes. For BiaSTF, the Adam optimizer was used in the
training by setting β1 � 0.9, β2 � 0.999, and ϵ � 10−8; the batch
size was set as 64, the training iterated 300 epochs with the

TABLE 7 | Hardware and software for experiment.

Hardware
RAM CPU GPU

62.6G 2 × Intel Xeon E5-2620 v4 2 × Tesla V100

Software

PYTHON CUDA PyTorch

3.6.2 9.0 1.2.0

MATLAB RAM CPU

R2018b 16.0 GB Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz

TABLE 8 | SAM evaluation of spectral inconsistency.

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.0891 0.0728 0.0723 0.0674 0.0664 0.1215 0.1443 0.0742 0.0646 0.0443
SPSTFM 0.0938 0.0760 0.0638 0.0567 0.0681 0.3511 0.1931 0.0802 0.0577 0.0346
EBSCDL 0.0934 0.0685 0.0665 0.0657 0.0631 0.1675 0.1400 0.0676 0.0637 0.0412
FSDAF 0.0789 0.0644 0.0620 0.0595 0.0539 0.0964 0.1513 0.0674 0.0593 0.0403
Fit-FC 0.0674 0.0619 0.0656 0.0587 0.0552 0.0694 0.1419 0.0729 0.0589 0.0426
STFDCNN 0.0853 0.0744 0.0714 0.0686 0.0543 0.1810 0.1275 0.0662 0.0888 0.0447
BiaSTF 0.1019 0.0687 0.0725 0.0713 0.0639 0.1614 0.1400 0.0667 0.0639 0.0495
Proposed 0.0661 0.0617 0.0620 0.0569 0.0516 0.0660 0.1370 0.0645 0.0577 0.0391

TABLE 9 | ERGAS evaluation of spectral inconsistency.

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.2040 0.1863 0.1897 0.1892 0.1541 0.1886 0.3443 0.1493 0.2117 0.1732
SPSTFM 0.2048 0.1873 0.1983 0.1787 0.2069 0.3567 0.4569 0.1798 0.1848 0.1631
EBSCDL 0.2057 0.1784 0.1886 0.1840 0.1592 0.2408 0.3481 0.1482 0.2009 0.1597
FSDAF 0.1906 0.1715 0.1731 0.1740 0.1396 0.1523 0.3437 0.1390 0.1936 0.1565
Fit-FC 0.1835 0.1719 0.1712 0.1738 0.1476 0.1567 0.3359 0.1452 0.1933 0.1643
STFDCNN 0.2162 0.1947 0.2038 0.1948 0.1407 0.3462 0.3390 0.1766 0.2410 0.2038
BiaSTF 0.2121 0.1789 0.1968 0.1888 0.1583 0.2203 0.3536 0.1477 0.2080 0.1730
Proposed 0.1795 0.1709 0.1696 0.1707 0.1312 0.1249 0.3303 0.1320 0.1894 0.1543

TABLE 10 | Q4 evaluation of spectral inconsistency (R/G/B).

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.8636 0.8543 0.8939 0.8963 0.8947 0.6207 0.6804 0.8811 0.8791 0.9289
SPSTFM 0.8636 0.8360 0.8918 0.9142 0.8386 0.2050 0.2242 0.8200 0.9132 0.9338
EBSCDL 0.8688 0.8684 0.9012 0.9099 0.8945 0.5289 0.6806 0.8820 0.8968 0.9422
FSDAF 0.8832 0.8767 0.9116 0.9182 0.9107 0.6757 0.6671 0.8924 0.9010 0.9414
Fit-FC 0.8740 0.8749 0.9025 0.9138 0.8955 0.7101 0.6794 0.8881 0.8981 0.9342
STFDCNN 0.8617 0.8695 0.8812 0.8991 0.9096 0.2713 0.6888 0.8433 0.9056 0.9178
BiaSTF 0.8614 0.8649 0.8921 0.9047 0.8944 0.5537 0.6836 0.8811 0.8892 0.9331
Proposed 0.8846 0.8774 0.9104 0.9186 0.9109 0.7342 0.6817 0.8958 0.9132 0.9423
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learning rate set as 1 × 10−4, and the training images were
cropped into patches with a size of 128 × 128 for learning
purposes. The experimental environment is listed in Table 7.

Metrics are used to evaluate the loss of radiation, the structure,
and the spectrum. Root-mean-square-error (RMSE)measures the
radiometric error. Structural similarity (SSIM) measures the
similarity of contours and shapes. The Spectral Angle Mapper

(SAM), Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS) (Du et al., 2007), and a Quaternion theory-based quality
index (Q4) (Alparone et al., 2004) measure the spectral
consistency. RMSE and SSIM are calculated band by band,
while ERGAS and Q4 are calculated with the NIR, red, green,
and blue bands as a whole. The ideal values are 1 for SSIM and Q4
while 0 for RMSE, SAM, and ERGAS.

FIGURE 1 | Flowchart of the proposed combination method.

FIGURE 2 | Manifestation of the small region of the NIR, red, and green bands of CIA image 1 for detail observation.
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4.2 Radiometric and Structural Assessment
RMSE and SSIM are calculated band by band. To save space, four
fusion results are listed for each dataset, which are evaluated with
RMSE in Tables 1–3, SSIM in Tables 4–6, SAM in Table 8,
ERGAS in Table 9, and Q4 in Table 10. The best scores are
marked in bold, and the better ones between scores of FSDAF and
Fit-FC are underlined.

Table 1 shows the radiometric error of Landsat-7
reconstruction. It is clear that FSDAF and Fit-FC can produce
more competitive results than dictionary learning– and deep
learning–based methods. Compared with FSDAF, Fit-FC
works better for image 1 but shows equal advantages for
images 2, 3, and 4. The proposed method produces the least
radiometric loss in majority cases.

The radiometric error of Landsat-5 is assessed in Table 2. It
is observed that the performance of FSDAF, Fit-FC, and
STFDCNN is accompanied with large fluctuation in image 3
due to the quick change caused by floods. Fit-FC ranks higher

than FSDAF for the NIR band. STARFM, EBSCDL, and
BiaSTF show better performance than SPSTFM. Again, the
proposed method produces the least radiometric loss in
most cases.

The radiometric error of Landsat-8 is assessed in Table 3.
The two dictionary-learning methods, SPSTFM and EBSCDL,
perform well in the blue and NIR bands. Fit-FC performs
poorly on image 43, making the proposed method slightly
worse than FSDAF. It can also be seen that the method
proposed in this study is suitable for the fusion of two
results with little difference to produce a better result.
When the two results differ greatly, the combination shows
high stability.

The structural similarity is measured in Tables 4–6. The digital
differences between algorithms are small. For Landsat-7 (Table 4),
FSDAF shows strong superiority than Fit-FC, while the advantage is
weak for image 2 of Landsat-5 (Table 5). STFDCNN and dictionary
learning–based methods show good structural reconstruction for

FIGURE 3 | Manifestation of the small region of the NIR, red, and green bands of LGC image 2 for detail observation.
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Landsat-7 and Landsat-8. For Landsat-5, STFDCNN works well for
images 1 and 3 but poorly for image 2. The proposed method works
steadily well in preserving good structures.

4.3 Spectral Assessment
SAM is assessed in Table 8 with the NIR, red, green, and blue
bands as a whole. SPSTFM works well for Landsat-8 but poor for
Landsat-5. FSDAF and Fit-FC can produce better results for
various datasets. The proposed method gives the best scores for
the majority of images.

ERGAS and Q4 for spectral assessment are calculated with the
NIR, red, green, and blue bands as a whole. ERGAS is assessed in
Table 9. The majority of the algorithms work well except for
SPSTFM. FSDAF shows better performance than Fit-FC for
Landsat-7 but poorer for Landsat-5. The proposed method
gives the best scores for all images.

Q4 is listed in Table 10 for spectral observation with the red,
green, and blue bands as a whole. Images 2 and 3 of Landsat-5 are

challenging due to the quick change of ground content, where
dictionary-based and CNN-based methods produce much poor
results. FSDAF and Fit-FC work well for most images. The
proposed method shows competitive performance as it gives
the best scores for the majority of images.

4.4 Visual Comparison
Four groups of images are demonstrated in Figures 2–5 for
visual identification of the NIR, red, and green bands. All
images are linearly stretched with the thresholds by which the
brightest and darkest 2% pixels of the ground truth images are
reassigned band by band. In this way, the color distortion can
be read from the visually enhanced images directly. The
manifested images in Figures 2, 3, 5 illustrate that FSDAF
produces more details while Fit-FC fuses more consistent
colors. Our method adopts both the advantages effectively
to approach the true image. The flood area in Figure 4 shows
that none of the algorithms can reconstruct the quick change

FIGURE 4 | Manifestation of the large region of the NIR, red, and green bands of LGC image 3 for flood observation.
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in a large region yet despite the effort of FSDAF on changed
landscapes.

4.5 Computational Cost
The consumed time in a single prediction is recorded in Table 11,
in which all the Python code used GPUs (nVidia 2080Ti) for

acceleration. It is not fair to compare the time directly because the
codes use various programming languages. For our method, the
integration process takes only 6 s to combine the fusion results of
FSDAF and Fit-FC. Since the fusion algorithms can work in a
parallel way, the consumed time for the proposed method is
recorded as the longest time plus the combination strategy.

5 DISCUSSION

The stability of our method is worthy of noting. On the one hand,
derived from the excellent original methods, our synthetic
method hits the highest score in most cases. By comparing the
digital evaluation, it is concluded that the proposed method is
usually better than the results of FSDAF and Fit-FC, which proves
the complementarity indirectly. On the other hand, when our
method fails to produce the best results, its score is close to the
highest score.

FIGURE 5 | Manifestation of the small region of the NIR, red, and green bands of Landsat-8 image 1 for detail observation.

TABLE 11 | Computational cost.

Algorithm Code language Running time (seconds)

STARFM Python 30
SPSTFM MATLAB 615
EBSCDL MATLAB 5150
FSDAF IDL 660
Fit-FC MATLAB 1300
STFDCNN Python 1430
BiaSTF Python 2200
Proposed MATLAB 1300 + 660 + 6
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The experiment shows that the proposed method may be
improved. The RMSE comparison shows that Fit-FC is weakly
better than FSDAF, but the SSIM comparison gives a contrary
conclusion. Even though our proposed method is much effective,
it does not make full use of the conclusion. To design a more
feasible integration strategy, more tests are required to identify
the unique advantages of spatiotemporal fusion algorithms,
which are prevented in this study by the limited space.

For spatiotemporal fusion, there is no similar method focusing
on integrating the fusion results for better performance. The only
analogous method was proposed by Chen et al. (2020), who
discussed the issue of data selection for performance
improvement. Different kinds of algorithms have different
advantages. Then, a good algorithm can design complex
processes that incorporate multiple kinds for higher quality, or
it can integrate the results through post-processing as the method
in this article did. Intuitively, the idea in this article can be used
for more remote sensing issues, such as pansharpening,
denoising, inpainting, and so on.

The main disadvantage of the method is the increased time. As
can be seen from Table 11, the post-processing time is very short so
we have to run two or more different algorithms that extend the total
time. This can be partly solved by launching algorithms in a parallel
way. Then, the total time is constrained by the slowest algorithm.

The proposed method is usually not sensitive to the data
quality of the input images. Some of the fusion results may be
poor for specific images, while the proposed method tends to
choose the best image block from multiple inputs. For them, the
targeted selection of the fusion result, that is, the merger strategy,
is the key. By performing this operation block by block, the
quality of the whole image is improved.

6 CONCLUSION

Aiming at the insufficient stability of spatiotemporal fusion
algorithms, this study proposes to make use of the

complementarity of spatiotemporal fusion algorithms for
better fusion results. An integration strategy is proposed for
the images fused by FSDAF and Fit-FC. Their fusion results
are decomposed into a strength component, a structure
component, and a mean intensity component, which are
packed to form a new fusion image.

The proposed method is tested on Landsat-5, Landsat-7, and
Landat-8 images and compared with seven algorithms of four
different types. The experimental results confirm the effectiveness
of the spatial fusion strategy. The quantitative evaluation on
radiometric, structural, and spectral loss shows that images
produced by our method can reach or approach the optimal
performance.
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The Particulate Organic
Carbon-to-Nitrogen Ratio Varies With
Ocean Currents
Shengjun Xiao1,2, Linlin Zhang1,2, Yuhao Teng1,2, Tao Huang1,2 and Wen Luo1,2*

1Key Laboratory of Virtual Geographic Environment, School of Geography, Ministry of Education, Nanjing Normal University,
Nanjing, China, 2Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,
Nanjing, China

Ocean currents could adjust ocean carbon and nitrogen composition which are an
important part of the global carbon and nitrogen cycle. We procured global
concentrations of particulate carbon and nitrogen in different depths, classified them
according to ocean currents (upper 300 m), and analyzed POC-to-PON ratio (particulate
organic carbon-to-nitrogen ratio) variations. We found that the regions with currents have a
higher ratio than those without currents in the northern hemisphere, except in 50°–60°N
(median ratio without currents is 8.38). Warm currents (median ratio ranges from 5.96 to
8.44) have a higher ratio than cold currents (6.19–8.89), except for the East Greenland
Current (reach to 8.44) and Labrador Current (reach to 8.89). Meanwhile, we also analyzed
the effects of ocean currents’ flowing and found that the distributions of the POC-to-PON
ratio vary in different current types (e.g., cause of formation and distance from the shore).
Generally speaking, the POC-to-PON ratio of the eolian currents and near-ocean currents
change fiercer than that of compensation currents and near-coast currents. Ocean
currents also have a buffering effect in the variation between surface and deep water,
which prevents the severe change of the POC-to-PON ratio. The high-value anomaly of
POC-to-PON caused by the confluence of warm and cold currents was also analyzed. It
can be deduced that the high ratio in the high-latitude region was mainly caused by the
terrigenous organic matter (especially carbon) and low nitrogen.

Keywords: POC, PON, ocean currents, spatial variation, ratio variations

INTRODUCTION

As an important part of the global biogeochemistry cycle, the ocean carbon and nitrogen cycle has
always been concerned. Alfred Redfield presented the deep ocean particulate matter ratio, which later
we call “Redfield ratio” (C:N:P � 106:16:1, Redfield, 1934), and it became a central tenet for ocean
biogeochemistry and nutrition research (Deutsch and Weber, 2012; Mills and Arrigo, 2010). Later,
many scholars studied the carbon, nitrogen, and phosphorus biochemical or stoichiometric
variations of phytoplankton in deep or surface water (Dickman et al., 2006). The elemental
composition and ratio have always been crucial points in ocean or land water research.

The research about oceans have been conducted very early (Allen, 1921; Stommel, 1957), but most
of it focused on the production, for example, Parsons thought that the ocean detritus should be
considered a source of food and secondary producers (Parsons and Strickland, 1962). In early times,
the stress of ocean research was the nutrition and production of plankton. Then numerous studies of
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biology, geography, and chemistry on oceans have been conducted
until now. When the Redfield ratio became a hot spot in marine
research, Tett connected the Redfield ratio with the phytoplankton
growth rate (Tett et al., 1985), and Handa performed chemical
studies on the organic matter and carbon cycle in ocean (Handa,
1991), and there had been research into the kinds or variations of
the phytoplankton community (Karl et al., 2001; Ho et al., 2010).
Singh researched C:N:P stoichiometry in the North Atlantic Ocean
(Singh et al., 2015), and Seok Jin Oh conducted research work on
spatial–temporal distribution of particulate organic carbon (POC)
and nitrogen (PON) in the southwestern area of the East Sea (Seok
Jin et al., 2016). Particulate organicmatter (POM) reveals carbon or
nitrogen sequestration and release in ocean compared with DOM
(dissolved organic matter). They are significant processes in the
global carbon or nitrogen cycle. Therefore, the distribution and
variation of POM in oceans or rivers get more attention.

Recently, many studies have been conducted on variations in
particulate carbon, nitrogen, and the phosphorus ratio of oceans,
lakes, rivers, and estuaries. Furthermore, the scale from estuaries is
regional to global (Kunz et al., 2011; Martiny et al., 2014). Megan
Young researched the export of carbon and nitrogen in mangrove-
dominated lagoons (Young et al., 2005), and Nicolas Savoye studied
particulate organic matter in the Gironde Estuary in France (Savoye
et al., 2012); regional research have been conducted in the Strait of

Magellan (Fabiano et al., 1999), Southern Ocean at 30°E–80°E
(Pasquer et al., 2010), and the northern Beibu Gulf (Kaiser et al.,
2014). Globally, Martiny found strong latitudinal patterns in the
C-to-P and N-to-P ratios of marine plankton (Martiny et al., 2013;
Martiny et al., 2014). Mouw even combined the global ocean
particulate organic carbon flux with satellite parameters (Mouw
et al., 2016). The researches were not only carried out among the
space domain but also the variation of the carbon and nitrogen ratio
in time, for example, Rembauville monitored the seasonal dynamic
POC export in the Southern Ocean (Rembauville et al., 2015), and
Zhao studied the seasonal variation of C:N:P in the western Pacific
Ocean (Zhao et al., 2016), and some conducted research both in
space and time (Niemi and Michel, 2015). Besides the seasonal
variation, there also has been long time scale research about ocean
POC or PON (Heinze et al., 2016). There are many scholars trying
to explain the distribution and variation of POM in marine
environment (Mouw et al., 2016; Barrera et al., 2017). Therefore,
variations in the element composition and ratio in space–time have
been focused in marine biogeochemistry, and the time variation
could be more important with the increasing impact of extreme
climatic change and human activities on the environment.

However, few studies suggest the ocean current itself has
effects on the variations in the carbon, nitrogen, and
phosphorus ratio and spatiotemporal change comprehensively

FIGURE 1 | Geographical locations of sample stations used in our study and ocean currents’ sketch map.
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and systematically. Most usually, researchers study the regional,
global, or spatial–temporal variations in carbon or nitrogen in
oceans. Even some conducted research on ocean currents’ effect
on carbon or nitrogen, where they only observed one current C or
N variation (Ruiz-Cooley et al., 2014), which are regional research
in fact. Ocean currents regulate the global carbon and nitrogen
cycle through their most important effect—transmission. They
influence the physical, chemical, biological, and geological
processes of surface or even deep oceans. The clear majority of
studies focusing on POM of phytoplankton in oceans are regional
or global, few from the angle of the ocean currents, and some were
studies on the element composition and ratio in the Pacific and
Atlantic oceans. The salt content and temperature of oceans can
be changed gradually corresponding to global warming;
afterward, the element composition could be altered.
Therefore, the currents’ influence in POM of phytoplankton
and their ratio have profound meaning to study the carbon
and nitrogen cycle as well as its response to global warming.

DATASET AND METHODS

Data
Our data set was archived fromHuang (Huang et al., 2018). There
are altogether 63,827 sample points in oceans. In order to study
ocean currents’ influence on the POC-to-PON ratio, all data have
been classified according to ocean currents (Orsi et al., 1995;
Bischof et al., 2004a; Gyory et al., 2004a; Bonhoure et al., 2004;
Rowe et al., 2004; Pidwirny, 2006). Meanwhile, the data which
were below 300 m (where currents can hardly affect the POC-to-
PON ratio, Monahan et al., 2001; Scott and Anya., 2001) were
rejected, except the data of the California Cold Current, Labrador
Current, and North Atlantic Warm Current which contained all
data to study the deep area variation on the POC-to-PON ratio.
The extremely low or high POC-to-PON ratio has been
eliminated through all data, and there were still 43,404
examples left after rejection (Figure 1). After calculating the
POC-to-PONmedian ratio, we only kept values ranging from 2 to
13 when plotting.Wemainly used the median POC-to-PON ratio
and included data of temperature, salt content, chlorophyll, pH,
and C, N, and P index, which were not complete though.

Spatial Statistical Analysis of Ocean
Currents
To identify the global surface ocean variation of the POC-to-PON
ratio, we analyzed global distribution from the top 300 m of the
water column with and without ocean currents. To reveal the
pattern of POC and PON, the currents (except the Benguela
Current, Alaskan Current, Canary Cold Current, West Wind
Drift, East Greenland Current, Antarctic Circumpolar Current,
and the Equatorial Countercurrent in the Atlantic) are divided
into upstream and downstream from the middle to understand
the variation in the POC-to-PON ratio with respect to the
direction of flowing. The direction of the current is also
abstract as longitude direction and latitude direction according
to the main direction of ocean currents. Because this data set is

sampling data, the actual site coordinates are not used. We just
classified and summarized the data according to the longitudinal
and latitudinal grid. To better study how the material transport
and energy transport of ocean currents affect the POC-to-PON
ratio, we divide the ocean current into meridional and latitudinal
directions and analyze the variation of the POC-to-PON ratio
along the meridional and latitudinal directions.

Because the amount of data is huge and the data are not evenly
distributed in space and time, the histogram and quantile analysis
methods are used to analyze the variation in the POC-to-PON
ratio from a statistical point of view. A histogram is used to
summarize the value distribution of the data sets. The given POC-
to-PON ratio data can be divided into several categories
according to the ocean current type or flow direction, and the
histogram analysis is performed with every category. For the
given category C, it is assumed that the number of observations is
N; the histogram analysis is defined as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(Xi) � {C: Xi − D

2
<C≤Xi + D

2
}

F(Xi) � count(S(Xi))
N

(1)

where S(Xi) is used to divide the original observation data into
different subsets, which are also known as histogram bins; Xi

denotes the central point of the ith bin, and D denotes the width
of the bins. After the division step, F(Xi) can be used to calculate
the frequency of the ith bin. And operator count(S(Xi)) is used to
count the observation number belonging to the ith bin.

Quantile analysis is a common method used for the
quantitative analysis of data set distribution. For the given
category C, its m quantile analysis is defined as follows:

{Cm}ni�1 �
⎧⎪⎪⎨⎪⎪⎩

C([np]+1) , np is not an integer

[C(np) + C(np+1)]
2

, np is an integer

(2)

In the formula, [] is the rounding operation; there are np samples
smaller than the quantile, and np may not be an integer. Cm

represents the value of the mth position in the sample. Quantile
analysis can generally be expressed by boxplot. Boxplot results
reflect the upper and lower boundaries, upper quartile, lower
quartile, and the median of the data set.

RESULT

We classified the datasets according to ocean currents and
explored the distribution of values, as shown in Figure 2. As
the southern hemisphere has less currents, it has the largest wind
current—the West Wind Current. The median C-to-N ratio of
the West Wind Current is 7.53 in the Atlantic, 7.76 in India, and
6.57 in the Pacific Ocean, all of them close to the R ratio, especially
in the Pacific. Moreover, the Antarctic Cycle Current has a lower
median ratio, 6.45. Consequently, in the Antarctic and open
ocean zones, both have cold currents. The POC-to-PON ratio is
very close to the R ratio. This is consistent with some conclusions,
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that is, open ocean, few or without human activities, has a POC-
to-PON ratio close to 6.63.

DISCUSSION

Spatial Variation of the POC-to-PON Ratio
With Ocean Currents
Global POC-to-PON Ratio Variation With and Without
Ocean Currents
To identify the global surface ocean variation in the POC-to-PON
ratio, we analyzed global distribution from the top 300 m of the
water column with and without ocean currents. As a result, the
median ratio in currents affects the regions’ range from 6.14 to
8.63, which is close to the Redfield ratio in general, and it is higher
in the northern hemisphere and high-latitude areas (Figure 3A).
In contrast to the POC-to-PON ratio in regions with and without
currents, we found that the ratio is higher with currents in the
northern hemisphere, except 50°–60°N (median ratio without
currents is 8.38), which probably is because of the few samples,
but in the southern hemisphere, the ratio is little different.
Therefore, in the northern hemisphere, ocean currents had an
increased POC-to-PON ratio but little influence in the southern
hemisphere. Actually, the distribution is complex in the northern
hemisphere.

We globally analyzed the median POC-to-PON ratio of upper
300 m sea water and classified the data ocean current and the
regions without currents. Some researchers have conducted
studies about the latitudinal patterns of the C-to-N ratio in
oceans (Martiny et al., 2013 Martiny et al., 2014), Although
some global median C-to-N ratios differ from the canonical

Redfield ratio, most of them are close to 6.6 in general. As
other study, the C-to-N ratio is higher in low latitudes and
warm ocean regions (Martiny et al., 2013), and the latitude
dominates the global element ratio of oceans. However,
whether the median C-to-N ratio of regions has ocean
currents or not is different. The existence of ocean currents
indeed affects the global C-to-N ratio because of the
function—transport. The main factors that influence the POC-
to-PON ratio of plankton are solar radiation, temperature,
nutrients, and the kinds of plankton communities (Barrera
et al., 2017). The currents adjust global C and N by delivering
heat, nutrients, and so on. The region with currents has a higher
median ratio than areas without currents (Figure 3B), although
the data of regions without ocean currents are limited. Therefore,
ocean currents could increase the POC-to-PON ratio. The ability
of regulating the surface global ocean carbon and nitrogen ratio is
related to the range of currents affecting the temperature of water,
cause of information, flowing direction, and other characters of
ocean currents.

The variation of the C-to-N ratio is remarkable in the northern
hemisphere, which is because of complicated conditions, than the
southern hemisphere—more significant currents as well as the
terrene. The southern hemisphere has broader and more open
oceans; there is little influence by currents which mainly contain
the West Wind Drift and Antarctic Circle Current, as well as less
human activities. Our results vary from others distinctly in the
upper latitude of the northern hemisphere, and the median ratio
in the upper latitude surface of oceans is above 6.63, and it even
exceeds eight in 80°N–90°N, most possibly because of the
terrigenous organic matter (especially carbon) and low
nitrogen in the Arctic Circle. There still is another

FIGURE 2 | C-to-N ratio variation with ocean currents. The value of the bar chart represents the count percentage of the histogram bins.
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likelihood—global warming. Because of ice and snow melting in
the Arctic Circle, the sea water has been desalinating and the deep
ocean circulation probably has been affected to great extent.
There have been several research studies about the variation of
POM in the Arctic Circle (Emerson et al., 2001; Harada, 2016).
The C-to-N ratio in north upper latitudes is likely to increase by
currents converging in the future because of global warming,
while how and to what extent are unclear.

POC-to-PON Ratio Variation With Ocean Currents
In fact, the ocean current affects the POC-to-PON ratio directly
by transporting nutrition, heat, and plankton to change the
composition of organic matter, and they also change the ratio
indirectly by regulating the environmental conditions. The scale
of the current affect could alter the organic matter element ratio
as well (Sterner et al., 2008). In our study, ratios are usually higher
large scale, and it will be closer to the R ratio in small scale.

Different temperatures of ocean currents have different
influences on the POC-to-PON ratio of global surface oceans.
In our study, the region with warm currents has higher median
C-to-N ratio, except the East Greenland Current and Labrador
Current. This is identical with most studies—higher temperature

and higher carbon-to-nitrogen ratio (Martiny et al., 2013;
Martiny et al., 2014). According to our data, warm currents
have higher temperature and concentration of chlorophyll than
cold currents, whereas the East Greenland Current has some
samples which have high concentration of chlorophyll. Thus, the
East Greenland Current has a much higher POC-to-PON ratio,
and it is probably a rich terrigenous supply. Low-latitude districts
receive more solar radiation. The temperature of surface sea water
is higher, so plankton has a favorable environment for growing in
higher temperature. Thus, warm currents have a higher POC-to-
PON ratio than cold currents, but only in middle and low
latitudes.

How about the warm currents at the same latitude? The North
Atlantic Warm Current has a much higher ratio than the
canonical Redfield value and that of the North Pacific Warm
Current. Meanwhile, the North Equatorial Warm Current has a
median ratio of 5.96–8.27, from lower to upper reaches, both
deviate from the R ratio. The situation at the same latitude is
complex and varying as the environment, including land–sea
distribution, nitrogen, plankton, and water temperature. The
sample points of the North Atlantic Warm Current are more
from offshore to central ocean compared with the North Pacific

FIGURE 3 | Latitudinal patterns of the global C-to-N ratio (upper 300 m). (A) Only including the region affected by ocean currents. (B) the region without ocean
currents. The blank indicates no data. M is the median ratio.
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Warm Current; it could comprise several terrigenous particulate
organic matter (POM). The North Atlantic is a bigger carbon
sink, and there has been a high carbon value and terrestrial POM
that could influence the carbon and nitrogen cycle, which has
been proved (Head et al., 1996). Although at some latitude, the
ocean current could change the latitude pattern of the POC-to-
PON ratio, which is affected by the distance to the shore as well.

In our study, all the cold currents, except the Antarctic flow,
are divided into upstream and downstream and have a decrease in
the POC-to-PON ratio with flowing. It is likely that cold currents
usually flow from high to low latitude; besides, the Brazil Warm
Current and North Atlantic Warm Current have the same trade.
However, the East Australian Current and North Pacific Warm
Current are different; their ratio increases from upstream to
downstream. They run from low to high latitude, and their
regular patterns are like cold currents. As for the Brazilian
Warm Current, there is the Falkland Cold Current joint which
causes a rich nutritional environment and pulls down the ratio
downstream.

Effects of Ocean Currents in POC-to-PON
Ratio Variation
POC-to-PON Ratio Variation Along the Direction of
Current Flow
Warm Currents
As shown in Figure 3, the range of POC-to-PONmedian ratios of
the warm currents is 5.96–8.44, and most of the warm currents
have much higher values than the Redfield ratio. For the
meridional current, all the three currents flow from low
latitudes to high latitudes (Figure 4A). Among the three
currents, both the Japan Warm Current and the East Australia
Warm Current are compensation currents, whose POC-to-PON
ratio structures are relatively stable (falling first and then rising,
and the Japan Warm Current rises abnormally high and far more
than the R ratio, which may be caused by the confluence of warm
and cold currents). The Brazil Warm Current is an eolian current,
whose POC-to-PON ratio is evolving with drastic changes
(especially in the front and end of the ocean current). This
indicates that ocean currents of different causes have different
mechanisms of action on the POC-to-PON ratio.

The latitudinal current is more common for warm currents
(Figure 4B), and the median POC-to-PON ratio of most warm
currents decreases with their flow direction. However, there exists a
marked difference between the near-coast current and the near-
ocean current. For the near-coast Alaska Current and the North
Indian Ocean monsoon Circulation, the POC-to-PON ratio is
relatively stable (fluctuates in the early stage and stabilizes in the
later stage), and the near-ocean North Atlantic Current and the
North Pacific Current are found to vary significantly (with an
obvious downward trend and fluctuates significantly in the later
stage).We can also find that theMexico Gulf Current rises rapidly in
the later stage because of the confluence of warm and cold currents.

Identical with longitudinal currents, almost all latitudinal
currents have a decreased POC-to-PON ratio with their flow
direction, except the North Atlantic Current and North Pacific
Current. There are many rivers that pour into the Northern

Atlantic; they carry massive POM from the land which changes
the C and N proportion. Different rivers have different effects
(Pasquer et al., 2010). Thus, the North Atlantic Current has an
increased ratio with its flow direction, reiterating what we think
determined by the composition and proportion of injected rivers.
As for the North Pacific Current, the increased ratio is probably
because of the missing water from the Equatorial Countercurrent
which leans toward north and is influenced by the El Nino
phenomenon (Chavez et al., 1999).

Cold Currents
As shown in Figure 5, the POC-to-PON ratios of the cold
currents range from 6.19 to 8.89 (median), which are higher
than the R ratio. The higher the latitude, the higher is the C-to-N
ratio. Same as most warm currents, the ratio of cold currents
decreases with flow direction. Most cold currents are
longitudinal, compared with latitudinal currents which mainly
transmit nutrition and organisms, and the longitudinal currents
adjust heat of sea water in addition.

Compared with latitudinal currents, most cold currents have
lower POC-to-PON ratios, except the cold currents in high
latitudes in the northern hemisphere (the East Greenland
Current and Labrador Current). The reason could be the
terrigenous organic matter (especially carbon) or the low
nitrogen in the Arctic Circle (Wheeler et al., 2002; Martiny
et al., 2013). On the other hand, the confluence of warm and
cold currents also made the POC-to-PON ratio unusually high.

POC-to-PON Ratio Variation With Ocean Currents
Move Vertically
In addition to the horizontal motion of matter and energy, ocean
currents will further strengthen the vertical motion. The element
ratio changes with depth (Martiny et al., 2013; Auguè res and Loreau,
2015), and the ratio is low in deep water. The ratio of deep water
under some currents (below 300m) is also shown. Deep water of the
Labrador Cold Current has a high C-to-N ratio reaching up to 8.17,
whereas the North Atlantic Warm Current does not have too low
ratio in deep areas (Figure 6). POM of surface ocean water could
subside to as deep as the effect of gravity, so deep water could not
decrease extremely if the surface water has a high ratio. However, in
upwelling areas, such as the deep of the California Cold Current, the
ratio of deep water is usually higher than the surface, and it is also
above the R ratio. In upwelling zones, surface water is rich in
nutrition, yet deep water is short of nutrition. Many studies have
confirmed the ratio is low in oligotrophic areas. We can deduce that
the C-to-N ratio in deep areas does not reduce drastically if surface
water has a high ratio; it will likely continue to have a higher ratio.
The ratio tends to be higher in deep water, if the C-to-N ratio of
surface water is low. In other words, the currents advance the ratio in
deep water, especially in low-ratio areas, particularly in upwelling
areas, while this trend is overt in cold currents; the ratio decreases
much in deep water of regions with warm currents.

Effects of the Confluence of Warm and Cold Currents
The confluence of warm and cold currents could mix sea water
resulting in nutrients upwelling from deep water, phytoplankton
booming, and fishing grounds being often found there. We chose
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two typical cold and warm intersections to analyze its impact on
the ratio. As shown in Figure 7, the C-to-N ratio in the
confluence was much higher. However, we found that the
ratio would increase at the intersection first and then decrease
after mixing, for example, the Mexico Gulf Warm Current
intersects with the Labrador Cold Current, and the median
ratio changes from 5.80 to 9.80 and then to 7.60 (Figure 7A).
The same trend appears between the North Atlantic Current and
the East Greenland Current (Figure 7B). Consequently, the
confluence of warm and cold currents could raise the POC-to-
PON ratio.

We can also find that fromwarm to cold currents, the POC-to-
PON ratio increases sharply, but from cold to warm currents, the

ratio increases slowly. The reason may be that the POC-to-PON
ratio of the cold current is much larger, which further proves that
the main reason for the high ratio in the high-latitude region is
the terrigenous organic matter (especially carbon) and the low
nitrogen (Barrera et al., 2017).

CONCLUSION

We procured global particulate organic carbon and nitrogen of
phytoplankton in oceans, analyzed the POC-to-PON ratio of the
global variations of surface water and the median ratio based on
ocean currents (with or without ocean currents). We found that

FIGURE 4 | POC-to-PON ratio variation along warm currents. (A) Latitudinal warm current. (B) Longitudinal warm current.
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FIGURE 6 | Frequency of C-to-N ratio in deep water. M is the median ratio.

FIGURE 5 | POC-to-PON ratio variation along cold currents.
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the global ocean median ratio, especially in the southern
hemisphere, is close to the Redfield ratio, whereas the ratio is
a little higher in the northern hemisphere, it even reaches 8.63 in
80°N–90°N. In our study, ocean currents indeed could affect the
POC-to-PON ratio by adjusting heat, nutrition, and delivering
plankton.

The higher ratio arises in warm upper latitudinal currents,
whereas it is lower in cold lower latitudes. On the other hand,
the distributions of the POC-to-PON ratio vary in different
ocean current types (e.g., cause of ocean currents and
distance from shore). Generally speaking, the POC-to-
PON ratio of the eolian current and near-ocean current
change fiercer than that of the compensation current and
near-coast current. Meanwhile, ocean currents also have a
buffering effect in the variation between surface and deep
water, which prevents the severe change of the POC-to-PON
ratio. The analysis of the high-value anomaly of the POC-to-
PON ratio with the confluence of warm and cold currents

showed that the changing process of warm currents and cold
currents is different, which may promote our understanding
of high ratios in high-latitude regions.

Our study shows that ocean currents will have more
important, extensive, and profound impact on the ocean
carbon and nitrogen cycle. With the process of global
warming, the effect of currents should get more attention.
And we should focus on the variation in the northern
hemisphere, especially the Arctic because of its complex
conditions and human activity effects.
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Sea surface temperature (SST) is an important factor in the global ocean–atmosphere
system, being vital in a variety of climate analyses and air–sea interaction research studies.
However, estimating daily SST with both high precision and high spatial completeness
remains a challenge. This article attempts to solve this problem by merging two
complementary daily SST products, that is, the 25 km-resolution Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) SST and 4 km-resolution Moderate Resolution
Imaging Spectroradiometer (MODIS) SST, using a genetic algorithm–assisted deep neural
network model (GA-DNNM). The merged SST with a spatial resolution of 4 km and a
temporal resolution of 1 day is achieved. Experiments in the Asia and Indo-Pacific Ocean
(AIPO) region in 2005 were conducted to demonstrate the feasibility and advantages of the
proposed method. Results showed that the spatial coverages of the original MODIS SST
and AMSR-E SST are ranging from 25.0 to 48.1%, and 31.5 to 47.6%, respectively, while
the merged SST achieves a spatial coverage ranging from 56.1 to 73.1%, with
improvements ranging from 50.2 to 131.7% relative to the original MODIS SST.
Comparisons with drifting buoy observations indicate that the merged SST is accurate,
with an average bias of 0.006°C and an average RMSE of 0.502°C, in places where the
MODIS SST data are missing before being merged in the AIPO area, and with an average
bias of −0.082 °C, and an average RMSE of 0.603°C for the merged SST in the whole
study area.

Keywords: sea surface temperature (SST), AMSR-E SST, MODIS SST, data fusion, genetic algorithm, deep neural
network model

INTRODUCTION

Sea surface temperature (SST) is an important physical parameter of the oceans, playing a
fundamentally important role in the exchange of energy, momentum, and moisture between the
oceans and atmosphere (Wentz et al., 2000). The SST’s changes may alter marine ecosystems, affect
global climate significantly, influence the development and evolution of tropical storms and
hurricanes, and potentially contribute to droughts and floods in some areas (Wentz et al., 2000;
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USEPA, 2021). SST with high spatiotemporal resolution, spatial
coverage, and accuracy is of vital importance to forecasting
weather and monitoring climate change (Reynolds & Smith,
1995; Reynolds et al., 2002; Guan & Kawamura, 2004; Guo,
2010; Li et al., 2013; Tang et al., 2015; Zhu et al., 2018; Xiao
et al., 2019).

Satellite observations, including infrared (IR) and microwave
(MW), are the major sources based on which the global SST
products are derived. IR SST is the earliest satellite derived one
that emerged in the 1970s (Wentz et al., 2000). The IR SST usually
has high spatial resolutions but is vulnerable to cloud
contaminations (covering about half of the Earth), fog, and
aerosols, leading to sparse spatial coverage and large amounts
of missing data (Tang et al., 2015). In contrast, microwaves can
penetrate clouds with little attenuation, and thus, MW SST can
provide a fairly high spatial coverage of the sea under all weather
conditions, except for rain (Wentz et al., 2000). However, MW
SST has lower resolution than IR SST. Besides, its accuracy near
coastlines is low, and it may not even be retrieved near lands (Li
et al., 2013). It can be concluded that both IR SST and MW SST
have advantages and disadvantages, which means they can only
derive SST under certain circumstances alone. However, they are
complementary to each other. Therefore, we can utilize these two
types of SST complementarily to obtain SST with desirable
qualities based on the idea of synergy (Zhang and Chen, 2016).

There have already been research studies on conflating MW
SST and IR SST (Chao et al., 2009; Donlon et al., 2012; Guan &
Kawamura, 2004; Guo, 2010; Li et al., 2013; Tang et al., 2015;Wang
& Xie, 2007; Zhu et al., 2018). The mostly used methods are
objective analysis (OA), optimum interpolation (OI), data
assimilation, and Bayesian methods. OA, based on the
Gauss–Markov theorem, was first introduced into
oceanographic applications by Bretherton et al. (1976).
However, statistical information about the field to be
interpolated should be known or the field should be smooth
(McIntosh, 1990). The OI method can increase the spatial
completeness. However, it smoothens the fine spatial
characteristics, which limits applications near the coastal area
(Li et al., 2013; Tang et al., 2015). Besides, prior knowledge of
the statistics of errors of input data is also required, which however
is hard to know (Bretherton et al., 1976; Tang et al., 2015). There
are primarily two data assimilation methods applied to merging
SSTs, including the VARiational (VAR) approach and Kalman
filter (KF). Using the same mathematical principle with OI, the
VAR approach has a disadvantage that the variances of the
background error and the covariances of the observational error
are usually subjectively specified due to the difficulties in
ascertaining them (Li et al., 2013; Tang et al., 2015). The KF
needs to transform scales before merging, which may introduce
extra uncertainties (Zhu et al., 2018). The Bayesian hierarchal
model (BHM) and Bayesian maximum entropy (BME) are two
typical Bayesian methods for merging multiple SSTs. The BHM-
based methods assume that the value of pre-fusion data satisfies a
special distribution. They use the prior knowledge as parameters
and conclude the posterior average value to be the fused value
(Guo, 2010). Therefore, prior knowledge is still a necessity, and bad
or insufficient prior knowledge may lead to inaccurate fusion

results. BME has been successfully applied to merging IR SST
and MW SST of different spatial resolutions to produce high-
resolution and high-accuracy SST (Li et al., 2013; Tang et al., 2015).
The BME method can resolve the scale transformation problem of
KF, but prior knowledge is still needed.

Unlike the previous methods, the deep neural network
model represents a nonlinear computational method for
learning knowledge from data and predicting complex
trends, no matter what distributions the errors are subjected
to, or how complex the relationships hidden in the data are
(Yue et al., 2017; Zare Abyaneh et al., 2016). It has been
successfully applied to numerous areas such as speech
recognition (Dahl et al., 2012), human face recognition (Le,
2011), crop yield prediction (Kaul et al., 2005; Panda et al.,
2010), crop type classification (Cai et al., 2018), weather
forecasting (Valverde Ramírez et al., 2005), environmental
monitoring (Li et al., 2017), and image fusion (Wu et al.,
2018). However, neural networks tend to get trapped in local
extreme values during training. Therefore, some researchers
have tried to solve this problem by combing the neural network
approach with optimization methods such as genetic
algorithms (GA), and have achieved better performance and
improved results consequently (Mahmoudabadi et al., 2009;
Tahmasebi & Hezarkhani, 2012).

Therefore, considering the complex patterns and uncertainties
in the satellite data, the fact that current methods usually require
prior knowledge about the error statistics of input data which
however is sometimes hard to ascertain, and the advantages of
genetic algorithm-assisted deep neural network model (GA-
DNNM) in learning patterns of data and dealing with
uncertainties, no matter how complex the patterns are and
how the data are distributed, we adapt the GA-DNNM to
model the relationship between IR SST and MW SST data,
and merge these two data to produce high-quality SST
products which can further benefit climate analyses and
air–sea interaction studies. Therefore, this research aims to 1)
develop a GA-DNNM model to capture complex relationships
between IR SST and MW SST, and evaluate the accuracy of such
relationships over different time frames; 2) exploit the
relationships to produce merged SST using IR SST and MW
SST; and 3) evaluate the quality of the merged SST with drifting
buoy observations (ground truth).

The study area is targeted at the area joined by the Asia and
Indo-Pacific Ocean (AIPO) (Chang-Xiang et al., 2010). The
major contributions of this article include 1) a novel GA-
DNNM method specifically developed and demonstrated to be
feasible and accurate for the task of merging IR SST andMW SST,
and 2) the merged SST whose spatial resolution is 4 km, temporal
resolution is 1 day, and spatial coverage is much improved.

The reminder of the article is structured as follows. In Section 2,
the study area and data are introduced. Section 3 describes the
method, including data preprocessing, deep neural network model
design, and genetic algorithm–based deep neural network model
parameter optimization. In Section 4, the experimental results are
given, and the accuracy of the GA-DNNM and quality of the
merged SST are comprehensively evaluated. Finally, the
conclusions are given in Section 5 with potential future work.
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STUDY AREA AND DATA

Study Area
The study area AIPO lies between 30°S and 45°N, 30°E, and 180°E,
as shown in Figure 1. The ocean–atmosphere interaction over
AIPO has significant impacts on the short-term climate
variations and predictions in China and surrounding areas
(Wu et al., 2006; Li et al., 2013). Therefore, it is of vital
importance to provide SST with high accuracy, high spatial
completeness, and high spatiotemporal resolution in this region.

Data
This research uses two kinds of satellite-derived SSTs, that is,
moderate-resolution imaging spectroradiometer (MODIS) SST,
that is, IR SST, and advanced microwave scanning radiometer for
EOS (AMSR-E) SST, that is, MW SST for merging, and drifting
buoy observations as the ground truth for validation purpose, as
illustrated in Table 1 and detailed in the following subsections.

MODIS SST
MODIS SST that is used in this research is the MODIS Aqua
Global Level 3 Mapped Thermal SST products derived from the
11 and 12 µm thermal infrared bands, produced and distributed
by the Ocean Biology Processing Group (OBPG) at the NASA
GSFC (OBPG, 2015;Werdell et al., 2013). Daily, weekly, monthly,
and annual MODIS products can be obtained at the spatial
resolutions of both 4.63 and 9.26 km, and for both day and
night passes. To avoid diurnal warming caused by solar heating of
the ocean surface, and to provide high spatiotemporal resolution

SST, the daily 4 km-resolution nighttime SST products at 1:30 am
local time are chosen. The version of this dataset is v2014.0
released on August 31, 2015. The time span of this dataset is from
July 4, 2002 to present, and in this study, the daily MODIS SST
data in 2005 are chosen, with 363 images in total (theMODIS SST
on November 17, 2005 and that on November 20, 2005 are
excluded).

The SST data used are in the format of netCDFwith two layers,
including a temperature data layer and a data quality control
layer. The data quality control layer has the same number of
pixels as the temperature data layer, recording a quality label of
the corresponding SST on the temperature data layer. The quality
flags are as following: 0 represents good, 1 represents
questionable, 2 represents clouds, and 255 represents gross
clouds, land, and other errors. In this research, the MODIS
SST pixels with the quality flag equaling 0 are used for the
modeling process. The temperature data represent the
temperature at the depth of a few micrometers, with a valid
retrieval range of −2°C–32°C (Armstrong, 2007).

AMSR-E SST
AMSR-E SST is derived from the remote sensing data of AMSR-E
on NASA’s EOS Aqua spacecraft, produced by Remote Sensing
Systems (RSS), and sponsored by the NASA AMSR-E Science
Team, and the NASA Earth Science MEaSUREs Program (Wentz
et al., 2014). The data version is v7 released in October 2011. The
daily SST products provided by RSS are orbital data that are
mapped to 0.25°C grid, and divided into two maps based on
ascending (1:30 pm) and descending (1:30 am) passes. To be

FIGURE 1 | Study area.

TABLE 1 | Specification of data used in this research.

SST data Spatial range Time range Spatial resolution
(km)

Temporal resolution
(hour)

Depth

MODIS SST 30°S ∼ 45°N, 30°E ∼ 180°E 2005 4 12 ∼ um
AMSR-E SST 25 12 ∼1 mm
Drifting buoy SST — 6 0.2–0.3 m
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consistent with the MODIS SST data in time, the data measured
at 1:30 am are chosen.

The AMSR-E SST data are the temperature of the top layer of
water, which is about 1 mm thick. The original data values are in
the range of 0–255, with 0–250 indicating valid geophysical data,
251 indicating missing SST, 252 indicating sea ice, 253 indicating
bad observations which are not used in composite maps, 254
indicating no observations, and 255 indicating land mass. The
original data values have to be scaled to get meaningful SST,

which is achieved by multiplying the scale factor (0.15) and
adding the offset (−3.0) (RSS, 2021). Therefore, the valid value
for AMSR-E SST is -3°C–34.5°C.

Drifting Buoy SST
Drifters are expendable satellite-tracked systems which drift in
response to ocean currents and winds. Currently, there are more
than 1,000 drifters circulating in the world ocean, measuring SST
and other properties (e.g., atmospheric pressure, sea salinity,

FIGURE 2 | Workflow for merging MW and IR SSTs based on GA-DNNM.
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wind speed, and wind direction) at unprecedented resolution as
ocean currents carry them along. The drifting buoy observations
are usually used to correct the satellite measurement of ocean
environmental parameters.

The drifting buoy SST data that are used in this research are
collected, processed, and quality-controlled by the Atlantic
Oceanographic and Meteorological Laboratory (AOML)
(Lumpkin & Centurioni, 2019). The measurements are
obtained at a depth of 0.2–0.3 m. The raw observations are
interpolated into quarter-day intervals at 00:00, 06:00, 12:00,
and 18:00 UTC using an optimal interpolation procedure. For
the purpose of minimizing the possible diurnal warming of in
situ SST and avoiding cold bias of the AMSR-E SST and
MODIS SST, the minimum value of the observations of a day
is chosen as daily ground truth for validation of the merged
SST (Li et al., 2013; Tang et al., 2015). Before using the drifting
buoy data, we remove the gross errors which are beyond the
range of −1.8 °C–35 °C (Høyer et al., 2012). The chosen
drifting buoy SST at the same day is then mapped to 4 km
× 4 km grids for the MODIS SST and merged SST, and 25 km
× 25 km grids for AMSR-E SST by averaging the drifting buoy
data belonging to the same grid as the corresponding
satellite SST.

METHODS

The workflow of the method is depicted in Figure 2. First,
ocean pixels are extracted in MODIS SST, based on AMSR-E
SST. Then AMSR-E SST and MODIS SST pixels are matched
based on locations, and quad-tuples (SSTAMSR-E, latitude,
longitude, and SSTMODIS) are obtained. After preprocessing,
including outlier removal and normalization, the quad-tuples
are used by the genetic algorithm to obtain optimal initial
parameters for the neural network model. Then the optimized
neural network is trained with the quad-tuples to establish
a mapping function between (SSTAMSR-E, latitude, and
longitude) and SSTMODIS. The mapping function is later
used to reconstruct the MODIS SST where MODIS SST is
missing, but AMSR-E SST exists. The final merged SST is
achieved by combining the reconstructed MODIS SST with
the original MODIS SST and performing necessary post-
processing. The following subsections detail the main steps
of the method.

