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Despite continuous progress in the development of anti-viral and anti-bacterial/parasite drugs, 
the high cost of medicines and the potential for re-infection, especially in high risk groups, sug-
gest that protective vaccines to some of the most dangerous persistent infections are still highly 
desirable. There are no vaccines available for HIV, HCV and Malaria, and all attempts to make 
a broadly effective vaccine have failed so far. In this Research Topic we look into why vaccines 
have failed over the years, and what we have learn from these attempts. 

Rather than only showing positive results, this issue aims to reflect on failed efforts in vaccine 
development. Coming to understand our limitations will have theoretical and practical impli-
cations for the future development of vaccines to these major global disease burdens.
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Together with sanitation, vaccination is one of the most effective life-saving interventions available
in the fight against infectious diseases. As you read this issue of Frontier in Microbiology, scientists
around the globe are working toward developing vaccines against diverse infectious diseases,
allergies, cancer and autoimmune diseases. We believe that every major disease will eventually have
its vaccine. However, if we consider major infectious agents, such as human immunodeficiency
virus (HIV), hepatitis C virus (HCV), and Malaria, despite many years of effort, billions of dollars
spent and countless animal lives sacrificed, no vaccine is available to protect against these infections.
How did this happen? What prevents us from being victorious? In this issue of Frontier in
Microbiology, we examine why some of these vaccines have failed, collecting reflections from
leading researchers in the field.

Some of the key obstacles to vaccine development discussed in this issue include:

1. The genetic diversity of the target pathogen. In RNA viruses such as HIV and HCV, the error
prone RNA dependent polymerase generates quasispecies (Chanzu and Ondondo, 2014; John
and Gaudieri, 2014; Ondondo, 2014). In addition, influenza vaccines need to be reformulated
annually, due to antigenic drift (Quinones-Parra et al., 2014). Over half a century of malaria
vaccine development, despite awareness of the diversity of natural parasite populations, vaccines
that have progressed to human clinical trials have only included a small fraction of the
polymorphisms present in endemic regions. In addition to increasing the complexity of the
immunogen, antigenic diversity of the organism in different geographic regions has major
implications for vaccine efficacy. In this issue, Alyssa Barry and Alicia Arnott discuss the
importance of population genetic studies in identifying functionally relevant polymorphisms,
and argue that molecular epidemiological surveys are necessary to ensure that the vaccine
strain corresponds to the local target parasite populations (Barry and Arnott, 2014). Targeting
conserved pathogen antigens may help to overcome diversity, although these regions are often
concealed and/or less accessible to immune effectors. Indeed, Chiu and colleagues herein showed
that antibody titers to PfRh5 correlated with protection against Plasmodium falciparum in
clinical trials in PNG (Chiu et al., 2014). Moreover, Quinones-Parra and colleagues also showed
that broadly neutralizing antibodies targeting conserved regions, which developed naturally
following the 2009 influenza pandemic, provide hints to the nature of the responses a successful
vaccine should elicit (Quinones-Parra et al., 2014). As an example of this strategy, Drummer
and colleagues proposed that the conserved regions within HCV E2, especially the residues
that interact with the virus co-receptor CD81 (Drummer, 2014), may represent an attractive
immunogen in a HCV vaccine.
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2. The discrepancy between immunogenicity and protection.

As highlighted in this issue, although many HIV vaccine
candidates induce strong T and B cell responses in pre-clinical
and Phase-I trials, these responses have thus far failed to
correlate with protection in larger scale trials (Chanzu and
Ondondo, 2014). The current immunological readouts, such
as ELISPOT, intracellular cytokine staining or antibody levels
do not appear to be adequate measures that predict vaccine
success or failure. New strategies of clinical trial monitoring,
such as those depicting immunogenicity from a new angle,
or those that dissociate the effects of the vaccine vector from
vaccine antigen, may need to be developed and applied. These
could include analysis of the T and B cell immune repertoire
(Li et al., 2013), which might identify the clonotype response
to the vector independent of responses to the immunogen.
In addition, whole genome transcription arrays and other
recent high throughput assays are likely to provide new and
unexpected insights. Overall, new concepts are required to
define the best reference or readout of immunogenicity that
may in turn predict protective efficacy.

3. Vector or Immunogen, which one matters? While an
effective vaccine may need to be multivalent, comprising
multiple alleles for a given polymorphic antigen, and/or the
antigen derived from conserved regions, the delivery vectors
are at least as important as the immunogen itself. The vectors
modulate innate and adaptive immunity, hopefully enabling
the vaccine antigen to elicit the right response (Ondondo,
2014). Prime-boost strategies using plasmid DNA or viral
vector prime followed by protein or viral vector boost have
been studied extensively. An important lesson was learned
from the HIV STEP study, in which a highly immunogenic
vaccine actually increased HIV acquisition, presumably due
to preexisting immunity to the vector. Of the proposed
explanations, a strong response to the vector may have
activated CD4+ T cells, which are targets for HIV. This
seemingly unavoidable paradox highlights the challenges of
HIV vaccine development.

4. The discrepancy between local and systemic responses.

Rafferty and colleagues argue that of the vectors used in
HIV vaccine design, viral vectors with mucosal tropism,
e.g., adenoviruses and influenza viruses, are particularly
interesting, given that genitorectal mucosa is the first site
of contact in HIV transmission (Rafferty et al., 2014). Most
systemic vaccines do not elicit mucosal responses, and it is
uncertain if mucosal delivery of antigen can induce systemic
immunity. Cytokines and chemokines have been used as
adjuvants to encourage mucosal homing of immune effector
cells, such as the “prime-pull” approach in animal models
(Rafferty et al., 2014). Difficulties in studyingmucosal immune
responses, including low cell numbers, sample variation
and invasiveness of mucosal sampling means that mucosal
immune responses are often not examined in clinical trials,
as discussed in this issue (Chanzu and Ondondo, 2014).
This is an important area of future clinical trial monitoring
and is being addressed. An effective HIV vaccine strategy
may need to involve both systemic and mucosal approaches
simultaneously. Indeed, women in third world countries share

the major burden of HIV infection, and a vaccine that can
effectively elicit mucosal immune responses in the female
genital tract is more likely to protect women (Rafferty et al.,
2014).

5. Infant vaccination, how much do we know? On a global
scale, millions of infants receive around 20 vaccines during
the first year of life, but relatively few studies have examined
the development of immunity in this age group. The innate
immune system does not reach full capacity until the teenage
years, and as adaptive immunity in newborns is intrinsically
skewed to a Th2-type, the neonatal and infant immune
responses to many vaccines are suboptimal (Ndure and
Flanagan, 2014). In addition, the naïve immune repertoire’s
initial response to a vaccine, which may engage both vaccine
antigen-specific and non-specific T and B cells, promoted for
example by inflammation via the TNFR2 receptor (Wilson
et al., 2015), may play an important role in shaping the
repertoire toward subsequent unrelated pathogens. Indeed,
growing evidence suggests that vaccines can have heterologous
effects, affecting an individual’s subsequent responses to
unrelated pathogens or vaccines (Flanagan et al., 2011). As
vaccines which target major global diseases are eventually
likely to be included in childhood vaccination, it is important
to understand how vaccines modulate the naïve immune
system and the long-term impact of this intervention.

6. Immune subversion and immunosuppression. Malaria-
infected red blood cells have an amazing capacity to
induce FOXP3+ expression, a marker of highly suppressive
regulatory T cells (Treg), on co-cultured autologous T cells,
suggesting that widespread induction in vivo would not
require direct contact with the parasite (Scholzen et al., 2014).
In an exciting mechanistic insight, in this issue, Wykes and
colleagues further show a role for PD-1 in malaria-induced
loss of T cell function and/or apoptosis (Wykes et al., 2014).
While it is not feasible to directly predict viral epitopes
recognized by the T cell receptor, Moise and colleagues show
that the JanusMatrix algorithm can be applied to achieve
this by searching for virus-encoded human homologs, which
theoretically can be recognized by Treg (Moise et al., 2014).
We also propose that to design improved vaccines we need
to better understand how genetic factors such as HLA can
affect viral susceptibility. For example, in addition to HIV and
HCV which interfere with HLA expression in host immune
cells, could HLA intrinsically influence T cell repertoire
development before the selection step?

Regardless of the chances of developing a prophylactic vaccine
for every disease, the world needs vaccines to reduce current
disease burdens and save lives. How to effectively mobilize
innate immunity may be another focus for future vaccine design.
Learning from our mistakes and understanding our limitations
will help us in our ongoing battle against pathogens.
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After more than 50 years of intensive research and development, only one malaria vaccine
candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy,
this candidate is now forecast to become the first licensed malaria vaccine. Hence, more
efficacious second-generation malaria vaccines that can significantly reduce transmission
are urgently needed. This review will focus on a major obstacle hindering development
of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diver-
sity in leading candidate antigens, vaccines have been and continue to be formulated
using recombinant antigens representing only one or two strains. These vaccine strains
represent only a small fraction of the diversity circulating in natural parasite populations,
leading to escape of non-vaccine strains and challenging investigators’ abilities to measure
strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic
diversity in order for vaccine development to succeed. Many studies have now cataloged
the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine anti-
gens. In this review, we describe how population genetic approaches can be applied to
this rich data source to predict the alleles that best represent antigenic diversity, polymor-
phisms that contribute to it, and to identify key polymorphisms associated with antigenic
escape. We also suggest an approach to summarize the known global diversity of a given
antigen to predict antigenic diversity, how to select variants that best represent the strains
circulating in natural parasite populations and how to investigate the strain-specific efficacy
of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will
not only shed light on the contribution of genetic diversity to the antigenic diversity of
malaria, but will also maximize the potential of future malaria vaccine candidates.

Keywords: Plasmodium falciparum, Plasmodium vivax, malaria, vaccine, strain, diversity, polymorphism, clinical
trials

INTRODUCTION
Malaria is the most devastating parasitic disease afflicting
humankind. The disease results from infection with protozoan
parasites of the genus, Plasmodium and is transmitted by female
anophelene mosquitoes. Of the 3.4 billion people in 108 coun-
tries at risk of malaria, 1.2 billion are at high risk of disease. In
2012, it was estimated that this disease caused 2000 deaths per day,
the majority (77%) being children <5 years of age in sub-Saharan
Africa infected with Plasmodium falciparum, the most virulent of
the five known human malaria parasites (1, 2). In addition to this
enormous heath toll, malaria exerts a heavy economic burden con-
tributing to the cycle of poverty in many resource-limited settings
(3). Although less lethal than P. falciparum, the majority of malaria
infections occurring outside of sub-Saharan Africa are caused by
Plasmodium vivax, with as many as 2.3 billion people at risk of
infection (4). Several unique features of P. vivax biology, includ-
ing its dormant stage in the human liver, make it more resistant
to malaria elimination. As a result, P. vivax is predicted to present
the ultimate obstacle to malaria elimination in endemic countries
(5). Nevertheless, research into this parasite lags far behind that of
P. falciparum due to its relatively recent recognition as a serious

threat to global public health and lack of a viable long term in vitro
culture system (4, 6).

Intensified malaria control efforts, supported by the Roll Back
Malaria campaign, have resulted in a 42% decrease in malaria
deaths worldwide in the last decade and many previously endemic
countries have now shifted from controlling malaria to an elimi-
nation agenda (1). In 2007, encouraged by the stunning impact of
this campaign, major funding bodies united to issue the ultimate
challenge, to eradicate malaria globally by progressive malaria
elimination from different countries and regions (3, 7). From
past malaria eradication attempts, it is clear that in order for
this ambitious goal to be achieved, malaria transmission must
be permanently interrupted. Interventions that reduce the para-
site reservoir, limit the rate at which infections are spread and the
duration of time that a human or mosquito host is infectious are
therefore urgently needed (8). In concert with other malaria con-
trol interventions, this could be achieved with the development of
a broadly effective malaria vaccine.

Malaria parasites are ancient organisms with abundant genetic
polymorphisms, much of which have evolved to escape host
immune responses and thus presents a major obstacle to the
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

Box 1 Glossary of terms.

Strain: a parasite variant that is genetically unique and induces specific immune responses against one or more of its antigens.

Isolate: a parasite specimen derived from an infected individual that has been either adapted for in vitro culture or used directly for experi-
ments. Different isolates from the same population may contain parasites that are genetically identical at one or more loci. Individual isolates
may also contain one or more genetically distinct parasites if they have been collected from an individual with multiple infections.

Clone: a genetically homogeneous parasite isolate.

Polymorphism: variation in the population at a particular nucleotide or amino acid residue.

Allele: one variant of a particular genetic locus. It can refer to individual polymorphic sites within a nucleotide or amino acid sequence, or
the combination of all polymorphic sites in a gene or gene region (known as the haplotype).

Haplotype: a combination of alleles in a gene or gene region carried by a particular parasite clone.

Serotype: a haplotype from a gene or gene region that is antigenically unique and induces strain-specific responses.

Monovalent vaccine: a vaccine containing only one distinct antigen or one allele of the same antigen.

Multivalent vaccine: a vaccine containing two or more distinct antigens, or two or more alleles of the same antigen.

development of a vaccine that provides broad protection against
all, or at least the majority of strains (9). As with other pathogens,
the challenge in developing an effective malaria vaccine will be
to differentiate between diversity that is associated with immune
escape and cross protection, and that which has no bearing on the
immune response, having simply accumulated over time through
genetic drift or through adaptation to diverse host environments
(9). To date, the polymorphisms in malaria antigens targeted by
functionally important antibodies remain poorly characterized
(10). Very little is known of how sequence polymorphisms relate
to antigenic diversity or the potential for polymorphisms to medi-
ate vaccine escape for Plasmodium spp. (11). The key to success
with other pathogens has been the identification of immunolog-
ically relevant diversity. This has been achieved by performing
population genetic and structural studies to identify functionally
relevant polymorphisms, followed by molecular epidemiological
surveys or in vitro functional studies prior to development and
testing of vaccines (9). Narrowing the focus to immunologically
relevant polymorphisms would greatly reduce the diversity that
must be considered when developing multivalent malaria vaccines
covering a broad range of strains (2, 9, 12) (Box 1).

MALARIA VACCINES: PAST, PRESENT, AND FUTURE
A long lasting, broadly efficacious malaria vaccine would be the
most sustainable approach to control and eventually eradicate
malaria. That a malaria vaccine may be feasible is strongly sup-
ported by the fact that people living in malaria endemic areas
develop protective immunity against malaria symptoms during
childhood (13). By adulthood, decreases in the prevalence of infec-
tion and density of parasitemia are achieved indicating that this
immunity eventually provides some protection against infection
(14, 15). Passive transfer of immunoglobulin from hyper-immune
African adults to non-immune children with severe malaria was
shown to have curative properties, demonstrating that antibody
responses are largely responsible for protection against clinical dis-
ease (16). Furthermore, vaccination of rodent and primate models
with recombinant parasite antigens elicits high antibody titers
that are associated with protection against subsequent malaria

challenge (17–20). Although the development of malaria vaccines
has been an active focus of the malaria research community over
the last 50 years, a vaccine remains a missing component of malaria
control and elimination strategies (21).

Despite numerous promising malaria vaccine candidates and
several partially successful malaria vaccine trials (22–25), short-
lived protection, limited funding, and a lack of key technologies
has hampered further testing and the scale-up of clinical trials of
novel malaria vaccine candidates. The first successful malaria vac-
cine trial, based on a “whole parasite” approach, was conducted
in humans in the 1950s. Vaccination with irradiated sporozoites
was shown to protect against both homologous and heterologous
challenge in humans (26, 27). However, the need for large-scale
production prevented further development of this approach. With
the advent of molecular technologies in the 1980s, the focus shifted
to so-called “subunit” approaches, including highly immunogenic
parasite antigens as targets such as the circumsporozoite protein
(CSP), which was identified as the parasite antigenic determinant
targeted by immune responses induced by the sporozoite vaccine
(28). Following these early studies, and on the back of highly
promising pre-clinical studies, many small-scale subunit vaccine
trials were conducted in humans. Efficacy was highly variable
with many candidates demonstrating no protective effect,however,
there were some promising candidates identified that continue to
be further developed today (21), and these are discussed in more
detail below.

In the last decade, there has been an attempt to assist and accel-
erate development of a malaria vaccine with the establishment
of the PATH Malaria Vaccine Initiative (MVI), which has greatly
progressed the evaluation and identification of promising malaria
vaccine candidates. To further focus and unite the global vaccine
effort, in 2006 the World Health Organization (WHO) launched
the first malaria vaccine technology roadmap with the landmark
goal:

By 2015, develop and license a first generation malaria vac-
cine that has a protective efficacy of more than 50% against
severe disease and death and lasts more than one year (29).
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Currently, a single vaccine candidate is on track to meet this
goal. Known as “RTS,S,” this vaccine is based on the repeat region
and T-cell epitopes of CSP. RTS,S is the subject of a large multi-
centre Phase 3 trial involving more than 15,000 children over 11
sites in sub-Saharan Africa. The full results of the trial have not yet
been published; however, after three doses, clinical malaria cases
during the first 18 months of follow-up decreased by an estimated
46% (severe disease by 36%) in children 5–17 months of age at
first vaccination, and 27% (severe disease by 15%) in infants aged
6–12 weeks of age at first vaccination (30), therefore, RTS,S effi-
cacy is approaching the above-mentioned WHO criteria for a first
generation malaria vaccine. As a result, this vaccine is likely to
be licensed in 2015 for use in young African children and could
lead to significant decreases in malaria morbidity and mortality in
this high-risk population. Despite this positive outlook, it is cau-
tioned that this vaccine is only partially protective against disease
and wanes over time. New, second-generation vaccines will need
to have major improvements in efficacy to meet the challenges
ahead (10).

Recognizing the changing epidemiology of malaria in the con-
text of a shrinking global malaria map and a shift in populations
most at risk of infection (5), as well as the need for vaccines
with higher efficacies than RTS,S if malaria elimination is to be
achieved, the goals of the Malaria Vaccine Technology Roadmap
were recently reset with two major objectives:

By 2030, license vaccines targeting P. falciparum and P.
vivax that encompass: (i) development of second-generation
malaria vaccines that provide a protective efficacy of more
than 75% against clinical (mild and severe) malaria . . . and
(ii) development of malaria vaccines that reduce transmission
of the parasite and thereby reduce the incidence of human
infection . . . (31).

To achieve these new goals, a better understanding of the minimal
requirements and mechanisms underlying development of immu-
nity against P. falciparum and P. vivax (10, 12) as well as knowledge
regarding the factors that influence transmission of both species,
will be essential. As the development of vaccines against P. vivax
is also a major goal, it will be important to consider the distinct
features of this species, which underscores the need to intensify
research efforts into this relatively neglected parasite.

APPROACHES TO MALARIA VACCINE DEVELOPMENT
Malaria parasites are complex eukaryotes comprised of many anti-
genic targets. It has been suggested that vaccines may need to be as
complex as the parasite itself (32) and therefore there has been con-
siderable interest in the whole parasite approach. As mentioned
above, irradiated live sporozoite vaccinations have shown great
success in clinical trials (27, 33, 34). Currently, different methods
are being used to attenuate sporozoite stages including chemical
and genetic modification, and these have been reviewed elsewhere
(35). However, there are some challenges to overcome in addition
to the technical difficulties and high costs associated with scaling
up production including the dose required to induce long-lasting
protective immunity, transport, and storage in the absence of a
reliable cold chain for distribution to at risk populations (36).
There is also a risk of reversion to virulence (12). Hence the

alternative subunit vaccine approach continues to be vigorously
evaluated (37). As indicated above, this involves individual recom-
binant parasite proteins administered as monovalent preparations
or combinations of multiple proteins together with different vec-
tors and adjuvants that enhance the immune response. As the
majority of clinical trials conducted to date have been based on
subunit vaccines, this rest of this review will focus on the develop-
ment of this class of malaria vaccines and the challenges associated
with this approach.

Several highly abundant parasite proteins were identified as
targets of natural immunity many years ago but in recent years
the list of possible candidates has expanded. These candidates
have been extensively validated in pre-clinical studies using differ-
ent approaches including the measurement of inhibitory antibody
responses in in vitro growth and invasion assays (short term culture
only for P. vivax) (18, 38–41) and by vaccinating animal models
followed by challenge infections (17, 18, 42–45). Subunit vaccines
have been or are being developed based on these advanced candi-
date antigens, which are expressed in almost every stage of the par-
asite lifecycle. They have been classified into one of three different
groups based on the target lifecycle stage (Figure 1) (46):

(i) pre-erythrocytic vaccines: these vaccines aim to prevent infec-
tion by targeting the infective stage, known as the sporozoite
(e.g., RTS,S). Alternatively, pre-erythrocytic vaccines can tar-
get antigens expressed by liver stage parasites to prevent the
emergence of merozoites into the bloodstream, the stage of
infection responsible for the clinical symptoms of malaria
infection (Figure 1). The risk associated with targeting sporo-
zoite antigens is that the antigen dose inoculated during a
natural infection is very low, with only a small number of
sporozoites injected by the vector (~20), and this may not
be sufficient to elicit an effective host immune response.
Additionally, only one sporozoite needs to escape the vaccine-
mediated immune response and invade liver cells for ~10,000
infectious merozoites to be produced, resulting in blood stage
infection and clinical disease (47).

(ii) blood stage vaccines: the vast majority of malaria vaccine can-
didates are designed to protect against the blood stage of
infection (Figure 1). Since all of the symptoms of malaria
occur during this stage, the majority of vaccines target-
ing antigens expressed during the blood stage are designed
primarily to prevent disease. One approach is to target mero-
zoite antigens to prevent red blood cell invasion and reduce
the density and prevalence of parasites in the infected host
(Figure 1). In principle, this reduction in parasite density
may also reduce the density of transmission forms, known
as gametocytes (i.e., the sexual stage of the parasite trans-
mitted from human to mosquito host) (Figure 1). In addi-
tion to preventing clinical disease, an effective blood stage
vaccine that reduces parasite density may therefore also
contribute to reducing malaria transmission (10, 46, 48).
Approaches are also being developed to target the major sur-
face protein expressed on the P. falciparum infected red blood
cell known as erythrocyte membrane protein 1 (PfEMP1).
PfEMP1 mediates adhesion to host cells, a mechanism that is
associated with severe malaria [reviewed by Hviid (49)].
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

FIGURE 1 | Malaria vaccine candidate antigens are shown. All candidate
antigens for Plasmodium falciparum and Plasmodium vivax are superimposed
on the Plasmodium lifecycle, to indicate the category of malaria vaccine being
developed and the lifecycle stage targeted. Antigens indicated in bold are

those that are currently being evaluated in pre-clinical trials or have entered at
least Phase 1 clinical trials according to the WHO malaria vaccine rainbow
tables (50). The P. vivax latent stages known as “hyponozoites” are not
shown but these occur in the liver stage.

(iii) transmission-blocking vaccines: the aim of transmission-
blocking vaccines is to target antigens expressed during
lifecycle stages in the mosquito host (e.g., gametocyte or
oocyst antigens) (Figure 1). Although these vaccines would
not directly prevent infection or clinical disease, they would
greatly assist elimination efforts to prevent the onward
transmission of infections that may be imported into an
elimination zone (10, 46).

Development of a vaccine against P. falciparum is well advanced
with 31 promising antigens identified (Figure 1). Currently, 27
subunit candidates comprising different domains and alleles for
22 different antigens are being tested in pre-clinical or clinical tri-
als (50) (Figure 1; Table 1). However, the majority of candidates
tested in clinical trials so far have been based on different formu-
lations and regions of a handful of antigens identified many years
ago, including CSP (51), the liver stage antigen 1 (LSA1) (52),
thrombospondin-related antigen (TRAP, also known as sporo-
zoite surface protein 2, SSP2) (53–55), merozoite surface protein 1
(MSP1) (56), MSP2 (57), MSP3 (58), and apical membrane anti-
gen 1 (AMA1) (42, 59). As some of these antigens have shown
promising pre-clinical profiles yet limited efficacy in human tri-
als, they have been tested in many different formulations over

the years (21, 60). For example, the most advanced blood stage
antigens, AMA1 and MSP1, naturally induce protective immune
responses (61–63), demonstrated using in vitro inhibition assays
(64) and by vaccination of animal models (17, 18, 20, 65). However
in humans,only limited clinical efficacy has been observed (66, 67).
Similarly, CSP, the major component of the RTS,S vaccine, is the
major surface antigen on the sporozoite surface, yet provides only
partial and short-lived protection against the blood stage symp-
toms of malaria following vaccination of human volunteers. It
does not protect against infection per se as would be expected by a
pre-erythrocytic vaccine and therefore the precise mechanism of
protection is not well understood (23, 68). These “historical” vac-
cine candidates are much further down the development pipeline
(21) than more recently identified candidates such as the inva-
sion ligands, the 175 kDa erythrocyte binding antigen (EBA175)
(69), reticulocyte binding homolog 5 (RH5) (70, 71), and P. vivax
Duffy binding protein (DBP) (72). In recent years, the var2csa
variant of PfEMP1, which is the major parasite ligand involved in
placental adhesion during pregnancy malaria (73); and the game-
tocyte antigens, Pfs25 and Pfs48/45 (74) representing promising
transmission-blocking targets, have also come to the forefront.
The elucidation of the complete parasite genome (75) has fur-
ther advanced vaccine development by enabling identification
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

Table 1 | Diversity of malaria vaccine candidate antigens currently in clinical trials based on the WHO rainbow tables (50).

Antigen Lifecycle stage Domain

analyzed

Number of

continents

surveyed

Number of

countries

surveyed

Number of isolates

sampled (range)

Number of haplotypes

identified (range)

Reference

PLASMODIUM FALCIPARUM

CSP Sporozoite C-terminal 3 13 604 (9–143) 71 (3–20) (2)

1 1 157 n.r. (13–34) (83)

1 1 100 57 (84)

3 17 1339 (9–336) 117 (1–40) (85)

Full length 2 7 485 n.r. (86)

STARP Sporozoite Full length 1 1* 134 (10–24) 24 (87)

TRAP Sporozoite N-terminal 2 3 100 (8–48) 84 (8–37) (2)

LSA1 Liver stage N-terminal 3 4 74 (10–22) 13 (3–7) (2)

GLURP Sporozoite/gametocyte Region 0 3 3 48 (9–11) 22 (2–9) (2)

Region 0 and 2 1 1 77 (R0); 79 (R2) n.r. (88)

AMA1 Merozoite Domain I 3 11 572 (8–162) 181 (6–68) (2)

1 1 193 (9–100) 139 (6–58) (89)

Full length 2 7 459 n.r. (86)

1 1 21 11 (90)

1 1 129 78 (91)

1 1 315 168 (92)

EBA175 Merozoite Region II 2 3 135 (30–48) 51 (15–23) (2)

MSP1 Merozoite MSP119 3 11 2237 (18–1368) 20 (1–15) (2)

1 1 136 12 (83)

1 1 61 (9–15) 5 (93)

1 1 300 19 (94)

Block 2 1 1 35 23 (95)

1 1 36 13 (96)

1 1 128 14 (97)

Full length 2 7 404 n.r. (86)

MSP2 Merozoite Blocks 2 and 3 2 3 392 (n.d) 275 (n.r.) (2)

Block 3 1 1 148 22 (97)

MSP3 Merozoite Repeat region 2 2 124 (75–86) 21 (9–12) (2)

MSP4 Merozoite Full length 2 4 142 (12–42) 47 (9–23) (2)

MSP3/6 Merozoite 1 2 117 (51–66) n.r. (81, 82)

Rh2 Merozoite Binding region 1 1 33 (15) n.r. (13) (98)

Rh4 Merozoite Binding region 1 1 23 (12) 9 (4) (99)

RH5 Merozoite Full length 3 6 227 (21–125) n.r. (100)

Pfs48/45 Gametocyte Full length 3 4 55 (9–15) 19 (2–8) (2)

Pfs28 Ookinete No population data available

Pfs25 Ookinete Full length 2 2 41 n.r. (101)

var2csa Trophozoite DBL3 2 3 124 (15–54) n.r. (102)

DBL3X 1 1 108 79 (103)

DBL5 1 2 70 n.r. (104)

var Trophozoite DBLalpha 3 4 29–42 (32) 140–666 (449)** (105)

SERA5 Trophozoite/schizont Exon II–IV 4 9 445 (39–80) 133 (3–44) (106)

PLASMODIUM VIVAX

CSP Pre-eryth Central repeat (CR) 2 2 168 (31–137) n.r. (13–25) (107, 108)

3 9 194 76 (5–23) (109)

1 1 84 23 (95)

DBP Merozoite Region II 2 8 675 (11–123) n.r. (9–73) (110)

3 9 707 (11–200) 150 (8–59) (111)

1 1 63 16 (112)

1 1 70 13 (113)

1 1 22 8 (114)

1 1 54 12 (115)

3 7 402 (9–122) 138 (7–56) (116)

*Also included a small number of strains from Brazil, Indonesia, Tanzania and Kenya.

**Predicted total number of var alleles is much higher: 232–7565 (3564).
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of scores of novel antigens. Subsequent antigenic credentialing
through functional studies (76), proteomic and immunological
screening (63, 77–80),and population genetic analyses (81,82),has
resulted in prioritization of several of these promising candidates
for further development.

Research on potential P. vivax vaccine candidates lags far
behind that of P. falciparum. Currently, only two P. vivax vaccine
candidates (based on PvCSP and PvDBP) have shown promise
in pre-clinical studies and only one candidate has reached Phase
1a clinical trials (50) (Figure 1). If the new goals of the Malaria
Vaccine Technology Roadmap are to be realized, significantly
more resources need to be invested in identifying and validat-
ing promising P. vivax vaccine candidates for progression to
clinical trials.

PARASITE DIVERSITY: A MAJOR OBSTACLE TO MALARIA
VACCINE DEVELOPMENT
One often quoted explanation for the variable efficacy of subunit
malaria vaccine candidates is parasite genetic diversity (2, 9, 12,
37) and the strain-specific nature of immunity to diverse parasite
antigens (15, 117, 118). Theoretically, a malaria “strain” can be
defined as a parasite variant that is genetically distinct and induces
specific immune responses against one or more antigens (Box 1).
However, exactly what defines a Plasmodium strain is not fully
understood (119) because this definition becomes exceedingly
complex when the whole parasite is considered. In the context
of subunit vaccines, the term “strain” refers to the parasite iso-
late from which the vaccine antigen is derived, while the actual
genetic variant of that antigen is known as the “allele” or “hap-
lotype” (Box 1). The inclusion of only one allele in a subunit
vaccine formulation elicits responses only against similar, cross-
reactive alleles (the“serotype,” Box 1) and runs the risk of selection
for non-vaccine strains in the vaccinated host population, as dis-
cussed in detail below (22). Indeed, natural parasite populations
have large numbers of alleles or haplotypes for single copy anti-
gens, such as AMA1 and MSP1 (2, 11) (Table 1). However for
PfEMP1, which is encoded by as many as 60 different genes per
parasite genome, there are hundreds to thousands of distinct alle-
les even within local geographic areas <10 km2 (105). Extensive
parasite antigenic diversity explains the slow development of natu-
rally acquired immunity (120) with repeated exposure over several
years necessary to build up a large repertoire of antibodies to the
different serotypes circulating in an endemic area (14, 121). Given
the high diversity of the available vaccine candidates (Table 1), a
broadly effective malaria vaccine may need to be multivalent, com-
prising multiple alleles (or haplotypes) for a given polymorphic
antigen (12), much like the vaccine approaches used to successfully
combat other highly polymorphic pathogens such as influenza A
and human papillomavirus.

On the other hand, some Plasmodium antigens are relatively
conserved, such as RH5 (100), or have highly conserved functional
regions that vaccine-developers may be able to exploit such as
the AMA1 receptor-binding pocket (122, 123). Furthermore, anti-
bodies against major surface antigens cross-react with different
parasite strains including those from different geographic areas
suggesting that conserved epitopes exist (65, 124). It has therefore
been proposed that using a panel of peptides containing conserved

epitopes would be one approach to induce immune responses that
avoid dominant polymorphic epitopes (125).

An important priority in malaria vaccine development is there-
fore to not only confirm the diversity circulating in the target
parasite population but also to understand the contribution of
genetic (allelic/haplotypic) diversity to the antigenic (serotype)
diversity that is relevant to malaria vaccine design for each candi-
date antigen (48). Whilst there are indeed multiple diverse alleles
of many candidate antigens circulating within distinct popula-
tions, not all polymorphisms, will mediate antigenic escape, hence
these must be identified and targeted for vaccine design. However,
the relationship between allele and serotype has been dissected
for only one candidate, AMA1 (126). More rigorous investigation
of available candidates as well as the identification of novel rela-
tively conserved antigenic targets is therefore absolutely required
to develop a framework for selection and to prioritize antigens for
further development as vaccine candidates.

DIVERSITY-COVERING VACCINE APPROACHES
Although well established, the extreme diversity of leading can-
didate antigens has rarely been considered when developing and
testing candidate malaria vaccines [reviewed by Barry et al. (2)].
The majority of subunit vaccine candidates tested in clinical tri-
als have been monovalent. Moreover, all vaccine candidates have
been based on alleles from a handful of parasite isolates such as
3D7, FC27, FUP, and FVO for P. falciparum, and Sal1 for P. vivax,
that have been propagated for decades in vitro (or in primate
models for P. vivax), and poorly reflect the parasite strains circu-
lating in natural populations (2, 110, 127–129). As a result, many
malaria vaccine candidates do not adequately cover the diversity
observed in natural parasite populations and this could explain
the poor clinical efficacy observed in vaccine trials where effi-
cacy endpoints include infection with any strain (21, 66, 127).
A multivalent malaria vaccine comprised of multiple serotypes
may perform better as it would be designed to protect against a
wide range of parasite strains. However, for almost all malaria vac-
cine candidates, the polymorphisms that define the serotypes and
the number of alleles that should be incorporated into a malaria
vaccine to cover serotype diversity remain unknown.

Supporting the argument for a multivalent vaccine strategy,
vaccine candidates based on a single allele for specific antigens have
demonstrated more strongly protective responses when strain-
specific endpoints (i.e., infection with a strain carrying the vaccine
allele) have been measured as compared to standard endpoints
(i.e., infection with any strain). One of the most successful vaccine
trials conducted to date was that of the “Combination B” vaccine,
conducted in 120 Papua New Guinean children. This vaccine con-
tained only the 3D7 allele of MSP1, MSP2, and the ring-associated
erythrocyte antigen (RESA), however, it resulted in a 62% reduc-
tion in parasite density in vaccinated children compared to those
that received the placebo (22). MSP2 contains a central complex
tandem repeat region and many different alleles that vary in size,
however all alleles fall into two major families that form differ-
ent serotypes (3D7 and FC27 ) (130). Interestingly, at the time of
vaccination, the prevalence of the 3D7 -type alleles was between
23 and 50% within each of the treatment groups, which could
explain the high overall efficacy. Furthermore, vaccinees were less
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frequently infected and had a lower rate of clinical episodes associ-
ated with 3D7 -type parasites compared to the control group (22).
Similarly, volunteers from Mali vaccinated with FMP2.1, which
is based on the 3D7 allele of AMA1, had a much higher risk of
non-3D7 infections (64%) (131) than any infection (20%) based
on residues in the AMA1 cluster 1 loop (c1L) (66). The results
of these trials highlight the danger of vaccine-induced selection
pressure and its consequences for morbidity, and strongly argue
for developing vaccines covering major serotypes circulating in
natural parasite populations (9, 22, 127). The frequency of vac-
cine or vaccine-serotypes in the target parasite population is also
likely to be important for significant vaccine efficacy. The biva-
lent candidate, AMA1-C1 (containing 3D7 and FVO haplotypes)
has demonstrated a lack of protective efficacy against either of the
two vaccine alleles in a Phase 2b trial (92). However, this lack of
observed efficacy could be explained by a low frequency of these
alleles in the target parasite population and the small sample size,
with only 44 sequences analyzed for both the vaccine and control
groups combined. Even when the analysis of polymorphisms was
narrowed to the c1L cluster of polymorphisms, which have been
implicated in antigenic escape as the basis of AMA1 serotypes
(126), baseline vaccine-allele frequencies were <10% indicating
that much larger sample sizes would be required to observe any
shift in frequency after vaccination. No other multivalent vaccine
trial results are currently available, but several trials are ongoing
and the malaria vaccine community awaits the final results with
interest.

Multivalent combination vaccines tested in animal models have
shown promising and surprising results. Vaccination with combi-
nations of four highly diverse AMA1 alleles was shown to overcome
diversity by producing a broader inhibitory response compared
to single allele vaccination, thought to have occurred partly by
redirecting responses to conserved epitopes (65, 132). This phe-
nomenon, which is analogous to “original antigenic sin,” occurs
because abundant, strain-specific AMA1 epitopes vary and are
potentially replaced with each new infection, whereas the con-
served regions remain constant. Hence, high levels of exposure
to conserved epitopes with vaccination or repeated exposure dur-
ing natural infections may enhance the antibody response against
these regions.

Another approach to covering antigenic diversity has been to
assemble all available global sequence data for an antigen target
and to design a small number of synthetic protein constructs that
together cover most of the diversity observed. Phase 1a and 1b
trials have begun after promising pre-clinical results for a mul-
tivalent vaccine candidate (DiCo), consisting of fusion protein
chimeras comprising three synthetic AMA1 molecules covering
97% of the amino acid variability, and these have been shown to
elicit stronger antibody responses as a combination than alone
(133). This approach has been further evaluated in pre-clinical
studies together with a construct containing two allelic variants
of the C-terminal 19-kDa region of merozoite surface protein 1
(MSP119) fused to the DiCo construct, and again enhanced anti-
body responses were induced (134). Clinical trial results are not
yet available for the DiCo and MSP119-DiCo combination vac-
cines but it will be interesting to see whether the diversity-covering
approach is more efficacious than the single allele approach.

PREDICTING SEROTYPES THROUGH POPULATION GENETIC
ANALYSES
Population genetic studies are needed to guide vaccine design, by
defining the diversity of candidate antigens, to predict polymor-
phisms that contribute to antigenic diversity (122, 127, 135) and to
investigate the geospatial distribution of predicted serotypes (136,
137). Moreover, as a continuous in vitro culture system is yet to
be developed for P. vivax, epidemiological studies currently repre-
sent an important tool with which to investigate the significance
of polymorphism within vaccine candidate antigens (125). This
approach has been used to identify correlations between specific
polymorphic sites in two leading P. falciparum vaccine candidates,
MSP1 and AMA1, with clinical infection (127, 138).

The extensive genetic diversity of malaria vaccine candidate
antigens has been demonstrated by many studies investigating
genetic polymorphism in samples ranging from small numbers
of geographically disparate culture-adapted isolates to large num-
bers of natural parasite isolates from the same local geographic
area or country. These results demonstrate the high numbers of
haplotypes found in natural parasite populations for many anti-
gens (Table 1). However, there are fewer haplotypes and vaccine
alleles are far more common when individual amino acid poly-
morphisms or limited “haplotypes” (Box 1) comprising different
combinations of amino acid alleles that might form critical epi-
topes are considered. For example, AMA1, which has 214 amino
acid haplotypes in 1 African population, has only 25 serotypes
based on the c1L cluster (127), demonstrating that if the haplotype
can be refined to represent only antigenic escape polymorphisms,
the number of alleles required in a potential multivalent vac-
cine could be reduced substantially. More recent studies have
suggested that the majority of the antigenic escape diversity in
AMA1 may even be explained by polymorphism in just one residue
(130). Importantly, in vaccine trials, a lack of knowledge of the
polymorphisms that mediate antigenic escape would result in
an underestimate of strain-specific vaccine efficacy. Population
genetic studies are therefore critical to gain more insight into anti-
genic diversity and to achieve the goal of a broadly efficacious
malaria vaccine.

Another important point to remember is that the global P. falci-
parum and P. vivax populations are structured into geographically
distinct subpopulations, therefore, local population-level analyses
are required to fully understand diversity that would be relevant
to the efficacy of a malaria vaccine in a defined endemic area
(139, 140). Given the large number of parasite populations that are
likely to exist worldwide it may not be feasible to design vaccines
for every target population and therefore a universal approach to
cover diversity is needed. Below, we provide a step-by-step guide of
how to identify and characterize diversity within candidate anti-
gens that is relevant to malaria vaccine design, and this is further
summarized in Figure 2.

DATA COLLECTION
In order to understand the antigenic diversity impacting on vac-
cine efficacy and to identify potential serotypes, the target gene
or gene region encoding the candidate antigen must be amplified,
sequenced, and population genetic analyses completed including
the determination of regions under balancing (immune) selection.
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

FIGURE 2 | Understanding diversity and predicting serotypes using population genetic analyses. A flow chart describing the step-by-step methodology
to define the extent and distribution of parasite diversity and to predict antigenic escape polymorphisms and serotypes (see text for more details).

To accurately estimate natural allele frequencies, it is critical to
collect sequence data from samples representing the natural par-
asite population of a defined geographic area. Use of samples
collected in the same geographic area ensures that the diversity

of the target sequence is accurately estimated for that region. As
the most informative analyses of balancing selection are based
on allele frequencies, it is also important that sequence data are
obtained from a substantial dataset, at least 30–50 samples (81, 82).
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

Analysis of too few sequences can result in incorrect estimates of
diversity, as alleles might be under-represented in very small pop-
ulation samples, and this can result in skewed allele frequencies
and diversity estimates.

Prior to PCR amplification, it is essential that parasite isolates
are genotyped using highly polymorphic microsatellite mark-
ers to determine the number of distinct parasite clones present
in the sample (141, 142). Even samples collected from areas of
low malaria transmission can contain multiple clones, especially
for P. vivax with its frequent relapses (143). If only one clone
is present, sequencing can be performed directly from ampli-
cons. If the number of field samples containing a single clone
is insufficient, or polyclonal infections are common, PCR prod-
ucts amplified from polyclonal samples can be sub-cloned prior to
sequencing. However, sub-cloning often results in artifacts (144),
therefore, any novel polymorphisms should be resolved by cloning
and sequencing-independent PCR products. Another approach is
to perform NextGen sequencing on samples containing multiple
clones, once a prohibitively expensive approach that is becoming
increasingly affordable. Briefly, amplicons are sheared and adap-
tors added, generating a library for each sample. Libraries can be
sequenced separately or as pools with the addition of sample bar-
codes. Reads are subsequently mapped to the relevant reference
genome. The advantage of this approach is that reads are quan-
titative and relate to clone abundance in the sample, therefore,
haplotypes of the predominant clone(s) can be computationally
reconstructed (145).

IDENTIFICATION OF POLYMORPHISM
From the raw sequence data, consensus sequences can be obtained
and compared to the reference sequence for the defined candidate.
Polymorphisms identified in consensus sequences will form the
basis of all downstream population genetic analyses. Quality con-
trol of sequences is therefore essential, to ensure that polymorphic
sites are accurately called and that any ambiguous sites or arti-
facts are identified. If a clear result cannot be obtained, the sample
should be removed from the analysis.

At this point, all high quality consensus sequences from a
given population can be compared and basic diversity parameters
determined as outlined below. In order to place the dataset in
context with the known diversity, published sequences of the tar-
get region collected from other natural populations in distinct
geographical areas can also be added to the analysis (e.g., from
GenBank). Multiple alignments of sequence data are straightfor-
ward if sequences are non-repetitive. However, if repeat length
polymorphisms, which are common in parasite antigens, or inser-
tions and deletion (indels) are found, then manual realignment
needs to be done to ensure that gaps are correctly aligned, which
can lead to an overestimate of the number of single nucleotide
polymorphisms (SNPs). While repeat regions can be included
in population genetic analyses, the expansion and contraction of
repeat arrays does not impact on antigenic diversity as dramatically
as amino acid changes (22, 131). However, by defining different
alleles based on the number of repeats or in the case of indels,
the presence or absence of a particular string of nucleotides, it is
possible to predict whether such polymorphisms are modulated
by immune selection.

Balancing selection, which is a result of immune selection pres-
sure, favors the maintenance of diversity, with alleles at low to
medium frequencies within populations, and balanced frequen-
cies between populations (137). Polymorphic sites or regions that
show such patterns are predicted to be under the influence of
immune selection, and thus contribute to antigenic diversity. For
some antigens under strong immune selection, similar alleles or
clusters of alleles have been maintained across broad geographic
areas (2, 110, 127, 129, 136, 146). The maintenance of moderate
frequencies of allele clusters (and even individual alleles) across
large geographic distances indicates that they represent distinct
serotypes (2, 146).

In contrast, singleton polymorphisms and polymorphic sites
with very low minor allele frequencies (MAFs) are indicative of
deleterious mutations under purifying selection, or recent poly-
morphisms yet to increase in frequency. These polymorphisms
will only be represented in a very small proportion of the par-
asite population. As the aim of diversity-covering vaccines is to
encompass as many of the alleles (haplotypes) found as possible,
several groups have chosen to exclude rare polymorphisms from
population genetic analyses of vaccine antigens (110, 129, 145).
Another cautionary note is that a large number of singleton poly-
morphisms in population datasets from the public databases may
also indicate PCR artifacts, especially if the methodology includes
a cloning step. If the validity of such data cannot be confirmed
then it should be discarded from the comparative analyses.

ANALYSIS OF THE EXTENT AND DISTRIBUTION OF DIVERSITY
In order to determine the diversity of the candidate antigen, both
overall and within parasite populations from different geographic
areas (e.g., village, district or country), genetic diversity should
be estimated for all sequences combined and for each popula-
tion. Genetic differentiation (e.g., Wrights fixation index, F ST)
can be measured to determine whether allele frequencies vary
and if not, populations from the same region or country can
be considered as one population (2). Important diversity para-
meters to define for each population include the number and
type of polymorphisms (SNP, indel, repeat length variation), the
number and relative proportions of neutral (synonymous) and
amino acid (non-synonymous) polymorphisms, and the num-
ber of haplotypes resulting from different combinations of amino
acid polymorphisms. All of these statistics can be calculated
using freely available population genetic analysis software and an
excellent overview of these programs has been published (147).
Conversion of polymorphisms to amino acid residues before hap-
lotype definition ensures that complex codons and rare nucleotide
polymorphisms within codons containing other more common
polymorphisms are included. In any case, it is more appropri-
ate to describe the amino acid haplotypes to predict serotypes,
rather than the nucleotide haplotypes. Other more complex sta-
tistics such as the nucleotide and haplotype diversity can also
be measured as an indication of the number and frequency of
polymorphisms and haplotypes in the population, respectively;
however, these are of more interest to the population geneticist
than the vaccine developer.

To determine whether polymorphic sites are under the influ-
ence of balancing (immune) selection, statistical tests such as
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Tajima’s D can be performed using a sliding window approach, to
identify specific domains or clusters of polymorphisms targeted by
host immune responses (148). In addition, Wright’s F ST, has been
applied to investigate whether allele frequencies at specific poly-
morphic sites, or gene domains, are balanced between populations
(137). Polymorphisms under balancing selection and associated
with immune escape will be non-synonymous, located in regions
with a positive value of Tajima’s D and low inter-population F ST

values. However, sampling is extremely important as both the
Tajima’s D and F ST tests are based on allele frequencies. Popu-
lations must be of sufficient size so that the sampling error of the
estimate is low, and panmictic (randomly mating) from the same
geographic region, because any underlying geographic population
structure may influence antigen allele frequencies (129, 136, 139,
140). Polymorphisms under balancing selection are also likely to
have moderate MAFs, because the maintenance of diversity in the
parasite population is advantageous for survival (137). The phys-
ical location of all polymorphisms identified as immune targets
should then be mapped to the protein structure where possible,
to help determine the potential functional relevance and implica-
tions of mutation at the site(s) identified, as has been successfully
done for AMA1 [e.g., Ref. (126, 127)].

Determining the extent and distribution of immunologically
relevant diversity for potential malaria vaccine candidates will help
to determine the feasibility of whether a regionally or globally
effective vaccine can be developed for the particular target. It is
therefore important to focus the analysis to only those polymor-
phisms with the greatest likelihood of creating antigenic diversity
to allow immune escape. Once polymorphisms predicted to be
under balancing selection have been identified (see above and
Figure 2), the distribution of unique haplotypes representing the
predicted serotypes can be analyzed by determining haplotype
frequencies in different geographic areas.

Different haplotypes will be related to differing degrees. Using
network and clustering analyses, relationships between haplotypes
from different populations, clusters of closely related haplotypes,
and the extent and distribution of predicted serotypes can be inves-
tigated. By identifying the relationships among all of the different
haplotypes in this way, the most distantly related alleles can be
selected for further analysis or for inclusion in a vaccine to cover
diversity. Previous studies have demonstrated the utility of these
approaches to identify distinct clusters of alleles as a starting point
to predict serotypes (11, 146, 149). These analyses identify the
most distinct and common haplotypes and provide a basis upon
which to select haplotypes that cover a large proportion of the
population-wide diversity for a specific candidate antigen. The
outcome of such analyses can help to determine: (i) whether it
may be possible to cover all known diversity of the target sequence,
(ii) the number of different haplotypes that would need to be
included in a vaccine in order to cover diversity and (iii) the pre-
dicted efficacy of vaccine candidates. Inclusion of vaccine alleles in
the analysis provides a reference point to estimate vaccine allele or
serotype frequencies. The results of these analyses provide a simple
diversity framework upon which to determine the parameters of
allele specific and cross-reactive responses in pre-clinical studies
(65, 127, 146) and to measure strain-specific efficacy in clinical
trials (131). It is important to note that unlike other approaches

that have clearly identified antigenic escape polymorphisms (126,
131), population genetic analyses provide a prediction, are simpler
and less expensive, and can reduce the number of polymorphisms
(and thus haplotypes) that need to be assessed to confirm their
contribution to the serotype.

DEFINING ANTIGENIC DIVERSITY BY MONITORING THE
DYNAMICS OF DIVERSITY IN NATURAL PARASITE
POPULATIONS
Children living in malaria endemic areas are infected many times
and have several episodes of clinical malaria before building up
a large repertoire of antibodies that recognize a large number
of strains (14, 15). Meanwhile, the rate of turnover of infections
increases with age and is thought to be associated with the acqui-
sition of antibodies to an increasing breadth of strains (150).
Therefore, strains that children are yet to be exposed to pose
a greater risk of clinical illness. Defining the dynamics of clin-
ical infection in the context of parasite antigenic diversity may
therefore provide insights into the specific genetic determinants
required for antigenic escape, since the risk of a clinical episode
due to infection with parasites representing a specific serotype
would decrease after being exposed to that serotype (Figure 3A)
(127, 138). Furthermore, analyses of strain-specific antibodies in
conjunction with such analyses would confirm the status of immu-
nity at a particular time point and allow associations to be made
between gaps in the antibody repertoire and risk of a clinical
episode (62, 98, 99, 151). Longitudinal studies in endemic regions
that monitor children at regular time intervals for the presence
of specific antibodies or the turnover of alleles at antigen loci
could therefore be harnessed to identify the genetic determinants
of antigenic diversity.

MEASURING STRAIN-SPECIFIC EFFICACY IN VACCINE
TRIALS
Vaccines based on a single allele of the candidate antigen elicit
strain-specific antibodies, so that vaccinated individuals continue
to be at risk of infection with different strains but risk of infec-
tion with the vaccine strain is lower (Figure 3B) (22, 66, 131).
Vaccine trials with strain-specific endpoints (i.e., infection with a
particular parasite genotype) therefore represent a major oppor-
tunity to characterize the genetic determinants responsible for
immune escape; however, this has been rarely attempted. Given
the high diversity of most malaria vaccine candidates and the lim-
ited efficacy of single-strain vaccine candidates, for any candidate
that elicits strain-specific responses it will be essential to mea-
sure strain-specific endpoints to ensure that antigenic escape is
explored in vaccine testing. The advent of high throughput geno-
typing approaches (142, 152) has reduced the effort and funding
required for molecular epidemiological studies, and therefore as
long as relevant expertise is available, these investigations should
be relatively simple to incorporate into a vaccine trial.

The primary efficacy endpoint in clinical trials of malaria vac-
cines has included a range of measurements such as time to first
infection, occurrence of a clinical episode (mild and severe), and
parasite density. However, only a few malaria vaccine trials have
determined whether efficacy against vaccine or closely related
strains has been achieved (22, 92, 131). Below, we cover some
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Barry and Arnott Overcoming antigenic diversity for malaria vaccines

FIGURE 3 | Antigenic diversity, clinical malaria, and vaccine efficacy are
shown. Simplified overview of the impact of parasite antigenic diversity on
the dynamics of natural infection and the efficacy of vaccines. Peaks in
parasitemia correspond with different clinical episodes and colors indicate
different serotypes. Strain-specific acquired antibodies are shown in
corresponding colors some time after each clinical episode. Solid lines
represent a strong antibody response, while dashed lines represent limited
antibody responses. (A) Dynamics of natural infection with recurrent
episodes of clinical malaria in an individual that acquires only strain-specific
antibodies after being infected. As individuals experience different strains
through natural infection (or vaccination), they acquire strain-specific
antibodies and have a lower risk of having a clinical episode due to the
same strain. (B) Lack of vaccine efficacy in a vaccinated individual due to
antigenic diversity. The syringe indicates vaccination with a single serotype
(red). If a single-strain vaccine is given at baseline, individuals are more
likely to experience clinical episodes due to other strains (blue, yellow,
green) than the vaccine strain, until antibody responses decrease.

molecular epidemiological analyses that could be considered in
the different stages of a vaccine trial.

VACCINE TRIAL RECONNAISSANCE
The low prevalence of vaccine alleles within natural populations
has been proposed to limit vaccine efficacy (2, 11, 129, 138).
Furthermore, a low prevalence of the vaccine allele will make it
extremely difficult to measure allele specific efficacy, since changes
may be very small and therefore require exceedingly large sam-
ple sizes (92). Therefore, even before a vaccine trial begins in
a particular geographic area, molecular epidemiological surveys
will be important to assess baseline population genetic charac-
teristics, and in particular the allele- (or if known, the serotype-)
frequencies to ensure that the vaccine to be tested is representative
of the target parasite population.

STRAIN-SPECIFIC ENDPOINTS
In addition to measuring strain-specific endpoints by determin-
ing the time to first clinical episode with vaccine and non-vaccine

alleles, the analysis of outcomes in control and vaccine groups pro-
vide an opportunity for more detailed analyses that can provide
key insights into the complexities of parasite antigenic diversity
(92, 127, 153). In principle, the same analyses can be done in
longitudinal studies to achieve the same goal. These analyses will
provide further functional evidence of antigenic escape polymor-
phisms, thus allowing refinement of the serotype. Different types
of analyses that have been used to measure strain-specific efficacy
in vaccine trials include:

(i) measuring strain-specific protection by assessing risk of clinical
episode associated with parasites carrying the vaccine-allele
compared to those carrying any non-vaccine allele;

(ii) measuring cross-strain protection by assessing risk of clinical
infection with parasites carrying the vaccine-allele compared
to those carrying different non-vaccine alleles;

(iii) measuring vaccine-mediated selection by:
a. comparison of allele or haplotype frequencies before and

after vaccination in the different vaccine groups;
b. comparison of the incidence of infection with parasites

carrying different haplotypes and individual polymor-
phisms before and after vaccination;

(iv) assessment of vaccine-mediated strain-specific natural immu-
nity by measuring antibodies to vaccine alleles in vaccine and
control groups.

VACCINE-MEDIATED SELECTION AND ANTIGENIC ESCAPE MUTANTS
The development and licensing of an effective malaria vaccine
will require sustained and intensive surveillance to monitor for
vaccine-mediated selection of non-vaccine alleles and to ensure
that vaccine alleles are common enough for vaccines to remain
effective. Regular population genetic surveys will be required in
order to monitor allele frequencies, to ensure that alleles contained
within the vaccine continue to represent the diversity of the par-
asite population and that new, potential antigenic escape mutants
have not emerged. A genetic surveillance system would be difficult
and costly to implement, but the development of low cost rapid
assays to quickly genotype parasite isolates would facilitate such
an approach (152). The need for simple and informative surveil-
lance tools also highlights the importance of gaining knowledge
into the precise determinants of antigenic diversity in any antigen
to be included in a licensed malaria vaccine.