Extracting Ocean Pixels in MODIS SST
Based on AMSR-E SST
Extracting ocean pixels from the satellite SST data is the prior
step for further evaluating the spatial coverage of satellite
SST before and after merging. It can be easily achieved for
AMSR-E SST because the land pixels are marked separately
in AMSR-E SST with a flag value 255. However, we cannot
directly determine land pixels in MODIS SST because the
MODIS SST quality control layer uses the same flag 255 to
represent land, gross clouds, and other errors. By using the
cross-check method proposed in the studies by Li et al.

(2013) and Zhu et al. (2018), we can extract the land pixels
in MODIS SST and further obtain the ocean pixels with the
assistance of AMSR-E SST. The principle of this method is
formulated as

IsLandPixel(MODIS SST) � {True if flag(MOIDS SST) � 255 and flag(AMSR − E SST) � 255
False otherwise

(1)

Namely, for a pixel in MODIS SST flagged with 255 (potential
land), if the AMSR-E SST pixel that spatially overlaps the most
with the target MODIS pixel is marked as land, then the MODIS
SST pixel is identified as land. Otherwise, it is regarded as an
ocean pixel with gross clouds and other errors. When the land
pixels are identified in MODIS SST, ocean pixels can then be
easily extracted.

Data Location Matching
To achieve high-resolution and high-spatial-coverage merged
SST, the missing high-resolution MODIS SST pixels should be
reconstructed based on the low-resolution cloud-free AMSR-E
SST, where the AMSR-E SST has value. Therefore, an important
step of our method is establishing a mapping relation between the
MODIS SST and AMSR-E SST at the same location. To achieve
this, first we must match MODIS SST and AMSR-E SST where
the values of both SST exist in the study area. The output of the
matching is quad-tuples (SSTAMSR-E, latitude, longitude, and
SSTMODIS), which will feed into the deep neural network
model for model establishment. Algorithm 1 achieves this
goal, where grid resolutionAMSR-E SST � 0.25°, and ceil(x)
function rounds x to the smallest integer that is bigger than or
equal to x.

Outlier Removal and Normalization
Before feeding the quad-tuples (SSTAMSR-E, latitude, longitude,
and SSTMODIS) for model establishment, first we must perform
some preprocessing for data quality control, including outlier
removal and data normalization. The outlier removal can help
avoid the decrease in modeling accuracy caused by outliers in the
training data (Khamis et al., 2005). The normalization of the
quad-tuples can enhance the neural network’s training speed and
performance (Puheim & Madarász, 2014).

Algorithm 1 | Algorithm for creating quad-tuples

1. procedure CREATING QUAD-TUPLES
2. for each MODIS SST pixel PMODIS SST that has value SSTMODIS with quality

flag � 0, denoting its center point coordinate as (latMODIS,, lonMODIS) do
3. Calculate the latitude index Indexlat and longitude index Indexlon of the

center point of the MODIS SST pixel in the corresponding AMSRE SST
pixel, denoted as PAMSR-E SST and calculated using the following formulas:

Indexlat � ceil( latMODIS−latmin
grid resolutionAMSR−E SST

)
Indexlon � ceil( lonMODIS−lonmin

grid resolutionAMSR−E SST
)

4. Obtain the corresponding AMSR-E SST value SSTAMSR-E of PAMSR-E SST by
Indexlat and Indexlon

5. Create a quad-tuple (SSTAMSR-E, latitude, longitude, and SSTMODIS) where
latitude � latMODIS and longitude � lonMODIS

6. end for
7. end procedure
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For outlier removal, we calculate the difference between
AMSR-E SST and MODIS SST of each quad-tuple and
obtain a difference value set. The quad-tuple with its
difference value falling outside of 3 standard deviations of
mean of the difference set are flagged as an outlier and
removed. Then, the remaining quad-tuples go to the next
step for normalization.

To perform normalization, we first split the N rows (N is the
number of quad-tuples obtained after outlier removal) of quad-
tuples (SSTAMSR-E, latitude, longitude, and SSTMODIS) into N rows
of triple-tuples (SSTAMSR-E, latitude, and longitude) andN rows of
scalar value SSTMODIS. Then, we map values of each row of both
the triple-tuples and the scalar values to [-1 1] by using the
following equation.

y � (ymax − ymin)p(x − xmin)
(xmax − xmin) + ymin(if xmax � xmin, then y � x), (2)

where ymax � 1, ymin � −1, xmax, xmin are the maximum and
minimum values of each row, x is the value to be normalized,
and y is the normalization result of x. The normalized triple-
tuple will be used as input and the normalized scalar value will
be used as the desired output of the deep neural network model
during both the genetic algorithm–assisted parameter
optimization process and the deep neural network model
training process.

Genetic Algorithm–Assisted Deep Neural
Network Model
Deep neural network models are good at modeling nonlinear and
complex relationships among variables. Therefore, in this research, we
use a deep neural network model for modeling the relationships
between MODIS SST and AMSR-E SST together with locations,
namely, obtaining the relationship
SSTMODIS � f(SSTAMSR−E, latitude, longitude). However, the
usually adopted gradient-based optimizers for training neural
networks usually lead to a local optimum instead of a global
optimum. Therefore, in this study, a global search method, that is,
the genetic algorithm, is utilized to help prevent the deep neural
network model from being trapped in a local optimum, which has
been demonstrated in previous studies (Sexton et al., 1998; Tahmasebi
& Hezarkhani, 2012). The details of the model establishing process,
including deep neural networkmodel design, genetic algorithm–based
parameter optimization, deep neural network model training, and
performance validations, are explained as follows.

Deep Neural Network Model
The deep neural network model used in this research is a feed-
forward deep neural network model, the structure of which is
shown in Figure 3. It consisted of an input layer, one or more
hidden layers, and an output layer. Each layer is consisted of a
number of neurons. Neurons between the layers are connected
with varying weights (denoted as W in Figure 3). The weighted
sum (denoted using the operator ∑ in Figure 3) of all the inputs

FIGURE 3 | Structure of a feedforward deep neural network model.
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to a neuron plus a bias is activated by an activation function f (·),
producing the output of the neuron.

The deep neural network model is trained by using a
backpropagation (BP) algorithm. The interconnecting weights
and bias are updated iteratively to minimize the output error,
which is usually a mean-square-error (MSE) between the
targeted outputs and actual outputs of the neural network
over all the training samples (Zare Abyaneh et al., 2016), and
is calculated as

E � 1
N

∑
x,w,b

				y(x) − ŷ(x)				2, (3)

where b and w denote all the bias and weights in the network,
respectively. N denotes the number of inputs, x is the input of the
network, and y(x), ŷ(x) are the vectors of the activated output of
the network and targeted output, respectively.

During the backpropagation, the weights and bias are updated
using a gradient descent strategy. In each iteration, the gradient is
first calculated using

zE

zw
� ( zE

zw1
,
zE

zw2
, ...,

zE

zwℓ

)
zE

zb
� (zE

zb1
,
zE

zb2
, ...,

zE

zbk
). (4)

Then, each weight and bias are updated using the increment,

Δwi � −η zE

zwi
for i � 1, 2, and ℓ, (5)

Δbj � −η zE

zbj
for j � 1, 2, and k, (6)

where η is the learning rate, which is a constant.
The following parameters need to be determined in the deep

neural network model: the number of hidden layers, the number
of neurons in each hidden layer, the activation function for each
layer, and the learning rate. The parameters in this study are set
by combining experience and experiments. We choose a 3-layer
architecture with three neurons for the input layer which receives

FIGURE 4 | Workflow of using GA to optimize the initial parameters of the deep neural network model.

TABLE 2 | Configuration of genetic algorithm.

Initial population size Elite count Crossover fraction Mutation rate Generations

200 10 0.8 0.01 100
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the input triple-tuples (SSTAMSR-E, latitude, and longitude), seven
neurons for the hidden layer, and one neuron for the output layer
which outputs the estimated SSTMODIS value. The number of
hidden layers and number of neurons in each hidden layer are
determined by the process that we first chose several
configurations of the number of hidden layers and the number
of neurons in each hidden layer, then we compare the prediction
performance of each configuration, and finally, the one that
achieves the best performance is chosen. The sigmoid function
is used as the activation function for the hidden layer, and the
linear function is used as the activation function for the output
layer. The learning rate is set to 0.05.

Genetic Algorithm–Based Deep Neural Network
Parameter Optimization
By using the gradient descent method, the cost function is
driven to a low value which however is without global
convergence guarantee. Besides, the gradient-based training
method is sensitive to the values of initial parameters
(i.e., weights and bias). Thus, to prevent the deep neural
network model from being trapped in a local minimum, the
GA approach is adopted.

GA is a meta-heuristic method for solving optimization
problems. Some researchers have demonstrated that GA can be
used to help the neural network achieve global optimum

(Mahmoudabadi et al., 2009; Wang et al., 2016; Yu & Xu, 2014).
GA is based on the process of natural selection (Whitley et al., 1990),
during which a population of individual solutions is repeatedly
modified, and the population finally reaches an optimal solution
through successive generations based on the following rules.

• Selection: select individuals as parents in the current
generation to reproduce next generation based on their
fitness.

• Crossover: combine the genes of parents to produce
children as individuals in the next generation.

• Mutation: introduce random changes to a chromosome to
produce children for the next generation.

Specifically, for optimizing the deep neural network model in
this study, parameters of the neural network, including weights
and bias (w, b), are encoded to a chromosome, and a population
of such chromosomes is created and initialized. The fitness of
each chromosome is evaluated using

ffitness(chromosome) � C(x, w, b) + 1
2
‖w‖2, (7)

where C(x,w,b) is the MSE of the deep neural network model
whose parameters are specified by the chromosome. The L2
regularization term 1

2‖w‖2 is also added to the fitness function to

FIGURE 5 | Statistics of GA-DNNM performance on the daily test dataset in 2005.
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balance weights. Chromosome with the least fitness function value is
considered as the fittest individual, namely, the best solution in the
current generation of population. Based on the rules defined above,
the population evolves from generation to generation and finally

stops at a specific generation according to the stopping criteria. The
chromosome in generationGtwith the best fitness is the final optimal
solution we wanted to seek, represented as
optimalInitialParam � (w, b)Gt

. This optimalInitialParam is then

FIGURE 6 | Estimated probability density of residuals of the proposed GA-DNNM for prediction on test data. Subfigures (A)–(L) are the estimated probability
densities of residuals for the first day of January to December in 2005, respectively.
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utilized to initialize the deep neural networkmodel for training.With
a very high probability, the optimalInitialParam can make the neural
network converge to a global optimum instead of a local optimum
quickly. The whole process is illustrated in Figure 4.

There are several parameters in GA that need to be set,
including initial population size, number of elite children
(individuals with top fitness and directly selected to the next
generation of population without any change), crossover fraction,
and mutation rate. In this study, we set these parameters
empirically, as listed in Table 2.

Performance Validation of the Model
Before applying the GA-DNNM to themerging AMSR-E SST and
MODIS SST, the performance of the model should be first
validated. In this study, we randomly select 90% of the

normalized quad-tuples obtained in section Outlier Removal
and Normalization to train the neural network and the
remaining 10% to test the generalization performance of the
trained network. Two indexes are utilized for performance
evaluation: the mean error and root-mean-square-error
(RMSE), which is defined as

mean error � 1
n
∑n

1
di, RMSE �

�����∑n
1d

2
i

n

√
, (8)

where di is the error vector calculated by the difference between the
desiredMODIS SST value and the estimatedMODIS SST value of the
GA-DNNM, and n is the total number of test samples.

Performance validation results obtained during the experimental
period are shown in Figure 5. From the testing results, the mean

FIGURE 7 | Spatial patterns of AMSR-E SST, MODIS SST, and merged SST on selected days in each season in 2005 with white color representing missing ocean
pixels and gray color representing land pixels (A) from top to bottom: the three SSTs on January 1, 2005; (B) from top to bottom: the three SSTs on April 1, 2005; (C)
from top to bottom: the three SSTs on July 1, 2005; and (D) from top to bottom: the three SSTs on October 1, 2005.
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errors are almost equal to 0 °C, and 84.02% of the RMSEs are below
0.6°C. The estimated probability densities of the residuals of
prediction on the test dataset of the first day of each month in
2005 are shown in Figure 6. It can be seen that the residuals are
concentrated around 0. The validation results demonstrate a high
generalized prediction accuracy of the GA-DNNM. Therefore, the
GA-DNNM is capable of establishing the relationship between
AMSR-E SST and MODIS SST through learning from the
training dataset and can be further applied to merging these
two SSTs.

Post-Processing
When the merged SST has been obtained by GA-DNNM, we
post-process it by removing pixels with gross error. The gross
error pixels are those whose SST values are beyond the range of
−3°C–35°C, which is the union of the valid data range of the
MODIS SST and that of the AMSR-E SST.

RESULTS AND DISCUSSION

For evaluating the proposed method, experiments are conducted
on each day of 2005, expect for November 17, 2005 when the
AMSR-E SST’s spatial coverage is 0.0% in the study area, and
November 20, 2005 when the AMSR-E SST’s spatial coverage is
0.0524% in the study area and has no match with the drifting
buoy observations. 4 km daily merged SST products with
improved quality are generated in the AIPO area.

Comparison of the Spatial Coverage of
MODIS SST, AMSR-E SST, and Merged SST
The spatial coverage is a critical index for measuring the quality of
SST. In this section, we evaluate the spatial coverage of MODIS
SST, AMSR-E SST, and merged SST both visually and
quantitatively.

FIGURE 7 | (Continued).
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Intuitively, from Figure 7, we can see that the spatial coverage
and continuity of SST are greatly improved after merging. The
atmospheric contaminations and costal effects have been
eliminated extensively. Further, in a quantitative way, we
examine the spatial coverage of the three SSTs in the year
2005, in the study area using the following formula.

spatialCoverage � Nvalid SST

Nocean
, (9)

where Nvalid SST and Nocean denote the number of valid SST pixels
and total ocean pixels, respectively. The number of ocean pixels is
obtained using the method introduced in section Extracting
Ocean Pixels in MODIS SST Based on AMSR-E SST.

The quantitative results are shown in Figure 8. The spatial
coverage of the original MODIS SST, original AMSR-E SST, and
merged SST are ranging from 25.0 to 48.1%, 31.5 to 47.6%, and 56.1
to 73.1%, respectively. The merged SST has much higher spatial
coverage than MODIS SST and AMSR-E SST, with a minimum
improvement by 50.2% on April 19, 2005 and maximum
improvement by 131.7% on December 9, 2005 compared with
MODIS SST. The improvement of the spatial coverage relative to
AMSR-E SST ranges from 32.3 to 79.2%. The spatial coverage of
AMSR-E SST is quite stable, while there is more fluctuation for
MODIS SST due to the vulnerability of theMODIS sensor to various

atmospheric contaminations such as cloud cover, thick fogs, and
concentrated aerosols. The spatial coverage of merged SST has the
same fluctuation characteristics as MODIS SST because of the
stability of AMSR-E SST and fluctuation of MODIS SST.

Validation of Reconstructed SST and
Merged SST With Drifting Buoy
Observations
To validate the reconstructed SST and merged SST (SST in the whole
study area), a linear regression of the MODIS SST with the drifting
buoy observations, the AMSR-E SST with the drifting buoy
observations, the reconstructed SST with the drifting buoy
observations, and the merged SST with the drifting buoy
observations are performed each for each day in the study period.
R-square (R2), RMSE, mean bias (Bias), and correlation coefficient are
used for quantitatively evaluating the accuracy of SST.

To be concise, we select 1 day in each season to illustrate the
accuracy of merged results, as shown in Figure 9A–D. From
Figure 9, it can be seen that R2 and correlation coefficient of
reconstructed SST are with little difference with those of AMSR-E
SST but are much greater than those of MODIS SST. The RMSE
of reconstructed SST in the time frame mostly lies between that of
the AMSR-E SST and MODIS SST, that is, greater than AMSR-E

FIGURE 8 | Comparison of spatial coverage of the daily MODIS SST, daily AMSR-E SST, and daily merged SST in 2005 in the AIPO area.
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SST and smaller than MODIS SST. The bias of the reconstructed
SST is also much smaller than that of theMODIS SST. As with the
finally merged SST, its R2 and correlation coefficient are greater

than those of MODIS SST, and the RMSE greater than that of
AMSR-E SST and reconstructed SST but smaller than that of
MODIS SST. The reason why merged SST has bigger RMSE than

FIGURE 9 | Validation of reconstructed SST and merged SST with drifting buoy observations on selected date in each season in 2005. From top to bottom: (A)
validation on January 1, 2005, (B) validation on April 1, 2005, (C) validation on July 1, 2005, and (D) validation on October 1, 2005.
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FIGURE 9 | (Continued).
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reconstructed SST is that during the integration of reconstructed
SST and MODIS SST to produce merged SST, the error of
MODIS SST may be introduced. The RMSE and bias of the
merged SST are acceptable, with higher accuracy than MODIS
SST, and meanwhile keeps the same spatial resolution (4 km) and
temporal resolution (1 day) as MODIS SST.

The average RMSE and average bias of the reconstructed SST are
0.502°C and 0.006°C, respectively. The average RMSE and average
bias of the merged SST in the AIPO area are 0.603°C and −0.082°C,
respectively. Errors of the merged SST may come from three
aspects: 1) error of AMSR-E SST and MODIS SST: the merged
SST is based on the AMSR-E SST and MODIS SST. Therefore,
errors existing in two merging source of SST may contribute to
errors in merged SST. 2) Errors of GA-DNNM can also be a source
of errors for the merged SST; 3) difference of measured depth:
AMSR-E SST, MODIS SST, and buoy SST measured at ∼ um (skin
SST), ∼ 1mm and 0.2–0.3 m (bulk SST), respectively. The merged
SST can be seen measuring the same depth as MODIS SST, which
however is coupled with the atmosphere–ocean exchange of heat
and momentum closely, making the bulk-skin difference a quantity
which varies with quite short time and space scales (Emery et al.,
2001; Zhu et al., 2018).

Efficiency Analysis of the Proposed Method
The time taken for the whole processing process each day, including
data preprocessing, data location matching, GA-DNNM
establishment, and SST merging, is shown in Figure 10. The
time fluctuates for different days, with the longest time being
502.964 s on April 17 and the lowest time being 300.072 s on
July 11, and the average time for each day being 384.351 s. It is
little bit time-consuming, due to two reasons: 1) In the genetic
algorithm, each chromosome carries 36 genes (calculated based on
the structure of the neural network designed) that need to be
optimized, and the number of inputs used for evaluating fitness
of individuals in a population in each generation is firmly large
(around 200,000–350,000) which involves lots of computation. 2)
The procedure runs on a desktop with one Intel (R) Core (TM)

i9-9,920X CPU at 3.5GHz and 48.0 GB RAM, whose computing
resources and computing capabilities are limited. The fluctuating
characteristics of the time consumed in each day are primarily
because of the varying number of inputs for the genetic algorithm,
neural network model training, and SST reconstruction. In future
research, the configuration of the genetic algorithm may be further
optimized, and high-performance computing (HPC) infrastructure
and technologies (Wright andWang, 2011) may be used to improve
the efficiency.

CONCLUSIONS

SST is a crucial parameter for oceanic and atmospheric models. It
plays an important role for weather forecasting and climate
change monitoring. Therefore, getting high-resolution SST
both in time and space, as well as high spatial coverage, is of
vital importance. Satellite observations are the major sources
based on which large-area SST is derived. However, due to the
difference in the imaging mechanism, different satellite
observations have different limitations. Infrared satellite
sensors usually have high spatial resolutions but are vulnerable
to various atmospheric contaminations such as cloud cover, thick
fogs, and concentrated aerosols, while microwave sensors can
penetrate clouds and aerosols but usually with low resolution and
cannot obtain data near coasts. Consequently, a single sensor
usually cannot achieve desirable SST.

This study therefore merges SST data from both infrared
sensor (MODIS SST) and microwave sensor (AMSR-E SST)
synergistically to produce daily SST with a spatial resolution of
4 km which has a much higher spatial coverage than the SST of
each sensor, much higher spatial resolution than SST of
microwave sensor, and higher accuracy than SST of infrared
sensor. During this process, a genetic algorithm–assisted deep
neural network model is established and evaluated. The
validation of the reconstructed SST with drifting buoy
observations each day during the year 2005 (363 days of data
are analyzed) shows an average RMSE and average bias of 0.502°C
and 0.006°C, respectively, and an average RMSE and average bias
of 0.603°C and −0.082°C, respectively, for the merged SST in the
whole study area. With the high generalized prediction accuracy,
the model can be used for extended merging of the MODIS SST
and AMSR-E SST in other years.

With the improved SST, extensive climate applications
promise to be better supported, and the marine environment
including spatiotemporal patterns and variability can be
better monitored and understood than using SST from a
single sensor alone. Furthermore, the method is applicable to
merging SST at a global scale, which can provide improved
data for and further benefit global and regional climate
research and applications.

The GA-assisted optimization strategy is both computation-
and data-intensive, which takes significant time for the GA-
DNNM workflow. For future work on larger geographic areas,
cyberGIS and high-performance computing approaches may be
developed to accelerate and enhance the workflow (Liu &Wang,
2015; Wang & Goodchild, 2019). Besides, the proposed model

FIGURE 10 | Time consumed for each day’s data processing.
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currently could only be applied to the locations where AMSR-E
SST is available, making it hard to achieve daily merged SST
with 100% spatial coverage. How to expand the proposed model
to incorporate more kinds of satellite-derived SSTs and drifting
buoy observations to produce spatially seamless SSTmay also be
a future direction.
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Sargassum golden tides have bloomed frequently in many sea areas throughout the
world, and negatively impacted on the local marine ecology. Sargassum muticum
commonly inhabits rocky shores. It is now distributed worldwide due to its invasiveness,
and recently drifting individuals have been observed on the coasts of Canary Islands.
However, as a potential golden tide alga, physiological, and ecological studies of this
species have not been frequently explored. To investigate the responses of S. muticum
to light and nitrogen, two key environmental factors in golden tide formation, we
established three light levels (LL, low light, 10 µmol photons m−2 s−1; ML, medium
light, 60 µmol photons m−2 s−1, and HL, high light, 300 µmol photons m−2 s−1)
and two nitrogen levels (LN, low nitrogen, 25.0 µM of natural seawater; HN, high
nitrogen, 125.0 µM), and cultivated the thalli under different conditions for 12 days
before measuring the physiological properties of alga. The results showed that higher
light and/or nitrogen levels enhanced the relative algal growth rate. The maximum net
photosynthesis rate of alga increased with the light, while it remained unaffected by the
nitrogen. The HN treatment had no effect on the apparent photosynthetic efficiency of
algae in the LL culture, while increased it in the ML and HL cultures. The irradiance
saturation point of photosynthesis was approximately 300 µmol photons m−2 s−1 with
no significant difference among the six treatments, except for a slight increase under
HLHN in contrast to the LLHN and MLLN treatments. HL treatment decreased the
maximum quantum yield of photosynthesis (Fv/Fm) in both nitrogen levels. In the HN
culture, ML and HL led to lower values of photoinhibition, indicating higher survivability
in the alga. The HN culture led to higher nitrogen uptake but had no effects on Fv/Fm

and the contents of pigments and soluble protein, regardless of culture light level. Based
on these results, we speculate that drifting individuals of S. muticum would be possible
to form a golden tide owing to its rapid growth rate at light level of 300 µmol photons
m−2 s−1, when they encountered the sustained lower light level on the sea surface
(≤300 µmol photons m−2 s−1). A high nitrogen supply caused by eutrophication of
seawater might facilitate this process. Our results provide an important reference for the
prediction of golden tides formed by S. muticum.
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INTRODUCTION

In recent years, there have been massive inundations of the
genus Sargassum aggregating on the surface of sea, known as
“golden tides,” in the central Atlantic Ocean, Gulf of Mexico
(Smetacek and Zingone, 2013; Schell et al., 2015; Wang et al.,
2019; Qi et al., 2020), East China Sea and Yellow Sea (Qi
et al., 2017; Xing et al., 2017; Liu et al., 2018). When the
golden tide blooms as an invasive genus, mats of floating
Sargassum can change the ecosystem structure of the original
sea area (van Tussenbroek et al., 2017; Baker et al., 2018;
Caselle et al., 2018), negatively impact offshore tourism and
maritime transport (Williams and Feagin, 2010; Milledge and
Harvey, 2016), and lead to the deterioration of seawater quality
after they sink and decay (Cruz-Rivera et al., 2015). If an
episode was to occur in aquaculture areas, golden tides could
cause enormous losses to the local mariculture industry, for
example, blooming of Sargassum horneri golden tide in the
Yellow Sea in December 2016, caused economic loss of 0.5
billion CNY due to the damaged local seaweed aquaculture
(Xing et al., 2017).

The occurrence of golden tides has been linked to changes
in marine environmental factors, such as nutrients, temperature,
and light (Sfriso and Facca, 2013; Smetacek and Zingone,
2013). Satellite remote sensing monitoring data have confirmed
that the formation of golden tides often occurs in eutrophic
oceanic areas with the availability of upwelled (Brooks et al.,
2018; Wang et al., 2019) and river (Sfriso and Facca, 2013;
Louime et al., 2017; van Tussenbroek et al., 2017) plume
nutrients, which provide sufficient nitrogen and phosphorus for
the growth of golden tide algae. The fact that high nitrogen
resulted in high growth rate has been found in in several
algal species known to cause golden tides, namely, S. horneri
(Yu et al., 2019), Sargassum natans and Sargassum fluitans
(Wang et al., 2019). Therefore, many scientists hypothesize that
eutrophication plays an important role in inducing the formation
of Sargassum golden tides (Sfriso and Facca, 2013; Smetacek and
Zingone, 2013; Louime et al., 2017; van Tussenbroek et al., 2017;
Wang et al., 2019).

Alternatively, golden tide algae drifting on the sea surface
receive more light, compared with those individuals attached
to the seabed, owing to the light attenuated by seawater
(Kouassi and Zika, 1992; Tedetti and Sempéré, 2006;
Wu et al., 2010). Typically, the majority of macroalgae
manifest higher photosynthesis and growth rates at
higher light levels (Xu et al., 2014; Erin Cox and Smith,
2015). However, levels of light that are too high could
depress macroalgal photosynthesis, which is designated
photoinhibition (Yakovleva and Titlyanov, 2001; Murata
et al., 2007). However, that floating Sargassum receiving
more light energy, may grow explosively to form a golden
tide when exposed to nutrient enrichment, for example
S. natans and S. fluitans (Wang et al., 2019). Moreover,
the upper and lower sides of the floating Sargassum layer
will also suffer from differing light conditions owing to
the thickness of the floating layer. Unfortunately, little is
known about the effects of light levels on the photosynthesis

related to growth of floating Sargassum, particularly when
enriched by nutrients.

Currently, three species have been observed to form golden
tides. S. natans and S. fluitans are the predominant species in
golden tides that bloom in the central Atlantic Ocean and the
Gulf of Mexico (Smetacek and Zingone, 2013; Schell et al.,
2015; van Tussenbroek et al., 2017; Wang et al., 2019), while S.
horneri is the only species that causes golden tides in the East
China Sea and Yellow Sea (Qi et al., 2017; Xing et al., 2017; Liu
et al., 2018). Although no other Sargassum species have been
currently observed to form golden tides, whether they will do so
in the case of appropriate environmental conditions in the future
remains unclear. Sargassum muticum is widely distributed on
the coast of the Western Pacific North and has recently invaded
the Northern European and North American coasts (Engelen
et al., 2015), resulting in significant negative impacts on local
marine ecosystems (Cacabelos et al., 2013; Salvaterra et al., 2013;
Sánchez and Fernández, 2018; Belattmania et al., 2020). Most
seriously, many drifting alga individuals were observed on the
coasts of Canary Islands (Eastern Atlantic Ocean) in March
2020 (Álvarez-Canali et al., 2021). Therefore, we suggest that
more intensive study on this potential golden tide species is
merited. The aim of this study was to investigate the physiological
responses of S. muticum to light and nitrogen levels, two key
factors during the formation of golden tides, which expectedly
provides references for the future prediction of golden tides
caused by this species.

MATERIALS AND METHODS

Materials
Samples of S. muticum were collected from an attached
population at a depth of 2 m in Lidao Bay, Rongcheng City,
Shandong Province, China (37◦15′ N, 122◦35′ E) on April 5,
2019, where temperature is 20◦C, salinity is 30 PSU, NO3

−,
25.0 µM and dissolved inorganic phosphorus (DIP) is 1.6 µM
in the natural seawater. Sporophytes of approximately 60 cm
long were selected and brought to the laboratory in an insulated
cooler of 4oC in 2 h. After cleaned with autoclaved seawater,
segments that were approximately 5 cm long were randomly cut
from several branches and pre-cultured in autoclaved natural
seawater (salinity, 30 PSU; NO3

−, 25.0 µM; NH4
+, 0.8 µM

and DIP, 1.6 µM) for 24 h. The temperature was set at
20◦C, and the light level was 60 µmol photons m−2 s−1

with light and dark periods of 12 h:12 h. The media were
continuously aerated.

Experimental Design
After preincubation for 24 h, 5−6 segments [∼4.0 g of fresh
weight (FW)] of the algae were cultured in a conical flask with
2 L of modified Provasoli’s enriched seawater (PESI, Provasoli,
1968). The DIP concentration of 5 µM in PESI medium was
obtained by the addition of NaH2PO4 to ensure adequate supply
of P. In addition, NaNO3 was added separately for the high
nitrogen levels. According to the observation that inorganic
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nitrogen concentration in golden tide bloom area increased by 3–
4 times (Wang et al., 2019), two nitrogen levels were established
in the experiment: low nitrogen (LN, the concentration in
natural seawater, 25.0 µM) and high nitrogen (HN, 125.0 µM).
The effect of NH4

+ was ignored due to its low content of
0.8 µM in both LN and HN treatments. The media were
continuously aerated and renewed every other day. The culture
density was maintained at 2.0 g FW L−1 during the experiment
by removing the excess growth part of the thalli when the
media was renewed.

The containers were positioned in growth chambers (MGC-
250P, Yiheng Technical Co., Ltd., Shanghai, China) with
constant temperature of 20◦C and 12 h:12 h light and dark
periods. By regulating the light source of growth chambers,
light that reached the algae was set at three levels (LL, low
light, 10 µmol photons m−2 s−1; ML, middle light, 60 µmol
photons m−2 s−1; HL, high light, 300 µmol photons m−2

s−1),based on the daily mean irradiance in spring received
by the attached thalli [the lowest and highest values in
the distribution depths of 2−6 m, referred to Liu et al.
(2021)] and the floating individuals (Rumyantseva et al.,
2019), respectively. Light source was provided by LED lamps
emitting white light in chambers, and the light levels were
measured using a handheld optical quantum meter (QRT1,
Hansatech, Norfolk, United Kingdom). The samples were
cultured under different nitrogen and light conditions for
12 days, with three replicates of each treatment. At the end
of 12-day culture, the growth rate, photosynthesis, contents of
pigments and soluble protein, and nitrogen uptake of the algae
were determined.

Determination of the Growth Rate
The growth of algae under different nitrogen and light conditions
was measured during the final 2 days of culture in order to reflect
acclimated physiological performance of thalli, and the relative
growth rate (RGR) was calculated using the following formula:

RGR = 100 × (lnNt − lnN0)/t

Where Nt represents the FW on day t (day 12); No represents
the initial FW (day 10), and t represents the time interval (2 days).
The FW was determined through electronic analytical balance
(ME104, Mettler-Toledo, Switzerland) after removing surface
water drops of thalli by lightly blotting with tissue paper.

Estimates of Respiration and
Photosynthesis
Dark respiration (Rd) and the rates of evolution of photosynthetic
O2 were determined using a Clarktype oxygen electrode
(Chlorolab-3, Hansatech, Norfolk, United Kingdom) at 20◦C.
Approximately 0.15 g FW of algae harvested from the culture
flask on day 12 was transferred to the oxygen electrode cuvette
that contained 8 ml of autoclaved natural seawater, and the
media were stirred during measurement. The dark respiration
rate was measured after covering the cuvette with an opaque
cloth. The photosynthetic O2 evolution rates (Ek) were measured
during 5 min under six levels of light (20, 60, 120, 200, 400,

and 600 µmol photons m−2 s−1). White light was provided
by a metal halide lamp, and different levels of irradiance were
provided by altering the distance between light source and the
oxygen electrode cuvette. The light levels were measured through
a handheld optical quantum meter (QRT1, Hansatech, Norfolk,
United Kingdom). Therefore, the P−E curve (photosynthetic
rates at different irradiance levels) was obtained using the model
of Eilers and Peeters (1988) and fitting the data by iteration:

P = E/(a × E2
+ b × E+ c)

Where P are the net photosynthesis rates (µmol O2 h−1 g−1

FW) at different irradiance levels; E is the irradiance (µmol
photons m−2 s−1), and a, b, and c are the adjustment parameters.
The parameter “a” is the photoinhibition term. The apparent
photosynthetic efficiency (α), maximum net photosynthetic rate
(Pmax) and irradiance saturation point (Ek) are expressed as a
function of the parameters a, b, and c as follows:

α = 1/c

Pmax = 1/[b+2(a × c)0.5
]

Ek = (c/a)0.5

Determination of the Maximum
Photochemical Yield of Photosystem II
The chlorophyll fluorescence yield data were measured using
a plant efficiency analyzer (Handy PEA, Hansatech, Norfolk,
United Kingdom) during the 6th hour of the photoperiod at end
of 12 days of culture. The thalli were dark adapted for 15 min to
allow all the reaction centers to open before the measurements
were taken. The minimal fluorescence (F0) was induced by low
irradiation of the measuring light (approximately 0.15 µmol
photons m−2 s−1), and the maximum fluorescence (Fm) was
obtained after exposed to a single saturating pulse irradiance
of 5,000 µmol photons m−2 s−1 for 800 ms. The maximum
quantum yield of photosystem II (PSII) was then estimated as:

Fv/Fm = (Fm − F0)/Fm

Measurement of Pigments and Soluble
Proteins
Approximately 0.1 g FW thalli from each treatment were ground
with an aqueous solution of 90% acetone. The solution was
brought to 8 ml and extracted for 12 h at 4◦C in the dark.
After centrifugation (4,000 r min−1, 15 min), the absorption
spectrum of 400–700 nm of supernatant was determined using
a spectrophotometer (DU 530, Beckman Coulter, Fullerton, CA,
United States). The contents (mg g−1 FW) of chlorophyll (Chl
a, Chl c) and carotenoids (Car) were calculated as described
by Jeffrey and Humphrey (1975) and Parsons et al. (1984),
respectively.

Chl a = (11.47 × A664−0.40 × A630) × V/M
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Chl c = (24.36 × A630−3.73 × A664) × V/M

Car = [7.6 × (A480−1.49 × A510) ] × V/M

Where A was the absorbance value of supernatant at differing
wavelengths; V was the volume of solution at a constant volume
(8 mL), and M was the FW of algae (g).

To extract the soluble protein, approximately 0.2 g of FW thalli
from each treatment were ground in a mortar, and the volume
was brought to 5 mL with phosphate buffer (0.1 mol L−1, pH 6.8).
After centrifugation at 5,000 g for 10 min, the soluble protein was
estimated from the supernatant using the Bradford (1976) assay
with bovine serum albumin as the standard.

Assessment of Nitrogen Uptake
The rate of nitrogen uptake of the thalli was estimated from the
decrease in rate of nitrate in the culture seawater over a 2-day
interval when the medium was being renewed. The concentration
of nitrate was determined as described by Strickland and Parsons
(1972), and the rate of nitrogen uptake was calculated using the
following equation:

Uptake rate = (N0−Nt) × V/M/t

Where N0 and Nt were the concentrations of nitrate in the
medium at the initial and end of culture, respectively. V was the
volume of the culture medium; M was the initial FW of the thalli
(g), and t was the culture time (2 days).

Data Analysis
The results were expressed as the means of replicates ± standard
deviation. The data were analyzed using SPSS v. 21 (IBM,
Inc., Armonk, NY, United States). The data under every
treatment conformed to a normal distribution (Shapiro–Wilk,
P > 0.05), and the variances can be considered equal (Levene’s
test, P > 0.05). Two-way analysis of variance (ANOVA) was
conducted to assess the effects of light and N on RGR,
photosynthetic parameters from the P−E curves, dark respiration
rate, Fv/Fm, pigments, soluble protein, and nitrate uptake rate.
Tukey’s honest significance difference (HSD) was conducted for
a post hoc investigation. A confidence interval of 95% was set for
all tests.

RESULTS

Growth Rate
The RGRs of S. muticum cultured under different light and
nitrogen conditions are shown in Figure 1. Light and nitrogen
had no interactive effect on RGR of S. muticum (ANOVA,
P = 0.088), but each factor had a main effect (ANOVA, P < 0.001
for light; ANOVA, P < 0.001 for nitrogen). An increase in the
light intensity enhanced the RGR at both LN andHN treatments
(Tukey’s HSD, P < 0.05). Compared with LL, treatment with
ML and HL increased the RGR of algae by 55.9 and 190.6%

at LN levels, respectively, while under HN condition, the
RGR were enhanced by 60.3% under ML and 168.9% under
HL treatments. The enrichment of nitrogen also significantly
promoted the growth of thalli under all three light conditions
(Tukey’s HSD, P < 0.05). HN increased the RGR by 11.7, 14.8,
and 3.4% in LL, ML, and HL treatments, respectively, compared
with LN conditions.

Photosynthesis and Respiration
The irradiance saturation point (Ek), photoinhibition term
(a), apparent photosynthetic efficiency (α), and maximum
net photosynthesis rate (Pmax) are presented in Table 1.
The irradiance saturation point (Ek) was approximately 300
photons m−2 s−1, with no significant difference between the
six treatments (Tukey’s HSD, P > 0.05), with the exception
of a slight increase under HLHN in contrast to the LLHN
and MLLN treatments (Tukey’s HSD, P < 0.05). Light and
nitrogen had an interactive effect on Pmax (ANOVA, P < 0.001),
α (ANOVA, P < 0.001) and the photoinhibition term “a”
(ANOVA, P < 0.05). In all six treatments of different light
and nitrogen levels, the thalli cultured in MLHN and HLHN
expressed lower “a” values (Tukey’s HSD, P < 0.05), suggesting
that algae that had adapted to HN and HL conditions were more
tolerant of strong light inhibition. Regardless of the nitrogen
concentration, Pmax increased with the light level of culture,
with the exception of an insignificant difference between MLHN
and HLHN (Tukey’s HSD, P > 0.05). At the ML and HL
levels, the nitrogen level insignificantly affected Pmax (Tukey’s
HSD, P > 0.05), while in LL treatments, HN enhanced the
Pmax of thalli by 28.3%, compared with LN (Tukey’s HSD,
P < 0.05). In the LN culture, the light level had no effect
on the α of algae (Tukey’s HSD, P > 0.05). However, in HN
culture, the value of α differed significantly between the three
light levels (Tukey’s HSD, P < 0.05). The highest (0.169± 0.005)
and lowest (0.105 ± 0.012) values of α occurred at ML and
LL, respectively.

In the LL and ML culture, the dark respiration rate
(Rd) of thalli remained unaffected interactively by different
levels of culture light and nitrogen (ANOVA, P > 0.05,
Figure 2). However, HL culture (300 µmol photons m−2

s−1) remarkably increased Rd in both nitrogen concentrations,
compared with the LL and ML treatments (Tukey’s HSD,
P < 0.05). In addition, in HL culture, HN enhanced the Rd
by 24.6%, in contrast to that in LN culture (Tukey’s HSD,
P < 0.05).

The Maximum Photochemical Yield
The maximum photochemical yields (Fv/Fm) of the algae
cultured at different light and nitrogen levels are shown
in Figure 3. Light and nitrogen had no interactive effect
on Fv/Fm of algae (ANOVA, P > 0.05). The nitrogen
levels had an insignificant effect on Fv/Fm regardless of
the culture light levels (ANOVA, P > 0.05). In both LN
and HN cultures, the values of Fv/Fm expressed insignificant
differences between the LL and ML conditions (Tukey’s HSD,
P > 0.05), while it decreased remarkably in the HL treatment
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FIGURE 1 | Relative growth rates (RGRs) in Sargassum muticum grown at different light and nitrogen levels, which were determined during 2 days at the end of
12 days of incubation. Significant (P < 0.05) differences among the treatments are indicated by different lowercase letters. Vertical bars represent ± SD for the
means of three samples.

TABLE 1 | Photosynthetic parameters from the P−E curves of Sargassum muticum cultured under different light and nitrogen conditions.

a Pmax α Ek

LLLN (1.23 ± 0.11) × 10−4a 84.11 ± 8.44a 0.085 ± 0.010a 310.48 ± 4.28ab

LLHN (1.09 ± 0.15) × 10−4a 107.91 ± 3.40b 0.105 ± 0.012a 297.88 ± 5.17a

MLLN (1.23 ± 0.04) × 10−4a 123.91 ± 3.89c 0.093 ± 0.003a 295.53 ± 1.00a

MLHN (0.65 ± 0.01) × 10−4b 135.43 ± 3.80cd 0.169 ± 0.005b 303.38 ± 4.69ab

HLLN (1.17 ± 0.11) × 10−4ac 152.73 ± 3.32e 0.107 ± 0.007a 309.92 ± 10.76ab

HLHN (0.80 ± 0.14) × 10−4bc 146.52 ± 2.46de 0.129 ± 0.008c 314.67 ± 2.00b

a, the photoinhibition term; Pmax (µmol O2 h−1 g−1 FW), the maximum net photosynthesis rate; α [(µmol O2 h−1 g−1 FW)/(µmol photons m−2 s−1)], the apparent
photosynthetic efficiency; Ek (µmol photons m−2 s−1), the irradiance saturation point. Different superscript letters indicate significant differences in one parameter
between the treatments (P < 0.05).

compared with the LL and ML treatments (Tukey’s HSD,
P < 0.05).

Photosynthetic Pigments
The contents of photosynthetic pigments (Chl a, Chl c, and Car)
of the thalli that had adapted to different light and nitrogen
conditions are shown in Figure 4. Light and nitrogen had no
interactive effect on the contents of all three pigments (ANOVA,
P = 0.671 for Chl a, P = 0.419 for Chl c, and P = 0.512 for Car).
Regardless of the culture light levels, the contents of Chl a, Chl
c, and Car were not affected by the nitrogen level in cultures
(ANOVA, P = 0.057 for Chl a, P = 0.417 for Chl c, and P = 0.148
for Car). However, light had main effects on three pigments
(ANOVA, P < 0.001 for Chl a, P < 0.001 for Chl c, and P < 0.01
for Car). In the LN or HN treatment, HL treatment reduced the
contents of all three photosynthetic pigments by approximately
30−45% compared with the LL and ML conditions (Tukey’s HSD,
P < 0.05), while no significant difference was observed between
the LL and ML culture (Tukey’s HSD, P > 0.05).

Soluble Proteins and Nitrogen Uptake
Light and nitrogen had no interactive effect on the content
of soluble proteins (ANOVA, P > 0.05, Figure 5). The
culture nitrogen levels had no impact on the content of
soluble proteins at LL, ML, or HL treatment (ANOVA,
P > 0.05). However, light had a main effect on it (ANOVA,
P < 0.001). The LL culture markedly enhanced the content of
soluble protein in thalli grown under LN or HN conditions
(Tukey’s HSD, P < 0.05), despite no significant difference was
observed between the ML and HL cultures (Tukey’s HSD,
P > 0.05).

Light and nitrogen had an interactive effect on the nitrogen
uptake rates of algae (ANOVA, P < 0.001, Figure 6), and each
factor had a main effect (ANOVA, P < 0.001 for light; ANOVA,
P < 0.001 for nitrogen). Compared with the LN treatment, HN
culture increased the rate of uptake of nitrogen by 7.6 times at low
light, 1.3 times in ML treatment, and 0.8 times in HL treatment.
In LN cultures, ML and HL improved the rate of nitrogen uptake
of algae by 3.0 and 8.5 times, respectively, compared with the
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FIGURE 2 | Dark respiration rates of S. muticum grown at different light and nitrogen levels for 12 days. Significant (P < 0.05) differences among the treatments are
indicated by different lowercase letters. Vertical bars represent ± SD for the means of three samples.

FIGURE 3 | The maximum quantum yield of photosystem II (Fv/Fm) in S. muticum grown at different light and nitrogen levels for 12 days. Significant (P < 0.05)
differences among the treatments are indicated by different lowercase letters. Vertical bars represent ± SD for the means of three samples.

LL culture, while ML and HL improved it by 9.0 and 96.0%,
respectively, when cultured in HN treatment.

DISCUSSION

In this study, higher light culture led to a higher RGR in
S. muticum. The growth of macroalgae is closely related to algal
photosynthesis (Lobban et al., 1985; Xu and Gao, 2009). Light
provides the initial energy for photosynthesis, and the increase
in culture light level can usually promote the photosynthesis

of macroalgae by affecting electron transfer, pigment synthesis,
and/or the activity of enzymes associated with carbon utilization
(Xu et al., 2014; Wu et al., 2018; Dudgeon and Kübler, 2020;
Eismann et al., 2020). In this study, a higher culture light
level induced a greater maximum net photosynthesis rate,
which indicated a higher photosynthetic capacity, and ultimately
contributed to the higher growth rate of S. muticum.

The apparent photosynthetic efficiency (α) is regarded as
the indication of efficiency of the alga to utilize light energy
under limited light intensity (Eilers and Peeters, 1988). In this
study, α showed the highest value in middle light culture of
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FIGURE 4 | Contents of Chl a, Chl c and Car in S. muticum grown at different
light and nitrogen levels for 12 days. Significant (P < 0.05) differences among
the treatments are indicated by different lowercase letters. Vertical bars
represent ± SD for the means of three samples.

60 µmol photons m−2 s−1 and comparatively decreased in high
light culture of 300 µmol photons m−2 s−1. Moreover, the
value of Fv/Fm also decreased in high light culture, suggesting
that S. muticum thalli suffered from light stress in the high
light culture of 300 µmol photons m−2 s−1. Such findings
may be explained by the reduction of photosynthetic pigments
in the high light culture compared with low and middle light
culture. Algae can alter the contents of reaction center and light-
harvesting pigments to adapt to different culture light intensities
(Makarov, 2012). Previous studies have shown that high light

intensity may reduce the photosynthetic pigment yields of algae
in minutes [reviewed by Eismann et al. (2020)]. Photopigments,
particularly light-harvesting pigments, usually play an important
role in photoprotection and are damaged first under the high
light stress, resulting in the reduction of contents (Xu and Gao,
2012; Quintano et al., 2019). However, in this study, the decrease
induced by high light was not found in the growth rate and Pmax
of S. muticum. The possible explanation could be that the light
stress at 300 µmol photons m−2 s−1 did not damage the reaction
center protein owing to the protection by its pigments, or the
improved repair rate was enough to alleviate such photodamage
to the reaction center (Murata et al., 2007; Zhang et al., 2020). As
indirect evidence, the elevated dark respiration rate in the high
light culture at 300 µmol photons m−2 s−1 is likely to provide
sufficient energy to repair the damage of photosynthetic reaction
center in S. muticum (Xu and Gao, 2009, 2012).

Excessive light energy generally leads to the damage of
photosynthesis reaction center of algae, and such a deleterious
effect is often counteracted by the protective strategies of
algae, such as the accumulation of photoprotective compounds,
repair mechanisms, and the removal of reactive oxygen species
(Bonomi-Barufi et al., 2020; Zhang et al., 2020). In the case that
damage exceeds protection, the algae will reduce their evolution
of photosynthetic oxygen, which is designated “photoinhibition”
(Murata et al., 2007). In this study, the irradiance saturation
point of oxygen Ek was ∼300 µmol photons m−2 s−1 with no
significant difference in all six treatments of different light and
nitrogen levels. Beyond this irradiance point, the rate of evolution
of photosynthetic oxygen of algae decreased drastically with the
increase in light intensity, i.e., photoinhibition was induced in
S. muticum. In contrast, many species of macroalgae have light
saturation points at ∼600 µmol photons m−2 s−1 (Xu and Gao,
2012; Xu et al., 2014). Especially, S. horneri, a golden tide species,
did not exhibit photoinhibition even at a light level of 600 µmol
photons m−2 s−1, and it maintained enhanced photosynthetic
and growth rates with the increase in light intensity (Liu et al.,
2019). In the north temperate zone, which is inhabited by S.
muticum and S. horneri, the daily mean irradiance of sea surface
is approximately 300–800 µmol photons m−2 s−1 during the
spring, summer, and autumn (Rumyantseva et al., 2019), the
seasons in which golden tides have been observed. At such light
levels, compared with S. horneri, drifting S. muticum is not prone
to form a golden tide owing to the induction of photoinhibition.

Nitrogen is an essential nutrient for the survival and growth
of algae, and an increased supply of nitrogen generally results
in the promotion of growth rate in algae, owing to enhanced
photosynthesis (Gao et al., 2018; Liu et al., 2019; Jiang et al.,
2020). Such enhanced growth rates by N were also found in
three golden tide species: S. horneri (Yu et al., 2019), S. natans
and S. fluitans (Wang et al., 2019). The fact that enhanced
photosynthesis induced by high nitrogen is usually attributed to
an enhanced electron transfer rate, pigment content, or enzyme
activity associated with carbon fixation (e.g., RUBISCO and
carbonic anhydrase among others) in the photosynthetic system
of algae (Giordano et al., 2005; Xu et al., 2014; Gao et al.,
2018; Liu et al., 2019; Rugiu et al., 2020). In this study, high
nitrogen enhanced the growth rate of S. muticum cultured at
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FIGURE 5 | Content of soluble proteins in S. muticum grown at different light and nitrogen levels for 12 days. Significant (P < 0.05) differences among the treatments
are indicated by different lowercase letters. Vertical bars represent ± SD for the means of three samples.

FIGURE 6 | Nitrogen uptake rates of S. muticum grown at different light and nitrogen levels, which were determined during 2 days at the end of 12 days of
incubation. Significant (P < 0.05) differences among the treatments are indicated by different lowercase letters. Vertical bars represent ± SD for the means of three
samples.

three light levels. Correspondingly, the photosynthesis of thalli
was increased by culture in high nitrogen, reflected by the
increased “Pmax” at low light and increased “α” at middle and
high light levels. Such findings were consistent with previous
reports in other species of macroalgae, including Ulva prolifera,
S. horneri, Gracilariopsis lemaneiformis, Saccharina latissima, etc.,
(Xu et al., 2014; Liu et al., 2019; Yu et al., 2019; Jiang et al.,
2020; Rugiu et al., 2020). Moreover, in the case of an adequate
supply of nitrogen, the macroalgae can rapidly absorb it to supply
the demand for nitrogen for growth and other physiological

processes (Xu and Gao, 2012; Jiang et al., 2020), and excessive
nitrogen may be stored in cells as nitrogen pools in the forms of
pigments, soluble proteins, and/or amino acids (Teichberg et al.,
2010; Yu et al., 2019; Jiang et al., 2020). In this study, a high
supply of nitrogen induced a high rate of nitrogen uptake in
S. muticum, while neither the contents of pigments nor soluble
proteins were affected by the high nitrogen treatment. Therefore,
we hypothesized that the greater amounts of nitrogen absorbed
in the high nitrogen culture contributed to the higher rates of
photosynthesis and growth in S. muticum. In addition, a higher
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acquisition of nitrogen may be used to improve the capability
of the algae to endure high light stress (Murata et al., 2007;
Xu and Gao, 2012), which was reflected by the lower “a” value
of the photoinhibition term in S. muticum cultured under high
nitrogen conditions.

CONCLUSION

Sargassum muticum is naturally distributed in the rocky shores
of the Western Pacific North and has been colonized to the
Northern European and North American coasts as an invasive
species (Sánchez and Fernández, 2018; Belattmania et al.,
2020). Owing to the concern that this species could form a
golden tide (Álvarez-Canali et al., 2021), we investigated its
physiological responses to different light and nitrogen levels
in this study. Our results showed that higher light and/or
nitrogen levels generally promoted the photosynthesis and
growth of the algae. However, when the intensity of light
exceeded 300 µmol photons m−2 s−1, its photosynthesis was
inhibited, regardless of nitrogen conditions set in this study.
Based on these findings, we hypothesized that the lower value
of irradiance saturation point resulted in drifting individuals
of S. muticum that were unable to tolerate the light intensity
of sea surface on sunny days (Rumyantseva et al., 2019).
Therefore, for this Sargassum species, it would not easily
form a golden tide, compared with S. horneri. However,
when encountered a sustained suitable light level (≤300 µmol
photons m−2 s−1), it would also be possible for the drifting
individuals of S. muticum to form a golden tide due to its

rapid growth rate (∼8% d−1 at light level of 300 µmol
photons m−2 s−1). And a high supply of nitrogen might
facilitate this process.
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Single Shot MultiBox Detector for
Urban Plantation Single Tree
Detection and Location With
High-Resolution Remote Sensing
Imagery
Yueyuan Zheng and Gang Wu*

College of Information, Beijing Forestry University, Beijing, China

Using high-resolution remote sensing images to automatically identify individual trees is of
great significance to forestry ecological environment monitoring. Urban plantation has
realistic demands for single tree management such as catkin pollution, maintenance of
famous trees, landscape construction, and park management. At present, there are
problems of missed detection and error detection in dense plantations and complex
background plantations. This paper proposes a single tree detection method based on
single shot multibox detector (SSD). Optimal SSD is obtained by adjusting feature layers,
optimizing the aspect ratio of a preset box, reducing parameters and so on. The optimal
SSD is applied to single tree detection and location in campuses, orchards, and economic
plantations. The average accuracy based on SSD is 96.0, 92.9, and 97.6% in campus
green trees, lychee plantations, and palm plantations, respectively. It is 11.3 and 37.5%
higher than the latest template matching method and chan-vese (CV) model method, and
is 43.1 and 54.2% higher than the traditional watershed method and local maximum
method. Experimental results show that SSD has a strong potential and application
advantage. This research has reference significance for the application of an object
detection framework based on deep learning in agriculture and forestry.

Keywords: single shot multibox detector, Urban forest, tree detection, tree location, high-resolution remote sensing
image

1 INTRODUCTION

Single tree detection based on remote sensing images is a crucial technology for establishing a single
tree database and monitoring single tree plantation resources, which is of great significance to urban
landscape planning and ecological environment monitoring (Congalton et al., 2014; Faridatul and
Wu, 2018; Ahl et al., 2019). Single tree detection is a cross-research field of computer vision,
measurement, single tree management, and remote sensing (Kupidura et al., 2019; Zhang et al., 2020;
Belcore et al., 2021). Researchers began to explore single tree detection methods a long time ago. As
early as 1995, Gougeon et al. (Gougeon, 1995) used aerial photos to carry out single tree
identification; they searched for the local minimum value at the bottom of a tree for the first
time. Larsen et al. (Larsen and Rudemo, 1998) used an improved template matchingmethod to detect
crown vertices of a single tree. Poullot et al. (Pollock, 1996) used remote sensing imagery to
determine the location of a single tree by selecting a moving window from 15 × 15 to 30 × 30.
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Depending on the size of the canopy in the image, they
determined the location of a single tree and used the local ray
method to depict the young conifer forest crown. Wang et al.
(Wang et al., 2004) used the watershed method to depict the
canopy boundaries of white cloud fir forests. Zhang Ning et al.
(Zhang et al., 2014) improved the application of the peak
climbing method to the problem of canopy extraction and
experimented in Quickbird images. The accuracy of
experimental samples reached more than 85%. Jiang Renrong
et al. (Jiang et al., 2016) used hydro analyzation and regional
growth fusion methods for lychee single tree detection and
canopy depiction. The overall accuracy was 78.69%. Yu et al.
(Yu et al., 2018) applied the iterative threshold method to canopy
extraction. The matching rate of the iterative threshold method
was only 60.15%, due to complicated and discrepant texture and
over-splitting phenomenon in a single tree canopy.

In recent years, researchers applied convolutional neural
network (CNN) to single tree detection, solving the problems
of traditional single tree detection methods (Liu et al., 2017; Zhao
et al., 2020; Zhang et al., 2021). For example, traditional single
tree detection methods detected seed points or matching
templates by pixels, so traditional single tree detection
methods required prior knowledge to specify characteristic
parameters of different scenes. The traditional single tree
detection method had low stability. The above problems could
be solved by introducing CNN (Sharma et al., 2016; Chen et al.,
2017). CNN could learn features automatically and abstract local
low-level features into high-level features such as the color and
the contour of trees gradually without specified parameters in
advance (Chu et al., 2017; Mokroš et al., 2018). CNN showed
good advantages in single tree detection (Roska and Chua, 2008;
Wang et al., 2020). Weijia et al. (Weijia et al., 2016) applied the
deep learning approach to detect densely planted Malaysian oil
palm trees for the first time. Guirado et al. (Guirado et al., 2017)
proposed a CNN-based shrub detection method. Dong Tianyang
et al. (Dong et al., 2018) proposed a cascaded convolutional
neural network of single tree detection in 2018. They applied it to
Google Earth images in 2019 (Dong et al., 2019), and found that it
was hard to repeat, had small object leakage, was inefficient, and
that it was challenging to meet practical requirements.

At present, there is no single tree detection method that can
adapt to various stands (Liu et al., 2019). It is a significant research
direction to use existing technology to improve the accuracy of
single tree detection and simplify the single tree detection process
(Deng et al., 2010). Currently, object detection based on deep
learning is divided into one-stage object detection and two-stage
object detection. One-stage object detection is also known as end-
to-end, which only takes one step to obtain results. Single shot
multibox detector (SSD) is one of the most widely used in one-
stage object detection. SSD uses multi-size convolutional layers to
predict, adding data enhancement of small objects, which has the
advantages of high accuracy and high efficiency (Li et al., 2019).

In this study, we have improved the SSD backbone feature
extraction network and optimized the aspect ratio of a preset box
in single tree detection. The SSD model of single tree detection
has been reduced in terms of parameters and computation
burden. The optimal SSD model of single tree detection was

obtained by comparing the experimental results of multiple
groups. The optimal SSD model was used to detect quantity
identification and location management of urban plantations.
The optimal SSD model achieved better accuracy than the
traditional watershed method, traditional local maximum
method, and the latest template matching method, the CV
model method.

2 METHODOLOGIES

This section focuses on the principles, training method, and other
details of SSD. The principle of SSD is shown in Figure 1. During
training, we only need to enter the original image and file that
marks the original image’s actual box. In multiple feature maps
(e.g., 9 × 9 (Figure 1B) and 5 × 5 (Figure 1C)), SSD uses
convolution kernel to calculate the category confidence of the
detected box and the offset between the actual box and detected
box. During training, we match these preset boxes with the actual
box first. For example, if three preset boxes match three trees, they
are regarded as positive samples. The remaining preset boxes are
treated as negative samples.

2.1 Single Tree Detection Process
The overall process of single tree detection based on SSD is shown
in Figure 2. The process of single tree detection based on SSD is
divided into five parts, including:

1) Collect high resolution remote sensing image data.
2) Separate training data from validation data and label

training data.
3) The SSD model is trained to obtain single tree characteristic

parameters.
4) Single tree detection is carried out by single tree characteristic

parameters.
5) Evaluation of test results.

A small number of factors can affect the quality of the SSD
model, such as data richness, feature extraction accuracy, and
robustness.

Simplified SSD Object Detection
Framework
In this study, SSD is an object detection framework with 300 ×
300×3 as the input image. SSD mainly divides into three parts: a
central feature extraction network, feature layer processing
network, and stacking adjustment parameters. The SSD model
is simplified and shown in Figure 3. The backbone feature
extraction network uses a visual geometry group network
(VGG16) with the partial convolution layer removed. The
optimal SSD model four extracts four feature layers for object
detection, and the sizes of these four feature layers are 38 ×
38×256, 19 × 19×512, 10 × 10×512, and 5 × 5×256, respectively.
The 38 × 38×256 feature layer can be understood as dividing
300 × 300 image evenly into 38 × 38 parts. The center of each part
generates preset boxes of different sizes and proportions for an
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anchor point. The preset box is introduced in Section 2.4. The
size of the feature map decreases gradually. The large feature map
predicts small objects, while the small feature map predicts large
objects.

For feature layer processing, the extracted four feature layers
are convolved twice, one convolution to extract category
confidence, another convolution to extract position adjustment
parameters. Four parameters are needed to control the position of
each preset box, including offset abscissa of point, ordinate of
point, height, and width.

2.2 Non-Maximum Suppression
Themain idea of non-maximum suppression is to search for local
maximum values and suppress non-maximum values. As can be
known from Section 2.4, SSD produces many preset boxes,
overlapping between each preset box, and each preset box has
a category confidence score. By introducing a non-maximum
suppression method, we find the best location for a single tree by
removing excess preset boxes and only retaining the optimal
preset boxes. The process of non-maximum suppression is as
follows:

FIGURE 1 | Principles of SSD. (A) Actual box. (B) 9 × 9 grid. (C) 5 × 5 grid.

FIGURE 2 | The overall process of single tree detection based on SSD.
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1) Sort each preset box by category confidence.
2) Select the preset box with the highest confidence in the

category as the output box and remove it from the list of
preset boxes.

3) Calculate the area of all preset boxes.
4) Calculate the intersection over union (IOU) value of the

output box and other preset box. As shown in Figure 4,
the intersection area of two boxes divides by their union area.

5) Remove a preset box with an IOU greater than threshold from
the list of preset boxes.

6) Repeat steps (1) to (5) until the list of preset boxes is empty.

As shown in Figure 5, the non-maximum suppression
method is used to select what is most likely a tree canopy
among detected objects. A single left tree outputs three preset
boxes, and a single right tree outputs two preset boxes. The score
sequence of preset boxes is {0.92, 0.86, 0.81, 0.49, 0.42}, and the
highest score is 0.92. The preset box of 0.92 is taken as a detected
single tree prediction box, and then the IOU value of the
remaining preset boxes and prediction box is calculated. If
the IOU of the preset boxes of 0.81 and 0.49 and the

prediction box of 0.92 exceed threshold, the two preset boxes
of 0.81 and 0.49 will be deleted from the list. The remaining two
IOU areas of 0.86 and 0.42 are less than the set threshold, and
they are rearranged as {0.86 and 0.42} according to score. The
highest score is 0.82. The preset box of 0.82 is used as the
detected single tree prediction box. The final test results are
obtained by excluding preset box 0.42 through IOU.

2.4 Preset Box
The scale of the preset box follows a linear increment rule,
increasing linearly as the size of the feature map decreases:

Sk � Sm + Smax − Smin

4
(k − 1), k ∈ [1, m] (1)

In Eq. 1,m refers to the number of feature layers. Four feature
layers are extracted, but m � 3, because the first feature layer
(Conv4) is set separately. Sk represents the ratio of the preset box
size to the image, and Smin and Smax represent minimum and
maximum values of ratio. In this study, Smin is set to 0.2 and Smax

to 0.9. For the first feature layer, the minimum ratio of the preset
box to the original picture is Smin

2 � 0.1, the size of preset box is
300 × 0.1 � 30. According to Eq. 1 calculation, the Sk of each
feature layer is S1 � 0.2, S2 � 0.375, and S3 � 0.55. The scale of each
feature layer preset box is 30, 60, 112.5, and 165.

The shape of the crown of a single tree is mainly round and
oval, so the default width to height ratio of the frame that comes
tomind at first is 1: 12 or 1:1. However, when cutting the picture for
detection, the width to height ratio of the half tree frame is more
than 1

2. In this study, we select ar ∈ {1, 2, 3, 12, 13}, Sk refers to the
actual scale of preset box, and width (wa

k � Sk
��
ar

√
) and height

(hak � Sk��
ar

√ ) of the present box are calculated. Most tree crowns are
more circular. And each feature map will have an Sk preset box of
ar � 1 and an S‘k scale. Besides, there is a preset box of S‘k ������
SkSk+1

√
and ar � 1, so that each feature map has two width to

height ratios of preset boxes with an aspect ratio of 1: 1, they are 1
and 1‘. The last feature layer needs Sm+1 � 300 × 71

100 � 213 to

FIGURE 3 | SSD object detection framework.

FIGURE 4 | IOU calculation formula.
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calculate S‘m. Therefore, there are six preset boxes
(ar ∈ {1, 2, 3, 12, 13, 1‘}) for each feature map and each anchor point.

The coordinate of anchor points can be obtained by point

formula (i+0.5fk
× 300, j+0.5fk

× 300), where i, j ∈ (0, |fk|) and |fk| are
the size of the k-th feature map.

As shown from above, four feature layers are extracted,
respectively 38 × 38×256, 19 × 19×512, 10 × 10×512, and 5 ×
5×256. The number of preset boxes at each feature map is 4, 6, 6,
and 6, so there are 8,692 preset boxes in each original image. The
single tree position in the original image is retrieved using the
thick preset box.

2.5 Loss Function
The loss function is defined on a single sample, and it is the error
of a sample.

L(x, c, l, g) � 1
N

(Lconf(x, c) + αLloc(x, l, g)) (2)

where L is the loss function of SSD. The loss function of SSD is
divided into two parts: location loss and class confidence loss. Lloc
is location loss, and Lconf is class confidence loss. The confidence
loss is SoftMax loss over multiple classes confidences, c stands for
confidence loss.N is the number of matched preset boxes. IfN �
0, loss is set to 0. The positioning loss is smoothing loss (Girshick;
R.2015) between the preset box and actual box. l is the predicted
box, g is the actual box. α is used to adjust the ratio between class
confidence loss and location loss. By default, α � 1.

Lloc(x, l, g) � ∑N
i ∈ Pos

∑
m∈{cx,cy,w,h}

xk
ijsmoothL1(lmi − ĝm

j ) (3)

ĝcx
j � (gcx

j − dcx
i )/dw

i , ĝ
cy
j � (gcy

j − dcy
i )/dh

i (4)

ĝw
j � log(gw

j

dw
i

), ĝh
j � log(gh

j

dh
i

) (5)

Lconf(x, c) � − ∑N
i ∈ Pos

xp
ijlog(ĉpi ) − ∑

i∈Neg

log(ĉ0i ) (6)

ĉpi � exp(cpi )∑pexp(cpi ) (7)

where smoothL1 is smooth loss, Pos is positive samples, Neg is
negative samples, (cx, cy) is the regressed offsets for the center of
the preset box. w is the width of the preset box, h is the height of
the preset box, d is the preset box, and ĝ is the actual box that has
been offset. p refers to category, p � 0 represents the background.
xpij � {1, 0} is an indicator for matching the i-th preset box to thet
j-th actual box of p.

2.6 Increased Accuracy of Small Object
The main process of data enhancement is as follows:

1) Use entire original picture.
2) Take a small piece from the original image, and minimum

overlap between this small piece and actual box is 0.1, 0.3, 0.5,
0.7, or 0.9.

3) Take a piece randomly from the original picture.

The ratio of sub-block size to original image size is between 0.1
and 1, and the width to height ratio is between 0.5 and 2. If the
center of the actual single tree frame is within the intercepted sub-
block, overlap is retained as the actual box of the sub-block. Scale
the size of each subblock to 300 × 300, and each sub-block has a
probability of 0.5 to flip horizontally before training.

Distorting images is a way to enhance data, including
randomly changing contrast, brightness, saturation, and tone
of image and randomly disrupting the three RGB channels.
After data enhancement, training images have richer features,
which can enhance the robustness of the model. In this study, we
prove that this strategy can effectively improve the detection
accuracy of the SSD model.

FIGURE 5 | Non-maximum suppression method single tree detection results.
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3 EXPERIMENTS

3.1 Study Area
High-resolution remote sensing images of three groups of
representative different city types are used in the study, including

campus, orchard, and economic plantation. In June 2019, a campus
green tree was located at 116°20′8.76″E, 40°0′6.52″N, at Beijing
Forestry University in China. In December 2017, a litchi plantation
was located at 113°53′26.34″E, 22°38′41.22″N in Bao’an district,
Shenzhen city, China. A palm plantation was collected at

FIGURE 6 | Training data sampling ground images. (A) Open palm plantation. (B) Complex background palm plantation. (C) Dense palm plantation. (D) Campus
green tree. (E) Orchard.

FIGURE 7 | Results of different methods in campus. (A) Original image. (B) Local max. (C) Watershed. (D) CV model. (E) Template matching. (F) SSD.
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98°20′53.22″ E, 8°27′18.45″ N in Phang Nga province, Thailand.
High-resolution remote sensing images are used in our experiments,
with a spatial resolution of 0.27m, a scale of 800:1, and a visual field
height of 1 km.

3.2 Training Dataset and Sample Dataset
The training data were collected from Google Earth images, and
the training data of each experimental group are shown in
Figure 6. Training data of palm trees were collected from
around palm trees. Campus green tree training data were
collected from universities in Beijing, China. Training data for
lychee plantation were collected from around the lychee
plantation.

Experimental results of the campus sample plot are shown in
Figure 7A. The position data of a single reference tree were
obtained from field measurements.

The sample plot representing the orchard is shown in
Figure 8A. The position data of the single reference tree are

obtained by visual annotation. The palm plantation area
representing economic plantation is divided into three groups
according to the characteristics of the palm plantation area. The
location data of the single reference palm tree were obtained by
visual annotation. Open economic plantation refers to the
plantation area with a canopy density between 0.4 and 0.6.

The palm sample plot representing open economic plantation is
shown in Figure 9A. Dense plantation refers to a plantation where
the canopy density of palm plantation is between 0.7 and 1. Sample
plots of palm trees representing dense economic plantations are
shown in Figure 9C. Background detection in plantation areas also
has a great impact on single tree detection. Especially, background
color is like tree crown color, resulting in the background being
wrongly identified as a single tree. In addition, complex ground
features and shadow generated by sunlight in the background make
the shape of a single tree abnormal, which greatly increases the
difficulty of single tree detection. In this study, a plantation area with
a complex background is experimented as a type alone. The sample

FIGURE 8 | Results of different methods in lychee plantation. (A) Original image. (B) Local max. (C) Watershed. (D) CV model. (E) Template matching. (F) SSD.
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plot representing a complex background economic plantation is
shown in Figure 9E.

3.3 Constant Parameters
Table 1 lists the main parameters used in the experiment. When a
complete dataset passes through a neural network once and
returns once, the process is called an “Epoch”. When data

cannot be passed through a neural network at one time, the
dataset needs to be divided into several batch-sizes. Each “Batch-
size” is equivalent to a new dataset. The “Score” is a confidence
score. “Weight file size (MB)” is the size of the model.

3.4 Optimal SSD Model
The open economic plantation is experimentally studied. Palm
trees are detected through the SSD object detection framework.
Experimental results are shown in Table 2. The “trunk feature
extractor” refers to the main network structure used in feature
extraction. After the main network structure reframes, many
feature layers are obtained. And some feature maps are selected in
several feature maps to build preset boxes. The base scale of the
preset box is related to the feature map. The number of
parameters refers to the size of the model.

As shown in Table 2, SSD has been improved in many areas
for single tree detection, such as omitting some VGG16 feature

FIGURE 9 | Results of different methods in palm. (A) Original image of open palm plantation. (B) SSD of open palm plantation. (C) Original image of complex
background palm plantation. (D) SSD of complex background palm plantation. (E) Original image of dense palm plantation. (F) SSD of dense palm plantation.

TABLE 1 | Training model parameters.

Training model Optimal SSD SSD

Epochs 400 400
Batch-size 8 8
Input image size 300×300 300×300
Score 0.5 0.5
Weight file size (MB) 47.5 90.5
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layers, network depth, and unwanted feature layers. The extracted
feature layers by model 4 retains only K0-K3, which is
approximately 13.6 and 5.8 MB less than model 2 and model 3
parameters, but accuracy does not decrease. In the process, it is
found that there are more false positives in model 2 and model 3,
and the deletion of feature layer can reduce false positives.
Almost, no single tree has a crown height and width of 3 and
1
3 in the regular top view. SSD model 5 removes ar ∈ {3, 13}, which
makes detection speed increase to 0.43 s, omission rate increase,
and accuracy decrease, because sample images are clipped during
the experiment. The SSD model can recognize a separated half
tree as a tree. After removing ar ∈ {3, 13}, an incomplete canopy
cannot be detected, resulting in some single trees being missed.

Precision-recall is one of the most useful weapons to detect the
efficiency of the object detection model. As shown in Figure 10,
model 5 performs the worst, AP � 89.36%; model 4 has the best
performance, AP � 94.37%, in the precision-recall curve of all
models. In model 4, the SSD object detection framework only
extracts K0∼K3 feature layers and sets the aspect ratio to
ar ∈ {1, 2, 3, 12, 13, 1‘}. The accuracy of model 4 is 97%. Under
the condition of reducing parameters and time, the accuracy
of SSD is improved to the greatest extent.

3.5 Evaluation Criteria of Detection
Accuracy
For a variety of single tree detection methods, the evaluation of
their detection excellence depends on evaluation standard. At
present, there is no unified evaluation standard. The spatial
position difference between a ground reference single tree and
a detected single tree can be considered as correct detection
within a specific range. The geometric center of the actual box is
the position of a single tree. The point coordinate of single tree
detection and a single reference tree are denoted as Mi and Ej.
There are three possibilities for the results of single tree detection:
correct detection, error detection, and omission. A set threshold
ε> 0, d (Mi,Mi) is denoted as the distance between the two points
Mi and Ej. Mi is traverse:

1) When d (Mi, Ej) < ε , it is considered that the detection of a
single tree matches the single reference tree, and it is a correct
detection.

2) If there is d (Mi, Ej) > ε for any Mi, there is no reference
single tree matching with a detected single tree. The single tree
detected is considered as a false detection.

3) If Ej neither conforms to case (1) or case (2), Ej is omission.

Based on the above conditions, Nr is the number of reference
single trees,Na is the number of detected single trees, andNmatch

is the correct number of detected single trees in detected single
trees. The calculation formula of all values is shown in Table 3,
Nleave is the number of undetected reference single trees, and is
also the difference value between Nr and Nmatch, Nerror is the
difference value between Nmatch and Na. The recall rate is
represented by symbol Nmat, Nom is commission rate, Ncom is
omission rate, and M is accuracy.

4 SINGLE TREE DETECTION RESULTS

The optimal SSD model is applied to the single tree detection of
an urban plantation, and experimental results are compared with
the latest single tree detection method. Optimal SSD model 4 is
called the SSD model in the following.

4.1 Campus
The available view of single tree detection around the campus is
shown in Figure 7. The statistical analysis of experimental results
is shown in Table 4. The accuracy of the five methods differs
significantly. From the experimental results, the traditional local
maximum method and watershed method are generally effective
in single tree detection. The watershed method has the worst
result. The accuracy of the watershed method is 32.9%. The latest
template matching method and CV model method have a good
effect. The accuracy of the SSD model is 96% and has the highest
accuracy in the experimental results of five methods. Specifically,
the SSD model gains high scores in recall rate and omission rate.
The commission rate of the template matching method is zero.
The omission rate of template matching is 29.1%.

4.2 Orchard
The visual results of the experiment in the lychee plantation are
shown in Figure 8. The accuracy of the five methods is
significantly different, as shown in Table 4. SSD has the
highest accuracy of five methods. The accuracy of SSD is
92.9%. The lowest accuracy is 31.8%. The accuracy of the local
maximum method is the lowest. The accuracy of SSD is 61.1%
more than the accuracy of the local maximum method. The
accuracy of watershed is 52.9%. Obviously, SSD’s single tree
detection effect is far better than the traditional single tree

TABLE 2 | Experimental results of sample plot 1 under different SSD parameters.

Detection framework SSD Simplified SSD

Model Model 1 Model 2 Model 3 Model 4 Model 5
Trunk feature extractor VGG16 Simplified VGG16 Simplified VGG16 Simplified VGG16 Simplified VGG16
The selected feature layer K0∼K5 K0∼K5 K0∼K4 K0∼K3 K0∼K3
Preset box base scale 0.1,0.2,0.38,0.55,0.71,0.88 0.1,0.2,0.38,0.55,0.71,0.88 0.1,0.2,0.38,0.55,0.71 0.1,0.2,0.38,0.55 0.1,0.2,0.38,0.55
Preset box aspect ratio 1,2, 1

2,3,
1
3,1 1,2, 1

2,3,
1
3,1 1,2, 1

2,3,
1
3,1 1,2, 1

2,3,
1
3,1 1,2, 1

2,1
Parameter /mb 90.7 60.3 52.5 46.7 46.5
Average accuracy 95.3% 95.9% 95.4% 97.0% 93.9%
Single picture time /s 0.92 0.63 0.57 0.46 0.43
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detection method. Compared with the latest CV model and
template matching, the accuracy of the SSD model is 31%
higher than the CV model and 8.3% higher than the template

matching method. The SSDmodel obtains a higher score in recall
rate, omission rate, and commission rate.

4.3 Economic Plantation
Palm trees are not only a treasure, but are also one of theworld’smost
important sources of oil (De Aguiar et al., 2020). Thailand is one of
the main planting bases of palm trees, while China’s largest area of
palm trees is mainly distributed in Red River county, Yunnan
province, China. Palm plantations represent economic plantations.

The single palm tree detection experimental effect is shown in
Figure 9, a detected box is red and a detected box outside the
yellow line is cleared. Palm trees that were detected in error or

FIGURE 10 | Precision-recall curves for each method. (A) Model 1 (B) Model 2. (C) Model 3. (D) Model 4. (E) Model 5.

TABLE 3 | Single tree detection evaluation indicators.

Evaluation indicators Formula

Recall Nmat � Nmatch
Nr

Commission rate Nom � Nerror
Na

Omission rate Ncom � Nleave
Nr

Accuracy M � Nmatch
Nmatch+Nleave+Nerror

× 100
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missed are flagged. A white marker denotes a mistakenly detected
single tree, and a blue marker means the missed detected of a
single tree.

4.3.1 Open Economic Plantation
On behalf of the open economic plantation, the open palm
plantation is sample plot 1. The test results of the open palm
plantation are shown in Figure 9B and Table 5. The SSD model
has the highest accuracy, the highest recall rate, and the lowest
omission in the experimental results of the five methods. The
accuracy of SSD is 96.4%. The recall rate of SSD is 98.8%. The
omission rate of SSD is 1.2%. Two palm trees are missed among
164 reference palm trees in SSD-detected results. Mistakenly, the
template matching method identifies two background objects as
palm trees. The lowest commission rate reaches 1.3%. the SSD
model has the second lowest commission rate. The commission
rate of the SSDmodel is 2.4%. The accuracy of the local maximum
is 53.9%. Watershed has the lowest recall rate. The recall rate of
watershed is 65.9%.Watershed has the highest omission rate. The
highest omission rate of watershed is 34.1%. The commission rate
of the local maximum is 38.4%.

4.3.2 Complex Background Economic Plantation
In this study, sample plot 2 is a complex background palm
plantation, and the experimental results are shown in
Figure 9D and Table 5. The SSD model has the highest
accuracy in the experimental results of the five methods.
The accuracy of SSD is 97.0%. The SSD model has the
highest recall in the experimental results of the five
methods. The recall of SSD is 98.2%. The SSD model has
the lowest omission rate in the experimental results of the five
methods. The lowest omission rate of SSD is 1.8%. Four palm
trees are missed among 224 reference palm trees in SSD-
detected results. Mistakenly, the SSD model identifies three
background objects as palm trees. The lowest commission rate
reaches 1.3%. The SSD model has the lowest commission rate.
The accuracy of the local maximum is 31.4% and is the lowest
accuracy. The recall rate of the local maximum is 41.5% and is
the lowest recall rate. The omission rate of the local maximum
is 58.5% and is the highest omission rate. The CV model has
the highest commission rate. The commission rate of the CV
model is 45.0%. Mistakenly, the CV model identifies 91
background objects as palm trees.

TABLE 4 | Single tree inspection accuracy evaluation.

The image
number

Method Nr Na Nmatch Nleave Nerror M Nmat Ncom Nom

Campus SSD 24 25 24 0 1 96.0% 100.0% 0.0% 4.0%
Watershed 24 73 24 0 49 32.9% 100.0% 0.0% 67.1%
Local maximum 24 71 24 0 47 33.8% 100.0% 0.0% 66.2%
Template matching 24 17 17 7 0 70.8% 70.8% 29.1% 0.0%
CV model 24 21 17 7 4 60.7% 70.8% 29.1% 19.0%

Lychee plantation SSD 111 107 105 6 2 92.9% 94.6% 5.4% 1.9%
Watershed 111 149 90 21 59 52.9% 81.1% 18.9% 39.6%
Local maximum 111 204 76 35 128 31.8% 68.5% 31.5% 62.7%
Template matching 111 116 104 7 12 84.6% 93.7% 6.3% 10.3%
CV model 111 127 91 20 36 61.9% 82.0% 18.0% 28.3%

TABLE 5 | Single tree inspection accuracy evaluation.

The image
number

Method Nr Na Nmatch Nleave Nerror M Nmat Ncom Nom

Open palm plantation SSD 164 166 162 2 4 96.4% 98.8% 1.2% 2.4%
Watershed 164 117 108 56 9 62.4% 65.9% 34.1% 7.7%
Local maximum 164 213 132 32 81 53.9% 80.5% 19.5% 38.4%
Template matching 164 157 155 9 2 93.4% 94.5% 5.5% 1.3%
CV model 164 143 119 45 24 63.3% 72.6% 27.4% 16.8%

Complex background palm plantation SSD 224 223 220 4 3 97.0% 98.2% 1.8% 1.3%
Watershed 224 123 118 106 5 51.5% 52.7% 47.3% 4.1%
Local maximum 224 162 93 131 69 31.4% 41.5% 58.5% 42.6%
Template matching 224 217 203 21 14 85.3% 90.6% 9.4% 6.5%
CV model 224 202 111 113 91 35.2% 49.6% 50.4% 45.0%

Dense palm plantation SSD 148 148 147 1 1 98.7% 99.3% 0.7% 0.7%
Watershed 148 183 136 0 47 74.3% 91.8% 0.0% 31.7%
Local maximum 148 162 124 24 38 66.7% 83.8% 16.2% 23.5%
Template matching 148 152 147 1 5 96.1% 99.3% 0.7% 3.3%
CV model 148 173 130 18 43 68.1% 87.9% 12.1% 24.9%
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4.3.3 Dense Economic Plantation
Dense palm plantations have many problems, such as the fact
that dense tree crowns completely block sunlight, obscure
single tree crowns, and have high canopy density, which have
increased the difficulty of gaining artificial statistics for single
trees. Therefore, it is difficult to improve the accuracy of single
tree detection and location in dense palm plantations when
using the traditional method. In this study, sample plot 3 is a
dense palm plantation, and experimental results are shown in
Figure 9F and Table 5.

The SSD model has the highest accuracy in the experimental
results of the five methods. The accuracy of SSD is 98.7%. The
SSD model has the highest recall rate in the experimental results
of the five methods. The recall rate of SSD is 99.3%. The omission
rate of watershed is zero. The omission rate of the SSDmodel and
template matching method is tied for second place with one
missed detection among 148 reference palm trees. The omission
rate of the SSD model and template matching method is 0.7%.
The SSD model has the lowest commission rate in the
experimental results of the five methods. Mistakenly, the SSD
model identifies one background object as a palm tree. The
commission rate of the SSD model is 0.7%. The accuracy of
the local maximum is the lowest in the experimental results of the
five methods. The accuracy of the local maximum is 66.7%. The
lowest recall rate is the local maximum in the experimental
results of the five methods. The recall rate of the local
maximum is 83.8%. The omission rate of the local maximum
is the highest in the experimental results of the five methods. As
can be seen from Table 5, 24 reference trees are missed. The
omission rate of the local maximum is 16.2%. Watershed has the
highest commission rate in the experimental results of the five
methods. The commission rate of watershed is 31.7%. The
watershed mistakes 47 background objects as reference
palm trees.

5 DISCUSSION

At present, it takes a lot of manpower and material resources to
identify and locate tree species over a large area and in a scattered
plantation depending on collecting information or identifying
pictures with the naked eye. The manager of an artificial
plantation divides it into four stages: young plantation, middle
plantation, mature plantation, and overmature plantation. Each
stage has different characteristics of individual trees, and machine
recognition is more stable and produces fewer errors than human
eye recognition. Researchers have developed a variety of methods
to extract individual tree information from high-resolution
remote sensing images instead of the human eye (Liu et al.,
2016; Iqbal et al., 2021). However, the existing single tree
detection methods still have shortcomings (Gebreslasie et al.,
2011; Millikan et al., 2019; De Aguiar et al., 2020; Dersch et al.,
2020).

In this study, the comparison of five experiment groups proves
that single tree detection based on SSD has a better effect.

According to the problems existing in single tree detection, the
experimental research is carried out one by one:

1) Experiments with different canopy densities have been
completed, this article makes a comparison between an
open plantation and dense plantation.

2) The detection effect of the SSD model has been verified in a
plantation area with a complex background.

3) The application effect of the SSD model has been verified in
urban single tree detection, including a single tree on a
campus, a single tree in an orchard, and a single tree in an
economic plantation.

The summary of the five experiment groups shows that the
lowest accuracy is the local maximum method, with an average
detection accuracy of 43.52%. Local maximum extracts the
maximum value of an area. If there is no single tree in the local
area, the local maximum value will be wrongly judged as a single
tree. If there are multiple single trees in the local area, the local
maximum can only identify a single tree with the largest value. Due
to the above reasons, local maximum is mediocre in single tree
detection. The average detection accuracy of the watershed method
is 54.8%. If a tree has too many branches, watershed can easily
identify it as two trees. This leads to the high commission rate of
watershed. If the distance between two trees is very close, watershed
will identify it as a tree, which leads to a high omission rate of
detection. The average detection accuracy of the latest template
matchingmethod is 86.04%. Templatematching is not as detailed as
the SSD model in extracting single tree crown features. The average
detection accuracy of the CV model method is 57.84%. The CV
model combines the advantages of local maximum and watershed.
However, the CV model also has the problems of over-
segmentation and under-segmentation. The SSD model has the
highest average accuracy in the experimental results of the five
methods with an average accuracy of 96.32%, because the SSD
model can capture single tree canopy features from high-resolution
remote sensing images well. The average recall rate of the SSD
model is 97.94% which is the highest average recall rate. When
category confidence exceeds 0.5, the SSD model identifies an object
as a single tree. The average commission rate of the SSDmodel is the
lowest average commission rate, which is 1.7%. The SSDmodel has
the lowest average omission rate in the experimental results of the
five methods. The average omission rate of SSD is 2.06%. Therefore,
the SSD model has the best single tree detection performance.

Weijia Li et al. (Weijia et al., 2016) applied a convolutional neural
network method based on deep learning to the detection of general
palm trees, with an average recall rate of 96%. Dong Tianyang et al.
(Dong et al., 2018) proposed a single tree detection method based
on a progressive cascade convolutional neural network, which is
applied to an open plantation and green trees with an average recall
rate of 90%. In this study, the SSD model is applied to urban single
tree detection, the average recall rate of SSD is 97.94%. So, the SSD
model is more comprehensive and detailed in extracting single tree
features. The SSD model is better than the common convolutional
neural network in single tree detection.
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6 CONCLUSION

Automatic identification and location of single trees based on
high-resolution remote sensing images is of great significance for
ecological park planning, plantation management, and large-scale
ecological environment quality monitoring. In this study, the SSD
model is applied to single tree detection of high-resolution remote
sensing images. The study addresses a number of problems with
previous approaches, such as too large trunk branches of a single
tree, serious adhesion between crowns, and missing and false
detection problems in complex backgrounds. The SSD model is
applied to single tree detection in urban plantation. Accurately,
the SSD model can capture the canopy features of single trees in
high-resolution remote sensing images. The SSD model not only
segments single tree crowns, but also recognizes single tree
crowns in complex backgrounds. In the process of single tree
detection, the SSD model has stronger anti-interference ability
and is almost unaffected by the branches of a single tree. The SSD
model has excellent performance in all aspects and shows good

application potential. This study can be used as a reference for
other agricultural and forestry products. It is also hoped that
other techniques can be used to describe the crown contour of a
single tree.
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Accurate estimation of water table depth dynamics is essential for water resource
management, especially in areas where groundwater is overexploited. In recent years,
as a data-driven model, artificial neural networks (NNs) have been widely used in
hydrological modeling. However, due to the non-stationarity of water table depth data,
the performance of NNs in areas of over-exploitation is challenging. Therefore, reducing
data noise is an essential step before simulating the water table depth. This research
proposed a novel method tomodel the non-stationary time series data of water table depth
through combing the advantages of wavelet analysis and Long Short-Term Memory
(LSTM) neural network (NN). A typical groundwater over-exploitation area, Baoding, North
China Plain (NCP), was selected as a study area. To reflect the impact of anthropogenic
activities, the variables harnessed to develop the model includes temperature,
precipitation, evaporation, and some socio-economic data. The results show that
decomposing the time series of the water table depth into three sub-temporal
components by Meyer wavelets can significantly improve the simulation effect of LSTM
on the water table depth. The average NSE (Nash-Sutcliffe efficiency coefficient) value of all
the sites increased from 0.432 to 0.819. Additionally, a feedforward neural network (FNN)
is used to compare forecasts over 12-months. As expected, wavelet-LSTM outperforms
wavelet-FNN. As the prediction time increases, the advantages of wavelet-LSTM become
more evident. The wavelet-LSTM is satisfactory for forecasting the water table depth at
most in 6 months. Furthermore, the importance of input variables of wavelet-LSTM is
analysed by the weights of the model. The results indicate that anthropogenic activities
influence the water table depth significantly, especially in the sites close to the Baiyangdian
Lake, the largest lake in the North China Plain. This study demonstrates that the wavelet-
LSTM model provides an option for water table depth simulation and predicting areas of
over-exploitation of groundwater.
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1 INTRODUCTION

Groundwater, an important water resource, is being over-
exploited due to the rapid population growth and economy,
especially in arid and semi-arid areas. Excessive exploitation of
aquifers has caused severe land subsidence, increased
groundwater recharge area, and led to pollution and
salinization of groundwater (Li et al., 2020). The NCP, one of
the most heavily influenced regions through anthropogenic
activities, has emerged as the largest groundwater depression
cone in the world (Tang et al., 2013; Chen et al., 2020). Previous
studies have shown that the water table in the NCP exhibited a
long-term decline rate of −17.8 ± 0.1 mm/yr from 1971–2015
(Gong et al., 2018).

At present, physical models, such as MODFLOW (Modular
Ground-Water Flow Model) (Xu et al., 2012; Lachaal et al., 2012;
Xiang et al., 2020), HYDRUS (Huang et al., 2016), GMS
(Groundwater Modeling System) (Roy et al., 2015), have been
widely used in groundwater resources evaluation and
management. For example, Xu et al. (2012) integrated the
SWAP (Soil–Water–Atmosphere–Plant) package into
MODFLOW to simulate the regional groundwater flow
system. Xiang et al. (2020) evaluated the balance between
groundwater protection with crop production based on the
results of MODFLOW combined with DSSAT (Decision
Support System for Agrotechnology Transfer). Maihemuti
et al. (2021) employed HYDRUS to evaluate the effects of
groundwater on plant distribution. However, these physical
models usually require boundary conditions and a large
number of hydraulic parameters for calibration. When
hydrogeological data is lacking, the data-driven model based
on NNs shows advantages.

Over the past decades, many studies have applied NN
methods, such as FNN, ANFIS (Adaptive-network-based fuzzy
inference system) to predict water table or water table depth
(Coppola et al., 2003; Daliakopoulos et al., 2005; Nayak et al.,
2006; Altunkaynak, 2007; Chen et al., 2010; Taormina et al., 2012;
Nourani and Mousavi, 2016). Compared to physics models, the
data required by NNs is easier to collect and quantify (Mohanty
et al., 2013). In addition, some studies have shown that the
simulation effect of NN is better than that of numerical model
in certain scenarios (Altunkaynak, 2007; Mohanty et al., 2013).
For example, Zealand et al. (1999) employed FNN to predict
short-term streamflow. In their study, the WIFFS model
(Winnipeg Flow Forecasting System) was used as a
conventional numerical model for a contrastive study. They
found that the average RMSE (root mean square error) of
about 52.8 m3/s was obtained via FNN, which was better than
obtained via WIFFS (64.5 m3/s). Mohanty et al. (2013) evaluated
the performance of MODFLOW and FNN in the short-term
prediction of water table. Their study show that the NSE value
obtained by NN varied in the range of 0.90 − 0.96, up from 0.55 −
0.95 by MODFLOW.

Nevertheless, these traditional NNmethods may not deal with
time series data effectively because they cannot preserve previous
information (Zhang et al., 2018). To deal with time series data in
groundwater modelling, some researchers employed Recurrent
Neural Network (RNN), as its output can be associated with
previous state of the network (Coulibaly et al., 2001; Chang et al.,
2014). However, due to the disappearance of the gradient, the
performance of RNN in long-term backpropagation is limited.
Therefore, a special RNN, LSTM, is widely used to solve long-
term sequence prediction problems, including some hydrological
domains. For example, Zhang et al. (2018) used the LSTM to
predict the water table depth in Hetao Irrigation District, and
compared the results with traditional FNN. They found that
LSTM’s prediction is muchmore accurate than that of FNN. They
also pointed out that the single hidden layer is better than the
double hidden layer. Hewage et al. (2021) found that LSTM
performs better than numerical models in weather forecasting,
but numerical models have obvious advantages in long-term
prediction. Kratzert et al. (2018) used the LSTM network to
simulate precipitation in multiple watersheds. They found that in
the case of insufficient data, previous training parameters can be
recorded and used to simulate the precipitation in other
watersheds to achieve satisfactory results.

Although NNs have received a lot of attention in hydrological
modeling, NN may not adequately handle nonlinear and non-
stationary data (Ebrahimi and Rajaee, 2017). Due to the high
autocorrelation of the time series data, NNs tend to produce a
forecast that is very similar to the last observed data (de Vos and
Rientjes, 2005). The prediction results of NNs are always
continuations of historical trends and do not accurately reflect
high-frequency and irregular changes for multi-step predictions
(Zhang et al., 2021). In addition, most of the measured and
observed hydrological time series contain noise. Therefore,
eliminating data noise to manage non-stationary data better is
essential in hydrological modeling (Nourani and Mousavi, 2016).

As an effective data preprocessing method, wavelet analysis
provides a time-frequency representation of signals with many
different periods in the time domain. It can decompose time
series data into approximate and detailed parts to extract
potential information from noisy data (Daubechies, 1990). The
combination of wavelet transform analysis, and NN has been
used in various fields of hydrology, including streamflow
prediction (Tiwari and Chatterjee, 2010; Adamowski and Sun,
2010; Nanda et al., 2016), precipitation prediction (Nourani et al.,
2009) and drought forecasting (Kim and Valdés, 2003).
Furthermore, wavelet transform combined with an NN also
has important applications in groundwater modeling. For
example, Gorgij et al. (2017) used an NN based on wavelet
analysis and a genetic program model to predict the water
table in the eastern plain of Iran. Ebrahimi and Rajaee (2017)
used NNs, multiple linear regression and support vector
regression combined with wavelet analysis to predict the
monthly water table of the Qom plain in Iran and have found

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7804342

Liang et al. Wavelet-LSTM for Groundwater Prediction

85

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


that the wavelet transform analysis improved the prediction effect
of these models. Therefore, considering the periodicity and
randomness of the water table time series events, the wavelet-
based NN model can be used as an efficient method to deal with
nonlinear and non-stationary water table time series.

This study focuses on combing wavelet analysis with NNs to
establish a novel data-driven model for non-stationary time series
data of water tables in areas of over-exploitation. Furthermore,
the influence of various factors on water table is discussed
through analysing the importance of input variables, which
provides a reference for local groundwater resource
management. The city of Baoding in the NCP was chosen as
the study area. The specific objectives of this study are: 1)
evaluating the simulation effect of wavelet-LSTM model, 2)
forecasting water table over the 12 months using the wavelet-
LSTMmodel, 3) analysing the contribution of each variable to the
changes in water table based on the weight of the NN and the land
use distribution.

2 DATA AND METHODOLOGY

2.1 Study Area and Data Sources
The study area is located in Baoding City, Hebei Province, in the
middle of the NCP, between 113°40′—116°20′E, 38°10′—40°00′N,
This region belongs to a temperate continental monsoon climate
zone. The average annual precipitation is about 500 mm, and the

annual evaporation is about 1,430 mm. Over the past 40 years, the
coldest month (average temperature −2.7°C), and the lowest
monthly average precipitation (2.4 mm) occurred in January.
The hottest month (average temperature 27.1°C), and the
highest monthly average precipitation (155.5 mm) occurred in
July. We obtained monthly water table depth data from 20
observation wells from 2000 to 2016 from the local
hydrological bureau. The locations are shown in Figure 1.

The study areamainly includes alluvial fans and alluvial plains,
and the lithology is composed of gravels, sands, silts, and silty
clays etc. Due to the scarcity of surface water resources in the
study area, groundwater is the leading water resource. Agriculture
and industries as a major grain producer and steel producer,
respectively, in China, accounts for the most significant
proportion of water consumption. Studies have shown that
groundwater is almost the only source of irrigation water
(Xiao et al., 2017). In addition, Hebei Province has historically
been the largest steel-producing province in China, with a steel
output of 2.184 billion tons in the past decade, accounting for 23%
of the country’s total production. As a high water consumption
industry, the development of the steel industries has contributed
significantly to the depletion of groundwater in the region.

As shown in Figure 2, steel prices and API (Agricultural Price
Index) negatively affect the depth of the water table. The three peaks
appeared in 2005, 2009, and 2011, respectively, corresponding to the
three valleys of the water table. Generally, the periods of high prices
correspond to the periods of strong demand. In other words, during

FIGURE 1 | Location of all sites in the study area.
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high prices, the production activities of steel and agriculture
increased significantly, resulting in a large consumption of water,
which in turn causes the water table to fall.

2.2 The LSTM Model
NN is a model that simulates the biological brain to achieve the
artificial intelligence effect. The basic NN consists of an input
layer, an output layer and a hidden layer. Each neuron is
connected to the other by weights, and the training process is
the process of updating weights. The NN activation function
requires a nonlinear function that maps the input to a finite
interval that determines whether the neuron is activated.

FNN is a simple NN that is widely used. All layers of the FNN
are dense layers, and the parameters are propagated

unidirectional from the input layer to the output layer and are
updated by the error backpropagation algorithm. The NN
parameters are the weights on each connection, and these
weights are obtained by learning processes. Backpropagation
algorithms based on the gradient descent method are often
used to train NNs. In a NN, if we associate the hidden-layer
state with each instant, we call it RNN. RNN is generally used for
processing time series data because it uses information from the
previous moment in each step. In this paper, the activation
function we adopted between hidden layers is “tanh.”
However, the calculations of the gradient of networks weight
is essentially a continuous product operation. The gradients tend
to zero or infinity exponentially with the length of the sequence
increasing. It is the vanishing and exploding gradient problems.

FIGURE 2 | Comparison of the average water table depth and precipitation, steel price and API.

FIGURE 3 | Correlation heatmap of all sites.
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In this case, the model will ignore the previous state information.
To solve this problem, the LSTM NN has been proposed
(Hochreiter and Schmidhuber, 1997). A forget gate is added to
the LSTM to manage the network’s “memory” to remember the
model’s state for a long time. The following equation describes the
computational procedure of LSTM:

ft � σ(bf + Ufst + Vfht−1) (1)

it � σ(bi + Uist + Viht−1) (2)

ot � σ(bo + Uost + Voht−1) (3)

ct � tanh(bc + Ucst + Vcht−1) (4)

mt � ft ⊗ mt−1 + it ⊗ ct (5)

where, ct is calculated by st and ht−1, forget gate and input gate are
employed to controlmt. In RNN, ht is the state of its hidden layer,
while in LSTM,mt (memory) is added to remember its long-term
state and ct to represent its cell state of the current input. In this
study, “sigmoid” is employed as activation function of its
forget gate.

2.3 Discrete Wavelet Transform
The idea of wavelet transform is to decompose the original
sequence into different subsequences to provide detailed
information about the multi-scale properties of time series.
The superior function of wavelet transforms to reflect
information on the time, location and frequency of a signal
simultaneously (Cohen and Kovacevic, 1996). Wavelet
transform is generally divided into continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). Due
to information redundancy, DWT is usually recommended in
hydrological forecasting (Quilty and Adamowski, 2018; Rajaee

et al., 2019). Unlike CWT, DWT uses a specific subset of all zoom
and translation values. In DWT, the original sequence is
decomposed by a scale function for approximating the original
sequence, and the wavelet function is used to describe the details
of the original sequence. The scale function and wavelet function
of the DWT decomposition can be defined as follows:

ϕj,k(t) � 2j/2ϕ(2jt − k) (6)

ψj,k(t) � 2j/2ψ(2jt − k) (7)

where ϕ(t) is scale function, ψ(t) is wavelet function, j and k are
dilation factor and translation factor respectively.