CONCLUSION
The trials and tribulations of malaria vaccine development have
reached a critical juncture. The first licensed malaria vaccine is
almost at hand and children in African countries stand to benefit
greatly from its availability. However, this vaccine is only partially
effective against the symptoms of malaria, not infection, and pro-
vides only short-lived protection (23). As a result of the success of
the reinvigorated global malaria eradication program, many pre-
viously highly endemic countries no longer have high burdens of
disease. By 2030, the goal is to have a second-generation vaccine(s)
that can provide broad and long-lived protection against multi-
ple species and diverse strains. Parasite antigenic diversity, one of
the major reasons for the failures of past candidate malaria vac-
cines, remains a barrier to the efficacy of subunit and potentially
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even whole parasite vaccine approaches (48), but there is light at
the end of the tunnel: this review demonstrates how it may be
possible to overcome parasite antigenic diversity. Successful iden-
tification of the critical genetic determinants of the serotype for
one leading vaccine candidate, AMA1 (126, 127, 131) and proof
that multivalent vaccines representing the majority of the diversity
of this antigen can generate broad antibody responses further sup-
port the development of effective multi-allele vaccines and suggest
that antigenic diversity in malaria may be overcome (65, 132). By
consolidating the vast knowledge gained on the genetic diversity
of candidate antigens, by harnessing high throughput genotyping
tools and with careful design of longitudinal studies and vaccine
trials, it is highly likely that it will also be possible to identify the
critical genetic determinants underlying antigenic diversity (i.e.,
the serotype) for any candidate malaria vaccine antigen.
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Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to
the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies
are targeting multiple variants of conserved antibody and T cell epitopic regions which
would incur a huge fitness cost to the virus in the event of mutational escape. Besides
immunogen design, the delivery modality is critical for vaccine potency and efficacy,
and should be carefully selected in order to not only maximize transgene expression,
but to also enhance the immuno-stimulatory potential to activate innate and adaptive
immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy
and protection from acquisition was only achieved in a small proportion of vaccinees
in the RV144 study which used a canarypox vector for delivery. Conversely, in the
STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong
immune responses were induced but vaccination was more associated with increased
risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The
possibility that pre-existing immunity to a highly promising delivery vector may alter the
natural course of HIV to increase acquisition risk is quite worrisome and a huge setback
for HIV vaccine development. Thus, HIV vaccine development efforts are now geared
toward delivery platforms which attain superior immunogenicity while concurrently limiting
potential catastrophic effects likely to arise from pre-existing immunity or vector-related
immuno-modulation. However, it still remains unclear whether it is poor immunogenicity
of HIV antigens or substandard immunological potency of the safer delivery vectors that
has limited the success of HIV vaccines. This article discusses some of the promising
delivery vectors to be harnessed for improved HIV vaccine efficacy.

Keywords: HIV-1, vaccines, delivery vectors, MVA, NYVAC, adenovirus, ALVAC, DNA

INTRODUCTION
Thirty years after the discovery of HIV/AIDS, the search for a
safe and effective vaccine has intensified, as a number of promis-
ing candidate vaccines progressing to phase IIb/III clinical trials
have failed to show efficacy. One of the greatest barriers to HIV
vaccine development is the enormous virion diversity (depicted
by the existence of numerous clades and subtypes in distinct
geographic demarcations) and the continuous evolution which
generates numerous quasi-species within an infected individual
(Hemelaar et al., 2011). This not only makes it challenging to
create immunogens which are effectively matched to the circulat-
ing target viruses, but also provides room for immune escape of
HIV from potent vaccine-induced immune responses. Therefore,
it has emerged that immunogens derived from the most con-
served regions of HIV and covering multiple variants (conserved
mosaics) stand out as the most suitable candidates for T-cell
based vaccines, while immunogens covering the most potent
and broadly neutralizing and non-neutralizing antibody epitopes
are better for antibody-based vaccines (Emini and Koff, 2004;
Robinson and Amara, 2005; McMichael, 2006; Letourneau et al.,
2007; Thorner and Barouch, 2007; Sekaly, 2008; Korber et al.,
2009; Barouch et al., 2010; Santra et al., 2010; Borthwick et al.,
2014). However, the development of a vaccine based on conserved
antibody epitopes to provide protective global coverage and to

minimize immune escape is hampered by inaccessibility of the
highly shielded conserved envelope domains. Furthermore, the
observation that development of broadly neutralizing antibod-
ies requires prolonged stimulation with higher antigenic loads
from divergent virus species (van Gils and Sanders, 2013) implies
that HIV vaccine strategies must provide a continuous high
level expression of a cocktail of immunogens. Although the use
of polyvalent T-cell and B-cell mosaic constructs or the con-
served consensus sequences may effectively overcome the chal-
lenges of HIV diversity and significantly improve vaccine efficacy
(Santra et al., 2010, 2012), the lack of clearly defined corre-
lates of efficacy means that it remains unclear what immune
responses an HIV vaccine should aim to induce. Recently, a
non-human primate (NHP) study based on the RhCMV vector
induced exceptionally broad and persistent atypical CD8+ T cells
which effectively cleared SIV and maintained durable suppression
of virus replication (Hansen et al., 2009, 2011, 2013), suggest-
ing that HIV vaccine development research may have to adapt
immunogen design and delivery strategies that stimulate similar
responses.

Delivery vectors are vital and integral components of a suc-
cessful vaccine as they play an important role in modulating
both innate and adaptive immunity. Therefore, vaccine vectors
can significantly influence the magnitude and breadth, as well
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as the phenotypic and functional qualities of vaccine-induced
immune responses. Moreover, as the type of delivery vector, in
conjunction with the route of vaccine administration often deter-
mine whether or not vaccine-specific immune responses persist
within the systemic and/or mucosal compartments (Masopust
et al., 2001; Kiyono and Fukuyama, 2004; Ranasinghe et al., 2007;
Czerkinsky and Holmgren, 2012), vector choice remains a crit-
ical determinant of the overall efficacy of any given vaccine. A
part from the immunostimulatory potential to induce strong and
persistent immunity, several other factors such as stability and
ease of large scale manufacturing, safety, capacity for transgene
insertion and pre-existing immunity also influence vector choice.
It is now well-documented that pre-existing anti-vector immu-
nity (especially neutralizing antibodies) can prevent transduction
and/or expression of vaccine transgenes thus reducing vaccine-
specific immune induction (Xiang et al., 2002; Fitzgerald et al.,
2003; Lasaro and Ertl, 2009). This is a common phenomenon,
clearly demonstrated with certain vectors which show supe-
rior immunogenicity in animal models yet induce only modest
immune responses due to neutralization by pre-existing antibod-
ies in humans (McCoy et al., 2007). Additionally, pre-existing
immunity can alter the natural course of infection leading to
catastrophic consequences such as enhanced HIV acquisition and
possibly accelerated disease progression (Buchbinder et al., 2008;
McElrath et al., 2008). Thus strategies that concurrently maxi-
mize vaccine immunogenicity while minimizing safety concerns
remain an urgent priority in the development of a safe and
efficacious vaccine for HIV/AIDS.

A good number of HIV vaccine candidates (both prophylac-
tic and therapeutic) employing a broad range of vaccine delivery
vectors have been tested and some have progressed to evalua-
tion of potential efficacy in phase IIb/III trials. Of significant
relevance as far as safety is the STEP trial that used human
adenovirus serotype 5 (Ad5) to deliver a well-designed HIV
immunogen expressing Gag/Pol/Nef, which was associated with
increased risk of HIV acquisition in uncircumcised male vac-
cinees with pre-existing immunity to Ad5 (Buchbinder et al.,
2008; McElrath et al., 2008). This unexpected and rather wor-
risome finding prompted the premature halting of two related
efficacy trials due to futility (Gray et al., 2011; Hammer et al.,
2013). As disappointing as this might have been at the time,
invaluable lessons have been learned and there is still great opti-
mism as these lessons are now taken on board. Focussing on
some of the promising HIV vaccine candidates in preclinical
and clinical development, this review discusses pertinent issues
relating to safety and immunogenicity of replicating and non-
replicating viral vectors, pre-existing anti-vector immunity and
how these can potentially influence the natural history of HIV
infection and progression. In particular, this article highlights the
safety profiles, immuno-stimulatory potential and possible limi-
tations of plasmid DNA, MVA (modified vaccinia virus Ankara),
ALVAC (canarypox virus), NYVAC (New York attenuated vac-
cinia virus), influenza virus and adenovirus vectored vaccines
in preclinical and clinical studies for HIV vaccines. Some of the
delivery vectors evaluated in clinical studies are summarized in
Table 1, while those in preclinical development are summarized
in Table 2.

RECOMBINANT DNA VACCINE VECTORS
DNA plasmid vaccines can induce both T and B cell immune
responses, and are popular for their safety, stability, versatility
and ease of large scale production. Most importantly is the fact
that they can be used repetitively to boost immunity (Valentin
et al., 2010) without the risk of immune interference as is the
case with viral vectors with high prevalence of pre-existing immu-
nity. However, on their own DNA plasmid vaccines have exhibited
very limited immunostimulatory capacity and often induced sub-
optimal immune responses. Recent advances in DNA delivery
such as intramuscular, skin or intradermal electroporation (Selby
et al., 2000; Widera et al., 2000; Brave et al., 2010; Vasan et al.,
2011; Kopycinski et al., 2012) or use of other physical deliv-
ery methods such as gene gun and biojector devices (Drape
et al., 2006; Wang et al., 2008a; Graham et al., 2013), together
with concurrent use of cytokine adjuvants including IL-2, IL-
12, and IL-15 (Winstone et al., 2011; Kalams et al., 2012, 2013)
have greatly improved the immunogenic potential of DNA vac-
cines. In particular, IL-12 was shown to significantly augment
the frequency, magnitude and breadth of Gag-specific immune
responses in healthy volunteers immunized with a recombinant
DNA vaccine expressing HIV-1 Gag (Kalams et al., 2012, 2013).
Similarly, when macaques were co-immunized with a plasmid
encoding IL-12 and a DNA plasmid expressing SIV-Gag, strong
antibody and cellular responses which correlated with a better
clinical outcome were induced (Boyer et al., 2005; Chong et al.,
2007). More impressively, co-delivery of a plasmid encoding GM-
CSF with a DNA vaccine expressing SIV genes induced strong
neutralizing antibody responses and ADCC, which protected
against infection with SIVsmE660 (Lai et al., 2011). The use of
strong adjuvants such as glucopyranosyl lipid A (a TLR4 agonist)
in a DNA/MVA/protein immunization regimen was shown to
enhance both antibody and T cell responses (McKay et al., 2014),
while plasmids encoding the TLR5 agonist, flagellin, enhanced
both antibody and T cell immunity to influenza virus (Applequist
et al., 2005)

Other significant improvements in DNA vaccine technology
include codon optimization, use of stronger promoters/enhancers
and signal peptides such as the tissue plasminogen activator
(tPA) and lysosome associated membrane protein (LAMP1), all
of which significantly enhance transgene expression and traffick-
ing, thus leading to increased vaccine immunogenicity (Wang
et al., 2006a; Yan et al., 2007; Wallace et al., 2013). Furthermore,
ease of DNA manipulation provides a platform to deliver poly-
valent or multi-gene vaccine components which can increase
the breadth and depth of vaccine-induced immunity to reduce
immune escape. This strategy showed remarkable success in
rabbit experiments where a polyvalent gp120 vaccine induced
broadly neutralizing antibody responses as opposed to the mono-
valent vaccine (Wang et al., 2006b). Similarly, polyvalent mosaic
plasmid DNA vaccines have demonstrated enhanced immuno-
genicity in mice (Kong et al., 2009) and rhesus monkeys (Santra
et al., 2010).

Several studies indicate that delivery of DNA vaccines by
electroporation induces both cellular and humoral immune
responses which are long-lived and can persist for several years
with or without subsequent heterologous boosting (Cristillo et al.,
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Table 1 | Representative clinical studies.

Study name and Immunogen Vectors, regimen and route Immune responses References

phase of immunization generated

(I) HETEROLOGOUS PRIME-BOOST STUDIES

HIVCORE002
(Phase I study)

HIVconsv (T cell
immunogen based on
conserved regions)

ChAdV63/MVA (i.m.)
DNA/ChAdV63/MVA (i.m.)
DNA/MVA/ChAdV63 (i.m.)

-CD4+ and CD8+ T cells
-In vitro virus inhibition

Borthwick et al., 2014

HVTN 505 (Phase
IIb study)

VRC-HIVDNA016-00-
VP/VRC-HIVADV014-00-VP

DNA-prime (i.m. biojector
device)/rAd5 boost (i.m. needle
and syringe)

-T cells and gp140 binding
IgG antibodies

Hammer et al., 2013

HVTN
503/Phambili
(Phase IIb study)

MRKAd5 HIV-1 Gag/Pol/Nef DNA-prime (i.m.)/Ad5 boost (i.m.) -CD8+ and CD4+ T cells Gray et al., 2011

Phase 1 study Gag and Env DNA and
recombinant trimeric Env
glycoprotein

DNA-prime (i.m.)/Protein boost
with MF59 adjuvant

-Robust B and T cells
-Strong NAbs to SF162
-ADCC and neutralization of
tier 2 strains

Spearman et al., 2011

Phase I/II study Multi-clade, multigene:
DNA/HIV-1 gp160, p17/p24
Gag and
MVA/HIV-1 Gag/Pol

Low dose (i.d.) DNA-prime
(x3)/MVA-boost (i.m. x2)
(DDDMM)

-High magnitude and broad
CD4+ and CD8+ T cell
responses
-Env antibodies

Bakari et al., 2011

Phase I study
DP6-001

Multigene polyvalent gp120
and Gag DNA and
polyvalent gp120 protein

i.m. or i.d. Polyvalent
DNA-prime/i.m. protein-boost
(with QS21 adjuvant)

-High titer binding and
BNAbs, ADCC and
multifunctional T cells

Bansal et al., 2008;
Vaine et al., 2010

RV144 (Phase III
study)

ALVAC-HIV
vCP1521/AIDSVAX gp120
B/E

ALVAC-prime (i.m.)/gp120
protein-boost

-T cells and non-neutralizing
antibodies to V1/V2 loop

Rerks-Ngarm et al.,
2009

Phase I study Multigenic HIV DNA
(gp160- A/B/C; Rev B, Gag
A/B and RT- B and HIV-MVA
Env/Gag/Pol)

DNA- prime (i.d. with
Biojector)/MVA-boost (i.d./i.m.);
with or without GM-CSF adjuvant

-Broad and potent cellular
immune responses

Sandstrom et al., 2008;
Gudmundsdotter et al.,
2009

HVTN 502/STEP
Study (Phase IIb)

MRKAd5 HIV-1 Gag/Pol/Nef DNA-prime (i.m.)/Ad5 boost (i.m.) -Strong CD8+ T cell
responses

Buchbinder et al., 2008;
McElrath et al., 2008

Phase 1 study HIVA (HIV-1 clade A and a
CTL epitope string)

DNA-prime (i.m.)/MVA-boost
(i.m.)

-Multifunctional CD4+ and
CD8+ T cells

Mwau et al., 2004;
Goonetilleke et al.,
2006

Phase I study
(EuroVacc: EV02)

HIV-1 clade
C-Env/Gag/Pol/Nef (DNA-C
and NYVAC-C)

DNA-prime (i.m.)/NYVAC- boost
(i.m.)

-Durable, broad and
poly-functional CD4+ and
CD8+ T cells

Harari et al., 2008;
McCormack et al., 2008

Phase I study ALVAC-HIV(vCP300)
gp120/gp41, Gag, Pro, Nef,
Pol and SF-2 rgp120

ALVAC-prime (i.m.)/i.m.
Protein-boost (with MF59
adjuvant)

-Durable CTLs
-Antibody responses

Evans et al., 1999

Phase I study ALVAC-HIV(vCP205)
gp120/gp41, Gag, Pol and
SF-2 rgp120

ALVAC-prime (i.m.)/i.m.
Protein-boost (with MF59
adjuvant)

-Strong CD8+ T cell
responses and NAbs

Belshe et al., 1998

(Continued)
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Table 1 | Continued

Study name and Immunogen Vectors, regimen and route Immune responses References

phase of immunization generated

(II) HOMOLOGOUS PRIME-BOOST OR SINGLE DOSE STUDIES

HVTN-070 and
-080 Phase I
studies

PV (PENNVAX(R)-B DNA
expressing Gag, Pol, Env
and DNA/IL-12

DNA+IL-12 (i.m. or by
electroporation)

-CD4+ and CD8+ T cell
responses

Kalams et al., 2013

IPCAVD-001 Ad26.ENVA.01 Intramuscular delivery of rAd26 -Binding antibodies
-Multiple CD8+ and CD4+ T
cell responses
-ADCC and virus inhibition

Baden et al., 2013;
Barouch et al., 2013

HVTN 090 Phase
Ia study

VSVINN4CT1Gag1
(recombinant VSV
expressing HIV-1 Gag)

Dose-escalating i.m. delivery Low level T cell responses
detected following initial
dosing

Fuchs et al., 2012, 2013

Phase I study Ad35-GRIN (Gag, RT,
Integrase, Nef) and
Ad35-GRIN/ENV

Intramuscular delivery of
Ad35-GRIN/Env or Ad35-GRIN

-Robust, broad and
polyfunctional CD4 and
CD8+ T cells

Keefer et al., 2012

Phase I/II study
(RISVAC02)

MVA-B (monomeric gp120
and clade B Gag/Pol/Nef
poly-protein)

Three doses of MVA (i.m.) -Durable antibody and
cellular immune responses

Garcia et al., 2011;
Gomez et al., 2011

Phase I study ADVAX (multigenic HIV-1
DNA vaccine)

DNA by i.m. electroporation -CD4 and CD8+ T cells with
multiple cytokines

Vasan et al., 2011

VAX 003 (Phase
III study)

Bivalent recombinant gp120
vaccine: AIDSVAX B/E

Seven i.m. injections; with Alum
adjuvant

-Binding and neutralizing
antibodies to gp120

Pitisuttithum et al.,
2006

VAX 004
(Multicentre
Phase III study)

Bivalent recombinant gp120
vaccine: AIDSVAX B/B

Seven i.m. injections; with Alum
adjuvant

-Binding and neutralizing
antibodies to gp120

Flynn et al., 2005;
Gilbert et al., 2005

i.m., intramuscular; i.n., intranasal; i.d., intradermal; s.c., subcutaneous; i.p., intraperitoneal; ADCC, antibody dependent cytotoxicity; NAbs, neutralizing antibodies;

BNAbs, broadly neutralizing antibodies.

2008; Patel et al., 2010; Jalah et al., 2014). In particular, the level
of HIV-specific immune responses to the multigenic ADVAX vac-
cine was increased by up to 70-fold when electroporation was
used for delivery (Vasan et al., 2011). Nonetheless, DNA vac-
cines consistently show much better immunogenicity when used
as priming components in conjunction with viral vectors such as
adenoviruses (Shiver et al., 2002; Hammer et al., 2013; Borthwick
et al., 2014), MVA (Sandstrom et al., 2008; Gudmundsdotter et al.,
2009; Bakari et al., 2011; Borthwick et al., 2014), fowlpox (Kent
et al., 1998), and NYVAC (Hel et al., 2001) in heterologous prime
boost regimens delivering the same vaccine inserts, or in co-
immunization strategies that combine DNA-prime with protein
boosting (Kennedy et al., 2008; Wang et al., 2008b). As a mat-
ter of fact, prime-boost regimens still remain the most successful
strategies that emphasize the potential of DNA vaccines. It was
recently shown that a DNA-prime/protein-boost regimen was sig-
nificantly better than either DNA/DNA or protein/protein alone
regimens for generating long-term protection of mice against
Leishmania donovani (Mazumder et al., 2011). The DNA and pro-
tein co-immunization modalities are particularly desirable as they
maximize induction of long-lived humoral and cellular immune

responses which can disseminate to mucosal sites, including the
genito-rectal mucosae (Patel et al., 2013; Jalah et al., 2014).
A recent study has demonstrated in small animal models that
concurrent, multiple-route DNA vaccinations comprising DNA
prime by electroporation, followed with intranasal, intramuscu-
lar, subcutaneous or transcutaneous homologous protein boost
induced strong HIV-specific B and T cell responses (Mann et al.,
2014). Independently, another study showed enhancement of
HIV gp120-specific IgA responses in serum and mucosal secre-
tions following a DNA env-prime and gp120 protein-boost deliv-
ered with novel carbohydrate-based adjuvants (Advax-M and
Advax-P) which were specifically designed for mucosal and sys-
temic immune enhancement (Cristillo et al., 2011). The tremen-
dous effect of a DNA prime in enhancing antibody responses
to protein vaccines was also documented in a Phase 1 clinical
study, where intramuscular delivery of a DNA priming vac-
cine followed with recombinant protein boost stimulated higher
frequencies of B and T cells, as well as higher neutralizing anti-
body titres and ADCC in contrast to immunization with protein
alone (Spearman et al., 2011). Perhaps the most exciting of the
DNA-prime/protein-boost studies is the 6-plasmid polyvalent
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Table 2 | Representative preclinical studies.

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

(I) HETEROLOGOUS PRIME-BOOST STUDIES

Mice and
rabbits

HIV Env/Gag-Pol-Nef
DNA, MVA-C (HIV
Env/Gag-Pol-Nef and
CN54gp140 protein)

Intramuscular delivery of
DNA/MVA/Protein with
TLR4 (GLA-AF adjuvant) for
protein boost

Antibody and T cell
responses

– McKay et al., 2014

Rhesus
macaques

SIVmac239 Env/Gag
DNA, rmIL-12 DNA and
SIVmac239 protein
vaccines

DNA-prime (by
electroporation)/i.m. or i.d.
Protein-boost, or DNA and
protein co-immunization

Persistent mucosal
Envelope-specific
antibody responses

Enhanced
immunity by the
co-immunization
modality

Jalah et al., 2014

Rhesus
macaques

SIV-Gag mosaic
SIV-Env mosaic
SIVmac239 Env

DNA-prime (x3, i.m.)
Ad5-boost (i.m.)

-NAbs
-ADCC
-Cellular responses

Protection
against
SIVsmE660
challenge

Roederer et al., 2014

Rhesus
monkeys

DNA expressing
SIVmac239 antigens +
rmIL-12 and inactivated
SIVmac239 virus
particles as protein

DNA prime (i.m. followed by
in vivo electroporation)
/protein-boost

-SIV-specific CTLs
-CD4+ and CD8+
memory T cells
-Binding antibodies

-Protection from
SIVSME660
acquisition
-Reduced peak
and chronic
phase viremia

Patel et al., 2013

Mice pCCMp24
rddVTT-CCMp24

DNA prime/Tiantan boost
(i.m.)

Antibody and T cells – Excler et al., 2010; Liu
et al., 2013

Rhesus
macaques

SIVSME543-Gag/Pol/Env Prime-boost (i.m.) with:
Ad26/MVA, Ad35/Ad26,
DNA/MVA, MVA/Ad26

-NAbs
-Binding antibodies
-Cellular responses

Protection from
SIVmac251
acquisition or
disease
progression

Barouch et al., 2012

Mice Ad35-GRIN/ENV and
MVA-C (Gag/Env/Pol)

Ad35-GRIN/ENV-prime
(i.m.)/MVA-boost (i.m.)

Polyfunctional CD8+
T cells

– Ratto-Kim et al., 2012

Macaques SIV DNA/GM-CSF
(SIV239
Gag/PR/RT/Env/Tat/Rev)
and MVA-SIVgpe

DNA/GM-CSF- prime
(i.m.)/MVA-boost (i.m.)

-Neutralizing
antibody responses
-ADCC

Sterile
protection after
SIVsmE660
challenge

Lai et al., 2011

Murine DNA-Env and gp120
protein vaccines

DNA Env-prime/gp120
protein-boost (i.m. and i.n.)
(Advax-M and Advax-P
adjuvants)

-Persistent mucosal
and systemic Abs
-T cell responses

– Cristillo et al., 2011

New-born
and adult
mice

BCG-HIVA, MVA-HIVA
and HAdV5.HIVA

BCG-prime (i.p./i.d./s.c.)
followed with i.m. MVA- or
HAdV5- boost

-Strong, cytotoxic
CD8+ T cell
responses

– Hopkins et al., 2011a;
Saubi et al., 2011

Rhesus
macaques

VSV and SFV replicon
expressing SIV-Gag/Env

VSV-prime (i.m. and
i.n.)/SFVG-boost (i.m.)

-High titer NAbs to
Env proteins and
weak cellular
responses

-Sterilizing
immunity
Control of
SIVsmE660
breakthrough
infections

Schell et al., 2011

New-born
macaques

VSV-SIVgpe (rVSV-
Gag/Pol/Env) and
MVA-SIVgpe

VSV-prime (oral)/MVA-boost
(i.m.)

-Systemic Abs, both
systemic and local
cellular responses

– Van Rompay et al.,
2010

(Continued)
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Table 2 | Continued

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

Mice,
rabbits and
macaques

Consensus or Polyvalent
mosaic DNA and protein
(gp120) vaccines

DNA-prime (i.m.)/i.m. and i.d.
rVaccinia-boost.
DNA-prime (gene gun)/
Protein-boost (i.d.) + IFA

-Broadly neutralizing
antibodies and CD8+
T cell responses

Enhanced
immunogenicity

Wang et al., 2006b;
Santra et al., 2010

Rhesus
macaques

VSV-SHIVGag/Pol/Env
MVA-SHIVGag/Pol/Env

VSV-prime (i.m.)/MVA-boost
(i.m.)

-Persistent
multi-functional
CD8+ T cells and
NAbs

Durable (over 5
years) control of
SHIV89.6P
replication

Rose et al., 2001
Schell et al., 2009

Rabbits
macaques

HIV-1 Env gp120 DNA (electroporation)/gp120
protein boost

-Persistent Th1, CTL
and Env responses

Neutralization of
sensitive SHIV
isolates

Cristillo et al., 2008

Rhesus
macaques

CMV-SHIVdEN and
SeV-Gag

DNA prime (i.m.)/Sendai Virus
boost (i.n.)

-CD8+ T cells Durable control
of SIVmac239
and SHIV89.6PD

Matano et al., 2001;
Takeda et al., 2003;
Kawada et al., 2007

Rhesus
Macaques

replication-defective
SHIV particles and
MVA-SHIV (SIV Gag, SIV
Pol and HIV Env)

Intrarectal DNA prime/MVA
boost

-Antibodies in
plasma
-Cellular responses

-Preserved CD4
T cells -Reduced
disease
progression after
SHIV 89.6P
challenge

Wang et al., 2004

Rhesus
macaques

SHIV-DNA plus IL-2 and
rMVA

DNA + IL-12-prime
(i.n.)/MVA-boost (i.n.)

-Mucosal and
systemic antibody
and cellular
responses

Protection from
SHIV 89.6P
challenge

Bertley et al., 2004

Mice and
monkeys

E1/E3-deleted AdHu5
and E1-deleted AdC7 or
AdC6, expressing Gag37

i.m. prime-boost with:
AdC7/AdC6/AdHu5 or
AdHu5/AdC6/AdC7

-Robust CD8+ CD4+
T cells
-Antibody responses

– Reyes-Sandoval
et al., 2004

Cynomolgus
macaques

DNA- HIV-1 IIIB
Env/Gag/RT/Rev/Tat/Nef,
MVA- HIV-1 IIIB Nef-Tat-
Rev, SIVmacJ5 Gag/Pol
and Vaccinia HIV-1 Env

DNA prime/MVA boost (i.m.
or mucosally)

-Antibody and
cellular responses

Protection from
infection

Makitalo et al., 2004

Mice HIV-1 Env IIIB Ag
(DNA-Env and MVA-Env)

DNA-Env-prime/MVA-Env-
boost (i.n. with Cholera toxin
adjuvant)

-Mucosal CD8+ T
cells, mucosal and
systemic antibodies
-Beta-chemokines

– Gherardi et al., 2004

Rhesus
monkeys

DNA, MVA and Ad5
vectors expressing
SIVmac239 Gag

DNA Prime (i.m.)/MVA- or
Ad5- boost (i.m.)

-Robust CD8+ T
cells with cytotoxic
activity

Pronounced
attenuation of
SHIV infection
and mitigated
disease
progression

Shiver et al., 2002

Macaques DNA and NYVAC SIV-gpe
(Gag/Pol/Env)

DNA-prime
(i.m.)/NYVAC-boost (i.m.)

-Durable CD8+ T cell
responses

– Hel et al., 2001

(II) HOMOLOGOUS PRIME-BOOST OR SINGLE DOSE STUDIES

Mice and
rabbits

Ad4Env160
Ad4Env140
Ad4Env120

i.m., i.n., or s.c. delivery of
rAd4

-T cell and antibody
responses

Neutralization of
tier-1 and tier-2
pseudoviruses

Alexander et al., 2013

(Continued)
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Table 2 | Continued

Animals Immunogen Vectors, regimen and Immune responses Outcomes References

route of immunization generated

Mice Ad35-GRIN/ENV and
MVA- Gag/Env/Pol

Ad35-prime (i.m.)/Ad35-boost
i.m.): MVA-prime
(i.m.)/MVA-boost (i.m.)

-Polyfunctional CD8+
T cells

– Ratto-Kim et al., 2012

Rhesus
macaques

SIVSME543-Gag/Pol/Env MVA-prime (i.m.)/MVA-boost
(i.m.)

-Neutralizing Abs,
binding antibodies
and cellular
responses

Protection from
SIVmac251
acquisition or
disease
progression

Barouch et al., 2012

Rhesus
macaques

RhCMV-SIV/Gag,
Rev/Nef/Tat, Pol, Env

RhCMV vectors delivered by
s.c. injection

-Strong and
persisting,
polyfunctional
effector memory
CD8+ and CD4+
cells

Viral clearance
and durable
protection from
SIVmac239
disease
progression

Hansen et al., 2009,
2011

Rhesus
monkeys

SIV-Gag, SIV-Env and SIV
Rev-Tat-Nef fusion
protein

Intravenous delivery of
recombinant Rhadinovirus

-Persistent effector
memory CD8+ T
cells

Control of
SIVmac239
replication

Bilello et al., 2011

Rhesus
macaques

Rabies virus (RV)
expressing SIVmac239
Gag/Pol or Env

Intramuscular delivery of rRV
constructs

-Polyfunctional CD8+
T cells in the mucosa
-NAbs

Control of
SIVmac251-CX
challenge

Faul et al., 2009

Rhesus
and
Cynomolgus
macaques

SIV-Gag DNA + rIL-12
DNA vaccines

Intramuscular DNA delivery T cell and Antibody
responses

Improved clinical
outcome after
SHIV[89.6P]
challenge

Boyer et al., 2005;
Chong et al., 2007

Juvenile
and Infant
Rhesus
macaques

ALVAC-SIV and MVA-SIV
both expressing
SIV-Gag/Pol/Env

Multiple immunizations with
ALVAC-SIV (i.m.) or MVA-SIV
(i.m.)

-High titres of
binding antibodies,
low-level T cell
responses

Protection from
oral SIVmac251
challenge, and
reduced viremia
in breakthrough
infections

Van Rompay et al.,
2005

Mice HIV-1 Env IIIB Ag
(DNA-Env and MVA-Env)

MVA-Env/MVA-Env
DNA-Env/DNA-Env (i.n. with
Cholera toxin adjuvant)

-Mucosal CD8+ T
cells, mucosal and
systemic antibodies
-Beta-chemokines

– Gherardi et al., 2004

Mice Influenza virus
expressing HIV-1
ELDKWA epitope

i.n. prime/boost with chimeric
influenza virus, followed with
i.p. boost with live virus

-Neutralizing
antibodies

Neutralization of
distantly related
HIV-1 isolates

Muster et al., 1994

i.m., intramuscular; i.n., intranasal; i.d., intradermal; s.c., subcutaneous; i.p., intraperitoneal; ADCC, antibody dependent cytotoxicity; NAbs, neutralizing antibodies;

BNAbs, broadly neutralizing antibodies.

DNA vaccine expressing gp120 and Gag, followed by QS21-
adjuvanted polyvalent gp120 protein boost (DP6-001 study) in
which multifunctional T cells and high-titre gp120-specific bind-
ing and broadly-neutralizing antibodies as well as ADCC were
induced (Graham et al., 2006; Bansal et al., 2008; Wang et al.,
2008b; Vaine et al., 2010).

Apart from effective delivery strategies and routes of immu-
nization, there is evidence showing that expression of DNA
vaccines and subsequent immunogenicity in humans and other
primates can be limited by serum amyloid P component (SAP),

a protein found in blood and known to bind strongly to DNA
(Wang et al., 2011, 2012). In small animals this protein either
binds weakly or does not exist at all. Thus, depletion of SAP
protein prior to administration of DNA vaccines is another new
strategy being tested to improve DNA vaccine immunogenic-
ity. This concept has been proven in mice, where depletion of
SAP using the bis-d-proline compound CPHPC (Bodin et al.,
2010; Gillmore et al., 2010) was shown to augment antibody and
cellular immune responses to a DNA vaccine expressing Hepatitis
B surface antigens (Wang et al., 2012). The concept is currently
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being tested in a Phase 1 clinical trial (HIVCORE003) of healthy
adults using the T-cell based HIV candidate vaccine, HIVconsv.

Although the efficacy of an HIV DNA vaccine is yet to be
demonstrated in humans, various studies (prophylactic and ther-
apeutic) in the macaque model have reported protective immune
responses which controlled SIV/SHIV replication or protected
from infection (Rosati et al., 2005, 2009; von Gegerfelt et al., 2007;
Valentin et al., 2010; Patel et al., 2013). In particular, a study
combining a DNA/MVA mucosal delivery of a DNA construct
expressing replication-defective SHIV particles and MVA express-
ing SIV-Gag/Pol and HIV Env (MVA-SHIV) demonstrated sig-
nificant protection from disease progression after a SHIV89.6P
challenge (Wang et al., 2004). Furthermore, mucosal co-delivery
of a DNA priming vaccine together with an IL-2 encoding vec-
tor, followed by MVA boost also induced protective immunity
against SHIV89.6P challenge (Bertley et al., 2004). The results
in these macaque models, together with the documented efficacy
of DNA vaccines against animal diseases [e.g., equine West Nile
Virus (WNV) (Davis et al., 2001), melanoma in dogs (Bergman
et al., 2003) and infectious hematopoietic necrosis virus (IHNV)
in salmon (Garver et al., 2005; Kurath et al., 2006)] raise hopes
that with the right immunogen and effective delivery strate-
gies (including adjuvants), plasmid DNA vaccines for HIV/AIDS
could achieve efficacy in clinical trials, when used alone, but more
realistically in prime-boost combinations with live viral-vectored
or protein vaccines.

NON-REPLICATING RECOMBINANT VIRAL VECTORS
ADENOVIRUS VACCINE VECTORS
Adenoviruses are the most powerful vectors for inducing both
antibody and cell-mediated immunity to inserted transgenes
and are known to elicit between 5- and 10-fold stronger T cell
responses compared to conventional naked DNA or MVA/pox-
like virus vectors (Xiang et al., 1996; He et al., 2000; Fitzgerald
et al., 2003; Casimiro et al., 2003a, 2004; Tatsis and Ertl, 2004;
Catanzaro et al., 2006). The Adenovirus vectors use either the
Coxsackie and Adenovirus Receptor (CAR) or CD46 receptors
(Bergelson et al., 1997; Gaggar et al., 2003) and can infect a wide
variety of cells, including dendritic cells. In particular, group B
adenoviruses such as Ad35 recognize CD46 surface protein and
infect DCs more efficiently than group C isolates. These vectors
achieve higher levels of transgene expression which in turn results
in stronger and persistent immune effector functions (Zhang
et al., 2001; Hutnick et al., 2010; Suleman et al., 2011). Several
studies indicate that adenoviruses predominantly stimulate per-
sistent effector memory CD8+ T cell responses (Yang et al.,
2003a, 2007a; Tatsis et al., 2007a) which are more suitable for
immediate control of invading pathogens at peripheral entry sites
such as the genital mucosa (Cerwenka et al., 1999; Sallusto et al.,
2004; Huster et al., 2006), and have shown tremendous success in
animal studies (Liu et al., 2009). In addition to the effector mem-
ory T cells, stable central memory CD8+ T cell populations are
also generated, thus providing surveillance in both peripheral and
lymphoid sites. Although persisting adenovirus-driven immune
responses could also be due to the long-term presentation of
antigens by non-haematopoietic cells serving as unlimited anti-
gen depot (Finn et al., 2009; Kim et al., 2010; Bassett et al.,

2011), long-lived immunity is largely attributed to persisting low-
level expression of inserted immunogens. Adenovirus genomes
are known to persist for prolonged periods in various cell types
(including those at inoculation sites) where they remain tran-
scriptionally active and continuously produce low-levels of anti-
gen to prime naïve T cells while also maintaining the effector
memory T cells (Yang et al., 2006, 2007b; Tatsis et al., 2007a).
Furthermore, the arising effector memory T cells express the
IL-7 receptor (CD127) which allows their prolonged survival
in the absence of antigen. Besides induction of potent adaptive
immune responses, adenoviruses also stimulate innate immunity
via highly inflammatory responses which involve TLR2, TLR9,
NOD-like receptors and the type 1 interferon pathways that result
in abundant cytokine and chemokine secretion (Hensley et al.,
2005; Nazir and Metcalf, 2005; Appledorn et al., 2008; Muruve
et al., 2008). Another attractive feature of adenovirus vectors
is their ability to induce both systemic and mucosal immune
responses following parenteral delivery, as well as their suitabil-
ity for mucosal immunization (Sharpe et al., 2002; Xiang et al.,
2003; Bangari and Mittal, 2006; Haut et al., 2010).

The most well-characterized of the adenovirus vectors is
human Ad5, successfully used as a delivery vector for a rabies
vaccine and found to be very good at inducing protective virus
neutralizing antibodies concurrently with CD8+ and CD4+ T
cells (Xiang et al., 1995, 1996). In the HIV field, Ad5 was used
as a booster immunization following DNA priming and induced
strong CD8+ T cell responses in a large proportion of the STEP
study vaccinees (Buchbinder et al., 2008; McElrath et al., 2008).
However, clinical efficacy may have been significantly compro-
mised by pre-existing neutralizing antibodies (ranging from 40
to 70% in developed countries and greater than 90% in devel-
oping countries) and cellular immunity (Fitzgerald et al., 2003;
Holterman et al., 2004; Bangari and Mittal, 2006; Xiang et al.,
2006; Lasaro and Ertl, 2009; Ersching et al., 2010; Mast et al.,
2010; Barouch et al., 2011). These results were recapitulated in
a non-human primate study using low-dose penile exposure to
SIVmac251 in Ad5 seropositive animals immunized with SIV-
Gag/Pol/Nef (Qureshi et al., 2012). Possibly, adenovirus vacci-
nation boosted the numbers of activated CD4+ T cells which
are targets for HIV-1 (Benlahrech et al., 2009). While this might
seem a plausible explanation, especially when considering the
potential of such activated targets to traffic to the genito-rectal
mucosae (Tatsis et al., 2007a; Benlahrech et al., 2009), this argu-
ment is strongly contested by observations that other vaccine
carriers such as DNA and MVA do stimulate CD4+ T cell activa-
tion but have not been associated with increased HIV acquisition.
However, it is worth noting that DNA/MVA vaccines are yet to be
tested for efficacy in large clinical trials and as such their poten-
tial to enhance HIV acquisition has never assessed. Furthermore,
DNA/MVA vaccines combinations have not been associated with
long-term persistence of activated T cells or mucosal homing.
Another postulated theory is the formation of adenovirus-specific
antibody immune complexes that activate both dendritic and
CD4+ T cells hence fuelling infection (Perreau et al., 2008). In
this study, Ad5 immune complexes were strongly correlated with
higher HIV infection in the in vitro cultures, thus supporting a
stronger likelihood of enhanced HIV acquisition. Should either
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or both of these theories be true, this would have dire conse-
quences for other clinical trials using Ad5 to deliver non-HIV
immunogens such as malaria (Sedegah et al., 2011; Tamminga
et al., 2011; Chuang et al., 2013) and TB (Smaill et al., 2013) vac-
cines which will induce similar phenotypes and pre-dispose the
vaccinees to increased HIV acquisition risk, although this may not
be apparently detectable as these studies may not monitor HIV
acquisition.

Apart from the issue of pre-existing immunity, immunization
with Ad5 can induce neutralizing antibodies in naïve individ-
uals which can be a hindrance for successive immunizations
with the same or cross-reactive adenoviral vectors (Casimiro
et al., 2003b; Bangari and Mittal, 2006). Thus new rare aden-
ovirus vectors with lower pre-existing immunity such as Ad26
and Ad35 are becoming more attractive (Holterman et al., 2004;
Abbink et al., 2007; Barouch et al., 2012; Zhang et al., 2013),
although these are relatively less immunogenic compared to Ad5
(Colloca et al., 2012). Besides the lower sero-prevalence, Ad26
neutralizing antibody titres are usually very low compared to Ad5
(Abbink et al., 2007; Chen et al., 2010; Mast et al., 2010). As an
HIV vaccine delivery vector, Ad26 was shown to induce broadly
functional cellular and antibody responses with viral inhibitory
capacity in a first-in-human (IPCAVD-001) clinical trial of an
HIV envelope immunogen (Ad26.ENVA.01) (Baden et al., 2013;
Barouch et al., 2013). In this study, a dose-dependent expan-
sion of the magnitude, breadth, and epitopic diversity of Env-
specific binding antibody responses were observed. The responses
comprised multiple CD8+ and CD4+ T cell memory subpopu-
lations and cytokine secretion phenotypes. Antibody-dependent
cell-mediated phagocytosis and degranulation functional activity
were also observed. Ad35 has also shown high immunogenicity
in healthy volunteers, eliciting robust and polyfunctional CD8+
and CD4+ T cells in a majority of volunteers immunized with
Ad35-GRIN (an immunogen based on Gag, RT, integrase and
nef) or Ad35-GRIN/ENV (premixed Ad35-GRIN and Ad35-ENV
vaccines) (Keefer et al., 2012). Similarly, in BALB/c mice, an
Ad35-GRIN/ENV-prime followed by a boost with rMVA con-
taining Gag/Env/Pol genes from various HIV-1 clades induced
polyfunctional CD8+ Gag-specific central and effector mem-
ory T cells which were superior to those elicited in homologous
Ad35/Ad35 or MVA/MVA prime boosts (Ratto-Kim et al., 2012).

Other rare adenovirus vectors include human Ad6, chim-
panzee Ad3, Ad63, and Ad68 (Barnes et al., 2012; Colloca et al.,
2012; Dicks et al., 2012; O’Hara et al., 2012; Roshorm et al., 2012).
The chimpanzee adenoviruses remain attractive in particular due
to their high immunological potency and low sero-prevalence,
as well as extremely low or virtually absent cross-reactivity with
human adenoviruses (Xiang et al., 2006; Chen et al., 2010;
Colloca et al., 2012). Furthermore, chimpanzee adenoviruses
induce stronger T and B cell responses in heterologous prime-
boost regimens even in the presence of pre-existing immunity to
Ad5 (Tatsis et al., 2009). Apart from using these naturally occur-
ring human and chimpanzee adenoviruses, new derivatives of
adenovirus vectors that have equivalent immunogenicity but with
significantly lower pre-existing antibodies are currently being
developed (Dicks et al., 2012; Lopez-Gordo et al., 2014). However,
it is worth noting that pre-existing cellular immunity (CD8+ and

CD4+ T cells) may be a major deterrent as unlike antibodies,
these cells are highly cross-reactive across adenovirus serotypes
because they are directed to conserved sequences of adenovirus
(Olive et al., 2002; Fitzgerald et al., 2003; Frahm et al., 2012).
Nevertheless, some studies indicate that Ad5 and Ad26 vectors
can still elicit significant systemic and mucosal responses even in
people with pre-existing immunity (Barouch et al., 2013; Smaill
et al., 2013). Immunogenic adenoviruses faced with significant
pre-existing immunity problems can be improved by modifica-
tion of the antibody-binding sites, especially within the variable
hexon loops in order to reduce NAb binding whilst maintaining
immunogenicity (Bruder et al., 2012). This can be achieved via
point mutations or complete replacement (Roberts et al., 2006;
Abe et al., 2009; Pichla-Gollon et al., 2009; Bruder et al., 2013).

Besides their immunogenicity when used alone, adenovirus
vaccines are also very immunogenic when used to prime
responses which are then boosted by other vaccine vectors (Tatsis
et al., 2007b; Ratto-Kim et al., 2012). In particular, adenovirus-
prime followed with MVA-boost can induce high frequencies
of much more long-lived, potent T cells (Reyes-Sandoval et al.,
2008, 2010; Capone et al., 2010; Hill et al., 2010). A Phase I
clinical trial of a T-cell HIV vaccine based on the conserved
regions was recently shown to elicit exceptionally high mag-
nitude and polyfunctional T cell responses (circa 5000 IFN-γ
ELISPOT SFU/million cells) in HIV-negative healthy volun-
teers when primed with chimpanzee Ad63 (ChAdV63-HIVconsv)
followed with MVA-HIVconsv boost (Borthwick et al., 2014).
The vaccine-induced CD8+ T cells exhibited potent in vitro
antiviral activity. This study also demonstrated that the mag-
nitude and functional capacity of T cells induced in a regi-
men comprising three priming doses of DNA followed with
ChAdV63 and MVA (DDDCM) did not differ significantly
from those in a simplified ChAdV63-prime and MVA-boost
(CM) regimen. The superior immunogenicity of this regimen
is not unique to HIV immunogens, as it has also been demon-
strated in preclinical and clinical studies of experimental malaria
vaccines (Dunachie et al., 2006; Draper et al., 2010). Such
repeated heterologous immunizations with the same transgene
are known to increase both the magnitude and functional quality
of vaccine-specific T cells and to allow more efficient migra-
tion to mucosal-associated tissues (Tatsis et al., 2007b). This
is important in HIV infection, as effector immune cells in
mucosal sites could block HIV transmission. It has also been
shown that DNA priming followed with adenovirus boost-
ing can reduce the level of anti-vector antibodies and increase
transgene-specific immune responses (Xiang et al., 1999; Yang
et al., 2003b), although this is questionable when considering
the STEP study which employed a DNA-prime/Ad5-boost regi-
men. However, it is possible that this regimen effectively reduced
the anti-vector antibody effect, thus curtailing a potentially
worse outcome in the absence of DNA priming. Furthermore,
prime-boost regimens with various combinations of adenovirus
vectors were shown to induce robust frequencies of HIV-1 Gag-
specific CD8+ T cells in nonhuman primates (Reyes-Sandoval
et al., 2004), although it has to be appreciated that the level
of pre-existing Ad5 immunity in NHPs would be lower or
absent.

www.frontiersin.org August 2014 | Volume 5 | Article 439 | 32

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Ondondo Challenges of HIV vaccine delivery

Adenoviruses are only associated with benign human patholo-
gies, but their greatest limitation is pre-existing immunity which
dampens vaccine-specific immunity by limiting transgene expres-
sion, while potentially exacerbating HIV acquisition. However,
all else considered, Adenoviruses remain by far the most promis-
ing vaccine carriers for HIV-1, because unlike other vectors, they
induce exceptionally high and persistent frequencies of vaccine
specific T cells, which is a requirement for sustained HIV con-
trol. Although their efficacy has probably been hampered by high
sero-prevalence, this no longer seems an insurmountable hur-
dle in light of the enormous amount of research efforts directed
at finding strategies to circumvent the problems of pre-existing
immunity (Gabitzsch et al., 2009). Additionally, replicating ade-
noviruses such as AdH4 and AdHu7 which can be delivered
orally in the form of edible capsules might help to overcome pre-
existing immunity (Xiang et al., 2003). Moreover, intranasal or
oral delivery of adenoviruses has been shown to provide supe-
rior protection in animal models, and might trigger mucosal
immune responses well-situated for preventing HIV acquisition.
Perhaps adenovirus vectors engineered not to induce CD4+ T
cells could be an alternative to overcome increased HIV-1 acqui-
sition risk, although lacking CD4+ T cell help for the CD8+ T
cells might compromise the differentiation and stability and thus
efficacy of both CD8+ T cells and antibody responses (Yang et al.,
2007b).

RECOMBINANT MVA (rMVA) VECTORS
Apart from their excellent safety profile, inherent adjuvant prop-
erties and ease of large scale production, recombinant vaccinia
virus vectors are also popular for their large genomes which
facilitate insertion of larger immunogens (Smith and Moss,
1983). MVA does not replicate in humans (Carroll and Moss,
1997) due to serial passaging in chick embryo fibroblasts which
resulted in loss of more than 10% of its genome (Meyer et al.,
1991), and its safety was well-documented during the smallpox
eradication campaign (Mahnel and Mayr, 1994). MVA’s potent
immunostimulatory properties are achieved in a cascade of events
involving induction of type 1 interferons, various chemokines
for cell migration and activation of several cellular signaling
pathways (Price et al., 2013). The immunostimulatory potency
of MVA is largely attributed to the absence of genes involved
in immune evasion (such as those that interfere with IFN-α,
IFN-β, and TNF-α), thus allowing for stronger innate immu-
nity to be generated (Antoine et al., 1998). MVA vectors are
particularly important for generating strong T cell immunity
against intracellular pathogens and cancers, but have also been
shown to induce potent, high titre antibodies in a variety of dis-
ease models including SIV and malaria (Gherardi et al., 2003;
Draper et al., 2008, 2013; Barouch et al., 2012). However, it
is now well established that MVA vectors are more suited for
boosting rather than priming, and depending on the priming
vector (e.g., DNA or live vectors such as fowlpox and aden-
oviruses), MVA can induce various phenotypes of T cells, either
predominated by CD4+ or CD8+ subsets or a combination of
both.

In pre-clinical and clinical studies of malaria, recombinant
MVA was shown to be highly immunogenic as it induced strong

(and protective) cellular and antibody responses to malaria anti-
gens, either on its own or when used to boost responses primed by
vectors such as DNA, fowlpox or AdHu5 (Schneider et al., 1998,
1999; Gilbert et al., 1999, 2002; McConkey et al., 2003; Anderson
et al., 2004; Webster et al., 2005; Bejon et al., 2007; Sheehy et al.,
2011). Recombinant MVA85A (expressing the mycobacterial anti-
gen Ag85A) was also shown to induce strong and durable T cell
responses in various clinical studies (Scriba et al., 2012; Tameris
et al., 2013, 2014). Furthermore, it was demonstrated that MVA
expressing influenza A virus antigens (MVA-NP+M1) efficiently
boosted CD8+ T cell responses to achieve clinical efficacy in
humans (Berthoud et al., 2011; Lillie et al., 2012). As a therapeu-
tic vaccine for cancer, recombinant MVA expressing the human
papilloma virus antigens E2, E6, or E7, with or without IL-12 was
shown to induce T and B cell immunity resulting in controlled
HPV load and subsequent regression or complete elimination of
precancerous lesions in a majority of vaccinees (Corona Gutierrez
et al., 2004; Garcia-Hernandez et al., 2006; Albarran et al., 2007).
Additionally, MVA expressing 5T4 antigen (TroVax) induced 5T4-
specific antibody and cellular responses which correlated with
tumor regression in a clinical trial of patients with advanced
colorectal cancer (Harrop et al., 2006).

Although there is clear demonstration of the clinical efficacy of
prophylactic and therapeutic MVA-vectored vaccines for malaria,
TB, influenza virus and cancer, MVA vaccines for HIV are yet to
be evaluated for clinical efficacy. However, Phase I and II stud-
ies of MVA expressing HIV antigens, either alone or in various
prime-boost combinations indicate modest to strong immuno-
genicity (Guimaraes-Walker et al., 2008; Howles et al., 2010;
Bakari et al., 2011; Garcia et al., 2011; Goepfert et al., 2011; Gomez
et al., 2011). In particular, the MVA-B candidate HIV vaccine
expressing monomeric gp120 and Gag-Pol-Nef poly-protein of
clade B where MVA was administered without prior priming,
induced long-lasting robust and polyfunctional effector mem-
ory T cell and antibody responses in Phase I/II studies (Garcia
et al., 2011; Gomez et al., 2011). Furthermore, MVA has shown
much higher immunogenicity when combined in prime-boost
regimens with other priming vectors such as DNA, fowlpox or
adenovirus (Goepfert et al., 2011; Keefer et al., 2011; Borthwick
et al., 2014). In Phase 1 studies of the HIVA immunogen (based
on HIV clade A and a string of CTL epitopes), priming with DNA
(pTHr.HIVA) followed with MVA boosting (MVA.HIVA) was
found to be immunogenic, inducing multifunctional and prolif-
erative CD8+ and CD4+ T cell responses in greater than 70% of
the vaccinees (Mwau et al., 2004; Goonetilleke et al., 2006).

As discussed earlier, a Phase I study combining DNA- and/or
ChAdV63-prime followed with MVA boost to deliver an HIV-
1 T cell immunogen induced high magnitude T cell responses
with potent antiviral capacity (Borthwick et al., 2014). This study
and similar studies of malaria vaccines (Sheehy et al., 2011,
2012; O’Hara et al., 2012) showed that the magnitude of T cell
responses induced by ChAdV63 alone were modest, but sig-
nificant boosting was achieved following MVA administration,
thus highlighting the superior immunogenic potential of MVA
when combined with appropriate priming vectors such as BCG
(Whelan et al., 2009; Scriba et al., 2012), natural influenza A
virus (Berthoud et al., 2011) or ChAdV63 (Colloca et al., 2012).
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Remarkably, a DNA/MVA prime boost of a vaccine express-
ing multiple HIV antigens induced responses in about 90% of
volunteers and demonstrated strong immunogenicity despite pre-
existing immunity to vaccinia virus (Sandstrom et al., 2008). As
a therapeutic HIV vaccine vector, rMVA was found to be safe
and to significantly augment HIV-specific CD4+ and CD8+ T
cell responses in HAART-treated HIV-infected volunteers immu-
nized with the MVA.HIVA candidate vaccine (Dorrell et al., 2006;
Ondondo et al., 2006; Yang et al., 2007c). Furthermore MVA was
found to be safe in neonates in a Phase 1 trial where MVA.HIVA
was administered to infants born to HIV-infected or uninfected
mothers (Afolabi et al., 2013). Therapeutic administration of
MVA prime followed with fowlpox boost expressing Env, Gag,
Tat, Rev, and Nef-RT fusion antigens increased the frequencies
and breadth of T cell responses in young adults (Greenough et al.,
2008).

One very attractive feature of rMVA (and other poxvirus
vectors) is their ability to induce mucosal immune responses
when administered via mucosal routes (Gherardi and Esteban,
1999, 2005). In particular, murine and macaques studies using
rMVA vectors demonstrated induction of protective HIV-specific
immune responses within the genito-rectal mucosae, which in
some cases correlated with reduced disease progression (Belyakov
et al., 1998a; Makitalo et al., 2004; Wang et al., 2004). Enhanced
immunogenicity of rMVA in combination with DNA priming
was also achieved by using the non-toxic B subunit of cholera
toxin (CTB) as mucosal adjuvant (Gherardi et al., 2004). Thus,
even though MVA may be inadequate as a stand-alone delivery
platform, it definitely shows greater potential as a boosting vec-
tor (especially for the chimpanzee adenoviruses) and should be
evaluated for efficacy in advanced HIV vaccine trials.