Meanwhile, let Vj, Wj is a space spanned by ϕj,k(t), ψj,k(t)
respectively, Wj is a orthogonal complement space of Vj:

V0 � V1 ⊂ V2 ⊂ V3/ ⊂ Vj−1 ⊂ Vj ⊂ / � Wj−1 ⊕ Vj−1 (8)

Thus, each Vj can be decompose to Wj−1 and Vj−1:

Vj � Wj−1 ⊕ Wj−2 ⊕ Wj−3 ⊕/⊕ W0 ⊕ V0 (9)

In this study, DWT is applied to decompose the water table
time series. The processed sub-time series are input to the LSTM
model with meteorological data, socio-economic data as
variables.

2.4 Data Processing
The input format of the LSTM or FNN is a multidimensional
tensor. The input data is typically preprocessed in a three-
dimensional tensor format like (samples, timesteps, features)
for time series data. In this study, air temperature (K),
precipitation (mm), evapotranspiration (mm) data,
normalized difference vegetation index (NDVI) data,

FIGURE 4 | Clustering of all sites.
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agricultural price index (API) and steel price data are
harnessed as input variables of LSTM of FNN models. Air
temperature, precipitation and evapotranspiration data in
NetCDF (Network Common Data Form) format are
resampled to monthly data. Monthly API and steel pricing
data were collected from the website of the National Bureau of
Statistics of China (http://www.stats.gov.cn/tjsj/), while
Moderate Resolution Imaging Spectroradiometer (MODIS)
provided NDVI data. Also, because the variables are
different in order of magnitude, to make their scales
uniform, the data has been normalised through the
following equation to be a dimensionless value between 0
and 1:

xscaled � (x − xmin)(max −min)
(xmax − xmin) +min (10)

where xscaled is normalized data, xmin and xmax represent
minimum and maximum value of the data respectively.

2.5 Model Evaluation
The NSE, RMSE (the root mean square error) and R (correlation
coefficient) are harnessed to evaluate the performance of the
model:

NSE � 1 − ∑n
i�1 (Oi − Pi)2∑n
i�1 (Oi − �O)2 (11)

RMSE �
������������∑n

i�1 (Oi − Pi)2
n

√
(12)

R � ∑n
i�1(Oi − �O)(Pi − �P)��������������������������∑n

i�1 (Oi − �O)2[ ] ∑n
i�1 (Pi − �P)2[ ]√ (13)

TABLE 1 | Comparison of performance between LSTM model and wavelet-LSTM model.

Site NSE R RMSE(m)

Training Testing Training Testing Training Testing

A LSTM 0.978 0.575 0.989 0.931 0.514 0.647
wavelet-LSTM 0.995 0.887 0.998 0.949 0.241 0.335

B LSTM 0.987 0.763 0.994 0.971 0.345 0.323
wavelet-LSTM 0.996 0.894 0.998 0.952 0.202 0.217

C LSTM 0.956 0.542 0.986 0.908 0.630 0.590
wavelet-LSTM 0.989 0.797 0.995 0.932 0.321 0.392

D LSTM 0.957 0.411 0.982 0.900 0.549 1.079
wavelet-LSTM 0.989 0.901 0.995 0.953 0.277 0.443

E LSTM 0.974 0.921 0.992 0.972 0.482 0.201
wavelet-LSTM 0.997 0.943 0.998 0.973 0.173 0.170

F LSTM 0.934 0.668 0.976 0.855 1.076 0.919
wavelet-LSTM 0.983 0.828 0.992 0.919 0.551 0.660

G LSTM 0.950 0.685 0.977 0.908 0.568 0.503
wavelet-LSTM 0.980 0.954 0.990 0.978 0.361 0.192

H LSTM 0.943 0.424 0.972 0.773 0.727 1.122
wavelet-LSTM 0.960 0.732 0.980 0.906 0.613 0.765

I LSTM 0.938 0.441 0.970 0.814 1.836 1.638
wavelet-LSTM 0.975 0.866 0.989 0.952 1.163 0.802

J LSTM 0.837 −0.440 0.918 0.766 0.622 0.808
wavelet-LSTM 0.930 0.773 0.965 0.919 0.406 0.321

K LSTM 0.946 0.168 0.972 0.714 0.678 0.710
wavelet-LSTM 0.979 0.831 0.990 0.912 0.421 0.319

L LSTM 0.818 0.593 0.905 0.881 0.518 0.678
wavelet-LSTM 0.931 0.939 0.965 0.969 0.318 0.263

N LSTM 0.912 0.430 0.965 0.741 0.700 0.626
wavelet-LSTM 0.985 0.784 0.993 0.890 0.293 0.385

O LSTM 0.936 0.583 0.967 0.766 0.699 0.735
wavelet-LSTM 0.969 0.800 0.985 0.897 0.488 0.509

P LSTM 0.860 0.554 0.941 0.758 0.987 0.697
wavelet-LSTM 0.957 0.859 0.979 0.928 0.544 0.392

Q LSTM 0.870 0.487 0.939 0.881 0.675 0.691
wavelet-LSTM 0.932 0.747 0.966 0.893 0.490 0.485

R LSTM 0.440 −0.417 0.664 0.226 1.057 1.981
wavelet-LSTM 0.711 0.523 0.844 0.730 0.760 1.149

S LSTM 0.904 0.143 0.958 0.755 0.816 1.464
wavelet-LSTM 0.961 0.816 0.981 0.906 0.518 0.679

T LSTM 0.876 0.516 0.940 0.735 1.163 1.831
wavelet-LSTM 0.962 0.749 0.982 0.869 0.639 1.319

U LSTM 0.942 0.602 0.977 0.788 0.347 0.518
wavelet-LSTM 0.978 0.763 0.990 0.889 0.214 0.399
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where Oi is observed value at time i, Pi is predicted value at time i,
�O is the mean value ofOi, �P is the mean value of Pi. The NSE value
range from negative infinity to 1 while the correlation coefficient
R from −1 to 1. The prediction is ideal if NSE and correlation
coefficient are close to 1 or RMSE to 0.

3 RESULTS AND DISCUSSIONS

3.1 The LSTM Model
The correlation between the two sites was examined to reduce the
noise influence of the water table data as much as possible.
According to the correlated heat map of the water table depth
at each site (Figure 3), the 20 sites are divided into four clusters
(Figure 4). Data from the first 14 years is used for training
purposes, and the data from the next 3 years is used for
testing purposes. As each cluster, model’s output represents
the water table depth prediction of all sites included in this cluster.

Table 1 shows the NSE, RMSE, and correlation coefficients of
all sites during the training and testing periods using the LSTM
model and wavelet-LSTM model. It is evident that the NSE of all
sites during the training period is greater than 0.8, and the
correlation coefficients are greater than 0.9. During the testing
period, the NSE at all sites was significantly lower than the NSE
during the training period and was even negative at sites J, K, R,
and S. The results indicate that quite a significant overfitting
phenomenon occurs. From a spatial point of view, the simulation
performance of the densely distributed area (cluster 1) is better,
while the sparsely distributed area (cluster 4) has poor simulation
performance. In addition, the closer to the lake, the weaker the
results are. It may be due to the fact that the water table depth
near the lake is strongly affected by the lake. However,
hydrological data for the lake is lacking.

FIGURE 5 | NSE value of three models using db2, db4, and meyer
wavelet respectively.

FIGURE 6 | Decomposition of the time series of site A.
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3.2 The Wavelet-LSTM Model
The processed sub-time series decomposed using wavelets is used
as the input of the LSTM model to improve the output. On the
selection of wavelet function, Daubechies family wavelet (dbN, N

refers to the number of vanishing moments) (Khan et al., 2020)
and Meyer wavelet (Freire et al., 2019)are commonly used; Haar
wavelet are also often used for comparative studies (Liu et al.,
2012; Ebrahimi and Rajaee, 2017).

FIGURE 7 | Comparison of observed, simulated and forecast water table depth applied the single LSTM model and the wavelet-LSTM model at each site.
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Maheswaran and Khosa (2012) proposed that a wavelet
with a compact support is suitable for processing time series
with short memory with short-duration transient features
while wavelets with wider support for time series with long
term features. Nourani et al. (2009) used db4 and Meyer
wavelet to decompose the time series with two
decomposition levels to simulate monthly precipitation

data. Gorgij et al. (2017) used a db4 wavelet to decompose
the monthly water table data with two levels. Nanda et al.
(2019) used a db2 wavelet to decompose the daily time series
with five levels to simulate the daily streamflow data.
Therefore, the wavelet function and levels of decomposition
should be carefully determined according to different
conditions.

FIGURE 8 | Spatial distribution of R values using LSTM model and wavelet-LSTM model during the testing period: (A) LSTM (B) wavelet-LSTM.
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In this study, db2, db4, and Meyer wavelet are used for
comparison. The NSE value of the three wavelets used by the
model in the testing phase are shown in Figure 5. It can be
seen that although db2 and db4 wavelets may be close or even
slightly better than Meyer wavelet at some sites, the
advantages of Meyer wavelets are evident on most sites. It
should be noted that, as wavelet components are input into the
model as variables, the decomposition level could not be

unduly high. Because it is not practical to apply the
network effectively when the number of training samples is
limited while the dimension of the feature space is large (Liu
et al., 2017). The sub-time series of the data of site A
decomposed by Meyer wavelets are shown in Figure 6. The
component d3 (three decomposition levels) can be seen to
have a significant periodic variation feature. As a result, three
levels of decomposition were used.

FIGURE 9 | Comparison of RMSE values of water table depth using wavelet-LSTM and wavelet-FNN models with 1–12 months delays.
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As shown in Table 1, the performance of the wavelet-LSTM
model is significantly better than that of the single LSTM model.
The simulation results of both models during training and testing
periods are shown in Figure 7. During the training period, the
LSTM model without wavelet transform does not accurately
simulate the water table under extreme conditions (peaks and
troughs) and is subject to overfitting during the testing process.
For example, when a single LSTM model is used, the NSE value
for sites J, K, and S are 0.837, 0.946, and 0.904, respectively, while
in the testing phase, the NSE value are −0.440, 0.168, and 0.143,
respectively. After using the wavelet-LSTMmodel, the NSE value
reached 0.773, 0.831, and 0.816, respectively for sites J, K, and S. It
should be noted that site R is close to Baiyangdian Lake, the study
area’s primary surface water body. Despite the lacking of
hydrological data for Baiyangdian Lake, utilizing the wavelet-
LSTM model enhanced the simulation effect of the R site from
−0.417 to 0.523. The results indicate that the phenomenon of
overfitting was significantly improved. From the comparison of
Figures 8A,B, it can be seen that compared to a single LSTM, the
simulation effect of each site has been considerably improved
under the LSTM model coupled by wavelets. The delayed
response of water table depth data to weather conditions and
our inability to obtain socio-economic data with higher spatial
resolution makes it impossible to use a single LSTM model to
capture the exact characteristics of the water table series
accurately. However, the wavelet transform is very suitable for
dealing with the non-stationary and stochastic nature of
groundwater variability.

As described in Section 2.2, unlike LSTM-NNs, FNN has no
memory and cannot record the state of individual inputs. Therefore,
the wavelet transform is combined with FNN (wavelet-FNN) and
compared with wavelet-LSTM on the water table forecasting effect.
Figure 9 shows the RMSE comparison of the combined wavelet
transform with FNN and LSTM-NN over the next 1–12months.
As expected, FNN is not as efficient as the LSTMmodel for time series
data. Although the RMSE increases with prediction time increases,
wavelet-LSTM still performs better than wavelet-FNN simulation for

almost all sites. This phenomenon is more evident as the prediction
time increases, reflecting the features of the wavelet-LSTM, which can
memorise information for a long time.

It should be noted that the underground funnels are mainly
distributed in the southwest of the study area, namely sites A,
B, C, D, E, and G. For these sites, the advantages of wavelet-
LSTM are particularly evident, and the RMSE of wavelet-
LSTM is even less than half of wavelet-FNN in individual
sites, illustrating the applicability of wavelet-LSTM in
overexploited areas. Therefore, it can be concluded that
LSTM-NN is better than FNN in long-term prediction in
areas where anthropogenic activities strongly influence
groundwater. It further shows that the wavelet-LSTM model
can effectively simulate the non-stationary water table
variation in the overexploited area.

3.3 Forecast of the Future Water Table
Depth
Given that meteorological data, socio-economic data are unknown,
we need to use the present value of these parameters at this time to
forecast the water table depth for the unknown future. To predict the
value of weather data, socio-economic and other variable data for the
unknown future, we need to use the present value of these
parameters at this time. To ensure as much precision as possible,
we respectively use the wavelet-LSTM model with a delay of
1–12months to predict the water table depth in the next
1–12months. The green dotted line indicates the results of the
future predictions (Figure 7). Figure 10 compares correlation
coefficient R values between the LSTM model and wavelet-LSTM
model during the delayed testing period for 1–12months. Although
the R values decrease as the prediction delay increases, the
performance of wavelet-LSTM is remarkably better than the
single LSTM model in 6months’ prediction, as expected.
Wavelet-LSTM also shows higher stability.

Furthermore, the results show that for a single LSTM
model, the 6-months forecast is sometimes more reliable

FIGURE 10 | Comparison of R values between LSTMmodel and wavelet-LSTMmodel during the testing period for 1–12 months forecast: (A) LSTM (B)wavelet-LSTM.
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FIGURE 11 | Recursive prediction using wavelet-LSTM model for 1–12 months.
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than the 4 or 5-months forecast. However, the former has a
longer time frame; the 12-months forecast shows better than 9,
10 or 11 months of superior performance. Nevertheless, for
wavelet-LSTM, the advantages in the 6 and 12 months
forecasts are not obvious. In other words, wavelet transform
increases the model’s dependence on the autocorrelation of
the data.

In addition, to evaluate the response of groundwater to
changes in various variables (such as climate change,
economic development, etc.) in the future, future simulated
values of these variables are entered into the model. Then the
recursive method is used to predict the water table depth in
the future gradually. Figure 11 shows the 12-months recursive
forecast using the January 2016 forecast values. In this
method, the meteorological and socio-economic data are
real values, and the wavelet decomposition data will beFIGURE 12 | Importance percentage of each variable.

FIGURE 13 | Impact of dominant variables on water table depth at each site.
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predicted and produced simultaneously with the water table
depth data. It can be seen that the losses of most sites have not
increased significantly over time. Mainly at sites B, E, and L,
the RMSE values reached 0.090, 0.059, and 0.218 m,
respectively. The prediction curve and the observation
curve can be matched precisely. The results show the

effectiveness of this method for predicting and evaluating
the water table.

3.4 Importance Evaluation of Each Variable
To evaluate the impact of each variable on the simulation effect, we
calculate the contribution of each node in the following equation:

FIGURE 14 | The relationship between land use and importance of variables: (A) Dominant variables at each site (B) The ratio of meteorological factors to
production activity factors.
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C1 . . . Cj . . . Cn( ) � R1 . . . Rj . . . Rm( )
w11 . . . w1j . . . w1n

. . . . . .

wi1 . . . w1j . . . win

. . . . . .

wm1 . . . wmj . . . wmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

where Cj represents the contribution of the j node to the results; Ri
represents the correlation coefficient of prediction value and the
measured value at i-th site (Table 1);wij represents the input layer
weight of the i-th site, the j-th node.

As shown in Figure 12, a3, d1, d2, d3 represent wavelet
decomposition sequence; Lt−1 represents the past water table;
temp represents temperature; et0 represents evapotranspiration;
prec represents precipitation. The approximate component (a3)
of the wavelet has the greatest impact, accounting for 18.4% of
the total contribution; then, the past water level (Lt−1) can
explain 13.4% of the result. Among the external variables,
precipitation and evapotranspiration have the greatest impact
on the results through recharge, vegetation and soil
evapotranspiration. The steel price contribution rate is 7.3%,
slightly higher than NDVI and API. It fully shows that
agricultural irrigation and climate change will affect
groundwater, but the steel industry, the mainstay industry in
the study area, also has a big impact on groundwater. The prices
of agricultural products are also affected by meteorological
conditions. For example, precipitation can increase the yield
of crops such as corn, but it is harmful to cotton (Eck et al.,
2020). However, increased agricultural production can also lead
to a drop in the water table due to increased irrigation.
Consequently, the contribution rate of agriculture is lower
than that of industry.

Since the wavelet components and past water table depth data
accounted for more than 50% percent of the weights. If the
remaining variables are considered “external variables,” the
weights of the socio-economic factors (price of steel, API and
NDVI) represent almost half of the external variables. Figure 13
shows the impact of the temperature, precipitation, evaporation,
API, steel price and NDVI on the water table in 20 sites,
respectively. For most sites, precipitation and evaporation
contribute to changes in the water table, and evaporation at
site E and precipitation at site D was even more than half. While
the weight of the price of steel and API is not as great as
precipitation and evaporation, it is still considerable. Site D
has the lowest socio-economic impact, and the weight is less
than 1/3. However, the socio-economic ratio of most sites is in the
range of 1/2–1/3.

It should be noted that it is unavoidable for socio-economic
data to exhibit extreme price swings caused by emotional
investment decisions. For example, due to the impact of the
2008 financial crisis, the steel price index fell sharply. In this
case, water table fluctuation cannot accurately reflect the
relationship between supply and demand. As a result, we
strive to reflect the degree of influence of each element
using the model.

In addition, this study also analysed the dominant factors
affecting the water table by land use distribution. Most of the
study area is occupied by agricultural land, forest and pastures.
A large portion of industrial land is distributed northwest of
Baoding city, close to the forest. According to surveys, the
leading industry in northwest Baoding is papermaking, which
consumes a lot of water and wood. Since the variables are not
independent, we also used anthropogenic activities and
meteorological ratios as much as possible to describe the
relationship of each variable. The lower the ratio, the
greater the impact of anthropogenic activities (Figure 14).
It can be seen that except for P, Q, and R, the ratio of all sites
are greater than 1. Since the R is close to Baiyangdian Lake, its
water table is heavily influenced by human activities, fluctuates
erratically and the simulation impact is weak. This outcome is
also consistent with the study of Gorgij et al. (2017). They
found that the sites located on the river may be affected by the
fluctuations in the river water and that the simulation effect of
these sites is not as good as that of other sites. In addition, the
water table depth of P and Q are strongly affected by
anthropogenic activities. Site A, B, C, D, E, and G in the
southwest of the study region are the central over mining areas.
Except for the points near C and D, fewer industries and the
proportion of agricultural land is relatively large. The water
table of these sites have trended downward and are greatly
affected by anthropogenic activities. In this regard, Dong et al.
(2019) concluded that the water table dropped most
significantly in the place with the highest proportion of
agricultural land.

The water table in the study area shows a downward trend
from A, B, C, D, E, G, H, K, N, and O, located in the southwestern
part of the study region, while this is where the groundwater
funnel area is located. It may be because the southwest of the
study area is dominated by agricultural land and far away from
industrial areas and lakes. As the main crop in this region, the
price of wheat per unit of yield is relatively stable, and the water
table trend has not changed significantly. At these sites, the ratio
of meteorological to human activity weights for A, B, E, G, N, and
O is 1–1.5, and D is 3. Other sites (F, I, J, K, l, P, Q, R, S, T, U)
showed a decrease then and increase, or complicated fluctuations.
These sites are mainly distributed in the north of the study area.
Among these sites, the ratio of meteorological to human activity
weights for sites I, P, Q, and R are relatively low, while F, K, J, L, S,
T, and U sites show high ratios. Since the effects of various
variables on groundwater are not independent, agricultural
production is also affected by meteorological changes.
Therefore, these two regions consist of sites with higher
meteorological weights and sites with lower meteorological
weights. However, in general, the sites with lower
meteorological weight are mainly distributed in the
groundwater funnel area.

4 CONCLUSION

This study evaluated the predictive performance of the LSTM
combined with wavelet transform in the groundwater over-
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exploitation region. The results show that the NN can be used as
an efficient model for prediction. Moreover, due to
anthropogenic activities, the data is rich in noise and non-
stationary in the groundwater over-exploitation area. The
original sequence is decomposed into three levels by Meyer
wavelet, which can significantly improve the simulation effect
of LSTM. Using the wavelet transform combined with LSTM and
FNN to predict the water table depth over the next 1–12 months,
it can be concluded that the long-term prediction effect of LSTM-
NN in areas of over-exploitation of groundwater is better than
FNN, indicating that LSTM canmemorise long-term information
and effectively understand bit trend changes in water table.
Furthermore, by using meteorological and socio-economic
data, the proposed model can forecast future changes in the
water table through a recursive method, providing a benchmark
for rational utilisation planning of groundwater.

In addition, the contribution of various variables on the water
table can be analysed through the LSTM-NN. The results show that
Baoding’s steel industry has a greater impact on water table changes.
Moreover, the contribution of anthropogenic activities is higher in
the sites close to the surface water. It shows that agricultural
irrigation water can affect the water table. However, industrial
production contributes to lowering the water table, especially in
the study area where secondary industry represents a relatively large
proportion. The simulation results can provide scientific guidance
for the rational development and utilisation of groundwater
resources in the study area.

However, we can still find that our interpretation of the variables is
vague due to the nature of the NN black-box model. Therefore, more

parameters, such as groundwater pumping data, should be
considered in future research. If possible, in the subsequent
application of the model, the amount of data should be further
increased.Data that directly affects thewater table should be collected,
such as water pumping, crop yields, etc.
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Forest cover plays an important role in sustaining ecological security to realize Sustainable
Development Goals (SDGs). The research target area is composed of the African region
which is experiencing unprecedented deforestation based on the data collection from 54
countries and regions between 2000 and 2020. Spatial autocorrelation analysis, global
principal component analysis, and geographic detector model have been used as the core
research tool. The temporal and spatial patterns of forest cover change in Africa and the
driving effects of population growth, economic and trade, social development, arable land
expansion, and other factors on forest cover change in different periods have been
demonstrated. The findings are as follows: 1) extremely unequal distribution of Africa forest
has caused forest area reduction in 20 years. The reduction quantity of forest has been
illustrated from strong to weak: Central Africa (strongest), East Africa (higher strong), West
Africa (medium), South Africa (higher weak), and North Africa (weakest). However, the
forest reduction area in West Africa with the original ratio is the most significant. More than
80% of the forest area reduction in Africa has occurred in 14 countries, just five national
forest areas to achieve the net growth, but the increase amount was only 1% of loss
amount. 2) The spatial pattern of forest cover change in Africa contracted and clustered
gradually, especially after 2012. Algeria was the hotspot cluster of Morocco and Tunisia,
forming the increase area of forest cover in North Africa. Zambia, the coldest point, gathers
Angola significantly, while the Democratic Republic of the Congo and Tanzania form a
significantly reduced forest cover area. 3) Total population, land area, cultivated land, urban
population, consumer price index, and birth rate are the main factors influencing the
temporal evolution of forest cover change in Africa. It can be divided into four stages to
interpret the different explanations and significance of each factor for forest cover change
in the study area.

Keywords: data-driven, forest cover change, driving factors, spatio-temporal features, Big Earth Data,
environmental modeling

1 INTRODUCTION

Forest is not only one of the important sources of human production and life but also one of the
important indicators to maintain ecological security to achieve the Sustainable Development Goals
(SDGs) (Glaser, 2012; Giam, 2017; Macdicken, 2015). After human beings frantically plundered
forest resources, they gradually realized that large-scale deforestation would cause adverse
consequences such as climate change, soil erosion, and biodiversity loss, so the net loss rate of
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global forest cover has been slowed down through various appeals
and efforts (Barlow et al., 2007; Edwards et al., 2012; Bonan, 2008;
Hansen et al., 2013; Harris et al., 2021). However, from 2010 to
2020, Africa’s forest cover will be reduced by 3.9 million hectares,
surpassing South America, and the net loss rate is the highest in
the world (FAO, 2020; Hoang and Kanemoto, 2021). It is
expected that Africa will experience large-scale population
growth and climate change, and Africa has a typical
disturbance-driven ecosystem (Diffenbaugh and Giorgi, 2012;
United Nations, Department of Economic and Social Affairs,
Population Division, 2017). Once the forests in most areas are
affected, the entire ecological environment will become highly
vulnerable (Midgley and Bond, 2015; Réjou-Méchain et al., 2021).
Analyzing and digging out the main driving factors that affect the
changes in forest cover in Africa is essential to promote the
protection of global forest protection and help regions achieve
Sustainable Development Goals.

Many scholars have conducted research on the relationship
between temporal and spatial characteristics based on the changes
in forest cover in a specific study area and possible influencing
factors, such as cocoa migration and deforestation in West Africa
are positively correlated (Ruf et al., 2015), deforestation in
Cameroon in relation to food security of poor populations
(Gbetnkom, 2009; Pendrill et al., 2019), and road accessibility,
agricultural product prices, household income levels, and
catchment water balance . are all related to deforestation
(Mainardi, 1998; Beckman et al., 2017; Kaimowitz, 1999;
Assogba and Zhang, 2018; Mushi et al., 2020; Wilson et al.,
2001; A et al., 2004; Garzuglia and Saket, 2003). Research shows
that the aforementioned factors can be the root cause of
deforestation to a certain extent, which in turn promotes
deforestation (farmers, poor populations, animal husbandry,
and loggers) to become the main source of deforestation
(Gbetnkom, 2009; Afdb and Kouakou, 2010). However, causal
attribution of natural and ecosystem system evolution is
complicated because exploring forest cover dynamics is being
affected by the interaction of many factors such as ecological
environment, political, economic, and social factors, and have a
wide range of impacts on time and space scales (Geist and
Lambin, 2002; Defries et al., 2010; Sandel and Svenning, 2013;
Rudel and Roper, 1997; Sannigrahi et al., 2018; Kim and Kim,
2010). Forzieri et al. quantify the vulnerability of European forests
to fires, windthrows, and insect outbreaks by random forest (RF)
regression (Forzieri et al., 2021). Curtis developed a forest loss
classification model, to determine a spatial attribution of forest
disturbance, was attributed to commodity production, forestry,
shifting agriculture, and wildfire (Curtis et al., 2018; Goodchild
and Glennon, 2010). Hoang et al. used remote sensing data and
multi-regional input–output models to provide correlation
analysis of the spatial pattern of international trade and
deforestation (Hoang and Kanemoto, 2021). Beckman used
economic models to simulate the reference scenarios of land
use in 14 regions around the world to determine the potential
impact of policies on relative forest losses (Beckman et al., 2017).
DeFries used forest loss data from 2000 to 2005 to estimate the
economic, agricultural, and population correlations of 41
countries and found that forest loss was positively correlated

with urban population growth and agricultural exports during
this period (Defries et al., 2010).

However, different countries have different social and
economic development stages and different forest protection
strategies, which may result in significant differences in
regional deforestation (Deacon, 1994; Hosonuma et al., 2012;
Heitzig et al., 2016). Considering Tobler’s first law of geography,
severe deforested areas can also be a key driver of deforestation in
neighboring areas. Currently, most research in the context of the
driving factors of forest cover change has used local
decomposition analysis of a few specific factors but do not
evolve the spatial heterogeneity of each factor on the intensity
of forest cover. This research analysis has mainly evolved the
following two aspects: 1) it analyzes the spatial correlation,
heterogeneity, and evolution characteristics of the forest cover
change pattern in African countries from 2000 to 2020; 2) the 21
driving factors have been opted based on four dimensions of
economy, society, and population. The nature of the research
analysis is to explore and detect the significant driving factors of
forest cover change in different historical periods via geographic
detectors and weighted regression geographical models’
applications. The research results are intended to provide
benchmark for balancing population, economy, and green
sustainable development in Africa.

2 STUDY REGION

African area is about 30.2 million square kilometers (land area),
accounting for 20.4% of the world’s total land area. The plateau
(60%) is the major part of the Africa terrain. The elevation is
gradually lower from southeast to northwest. The climate factors
present high temperature and arid due to the north–south
symmetry distributed climate zone in the middle of the
African continent (across equator). It is the second largest
continent in the world and has the second largest population
(about 1.286 billion). Africa is rich in forest resources, accounting
for 13.85 percent of the world’s forest area (about 51,400 hectares)
in 2018 (National Remote Sensing Center of China, 2019). Africa
also has one of the fastest growing populations in the world. The
Africa’s population is growing at an annual rate of 2.3 percent
with sub-Saharan Africa in turn growing faster thanNorth Africa.
Sub-Saharan Africa is the only region in the world where the
number of poor populations is increasing significantly, reaching 2
billion by 2050 (World Bank Group, 2020). The challenge of
reducing widespread poverty in Africa can be the core of the
continent’s development model for improving their living
conditions including their increased use of the natural
resources around them (Kouakou, 2005). Population growth,
the impact of poverty, and the exploitation of natural
resources have inevitably restricted and influenced each other.
It is difficult to obtain data of individual islands/regions due to the
influence of economic development and political situation.
Therefore, this study has selected 54 countries and regions in
Africa which are represented in Table 1, and the population and
area of the study area cover more than 99% of the African
continent. (Figure 1). Refer to World Population Prospects
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TABLE 1 | Geographical division of countries in the study area.

Research area Countries & regions’ Name Datagaps excluded

Eastern Africa Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mauritius, Mozambique, Rwanda, Seychelles,
Somalia, South Sudan, Uganda, United Republic of Tanzania, Zambia, and Zimbabwe

Mayotte, Réunion

Middle Africa Angola, Cameroon, Central African Republic, Chad, Congo, Democratic Republic of the Congo, Equatorial Guinea, Gabon,
Sao Tome, and Principe

Northern Africa Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia, Western Sahara
Southern Africa Botswana, Lesotho, Namibia, South Africa, and Swaziland
Western Africa Benin, Burkina Faso, Cabo Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger,

Nigeria, Senegal, Sierra Leone, and Togo
Saint Helena

FIGURE 1 |Map of location and geographical division of the study area. According to UN Department of Economic and Social Affairs World Population Prospects
data, the research divisions are divided into East Africa, South Africa, West Africa, North Africa, and Central Africa. Western Sahara, Mayotte, Reunion, and Saint Helena
are not including in the study area due to lack of the datasets. The benched map is from the standard Map Service System of the Ministry of Natural Resources of P.R of
China. The reviewed map number is GS (2020) 4391.
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data for the classification of countries and regions (United
Nations, Department of Economic and Social Affairs,
Population Division, 2019).

3 DATASETS AND METHODOLOGY

3.1 Datasets
Forest cover change has been influenced by multiple factors
(Curtis et al., 2018; Geist and Lambin, 2002; FAO, 2015). We
selected 21 indicators from four dimensions of those are
economy, society, population, and nature as explained
variables for analysis. Economic dimension indicators reflect
the size of a country’s economic development including GDP,
GDP growth, foreign direct investment (net inflows), Foreign
Direct Investment (net inflows), goods exports, and goods
imports. The social dimension reflects the general state of
development including forest rents, net ODA received, and
consumer price index, unemployment, access to clean fuels
and technologies for cooking (% of population) and
compulsory education. Population factor indicators reflect the
possible consumption of forest resources, including population,
total, rural population, urban population, labor force, death rate,
and birth rate. The natural dimension index reflects natural
resource abundance, land area, terrestrial protected areas (% of
total land area), and arable Land. The data cover the period from
2000 to 2020, and the data sources include World Development
Indicators (WDI), and it is consistent (Table 2) in the Center for
International Prospective Studies (CEPII) database (The World
Bank, 2021). The number of years of compulsory education is
based on UNESCO statistics for 2020 (UNESCO, 2021). Since
most of the other population, economic, and social data selected
in the subsequent analysis originated from the official statistical

data of the World Bank, the forest cover data of the research area
from 2000 to 2018 inevitably refer to “Ag.lnd.frst.k2-Forest Area
(SQ.km)” in the WDI dataset. A small part of the missing forest
cover data is supplemented via data from FRA 2020 published by
FAO and remote-sensing data products (Hansen et al., 2013;
Shimada et al., 2014; National Remote Sensing Center of China,
2019; Zhang et al., 2020).

3.2 Spatial Autocorrelation
The purpose of spatial autocorrelation analysis is to analyze
whether a certain variable can show a certain spatial
correlation and the degree of correlation. Relevant studies
indicate that forest distribution will be deeply affected via the
Tobler’s first law of geography, forest protection, logging, and
trade in neighboring countries in terms of the same natural
growth environment affected by neighboring regions with a
certain spatial autocorrelation (Jha et al., 2016; Kaimowitz
et al., 2002). The global Moran’s I index can be used to
describe the spatial dependence of forest cover, growth, or
deforestation in African countries and regions quantitatively
(Moran and Ap, 1950). When I∈ (0, 1], the variables become
more similar with the shortening of the measured distance,
presenting a positive spatial correlation. When I∈ [-1, 0), it
indicates that the overall spatial agglomeration is negatively
correlated; when I � 0, it indicates that there is no spatial
dependence, and the spatial pattern is randomly distributed.
The calculation equation is as follows:

Moran′s I � N∑ijwij

∑i∑jwij(xi − �x)∑i(xi − �x)2 , (1)

where N is the number of countries along the Belt and Road, I and
j represent country numbers, Wij is the spatial weight matrix, Xi is

TABLE 2 | Variable description of driving indicators.

Research dimension Indicators name Unit Mean Standardized
deviation

Forcasting

Economic factor GDP 2010 US$ 35901785382.50 75893129242.70 +
GDP growth % 2.50 29.91 +
Foreign direct investment, net inflows US$ 739000886.48 1540164408.52 +
Foreign direct investment, net inflows % 4.37 7.82 +
Goods exports US$ 7420032761.41 15841232780.62 +
Goods imports US$ 7603241584.23 14153662572.90 +

Social factor Forest rents % 4.76 5.54 +
Net ODA received % 7.78 9.16 +
Consumer price index - 2069.05 35351.53 −

Unemployment, total % 8.66 7.05 −

Access to clean fuels and technologies for cooking % 26.12 31.61 +
Compulsory education Year 7.80 3.29 +

Population factor Population, total People 19476448.96 28256604.83 −

Rural population People 11628519.60 17045641.91 −

Urban population People 7682742.94 12373334.45 −

Labor force, total People 7280119.91 10046139.07 −

Death rate ‰ 10.26 3.63 +
Birth rate ‰ 34.84 8.42 −

Natural factor Land area Km2 557709.49 621698.78 +
Terrestrial protected areas % 16.18 11.67 +
Arable land Hm2 4067045.04 5830099.69 −
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the forest cover value of country I, and �x is the average of the
research area. The global Moran’s I index based on Z scores has
been acquired to test its significance, when the | Z | > 1.96, and it
indicates that there is spatial autocorrelation with 95%
probability. The equation is as follows:

Z � I − E(I)����
v(I)√ ∼ N(0, 1), (2)

where E (I) represents the mathematical expectation of global
Moran’s I, v (I) represents the variance of global Moran’s I, and N
(0, 1) represents the normal distribution.

For Moran’s I value, if Z ≥ 1.96 or ≤ -1.96, it is considered that
space has spatial autocorrelation (Moran’s I >0 represents positive
spatial correlation. The larger the value is, the more significant the
spatial correlation is. 0 means spatial negative correlation; the
smaller its value is, the greater the spatial difference is; If not,
Moran’s I � 0 represents that the space is random).

The global Moran’s I index can count the significant
characteristics of overall agglomeration, while the local
indicators of spatial association (LISA) can identify the local
characteristics of spatial agglomeration, thus revealing the
heterogeneity of local regional spatial association (Anselin,
1995). The LISA index identifies four spatial association types
of “high–high cluster,” “high–low cluster,” “low–high cluster,”
and “low–low cluster,” representing different types of spatial
agglomeration patterns.

3.3 Geo-Detector
Geographical Detector is a popular spatial statistical tool
developed by the Prof. WangJinfeng team of LREIS, IGNRSS
of Chinese Academy of Sciences, based on Excel to measure
spatial differentiation and reveal driving factors. By calculating
the similarity of the spatial distribution pattern between the
independent variable X and dependent variable Y, the
geographic detector model detects the explanatory effect
intensity of the independent variable on the dependent
variable (Wang and Xu, 2017). The geographic detector
method was used to analyze the relationship strength of
driving factors among the 6 principal component variables
obtained from the original 21 variables via global principal
component analysis dimension reduction. The main driving
factors affecting the formation of the spatial pattern of forest
cover change in the study area have been identified in different
timescales. The equation is as follows:

q � 1 − ∑N
i�1Niσ2i
Nσ2 , (3)

where q value is the explanatory degree of the independent
variable to the dependent variable, and the larger the q value
is, the stronger the explanatory power is. I is the stratification
number of the independent variable X and dependent variable Y.
The Jenks natural discontinuity point grading method is adopted
for stratification to discretize continuous variables. Ni and N are
the number of the layer I and countries in the research area,
respectively. σ2i and σ2 are the variances of the layer I and
independent variables within the research area, respectively.

3.4 Global Principal Component Analysis
Global principal component analysis (GPCA) is to construct the
index system of the three-dimensional time-series data table
based on the use of time series and spatial sequence mutual
integration, seeking a unified for all cross-section data tables and
comparable to simplify subspace. Each data table on which the
projection to approximate the best comprehensive effect based on
the global data view is constructed.

The indicators to influence forest cover change are very
diverse. Human activities are likely to be more rapid and direct,
while geographical and climatic factors can also influence over
long time series (with the exception of sudden natural
disasters, pest disasters, or forest fires). Therefore, the
analysis of 20-year time series index data of different
countries and regions is constituted into sequential
stereoscopic data tables for global principal component
analysis. A few of “factors” are deduced from numerous
observable “variables” via the analysis of three-dimensional
time series data, and the minimum “factors” are used to
summarize and explain the largest number of observed facts
so as to establish the simplest and most basic conceptual
system and reveal the essential relationship between
indicators affecting forest cover change.

The steps for extracting principal factors based on global
principal component analysis are described as follows:

Step 1. Construct a data table: if n regions are counted and p
variables are used to describe, the “global data table” of T
years is

X � [(X1)’(X2)’...(XT)’] ∈ RT N × P. (4)

Step 2. Normalize the elements in the table X by moving the
origin of coordinates to the data center and compress and
transform them to eliminate dimensional influence.

xtij �
(xtij − xj)

Sj
, (i � 1, 2, /, n; j � 1, 2, /, p); (5)

xj � 1
Tn

∑T
t�1
∑n
i�1
xt
ij; (6)

S2j �
1
Tn

∑T
t�1
∑n
i�1
(xt

ij − xj)2; (7)

X � (Xij)Tn×p ∈ RTn×p. (8)

Step 3. Calculate the covariance matrix V ∈ Rp×p of the X matrix.

Step 4. Find the first m eigenvalues λ1≥λ2≥... ≥λm of the matrix
V and the corresponding eigenvectors μ1, μ2... μm; they are
orthonormal, and μ1, μ2... μm is called the global principal axis.

Step 5. Calculate the global principal fraction and calculate the

representation accuracy of the original data: Q � ∑m

i�1 λi
p , generally

Q ≥ 85%.
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4 RESULTS

4.1 Forest Cover and Its Change in 21Years
The distribution of forests in Africa is extremely uneven in terms
of the differences in precipitation, sunshine, soil properties,
geographical location, natural conditions, and other factors.
More than 45% of forests are distributed in Central Africa,
30% in East Africa, 13% in West Africa, 6.2% in South Africa,
and 4.2% in North Africa. The forest area has decreased in recent
20 years. The largest loss is in Central Africa, the second one is in
East Africa, the third one is in West Africa, the fourth one is in
South Africa, and the fifth one is in North Africa. However, the
most significant loss of the forest area was in West Africa, which
has a loss percentage more than 12%. The percentage of forest
area loss has decreased more than 10% in Central Africa and
South Africa and 9.6% in East Africa andNorth Africa. More than
80 percent of the forest loss occurred in these 14 countries: the
Democratic Republic of the Congo, Angola, Tanzania,
Mozambique, Sudan, Nigeria, Botswana, Cote d’Ivoire,
Zambia, Chad, Somalia, Ethiopia, Namibia, and Cameroon
(Figure 2).

The Democratic Republic of the Central African Republic has
experienced the largest loss of forest, accounting for about a

quarter of the total in Africa, more than half of the loss in Central
Africa, and equal to the sum of the loss inWest, South, and North
Africa. Middle Africa had the second largest loss of Chad forests,
losing nearly a third of its total forest area in 20 years. Eastern
Africa’s Tanzania has the third largest forest in Africa and never
changed for 20 years. Cote d’Ivoire and Benin forests in West
Africa have lost 44 and 24% more of their original forest area.
Gambia inWestern Africa, which was not originally rich in forest
resources, has lost nearly a third of its original forest area. Eastern
Africa’s Malawi and Uganda have both lost more than a quarter
of their forests in 20 years.

Just seven countries have shown a net increase in the forest
area over the past 20 years. Only five countries showed
significant growth (more than 200 square kilometers).
Algeria, Morocco, and Tunisia in North Africa, East Africa,
and Swaziland in South Africa have shown forest improvement,
but the forest growth area just accounts for only 1% of the
loss area.

It is worth mentioning that more countries have realized
the importance of forest protection and put into actions
gradually. They have slowed down the rate of deforestation
and actively regulated in Rwanda, Kenya, and Ghana. It
experienced a low point toward growing year by year

FIGURE 2 | Largest forest loss is in Central Africa, the second one is in East Africa, the third one is in West Africa, the fourth one is in South Africa, and the fifth one is
in North Africa. The amount of forest reduction in the original area is more significant than that in West Africa. The most significant loss of forest in the original area was in
West Africa. The top 20 countries with reduced forest area in Africa are the Democratic Republic of the Congo, Angola, Tanzania, Mozambique, Sudan, Nigeria,
Botswana, Cote d’lvoire, Zambia, Chad, Somalia, Ethiopia, Namibia, Cameroon, Burkina Faso, Benin, Zimbabwe, Ghana, Malawi, and Uganda.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7800696

Xiao et al. Forest Disturbance Analysis in Africa

106

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


although the forest area in Rwanda has been still decreasing in
the past 20 years.

4.2 Spatial Correlation Features of Forest
Cover Change
Global spatial autocorrelation analysis of net forest cover change
values from 2000 to 2019 has been conducted in order to analyze

the spatial correlation characteristics of forest cover change in
different countries and regions in Africa. The results have
illustrated (Table 3) that Moran’s I indexes of forest cover
change in the past 20 years were all positive, indicating that
forest cover change presented a positive correlation of spatial
aggregation. However, 0≤Z≤1.65 and p ≥0.05 in the first decade
of the 21st century did not adapt the significance test. Forest cover
reduction in the study area was judged to be random in that period

TABLE 3 | Moran’s I estimate of national and regional forest cover change from 2000 to 2019.

Indicator Index 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Net change in forest cover Moran’s I 0.08 0.08 0.08 0.101 0.101 0.101 0.101 0.084 0.084 0.080
Z-value 1.2884 1.2888 1.2305 1.529 1.4855 1.5446 1.5534 1.3853 1.3210 1.2726
p-value 0.101 0.101 0.11 0.088 0.091 0.072 0.068 0.089 0.104 0.101
Indexes 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Moran’s I 0.112 0.112 0.117 0.112 0.112 0.121 0.119 0.119 0.123 0.124
Z-value 1.9178 1.954 1.9664 1.9664 1.9664 1.9579 1.970 1.990 2.003 2.0481
p-value 0.049 0.056 0.043 0.043 0.043 0.048 0.045 0.042 0.049 0.041

FIGURE 3 | Spatial correlation map. (A) Global Moran’s | Z ≥1.96 after 2020 is considered that the forest cover change in the study area shows spatial
autocorrelation, | ∈ (0, 1] forest cover change is positively correlated with spatial distance, and p ≤0.05 after 2012 shows significant spatial aggregation characteristics in
figures (B,C). (B) Significant Map (2012–2019). The forest cover change in the study area has begun to cluster in 2010 and more significant in 2012, and the degree of
spatial agglomeration increased annually. (C) Clustered map (2012–2019). The spatial clustering of the hot spots has been divided into two regions: Morocco and
Tunisia forest cover expanding area based on Algeria as the hot spot agglomeration; Angola, the Democratic Republic of the Congo, and Tanzania have been reduced
low-forest coverage in Angola, Rwanda, Uganda, Central African Republic, and Congo high–low zone.
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(of course, subjected to technical means, early statistical data may
not be accurate enough to affect the calculation results). Until 2010
and 2012, when p ≤0.05, only less than 5% of the data distribution
in the study area is likely to be random, and the probability of data
aggregation is greater than that of random distribution. Z ≥1.65
and 1.96 can significantly reject the null hypothesis. The results
have demonstrated that the forest cover change in the study area
has begun to cluster in 2010 and more significant in 2012, and the
degree of spatial agglomeration increased annually. The spatial
correlation of forest cover change amongst neighboring countries
or regions has been increasingly strengthened.

Moran’s I estimate of national and regional forest cover change
in the study area from 2000 to 2019 was analyzed (Figure 3A). A
Global Moran’s I Z ≥ 1.96 after 2020 indicates that the forest cover
change in the study area shows spatial autocorrelation, I∈ (0, 1]
forest cover change is positively correlated with spatial distance, and
p ≤0.05 after 2012 shows significant spatial aggregation
characteristics in Figures 3B,C. The LISA index has been used to
study the local agglomeration characteristics of forest cover change
in the region further. The LISA significance map and agglomeration
map have passed the 95% significance test via ArcGIS software
analysis. The spatial clustering of the hot spots has been divided into
two regions:Morocco and Tunisia forest cover expanding area based
on Algeria as the hot spot agglomeration; Angola, the Democratic
Republic of the Congo, and Tanzania have been reduced low-forest
coverage in Angola, Rwanda, Uganda, Central African Republic and
Congo high–low zone.

4.3 GPCA Calculation Results and Analysis
A 54×21×21 dimensional sequential stereo data table was
constructed, including sample points from 54 countries and
regions, 21 driving index variables, and 21 data tables from
2000 to 2020. According to the analysis steps of GPCA, the
global principal component factors were extracted by SPSS
26. In the analysis, the maximum variance transaction
rotation method is adopted. After 11 iterations, the results
tend to converge. According to the principle that the
eigenvalue is greater than 1, a total of 6 principal
components are extracted. The cumulative contribution
rate of the first principal component is 33.189%; the
cumulative contribution rate of the second principal
component is 17.490%; the third to sixth principal
components play a similar role, with accumulative
contribution rates of 6.966%, 6.052%, 5.355% and 5.023%,
respectively. In the process of reducing the dimension of the
data table from 21 to 6, 74.075% of the information in the
original data table is retained, and the original features are
basically completely preserved (See Table 4). The six main
components are population, rural population, urban
population, labor force, GDP, unemployment, death rate,
foreign direct investment (net inflows), consumer price
index, and terrestrial protected areas (% of the total land
area).

In order to investigate whether there is a certain linear
relationship among economic, social, demographic, and
geographical evaluation indexes affecting forest cover and
whether GPCA analysis method is suitable, the KMO test and

Bartlett sphericity test are selected for analysis, and the results are
shown in Table 5. The KMO statistic is 0.783 and Sig. < 0.005,
indicating that there is correlation for each variable, and the
factor analysis is effective and got better results.

4.4 Forest Cover Change and Driving
Factors on the Geographical Detector
The geographical detector is an emerging statistical method for
driving force and factor analysis of spatial data (Wang, 2010),
which is mainly composed of four detectors: factor detector,
interactive detector, ecological detector, and risk detector. The
first three detection functions are mainly adopted and
conducted. Factor detection: The influence of economic, social,
demographic, and natural factors (Table 2) on the spatial
distribution of forest cover change can be calculated via factor
detection analysis (q value). The larger the q value is, the greater the
influence of this factor on forest cover change is. Ecological
detection: Ecological detection is demonstrated to compare the
significant differentiation in the spatial distribution of forest cover
amongst economic, social, demographic, and natural factors.
Interaction detection: The interactions are implemented amongst
different influence factors. Based on the single factor q value
comparative analysis and the q value sum of the two factors and
the q value following the two interactive factors, we can identify
whether the two post-interactive factors increase or decline their
influence on the spatial distribution of forest cover or whether play
an independent role themselves.

Factor detectors are first used to obtain the q values for five
targeted years of 2000, 2005, 2010, 2015, and 2019 in the timescale
(shown in Table 6). The explanatory power of the bold numerical
factors all passed the 95% significance level. Overall, some
significant factors have a great impact on the spatial
differentiation analysis of forest cover change, such as

TABLE 4 | Generalized eigenvalues of principal components and accumulative
percentage.

Principal
component

Eigenvalues Variance
percentage (%)

Variance
contribution rate

(%)

C1 6.970 33.189 33.189
C2 3.673 17.490 50.679
C3 1.463 6.966 57.645
C4 1.271 6.052 63.697
C5 1.125 5.355 69.052
C6 1.055 5.023 74.075

TABLE 5 | KMO and Bartlett’s test.

KMO and Bartlett’s test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.783
Bartlett’s test of sphericity Approx. Chi-square 30845.267

df 210
sig 0.000
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consumer price index, agricultural land area, goods import,
urbanization population, goods export, and human birth rate.
These six factors can be regarded as the leading factors affecting
forest cover change this year in terms of their Q values which are
all greater than 0.25. However, each driving factor showed a trend
of fluctuation in the temporal scale. Consumer price index and
urban population had significant effects in 2000 only, with q
values of 0.48 and 0.29, respectively. The effect of the human birth
rate on forest cover increased annually until it reached a
significant level in 2019, with a value of 9 of 0.25. Total
population, land area, and agricultural land area played
important roles in the disturbance of forest cover all in this
time span. The weight of the total population decreased annually,
while the proportion of agricultural land increased. The former
decreased from 0.36 down to 0.26 between 2019 and 2020, and
the latter increased from 0.17 to 0.45 from 2019 to 2000.

To further explore the changes of interpreting power of
forest disturbance based on the interaction of different
driving factors, the sample analysis is implemented based
on the demonstrated illustration of 2000, 2005, 2010, 2015,
and 2019. The interactive factor detection mechanism of the
leading factors picked on forest cover change was analyzed
(shown in Table 7): The demonstration illustrated that each
factor was significantly correlated and independent in rare
cases. About 76.67% of the interaction categories among
several leading factors were non-linear enhancement, more
than 18.33% were dual factors enhancement, and only 5%
were single factor independence. The explanatory power of
factor interaction illustrates differentiation and shows the

characteristics of fluctuation in timescale excluded that the
interaction of X4 (goods import) and X14 (urban population)
is increasing from 0.71 to 0.88 between 2019 and 2020.