RECOMBINANT NYVAC VACCINE VECTORS
NYVAC vector is also a vaccinia-based vector which was highly
attenuated by deletion of 18 genes involved in host range vir-
ulence. It has been shown to induce mainly CD4+ T cell
responses, in contrast to MVA which has a stronger immunos-
timulatory potential and is known to induce both CD8+ and
CD4+ responses (Mooij et al., 2008). However, in a trial of
chronically infected patients on HAART, a NYVAC-based vac-
cine expressing Gag/Pol/Nef/Env from an HIV-1 clade B isolate
(NYVAC-B) was found to be highly immunogenic and induced
high magnitude, broad and polyfunctional CD4+ and CD8+
T cells (Harari et al., 2012). Similar to MVA, NYVAC elicits
greater immune responses when used in prime-boost combina-
tions rather than on its own (Harari et al., 2008; McCormack
et al., 2008). In these EuroVacc studies, priming with DNA-
C followed with NYVAC-C boost elicited broad, polyfunctional
and durable CD4+ T cell responses in greater than 90% of
volunteers, compared to only 40% when NYVAC was used
alone (Harari et al., 2008). Moreover, in a preclinical study
with a DNA prime followed with NYVAC boost, responses to a
vaccine expressing SIV-Gag/Pol/Env were boosted 10-fold with
improved quality and quantity of T cell responses (Hel et al.,
2001). A NYVAC/SIV-gpe vaccine (expressing SIV Gag/Pol/Env)
also elicited mucosal immune responses in macaques follow-
ing both mucosal and systemic delivery (Stevceva et al., 2002).

Despite the skewing toward CD4+ T cell responses, NYVAC
has potential to stimulate and boost more balanced immune
responses when combined with other vectors, and its potential
should be fully explored, especially for therapeutic HIV vaccines
which require re-invigoration of CD4+ T cell functions (and
frequencies).

CANARYPOX (ALVAC) VACCINE VECTORS
ALVAC is an attenuated derivative of the canarypox virus that
was repeatedly passaged in chick embryo fibroblasts and thus has
restricted tropism with very minimal pathogenicity in humans
(Yu et al., 2006). Despite the comparatively lower immunogenic-
ity with respect to other poxvirus vectors such as MVA (Zhang
et al., 2007) and NYVAC, the fact that ALVAC has no poten-
tial pre-existing immunity in humans makes it a more attractive
HIV vaccine delivery vector. The ALVAC vector (vCP205) was
shown to be safe and to induce strong CD8+ CTL and antibody
responses to an HIV vaccine expressing gp120/41 and Gag/Pol
sequences [ALVAC-HIV(vCP205)] in a Phase 1 clinical trial in the
USA in the 1990 s (Belshe et al., 1998). A related ALVAC-based
vaccine expressing multiple HIV antigens comprising Gag, Env,
Nef, Pol and Pro [ALVAC-HIV(vCP300)] also induced durable
CTL responses in healthy volunteers (Evans et al., 1999). In pre-
clinical studies, ALVAC expressing SIV Gag/Pol/Env protected
against low-dose oral SIVmac251 challenge of neonate rhesus
macaques in a study design aiming to mimic HIV transmission
through breast milk (Van Rompay et al., 2005). More recently
ALVAC-based HIV vaccines have been tested in both adults and
infants, where they have shown modest immunogenicity (Kintu
et al., 2013; Kaleebu et al., 2014) and in the RV144 trial of ALVAC
prime [ALVAC-HIV(vCP1521)] and protein boost (AIDSVAX
B/E rgp120), the only HIV vaccine candidate to show efficacy
(Rerks-Ngarm et al., 2009, 2013).

While it is unclear whether the modest success of RV144 was
due to the immunostimulatory potential of canarypox virus vec-
tor or immunogenicity of the vaccine inserts, the fact that the
immunogens in the RV144 trial vaccines are not significantly dis-
tinct from those used in other HIV vaccines in the field eliminates
the “immunogen effect,” thus leaving the vectors and delivery
methods as possible explanations. But, as the AIDSVAX vaccine
(recombinant gp120) showed no efficacy in earlier trials (VAX003
and VAX004), the success of RV144 points to the delivery vec-
tor (ALVAC) and possibly the benefits of a combined viral vector
and protein immunization regimen as opposed to homologous
boosts. This might suggest that combined live vector-priming and
protein-boost immunization modalities could be further refined
to achieve greater potential for increased efficacy. Alternatively,
protection by the combined vaccines could be attributed to T cell
help for the antibody responses. It must however be noted that
unlike the RV144 study, VAX003, and VAX004 were conducted
in high-risk populations, which might be a strong confound-
ing factor, although this might as well be reflective of the very
limited efficacy of stand-alone protein subunit vaccines for HIV.
Despite the modest efficacy of RV144, the immune responses
waned within a short time indicating that ALVAC may not
be a particularly suitable vector to induce long-lived anti-HIV
immunity, unless it is combined with other powerful vectors. In
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direct comparison of immunogenicity, ALVAC was found to be
less immunogenic than MVA, possibly due to MVA’s enhanced
antigen expression within dendritic cells (Zhang et al., 2007).
Nonetheless, ALVAC is still quite promising for HIV vaccine deliv-
ery, as it is also already licensed for delivery of several veterinary
vaccines including the feline leukemia virus (FeLV) and feline
rabies vaccine (PUREVAX) and RECOMBITEK vaccine which
protects against canine distemper, equine influenza and West Nile
Virus.

MYCOBACTERIUM BOVIS BACILLUS CALMETTE-GUERIN
(BCG) VACCINE VECTORS
Prevention of breast milk transmission of HIV-1 remains an
important goal for HIV vaccine researchers. BCG is an attenuated
vaccine proven to be safe and has for many years been admin-
istered to new-born babies to immunize against Mycobacterium
tuberculosis (Mtb). As such, BCG provides a platform to co-
deliver HIV immunogens in neonates to potentially protect
against mother-to-child transmission of HIV-1. The potential use
of BCG as an HIV vaccine vector was explored in preclinical stud-
ies of adult and new-born BALB/c mice using the HIV-1 clade
A Gag immunogen (HIVA) (Mwau et al., 2004). Priming with
recombinant BCG expressing HIVA (BCG.HIVA) induced HIV-
specific T cell responses which were efficiently boosted with rMVA
(MVA.HIVA) (Hopkins et al., 2011a,b; Saubi et al., 2011, 2012).
In further related studies, priming with BCG.HIVA and boosting
with a combination vaccine expressing HIVA and the Mtb anti-
gen 85A (mMVA.HIVA.85A) induced robust IFN-γ-producing T
cells to both HIV-1 and Mtb antigens. Moreover, in adult mice,
BCG.HIVA primed weak HIV-1-specific CD8+ T cell responses,
which were strongly boosted with either Ad5 (HAdV5.HIVA)
or rMVA (MVA.HIVA). Thus, immunization of neonates with
recombinant BCG expressing HIV-1 immunogens, followed with
an MVA boost expressing the same HIV immunogen might con-
currently protect against Mtb and HIV-1. It remains to be seen
how these rBCG-vectored HIV-1 vaccines will perform in clinical
studies.

REPLICATION-COMPETENT VIRAL VECTORS
The unprecedented success of the SIVmac239�nef experimen-
tal vaccine in rhesus macaques (Reynolds et al., 2008, 2010)
gives a hint that possibly, a successful HIV vaccine will require
a live delivery vector, as these are known to induce high mag-
nitude, durable and broadly effective immunity. But as exciting
as this may sound, there are significant challenges in terms of
balancing the safety and immunogenicity vs. replicative capacity.
Of the adenoviruses, Ad4 and Ad7 have been tested in clin-
ical studies (by oral delivery) and were successfully used for
the prevention of respiratory and enteric illnesses (Hoke and
Snyder, 2013). These replication competent adenoviruses nat-
urally infect and replicate in mucosal tissues (Patterson and
Robert-Guroff, 2008) and could thus be quite relevant for HIV
vaccines. Preclinical studies of recombinant Ad4 expressing HIV-
1 clade C envelope gp160 (Ad4Env160), gp140 (Ad4Env140), and
gp120 (Ad4Env120) demonstrated induction of envelope-specific
T cells in mice and antibody responses in rabbits (Alexander
et al., 2013). Serum from the rabbits was able to neutralize a tier

1 clade C pseudovirus and to a lesser extent, homologous and
heterologous tier 2 pseudoviruses.

A replicating CMV vectored SIV vaccine (RhCMV-SIV/Gag,
Rev/Nef/Tat, Pol, Env) was shown to persist in vaccinated rhesus
macaques and conferred durable protection from disease pro-
gression owing to induction of high magnitude effector memory
CD8+ T cells, despite pre-existing CMV immunity (Hansen et al.,
2009, 2011, 2013). Other replication-competent viruses in clinical
development include the TianTan vaccinia virus (TT), Vesicular
stomatitis virus (VSV), a derivative of NYVAC (NYVAC-C-KC)
and Sendai virus (SeV). The TianTan vaccinia virus was used in a
DNA-prime (pCCMp24)/Tiantan boost (rddVTT-CCMp24) reg-
imen where it was shown to induce antibody and HIV-specific T
cell responses (including memory phenotypes) following intra-
muscular delivery and has now been advanced to Phase II clinical
study in China (Excler et al., 2010; Liu et al., 2013). The NYVAC-
C-KC vectors have shown superior cellular and humoral immu-
nity compared to the non-replicating NYVAC, at least in mice
(Kibler et al., 2011; Gomez et al., 2012).

A Sendai virus vector expressing SIV Gag (SeV-Gag) admin-
istered intranasally as a boost following intramuscular priming
with an envelope-independent DNA vaccine (CMV-SHIVdEN)
demonstrated very strong suppression of intravenous SIVmac239
challenge in rhesus macaques, which was extended over a 3-
year period (Matano et al., 2001; Takeda et al., 2003; Kawada
et al., 2007). Clinical investigations of a SeV-based candidate HIV
vaccine expressing Gag [SeV-G (NP)] are ongoing in Rwanda,
Kenya and the UK, and it is expected that results of these tri-
als will provide a feel of the potential of Sendai virus as an
HIV vaccine vector. Attenuated VSV is a non-pathogenic, low
sero-prevalence vector that was also found to be quite promis-
ing as it achieved virus control during SHIV89.6P challenge
experiments in rhesus macaques immunized with rVSV express-
ing Gag and Env (Rose et al., 2001). Recombinant VSV vector
was shown to induce strong memory CTL responses to HIV-
1 Gag and Env in mice, which were significantly amplified by
boosting with heterologous recombinant vaccinia virus vectors
(Haglund et al., 2002). It is postulated that intranasal delivery
of rVSV vaccines in combination with IL-12 administered during
DNA priming may elicit mucosal immunity for HIV (Egan et al.,
2004, 2005). Priming with rVSV-Gag/Pol/Env (VSV-SIVgpe) fol-
lowed with MVA-Gag/Pol/Env (MVA-SIVgpe) boost was shown
to induce strong and long-lived antibody and cellular responses
that achieved long-term control of SHIV replication (Schell et al.,
2009; Van Rompay et al., 2010). An ongoing phase 1 trial of
rVSV-HIV-1 Gag vaccine (HVTN090) has demonstrated clini-
cal safety and T cell immunogenicity following intramuscular
delivery (Fuchs et al., 2012, 2013), although the magnitude of
responses was limited and will most likely require priming (or
boosting) with suitable vectors.

Other vectors being explored include rhadinovirus (Bilello
et al., 2011), yellow fever virus (Bonaldo et al., 2010), rabies
virus (Faul et al., 2009), Venezuelan equine encephalitis virus
(VEEV) (Caley et al., 1997) and Semliki Forrest virus (Schell
et al., 2011), all of which have shown strong immunogenic-
ity, with some achieving efficacy in NHP challenge protec-
tion models. Influenza virus vaccine vectors have also been
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studied extensively and have been successfully used as delivery
vehicles for several experimental HIV vaccines (Li et al., 1993a,
2013; Muster et al., 1994, 1995; Garcia-Sastre and Palese, 1995;
Palese et al., 1997; Sexton et al., 2009). As natural mucosal
pathogens, influenza virus vectors are well-adapted for stimulat-
ing robust mucosal and systemic immunity comprising both anti-
body and cellular immune responses (Garcia-Sastre and Palese,
1995; Palese et al., 1997; Li et al., 2013). Mucosal immuniza-
tion of mice with chimeric influenza virus vectors expressing
the HIV-1 gp120 V3 loop peptide (IHIGPGRAFTYTT) (Li et al.,
1993a) or the gp41 epitope (ELDKWA) (Muster et al., 1993,
1994, 1995) was shown to induce persistent antibody and CTL
responses. Influenza virus vectors might be successfully com-
bined in prime-boost regimens as demonstrated in influenza
virus-prime and MVA-boost studies in mice (Gherardi et al.,
2003), although they have a limited capacity for immunogen
insertion.

HETEROLOGOUS PRIME-BOOST STRATEGIES FOR
ENHANCED HIV VACCINE EFFICACY
Repeated vaccination in heterologous prime boost approaches
employing different vector combinations in a specific order is
widely accepted as the most efficient means to induce supe-
rior quality and quantity of vaccine-specific immune responses
(Li et al., 1993b; Ramshaw and Ramsay, 2000; Estcourt et al.,
2002; McShane, 2002; Newman, 2002). Heterologous prime boost
regimes allow immune boosting without creating problems of
anti-vector immunity. Furthermore, heterologous prime-boosts
result in increased frequencies of memory T cells, and it has
been shown that the number of immunizations can significantly
influence the phenotype of vaccine-specific memory T cells, with
secondary and tertiary immunizations generating effector-like
memory T cells which preferentially accumulate in non-lymphoid
organs (Masopust et al., 2006; Nolz and Harty, 2011). These
findings have huge implications on the quality and potential of
mucosal surveillance of cells induced in prime-boost vaccination
protocols.

Distinct live viral vectors can be combined in prime-boost
regimes to maximize immune responses. In most studies DNA
has been used for priming, but recently a number of virus
vectors including Adenoviruses, influenza viruses as well as
fowlpox and canarypox have been tested in prime-boost regi-
mens. Prime-boost regimens comprising Adenovirus and MVA
or heterologous Adenovirus strains have recently been shown
to induce both cellular and humoral immune responses to SIV
and malaria antigens (Draper et al., 2008; Liu et al., 2009;
Tatsis et al., 2009; Barouch et al., 2012). In particular, impres-
sive protection against SIV acquisition in rhesus monkeys was
achieved following immunization with a SIVSME543-Gag/Pol/Env
vaccine delivered by Ad26/MVA and Ad35/Ad26 prime-boost
regimens which induced a mixture of neutralizing and binding
antibody as well as cellular immune responses (Barouch et al.,
2012). This study further demonstrated induction of both sys-
temic and mucosal immune responses and achieved protection
from both acquisition and disease progression, thus providing
proof of concept that HIV-1 acquisition and post-infection con-
trol might be achieved by improved immunogen design and

delivery strategies. Heterologous or homologous regimens com-
prising DNA/MVA, MVA/Ad26, and MVA/MVA were compar-
atively less efficacious than Ad26/MVA or Ad35/Ad26, which
reduced viral load set-points by greater than 100-fold. A Phase
1 clinical trial (B003/IPCAVD-004) assessing the immunogenic-
ity of various prime-boost combinations of Ad26 and Ad35
is ongoing, and will inform the field on the clinical utility of
these two promising human adenovirus vector combinations.
Another NHP study employing three doses of plasmid DNA
followed with Ad5 to deliver various immunogens comprising
SIV-Gag, SIV-Env mosaic immunogens or SIVmac239 Env also
induced cellular and antibody responses (neutralizing antibodies
and ADCC) and achieved significant protection against intra-
rectal challenge of rhesus macaques with SIVsmE660 that was a
mismatch of the vaccine strain (Roederer et al., 2014). Moreover,
superior immunogenicity of prime-boost combinations using
DNA/ChAdV63/MVA or ChAdV63/MVA has been demonstrated
in a Phase I study (Borthwick et al., 2014).

The success of a viral vector for priming has already been
demonstrated in the RV144 study which used ALVAC to prime
antibody and T cell responses, followed with a protein boost
(Rerks-Ngarm et al., 2009). Although priming with DNA has
always seemed a better strategy as it focuses the immune response
to the immunogen transgene, as opposed to viral vectors which
carry multitudes of immunogenic antigens within their back-
bones, the efficacy of viral-vector priming followed by protein
boosting in the RV144 study and the superior immunogenicity
of virus-prime/virus-boost in the studies discussed above sup-
port the use of viral vectors for both priming and boosting.
Therefore, heterologous prime-boost regimens combining DNA,
Adenovirus and MVA or ALVAC are likely to achieve efficacy
against HIV in clinical trials, although this will require that HIV
Env or genes encoding NAb epitopes are included in the immuno-
gen formulations (Barouch et al., 2012, 2013). Preclinical studies
investigating the potential of combined chimpanzee adenovirus,
MVA and protein prime-boost regimens to deliver immuno-
gens which can stimulate broadly neutralizing antibodies such
as BG505 are underway. The success of recombinant adenovirus
vector priming followed with MVA boost in inducing high-titre
antibodies either on their own or in conjunction with molecu-
lar adjuvants has already been proven in preclinical studies of
malaria (Draper et al., 2008). Possibly the persistence of aden-
ovirus ensures continuous antigen supply which is suitable for
B cell priming. It is envisaged that optimal delivery modalities
which combine HIV immunogens eliciting BNAbs with those
that stimulate strong T cell immunity will achieve enhanced vac-
cine efficacy. Of course a major caveat of combining strong T
cell vectors with antibody-producing immunogens is the possi-
ble immune interference of antibody production by these vectors.
Nevertheless, this can be optimized perhaps by employing sev-
eral protein boosts with powerful adjuvants in order to deliver
the most balanced immune responses.

POTENTIAL VACCINE-ASSOCIATED RISK OF HIV
ACQUISITION
The increased risk of HIV-1 acquisition in the STEP and
HVTN505 trial vaccinees despite strong immune responses has
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raised many unanswered questions as to whether the vaccine
delivery modalities, suboptimal potency of the HIV immuno-
gens or other unknown external factors are responsible for
vaccine failure. As far as immunogen design, the vaccine con-
struct used in the STEP, Phambili and HVTN505 studies repre-
sents one of the most comprehensive immunogens with broad
coverage, as it comprised a 6-plasmid DNA and rAd5 vec-
tors expressing Gag/Pol/Nef/Env proteins from multiple clades.
Other immunogens based on similar or far less comprehen-
sive HIV protein coverage have also been tested and showed
varied degrees of immunogenicity. Thus, an understanding on
whether the outcomes of the STEP/Phambili/HVTN505 studies
(efficacy, immunogenicity or increased risk of acquisition) would
have been different if other delivery vectors (such as DNA/MVA,
DNA/ALVAC or DNA/Ad35/Ad26 or even a replicating CMV vec-
tor) had been used to deliver the same immunogens in these trials
is key for further progression in the field. An Alternative way to
look at this is to ask whether the results of RV144 trial would
have been worse if Ad5 was used instead of ALVAC, assuming that
the prevalence of Ad5 neutralizing antibodies in the RV144 pop-
ulation does not differ significantly from the STEP and Phambili
study populations.

The finding that the vaccine was not at all efficacious amongst
men who were circumcised or in uncircumcised men who did not
have pre-existing Ad5 immunity raises doubts as to whether effi-
cacy was genuinely hindered by Ad5 serostatus. This is further
supported by the results of HVTN505 study which tested only
circumcised individuals without Ad5 antibodies, yet no protec-
tion was observed. Moreover, the absence of Ad5 antibodies in the
HVTN505 study participants (which should in theory allow for
higher immunogenicity) was not associated with any significant
enhancement of the magnitude and quality of immune responses
over those seen in the STEP and Phambili studies. Therefore,
Ad5 serostatus can be safely removed from the equation, leav-
ing the only plausible explanation for vaccine failure to be the
quality and quantity of immune responses. If this can be fully
documented beyond doubt then it implies that either the Ad5
delivery vector or the HIV-1 antigens used were not immunogenic
enough to afford protection from infection or post-infection
virus control. However, considering that Ad5 is one of the most
immunogenic vectors currently available, (and that the immuno-
gen used in these studies was comprehensive and well-designed),
this would have serious implications for vaccine design, as it sets
the bar really high for new candidate vaccines which would be
expected to stimulate responses of extremely higher magnitudes
and superior qualitative properties in order to achieve even the
minimal efficacy. On a brighter side, this would perhaps insti-
gate intense scrutiny of the current methods used for assessing
vaccine immunogenicity in order to standardize and synchronize
with those for efficacy measurements.

One other interesting question is whether (and how) Ad5
sero-positivity is intrinsically associated with HIV acquisition.
Although studies of uncircumcised men document increased
risk of natural HIV acquisition due to a high frequency of
CD4+CCR5+ target cells in the foreskin (Prodger et al., 2012),
how this relates their Ad5 sero-positivity and titre levels with
infection risk is not very clear. However, the fact that the risk

of HIV-1 acquisition in the STEP study diminished with time
after immunization, and eventually leveled up with placebo recip-
ients (Buchbinder et al., 2008) might in actual fact support a
role for vaccine-induced immune activation in HIV acquisition
(Tenbusch et al., 2012). Perhaps this could be as a result of
generalized immune activation or induction of activated vaccine-
specific HIV-1 targets with mucosal-homing properties. Should
this be the case, then this would not be unique to Ad5 vectors
alone and it would therefore be expected to equally affect other
delivery vectors capable of inducing activated mucosal-homing
target cells. However, as there were no notable differences in
activated circulating T cells between vaccinees and placebos, it
is unlikely that generalized vaccine-induced immune activation
played a role, although it remains possible that there could have
been significant differences in activated targets at mucosal sites
which were not measured.

This then raises another interesting question as to whether
the outcome of the STEP/Phambili/HVTN505 studies would have
been significantly worse (or better) had the vaccines been admin-
istered mucosally. This question might have two sides to it, in
the sense that mucosal delivery would probably have generated
higher frequencies of activated HIV targets at the genital mucosae,
hence increasing the potential of fuelling infection. On the other
hand, induction of robust and polyfunctional effector immune
responses at mucosal portals of HIV entry would probably have
cleared the incoming HIV before infection became established.
Although these questions have no clear cut answers and cannot be
addressed retrospectively in the context of the clinical trials they
relate to, they however highlight the extreme challenges in HIV
vaccine delivery, and new studies designed to directly tackle these
issues will be quite informative for future vaccine development
research. Studies looking at whether the most promising deliv-
ery vectors (and the respective immunogens) can concurrently
induce activated HIV-1 target cells that preferentially home to and
persist in the genito-rectal and GALT mucosae, and whether or
not such vaccine-induced cells become highly permissive to HIV
infection will be of particular interest in efforts aimed at limit-
ing the risk of vaccine-induced HIV-1 acquisition and accelerated
disease progression.

PERSPECTIVES AND CONCLUSION
Ideally, vectors for HIV-1 vaccines should directly target anti-
gen presenting cells (APCs) or other immune cells to induce
long-lived, strong antibody and cellular responses that can
broadly disseminate to systemic and mucosal compartments.
The vaccine-specific T cells in particular should be broad and
contain activated effector, effector memory and central mem-
ory phenotypes in various proportions in order to achieve a
proper balance between immediate virus clearance and sus-
tained immune-surveillance for long-term protection, as demon-
strated by the RhCMV-SIV vaccine which controlled and cleared
pathogenic SIV infection (Hansen et al., 2009, 2011, 2013).
Furthermore, vectors which can stimulate polyfunctional CD4+
and CD8+ T cells that act in concert with B cells to inhibit HIV
replication through a variety of mechanisms would be more suc-
cessful than those inducing only mono-functional T cells of either
subset alone.
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Of particular relevance to protection from infection would be
vaccine vectors associated with homing and long-term persistence
of vaccine-induced immune responsive cells at the genito-rectal
mucosae (Chanzu and Ondondo, 2014) as well as other mucosal
sites serving as HIV reservoirs. This remains a very important
priority in consideration of the significant rapid CD4+ T cell
depletion in the intestinal mucosa despite successful HAART
(Brenchley et al., 2004; Mehandru et al., 2004). Thus, vac-
cine vectors which naturally infect cells within mucosal induc-
tive sites, especially the replication-competent viruses such as
adenovirus and influenza virus vectors (Gherardi et al., 2003;
Sexton et al., 2009) which can be administered mucosally to
trigger mucosal immunity, would be more suited for HIV vac-
cine delivery. Alternatively, delivery of vaccines via routes which
enhance mucosal immunity (Holmgren et al., 2003; Holmgren
and Czerkinsky, 2005; Czerkinsky and Holmgren, 2012) or vec-
tors possessing an inherent ability to induce mucosal immunity
in addition to systemic immune responses following parenteral or
mucosal vaccine delivery (Moser et al., 2007) may be employed.
Virosome vectors for instance, possess intrinsic adjuvant prop-
erties and a unique ability to target antigen presenting cells,
hence have been very successful at inducing protective mucosal
immunity in SHIV challenge models (Moser et al., 2007; Bomsel
et al., 2011; Leroux-Roels et al., 2013). Other vectors suitable for
mucosal vaccine delivery include VEEV (Caley et al., 1997). In
the absence of mucosal delivery vectors, new delivery technolo-
gies such as the “prime and pull” approach may be utilized in
conjunction with systemic delivery methods to enhance mucosal
homing and subsequent immunity (Azizi et al., 2010; Shin and
Iwasaki, 2012; Tregoning et al., 2013). In this approach, spe-
cialized chemokines are administered in mucosal compartments
following parenteral immunization in order to chemo-attract
the activated vaccine-specific immune cells from the systemic
compartments. Furthermore, use of mucosal adjuvants such as
CTB and LT-B (Albu et al., 2003; Yuki and Kiyono, 2003), pro-
inflammatory cytokines (IL-1α, IL-12, and IL-18) (Belyakov et al.,
1998b; Bradney et al., 2002; Albu et al., 2003) or immunostim-
ulatory CpG motifs (Horner et al., 2001; Dumais et al., 2002;
Daftarian et al., 2003; Jiang et al., 2005) which target recruitment
of immune cells to the mucosal sites would be useful. Co-delivery
of vaccines with genes encoding CCL19 and CCL28 was also
shown to enhance HIV-1-specific T and B cell responses in the
systemic as well as mucosal compartments (Hu et al., 2013).

In consideration of both safety and immunogenicity goals as
already discussed, and with particular emphasis on the pivotal
role of CTL responses in controlling HIV replication, it seems that
non-replicating viral vectors with lower sero-prevalence would
be highly desirable, mainly due to excellent safety profiles and
potent adjuvant effect allowing for induction of very strong, high
quality and long-lived cellular and humoral immunity. However,
although safety and reduced immune interference would be guar-
anteed, a major caveat would be that these lower sero-prevalence
vectors may not be adequately immunogenic. Perhaps these vec-
tors can be re-engineered to improve their immunogenic poten-
tial. For instance, the immunogenicity of vectors such as MVA
and NYVAC can be improved by removal of genes associated
with immune evasion which counteract immune responses to the

vaccine (Kibler et al., 2011; Gomez et al., 2012; Garcia-Arriaza
et al., 2013). In other cases, addition of cytokine-encoding genes
such as type 1 interferons, IL-12 or GM-CSF can enhance vac-
cine efficacy (Gherardi et al., 1999, 2000; Rodriguez et al., 1999;
Ramshaw and Ramsay, 2000; Bayer et al., 2011). Furthermore,
chemokines such as CCL3 which recruits professional APCs can
be co-delivered with HIV antigens to enhance vaccine immuno-
genicity (Lietz et al., 2012).

Alternatively, vectors capable of inducing substantial immuno-
genicity in the presence of pre-existing natural or vaccine-induced
anti-vector immunity may be worth considering, although it is
expected that finding highly attenuated vectors which are safe
and remain immunologically potent will be equally challeng-
ing. As discussed earlier, combining some of the most promising
vectors in heterologous prime-boost regimens will significantly
enhance the quantity, quality and protective efficacy of immune
responses. However, in consideration of the possible catastrophic
effects of elevated immune activation likely to arise from var-
ious vector combinations, it would be expected that suitable
HIV vaccine vectors maintain lower levels of immune activa-
tion to limit the numbers of activated HIV-1 targets (Perreau
et al., 2008; Benlahrech et al., 2009) likely to fuel infection in
the event of exposure. Furthermore, it is documented that in the
absence of a very strong protective immune responses to coun-
teract the incoming virus, the presence of vaccine-specific T cells
which are activated and hence more susceptible to infection may
increase the risk of acquisition (Tenbusch et al., 2012). Whether
it is possible to achieve potent immunostimulatory capacity but
with minimal immune activation still remains a subject of intense
investigation.

When safety and versatility are considered, and in full view of
the enormous technology advancements in DNA plasmid formu-
lations and delivery, in conjunction with other immunomodula-
tory interventions such as SAP depletion and use of molecular
adjuvants, recombinant DNA vaccines remain very attractive,
although efforts to improve stimulation of long-lived effec-
tor/memory CD8+ T cell phenotypes are still needed to achieve
long-term efficacy. Undoubtedly, repeated immunizations or
combining DNA vaccines with persistent (replicating) vectors
or vectors with slow immunogen release features would induce
durable immunity. Nonetheless, replicating vectors with lower
sero-prevalence and minimal pathogenicity (Rose et al., 2001;
Kawada et al., 2007; Fuchs et al., 2013; Liu et al., 2013) are
being considered as they would provide a persistent pool of
HIV vaccine-specific effector memory phenotype cytotoxic T cells
which are critical for long-term protection from disease progres-
sion (Hansen et al., 2009, 2011, 2013). Such effector memory
responses would otherwise be expected to wane with time, in the
absence of antigen. Replicating vectors may also be better-suited
for induction of broadly neutralizing antibodies since persisting
expression of the Env antigens is likely to drive high levels of
somatic mutations required for affinity maturation of these anti-
bodies (van Gils and Sanders, 2013). A new strategy that has
been proven to induce durable and protective antibody responses
in humanized mice challenged with high doses of diverse HIV
strains is vectored immunoprophylaxis, which involves inser-
tion of immunoglobulin genes into viral vectors such as the
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adeno-associated virus (AAV) to provide long-term expression
of neutralizing antibodies (Balazs et al., 2012, 2014). Moreover,
inclusion of Th2 cytokines such as IL-4, IL-5, and IL-6 which
enhance B cell maturation into long-lived antibody secreting cells
is yet another strategy already shown to induce high titres of
neutralizing antibodies which protected mice from Friend Virus
(Ohs et al., 2013). Other possible strategies include use of lentivi-
ral vectors expressing B cell receptor genes encoding neutralizing
antibodies to HIV-1 to transduce haematopoietic stem cells (Luo
et al., 2009).

Since optimum induction of immune responses to vaccines
strongly depends on innate immune triggering as well as the levels
of transgene expression, vectors with natural adjuvant proper-
ties and therefore capable of strongly inducing innate immu-
nity are particularly immunogenic and thus highly desirable.
However, care must be taken to balance between strong innate
function stimulation and the potential risk of inducing potent
stimulation of immuno-pathological effects, including immune
hyper-activation.

In conclusion, a successful vaccine for HIV will have to stimu-
late potent antibody and CTL responses broad enough to cover
multiple HIV variants and with potential to neutralize, bind
or suppress HIV-1 replication for sustained (possibly infinite)
lengths of time. Of utmost importance, however is generation of
vaccine-specific immune responses in the genito-rectal mucosae,
the major portals of HIV entry. Emerging evidence strongly
suggests that non-pathogenic, low-level replicating viral vectors
which can mimic live attenuated vaccines, but with low sero-
prevalence might be the best way to achieve HIV vaccine efficacy.
As these vectors persist long after immunization, they are capable
of inducing and maintaining effector/memory CTLs for contin-
ued immune surveillance that is necessary to protect from infec-
tion, disease progression and to clear or prevent establishment of
latent reservoirs. Thus, to achieve protective efficacy HIV vaccine
development will need ingenious state of the art technologies to
create the very best of T cell and antibody immunogens, deliv-
ered by the most potent but safe vectors possessing remarkably
high capacity to induce both systemic and mucosal immunity, but
without significant immune activation likely to fuel HIV acquisi-
tion. Recent significant advances in vaccine delivery technologies
and HIV immunogen design provide hope that this is not far from
reality.
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Elevated levels of regulatory T cells following Plasmodium infection are a well-reported
phenomenon that can influence both protective and pathological anti-parasite responses,
and might additionally impact on vaccine responses in acutely malaria infected individuals.
The mechanisms underlying their induction or expansion by the parasite, however, are
incompletely understood. In a previous study, Plasmodium falciparum infected red blood
cells (iRBCs) were shown to induce effector-cytokine producing Foxp3int CD4+ T cells,
as well as regulatory Foxp3hi CD4+ T cells in vitro. The aim of the present study was to
determine the contribution of parasite components to the induction of Foxp3 expression
in human CD4+ T cells. Using the surface Pf EMP1-deficient parasite line 1G8, we
demonstrate that induction of Foxp3hi and Foxp3int CD4+T cells is independent of Pf EMP1
expression on iRBCs. We further demonstrate that integrity of iRBCs is no requirement for
the induction of Foxp3 expression. Finally, transwell experiments showed that induction
of Foxp3 expression, and specifically the generation of Foxp3hi as opposed to Foxp3int
CD4T cells, can be mediated by soluble parasite components smaller than 20 nm and thus
likely distinct from the malaria pigment hemozoin.These results suggest that the induction
of Foxp3hi T cells by P. falciparum is largely independent of two key immune modulatory
parasite components, and warrant future studies into the nature of the Foxp3hi inducing
parasite components to potentially allow their exclusion from vaccine formulations.

Keywords: Malaria, Plasmodium falciparum, regulatoryT cell, Foxp3, Pf EMP-1, hemozoin

INTRODUCTION
Malaria caused by infection with protozoan Plasmodium parasites
is a life threatening disease that is at least partially immune medi-
ated. Disease-contributing factors include excessive inflammatory
responses and overwhelming parasite replication insufficiently
controlled by anti-parasite immune responses. Regulatory T cells
(Tregs) can suppress both protective as well as pathological adap-
tive immune responses, and are elevated in both human falciparum
and vivax malaria as well as in murine malaria models (Scholzen
et al., 2010). Although the consequences of elevated Treg levels
during malaria are yet to be determined, several studies indicate
that depending on the stage of infection, increased Treg lev-
els can be protective or detrimental to the host (Finney et al.,
2010; Hansen and Schofield, 2010; Scholzen et al., 2010). In
addition to potentially limiting responses to parasite antigens
(Ho et al., 1986; Bejon et al., 2007), elevated Treg levels dur-
ing acute blood-stage malaria infection might also contribute
to the reduced acquisition of immune responses to heterolo-
gous antigens, such as standard childhood vaccines (Greenwood
et al., 1972; Williamson and Greenwood, 1978; Whittle et al.,
1984). The mechanisms underlying the elevated levels of this
important cell type during malaria, however, are incompletely
understood.

We have previously dissected the host immune mecha-
nisms contributing to the induction of effector-cytokine pro-
ducing CD25+Foxp3int CD4+ T cells, as well as regulatory
CD25+Foxp3hi CD4+ T cells that inhibited Foxp3int effector
cytokine production, following P. falciparum-infected red blood
cells (iRBCs) exposure in vitro (Scholzen et al., 2009). The par-
asite factors responsible for Treg induction during malaria are
yet unknown. This is especially relevant as the identification
of parasite-specific components relevant for Treg induction may
allow the development of intervention strategies directly targeted
at the parasite, and the specific exclusion or inclusion of parasite
components in therapeutic or vaccine formulations (Casares and
Richie, 2009; Higgins et al., 2011).

Two key parasite components that have attracted attention as
modulators of immune response in both human and murine
malaria are the virulence factor and variant surface antigen P.
falciparum erythrocyte membrane protein (PfEMP)-1, and the
heme degradation product and malaria pigment hemozoin. Whilst
findings for PfEMP-1 are controversial, both have been shown
in a number of studies to interfere with the activation and
maturation of antigen-presenting cells such as monocytes and
dendritic cells (Millington et al., 2006; Wykes and Good, 2008;
Stevenson et al., 2011). This is particularly relevant as both in
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human in vitro studies (Scholzen et al., 2009; Finney et al., 2012;
Clemente et al., 2013) and in murine models (Hisaeda et al., 2008),
antigen-presenting cells are crucial mediators of Treg induction
and activation by malaria parasites. The aim of the present study
was therefore to determine the contribution of parasite compo-
nents to the induction of Foxp3 expression in human CD4+ T
cells.

MATERIALS AND METHODS
P. falciparum CULTURE AND TROPHOZOITE ISOLATION
Mycoplasma-free blood-stage parasites of P. falciparum (strain
3D7) were maintained in O+ erythrocytes in RPMI-1640 medium
(JRH, Lenexa, KS, USA) supplemented with 1 mM glutamine,
11 mM glucose, 25 mM HEPES, 0.2% (w/v) sodium bicarbonate,
200 mM hypoxanthine, 40 mg/ml gentamycin (all Sigma–Aldrich,
St. Louis, MO, USA), and 0.5% (w/v) AlbuMAX II (GIBCO, Invit-
rogen, Carlsbad, CA, USA) at 37◦C in an atmosphere of 5% CO2
and 1% O2 in N2. Knob-expressing parasites were enriched weekly
using gelofusine solution (Braun Melsungen, Germany). The 3D7-
derived SBP-1 knock-out parasite line [clone 1G8 (Cooke et al.,
2006)] was grown under drug-pressure (2.5 nM WR99210 and
4 μM Ganciclovir). Trophozoite stage parasites were isolated by
density gradient centrifugation following layering onto a gradient
of 40/60/80% isotonic Percoll (Amersham Biosciences, Uppsala,
Sweden). The percentage of infected erythrocytes was typically
90–100%.

PBMC ISOLATION AND IRBC:PBMC CO-CULTURE
To examine the induction of Foxp3 expression by iRBCs, we
employed the in vitro co-culture system previously validated in our
laboratory (Scholzen et al., 2009). Peripheral blood mononuclear
cells (PBMCs) were recovered by Ficoll–Hypaque (Amersham
Biosciences) density gradient centrifugation from buffy coats
[Australian Red Cross Blood Service (ARCBS), Melbourne, VIC,
Australia]. The ARCBS received informed consent from all donors
to use their donation for research purposes and the Monash Uni-
versity Human Research Ethics Committee approved the research
purpose for which buffy coats were used. Autologous human
serum (HS) was obtained by coagulating platelet-rich plasma from
buffy coats with 0.3% (w/v) CaCl2, followed by heat inactivation
at 56uC for 30 min. PBMCs were cultured in AIM-V medium
(GIBCO, Invitrogen) supplemented with 5% autologous HS alone
(untreated controls), with non-infected control erythrocytes or
trophozoite-stage iRBCs. An iRBC:PBMC ratio of 2:1 was cho-
sen (Scholzen et al., 2009), calculated to reflect a clinically relevant
parasitemia found in natural infections (0.1% parasitemia or 5000
iRBC/μl blood) (Minigo et al., 2009; Walther et al., 2009). To
obtain iRBC lysate, the integrity of iRBCs was disrupted by five
rounds of freeze-thawing. In some experiments, tissue culture
inserts (Anopore, NUNC, Naperville, IL, USA) were used to sep-
arate iRBCs (inside) from PBMCs (outside the transwell). A pore
size of 20 nm was chosen to prohibit transfer of hemozoin crystals,
which are on all sides larger than this cut-off (Noland et al., 2003).

CELL PHENOTYPING BY FLOW CYTOMETRY
Cells were washed with PBS and incubated with antibodies diluted
in PBS/10% HS/0.01% NaN3 (sodium azide) for 30 min on

ice. Surface antibodies were anti-CD4 PerCp (clone SK3), CD3
FITC (clone UCHT1), and CD25 PE (clone M-A251, all BD
Biosciences). Intracellular staining with anti-Foxp3 APC (clone
PCH101, eBiosciences) was performed using the eBioscience fixa-
tion/permeabilization buffer kit. A minimum of 105 events in the
lymphocyte gate was acquired using a FACScalibur flow cytome-
ter for 4-color analysis and analyzed using WEASEL software
(WEHI, Melbourne, VIC, Australia). Cells were gated first based
on forward and side scatter to excluded dead cells and cell debris.
T cells in the lymphocyte gate were identified based on CD3
expression, further sub-gated on CD4+ T cells (Figure 1A) and
CD25+ cells then subdivided into Foxp3hi and Foxp3int cells
(Figure 1B).

DATA PRESENTATION AND STATISTICAL ANALYSIS
We employed normalization onto control conditions for each
donor, to be able to analyze changes in Foxp3hi or Foxp3int
proportions (measured as percentage of CD4 T cells). Normal-
ized values are referred to as fold change compared to control
conditions (value 1).

Statistical analysis was carried out using GraphPad Prism soft-
ware v4 (San Diego, CA, USA). Due to the small power of
non-parametric tests to detect differences in small sample sizes,
all tests were chosen to be parametric. P values between two
groups were determined by two-tailed paired Student’s t-test.
Three or more groups were compared by repeated-measures one-
way ANOVA, followed by Tukey’s multiple comparison post test.
A p < 0.05 was considered significant.

RESULTS
We firstly addressed the question, whether the induction of
Foxp3 expression in CD4+ T cells was dependent on inter-
actions between iRBC surface-expressed PfEMP-1 and corre-
sponding receptors on peripheral blood mononuclear cells such
as monocytes using a recently established 3D7-derived sur-
face PfEMP1 deficient parasite line. This parasite line lacks,
due to targeted gene disruption, expression of skeleton-binding
protein 1 (SBP-1), a Maurer’s cleft-associated protein essen-
tial for the transport of PfEMP-1 to the iRBC surface (Cooke
et al., 2006). When co-cultured with PBMC for 6 days, sur-
face PfEMP-1 deficient 1G8 parasites induced proportions of
CD25+Foxp3hi and CD25+Foxp3int cells that were not sig-
nificantly different from those induced by wild type 3D7
iRBCs (Figure 1, one-way ANOVA with Tukey’s post-test).
This indicates that induction of Foxp3 expression in CD4+
T cells is independent of surface PfEMP-1 expression on
iRBCs and therefore surface PfEMP-1-host immune receptor
interaction.

Since two previous studies have used iRBC lysate or soluble
extract for Foxp3 induction in vitro (Finney et al., 2012; Clemente
et al., 2013), we first assessed there was a difference between intact
and lysed iRBC in their ability to induce CD25+Foxp3 express-
ing CD4+ T cells. When comparing Foxp3 induction in PBMC
co-cultures with either intact iRBCs or iRBC lysate, iRBC lysate
was nearly as effective in inducing both CD25+Foxp3hi and
CD25+Foxp3int CD4+ T cells (Figure 2), with no significant
difference between the two for neither absolute percentages or
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FIGURE 1 | Infected red blood cell (iRBC)-mediated Foxp3 expression is

independent of surface Pf EMP-1 expression. PBMC were cultured alone or
in the presence of normal (nRBC) or infected RBCs (iRBC) at an RBC:PBMC
ratio of 2:1. RBCs were infected with either the parental strain 3D7 or the
SBP-1 knock-out parasite line 1G8. On day 6, cells were harvested and
analyzed by flow cytometry. (A) Lymphocytes were selected by FSC/SSC
gating and further gated based on CD3 and CD4 staining. CD4+ T cells were

then analyzed based on CD25 and Foxp3 expression. (B) Representative dots
plots for PBMC from one donor stimulated with 3D7 and 1G8 parasites.
(C) Proportions of Foxp3hi and Foxp3int CD4+CD25+ T cells determined as a
percentage of CD3+CD4+ T cells for eight donors in six independent
experiments. (D) Values of all conditions were normalized for each individual
donor on proportions induced by 3D7 iRBCs. Vertical bars represent median
values.

after normalization. Therefore, iRBC integrity is indeed not a pre-
requisite for the Foxp3 induction in CD4+ T cells upon parasite
exposure.

To further investigate the possibility that large intracellular
components such as hemozoin crystals interacting with mono-
cytes were contributing to Foxp3 induction, we employed tissue
culture inserts to separate iRBCs (inside) and PBMCs (outside the
transwell). We specifically chose a pore size of 20 nm to prohibit
transfer of large parasite components, including membrane frag-
ments and intact hemozoin crystals, which are larger than 20 nm in
diameter on either side of their brick-like cuboidal body (Noland
et al., 2003), between the two chambers. Accordingly, in this

transwell setting we found no light-microscopic evidence of hemo-
zoin incorporation into monocytes (which in direct co-cultures
are typically filled with dark hemozoin material, data not shown).
As shown in Figure 3, similar to direct co-cultures, iRBC sepa-
rated from PBMC by a transwell were also capable of inducing
Foxp3 expression in CD4+ T cells. Importantly, in four out
of five donors Foxp3hi CD4+ T cells were still induced at lev-
els comparable to direct co-culture (Figure 3), while induction
of Foxp3int CD4+ T cells was reduced in all five donors tested
(Figures 3B,C; 20–31% compared to direct co-culture; p < 0.001,
one-way ANOVA with Tukey’s post-test). As a result, there was
a trend that exposure of PBMC to soluble iRBC components
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FIGURE 2 | iRBC-mediated Foxp3 expression does not require intact

iRBCs. PBMC were cultured alone or in the presence of normal (nRBC) or
infected RBCs (iRBC) at an RBC:PBMC ratio of 2:1. PBMC were co-cultured
with equal amounts of either intact 3D7 iRBCs, or 3D7 iRBC lysate resulting
from five rounds of freezing and thawing. (A) Representative dots plots for
PBMCs from one donor stimulated with intact iRBCs versus iRBC lysate.

(B) Proportions of Foxp3hi and Foxp3int CD4+CD25+ T cells were
determined on day 6 as a percentage of CD3+CD4+ T cells for five donors in
two independent experiments. (C) Values of all conditions were normalized
for each individual donor on proportions induced by intact iRBCs. Vertical bars
represent median values. Dotted lines show the upper 95% confidence
interval of the mean of uRBC-stimulated control cultures.

smaller than 20 nm instead of complete iRBC enhanced the ratio
of Foxp3hi:Foxp3int cells within the CD4+CD25+ population
(Figure 3D).

DISCUSSION
In this study, we show that P. falciparum iRBCs can induce Foxp3hi
CD4 T cells independent of surface-expressed PfEMP-1 via soluble
parasite components smaller than 20 nm.

Similar to our finding that induction of Foxp3 expression
is independent of iRBC surface PfEMP-1 expression and con-
tact with intact iRBCs, a recent study demonstrated that human
monocyte-derived DC maturation can be inhibited by P. fal-
ciparum independent of surface PfEMP1 expression and also
across a transwell (Elliott et al., 2007). Using a murine malaria
model, Orengo et al. (2008) reported that inhibition of murine

DC maturation following P. yoelii infection was also mediated
by a yet unidentified soluble factor. Future studies are now
needed to further identify the soluble factor mediating these
immunomodulatory effects of the parasite. Importantly, mono-
cytes or monocytes-derived DCs were previously shown to be
required to drive the induction of Foxp3 expression in human
CD4 T cells upon P. falciparum exposure in vitro (Scholzen
et al., 2009; Clemente et al., 2013) and DCs activated Tregs in
P. yoelii infected mice (Hisaeda et al., 2008). Future studies
may therefore address the question whether it may even be the
same mechanism by which the parasite modulates not only with
monocyte and DC function, but also initiates the induction of
Tregs.

Previous studies have used either intact iRBCs (Scholzen et al.,
2009), iRBC lysate (Finney et al., 2012), or the soluble fraction
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FIGURE 3 | Foxp3hi and to a lesser degree Foxp3int induction is

mediated by soluble iRBC components smaller than 20 nm. To exclude
large membrane fragments and intact hemozoin crystals and to examine
the contribution of small soluble molecules derived from iRBCs to Foxp3
induction, intact iRBC were separated from PBMC through a transwell
membrane (pore size 20 nm). (A) Representative dots plots for PBMCs
from one donor cultured in direct contact with iRBCs compared to
transwell-separated iRBCs. (B) Proportions of Foxp3hi and Foxp3int
CD4+CD25+ T cells were determined on day 6 as a percentage of CD4+ T
cells for five donors in two independent experiments. (C) Values of all
conditions were normalized for proportions induced by direct co-culture
with iRBCs for each donor. Vertical bars represent median values. (D) The
ratio of Foxp3hi:Foxp3int cells within the CD4+CD25+ T cell population
was calculated for each individual donor in direct or transwell separated
co-cultures. Vertical bars represent median values. Individual donors are
identified by unique symbols. Dotted lines show the upper 95% confidence
interval of the mean of uRBC-stimulated control cultures.

of iRBC lysate (Clemente et al., 2011) as a stimulus for Foxp3
expression in human CD4 T cells in vitro. In this direct side-
by-side comparison we show that Foxp3 induction by iRBC
lysate is indeed comparable to intact iRBC. Therefore, if direct
cell–cell interaction between immune cells and iRBCs are not
a pre-requisite for Treg induction, which is instead mediated

by soluble factors resulting from schizont rupture, then Treg
induction can also occur at distant sites clear of measurable
parasitemia.

For instance, while mature trophozoite-stage P. falciparum par-
asites are typically sequestered in the microvasculature (to avoid
clearance in the spleen), soluble parasite components released
upon parasite rupture would have access to monocytes and T cells
in the spleen. Moreover, soluble parasite components might also
mediate Treg induction in more distant sites outside the circula-
tion, such as in lymph nodes. In as how far this occurs, and whether
this would affect vaccination-induced immune responses dur-
ing acute blood-stage malaria infection (Greenwood et al., 1972;
Williamson and Greenwood, 1978; Whittle et al., 1984), remains
to be determined. Finally, such small parasite components may
be able to cross the placental barrier and thus explain and con-
tribute to the induction of Tregs in cord blood even in the absence
of direct cord blood parasitemia. Indeed, in some studies lev-
els of Tregs have been found to be elevated in neonates born
to mothers who had experienced malaria episodes during preg-
nancy (Brustoski et al., 2006; Mackroth et al., 2011), while in other
studies, ex vivo cord blood Treg frequencies were unaffected by
placental malaria and only increased only upon in vitro stim-
ulation with iRBC extract (Flanagan et al., 2010; Soulard et al.,
2011). It is yet unclear whether Treg induction during a single
Plasmodium infection predisposes the immune system to height-
ened regulatory responses at the next encounter with the parasite,
but in utero exposure to Treg-inducing parasite components may
prime the fetus’s immune system to respond with a less inflam-
matory response upon re-exposure to malaria-antigens (Malhotra
et al., 2009; Flanagan et al., 2010). Moreover, such malaria-induced
immune modulation might also be one explanation for obser-
vations of reduced vaccination-responses in children born to
women with placental-malaria (Labeaud et al., 2009; Walther et al.,
2012).

Hemozoin has been shown in several studies to activate TLR9
(Shio et al., 2010). Moreover, DCs activated via TLR9 [either by
iRBCs in mice (Hisaeda et al., 2008) or CpG DNA in human
(Moseman et al., 2004)] can induce/activate Tregs. These find-
ings indicate a potential role for hemozoin in Treg induction. It
remains to be formally shown whether iRBC-purified or synthetic
hemozoin contributes to the induction of Tregs by P. falciparum
iRBCs. Our results from experiments using transwell inserts with
a 20 nm pore size to separate PBMCs and iRBCs, however, sug-
gest that hemozoin crystals do not have a major contribution to
the generation of Foxp3hi T cells: Intact hemozoin crystals are
larger than 20 nm (Noland et al., 2003) and therefore unlikely to
have crossed the 20 nm sized pores of the transwell inserts used
in this study. We adoped a transwell approach to prohibit the
transfer of intact hemozoin crystals after schizont rupture, since
it is currently technically not possible to deplete iRBC extracts
of hemozoin without denaturing other lysate components and
antigens (Coban et al., 2010). And while we cannot rule out that
smaller hemozoin crystal fragments might have crossed the tran-
swell border, the TLR9 binding capacity of hemozoin has recently
been shown to be restricted to a crystal size range of 50–200 nm,
while hemin molecules smaller than 50 nm were ineffective (Coban
et al., 2010).
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A curious finding was the trend towards a favored induc-
tion of Foxp3hi over Foxp3int T cells when components larger
than 20 nm were excluded from the co-culture using tran-
swell membranes. Whilst these data require further analysis in
future studies, it is tempting to speculate that small soluble
parasite components are preferentially driving Foxp3hi induc-
tion, whilst Foxp3int effector T cells may rely on a greater
pool of membrane associated antigens. We have previously
shown that although iRBC-mediated induction of Foxp3hi T cells
does rely on T effector-produced IL-2 and is further driven by
cytokines such as IL-10 and TGFβ, in itself it is not dependent
on MHC class II antigen-presentation and those cells therefore
not necessarily malaria antigen-specific (Scholzen et al., 2009).
The current data are in line with this finding, suggesting that
activation of T cells in an environment of direct contact of
antigen-presenting cells with intact iRBCs might result in a more
efficient induction of (Foxp3int) effector T cells in a parasite
antigen-specific manner. In contrast, induction of Foxp3hi T
cells with a T regulatory phenotype may also occur indepen-
dent of membrane-associated antigens at a distant site, mediated
by cytokines acting in concert with circulating soluble para-
site molecules. Further research is now necessary to determine
the nature and mechanism of action of these soluble parasite
components.

To conclude, our results indicate that the induction of Foxp3hi
regulatory T cells by P. falciparum may be largely independent
of two key immunomodulatory parasite components, namely
the surface protein PfEMP1 and the malaria pigment hemozoin
and warrant future studies into the nature of the Foxp3hi induc-
ing parasite components. Furthermore, similar to their distinct
cytokine requirements (Scholzen et al., 2009), Foxp3int effector-
like and Foxp3hi regulatory-like CD4+ T cells appear to rely on
different parasite components for their induction. These findings
merit future in-depth studies to identify the parasite components
responsible for regulatory versus effector T cell induction. Identi-
fication of such parasite components will be important to ensure
appropriate exclusion or inclusion of such parasite components
from vaccine formulations.
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Although an influenza vaccine has been available for 70 years, influenza virus still
causes seasonal epidemics and worldwide pandemics. Currently available vaccines
elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and
neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct
viral variants and novel subtypes. Thus, there is a great need for cross-protective or
“universal” influenza vaccines to overcome the necessity for annual immunization against
seasonal influenza and to provide immunity to reduce the severity of infection with
pandemic or outbreak viruses. It is well established that natural influenza infection can
provide cross-reactive immunity that can reduce the impact of infection with distinct
influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9.
The key to generating universal influenza immunity through vaccination is to target
functionally-conserved regions of the virus, which include epitopes on the internal proteins
for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses.
In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have
been characterized and isolated from convalescent and vaccinated individuals, inspiring
development of new vaccination techniques to elicit such responses. Induction of
influenza-specific T cell responses through vaccination has also been recently examined
in clinical trials. Strong evidence is available from human and animal models of influenza
to show that established influenza-specific T cell memory can reduce viral shedding and
symptom severity. However, the published evidence also shows that CD8+ T cells can
efficiently select immune escape mutants early after influenza virus infection. Here, we
discuss universal immunity to influenza viruses mediated by both cross-reactive T cells
and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract
commonly occurring immune-escape variants.

Keywords: influenza viruses, T cells memory, antibodies, viral escape mechanisms, vaccine design

INTRODUCTION
Immunization is the most cost effective public health measure to
prevent the spread of infectious diseases. Influenza causes sea-
sonal epidemics as well as periodic global pandemics due to the
introduction of novel strains and sporadic outbreaks from animal
reservoirs. During the 2009 H1N1 pandemic, the overall infection
rate was 10%, although the infection rate rose to 43% in school-
aged children (Wu et al., 2010). Yet, an influenza vaccine has been
available since the 1940’s.

Current influenza vaccines predominantly mediate protection
by eliciting neutralizing Ab responses to epitopes on the head
region of the virion surface glycoprotein, HA, and also to the
NA. The traditional trivalent influenza vaccine (TIV) is based on
either inactivated whole/subvirion virus or detergent-disrupted
virions, and is administered as an intramuscular injection to
elicit systemic Ab responses. Alternatively, the live attenuated
influenza vaccine (LAIV), is given intranasally. The LAIV vaccine
does not boost T cell immunity in adults (He et al., 2006), but

does improve protection by eliciting Ab responses locally in the
respiratory tract. Notably, LAIV in children is able to establish
influenza-specific T cell responses, possibly due to their naïve
infection status (He et al., 2006). Whilst LAIV has increased
protection compared to TIV (Monto et al., 2009), TIV has
much wider use due to a greater number of manufacturers and
constrained use of LAIV in the elderly and very young.

Originally, the influenza vaccine was a monovalent prepara-
tion, based on the common circulating strain of influenza A virus
(IAV) and was swiftly updated to include an influenza B virus
when these were recognized in the 1940’s. Since the 1970’s, a
trivalent vaccine has been used to provide coverage for H1N1,
H3N2, and influenza B virus, which now co-circulate. Even more
recently, in 2013, the vaccine has become available in a quadriva-
lent form incorporating both Victoria and Yamagata lineages of
influenza B. Thus, the number of vaccine strains has progressively
been increased from a single strain to four, to provide broader
protection and overcome the diversity of multiple influenza virus
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subtypes and lineages. Nevertheless, within each subtype or lin-
eage, constant antigenic drift gives rise to new and unpredictable
antigenic variants that are not necessarily represented in the vac-
cine. Mismatch between the vaccine strain, predicted on the basis
of antigenically novel isolates circulating in the previous winter
in the opposite hemisphere, and the actual strain that emerges
in the current winter can result in significant loss of vaccine
effectiveness.

The mechanism of action of current vaccines, which medi-
ate protection by induction of neutralizing Ab responses to the
rapidly changing head of the HA protein, renders it ineffective
after a few years at best, once all the antigenic regions on the
head of the HA have mutated in response to pre-existing Ab.
Inactivated vaccines are also very poor inducers of CD8+ T cell
responses, presumably because of inefficient uptake and priming
by appropriate antigen presenting cells (APCs). There is evidence
from animal models that TIV vaccination can actually inhibit
the induction of cross-reactive T cell responses (Bodewes et al.,
2011), which require active virus replication, resulting in a greater
susceptibility to subsequent infection by novel viruses such as
H5N1 (Bodewes et al., 2010). With an increased appreciation of
the immune response and its induction, it is time to consider
new vaccine approaches for seasonal influenza that additionally or
exclusively target functionally conserved regions of the influenza
virus, and may therefore provide some level of disease reduction
against serologically distinct emergent strains, even in a pandemic
context.

IAVs, whose ancestral host is aquatic birds, have spread to
many other species including domestic poultry, horses, swine,
humans, and even fruit bats. Although there are 17 different
distinct HA subtypes and 10 NA subtypes thus far identified
for IAVs, only H1N1 and H3N2, and previously H2N2, sub-
types have become endemic in humans causing continual human
transmission and seasonal epidemics. The introduction of other
novel subtypes, as exemplified by the H5N1, H7N9, and H10N8
strains, cause sporadic human infections and are not yet fully
adapted for efficient human-to-human transmission. The seg-
mented nature of the influenza virus genome facilitates reassort-
ment to generate novel hybrid viruses between influenza viruses
from different species, some of pandemic potential. Furthermore,
the error-prone viral RNA-dependent RNA polymerase, which

enables the generation of viral mutants, facilitates selection of
influenza viruses resistant to anti-viral drugs and immune effec-
tors. Thus, influenza is continually evolving and novel influenza
viruses from animal reservoirs can cause unpredictable outbreaks,
such as the most recent outbreaks from swine in the US (vari-
ant H3N2), poultry markets of China (H7N9) and Hong Kong
(H5N1), leaving us unprepared and unprotected. Furthermore,
H7N9 and H5N1 infections are highly lethal, with around 30 and
60% hospitalization-associated mortality, respectively. Therefore,
there is a dire need for a vaccine that is effective against a “moving
target,” influenza viruses.

CROSS-REACTIVE ANTIBODIES LEAD TO RENEWED
INTEREST IN B CELL VACCINES
The novel 2009 H1N1 pandemic virus (pH1N1-09) spread world-
wide within 4 months due to minimal specific Ab immunity
across the population. However, due to the novelty of the HA
protein in some cases infection or vaccination resulted in the
induction of novel broadly “neutralizing” antibody responses
(reviewed in Corti and Lanzavecchia, 2013), leading to a renewed
interest in developing the targets of theses Abs (summarized in
Table 1) for universal vaccines.

The HA glycoprotein on the influenza virion exists as a trimer
and dominates the surface of the virus. The amino acid sequence
shows 40–70% conservation between different HA subtypes (e.g.
H1 vs. H7) and greater than 80% between strains within a sin-
gle subtype (e.g. H1 strains). Subtype variation underlies the
classification of influenza viruses into two phylogenetic groups:
group 1 (H5, H2, H1) and 2 (H3, H7, H10). Each HA monomer
consists of two disulphide-linked polypeptide chains HA1 and
HA2 (Figures 1A,B). The majority of the HA1 chain goes to
make up the globular head of the molecule, which contains the
receptor-binding domain (RBD). The RBD is the primary tar-
get for nAb responses elicited by current vaccines, and therefore
random mutations that lead to single amino acid changes in
Ab binding sites in this domain are selected under pressure to
avoid further such Abs, resulting in the process of antigenic drift.
In some instances, amino acid changes that alter the glycosyla-
tion pattern in the head region can also influence Ab binding.
Some bnAbs have been isolated that recognize epitopes on the
HA head region, e.g. FE17 (Corti et al., 2010), S139/1 (Yoshida

Table 1 | Potential targets for a universal influenza vaccine and their limitations.

Protein Location Site targetted Function of Immune effector Possible role in influenza protection Escape

target possible

HA Virion surface HAI_ (head) Virus binding nAb Block HA binding Yes

Virion and cell surface HA2 (stem) Viral fusion Non-nAb Block HA maturation, Fc-mediated lysis No

NA Virion surface Sialidase Virus release Non-nAb Block NA cleavage and virus release Yes

M2 Infected cell surface M2
Ectodomain

Ion channel Non-nAb Block virus entry No

NP Infected cell surface Unknown RNP structure Non-nAb ADCC and complement mediated lysis Unknown

Infected cell Conserved
pMHC

RNP structure T cells (CD4+ and CD8+) T cell cytotoxicity reduces viral load Yes (limited)

All Infected cell Conserved
pMHC

Various T cells (CD4+ and CD8+) T cell cytotoxicity reduces viral load Yes (limited)

Frontiers in Microbiology | Microbial Immunology June 2014 | Volume 5 | Article 285 | 57

http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Quiñones-Parra et al. Influenza vaccine and viral evasion

FIGURE 1 | Broadly reactive HA-specific Abs can bind different

regions of the HA (A,B), which based on the sequence or

structural conservation of the region targeted by Abs can lead to

reactivity against otherwise highly divergent influenza viruses (C),

such as influenza A group 1 and group 2 and even influenza B

viruses. The cartoon depiction of the HA protein (A,B) is not to scale.
Group 1 and 2 phylogeny of influenza A HA (C) was adapted from
Corti and Lanzavecchia (2013).

et al., 2009), CH65 (Whittle et al., 2011), C05 (Ekiert et al.,
2012) (Figure 1). However, escape mutations in the HA1 can be
generated either at Ab binding sites or flanking residues after
several passages in vitro, thus limiting the use of head-specific
bnAbs.

The stem of the HA, which supports the globular head,
contains a hydrophobic fusion region which is situated at the
N-terminus of the HA2 chain. This region plays a crucial role dur-
ing viral entry into cells, allowing endosome escape of the viral
genome, and is functionally and structurally conserved across HA
subtypes and therefore not susceptible to drift. The stem contains
a number of epitopes spanning the fusion region, which are con-
served across different influenza subtypes (Okuno et al., 1993),
enabling the isolation of influenza-specific broadly cross-reactive
Abs capable of recognizing either group 1 HA (from Crucell
CR6261) (Ekiert et al., 2009), group 2 HA (CR8020) (Ekiert
et al., 2011), both group 1 and 2 HAs (FI6) (Corti et al., 2011),
or even recognize different influenza A and B strains (CR9114)
(Dreyfus et al., 2012) (reviewed in Corti and Lanzavecchia, 2013)
(Figure 1). One hypothesis for the induction of post-pandemic
group 1-specific stem Abs is that the pH1N1-09 virus displayed
a sufficiently distinct HA1 head domain when compared to the
pre-pandemic H1N1 viruses, that pre-existing memory B cells
specific for the HA head could not be recruited stem-specific
responses. Thus, H1N1-2009 virus exposure generated a primary

HA1-specific H1 Ab response but in addition was able to boost
the low frequency group 1 stem specific Abs (Corti et al., 2010;
Margine et al., 2013).

Importantly, HA2 stem-specific Abs prevent the conforma-
tional changes required for viral entry and membrane fusion,
thus mutational escape is not possible due to the critical function
and conserved helical structure of the stem. However, very high
concentrations of stem-specific Abs are often required to mediate
virus neutralizing activity, as they are 100–1000 times less potent
than HA head-specific Abs (Corti et al., 2010). Typically, stem-
specific Abs do not inhibit sialic acid binding by the receptor-
binding site, as do classical head-specific Abs. For this reason
they are unable to be identified by standard haemaglutination
inhibition (HAI) assays, and are measured by virus neutraliza-
tion or modified ELISA type assays. It should also be noted that
bnAbs often represent highly edited B cell receptor sequences
from germline requiring affinity maturation and co-ordination
with T follicular helper cells (reviewed in Corti and Lanzavecchia,
2013), and thus they are often very rare and of low frequency.
Advanced B cell cloning techniques have enabled the identifi-
cation and isolation of unique bnAbs (Corti et al., 2011) for
prophylactic and therapeutic use.

Vaccination with the conserved HA2 stem was first explored
as an Abs target nearly 30 years ago (Graves et al., 1983), and
is now receiving renewed attention in the wake of the 2009
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pandemic. Various methods have been employed by different
research groups to elicit bnAbs following exposure to influenza,
such as headless HA protein or virus exposing the stem (Steel
et al., 2010; Wang et al., 2010), prime-boost with a chimeric HA
(Krammer et al., 2013) or by sequential infection with differ-
ent influenza subtypes (Krammer et al., 2012) and DNA-prime
heterologous-boost vaccination (Wei et al., 2010). Furthermore,
bnAbs (CR6261, CH65, and scF10) have even been incorporated
directly into self-assembling nanoparticles, providing long-term
passive immunity in animal models (Kanekiyo et al., 2013), a
strategy that could potentially be beneficial for the elderly or
immunocompromised. Importantly, using the murine model it
has been recently elucidated that the protective effect of some
broadly-neutralizing stem-specific Abs is dependent on FcγR
interactions (DiLillo et al., 2014) so that their main activity is not
by classical neutralization of virus particles.

Other broadly reactive Abs that work in this way are
those directed to the highly conserved surface M2 ion channel
ectodomain (M2e). M2 is only expressed in very small amounts
on the virion surface but is present on the infected cell surface
where it can form a target for cross-reactive lytic responses. M2e-
specific Abs are induced only at very low frequency by influenza
infection, and are not elicited at all by the standard TIV vacci-
nation, although they can be induced by M2e-specific vaccines
(Neirynck et al., 1999; Mozdzanowska et al., 2003). Unexpectedly,
Abs specific for the viral nucleoprotein (NP), which surrounds
the genome, have also shown passive protection in mouse models
at very high doses (Carragher et al., 2008; Lamere et al., 2011) and
can be found in human serum (Sukeno et al., 1979). In vitro stud-
ies demonstrated that influenza-infected cells express low levels
of NP on their surface (Virelizier et al., 1977; Yewdell et al., 1981),
which may enable NP recognition by immune effectors, or alter-
natively, it is possible that NP-specific Abs are internalized and
interrupt virus replication. Utilization of non-neutralizing NP
and M2e Abs might be beneficial when combined with additional
protective immune mechanisms.

Abs that are not virus neutralizing may also function in
Ab-dependent cellular cytotoxicity (ADCC). pH1N1-09, H5N1-
specifc and NP-specific ADCC Abs have been found in the
absence of nAb responses in healthy individuals (Jegaskanda
et al., 2013b). Influenza infection, but not standard TIV vacci-
nation of macaques, elicited H1N1-specific ADCC Ab responses
(Jegaskanda et al., 2013a), thus future vaccines would need to be
optimized to elicit ADCC responses.

However, a forewarning comes from recent evidence in mouse
models, which showed that influenza virus was able to specif-
ically infect influenza-specific B cell receptor (BCR)-expressing
B cells leading to BCR editing, thus allowing establishment
of viral infection despite pre-existing Ab responses (Dougan
et al., 2013). There is also evidence from a swine vaccination
model that stem-specific HA2 Abs can enhance viral fusion and
increase immunopathology upon H1N1pdm infection (Khurana
et al., 2013). Therefore, while broadly cross reactive Abs are an
increasingly promising area for combating influenza infections
of distinct strains, their use should not be without investiga-
tion and should be used in conjunction with additional immune
mechanisms.

HETEROSUBTYPIC T CELL RESPONSES FOR INFLUENZA
CD8+ T cells recognize virus-derived peptides in the context
of class I major histocompatibility antigens (MHC-I). pMHC-
I is displayed on the surface of APCs enabling CD8+ T cell
priming and on virus-infected cells for CD8+ T cell effector func-
tion, thus infected cells can be killed before virus progeny is
released. The cytotoxic function is mediated mainly via the deliv-
ery of perforin and granzymes into the infected cell (Topham
et al., 1997) as well as by cytokine release (Marshall et al., 2005).
Thus, CD8+ T cell recognition of influenza viruses is only pos-
sible for an established infection, in contrast to sterilizing nAb
responses. However, CD8+ T cells are critical in the elimination of
influenza viruses, expediting viral clearance, and reducing pathol-
ogy. Seminal work from influenza challenge of healthy human
volunteers showed that increased T cell cytotoxicity was associ-
ated with reduced virus shedding (McMichael et al., 1983b), even
in volunteers lacking nAbs against the infecting virus. Moreover,
high levels of influenza-specific pre-existing memory T cells have
been associated with milder symptoms during pH1N1 infection
(Sridhar et al., 2013). There is no doubt that the current Ab-based
approach should be maintained, but the incorporation of an even
far-from-perfect T-cell-inducing vaccine (or vaccine component)
could still save millions of lives during a pandemic, as T cells
have the potential for much broader protection than bnAbs across
diverse subtypes of influenza A.

The phenomenon of heterosubtypic immunity refers to mem-
ory T cells generated by one subtype that can cross-react against
different IAV subtypes, despite wide differences in surface gly-
coproteins (Braciale, 1977; Kees and Krammer, 1984; Yewdell
et al., 1985; Askonas et al., 1988; Wahl et al., 2009). T cell het-
erosubtypic immunity is mainly due to the majority of T cells
recognizing immunogenic peptides derived primarily from highly
conserved internal influenza proteins (Elhefnawi et al., 2011). For
CD8+ T cells, 193 immunogenic peptides presented by 51 differ-
ent Human Leukocyte Antigen Class I (HLA-I) molecules have
been described to date for influenza viruses (www.iedb.org). The
majority of CD8+ T cell antigenic peptides are derived from well-
conserved internal proteins NP, M1, and PB1 (Assarsson et al.,
2008; Lee et al., 2008; Wu et al., 2011; Grant et al., 2013). T cell
cross-reactivity between different IAVs has been demonstrated
between H1N1, H3N2, H2N2, H5N1, H3N2v, and H7N9 sub-
types (Table 2) (Epstein, 2006; Kreijtz et al., 2008; Greenbaum
et al., 2009; Hillaire et al., 2013; Quinones-Parra et al., 2014;
Van De Sandt et al., 2014). Thus, influenza-specific T cells can
provide universal protection against influenza disease and are of
significant interest for the design of next generation vaccines.

The viral clearing role of heterosubtypic killer CD8+ T cells is
well established in animal models and human studies (Table 2).
In a primary infection of CD8+ T cell-deficient mice, influenza
virus clearance is delayed and mortality is increased (Bender et al.,
1992), while in the absence of B cells or Abs, CD8+ T cells can
provide protection against otherwise lethal influenza (Graham
and Braciale, 1997; Epstein et al., 1998). Furthermore, transfer of
influenza-specific CD8+ T cells provides heterosubtypic protec-
tion (Yap et al., 1978; Taylor and Askonas, 1986). Secondary recall
responses from pre-existing memory CD8+ T cells, established
by either influenza virus infection or vaccination (Flynn et al.,
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Table 2 | Key human studies on cell-mediated immunity against IAV.

References Virus(es) Description

McMichael et al., 1983b H1N1 Lymphocyte cytotoxic activity was associated with lower virus shedding in
individuals challenged with H1N1

Gotch et al., 1988 H3N2→H1N1 CD8+ T cell lines generated with H3N2 virus lyse target cells infected with
Vaccinia viruses encoding NP, M1, or PB2 proteins derived from H1N1

Epstein, 2006 H1N1→H2N2 Adults that contracted H1N1 influenza prior to the emergence of pH2N2-57 were
pronouncedly less susceptible to the pandemic virus

Kreijtz et al., 2008 H3N2→H5N1 CD8+T cell lines established with H3N2 cross-react with immunogenic peptides
derived from H5N1

Lee et al., 2008 Seasonal (s) IAV→H5N1 CD4+ and CD8+ T cells from H5 seronegative donors respond to peptides
spanning the H5N1 proteome

Assarsson et al., 2008 H1N1, H3N2, H2N2, H5N1, H7N7,
H6N1, H7N7, and H9N2

CD4+ and CD8+ T cells from healthy donors respond to substantially conserved
immunogenic peptides

Tu et al., 2010
sH1N1/sH3N2→pH1N1-09 Purified, influenza-specific memory CD8+ T cells expanded with sH1N1 and

sH3N2 recognize target cells infected with pH1N1-09

Gras et al., 2010 pH1N1-09→pH1N1-1918 B7-NP418-specific CD8+ T cells elicited by pH1N1-09 infection cross react with
the pH1N1-1918-NP418 variant

Wilkinson et al., 2012 H3N2 Pre-existing CD4+ T cell responses correlated with lower virus shedding and
disease severity upon challenge with H3N2 in seronegative volunteers

Fox et al., 2012 pH1N1-09 CD8+ T cell activation is delayed in patients severely infected with pH1N1-09 and
are lymphopenic for CD4+, CD8+ T cells, and NK cells

Zhao et al., 2012 pH1N1-09 Influenza-specific CD4+ T cells responses are associated with progression to
severe pH1N1-09 infection

Sridhar et al., 2013 pH1N1-09 Pre-existing memory CD8+ T cell responses from seronegative patients naturally
exposed to pH1N1-09 correlate with reduced illness severity

Hillaire et al., 2013 sH1N1/sH3N2→pH1N1-09/H3N2v CD8+ T cells lines generated with sH1N1, sH3N2 viruses or peptides derived
from these strains respond to target cells infected with pH1N1 virus

Van De Sandt et al., 2014 pH1N1/sH1N1/sH3N2→H7N9 CD8+ T cells stimulated with sH1N1, sH3N2, or pH1N1 recognize and lyse target
cells infected with H7N9

Quinones-Parra et al., 2014 Any human IAV including H7N9 CD8+ T cells from healthy donors expressing the HLA-A*0201, -A*0301,
-B*5701, -B*1801 allele, and/or B*0801 allele(s) respond to universally conserved
immunogenic peptides

1999) resulted in superior viral clearance and reduced pathol-
ogy (Flynn et al., 1998). Moreover, tertiary challenge of mice with
highly lethal H7N7 resulted in recall of heterosubtypic memory
CD8+ T cell responses (established from priming with H1N1 and
then H3N2) that provided exceptionally enhanced virus control
(within 3 days post-infection) (Christensen et al., 2000).

In comparison to CD8+ T cells, the role of CD4+ T cells in
influenza is less well understood, partly due to their heterogene-
ity and the lack of epitope-specific systems (Sant and McMichael,
2012). The traditionally accepted role of influenza-specific CD4+
T cells is in providing help to B cells for the production of high-
quality Abs (Topham and Doherty, 1998), as their activation is
dependent on recognition of peptide in the context of MHC-II
on professional APCs but also have a major role in providing help
for the establishment of CD8+ T cell memory, critical for a robust
recall response (Sun et al., 2004). Transfer of influenza-specific
effector CD4+ T cells into T cell-deficient mice accelerates pro-
duction of neutralizing Abs, thus cross-reactive memory CD4+
T cells can potentially enhance B cell responses during infec-
tion with a novel influenza virus (Scherle and Gerhard, 1986).
Furthermore, depletion of CD4+ T cells prior to influenza chal-
lenge results in a dramatic drop of Ab titres (Eichelberger et al.,

1991), accompanied by only a small delay in virus elimination
(Allan et al., 1990), driven by the remaining CD8+ T cell response
(Topham et al., 1996; Belz et al., 2002). More recently, a com-
prehensive transgenic mouse study by McKinstry et al. (2012)
illustrated the direct protective role of influenza-specific CD4+
T cells using a series of transfer experiments into immune knock-
out mice (lacking FcRγ, functional IFNγ, or B cells). The authors
showed that CD4+ T cells provide protection by interacting
with B cells and CD8+ T cells in an IFN-γ-dependent manner.
The mechanism by which CD4+ T cells are able to recognize
virus-infected cells given their MHC-II restriction is yet to be
deciphered. Nevertheless, in a vaccination setting of individuals
receiving a split vaccine, a subset (ICOS+CXCR3+CXCR5+) of
circulating influenza-specific CD4+ T follicular helper (TFH) cells
correlated with more effective B-cell responses and greater Ab
titres, suggesting that eliciting this type of cells could be impor-
tant in inducing more effective Ab-based vaccines (Bentebibel
et al., 2013).

The debate of which T cell subtype is more protective for
influenza has been reinvigorated from recent human studies that
show contrasting results (Wilkinson et al., 2012; Zhao et al., 2012;
Sridhar et al., 2013). However, as evidenced from mouse studies

www.frontiersin.org June 2014 | Volume 5 | Article 285 | 60

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Quiñones-Parra et al. Influenza vaccine and viral evasion

outlined above, both subsets are necessary for a complete and
coordinated response against influenza infection. Interestingly,
in a challenge study (Wilkinson et al., 2012) with volunteers
deliberately infected with H3N2, the numbers of pre-existing
influenza-specific CD4+, but not CD8+, T cells were found to
correlate with lower virus shedding and less severe, shorter ill-
ness. These investigators favored CD4+ T cell cytotoxicity as the
possible underlying mechanism. However, in a later study inves-
tigating T cell immunity in H1N1pdm virus-infected patients,
CD4+ T cell responses were associated with more severe infec-
tion (Zhao et al., 2012). A more recent study (Sridhar et al., 2013)
followed natural infection of a large cohort over the 2009 pan-
demic and determined pre-immune correlates with the outcome
of influenza disease over the pandemic. The study showed that
those individuals with established influenza-specific CD8+ T cell
memory experienced milder illness following infection with the
newly emerged virus. Although this study did not find a correla-
tion with CD4+ T cell responses and disease outcome, it cannot
rule out their importance. Further studies are needed to bet-
ter understand immune mechanisms underlying T cell-mediated
protection against influenza viruses.

Some experimental vaccination protocols have effectively
induced protective heterosubtypic T cell immunity, including
non-replicative, cold adapted influenza vaccine (Powell et al.,
2007), and virus-like particles (Hamada et al., 2013). In addition,
DNA vaccines (Ulmer et al., 1993, 1998; Fu et al., 1999), prime-
boost protocols (Epstein et al., 2005) and the use of adjuvants
can provide and enhance T cell-mediated heterosubtypic pro-
tection (Chua et al., 2011, 2014). A live non-replicating vaccinia
vaccine encoding the NP and M1 proteins, MVA-NP/M1, is cur-
rently being evaluated in human efficacy trials (Berthoud et al.,
2011). The vaccine proved effective for human influenza chal-
lenge in a limited number of individuals, showing higher levels
of influenza-specific CD8+ T cells in vaccinees, especially those
displaying the HLA-A∗0201 allele, compared to placebo controls
correlating with reduced infection and viral shedding (Antrobus
et al., 2012; Lillie et al., 2012). Furthermore, the vaccine was able
to boost T cell immunity in those aged 65 and over, a promising
result for those who need an effective vaccine the most. However,
it may be difficult to convince regulatory authorities to license a T
cell-based vaccine that still allows individuals to become infected
and shed virus. If such a vaccine were to replace the current TIV, a
large-scale study would need to be performed in many individuals
of distinct HLAs across different ethnicities to prove effectiveness.

Thus, manipulating existing style vaccines to induce or boost
T cell immunity could potentially lead toward development of
broadly protective influenza vaccines. However, there are still con-
siderable challenges in the development of broadly cross-reactive
T cell-inducing vaccines, which include persistence of T cell
memory after influenza immunization (Valkenburg et al., 2012),
population protective coverage across different HLAs, vaccine-
mediated immune escape and immunopathology. Firstly, it is still
far from clear for how long functional influenza-specific memory
CD8+ T cells persist in humans. Studies from yellow fever and
smallpox vaccination suggest that memory T cells can be detected
from 10 years (Akondy et al., 2009) to 50 years (Miller et al., 2008)
following vaccination, respectively. Yet many adults fail to control

influenza infection. A vaccine study of young children found that
a threshold level (of >100 SFU/106 PBMCs) was required for
effective T cell-mediated clinical protection (Forrest et al., 2008).
Therefore, the varying levels of T cell immunity that are likely
to exist in the wider population, due to different histories of
exposure to natural infection, may contribute to the spectrum of
disease severity. Early studies on cytotoxic T cells in humans sug-
gested that influenza CTL memory declines rapidly with a half
life of 2–3 years (McMichael et al., 1983a). The main purpose of
a T cell-inducing vaccine may therefore be to maintain memory
CD8+ T cells at levels capable of achieving clinical protection,
which may require booster doses every few years. The presence
of co-morbidities, age-related differences of innate responses in
the young and immunological decline in the elderly (reviewed
by Oshansky and Thomas, 2012) could also impair T cell recall
responses. Furthermore, an influenza T-cell based vaccine would
have to address the issue HLA coverage in a diverse population
and be appropriate for ethnic minorities with rare MHC alleles.
This could be achieved either by utilization of peptide epitopes
representing HLA-super families (Assarsson et al., 2008), or the
inclusion of full-length influenza-derived proteins in a form that
enables endogenous antigen processing.

INFLUENZA CAN ESCAPE T CELL IMMUNITY
If such a T cell-inducing vaccine could be produced, the issue of
vaccine-mediated T cell escape, resonant of Ab-mediated anti-
genic drift, could theoretically become significant. RNA viruses,
such as influenza, are characterized by poor fidelity of replication
of their genomes, leading to the emergence of viral variants capa-
ble of rapidly adapting in response to immune selective pressure,
as seen with seasonal antigenic drift. Subversion of T cell con-
trol is well documented for chronic viral infections, like HIV and
HCV (Pircher et al., 1990; Moore et al., 2002; Fernandez et al.,
2005) and represents one of the major obstacles for viral control
and vaccine design.

Within an individual, T cells can select influenza escape vari-
ants as the virus replicates. We have recently described the emer-
gence of influenza variants within CD8+ T cell target regions in
a persistently infected, immunocompromised child, (Valkenburg
et al., 2013). Additionally, CD8+ T cell immune escape viruses
could be readily isolated from immunodeficient (B cell knockout)
and immune intact wild-type mice. Surprisingly, we observed
that these CTL escape variants arise early during infection by
day 5, and increase in frequency and variety over the time-
course of infection. The selection of CD8+ T cell escape mutants
was clearly driven by selective pressure as these variants revert
in the absence of immune pressure in MHC-mismatched mice
(Valkenburg et al., 2013). Further experiments suggested that
influenza-specific escape from T cell responses is heavily depen-
dent on the particular epitope and potentially the underlying
characteristics of the T cell receptor repertoire. Interestingly,
influenza viruses favored escape at the residues that anchor epi-
tope peptides to MHC (Valkenburg et al., 2013).

The emergence of specific CD8+ T cell mutations in influenza
can also be detected at a population level. Factors such as immun-
odominance, HLA frequency and viral fitness can impact the
likelihood of emergence and selection of escape viruses (Berkhoff
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et al., 2005). Indeed, there are documented examples of natu-
rally occurring mutations within critical T cell antigenic peptides
leading to immune escape in individuals bearing certain HLA
alleles. The Rimmelzwann group has pioneered and enhanced
our knowledge of CD8+ T cell-mediated immune escape in
human influenza. Boon et al. (2004) identified substitutions
within the HLA-B∗0702- and B∗3501-restricted NP418–426 epi-
tope that could either result in cross-reactivity, or in some cases, in
immune escape. Further immunological and structural character-
ization of the NP418–426 variants from 1918 to 2009 revealed that
mutations in solvent-exposed, potentially TCR contact residues,
result in immune escape (Gras et al., 2010). At the same time,
we confirmed the presence of cross-reactive CTL populations that
reacted against a wider spectrum of NP418–426 variants (Gras
et al., 2010). The identification of epitopes recognized by such
populations, and the key residues for TCR recognition within
them, may be critical information for producing a vaccine capable
of eliciting cross-reactive T cells to provide coverage against the
wide spectrum of influenza antigenic variation, an idea that we
have pioneered using the B6 mouse model of influenza infections
(Valkenburg et al., 2013). Conversely, CD4+ T cell-mediated viral
escape in influenza has received considerably less attention and
the selection of CD4+ T cell escape peptide variants has not cur-
rently been demonstrated, either within an individual or across a
population.

In earlier work examining drift in the viral NP at a population
level, Voeten et al. (2000) identified mutations in HLA-B∗2705-
restricted NP383–391 epitope and HLA-B∗08:01-NP380–388 result-
ing in immune escape. The NP-R384K mutation at an MHC-I
anchor residue, which resulted in a loss of CD8+ T cell recogni-
tion, was initially detected in 1990 and later in 1993 as R384G.
The escape mutant quickly replaced the wild-type sequence in
H3N2 viruses (Gog et al., 2003), resulting in a loss of immuno-
genicity in the population expressing the HLA-B27 allele. Further
characterization of this mutant indicated that the escape was
driven by CTL selective pressure as the mutation imposed a
fitness cost that had to be compensated for by additional muta-
tions in flanking regions (Rimmelzwaan et al., 2005). More
recently, a CTL escape variant within the HLA-A∗0101-restricted
NP44–52 in the novel H7N9 virus has been reported (Quinones-
Parra et al., 2014; Van De Sandt et al., 2014), with structural
data indicating that substitution in an MHC-I anchor residue
of the peptide epitope compromised peptide-MHC-I complex
stability and thus accessibility to CTLs (Quinones-Parra et al.,
2014).

Although immunodominant T cells may generate escape vari-
ants, they remain a hugely valuable tool in the arsenal for com-
bating influenza infection. It may be possible to pre-empt escape
by priming the T cell repertoire against a variety of dominant
mutants at TCR contact sites (Valkenburg et al., 2013) or pos-
sibly stabilizing the MHC for low affinity anchor mutants. The
NP protein, though capable of harboring T cell escape mutations,
is one of the most immunogenic influenza proteins for T cells
(Grant et al., 2013). Fortunately, the NP of LAIV can be substi-
tuted to represent the current NP or the NP of escape variants
without affecting the viral growth or vaccine immunogenicity
(Isakova-Sivak et al., 2011).

INNATE T CELLS FOR INFLUENZA VIRUS INFECTION
Until now this review has discussed adaptive immunity to
influenza, however another component, innate T cells, have
potential use for subverting infection due to innate receptors
recognizing conserved universal motifs. The non-conventional
or innate T cell compartment comprises of γδ T cells, CD1d-
restricted invariant natural killer T cells (iNKT), and MR1-
restricted Mucosal-associated invariant T (MAIT) cells. This
compartment constitutively expresses high levels of the C-type
lectin, CD161. Innate T cells can be activated by a diverse range
of ligands, either endogenous (β-GlcCer and iGB3 for NKT;
MICA/B for γδ T cells) and exogenous (phosphoantigens and bis-
phosphonates for γδ T cells, α-GalCer-for iNKT, bacterial lipids
for NKT and metabolites for MAIT cells) (Kjer-Nielsen et al.,
2012; Rossjohn et al., 2012; Born et al., 2013). Upon TCR recogni-
tion of their cognate antigen or by cytokine driven signals, innate
T cells can rapidly produce an array of inflammatory and effec-
tor molecules (IFNγ, TNF, IL-17, IL-4, IL-22, perforin, granzyme
B, MIP-1β). In humans, innate T cells can comprise up to 30%
of the peripheral blood CD3+ T cell compartment, and are also
enriched at mucosal sites including lung, intestine and liver. Given
their location, potent inflammatory and cytolytic function, innate
T cells are potentially important players during IAV infection.
Although their role is well studied in autoimmunity, cancer, and
chronic viral infections such as HIV-1, (Berzins et al., 2011;
Cosgrove et al., 2013; Leeansyah et al., 2013; Vantourout and
Hayday, 2013), there is a paucity of data on how innate T cells
contribute to combating influenza infection.

Several studies in humans have demonstrated that a major
subset of human γδ T cells (Vγ9Vδ2) can directly kill human
and avian origin influenza-infected macrophages and lung alve-
olar epithelial cells in vitro (Qin et al., 2009; Tu et al., 2011; Li
et al., 2013). Further studies in humanized mice have shown that
vaccination with aminobisphosphonate pamidronate (PAM) can
activate the Vγ9Vδ2 subset, and that Vγ9Vδ2 T cells can inhibit
viral replication and dampen inflammatory responses in the lung
(Tu et al., 2011). Thus, pre-arming γδ T cells may also be bene-
ficial in human IAV infection as an alternative antiviral strategy
(Tu et al., 2011).

Similarly, endogenous iNKT cells have been shown to have an
immunoregulatory role in IAV. From adoptive transfer studies
in C57BL/6 mice, iNKT cells have been demonstrated to allevi-
ate bronchopneumonia and its associated pathology in Jα18−/−
(iNKT deficient) mice infected with highly virulent H3N2 (Paget
et al., 2011; Kok et al., 2012). Both endogenous and exoge-
nous (α-GalCer) activation of iNKT aids in the development
of influenza-specific CD8+ T cells by promoting their survival
(Guillonneau et al., 2009) and the maturation of APCs that
present epitopes to influenza-specific CD8+ T cells (Paget et al.,
2011). Additionally, iNKT-derived cytokines, such as IL-33 and
IL-22, produced during IAV infection have been associated with
regulation of eosinophil maturation in an IL-5-dependent man-
ner and protection of the airway epithelium, respectively (Paget
et al., 2012; Gorski et al., 2013). These studies demonstrate that
iNKT can aid in the maturation of both the influenza-specific
adaptive and the innate response, and therefore may be important
subsets to induce in a universal IAV vaccine.
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Although the majority of these studies highlight the
immunoregulatory role of murine innate T cells in models of
IAV, more studies are needed in humans to investigate whether
these and other non-conventional innate T cells may contribute
to influenza-specific adaptive immune effectors and thus be of
benefit to induce in a universal IAV vaccine.

CONCLUSIONS
Although the current Ab-mediated vaccines are the most cost
effective way to combat the yearly influenza epidemics, they
are strain-specific and thus need to be updated annually while
providing little or no protection from novel outbreak strains.
Furthermore, during the 2009 pandemic, it took several months
to produce and test the newly made H1N1pdm-specific influenza
vaccine, which meant it was only available after the peak of
influenza activity. Thus, there is an urgent need to develop novel
approaches for a universal influenza vaccine that has broad reac-
tivity across a diversity of influenza strains and subtypes. Ideally,
this vaccine would elicit both broadly cross-reactive Abs directed
at highly conserved yet sub-dominant targets such as the HA
stalk, which are currently proving highly effective in mouse stud-
ies. Furthermore, the ideal vaccine would also elicit a robust
T cell response with long-term memory potential, recognizing
epitopes derived from conserved and immunogenic internal pro-
teins. Recent data on both universal Abs and T cell responses
against influenza are promising, but more research still needs to
be done to provide insights into the longevity and effectiveness
of this type of immunity. The possibility of generating escape
mutants by widespread use of vaccines designed to elicit such
cross-reactive responses needs to be understood as well as the
potential impact on virus evolution.
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The human immunodeficiency virus (HIV) burden in women continues to increase, and
heterosexual contact is now the most common route of infection worldwide. Effective
protection of women against HIV-1 infection may require a vaccine specifically targeting
mucosal immune responses in the female genital tract (FGT). To achieve this goal,
a much better understanding of the immunology of the FGT is needed. Here we
review the architecture of the immune system of the FGT, recent studies of potential
methods to achieve the goal of mucosal protection in women, including systemic-prime,
mucosal-boost, FGT-tropic vectors and immune response altering adjuvants. Advances in
other fields that enhance our understanding of female genital immune correlates and
the interplay between hormonal and immunological systems may also help to achieve
protection of women from HIV infection.
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INTRODUCTION
The burden of human immunodeficiency virus (HIV) infection
in the twenty-first century falls disproportionately on women,
particularly in the developing world. Women in Sub-Saharan
Africa have, on average, a 60% increased risk of HIV infection
compared with their male counterparts (Magadi, 2011) and now
account for 58% of HIV-infected adults in the region (UNAIDS,
2012a). Despite these statistics little attention has been paid to
developing vaccine candidates that specifically protect the FGT.
The holy grail of HIV prophylactics is a vaccine preventing
acquisition, achieving “sterilizing immunity.” Unfortunately such
vaccines have proven difficult to develop, due to HIV’s numerous
immune evasion strategies and the speed and strength of immune
response required to prevent virus dissemination. Most previous
vaccine strategies have focused on achieving systemic immu-
nity with conventional intramuscular immunization. However,
HIV is arguably a mucosal disease, with acquisition most com-
mon via mucosal routes. The ability of HIV to overcome the
epithelial barrier and innate immune responses, together with
the delayed development of adaptive immune responses, means
that there is a very narrow time-window for protection against
acquisition at the mucosa. Furthermore, systemic vaccines do
not elicit sufficient local immune responses, including secretory
Immunoglobulin A (sIgA) (Baral et al., 2012), to prevent infec-
tion, so it seems likely that a mucosal strategy such as a vaccine
or microbicide, eliciting both systemic and mucosal immune
responses, will be most effective in preventing acquisition. Given
the biological differences between the immunology of the FGT
and other mucosal compartments, a mucosal vaccine specifically
targeting the FGT would seem to be the best way to protect
women against the spread of HIV.

EPIDEMIOLOGY OF HIV-1 INFECTION IN WOMEN
Vaginal heterosexual sex is the most common route of trans-
mission worldwide (Kalichman et al., 2011; UNAIDS, 2012b),
and women are believed to have double the risk of infection
via this route compared to men (Boily et al., 2009). Young
women (aged 15–24) are particularly susceptible, accounting
for 22% of all new infections (Rodriguez-Garcia et al., 2013).
Various factors, both biological and social, may contribute to
the high rates of HIV infection in young women. At a social
level gender biases are common, particularly in developing
countries. The frequency of violence against women combined
with their lower socioeconomic status leads to power imbal-
ances. These relationship dynamics give women little ability
to negotiate safer sexual practices or the use of contracep-
tives; hence women are less able to protect themselves actively
against infection (Stein, 1990). This is compounded by unequal
access to education, with studies suggesting women have con-
sistently poorer knowledge of the benefits of condoms in HIV
prevention (UNAIDS, 2012a). In addition, other female popu-
lations are pivotal in disease spread. Female sex workers con-
tribute heavily to HIV-1 transmission due to their high HIV
prevalence, estimated at 12% worldwide (Baral et al., 2012),
along with increased sexual activity. These factors led to direct
implication of the sex trade in 10% of Ugandan HIV diag-
noses in 2010 (Government of Uganda, 2008). Pregnant women
can transmit HIV during pregnancy, labor or breastfeeding,
and may also be more likely to acquire HIV than their non-
pregnant counterparts (Drake et al., 2014). Effective protection
of women is therefore likely to have a large impact on HIV
transmission to men and children, especially in high prevalence
regions.
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IMMUNITY IN THE FGT
ANATOMY AND IMMUNOLOGICAL STRUCTURE OF THE FGT
The FGT can be divided into two distinct regions: the lower con-
sisting of vulva and vagina, and the upper of ovaries, fallopian
tubes and uterus, including the ectocervix and endocervix. The
vagina was previously thought to be the site of HIV-1 acquisition;
however it is now thought that the cervix, particularly the endo-
cervix and the area between the endocervix and ectocervix known
as the transformation zone, are particularly susceptible to infec-
tion (Nuovo et al., 1993). This is probably due to an abundance of
potential HIV target cells, CD4+ T-cells, macrophages and den-
dritic cells, in this region (Pudney et al., 2005), which separates
the richly colonized lower reproductive tract and the relatively
sterile upper tract. In adolescence, the columnar epithelium of
the endocervix extends down into the ectocervix, a phenomenon
known as cervical ectopy. This exposes a greater area of more sus-
ceptible tissue to potential infection and may contribute to the
high risk of HIV infection in adolescent girls.

Cervico-vaginal fluid (CVF) is secreted throughout the FGT
mucosa and constitutes the first line of mucosal defense: CVF
contains an array of soluble factors including chemokines,
cytokines and anti-microbial peptides, many of which have potent
anti-HIV activity. Intriguingly, the CVF of younger women, par-
ticularly those with cervical ectopy, shows increased levels of pro-
inflammatory cytokines (Hwang et al., 2011). This may further
increase their susceptibility to HIV infection, as inflammation in
the genital tract has been associated with increased HIV infec-
tion risk in several studies (Levinson et al., 2009; Naranbhai et al.,
2012).

The FGT is unique among mucosal surfaces in that it largely
lacks organized lymphoid elements, possessing instead small
numbers of mononuclear cells scattered throughout the sub-
epithelial stroma (Yeaman et al., 1997). This is in marked contrast
to the resident immune system of the intestinal mucosa, which
consists of clearly-defined lymphoid patches, sub-mucosal lym-
phocytes, and a large population of intraepithelial lymphocytes
poised between crypt epithelial cells (Perry et al., 1998). The
absence of a follicular structure means that it is difficult to iden-
tify an FGT immune inductive site, responsible for initiating an
immune response. Therefore, induction of immunity to genital
pathogens is assumed to occur outside the genital tract, followed
by recruitment of re-circulating cells into infected sites through
the common mucosal immune system (CMIS) (Kantele et al.,
1998). There is some evidence that suggests FGT induction sites
may be associated with nasal-associated lymphoid tissue (NALT),
gut-associated lymphoid tissue (GALT), or bronchial-associated
lymphoid tissue (BALT), but none of these preferentially induce
local FGT B cells (Mestecky and Russell, 2000) (see Figure 1 for
details of general inductive and effector sites). An understanding
of the pathways that direct lymphocyte trafficking to the FGT is
essential for the development of mucosal vaccines (Perry et al.,
1998).

MUCOSAL HOMING
In the mouse, T lymphocyte recruitment to the genital mucosa
is directed by the same set of interactions that direct T cells to
systemic sites of inflammation, which are distinct from those

that dictate traffic to the intestinal mucosa. The homing path-
ways defined for the intestinal mucosa are assumed to be relevant
to all mucosal sites, but are not well represented in the genital
tract. This presents yet another area for further investigation if a
successful vaccine is to be developed.

IMMUNOLOGICAL ENDOCRINE INTERPLAY
HORMONAL EFFECTS ON IMMUNE RESPONSES IN THE FGT
An important difference between the FGT and other mucosal
sites is the influence of female hormones. These not only pro-
duce the menstrual cycle, but also affect the immunity of the FGT.
Unfortunately this topic has not been extensively researched and
hence knowledge relating to vaccine design is limited. It is known
that some of the anti-viral proteins in CVF are regulated by
hormone status: for example levels of HBD2 and SLP1, two anti-
HIV peptides, are lower in CVF during ovulation (Keller et al.,
2007). In contrast, oestradiol secretion enhances the secretion
of anti-microbial peptides, whilst simultaneously suppressing the
secretion of pro-inflammatory cytokines and chemokines (Fahey
et al., 2008): these observations would predict lower HIV suscep-
tibility in the first half of the cycle. Macaque studies suggest that
females are more susceptible to simian immunodeficiency virus
(SIV) vaginal challenge during the luteal (progesterone domi-
nant) phase of the menstrual cycle (Vishwanathan et al., 2011).
The luteal phase can be thought of as a time of relative immune
suppression in the FGT in order to optimize conditions for fer-
tilization and implantation. The secretion of mucus, as well as
anti-microbial peptides, by the endocervix also varies during the
menstrual cycle, which may influence susceptibility to infection
(Radtke et al., 2012). These factors suggest that there are distinct
patterns of immune response and differing susceptibility to infec-
tion during the three phases of the menstrual cycle. Although
data from human studies are lacking, it has been proposed that
women have a distinct “window of vulnerability” to HIV infec-
tion in the 7–10 days following ovulation (Wira and Fahey, 2008).
Thus future vaccine and microbicide trials need to take account of
the menstrual cycle of female participants in order adequately to
assess protection from and susceptibility to HIV infection.

MUCOSAL TRANSMISSION
INITIAL EVENTS IN HIV-1 INFECTION IN THE FGT
Most of our current understanding of the process of HIV mucosal
transmission comes from animal models and in vitro studies, for
example using cervical explants. There is a welcome trend to
make SIV models more physiological, with lower doses of SIV
used repeatedly in a mucosal challenge. In many previous tri-
als macaques were given high doses of SIV, often intravenously,
which is unlikely to represent the early events of HIV-1 infec-
tion in women (Haase, 2011). It is still not entirely clear where
in the human FGT HIV is most likely to establish primary infec-
tion. Transmission studies by Miller and colleagues showed that
both vagina and cervix could be sites of primary SIV infection in
the SIV/Rhesus macaque model (Miller, 1998). More recent evi-
dence suggests that primary infection takes place predominantly
in the cervix following vaginal SIV exposure in macaques, partic-
ularly the endocervix and transformation zone (junction between
endocervix and ectocervix) (Li et al., 2009a), where the target-cell
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FIGURE 1 | Schematic of the common mucosal immune system (CMIS) relevant to the stimulation of vaccine-induced responses in the female

genital tract.

density [T cells and antigen presenting cells (APCs)] and turnover
is greatest (Li et al., 2009b), and where breaks in the mucosa often
occur (Norvell et al., 1984).

It was initially thought that HIV first infected vaginal APCs
such as macrophages and Langerhans cells, with subsequent
rounds of replication occurring in the draining lymph nodes. This
was thought to be followed by spread to more proximal lymphoid
nodes and finally to the bloodstream and distant lymphoid tissue
(Miller, 1998). Subsequently Zhang et al showed that the first cell
to be infected is the endocervical intraepithelial resting CD4+ T
cell (Zhang et al., 1999). Human cervical explant culture models
confirmed that memory CD4+ T cells were the first infected dur-
ing HIV transmission across the cervical mucosa (Gupta et al.,
2002) (see Figure 2).

Most of our understanding of the very early events following
HIV transmission has come from the macaque model of acute
SIV infection. Even when large amounts of viral RNA are used
in the inoculum, only small foci of tissue-associated viral RNA
are found in the first 3–4 days after infection, consistent with a
limited founder population of infected cells (Haase, 2011). These
clusters of 40–50 infected cells are most consistently found in
the endocervix and transformation zone, and expand locally by
recruitment of susceptible cells. These observations suggest that
there is a critical “window of opportunity” in the first few days
after infection, when a targeted immune response involving virus-
specific antibodies and/or cytotoxic T lymphocytes (CTL), could
control and clear the initial infection before local expansion and
subsequent dissemination into the lymphatics. In macaque stud-
ies, an influx of SIV-specific CTL was identified that the authors
described as generally “too little,” i.e., at too low an effector-
to-target ratio to control the infection, and “too late” (Li et al.,
2009b).

CORRELATES OF HIV IMMUNITY IN THE FGT
It is still not clear what responses a vaccine should elicit for pro-
tection of the FGT against HIV-1, but some valuable insights
have come from studying highly-exposed seronegative subjects
(HESNs). SIgA, the major immunoglobulin class involved in
mucosal immunity, specific for HIV has been found in the gen-
ital fluids of HESN women in several studies (Mazzoli et al., 1997;
Devito et al., 2000a,b, 2002; Belec et al., 2001; Broliden et al.,
2001; Freeman et al., 2006; Tudor et al., 2009) suggesting it may be
important in the protective immune response (Kaul et al., 2001).
Further investigations of the HIV IgA response showed these anti-
bodies were directed toward gp41 and were able to inhibit HIV-1
transcytosis and neutralize virions (Devito et al., 2000a,b; Belec
et al., 2001; Tudor et al., 2009). HIV-1-specific-immunoglobulin
G (IgG) has also been found in the FGT of HESNs (Belec et al.,
2001; Buchacz et al., 2001). However, another group found no
detectable HIV-1 specific vaginal IgG or IgA in a population of
HESNs in the Gambia (Dorrell et al., 2000).

Cellular responses may also contribute to protection against
HIV infection. HIV-specific CD8+ cytotoxic T-lymphocytes
(CTLs) have been detected in the cervical mucosa of HESN sex
workers (Kaul et al., 2000, 2003), where they were enriched rela-
tive to responses detected in blood (Kaul et al., 2000; Iqbal et al.,
2005).

However, others suggest it is not the immune response against
HIV-1 that provides protection, but rather the overall immune
quiescence of the FGT (Card et al., 2012; Lajoie et al., 2012).
This group reported lower levels of pro-inflammatory cytokines
in female HESNs compared to HIV-negative controls (Card et al.,
2013), as well as a lower level of expression of genes crucial for
HIV replication (McLaren et al., 2010; Songok et al., 2012). In
contrast, FGT inflammation is associated with an increased risk
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FIGURE 2 | Crossing the first line of defense, the epithelial mucosa, and targets of HIV infection.

of HIV infection, presumably due to the recruitment of activated
CD4+ T-cells (Cohen, 2004; Freeman et al., 2006).

Given that the main function of the FGT is its role in reproduc-
tion, it is not surprising that immune tolerance is an important
feature of the FGT. Tolerance facilitates fetal implantation in the
uterus and allows commensal organisms to colonize the lower
tract. Whilst this may contribute to protection against genital
infection, tolerance mechanisms, including regulatory T-cells and
TGF-β secretion, must therefore be overcome by an induced
vaccine response, requiring a highly immunogenic preparation.

DESIRABLE ATTRIBUTES OF A MUCOSAL VACCINE
THE NEED FOR A MUCOSAL VACCINE
Timing is of the essence to achieve a protective immune response
against HIV. The response must be sufficiently rapid to stop the
infection before the virus disseminates, by which time it is beyond
control (Haase, 2010). Systemic memory responses are too slow
to prevent HIV infection at the mucosa; instead a large pool of
effector cells at the FGT mucosal surface, ready for immediate
mobilization, is more likely to confer protection. Direct com-
parison of mucosal and systemic vaccination routes has shown

the mucosal route alone can induce mucosal memory popula-
tions of CTLs (Gallichan and Rosenthal, 1996) and high-avidity
CTLs (Ranasinghe and Ramshaw, 2009), matching the CTL pro-
files of HIV controllers (Mothe et al., 2012). Systemic vaccines can
elicit FGT IgG, but in comparison to mucosal vaccines induce lit-
tle or no SIgA, which is produced locally by plasma cells in the
FGT stroma (Nardelli-Haefliger et al., 1999; Pattani et al., 2012).
Despite the dominance of the IgG subtype in the lower FGT,
SIgA has a decisive role in protection, acting as the first defense
against the virus by preventing attachment and hence acquisi-
tion (Neutra and Kozlowski, 2006; Brandtzaeg, 2007). Unlike IgG,
IgA does not activate the complement system and so can be
thought of as anti-inflammatory, important for HIV protection.
The impact of a mucosal response to HIV was practically demon-
strated by the success of the 1% tenofovir microbicide (Abdool
Karim et al., 2010). Mucosal vaccines can also stimulate lymphatic
and systemic immune responses (Belyakov et al., 1998), acting as
a catch-all for virions that pass into the circulation. These fac-
tors suggest a mucosal vaccine specific for the FGT would provide
the immune response most likely to prevent HIV acquisition (see
Figure 3 and Box 1).
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FIGURE 3 | A general schematic of vaccine-related immune cells active at the mucosal interface of the female genital tract.

Box 1 | Challenges in developing mucosal vaccines against HIV infection.

• The gross architecture of the FGT immune system is not typical of other mucosal surfaces—it lacks lymphoid aggregates such as
Peyer’s patches in the gastrointestinal tract, which comprise B and T cell zones and are responsible for immune induction.

• Correlates of protection against HIV at this site are not well understood for various reasons, including difficulty in establishing
appropriate models for studying the HIV-immune system interaction at the mucosal interface.

• Immune tolerance is a feature of the FGT, in view of widespread microbial colonization in its lower tract and the principle function of
the upper tract in reproduction—this impedes the mounting of desirable immune responses to locally administered vaccines.

• Systemic immunization, the commonest route of administration of vaccines, is ineffective in generating protective immunity at the
mucosa - systemic vaccines do not elicit sufficient local immune responses including SIgA.

• Protein antigens are poor immunogens when given mucosally. Instead of response induction, they lead to immunological tolerance
or unresponsiveness known as mucosally-induced tolerance. Consequently, adjuvants are needed to ensure an adequate mucosal
immune response is mounted.

ROUTE OF ADMINISTRATION AND THE DOSING STRATEGY
As described above, no specific induction site has been charac-
terized in the FGT (see Figure 1), although immune responses
can be generated by APCs in the sub-mucosa (Wira and Fahey,
2008). Several possible routes have been investigated including
oral, rectal, vaginal, and intranasal. Intranasal administration
seems to be a promising strategy in terms of immune response
and application. Rhesus macaques showed SIV-specific IgA, IgG
and CTLs in cervico-vaginal washes post intranasal immuniza-
tion with SIV-p55gag with cholera toxin adjuvant (Imaoka et al.,
1998). A study in human volunteers also showed an increase
in vaginal cholera toxin B (CTB)-specific IgA and IgG with a
strong systemic response following intranasal-immunization with
CTB subunit (Bergquist et al., 1997). However, a Phase 1 trial

of an intranasal HIV-1 vaccine using recombinant HIV-1-gp160
yielded no antibodies in serum or secretory fluids (Pialoux et al.,
2008).

It may be better to use a combined prime-boost strategy
to elicit FGT immunity. This can, however, be complex as
the vaccine response is affected by both the route and the
timing of immunization, particularly the interval between the
prime and the boost. Rhesus Macaques were immunized with
simian-HIV-SF162P3 P1 and recombinant gp41 subunit anti-
gens grafted onto virosomes delivered first intramuscularly (IM)
then boosted with intranasal (IN) application (Bomsel et al.,
2011). Four of five macaques in the IM/IN group were fully
protected against 13 vaginal SHIV challenges delivered over 9
weeks. The other macaques only showed transient infection while
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none seroconverted to p27gag-SIV. In contrast, only one of six
macaques given just the intramuscular formulation was fully pro-
tected. All placebo immunized animals seroconverted. Protected
animals showed cervicovaginal antigen-specific IgA which inhib-
ited HIV-1 transcytosis and IgG with neutralizing or antibody-
dependent cytotoxicity effects. CTLs were not assessed. Some
cross-clade transcytosis-inhibition was found in the IM/IN group,
suggesting the generation of more broadly neutralizing antibod-
ies. The animals lacked neutralizing antibodies in serum, further
emphasizing the importance of a mucosal response for HIV
protection.

A recent phase I placebo-controlled trial tested a virosome
harboring surface HIV-1 gp41-derived P1 lipidated peptides
delivered as an intramuscular prime, then by intranasal boost
(Leroux-Roels et al., 2013). The vaccine was safe and well tol-
erated. P1-specific serum IgG and IgA were induced in all par-
ticipants receiving the high dose of vaccine. Analysis did not
reveal a statistically significant increase in mucosal P1-specifc
IgA, despite being detected in 63 and 43% of the low and high
dose participants respectively. However, there was an unexpect-
edly high pre-immune vaginal reactivity toward the P1 antigen,
which may have skewed the results. IgA expression is influenced
by hormonal changes so sampling during different phases of
the menstrual cycle may explain these findings. Vaginal and rec-
tal IgG did increase significantly over the weeks of vaccination
for both the high and the low dose groups. These vaginal anti-
bodies were further investigated and were shown to possess the
ability to inhibit HIV-1 transcytosis. This result shows promise,
demonstrating both the safety and immunogenicity of mucosal
vaccines.