5 DISCUSSION

Many scholars have been sorting out, improving, and verifying
the development and evolution results of various direct driving
factors under the UN SDGs constantly (Griggs et al., 2013; Weitz
et al., 2019a; Weitz et al., 2019b; Guo, 2020; Guo et al., 2020; Guo
et al., 2021). The IPBES global assessment provides a global
review of the scientific evidence on major environmental and
secondary social impacts of drivers of change, including the
drivers, pressures, and responses sections of the DPSIR
framework (Merino et al., 2019). The impact of geographical
and climatic factors on forest cover change is likely to occur over a
longer time series, but human activities are likely to be more rapid
and straightforward, excluding accidental natural disasters, pest,
and disease disasters or forest fires. The potential synergistic effect
research method between the forest cover index in UN SDGs and
human social and economic development has been illustrated
further in terms of current research contributions.

Multiple driven factors play a role of different structure of the
6 principal components via global principal component analysis.
The significant factors are influencing the forest cover change
via the geographical detector monitoring all drivers annually.
The two results of each analysis have been demonstrated
slightly different subject to the inconsistency of research

TABLE 6 | Factor detection results of spatial differentiation of forest cover change.

Factor Year 2000 Year 2005 Year 2010 Year 2015 Year 2019

Driver Symbolic
representation

q p Rank q p Rank q p Rank q p Rank q p Rank

GDP X1 0.06 0.74 18 0.10 0.39 15 0.04 0.81 18 0.03 0.82 19 0.03 0.84 18
Foreign direct investment (BoP,
current US$)

X2 0.15 0.27 10 0.46 0.07 1 0.26 0.33 3 0.36 0.08 1 0.26 0.28 5

Goods exports X3 0.02 0.94 20 0.16 0.47 10 0.10 0.42 13 0.10 0.56 12 0.09 0.51 12
Goods imports X4 0.07 0.59 16 0.29 0.02 4 0.19 0.11 7 0.20 0.08 8 0.15 0.20 9
Foreign direct investment, net
inflows (% of GDP)

X5 0.16 0.45 9 0.05 0.82 19 0.06 0.57 17 0.06 0.78 16 0.01 0.99 21

Net ODA received X6 0.02 0.87 19 0.01 0.97 21 0.09 0.42 15 0.02 0.90 21 0.01 0.95 20
Consumer price index X7 0.48 0.00 1 0.12 0.27 11 0.14 0.17 10 0.09 0.41 14 0.03 0.87 17
Unemployment X8 0.10 0.30 15 0.10 0.31 16 0.01 0.95 20 0.06 0.60 17 0.06 0.59 15
Forest rents X9 0.02 0.93 91 0.12 0.43 12 0.15 0.27 9 0.18 0.25 9 0.14 0.22 10
Access to clean fuels and
technologies for cooking

X10 0.11 0.38 14 0.06 0.55 18 0.04 0.77 19 0.05 0.67 18 0.06 0.59 14

GDP growth X11 0.20 0.32 7 0.03 0.81 20 0.01 0.99 21 0.03 0.83 20 0.04 0.79 16
Population, total X12 0.36 0.04 2 0.31 0.04 3 0.31 0.04 2 0.29 0.05 6 0.26 0.11 6
Rural population X13 0.29 0.06 4 0.27 0.16 6 0.23 0.10 6 0.33 0.09 3 0.35 0.08 2
Urban population X14 0.29 0.04 3 0.26 0.08 7 0.25 0.11 4 0.21 0.13 7 0.29 0.07 4
Labor force X15 0.25 0.08 6 0.27 0.16 5 0.23 0.09 5 0.33 0.09 4 0.24 0.08 8
Death rate X16 0.12 0.21 11 0.11 0.28 14 0.09 0.34 14 0.10 0.32 13 0.03 0.87 19
Birth rate X17 0.11 0.27 12 0.18 0.10 9 0.16 0.14 8 0.17 0.11 10 0.25 0.04 7
Compulsory education X18 0.11 0.28 13 0.11 0.25 13 0.10 0.28 12 0.12 0.23 11 0.11 0.24 11
Land area X19 0.28 0.06 5 0.24 0.09 8 0.31 0.04 1 0.30 0.05 5 0.30 0.05 3
Terrestrial protected areas X20 0.06 0.58 17 0.08 0.41 17 0.08 0.41 16 0.08 0.42 15 0.08 0.47 13
Arable land X21 0.17 0.22 8 0.33 0.04 2 0.11 0.35 11 0.34 0.02 2 0.45 0.01 1

The q statistics of significant drivers (P ≤ 0.05) are displayed in bold.
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purpose, timescale, and precision. Global principal component
analysis has placed all the data in the last 20 years on the same
3D observation model to abstract dimension reduction. The
results of driving factors influencing the last 20 years have been
extracted. The geographical detector has detected the
significant drivers of forest cover change each year to verify
and summarize the significant common factors over the past
20 years. The both extracted analyses of driving factors of forest
cover change can be in support of making decision further.

A comprehensive analysis of 21 driving factors in 54 countries
and regions in the target area for 20 consecutive years was
completed by using geographical detectors (see Figure 4), and
forest cover change and driving factors can be summarized into
four stages: in the first stage, the factors causing the reduction of

forest cover are complicated in the first 4 years of the 21st century
(2000–2003). The consumer price index (CPI) has the significant
and highest explanatory power, which can reflect the degree of
inflation or deflation. The second is the total population. The
pressure caused by the total and urban population also shows a
significant impact. In addition, almost all other factors showed
significantly different trends in the effects of two factors at the
same time. In the second stage, the rapid growth of the total
population in the study area was the most important and
significant explanatory factor driving the rapid decrease of
forest cover from 2004 to 2009. Meanwhile, the factors
promoting regional economic development were different from
population pressure and played a moderating role in influencing
the change of forest cover gradually. In the third stage, the

TABLE 7 | Interactive detection results of spatial differentiation of forest cover change.

Factor
interaction

Year 2000 Year 2005 Year 2010 Year 2015 Year 2019

q
(Xi⋂Xj)

q
(Xi+Xj)

Type q
(Xi⋂Xj)

q
(Xi+Xj)

Type q
(Xi⋂Xj)

q
(Xi+Xj)

Type q
(Xi⋂Xj)

q
(Xi+Xj)

Type q
(Xi⋂Xj)

q
(Xi+Xj)

Type

X4∩X7 0.55 0.55 I 0.43 0.41 NE 0.78 0.32 NE 0.31 0.30 NE 0.30 0.18 NE
X4∩X12 0.68 0.43 NE 0.57 0.60 DE 0.48 0.49 DE 0.45 0.50 DE 0.50 0.40 NE
X4∩X14 0.71 0.36 NE 0.75 0.55 NE 0.77 0.44 NE 0.79 0.42 NE 0.88 0.43 NE
X4∩X19 0.73 0.35 NE 0.78 0.53 NE 0.63 0.50 NE 0.85 0.50 NE 0.79 0.45 NE
X4∩X21 0.43 0.24 NE 0.54 0.62 DE 0.42 0.30 NE 0.49 0.55 DE 0.83 0.60 NE
X7∩X12 0.87 0.84 NE 0.47 0.43 NE 0.70 0.45 NE 0.42 0.39 NE 0.80 0.30 NE
X7∩X14 0.93 0.77 NE 0.55 0.38 NE 0.82 0.39 NE 0.46 0.31 NE 0.54 0.32 NE
X7∩X19 0.83 0.76 NE 0.73 0.36 NE 0.83 0.45 NE 0.81 0.39 NE 0.46 0.34 NE
X7∩X21 0.75 0.65 NE 0.63 0.45 NE 0.81 0.25 NE 0.68 0.44 NE 0.54 0.48 NE
X12∩X14 0.72 0.66 NE 0.49 0.57 DE 0.79 0.56 NE 0.47 0.51 DE 0.43 0.54 DE
X14∩X19 0.54 0.57 DE 0.53 0.50 NE 0.50 0.57 DE 0.51 0.51 I 0.88 0.59 NE
X19∩X21 0.38 0.45 DE 0.66 0.56 NE 0.43 0.43 I 0.77 0.64 NE 0.80 0.75 NE

DE: Double enhancement q (Xi+Xj)>q (Xi∩Xj)>Max (q (Xi), q (Xj)); NE: Non-linear enhancement q (Xi∩Xj)>q (Xi+Xj); I: Independence q (Xi∩Xj) � q (Xi+Xj)

FIGURE 4 | Sketch map of differential superposition analysis and identification of significance, which of driving factors affecting forest cover change in the study
area. Note: q value is the explanatory degree of driving factors to forest cover change in the study area. Red represents the driving factors with an explanatory degree of
more than 95% confidence. Yellow represents the significant difference between the effects of the linear factor and other factors (≥3) on the spatial distribution of forest
cover. Blue indicates that there is a significant between the effect of one factor and another or two factors on the spatial distribution of forest cover. White indicates
no significant difference compared with other factors (95% confidence).
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expansion of cultivated land in the study area has a significant
impact year by year from 2010 to 2015, especially in the area with
a larger land area, the amount of deforestation and land
conversion is greater. The growth of total population still has
a relatively significant explanation for forest change, but the
impact value decreases year by year. In Stage 4, the growth of
the cultivated land for forest cover to reduce the influence of the
significant increase from 2016 to 2019 (Williams et al., 2021), the
chance of vast country in deforestation is greater, and with the
development of economy, the total population bearing pressure
on forest change is no longer significant; the neo-birth rate can
significantly represent more of a certain explanation on forest
cover change; in addition, changes in the number of rural
population have significant differences with other factors (≥3)
on the spatial distribution of forest cover, which becomes
extremely complicated.

6 CONCLUSION

Forest cover change assessment has become one of the key
indicators of Sustainable Development Goals (SDGs). Africa is
experiencing unprecedented deforestation of forest resources.
The study area is composed of data from 54 countries and
regions from 2000 to 2020. Spatial autocorrelation analysis,
global principal component analysis, and geographic detector
model are used to illustrate the spatio-temporal patterns of forest
cover change in Africa. The driving effects of population growth,
economic and trade, social development, and cultivated land
expansion on forest cover change in different timescale were
analyzed in geographical spatial heterogeneity. Relevant
conclusions are as follows:

1) The distribution of forests in Africa is extremely uneven.
Based on the distributed quantities, Africa has the largest
forest area in Central Africa, the second in East Africa, the
third in West Africa, the fourth in South Africa, and the fifth
in North Africa. In the past 20 years, the forest area decreased
significantly, and the forest area decreased more significantly
than that inWest Africa including the Democratic Republic of
the Congo, Angola, Tanzania, Mozambique, Sudan, Nigeria,
Botswana and Cote d ’Ivoire, Zambia, Chad, Somalia,
Ethiopia, Namibia, and Cameroon. Only 7 countries
showed a net increase in the forest area during the
20 years, and only 5 countries showed a significant increase
(over 200 square kilometers). Algeria, Morocco, and Tunisia
in North Africa, East Africa, and Swaziland in South Africa
have presented an increase status, but forest growth accounts
for only 1% of the loss.

2) The forest cover change in the study area began to show the
clustering from 2010 to 2012 and became more significant.
The degree of spatial agglomeration increased year by year, and
the spatial correlation of forest cover change between
neighboring countries or regions became increasingly
stronger. The LISA index was used to study the local
agglomeration characteristics of forest cover change. The
spatial clustering of hot spots was divided into two regions:

first, Algeria as a hot spot clustering in Morocco and Tunisia
increased forest cover area; in the other place, Zambia was the
coldest spot with a significant clustering in Angola, the
Democratic Republic of the Congo, and Tanzania have
reduced their low-forest coverage to Angola, Rwanda,
Uganda, Central African Republic, and Congo high–low zone.

3) Total population, land area, cultivated land, urban population,
consumer price index, and birth rate are the main factors
influencing the temporal evolution of forest cover change in
Africa. It can be divided into four stages to interpret the
different explanations and significance of each factor for forest
cover change in the study area. In the first stage, the factors causing
the reduction of forest cover are complicated in the first 4 years of
the 21st century (2000–2003). The consumer price index (CPI)
has the significant and highest explanatory power, which can
reflect the degree of inflation or deflation. The second is the total
population. The pressure caused by the total and urban population
also shows a significant impact. In addition, almost all other factors
showed significantly different trends in the effects of two factors at
the same time. In the second stage, the rapid growth of the total
population in the study area was the most important and
significant explanatory factor driving the rapid decrease of
forest cover from 2004 to 2009. Meanwhile, the factors
promoting regional economic development were different from
population pressure and played a moderating role in influencing
the change of forest cover gradually. In the third stage, the
expansion of cultivated land in the study area has a significant
impact year by year from2010 to 2015, especially in the areawith a
larger land area, the amount of deforestation and land conversion
is greater. The growth of total population still has a relatively
significant explanation for forest change, but the impact value
decreases year by year. In Stage 4, the growth of the cultivated land
for forest cover to reduce the influence of the significant increase
from 2016 to 2019, the chance of vast country in deforestation is
greater, and with the development of economy, the total
population bearing pressure on forest change is no longer
significant; the neo-birth rate can significantly represent more
of a certain explanation on forest cover change; in addition,
changes in the number of rural population have significant
differences with other factors (≥3) on the spatial distribution of
forest cover, which becomes extremely complicated.
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YOLOv4-Lite–Based Urban Plantation
Tree Detection and Positioning With
High-Resolution Remote Sensing
Imagery
Yueyuan Zheng and Gang Wu*

College of Information, Beijing Forestry University, Beijing, China

Automatic tree identification and position using high-resolution remote sensing images are
critical for ecological garden planning, management, and large-scale environmental quality
detection. However, existing single-tree detection methods have a high rate of
misdetection in forests not only due to the similarity of background and crown colors
but also because light and shadow caused abnormal crown shapes, resulting in a high rate
of misdetections and missed detection. This article uses urban plantations as the primary
research sample. In conjunction with the most recent deep learning method for object
detection, a single-tree detection method based on the lite fourth edition of you only look
once (YOLOv4-Lite) was proposed. YOLOv4’s object detection framework has been
simplified, and theMobileNetv3 convolutional neural network is used as the primary feature
extractor to reduce the number of parameters. Data enhancement is performed for
categories with fewer single-tree samples, and the loss function is optimized using
focal loss. The YOLOv4-Lite method is used to detect single trees on campus, in an
orchard, and an economic plantation. Not only is the YOLOv4-Lite method compared to
traditional methods such as the local maximum value method and the watershed method,
where it outperforms them by nearly 46.1%, but also to novel methods such as the Chan-
Vese model and the template matching method, where it outperforms them by nearly
26.4%. The experimental results for single-tree detection demonstrate that the YOLOv4-
Lite method improves accuracy and robustness by nearly 36.2%. Our work establishes a
reference for the application of YOLOv4-Lite in additional agricultural and plantation
products.

Keywords: YOLOv4-Lite, urban plantation, tree detection, tree position, high-resolution remote sensing image

1 INTRODUCTION

The smallest tree entity that makes up a terrestrial ecosystem is a single tree. Single-tree detection and
positioning are critical components of precision forestry (Dimitrios and Azadeh, 2021; Dimitrios
et al., 2021). Precision forestry is critical for reducing environmental pollution caused by catkins
(BAILU, 2018) and monitoring the environmental impact of economic forests (Wang, 2019; Dong
et al., 2020; Zhibin et al., 2020). With the advancement and popularization of the remote sensing
image processing technology, the efficient collection of massive amounts of information about
individual trees and the establishment of single-tree databases form the foundation for accurate and
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intensive urban forestry management and are also the
developmental goal of a new generation of intelligent forestry
(Olli et al., 2017; Gomes et al., 2018). Indeed, some individual
forestry fields in China have implemented intensive management
at the single-tree level, such as managing ancient and famous
trees, managing female willow trees precisely in Beijing, and
managing fruit trees (Xiao et al., 2021). However, these are
primarily accomplished through traditional ground surveys,
which are inefficient and require a significant amount of time.
Single-tree extraction from remote sensing images is a critical
technology for efficiently constructing a single-tree database built
on the foundation of single-tree detection from remote sensing
images. Remote sensing platforms and associated processing
technologies have advanced rapidly in recent years (Toth and
Jozkow, 2016). Although active remote sensing technologies such
as lidar have been used to detect single trees (including their
position and height) and to build inversion models (Bouvier et al.,
2015), their costs are prohibitively high, and they are not suitable
for large-scale acquisition. However, single-tree extraction using
high-resolution optical remote sensing images remains a research
hotspot due to its strong technical foundation, large image scale,
widespread availability, and ease of promotion and application
(Wulder et al., 2000; Picos et al., 2020). Numerous studies on
passive remote sensing demonstrate that the data source, season,
tree growth (Liu et al., 2018), and the location method selection
(Larsen et al., 2011) are all significant factors affecting the effect of
a single-tree location. Regarding the problem of locating a single
tree, scholars have successively proposed two types of methods,
one is the direct location method, such as the local maximum
method (Wulder et al., 2000) and threshold segmentation, for
locating a single-tree tip. The other is individual tree crown
detection and delineation (ITCD) (Yinghai et al., 2015), such
as watershed methods (Wang et al., 2004; Zheng et al., 2017), the
valley floor tracking method (Gougeon, Fran ois, 2014), the
regional growth method (Jiang et al., 2016), and the marker
process method (Gomes et al., 2018). Recently, scholars have
experimented with a variety of novel positioning techniques,
including peak climbing (Zhang et al., 2014), CV model
(Nasor and Obaid, 2021), template matching (Hashim et al.,
2020), and machine learning (Dong et al., 2019). Currently, the
accuracy of the single-tree positioning method is insufficient to
meet practical requirements, and no method is adaptable to a
variety of forests (Zhang et al., 2019). ICD’s primary challenges
are as follows: 1) close spacing between single trees and canopy
intersections results in over or under-segmentation within a
single crown and between overlapping crowns, resulting in
misdetection and missed detection of single-tree positioning.
2) The region background color is similar to that of a single
tree, and the region background is complex and diverse. The
background is incorrectly identified as the tree’s crown, and the
region exhibits the phenomenon of under-segmentation,
resulting in the problem of error and missing detection. 3) It
is unclear how the sunlight shadow affects the shape of the trees
and canopy outline. There is no way to collect all single-tree
templates. 4) When multiple trees of varying sizes cover the same
area, a large number of saplings can easily escape detection. As a

result, it is necessary to investigate a more efficient and stable
method for a single-tree location.

Traditional object detection methods can be broadly
classified into three categories: 1) region selection (Zhou
et al., 2021), such as sliding window; 2) classifiers, such as
support vector machines (SVMs) (Rau et al., 2021); 3) feature
extraction, such as scale-invariant feature transform (SIFT)
(Liang et al., 2020) and histogram of oriented gradient (HOG)
(Syaputra et al., 2021). There are two significant issues with it.
First, the region selection is not targeted, is time-consuming,
and contains numerous redundant windows. On the other
hand, the characteristics have a low degree of robustness, and
many small objects are overlooked. Following the advent of
deep learning, object detection has made a significant leap
forward (Zhao et al., 2020). There are two primary areas of
emphasis: 1) CNNs based on region proposal (R-CNN) (Ma
et al., 2020), spatial pyramid pooling networks (SPP-Nets)
(Wang et al., 2020), and fast R-CNN (Garcia-Ortiz et al., 2020).
Faster R-CNN is used to represent deep learning object
detection algorithms. 2) Regression-based deep learning
object detection algorithms are represented as you only look
once (YOLO) (Chaitanya et al., 2020). The former predicts the
speeds of between 7 and 18 frames per second, which is too
time-consuming. The latter makes use of the regression
concept, which determines an input image and directly
regresses the object boundary and object category of
multiple locations in the image, significantly speeding up
the prediction process. It has a long history of use in
medicine, fishing, construction, and various other fields.
This study performs the urban single-tree detection and
positioning using the deep learning network model YOLOv4
(Richey and Shirvaikar, 2021). This model has a high detection
speed and is capable of multi-object detection. A YOLOv4-Lite
single-tree detection method is proposed to further integrate
the YOLOv4 network model (Meneghetti et al., 2021), simplify
the entire feature extraction network, optimize loss, and
enhance sample data.

2 METHODOLOGIES

2.1 Data Enhancement
By referencing CutMix (Artés-hernández et al., 2017) data
enhancement, the number of reconstructed images is increased
from two to four using mosaic (Hofmann, 2000) data
enhancement. First, four images from the dataset are chosen.
Then, as illustrated in Figure 1, the four images are flipped,
scaled, rotated, and gamut-adjusted, and other processing is
applied. Finally, the four images are scaled and spliced
together to create a single image containing the actual box.
The blank spaces are filled with gray to align the training
images with the network’s characteristic size. One of the
significant advantages of mosaic data enhancement approach
is that it provides a rich background for object detection and can
compute data from four images at once during the batch
normalization calculation.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7562272

Zheng and Wu YOLOv4-Lite Tree Detection Positioning

115

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2.2 MobileNetv3
Deeply separable convolution is a factorized operation that can be
decomposed into depthwise (Dwise) (Chollet, 2017) and pointwise
convolution. For each input channel, depthwise convolution
employs a unique convolution kernel. A convolution check
should be an input channel. For each input channel, depthwise
convolution employs a unique convolution kernel. Pointwise
convolution changes the number of output channels by
employing a 1 × 1 convolution kernel. While the overall effect
is similar to that of standard convolution, this step operation
significantly reduces the amount of computation and the number
of model parameters. Three steps are required to compute the
inverted residual with a linear bottleneck. As illustrated in Table 1,
dimension is increased through the use of 1 × 1 convolution. Then,
using deeply separable convolution, features are extracted. Finally,
dimension is reduced using 1 × 1 convolution, and a residual edge
is added directly from input to output.

The formula for mish activation function is shown in (1).

mish � x tanh(ln(1 + ex)), (1)

where x represents the output of the previous network layer and
the input of this network layer. The h − swish activation function
is shown in formulas (2) and 3. The h − swish activation function

has the advantages of reducing the computation and improving
performance, especially in a deep network.

ReLU6 � min(6, max(0, x)), (2)

h − swish(x) � x
ReLU6(x + 3)

6
. (3)

The backbone network uses MobileNetv3, which employs a
unique BNECK architecture. The structure of BNECK is shown
in Figure 2, where NL stands for different activation
functions. ReLU denotes the activation function of the fully
convolutional (FC) layer, and Pool stands for the pooling layer.
MobileNetv3 first adopts 1 × 1 convolution for dimension
enhancement, and then carries out 3 × 3 depthwise
convolution for feature extraction. It then adds an attention
mechanism on the channel of a feature layer, which is two fully
convolutional layers. This attention mechanism is to average
pool the results of 3 × 3 deep separable convolution and then
carries out two fully connected neural network processing. The
feature layer resulting from this attention mechanism is
multiplied by the feature layer resulting from the depthwise
convolution of 3 × 3. Finally, 1 × 1 convolution is used to adjust
the dimensions.

The detailed structural parameters of the entire MobileNetv3
are listed in Table 2. The first column, “Input,” denotes the shape
changes associated with each MobileNetv3 feature layer. The
second column, “Operator,” indicates the block structure through
which each feature layer will pass. As it can be seen, feature
extraction occurs via a variety of BNECK structures in
MobileNetv3. The third and fourth columns indicate the
number of channels after inverting the residual structure in
BNECK and the number of channels at the characteristic layer
when input to BNECK, respectively. The fifth column, “SE,”
indicates whether or not this level introduces attention
mechanisms. The sixth column, “NL,” represents the type of
activation function, that is, “HS” for h − swish and “RE” for
ReLU . The seventh column, “S,” represents the step size used for
each block structure.

2.3 Feature Pyramid
As illustrated in Figure 3, the feature pyramid is composed of two
components: SPP and PANet. Their primary purpose is to
improve feature extraction. “Concat + Conv a×a” is a deeply
separable convolution, where “a×a” denotes depthwise
convolution with aa’s convolution kernel. The result of the
backbone network is convolved by 3 × 3 in the SPP structure,
and then the maximum pooling of 5, 9, and 13 is performed,

FIGURE 1 | Image of data enhancement.

TABLE 1 | Inverted residual with linear bottleneck.
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finally resulting in 3 × 3 profoundly separable convolutions.
PANet’s structure is depicted in Figure 3. By substituting
deeply separable convolution blocks for standard convolution,
the model’s parameter count can be reduced.

2.4 YOLO Head and Parameter Controller
As illustrated in Figure 3, YOLO Head makes predictions using
the extracted features from the backbone network and
strengthened by the feature pyramid. YOLO Head is primarily
composed of a convolution of 3 × 3 and a convolution of 1 × 1.
Convolution of 3 × 3 is used to integrate all features, whereas
convolution of 1 × 1 is used for prediction.

To reduce the number of parameters and improve the detection
accuracy of the whole network, the α parameter is set at feature
pyramid and Yolo Head, and the formula is as follows:

γ � α × β (4)

where γ is the number of channels per convolution, β is
quantitative and is the value each convolution needs to set in
advance, and α is a global variable. The number of channels in a
convolutional network can be controlled by adjusting the α parameter.

2.5 Loss Function
Due to the unbalanced and difficult-to-classify nature of the single-
tree data collected in plantation monitoring, the YOLOv4-Lite uses
focal loss to optimize the classification loss (Ruihuan hou, 2021; YuZ,
2021). In a one-stage model, the focal loss can be used to correct the
background classification imbalance and the serious imbalance of
positive and negative samples. The loss function in the YOLOv4 is
divided into three components: position loss, confidence loss, and
class loss. By combining the cross-entropy loss function, the sigmoid
is calculated. Cross-entropy measures the distance between the
actual output of the activation function and the expected output
value in a multi-classification task. The lower the cross-entropy, the
more compact the probability distribution. The following is the
calculation formula:

L � −y log _y, (5)

where L represents the cross-entropy, y represents the expected
output, and _y denotes the actual output of the activated function.
The calculation of improved focal loss is as follows:

Lf � − _α[1 − _y] _β log _y, (6)

where Lf is the improved cross-entropy, _α is 0.25, _β is 2, the role
of _α factor is to balance the number of samples, and the role of
_β> 0 is to reduce easily classified objects.

3 EXPERIMENTS

3.1 Experimental Platform
This study’s experimental model is built on the Keras � 2.1.5
framework, Python � 3.6, and the Spyder platform. The model is
trained on an experimental 11th Gen Intel(R) Core (TM) i7-
11800H at 2.30GHz, NVIDIA GeForce RTX 3060 Laptop GPU,
and 16.0 GB of RAM running Windows x64.

3.2 Datasets
3.2.1 Dataset Description
There are specific management requirements for individual
plants for urban plantation, such as catkin management and
wind-fallen tree management. Furthermore, the technical
foundation is sound. The urban plantation is classified into
three types: campus, orchard, and economic plantation. To

FIGURE 2 | Structure of BNECK.

TABLE 2 | Structure of MobileNetv3.

Input Operator Exp size #Out SE NL S

224 × 224 × 3 Conv2d — 16 — HS 2
112 × 112 × 16 BNECK, 3 × 3 16 16 — RE 1
112 × 112 × 16 BNECK, 3 × 3 64 24 — RE 2
56 × 56 × 24 BNECK, 3 × 3 72 24 — RE 1
56 × 56 × 24 BNECK, 3 × 3 72 40 √ RE 2
28 × 28 × 40 BNECK, 3 × 3 120 40 √ RE 1
28 × 28 × 40 BNECK, 3 × 3 120 40 √ RE 1
28 × 28 × 40 BNECK, 3 × 3 240 80 — HS 2
14 × 14 × 80 BNECK, 3 × 3 200 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 184 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 184 80 — HS 1
14 × 14 × 80 BNECK, 3 × 3 480 112 √ HS 1
14 × 14 × 112 BNECK, 3 × 3 672 112 √ HS 1
14 × 14 × 112 BNECK, 5 × 5 672 160 √ HS 2
7 × 7 × 160 BNECK, 5 × 5 960 160 √ HS 1
7 × 7 × 160 BNECK, 5 × 5 960 160 √ HS 1
7 × 7 × 160 Conv2d, 1 × 1 — 960 — HS 1
7 × 7 × 960 Pool, 7 × 7 — — — — 1
1 × 1 × 960 Conv2d, 1 × 1, NBN — 1,280 — HS 1
1 × 1 × 1,280 Conv2d, 1 × 1, NBN — K — — 1
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verify the single-tree detection experiment, sample sites from
these three types of urban plantations were chosen.

In June 2019, the green trees surrounding Beijing Forestry
University’s basketball court were located at 11,620′8.76″E,
400′6.52″N. The campus’s primary tree species were broad-
leaved Sophora japonica Linn and steamed bread willow (Salix
matsudana var. matsudana F. umbraculifera Rehd.). In
December 2017, the litchi orchard was located in Shenzhen’s
Bao ‘a District at 11,353′26.34″E, 2,238′41.22″N. The image of a
section of a palm plantation in Phang Nga, Thailand, was taken at
9,820′53.22″ E, 827′18.45″ N. Google Earth images with a spatial
resolution of 0.27m, a scale of 800:1, and a visual field height of
1 km were used in our experiment.

Due to Thailand’s extensive palm cultivation, the terrain is
varied. We sampled palm trees from three different types of palm
plantation: open plantation, complex background plantation, and
dense plantation.

For each of the five sample locations, the entire image was
predicted using local image features. The training data are divided
into two sections. To begin, each sample site’s image was divided into
numerous small pieces. Then, from a large number of small pieces of
training data, a small number of images were selected. The remaining
training data were gathered in the vicinity of the sample sites. Data
enhancement was used to increase the training dataset to 600 pieces.
Individual trees of various tree species, backgrounds, and sizes are

included in the training data. Diverse backgrounds are incorporated
to increase the variety of elements and the training effect.

3.2.2 Experiment Parameter
The experiment’s primary parameters are listed in Table 3.
The term “Epoch” refers to the process by which a complete
dataset passes through a neural network once and returns
once. When a large amount of data cannot be processed in a
single pass through the neural network, the dataset must be
divided into several “batch sizes.” Each batch size corresponds
to a new small dataset; the batch size parameter specifies the
size of the new small dataset. The term “score” refers to a
measure of confidence. The “weight file size (MB)” column
indicates the amount of space consumed by the YOLOv4-
Lite model.

FIGURE 3 | Schematic diagram of YOLOv4-Lite.

TABLE 3 | Training model parameters.

Training model YOLOv4-Lite

Epochs 400
Batch sizes 8
Input image size 416×416
A 2
Score 0.2
Weight file size (MB) 47.5
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3.3 Process
Figure 4 illustrates the overall process of single-tree detection.
The acquisition of high-resolution remote sensing image data is
divided into two stages. One part contains training data. Manual
labeling of training data is required. The second part contains the
test data, which are displayed in the article. The YOLOv4-Lite
model extracted single-tree features from training data
repeatedly. On the test data, the trained YOLOv4-Lite model
performs single-tree detection.

3.4 Evaluation Criteria
A professional evaluation standard is critical when evaluating
the effect of a variety of single-tree detection methods. There is
no unified evaluation standard in place at the moment. Correct
detection occurs when the difference between the ground
reference single tree and the detected single tree is within a
specified range. The location of a single tree defines the actual
box’s geometric center. The position of each detected single
tree is represented by Mi. The position of each ground
reference single tree is represented by Ej. There are three
possibilities for the results of single-tree detection: correct
detection, error detection, and omission. Setting threshold
ε> 0, d (Mi, Ej) is denoted as the distance between two
points Mi and Ej. The experiment results are as follows:

1 When d (Mi, Ej) < ε, it is considered that the detected single
tree matches the ground reference single tree. It is the correct
detection.

2 If d (Mi, Ej) > ε for any Mi, there is no ground reference
single-tree matching with the detected single tree. The detected
single tree is considered as error detection.

3 Ej is neither in case (1) nor in case (2), in which case Ej is
omission.

Based on the above conditions, Nr is the number of reference
single trees, Na is the number of detected single trees, and Nmatch is
the correct number of correctly detected single trees in the detected
single trees. The calculation formula of all values is shown inTable 4,
Nleave is the number of undetected reference single trees and is also
the difference between Nr and Nmatch, Nerror is the difference
between Nmatch and Na, the recall rate is represented by the
symbol Nmat , the commission rate is represented by the symbol
Nom, the omission rate is represented by the symbol Ncom, and the
accuracy is represented by symbol M.

4 RESULTS AND DISCUSSION

To assess the method’s effectiveness, two classical traditional
methods, namely, the local maximum method and the
watershed method, are compared to two novel methods,
namely, the CV model and template matching method (Peng
et al., 2017; Dong and Zhou, 2018; Zhang et al., 2020). This study
analyzes and interprets the experimental results.

We use 416 × 416 images as the input image in this
experiment. Because the experiment area is too large, it is
divided into numerous small images for detection. Partitioning
divides a tree in half or even a quarter.

4.1 Campus and Orchard Detection
Figures 5, 6 illustrate the results of various methods used to test
the green trees surrounding the basketball court and the litchi
trees near the litchi orchard. Red circles and yellow dots denote
the trees that have been detected.

As illustrated in Figure 5, the campus experiment site resembles
a plantation scene. The sliding window size is set to 23 for the local
maximum method. The pixel difference threshold between the
template and the sample is set to between 0.28 and 0.35 for the
template matching method. The watershed method’s marker
parameter is set to 24. The treetop probe window and the
background label parameter of the CV model are both set to
23. Because the local maximum value extracts only the maximum

FIGURE 4 | Single tree detection process based on YOLOv4-Lite.

TABLE 4 | Single tree detection evaluation indicators.

Evaluation indicators Formula

Recall Nmat � Nmatch
Nr

Commission rate (1-precision) Nom � Nerror
Na

Omission rate Ncom � Nleave
Nr

Accuracy M � Nmatch
Nmatch+Nleave+Nerror

× 100
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value, the watershed method extracts the contour of the puddle
while easily being influenced by the tree branches. Several trees on
the campus site have two large branches that reach the tree’s top.
As illustrated in Figure 5B and Table 5, both the local maximum
and watershed methods incorrectly identify the tree branch as a
tree, resulting in significant error detection. To minimize error
detection, the CVmodel combines the advantages of the watershed
and local maximum methods. On the other hand, the CV model
considers two trees with a close crown connection to be a single
tree, resulting in numerous detection omissions. Japonica Sophora
Linn and Salix are the campus experimental site’s dominant tree
species. The two trees have similar characteristics, as do the tree
canopy characteristics of the same trees. Additionally, the template
matching method cannot extract all tree templates for trees with
close crown connections.

Although the template matching method has a zero-commission
rate, its accuracy, recall rate, and omission rate are lower than those
of the YOLOv4-Lite method.

The YOLOv4-Lite method has a single tree detection accuracy
of 96.3%. In conclusion, when compared to other algorithms, the
proposed YOLOv4-Lite algorithm achieves the highest detection
success rate and recall rate. Due to the small tree population on
the campus experimental site, the experimental effect of
YOLOv4-Lite is significantly greater than that of other
sample sites.

As illustrated in Figure 6, the litchi garden’s experimental
site resembles an urban orchard. The sliding window size is
set to 18 for the local maximum method. The template
matching method sets the pixel threshold between the
template and the sample to be between 0.32 and 0.38. The
watershed method’s marker parameter is set to 25. The CV
method’s treetop probe window is set to 20 and the background
label parameter to 24.

As illustrated in Figure 6F, the single-tree detection method
proposed by YOLOv4-Lite appears to have a high degree of error
detection. Indeed, this phenomenon demonstrates Yolov4-Lite’s

FIGURE 5 | Results of different methods in campus: (A) original image, (B) local maximum, (C)watershed, (D) CVmodel, (E) template matching, and (F) YOLOv4-
Lite.
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extremely low omission rate and ability to detect up to a quarter
of a tree. The YOLOv4-Lite single-tree detection method
successfully detects each half-crown or quarter crown in the
small image. Finally, the detected images were spliced
together. The tree crown shape is irregular in the experimental
site of the litchi garden. The crown difference is obvious, the
connection is relatively close, and some background areas have
higher values. As illustrated in Table 6, the detection efficacy of
several methods is quite low. The local maximum method
extracts only the tree with the greatest value and performs
numerous error and omission detections. The experimental
site of litchi garden contains a large number of saplings, and

the contours of these saplings were not detectable using the
watershed method. Additionally, the CV model incorporates
extensive error and omission detection. Not all templates for
single trees are available in advance. Because the template
matching algorithm can only match regions of the same size, a
small number of trees are labeled as missing errors, and
numerous connected tree crowns are misidentified as a single
tree. The YOLOv4-Lite method was found to have the best anti-
interference ability in this study. It is capable of distinguishing a
limited number of difficult-to-distinguish samples while
maintaining a 93.8% accuracy, a 95.5% recall rate, and a 1.9%
omission rate.

FIGURE 6 | Results of different methods in litchi garden: (A) original image, (B) local maximum, (C) watershed, (D) CV model, (E) template matching, and (F)
YOLOv4-Lite.

TABLE 5 | Campus single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Campus YOLOv4-Lite 26 27 26 0 1 96.3 100 0.0 3.7
Watershed 26 73 25 1 48 33.8 96.2 3.8 65.8
Local maximum 26 71 26 0 45 36.6 100 0.0 63.4
Template matching 26 17 17 9 0 65.4 65.4 34.6 0.0
CV model 26 21 17 9 4 56.7 65.4 34.6 19.0
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4.2 Economic Plantation Detection
Palm trees are economic plantations, and many countries have a
sizable artificial planting base. Palm tree monitoring and
management are critical for plantation production. A stand of
the open plantation has a canopy density of between 0.4 and 0.6,
while a dense plantation has a canopy density of between 0.7 and
1. As illustrated in Figure 7, this study examines three distinct
scenarios involving a single palm tree. The three scenes are sparse
plantation with a simple background, sparse plantation with a
complex background, and dense plantation. Red circles indicate
correctly detected single trees. The trees that have been identified
as having an error are circled in white. Blue circles indicate
undetected single trees.

Sample site one depicts an open plantation with a simple
background. The sliding window size is set to 23 for the local
maximum method. The template matching method sets the pixel
threshold between the template and the sample to between 0.31
and 0.35. The watershed method’s marker parameter is set to 22.
The CV model’s treetop probe window is set to 23 and the
background label parameter to 22. The background value of
sample site one is high, which results in a high number of
detected errors using the local maximum method and a high
number of missed single trees using the watershed method.
Many saplings are present at experimental site 1. Not all
templates for single trees are available. The template matching
method has a low recall rate and accuracy. As shown inTable 7, the

TABLE 6 | Litchi garden single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Litchi garden YOLOv4-Lite 111 108 106 5 2 93.8 95.5 4.5 1.9
Watershed 111 127 91 20 36 61.9 82.0 18.0 28.3
Local maximum 111 204 76 35 128 31.8 68.5 31.5 62.7
Template matching 111 116 104 7 12 84.6 93.7 6.3 10.3
CV model 111 149 90 21 59 52.9 81.1 18.9 39.6

FIGURE 7 | Results of different methods in palm: (A) original image of sample site 1, (B) YOLOv4-Lite of sample site 1, (C) original image of sample site 2, (D)
YOLOv4-Lite of sample site 2, (E) original image of sample site 3, and (F) YOLOv4-Lite of sample site 3.
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YOLOv4-Lite method has a higher accuracy and recall rate than
the template matching method.

The background has the greatest influence on the experimental
results when it comes to single-tree detection. The scene in which the
background color matches the color of the crown of a single tree has
the most interference. Sample site two is an open plantation with a
complex background plantation. Table 7 summarizes the
experimental results for sample site 2. A single tree’s canopy
color in site two is very similar to the background color. The
sliding window size is set to 23 for the local maximum method.
The pixel difference threshold between the template and the sample
is set to between 0.22 and 0.26 for the template matching method.
The watershed method’s marker parameter is set to 25. The CV
model’s treetop probe window is set to 23 and the background label
parameter to 22. Local maximum only extracts the maximum value.
When the crown color of a single tree is similar to the background
color, the background color is brighter. The background is frequently
mistaken for the crown apex, resulting in many missed and error
detection data. Watershed is also difficult to extract the correct seed
points, which results in numerousmissed and incorrect detections in
this case. In sample site 2, there are single trees of varying sizes, and
not all single-tree templates can be extracted. As a result, the
template matching method’s recall rate and accuracy are low. In
the scenario of sample site 2, the YOLOv4-Lite method maintains a
97.4% accuracy and a 99.1% recall rate.

Sample site three represents a dense plantation. The sliding
window size is set to 35 for the local maximum method. The
template matching method sets the pixel threshold between the
template and the sample to between 0.16 and 0.22. The watershed
method’s marker parameter is set to 34. The CV model’s treetop
probe window has been set to 34, and the background label
parameter has been set to 33. Dense plantations are typically
mature plantations with large trees. When one tree crown is near
another, the background cannot interfere with the single-tree
detection effect. Because sample site three is the same age
plantation as sample site 1, there are no saplings. As
illustrated in Table 7, sample site 3 has the best effect for
single-tree detection. If a tree has a large number of branches,

multiple maximums will occur, and the local maximum method
will result in a high rate of missed and error detection.
Additionally, the watershed method generates a large amount
of error detection. Additionally, the morphological characteristics
of palm tree crowns are evident, and the template matching
method detects sample site 3 with a 96.1% accuracy. The template
matching method, on the other hand, is ineffective at detecting
half and quarter crowns. This results in some missing tests. The
accuracy of the YOLOv4-Lite method achieves 98.0%.

5 CONCLUSION

A YOLOv4-Lite method for single-tree detection is proposed in
this study. Although it is not revolutionary in terms of object
detection, it offers an excellent balance of speed and accuracy. Not
only does the YOLOv4-Lite method overcome the four difficulties
discussed in Chapter 1 but it also has a stronger anti-interference
capability. Moreover, it performs well in various plantation types,
including campus, orchards, and economic plantation, with
extremely stable single-tree detection and location
performance. The research presented in this article serves as a
reference for the YOLOv4 model’s application in its field.
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TABLE 7 | Sample site single-tree detection results’ statistics.

Image
number

Method Nr Na Nmatch Nleave Nerror M, % Nmat, % Ncom, % Nom, %

Sample site 1 YOLOv4-Lite 164 165 162 2 3 97.0 98.8 1.2 1.8
Watershed 164 117 108 56 9 62.4 65.9 34.1 7.7
Local maximum 164 213 132 32 81 53.9 80.5 19.5 38.4
Template matching 164 157 155 9 2 93.4 94.5 5.5 1.32
CV model 164 143 119 45 24 63.3 72.6 27.4 16.8

Sample site 2 YOLOv4-Lite 224 226 222 2 4 97.4 99.1 0.9 1.8
Watershed 224 123 118 106 5 51.5 52.7 47.3 4.1
Local maximum 224 162 93 131 69 31.4 41.5 58.5 42.6
Template matching 224 217 203 21 14 85.3 90.6 9.4 6.5
CV model 224 202 111 113 91 35.2 49.6 50.4 45.0

Sample site 3 YOLOv4-Lite 148 147 146 2 1 98.0 98.6 1.4 0.7
Watershed 148 183 136 0 47 74.3 91.8 0.0 31.7
Local maximum 148 162 124 24 38 66.7 83.8 16.2 23.5
Template matching 148 152 147 1 5 96.1 99.3 0.7 3.3
CV model 148 173 130 18 43 68.1 87.9 12.1 24.9
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Optimality principles have been applied in ecohydrological modeling to derive optimal
vegetation properties and describe co-evolution states of vegetation and water cycle.
Unfortunately, most existing optimality-based models only consider vertical vegetation-soil-
water interactions on plot scale, without considering the lateral hydrological processes. This
work aims to extend the field-scale VegetationOptimalityModel (VOM) to thewatershed scale.
Lateral flow is incorporated to VOM through a hierarchical strategy, establishing theDistributed
Vegetation Optimality Model (DisVOM). The model is tested with long-tem flux measurements
in the Walnut Gulch watershed, a United States Agricultural Research Service (US-ARS)
experimental watershed in southern Arizona. The results indicate the model performance is
acceptable for most of years, especially for the growing season. The seasonal dynamic of ET,
soil water, and GPP demonstrate good consistency with observations. The model provides
reasonable spatial distribution of ET and GPP, suggesting the model can discriminate the
effect of lateral flow on water redistribution, and consequently on root water uptake, as well as
carbon assimilation. The model could be a useful tool assessing the impact of climate change
and human activities on vegetation and water cycle.

Keywords: ecohydrology, ecohydrological modeling, vegetation optimality, lateral hydrological processes, spatial
explicit

1 INTRODUCTION

Vegetation and the water cycle are intrinsically coupled through physical and biological
processes, such as carbon, water, energy, and nutrients exchange (Rodriguez-Iturbe et al.,
1999; Biederman et al., 2017; Wang et al., 2019; Rice and Emanuel, 2019; Xia et al., 2021). Over
the past few decades, there has been a growing awareness that vegetation co-evolves with the
environment achieving an equilibrium status and optimal use of resources (such as light, water)
when adapting to the environment (Ball et al., 1987; Cowan, 2002; Berninger et al., 1996;
Eagleson, 2002; Rodriguez-Iturbe and Porporato, 2005; Chen et al., 2019; Franklin et al., 2020).
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Based on Darwin’s theory of natural evolution, Eagleson (1978,
2002) proposed the optimality hypothesis that in water-limited
ecosystem vegetation reaches a “growth equilibrium” density
when stress is minimized in short term, and an “evolutionary
equilibrium” at which the rate of production is maximized in
long terms (Eagleson, 1978; Eagleson, 2002). Following
Eagleson’s pioneering work, different optimality principles
have been established (Rodriguez-Iturbe and Porporato,
2005). Those optimality principles are applied to derive the
optimal vegetation properties, such as optimal vegetation
distribution (Caylor et al., 2004), optimal root properties
(Schymanski et al., 2008; Gao et al., 2014; Carbon et al.,
2018; Speich et al., 2018), optimal photosynthetic canopy
properties (van der Tol et al., 2008; de Boer et al., 2011).

In recent years, optimality principles have been applied in
ecohydrological modeling to derive optimal vegetation properties
and describe co-evolution states of vegetation and water cycle
(Van der Tol et al., 2008; Schymanski, et al., 2009; Caylor et al.,
2009; Pauwels et al., 2007; Lei et al., 2009; Huang et al., 2020). In
contrast to the traditional ecohydrological models (Chen et al.,
2015; Fatichi et al., 2016), which heavily rely on calibration
(Kuppel et al., 2018), optimality-based ecohydrological models
do not need prior knowledge of vegetation, which make them
powerful to predict the system’s response to new conditions
(Sutherland, 2005; Sivapalan, 2009). To our knowledge, most
existing optimality-based models only consider vertical
vegetation-soil-water interactions on plot scale, without
considering the lateral hydrological processes (Hwang et al.,
2009).

It is well acknowledged that lateral hydrological processes and
redistribution of soil water contribute to the complex vegetation
structure and patterns at watershed scale (Band et al., 1993;
Govind et al., 2009; Chen et al., 2015). It is especially
significant in mountainous and hilly terrain due to the
complex variability of topography (Ivanov et al., 2008; Gao
et al., 2019). Therefore, the lack of lateral flow in
ecohydrological models will lead to inappropriate
representation of soil water, which directly affects the
description of ecohydrological processes, such as root water
uptake, evapotranspiration.

Vegetation Optimality Model (VOM) (Schymanski et al.,
2009) is an optimality-based model, which applies a principle
of maximization of Net Carbon Profit (NCP) to acquire optimal
vegetation properties. One key merit of this model is that it does
not need prior knowledge about the vegetation to run the model.
However, like the other optimality-based models, this model only
considers vertical water and vegetation dynamics on field scale.

This work aims to extend the field-scale VOM to the
watershed scale. We incorporate lateral hydrological processes
to VOM, establishing the Distributed Vegetation Optimality
Model (DisVOM). The model is tested in the Walnut Gulch
watershed, a United States Agricultural Research Service (US-
ARS) experimental watershed in southern Arizona. The model
outputs are validated with the observed flux data. To evaluate the
contribution of lateral flow to ecohydrological processes
modeling, we compare the distribution of modeled
evapotranspiration (ET) and Gross Primary Productivity

(GPP) with the spatial pattern of topography. We further
examine the problems associated with the model, which
pointed out the orientation of model improvements in the future.

2 MATERIALS AND METHODS

2.1 Model Description
The model developed in this research is an optimality based,
spatial explicit ecohydrological model at watershed scale.
The watershed is delineated from the Digital Elevation Model
(DEM) into grid cells, and each grid is considered as a unique
vegetation-soil system. Vertically, each grid is subdivided into
many layers and simulates ecohydrological processes such as
photosynthesis, transpiration, soil evaporation, infiltration, etc.
Horizontally, it describes the heterogeneities in topography, soil,
vegetation and atmospheric forcing, and adequately describes
the mutual interaction among grids utilizing grid-based routing
algorithms.

2.2 Vertical Ecohydrological Processes
VOM (Schymanski et al., 2009) is implemented to describe
vertical ecohydrological processes at each grid cell. VOM
couples a multilayered physically based water balance model
and an ecophysiological gas exchange model. The model
represents vegetation as two “big leaves.” One covering an
invariant area fraction represented perennial vegetation (e.g.,
trees) and a varying area fraction representing seasonal
vegetation (e.g., annual grasses). The model acquires
optimal vegetation properties through the optimality
principle that vegetation would maximise NCP. We list the
most important equations as follow. For detail of the model,
please see the reference of Schymanski et al (2009).

2.2.1 Photosynthesis
Leaf CO2 assimilation is based on a biochemical model of
photosynthesis (Schymanski et al., 2009).

Ag � 1
8
(4CaGs + 8ΓpGs + JA − 4Rl)

− 1
8

�������������������������������������������������
( − 4CaGs + 8ΓpGs + JA − 4Rl)2 + 16GsΓp(8CaGs + JA + 8Rl)

√
(1)

where Ca is the mole fraction of CO2 in the air, Gs is stomatal
conductivity, Γp is the CO2 compensation point in the absence of
mitochondrial respiration, and JA is photosynthetic electron
transport rate.

2.2.2 Stomatal Conductivity and Transpiration
Transpiration is treated as a diffusive processes controlled by
stomatal conductivity, following the equation developed by
Cowan et al. (1977):

Et � aGs(Wl −Wa) � aGsDv (2)
where Dv is atmospheric vapor deficit, Wl and Wa denote the
mole fraction of water vapor in air inside the leaf and in the
atmosphere, which is approximate to Dv, and a is the molecular
diffusion coefficient of CO2 in the air, defined as 1.6.
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Cowan and Farquhar (Cowan, et al., 1977) proposed the
stomatal conductivity optimal hypothesis that leaves would
maximize CO2 uptake for any given amount of water in a
period. It can be expressed as the slope of transpiration (Et)
and carbon assimilation (Ag), which can be maximized with a
constant value of λ over the period.

zEt/zGs

zAg/zGs

� zEt

zAg
� λ (3)

Combining Eq. 1, Eq. 2, and Eq. 3, vegetation transpiration
can be calculated as

Et � aDv[Ca(JA − 4Rl) − 4(JA + 2Rl)Γp]
4(Ca − 2Γp)2

+
�
3

√ ������������������������������������������������������������������
aDvJAΓp(λCa − 2aDv + 2λΓp)2(λCa − aDv + 2λΓp)[Ca(JA − 4Rl) − (JA + 8Rl)Γp]

√
4(Ca + 2Γp)2(λCa − aDv + 2λΓp)

(4)

where λ including λs and λp is a constant within 1 day, and is
parameterized as a function of the average matric suction head of
each soil layer (hi) in the root zone.

2.2.3 Soil Evaporation
Soil evaporation includes evaporation from saturated zone and
evaporation from unsaturated zone. Soil evaporation is
determined by radiation, soil surface fraction, as well as soil water.

Esu � Ig(1 − 0.8(1 −MA))ωuSu,1
λEρ

(5)

Ess � Ig(1 − 0.8(1 −MA))ω0

λEρ
(6)

where Ig is global irradiance, MA is fraction of area covered by
vegetation, ωu is unsaturated surface area fraction, Su,1 is average
saturation degree in the unsaturated zone, ω0 is saturated surface
area fraction.

2.2.4 Vegetation Optimality Principle
The vegetation optimality principle applied in VOM is
maximization of NCP, which is defined as total CO2 uptake of
tree and grasses over the entire period, excluding all identified
maintenance costs of the organs assisting photosynthesis,
including foliage, roots, and water transport tissues:

NCP � ∫tend

tstart

(Ag,tot(t) − Rf(t) − Rr(t) − Rv(t))dt (7)

where Ag,tot is the combined CO2 uptake by trees and grasses, Rf

is the foliage cost of grasses and trees combined, Rr is the root cost
of grasses and trees combined, and Rv is the cost associated with
the vascular systems of grasses and trees combined.

2.2.5 Vegetation Optimality Strategy
Vegetation optimality strategy consists of long-term optimization
of vegetation properties adapted to environmental conditions and
short-term optimization of vegetation properties adapted to daily
changes of environment. Long-term vegetation properties
include fraction of area covered by perennial vegetation
(MA,p), the thickness of root zone of perennial vegetation

(yr,p) and water use parameters of perennial and seasonal
vegetation (cλf,p, cλe,p, cλf,s, cλe,s). Short-term vegetation
properties include the fraction of area covered by seasonal
vegetation (MA,s), electron transport capacity of perennial and
seasonal vegetation (Jmax 25,p, Jmax 25,s), root area depth
distribution of perennial and seasonal vegetation (Sadr,i,p,
Sadr,i,s). The Shuffle Complex Evolution (SCE) algorithm
developed by Duan et al. (1994) is used to achieve the optimal
vegetation parameters to maximize NCP over the entire period.

2.3 Explicit Flow Routing
This model calculates the overland flow with run-on infiltration
determined by the excess water flow. It is assumed that all
overland flow generated by a grid will rout to the downstream
grid cell in a single time step. If the receiving grid is not saturated,
the overland flow will infiltrate according to infiltration capacity,
and the excess amount will be routed.

Overland flow can be described by dynamic wave equations,
which is also known as St Venant equations. As St Venant
equations are highly nonlinear and do not have analytical
solutions, practical equations are derived, such as kinematic-
wave and diffusion-wave. In this study, we used the 4-point
implicit method to solve kinematic wave overland flow (Amein
and Fang, 1969; Cevza et al., 2005). The governing equation for
kinematic-wave is expressed as follow:

zy

zt
+ αmym−1zy

zx
� i − f (8)

where y is the depth of water, t is distance, x is time, i is rainfall
intensity, f is infiltration rate. α and m are coefficient, which can
be obtained from Manning equations for fully turbulent flow:

α � 1
n

��
S0

√
(9)

m � 5
3

(10)

The implicit method gives the approximation of kinematic
wave equation:

qj+1i+1 − qj+1i

Δx + yj+1
i+1 − yj

i+1
Δt � (i − f)ji+1 (11)

FIGURE 1 | Flow direction (A) and different level of priority (B).

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7983363

Chen et al. Optimality-based Spatial Explicit Ecohydrological Model

128

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


qj+1i+1 � α(yj+1
i+1 )m (12)

qj+1i � α(yj+1
i )m (13)

We can build a constructor equation as follow:

f(yj+1
i+1 ) � Δt

Δx α(yj+1
i+1 )m + yj+1

i+1 − [ΔtΔx α(yj+1
i )m + yj

i+1

+ Δt(i − f)j+1i+1 ] (14)

FIGURE 2 | Location of study area and observation station.
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Eq. 15 can be solved by Newton–Raphson iteration.

(yj+1
i+1 )k+1 � (yj+1

i+1 )k − f(yj+1
i+1 )k

f′(yj+1
i+1 )k (15)

where f′(yj+1
i+1 )k is the derivative of f(yj+1

i+1 ), which can be
expressed as:

f′(yj+1
i+1 ) � 1 + αm

Δt
Δx(yj+1

i+1 )m−1
(16)

2.4 Hierarchical Incorporation Strategy
To account for the spatial variability of topography and
consequently modify optimality principle in VOM, we
incorporate lateral flow to VOM for each grid cell. According
to the characteristic of grid-based flow routing solved by the 4-
point implicit scheme as stated in section 2.4, for a given grid, the
overland flow of a given grid at a time step is determined by two
grids at two-time steps, including water depth of the upstream
grid at current time step, water depth of upstream grid at last time
step, water depth of the current grid at current time step, water
depth of current grid at last time step. In such a circumstance, the
downstream grid’s water depth can only be calculated until the
upstream grid has its outflow calculated. However, the upstream
grid’s outflow can only be obtained until the vegetation
parameters optimization, which also depends on its
upstream grid. This extremely complicates the incorporation
of lateral flow to VOM.

To overcome the problems mentioned above, a hierarchical
strategy is developed to integrate lateral flow to VOM. The
hierarchical approach first prioritizes the grid cells of the
watershed into different levels according to the flow dependency
of grid cells. Different levels have different calculation priority. The
highest level includes those grid cells that have no inflow from other
grid cells. Vegetation optimization can be conducted by themselves
as they do not need inputs from other grid cells. We define the grid
cells of highest level as the first grid layer. The downstream grid cells
of the first-layer grid cells are defined as the second grid layer.
Calculations of those grid cells, including vegetation optimization
and ecohydrogical processes modeling, rely on the outflow of the
first-level grid cells. The downstream grid cells of the second-layer
cells are defined as the third layer cells, and so on until all of the grid
cells are ranked.

Prioritization of grid cells is conducted based on flow
direction, which is obtained from DEM data. This study uses
the D8 algorithm from ArcGIS to derive flow direction.

Figure 1A shows a simple example of flow directions. Grid
cells with no upstream grid are ranked as first level, labeled 1
in Figure 1B. The downstream grid cells of those grids are ranked
as second level, which are labeled 2 in Figure 1B. By this means,
all of the grid cells can be classified into different levels.

Following the prioritization of grid cells, ecohydrological
modeling of different-level grid cells is implemented. The
first level has the highest computation priority. Vegetation
optimization is firstly conducted for the first-level grid cells
and after vegetation parameters have been gained,
ecohydrological processes of those grid cells are modeled.
The outflow of those grid cells serves as the inflow of the
downstream grid cells and accordingly participates in
vegetation properties optimization of downstream grid cells.
In this way, the lateral flow can be fully incorporated into
vegetation optimality model.

2.5 Study Area
The model test and evaluation are conducted in USDA-ARS
Walnut Gulch Experimental Watershed (WGEW) near
Tombstone, Arizona (Figure 2). The watershed is located in
the upper San Pedro River Basin, covering 7,600 km2 in Sonora,
Mexico and Arizona. The area of the WGEW is about 145 km2.
The average annual temperature is about 17–19°C, and the
average annual precipitation is 322 mm, with 67% rainfall in
summer (Goodrich, et al., 2008). The primary vegetation of the
watershed is grass and shrubs and is a transition zone between the
Chihuahuan and Sonoran Deserts.

We use a small watershed near the Kendall grass site
(109°56′8″W, 31°44′10″N; elevation: 1,526 m) as the validation
watershed (Figure 2). The watershed is small, with nearly unique
climate, vegetation, and soil type, therefore, the spatial variability
of modeled ET and GPP can be attributed to lateral flow.

2.6 Data
Data used in this study are obtained from the Southwest
Watershed Research Center (SWRC) of USDA through the
official governmental website (http://www.tucson.ars.ag.gov/
dap/) (Emmerich and Verdugo, 2008). These data include
spatial data, model driving data, and model validation data
(Table 1). Meteorological measurements include precipitation
(except for 2002), air temperature, air humidity,
Photosynthetically Active Radiation (PAR), solar radiation are
gained from flux data near the Kendall grass site. Flux data are
acquired from Bowen Ratio Energy Balance System (BREB,
Model 023/CO2, Campbell Scientific Inc., Logan, UT). In the

TABLE 1 | Data used in this study.

Data type Data items Time scale

Input data Meteorological data Solar radiation, temperature, precipitation, PAR, Soil temperature 1 h
Topography DEM 30 m
Soil data Soil type, soil physical properties including texture, saturated conductivity, etc 30 m

Validation data Flux measurements CO2 flux, moisture flux 1 h
Hydrological data Soil water 1 h
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FIGURE 3 | Subdivision of measured NEE into GPP and ecosystem respiration.

FIGURE 4 | Flow direction (A) and prioritization of grid cells (B) in Kendall watershed.
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BREB system, atmospheric gradients of air temperature,
moisture, and CO2, are measured every 10 s and averaged to
20 min. These measurements are scaled up to 1 h for model input.
Precipitation data of 2002 is gained from the precipitation
database of Walnut Gulch Raingages because precipitation of
2002 from flux data is much lower than that from raingage
indicating there is missing observation of this year.

The validation data including water vapor flux and CO2 flux
are also acquired from Bowen Ratio Energy Balance System.
Considering the quality and continuity of the data, the
meteorological data from 1998-01-01 to 2007-12-31 are
selected to force the DisVOM model.

The model only has the outcome of leaf photosynthesis, which
can not be directly measured. In this study, as grass is the main
vegetation in the ecosystem, we convert themeasuredNet Ecosystem
Exchange (NEE) of CO2 through a flux-partition method into GPP
and ecosystem respiration (Re) by the following equation.

GPP � −NEE + Re (17)
As Re is explicitly dependent on air or soil temperature, Re can be

estimated from observed temperature data using the exponential
regression model (van’t Hoff, 1884)

Re � ap exp(bpTs) (18)

Where a and b are fitting parameters, Ts is the soil temperature.
As nighttime NEE values are equal to Re as GPP equals 0,
therefore we can use the nighttime NEE (nighttime is defined
as down solar radiation <1Wm-2) and soil temperature to
estimate the parameters. Once the parameters are fitted, the
daytime NEE can be computed (Figure 3).

3 RESULTS

3.1 Grid Cells Prioritization
Based on the flow direction data (Figure 4A), prioritization of the
grid cells are conducted as illustrated in Figure 4B. All the grid cells
are partitioned into 45 layers. Grid cells of lower layers have higher
priority, and grid cells in the same layer can model simultaneously.

3.2 Model Parameterization
Parameters for the optimality-basedmodel consist of soil parameters
(Table 2) and vegetation parameters. Soil parameters are specified
according to Scott et al., 2000. In the VOMmodel, the soil profile is
subdivided into sub-layers but the van Genuchten soil parameters of
each layer are treated as one value. Therefore, we then average the
soil parameters of each sub-layer from the work of Scott et al (2000)
and obtain one value for the whole soil profile.

TABLE 2 | Soil and vegetation parameters.

Parameters Value Source

Soil depth (m) 1.5 USDA (2008)
Soil layer depth (m) 0.25 This study
Residual soil water θr (m

−3 m−3) 0.065 Celia et al. (1990)
Saturated soil water θs (m−3 m−3) 0.30 This study
Van Genuchten parameter α (m−1) 7.5 Celia et al. (1990)
Van Genuchten parameter n (-) 1.89 Celia et al. (1990)
Saturated hydraulic conductivity Ksat (mm s−1) 1.228 × 10−2 Celia et al. (1990)
Rate of exponential increase of Jmax with temperature (J mol−1) 88,900 Massad et al. (2007)
Rate of exponential decrease of Jmax with temperature above optimal temperature (J mol−1) 22,000 Massad et al. (2007)
Optimal temperature for electron transport (°C) 35 Schymanski et al. (2009)
Leaf respiration rate per volume (-) 0.07 Schymanski et al. (2009)

FIGURE 5 | Scatters of simulated and measured ET (A), SW (B) and GPP (C).
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Most of the vegetation parameters in this study are derived from
vegetation optimization. Some of the parameters that cannot be
optimized are obtained from existing studies, as shown in Table 2.
These parameters are prescribed according to the average value of C3
shrub from previous studies (Schymanski et al., 2009; Massad et al.,
2007; Lei et al., 2009).

3.3 Validation of Simulated Fluxes
The simulated daily ET, soil water and GPP are compared with
the measured at the Kendall grass site. As the flux measurements
of 2001 are seriously absent, this year is removed for validation. A
one-to-one comparison of simulated values and measurements is
shown in Figure 5. Most of the points are distributed along the 1:

1 line, indicating a good agreement between the observed data
and simulated values.

Figure 6 illustrates the measured and simulated ET from
1998-2007 (except 2001). The simulated ET shows a similar
seasonal dynamic pattern with measured ET. It indicates that
the model can explain the variability of measured ET. As
compared with precipitation data, we can see that the model
captures the ET dynamic reasonably well in response to rainfall
events. When precipitation occurs ET occurs and simulated ET is
mainly concentrated in monsoon when rainfall concentrates.
Root Mean Square Error (RMSE) of ET simulation is 0.57
mm/day, which is lower than the standard deviation of ET,
1.09 mm/day (Table 3). Figure 7 shows simulated daily
evaporation and transpiration. Evaporation and transpiration
both mainly occur in the monsoon following the precipitation
events. Evaporation responds immediately to precipitation
events, while transpiration shows a lagged response to those
events. In spring or winter, ET is mainly dominated by
evaporation, while in the monsoon, transpiration increases
quickly after precipitation and dominates ET. These results are
consistent with Emmerich and Verdugo (2008).

FIGURE 6 | Comparison of simulated and observed daily ET.

TABLE 3 | Accuracy of simulation.

Fluxes RMSE Standard deviation

Soil water 2.44 mm/day 3.67 mm/day
ET 0.57 mm/day 1.09 mm/day
GPP 5.72 g/m2/day 4.84 g/m2/day
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Figure 8 shows the seasonal dynamic of measured and
simulated soil water. Generally, the performance of soil water
simulation is well. Soil water in the monsoon season is simulated
pretty well with nearly the same peak and corresponding seasonal
variation. Root Mean Square Error (RMSE) of soil water
simulation is 2.44 mm/day, lower than the standard deviation
of soil water, 3.67 mm/day (Table 3). However, there is a
tendency to underestimate soil water in the spring, especially
in those years with low spring precipitation (like 2005 and 2006).
It might be because, as precipitation is relatively small, the model
assumes vegetation is inactive, and roots are not developed,
leading to low soil water restored.

Figure 9 gives the simulated results of daily GPP and NEE-
partitioned GPP. Generally, the performance of GPP
simulation is acceptable. Simulated GPP shows the same
patterns with NEE-partitioned GPP in most years. RMSE of
GPP simulation is 5.72 g/m2/day, which is slightly higher than
the standard deviation of GPP, 4.84 g/m2/day (Table 3).
However, we also find a tendency to underestimate GPP in
some years. It might be due to the unreasonable prediction of

vegetation cover as it underestimates vegetation in the non-
growing season.

3.4 Spatial Patterns of ET and GPP
Figure 10 shows the spatial distributions of annual ET and GPP of
DisVOM (Figure 10) for 1999. The spatial variations of ET and GPP
exhibit nearly identical patterns. Comparing the distribution of slope
and TopographicWetness Index (TWI) (Figure 11), we can find that
the spatial distribution of annual ET and GPP of DisVOM
demonstrates similar patterns with slope and TWI. Grid cells with
high slopes tend to have low ET and GPP, while grid cells with low
slopes tend to have high ET and GPP. Grid cells with high TWI are
inclined to have high ET and GPP, while grid cells with low TWI
appear to have low ET and GPP.

ET and GPP of all grid cells in the watershed are sorted and divided
into eight groups to quantitatively analyze the correlation between
simulated ET and GPPwith slope and TWI. The averaged value of ET,
GPP, slope and TWI of each group is estimated. As illustrated in
Figure 12, ET and GPP show a significant negative correlation with
slope andpositive correlationwithTWI.Annual ETandGPPdecreased

FIGURE 7 | Comparison of simulated soil evaporation and transpiration.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7983369

Chen et al. Optimality-based Spatial Explicit Ecohydrological Model

134

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


with the increase of slope. Annual ET and GPP increase with the
increase of TWI.

In general, the spatial pattern of annual ET and GPP reflect the
fundamental impact of topographical controls on soil water and root
water uptake. The lower portions of the watershed have higher soil
water content due to the above recharge. Grass could develop high
root density in those areas and consequent high transpiration and
carbon assimilation. It is the truth, as in water-limited ecosystems,
water is a scarce resource for plants and plays a fundamental role in
vegetation dynamics, such as canopy property and root density. The
DisVOM model can discriminate the effect of topography on
redistribution of precipitation into soil water and the consequent
variations in ET and carbon assimilation.

4 DISCUSSION AND CONCLUSIONS

This paper presents an optimality-based watershed ecohydrological
model. Themodel subdivided watershed into grid cells. On each grid
cell, an optimality-based ecohydrological model, VOM is applied to
describe the vertical water and vegetation mutual interactions.

Overland flow is incorporated to the VOM model to simulate
soil water redistribution and subsequently modify vegetation
properties optimization. A hierarchical strategy is developed to
integrate lateral flow to VOM model, which prioritizes the grid
cells of the watershed into different levels according to the
dependency of grid cells. The model is tested in the Walnut
Gulch watershed and demonstrates good consistency with site
measurements. However, there are still some limitations of this
study, which can be summarized as follows.

4.1 Discrepancy of Simulation in
Non-growing Season
The model demonstrates good performance in growing season,
however, evident discrepancies arise during winter and spring.
This is probably, to a great degree, attributed to the
underestimation of soil water.

As we look into the precipitation data and compare spring soil
water of different years, one possible reason might be the
undocumented precipitation. For 2002, we utilize the data
from rain gauge, because precipitation measurement of flux is

FIGURE 8 | Comparison of simulated and observed daily soil water dynamic.
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FIGURE 9 | Comparison of simulated daily GPP and NEE-partitioned GPP.

FIGURE 10 | Spatial distribution of ET (A) and GPP (B) simulated by DisVOM and VOM.
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FIGURE 11 | Spatial distribution of slope (A) and TWI (B) of Kendall watershed.

FIGURE 12 | Correlation of annual ET and GPP with slope and TWI.
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lower. However, there was no rain in the spring of 2002, which is
unrealistic. In contrast, from the flux data we find a small amount
of precipitation. Besides, we compare observed soil water of two
period 2002.12-2003.05 and 2007.01-2007.05. The two periods
have quite similar soil water with respect to similar amount, shape
and peak. However, measured precipitation in 2002.12–2003.05 is
considerably lower than precipitation of 2007.01–2007.05. As
there is no precipitation for nearly 2 months for both periods,
antecedent soil moisture is nearly the same for the two periods.
Hence, it is unlikely to have the same soil water with dramatically
different amount of precipitation.

Another possible reason might be the uniform setting of soil
profile. In the model, soil profile is subdivided into sub-layers
with same depth (25 cm). According to the previous study in
this area, vertical soil properties vary dramatically (Scott et al.,
2000). For example, saturated hydraulic conductivity of the top
layer (0–4 cm) is about 31.1 cm/day, 18.7 cm/day for the
second layer (4–9 cm), 7.2 cm/day for the third layer
(9–16 cm), 8.5 cm/day for the third layer (16–35 cm),
8.7 cm/day for the third layer (35–62 cm), and 36.9 cm/day
for the bottom layer (62–150 cm). For the layers near surface, a
depth of 25 cm is unable to characterize the variation of soil
properties, which could attributed to the underestimation of
soil water in the non-growing season when root uptake of
vegetation is low.

4.2 Discrepancy of GPP Simulation
There are some inconsistent of GPP for some years especially in
the non-growing season. For 2002, 2003, 2004, and 2007, grass
grew in the spring as there is GPP partitioned fromNEE, but from
the model there is no grass grew as GPP is little. This is possibly
caused by the underestimation of soil water. As stated in 4.1, soil
water is dramatically underestimated, so the available water for
root water uptake is low. This might directly influence root
development and leaf growth, leading to low simulated carbon
assimilation.

Another reason is that there is no directed measured GPP.
GPP separated from NEE measurements are used for validation.
Not only the NEE measurements are highly associated with
measurement error, but also the NEE separation is associated
with uncertainty (Raj, et al., 2016). This might contributed partly
to the inconsistent of simulated and observed GPP comparison.

4.3 Simple Representation of Lateral Flow
Another problem of this study is that the model only considers
overflow routing, subsurface flow and ground water is not
simulated. Therefore it can’t give stream flow as the other
two components are neglected. The main concern of this
study is to explore whether incorporated a kind of lateral
flow could alter the soil water redistribution and influence
vegetation-soil-water mutual interaction and coevolution.
Incorporation of subsurface flow and ground water would

otherwise require much more parameters which need to be
calibrated. Although VOM model has the unique merit that it
does not need prior vegetation properties as input, we still find
environment parameters (such as topography, soil), associated
with hydrological processes are difficult to determine.
Calibration might need for hydrological processes.
Nevertheless, the lateral flow of the current model is simple
and it is unrealistic without simulating the other component of
stream flow. We will integrate subsurface flow and ground water
to the model in the future and learn the method from big data
science for hydrological parameters estimation (Liu et al., 2017;
Zhang et al., 2021).

Despite the above issues, the model presents in this study is
capable of predicting ET, soil water, and GPP reasonably well, for
most of years, especially for the growing season. The seasonal
dynamic of ET, soil water, and GPP demonstrate good
consistency with observations. The model produces reasonable
spatial distribution of ET and GPP, indicating it is able to capture
the influence of lateral flow on water redistribution, vegetation
dynamic and so on. It can be concluded that the model effectively
extends VOM from field scale to watershed scale and could be a
useful tool assessing the impact of climate change and human
activities on vegetation and water cycle.
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Remote Sensing Image-Based
Comprehensive Monitoring Detection
Platform for Coastal Tidal Mudflat
Ecological Development
Shengjun Xiao1, Lin Yi2, Zengjie Wang1, Huiyu Liu1, Hong Gao3 and Zhaoyuan Yu1*

1School of Geography, Nanjing Normal University, Nanjing, China, 2College of Earth Sciences, Chengdu University of Technology,
Chengdu, China, 3Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China

Considering the embarrassments related to inadequate safety monitoring detection and
chaotic development order during the current ecological development of coastal tidal
mudflat, we put forward a remote sensing image-based comprehensive monitoring
detection platform integrating image data acquisition, mechanism analysis,
comprehensive evaluation, and intelligent monitoring detection for coastal tidal mudflat
ecological development. The platform includes imaging and data fusion technology,
comprehensive evaluation and spatial layout optimization technology, and dynamic
safety monitoring and early warning technology. A case study on Dafeng coastal tidal
mudflat was conducted. The results show that our research can provide substantial
reference for the coordination, dynamic management, and comprehensive regulation for
the ecological development of coastal tidal mudflat.

Keywords: remote sensing image, ecological development, monitoring detection platform, coastal tidal mudflat,
data analysis

1 INTRODUCTION

The ecosystem of coastal tidal mudflat is characterized by diversification in influencing element,
complex processes, strong environmental sensitivity, and vulnerability and has a wide range of
impacts derived from multiple channels (Turner, 2000; Dauvin, 2008; Wang, 2013). The existing
development process for coastal tidal mudflat has many problems, such as the chaotic development
pattern, the lack of comprehensive integration, and dynamic monitoring (Zhao et al., 2009; Liang
et al., 2011). Furthermore, high-intensity development has also led to the aggravation of regional
habitat destruction, biodiversity reduction, pollution, and resource degradation (Paoli et al., 2008;
Hua et al., 2012). Considering the rational and coordinated development for coastal tidal mudflat, a
batch of investigators have carried out multidimensional studies on the aspects of the comprehensive
investigation and management of coastal tidal mudflat, relevant monitoring methods and
technologies, analysis models and evaluation systems, regulation mechanisms and early warning
platforms, etc. (Lee, 1999; Wang and Zou, 2009). With the transformation from an early single-
objective management to a multi-objective, multi-scale, and multilevel coordinated and unified
comprehensive management in coastal zones (Zhang, 1999; Pickaver et al., 2004; Hou et al., 2005),
multiple elements including ecological, environmental, population, social, economic, and legal
factors should also be considered in the dynamic regulation of coastal tidal mudflat. Under the
constraints of ecology, environment, security, and other comprehensive factors, high-precision and
high-resolution dynamic continuous monitoring of the development process should be realized, and

Edited by:
Peng Liu,

Institute of Remote Sensing and Digital
Earth (CAS), China

Reviewed by:
Qinjun Qiu,

China University of Geosciences
Wuhan, China

Fei Li,
National Marine Environmental

Monitoring Center, China

*Correspondence:
Zhaoyuan Yu

yuzhaoyuan@njnu.edu.cn

Specialty section:
This article was submitted to

Environmental Informatics and
Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 21 October 2021
Accepted: 19 January 2022

Published: 25 February 2022

Citation:
Xiao S, Yi L, Wang Z, Liu H, Gao H and
Yu Z (2022) Remote Sensing Image-

Based Comprehensive Monitoring
Detection Platform for Coastal Tidal

Mudflat Ecological Development.
Front. Environ. Sci. 10:799027.

doi: 10.3389/fenvs.2022.799027

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7990271

ORIGINAL RESEARCH
published: 25 February 2022

doi: 10.3389/fenvs.2022.799027

141

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.799027&domain=pdf&date_stamp=2022-02-25
https://www.frontiersin.org/articles/10.3389/fenvs.2022.799027/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.799027/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.799027/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.799027/full
http://creativecommons.org/licenses/by/4.0/
mailto:yuzhaoyuan@njnu.edu.cn
https://doi.org/10.3389/fenvs.2022.799027
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.799027


the spatiotemporal pattern characteristics and dynamic evolution
mechanism of coastal tidal mudflat should also be explored so as
to carry out suitability evaluation for ecological development
(Brommer and Bochev-van der Burgh, 2009; Li et al., 2011;
Harvey et al., 2012). In view of urgent requirement for
environmental safety and economic development, dynamic
monitoring, evaluation, and regulation analysis in the
development process of coastal tidal mudflat should be
appreciated and the transformation from traditional static
management to dynamic comprehensive monitoring detection
should be realized (Zhang, 1999; Henocque, 2003; Wang and Li,
2006). Besides the community of scholars, supervision
departments of government also emphasized on the trend that
the management method of coastal ecosystem should transform
to dynamic management and comprehensive regulation (Long
et al., 2016).

Currently, there are many reports on land use monitoring
detection platform, such as the mobile law enforcement and
online analysis (Chen et al., 2009), regional land information-
integrated management model (RLI2M) (Zhu and Huang, 2010),
post-processing monitoring for land use (Xu et al., 2010), and
“one map” for the land resources (Zhang, 2010). Despite these,
there is still a lack of system platform that can support the
integrated management and integration of ecology,
environment, land, society, and economy, in terms of
comprehensive monitoring detection of ecological development
in coastal tidal mudflat. Moreover, the existing platforms of
information management for coastal tidal mudflat are mostly
targeted at a single-user group, therefore, lacking the cooperative
participation management mechanism between the public and
government departments and industries. It is necessary to
construct the comprehensive coordinated information dynamic
management mode of coastal zones with multi-scale, multi-
objective and multilevel, in order to develop the information
management of coastal tidal mudflat from the single-field to
multi-field comprehensive open service stage. Subsequently, the
network sharing intelligent regulation and real-time warning
mechanism driven by the analysis results of the coupling effect
and evolution law need to be formed (Liu et al., 2017; Zhang et al.,
2021). Finally, a dynamic monitoring detection system and
platform should be established to support the demand of mass
data transmission, scheduling and analysis, realize the
comprehensive integration of monitoring detection system and
business process, dynamically supervise the development process
of coastal tidal mudflat, and comprehensively coordinate the
interests of all parties.

Based on the research approach of “data acquisition–process
mechanism–comprehensive evaluation–intelligent monitoring
detection,” we constructed a technical system for the
comprehensive supervision of ecological development of
coastal tidal mudflat. Furthermore, we designed a
comprehensive analysis model, involving a business process-
driven data collection and integration system, security
evaluation of coastal tidal mudflat ecological development,
identification and analysis of sensitivity factors of ecological
security, and the landscape optimization method of coastal
tidal mudflat ecological development. Based on the this, a

system platform for comprehensive supervision of coastal tidal
mudflat development was further put forward. Our study aims to
break through the traditional single-perspective and single-
objective framework, realizing the conversion from the
management mode based on remote sensing resources
monitoring and summary evaluation to the intelligent
management mode based on internal driving mechanism
mining and simulation reasoning research. Finally, an
integrated monitoring and analysis platform with multi-scale,
multi-objective, multilevel, and comprehensive research was
constructed.

2 METHODS

2.1 Research Scheme of Detection Platform
for Ecological Development
It is of great significance to establish an information monitoring
detection platform on coastal tidal mudflat development for
realizing overall coordination, dynamic management, and
comprehensive control of the ecological development process
of coastal tidal mudflat (Christensen et al., 2008). In view of the
demand for comprehensive supervision of the ecological
development of coastal tidal mudflat, the comprehensive
supervision of coastal tidal mudflat needs to integrate the data
of multisource coastal tidal mudflat ecological environment and
the current situation of development and utilization. From the
perspective of coordinated development of resources,
environment, industrial development, population, and output,
the comprehensive evaluation index system and evaluationmodel
for the ecological development of coastal shoal flats were
established. Based on the this, we can identify the different
development modes such as the stress index, ecological
environment influence mechanism, analysis of the ecological
development of safety factors, and different types of tidal flat-
suitable development intensity, and solve the different
development needs and constraints, to establish an ecology
suitable for the coastal shoal development of the early warning
and decision-making mechanism.

Based on methods mentioned previously, the ideas for
constructing the monitoring detection platform for the
ecological development of coastal tidal mudflat are shown in
Figure 1. With respect to the conceptual design, it is mainly
guided by the national coastal development strategy, marine
spatial planning, and ecological management and based on the
development concepts of ecological development, sustainable
development, pattern optimization, and security development.
The research is based on multilevel, high-resolution, and high-
precision status perception systems and data analysis technology,
comprehensive evaluation technology of coastal tidal mudflat
ecological development, analysis technology of the coastal tidal
mudflat development process and mechanism, and optimization
technology of the spatial layout of coastal tidal mudflat ecological
development and utilization. Subsequently, through the setting
and implementation of relevant data standards, standardization,
business processes, and analysis models, the system
implementation and business integration of the
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aforementioned key technologies were carried out, and a
comprehensive monitoring detection platform for the
ecological development of coastal tidal mudflat was finally
formed.

2.2 Platform Architecture and Functional
System
Based on the existing research results, we summarized the general
ideas for establishing a comprehensive coordination and
comprehensive monitoring detection platform for the
ecological development of coastal tidal mudflat. To be specific,
it is the path of differentiation, evolution, and reconfiguration of
the goal of comprehensive monitoring detection. This process is
similar to the continuous division of human embryonic cells in
the process of gestation, differentiation into skin, viscera, bone,
hair, and other different directions of evolution of the basic cells,
each of the basic cells independently evolving into a fully
functional organ, and finally all organs work together to form
a complete human body. Concretely, the differentiation refers to

the process of decomposing various business units of
comprehensive supervision based on the boundaries of various
business objectives involved in comprehensive supervision;
evolution refers to the process of further development and
strengthening of the functions of individual business units;
and reconstruction refers to the process of coordination and
integration of fully evolved business units on a unified platform.
Among them, the evolution process of larger and more complex
business units can be divided into the process of differentiation,
evolution, and reconstruction. Through the nesting and iteration
of this process, the construction of a comprehensive regulatory
platform can be realized through the coupling of layers of
underlying technologies. Underlying technologies with
repeatability or generality need to be implemented only once,
while functional implementations with expertise can evolve
independently. Compared with the construction of the
traditional monitoring detection platform for individual
businesses, the functions and objectives of a specific business
can be realized in the comprehensive monitoring detection
platform, but its realization process relies on the power of the

FIGURE 1 | Research scheme of ecological development and monitoring detection of coastal tidal mudflat.
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comprehensive monitoring detection platform to mobilize other
functions. Overall, there are two advantages to this approach.
First, the implementation of a single business can focus more on
its essence, eliminating the construction of functions supporting
its operation. Second, each business can be made compatible with
the platform and presented in a unified, comprehensive, and
coordinated way.

According to the dynamic monitoring detection
requirements of the ecological development process and
business of coastal tidal mudflat, a dynamic monitoring and
early warning platform system of coastal tidal mudflat
development was constructed based on service-oriented
architecture (SOA) and component-based development ideas
(Figure 2). Due to the problems of data decentralization and
ineffective cooperative supervision in multi-department
management before, during, and after the ecological
development of coastal tidal mudflat, it is necessary to base
on the idea of “one map” for coastal areas. Based on the business
flow model, module development, and network development
technology, the comprehensive regulatory business process of
coastal resource security-influencing factor (natural disasters,
shoreline changes, and reclamation project security)
supervision, development process monitoring and detection,
business monitoring and detection, and forecast and early

warning were studied. Then, a comprehensive monitoring
detection platform for information visualization of coastal
beach ecological development was developed, which
integrates on-site monitoring, comprehensive information
management, decision and early warning supports, and
network sharing for coastal beach ecological development. In
addition, we have also realized the network space information
dissemination and formed a visual and comprehensive
monitoring detection system that integrates on-site
monitoring, integrated information management, decision
and early warning supports, and network sharing. We finally
achieved the goal of fast, real-time, and dynamic supervision of
“painting by drawing pipe and dynamic monitoring.”

2.3 Key Technologies
The comprehensive monitoring detection platform is composed
of three subsystems: stereo monitoring system, dynamic early
warning system, and emergency decision system, which has the
functions of dynamic updating, monitoring detection and
management, searching and querying, statistical analysis,
online publishing, and system maintenance of the supervision
data of coastal shoal development and construction projects. In
view of the basic concept and application requirements of
comprehensive supervision for ecological development of

FIGURE 2 | Functional system of the dynamic monitoring and warning platform for ecological development, monitoring and detection of coastal tidal mudflat.
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coastal tidal mudflat, some breakthroughs should be made in the
following key technologies.

2.3.1 Multisource Data Adaptive Integration and Data
Push Technology
The ecological development of coastal tidal mudflat is
characterized by numerous influencing factors and the obvious
coupling effect of multiple layers. In recent years, it has developed
and formed a high-precision continuous observation system,
which covers the ecological platform, airborne remote sensing,
medium- and short-range ground wave radar observation, offshore
array buoy observation, and underwater monitoring and
observation. How to carry out unified management of the
previous data and push the data for business process has
become the primary problem that must be solved for the
ecological supervision of coastal tidal mudflat. Therefore, a
process of adaptive integration and data push of multisource
data for coastal tidal flat was constructed, which is based on the
geometric algebra spatiotemporal unified data model, and a
multisource data integration and transformation engine was
built by using GDAL/OGR. Based on the business process of
ecological supervision of coastal tidal mudflat, the monitoring
data are classified and supervised. By formulating unified data
metadata standards for the coordinate system, data format,
attribute semantics, and other information, a multisource,
multi-scale, and heterogeneous data fusion technology based on
data transformation and intelligent matching was constructed.
Aiming at the problems of coupling between the existing
geographical analysis model, the multisource complex geological
data, and the complexity of the processing process of the model
operation data, an automatic processing and pushing method of
multisource geographical data based on model-demand template

matching was constructed. In addition, we used the data push
template to achieve automatic matching and extraction of
observation data and the analysis model. According to different
needs, two different ways of service transmission and information
extraction were adopted to realize the real-time push of monitoring
data of natural disasters and reclamation projects, as well as the
dynamic update of relevant data of the ecological environment,
development, and utilization.

2.3.2 Ecological Security Evaluation and the Sensitivity
Factor Analysis Model
A coastal zone is an area with strong human-land interaction,
which is strongly influenced by natural and human activities.
Therefore, ecological security assessment should take into
account all kinds of resources and ecosystems in the
ecological environment to comprehensively evaluate and
quantitatively express the regional ecological security state.

FIGURE 3 | Location of the evaluation area (A) and land use type (B).

FIGURE 4 | Template of models and data manipulating flows.
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Remote sensing data have the advantages of rapid acquisition,
wide range of searchable, sustainable updates, and so on. The
collection of remote sensing data and other data to build a
comprehensive ecological security assessment system can
enhance the integrity, comprehensiveness, and accuracy of
ecological security assessment. Based on the characteristics of
ecology, environment, security and high-precision remote
sensing data, the ecological security evaluation index system
of comprehensive development needs to be established. The
relevant indicators cover the resources combination, natural
conditions, geological conditions, socio-economic, technology
and other background elements, associated with the
interaction of the development and utilization of the key
resources. On this basis, we integrated a variety of
comprehensive evaluation models, such as TOPSIS, gray
system, fuzzy, and situation decision, to realize the impact
evaluation of land carrying capacity, ecological carrying
capacity, land resource quantity, land resource quality, land
environmental pressure, and other factors under different
development strategies. Then, the economic benefits and
environmental effects of development and utilization were
evaluated by combining the pressure–state–response, DEA,
and econometric models. This study analyzes the ecological
and environmental impact caused by the development strategy
of coastal areas, its strategic space, and the choice of leading
industries.

2.3.3 Process Mechanism and Pattern Optimization
Model
The long-term goal of the ecological development of coastal
tidal mudflat is to realize the optimal allocation of resources

under the constraints of comprehensive factors such as ecology,
environment, and security. By evaluating the suitability of
different regional card methods, different development
modes were extracted, so as to provide technical guarantee
for the sustainable development of social economy in coastal
tidal mudflat. In this system, the pattern optimization and
emergency decision of coastal tidal mudflat were built on the
basis of the analysis of the development process and
mechanism of coastal tidal mudflat. Starting from the
process of planning, development, protection, and
monitoring, we established an identification and sensitivity
analysis model of influence factors. In addition, we used
spatial statistics, spatiotemporal Markov chain, and
multivariate stochastic simulation methods to reveal the
coupling mechanism of processes related to the ecological
environment and human survival and safety, and to explore
the overall pattern, structure, and change the driving forces on
coastal tidal flat. On this basis, decision tree, situation model,
projection pursuit regression, and other methods were
introduced to express and describe the spatial and temporal
continuous process of coastal tidal flat development, to study its
natural evolution process, human activity-driven evolution law,
and internal response mechanism, and to analyze the process
and evolution mechanism of coastal tidal flat development.
Based on the analysis of land use change pattern by using the
CLUE-S model, the key areas, ecological corridors, and
ecological nodes of landscape ecological function were
identified and evaluated. Based on the multi-objective
optimization approach, resistance surface, and cumulative
cost path analysis method, the ecological circulation index
(F), overall connectivity index (IIC), and possible

FIGURE 5 | Results of the automatic push.
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connectivity index (PC) were used to analyze the impact and
optimization effect of landscape connectivity, and then the
spatial allocation was optimized.

2.3.4 Emergency Decision-Making and Dynamic Early
Warning Model
The development of coastal tidal flat needs to deal with the
possible problems such as ecological security and environmental
events at the same time, and it needs to study the early warning
and decision-making mechanism for different user groups under
different industrial structure types, different environmental
background types, different land use types, and different
development modes. For this reason, we analyzed the
economic, social, ecological, resource, environmental, and
human factors in the process of ecological development of
coastal tidal mudflat, and established a data set of influencing
factors for development security. On the basis of studying the
process rules of shoreline evolution, ecological evolution,

reclamation engineering construction, industrial structure
allocation, spatial pattern evolution, and the disaster response
process and damage degree of large-scale, long-period, and strong
disturbance coastal shoreline development, combined with the
econometric model and prediction method, the future
development trend of shoreline development was predicted.
Based on the ecology, resource, environment, economy, and
society of the index system of comprehensive assessment of
risk, development of the ecological development standard of
disaster-warning hierarchy and clear warning category of
different stakeholders evaluates the warning issued strong
pertinence, storm surge, and reclamation to the danger of
short-term destructive disasters, such as spontaneous
preparation of an emergency plan. According to the early
warning needs of different user groups, the emergency
decision model analysis engine will act on structured,
unstructured, and semi-structured decision services based on
the intelligent network.

TABLE 1 | Index system of comprehensive assessment of ecological security.

Target layer Criterion layer Index layer Index quantification Index value function

Ecological security impact Population and economic pressure Population Population base Negative
Economic GDP Negative

Ecological and environmental status Tidal flat changes Tidal flat buffer Negative
Soil type AHP method Negative
Sediment heavy metals Cr Negative

Cu
Hg

Water heavy metal As Negative
Cr
Cu

Ecosystem NDVI Negative
GVI
WI

Human–environment interaction Road Road buffer Positive
Industry area Industry area buffer Negative
Reclamation Reclamation buffer Negative

FIGURE 6 | AHP weight structure hierarchy.
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3 CASE STUDY

3.1 Overview of the Research Area and
Research Data
As a typical region with coastal ecological environment, Dafeng is
located in the coastal areas north of the Yangtze River, east of the
Jiangsu Province, and adjacent to the Yellow Sea of China in the
east. This region has rich ecological resources of tidal flats, with a
coastline of 112 km and a total area of 5,400 km2 of sea area
outside the coastline. The existing tidal flats cover a total area of

1,175,900 mu, making it one of the largest cultivated land reserve
resources in China. Dafeng is one of the few high-quality
ecological areas in eastern China, which has the largest nature
reserve for elk and is also a national scenic spot. Dafeng is located
in the zone where the ocean and land interact with each other,
and the ecological environment composition is complicated. In
recent years, the coastal area of Dafeng has developed intensively.
A large number of tidal flats have been reclaimed for agricultural
land, and harbors and industrial parks have been established
along the coast one after another. The coastal ecological
environment has greatly changed, and the research and
evaluation of ecological security has become extremely urgent.
It is worth emphasizing that human activities such as reclamation
of tidal flats and construction of industrial zones have the
strongest impact on regional ecological environment. Starting
from the particularity of typical ecological environment and
resources in Dafeng, the core demonstration area of ecological
environment was selected as the representative area of coastal
ecological security assessment. The selected evaluation area
(Figure 3) is located in the eastern coast of Dafeng, including
agricultural land, tidal flats, factories, roads, residential buildings,
and other spatial units. The area is a typical coastal tidal flat with
crispy soil and water network, which can well reflect the natural
ecological environment and the interaction between the nature
and humanity in the coastal area of Dafeng.

The remote sensing data employed in this study are the
environmental satellite CCD remote sensing data (HJ1a-
CCD2) that includes the following four bands: 0.43 ~ 0.52,
0.52 ~ 0.60, 0.63 ~ 0.69, and 0.76 ~ 0.90 μm. Remote sensing

TABLE 2 | Result of the weight index.

Index PCA AHP Comprehensive

Weight Weight Weight

Soil type 0.060141 0.045153 0.051148
Reclamation 0.060142 0.065747 0.063505
Tidal flat changes 0.060141 0.042316 0.049446
Water Cu 0.060141 0.020339 0.03626
Water Cr 0.060141 0.020339 0.03626
Water As 0.060141 0.020339 0.03626
Population 0.071759 0.063133 0.066583
Economic 0.072112 0.07836 0.075861
Road 0.060142 0.080599 0.072416
Industry 0.060142 0.115383 0.093287
Sediment Hg 0.059389 0.01706 0.033992
Sediment Cu 0.060141 0.01706 0.034292
Sediment Cr 0.060141 0.01706 0.034292
WI 0.07096 0.126172 0.104087
NDVI 0.059389 0.186146 0.135443
GVI 0.064978 0.084794 0.076868

FIGURE 7 | Publication of ecological security evaluation illustrated as levels (A), and levels can be transformed into zones (B).
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data are used to extract the spatial changes of coastal mudflats and
mudflat farmlands and quantify them as evaluation indexes, with
a spatial resolution of 30 m. In addition, Landsat ETM + remote
sensing data were used to calculate NDVI, GVI, WI, and other
evaluation indexes, and the spatial resolution was again 30 m.
Furthermore, the measured data of heavy metals from the
internal water and surface sediments sampled in the study
area in 2014 were used to illustrate the pollution situation of
heavy metals and quantify it as an evaluation index. The social
and economic data of Dafeng in 2014 were used to reflect the
degree of economic activities and the number of population
within the research area, which were quantified as an
evaluation index. Finally, the soil type distribution data were
used to construct the soil type evaluation index.

3.2 Data Integration and Push
The multisource geographic data used in this case include vector
data of tidal flat of Dafeng in 2000, and remote sensing image
classification and interpretation data of land use, landscape
pattern, population, and area of Dafeng in 1995, 2000, and
2005. The main analysis models used in this paper include the
following: 1) the evolution of Dafeng tidal flat through the
classification and interpretation of remote sensing data, and
the changes of tidal flat structure over the years were obtained;
2) analysis of land use ratio per capita in Dafeng; and 3) landscape
pattern analysis and the landscape index, using the classified
landscape grid data and statistics of each unit value .

The model requirement template is shown clearly in Figure 4.
The operation templates for different requirements are selected to
construct the operation flow in line with the model data
requirements by comparing the multisource data in the
database (Figure 4). Subsequently, the vector data of tidal flat,
remote sensing data, and attribute data were extracted from the
original database by using the model demand template matching
and processed by the model data operation flow (Figure 5).

3.3 Safety Evaluation
Based on the remote sensing images and field observation data of the
Dafeng region in 2014, we constructed an evaluation index system for
coastal ecological security assessment for the purpose of fine-scale
ecological security assessment. The objective layer of the evaluation
system was the impact degree of ecological security status, and the
criterion layer includes three aspects: population and economic
pressure, ecological environment, and human–environment
interaction. The indicator layer contains 10 types of indicators
with a total of 16 specific quantitative indicators (Table 1).
Specifically, the population, economy, tidal flat change, highway,
industrial park, and ecosystem aremacroscopic indexes, while the soil
type, heavy metals in surface sediments, and heavy metals are
microscopic indexes. Based on the criteria of population and
economic pressure, ecological environment status, and
human–environment interaction, the analytic hierarchy process
(AHP) was used to assign the subjective weight of each
quantitative index (of which, heavy metals in water body and
heavy metals in surface sediments were treated as different
categories, and the overall weight was determined before the
internal equalization was carried out) (Figure 6), and the finally
determined AHP weights of each index are presented in Table 2.
Based on the ecological evaluation model to calculate comprehensive
weight of each indicator, it was found that the larger the final index
number, theworse the ecological security status of the evaluation unit.

The comprehensive evaluation value of the ecological security
degree of the evaluation unit (i.e., the pixel of remote sensing
image) can be obtained by multiplying each quantitative index by
the corresponding comprehensive weight after standardization.
Considering that the difference between the evaluation value
and the adjacent evaluation value is small, this article classifies
the comprehensive evaluation value. We classified the evaluation
value by a quantile based on R, set the quantile to 20, and assigned
values from 1 to 20 to each category in order from the smallest to
the largest, that is, the evaluation results were divided into 20
categories. The larger the assigned number, the worse the ecological
security status of the evaluation unit (Figure 7).

3.4 Optimization of the Ecological
Development Pattern
First, according to the ecological type and ecological value per unit
area of the demonstration area, the Costanza model was selected to
evaluate the ecosystem service value. Second, the patch density
(PD), average patch area (AREA_MN), average shape index
(SHAPE_MN), average proximity index (PROX_MN),
connectivity degree (CONNECT), and so on were selected to
dig deeply the relationship among various landscape types, and

FIGURE 8 | Results of pattern optimization.
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FIGURE 9 | Demonstration of dynamical monitoring detection platform. (A) Dynamic update, (B) data supervision and management, (C) retrieval and query, (D)
statistical analysis, (E) online publication, and (F) system maintenance of the supervision data.
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the spatial distribution of ecological function value of the
demonstration area was consequently obtained. Furthermore,
natural landscape types such as water and woodland with high
service value per unit area and patches with an area greater than
40 hm2 were selected as the ecological source areas. Ecological
source and cost (ecological resistance, determined by the value
proportion of ecosystem service functions) were determined to
obtain the cumulative cost distance surface of landscape ecological
functions. Finally, based on the above results, the adjacent areas of
mining, construction, and traffic lands with high ecological
resistance were allocated with grassland, garden land, woodland,
and other landscape types. According to the characteristics of the
soil around the aquaculture ponds, low cost and high efficiency
salt-tolerant plants and protective woodland were allocated in the
adjacent coastal tidal mudflat to prevent pollutants from
discharging into the coastal tidal mudflat. In order to optimize
the allocation of ecological resources in the whole study area,
woodland and grassland should be allocated around the farmland,
and salt-tolerant cash crops such as sea-buckthorn, Chinese
wolfberry and jujube should be selected for ecological
desalination (Figure 8).