A study looking at HSV-2 infection used a novel prime-boost
strategy known as “prime-pull,” which could be extrapolated
to an HIV vaccine (Shin and Iwasaki, 2012). The “prime-pull”
technique involves the mucosal application of chemokines after
immunization to recruit primed cells to the mucosa. Mice were
immunized systemically, then chemokines CXCL9 and CXCL10
were applied directly to the vaginal mucosa. CTLs were recruited
to the FGT and established a long-term population of memory
CD8+ T cells. CD4+ T cells were initially recruited to the FGT but
not retained there long-term. The initial CD4+ T-cell influx could
potentially increase HIV risk, but after the effector phase these
cells withdrew, so overall the risk is deemed negligible. In addi-
tion, no markers of inflammation were found, and the strategy
led to complete protection from vaginal HSV-2 infection.

Following this promising result the “prime-pull” technique
was recently adapted to HIV. Mice were immunized intranasally
with HIV-1-gp140 and then either the cytokine CCL28 or the
toll-like receptor 4 ligand (TLR4) MPLA was administered to
the vaginal mucosa (Tregoning et al., 2013). The application
of CCL28 post-intranasal vaccine did not increase vaginal B
cells or antibodies; however MPLA application caused signifi-
cant increases in HIV-1 specific vaginal IgA and serum IgG and
IgA. The authors concede that, as homing mechanisms in the
urogenital tract are not well understood, CCL28 may not have
been the best cytokine to use, and suggest that other chemokines
involved in B-cell recruitment should be tested. It may be that
a single cytokine is insufficient and several acting in concert

would provide a better “pull” toward the urogenital tract. On the
other hand the success of MPLA adds another dimension to this
“prime-pull” strategy; different TLR agonists should also now be
investigated.

ADJUVANTS
As seen with the “prime-pull” strategy described above, most
vaccines require an adjuvant to boost the immunogenicity of
the construct. Adjuvants are substances that possess the biolog-
ical capacity to enhance, prolong or accelerate the quality of
specific immune responses to vaccine antigens. With regards to
mucosal vaccines, adjuvants can be broadly classified into those
that play an immunostimulatory role and those that facilitate
vaccine delivery for the induction of protective immunity via the
CMIS (Yuki and Kiyono, 2003).

Few adjuvant studies have focused on boosting mucosal HIV-
specific immunity. Chemokines and cytokines are widely thought
to be the most effective adjuvants for HIV-1 vaccines. When
CCL28 was used to adjuvant an HIV-1IIIB virus like particle
(VLP) construct, enhanced neutralizing capabilities against HIV-
1 clade B laboratory isolates and an HIV-1 clade C primary
isolate were found in vaginal secretions and sera of mice (Rainone
et al., 2011). Increased env-specific interferon gamma (IFN-γ)
and interleukin (IL)-45 were also seen, with increased serum IgA,
both non-specific and specific for HIV-1. More recently, mice
were immunized either IM or IN with HIV-1 gp140 co-delivered
with plasmid CCL19 or CCL28 (Hu et al., 2013). Both IM and
IN protocols enhanced serum IgG responses, and both cytokines
enhanced vaginal IgG and IgA responses, but only when given via
the IN route. The vaginal antibodies showed neutralizing activity
against both homologous and heterologous HIV-1.

A novel approach to using cytokines as adjuvants employed
soluble IL-13 receptors to antagonize the IL-13 response
(Ranasinghe et al., 2013). Recombinant poxviruses that co-
expressed HIV-1-gag/pol with IL-13Rα2 soluble receptors were
given via intranasal-prime, intramuscular-boost to female mice.
The transient blockade of IL-13 resulted in the generation of high-
avidity CTLs in the iliac and genito-rectal nodes (which drain the
FGT), which were not found in the control protocol without sol-
uble IL-13Rα2: high-avidity CTLs were more protective, shown
by greater protection following an intranasal challenge with gag-
expressing influenza in the IL-13Rα2 group. The stimulation of
high-avidity CTLs matches the CTL profiles of HIV controllers
(Mothe et al., 2012). This study presents an interesting alternative
to the conventional addition of cytokines. Potentially a mixture
of addition and blockade of cytokine pathways will generate a
suitable immune response in the FGT.

FGT TROPIC VECTORS
Given the mucosal site of HIV acquisition, effective vectors
should exhibit mucosal tropism, ideally specific for the FGT.
Adenovirus, a commonly used vector, targets the mucosa but
is not FGT-specific: this may contribute to its lack of success
in clinical trials to prevent HIV infection. There is controversy
surrounding the use of adenovirus as a vector after the STEP
trial (HVTN502/Merck023), the first clinical trial to examine an
HIV prophylactic vaccine using adenovirus as a vector, suggested
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that adenovirus priming may actually increase the risk of HIV
infection (Buchbinder et al., 2008).

Human papillomavirus (HPV) is a FGT tropic virus that
infects cervicovaginal keratinocytes, lying senescent for long
periods of time. A recent study in Cynomolgus and Rhesus
Macaques used HPV pseudovirosomes to deliver SIV-Gag-DNA
(Gordon et al., 2012). Gag-specific IgA, IgG and CD4/8+ T cell
responses were found in the serum and vaginal tract, which
rapidly expanded following intravaginal SIV exposure, suggest-
ing the formation of memory populations. However limitations
of this study were that only low levels of vaginal IgG and IgA were
induced, and the vaccine led to a substantial CD4+ T cell response
that could increase HIV susceptibility: there was no protection
against vaginal SIV challenge. Furthermore, unattenuated HPV
has been shown to increase CXCL8 levels, potentially increasing
susceptibility to HIV-1 in cervical tissues and upregulating HIV-1
proliferation (Narimatsu et al., 2005).

These are early days in mucosal targeting of vaccines: with sub-
sequent testing and refining, better results may be achieved. Other
sexually transmitted disease (STD) vectors such as HSV-2 could
also be tested as vectors. HSV-1 has been used as a vector in mice
(Parker et al., 2007), using an HSV-1 vector expressing the HIV-
1 gag gene for intraperitoneal immunization. Strong gag-specific
CD8+ responses were elicited (Parker et al., 2007) which persisted
9 months post-immunization. HSV-2 is closely related to HSV-1,
but is acquired through the genital mucosa suggesting it may be a
more appropriate HIV vaccine vector. However, further research
is needed to improve immune responses and reduce potentially
harmful mucosal inflammation.

FUTURE DIRECTIONS
Despite the possibilities highlighted in these studies, several fac-
tors must be addressed to improve the development of an effective
HIV vaccine. We strongly recommend that immune responses in
the FGT should be measured as an integral part of every HIV
vaccine trial. Even though precise correlates of immunity are not
yet known, it seems reasonable to assume that local immune
responses to HIV in the FGT will play an important part in pro-
tection against sexual acquisition. Ensuring that FGT responses
are always measured provides a timely reminder of the site where
most HIV infections in the world are acquired, and should inform
future trials and vaccine design. Correlates of FGT inflammation
should also be investigated to ensure a vaccine does not increase
HIV susceptibility. A focus on FGT responses requires a distinct
agenda from the outset so that a laboratory science program is
incorporated and prioritized within the parent clinical trial pro-
tocol. It is also important to study participants with breakthrough
infections, and collect and store relevant, appropriate, and appro-
priately timed biological specimens, collected as close as possible
to the estimated time of infection, (Sibeko and Makvandi-Nejad,
2013).

Our lack of knowledge in key aspects of FGT immunol-
ogy remains a major problem for mucosal vaccine development.
Characterization of FGT homing pathways would greatly improve
mucosal vaccine design, as would clear evidence of which com-
partment in the human FGT is most susceptible to HIV infection.
HIV predominantly affects women in developing countries, and

therefore for maximal public health benefit new vaccines should
be cheap, store well, and preferably not require administration by
medical practitioners.

Despite having a significant impact on the immunology of the
FGT, the changing levels of estrogen and progesterone throughout
the menstrual cycle have rarely been considered in natural history
or vaccine studies (Hickey et al., 2011). A better understanding of
the immunological milieu in different menstrual phases may sug-
gest a specific point of the cycle when vaccination would be most
beneficial. Previous studies suggest that intravaginal vaccination
is most effective in women during the follicular phase of the
cycle (Kozlowski et al., 2002). The effects of hormones on other
mucosal routes have not yet been characterized. The cycle stage
should therefore be an important consideration in vaccine trials,
and vaccines should be tested during different hormonal stages
to assess the most effective timing of administration. Adolescence
is an important period when major hormonal fluctuations occur.
The HIV-1 incidence in the 15–24 year age group is twice as high
in women compared to men (UNAIDS, 2012a), highlighting the
importance and challenges of vaccine efficacy in this vulnerable
group.

Differential immune responses for adults and adolescents
against HSV-2 and E. Coli suggest that correlates of mucosal
immunity may differ substantially in different age-groups
(Madan et al., 2012). It may therefore be necessary to look sys-
tematically at different populations and to include adolescents in
future vaccine trials. Furthermore, substantial hormonal fluctua-
tions also occur during pregnancy and with the use of hormonal
contraceptives. In the future, vaccine assessment should extend
to these groups in clinical trials to ensure optimal protection of
women at different stages of life.

CONCLUSIONS
The dynamics of HIV infection are changing, with more women
infected than in previous years and at younger ages than their
male counterparts. This trend probably reflects a combination
of socioeconomic and biological factors. Preventing infection in
women will have a major impact on HIV incidence in their part-
ners and children. A vaccine specifically targeting the FGT may
be needed to induce an immune response that is able to contain
HIV prior to dissemination. As mucosal vaccines induce SIgA and
mucosal CTL memory responses more successfully than their sys-
temic counterparts, a mucosal vaccine specifically targeting the
FGT appears to be the best option for preventing HIV acquisition.
Several strategies look promising, with systemic-prime, mucosal-
boost, FGT tropic vectors, and adjuvants tailoring the immune
response to the FGT all yielding encouraging results in animal
models. However, much more must be done: future vaccine trials
must put more emphasis on the immune responses of the FGT
and consider hormonal effects on mucosal immunity from the
outset. Further research on mucosal vaccines specifically target-
ing these issues may finally yield the protective vaccine needed
to protect women and the wider population from the spread
of HIV.
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The field of HIV prevention has indeed progressed in leaps and bounds, but with major
limitations of the current prevention and treatment options, the world remains desper-
ate for an HIV vaccine. Sadly, this continues to be elusive, because more than 30 years
since its discovery there is no licensed HIV vaccine. Research aiming to define immuno-
logical biomarkers to accurately predict vaccine efficacy have focused mainly on systemic
immune responses, and as such, studies defining correlates of protection in the geni-
torectal mucosa, the primary target site for HIV entry and seeding are sparse. Clearly,
difficulties in sampling and analysis of mucosal specimens, as well as their limited size
have been a major deterrent in characterizing the type (mucosal antibodies, cytokines,
chemokines, or CTL), threshold (magnitude, depth, and breadth) and viral inhibitory capac-
ity of HIV-1-specific immune responses in the genitorectal mucosa, where they are needed
to immediately block HIV acquisition and arrest subsequent virus dissemination. Nev-
ertheless, a few studies document the existence of HIV-specific immune responses in
the genitorectal mucosa of HIV-infected aviremic and viremic controllers, as well as in
highly exposed persistently seronegative (HEPS) individuals with natural resistance to HIV-
1. Some of these responses strongly correlate with protection from HIV acquisition and/or
disease progression, thus providing significant clues of the ideal components of an effica-
cious HIV vaccine. In this study, we provide an overview of the key features of protective
immune responses found in HEPS, elite and viremic controllers, and discuss how these can
be achieved through mucosal immunization. Inevitably, HIV vaccine development research
will have to consider strategies that elicit potent antibody and cellular immune responses
within the genitorectal mucosa or induction of systemic immune cells with an inherent
potential to home and persist at mucosal sites of HIV entry.

Keywords: HIV-1, HIV vaccines, elite controllers, long-term non-progressors, highly exposed persistently
seronegative, mucosal immunity

INTRODUCTION
The past three decades have witnessed the transformation of
HIV/AIDS from a fatality to a chronic manageable disease but
the situation remains far from ideal as the epidemic continues to
spread. According to the UNAIDS report 2013, an estimated 35
million people are living with HIV, 2.3 million new infections, and
1.6 million AIDS-related deaths were documented at the end of
2012. The field of HIV prevention and treatment has progressed
significantly over the years and has had a huge impact on the HIV
pandemic. Anti-retroviral therapy (ART), more especially highly
active ART (HAART) has been quite instrumental in the fight
against HIV/AIDS and represents the most significant achieve-
ment that has transformed an epidemic that threatened to wipe
out humanity (1). HAART has not only increased the lifespan
of infected people (2), but has had other significant health ben-
efits including reduced risk of opportunistic infections such as
tuberculosis and AIDS-defining cancers, namely Kaposi sarcoma
and cervical cancer (1, 3). Moving a notch higher, pre-exposure

prophylaxis (PrEP) and post-exposure (PEP) trials demonstrate
outstanding success as evidenced by significant reductions in the
risk of HIV-1 infection via heterosexual and homosexual trans-
mission, as well as injecting drug usage (4–8). In breakthrough
infections, however, early treatment not only provides an immune
advantage such as functional cure demonstrated in a few stud-
ies including the VISCONTI study, the Mississippi baby, and the
recently reported Long Beach baby (9–12), but also dramatically
reduces the risk of secondary transmission as demonstrated in
studies with sero-discordant couples, where the infected part-
ner initiates early treatment (13) and studies the prevention of
mother-to-child transmission (MTCT) (14, 15).

The recent introduction of universal testing and treatment
(UTT) followed by immediate initiation of ART to all those testing
HIV positive irrespective of clinical stage or CD4 count (16–19)
will have a huge impact on the epidemic, although the reality
is that wider scale implementation will inevitably be logistically
and financially overwhelming (20). Microbicides (8) and male
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circumcision (21–23) have also contributed significantly to the
reduced risk of infection and/or transmission, and have great
potential if deployed on a larger scale. Despite the tremendous
progress in the field, challenges remain and a vaccine is still of
top most priority. An HIV vaccine would not only ease the cost
of burden of therapy globally, but will also have a huge public
health impact. Experts agree that a comprehensive package com-
bining an effective, safe, well-tolerated, accessible, and affordable
HIV vaccine with HAART, and the current HIV preventive tech-
nologies would ultimately bring the epidemic to an end. Thus, a
combination of prophylactic and therapeutic vaccines that prevent
infection and afford superior control of viremia in breakthrough
infections will significantly reduce the spread of infection and dis-
ease (3). The successful HIV vaccine candidates are expected to
induce potent broadly neutralizing antibodies (bNAbs) and high
titers of non-neutralizing antibodies, in addition to robust cel-
lular immune responses with virus inhibitory effector functions
in order to offer long-lasting sterilizing immunity, or in the case
of breakthrough infections, to at least increase the threshold of
HIV titers required for infection, reduce virus load setting point,
and reduce secondary transmission rates (24–28). Most impor-
tantly, since a significantly large proportion of HIV infections are
transmitted sexually, both heterosexual (29, 30) and homosexual,
especially in men who have sex with men (31), prophylactic vac-
cine candidates should be effective at all possible portals of HIV-1
entry, with key focus on the genital and rectal mucosa (32).

HIV-1 VACCINE CANDIDATES: PROGRESS SO FAR
Several factors that have rendered HIV vaccine design an unprece-
dented challenge have been extensively discussed in several inde-
pendent reviews. These factors include the enormous HIV virion
diversity (up to 35% in gp120) culminating in many HIV-1 sub-
types/clades and circulating recombinant forms (33, 34); the well-
documented immune evasion strategies (35) and immune escape
(36); persistence of the virus in latent reservoirs that cannot be
effectively cleared with HAART (37, 38); the immunoregulatory
facet of HIV comprising memory CD4+ T-cell depletion from
mucosal sites including the gut-associated lymphoid tissue (GALT)
(39, 40) and MHC class 1 down-regulation by Nef (41) among oth-
ers; and the overall lack of definitive correlates of immune protec-
tion coupled with imperfect correlations or discrepancies between
systemic and mucosal immune responses (42–45). Despite these
challenges, the field of HIV vaccine trials has evolved over the
years, and currently, more than 200 vaccine trials (IAVI Clinical
Trials Database 2014: http://iavireport.org/Trials-Database) have
been conducted since the launch of the first ever HIV vaccine trial
in the mid 1980s (46). Of these, a few vaccine candidates that
showed modest immunogenicity in the initial stages of evaluation
were implemented at Phase IIb and III to test their efficacy in HIV
control (summarized in Table 1). These vaccines were designed to
induce T cells alone (HVTN502 and HVTN503), T cells in com-
bination with antibodies (HVTN505 and RV144), or antibodies
alone (VAX003 and VAX004).

The major goal of T cell vaccines is to induce and maintain a
high level of potent and fully functional effector T cells that will
rapidly become home to mucosal sites, the first portal of entry, and
abort early HIV infection (54). Evaluation of MRKAd5 vaccine

(gag/pol/nef) in the STEP (HVTN502) and Phambili (HVTN503)
Phase IIb trials demonstrated induction of relatively strong and
durable T cell responses (47, 55); however, in both studies, the
vaccine failed to prevent infection or control early viremia in
breakthrough infections. Further analysis of breakthrough infec-
tions uncovered the existence of vaccine-induced selective pressure
(56), suggesting a strong vaccine-induced immune response, and
also highlighting the possibility that limited breadth of vaccine-
stimulated responses might have impacted on the potential to con-
tain virus replication during acute infection. A carefully designed
follow-on Phase IIb clinical trial (HVTN505) that tested a multi-
clade immunogen expressing gag/pol/nef/env was also halted for
futility (49). This vaccine induced both T cell and antibody
responses (strong IgG binding antibodies to gp140), as well as
some neutralizing activity, but clearly these did not correlate with
protection, and were instead skewed toward increased risk of
HIV acquisition. Although the failure of these vaccines to protect
against infection and the unexpected association with increased
risk of HIV acquisition are a huge setback in the development
of T cell vaccines, there is still cause for optimism, as follow-up
analysis of the HIV-infected STEP study participants revealed a
correlation of vaccine-induced Gag-specific T cells with reduced
plasma viremia, independent of HLA influence (57). Furthermore,
we have recently demonstrated induction of broad and very high
magnitude, polyfunctional CD8+ and CD4+ T cell responses in a
Phase I clinical trial of a T cell vaccine candidate (HIVconsv),
expressing gag/pol/vif/env sequences that were assembled from
the most conserved regions of HIV-1 (58, 59). Of key impor-
tance is the observation that HIVconsv vaccine-induced CD8+

effector T cells could recognize HIV-infected autologous CD4+ T
cells and achieved up to 5.79 log10 inhibition of virus replication,
suggesting that such vaccine-induced cytotoxic T cells may have
great potential to impact post-infection virus replication. Indeed,
these findings were corroborated in a challenge study where rhesus
macaques immunized with SIVconsv (an equivalent of HIVconsv)
showed robust and polyfunctional T cell responses that protected
them from the pathogenic SIVmac251 (60). Independently, a T
cell-based vaccine expressing SIV Gag was shown to elicit high
magnitude, broad, and polyfunctional cellular immune responses
that were associated with reduced SIVmac251 virus load set point,
as well as decreased AIDS mortality (61). However, the efficacy of
HIVconsv in preventing HIV-1 acquisition or lowering virus set
points remains to be tested in efficacy trials, and if achieved, will
be a significant milestone for T cell vaccines.

As it is speculated that sterilizing immunity against HIV-1
will largely depend on induction of potent bNAbs (in combi-
nation with strong antiviral T cell responses), antibody-based
vaccines remain attractive in HIV vaccine development strategies
although their potential benefit in terms of preventing HIV acqui-
sition or controlling replication in humans is yet to be sufficiently
demonstrated (51–53). These Phase III clinical trials (VAX003 and
VAX004) tested the monovalent subtype B and bivalent subtype
B/E rgp120 vaccines and showed induction of complex and robust
immune responses comprising binding and neutralizing antibody
responses to gp120 (Table 1), but no reduction in the incidence
of HIV-1 was observed among the vaccinees. Although the high-
risk nature of VAX003 and VAX004 trial participants might have
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Table 1 | Phase IIb and III HIV vaccine efficacy trials.

Vaccine trial Vaccine candidate

and immunogens

Specimens collected Most significant immune

response elicited

Reference

Systemic Mucosal

HVTN 502/Merck 023 STEP

Study (Phase IIb/prophylactic)

MRKAd5 HIV-1

gag/pol/nef

Serum, plasma,

PBMCs

Not

collected

T cell response Buchbinder et al.

(47)

HVTN 503 Phambili Study

(Phase IIb/prophylactic)

MRKAd5 HIV-1

gag/pol/nef

Serum, plasma,

PBMCs

Not

collected

T cell response Gray et al. (48)

HVTN 505 (Phase

IIb/prophylactic)

VRC-HIVDNA016-00-VP/

VRC-HIVADV014-00-VP

Serum, plasma,

PBMCs

Not

collected

T cell and antibody responses

(gp140 binding IgG)

Hammer et al.

(49)

RV144 (Phase III/prophylactic) ALVAC-HIV vCP1521/

AIDSVAX-gp120 B/E

Serum, plasma,

PBMCs

Collected

but inade-

quate

T cell and antibody responses

(non-neutralizing antibodies to

the V1/V2 loop)

Rerks-Ngarm

et al. (50)

VAX 003 (Phase

III/prophylactic)

AIDSVAX B/E (gp120) Serum, plasma,

PBMCs

Not

collected

Antibody response (binding and

neutralizing antibodies to gp120)

Pitisuttithum

et al. (51)

VAX 004 (Phase

III/prophylactic)

AIDSVAX B/B (gp120) Serum, plasma,

PBMCs

Not

collected

Antibody response (binding and

neutralizing antibodies to gp120)

Flynn et al. (52),

Gilbert et al. (53)

PBMCs, peripheral blood mononuclear cells.

had an influence on vaccine efficacy, the failure of these trials still
highlighted legitimate limitations of antibody-based vaccines, in
terms of preventing HIV acquisition or post-infection virus repli-
cation. Nonetheless, studies in non-human primates (NHPs) have
provided solid evidence that bNAbs can be very effective in the
control and elimination of experimental SIV or SHIV infections
(62–64). This has paved way for the identification and isolation of a
number of potent and broadly neutralizing monoclonal antibodies
(65–71), as discussed in later sections.

Although the focus is largely on bNAbs, non-neutralizing anti-
bodies may potentially play a significant role in HIV-1 acquisition
and progression by acting via Fc-receptor-mediated binding of
infected cells to trigger recruitment of effector cells with cellu-
lar cytotoxic activities such as antibody-dependent cell-mediated
cytotoxicity (ADCC) or secretion of antiviral cytokines that inhibit
virus replication, i.e. antibody-dependent cellular virus inhibition
(ADCVI) (72, 73). Vaccine challenge studies in NHPs revealed
a correlation of such antibody-dependent cytotoxicity and viral
inhibition with reduced viral loads (74–77), thus demonstrating
their potential involvement in protection. Furthermore, high lev-
els of ADCC-mediating antibodies correlate with HIV suppression
in elite controllers (78). The protective effect of non-neutralizing
antibodies was indeed confirmed in the Thai Phase III RV144 trial,
where potent non-neutralizing antibodies to the V1/V2 loop cor-
related significantly with protection from HIV acquisition (50, 79,
80). Additionally, correlation of ADCC with reduced risk of infec-
tion was also confirmed (79). The RV144 study tested the safety
and efficacy of a prime-boost regimen comprising an ALVAC-HIV
(a canary pox vector expressing HIV-1 env/gag/pro) prime and
AIDSVAX-gp120 B/E (recombinant gp120) boost in heterosexual
individuals at various levels of risk of HIV infection. These vac-
cines were designed to induce both antibody and cell-mediated

immune responses and to complement each other in order to
maximize protection. Hence, with 74 HIV infections among the
placebo recipients compared to only 51 in the vaccinees, RV144
achieved 31.2% efficacy and although there was no effect on viral
load following infection, it so far remains the most encouraging
vaccine study to date. Thus, although highly elusive, the unsatis-
factory outcomes of three large clinical trials (47–49, 55, 81) mean
that now more than ever, the world is more desperate for a safe
and an effective vaccine to prevent HIV infection and/or control
progression to AIDS.

NOVEL VACCINE DESIGN AND DELIVERY STRATEGIES TO
IMPROVE IMMUNOGENICITY AND EFFICACY
As much as poor immunogenicity might be blamed for the appar-
ent lack of efficacy of several HIV vaccine candidates tested to
date, the observation that vaccine-induced immune responses
consistently waned over time suggests that even with the most
immunogenic of vaccines, protection may be limited to only those
individuals who get exposed to HIV-1 within the first few months
following immunization. Although this can be effectively over-
come by multiple booster immunizations, the costs and compli-
ance issues will certainly be prohibitive. Therefore, novel strategies
that circumvent these pre-existing hurdles are urgently required
in order to design vaccines with improved immunogenicity and
long-term efficacy. For instance, it is anticipated that strategies
targeting the B cell maturation pathway to induce preferential
maturation of naïve B cell precursors of potent and bNAbs could
achieve long-term protection against HIV acquisition and dis-
semination (82, 83). Additionally, adjuvants that activate enzymes
regulating somatic mutation, such as activation-induced cytidine
deaminase (AID),could be utilized to potentially boost the chances
of producing bNAbs (84). Durability of antibody responses may
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be enhanced by use of vectored immunoprophylaxis, an approach
where immunoglobulin genes are inserted in a viral vector, which
then provides life-long expression of high titers of the respec-
tive monoclonal bNAbs following a single intramuscular injection
(85). The success of this strategy has been very recently demon-
strated in a study using adeno-associated virus (AAV) encoding
bNAbs against HIV, which was shown to induce prolonged anti-
body expression and long-lasting protection of humanized mice
from high-dose intravenous and vaginal challenges with diverse
HIV strains (85, 86).

Cytokines that can directly enhance B cell maturation into long-
lived antibody-secreting cells (ASC), such as IL-4, IL-5, and IL-6,
may be used as genetic adjuvants to increase NAb titers. The effi-
cacy of this approach is documented by a Friend virus challenge
study where co-delivery of adenovirus vectors encoding IL-5, IL-
6, or IL-23 together with adenoviral vector expressing the Friend
virus surface envelope protein gp70 (Ad.pIXgp70) significantly
controlled virus replication and enhanced protection (87). In
particular, mice co-immunized with IL-5 and IL-23-encoding ade-
noviruses produced higher titers of NAbs (87). Genetic adjuvants
encoding type 1 interferons (IFNs) (88) and certain chemokines
such as CCL3, CCL19, and CCL28 (89, 90) were also found to
improve adenovirus vector-mediated immunity to Friend virus.
Chemokines that attract specialized antigen-presenting cells can
thus enhance vaccine uptake and increase the magnitude of the
immune response. When adenovirus vector encoding CCL3 (a
DC chemo-attractant) was co-delivered with adenovirus vectors
expressing gag/env antigens of Friend virus, improved protection
that correlated with enhanced virus-specific CD4+ T cells and
higher NAb titers was observed (89). Similarly, CCL3 co-delivery
of HIV antigens (gag/pol/env) induced higher titers of HIV-specific
binding and neutralizing antibodies compared to delivery of anti-
gens alone (89). Co-delivery of CCL19 and CCL28 significantly
augmented mucosal and systemic antibody responses and also
enhanced their neutralizing activity against homologous and het-
erologous HIV-1 strains (90). Thus, the adjuvant effect of these
cytokines and chemokines could be synchronized with antigen
delivery to enhance HIV vaccine efficacy.

Following the recent demonstration that contrary to the
non-replicating adenovirus vector, a replicating cytomegalovirus-
vectored vaccine offered superior protection of rhesus macaques
from repeated mucosal challenges with the highly pathogenic SIV-
mac239 (91), the focus is shifting toward live vectors that induce
stable effector memory rather than central memory CD8+ T cell
responses (92). Seemingly, persistent but low-level replication of
vaccine delivery vectors not only correlates with stimulation of
potent effector memory T cells with enhanced antiviral capacity,
but also provides stable immune-surveillance capable of clearing
latent viral reserves (93). Such like vectors hold great promise
for successful HIV vaccines, although they will need to be care-
fully selected to avoid induction of active disease in vaccine
recipients, or possible antagonism of vaccine-elicited immune
responses.

Immunological pressure exerted on HIV by vaccine-stimulated
CD8+ T cells is thought to have caused early viral escape and
contributed to the lack of protection among the STEP study vac-
cinees. Thus, vaccine approaches utilizing immunogens that are

derived from conserved regions of HIV-1 (58, 59) or conserved
consensus mosaics (94, 95) may possibly limit escape and offer
better protection. Mosaic vaccines are designed to maximize cov-
erage of global antigen epitopes and to therefore overcome HIV
diversity by eliciting broad multi-clade immune responses (95, 96).
Such increased diversity of immunogens (multiple epitopes and
their variants) greatly increases the chances of matching vaccine-
induced immune responses to the antigenic phenotype of the
infecting founder virus or circulating HIV strains. Mosaic vaccines
have shown great promise in NHP studies where comparatively
superior breadth and depth of T cell responses was demonstrated
(94, 97, 98). Furthermore, polyvalent mosaics were shown to
induce both neutralizing antibodies and cellular responses (99),
which effectively protected animals from high-dose challenge
infections and were also effective at controlling breakthrough virus
replication. Thus, to overcome the problem of enormous HIV
diversity, while at the same time improving longevity of vaccine-
stimulated immunity, a combination of replicating vectors (with
an excellent safety profile) with both T cell- and antibody-inducing
mosaic vaccines might be a much better strategy.

HIV infection activates immune regulatory pathways by
increasing the frequency of regulatory T cells (Tregs) and gen-
eration of functionally impaired, exhausted CD8+ and CD4+

T cells which are inadequate to control virus replication and
prevent disease progression (100). Thus, strategies that could
enhance immunogenicity and overall vaccine efficacy, with par-
ticular emphasis on the control of breakthrough infections, may
include concurrent depletion of Tregs and blockade of inhibitory
pathways such as the programed death-1/ligand (PD-1/PD-L1)
and the T cell immunoglobulin and mucin protein 3 (Tim-3) path-
ways during immunization. These strategies function to overcome
negative regulation and restore immune function in exhausted T
cells, and may be particularly attractive in therapeutic vaccines for
HIV-1 where they could reduce virus loads and help to maintain
an aviremic state (101, 102).

CORRELATES OF PROTECTION AGAINST HIV/AIDS
Despite intensive research, immunological biomarkers that could
accurately predict reduced HIV-1 acquisition and transmission are
not yet defined, thus making it a huge challenge to gage the poten-
tial efficacy of HIV vaccine candidates prior to the costly large-scale
efficacy trials. This is further complicated by the fact that there is
not a single documented case of immune-mediated HIV-1 clear-
ance in infected individuals. Although the recent RV144 trial has
provided significant clues of possible correlates of risk versus pro-
tection (79), the limited number of infected vaccinees studied
makes it hard to draw definitive conclusions. Thus, attempts to
define immune correlates of protection are still based on data
largely arising from studies of long-term non-progressors (LTNPs)
and HIV controllers, a rare group of individuals comprising both
elite and viremic controllers with spontaneous HIV-1 control in
the absence of treatment (103) and also from individuals who
are highly exposed to the virus but remain persistently uninfected
highly exposed persistently seronegative (HEPS) such as commer-
cial sex workers, the uninfected partners of sero-discordant cou-
ples, or exposed healthcare providers. These studies have unraveled
a number of protective factors which can be broadly divided
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into two categories, namely host/viral-related or immune-related
factors, and are discussed in detail below.

HOST GENETIC FACTORS THAT CORRELATE WITH PROTECTION
Data from large numbers of non-progressor/slow progressor
cohorts indicate that protective HLA alleles such as HLA-B27,
HLA-B51, HLA-B57 and HLA-B58 which are associated with bet-
ter virus control are overrepresented in these groups, thus impli-
cating a very strong role for host genetics in the course of HIV
infection and disease (104–106). Incidentally, genome-wide asso-
ciation and HLA class 1 analysis of HIV-specific T cell responses
in the MRKAd5 vaccinees revealed that high-magnitude responses
were associated with HLA-B27, -B51 and -B57,while HLA-B08 and
-B45 were associated with lower level responses (107). Other host
genetic factors such as the CCR5∆32 and CCR2-64I mutations
in chemokine receptor genes (108–110) as well as the killer-cell
immunoglobulin-like (KIR) receptor polymorphisms (111–115)
have also been associated with slow progression or resistance to
infection (116). In fact individuals who are homozygous for the
32 base pair deletion in CCR5 are completely protected from HIV
infection, and the protective function of this mutation has been
recently demonstrated in the only patient to achieve sterilizing
cure of HIV-1 following stem cell transplant from a CCR5∆32
homozygous donor (117–120). Additionally, there are intrinsic
host-resistant factors such as the restriction factors TRIM-5α,
APOBEC3G, SAMHD1, and tetherin (121–123), which control
HIV replication through various mechanisms, and any genetic
alterations in their expression levels or patterns can alter the rate
of HIV acquisition and progression (124, 125). However, it is
imperative to note that the presence of these protective factors,
chemokine receptor mutations, or HLA haplotypes per se, is not
sufficient to confer a slow progression phenotype, as several stud-
ies indicate rapid progression of some infected individuals bearing
these protective HLA and KIR genotypes. Additionally, it is known
that some individuals without these protective genetic character-
istics control HIV replication or persistently evade infection, thus
strongly implicating alternative explanations for the attenuated
disease course, such as immune-mediated protection.

IMMUNE-MEDIATED CORRELATES OF PROTECTION
Studies of HIV-infected controllers indicate that robust, broadly
directed, highly proliferative, polyfunctional cytotoxic CD8+ and
CD4+ T cell responses target conserved regions of HIV-1 such as
Gag correlate with reduced virus replication (126–134). In particu-
lar, CD8+ T cells from HIV-1 controllers display enhanced capac-
ity to inhibit HIV-1 replication (129, 135–138) either via direct
killing of infected cells or by secretion of antiviral factors known
to suppress HIV replication (139). These cells also produce higher
levels of IL-2 (140), have superior capacity for clonal expansion,
and contain more granzyme B and perforin (138, 141). In some
cases, these cells can exhibit the exceptional capacity to supress
viral replication in vitro without prior antigen re-stimulation (127,
129). However, it is worth noting that although control of HIV-1
in various independent (but small) slow progressor cohorts corre-
lates significantly with enhanced magnitude and breadth of T cell
responses, a study looking at a larger sample size (n = 124) of well-
defined elite controllers showed that elite control of HIV-1 was in

fact associated with the lowest magnitude and breadth of IFN-
γ responses, as well as the lowest titers of broadly cross-reactive
neutralizing antibodies (142). This confirms that the quality of the
response rather than the quantity remains important in virus con-
trol. Thus, in agreement with other studies, preferential targeting
of Gag and co-secretion of both IFN-γ and IL-2 were correlated
with virus control among the elite controllers than the chronic
progressors and viremic controllers in this study (142).

In addition to controlling virus replication, it has recently
been reported that HIV-specific CD8+ CTLs are an absolute
requirement for the elimination of latent viral reservoirs follow-
ing reactivation (143). Since elite controllers harbor significantly
lower latent viral reservoirs (144–146), this suggests a strong
link between the presence of HIV-specific CD8+ T cells with
potent cytotoxic activity and controlled latency. Indeed, this was
confirmed in a very recent study which demonstrated the excep-
tional ability of primary CD8+ T cells from elite suppressors to
effectively eliminate precursors of latently infected cells (147).
Moreover, elite controllers are known to develop potent effec-
tor memory (T EM) rather than central memory (T CM) T cells
(148) which are not only more effective at suppressing viral control
but are also known to resist apoptosis, thus capable of protecting
against disease progression and establishment of latent reservoirs
for extended periods in the absence of HAART (103, 149–151).
Besides T cells, natural killer (NK) cells, known to inhibit HIV
replication through a variety of mechanisms (152), are also numer-
ically elevated in blood of HEPS, where they are thought to protect
from HIV-1 acquisition by secretion of antiviral factors (153–155).
Indeed, increased production of pro-inflammatory cytokines such
as TNF-α and IFN-γ by KIR3DL1/HLA-Bw4 NK cells is asso-
ciated with lower viral loads and slower progression of infected
individuals (113, 156, 157). Moreover, preserved NK cell func-
tion (which is lost in progressive HIV-1 infection) has been linked
with asymptomatic HIV-2 infection (158). Also, increased lev-
els of the beta-chemokines RANTES, MIP-1α, and MIP-1β, all of
which are known to bind the HIV-1 co-receptor, CCR5, is linked
with protection from HIV acquisition in cohorts of high-risk
women (159, 160). These chemokines have been directly associ-
ated with resistance to HIV-1 infection, reduced viral replication,
and subsequently delayed disease progression (161–163).

The studies described in this section mainly relate to systemic
immune responses. However, it is vital that immune-mediated cor-
relates of protection in the genitorectal mucosa are characterized
since they are indispensable in defining the overall efficacy of HIV
vaccines. The next section briefly highlights the immune responses
found in the genitorectal mucosa that have been correlated with
protection.

IMMUNE-MEDIATED CORRELATES OF PROTECTION IN THE
GENITORECTAL MUCOSA
The observation that multiple exposures to high virus load is
required for successful heterosexual HIV-1 transmission suggests
the existence of robust mucosal innate immunity that must be
actively involved in the control of HIV-1 infection and virus
dissemination. Thus, immune responses at the genital mucosa
especially those of the innate immune system provide the first line
of defense and are critical in preventing HIV-1 infection (164)
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or destruction of HIV-1 target cells at the mucosa, before the
development of adaptive immune responses. Plausibly, vaccine-
mediated stimulation of components of the innate immune system
such as dendritic cells, NK, and NKT cells as well as macrophages
in the genitorectal mucosa could have a significant reduction in
HIV-1 acquisition by production of antiviral cytokines such as
type 1 IFNs or even by acting through ADCC to destroy infected
cells. Alternatively, the type 1 IFNs together with other cytokines
including IL-15 and IL-18 can serve to augment both innate and
adaptive immune responses. However, this review will only dis-
cuss the adaptive humoral and cell-mediated immune responses to
HIV-1 in the genitorectal mucosa as they form a significant part of
the critical determinants of vaccine-induced immunity and might
therefore hold the key to accelerating HIV-1 vaccine development.
Several HIV-1 vaccine candidates tested for immunogenicity and
efficacy up to advanced stages (Table 1) did not yield any mucosal
data (165), especially the RV144 trial, the only one to show vaccine
efficacy. As such, the definitive correlates of vaccine efficacy in the
genital mucosa still remain unknown. This section discusses the
various mucosal immune responses which have been linked with
natural resistance to HIV-1 in HEPS or attenuated disease course
in HIV controllers.

PROTECTIVE CELLULAR IMMUNE RESPONSES IN THE GENITORECTAL
MUCOSA
A large body of evidence documents the existence of HIV-specific
cellular immune responses in blood of HEPS (166–170), although
there have been lots of skepticism concerning the occurrence of
adaptive immune responses without active HIV infection or repli-
cation. It has been speculated that these responses arise from
abortive (failed) infections that are effectively cleared before the
virus successfully establishes its reservoirs. A study designed specif-
ically to address the question as to whether HEPS truly make
HIV-specific T cell responses recruited sero-discordant couples
in Malawi (HPTN 052 cohort) and in the UK (CHAVI 002, St.
Mary’s cohort) and used a very sensitive (cultured Elispot) assay
able to detect very low frequency T cell responses (171). This
study confirmed the existence of HIV-specific CD8+ and CD4+

T cell responses that were mapped to T cell epitopes frequently
targeted in HIV-infected individuals. Interestingly, the responses
were maintained across multiple visits in the absence of HIV infec-
tion, as no virus could be detected even with the highly sensitive
transcription-mediated amplification assay (TMA). A recent study
of sero-discordant couples in Uganda reported similar findings
(172), thus confirming that exposure to HIV can prime adaptive
immune responses that can be boosted by repeated exposures.

There is also strong evidence that mucosal HIV-specific CD8+

and CD4+ T cells modulate HIV-1 disease course, as they can
control post-infection virus replication and persistence by directly
killing infected target cells or secreting a number of antiviral
cytokines. IFN-γ-producing HIV-specific CD8+ T cells found in
the genital mucosa of HEPS were thought to be responsible for
their natural HIV-1 resistance (173). This study also revealed an
enrichment of IFN-γ-producing HIV-specific CD8+ T cells in the
cervical mucosa as opposed to the systemic compartment, thus
strongly suggesting a role in protection against HIV-1 acquisition.
However, although multiple exposures to replication-competent

HIV-1 is well-documented in these individuals, in the absence
of confirmed productive HIV-1 infection, it is difficult to judge
whether the existence of HIV-specific T cells is indeed cause
of HIV-1 resistance or merely a marker of exposure. Never-
theless, human studies assessing immune responses in mucosal
compartments of HIV-1 infected individuals revealed an inverse
correlation of magnitude and poly-functionality of rectal HIV-1
Gag-specific CD8+ and CD4+ T cell responses and viral load (45,
174, 175), highly suggesting that mucosal T cells do exert anti-HIV
activity in the rectal mucosa. Elite control of HIV was signifi-
cantly associated with strong and polyfunctional T cells, secreting
CD107a and MIP-1-β among other cytokines. Intriguingly, the
mucosal immune responses in HIV-1 controllers were significantly
higher and more polyfunctional than those in progressors, while
the systemic immune responses remained indistinguishable (45).
These observations highlight the potential discrepancies between
blood and mucosal immune responses and further demonstrate
the importance of generating protective immune responses within
the local sites of virus entry.

PROTECTIVE HUMORAL IMMUNE RESPONSES IN THE GENITORECTAL
MUCOSA
HIV-specific mucosal IgG and IgA antibodies, especially those
with demonstrated HIV-1-neutralizing activity form the pillar that
protects against HIV-1 acquisition, at least in cohorts of highly
exposed seronegative individuals (176–180). These antibodies can
act by inhibiting various mucosal HIV-1 entry pathways such as
epithelial transcytosis (181, 182) and by binding to the HIV-1 virus
or by neutralizing the virus to prevent infection of CD4+ T cells by
primary HIV-1 isolates (183). Alternatively, they could also serve
to aggregate HIV virions and inhibit movement through cervical
mucus. Contrary to individuals with progressive HIV-1 infection,
the IgA antibodies found in HEPS mainly recognize the conforma-
tionally conserved regions of the gp41 subunit of HIV-1 envelope,
thus indicating potential for cross-clade neutralization (178, 184,
185). HIV-specific IgA with potential neutralizing activity (179,
186) has been detected in the cervico-vaginal secretions of women
(176, 187, 188) and urethral swabs of heterosexual men (189) with
natural HIV-1 resistance, indicating a possible role in blocking
HIV-1 acquisition. In a recent study, HIV-1-neutralizing IgA was
found in the cervico-vaginal secretions of highly exposed seroneg-
ative women in a prospective discordant couple cohort study (190),
thus providing definitive evidence of antiviral activity in mucosal
secretions after HIV-1 exposure. One major shortcoming is that
maintenance of adequate levels of these antibodies requires con-
tinuous exposure to HIV-1 (186), suggesting perhaps a lack of
effective formation of memory B cells. Despite the encouraging
neutralization activity of HIV-1-specific IgA antibodies and the
fact that secretory IgAs are a major component of the mucosal anti-
body responses, not many IgA monoclonal antibodies have been
isolated. However, one study indicates that human monoclonal
Fab IgAs directed at gp41, which were constructed by genetic engi-
neering of mucosal cervical B lymphocytes from HEPS, exhibited
good neutralization potential and were more potent at blocking
transcytosis (183). The protective effect of such conserved and
naturally induced antibodies implicates them as desirable com-
ponents of mucosal HIV-1 vaccines, where they can potentially

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 82

http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

abort HIV-1 infection by targeting cell-free virus to prevent entry
into mucosal tissues. This concept was demonstrated in an ani-
mal study where a gp41 subunit HIV-1 vaccine-induced vaginal
IgAs capable of blocking transcytosis, as well as vaginal IgGs with
neutralizing or ADCC activities (43). These antibodies provided
sterilizing immunity in Macaca mulatta monkeys challenged with
SHIV-SF162P3, in the absence of systemic neutralizing antibodies,
again reinforcing the importance of generating immune responses
in the genitorectal mucosa.

The studies described here convincingly demonstrate that these
immuno-functional parameters are predictive of slow progression
in a majority of HIV controllers or sterile protection in those indi-
viduals who resist HIV-1 infection despite multiple exposures to
high doses of intact replication-competent HIV-1 viruses (171).
Therefore, it is plausible that vaccine strategies that can induce
such immune responses would have a significantly greater chance
of either preventing infection or achieving functional cure in
breakthrough infections. This was to some extent demonstrated in
the STEP trial where vaccine-induced T cells correlated with virus
control in a few of the infected vaccinees (57). Thus, collectively,
these observations indicate that a myriad of factors encompassing
host genetics, immunological parameters, and viral determinants
act together to bring about the attenuated disease course (103,
191) or resistance to HIV. However, although it is conceivable
that vaccines can be engineered to mimic protective immune
responses, little can be done to influence the host genetic fac-
tors. Therefore, vaccine development efforts need to focus on the
induction of mucosal (and systemic) immune responses which
confer protection independent of host genetic factors.

CORRELATES OF IMMUNE PROTECTION IN THE CONTEXT OF
VACCINE EFFICACY: ARE THEY RELIABLE?
To put all these into the context of vaccine efficacy, it is worth a
reminder that despite the documentation of immune responses
that seemingly correlate with virus control in infected or highly
exposed uninfected individuals, the ultimate proof of correlates of
protection can only come from efficacy trials in humans. Can we
say that so far the predicted correlates of protection have trans-
lated into vaccine efficacy? As an example, protection in the RV144
trial was not related to bNAbs or strong CD8+ CTL responses
as both of these were not detected. Instead only CD4+ T cells,
ADCC and neutralizing antibodies to the easy to neutralize tier-1
viruses were observed. Furthermore, the RV144 trial revealed that
although high levels of plasma IgG antibodies targeted to the vari-
able regions V1/V2 loop of the envelope gp120 were associated
with protection against HIV-1 acquisition, envelope-specific IgA
antibodies actually mitigated the effects of protective antibodies
and were associated with increased risk of infection (79).

Incidentally, high levels of such IgA-binding antibodies to
gp140 were also detected in the HVTN505 study vaccinees, where
they are speculated to have influenced the risk of HIV acquisition
(49). These observations immediately prompt the need to further
investigate the role of IgA in HIV-1 acquisition since it has been
significantly associated with mucosal immunity to HIV-1 in sev-
eral studies of HEPS (188, 190, 192). Moreover, these observations
indicate that protection from infection is not necessarily mediated
by neutralizing antibodies or robust CTLs as inferred from studies

in HEPS, elite controllers, and LTNPs, thus emphasizing the need
to re-define correlates of protection, and perhaps keenly study the
role of non-neutralizing antibodies in protection versus risk. It is
possible that vaccines inducing high levels of IgG and lower levels
of IgA, concurrently with broadly directed high-magnitude cel-
lular immune responses at mucosal sites will more likely protect
against infection and post-infection virus replication. It remains
possible that the efficacy of RV144 may have been due in part to
the presence of vaccine-induced antibody and cellular immunity
in the genital mucosa.

More intriguing, however, is the fact that all the HIV-1 vaccine
candidates tested for efficacy showed modest immune responses
in preclinical and early stages of clinical evaluation but have shown
no efficacy in the longer term. Take for instance, the MRKAd5 vac-
cine that induced robust responses in majority of vaccinees but
failed to prevent HIV infection or post-infection viremia (47, 55).
Although this vaccine was not expected to prevent infection, the
fact that it did not attenuate disease course despite the observed
immune responses begs the question as to whether the current
measurements of evaluating vaccine immunogenicity during the
preclinical and Phase I clinical trials (193) are robust enough
to predict vaccine failure. Apart from the inevitable discrepan-
cies between animal models and humans, this might also per-
haps suggest qualitative and quantitative differences between the
vaccine-stimulated responses and those required to prevent HIV-1
acquisition at the first point of encounter (genitorectal mucosa).
Indeed, in addition to paucity of CD4+ T cell responses, the CD8+

T cell responses in the MRKAd5 vaccinees were found to be of low
magnitude, narrowly directed, less polyfunctional, and targeted
mostly Pol and Nef (55), contrary to what has been correlated
with spontaneous HIV-1 control. Furthermore, as most vaccine-
stimulated responses are tested by IFN-γ ELISPOT in peripheral
blood samples, it could be though that potent responses are elicited
in the systemic compartment, their migration to mucosal portals
of entry where they are critical may be a limitation. Indeed, some
studies have revealed a lack of correlation in the magnitude, qual-
ity, breadth, and functional capacity of T cell responses between
blood (systemic) and mucosal samples (43–45). Thus, in addition
to induction of robust systemic antibody and cell-mediated immu-
nity, vaccine strategies that focus on generating local immune
responses within the genitorectal mucosa, such as the“prime-pull”
(194) approach may be more successful at reducing the replica-
tion and dissemination of transmitted founder viruses. Moreover,
it remains possible that other parameters of the mucosal immune
response such as proliferation, in vitro viral inhibition, and ADCC
could be important (74, 111, 195, 196). Thus, accurate correlates
of protection should include active sampling of mucosal com-
partments and measure several immunological and phenotypic
parameters, including expression of mucosal homing receptors
and ligands.

Recent studies document the antiviral potential of vaccine-
stimulated T cells against various HIV-1 isolates (58) or SIV
(SIVmac239 and SIVsmE660) (197, 198) using in vitro virus sup-
pression assays (VIA). The general expectation is that VIA (199,
200), which demonstrate active inhibition of the replication of
intact virus in vitro (or ex vivo) would correlate with in vivo inhi-
bition of HIV replication (198, 201), and would therefore be a
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more accurate prediction of vaccine efficacy. In fact the in vitro
antiviral inhibitory capacity of CD8+ T cells measured by VIA was
shown to accurately predict CD4+ T cell loss during early HIV-1
infection (201). However, the in vitro VIA did not predict vaccine
efficacy or in vivo inhibition of virus replication in a challenge
SIV study in NHPs (197), suggesting that more robust markers to
predict vaccine efficacy are needed. Alternatively, this discrepancy
could be attributed to lower frequencies of vaccine-stimulated T
cells within the genital mucosa, and it might be that VIA per-
formed with T cells isolated from the genital mucosa will give a
better correlation with in vivo HIV or SIV control. Thus, studies
that assess mucosal B or T cell antiviral capacity, whether vaccine
stimulated (human and NHP) or HIV induced, for example in
LTNPs, elite controllers and HEPS will be important in informing
research aiming to identify correlates of vaccine efficacy.

On a completely separate platform, increased susceptibility to
HIV-1 acquisition in vaccinees in the STEP and Phambili studies
might to a certain extent reflect the dark side of vaccine-mediated
immune activation that may create readily available HIV-1 targets
(55, 202, 203). This hypothesis was proven in a challenge study
where immunized rhesus monkeys exhibiting higher frequencies
of IFN-γ secreting T cells were more susceptible to SIV infec-
tion (203). This strongly suggests that induction of sub-optimal
vaccine-specific T cells (without robust antiviral effector func-
tions) could increase the risk of HIV-1 acquisition in vaccinated
individuals. Other risk factors such as herpes simplex virus type 2
(HSV-2) infection may significantly alter the immune milieu in the
genitorectal mucosa (204–206) and affect HIV-1 vaccine efficacy.
Indeed, HSV2 infection correlated with a fivefold increased risk of
HIV-1 acquisition in heterosexual men in the HVTN505/Phambili
study (48) and in homosexual men in the STEP study (47). HSV2
infection subverts cellular immune responses directed to HIV-1
(205), disrupts mucosal integrity, and induces massive recruit-
ment of HIV-1 targets (CCR5+CD4+ T cells and immature DCs
expressing DC-SIGN) to the genitorectal mucosa (207). These
observations highlight the additional challenge to clearly define
benchmark features that distinguish protective versus detrimental
vaccine-induced immune cells that accelerate HIV-1 acquisition
and disease progression. This is more especially due to the seem-
ingly unavoidable paradox, where imprinting a mucosal homing
phenotype on vaccine-induced immune cells is critical to prevent
HIV-1 acquisition, but also poses a significant risk of increased
susceptibility.

BROADLY NEUTRALIZING ANTIBODIES ARE CRITICAL
DETERMINANTS FOR STERILIZING IMMUNITY
The occurrence of systemic and mucosal HIV-specific neutraliz-
ing IgG antibodies is also documented in LTNPs (135, 208–210),
where they were initially linked with slow disease progression.
However, recent studies indicate that their role in controlling
established infection is quite limited and that high titers and
breadth are in fact a result of higher virus loads (211). Indeed,
such bNAbs are frequently detected in a very small proportion
of HIV-infected individuals known as elite neutralizers (212), but
they do not prevent disease progression (213), presumably due
to rapid virus escape. Thus, a major limitation of antibodies is
the high escape rate, meaning that even with the most excellent

bNAbs, protection may only be transient as mutational escape
occurs within a relatively short time. Moreover, several studies
indicate that bNAbs are found at much lower levels among the
Elite and viremic controllers (142, 214, 215), and at comparatively
higher levels in chronic progressors (142), not only suggesting
a lack of influence on virus replication and disease progression
(211, 213), but most importantly also reinforcing the fact that
neutralization breadth increases with prolonged exposure to HIV.
These observations, together with the fact that bNAbs take several
years to develop, incited skepticism and questioning of the poten-
tial relevance of bNAbs in preventing HIV acquisition and disease
progression. Nonetheless, the possibility that bNAbs could achieve
virus neutralization and block virus entry if present within the
genital mucosa before infection, either by passive administration
or if induced by immunization has been a cause worth fighting for.

A large panel of bNAbs (both first and second generation) have
thus been extensively characterized (71), and some such as PG9
and PG16 which are found within the conserved domain of the
V1/V2 loop were shown to induce potent neutralizing activity on
70–80% of circulating HIV-1 isolates (66, 216). The CD4 binding
site monoclonal antibodyVRC01, in particular,displays very broad
neutralizing activity (>90%) against primary isolates of envelope
pseudoviruses (70). These monoclonal bNAbs have been quite
successful in animal studies, for instance, vaginal administration
of B12 or intravenous delivery of 2F5 and 4E10 mAbs protected
macaques from intravaginal or intrarectal SHIV challenges (217,
218), raising the possibility that bNAbs can attenuate HIV-1 acqui-
sition and disease progression. Indeed, this has been demonstrated
in recent passive transfer studies in NHPs showing that if present
at sufficient levels and well before virus challenge, then bNAbs
can in fact abort infection to achieve sterilizing immunity (77,
218–221). The main caveats making it difficult to extrapolate the
relevance of NHP studies to humans are (1) unlike natural HIV-1
infection, where individuals are exposed to diverse HIV-1 strains
with differing neutralization sensitivities, NHP studies often use
a homogeneous challenge virus that is usually highly susceptible
to neutralization. (2) Some NHP studies have used high doses of
antibodies that are unlikely to be attained by immunization. (3)
Some NHP studies use high doses of the challenge viruses, which
can significantly mask the vaccine-mediated protection. Nonethe-
less, several monoclonal bNAbs with potent neutralizing activity
such as the PGT, PG, and VRC series, among others (66, 70, 216)
afforded sterile protection at very low serum concentrations, even
with high-dose challenges (85, 219, 220, 222, 223). Furthermore,
bispecific bNAbs combining the inhibitory activity of an antibody
directed to domain 2 of human CD4 (ibalizumab) with either
PG9 (PG9-iMab) or PG16 (PG16-iMab) exhibited high potency
and neutralized 118 viruses at very low (picomolar) concentra-
tions (224). Hopefully, such remarkable neutralization breadth
and potency can be achieved in a clinical setting, via immunization
or passive administration.

These observations are very encouraging as they identify the
particular antibody target epitopes as excellent templates for vac-
cine design, and also shed some light on the threshold level of
antibodies required to achieve sterilizing immunity in humans.
This also raises hopes that antibody vaccines based on such potent
and bNAbs would achieve significant control of virus replication
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in infected individuals and possibly offer sterilizing immunity
in healthy vaccinated subjects. However, no vaccine has induced
bNAbs so far, and the only evidence that bNAbs could offer some
protection in humans comes from earlier clinical studies where
passive administration of the bNAbs, 2G12, 2F5, and 4E10 was
shown to transiently delay viral rebound after HAART cessa-
tion (225, 226), but the protection was very limited. In a recent
Phase I clinical trial of the modified trimeric V2-deleted envelope
vaccine, potent neutralizing antibodies were induced in human
volunteers, but these were of very limited breadth (227), despite
enhanced neutralization breadth in animal studies (228, 229).
Thus, the greatest challenge for antibody vaccines is to induce
bNAbs that are potent enough to recapitulate the neutralization
spectra observed in elite neutralizers and to neutralize many virus
isolates including the most resistant, heterologous tier-2 and tier-3
viruses. The remarkable efficacy of monoclonal bNAbs in the vast
majority of animal studies discussed here may partly be due to
intravenous delivery, which ensures broad anatomic dissemination
including the genitorectal mucosa. However, it is still uncertain
whether bNAbs induced by parenteral immunization will traverse
to the genitorectal mucosa, thus strongly arguing for immuniza-
tion strategies to induce potent bNAbs localized within or in close
proximity to the genitorectal mucosa.

EXPERIMENTAL HIV-1 VACCINES TARGETING MUCOSAL
SITES
HIV-1 mucosal vaccinology is still in its infancy and remains a
challenge despite the intense interest within the HIV/AIDS field. A
mucosal vaccine that interferes with HIV-1 attachment and blocks
subsequent steps including crossing of the epithelial barriers
within mucosal surfaces to infect target cells, while at the same time
inducing potent systemic antibody and cellular immunity would
have a greater potential for enhanced efficacy. Although several
HIV-1 vaccine candidates administered by intramuscular injec-
tion stimulate robust systemic immune responses in peripheral
blood, whether or not these vaccine-elicited T cells or antibody-
secreting plasma cells can migrate to the genitorectal mucosa is
not well documented. This is a fundamental requirement for a
successful HIV-1 vaccine, therefore immunization modalities that
either generate immune responses in situ, i.e., within the geni-
tal mucosa, or strategies that drive recruitment of systemically
induced vaccine-specific immune cells to the genital areas are
highly desirable. The quality of mucosally induced vaccine-specific
immune responses and the degree to which they can disseminate
to other anatomic compartments largely depends on the route of
vaccine administration (230–233), besides the properties of the
immunogen. Thus, it is important that vaccine delivery routes are
carefully selected or optimized in order to maximize immune con-
trol in multiple sites. Perhaps the most important delivery routes
are those that demonstrate potential to stimulate both antibody
and cellular responses in the genitorectal mucosa, as well as other
mucosal sites and within various systemic compartments. Some of
these characteristics have been traditionally attributed to mucosal
immunization including intranasal, intravaginal, intrarectal, and
oral or sublingual delivery routes (230, 234, 235). Possibly, deliv-
ery of a vaccine at one mucosal site may induce immunity at
peripheral mucosal sites via the common mucosal immune system

(236, 237), although this hypothesis is disputed by studies showing
compartmentalization of the mucosal immune network (238).

Despite the near consensus for mucosal delivery of immuno-
gens being the best way to trigger mucosal immune responses (230,
239), there are still controversies as to whether mucosal antigen
delivery alone can effectively induce systemic immune responses.
This is largely due to the tissue-specific imprinting of chemokine
receptors and adhesion molecules on immune cells following acti-
vation within mucosal inductive sites. Perhaps, the sublingual
vaccination route which has been shown to induce broadly dis-
seminated mucosal and systemic immune responses (230) may be
considered as a more suitable alternative for delivery of HIV vac-
cines. Intrarectal administration of a DNA/MVA vaccine encoding
HIV immunogens was also shown to elicit both systemic and
mucosal virus-specific immune responses that were associated
with delayed progression to AIDS following SHIV89.6P challenge
(240). Another possible alternative is to combine both intramuscu-
lar and intranasal delivery, a strategy that has been quite successful
in enhancing vaccine-induced HIV-specific immune responses
in both the systemic and vaginal compartments in NHP stud-
ies (241–243). These observations demonstrate that mucosally
delivered vaccines undoubtedly elicit local immune responses that
are capable of disseminating to other systemic compartments. In
the following sections, we highlight some of the studies which
have successfully employed mucosal vaccine delivery with or with-
out mucosal adjuvants to elicit potent immune responses in the
genitorectal mucosa.

MUCOSAL IMMUNIZATION WITHOUT ADJUVANTATION
Active mucosal immunization has been shown to induce potent
cell-mediated and antibody responses at the genital mucosa in
animal studies (244–246). In particular, intranasal vaccine deliv-
ery induces robust antibody and T cell immune responses in the
genital mucosa, possibly due to targeting of dendritic cells in mul-
tiple organs such as the respiratory system, the gut mucosa, and
the spleen (247, 248). Intranasal delivery of a number of HIV
vaccine approaches such as DNA, peptide, live bacterial, and viral
vectors induced strong CD8+ T cell responses and/or antibody
responses (comprising IgG and IgA and sometimes neutraliz-
ing antibodies in vaginal washes) in mice and macaques (233,
249–251). Very recently, studies in NHPs have demonstrated that
intranasal and oral vaccine administration routes were consistently
and significantly better than intramuscular administration, and
elicited mucosal and systemic immune responses that protected
rhesus macaques from disease progression following intrarectal or
vaginal challenges (252–256). These mucosal immunization routes
induced high-magnitude polyfunctional CD8+ and CD4+ T cells
in the rectum and vagina, which correlated with the extent of viral
control.

Although mucosal (intranasal or intrarectal) delivery of DNA
vaccines enhances vaccine-specific mucosal responses, it has been
suggested that the quality, longevity and peripheral distribution of
memory T cell responses in the genital mucosa could be improved
by systemic (or intravaginal) administration of live vaccines (231,
257, 258). Live recombinant vaccine delivery vectors introduced
via intramuscular, intrarectal, oral or intravaginal routes in a
prime-boost strategy induced robust HIV-specific T cell responses
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in the vaginal mucosa as well as in the spleen, possibly due to
active systemic infection that stimulates potent immune responses
(257). In this study, intravaginal delivery of attenuated recombi-
nant Listeria monocytogenes expressing Gag (rLm-gag) as a prime
in combination with replication-defective adenovirus serotype 5
(Ad5) expressing Gag (rAd5-gag) as a boost induced robust Gag-
specific CTL responses in the vaginal mucosa and these persisted
for at least 5 months. The persisting CTLs were of effector memory
phenotype and possessed strong cytotoxic activity which protected
against a vaccinia-Gag challenge.

Influenza virus targets the respiratory system and is thus well-
adapted for stimulating mucosal immunity. Therefore, recom-
binant influenza virus vectors expressing foreign genes effi-
ciently stimulate potent long-lasting antibody and T cell immune
responses in mucosal and systemic compartments (259–261).
Chimeric influenza virus expressing HIV-1 gp120 V3 loop pep-
tide (IHIGPGRAFTYTT) induced robust NAb and CTL responses
following mucosal immunization in mice (262). In a separate
study, intranasal delivery of recombinant influenza expressing
the gp41 ELDKWA epitope also stimulated persistent NAb and
IgA responses in nasal, vaginal, and intestinal secretions (263–
265). Moreover, H1N1 and H3N2 influenza viruses expressing
SIV CD8+ T cell epitopes induced T cells with the mucosal hom-
ing (α4β7) integrin following intranasal or intratracheal vaccine
delivery in pigtail macaques (266). Of particular relevance to
induction of long-lived vaccine-specific immunity by repeated
immunization, influenza virus vectors when combined with other
vectors in mucosal (intraperitoneal and intranasal) prime-boost
immunization protocols, have proven effective at priming HIV-
specific mucosal immune responses that could be augmented by
recombinant MVA in BALB/c mice (267). This demonstrates the
potential utility of influenza virus vectors in effective prime-boost
immunization regimens to generate mucosal immune responses
in the genitorectal draining lymph nodes to combat HIV infec-
tion. The possible limitation of influenza virus vectors is the
insert capacity which may limit the size of antigens that could
be delivered.

Several studies indicate that poxvirus vectors can also induce
mucosal immune responses to foreign antigens. In particular, some
studies have reported induction of immune responses in the geni-
torectal mucosa [as well as in the Peyer’s patches (PP) and lamina
propria], that controlled SHIV replication in mice and NHPs fol-
lowing mucosal immunization with recombinant vaccinia virus
(268–270). Mucosal (intranasal and intrarectal) delivery of non-
replicating rMVA vaccines in a DNA-prime and MVA-boost strat-
egy also induced robust antibody and cellular immune responses
in the systemic compartment as well as in the genitorectal mucosa,
which controlled SHIV replication and disease progression (240,
271). Mucosal vaccination with other poxvirus vectors including
NYVAC and ALVAC also induced antigen-specific responses in
mucosal compartments (272).

A number of studies also demonstrate induction of long-lived
mucosal immunity following systemic immunization with live
virus vectors such as Ad5 and NYVAC, owing to acquisition of
mucosal homing properties by vaccine-induced CD8+ and CD4+

T cells (272–275). In some cases, the immune responses elicited
following intramuscular delivery were superior or equivalent to

those elicited by mucosal immunization. Intramuscular delivery of
the SIV antigens; gag/pol or gag/pol/env by Ad35-prime followed
with Ad26-boost in rhesus macaques induced potent NAb and cel-
lular immune responses in the periphery and within the colorectal
mucosa (276). Both peripheral and mucosal immune responses,
especially Env-specific IgG correlated with reduced risk of SIVMAC

acquisition during intrarectal challenges. This is indeed very
encouraging and may obviate the need for the more invasive geni-
tal mucosal immunization methods (intravaginal and intrarectal),
although factors such as activation status and the inflammatory
state of the host could affect mucosal recruitment and retention,
as well as memory reactivation. Additionally, any impairment in
the migratory capacity of vaccine-induced immune cells, pos-
sibly because differential up-regulation or down-regulation of
mucosal homing integrins would significantly affect the biological
relevance of the vaccine in the genitorectal mucosa.

MUCOSAL IMMUNIZATION WITH ADJUVANTATION
Mucosal adjuvants such as the non-toxic B subunit of cholera
toxin (CTB) or heat labile toxin B subunit (LT-B) are known
to boost protective antibody and cellular immune responses fol-
lowing mucosal immunization, and could therefore impact sig-
nificantly on HIV-1 vaccine efficacy (244, 277). These mucosal
adjuvants have been very successful in a number of experimen-
tal animal studies. For instance, intrarectal immunization with
a synthetic peptide vaccine incorporating the mutant form of
heat labile toxin, LT(R192G), as an adjuvant induced mucosal
and systemic SIV-specific CTL responses that correlated with viral
clearance in challenge experiments (278). Furthermore, intranasal
co-administration of HIV-1 envelope antigens in a DNA/MVA or
MVA/MVA immunization together with cholera toxin (CT) signif-
icantly enhanced antibody and cellular immune responses in the
mucosa as well as systemic compartments (279). Other adjuvants
known to enhance mucosal immune responses include immuno-
stimulatory CpG motifs and pro-inflammatory cytokines such as
IL-1α, IL-12, and IL-18 (44, 244, 280, 281). CpG adjuvantation
in particular was shown to significantly enhance vaccine-induced
antibody and cellular immune responses following mucosal deliv-
ery and to provide protection from mucosal virus challenge (282–
284). The glycolipid α-GalCer also shows promise as a mucosal
adjuvant which could be used with DNA vaccines (285). The
use of non-replicating virosome vectors, known for their intrinsic
adjuvant properties and efficient targeting of antigen presenting
cells (286) may be another useful delivery platform to enhance
mucosal immune responses. Intramuscular and intranasal deliv-
ery of a gp41 subunit antigen grafted on virosomes was shown
to protect monkeys against SHIV challenge following induction
of vaginal IgA and IgG with potent transcytosis blockade activi-
ties as well as neutralizing and ADCC activities (43). Intriguingly,
protection of vaccinated animals was mediated by the mucosal
antibody activities and not the serum circulating HIV-1 antibod-
ies or bNAbs, suggesting that mucosal responses can prevent HIV
acquisition in the absence of other systemic responses including
bNAbs. Feasibility of the virosome delivery method for induction
of mucosal antibodies in humans has been recently demonstrated
in a Phase I proof-of-principle study using HIV-1 gp41-derived
peptides (287). In this study, both serum IgG and IgA, as well
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as vaginal and rectal IgG were induced, but neutralization activ-
ity was not detected. However, vaginal secretions were shown to
inhibit HIV-1 transcytosis, demonstrating potential to reduce HIV
acquisition.

Ultimately, the goal for mucosal HIV-1 vaccine delivery is to
generate local antibody and mucosal T cells with antiviral activ-
ities, but also with intrinsic ability to disseminate systemically in
order to combat HIV-1 infection and spread. Alternatively, the use
of tissue-specific adhesion molecules or chemokine-mediated site-
specific directed migration of vaccine-stimulated immune cells
from mucosal immune inductive sites to peripheral mucosal and
systemic effector sites (230, 288) may be useful delivery strategies
for HIV vaccines.

MUCOSAL HOMING MARKERS ON IMMUNE EFFECTOR
CELLS
The migration of effector/memory T cells and ASC such as those
that secrete IgA (IgA-ASC) to various extra-lymphoid tissues
including the gut and genitorectal mucosa is facilitated by specific
homing receptors on immune cells, together with their cognate
ligands, which are expressed in the destination tissues. Migration
to the gut for instance requires up-regulation of the chemokine
receptors CCR9 and CCR10, as well as the mucosal integrin α4β7

(289–292). The α4β7 integrin, also known as lymphocyte Peyer’s
patch adhesion molecule-1 (LPAM-1) is a mucosal homing recep-
tor that binds MAdCAM-1, a mucosal vascular addressin selec-
tively expressed on intestinal mucosal endothelium. CCL25, the
ligand for CCR9, is expressed mainly by small intestine endothe-
lial and epithelial cells (293, 294), while CCL27 and CCL28 (the
ligands for CCR10) are expressed in several mucosal tissues. Thus,
binding of these receptors to their respective ligands mediates
selective lymphocyte homing to and retention within the intesti-
nal lamina propria and the PP (295–298). Co-expression of CCR9
or CCR10 with α4β7 is therefore a characteristic phenotype of
gut homing immune cells. This guided migration is important
for tissue-targeted immune activities such as that demonstrated in
murine rotavirus infection, where memory/effector CD8+ T cells
expressing high levels of α4β7 (i.e., α4β7

hiCD44hi) homed prefer-
entially to intestinal tissues and were more effective at pathogen
clearance compared to cells with α4β7

loCD44hi phenotype (299).
Moreover, expression of gut homing receptors on CD4+ T cells
was shown to be important for mucosal immune reconstitution
following HAART, as failed reconstitution was linked to defective
homing (300).

While migration of vaccine-induced T and B cells to the gut is
crucial to prevent establishment of HIV-1 reservoirs and CD4+

T cell destruction (301), migration to the genitorectal mucosa
is critical for preventing HIV-1 acquisition. Although migra-
tion to these distinct mucosal sites may be governed by distinct
signals, homing to the genitorectal mucosa also requires a B7
integrin, αEβ7 (CD103), which is known to mediate lympho-
cyte recruitment to various mucosal tissues (including the genital
mucosa) by binding to epithelial cadherin (E-cadherin) (302–
305). A recent study reported isolation of a functional subset
of HIV-specific CD8+CD103+IFN-γ+ T cells in samples from
the cervical mucosa of HIV-infected individuals (306). CXCR3
expression is up-regulated following lymphocyte activation, and

allows migration of CXCR3+ cells to inflamed sites where the cog-
nate ligands, CXCL9 and CXCL10, are up-regulated in response to
inflammatory stimuli. Thus, expression of CD103 and CXCR3 by
activated B and T cells is likely to direct their migration to the
genitorectal mucosa, especially if some degree of inflammation is
induced (194).

Naïve lymphocytes express CD62L and CCR7, the major lymph
node homing markers, which allow them to circulate through
various lymphoid organs, under homeostatic conditions. Upon
antigen encounter, they differentiate into activated cells express-
ing unique adhesion receptors that are imprinted based on the
site of antigen exposure (307). For instance, systemic antigen
exposure can confer multiple homing signatures, whereas oral
exposure preferentially induces higher levels of gut homing recep-
tors (289). This could in part be due to increased expression of
retinoic acid receptors on dendritic cells and macrophages in gut-
associated lymphoid tissues [PP, mesenteric lymph nodes (MLN)
and intestinal lamina propria] which facilitate imprinting of gut
homing properties on activated T and B cells by generating retinoic
acid to up-regulate CCR9, CCR10, and α4β7 (308–311). Thus,
targeting delivery of HIV-1 antigens for activation within the
PP and MLN via mucosal immunization may lead to induction
of αEβ7

hi/CD44hi, α4β7
hi/CCR9+, or α4β7

hi/CCR10+ immune
cells with the ability to access multiple mucosal compartments,
including the genital and rectal mucosa.

FACTORS THAT LIMIT ASSESSMENT OF IMMUNE
RESPONSES IN THE GENITORECTAL MUCOSA
Some of the difficulties arising from studying mucosal sites
include the heterogeneity in frequencies and distribution of vari-
ous immune cell phenotypes, especially in the female genital tract.
For instance, the frequency of CD4+ and CD8+ T cells, B cells
and NK cells, as well as other antigen presenting cells varies sig-
nificantly between the lower vaginal mucosa, the ectocervix, and
the transformation zone (312). Furthermore, these vary signifi-
cantly between individuals, owing to factors such as the menstrual
cycle and hormonal regulation of the immune system, including
levels of IgG and IgA antibodies (209, 312, 313). Such inconsis-
tencies, especially in the integrity of the protective mucus barrier
(314–316) and the frequency of activated HIV target cells have
great influence on HIV acquisition and control (317–319). Other
obstacles relate to the invasiveness of mucosal sampling procedures
to obtain cervi-covaginal lavage, swabs, or rectal biopsies and the
accompanying time-consuming procedures for isolation of cells
from the biopsies (320). Furthermore, the cell yields are charac-
teristically very low and inadequate for comprehensive functional
analysis studies. Despite these challenges, procedures to collect,
process, and analyze mucosal samples in clinical trials are actively
being developed by groups such as the HIV Vaccine Trials Network
(HVTN) and the Mucosal Immunology Group (MIG). With such
collaborative efforts, several mucosal samples including semen,
saliva, rectal and cervical secretions, as well as rectal and foreskin
biopsies can now be collected and tested. Sample collection meth-
ods (including cups, adsorbent wicks, or sponges for vaginal and
rectal secretions) as well as cryopreservation techniques and ultra-
sensitive analytical assays that utilize minimal sample volumes and
cell numbers are being developed and optimized.
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CONCLUDING REMARKS AND FUTURE PERSPECTIVES
A successful HIV-1 vaccine will have to stimulate both antibody
and cell-mediated immune responses within the mucosal sites of
transmission and in blood, while concurrently avoiding recruit-
ment of activated HIV-1 target cells to the genital mucosa. Owing
to the enormous hurdles relating to mucosal sampling methodolo-
gies and limited sample volumes, immune correlates of protection
against HIV-1 in the genital mucosa have not been routinely tested
during clinical trials that evaluate immunogenicity and vaccine
efficacy (165). However, the field is progressing steadily and it is
anticipated that routine assessment of mucosal immune responses
induced by immunization will be incorporated in clinical trials.
Given the detection of antibody and cellular immune responses
that correlate with protection from HIV-1 acquisition as observed
in HEPS and from disease progression as seen in aviremic and
viremic controllers, together with vaccine-induced responses in
the STEP and RV144 trials (and the ongoing RV152 follow-up
study), there indeed are several clues of the sort of immune
responses that would correlate with HIV-1 vaccine efficacy. All evi-
dence assessed to date indicates that the most successful strategy
will induce high titers of both bNAbs and non-neutralizing anti-
bodies to block mucosal transmission of multiple HIV-1 isolates,
together with a strong polyfunctional T cell immune response
with high antiviral capacity to rapidly target and kill any HIV-
1 infected cells at the genitorectal mucosa and prevent systemic
spread or establishment of latent reservoirs, before virus diver-
sification. Above all, to attain desirable efficacy levels, vaccine-
stimulated responses will indeed have to be present within the
genitorectal mucosa prior to HIV-1 exposure. And to maintain
sustained HIV immune surveillance, vaccines will need to induce
stable, long-lasting B and T cell memory within the genitorec-
tal mucosa, perhaps by employing vectored immuno-prophylaxis
(85) or sustained antigen release (321) strategies.

As far as vaccine delivery modalities are concerned, several
proof-of-principle studies highlight the feasibility of inducing
potent immune responses in the systemic and mucosal com-
partments by delivering vaccines through intranasal, intravaginal,
intrarectal, and oral/sublingual routes in various combinations
of heterologous prime-boost immunization strategies. Although
quite few, such strategies have shown improved vaccine immuno-
genicity in human studies and the efficacy of these mucosally
redirected immune responses needs to be evaluated in larger clini-
cal trials. Possible concerns about induction of tolerance following
mucosal immunization (288) will need to be addressed, although
this could be overcome by initial systemic priming followed with
mucosal boosting, or perhaps by use of carefully designed vaccine
delivery and dosage regimens. Moreover, experimental studies in
animals demonstrate robust responses following mucosal priming
and mucosal boosting (241, 243), suggesting that the benefits of
mucosal vaccine delivery may by far outweigh the risk of tolerance
induction.

It remains possible that live viral vectors will be the most effec-
tive delivery method to induce potent mucosal immune responses
following the most preferred, non-invasive parenteral delivery.
However, until this is tested extensively and found comparable
to or better than mucosal vaccines, the search for suitable deliv-
ery platforms to induce protective T cell and antibody responses

and to provide a local immune barrier at the genital mucosa must
continue. Perhaps the most practical way to ensure that sufficient
numbers of protective CTLs home to the genital mucosa follow-
ing parenteral vaccine delivery is the innovative “prime and pull”
approach that was proposed by Shin and Iwasaki (194). The poten-
tial of this strategy was proven in mice studies where priming
with a model HSV-2 vaccine elicit systemic T cell responses, fol-
lowed by the guided migration of these T cells by applying CXCL9
and CXCL10 chemokines in the vaginal mucosa, thus leading to
increased recruitment of CD8+ and CD4+ T cells (194). This
immunization strategy generated a local memory T cell pool which
was stable and persisted for a long time. However, when tested in
the context of HIV vaccines, the prime-pull strategy achieved only
a modest effect on local and systemic antibody responses (322).
Despite this, the enormous potential of this strategy to significantly
enhance the magnitude and longevity of HIV vaccine-induced T
and B cells in the genital mucosa warrants further testing.

In conclusion, the data available in the field thus far point to
the imminent possibility of a vaccine that can stimulate the greatly
desired protective mucosal and systemic immune responses. It
might be that a carefully selected combination of immunogens,
adjuvants, delivery vectors, and immunization routes may pos-
sibly yield an HIV-1 vaccine that induces optimal activation of
the innate immune system and elicit protective antibody and T
cell responses in both the mucosal and systemic compartments.
So far, mucosal immunization seems to hold promise as the ulti-
mate modality to ensure sustained levels of potent antibody and
cellular immune responses at the genital mucosa, where they are
required to arrest initial breakthrough infections. Moreover, since
systemic responses do not accurately represent local immunity at
the genitorectal mucosa, comprehensive immuno-functional and
phenotypic characterization of the mucosal anti-HIV-1 immune
response that correlates with in vivo virus inhibition, together with
the mechanisms involved, will be crucial to the design of an effica-
cious vaccine for HIV-1. These will include accurate quantification
of threshold titers of the mucosal antibody and T cell responses
that would be sufficient to prevent infection.

ACKNOWLEDGMENTS
Beatrice Ondondo is an immunologist employed on a research
grant supported by MRC, UK. Nadia Chanzu is a Ph.D. student
funded by the GHRI grants program and CIHR, IID and GHTP.

REFERENCES
1. Volberding PA, Deeks SG. Antiretroviral therapy and management of

HIV infection. Lancet (2010) 376(9734):49–62. doi:10.1016/S0140-6736(10)
60676-9

2. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA,
et al. Declining morbidity and mortality among patients with advanced human
immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl
J Med (1998) 338(13):853–60. doi:10.1056/NEJM199803263381301

3. Gamble LJ, Matthews QL. Current progress in the development of a prophylac-
tic vaccine for HIV-1. Drug Des Devel Ther (2010) 5:9–26. doi:10.2147/DDDT.
S6959

4. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA,
Leethochawalit M, et al. Antiretroviral prophylaxis for HIV infection in inject-
ing drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a
randomised, double-blind, placebo-controlled phase 3 trial. Lancet (2013)
381(9883):2083–90. doi:10.1016/S0140-6736(13)61127-7

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 88

http://dx.doi.org/10.1016/S0140-6736(10)60676-9
http://dx.doi.org/10.1016/S0140-6736(10)60676-9
http://dx.doi.org/10.1056/NEJM199803263381301
http://dx.doi.org/10.2147/DDDT.S6959
http://dx.doi.org/10.2147/DDDT.S6959
http://dx.doi.org/10.1016/S0140-6736(13)61127-7
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

5. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi
TM, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV trans-
mission in Botswana. N Engl J Med (2012) 367(5):423–34. doi:10.1056/
NEJMoa1110711

6. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al.
Preexposure chemoprophylaxis for HIV prevention in men who have
sex with men. N Engl J Med (2010) 363(27):2587–99. doi:10.1056/
NEJMoa1011205

7. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Anti-
retroviral prophylaxis for HIV prevention in heterosexual men and women.
N Engl J Med (2012) 367(5):399–410. doi:10.1056/NEJMoa1108524

8. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C,
Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral
microbicide, for the prevention of HIV infection in women. Science (2010)
329(5996):1168–74. doi:10.1126/science.1193748

9. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I,
Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term viro-
logical remission after the interruption of early initiated antiretroviral ther-
apy ANRS VISCONTI Study. PLoS Pathog (2013) 9(3):e1003211. doi:10.1371/
journal.ppat.1003211

10. Dolgin E. New, intensive trials planned on heels of Mississippi HIV “cure”. Nat
Med (2013) 19(4):380–1. doi:10.1038/nm0413-380

11. Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, Viard
JP, et al. Long-term immunovirologic control following antiretroviral therapy
interruption in patients treated at the time of primary HIV-1 infection. AIDS
(2010) 24(10):1598–601. doi:10.1097/QAD.0b013e32833b61ba

12. Persaud D, Gay H, Ziemniak C, Chen YH, Piatak M Jr, Chun TW, et al. Absence
of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med
(2013) 369(19):1828–35. doi:10.1056/NEJMoa1302976

13. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy
N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl
J Med (2011) 365(6):493–505. doi:10.1056/NEJMoa1105243

14. Palombi L, Marazzi MC, Voetberg A, Magid NA. Treatment acceleration pro-
gram and the experience of the DREAM program in prevention of mother-to-
child transmission of HIV. AIDS (2007) 21(Suppl 4):S65–71. doi:10.1097/01.
aids.0000279708.09180.f5

15. Kilewo C, Karlsson K, Ngarina M, Massawe A, Lyamuya E, Swai A, et al. Pre-
vention of mother-to-child transmission of HIV-1 through breastfeeding by
treating mothers with triple antiretroviral therapy in Dar es Salaam, Tanza-
nia: the Mitra Plus study. J Acquir Immune Defic Syndr (2009) 52(3):406–16.
doi:10.1097/QAI.0b013e3181b323ff

16. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary
HIV testing with immediate antiretroviral therapy as a strategy for elimination
of HIV transmission: a mathematical model. Lancet (2009) 373(9657):48–57.
doi:10.1016/S0140-6736(08)61697-9

17. Dodd PJ, Garnett GP, Hallett TB. Examining the promise of HIV elimina-
tion by “test and treat” in hyperendemic settings. AIDS (2010) 24(5):729–35.
doi:10.1097/QAD.0b013e32833433fe

18. Dieffenbach CW, Fauci AS. Universal voluntary testing and treatment for pre-
vention of HIV transmission. JAMA (2009) 301(22):2380–2. doi:10.1001/jama.
2009.828

19. Garnett GP, Baggaley RF. Treating our way out of the HIV pandemic: could
we, would we, should we? Lancet (2009) 373(9657):9–11. doi:10.1016/S0140-
6736(08)61698-0

20. Hayes R, Sabapathy K, Fidler S. Universal testing and treatment as an HIV
prevention strategy: research questions and methods. Curr HIV Res (2011)
9(6):429–45. doi:10.2174/157016211798038515

21. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male cir-
cumcision for HIV prevention in young men in Kisumu, Kenya: a randomised
controlled trial. Lancet (2007) 369(9562):643–56. doi:10.1016/S0140-6736(07)
60312-2

22. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, et al. Male
circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial.
Lancet (2007) 369(9562):657–66. doi:10.1016/S0140-6736(07)60313-4

23. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Ran-
domized, controlled intervention trial of male circumcision for reduction
of HIV infection risk: the ANRS 1265 trial. PLoS Med (2005) 2(11):e298.
doi:10.1371/journal.pmed.0020298

24. McMichael AJ. HIV vaccines. Annu Rev Immunol (2006) 24:227–55. doi:10.
1146/annurev.immunol.24.021605.090605

25. Emini EA, Koff WC. AIDS/HIV. Developing an AIDS vaccine: need,
uncertainty, hope. Science (2004) 304(5679):1913–4. doi:10.1126/science.
1100368

26. Thorner AR, Barouch DH. HIV-1 vaccine development: progress and
prospects. Curr Infect Dis Rep (2007) 9(1):71–5. doi:10.1007/s11908-007-
0025-0

27. Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat Med
(2005) 11(4 Suppl):S25–32. doi:10.1038/nm1212

28. Sekaly RP. The failed HIV Merck vaccine study: a step back or a launch-
ing point for future vaccine development? J Exp Med (2008) 205(1):7–12.
doi:10.1084/jem.20072681

29. Wang L, Wang N, Wang L, Li D, Jia M, Gao X, et al. The 2007 estimates for peo-
ple at risk for and living with HIV in China: progress and challenges. J Acquir
Immune Defic Syndr (2009) 50(4):414–8. doi:10.1097/QAI.0b013e3181958530

30. Des Jarlais DC, Arasteh K, Semaan S, Wood E. HIV among injecting drug
users: current epidemiology, biologic markers, respondent-driven sampling,
and supervised-injection facilities. Curr Opin HIV AIDS (2009) 4(4):308–13.
doi:10.1097/COH.0b013e32832bbc6f

31. Sullivan PS, Hamouda O, Delpech V, Geduld JE, Prejean J, Semaille C, et al.
Reemergence of the HIV epidemic among men who have sex with men in North
America, Western Europe, and Australia, 1996-2005. Ann Epidemiol (2009)
19(6):423–31. doi:10.1016/j.annepidem.2009.03.004

32. Shacklett BL. Mucosal immunity to HIV: a review of recent literature. Curr
Opin HIV AIDS (2008) 3(5):541–7. doi:10.1097/COH.0b013e32830ab9ee

33. Louwagie J, McCutchan FE, Peeters M, Brennan TP, Sanders-Buell E, Eddy
GA, et al. Phylogenetic analysis of gag genes from 70 international HIV-1
isolates provides evidence for multiple genotypes. AIDS (1993) 7(6):769–80.
doi:10.1097/00002030-199306000-00003

34. Hemelaar J, Gouws E, Ghys PD, Osmanov S; WHO-UNAIDS Network for
HIV Isolation and Characterisation. Global trends in molecular epidemiology
of HIV-1 during 2000-2007. AIDS (2011) 25(5):679–89. doi:10.1097/QAD.
0b013e328342ff93

35. Collins DR, Collins KL. HIV-1 accessory proteins adapt cellular adaptors to
facilitate immune evasion. PLoS Pathog (2014) 10(1):e1003851. doi:10.1371/
journal.ppat.1003851

36. Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV,
et al. The first T cell response to transmitted/founder virus contributes to the
control of acute viremia in HIV-1 infection. J Exp Med (2009) 206(6):1253–72.
doi:10.1084/jem.20090365

37. Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. Early estab-
lishment of a pool of latently infected, resting CD4(+) T cells during pri-
mary HIV-1 infection. Proc Natl Acad Sci U S A (1998) 95(15):8869–73.
doi:10.1073/pnas.95.15.8869

38. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al.
Latent infection of CD4+ T cells provides a mechanism for lifelong persistence
of HIV-1, even in patients on effective combination therapy. Nat Med (1999)
5(5):512–7. doi:10.1038/8394

39. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al.
Primary HIV-1 infection is associated with preferential depletion of CD4+ T
lymphocytes from effector sites in the gastrointestinal tract. J Exp Med (2004)
200(6):761–70. doi:10.1084/jem.20041196

40. Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, et al.
Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human
immunodeficiency virus type 1 infection and substantial delay in restoration
following highly active antiretroviral therapy. J Virol (2003) 77(21):11708–17.
doi:10.1128/JVI.77.21.11708-11717.2003

41. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of
major histocompatibility complex class I molecules is induced by the HIV-1
Nef protein. Nat Med (1996) 2(3):338–42. doi:10.1038/nm0396-338

42. Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through
oral compared with vaginal and rectal routes. Expert Opin Biol Ther (2010)
10(8):1181–95. doi:10.1517/14712598.2010.496776

43. Bomsel M, Tudor D, Drillet AS, Alfsen A, Ganor Y, Roger MG, et al. Immu-
nization with HIV-1 gp41 subunit virosomes induces mucosal antibodies
protecting nonhuman primates against vaginal SHIV challenges. Immunity
(2011) 34(2):269–80. doi:10.1016/j.immuni.2011.01.015

www.frontiersin.org May 2014 | Volume 5 | Article 202 | 89

http://dx.doi.org/10.1056/NEJMoa1110711
http://dx.doi.org/10.1056/NEJMoa1110711
http://dx.doi.org/10.1056/NEJMoa1011205
http://dx.doi.org/10.1056/NEJMoa1011205
http://dx.doi.org/10.1056/NEJMoa1108524
http://dx.doi.org/10.1126/science.1193748
http://dx.doi.org/10.1371/journal.ppat.1003211
http://dx.doi.org/10.1371/journal.ppat.1003211
http://dx.doi.org/10.1038/nm0413-380
http://dx.doi.org/10.1097/QAD.0b013e32833b61ba
http://dx.doi.org/10.1056/NEJMoa1302976
http://dx.doi.org/10.1056/NEJMoa1105243
http://dx.doi.org/10.1097/01.aids.0000279708.09180.f5
http://dx.doi.org/10.1097/01.aids.0000279708.09180.f5
http://dx.doi.org/10.1097/QAI.0b013e3181b323ff
http://dx.doi.org/10.1016/S0140-6736(08)61697-9
http://dx.doi.org/10.1097/QAD.0b013e32833433fe
http://dx.doi.org/10.1001/jama.2009.828
http://dx.doi.org/10.1001/jama.2009.828
http://dx.doi.org/10.1016/S0140-6736(08)61698-0
http://dx.doi.org/10.1016/S0140-6736(08)61698-0
http://dx.doi.org/10.2174/157016211798038515
http://dx.doi.org/10.1016/S0140-6736(07)60312-2
http://dx.doi.org/10.1016/S0140-6736(07)60312-2
http://dx.doi.org/10.1016/S0140-6736(07)60313-4
http://dx.doi.org/10.1371/journal.pmed.0020298
http://dx.doi.org/10.1146/annurev.immunol.24.021605.090605
http://dx.doi.org/10.1146/annurev.immunol.24.021605.090605
http://dx.doi.org/10.1126/science.1100368
http://dx.doi.org/10.1126/science.1100368
http://dx.doi.org/10.1007/s11908-007-0025-0
http://dx.doi.org/10.1007/s11908-007-0025-0
http://dx.doi.org/10.1038/nm1212
http://dx.doi.org/10.1084/jem.20072681
http://dx.doi.org/10.1097/QAI.0b013e3181958530
http://dx.doi.org/10.1097/COH.0b013e32832bbc6f
http://dx.doi.org/10.1016/j.annepidem.2009.03.004
http://dx.doi.org/10.1097/COH.0b013e32830ab9ee
http://dx.doi.org/10.1097/00002030-199306000-00003
http://dx.doi.org/10.1097/QAD.0b013e328342ff93
http://dx.doi.org/10.1097/QAD.0b013e328342ff93
http://dx.doi.org/10.1371/journal.ppat.1003851
http://dx.doi.org/10.1371/journal.ppat.1003851
http://dx.doi.org/10.1084/jem.20090365
http://dx.doi.org/10.1073/pnas.95.15.8869
http://dx.doi.org/10.1038/8394
http://dx.doi.org/10.1084/jem.20041196
http://dx.doi.org/10.1128/JVI.77.21.11708-11717.2003
http://dx.doi.org/10.1038/nm0396-338
http://dx.doi.org/10.1517/14712598.2010.496776
http://dx.doi.org/10.1016/j.immuni.2011.01.015
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

44. Belyakov IM, Ahlers JD, Brandwein BY, Earl P, Kelsall BL, Moss B, et al. The
importance of local mucosal HIV-specific CD8(+) cytotoxic T lymphocytes
for resistance to mucosal viral transmission in mice and enhancement of resis-
tance by local administration of IL-12. J Clin Invest (1998) 102(12):2072–81.
doi:10.1172/JCI5102

45. Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM, Garcia JC, et al.
Mucosal immune responses to HIV-1 in elite controllers: a potential correlate
of immune control. Blood (2009) 113(17):3978–89. doi:10.1182/blood-2008-
10-182709

46. Esparza J. A brief history of the global effort to develop a preventive HIV
vaccine. Vaccine (2013) 31(35):3502–18. doi:10.1016/j.vaccine.2013.05.018

47. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, et al. Effi-
cacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study):
a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet
(2008) 372(9653):1881–93. doi:10.1016/S0140-6736(08)61591-3

48. Gray GE, Allen M, Moodie Z, Churchyard G, Bekker LG, Nchabeleng M, et al.
Safety and efficacy of the HVTN 503/Phambili study of a clade-B-based HIV-1
vaccine in South Africa: a double-blind, randomised, placebo-controlled test-
of-concept phase 2b study. Lancet Infect Dis (2011) 11(7):507–15. doi:10.1016/
S1473-3099(11)70098-6

49. Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, Grove D, et al.
Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med (2013)
369(22):2083–92. doi:10.1056/NEJMoa1310566

50. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J,
Paris R, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1
infection in Thailand. N Engl J Med (2009) 361(23):2209–20. doi:10.1056/
NEJMoa0908492

51. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, van Griensven F,
et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent
recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in
Bangkok, Thailand. J Infect Dis (2006) 194(12):1661–71. doi:10.1086/508748

52. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF, et al.
Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to
prevent HIV-1 infection. J Infect Dis (2005) 191(5):654–65. doi:10.1086/428404

53. Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, Gurwith M,
et al. Correlation between immunologic responses to a recombinant glycopro-
tein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive
vaccine trial. J Infect Dis (2005) 191(5):666–77. doi:10.1086/428405

54. Schiffner T, Sattentau QJ, Dorrell L. Development of prophylactic vaccines
against HIV-1. Retrovirology (2013) 10:72. doi:10.1186/1742-4690-10-72

55. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H,
et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a
case-cohort analysis. Lancet (2008) 372(9653):1894–905. doi:10.1016/S0140-
6736(08)61592-5

56. Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, Sanders-Buell
E, et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from
the STEP trial. Nat Med (2011) 17(3):366–71. doi:10.1038/nm.2316

57. Janes H, Friedrich DP, Krambrink A, Smith RJ, Kallas EG, Horton H, et al.
Vaccine-induced gag-specific T cells are associated with reduced viremia after
HIV-1 infection. J Infect Dis (2013) 208(8):1231–9. doi:10.1093/infdis/jit322

58. Borthwick N, Ahmed T, Ondondo B, Hayes P, Rose A, Ebrahimsa U, et al.
Vaccine-elicited human T cells recognizing conserved protein regions inhibit
HIV-1. Mol Ther (2013) 22(2):464–75. doi:10.1038/mt.2013.248

59. Letourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, Yang H, et al.
Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One
(2007) 2(10):e984. doi:10.1371/journal.pone.0000984

60. Koopman G, Beenhakker N, Nieuwenhuis I, Doxiadis G, Mooij P, Drijfhout JW,
et al. DNA/long peptide vaccination against conserved regions of SIV induces
partial protection against SIVmac251 challenge. AIDS (2013) 27:2841–51.
doi:10.1097/QAD.0000000000000047

61. Liu J, O’Brien KL, Lynch DM, Simmons NL, La Porte A, Riggs AM, et al.
Immune control of an SIV challenge by a T-cell-based vaccine in rhesus mon-
keys. Nature (2009) 457(7225):87–91. doi:10.1038/nature07469

62. Mascola JR, Montefiori DC. The role of antibodies in HIV vaccines. Annu Rev
Immunol (2010) 28:413–44. doi:10.1146/annurev-immunol-030409-101256

63. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE,
et al. Protection of macaques against vaginal transmission of a pathogenic HIV-
1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med
(2000) 6(2):207–10. doi:10.1038/72318

64. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S, et al.
Human neutralizing monoclonal antibodies of the IgG1 subtype protect
against mucosal simian-human immunodeficiency virus infection. Nat Med
(2000) 6(2):200–6. doi:10.1038/72309

65. Clapham PR, Lu S. Vaccinology: precisely tuned antibodies nab HIV. Nature
(2011) 477(7365):416–7. doi:10.1038/477416a

66. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad
and potent neutralizing antibodies from an African donor reveal a new HIV-1
vaccine target. Science (2009) 326(5950):285–9. doi:10.1126/science.1178746

67. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, et al.
Sequence and structural convergence of broad and potent HIV antibodies that
mimic CD4 binding. Science (2011) 333(6049):1633–7. doi:10.1126/science.
1207227

68. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis
of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific
broadly neutralizing antibodies and their inferred unmutated common ances-
tors. J Virol (2011) 85(19):9998–10009. doi:10.1128/JVI.05045-11

69. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez
BM, et al. Analysis of memory B cell responses and isolation of novel mono-
clonal antibodies with neutralizing breadth from HIV-1-infected individuals.
PLoS One (2010) 5(1):e8805. doi:10.1371/journal.pone.0008805

70. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rational
design of envelope identifies broadly neutralizing human monoclonal antibod-
ies to HIV-1. Science (2010) 329(5993):856–61. doi:10.1126/science.1187659

71. Klein F, Mouquet H, Dosenovic P, Scheid JF, Scharf L, Nussenzweig MC.
Antibodies in HIV-1 vaccine development and therapy. Science (2013)
341(6151):1199–204. doi:10.1126/science.1241144

72. Florese RH, Demberg T, Xiao P, Kuller L, Larsen K, Summers LE, et al. Con-
tribution of nonneutralizing vaccine-elicited antibody activities to improved
protective efficacy in rhesus macaques immunized with Tat/Env compared
with multigenic vaccines. J Immunol (2009) 182(6):3718–27. doi:10.4049/
jimmunol.0803115

73. Forthal DN, Landucci G, Phan TB, Becerra J. Interactions between nat-
ural killer cells and antibody Fc result in enhanced antibody neutraliza-
tion of human immunodeficiency virus type 1. J Virol (2005) 79(4):2042–9.
doi:10.1128/JVI.79.4.2042-2049.2005

74. Hidajat R, Xiao P, Zhou Q, Venzon D, Summers LE, Kalyanaraman VS, et al.
Correlation of vaccine-elicited systemic and mucosal nonneutralizing antibody
activities with reduced acute viremia following intrarectal simian immun-
odeficiency virus SIVmac251 challenge of rhesus macaques. J Virol (2009)
83(2):791–801. doi:10.1128/JVI.01672-08

75. Xiao P, Zhao J, Patterson LJ, Brocca-Cofano E, Venzon D, Kozlowski PA, et al.
Multiple vaccine-elicited nonneutralizing antienvelope antibody activities con-
tribute to protective efficacy by reducing both acute and chronic viremia fol-
lowing simian/human immunodeficiency virus SHIV89.6P challenge in rhesus
macaques. J Virol (2010) 84(14):7161–73. doi:10.1128/JVI.00410-10

76. Gomez-Roman VR, Patterson LJ, Venzon D, Liewehr D, Aldrich K, Flo-
rese R, et al. Vaccine-elicited antibodies mediate antibody-dependent cellu-
lar cytotoxicity correlated with significantly reduced acute viremia in rhe-
sus macaques challenged with SIVmac251. J Immunol (2005) 174(4):2185–9.
doi:10.4049/jimmunol.174.4.2185

77. Moog C, Dereuddre-Bosquet N, Teillaud JL, Biedma ME, Holl V, Van Ham G,
et al. Protective effect of vaginal application of neutralizing and nonneutraliz-
ing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal
Immunol (2014) 7(1):46–56. doi:10.1038/mi.2013.23

78. Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX, Parks RJ, et al. Het-
erogeneous neutralizing antibody and antibody-dependent cell cytotoxicity
responses in HIV-1 elite controllers. AIDS (2009) 23(8):897–906. doi:10.1097/
QAD.0b013e328329f97d

79. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM,
et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J
Med (2012) 366(14):1275–86. doi:10.1056/NEJMoa1113425

80. Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E, Hertz T,
et al. Increased HIV-1 vaccine efficacy against viruses with genetic signatures
in Env V2. Nature (2012) 490(7420):417–20. doi:10.1038/nature11519

81. Gray G, Buchbinder S, Duerr A. Overview of STEP and Phambili trial results:
two phase IIb test-of-concept studies investigating the efficacy of MRK aden-
ovirus type 5 gag/pol/nef subtype B HIV vaccine. Curr Opin HIV AIDS (2010)
5(5):357–61. doi:10.1097/COH.0b013e32833d2d2b

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 90

http://dx.doi.org/10.1172/JCI5102
http://dx.doi.org/10.1182/blood-2008-10-182709
http://dx.doi.org/10.1182/blood-2008-10-182709
http://dx.doi.org/10.1016/j.vaccine.2013.05.018
http://dx.doi.org/10.1016/S0140-6736(08)61591-3
http://dx.doi.org/10.1016/S1473-3099(11)70098-6
http://dx.doi.org/10.1016/S1473-3099(11)70098-6
http://dx.doi.org/10.1056/NEJMoa1310566
http://dx.doi.org/10.1056/NEJMoa0908492
http://dx.doi.org/10.1056/NEJMoa0908492
http://dx.doi.org/10.1086/508748
http://dx.doi.org/10.1086/428404
http://dx.doi.org/10.1086/428405
http://dx.doi.org/10.1186/1742-4690-10-72
http://dx.doi.org/10.1016/S0140-6736(08)61592-5
http://dx.doi.org/10.1016/S0140-6736(08)61592-5
http://dx.doi.org/10.1038/nm.2316
http://dx.doi.org/10.1093/infdis/jit322
http://dx.doi.org/10.1038/mt.2013.248
http://dx.doi.org/10.1371/journal.pone.0000984
http://dx.doi.org/10.1097/QAD.0000000000000047
http://dx.doi.org/10.1038/nature07469
http://dx.doi.org/10.1146/annurev-immunol-030409-101256
http://dx.doi.org/10.1038/72318
http://dx.doi.org/10.1038/72309
http://dx.doi.org/10.1038/477416a
http://dx.doi.org/10.1126/science.1178746
http://dx.doi.org/10.1126/science.1207227
http://dx.doi.org/10.1126/science.1207227
http://dx.doi.org/10.1128/JVI.05045-11
http://dx.doi.org/10.1371/journal.pone.0008805
http://dx.doi.org/10.1126/science.1187659
http://dx.doi.org/10.1126/science.1241144
http://dx.doi.org/10.4049/jimmunol.0803115
http://dx.doi.org/10.4049/jimmunol.0803115
http://dx.doi.org/10.1128/JVI.79.4.2042-2049.2005
http://dx.doi.org/10.1128/JVI.01672-08
http://dx.doi.org/10.1128/JVI.00410-10
http://dx.doi.org/10.4049/jimmunol.174.4.2185
http://dx.doi.org/10.1038/mi.2013.23
http://dx.doi.org/10.1097/QAD.0b013e328329f97d
http://dx.doi.org/10.1097/QAD.0b013e328329f97d
http://dx.doi.org/10.1056/NEJMoa1113425
http://dx.doi.org/10.1038/nature11519
http://dx.doi.org/10.1097/COH.0b013e32833d2d2b
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

82. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen
design in vaccine development with HIV-1 as a case study. Nat Biotechnol
(2012) 30(5):423–33. doi:10.1038/nbt.2197

83. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution
of a broadly neutralizing HIV-1 antibody and founder virus. Nature (2013)
496(7446):469–76. doi:10.1038/nature12053

84. Alt FW, Zhang Y, Meng FL, Guo C, Schwer B. Mechanisms of programmed
DNA lesions and genomic instability in the immune system. Cell (2013)
152(3):417–29. doi:10.1016/j.cell.2013.01.007

85. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D. Antibody-based
protection against HIV infection by vectored immunoprophylaxis. Nature
(2012) 481(7379):81–4. doi:10.1038/nature10660

86. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, et al. Vectored
immunoprophylaxis protects humanized mice from mucosal HIV transmis-
sion. Nat Med (2014) 20(3):296–300. doi:10.1038/nm.3471

87. Ohs I,Windmann S,Wildner O, Dittmer U, Bayer W. Interleukin-encoding ade-
noviral vectors as genetic adjuvant for vaccination against retroviral infection.
PLoS One (2013) 8(12):e82528. doi:10.1371/journal.pone.0082528

88. Bayer W, Lietz R, Ontikatze T, Johrden L, Tenbusch M, Nabi G, et al. Improved
vaccine protection against retrovirus infection after co-administration of ade-
noviral vectors encoding viral antigens and type I interferon subtypes. Retro-
virology (2011) 8:75. doi:10.1186/1742-4690-8-75

89. Lietz R, Bayer W, Ontikatze T, Johrden L, Tenbusch M, Storcksdieck Genannt
Bonsmann M, et al. Codelivery of the chemokine CCL3 by an adenovirus-
based vaccine improves protection from retrovirus infection. J Virol (2012)
86(3):1706–16. doi:10.1128/JVI.06244-11

90. Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, et al. CCL19 and CCL28
augment mucosal and systemic immune responses to HIV-1 gp140 by mobiliz-
ing responsive immunocytes into secondary lymph nodes and mucosal tissue.
J Immunol (2013) 191(4):1935–47. doi:10.4049/jimmunol.1300120

91. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L,
et al. Profound early control of highly pathogenic SIV by an effector memory
T-cell vaccine. Nature (2011) 473(7348):523–7. doi:10.1038/nature10003

92. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond
DD, et al. Effector memory T cell responses are associated with protection of
rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat
Med (2009) 15(3):293–9. doi:10.1038/nm.1935

93. Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC,
et al. Immune clearance of highly pathogenic SIV infection. Nature (2013)
502(7469):100–4. doi:10.1038/nature12519

94. Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K, McNally
AG, et al. Protective efficacy of a global HIV-1 mosaic vaccine against het-
erologous SHIV challenges in rhesus monkeys. Cell (2013) 155(3):531–9.
doi:10.1016/j.cell.2013.09.061

95. Fischer W, Perkins S, Theiler J, Bhattacharya T, Yusim K, Funkhouser R, et al.
Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global
HIV-1 variants. Nat Med (2007) 13(1):100–6. doi:10.1038/nm1461

96. Palesch D, Kirchhoff F. First steps toward a globally effective HIV/AIDS vaccine.
Cell (2013) 155(3):495–7. doi:10.1016/j.cell.2013.10.012

97. Barouch DH, O’Brien KL, Simmons NL, King SL, Abbink P, Maxfield LF, et al.
Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune
responses in rhesus monkeys. Nat Med (2010) 16(3):319–23. doi:10.1038/nm.
2089

98. Santra S, Liao HX, Zhang R, Muldoon M, Watson S, Fischer W, et al. Mosaic
vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune
coverage of diverse HIV strains in monkeys. Nat Med (2010) 16(3):324–8.
doi:10.1038/nm.2108

99. Santra S, Muldoon M, Watson S, Buzby A, Balachandran H, Carlson KR,
et al. Breadth of cellular and humoral immune responses elicited in rhesus
monkeys by multi-valent mosaic and consensus immunogens. Virology (2012)
428(2):121–7. doi:10.1016/j.virol.2012.03.012

100. Ondondo BO. Fallen angels or risen apes? A tale of the intricate complex-
ities of imbalanced immune responses in the pathogenesis and progres-
sion of immune-mediated and viral cancers. Front Immunol (2014) 5:90.
doi:10.3389/fimmu.2014.00090

101. Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. Combining
regulatory T cell depletion and inhibitory receptor blockade improves reacti-
vation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic

retroviral loads. PLoS Pathog (2013) 9(12):e1003798. doi:10.1371/journal.ppat.
1003798

102. Palmer BE, Neff CP, Lecureux J, Ehler A, Dsouza M, Remling-Mulder L,
et al. In vivo blockade of the PD-1 receptor suppresses HIV-1 viral loads
and improves CD4+ T cell levels in humanized mice. J Immunol (2013)
190(1):211–9. doi:10.4049/jimmunol.1201108

103. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mecha-
nisms of durable virus control in the absence of antiretroviral therapy. Immu-
nity (2007) 27(3):406–16. doi:10.1016/j.immuni.2007.08.010

104. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Mar-
tino L, et al. HLA B*5701 is highly associated with restriction of virus replica-
tion in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad
Sci U S A (2000) 97(6):2709–14. doi:10.1073/pnas.050567397

105. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-
genome association study of major determinants for host control of HIV-1.
Science (2007) 317(5840):944–7. doi:10.1126/science.1143767

106. Carrington M, O’Brien SJ. The influence of HLA genotype on AIDS. Annu Rev
Med (2003) 54:535–51. doi:10.1146/annurev.med.54.101601.152346

107. Fellay J, Frahm N, Shianna KV, Cirulli ET, Casimiro DR, Robertson MN,
et al. Host genetic determinants of T cell responses to the MRKAd5 HIV-
1 gag/pol/nef vaccine in the step trial. J Infect Dis (2011) 203(6):773–9.
doi:10.1093/infdis/jiq125

108. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, et al.
Genetic restriction of HIV-1 infection and progression to AIDS by a dele-
tion allele of the CKR5 structural gene. Hemophilia Growth and Develop-
ment Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort
Study, San Francisco City Cohort, ALIVE Study. Science (1996) 273(5283):
1856–62.

109. Magierowska M, Theodorou I, Debre P, Sanson F, Autran B, Riviere Y, et al.
Combined genotypes of CCR5, CCR2, SDF1, and HLA genes can predict the
long-term nonprogressor status in human immunodeficiency virus-1-infected
individuals. Blood (1999) 93(3):936–41.

110. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous
defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed
individuals to HIV-1 infection. Cell (1996) 86(3):367–77. doi:10.1016/S0092-
8674(00)80110-5

111. Alter G, Altfeld M. NK cells in HIV-1 infection: evidence for their role in the
control of HIV-1 infection. J Intern Med (2009) 265(1):29–42. doi:10.1111/j.
1365-2796.2008.02045.x

112. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A,
et al. Differential natural killer cell-mediated inhibition of HIV-1 replication
based on distinct KIR/HLA subtypes. J Exp Med (2007) 204(12):3027–36.
doi:10.1084/jem.20070695

113. Alter G, Teigen N, Ahern R, Streeck H, Meier A, Rosenberg ES, et al. Evolution
of innate and adaptive effector cell functions during acute HIV-1 infection.
J Infect Dis (2007) 195(10):1452–60. doi:10.1086/513878

114. Boulet S, Kleyman M, Kim JY, Kamya P, Sharafi S, Simic N, et al. A com-
bined genotype of KIR3DL1 high expressing alleles and HLA-B*57 is asso-
ciated with a reduced risk of HIV infection. AIDS (2008) 22(12):1487–91.
doi:10.1097/QAD.0b013e3282ffde7e

115. Boulet S, Sharafi S, Simic N, Bruneau J, Routy JP, Tsoukas CM, et al. Increased
proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals.
AIDS (2008) 22(5):595–9. doi:10.1097/QAD.0b013e3282f56b23

116. Jennes W, Verheyden S, Demanet C, Adje-Toure CA, Vuylsteke B, Nkengasong
JN, et al. Cutting edge: resistance to HIV-1 infection among African female
sex workers is associated with inhibitory KIR in the absence of their HLA
ligands. J Immunol (2006) 177(10):6588–92. doi:10.4049/jimmunol.177.10.
6588

117. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-
term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation.
N Engl J Med (2009) 360(7):692–8. doi:10.1056/NEJMoa0802905

118. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evi-
dence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell trans-
plantation. Blood (2011) 117(10):2791–9. doi:10.1182/blood-2010-09-309591

119. Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D, et al. Chal-
lenges in detecting HIV persistence during potentially curative interven-
tions: a study of the Berlin patient. PLoS Pathog (2013) 9(5):e1003347.
doi:10.1371/journal.ppat.1003347

www.frontiersin.org May 2014 | Volume 5 | Article 202 | 91

http://dx.doi.org/10.1038/nbt.2197
http://dx.doi.org/10.1038/nature12053
http://dx.doi.org/10.1016/j.cell.2013.01.007
http://dx.doi.org/10.1038/nature10660
http://dx.doi.org/10.1038/nm.3471
http://dx.doi.org/10.1371/journal.pone.0082528
http://dx.doi.org/10.1186/1742-4690-8-75
http://dx.doi.org/10.1128/JVI.06244-11
http://dx.doi.org/10.4049/jimmunol.1300120
http://dx.doi.org/10.1038/nature10003
http://dx.doi.org/10.1038/nm.1935
http://dx.doi.org/10.1038/nature12519
http://dx.doi.org/10.1016/j.cell.2013.09.061
http://dx.doi.org/10.1038/nm1461
http://dx.doi.org/10.1016/j.cell.2013.10.012
http://dx.doi.org/10.1038/nm.2089
http://dx.doi.org/10.1038/nm.2089
http://dx.doi.org/10.1038/nm.2108
http://dx.doi.org/10.1016/j.virol.2012.03.012
http://dx.doi.org/10.3389/fimmu.2014.00090
http://dx.doi.org/10.1371/journal.ppat.1003798
http://dx.doi.org/10.1371/journal.ppat.1003798
http://dx.doi.org/10.4049/jimmunol.1201108
http://dx.doi.org/10.1016/j.immuni.2007.08.010
http://dx.doi.org/10.1073/pnas.050567397
http://dx.doi.org/10.1126/science.1143767
http://dx.doi.org/10.1146/annurev.med.54.101601.152346
http://dx.doi.org/10.1093/infdis/jiq125
http://dx.doi.org/10.1016/S0092-8674(00)80110-5
http://dx.doi.org/10.1016/S0092-8674(00)80110-5
http://dx.doi.org/10.1111/j.1365-2796.2008.02045.x
http://dx.doi.org/10.1111/j.1365-2796.2008.02045.x
http://dx.doi.org/10.1084/jem.20070695
http://dx.doi.org/10.1086/513878
http://dx.doi.org/10.1097/QAD.0b013e3282ffde7e
http://dx.doi.org/10.1097/QAD.0b013e3282f56b23
http://dx.doi.org/10.4049/jimmunol.177.10.6588
http://dx.doi.org/10.4049/jimmunol.177.10.6588
http://dx.doi.org/10.1056/NEJMoa0802905
http://dx.doi.org/10.1182/blood-2010-09-309591
http://dx.doi.org/10.1371/journal.ppat.1003347
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

120. Hutter G, Ganepola S. Eradication of HIV by transplantation of CCR5-
deficient hematopoietic stem cells. ScientificWorldJournal (2011) 11:1068–76.
doi:10.1100/tsw.2011.102

121. Biasin M, Piacentini L, Lo Caputo S, Kanari Y, Magri G, Trabattoni D, et al.
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a pos-
sible role in the resistance to HIV of HIV-exposed seronegative individuals.
J Infect Dis (2007) 195(7):960–4. doi:10.1086/511988

122. Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion.
Cold Spring Harb Perspect Med (2012) 2(5):a006940. doi:10.1101/cshperspect.
a006940

123. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral
E, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restric-
tion factor counteracted by Vpx. Nature (2011) 474(7353):654–7. doi:10.1038/
nature10117

124. Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H.
APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human
immunodeficiency virus viremia. J Virol (2005) 79(17):11513–6. doi:10.1128/
JVI.79.17.11513-11516.2005

125. Price H, Lacap P, Tuff J, Wachihi C, Kimani J, Ball TB, et al. A TRIM5alpha
exon 2 polymorphism is associated with protection from HIV-1 infection in
the Pumwani sex worker cohort. AIDS (2010) 24(12):1813–21. doi:10.1097/
QAD.0b013e32833b5256

126. McDermott AB, Koup RA. CD8(+) T cells in preventing HIV infection and
disease. AIDS (2012) 26(10):1281–92. doi:10.1097/QAD.0b013e328353bcaf

127. Saez-Cirion A, Sinet M, Shin SY, Urrutia A,Versmisse P, Lacabaratz C, et al. Het-
erogeneity in HIV suppression by CD8 T cells from HIV controllers: association
with Gag-specific CD8 T cell responses. J Immunol (2009) 182(12):7828–37.
doi:10.4049/jimmunol.0803928

128. Addo MM, Draenert R, Rathod A, Verrill CL, Davis BT, Gandhi RT, et al.
Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently
detectable in controlled than in progressive HIV-1 infection. PLoS One (2007)
2(3):e321. doi:10.1371/journal.pone.0000321

129. Saez-Cirion A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F,
et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infec-
tion ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc
Natl Acad Sci U S A (2007) 104(16):6776–81. doi:10.1073/pnas.0611244104

130. Betts MR, Nason MC,West SM, De Rosa SC, Migueles SA,Abraham J, et al. HIV
nonprogressors preferentially maintain highly functional HIV-specific CD8+
T cells. Blood (2006) 107(12):4781–9. doi:10.1182/blood-2005-12-4818

131. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan
CW, et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expres-
sion and is maintained in nonprogressors. Nat Immunol (2002) 3(11):1061–8.
doi:10.1038/ni845

132. Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Mood-
ley E, et al. CD8+ T-cell responses to different HIV proteins have discordant
associations with viral load. Nat Med (2007) 13(1):46–53. doi:10.1038/nm1520

133. Edwards BH, Bansal A, Sabbaj S, Bakari J, Mulligan MJ, Goepfert PA. Magnitude
of functional CD8+ T-cell responses to the gag protein of human immunodefi-
ciency virus type 1 correlates inversely with viral load in plasma. J Virol (2002)
76(5):2298–305. doi:10.1128/jvi.76.5.2298-2305.2002

134. Klein MR, van Baalen CA, Holwerda AM, Kerkhof Garde SR, Bende RJ, Keet
IP, et al. Kinetics of Gag-specific cytotoxic T lymphocyte responses during
the clinical course of HIV-1 infection: a longitudinal analysis of rapid pro-
gressors and long-term asymptomatics. J Exp Med (1995) 181(4):1365–72.
doi:10.1084/jem.181.4.1365

135. Cao Y, Qin L, Zhang L, Safrit J, Ho DD. Virologic and immunologic characteri-
zation of long-term survivors of human immunodeficiency virus type 1 infec-
tion. N Engl J Med (1995) 332(4):201–8. doi:10.1056/NEJM199501263320401

136. Chun TW, Justement JS, Moir S, Hallahan CW, Ehler LA, Liu S, et al. Suppres-
sion of HIV replication in the resting CD4+ T cell reservoir by autologous
CD8+ T cells: implications for the development of therapeutic strategies. Proc
Natl Acad Sci U S A (2001) 98(1):253–8. doi:10.1073/pnas.98.1.253

137. Barker E, Bossart KN, Locher CP, Patterson BK, Levy JA. CD8+ cells from
asymptomatic human immunodeficiency virus-infected individuals suppress
superinfection of their peripheral blood mononuclear cells. J Gen Virol (1996)
77(Pt 12):2953–62. doi:10.1099/0022-1317-77-12-2953

138. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, Weeks KA,
et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell

elimination associated with immune control. Immunity (2008) 29(6):1009–21.
doi:10.1016/j.immuni.2008.10.010

139. Killian MS, Johnson C, Teque F, Fujimura S, Levy JA. Natural suppression of
human immunodeficiency virus type 1 replication is mediated by transitional
memory CD8+ T cells. J Virol (2011) 85(4):1696–705. doi:10.1128/JVI.01120-
10

140. Akinsiku OT, Bansal A, Sabbaj S, Heath SL, Goepfert PA. Interleukin-2 pro-
duction by polyfunctional HIV-1-specific CD8 T cells is associated with
enhanced viral suppression. J Acquir Immune Defic Syndr (2011) 58(2):132–40.
doi:10.1097/QAI.0b013e318224d2e9

141. Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P, Shin LY, et al. Perforin
expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite
control. PLoS Pathog (2010) 6(5):e1000917. doi:10.1371/journal.ppat.1000917

142. Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, et al. Genetic
and immunologic heterogeneity among persons who control HIV infection
in the absence of therapy. J Infect Dis (2008) 197(4):563–71. doi:10.1086/
526786

143. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC, et al. Stim-
ulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of
latent viral reservoir after virus reactivation. Immunity (2012) 36(3):491–501.
doi:10.1016/j.immuni.2012.01.014

144. Pereyra F, Palmer S, Miura T, Block BL, Wiegand A, Rothchild AC, et al. Persis-
tent low-level viremia in HIV-1 elite controllers and relationship to immuno-
logic parameters. J Infect Dis (2009) 200(6):984–90. doi:10.1086/605446

145. Graf EH, Mexas AM, Yu JJ, Shaheen F, Liszewski MK, Di Mascio M, et al. Elite
suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR
circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog
(2011) 7(2):e1001300. doi:10.1371/journal.ppat.1001300

146. Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, Lai J, et al. Isola-
tion and characterization of replication-competent human immunodeficiency
virus type 1 from a subset of elite suppressors. J Virol (2007) 81(5):2508–18.
doi:10.1128/JVI.02165-06

147. Buckheit RW III, Siliciano RF, Blankson JN. Primary CD8+ T cells from elite
suppressors effectively eliminate non-productively HIV-1 infected resting and
activated CD4+ T cells. Retrovirology (2013) 10:68. doi:10.1186/1742-4690-
10-68

148. Buckheit RW III, Salgado M, Silciano RF, Blankson JN. Inhibitory potential
of subpopulations of CD8+ T cells in HIV-1-infected elite suppressors. J Virol
(2012) 86(24):13679–88. doi:10.1128/JVI.02439-12

149. O’Connell KA, Bailey JR, Blankson JN. Elucidating the elite: mechanisms
of control in HIV-1 infection. Trends Pharmacol Sci (2009) 30(12):631–7.
doi:10.1016/j.tips.2009.09.005

150. Ndhlovu ZM, Proudfoot J, Cesa K, Alvino DM, McMullen A, Vine S, et al.
Elite controllers with low to absent effector CD8+ T cell responses maintain
highly functional, broadly directed central memory responses. J Virol (2012)
86(12):6959–69. doi:10.1128/JVI.00531-12

151. van Grevenynghe J, Procopio FA, He Z, Chomont N, Riou C, Zhang Y,
et al. Transcription factor FOXO3a controls the persistence of memory
CD4(+) T cells during HIV infection. Nat Med (2008) 14(3):266–74. doi:10.
1038/nm1728

152. Borrow P, Bhardwaj N. Innate immune responses in primary HIV-1 infection.
Curr Opin HIV AIDS (2008) 3(1):36–44. doi:10.1097/COH.0b013e3282f2bce7

153. Montoya CJ, Velilla PA, Chougnet C, Landay AL, Rugeles MT. Increased
IFN-gamma production by NK and CD3+/CD56+ cells in sexually HIV-
1-exposed but uninfected individuals. Clin Immunol (2006) 120(2):138–46.
doi:10.1016/j.clim.2006.02.008

154. Ravet S, Scott-Algara D, Bonnet E, Tran HK, Tran T, Nguyen N, et al. Distinc-
tive NK-cell receptor repertoires sustain high-level constitutive NK-cell activa-
tion in HIV-exposed uninfected individuals. Blood (2007) 109(10):4296–305.
doi:10.1182/blood-2006-08-040238

155. Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV,
et al. Cutting edge: increased NK cell activity in HIV-1-exposed but unin-
fected Vietnamese intravascular drug users. J Immunol (2003) 171(11):5663–7.
doi:10.4049/jimmunol.171.11.5663

156. Boulet S, Song R, Kamya P, Bruneau J, Shoukry NH, Tsoukas CM, et al. HIV
protective KIR3DL1 and HLA-B genotypes influence NK cell function fol-
lowing stimulation with HLA-devoid cells. J Immunol (2010) 184(4):2057–64.
doi:10.4049/jimmunol.0902621

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 92

http://dx.doi.org/10.1100/tsw.2011.102
http://dx.doi.org/10.1086/511988
http://dx.doi.org/10.1101/cshperspect.a006940
http://dx.doi.org/10.1101/cshperspect.a006940
http://dx.doi.org/10.1038/nature10117
http://dx.doi.org/10.1038/nature10117
http://dx.doi.org/10.1128/JVI.79.17.11513-11516.2005
http://dx.doi.org/10.1128/JVI.79.17.11513-11516.2005
http://dx.doi.org/10.1097/QAD.0b013e32833b5256
http://dx.doi.org/10.1097/QAD.0b013e32833b5256
http://dx.doi.org/10.1097/QAD.0b013e328353bcaf
http://dx.doi.org/10.4049/jimmunol.0803928
http://dx.doi.org/10.1371/journal.pone.0000321
http://dx.doi.org/10.1073/pnas.0611244104
http://dx.doi.org/10.1182/blood-2005-12-4818
http://dx.doi.org/10.1038/ni845
http://dx.doi.org/10.1038/nm1520
http://dx.doi.org/10.1128/jvi.76.5.2298-2305.2002
http://dx.doi.org/10.1084/jem.181.4.1365
http://dx.doi.org/10.1056/NEJM199501263320401
http://dx.doi.org/10.1073/pnas.98.1.253
http://dx.doi.org/10.1099/0022-1317-77-12-2953
http://dx.doi.org/10.1016/j.immuni.2008.10.010
http://dx.doi.org/10.1128/JVI.01120-10
http://dx.doi.org/10.1128/JVI.01120-10
http://dx.doi.org/10.1097/QAI.0b013e318224d2e9
http://dx.doi.org/10.1371/journal.ppat.1000917
http://dx.doi.org/10.1086/526786
http://dx.doi.org/10.1086/526786
http://dx.doi.org/10.1016/j.immuni.2012.01.014
http://dx.doi.org/10.1086/605446
http://dx.doi.org/10.1371/journal.ppat.1001300
http://dx.doi.org/10.1128/JVI.02165-06
http://dx.doi.org/10.1186/1742-4690-10-68
http://dx.doi.org/10.1186/1742-4690-10-68
http://dx.doi.org/10.1128/JVI.02439-12
http://dx.doi.org/10.1016/j.tips.2009.09.005
http://dx.doi.org/10.1128/JVI.00531-12
http://dx.doi.org/10.1038/nm1728
http://dx.doi.org/10.1038/nm1728
http://dx.doi.org/10.1097/COH.0b013e3282f2bce7
http://dx.doi.org/10.1016/j.clim.2006.02.008
http://dx.doi.org/10.1182/blood-2006-08-040238
http://dx.doi.org/10.4049/jimmunol.171.11.5663
http://dx.doi.org/10.4049/jimmunol.0902621
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

157. Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, et al. Epistatic
interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat
Genet (2002) 31(4):429–34.

158. Nuvor SV, van der Sande M, Rowland-Jones S, Whittle H, Jaye A. Natural
killer cell function is well preserved in asymptomatic human immunodefi-
ciency virus type 2 (HIV-2) infection but similar to that of HIV-1 infection
when CD4 T-cell counts fall. J Virol (2006) 80(5):2529–38. doi:10.1128/JVI.80.
5.2529-2538.2006

159. Iqbal SM, Ball TB, Kimani J, Kiama P, Thottingal P, Embree JE, et al. Ele-
vated T cell counts and RANTES expression in the genital mucosa of HIV-1-
resistant Kenyan commercial sex workers. J Infect Dis (2005) 192(5):728–38.
doi:10.1086/432482

160. Heeney JL, Dalgleish AG, Weiss RA. Origins of HIV and the evolution of resis-
tance to AIDS. Science (2006) 313(5786):462–6. doi:10.1126/science.1123016

161. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identifica-
tion of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive
factors produced by CD8+ T cells. Science (1995) 270(5243):1811–5. doi:10.
1126/science.270.5243.1811

162. Amella CA, Sherry B, Shepp DH, Schmidtmayerova H. Macrophage inflam-
matory protein 1alpha inhibits postentry steps of human immunodeficiency
virus type 1 infection via suppression of intracellular cyclic AMP. J Virol (2005)
79(9):5625–31. doi:10.1128/JVI.79.9.5625-5631.2005

163. Saunders KO, Ward-Caviness C, Schutte RJ, Freel SA, Overman RG, Thiel-
man NM, et al. Secretion of MIP-1beta and MIP-1alpha by CD8(+) T-
lymphocytes correlates with HIV-1 inhibition independent of coreceptor usage.
Cell Immunol (2011) 266(2):154–64. doi:10.1016/j.cellimm.2010.09.011

164. Iqbal SM, Kaul R. Mucosal innate immunity as a determinant of HIV suscep-
tibility. Am J Reprod Immunol (2008) 59(1):44–54. doi:10.1111/j.1600-0897.
2007.00563.x

165. Sibeko S, Makvandi-Nejad S. From the laboratory to clinical trials and back
again: lessons learned from HIV prevention trials. Am J Reprod Immunol (2013)
69(Suppl 1):106–15. doi:10.1111/aji.12045

166. Miyazawa M, Lopalco L, Mazzotta F, Lo Caputo S, Veas F, Clerici M, et al.
The “immunologic advantage” of HIV-exposed seronegative individuals. AIDS
(2009) 23(2):161–75. doi:10.1097/QAD.0b013e32832d74ca

167. Erickson AL, Willberg CB, McMahan V, Liu A, Buchbinder SP, Grohskopf LA,
et al. Potentially exposed but uninfected individuals produce cytotoxic and
polyfunctional human immunodeficiency virus type 1-specific CD8(+) T-cell
responses which can be defined to the epitope level. Clin Vaccine Immunol
(2008) 15(11):1745–8. doi:10.1128/CVI.00247-08

168. Clerici M, Levin JM, Kessler HA, Harris A, Berzofsky JA, Landay AL, et al.
HIV-specific T-helper activity in seronegative health care workers exposed to
contaminated blood. JAMA (1994) 271(1):42–6. doi:10.1001/jama.271.1.42

169. Pinto LA, Sullivan J, Berzofsky JA, Clerici M, Kessler HA, Landay AL, et al.
ENV-specific cytotoxic T lymphocyte responses in HIV seronegative health
care workers occupationally exposed to HIV-contaminated body fluids. J Clin
Invest (1995) 96(2):867–76. doi:10.1172/JCI118133

170. Pallikkuth S, Wanchu A, Bhatnagar A, Sachdeva RK, Sharma M. Human
immunodeficiency virus (HIV) gag antigen-specific T-helper and granule-
dependent CD8 T-cell activities in exposed but uninfected heterosexual part-
ners of HIV type 1-infected individuals in North India. Clin Vaccine Immunol
(2007) 14(9):1196–202. doi:10.1128/CVI.0488-06

171. Ritchie AJ, Campion SL, Kopycinski J, Moodie Z, Wang ZM, Pandya K,
et al. Differences in HIV-specific T cell responses between HIV-exposed
and -unexposed HIV-seronegative individuals. J Virol (2011) 85(7):3507–16.
doi:10.1128/JVI.02444-10

172. Pala P, Serwanga J, Watera C, Ritchie AJ, Moodie Z, Wang M, et al. Quantitative
and qualitative differences in the T cell response to HIV in uninfected Ugandans
exposed or unexposed to HIV-infected partners. J Virol (2013) 87(16):9053–63.
doi:10.1128/JVI.00721-13

173. Kaul R, Plummer FA, Kimani J, Dong T, Kiama P, Rostron T, et al. HIV-
1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-
resistant prostitutes in Nairobi. J Immunol (2000) 164(3):1602–11. doi:10.
4049/jimmunol.164.3.1602

174. Critchfield JW, Young DH, Hayes TL, Braun JV, Garcia JC, Pollard RB, et al.
Magnitude and complexity of rectal mucosa HIV-1-specific CD8+ T-cell
responses during chronic infection reflect clinical status. PLoS One (2008)
3(10):e3577. doi:10.1371/journal.pone.0003577

175. Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, Pollard RB, et al.
HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong,
polyfunctional mucosal CD4+ T-cell responses. J Virol (2010) 84(21):11020–9.
doi:10.1128/JVI.00980-10

176. Nguyen M, Pean P, Lopalco L, Nouhin J, Phoung V, Ly N, et al. HIV-
specific antibodies but not t-cell responses are associated with protection in
seronegative partners of HIV-1-infected individuals in Cambodia. J Acquir
Immune Defic Syndr (2006) 42(4):412–9. doi:10.1097/01.qai.0000222289.
97825.35

177. Lopalco L, Barassi C, Paolucci C, Breda D, Brunelli D, Nguyen M, et al. Predic-
tive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral
responses in HIV-1-exposed seronegative cohorts of European and Asian ori-
gin. J Gen Virol (2005) 86(Pt 2):339–48. doi:10.1099/vir.0.80585-0

178. Devito C, Hinkula J, Kaul R, Kimani J, Kiama P, Lopalco L, et al. Cross-clade
HIV-1-specific neutralizing IgA in mucosal and systemic compartments of
HIV-1-exposed, persistently seronegative subjects. J Acquir Immune Defic Syndr
(2002) 30(4):413–20. doi:10.1097/00042560-200208010-00007

179. Devito C, Hinkula J, Kaul R, Lopalco L, Bwayo JJ, Plummer F, et al. Mucosal
and plasma IgA from HIV-exposed seronegative individuals neutralize a pri-
mary HIV-1 isolate. AIDS (2000) 14(13):1917–20. doi:10.1097/00002030-
200009080-00006

180. Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a con-
served epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis
of HIV-1. J Immunol (2001) 166(10):6257–65. doi:10.4049/jimmunol.166.10.
6257

181. Devito C, Broliden K, Kaul R, Svensson L, Johansen K, Kiama P, et al. Mucosal
and plasma IgA from HIV-1-exposed uninfected individuals inhibit HIV-1
transcytosis across human epithelial cells. J Immunol (2000) 165(9):5170–6.
doi:10.4049/jimmunol.165.9.5170

182. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev
Immunol (2008) 8(6):447–57. doi:10.1038/nri2302

183. Tudor D, Derrien M, Diomede L, Drillet AS, Houimel M, Moog C, et al. HIV-
1 gp41-specific monoclonal mucosal IgAs derived from highly exposed but
IgG-seronegative individuals block HIV-1 epithelial transcytosis and neutralize
CD4(+) cell infection: an IgA gene and functional analysis. Mucosal Immunol
(2009) 2(5):412–26. doi:10.1038/mi.2009.89

184. Clerici M, Barassi C, Devito C, Pastori C, Piconi S, Trabattoni D, et al. Serum
IgA of HIV-exposed uninfected individuals inhibit HIV through recognition
of a region within the alpha-helix of gp41. AIDS (2002) 16(13):1731–41.
doi:10.1097/00002030-200209060-00004

185. Belec L, Ghys PD, Hocini H, Nkengasong JN, Tranchot-Diallo J, Diallo MO,
et al. Cervicovaginal secretory antibodies to human immunodeficiency virus
type 1 (HIV-1) that block viral transcytosis through tight epithelial barri-
ers in highly exposed HIV-1-seronegative African women. J Infect Dis (2001)
184(11):1412–22. doi:10.1086/324375

186. Mazzoli S, Lopalco L, Salvi A, Trabattoni D, Lo Caputo S, Semplici F, et al.
Human immunodeficiency virus (HIV)-specific IgA and HIV neutralizing
activity in the serum of exposed seronegative partners of HIV-seropositive
persons. J Infect Dis (1999) 180(3):871–5. doi:10.1086/314934

187. Mazzoli S, Trabattoni D, Lo Caputo S, Piconi S, Ble C, Meacci F, et al. HIV-
specific mucosal and cellular immunity in HIV-seronegative partners of HIV-
seropositive individuals. Nat Med (1997) 3(11):1250–7. doi:10.1038/nm1197-
1250

188. Kaul R, Plummer F, Clerici M, Bomsel M, Lopalco L, Broliden K. Mucosal
IgA in exposed, uninfected subjects: evidence for a role in protection against
HIV infection. AIDS (2001) 15(3):431–2. doi:10.1097/00002030-200102160-
00026

189. Lo Caputo S, Trabattoni D, Vichi F, Piconi S, Lopalco L, Villa ML, et al. Mucosal
and systemic HIV-1-specific immunity in HIV-1-exposed but uninfected het-
erosexual men. AIDS (2003) 17(4):531–9. doi:10.1097/00002030-200303070-
00008

190. Choi RY, Levinson P, Guthrie BL, Lohman-Payne B, Bosire R, Liu AY, et al.
Cervicovaginal HIV-1-neutralizing immunoglobulin A detected among HIV-
1-exposed seronegative female partners in HIV-1-discordant couples. AIDS
(2012) 26(17):2155–63. doi:10.1097/QAD.0b013e328359b99b

191. Migueles SA, Connors M. Long-term nonprogressive disease among untreated
HIV-infected individuals: clinical implications of understanding immune con-
trol of HIV. JAMA (2010) 304(2):194–201. doi:10.1001/jama.2010.925

www.frontiersin.org May 2014 | Volume 5 | Article 202 | 93

http://dx.doi.org/10.1128/JVI.80.5.2529-2538.2006
http://dx.doi.org/10.1128/JVI.80.5.2529-2538.2006
http://dx.doi.org/10.1086/432482
http://dx.doi.org/10.1126/science.1123016
http://dx.doi.org/10.1126/science.270.5243.1811
http://dx.doi.org/10.1126/science.270.5243.1811
http://dx.doi.org/10.1128/JVI.79.9.5625-5631.2005
http://dx.doi.org/10.1016/j.cellimm.2010.09.011
http://dx.doi.org/10.1111/j.1600-0897.2007.00563.x
http://dx.doi.org/10.1111/j.1600-0897.2007.00563.x
http://dx.doi.org/10.1111/aji.12045
http://dx.doi.org/10.1097/QAD.0b013e32832d74ca
http://dx.doi.org/10.1128/CVI.00247-08
http://dx.doi.org/10.1001/jama.271.1.42
http://dx.doi.org/10.1172/JCI118133
http://dx.doi.org/10.1128/CVI.0488-06
http://dx.doi.org/10.1128/JVI.02444-10
http://dx.doi.org/10.1128/JVI.00721-13
http://dx.doi.org/10.4049/jimmunol.164.3.1602
http://dx.doi.org/10.4049/jimmunol.164.3.1602
http://dx.doi.org/10.1371/journal.pone.0003577
http://dx.doi.org/10.1128/JVI.00980-10
http://dx.doi.org/10.1097/01.qai.0000222289.97825.35
http://dx.doi.org/10.1097/01.qai.0000222289.97825.35
http://dx.doi.org/10.1099/vir.0.80585-0
http://dx.doi.org/10.1097/00042560-200208010-00007
http://dx.doi.org/10.1097/00002030-200009080-00006
http://dx.doi.org/10.1097/00002030-200009080-00006
http://dx.doi.org/10.4049/jimmunol.166.10.6257
http://dx.doi.org/10.4049/jimmunol.166.10.6257
http://dx.doi.org/10.4049/jimmunol.165.9.5170
http://dx.doi.org/10.1038/nri2302
http://dx.doi.org/10.1038/mi.2009.89
http://dx.doi.org/10.1097/00002030-200209060-00004
http://dx.doi.org/10.1086/324375
http://dx.doi.org/10.1086/314934
http://dx.doi.org/10.1038/nm1197-1250
http://dx.doi.org/10.1038/nm1197-1250
http://dx.doi.org/10.1097/00002030-200102160-00026
http://dx.doi.org/10.1097/00002030-200102160-00026
http://dx.doi.org/10.1097/00002030-200303070-00008
http://dx.doi.org/10.1097/00002030-200303070-00008
http://dx.doi.org/10.1097/QAD.0b013e328359b99b
http://dx.doi.org/10.1001/jama.2010.925
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

192. Alexander R, Mestecky J. Neutralizing antibodies in mucosal secretions: IgG or
IgA? Curr HIV Res (2007) 5(6):588–93. doi:10.2174/157016207782418452

193. Priddy FH, Brown D, Kublin J, Monahan K, Wright DP, Lalezari J, et al.
Safety and immunogenicity of a replication-incompetent adenovirus type 5
HIV-1 clade B gag/pol/nef vaccine in healthy adults. Clin Infect Dis (2008)
46(11):1769–81. doi:10.1086/587993

194. Shin H, Iwasaki A. A vaccine strategy that protects against genital her-
pes by establishing local memory T cells. Nature (2012) 491(7424):463–7.
doi:10.1038/nature11522

195. Jespers V, Harandi AM, Hinkula J, Medaglini D, Le Grand R, Stahl-Hennig C,
et al. Assessment of mucosal immunity to HIV-1. Expert Rev Vaccines (2010)
9(4):381–94. doi:10.1586/erv.10.21

196. Spentzou A, Bergin P, Gill D, Cheeseman H, Ashraf A, Kaltsidis H, et al.
Viral inhibition assay: a CD8 T cell neutralization assay for use in clin-
ical trials of HIV-1 vaccine candidates. J Infect Dis (2010) 201(5):720–9.
doi:10.1086/650492

197. Martins MA, Wilson NA, Reed JS, Ahn CD, Klimentidis YC, Allison DB, et al. T-
cell correlates of vaccine efficacy after a heterologous simian immunodeficiency
virus challenge. J Virol (2010) 84(9):4352–65. doi:10.1128/JVI.02365-09

198. Yamamoto T, Johnson MJ, Price DA, Wolinsky DI, Almeida JR, Petrovas C, et al.
Virus inhibition activity of effector memory CD8(+) T cells determines simian
immunodeficiency virus load in vaccinated monkeys after vaccine break-
through infection. J Virol (2012) 86(10):5877–84. doi:10.1128/JVI.00315-12

199. Slichter CK, Friedrich DP, Smith RJ, Walsh PN, Mize G, Czartoski JL, et al.
Measuring inhibition of HIV replication by ex vivo CD8 T cells. J Immunol
Methods (2013) 404:71–80. doi:10.1016/j.jim.2013.12.006

200. Naarding MA, Fernandez N, Kappes JC, Hayes P, Ahmed T, Icyuz M, et al.
Development of a luciferase based viral inhibition assay to evaluate vaccine
induced CD8 T-cell responses. J Immunol Methods (2013). doi:10.1016/j.jim.
2013.11.021

201. Yang H, Wu H, Hancock G, Clutton G, Sande N, Xu X, et al. Antiviral inhibitory
capacity of CD8+ T cells predicts the rate of CD4+ T-cell decline in HIV-1
infection. J Infect Dis (2012) 206(4):552–61. doi:10.1093/infdis/jis379

202. Staprans SI, Barry AP, Silvestri G, Safrit JT, Kozyr N, Sumpter B, et al. Enhanced
SIV replication and accelerated progression to AIDS in macaques primed to
mount a CD4 T cell response to the SIV envelope protein. Proc Natl Acad Sci
U S A (2004) 101(35):13026–31. doi:10.1073/pnas.0404739101

203. Tenbusch M, Ignatius R, Temchura V, Nabi G, Tippler B, Stewart-Jones G, et al.
Risk of immunodeficiency virus infection may increase with vaccine-induced
immune response. J Virol (2012) 86(19):10533–9. doi:10.1128/JVI.00796-12

204. Celum CL. The interaction between herpes simplex virus and human immun-
odeficiency virus. Herpes (2004) 11(Suppl 1):36A–45A.

205. Van de Perre P, Segondy M, Foulongne V, Ouedraogo A, Konate I, Huraux JM,
et al. Herpes simplex virus and HIV-1: deciphering viral synergy. Lancet Infect
Dis (2008) 8(8):490–7. doi:10.1016/S1473-3099(08)70181-6

206. Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes
simplex virus 2 infection increases HIV acquisition in men and women: system-
atic review and meta-analysis of longitudinal studies. AIDS (2006) 20(1):73–83.
doi:10.1097/01.aids.0000198081.09337.a7

207. Rebbapragada A, Wachihi C, Pettengell C, Sunderji S, Huibner S, Jaoko W,
et al. Negative mucosal synergy between Herpes simplex type 2 and HIV
in the female genital tract. AIDS (2007) 21(5):589–98. doi:10.1097/QAD.
0b013e328012b896

208. Pantaleo G, Menzo S, Vaccarezza M, Graziosi C, Cohen OJ, Demarest JF,
et al. Studies in subjects with long-term nonprogressive human immunod-
eficiency virus infection. N Engl J Med (1995) 332(4):209–16. doi:10.1056/
NEJM199501263320402

209. Miller CJ, Lu FX. Anti-HIV and -SIV immunity in the vagina. Int Rev Immunol
(2003) 22(1):65–76. doi:10.1080/08830180305230

210. Scamurra RW, Nelson DB, Lin XM, Miller DJ, Silverman GJ, Kappel T, et al.
Mucosal plasma cell repertoire during HIV-1 infection. J Immunol (2002)
169(7):4008–16. doi:10.4049/jimmunol.169.7.4008

211. Piantadosi A, Panteleeff D, Blish CA, Baeten JM, Jaoko W, McClelland RS, et al.
Breadth of neutralizing antibody response to human immunodeficiency virus
type 1 is affected by factors early in infection but does not influence disease
progression. J Virol (2009) 83(19):10269–74. doi:10.1128/JVI.01149-09

212. Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, et al. Human
immunodeficiency virus type 1 elite neutralizers: individuals with broad and

potent neutralizing activity identified by using a high-throughput neutral-
ization assay together with an analytical selection algorithm. J Virol (2009)
83(14):7337–48. doi:10.1128/JVI.00110-09

213. Euler Z, van Gils MJ, Bunnik EM, Phung P, Schweighardt B, Wrin T, et al. Cross-
reactive neutralizing humoral immunity does not protect from HIV type 1
disease progression. J Infect Dis (2010) 201(7):1045–53. doi:10.1086/651144

214. Bailey JR, Lassen KG, Yang HC, Quinn TC, Ray SC, Blankson JN, et al. Neu-
tralizing antibodies do not mediate suppression of human immunodeficiency
virus type 1 in elite suppressors or selection of plasma virus variants in
patients on highly active antiretroviral therapy. J Virol (2006) 80(10):4758–70.
doi:10.1128/JVI.80.10.4758-4770.2006

215. Harrer T, Harrer E, Kalams SA, Elbeik T, Staprans SI, Feinberg MB, et al. Strong
cytotoxic T cell and weak neutralizing antibody responses in a subset of persons
with stable nonprogressing HIV type 1 infection. AIDS Res Hum Retroviruses
(1996) 12(7):585–92. doi:10.1089/aid.1996.12.585

216. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al. Broad
neutralization coverage of HIV by multiple highly potent antibodies. Nature
(2011) 477(7365):466–70. doi:10.1038/nature10373

217. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q, et al. Prevention
of virus transmission to macaque monkeys by a vaginally applied monoclonal
antibody to HIV-1 gp120. Nat Med (2003) 9(3):343–6. doi:10.1038/nm833

218. Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL, Landucci G, et al.
Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against
the human immunodeficiency virus type 1 gp41 membrane-proximal external
region protect against mucosal challenge by simian-human immunodeficiency
virus SHIVBa-L. J Virol (2010) 84(3):1302–13. doi:10.1128/JVI.01272-09

219. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK, et al.
Effective, low-titer antibody protection against low-dose repeated mucosal
SHIV challenge in macaques. Nat Med (2009) 15(8):951–4. doi:10.1038/nm.
1974

220. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, et al.
Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection
against mucosal SHIV challenge even at low serum neutralizing titers. PLoS
Pathog (2009) 5(5):e1000433. doi:10.1371/journal.ppat.1000433

221. Conley AJ, Kessler JA II, Boots LJ, McKenna PM, Schleif WA, Emini EA,
et al. The consequence of passive administration of an anti-human immun-
odeficiency virus type 1 neutralizing monoclonal antibody before chal-
lenge of chimpanzees with a primary virus isolate. J Virol (1996) 70(10):
6751–8.

222. Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K, Weisgrau KL, et al.
Highly potent HIV-specific antibody neutralization in vitro translates into
effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci
U S A (2012) 109(46):18921–5. doi:10.1073/pnas.1214785109

223. Ruprecht RM. Passive immunization with human neutralizing monoclonal
antibodies against HIV-1 in macaque models: experimental approaches. Meth-
ods Mol Biol (2009) 525:559–66, xiv. doi:10.1007/978-1-59745-554-1_31

224. Pace CS, Song R, Ochsenbauer C, Andrews CD, Franco D, Yu J, et al. Bispecific
antibodies directed to CD4 domain 2 and HIV envelope exhibit exceptional
breadth and picomolar potency against HIV-1. Proc Natl Acad Sci U S A (2013)
110(33):13540–5. doi:10.1073/pnas.1304985110

225. Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C, et al. Delay
of HIV-1 rebound after cessation of antiretroviral therapy through passive
transfer of human neutralizing antibodies. Nat Med (2005) 11(6):615–22.
doi:10.1038/nm1244

226. Mehandru S, Vcelar B, Wrin T, Stiegler G, Joos B, Mohri H, et al. Adjunctive
passive immunotherapy in human immunodeficiency virus type 1-infected
individuals treated with antiviral therapy during acute and early infection.
J Virol (2007) 81(20):11016–31. doi:10.1128/JVI.01739-06

227. Spearman P, Lally MA, Elizaga M, Montefiori D, Tomaras GD, McElrath
MJ, et al. A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elic-
its potent neutralizing antibodies but limited breadth of neutralization in
human volunteers. J Infect Dis (2011) 203(8):1165–73. doi:10.1093/infdis/
jiq175

228. Srivastava IK, Stamatatos L, Kan E, Vajdy M, Lian Y, Hilt S, et al. Purification,
characterization, and immunogenicity of a soluble trimeric envelope protein
containing a partial deletion of the V2 loop derived from SF162, an R5-tropic
human immunodeficiency virus type 1 isolate. J Virol (2003) 77(20):11244–59.
doi:10.1128/JVI.77.20.11244-11259.2003

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 94

http://dx.doi.org/10.2174/157016207782418452
http://dx.doi.org/10.1086/587993
http://dx.doi.org/10.1038/nature11522
http://dx.doi.org/10.1586/erv.10.21
http://dx.doi.org/10.1086/650492
http://dx.doi.org/10.1128/JVI.02365-09
http://dx.doi.org/10.1128/JVI.00315-12
http://dx.doi.org/10.1016/j.jim.2013.12.006
http://dx.doi.org/10.1016/j.jim.2013.11.021
http://dx.doi.org/10.1016/j.jim.2013.11.021
http://dx.doi.org/10.1093/infdis/jis379
http://dx.doi.org/10.1073/pnas.0404739101
http://dx.doi.org/10.1128/JVI.00796-12
http://dx.doi.org/10.1016/S1473-3099(08)70181-6
http://dx.doi.org/10.1097/01.aids.0000198081.09337.a7
http://dx.doi.org/10.1097/QAD.0b013e328012b896
http://dx.doi.org/10.1097/QAD.0b013e328012b896
http://dx.doi.org/10.1056/NEJM199501263320402
http://dx.doi.org/10.1056/NEJM199501263320402
http://dx.doi.org/10.1080/08830180305230
http://dx.doi.org/10.4049/jimmunol.169.7.4008
http://dx.doi.org/10.1128/JVI.01149-09
http://dx.doi.org/10.1128/JVI.00110-09
http://dx.doi.org/10.1086/651144
http://dx.doi.org/10.1128/JVI.80.10.4758-4770.2006
http://dx.doi.org/10.1089/aid.1996.12.585
http://dx.doi.org/10.1038/nature10373
http://dx.doi.org/10.1038/nm833
http://dx.doi.org/10.1128/JVI.01272-09
http://dx.doi.org/10.1038/nm.1974
http://dx.doi.org/10.1038/nm.1974
http://dx.doi.org/10.1371/journal.ppat.1000433
http://dx.doi.org/10.1073/pnas.1214785109
http://dx.doi.org/10.1007/978-1-59745-554-1_31
http://dx.doi.org/10.1073/pnas.1304985110
http://dx.doi.org/10.1038/nm1244
http://dx.doi.org/10.1128/JVI.01739-06
http://dx.doi.org/10.1093/infdis/jiq175
http://dx.doi.org/10.1093/infdis/jiq175
http://dx.doi.org/10.1128/JVI.77.20.11244-11259.2003
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

229. Barnett SW, Srivastava IK, Ulmer JB, Donnelly JJ, Rappuoli R. Development
of V2-deleted trimeric envelope vaccine candidates from human immun-
odeficiency virus type 1 (HIV-1) subtypes B and C. Microbes Infect (2005)
7(14):1386–91. doi:10.1016/j.micinf.2005.07.018

230. Czerkinsky C, Holmgren J. Mucosal delivery routes for optimal immunization:
targeting immunity to the right tissues. Curr Top Microbiol Immunol (2012)
354:1–18. doi:10.1007/82_2010_112

231. Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effec-
tor memory cells in nonlymphoid tissue. Science (2001) 291(5512):2413–7.
doi:10.1126/science.1058867

232. Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immu-
nity. Nat Rev Immunol (2004) 4(9):699–710. doi:10.1038/nri1439

233. Ranasinghe C, Turner SJ, McArthur C, Sutherland DB, Kim JH, Doherty
PC, et al. Mucosal HIV-1 pox virus prime-boost immunization induces high-
avidity CD8+ T cells with regime-dependent cytokine/granzyme B profiles.
J Immunol (2007) 178(4):2370–9. doi:10.4049/jimmunol.178.12.8221

234. Yuki Y, Nochi T, Kiyono H. Progress towards an AIDS mucosal vaccine:
an overview. Tuberculosis (2007) 87(Suppl 1):S35–44. doi:10.1016/j.tube.2007.
05.005

235. Hutchinson E. Vaccination: oral vaccine induces genitorectal immunity. Nat
Rev Immunol (2012) 12(9):619. doi:10.1038/nri3283

236. Petrarca C, Lazzarin F, Pannellini T, Iezzi M, Braga M, Mistrello G, et al.
Monomeric allergoid intragastric administration induces local and systemic
tolerogenic response involving IL-10-producing CD4(+)CD25(+) T regulatory
cells in mice. Int J Immunopathol Pharmacol (2010) 23(4):1021–31.

237. Wu HY, Nguyen HH, Russell MW. Nasal lymphoid tissue (NALT) as a mucosal
immune inductive site. Scand J Immunol (1997) 46(5):506–13. doi:10.1046/j.
1365-3083.1997.d01-159.x

238. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med (2005)
11(4 Suppl):S45–53. doi:10.1038/nm1213

239. Holmgren J, Czerkinsky C, Eriksson K, Mharandi A. Mucosal immunisation
and adjuvants: a brief overview of recent advances and challenges. Vaccine
(2003) 21(Suppl 2):S89–95. doi:10.1016/S0264-410X(03)00206-8

240. Wang SW, Bertley FM, Kozlowski PA, Herrmann L, Manson K, Mazzara G,
et al. An SHIV DNA/MVA rectal vaccination in macaques provides systemic
and mucosal virus-specific responses and protection against AIDS. AIDS Res
Hum Retroviruses (2004) 20(8):846–59. doi:10.1089/0889222041725253

241. Vajdy M, Singh M, Kazzaz J, Soenawan E, Ugozzoli M, Zhou F, et al. Mucosal
and systemic anti-HIV responses in rhesus macaques following combinations
of intranasal and parenteral immunizations. AIDS Res Hum Retroviruses (2004)
20(11):1269–81. doi:10.1089/aid.2004.20.1269

242. Vajdy M. Current efforts on generation of optimal immune responses against
HIV through mucosal immunisations. Drugs R D (2006) 7(5):267–88. doi:10.
2165/00126839-200607050-00001

243. Barnett SW, Srivastava IK, Kan E, Zhou F, Goodsell A, Cristillo AD, et al. Pro-
tection of macaques against vaginal SHIV challenge by systemic or mucosal
and systemic vaccinations with HIV-envelope. AIDS (2008) 22(3):339–48.
doi:10.1097/QAD.0b013e3282f3ca57

244. Albu DI, Jones-Trower A, Woron AM, Stellrecht K, Broder CC, Metzger
DW. Intranasal vaccination using interleukin-12 and cholera toxin sub-
unit B as adjuvants to enhance mucosal and systemic immunity to human
immunodeficiency virus type 1 glycoproteins. J Virol (2003) 77(10):5589–97.
doi:10.1128/JVI.77.10.5589-5597.2003

245. Devito C, Zuber B, Schroder U, Benthin R, Okuda K, Broliden K, et al.
Intranasal HIV-1-gp160-DNA/gp41 peptide prime-boost immunization regi-
men in mice results in long-term HIV-1 neutralizing humoral mucosal and sys-
temic immunity. J Immunol (2004) 173(11):7078–89. doi:10.4049/jimmunol.
173.11.7078

246. Marinaro M, Riccomi A, Rappuoli R, Pizza M, Fiorelli V, Tripiciano A, et al.
Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice
elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal
IgA. Vaccine (2003) 21(25–26):3972–81. doi:10.1016/S0264-410X(03)00295-0

247. VanCott TC, Kaminski RW, Mascola JR, Kalyanaraman VS, Wassef NM, Alving
CR, et al. HIV-1 neutralizing antibodies in the genital and respiratory tracts
of mice intranasally immunized with oligomeric gp160. J Immunol (1998)
160(4):2000–12.

248. Klavinskis LS, Barnfield C, Gao L, Parker S. Intranasal immunization with plas-
mid DNA-lipid complexes elicits mucosal immunity in the female genital and
rectal tracts. J Immunol (1999) 162(1):254–62.

249. Wang X, Uto T, Akagi T, Akashi M, Baba M. Induction of potent CD8+ T-cell
responses by novel biodegradable nanoparticles carrying human immunode-
ficiency virus type 1 gp120. J Virol (2007) 81(18):10009–16. doi:10.1128/JVI.
00489-07

250. Miyake A,Akagi T, Enose Y, Ueno M, Kawamura M, Horiuchi R, et al. Induction
of HIV-specific antibody response and protection against vaginal SHIV trans-
mission by intranasal immunization with inactivated SHIV-capturing nanos-
pheres in macaques. J Med Virol (2004) 73(3):368–77. doi:10.1002/jmv.20100

251. Akagi T, Kawamura M, Ueno M, Hiraishi K, Adachi M, Serizawa T,
et al. Mucosal immunization with inactivated HIV-1-capturing nanospheres
induces a significant HIV-1-specific vaginal antibody response in mice. J Med
Virol (2003) 69(2):163–72. doi:10.1002/jmv.10279

252. Manrique M, Kozlowski PA, Cobo-Molinos A, Wang SW, Wilson RL, Martinez-
Viedma Mdel P, et al. Resistance to infection, early and persistent suppression of
simian immunodeficiency virus SIVmac251 viremia, and significant reduction
of tissue viral burden after mucosal vaccination in female rhesus macaques.
J Virol (2014) 88(1):212–24. doi:10.1128/JVI.02523-13

253. Manrique M,Kozlowski PA,Cobo-Molinos A,Wang SW,Wilson RL,Montefiori
DC, et al. Immunogenicity of a vaccine regimen composed of simian immun-
odeficiency virus DNA, rMVA, and viral particles administered to female rhe-
sus macaques via four different mucosal routes. J Virol (2013) 87(8):4738–50.
doi:10.1128/JVI.03531-12

254. Manrique M, Kozlowski PA, Cobo-Molinos A, Wang SW, Wilson RL, Monte-
fiori DC, et al. Long-term control of simian immunodeficiency virus mac251
viremia to undetectable levels in half of infected female rhesus macaques
nasally vaccinated with simian immunodeficiency virus DNA/recombinant
modified vaccinia virus Ankara. J Immunol (2011) 186(6):3581–93. doi:10.
4049/jimmunol.1002594

255. Manrique M, Kozlowski PA, Wang SW, Wilson RL, Micewicz E, Montefiori DC,
et al. Nasal DNA-MVA SIV vaccination provides more significant protection
from progression to AIDS than a similar intramuscular vaccination. Mucosal
Immunol (2009) 2(6):536–50. doi:10.1038/mi.2009.103

256. Manrique M, Micewicz E, Kozlowski PA, Wang SW, Aurora D, Wilson RL, et al.
DNA-MVA vaccine protection after X4 SHIV challenge in macaques corre-
lates with day-of-challenge antiviral CD4+ cell-mediated immunity levels and
postchallenge preservation of CD4+ T cell memory. AIDS Res Hum Retroviruses
(2008) 24(3):505–19. doi:10.1089/aid.2007.0191

257. Li Z, Zhang M, Zhou C, Zhao X, Iijima N, Frankel FR. Novel vaccination
protocol with two live mucosal vectors elicits strong cell-mediated immunity
in the vagina and protects against vaginal virus challenge. J Immunol (2008)
180(4):2504–13. doi:10.4049/jimmunol.180.4.2504

258. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the genera-
tion of memory CD4 T cells in the whole body. Nature (2001) 410(6824):101–5.
doi:10.1038/35065111

259. Garcia-Sastre A, Palese P. Influenza virus vectors. Biologicals (1995)
23(2):171–8. doi:10.1006/biol.1995.0028

260. Palese P, Zavala F, Muster T, Nussenzweig RS, Garcia-Sastre A. Development
of novel influenza virus vaccines and vectors. J Infect Dis (1997) 176(Suppl
1):S45–9. doi:10.1086/514175

261. Li J, Arevalo MT, Zeng M. Engineering influenza viral vectors. Bioengineered
(2013) 4(1):9–14. doi:10.4161/bioe.21950

262. Li S, Polonis V, Isobe H, Zaghouani H, Guinea R, Moran T, et al. Chimeric
influenza virus induces neutralizing antibodies and cytotoxic T cells against
human immunodeficiency virus type 1. J Virol (1993) 67(11):6659–66.

263. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, et al. A con-
served neutralizing epitope on gp41 of human immunodeficiency virus type
1. J Virol (1993) 67(11):6642–7.

264. Muster T, Guinea R, Trkola A, Purtscher M, Klima A, Steindl F, et al. Cross-
neutralizing activity against divergent human immunodeficiency virus type 1
isolates induced by the gp41 sequence ELDKWAS. J Virol (1994) 68(6):4031–4.

265. Muster T, Ferko B, Klima A, Purtscher M, Trkola A, Schulz P, et al. Mucosal
model of immunization against human immunodeficiency virus type 1 with a
chimeric influenza virus. J Virol (1995) 69(11):6678–86.