3.5 Comprehensive Monitoring and
Prescient Warning
The comprehensive monitoring detection platform is composed of
three subsystems: monitoring, dynamic early warning, and
emergency decision-making systems. It has the functions of
dynamic update, supervision and management, retrieval and
query, statistical analysis, online publication, and system
maintenance of the supervision data of coastal tidal flat
development and construction projects (Figure 9). Based on the
idea of “one map” for coastal areas, a comprehensive supervision
business flow coordinated by multiple departments was constructed,
and a data model of ecological management and protection business
flow serving coastal tidal mudflat was constructed using unified
modeling language (UML). We integrated techniques to identify the
relationship between changes in geomorphological, hydrological,
and soil factors and the evolution of natural and artificial
vegetation. According to different types of tidal flats wetland
landscape reconstruction, land management, biodiversity
maintenance and plant community building technology, as well
as community stability and long-term management, the platform
support series of functions: data acquisition and integration,
dynamic update, query, statistical analysis, and publication, etc.

4 DISCUSSION

Due to the adoption of the adaptive integration technology of
multisource data and based on the unified metadata standard, the
comprehensive monitoring detection platform has already
transformed, matched, and fused the multisource, multi-scale,
and heterogeneous data in the data I/O and integration stage,
which greatly shortened the data processing cycle. Through the
adaptive data integration, the process of compatibility between old
and new data was greatly shortened, so as to ensure that the updated

data play a role more quickly and in real time. Meanwhile, the form
of terminal data presented to users through data push technology has
been combined with the timeliness of new data.Moreover, data push
technology can not only be implemented according to the needs of
the analysis model but also can be flexibly mastered according to the
specific needs of the business so as to ensure the timeliness of the
actual use of data at the client end. Application of the platform can
help government departments to supervise and control the coastal
ecosystem and analyze changes comprehensively.

Supported by data integration and push technology, the
calculation and result presentation of the analysis model for
monitoring, evaluation, optimized configuration, and early
warning were all based on real-time updated data, and the
presented analysis results are constantly changing over time. The
comprehensive monitoring detection platform realized the
integration of dynamic data update and supervision business
process. The use of multiple sources of data in the process of
supervision, coordination of various interests, ecological,
environmental, land, social, and economic aspects was achieved.

On the basis of supporting data, we realize data collection and
management and finally achieve the purpose of coordination and
intelligent monitoring detection. The whole operation process from
the bottom to the top is inter-associative. At the same time, due to
the diversity of data and the multifaceted nature of the evaluation
process, there are still some uncertainties in the analysis results in the
process of mechanism analysis and comprehensive evaluation, such
as the selection of some thresholds.

5 CONCLUSION

Integrated coastal zonemanagement has always been one of themost
important national development plans, but there are still issues that
neglect the internal systematic research in various fields and neglect
the multidisciplinary comprehensive research at the national macro
level. The system structure and key technologies still need to be
further improved and breakthrough. The ecological development and
management of coastal tidal mudflat should be systematic and can be
comprehensively improved from the perspectives ofmultidisciplinary
comprehensive application, comprehensive data integration, model
integration and sharing, and multifactor coupling analysis so as to
establish relevant monitoring and supervision mechanisms and
realize the overall improvement of the coastal zone management
level. The construction of a comprehensive monitoring and detection
platform for the ecological development of coastal tidal mudflat can
provide support for the study of the development process of coastal
tidal mudflat and supervision of human activities.

This article discusses the remote sensing image-based framework,
functions, implementation ideas, and methods of the dynamic
monitoring and analysis system, which can provide reference for
the further development in the dynamic management of the overall
coordination and comprehensive regulation of the coastal zone. The
future highlights are as follows: 1) carrying out the research on the
multidimensional unified data model and data assimilation based on
six elements of location, attribute, semantics, geometry, time, and
constraint, and solve the integrated dynamic management of
multisource, multi-scale, multi-domain, and multi-resolution data;
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2) model sharing and the integration mechanism oriented to
resources, pattern structure, and process events support the
construction of model coupling analysis platform integrating
multidisciplines and multi-fields; and 3) study the warning and
control mechanism of different levels for the public and government
affairs, realizing the scientific guidance of social and government
behaviors, and the coordination of interest conflicts (Brommer and
Bochev-van der Burgh, 2009; Zhao et al., 2009; Li et al., 2011; Liang
et al., 2011; Harvey et al., 2012).
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Waterline Extraction for Artificial
Coast With Vision Transformers
Le Yang, Xing Wang* and Jingsheng Zhai

School of Marine Science and Technology, Tianjin University, Tianjin, China

Accurate acquisition for the positions of the waterlines plays a critical role in coastline
extraction. However, waterline extraction from high-resolution images is a very challenging
task because it is easily influenced by the complex background. To fulfill the task, two types
of vision transformers, segmentation transformers (SETR) and semantic segmentation
transformers (SegFormer), are introduced as an early exploration of the potential of
transformers for waterline extraction. To estimate the effects of the two methods, we
collect the high-resolution images from the web map services, and the annotations are
created manually for training and test. Through extensive experiments, transformer-based
approaches achieved state-of-the-art performances for waterline extraction in the
artificial coast.

Keywords: coastline extraction, vision transformer, SegFormer, sea–land segmentation, waterline extraction

INTRODUCTION

A coastline is the boundary between the dry and wet part in the coastal area when the high tide water
is in the mean level Toure et al. (2018). The coastline is a critical geographic information source, and
it is of great significance to autonomous navigation, coastal resource management, and protection of
the environment Liu et al. (2013). Coastline extraction is a very challenging problem because it is
obtained from a region not an instantaneous line. The waterline extraction is the precondition for
computing the natural coastline, so the waterline extraction is very important and meaningful. The
waterline is the instantaneous boundary between the land and sea. It can be extracted from the high-
resolution images without other tools. In the artificial coast, the waterline can be considered as the
coastline because the waterline is very slightly influenced by the tides.

With the development of satellite remote sensing technology, it supplies tons of high-resolution
images of the coastal area, and they can be used for waterline extraction Roelfsema et al. (2013).
Besides buying these remote sensing images directly from the remote sensing image providers, users
can obtain many satellite map images freely from the web map services. All these data can be used for
the waterline extraction.

The waterline extraction methods mainly include threshold segmentation methods, edge-based
methods, object-oriented methods, active contour method, conventional machine learning methods,
and deep learning methods. The threshold segmentation methods are intuitive methods that set a
threshold value according to the image intensity to segment the land and water. Guo et al. (2016)
proposed a method that utilized a normalized difference water index to segment water and land.
Chen et al. (2019) used the components of the tasseled cap transformation to extract waterline
information. Wernette et al. (2016) presented a threshold-based multi-scale relative relief method to
extract the barrier island morphology from high-resolution DEM. These methods are handy and
effective for the simple image segmentation task. In these methods, threshold selection is the key and
difficult problem. In addition, the methods cannot deal with the images with occlusions or a complex
background.
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The edge-based methods utilize the distinctive edge feature
from the abrupt transition. The common methods including
Sobel, Roberts (Yang et al., 2018), Laplacian, and Canny
operators (Lin et al., 2013; Paravolidakis et al., 2016; Ao et al.,
2017; Widyantara et al., 2017; Paravolidakis et al., 2018) can be
adopted to extract the waterline. Wang and Liu (2019) proposed a
robust ridge-tracing method utilizing the statistical properties of
the pixel intensities in the land and sea to detect the boundary.
These methods are easy to detect clear, continuous boundaries.
However, in the waterline images with a complex background,
they are greatly affected by noise. The continuity of the extracted
waterline is hardly guaranteed.

Object-oriented methods no longer use the pixel as the basic
processing unit; instead, they use an object composed of
homogeneous pixels (Gucluer et al., 2010; Rasuly et al., 2010;
Bayram et al., 2017). Ge et al. (2014) presented an object-oriented
multi-scale segmentation method using interpretation rule sets
for automated waterline extraction from remote sensing imagery.
Wu et al. (2018) used the object-oriented classification method to
extract the waterline from Landsat images of Shenzhen city.
These methods use higher level features to classify images,
which can reduce the impact of fine texture characteristics on
the results of image classification. However, in face of a large
amount of information in high-resolution images, object-
oriented classification methods may ignore some of the hidden
useful information, and it is difficult to achieve the desired
classification accuracy.

The active contour methods can achieve better results for
remote sensing images of waterlines with simple backgrounds,
strong contrast, and continuous boundaries. Cao et al. (2016)
proposed a new geometric active contour model for waterline
detection from SAR images, which is adaptive to the speckle
noises. Fan et al. (2016) proposed a level set approach with a
particle swarm optimization algorithm for waterline automatic
detection in SAR images. Elkhateeb et al. (2021) adopted a
modified Chan–Vese method for sea–land segmentation,
which is initiated by a superpixel-based fuzzy c-means
automatically. In the study by Modava and Akbarizadeh,
(2017), a waterline extraction method–based active contour for
SAR images is proposed, in which the initial contour is obtained
from a fuzzy clustering with spatial constraints. In the study by
Liu C et al., (2016), the waterline is extracted hierarchically by the
level set techniques from single-polarization and four-
polarization SAR images. Liu et al. (2017) integrated an edge-
based and a region-based active contour model in different scales
to fulfill the waterline detection from SAR Images. Due to the
characteristics of the active contour model method, the
application of this method is feasible for waterline images with
a simple background, strong contrast, and continuous
boundaries. However, the iterative method inevitably produces
a large amount of calculation, which restricts its efficiency.

Conventional machine learning methods distill useful
information and hidden knowledge based on a variety of data
to extract the waterline. Rigos et al. (2016) and Vos et al. (2019)
used a shallow neural network to extract the shoreline from
satellite images and video images, separately. Sun et al. (2019)
built a superpixel-based conditional random field model to

segment the sea and land area. Dewi et al. (2016) presented
fuzzy c-means methods to detect positions of the coastline and
estimate the uncertainty of the coastline change. Cheng et al.
(2016) proposed a graph cut method to segment the sea and land,
in which the seed points are achieved by a probabilistic support
vector machine. Compared with the traditional waterline
extraction method, the shallow neural network, clustering
analysis technology, fuzzy logic technology, and support vector
machine use intelligent means to find out frequent regular things
from a large number of data information effectively. These
methods can automatically and efficiently extract regular
objects. However, for more complex objects in high-resolution
images, the extraction accuracy is unsatisfactory. Some other
traditional methods, such as the polarization method (Nunziata
et al., 2016), wavelet transform method (Toure et al., 2018),
region growing method (Liu Z et al., 2016), and decision tree
algorithm (Wang et al., 2020) , are all influenced by noise and
cannot process the high-resolution images easily.

In these years, deep learning methods have been rapidly
developing with the quickly growing performance of computer
hardware. Different from traditional machine learning, it can
learn the characteristics of the target more accurately. Some
convolutional neural network (CNN) methods are naturally
introduced in waterline extraction by segmenting the land and
sea. In the study by Liu et al., (2019), a simple CNN with multi-
scale features and leaky rectified linear unit (leaky-ReLU)
activation function is used for waterline extraction. Liu W
et al. (2021) proposed an end-to-end lightweight multitask
CNN without downsampling to obtain lakes and shorelines
from remote sensing images. Shamsolmoali et al. (2019)
adopted a residual dense UNet to facilitate the hierarchical
features from the original images for sea–land segmentation.
Tsekouras et al. (2018) presented a novel Hermite polynomial
neural network to detect the shoreline at a reef-fronted beach.
Cheng et al. (2017a) proposed a local smooth regularized deep
CNN that can obtain the segmentation and edge results of the sea
and land simultaneously. Cheng et al. (2017b) employed a
multitasking edge–aware CNN for sea–land segmentation and
edge detection simultaneously. Cui et al. (2021) presented a scale-
adaptive CNN for sea–land segmentation, which fused multiscale
information and emphasized the boundaries’ features actively. A
sea–land segmentation approach utilizing the fast structured edge
network and the waterline database was taken from the study by
He et al., (2018). A novel UNet-like CNN was proposed for
sea–land segmentation, and the network can be deeper, and the
convergence can be faster based on local and global information
(Li et al., 2018). Erdem et al. (2021) proposed a majority voting
method based on different deep learning architectures to obtain
shorelines automatically. Lin et al. (2017) presented a multi-scale
end-to-end CNN for sea–land segmentation and ship detection,
which can increase the receptive field while maintaining fine
details. Even though the CNNs have achieved great performances,
the limited receptive field affected the performance because of the
structure of the CNN.

Transformers, as the most advanced methods in the semantic
segmentation, are migrated to compute vision tasks to solve the
problem of long-distance dependence by the self-attention
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mechanism, which is the core of transformers. It determines the
global contextual information of each item by capturing its
interaction amongst all items. A vision transformer (ViT) is
the first work that uses a pure transformer for image
classification, which proves that the transformer can achieve
the state-of-the-art (Dosovitskiy et al., 2021). It treats each
image as a sequence of tokens and then feeds them to
multiple transformer layers to make the classification.
Subsequently, the dual intent and entity transformer (DeiT)
(Touvron et al., 2021) further explores a data-efficient training
strategy and a distillation approach for ViTs. The pyramid vision
transformer (PVT) is the first work to introduce a pyramid
structure in a transformer, demonstrating the potential of a
pure transformer backbone compared to CNN counterparts in
dense prediction tasks (Wang et al., 2021). After that, methods
such as shifted windows (Swin) transformer (Liu Z et al., 2021),
convolution transformers (CvT) (Xu et al., 2021), and twin
transformer (Chu et al., 2021) enhance the local continuity of
features and remove fixed size position embedding to improve the
performance of transformers in dense prediction tasks.
Segmentation transformers (SETRs) adopt the ViT as a
backbone to extract features, achieving impressive performance
in segmentation (Zheng et al., 2021). Following it, semantic
segmentation transformers (SegFormer) achieved even better
results later (Xie et al., 2021).

Therefore, we use the most advanced transformer methods to
extract the waterline as an early exploration. This study mainly
focuses on the process of extraction of the waterlines for artificial
coasts and presents the early research for investigating the
potential of transformers in waterline extraction from very
high-resolution images.

The rest of the study has the following sections.Materials and
Methods suggests details about the dataset and methodology.

Results reports experimental results with a discussion. Finally, the
conclusion section concludes and discusses future research
directions.

MATERIALS AND METHODS

Dataset
For this research, we selected Tianjin, Zhoushan, Shanghai, and
Shenzhen four ports as research areas, which are shown in
Figure 1. The waterline images are collected from Mapbox
(Mapbox, 2021), Google Maps (Google Maps, 2021), and Bing
Maps (Microsoft, 2021) guided by OpenStreetMap (OSM) tiles.
The images are in 18 levels in the map, and the initial resolution is
256 × 256. The ground sampling distance (GSD) is about 0.48 m.
We combine each neighboring four tiles into a 512 × 512 image. A
total of 600 images are chosen as the initial data, and the ground
truths of waterlines are created by hand. We also augment it with
the random rotation, flip, scale, contrast, brightness, and
saturation to 6000 images. Among them, 3600 images are
considered as the training set, 1200 images and 1200 images
for validation and test, respectively. The images and
corresponding annotations are indicated in Figure 2. To
evaluate the effects of transformers, six CNN segmentation
methods are introduced in the experiments.

Methodology
SETR
SETR is an Encoder–Decoder architecture, as seen in Figure 3.
SETR adopted a high resolution of local features extracted by a
CNN and the global information encoded by transformers to
segment pixels in an image. Because of quadratic model
complexity of the transformer, flattening the whole image as a

FIGURE 1 | Research area.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7992503

Yang et al. Waterline Extraction With Vision Transformers

155

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


sequence makes a huge amount of computation. To speed up, an
image is divided into 256 even patches, and then, each patch is
flattened into a sequence for input separately.

All the sequences are entered into the pure transformer-based
encoder. Therefore, all the transformer layers have a global receptive
field, which improve the limited receptive field problem from the
CNN. There are 24 layers of transformers in the encoder, in which
there are multi-head self-attention (MSA), multilayer perceptron
(MLP), and layer normalization blocks residually connected.

The decoder is called the multi-level feature aggregation (MLA).
Some feature representations from the transformer layers are first
reshaped from 2D to 3D and then aggregated. A 3-layer convolution
network downsamples the features at the first and third layer. To
enhance the interactions of different levels of features, a top-down

aggregation design is introduced. The fused feature is obtained via
channel-wise concatenation after the third layer. At last, the outputs
are upscaled by bilinear operation to the original resolution.

SegFormer
The architecture of SegFormer is depicted in Figure 4. The
SegFormer consists of two main modules, encoder and
decoder. An image as the input is first divided into patches in
4 × 4. Then, these patches are imported to the hierarchical
transformer encoder to obtain multi-level features. These
multi-level features are passed to the MLP decoder to predict
the segmentation mask at a H/4 × W/4 × Ncls resolution, where
H,W,Ncls are the height, width of the image, and the number of
categories in the image, respectively.

FIGURE 2 | Dataset.

FIGURE 3 | Architecture of the SETR.
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In the encoder, an input image is one with a resolution of
H × W × 3, and Ci is the channel number in the feature map Fi.
A hierarchical feature map Fi with a resolution of
H/2i+1 × W/2i+1 × Ci is obtained after each transformer block,
where i ∈ {1, 2, 3, 4}, and Ci+1 is larger than Ci.

The transformer consists of efficient self-attention, Mix-FFN,
and overlap patch merging blocks. Efficient self-attention
improves the computational efficiency of the self-attention. In
the original multi-head self-attention process, each of the heads
has the same dimension N × C, where N � H × W is the length
of the sequence, and C is the channel number. The self-attention
is expressed as follows:

Attention(Q,K, V) � Softmax(QK⊤��
dh

√ )V. (1)

In the equation, dh is the dimension of the head. The
computational complexity of this process is O(N2). To
alleviate it, the sequence K is reduced with a reduction ratio R.
It is first reshaped into N/R×C·R and then simplified by a fully
connected layer. Therefore, the new K has dimensions N/R×C. As
a result, the complexity of the self-attention mechanism is
reduced from O(N2) to O(N2/R).

ViT uses positional encoding (PE) to express the location
information. It influences the test accuracy when the image
resolution is not the same with that in the training because
the positional code needs to be interpolated. To address it,
Mix-FFN considers the effect of zero padding to leak location
information, and a 3 × 3 convolution is used in the feed-forward
network (FFN). Mix-FFN can be formulated as follows:

xout � MLP(GELU(Conv3×3(MLP(xin))))+xin, (2)
where xin is the feature from the self-attention module. Mix-FFN
mixes a 3 × 3 convolution and an MLP into each FFN. The

Gaussian error linear unit (GELU) (Hendrycks and Gimpel,
2020) is an activation function. xout is the output of the Mix-FFN.

To preserve the local continuity around those patches, an
overlapping patch merging process is used. K is the patch size, S is
the stride between two adjacent patches, and P is the padding size.
K = 7, S = 4, P= 3, and K = 3, S = 2, P= 1 are set to perform
overlapping patch merging to produce features with the same size
as the non-overlapping process.

The SegFormer incorporates a lightweight decoder consisting
only of MLP layers. The proposed All-MLP decoder consists of
four main steps. First, multi-level features from the encoder go
through an MLP layer to unify the channel dimension. Then,
features are upsampled to 1/4th and concatenated together.
Third, an MLP layer is adopted to fuse the concatenated
features. Finally, another MLP layer takes the fused feature to
predict the segmentation mask.

The Proposed Method
In this section, we demonstrated a method used in the task of
waterline extraction. The workflow is shown in Figure 5. The
transformer first learns the coast features from the training
samples. This step is the most time-consuming since most
layers of the network are trained in this step. After the
learning step, parameters of the model are convergent, and it
can infer other new coast images for waterline extraction. Then, a
binary mask of the coast is obtained from each input image; the
waterline can be extracted from the mask easily. It is worth noting
that the contours of the coast at the edges of the image should be
excluded because this part is truncated when slicing image tiles.

Metrics
The proposed approaches are evaluated by precision, recall, F1-
score, and IoU.

FIGURE 4 | Architecture of the SegFormer.
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P � TP

TP + FP
, (3)

R � TP

TP + FN
, (4)

F1 � 2 × P × R

P + R
, (5)

IU � TP

TP + FP + FN
. (6)

Among them, the P and R stand for precision and recall,
respectively; the true positive (TP) stands for the rightly extracted
land area; the false positive (FP) represents the area mistaken as
the land; the false negative (FN) means omitted land pixels. In our
study, the reference land images are drawn manually. Precision
and recall are contradictory in most cases. To address this,
comprehensive metrics F1 (F1) and IoU (IU) are employed
commonly. Inference time is defined as the average
segmentation’s time using our test data. The floating-point
operations (Flops) represent the computation of the model,
and it is a metric for the computational complexity.

RESULTS

Experiment Setting
The proposed transformers were developed under
MMsegmentation (MMSegmentation, 2020) by PyTorch
(Paszke et al., 2017). Training and testing were performed
with eight NVIDIA TITAN Xp GPUs and one NVIDIA
TITAN Xp GPU, respectively. In our experimental dataset,
there are 3600 images for training, 1200 images for validation,
and 1200 images for testing. All the annotations are manually

annotated. The resolution of all images is 512 × 512. The SETR
uses a learning rate value of 10–3, the number of iterations is
160,000, and the weights are pretrained on ImageNet-21K. The
SegFormer was tested using a learning rate value of 10–6, the
number of iterations is 40,000, and the weights are pretrained on
ImageNet-1K. The other compared methods are all run in 40,000
iterations.

Experimental Results
Qualitative Results
The results of the eight methods are displayed in Figure 6. From
the results, we can see that PSPNet-UNet, DeepLabV3-UNet, and
SETR cannot obtain good results in Image 1, Image 4, and Image
6. A large area in the land is missed, and the fine dock structure is
not extracted in all the three methods. For the CNNmethods, the
methods with the ResNet101 backbone are better than the
methods with HRNet, and the methods with the UNet
backbone achieve the cheapest results. Only the methods with
ResNet101 and HRNet extract the small striped object in Image 6,
but no methods can avoid the influence of the ship. In Image 8,
only the FCN-ResNet101 and DeepLabV3-ResNet101 gain
terrific results. Other CNNs get a lot of false-positive or false-
negative parts. For the transformer methods, the SegFormer
achieves very nice results in all the images, especially for the
fine structures. In contrast, the SETR can also extract the large
object effectively in Image 3, but it struggles to the small and thin
objects in Image 6 and Image 8. Overall, DeepLabV3-ResNet101,
FCN-ResNet101, FPN-ResNet101, and SegFormer are all
outstanding, and PSPNet-UNet, DeepLabV3-UNet, and SETR
are relatively weak.

We can see in Figure 7, the SETR cannot extract the fine
objects in Image1, Image 3, and Image 4. The dock and
infrastructure are all not complete in the three images. It

FIGURE 5 | Workflow of the proposed method.
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hardly finds the land area near the boundary in Image 2 and
Image 3. The connection part in the dock is neglected, and the
shape of the harbor is not regular due to the incomplete extraction
in Image 2. There are missed land pixels near the frame in Image
3. For large objects, it can performwell, although the edges are not
kept fine in Image 1, Image 3, and Image 4.

Figure 8 depicts the results of SegFormer results. We can see
that it correctly segments nearly all the pixels. It can even keep the
details of objects well, especially in Image 1 and Image 3. The
spindly parts in Image 1 and Image 3 are all fine and

unmistakable. The integrity and differentiation are impressive.
The minor complaints are the small leaks near the edges in Image
1, Image 3, and Image 4 and the small holes in Image 2. The
SegFormer can extract the land features so good that the waterline
can be extracted completely and accurately.

Quantitative Results
All the experimental methods are reported in Table 1. For the
CNN methods, the models with ResNet101 achieved best results.
Among them, the DeepLabV3 is the best with 0.9056 in precision,

FIGURE 6 | Results of all methods in comparison.
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0.8814 in recall, 0.8674 in F1, and 0.8169 in IoU. The FCN
and FPN with the backbone of ResNet101 also reach or
approach 0.9 in precision, 0.88 in recall, 0.86 in F1, and
0.81 in IoU. By comparison, the methods with UNet get
lowest scores. PSPNet with UNet has the least scores, with
the precision 0.8298, F1 0.8333, and IoU 0.7632. The
performances of DeepLabV3 with UNet are slightly higher
than that of PSPNet with UNet. The FCN with HRNet48 is
moderate, which achieves 0.8964 in precision, 0.8766 in
recall, 0.8581 in F1, and 0.8052 in IoU.

For the vision Transformer methods, we can see that the
SegFormer reaches the precision 0.9121, recall 0.9104, F1-score
0.8883, and IoU 0.8439, respectively, which prove its accurate and
robust performance to segment the land and sea. SETR gets the
lowest scores in all metrics. The scores match the results in
Figures 6, 7; it cannot acquire the ideal land area, and the shapes
are very incomplete.

The floating-point operations (Flops) represent the model
complexity. Table 1 shows that the DeepLabV3 models occupy
more computing power, followed by SETR and PSPNet. The
FCN, FPN, and SegFormer use the least resource in all the
methods. Specially, the DeepLabV3-ResNet101 consume the
largest computing units, and the SegFormer is the most
resource-saving. For the inference time, except the FCN-
HRNet48 and SETR with 0.77 and 0.32, other methods are
all under 0.3 s. The FCN with ResNet101, FPN with

ResNet101, and SegFormer can even infer an image in 0.2 s.
FCN-ResNet101 is the fastest method in inference.

DISCUSSION

Performance Analysis of the Superior CNNs
In the six CNN methods, the networks with the backbone of
ResNet101 are the best extractors, and they occupy the top three
for accuracy. It is followed by the HRNet48, and the UNet is the
last. In ResNet101, the convolution layers are very deep, and the
features are connected with residual blocks. It can keep more
detail features and avoid gradient vanishing by this way.
Meanwhile, this ResNet101 uses dilated convolution to
increase the receptive field, which makes it more powerful.
The HRNet generates high-resolution and low-resolution
parallel subnetworks. It can merge the high-resolution features
and low-resolution features through the different stages by
connecting the multi-resolution parallel subnetworks.
Therefore, it can obtain rich high-resolution and low-
resolution representations. The best header is DeepLabV3
because it achieves the best scores when different methods use
the same backbone of UNet or ResNet101. In DeepLabV3, the
atrous spatial pyramid pooling (ASPP) adds a series of atrous
convolutions with different dilated rates to increase global
contextual information. Global average pooling (GAP) also

FIGURE 7 | Results of SETR.
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combines image-level features. These all make the DeepLabV3
outstanding.

Performance Analysis of the Superior
Transformer
In the two vision transformers, the SETR obtain F1 with 0.8018
and IoU with 0.7268, and the SegFormer achieves 0.8883 in F1-
score and 0.8439 in IoU. The SegFormer wins the SETR in
accuracy completely. It can also be seen from the Figures 7, 8,
the SETR cannot extract the integrated and continuous
structures in Image 2 and Image 3, and the SegFormer can
extract nearly the whole and accurate structures. In SETR, the
feature maps after the transformer layers are in the same size,

and in the SegFormer, it generates multi-level feature maps.
The different scales of feature maps include the high-
resolution coarse features and low-resolution fine-grained
features, so it can adapt to large and small object
extractions. At the same time, the decoder in the SegFormer
is made up of only MLP, which is lighter and has a larger
effective field than traditional CNN encoders. These all make
the SegFormer perform better than the SETR. On the other
side, the SETR has more computational complexity with 212.4
GFLOPs than the SegFormer with just 51.83 GFLOPs. The
huge amount of computation of the SETR is from the self-
attention in the transformer. Because the computational
complexity of self-attention is O(N2), N is the length of the
input sequence. The SegFormer uses the efficient self-attention

FIGURE 8 | Results of SegFormer.

TABLE 1 | Comparison for all the methods in metrics.

Method Backbone Flops (GFLOPs) Inference Time(s) Precision Recall F1 IoU

PSPNet UNet 197.76 0.25 0.8298 0.8782 0.8333 0.7632
DeepLabV3 UNet 203.43 0.25 0.8518 0.8703 0.8406 0.7719
FCN HRNet48 93.38 0.77 0.8964 0.8766 0.8581 0.8052
FCN ResNet101 76.07 0.08 0.8995 0.8814 0.8636 0.8113
FPN ResNet101 64.73 0.09 0.9010 0.8793 0.8637 0.8096
DeepLabV3 ResNet101 347.33 0.23 0.9056 0.8814 0.8674 0.8169
SETR T-Large 212.4 0.32 0.8244 0.8397 0.8018 0.7268
SegFormer MiT-B5 51.83 0.15 0.9121 0.9104 0.8883 0.8439
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which reduces the computational complexity by some
transforms. Therefore, the SegFormer is much easier to
compute.

The Most Robust Method
The top CNN DeepLabV3 and the transformer SegFormer are all
very competitive. However, the vision transformer SegFormer is
superior to DeepLabV3 in precision, recall, F1, and IoU. It also
has a smaller complexity and shorter inference time. The limited
receptive field in DeepLabV3 requires the ASPP module to
enlarge the receptive field, but the model inevitably becomes
heavy. The SegFormer benefits from the non-local attention in
transformers and enjoys a larger receptive field. The transformer
integrates with theMLP decoder an can produce both highly local
and non-local attention by adding fewer parameters. These all
make the SegFormer more efficient and lighter in waterline
extraction.

CONCLUSION

We propose a new method based on the vision transformers for
the waterline extraction by sea–land segmentation. Two
transformers, the SegFormer and SETR, are adapted to
segment and identify land pixels by a custom dataset from
satellite maps. The performances of the two transformers are
compared with other state-of-the-art CNN methods, PSPNet,
DeepLabV3, FCN, and FPN. The SETR with a pure transformer
structure, as an early comer to image segmentation, achieves a
nearly equivalent performance compared with the developed
CNN methods. More surprisingly, the latter method, the

SegFormer outperforms state-of-the-art CNN methods and
demonstrates an extraordinary ability to segment land pixels
under different conditions. For future work, we hope to
improve the method in accuracy and robustness, though it has
achieved a fairly good performance.
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Fire is an important ecosystem process and has played a complex role in terrestrial
ecosystems and the atmosphere environment. Sometimes, wildfires are highly
destructive natural disasters. To reduce their destructive impact, wildfires must be
detected as soon as possible. However, accurate and timely monitoring of wildfires is a
challenging task due to the traditional threshold methods easily be suffered to the false
alarms caused by small forest clearings, and the omission error of large fires obscured
by thick smoke. Deep learning has the characteristics of strong learning ability, strong
adaptability and good portability. At present, few studies have addressed the wildfires
detection problem in remote sensing images using deep learning method in a nearly real
time way. Therefore, in this research we proposed an active fire detection system using
a novel convolutional neural network (FireCNN). FireCNN uses multi-scale convolution
and residual acceptance design, which can effectively extract the accurate
characteristics of fire spots. The proposed method was tested on dataset which
contained 1,823 fire spots and 3,646 non-fire spots. The experimental results
demonstrate that the FireCNN is fully capable of wildfire detection, with the
accuracy of 35.2% higher than the traditional threshold method. We also examined
the influence of different structural designs on the performance of neural network
models. The comparison results indicates the proposed method produced the best
results.

Keywords: active fire detection, deep learning, active fire dataset, wildfire, himawari-8 imagery, fireCNN

INTRODUCTION

Fire is an important ecosystem process and has played a complex role in shaping landscapes,
biodiversity and terrestrial ecosystems and the atmosphere environment (Bixby et al., 2015; Ryu
et al., 2018;McWethy et al., 2019; Tymstra et al., 2020). It provide nutrients and habitat for vegetation
and animals, and plays multiple important roles in maintaining healthy ecosystems (Ryan et al.,
2013; Brown et al., 2015; Harper et al., 2017). However, wildfires are also destructive forces—it cause
great loss of human life and damage to property, atmospheric pollution, soil damage and so on. The
existing studies showing an estimated global annual burning area of approximately 420 million
hectares (Giglio et al., 2018). Therefore, to reduce the negative impact of fire, real-time detection of
active fires should be carried out, which can provide timely and valuable information for fire
management department.
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With the continuous development of satellite remote sensing
technology, an increasing number of researchers have chosen to
use satellite multispectral images to detect forest wildfires (Allison
et al., 2016; Kaku, 2019; Barmpoutis et al., 2020). The common
features of fires are bright flames and smoke produced during
combustion, as well as high temperatures on fire surfaces that are
different from the surrounding environment. Smoke and flames
produced during combustion can be detected in the visible light
bands of remote sensing images, and high temperatures on the
surface of fires are easily detected in the mid-infrared, shortwave
infrared and thermal infrared bands (Leblon et al., 2012). In
moderate or low spatial resolution images, the fire is represented
as a fire spot with extremely high temperature, which also called
thermal anomalies on a per-pixel basis (Xie et al., 2016). For
instance, MOD14 monitors fire actively at a 1 km spatial
resolution. Satellite remote sensing has the advantages of
strong timeliness, wide observation range and low cost, which
provides great convenience for fire detection (Coen and
Schroeder, 2013; Xie et al., 2018).

Active fire detection methods can be divided into two types:
those that are based on a manual design algorithm, primarily the
threshold method, and the alternative approach, based on deep
learning, including shallow neural networks and image-level deep
networks.

The threshold-based method sets one or more thresholds for a
specific imager channel, or the combination of different spectral
channels, checks each pixel one by one, and classifies the pixels
that meet the threshold as fire spots; otherwise, they are classified
as non-fire spots. Spectral, spatial or contextual information
usually involved. The major satellite remote sensing for active
fire detection are: the Moderate-resolution Imaging Spectro
radiometer (MODIS) sensor that equips the NASA Terra and
Aqua satellites, with the spatial resolution of 250m to 1 km
(Justice et al., 2002; Morisette et al., 2005; Giglio et al., 2008;
Maier et al., 2013; Xie et al., 2016; Giglio et al., 2016; Earl and
Simmonds, 2018); the AVHRR sensor on board NOAA satellite,
with the spatial resolution of 1 km (Baum and Trepte, 1999; Boles
and Verbyla, 2000); the Visible Infrared Imaging Radiometer
Suite (VIIRS) on board the joint NASA/NOAA Suomi National
Polar-orbiting Partnership (Suomi NPP) and NOAA-20 satellites
(Schroeder et al., 2014; Li et al., 2018). In addition, the Landsat
series, Sentinel-2 remote sensing images have also been used for
research on this filed due to they are relatively high spatial and
temporal resolution (Schroeder et al., 2008; Murphy et al., 2016;
Schroeder et al., 2016; Malambo and Heatwole, 2020; Hu et al.,
2021; van Dijk et al., 2021). The major improvements of these
methods are concentrate on integrating contextual or temporal
information (Schroeder et al., 2008; Murphy et al., 2016; Lin et al.,
2018; Kumar and Roy, 2018), setting more accurate threshold
(Baum and Trepte, 1999), and improving the disturbance factors
algorithm, such as cloud, smoke, and snow (Giglio et al., 2016).

In October 2014, a new geostationary meteorological satellite
Himawari-8 was launched by the Japan Meteorological Agency
(JMA). The satellite is equipped with an Advanced Himawari
Imager (AHI) 16-channel multispectral sensor with a spatial
resolution of 2 km (Xu et al., 2017). AHI can collect a full-
disk of data every 10 min, covering East Asia (Da, 2015). The high

temporal resolution of the Himawari-8 satellite makes it more
suitable for time-sensitive tasks, e.g., fire monitoring.
Wickramasinghe et al. (2016) proposed a new AHI-FSA
algorithm that uses the Advanced Himawari Imager (AHI)
data to detect burning and unburned vegetation, and the edge
between smoke-covered and non-smoke-covered areas,
respectively. Xie et al. (2018) proposed a spatial and temporal
context model to detect fires based on the high temporal
resolution of the Himawari-8 satellite images and applied it to
real fire scenarios. Na et al. (2018) used the 7, 4, and 3 bands of
Himawari-8 data to monitor grassland fires in the border areas
between China and Mongolia. The results show that the detected
fires are highly consistent with the actual situation on the ground.
More studies of fire detection algorithms can be found in Cocke
et al. (2005), French et al. (2008), Boschetti et al. (2015).

As can be seen from the above studies, the traditional
threshold methods have been widely used in active fire
detection tasks. However, due to the different design of
spectral bands and central wavelength of different sensors, the
threshold method is usually applicable to specific satellites, which
makes it difficult to apply to multiple satellites. Moreover, the
threshold is determined according to the statistical data of the
surrounding areas, where fires under different landforms,
climates, and seasons have diverse characteristics. This imply
that the threshold changes dynamically according to the study
area and the data. Furthermore, the threshold methods are easily
affected by cloud, thick smoke, when it used to assess large areas,
is prone to false positives and omissions.

Deep learning techniques have achieved excellent results in the
field of machine vision (LeCun et al., 2015). Deep learning has the
characteristics of strong learning ability, strong adaptability and
good portability. It can discover the intricate patterns in massive
data by using a series of processing layers. Therefore, an
increasing number of researchers have tried to use deep
learning technology in the field of fire or smoke detection and
have developed and designed many algorithms. These algorithms
can be divided into neural networks at the image level and
pixel level.

In the field of fire detection at image level, semantic
segmentation models generally involved. Langford et al. (2018)
applied the deep neural networks (DNN) to detect the wildfires.
To solve the problem of imbalanced training samples, a weight-
selection strategy was adopted during the DNN training process.
The results showed that the weight-selection strategy was able to
map wildfires more accurate compared to the normal DNN. Ba
et al. (2019) designed a new convolutional neural network (CNN)
model, SmokeNet, which integrates the attention of space and
channel direction into CNN to enhance the feature
representation of scene classification. The model was tested
using the MODIS data. The experimental results indicate high
consistency between model predictions and actual classification
results. Vani et al. (2019) designed a convolutional neural
network Inception-v3 method based on transfer learning to
classify the fire and non-fire. Gargiulo et al. (2019) suggested a
CNN-based super-resolution technique for active fire detection
using Sentinel-2 images. Pinto et al. (2020) first use convolutional
neural networks and Long Short-TermMemory (LSTMs) with an
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architecture based on U-net. The red, near-infrared and
middle-infrared (MIR) bands from the VIIRS sensor,
combined with the VIIRS 375 m active fire product as inputs
to train the model. de Almeida Pereira et al. (2021) created
training and testing images and labels using high-resolution
images collected by Landsat-8 to train the improved U-Net
networks. Different from most of the existing studies that use
optical images, Ban et al. (2020) used CNN to detect burnt areas
from Sentinel-1 SAR time series images. By analysing the
temporal backscatter variations, the CNN-based deep learning
method can better distinguish burnt areas with higher accuracy to
traditional method. Larsen et al. (2021) and Guede-Fernández
et al. (2021) adopted deep learning method to identify the fire
smoke. However, the location of the fire can not be directly
determined. In addition, researches are also using deep learning
method to detect the fire using unmanned aerial vehicle (UAV)
images or videos (Yuan et al., 2017; Jiao et al., 2019; Kinaneva
et al., 2019; Bushnaq et al., 2021; Guede-Fernández et al., 2021).
For instance, Muhammad et al. (2018) suggests a convolutional
neural network using surveillance videos. The UAV can provide
timely images of the fire. However, it may not suitable for large
area forest fire detection. In terms of fire detection based on
pixel level, according to the knowledge of the authors, there are
only two related literatures. The first literature is that Zhanqing
et al. (2001) integrated a back-propagation neural network
(BPNN) and the threshold methods for extracting smoke
based on AVHRR imagery. The BPNN can discover and
learn complex linear and nonlinear relationships from
radiation measurements between smoke, cloud, and land, it is
can identify the potential area covered by smoke. To remove the
misclassified pixels and improve the precision, multi-threshold
testing also incorporated. In 2015, Li et al. proposed an
improved algorithm based on their earlier model (Zhanqing
et al., 2001). In the improved algorithm, all bands were regarded
as the input vectors of the BPNN, and the training dataset was
established using the multi-threshold method to train the BPNN
to identify smoke.

According to the above-mentioned studies, some open problems
still exist. First, the traditional threshold methods are easily affected
by cloud, thick smoke, which lead to false positives and omission
errors. Second, most of the existing deep learning methods use
polar-orbiting satellites images which could provide fine spatial
resolution, but the temporal resolution is relatively low. High
temporal is critical for fire monitoring. The Himawari-8 satellite
which has the temporal resolution of 10 min, can continuously
monitor fire and are thus conducive to early fire detection and adopt
aggressive measures. However, few deep learning methods use
Himawari-8 satellite to detect the fires. Third, most of the
existing deep learning methods are conducted at image level.
Over the past decades, deep learning methods have been
promoting major advances in artificial intelligence, and a variety
of new models have been proposed, such as generative adversarial
networks (GAN), deep Convolutional Neural Networks, Recurrent
Neural Networks, Long Short-Term Memory. However, they are
difficult to detect the fires at pixel level, due to the low spatial
resolution of Himawari-8 images and the subtle target of the fire.
The existing models need to be improved.

Therefore, the objective of the study is to propose an active fire
detection system using a novel convolutional neural network
(FireCNN) based on Himawari-8 satellite imageries, to fill the
research gap of this area. The presented FireCNN uses multi-scale
convolution and residual acceptance design, which can effectively
extract the accurate characteristics of fire spots, and to improve
the fire detection accuracy. The main contributions of our study
are as follows. 1) We developed a novel active fire detection
convolutional neural network (FireCNN) based on Himawari-8
satellite images. The new method utilizes multi-scale convolution
to comprehensively assess the characteristics of fire spots and uses
residual structures to retain the original characteristics, which
makes it able to extract the key features of the fire spots. 2) A new
Himawari-8 active fire detection dataset was created, which
includes a training set and a test set. The training set includes
654 fire spots and 1,308 non-fire spots, and the test set includes
1,169 fire spots and 2,338 non-fire spots.

The remainder of the article is organised as follows. In the
Data section, we explain the source and composition of the data
and pre-processing steps and provide basic information
regarding the study area as well as a detailed description of
the database established in this study. In the Methodology
section, the proposed algorithm is described in detail, and
both the traditional threshold method and deep learning
method used in the experiment are introduced. In the
Experiment section, the relevant settings of the experiment,
the parameters used for evaluation, and the analysis of the
results are described. Finally, the key findings of the study are
summarized, and possible future research is briefly discussed.

DATA

Data and Pre-Processing
The fire location data (Label) and multispectral image data used
in this study were obtained from the Meteorological Satellite
Ground Station, Guangzhou, Guangdong, China and Himawari-
8. Specifically, the Himawari-8 product used in this article is full

TABLE 1 | Band information of Himawari-8.

Band Centre wavelength (μm) Notation Unit

1 0.47 A 1 Unitless
2 0.51 A 2 Unitless
3 0.64 A 3 Unitless
4 0.86 A 4 Unitless
5 1.6 A 5 Unitless
6 2.3 A 6 Unitless
7 3.9 T 7 K
8 6.2 T 8 K
9 6.9 T 9 K
10 7.3 T 10 K
11 8.6 T 11 K
12 9.6 T 12 K
13 10.4 T 13 K
14 11.2 T 14 K
15 12.4 T 15 K
16 13.3 T 16 K
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disk Available Himawari L1 Data (Himawari L1 Gridded data),
The detailed information is available on website https://www.
eorc.jaxa.jp/ptree/userguide.html. The fire location data include
the longitude, latitude, and time of the fire. The data are presented
in the form of mask, from which the fire and non-fire points can
be extracted from the multispectral image. The data have high
reliability after manual identification and algorithm inversion.

The multispectral image data were obtained from the
Himawari-8 satellite Himawari-8 is comprised of 16 bands;
information on each band is provided in Table 1. The spatial
resolution of the visible light bands is 0.5–1 km and that of the
near-infrared and infrared bands is 1–2 km. The temporal
resolution is 10 min. The entire range covers the earth, from
60° N to 60° S and from 80° E to 160° W. Although the spatial
resolution of the geostationary satellite is less than that of a polar
orbit satellite, the geostationary satellite has the characteristics of
wide coverage, time synchronisation of data acquisition, fixed
observation position, and high temporal resolution, all of which
make it well suited for real-time monitoring of wildfires.
Moreover, the repeated visit once every 10 min can alleviate
the problem of the blank monitoring period caused by the low
temporal resolution of a polar orbit satellite. Among the
Himawari-8 satellite multispectral images, bands 1-6 are
albedo data, albedo � reflectancepcos(solar zenith angle), and
bands 7–16 are brightness temperature data.

Study Area
A map of Guangdong Province, in southern China, is shown in
Figure 1 The whole region is located between 20° 13′ and 25° 31′

N and between 109° 39′ and 117° 19′ E. The terrain is hillier in the
south than in the north. The study area is located in the East
Asian monsoon region, primarily in a subtropical monsoon
climate. Guangxi is adjacent to Guangdong Province, as
shown in Figure 1, located between 104° 28′ and 112° 04′ E
and 20° 54′ and 26° 24’N. In Guangxi, the terrain tends to be hilly
in the northwest and less so in the southeast. The main climate is
subtropical monsoon and tropical monsoon climates. The two
provinces have high forest coverage rates, and both lie close to the
equator, making these areas prone to forest fires during dry
periods. For these reasons, they were selected as the study area.

Establishing the Database
In assembling the data, the first consideration is that the fire
location data should correspond to the multispectral image data
in terms of position and time. A part of the study area was cut out
from the multispectral image data, and a grid of M × M size was
set up at the centre of each pixel. The average and standard
deviation of each band in the grid were calculated as the
surrounding environment information of the pixels. To ensure
that the pixels at the edge of the image can also set a sufficient
window size, a sufficient width of the mirror edge was added to
the image before processing. The training data is provided by
Meteorological Satellite Ground Station, Guangzhou,
Guangdong, China, which use combination of traditional
algorithm and field survey.

According to the time and latitude information of the fire spot,
the information of each band and the surrounding environment
information of the fire spot were taken from the corresponding

FIGURE 1 | Study area.
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Himawari-8 image as the original characteristics of the fire spot.
At the same time, the original features of non-fire spots were
extracted randomly according to a certain proportion on the
same scene image, where the fire spots were marked as 1 and the
non-fire spots were marked as 0.

The training data set included the data of Guangdong and
Guangxi provinces from January to December 2020, with the data
collected at 3:00 a.m. and 7:00 p.m. (UTC) every day. Due to the
unbalance number of fire and non-fire points, the proportion of
fire and non-fire training points was set by comparison
experiment, and the result indicates that the network can fully
learns the characteristics of fires and correctly distinguishes
between fires and non-fires with the proportion of 1:2. A total
of 654 fire spots and 1,308 non-fire spots were included in the
training set, and 40% of the training set was randomly selected as
the validation set, which was not involved in training and was
only used to adjust the hyper-parameters of the model and
preliminarily evaluate the ability of the model to determine
whether continuous training can be stopped.

METHODOLOGY

Active Fire Detection With Traditional
Threshold Method
In this section, we mainly introduce the fire detection algorithm
proposed by Xu et al. (2017). The algorithm first uses the 3.9- and
11.2-μm bands of Himawari-8 to identify potential fire spots. The
2.3-μm band is then used to identify water, and the 0.64-, 0.86-,
and 12.4-μm bands are used to identify clouds. Water pixels and
cloud pixels are removed from potential fire spots to reduce false
alarms. As the final fire detection results, the experimental results

show that the fire detection method is robust in situations of
smoke and thin clouds and is very sensitive to small fires. It can
provide valuable real-time fire information for wildfire
management. The conditions for the algorithm to identify
potential fires during the day are as follows.(ZT3.9 > 0.8)AND(ZT3.9−T11.2 > 1.5) (1)
whereZ(λ) � (λ)−mean(λ)

std(λ) ,mean(λ) and std(λ) represents the mean
and standard deviation of the band in the study area.

The conditions for non-water pixels are:

A2.3 > 0.05 (2)
where, Aλ represents the albedo value in this band.

The conditions for non-cloud pixels are:

(A0.64 + A0.86 < 1.2)AND(T12.4 > 265K)AND ((A0.64

+ A0.86 < 0.7)or(T12.4 > 285K)) (3)

FIGURE 2 | The flow chartof the fire detection solution.

FIGURE 3 | Framework of the FireCNN.
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Active Fire Detection Based on
Convolutional Neural Network
In Figure 2 we present a flow chart of the fire detection model
used in this study. First, we create the training and testing data
sets. The specific steps refer to the Data section. This is followed
by the use of the training set to train the model. The training
model is then tested and the classification results are generated.

The active fire detection problem can be transformed into a
two-classification problem; that is, the pixels on the satellite image
are classified as fire or non-fire. The active fire detection framework
based on the CNN proposed in this study (Figure 3) is composed
primarily of a feature extraction component and a fully connected
layer classification component. The feature extraction component
performs feature extraction and feature fusion on the input
samples, and then the extracted features are inputted into the
fully connected layer component, finally outputting the probability
that the point is a fire/non-fire spot.

Feature Extraction
The feature extraction component includes three convolution
modules of different scales and residual edges. The convolution
modules are Conv-2, Conv-3, and Conv-4; that is, the size of the
convolution kernel is 2, 3, and 4. Each convolution module
includes two convolutional layers and a maximum pooling
layer, and each convolutional layer is followed by a rectified
linear unit (ReLU) activation function. In this study,
convolutional neural networks were used in the convolution
module to select features. Through convolutional layers of
different scales, feature selection and extraction can be
performed in different ranges, which is not only beneficial to
reduce the weight of the features with poor correlation with
wildfire in the original feature, but also a more comprehensive
analysis of the relationship between different quantitative features
and extract the key features. In the pooling layer, we chose to use
the maximum pooling to retain the key features to the greatest
extent, while reducing the dimension of the features to facilitate
subsequent calculations. The residual edge in the convolution
module prevents the loss of original features and effectively solves
the problem of neural network degradation. The feature
extraction component fuses the features extracted by the three
convolution modules of different scales with the original features
as the output.

Fully Connected Layer Classifier
The fully connected layer takes the fused features as input, taking
into account all the features, and finally outputs the probability
that the sample point is a fire/non-fire spot through the Softmax
function. Because the problem is finally transformed into a binary
classification problem, we chose the binary cross-entropy
function as the loss function. The binary cross-entropy
function is defined as follows:

LossCELF(y, ŷ) � y · logŷ + (1 − y)log(1 − ŷ) (4)
where y is the predicted value, and ŷ is the true value. If the point
is a fire spot, ŷ = 1, if the point is a non-fire spot, ŷ = 0, and y is
the probability that the point is a fire spot, 0 ≤ y ≤ 1.

To verify that CNN has the potential to be suitable for
thermal power detection tasks at fire spots, we compared our
model with the threshold-based algorithm proposed by Xu et al.
(2017). At the same time, we also compared FireCNN with
BPNN (BPNet) and CNN (simpleCNN), removing multi-scale
convolution and residual edges on the basis of FireCNN. The BP
neural network includes five hidden layers; the number of
neurons is 44, 22, 11, 6, and 2. Except for the last layer, each
hidden layer uses the ReLU activation function, and the last
layer uses the Softmax function. SimpleCNN includes two
convolution kernels with a size of three convolutional layers,
a maximum pooling layer, and a fully connected layer. The
network structure of BPNet and simpleCNN is shown in
Figure 4.

EXPERIMENT

Experimental Setup
In this study, there was no overlap between the training set (used
to train the CNN model) and the test set (used to test the
performance of the CNN model). The code used in this study
was written using Python 3.6, and the deep learning framework
used was Pytorch1.2. In terms of hardware, experiments were
conducted on an Intel CoreI i5-8300H CPU at 2.30 GHz, 8 GB of
RAM, running Windows, with an NVIDIA GeForce GTX 1060.
In the CNN model, the Adam optimizer was selected as the
parameter optimizer, the EPOCH level was 500, the batch size
was 100, and the learning rate was 10–6.

Evaluation of Indicators
Precision rate, misclassification error (ME), recall rate, omission
error (OE), accuracy rate, and F-measure were used to evaluate
the performance of the model. TP denotes true positive (correctly
classified as fire point), TN denotes false positives (non-fire
point), FP denotes false positives (pixels misclassified as fire
point), FN denotes false negatives (pixels incorrectly classified
as non-fire point).

The precision rate (P) refers to the number of fire spots
predicted by the model that are actually fire spots. The higher

FIGURE 4 | The structure of BPNet and simpleCNN.
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the value, the higher is the reliability of the fire spots predicted by
the model. The formula is as follows:

Precision � TP

TP + FP
· 100% (5)

The commission error (CE) refers to how many of the predicted
fire spots are erroneous, and the higher the value, the more
unreliable the fire spots predicted by the model. The formula is as
follows:

CE � FP

TP + FP
· 100% � 1 − Precision (6)

The recall rate refers to the fire spots in the original data, how
many are correctly predicted by the model, the higher the value is,
the fewer the fire spots missed by the model. Recall rate is
calculated, as follows:

Recall � TP

TP + FN
· 100% (7)

The omission error (OE) refers to the fire spot in the original data
and the extent to which it is omitted. The higher the value, the
lower the comprehensiveness of the model. The formula is as
follows:

OE � FN/(TP + FN) � 1 − Recall (8)
Accuracy is the ratio of the number of correct predictions in all
categories to the total number of predictions. The formula is as
follows:

Accuracy � TP + TN

TP + FP + TN + FN
· 100% (9)

The F-measure was used to comprehensively evaluate the
performance of the model. The formula is as follow:

Fmeasure � (2pRecallpPrecision)/(Recall + Precision) (10)

Analysis of Results
In order to test the effectiveness of the proposed FireCNNmodel,
five related methods are selected for comparison. They are can be
divided into three types, that traditional threshold method (Xu
and Zhong, 2017), machine learning methods (Support Vector
Machine and Random Forest), and the deep learning methods
which BP neural network and simpleCNN are involved
(Zhanqing et al., 2001; Li et al., 2015). The Precision, CE,
Recall, OE, Accuracy and F-measure are selected as the
indicators of model performance. The results are presented in
Table 2. In each of the methods, the training of the deep learning
network uses the Adam optimizer, EPOCH level is 500, the batch

size is 200, and the learning rate is 10–6. More specific data are
presented in Table 3. In particular, SVM and RF algorithms used
in this study are implemented by sklrean library, where SVM
kernel function is set to Gaussian kernel function; RF has 100
trees with a maximum depth of 5.

It can be observed from Table 2 that the best performance
indicators are obtained with FireCNN. The algorithm proposed
by Xu does not perform as well as FireCNN in each indicator,
indicating the superiority of the FireCNN to the traditional
threshold method. In machine learning methods, the
comprehensive performance of RF is better than SVM. SVM
identifies most of the points as fire points, resulting in low
accuracy. At the same time, it failed to find most of the fire
points. Therefore, a low recall rate is obtained. Although RF
performs better than SVM in recall rate, it still has the problems
of low accuracy and more false positives. Consequently, a low
recall rate is obtained. In addition, it still has the problem of low
precision and more false alarms. The main reason responsible for
this is that in Himawari-8 images, although abundant spectral
information is provided, spatial contextual information is difficult
to integrate in machine learning method due to the low spatial
resolution of the images. An important character of a fire point is
that its temperature is higher than the surrounding temperature.
Without the surrounding environment information, the machine
learning method cannot completely learn the features of the fire
point. In contrast, the multi-scale convolution in FireCNN can
consider and analyse the hidden relationship between various
features from different scales, and the residual structure prevents
the loss of original features, so it has better learning ability.

Compared with deep learning method, under the same training
rounds, BPNet identifies all points as non-fire points and
simpleCNN identifies all points as fire points. This indicates
that these two networks have not yet learned the complete fire/
non-fire characteristics. This is because the main structure of
BPNet is multiple perceptron (MLP). The learning efficiency of
this simple network structure is relatively low, and with the
deepening of the network depth, it is prone to the problem of
gradient dispersion, which leads to the network unable to further
learn. SimpleCNN only uses convolution structure while multi-
scale convolution is not included. When convolution is carried out
on the original feature, the form is single, so the learning efficiency
is low. In addition, simpleCNN does not use residual structure,
which is easy to cause the loss of the original feature in the learning
process. In contrast, FireCNN was able to distinguish fire from
non-fire spots. In general, FireCNN performs best in all indicators,
indicating that FireCNN which use multi-scale convolution and

TABLE 2 | Comparison of five models, including the proposed FireCNN.

Method Precision CE Recall OE Accuracy F-measure

Xu 0.483 0.517 0.800 0.200 0.648 0.602
SVM 0.144 0.856 0.336 0.664 0.112 0.202
RF 0.281 0.719 0.776 0.224 0.264 0.413
BPNet 0.000 1.000 0.000 1.000 0.667 —

SimpleCNN 0.333 0.667 1.000 0.000 0.333 0.165
FireCNN 1.000 0.000 1.000 0.000 1.000 1.000

TABLE 3 | Additional results from the comparison of models.

Method TP FP TN FN

Xu 935 1,001 234 234
SVM 393 2,338 0 776
RF 907 2,318 20 262
BPNet 0 0 2,338 1,169
simpleCNN 1,169 2,338 0 0
FireCNN 1,169 0 2,338 0
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residual edge structure, can reliably and comprehensively identify
fire spots in this dataset, with fewer false positives and few omitted
fire spots. This also shows that a CNN with a reasonable structure
can fully adapt to fire-detection tasks.

To further explore the differences between FireCNN and
BPNet and simpleCNN, we devised an additional set of
experiments. Using the training set and test set used in the
above experiments, EPOCH trained by BPNet and simpleCNN
was added, and the EPOCH required for BPNet and simpleCNN
to reach 1.000 accuracy on the training set was recorded. The
higher the EPOCH level required, the slower the convergence
speed of the algorithm. Because the initial parameters of the deep
learning network are random, to reduce the impact of
randomness, we take the sum of ten effective experiments as
the final result. At the same time, the model trained by these ten
experiments was tested on the test set, and the precision, recall,
and accuracy were recorded, and the average value of ten effective
experiments was taken. To show the training speed of each
network more intuitively, we recorded the total time (unit: s)
spent by ten trainings. The results are presented in Table 4. We
also tested the results of our model against data from Guangdong
and Guangxi and obtained an accuracy of 0.999 and a recall rate
of 0.999. The data used for this test included all pixels in the study
area, and all pixels in the study area were classified without
artificially setting the ratio of fire to non-fire. On average,
FireCNN spends only 4.784 s for each prediction on the data
of Guangdong, and 3.659 s for Guangxi, which is far less than the
10-min time resolution of the Himawari-8 satellite. Using
FireCNN, managers can fully realise the real-time monitoring
of fire in Guangdong and Guangxi.

It can be seen from Table 4 that BPNet requires the highest
level of EPOCH, followed by simpleCNN, and FireCNN requires
the least EPOCH. The EPOCH level of simpleCNN and FireCNN
is less than that of BPNet, indicating that under the same setting,
the convolution network can extract the characteristics of fire/
non-fire spots more efficiently. The EPOCH level required by
FireCNN is only 49.9% of that required by simpleCNN,
indicating that multi-scale convolution is more effective than
single-scale convolution, and in the design of the network, we set
multi-scale convolution for FireCNN to ensure that the network
can integrate different numbers of initial features for
consideration. At the same time, there may be connections
between different initial features. The convolution of different
scales enables the network to consider the relationship between
different numbers of features and ultimately extract the more
essential features of fire/non-fire. At the same time, the existence
of residual edges prevents the network from losing its original
features. In terms of accuracy and recall rate, the gap between the
three was not more than 0.001, indicating that the three could be

applied to the fire detection task. In terms of time, FireCNN
spends the least time in training, BPNet takes the second place,
and simpleCNN spends themost time. In fact, the BPNet network
is the simplest, and the time of one EPOCH is very short.
However, because of the simple network, a higher EPOCH
level is needed to train the network, and simpleCNN spends
the most time. This is because its network structure is more
complex than that of BPNet and it has more time to train an
EPOCH. In addition, it simply uses convolution to extract
features, and its efficiency is not high. The results show that
the network needs to be complex enough to extract features
efficiently, and a reasonable network will make the training more
effective.

We also recorded the test time, and the average prediction time
for each point did not exceed 0.00003 s. It takes nomore than 4 s to
make a prediction for all data points in Guangdong Province, and
no more than 5 s to make a prediction for all data points in
Guangxi Province. Compared with the 10-min time resolution of
Himawari-8, FireCNN is fully capable of real-time monitoring.

To place these results in context, we have provided simple
statistics of the fires in Guangdong and Guangxi provinces from
January 2021 to June 2021 (Table 5).

As shown in Table 5, the number of fires in Guangdong and
Guangxi provinces decreased gradually from January and then
again sharply in June, when the number of fires decreased to a
single digit. Based on the preliminary analysis of the climate and
geographical environment of Guangdong and Guangxi, the early
spring, autumn, and winter rains in Guangdong and Guangxi
have decreased, and the wind is dry, which leads to frequent forest
fires, as evidenced by the higher number of fires in January and
February. Over time, in late spring and summer, although the
temperature gradually increased, it was affected by the monsoon.
At this time, the rainfall was abundant, and the air humidity was
high; accordingly, the number of fires decreased sharply.

CONCLUSION

To reduce the destructive impact of wildfires, it is crucial to detect
the active fires accurately and quickly in the early stage. However,
the most widely used threshold methods are confronted with the

TABLE 4 | The results of deep learning methods.

Method EPOCH TP FP TN FN Precision Recall Accuracy Time(s)

BPNet 16,605 11,677 4 23,376 13 0.999 0.998 0.999 676.61
simpleCNN 15,905 11,688 4 23,376 2 0.999 0.999 0.999 1,512.65
FireCNN 7,945 11,683 22 23,358 7 0.998 0.999 0.999 571.42

TABLE 5 | Statistical results.

January February March April May June

Guangdong 300 211 27 46 40 2
Guangxi 283 140 55 30 28 7
summation 583 351 82 76 68 9
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problem of relative large commission and omission errors, the
thresholds are varied with the study areas and so on. There are
relatively few researches focus on monitoring active fires using
deep learning method in a nearly real time way. In this article, we
presented an active fire detection system using a novel FireCNN.
FireCNN uses multi-scale convolution structure, which can
consider the relationship between features from different scales,
so that the network can efficiently extract features from non-fire
points, and the residual structure prevents the loss of original
features. These structures improve the network learning ability and
learning speed. In order to evaluate the effectiveness of the
proposed algorithm, it was test on Himawari-8 satellite images
and the presented algorithm is compared with threshold method
and the state-of-the-art deep learning models. Finally, we explored
the influence of different structural designs on the deep neural
network. A number of conclusions can be made as follows:

1) The FireCNN is fully capable of wildfire detection, with the
accuracy of 35.2% higher than the traditional threshold
method.

2) By using combination of FireCNN and Himawari-8 satellite
images, the active fires can be accurately detected in nearly real
time way, which is critical important to reduce the destructive
impact of the active fires.

3) Reasonable network design can make the algorithm converge
faster and shorten the training time.

However, the limitation of the proposed method is that the
training and testing sets are relatively small. The effectiveness of
the proposed method under large amount of data sets remains to
be studied. In addition, the environmental information is

artificially added to the original data to strengthen the feature
representation. In the future research, we will try to present a
more effective and robust method under large data sets.
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A High-Resolution Remote-Sensing-
Based Method for Urban Ecological
Quality Evaluation
Huiping Huang1,2, Qiangzi Li 1,2 and Yuan Zhang1*

1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China, 2University of Chinese Academy of
Sciences, Beijing, China

Urban ecological quality evaluation attracts more and more attention in urban land use and
ecosystem planning optimization due to continuity problems from rapid urbanization and
population growth. Remote sensing was always considering contribute to the evaluation.
However, accurate and efficient evaluation of urban ecological quality is being challenged,
as traditional remote-sensing-based methods were mainly based on low spatial resolution
data, pixel-based land cover classification, and vegetation condition factors, and ignored
object-oriented high spatial resolution classification and urban landscape pattern. Thus,
method for urban ecological quality evaluation based on high-resolution remote sensing is
greatly needed to support spatially explicit decision-making in urban planning. In this study,
a novel high-resolution remote-sensing-based method based on six ecological indicators
from vegetation conditions and landscape patterns was proposed to evaluate urban
ecological quality. The six ecological indicators were derived from high-resolution remote
sensing data using an object-oriented land cover classification. Factor analysis indicated
that the sensitivity of landscape patterns to ecological quality is relatively weaken.
Therefore, vegetation conditions and landscape patterns were used as two respective
variables to generate a linear evaluation model, with their weights calculated from the
loadings of factor analysis, to evaluation urban ecological quality. The results showed that
the proposed linear model, considering both vegetation conditions and landscape
patterns, is effective and trustworthy, and can provide more suitable support to urban
land use and ecological planning.

Keywords: urban, ecological quality, vegetation condition, landscape pattern, remote sensing

1 INTRODUCTION

Urbanization in China has been an unforeseenmajor historical event over the past 40 years. The urban
population increased from 172.45 million in 1978 to 914.25 million in 2021, and the urbanization rate
increased from 17.9 to 64.7% during the same period (National Bureau of Statistics of China, 2021).
Due to the relaxation of population policies in China, the urbanization rate has shown an accelerating
tendency, and is predicted to surpass 70% by 2035 (Chinese Academy of Social Sciences, 2019).
However, the dramatic urbanization process poses great challenges to the ecological environment and
resources (Zhang et al., 2019), leading to various ecological issues including biodiversity reduction
(Elmqvist, 2013), lengthy drought (Kaufmann et al., 2007), heat island effect (Du et al., 2020), water
quality deterioration (Owen, 2010), atmospheric pollution (Sarrat et al., 2006), and disease spreading
(Allender et al., 2010). Shrinkage of ecological land and the resulting water shortage have become
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outstanding issues in highly urbanized cities such as Beijing, China
(Zhang et al., 2009). China implemented the “Green GDP” project
in 2007 to deal with the challenging ecological situation. Green
GDP suggests less urbanization and industrialization, and more
green space expansion in urban areas. Accordingly, Beijing
municipal government decided to limit residential and business
land, and developmore green space in the urban area to strengthen
the ecological conservation. Both growing ecological issues and the
effectiveness of policy optimization need to be considered for
understanding the impacts on urban residential suitability.
Therefore, the analysis of urban ecological quality is of greater
importance than ever in the rapid urbanization region.

A well-established approach is to use ecological indicators as
standardized tools to provide comparable and comprehensive
information of an urban area for urban ecological quality analysis
(Lakes and Kim, 2012). Urban ecological indicators are
quantitative and spatially continuous descriptions of ecological
conditions in urban environments. They reflect ecological
functions and ecosystem services such as groundwater
recharge, retention of contaminants, air purification, and
urban climate regulation (Henry and Dicks, 1987; Bolund and
Hunhammar, 1999; Eliasson and Svensson, 2003; Arlt and
Lehmann, 2005; Gómez-Baggethun and Barton, 2013).

Many urban ecological indicators have been developed for
evaluating urban ecological quality, ranging from qualitative to
quantitative, from physical based to remote sensing based, from
point to surface monitoring, and from intermittent monitoring to
continuous monitoring in the last 2 decades (Wang et al., 2017).
However, most of the existing indicators were developed using
local statistical data, labor-intensive field surveys, or visual
interpretation of aerial photographs, which are difficult to
collect, and often lack high quality spatial context (Cadenasso
et al., 2007). Therefore, there is a need to develop a high-
resolution cyberinfrastructure-based ecological indicator for
effective ecological planning (Rose et al., 2015).

A remarkable array of ecological measurements can be
derived from remotely sensed images that include habitats (or
land cover classifications) and their biophysical properties
(integrated ecosystem measurements) as well as natural and
human-induced changes across the landscape (Pettorelli
et al., 2014). Various automatic remote-sensing-based
methods have been developed to improve the efficiency of
urban ecological indicators. Behling et al. presented an
automatic remote sensing and GIS based system to
generate flexible and user-defined urban ecological
indicators. In their work, fourteen indicators were
developed based on hyperspectral remote sensing data and
its corresponding height information (Behling et al., 2015).
Xu developed a remote sensing based ecological index (RSEI),
which takes greenness, wetness, dryness and heat into
consideration. The four aspects were quantified by four
remote sensing indices: normalized difference vegetation
index (NDVI), normalized difference built-up and soil
index (NDBSI), wetness component of the tasseled cap
transformation (Wet), and land surface temperature (LST)
(Xu, 2013). However, a common issue exists in the current
remote-sensing-based ecological evaluation: the use of coarse

indicators from low-resolution remote sensing data, which
hindered the development of spatially detailed urban
ecological indicators.

On the other hand, current ecological indicators from
remotely sensed images mainly focused on the quantity of
urban ecological land and ignored their spatial patterns.
However, the spatial pattern is considered as one of the
most important factors that affect urban ecological quality
(Su et al., 2012; Zhou et al., 2012; Estoque and Murayama,
2013). For instance, landscape pattern strongly influences
ecological processes with respect to population persistence,
biodiversity, and ecosystem health. The ecological
consequences of urbanization can be observed and
described by the dynamic changes of regional landscape
through landscape metrics (Li et al., 2010; Peng et al.,
2016). Some studies have expounded the significant
functions of Urban Green Space (UGS) in urban life (Uy
and Nakagoshi, 2008). Landscape pattern assessment could
also infer potential ecological processes (Turner et al., 2001;
Botequilha Leitão and Ahern, 2002). These factors express the
ecological quality of UGS from different aspects, such as
biodiversity, physical and mental health, and visual and
amenity benefits (Harper et al., 2005; Fuller et al., 2007;
Gonzalez et al., 2010). Therefore, landscape pattern
assessment should be considered to derive more
comprehensive ecological quality assessment.

In light of the issues of existing studies on remote-sensing-
based urban ecological quality evaluation, the objective of this
article is to propose an innovative method to develop urban
ecological indicators using high resolution remote sensing
images. The proposed method takes both vegetation condition
and landscape pattern into consideration to evaluate the urban
ecological quality. The results are expected to greatly support
urban managers for better understanding of the importance of
urban ecological quality, and for more objective decision making
in urban planning.

2 STUDY AREA, DATA COLLECTION AND
PRE-PROCESSING

2.1 Study Area
In this study, Haidian District in Beijing, China (Figure 1), was
selected as the study area. The area is located in the northwest
part of Beijing city. It covers an area of 430.8 km2 and is
divided into 30 administrative sub-districts. The population of
the area amounted to 3.24 million by the end of year 2019,
while the production value reached 113.23 billion US dollars,
taking up 22.4% of the total value of Beijing (Bureau of
Statistics of Haidian District, 2020). Generally, the built-up
area occupies half of the southeast area while mountains
distribute in the west margin, with urban-rural fringe
located in between. Because of the tremendous population,
high industrial output and fragmented land use patches,
Haidian District becomes a suitable area to develop an
ecological quality evaluation method with both vegetation
conditions and landscape patterns considered.
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2.2 Remote Sensing Data and
Preprocessing
GaoFen-2 (GF-2) is a high spatial resolution remote sensing
satellite that was launched by China, on 19 August 2014. It
contains Panchromatic and Multi-Spectral (PMS) sensors
(PMS-1 and PMS-2 with the same band designations). The
band designation of GF-2 PMS is shown in Table 1. The
spatial resolution of the multispectral and panchromatic bands
is 4 and 1 m, respectively. Four GF-2 multispectral images,
acquired on 12 September 2015, were used to develop
ecological indicators in this study.

The multispectral data preprocessing includes radiometric
calibration, atmospheric correction, ortho-rectification and
mosaic. Radiometric calibration was used to convert digital
numbers to Top-Of-Atmosphere (TOA) reflectance using
parameters developed by the China Centre for Resources
Satellite Data and Application (http://www.cresda.com.cn).
Atmospheric correction is used to convert the TOA reflectance
to surface reflectance using a Fast Line-of-sight Atmospheric
Analysis of Spectral Hypertube (FLAASH)module. After that, the
images were visualized and orthorectified using ENVI 5.1
software. Lastly, four images were mosaicked.

3 METHODS

We propose a novel high-resolution remote-sensing-based
methodological framework to evaluate ecological quality of
Haidian District (Figure 2). The proposed framework consists
of four modules: 1) Generation of a fine-scaled ecological land
cover map using an object-oriented image classification method;
2) Derivation of vegetation parameters and landscape metrics

based on GF-2 multi-spectral data and land cover mapping; 3)
Evaluation of the ecological quality (EQ1) using factor analysis
and analysis of the contribution of vegetation and landscape to
ecological quality based on the loadings of six indicators. 4)
Development of a linear model combining both vegetation
condition and landscape pattern to evaluate the ecological
quality (EQ2).

3.1 Object-Oriented Land Cover
Classification
Object-oriented image classification is one of the most effective
methods to conduct land use/cover mapping using high spatial
resolution remotely sensed images. As compared with pixel-based
image classification, this method can remove salt-and-pepper
noise and generate more reliable and accurate results. In this
study, the GF-2 images were classified into various land cover
types. The results were then used as a basis for landscape metrics
calculation.

Object-oriented image classification involved three steps:
multi-scale segmentation, general classes creation, and
classification rules (Ramakrishnan, 2014). The segmentation
parameters were defined as follows: layer weights were all set to
equal, scale to 20, shape factor to 0.3, color to 0.7, and
compactness and smoothness to 0.5. Four classes (water,
vegetation, soil, and impervious surface) were created to
form class hierarchy. We chose the nearest neighbor
method as the classifier. Urban area surface is complex and
heterogeneous, so it is very difficult to identify all land cover
classes simultaneously. In this research, based on the
difference of pixel spectral heterogeneity, four classes were
identified. After that, water and vegetation were subdivided
further. Water was further divided into two sub-types, clean
water and turbid water. Vegetation was divided into two sub-
types: grassland, and forest/shrub. 50 sample regions of 100 m ×
100 m in size were randomly selected, and the land cover type of
these pixels within these sample regions were identified using visual
interpretation in order to assess the accuracy of land cover
classification.

3.2 Landscape Metrics Calculation
3.2.1 Definition of Urban Ecological Land
Ecological land patches are the basic units for landscape
metric calculation. Urban ecological land refers to the
land-use type that can provide ecosystem services. Its

FIGURE 1 | The study area of Haidian district overlaid on a mosaicked
GaoFen-2 true-color image and the location of Haidian District within Beijing,
China.

TABLE 1 | Spectral bands of GaoFen-2 (GF-2) Panchromatic/Multi-
Spectral (PMS).

GF–2 PMS

Band Wavelength (μm) Resolution (m)

1. Blue 0.450–0.520 4
2. Green 0.520–0.590 4
3. Red 0.630–0.690 4
4. Near Infrared 0.770–0.890 4
5. Pan 0.450–0.900 1
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definition has been involved in the land use classification system,
though has not yet been proposed as an explicit concept in
ecological planning (Peng et al., 2017). Li et al. has defined
urban ecological land as land “aimed at improving the quality
of life of people in cities, protecting important ecosystems and
habitats, maintaining and improving the natural and urban
artificial ecological unit, and stabilizing the urban ecosystem
services at a certain level.” (Li et al., 2009).

Vegetation areas and water bodies are conventionally
recognized as ecological lands, which are important to
ecosystem service. Barren land is inferior ecological land that
has potential to convert into vegetation, and is therefore also
considered part of ecological land in this study. The impervious
surface is not regarded as urban ecological land. Ecological land
patches were extracted from land cover maps based on GF-2
image in this study. Landscape metrics were calculated at the class
level for only urban ecological land.

3.2.2 Landscape Metrics Selection and Measurement
Landscape metrics have been extensively used for analyzing
spatial patterns and differentiating urban land uses (O’Neill
et al., 1991; Listopad et al., 2015). They can be calculated at
various levels of patch, class or landscape, quantifying different
aspects such as landscape composition and configuration. Many
landscape metrics are highly correlated; therefore, correlation
analysis should be performed in order to identify suitable metrics
which are not significantly correlated with each other. At the

same time, those metrics should represent as many aspects of
landscape pattern as possible. From the perspective of
heterogeneity level, landscape metrics are typically grouped
according to the aspect of landscape pattern measured, such as
area and edge metrics, shape metrics, core area metrics, contrast
metrics, aggregation metrics, and diversity metrics (McGarigal,
2015). On the basis of correlation analysis, diversity and
heterogeneity consideration, three landscape metrics,
i.e., percentage of Landscape (PLAND), edge density (ED), and
effective mesh size of ecological land (MESH), were selected as
ecological quality evaluation indices, and calculated at grid level.
Here, the grid size is defined as 100 m × 100 m, which is suitable to
analyze the landscape pattern for ecological quality evaluation.

PLAND is a landscape composition metric, and quantifies the
proportional abundance of ecological type in the landscape
(McGarigal, 2015). Higher PLAND values represent better
ecological quality. The PLAND is calculated as follows:

PLAND � Pi �
∑n
j�1

aij

A
(100) (1)

Pi = proportion of the landscape occupied by urban ecological
land patches type (class) i. aij = area (m2) of urban ecological land
patch ij. A = total urban ecological land area (m2).

ED was calculated as the sum of the lengths of all edge
segments of urban ecological land patches, divided by the total
landscape area (McGarigal, 2015). ED quantifies the
fragmentation and shape complexity of the ecological land
patches. Higher values of ED represent lower ecological
quality. The ED is calculated as follows:

ED �
∑m
k�1

eik

A
(10, 000) (2)

eik = total length (m) of edge in landscape involving urban
ecological land patches type (class) i, includes landscape boundary
and background segments involving patch type i. A = total urban
ecological land area (m2).

MESH focuses on the patch area of ecological land
(McGarigal, 2015). It represents the fragmentation degree,
patch area and segmentation. MESH is calculated as the sum
of the squared area of patches, divided by the total landscape area
(i.e., 10,000 m2). Higher values of MESH represent better
ecological quality. The MESH is calculated as follows:

MESH �
∑n
j�1
a2ij

A
( 1
10, 000

) (3)

aij = area (m2) of urban ecological land patch ij. A = total urban
ecological land area (m2).

3.3 Vegetation Parameters Calculation
Three ecological indicators, i.e., Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)
and Biomass (BIO) from GF-2 images were involved to quantify
vegetation condition.

FIGURE 2 | The framework of ecological quality evaluation using GF-2
remote sensing data.
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NDVI is used to determine the density of green vegetation on
the land by observing distinct colors (wavelengths) of the visible
and near infrared (NIR) sunlight reflected by the plants. The
NDVI is calculated as follows:

NDVI � NIR − Red

NIR + Red
(4)

where Red and NIR refer to the reflectance of red and near-
infrared bands in the GF-2 remote sensing data. NDVI values
range from minus one to plus one, and no green leaves gives a
value close to zero (NASA, 2017).

EVI improves sensitivity to high biomass regions and
improved vegetation monitoring capability through a de-
coupling of the canopy background signal and a reduction in
atmospheric influences (Huete et al., 1999). It has shown
significant improvements related to the analysis of
environments composed by dense vegetation (Matsushita
et al., 2007). According to the work of Liu and Huete, the EVI
is defined as (Liu and Huete, 1995):

EVI � G ×
NIR − Red

NIR + (C1 × Red − C2 × Blue) + L
(5)

where L is a soil adjustment factor, C1 and C2 are coefficients used
to correct aerosol scattering in the red band using the blue band,
Blue, Red, and NIR represent reflectance at the blue, red, and NIR
bands, respectively. In general,G = 2.5, C1 = 6.0, C2 = 7.5, and L =
1 (Huete et al., 1997). The formula can be written as follow:

EVI � 2.5 ×
NIR − Red

NIR + (6.0 × Red − 7.5 × Blue) + 1
(6)

BIO is the mass of living biological organisms in an area or
ecosystem at a given time. In remote sensing based methods,
empirical algorithms have been widely used to explore the
relationships between BIO and various vegetation indices
(Zhang, 2007). Kong et al. (2016) developed a single curve
regression model and multiple linear regression models for
estimating the BIO value of the grassland, and for forest and
shrub with R squared values of 71.9 and 52.8%, respectively (Kong
et al., 2016). Their work has been applied to the study area of
Fengning county of China, which has the similar vegetation cover
to Haidian district of Beijing. Therefore, Kong et al.’s biomass
estimation model was used in this research. Kong et al.’s model for
estimating BIO value of the grassland was defined as:

BIO � 0.272 × RVI + 0.083 (7)
where RVI refers to the Ratio Vegetation Index, the reflectance
ratio of NIR and Red band. The model for estimating biomass
value of forest and shrub is:

BIO � 3683.07 ×GNDVI − 2254.634 ×GBNDVI

− 1222.285 (8)
where GNDVI refers to Green Normalized Difference Vegetation
Index, and GBNDVI refers to Green and Blue Normalized
Difference Vegetation Index. GNDVI and GBNDVI can be
calculated using Equation 9, 10.

GNDVI � (NIR − Green)/(NIR + Green) (9)
GBNDVI � (NIR − (Green + Blue))/(NIR + (Green + Blue))

(10)
In order to quantify the ecological quality in the study area, all

selected vegetation parameters and landscape metrics were
standardized to the range of 0 and 1 based on the standard
deviation model.

3.4 Factor Analysis
In this study, factor analysis was used to determine the
relationships between the ecological indicators (input
variables) and output unobserved factors (urban ecological
quality/vegetation condition/landscape pattern). The important
output of the analysis is a table of factor loadings. Each item’s
loading represents how strongly the item is associated with the
underlying factor. The absolute value of loadings should be 0.7 or
higher to indicate the independent variables identified a priori are
represented by a factor. The mathematical form of the factor
analysis can be described as:

Y1 � β11F1 + β12F2 + ... + β1nFn + ε1
Y2 � β21F1 + β22F2 + ... + β2nFn + ε2

...
Yl � βl1F1 + βl2F2 + ... + βlnFn + εl

(11)

where Y1, Y2, . . . , Yl are the observed variables, F1, F2, . . . , Fn
are the underlying factors, and βln are loadings. For instance, β11
is called the loading of variable Y1 on factor F1. The error ε serve
to indicate that the hypothesized relationships are not exact. The
maximum likelihood estimation, one of the most commonly
used factor analysis procedures, was used in this paper to
estimate factor loadings.

In this study, the factor analysis was applied three times to
evaluation urban ecological quality from three aspects. First, the
factor analysis was conducted to assess the sensitivities of six
indicators to the overall ecological quality, and ecological quality
was used as an unobserved factor. A loading matrix of six
variables and a map of ecological quality were derived. Then,
vegetation condition and landscape patterns were optimized
using factor analysis, based on three vegetation parameters and
three landscape metrics respectively. Lastly, based on the
loading matrix, a linear function with two variables
(vegetation condition and landscape pattern) was developed
to provide more reliable evaluation of the ecological quality of
the study area. For easy comparison, all values derived from
factor analysis and linear model were normalized to the range of
0 and 1.

3.5 Linear Model
In order to present the contribution of landscape patterns more
rationally without neglecting the influence of both aspects, a
linear model was built to combine vegetation condition and
landscape pattern as two variables, with their weights
calculated from loadings of factor analysis.

Linear functions commonly arise from practical problems
involving variables x and y with a linear relationship, that is,
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obeying a linear equation. The linear model used in this paper is
deduced from the results of factor analysis, taking the form:

F � a ·X + b · Y
a + b

(12)

where a and b are mean factor loadings of vegetation parameters
and landscape metrics respectively, X and Y are two factors
representing vegetation condition and landscape pattern, and
F is the urban ecological quality.

According to the discussions on factor loadings of every
variable for the effect of ecological quality, a linear model was
built based on the six variable loadings and the output of
vegetation condition and landscape pattern. The result of
model calculation represents the more reasonable ecological
quality.

4 RESULTS AND ANALYSIS

4.1 Land Cover Classification
Land cover types in Haidian District, involving grassland,
forest, shrub, clean water, turbid water, barren soil, and
impervious surface were identified from GF-2 images
through object-oriented method (Figure 3). Accuracy
evaluation using randomly selected samples showed that the
overall accuracy of the classification reaches 84.1%, and the
Kappa coefficient (Consistency check index) is 0.72. Large
patches of forest/shrub and grassland are located in the
northwest, while patches of impervious surface locate
mostly in the highly urbanized east-southern regions.

4.2 Spatial Distribution of the Six Ecological
Indicators
The spatial distribution of the three vegetation parameters
showed similar patterns (Figure 4). Lower value patches
indicated lower productivities and poor ecological effects due
to poor vegetation coverage and low-level photosynthesis ratio.
Spatial distribution patterns of NDVI, EVI, and BIO are also
highly consistent among sub-districts (Figure 4D).

Landscape metrics of the ecological land in Haidian District
were also calculated (Figure 5). PLAND (a) and MESH (c)
showed lower values in the southeastern area, indicating higher
level fragmentation of ecological land. Higher values of both
metrics can be observed in the northwest, indicating better
landscape pattern. ED (b) showed the opposite distribution
of PLAND (a) and MESH (c). Mean metrics at sub-district
scale reveal that PLAND and MESH values are highly consistent
while ED values are negatively correlated with them
(Figure 5D).

4.3 Urban Ecological Quality Evaluation
4.3.1 Results of Factor Analysis
Factor analysis was used in this study to analyze the relationship
between input variables (ecological indicators) and the output
unobserved factor. The results of three factor analyses correspond
respectively to levels of ecological quality, vegetation condition
and landscape pattern.

First, the output of unobserved factor was generated through
factor analysis with all six input variables. The weight of each
indicator was multiplied by its corresponding indicator value to
generate an overall ecological quality value (Figure 6). Here, the
urban ecological quality based on factor analysis with six
indicators is abbreviated as EQ1.

Likewise, two other maps were generated using factor analysis
(Figure 7), including the output unobserved factor of vegetation
condition based on three vegetation parameters, and the output of
landscape pattern using three landscape metrics as input.
Figure 7A is the map of vegetation condition levels.
Figure 7B is the map of landscape pattern levels. The hot
spots in Figure 7A, in red, show the areas that have poor
vegetation condition, and the hot spots in Figure 7B, in red,
refer to the areas that have the lower-level landscape patterns.

Figure 7C showed two curves with green and red representing
levels of vegetation condition and landscape pattern at sub-
district scale. Most sub-districts have higher vegetation
condition value than landscape pattern value, and only nine
are in opposite situation. It is also indicated that Qinglongqiao
has the biggest difference of 0.36 between values of vegetation
condition and landscape pattern.

Figure 8 illustrates the contribution of vegetation
condition and landscape pattern to urban ecological quality.
The comparison revealed that EQ1 values were more likely to
be consistent with those of vegetation condition, regardless of the
values of landscape patter. This indicates that EQ1 from the 6-
indicator factor analysis overlooked the contribution of landscape
pattern, and may represent biased ecological quality of the
study area.

FIGURE 3 | Land cover classification of Haidian District, Beijing.
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4.3.2 Results of the Linear Model
It is indicated by the factor analysis results that, landscape pattern,
one of themost important factors that affect urban ecological quality,
should be incorporated in a different way in the ecological evaluation
process. Therefore, this study adopted a linear model integrating
vegetation condition and landscape pattern with their respective
weights, instead of the 6-factor analysis. We take the average of the
absolute loading values as a weight. Then, ecological quality was
calculated based on the linear model which considers vegetation and
landscape with their respective weights.

4.3.2.1 The Weights of Vegetation and Landscape
Equation 13 in factor analysis gives the relationship between
ecological quality and the six observed variables (PLAND,
ED, MESH, NDVI, EVI, and BIO) with indicator loadings
shown.

PLAND � 0.884 × F1 + ε1
ED � −0.508 × F1 + ε2
MESH � 0.790 × F1 + ε3
NDVI � 0.993 × F1 + ε4
EVI � 0.955 × F1 + ε5
BIO � 0.878 × F1 + ε6

(13)

These loadings represent how strongly this indicator is associated
with the unobserved factor (EQ1). The importance of various
ecological indicators can be determined through comparison of
their loadings on ecological quality. PLAND, MESH, NDVI, EVI,
and BIO had positive loading values higher than 0.7, indicating that
those variables were positively correlatedwith EQ1 and therefore can
be used as important indicators to evaluate the ecological quality. On
the other hand, ED has a negative loading value, which indicates a
negative correlation between ED and ecological quality. The absolute
loading value of ED is lower than 0.7, showing weaker relationship
between ED and the factor compared to other indicators.

According to Equation 14, the weight of vegetation
condition 1) is 0.942, derived as the average of absolute
loadings of three vegetation parameters. The weight of
landscape pattern 2) is 0.727, the average of the absolute
loadings of three landscape metrics.

a � (0.878 + 0.993 + 0.955)/3 � 0.942
b � ( 0.884 + 0.508 + 0.790)/3 � 0.727

(14)

In the study, a linear combination model was adopted to
give ecological quality evaluation considering both
vegetation condition and landscape pattern. Here, the

FIGURE 4 | The spatial distribution of NDVI (A), EVI (B), and BIO (C) values, and sub-district-wise normalized indices (D).
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urban ecological quality based on linear model with the
wights of vegetation condition and landscape pattern is
abbreviated as EQ2. Vegetation condition and landscape
pattern from factor analysis (Figure 7) were used as two
separate sets in the model. Equation 15 shows the
relationship between ecological quality and the two
observed variables (vegetation condition X and landscape
pattern Y).

EQ2 � a ·X + b · Y
a + b

� 0.942 ·X + 0.727 · Y
1.669

(15)

4.3.2.2 Ecological Quality Map
Figure 9A showed the result of EQ2 in Haidian District using
the linear model. Compared to Figures 7A,B, there exists good
consistency between higher ecological quality and higher
vegetation level and reasonable landscape patterns. The
areas with high levels of ecological quality mostly present
good vegetation conditions and reasonable landscape
patterns. On the other hand, those areas with low levels of

ecological quality are mainly caused by unreasonable
landscape patterns combined with average levels of
vegetation conditions. The hot spots, in red, in Figure 9A
are the areas of poor ecological quality.

Figure 9B showed EQ1 from the factor analysis and EQ2 from
the linear model at sub-districts scale. EQ1 indicated that the
levels were more likely consistent with that of vegetation
condition. Comparisons found the levels of EQ2, which
considered both vegetation conditions and landscape patterns
is effective in evaluating urban ecological quality.

From the perspective of spatial variation of ecological quality,
it can be concluded that there exists a gradual change from better
quality in the northwest to worse in the southeast (Figure 9A).
The northwestern part of Haidian, including Xiangshan, Sujiaduo
and Wenquanzhen sub-districts has higher ecological quality.
Then the sub-districts to the east of the top three high level
ecological quality sub-districts, i.e., Shangzhuang, Xibeiwang and
Sijiqing, ranked in the second tier of higher ecological quality.

In the middle-eastern part, sub-districts have a medium level
of ecological quality. Southeastern part of Haidian district,
especially Yongdinglu, Zhongguancun, Beixiaguan, Haidian

FIGURE 5 | The spatial distribution of landscape metrics PLAND (A), ED (B), and MESH (C), and sub-district-wise normalized landscape metrics (D).
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and Beitaipingzhuang sub-districts, has lower level of ecological
quality. The other areas exhibited mixed ecological quality
patterns.

With that, Beijing government released a general city plan
for 2016 to 2035. The plan emphasizes on removing non-
capital functions and solving “big city disease”. It was also
mentioned that the green area of Beijing will grow from 41.6 to
44% by year 2020 (Beijing general plan (2016-2035)).
Northern region with the rich natural and human resources
is the expanding area of Zhongguancun Science Park. In
Haidian district overall development and planning,
northern region is considered as a tourist area and
ecological barrier, therefore urbanization is strictly under
control and hardly permitted in these areas.

5 DISCUSSION

5.1 Vegetation Plays the Decisive Role for
Ecological Quality
Over the past several decades, vegetation has been identified as an
important contributor to urban environment and ecological
service. Urban vegetation can contribute to quality of life at
the most fundamental level through biodiversity protection,
water quality levels, and maintenance of ecological processes
and life-support systems (Carne, 1994). Interactions between
vegetation and ecological quality were described by
experiments (Fennessy et al., 2002; Pu et al., 2008; Giménez
et al., 2017) or by models (Rajabov, 2009; Giménez et al., 2016;
Kuipers et al., 2016). In this research, vegetation played a key role

in ecological evaluation as shown by factor analysis results.
Equation 14 showed that the three vegetation parameters
(NDVI, EVI, and BIO) have positive and much higher loading
values. This is consistent with the work that other researchers
have done (Aksoy, 2010; Kuipers et al., 2016). Among the three
vegetation parameters, NDVI represents the richness of
vegetation and plays the decisive role for ecological quality,
resulting in a push to improve urban environments by
planting more trees and grass.

5.2 Landscape Metrics Contribute Less but
Are Indispensable to Ecological Quality
Landscape structure has an important influence on a wide range of
ecological patterns and processes, and landscape metrics are
common tools to assess these relations under the matrix-
corridor-patch model (Forman, 1995; Turner et al., 2001).
Landscape patterns become increasingly crucial in ecological
quality evaluation in urban areas because of the gradually
fragmented ecological land. The importance of landscape
patterns was underestimated as shown in the 6-indicator
factor analysis results, while actually landscape metrics such
as patch size, patch shape and distribution of urban ecological
land play a decisive role in defining their ecological and
landscape functions (Kong et al., 2007).

In light of this issue, the study evaluated ecological quality based
on two separate groups of indicators, e.g., vegetation parameters and
landscape pattern. Factor analysis was performed separately to
generate their ecological effects, and then a linear combination
model was used to evaluate ecological quality integrating the
effects of both indicator groups. In this way can landscape
metrics provide proper contribution to ecological quality
evaluation. The results are expected to emphasize the
contribution of landscape pattern to urban ecological quality in
future studies. These can help decision-makers better understand
cause and effect relationships between the influencing factors and
urban ecological quality.

Figure 10 shows three maps of vegetation condition (a),
landscape pattern (b), and EQ2 (c) of Qinglongqiao sub-district.
In Figure 10A, the hot spots in the left-bottom indicated the area
with extremely poor vegetation condition. However, Figure 10C
showed that the ecological quality is not in the lowest level in the
same area. This result was caused by the quite good landscape
pattern with green color (Figure 10B). Therefore, the method
proposed in this study synthesizes together landscape metrics and
vegetation parameters in a reasonable way, and is expected to result
in more convinced ecological results.

Furthermore, landscape metrics have been used to assess
ecological patterns and processes. In this study, higher PLAND
and MESH, and lower ED represent better ecological quality.
PLAND and MESH have positive influence while ED has
negative one. Thus, patch size and shape present the
fundamental landscape indicator in assessing the urban
ecological quality. For example, a connected green network
has higher amenity value than smaller and fragmented ones. It
can enhance the amenity values of green spaces and provide
more choices to residents (Jim and Chen, 2003). Although ED

FIGURE 6 | Map of ecological quality (EQ1) using six-indicator-based
factor analysis in Haidian district.
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has the least weight, it also can contribute to the complexity of
patch edge and consequently the interactions between green
spaces and ecological quality according to edge effect (Harper
et al., 2005).

5.3 Advantages and Limitations of the
Proposed Method
Remotely sensed images, especially high spatial resolution
images provide several advantages in ecological land
mapping and quantitative evaluation of ecological quality.
Object-oriented image classification can provide highly
accurate land cover map that can be used to generate
ecological indicators with reliable accuracy, especially when
meter level spatial resolution images were involved. The
proposed method described the detailed differences of
ecological quality at regional scales, which account for the
spatial heterogeneity in evaluating urban ecological quality.

The shortage of the method lies in the spatial scale of the
evaluation. Vegetation parameters can be derived from high
spatial resolution images and UAV (Unmanned Aerial Vehicle)
based remote sensing techniques. However, landscape metrics were
calculated at a grid pixel level, which causes a coarser spatial
resolution of the landscape metrics than vegetation parameters.
Due to the availability of data, remote sensing-based vegetation
and landscape indicators were considered in this study. Other
indicators, e.g., air quality, vegetation diversity could be discussed
in future work.

5.4 Policy Optimization by Combining
Ecological Land Spatial Pattern
Increasing the area of ecological land (such as water bodies and
especially vegetation) is a traditional way to improve ecological
quality. With the rapid increase of population and expansion
of built-up area, ecological land faces a growing risk of

FIGURE 7 | Map of Vegetation condition (A), Landscape pattern (B), and the sub-district-wise values in Haidian district (C).
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fragmentation. Therefore, the ecological quality evaluation
method proposed in this paper, could provide decision-
makers and the general public with specific information on
the current status of vegetation condition and their spatial
pattern, from the ecological quality view. Urban ecological
quality could be enhanced through spatial pattern
optimization as well as ecological land area expansion.

Figure 11 showed three lines with different colors to
represent the levels of EQ2, vegetation condition and
landscape pattern for each sub-district in Hiadian District.

Xiangshan has the highest ecological quality level due to the
most reasonable landscape pattern and the best vegetation
condition, while Yongdinglu has the lowest. Either poor
vegetation or unreasonable landscape patterns can result in
low levels of ecological quality. The sub-districts with lower
ecological quality can be potentially improved through
optimization of the landscape pattern of ecological land or
improvement of vegetation vigor. Hence, efficient policies to
either improve vegetation vigor, increase vegetation area, or
optimize spatial pattern could be drawn from Figure 11. For

FIGURE 8 | Ecological quality (EQ1), vegetation condition and landscape pattern derived from factor analysis at sub-district scale.

FIGURE 9 | Results of ecological quality evaluation (EQ2) with the linear model (A), comparison to results with two methods (B).
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19 sub-districts including Zhongguancun, which have higher
vegetation condition value than landscape pattern value, the
better way to improve the ecological quality of those areas is to
make the landscape pattern more reasonable.
Correspondingly, for the other nine sub-districts including
Qinglongqiao, which have higher landscape pattern value than
vegetation condition value, improving the vegetation
condition of ecological land is considered a better solution
to achieve higher ecological quality of this area.

Another result shown in Figure 11 is that ecological quality is
greatly affected by landscape pattern in those sub-districts with
lower levels (score_VEG <0.4) of vegetation condition. Due to
building protection and cultural tradition, it is difficult to
improve vegetation condition in the above-mentioned sub-
districts. Therefore, improving the level of landscape pattern is
an effective way to make ecological quality better.

With the “ecological city” initiative launched as an integral
part of Beijing and local government strategy, a plan is developed
to build a compound ecological security pattern, according to the

actual situation of Haidian district, The revealed performances
and pattern of ecological quality will be useful to understand
vegetation condition and landscape pattern as the sensitive
influencing factors of ecological environment, and to improve
urban land use and ecology management decisions. In the
northern regions with mountains and wetlands, vegetation
conditions need to be maintained and improved. However, in
the southern regions with built-up land, ecological land patches
are smaller and more fragmented. The better way to improve
ecological quality is to optimize the landscape pattern instead of
vegetation condition.

6 CONCLUSION

This paper proposed a novel method to evaluate urban
ecological quality integrating vegetation condition and
landscape pattern metrics from remotely sensed images. The
paper gives more reliable ecological quality mapping in Haidian

FIGURE 10 | Maps of vegetation condition (A), landscape pattern (B), and EQ2 (C) of Qinglongqiao sub-district.

FIGURE 11 | The normalized results of landscape pattern levels, vegetation condition levels and ecological quality.
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District, Beijing, China. The following conclusions can be drawn
in the study.

• High-resolution remote-sensing-based method enables the
development of ecological indicators with high spatial
accuracy, thus better describing the detailed differences of
ecological quality at regional scales, and could account for the
spatial heterogeneity in evaluating urban ecological quality.

• Landscape patterns should be considered in the ecological
evaluation process. Ecological quality evaluation based on
only vegetation condition factors, e.g., NDVI, EVI, and
BIO, cannot reflect the reality in Haidian District, Beijing,
leading to the situation that areas with high levels of
vegetation condition are more likely to be associated
with higher level ecological quality, regardless of the
landscape pattern level. This revealed the big
shortcoming of the evaluation for neglecting the
fragmentation of the ecological land and against the
common sense of ecological quality.

• Ecological quality evaluation integrating vegetation
condition factors and landscape metrics, e.g., PLAND,
ED, and MESH, could result in more reliable and
effective estimation. Areas with high levels of vegetation
condition and reasonable landscape pattern lead to higher
ecological quality results. On the other hand, those areas
with low levels of ecological quality are mainly caused by
unreasonable landscape patterns combined with below-
average levels of vegetation condition.

• Ecological quality evaluation based on vegetation condition
factors and landscape metrics could result in more spatially
specific ecological quality level, and reflect the spatial variation
in the study area. Analysis of the ecological quality evaluation
results found that there exists a gradual degradation of

ecological quality from the northwest to the southeast
along, consistent with the intensified urbanization.

• Ecological quality is greatly affected by landscape pattern
when the levels of vegetation condition is below 0.4. For
optimization of ecological quality in those sub-districts, the
government could make great efforts to improve landscape
pattern such as creating more small patches of green space
or water bodies, as well as strengthening the greening
pattern of the built-up area.
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