266. Sexton A, De Rose R, Reece JC, Alcantara S, Loh L, Moffat JM, et al. Evalua-
tion of recombinant influenza virus-simian immunodeficiency virus vaccines
in macaques. J Virol (2009) 83(15):7619–28. doi:10.1128/JVI.00470-09

267. Gherardi MM, Najera JL, Perez-Jimenez E, Guerra S, Garcia-Sastre A, Este-
ban M. Prime-boost immunization schedules based on influenza virus and
vaccinia virus vectors potentiate cellular immune responses against human

www.frontiersin.org May 2014 | Volume 5 | Article 202 | 95

http://dx.doi.org/10.1016/j.micinf.2005.07.018
http://dx.doi.org/10.1007/82_2010_112
http://dx.doi.org/10.1126/science.1058867
http://dx.doi.org/10.1038/nri1439
http://dx.doi.org/10.4049/jimmunol.178.12.8221
http://dx.doi.org/10.1016/j.tube.2007.05.005
http://dx.doi.org/10.1016/j.tube.2007.05.005
http://dx.doi.org/10.1038/nri3283
http://dx.doi.org/10.1046/j.1365-3083.1997.d01-159.x
http://dx.doi.org/10.1046/j.1365-3083.1997.d01-159.x
http://dx.doi.org/10.1038/nm1213
http://dx.doi.org/10.1016/S0264-410X(03)00206-8
http://dx.doi.org/10.1089/0889222041725253
http://dx.doi.org/10.1089/aid.2004.20.1269
http://dx.doi.org/10.2165/00126839-200607050-00001
http://dx.doi.org/10.2165/00126839-200607050-00001
http://dx.doi.org/10.1097/QAD.0b013e3282f3ca57
http://dx.doi.org/10.1128/JVI.77.10.5589-5597.2003
http://dx.doi.org/10.4049/jimmunol.173.11.7078
http://dx.doi.org/10.4049/jimmunol.173.11.7078
http://dx.doi.org/10.1016/S0264-410X(03)00295-0
http://dx.doi.org/10.1128/JVI.00489-07
http://dx.doi.org/10.1128/JVI.00489-07
http://dx.doi.org/10.1002/jmv.20100
http://dx.doi.org/10.1002/jmv.10279
http://dx.doi.org/10.1128/JVI.02523-13
http://dx.doi.org/10.1128/JVI.03531-12
http://dx.doi.org/10.4049/jimmunol.1002594
http://dx.doi.org/10.4049/jimmunol.1002594
http://dx.doi.org/10.1038/mi.2009.103
http://dx.doi.org/10.1089/aid.2007.0191
http://dx.doi.org/10.4049/jimmunol.180.4.2504
http://dx.doi.org/10.1038/35065111
http://dx.doi.org/10.1006/biol.1995.0028
http://dx.doi.org/10.1086/514175
http://dx.doi.org/10.4161/bioe.21950
http://dx.doi.org/10.1128/JVI.00470-09
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

immunodeficiency virus Env protein systemically and in the genitorectal drain-
ing lymph nodes. J Virol (2003) 77(12):7048–57. doi:10.1128/JVI.77.12.7048-
7057.2003

268. Gherardi MM, Esteban M. Recombinant poxviruses as mucosal vaccine vectors.
J Gen Virol (2005) 86(Pt 11):2925–36. doi:10.1099/vir.0.81181-0

269. Gherardi MM, Esteban M. Mucosal and systemic immune responses induced
after oral delivery of vaccinia virus recombinants. Vaccine (1999) 17(9–
10):1074–83. doi:10.1016/S0264-410X(98)00324-7

270. Belyakov IM, Derby MA, Ahlers JD, Kelsall BL, Earl P, Moss B, et al. Mucosal
immunization with HIV-1 peptide vaccine induces mucosal and systemic
cytotoxic T lymphocytes and protective immunity in mice against intrarec-
tal recombinant HIV-vaccinia challenge. Proc Natl Acad Sci U S A (1998)
95(4):1709–14. doi:10.1073/pnas.95.4.1709

271. Bertley FM, Kozlowski PA, Wang SW, Chappelle J, Patel J, Sonuyi O, et al. Con-
trol of simian/human immunodeficiency virus viremia and disease progres-
sion after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vac-
cination in nonhuman primates. J Immunol (2004) 172(6):3745–57. doi:10.
4049/jimmunol.172.6.3745

272. Stevceva L, Alvarez X, Lackner AA, Tryniszewska E, Kelsall B, Nacsa J, et al.
Both mucosal and systemic routes of immunization with the live, attenuated
NYVAC/simian immunodeficiency virus SIV(gpe) recombinant vaccine result
in gag-specific CD8(+) T-cell responses in mucosal tissues of macaques. J Virol
(2002) 76(22):11659–76. doi:10.1128/JVI.76.22.11659-11676.2002

273. Kaufman DR, Liu J, Carville A, Mansfield KG, Havenga MJ, Goudsmit J,
et al. Trafficking of antigen-specific CD8+ T lymphocytes to mucosal sur-
faces following intramuscular vaccination. J Immunol (2008) 181(6):4188–98.
doi:10.4049/jimmunol.181.6.4188

274. Tatsis N, Lin SW, Harris-McCoy K, Garber DA, Feinberg MB, Ertl HC.
Multiple immunizations with adenovirus and MVA vectors improve CD8+
T cell functionality and mucosal homing. Virology (2007) 367(1):156–67.
doi:10.1016/j.virol.2007.05.028

275. Baig J, Levy DB, McKay PF, Schmitz JE, Santra S, Subbramanian RA, et al. Elic-
itation of simian immunodeficiency virus-specific cytotoxic T lymphocytes
in mucosal compartments of rhesus monkeys by systemic vaccination. J Virol
(2002) 76(22):11484–90. doi:10.1128/JVI.76.22.11484-11490.2002

276. Barouch DH, Liu J, Li H, Maxfield LF, Abbink P, Lynch DM, et al. Vaccine pro-
tection against acquisition of neutralization-resistant SIV challenges in rhesus
monkeys. Nature (2012) 482(7383):89–93. doi:10.1038/nature10766

277. Yuki Y, Kiyono H. New generation of mucosal adjuvants for the induction
of protective immunity. Rev Med Virol (2003) 13(5):293–310. doi:10.1002/
rmv.398

278. Belyakov IM, Hel Z, Kelsall B, Kuznetsov VA, Ahlers JD, Nacsa J, et al.
Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and
blood after mucosal infection of macaques. Nat Med (2001) 7(12):1320–6.
doi:10.1038/nm1201-1320

279. Gherardi MM, Perez-Jimenez E, Najera JL, Esteban M. Induction of HIV
immunity in the genital tract after intranasal delivery of a MVA vector:
enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara
boost immunization schedule. J Immunol (2004) 172(10):6209–20. doi:10.
4049/jimmunol.172.10.6209

280. Bradney CP, Sempowski GD, Liao HX, Haynes BF, Staats HF. Cytokines as
adjuvants for the induction of anti-human immunodeficiency virus peptide
immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions
after nasal immunization. J Virol (2002) 76(2):517–24. doi:10.1128/JVI.76.2.
517-524.2002

281. Horner AA, Datta SK, Takabayashi K, Belyakov IM, Hayashi T, Cinman N,
et al. Immunostimulatory DNA-based vaccines elicit multifaceted immune
responses against HIV at systemic and mucosal sites. J Immunol (2001)
167(3):1584–91. doi:10.4049/jimmunol.167.3.1584

282. Dumais N, Patrick A, Moss RB, Davis HL, Rosenthal KL. Mucosal immuniza-
tion with inactivated human immunodeficiency virus plus CpG oligodeoxynu-
cleotides induces genital immune responses and protection against intravaginal
challenge. J Infect Dis (2002) 186(8):1098–105. doi:10.1086/344232

283. Daftarian P, Ali S, Sharan R, Lacey SF, La Rosa C, Longmate J, et al. Immu-
nization with Th-CTL fusion peptide and cytosine-phosphate-guanine DNA
in transgenic HLA-A2 mice induces recognition of HIV-infected T cells and
clears vaccinia virus challenge. J Immunol (2003) 171(8):4028–39. doi:10.4049/
jimmunol.171.8.4028

284. Jiang JQ, Patrick A, Moss RB, Rosenthal KL. CD8+ T-cell-mediated cross-
clade protection in the genital tract following intranasal immunization with
inactivated human immunodeficiency virus antigen plus CpG oligodeoxynu-
cleotides. J Virol (2005) 79(1):393–400. doi:10.1128/JVI.79.1.393-400.2005

285. Courtney AN, Nehete PN, Nehete BP, Thapa P, Zhou D, Sastry KJ. Alpha-
galactosylceramide is an effective mucosal adjuvant for repeated intranasal
or oral delivery of HIV peptide antigens. Vaccine (2009) 27(25–26):3335–41.
doi:10.1016/j.vaccine.2009.01.083

286. Moser C, Amacker M, Kammer AR, Rasi S, Westerfeld N, Zurbriggen R.
Influenza virosomes as a combined vaccine carrier and adjuvant system
for prophylactic and therapeutic immunizations. Expert Rev Vaccines (2007)
6(5):711–21. doi:10.1586/14760584.6.5.711

287. Leroux-Roels G, Maes C, Clement F, van Engelenburg F, van den Dobbelsteen
M, Adler M, et al. Randomized phase I: safety, immunogenicity and mucosal
antiviral activity in young healthy women vaccinated with HIV-1 Gp41 P1 pep-
tide on virosomes. PLoS One (2013) 8(2):e55438. doi:10.1371/journal.pone.
0055438

288. Azizi A, Ghunaim H, Diaz-Mitoma F, Mestecky J. Mucosal HIV vaccines: a
holy grail or a dud? Vaccine (2010) 28(24):4015–26. doi:10.1016/j.vaccine.2010.
04.018

289. Mora JR, von Andrian UH. T-cell homing specificity and plasticity: new con-
cepts and future challenges. Trends Immunol (2006) 27(5):235–43. doi:10.1016/
j.it.2006.03.007

290. Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, et al.
Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is
selectively expressed on intestinal homing T lymphocytes, mucosal lympho-
cytes, and thymocytes and is required for thymus-expressed chemokine-
mediated chemotaxis. J Exp Med (1999) 190(9):1241–56. doi:10.1084/jem.190.
9.1241

291. Svensson M, Marsal J, Ericsson A, Carramolino L, Broden T, Marquez G, et al.
CCL25 mediates the localization of recently activated CD8alphabeta(+) lym-
phocytes to the small-intestinal mucosa. J Clin Invest (2002) 110(8):1113–21.
doi:10.1172/JCI0215988

292. Dullaers M, Li D, Xue Y, Ni L, Gayet I, Morita R, et al. A T cell-dependent
mechanism for the induction of human mucosal homing immunoglobulin A-
secreting plasmablasts. Immunity (2009) 30(1):120–9. doi:10.1016/j.immuni.
2008.11.008

293. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI, et al.
Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed
chemokine (TECK) expression distinguish the small intestinal immune com-
partment: epithelial expression of tissue-specific chemokines as an orga-
nizing principle in regional immunity. J Exp Med (2000) 192(5):761–8.
doi:10.1084/jem.192.5.761

294. Papadakis KA, Prehn J, Nelson V, Cheng L, Binder SW, Ponath PD, et al. The
role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in
the regional specialization of the mucosal immune system. J Immunol (2000)
165(9):5069–76. doi:10.4049/jimmunol.165.9.5069

295. von Andrian UH, Mackay CR. T-cell function and migration. Two sides
of the same coin. N Engl J Med (2000) 343(14):1020–34. doi:10.1056/
NEJM200010053431407

296. Wagner N, Lohler J, Kunkel EJ, Ley K, Leung E, Krissansen G, et al. Critical role
for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature
(1996) 382(6589):366–70. doi:10.1038/382366a0

297. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, et al.
Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular
addressin MAdCAM-1. Cell (1993) 74(1):185–95. doi:10.1016/0092-8674(93)
90305-A

298. Hamann A, Andrew DP, Jablonski-Westrich D, Holzmann B, Butcher EC.
Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo.
J Immunol (1994) 152(7):3282–93.

299. Rose JR, Williams MB, Rott LS, Butcher EC, Greenberg HB. Expression
of the mucosal homing receptor alpha4beta7 correlates with the ability of
CD8+ memory T cells to clear rotavirus infection. J Virol (1998) 72(1):
726–30.

300. Mavigner M, Cazabat M, Dubois M, L’Faqihi FE, Requena M, Pasquier C, et al.
Altered CD4+ T cell homing to the gut impairs mucosal immune reconsti-
tution in treated HIV-infected individuals. J Clin Invest (2012) 122(1):62–9.
doi:10.1172/JCI59011

Frontiers in Immunology | Microbial Immunology May 2014 | Volume 5 | Article 202 | 96

http://dx.doi.org/10.1128/JVI.77.12.7048-7057.2003
http://dx.doi.org/10.1128/JVI.77.12.7048-7057.2003
http://dx.doi.org/10.1099/vir.0.81181-0
http://dx.doi.org/10.1016/S0264-410X(98)00324-7
http://dx.doi.org/10.1073/pnas.95.4.1709
http://dx.doi.org/10.4049/jimmunol.172.6.3745
http://dx.doi.org/10.4049/jimmunol.172.6.3745
http://dx.doi.org/10.1128/JVI.76.22.11659-11676.2002
http://dx.doi.org/10.4049/jimmunol.181.6.4188
http://dx.doi.org/10.1016/j.virol.2007.05.028
http://dx.doi.org/10.1128/JVI.76.22.11484-11490.2002
http://dx.doi.org/10.1038/nature10766
http://dx.doi.org/10.1002/rmv.398
http://dx.doi.org/10.1002/rmv.398
http://dx.doi.org/10.1038/nm1201-1320
http://dx.doi.org/10.4049/jimmunol.172.10.6209
http://dx.doi.org/10.4049/jimmunol.172.10.6209
http://dx.doi.org/10.1128/JVI.76.2.517-524.2002
http://dx.doi.org/10.1128/JVI.76.2.517-524.2002
http://dx.doi.org/10.4049/jimmunol.167.3.1584
http://dx.doi.org/10.1086/344232
http://dx.doi.org/10.4049/jimmunol.171.8.4028
http://dx.doi.org/10.4049/jimmunol.171.8.4028
http://dx.doi.org/10.1128/JVI.79.1.393-400.2005
http://dx.doi.org/10.1016/j.vaccine.2009.01.083
http://dx.doi.org/10.1586/14760584.6.5.711
http://dx.doi.org/10.1371/journal.pone.0055438
http://dx.doi.org/10.1371/journal.pone.0055438
http://dx.doi.org/10.1016/j.vaccine.2010.04.018
http://dx.doi.org/10.1016/j.vaccine.2010.04.018
http://dx.doi.org/10.1016/j.it.2006.03.007
http://dx.doi.org/10.1016/j.it.2006.03.007
http://dx.doi.org/10.1084/jem.190.9.1241
http://dx.doi.org/10.1084/jem.190.9.1241
http://dx.doi.org/10.1172/JCI0215988
http://dx.doi.org/10.1016/j.immuni.2008.11.008
http://dx.doi.org/10.1016/j.immuni.2008.11.008
http://dx.doi.org/10.1084/jem.192.5.761
http://dx.doi.org/10.4049/jimmunol.165.9.5069
http://dx.doi.org/10.1056/NEJM200010053431407
http://dx.doi.org/10.1056/NEJM200010053431407
http://dx.doi.org/10.1038/382366a0
http://dx.doi.org/10.1016/0092-8674(93)90305-A
http://dx.doi.org/10.1016/0092-8674(93)90305-A
http://dx.doi.org/10.1172/JCI59011
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chanzu and Ondondo Mucosal immunity and HIV-1 vaccines

301. Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, et al.
Gastrointestinal tract as a major site of CD4+ T cell depletion and viral repli-
cation in SIV infection. Science (1998) 280(5362):427–31. doi:10.1126/science.
280.5362.427

302. Schon MP, Arya A, Murphy EA, Adams CM, Strauch UG, Agace WW, et al.
Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E
(CD103)-deficient mice. J Immunol (1999) 162(11):6641–9.

303. Shacklett BL, Cox CA, Sandberg JK, Stollman NH, Jacobson MA, Nixon DF.
Trafficking of human immunodeficiency virus type 1-specific CD8+ T cells
to gut-associated lymphoid tissue during chronic infection. J Virol (2003)
77(10):5621–31. doi:10.1128/JVI.77.10.5621-5631.2003

304. Shacklett BL, Cu-Uvin S, Beadle TJ, Pace CA, Fast NM, Donahue SM,
et al. Quantification of HIV-1-specific T-cell responses at the mucosal
cervicovaginal surface. AIDS (2000) 14(13):1911–5. doi:10.1097/00002030-
200009080-00005

305. Inoue M, Ogawa H, Miyata M, Shiozaki H, Tanizawa O. Expression of E-
cadherin in normal, benign, and malignant tissues of female genital organs.
Am J Clin Pathol (1992) 98(1):76–80.

306. Kiravu A, Gumbi P, Mkhize NN, Olivier A, Denny L, Passmore JA. Evaluation of
CD103 (alphaEbeta7) integrin expression by CD8 T cells in blood as a surrogate
marker to predict cervical T cell responses in the female genital tract during
HIV infection. Clin Immunol (2011) 141(2):143–51. doi:10.1016/j.clim.2011.
06.008

307. Mora JR. Homing imprinting and immunomodulation in the gut: role
of dendritic cells and retinoids. Inflamm Bowel Dis (2008) 14(2):275–89.
doi:10.1002/ibd.20280

308. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M,
et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells.
Nature (2003) 424(6944):88–93. doi:10.1038/nature01726

309. Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH.
Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from
skin- and gut-associated lymphoid tissues. J Exp Med (2005) 201(2):303–16.
doi:10.1084/jem.20041645

310. Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing pheno-
types by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues.
J Exp Med (2002) 195(1):135–41. doi:10.1084/jem.20011502

311. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, et al. Generation of
gut-homing IgA-secreting B cells by intestinal dendritic cells. Science (2006)
314(5802):1157–60. doi:10.1126/science.1132742

312. Shacklett BL. Cell-mediated immunity to HIV in the female reproductive tract.
J Reprod Immunol (2009) 83(1–2):190–5. doi:10.1016/j.jri.2009.07.012

313. Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV. Innate immunity in
the human female reproductive tract: endocrine regulation of endogenous
antimicrobial protection against HIV and other sexually transmitted infections.
Am J Reprod Immunol (2011) 65(3):196–211. doi:10.1111/j.1600-0897.2011.
00970.x

314. Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM, et al.
Human cervicovaginal mucus contains an activity that hinders HIV-1 move-
ment. Mucosal Immunol (2013) 6(2):427–34. doi:10.1038/mi.2012.87

315. Poonia B, Walter L, Dufour J, Harrison R, Marx PA, Veazey RS. Cyclic changes
in the vaginal epithelium of normal rhesus macaques. J Endocrinol (2006)
190(3):829–35. doi:10.1677/joe.1.06873

316. Vishwanathan SA, Guenthner PC, Lin CY, Dobard C, Sharma S, Adams DR,
et al. High susceptibility to repeated, low-dose, vaginal SHIV exposure late in
the luteal phase of the menstrual cycle of pigtail macaques. J Acquir Immune
Defic Syndr (2011) 57(4):261–4. doi:10.1097/QAI.0b013e318220ebd3

317. Veazey RS, Shattock RJ, Klasse PJ, Moore JP. Animal models for microbicide
studies. Curr HIV Res (2012) 10(1):79–87. doi:10.2174/157016212799304715

318. Heffron R, Donnell D, Rees H, Celum C, Mugo N,Were E, et al. Use of hormonal
contraceptives and risk of HIV-1 transmission: a prospective cohort study.
Lancet Infect Dis (2012) 12(1):19–26. doi:10.1016/S1473-3099(11)70247-X

319. Pudney J, Quayle AJ, Anderson DJ. Immunological microenvironments in
the human vagina and cervix: mediators of cellular immunity are concen-
trated in the cervical transformation zone. Biol Reprod (2005) 73(6):1253–63.
doi:10.1095/biolreprod.105.043133

320. Xu H, Wang X, Veazey RS. Mucosal immunology of HIV infection. Immunol
Rev (2013) 254(1):10–33. doi:10.1111/imr.12072

321. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, et al.
Programming the magnitude and persistence of antibody responses with innate
immunity. Nature (2011) 470(7335):543–7. doi:10.1038/nature09737

322. Tregoning JS, Buffa V, Oszmiana A, Klein K, Walters AA, Shattock RJ. A
“prime-pull” vaccine strategy has a modest effect on local and systemic
antibody responses to HIV gp140 in mice. PLoS One (2013) 8(11):e80559.
doi:10.1371/journal.pone.0080559

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 10 March 2014; accepted: 23 April 2014; published online: 08 May 2014.
Citation: Chanzu N and Ondondo B (2014) Induction of potent and long-
lived antibody and cellular immune responses in the genitorectal mucosa could
be the critical determinant of HIV vaccine efficacy. Front. Immunol. 5:202. doi:
10.3389/fimmu.2014.00202
This article was submitted to Microbial Immunology, a section of the journal Frontiers
in Immunology.
Copyright © 2014 Chanzu and Ondondo. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org May 2014 | Volume 5 | Article 202 | 97

http://dx.doi.org/10.1126/science.280.5362.427
http://dx.doi.org/10.1126/science.280.5362.427
http://dx.doi.org/10.1128/JVI.77.10.5621-5631.2003
http://dx.doi.org/10.1097/00002030-200009080-00005
http://dx.doi.org/10.1097/00002030-200009080-00005
http://dx.doi.org/10.1016/j.clim.2011.06.008
http://dx.doi.org/10.1016/j.clim.2011.06.008
http://dx.doi.org/10.1002/ibd.20280
http://dx.doi.org/10.1038/nature01726
http://dx.doi.org/10.1084/jem.20041645
http://dx.doi.org/10.1084/jem.20011502
http://dx.doi.org/10.1126/science.1132742
http://dx.doi.org/10.1016/j.jri.2009.07.012
http://dx.doi.org/10.1111/j.1600-0897.2011.00970.x
http://dx.doi.org/10.1111/j.1600-0897.2011.00970.x
http://dx.doi.org/10.1038/mi.2012.87
http://dx.doi.org/10.1677/joe.1.06873
http://dx.doi.org/10.1097/QAI.0b013e318220ebd3
http://dx.doi.org/10.2174/157016212799304715
http://dx.doi.org/10.1016/S1473-3099(11)70247-X
http://dx.doi.org/10.1095/biolreprod.105.043133
http://dx.doi.org/10.1111/imr.12072
http://dx.doi.org/10.1038/nature09737
http://dx.doi.org/10.1371/journal.pone.0080559
http://dx.doi.org/10.3389/fimmu.2014.00202
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


REVIEW ARTICLE
published: 03 July 2014

doi: 10.3389/fmicb.2014.00329

Challenges to the development of vaccines to hepatitis C
virus that elicit neutralizing antibodies
Heidi E. Drummer 1,2,3*

1 Viral Fusion Laboratory, Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.
2 Department of Microbiology, Monash University, Clayton, VIC, Australia
3 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia.

Edited by:

Eric J. Gowans, The University of
Adelaide, Australia

Reviewed by:

Dirk Dittmer, University of North
Carolina at Chapel Hill, USA
Janet Mans, University of Pretoria,
South Africa

*Correspondence:

Heidi E. Drummer, Viral Fusion
Laboratory, Centre for Biomedical
Research, Burnet Institute, 85
Commercial Road, Melbourne, VIC
3004, Australia
e-mail: hdrummer@burnet.edu.au

Despite 20 years of research, a vaccine to prevent hepatitis C virus (HCV) infection has not
been developed. A vaccine to prevent HCV will need to induce broadly reactive immunity
able to prevent infection by the 7 genetically and antigenically distinct genotypes circulating
world-wide. HCV encodes two surface exposed glycoproteins, E1 and E2 that function as
a heterodimer to mediate viral entry. Neutralizing antibodies (NAbs) to both E1 and E2 have
been described with the major NAb target being E2.The function of E2 is to attach virions to
host cells via cell surface receptors that include, but is not limited to, the tetraspanin CD81
and scavenger receptor class B type 1. However, E2 has developed a number of immune
evasion strategies to limit the effectiveness of the NAb response and possibly limit the
ability of the immune system to generate potent NAbs in natural infection. Hypervariable
regions that shield the underlying core domain, subdominant neutralization epitopes and
glycan shielding combine to make E2 a difficult target for the immune system. This review
summarizes recent information on the role of NAbs to prevent HCV infection, the targets of
the NAb response and structural information on glycoprotein E2 in complex with neutralizing
antibodies.This new information should provide a framework for the rational design of new
vaccine candidates that elicit highly potent broadly reactive NAbs to prevent HCV infection.

Keywords: glycoprotein E2, neutralizing antibody, CD81, immune evasion, viral entry

ARTICLE
The most cost effective means of controlling infectious disease is
through vaccination, however, a prophylactic or therapeutic vac-
cine for HCV is not available. HCV is a small, enveloped positive
sense RNA virus within the Flaviviridae family. HCV is classified
into seven major genotypes that display up to 33 % nucleotide
variation and >100 subtypes that display up to 20% nucleotide
variation. The genotypes of HCV have a geographical distribution
with genotypes 1–3 prevalent world-wide. Individuals infected
with HCV harbor a swarm of closely related viruses referred to as
a quasispecies. The degree of sequence variation observed for HCV
exceeds that for HIV and influenza, posing a major challenge to
vaccine development. Essential to the success of an HCV vaccine
will be an ability to confer broad protection against the circulating
strains of HCV.

THE ROLE OF ANTIBODY IN HCV INFECTION
The effectiveness of all current licensed viral vaccines relies on the
production of neutralizing antibody (NAb; Lambert et al., 2005).
Strong evidence now exists that NAbs play a major role in clear-
ance of HCV infections. Longitudinal analysis of HCV infection
cohorts reveals that broadly specific NAb (brNAb) elicited early
in infection correlates with viral clearance (Lavillette et al., 2005;
Pestka et al., 2007; Dowd et al., 2009). By contrast, people who
failed to make NAbs progressed to chronic infection. Sequence
analysis of the structural region during chronic infection reveals
that the development of a NAb response correlates with sequence
evolution, likely to be a result of immune escape (von Hahn et al.,

2007; Liu et al., 2010). In a single case study, Raghuraman et al.
(2012) examined the NAb and cellular immune responses in a
patient with long term chronic HCV who spontaneously cleared
their virus after 62 weeks of infection. Viral clearance correlated
with the appearance of NAb at 48 weeks and a reversal of T cell
exhaustion. Neutralizing antibodies also play an important role
in people who have previously cleared their HCV infection but
become infected on reexposure to HCV. Neutralizing antibodies
were detected during the acute phase of infection in 60% of rein-
fected participants who went on to clear their reinfection but was
not detected in 2 patients who progressed to chronic infection
(Osburn et al., 2010). Overall, the findings of these studies suggest
that the development of a NAb response during the early phase of
acute infection is a strong correlate of viral clearance. Consistent
with these observations, passive transfer of broadly neutralizing
monoclonal or polyclonal NAbs to experimental animals protects
them against viral challenge (Law et al., 2008; Vanwolleghem et al.,
2008; Morin et al., 2012). However, administration of a sterilizing
dose of antibody must precede infection, otherwise the antibody
is not effective at preventing infection, but can reduce viral loads
(Meuleman et al., 2008; Morin et al., 2012).

HCV GLYCOPROTEINS E1 AND E2
Hepatitis C virus encodes two glycoproteins, E1, and E2 that are
cleaved from the viral polyprotein by signal peptidases. E1/E2
function as a heterodimer to mediate viral entry. E2 mediates
attachment to cellular receptors CD81 and scavenger receptor
class B type 1 (SR-B1) via sequences within its RBD (Pileri et al.,
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1998; Scarselli et al., 2002). The functional properties of E1/E2 and
the ability of E1/E2-specific antibodies to prevent viral entry can
be studied using retroviruses pseudotyped with E1/E2 (HCVpp;
Bartosch et al., 2003; Drummer et al., 2003; Hsu et al., 2003) or cell
culture derived HCV (HCVcc) made by transfecting full-length
HCV RNA into Huh 7 cells (Lindenbach et al., 2005; Wakita et al.,
2005; Yi et al., 2006).

Glycoprotein E1 is essential for viral entry as HCVpp lacking E1
is non-infectious but its function in entry is unknown (Drummer
et al., 2003). E1 contains a C-terminal transmembrane domain
(TMD) that anchors the ectodomain to the virion and contains
four or five glycosylation sites (Figure 1A). Relatively few NAbs
have been described for E1 (Keck et al., 2004b; Meunier et al., 2008)
suggesting it is a subdominant immunogen in natural infection.
Glycoprotein E1 is essential for the correct assembly and stability of
the E1/E2 heterodimer in HCVcc and allosterically modulates the
structure of E2 and its ability to bind cellular receptors (McCaffrey
et al., 2011; Wahid et al., 2013).

Glycoprotein E2 comprises ∼ 11 largely conserved N-linked
glycosylation sites and 18 conserved cysteines (Figure 1A). The
receptor binding domain, residues 384–661 (RBD), folds inde-
pendently of other E1/E2 sequences. The RBD is linked through
a conserved C-terminal stem to the TMD (Drummer and Poum-
bourios, 2004; Figure 1A). The binding site for CD81, the major
cellular receptor for all HCV strains, comprises highly conserved
segments within the E2 RBD (Drummer et al., 2002; Roccasecca
et al., 2003; Zhang et al., 2004; Drummer et al., 2006; Owsianka
et al., 2006; Figure 1A). These regions of E2 interact with the
large extracellular loop (LEL) of CD81 through Ile182, Asn184,
Phe186, and Leu162 on the head subdomain (Higginbottom et al.,
2000; Drummer et al., 2002).

VARIABLE REGIONS OF THE E2 GLYCOPROTEIN
Located within the RBD are four variable regions (Figure 1A). The
N-terminal hypervariable region 1 (HVR1) is 27 amino acids in
length and resides outside the core domain of E2, and no structural
information is available (Weiner et al., 1991; Kato et al., 1992).
Despite the high degree of sequence variation, the overall basic
charge of this region is preserved, possibly to maintain interac-
tions with SR-B1 (Penin et al., 2001; Dao Thi et al., 2011). Deletion
of HVR1 from the E2 RBD abolishes the interaction with SR-B1,
while deletion of HVR1 in the context of HCVpp abolishes high-
density lipoprotein (HDL)-mediated enhancement of viral entry,
thereby increasing the effectiveness of NAb (Dao Thi et al., 2011).
Originally, hypervariable region 2, HVR2, was described as a nine
amino acid sequence (Kato et al., 1992) downstream of HVR1.
Further analysis across different HCV genotypes suggested a more
extensive area of variation (res. 461–481) flanked by conserved cys-
teine residues that form a surface exposed disulfide bonded loop,
not essential for folding of the E2 RBD core (McCaffrey et al., 2007;
Kong et al., 2013). Sequence identity within HVR2 ranges from
39% in genotypes 1a and b to 93% in genotype 5a (McCaffrey et al.,
2007). An additional cysteine-flanked variable region (igVR, res.
570–580) was described that is relatively conserved within a geno-
type but exhibits a high degree of intergenotypic variation in both
length (10–15 res) and sequence (McCaffrey et al., 2007). Deletion
of either HVR2 or the igVR in the context of E1/E2 incorporated

into HCVpp is not tolerated as E2 fails to form heterodimers with
E1 and the resultant HCVpp are not infectious (McCaffrey et al.,
2011). These data suggest that HVR2 and the igVR are essential to
the virion incorporated E1/E2 structure. There is no evidence in
the literature to suggest that HVR2 or the igVR are targets of the
antibody response and so are unlikely to be under immune pres-
sure. McCaffrey et al. (2007) have shown that HVR1, HVR2, and
the igVR can be simultaneously deleted from the RBD without dis-
rupting its native fold and receptor binding ability, indicating that
they are outside a conserved core domain (McCaffrey et al., 2007).
Analysis of sequence variation within patient isolates revealed a
third hypervariable region (HVR3) within the sequence 434–450,
that appears to be under immune selection pressure (Troesch et al.,
2006; Torres-Puente et al., 2008).

THE THREE DIMENSIONAL STRUCTURE OF THE E2 CORE
DOMAIN
Recently, X-ray crystallography and electron microscopy have pro-
vided the first insights into the structure of glycoprotein E2. The
structure provided by Kong et al. (2013) was obtained for an E2
core domain containing residues 412–645 that lacked two glyco-
sylation sites at Asn448 and Asn576, and HVR2 residues 460–485
were replaced with a Gly-Ser-Ser-Gly linker (Figure 1B). The sec-
ond structure was for an E2 core comprising residues 456–656
(Khan et al., 2014). The structures were largely similar and revealed
that unlike its related glycoprotein E flavivirus counterparts HCV
E2 does not have a three domain architecture reminiscent of other
class II fusion proteins. Instead, E2 core adopts a compact globu-
lar immunoglobulin-like fold comprising a central β-sandwich
surrounded by short front and back layers comprising loops,
short helices and β sheets (Kong et al., 2013; Khan et al., 2014;
Figures 1B,C). Verification that E2 adopts a compact globular
fold when expressed as the complete E2 ectodomain was provided
by electron microscopy (Kong et al., 2013). The immunoglobu-
lin fold resembles domain III of the class II fusion proteins, the
only common structural element with the alpha and flavivirus
fusion proteins. In the core domain of HCV E2, 8 disulfide bonds
were formed but many regions lacked regular secondary struc-
ture including the regions between residues 412–420 and 454–491
surrounding the truncated HVR2 region and a loop at 586–596
(Kong et al., 2013). Six of the N-linked glycans also were also
largely disordered at Asn417, Asn423, Asn532, Asn540, Asn623,
and Asn556 (Kong et al., 2013). The immunoglobulin sandwich is
formed by 4 β strands that form an inner sheet and two solvent
exposed β strands that comprise the outer sheet. A loop con-
nects the inner sheet to the outer sheet and contains many of
the key CD81 binding residues and is adjacent to the front layer
where additional CD81 contact residues are found that are surface
exposed (Figures 1D,E). The igVR is within a flexible region span-
ning 567–596 and the back layer is formed by two short α-helices
and 4 β sheets.

TARGETS OF THE ANTIBODY RESPONSE TO HCV
ANTIBODY RESPONSE TO E1
Neutralizing monoclonal antibodies specific to E1 or epitopes that
are targets of NAbs have been described although they are relatively
limited in number. This may in part be due to the inability to
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FIGURE 1 | (A) Schematic of hepatitis C virus glycoproteins E1 and E2
showing the location of conserved glycosylation sites (trees). The
transmembrane domains are shown in black and the E2 stem region is
indicated with a cylinder. The location of hypervariable regions in E2 is
shown in red and the three immunogenic epitopes designated epitopes
I, II, and III are underlined. Regions involved in CD81 binding are
shown in green with specific contact residues shown in Table 1.

(B) Schematic of the E2 core domain according to the designations of
Kong et al. (2013). (C) Structure of the E2 core domain colored
according to B. (D) Surface representation of C. Purple and teal
regions represent the neutralizing face of E2 and overlap with CD81
contact residues shown in E. (E) Surface representation of the E2 core
domain with those residues involved in CD81 with their locations
colored according to B.

express a recombinant form of E1 that is a known mimic for the
structure of E1 in virions and the likelihood that E1 is largely
occluded by E2 in virion incorporated heterodimers. Antibody H-
111 binds an epitope at the N-terminus of E1, immunoprecipitates
E1/E2 heterodimers and has cross-neutralizing potential (Keck
et al., 2004b). Two MAbs isolated from a human who had cleared
their genotype 1b infection, IGH505 and IGH526 recognize over-
lapping but distinct epitopes within the sequence 307–340, and
neutralize genotypes 1a, 1b, 4a, 5a, and 6a viruses, but not 2b or
3a. Interestingly, only 2/31 MAbs isolated by Meunier et al. (2008)

were specific to E1 neutralized virus suggesting that such anti-
bodies may be rarely elicited. Additional epitopes recognized by
human serum have been discovered using overlapping peptides or
using mass spectrometry and include epitopes at 264–318 (Kachko
et al., 2011) and 308–325 (Grollo et al., 2006).

THE ANTIBODY RESPONSE TO E2
Thus far, two specificities of NAb elicited in natural infection and
following vaccination with E2 derived immunogens have been
identified. Neutralizing antibodies directed toward the N-terminal
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HVR1 are immunodominant in natural infection (Kato et al.,
1993, 1994; Zibert et al., 1995). Immune serum raised to HVR1
has the ability to protect chimpanzees from experimental infec-
tion with a homologous strain of virus but are type-specific with
limited ability to neutralize immune escape variants within the
HVR1 sequence (Farci et al., 1996). As a result antibodies are
believed to have a major role in driving immune escape (Edwards
et al., 2012) and HVR1 has been proposed to be an immune
decoy (Mondelli et al., 2001). Analysis of the evolution of HCV
sequences in people infected with HCV reveals that in the absence
of NAb activity, the HVR1 sequence remains stable but rapidly
evolves under NAb pressure (Liu et al., 2010). Analysis of HVR1
specific antibody responses in HCV-infected people revealed that
those who cleared virus spontaneously were more likely to have
detectable anti-HVR1 antibodies in their serum within the first
6 months of infection (Zibert et al., 1997) and suggests that induc-
tion of HVR1 specific antibodies in some circumstances may favor
viral clearance.

While HVR1 specific antibodies are largely type-specific, evi-
dence that some anti-HVR1 antibodies can be cross reactive was
obtained by vaccinating rabbits with a panel of HVR1 peptides
(Shang et al., 1999). The subsequent antibody response was able
to recognize diverse HVR1 sequences, capture HCV from patient
serum and prevent HCV binding to cells. A monoclonal antibody
specific to HVR1 was also shown to be cross reactive and contained
conserved amino acids within its epitope (Li et al., 2001). While
neutralization assays were not available at the time these studies
were preformed the data suggest that HVR1 cannot be entirely
discounted as a desirable component of an HCV vaccine.

The second major specificity of NAb is directed toward
sequences involved in CD81 binding. Antibodies specific to the
CD81 binding site located on the surface of E2 are frequently
cross neutralizing due to the high degree of sequence conserva-
tion (Keck et al., 2004a; Johansson et al., 2007; Law et al., 2008).
Residues involved in binding CD81 have been mapped by per-
forming mutagenesis of E2 RBD E1/E2 and E1/E2 incorporated
into HCVpp and is summarized in Table 1. A striking feature
of these contact residues is that they are mostly aromatic and
hydrophobic amino acids and they are highly conserved between
genotypes or the substitutions are conservative; in the case of
Trp437, Phe is more frequently observed in genotypes 1b and 2-7,
and for residues Leu438 and Phe442 alternative amino acids are
I, V or M and L, M or I, respectively. The major NAb specificities
elicited toward E2 that block CD81 binding in infected humans
recognize epitopes that contain amino acids within the regions
spanning residues 411–428 and 429–448 and 523–549 and thus
directly overlap with the regions of E2 involved in CD81 binding.
These regions involved in CD81 binding overlap with neutraliza-
tion epitopes and this area represents the neutralizing face of E2
(Figures 1D,E).

A subset of antibodies directed to these regions can bind to
their epitopes in the context of synthetic peptide analogs of 411–
428 (epitope I) and 429–448 (epitope II; Figure 1A). Examples
of human monoclonal NAbs that recognize these regions include
HCV1, and 95-2 (epitope I), and 84-1, 84-25, 85-26 and 84-27 (epi-
tope II). Antibodies that bind their epitope within the 523–549
sequence, referred to as epitope III, have also been described and

Table 1 | Residues of E2 involved in binding to CD81.

Residuea Epitopeb Alternative amino

acidsc

Reference

Trp420 I – Owsianka et al. (2006)

His421 I – Boo et al. (2012)

Trp437 II Phe Drummer et al. (2006)

Leu438 II Ile,Val, Met Drummer et al. (2006)

Leu441 II – Drummer et al. (2006)

Phe442 II Leu, Met, Ile Drummer et al. (2006)

Tyr527 III – Owsianka et al. (2006)

Trp529 III Phe Owsianka et al. (2006)

Gly530 III – Owsianka et al. (2006)

Asp535 III – Owsianka et al. (2006)

Y613RLWHYd – Roccasecca et al. (2003)

aAnalysis was performed on genotype 1a isolates. bLocation of amino acid within
an antigenic region. cAlternative amino acids observed in other isolates of HCV.
A dash indicates conserved.dData derived by replacing this region with SAASAS.

include e20, (1:7) and A8 but appear to be conformation depen-
dent (Allander et al., 2000; Johansson et al., 2007; Mancini et al.,
2009; Edwards et al., 2012). Another subset of antibodies recog-
nize discontinuous epitopes containing amino acids from one or
more of these regions and only bind folded E2 in the context of
the recombinant RBD or virion incorporated E2 such as CBH-5,
CBH-7, AR3A, AR3B, AR3C, AR3D, and Fab e137 (Hadlock et al.,
2000; Law et al., 2008; Owsianka et al., 2008; Perotti et al., 2008;
Edwards et al., 2012).

Recently, X-ray crystal structures have been determined for
neutralizing MAbs in complex with synthetic peptides analogs of
epitopes I and II and of the region encompassing epitope III in the
context of the E2 core domain. The structures reveal important
information about the conformation of these epitopes, the mode
of binding and the presence of a neutralizing face on the surface
of the E2 molecule.

EPITOPE I
The region encompassing epitope I is absent from the available
structures of the E2 core domain but two structures of MAbs
in complex with synthetic peptides reveal important structural
information about this region. The murine antibody AP33 was
first discovered in 2001 and is a brNAb specific to epitope I
(Owsianka et al., 2001, 2005). Its binding site comprises a dis-
continuous sequence within this region and includes amino acids
Leu413, Asn415, Gly418, and Trp420 with contribution by Asn417.
These amino acids are highly conserved between HCV isolates
and explain its broad cross reactivity (Tarr et al., 2006). How-
ever, this specificity of antibody does not appear to be frequently
elicited in patients with HCV as it was detected in only 2.5% of
serum samples collected from acute and chronic phases of HCV
(Tarr et al., 2007). The X-ray structure of AP33 with epitope I
reveals that the peptide forms a type 1 β-hairpin structure that
is sandwiched between the heavy and light chain of antibody.
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Hydrogen bonds formed with Asn416 and Gly418 and hydropho-
bic interactions between the side chains of Leu413 and Trp420
form the major interactions and residues from all CDR loops
except L2 are involved in binding to the peptide (Kong et al.,
2012a).

The human MAb HCV1 is specific to epitope I and is able
to neutralize genotype 1a, 1b, 2b, 3a, and 4a and binds its epi-
tope at nanomolar affinity (Broering et al., 2009). Administration
of HCV1 to chimpanzees protects against HCV infection and
can be used to treat acutely infected chimpanzees (Morin et al.,
2012). As a result of these promising results, HCV1 is currently
being evaluated in clinical trials for its ability to prevent rein-
fection of the liver following transplantation. The major contact
residues are Leu413 and Trp420 (Broering et al., 2009) although
NAb escape mutants can be selected that possess the mutation
Asn415Asp/Lys. The crystal structure of HCV1 in complex with
a peptide containing HCV residues 412-423 again reveals a type
1 β hairpin structure for the peptide in contact with the heavy
chain CDR2 and CDR3 loops and the CDR3 loop of the light
chain (Kong et al., 2012b; Figure 2A). The ability of HCV1 to
mediate broad neutralization is further explained by the con-
servation of its contact residues and the solvent accessibility of
this region on the surface of E2. Additional alanine scanning
performed in the context of E1/E2 heterodimer revealed that
Asn415 and Gly418 were essential for HCV1 binding because these
residues are critical to the formation of the β hairpin turn and the
conformation of epitope I. Mutagenesis studies revealed that sub-
stitution of Asn415 with glutamine, glutamate or lysine preserved
the β turn architecture and maintained viral fitness while signifi-
cantly reducing the effectiveness of HCV1 to neutralize virus, and
thus provides a potential mechanism for in vivo escape (Kong et al.,
2012b).

EPITOPE II
The region encompassing epitope II overlaps extensively with
key CD81 contact residues (Drummer et al., 2006) and brNAb
that bind this region have only recently been described (Law et al.,
2008; Keck et al., 2012). Antibodies to this region are particu-
larly interesting as passage of cell culture derived virus with a
neutralizing amount of antibody fails to select for escape mutants
suggesting that fit viruses with escape mutations cannot be selected
(Keck et al., 2012). Two antibodies, 84-1 and 84-27 recognize a
synthetic peptide analog and their crystal structures have been
determined (Krey et al., 2013). In both cases, the peptide adopts the
same conformation suggesting it reflects that observed in the native
structure of E2, and not an induced fit conferred by the antibody.
The peptide adopts a 1.5 α-helical turn spanning Trp437-Phe442
with Tyr438-Lys446 adopting an extended conformation. In the
case of 84-1, E2 amino acids Leu441 and Phe442 make exten-
sive hydrophobic contact with the antibody heavy chain that is
further stabilized by a hydrogen bonding network that includes
Lys446 and Trp443 (Figure 2B). Analysis of the Los Alamos
HCV database revealed that Thr435, Gly436, Ala439, Leu441, and
Tyr443 are highly conserved while Gln444 and His445 are less
conserved. The key contact residue Phe442, conserved in 60% of
sequences, can only be replaced with bulky hydrophobic amino
acids. The conservation of Leu441 and Phe442 suggest a strict

structural constraint at this position to maintain glycoprotein
function, possibly explaining why neutralization escape mutants
could not be selected with these antibodies. This immunogenic
domain of E2 overlaps with HVR3 and suggests that the region
is under immune selection pressure suggesting that some anti-
bodies to this region, elicited in natural infection, may not be
able to prevent immune escape in vivo, as was observed for 84-1
in vitro.

EPITOPE III
The E2 structure provided by Kong et al. (2013) was obtained
by co-crystallization of E2 with neutralizing human MAb AR3C
whose epitope contains residues from epitope III at positions 530,
535, 538, and 540 and one residue from epitope I at position 424
(Law et al., 2008; Figure 2C). In the co-crystal structure, AR3C
buries 828 Å of E2 surface area and 161 Å of E2 glycan surface
area and additional points of contact with E2 were revealed (Kong
et al., 2013). 86% of the buried E2 surface comprises residues that
are 80–100% conserved across all E2 sequences. The epitope of
AR3C comprises most of the front layer, some amino acids between
421–446 and the CD81 binding loop. The majority of contacts with
E2 are mediated by the heavy chain CDR3 (44% of total buried
surface). The binding site for AR3C overlaps directly with the
CD81 binding site and is a surface exposed, hydrophobic region,
relatively unobscured by carbohydrate (Kong et al., 2013). A vac-
cine with the ability to elicit such antibody specificities is therefore
highly desirable as they are likely to have broad neutralization
potential.

WHY HAVE VACCINES FOR HCV NOT BEEN DEVELOPED?
Unlike its flavivirus counterparts, expression of the HCV glyco-
proteins E1 and E2 does not result in the secretion of subviral
particles, the component of all flaviviral vaccines. The ability to
culture HCV was developed in 2005 but remains limited to a hand-
ful of isolates and titres remain low making large-scale production
of an inactivated vaccine unlikely. Nevertheless, Akazawa et al.
(2013) have successfully demonstrated that sufficient HCVcc can
be produced from cell culture and the inactivated HCVcc were
used to immunize mice. The antibodies were able to neutralize
genotypes 1a, 1b, and 2a viruses and prevented the infection
of human liver transplanted onto uPa-SCID mice but only at
the lowest homologous challenge dose of virus (Akazawa et al.,
2013). In vivo heterologous neutralization was not examined. The
immune serum from mice vaccinated with the inactivated HCVcc
particles were more efficient at neutralizing homologous virus
than immune serum from mice vaccinated with recombinant E2
alone or recombinant E1 and E2, suggesting intact particles are
likely to be more immunogenic than the isolated recombinant
glycoproteins.

Only one HCV vaccine candidate aimed at eliciting NAb has
been tested in humans. The vaccine initially developed by Chiron
Corporation was based on recombinant HCV E1 and E2 glyco-
proteins purified from mammalian cells as a non-disulfide linked
heterodimer. In preclinical studies conducted in chimpanzees,
the vaccine induced high titres of E1 and E2 specific antibodies
and prevented five chimpanzees from becoming infected with a
homologous challenge of virus and protection correlated with the
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FIGURE 2 | Structure of human MAbs in complex with their

epitopes. (A) Structure of the paratope of MAb HCV1 in complex with
synthetic peptide spanning residues 412–423 within E2 epitope I (pink).
Amino acids side chains within the paratope in contact with the
antibody epitope are shown as sticks. The antibody heavy chain is
colored green and the light chain is in blue and major contact residues

within the peptide shown as purple sticks. (B) Structure of the paratope
of HC84-1 with its epitope spanning 435–446. Labeled as for A.
(C) Structure of the E2 core domain in complex with neutralizing
antibody AR3C. E2 is colored in red with the side chains of the amino
acid in contact with the antibody shown as sticks. Heavy chain is green
and light chain is blue.

presence of high titre anti-E2 antibodies (Choo et al., 1994). Chal-
lenge of the chimpanzees with a closely related heterologous virus
strain resulted in infection in all cases; all but one vaccinee did not
progress to chronic infection, suggesting the vaccine does induce a
degree of protective but not sterilizing immunity (Houghton and
Abrignani, 2005).

The recombinant E1/E2 vaccine was trialed in healthy human
volunteers and adjuvanted with MF59. The initial results of this
trial revealed that 15/41 subjects had antibody reactive to E1 region
313-327, 21/41 subjects had anti-HVR1 specific antibodies, 23/41
had epitope I reactive antibodies, and 13/41 had epitope II reactive
antibodies, where reactivity was defined as a greater than twofold
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higher optical density compared to pre-immune or placebo sam-
ples (Ray et al., 2010). Nine, 11, 10, and 5 samples with E1,
HVR1, epitope I, or epitope II reactive antibodies, respectively,
neutralized virus, although it is not entirely clear what level of
neutralization was achieved. The higher proportions of epitope I
reactive antibodies compared to that reported in natural infection
is a promising outcome of this vaccine trial if it can be corre-
lated with an increase in cross-neutralizing activity in these sera.
In a subsequent study, using a more extensive panel of HCVcc
from each of the 7 genotypes revealed that of the three subjects
tested, one subject elicited sera with the ability to mediate ∼25 to
80% neutralization of HCVcc at a 1/50 dilution of serum with the
highest neutralization observed against genotype 6 and the low-
est to genotype 7 (Law et al., 2013). These results should provide
encouragement to the field of vaccine research that cross neu-
tralizing antibodies can be elicited by recombinant E1/E2 based
vaccines and warrant further study. A major limitation of the stud-
ies described above are the relatively low titres of NAbs elicited,
their limited cross neutralizing potential, and their modest level of
neutralization. A number of mechanisms whereby the HCV gly-
coproteins can evade the immune response have been illuminated
and suggest that alternative approaches to vaccine design may be
required, similar to the approach currently being used for HIV
and influenza (Nabel, 2012).

INTERFERENCE OF NEUTRALIZATION BY VARIABLE REGIONS
OF E2
The three variable regions of E2 have been implicated in immune
evasion by HCV. HVR1 contains the epitopes of NAbs that
block E2 binding to SR-B1 but not to CD81 (Sabo et al., 2011).
Instead, HVR1 antibodies can allosterically shield the CD81
binding site and conserved NAb epitopes therein providing an
additional mechanism of neutralization escape (Bankwitz et al.,
2010). Roccasecca et al. (2003) examined the effect of chimeriza-
tion of HVR1 and HVR2 in closely related strains of HCV and
the effect of HVR1 deletion on CD81 binding. The efficiency of
CD81 binding was found to be strain dependent and deletion
of HVR1 enhanced CD81 binding when performed in the con-
text of recombinant E2 RBD and recombinant CD81 LEL and
RBD binding to CD81 on the surface of Molt-4 cells suggest-
ing that HVR1 may at least partially occlude the CD81 binding
site. When HVR1 or HVR2 was swapped between E2 strains,
no difference in CD81 binding was observed. However, when
both HVR1 and HVR2 of strain H were interchanged with
those of the N2 strain, a fourfold reduction in CD81 binding
was observed. The reciprocal chimera resulted in an increase
in CD81 binding (Roccasecca et al., 2003). These results suggest
that CD81 binding is modulated by the presence of HVR1 and
the sequence of HVR2 implying that these regions are flexible
surface exposed domains that may provide a means to shield
the underlying CD81 binding site, occluding it from immune
surveillance.

The effect of the variable regions on CD81 binding was fur-
ther explored by McCaffrey et al. (2007). In this study, HVR1,
HVR2, and the igVR were deleted from the E2 RBD individually
and in combination to identify the first E2 core domain (McCaf-
frey et al., 2007). While all three variable regions could be deleted

without affecting CD81 binding, deletion of two of the three vari-
able regions modulated CD81 binding function. Deletion of HVR2
and the igVR, or HVR1 and the igVR resulted in similar levels of
CD81 binding as wild-type E2 RBD. However, deletion of HVR1
and HVR2 from the E2 RBD resulted in an approximately 50%
reduction in CD81 binding. These results indicate that the pres-
ence of the igVR interferes with CD81 binding function when
HVR1 and HVR2 is absent and point to a functional interaction
between the igVR and HVR1 and/or HVR2 such that the CD81
binding site is properly formed or becomes fully accessible to the
receptor. The available crystal structures of E2 are of a monomer.
Absent from these structures is information about the E2 stem
region, E1 and detailed structural information about HVR1, epi-
tope I and HVR2. It is likely that the structure of intact E2 on the
surface of a virion as a heterodimer with E1 differs from the struc-
tures of the E2 core thus far available. Indeed, all fusion proteins
exist as either dimers of heterodimers or trimers of heterodimers
and this is likely to be the case for HCV as well. Thus it is pos-
sible that in these higher order structures of virion incorporated
E2, the variable regions may form additional contacts with the
opposing E1 or E2 protomers providing additional mechanisms
whereby HVR1, HVR2, and the igVR can interfere with antibody
recognition and CD81 binding.

Finally, the reason why HVR2 and igVR sequences evolve
rapidly in infected patients remains unresolved. Neither region
has been implicated as being targets of the antibody response sug-
gesting that a direct mechanism of immune evasion is not likely.
However, it is possible that the sequence of HVR2 and the igVR
could alter their ability to shield the E2 core from neutralizing
antibodies or alters E1/E2 conformation while retaining function
providing an allosteric mechanism of immune escape and require
further studies.

NEUTRALIZING AND NON-NEUTRALIZING ANTIBODIES
A subset of epitope II directed non-neutralizing antibodies have
been reported to interfere with the capacity of epitope I anti-
bodies to neutralize virus (Zhang et al., 2009) while other epitope
II-directed NAbs act cooperatively with epitope I specific NAbs
(Keck et al., 2012, 2013). The ability of neutralizing antibodies
directed toward epitope II to prevent neutralization escape sug-
gests that they are a highly desirable component of the antibody
response to any HCV vaccine but it is not clear what propor-
tions of antibodies specific to epitope II have neutralizing/non-
neutralizing activity in natural infection or in vaccination. Analysis
of the fine specificity of the antibody response in natural infec-
tion is necessary to dissect these effects and examine their
neutralization capacity.

GLYCOSYLATION OF E2 AND ITS EFFECT ON
NEUTRALIZATION
E2 contains 11 sites for N-linked glycosylation that are largely con-
served in different HCV isolates suggesting they play important
roles in glycoprotein structure and function. Helle et al. (2007)
found that Asn417, Asn532, and Asn623 obscured E2 from CD81
binding and interfered with the ability of antibody to neutralize
virus in the context of HCVpp. In HCVcc, an additional two glyco-
sylation sites impacted on neutralization sensitivity at Asn423 and
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Asn446 (Helle et al., 2010). All five glycosylation sites are directly
adjacent to CD81 contact residues suggesting that they may restrict
the ability to elicit NAbs toward these CD81 binding regions or
impact on accessibility of underlying epitopes to antibody neu-
tralization. In genotype 3a viruses, an additional glycosylation
site at position 495 reduces the sensitivity of HCV to neutral-
ization using pooled HCV positive immune serum, and suggests
that in some viruses, additional mechanisms of glycan mediated
immune escape may evolve (Anjum et al., 2013). The structure of
E2 indicates that 7/11 glycans shield the neutralizing face of the E2
core domain confirming that glycans potentially have the ability
to restrict the generation of antibodies to these regions in natu-
ral infection and vaccination and /or restrict antibody access to
epitopes.

IMPACT ON VACCINE DESIGN
While recombinant E2 provides an obvious vaccine candidate as
it can be produced in large amounts, the above information sug-
gests its use requires caution. Variable regions within E2 have the
potential to occlude the underlying CD81 binding site, HVR1 is
immunodominant and drives immune escape and the extensive
glycan shield protects the neutralizing face of E2. In addition,
the use of isolated E2 may promote the elicitation of antibodies
to the non-neutralizing face highly exposed in monomeric E2.
The lack of neutralizing ability of antibodies directed to this non-
neutralizing face of E2 is likely to be explained by its occlusion
in virion incorporated E1/E2 heterodimers or its occlusion in the
higher order arrangement of E1/E2 heterodimers in the virion,
e.g., dimers or trimers of heterodimers. These caveats on the
use of E2 as an immunogen are highly reminiscent of the HIV-
1 gp120 monomer that contains five variable regions, extensive
glycan shielding, and an immunodominant non-neutralizing face.

The low frequency of antibodies elicited to epitope I in natural
infection suggest it is subdominant and engineering of the E2
protein may be required to increase the titre of antibodies specific
to this region in vaccine candidates. Similar studies investigating
the titre and prevalence of antibodies directed toward epitopes II
or III are required to understand whether these specificities are
elicited in native forms of E2 or whether reengineering of E2 is
required to make these epitopes immunodominant. Finally, key to
successful vaccine design is an understanding of the correlates of
protective immunity. Future studies aimed at delineating the fine
specificity of the antibody response in people who successfully
clear their HCV infection will provide essential information to
guide the rational design of an HCV vaccine.
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Human newborns and infants are bombarded with multiple pathogens on leaving the
sterile intra-uterine environment, and yet have suboptimal innate immunity and limited
immunological memory, thus leading to increased susceptibility to infections in early
life. They are thus the target age group for a host of vaccines against common bacterial
and viral pathogens. They are also the target group for many vaccines in development,
including those against tuberculosis (TB), malaria, and HIV infection. However, neonatal and
infant responses too many vaccines are suboptimal, and in the case of the polysaccharide
vaccines, it has been necessary to develop the alternative conjugated formulations in order
to induce immunity in early life. Immunoregulatory factors are an intrinsic component of
natural immunity necessary to dampen or control immune responses, with the caveat that
they may also decrease immunity to infections or lead to chronic infection. This review
explores the key immunoregulatory factors at play in early life, with a particular emphasis
on regulatory T cells (Tregs). It goes on to explore the role that Tregs play in limiting
vaccine immunogenicity, and describes animal and human studies in which Tregs have
been depleted in order to enhance vaccine responses. A deeper understanding of the role
thatTregs play in limiting or controlling vaccine-induced immunity would provide strategies
to improve vaccine immunogenicity in this critical age group. New adjuvants and drugs are
being developed that can transiently suppressTreg function, and their use as part of human
vaccination strategies against infections is becoming a real prospect for the future.

Keywords: regulatory T cells, vaccines, infants, neonates, immunogenicity, immune modulation, adjuvants

INTRODUCTION
The infant immune system is uniquely adapted to meet the chal-
lenges of early life (Kollmann et al., 2012). The newborn emerges
from an immune-protected environment into a world where they
constantly encounter new antigens. There is therefore a need to
have a series of immunoregulatory mechanisms in place in order
to prevent excessive inflammation and tissue damage. At the same
time the infant needs to develop immune memory upon pathogen
encounter in order to be protected against future challenge. The
newborn has little immunological memory, and neonates and
infants are heavily reliant on innate immunity to protect them
against antigenic challenge as discussed in a series of comprehen-
sive review articles (Levy, 2007; Ghazal et al., 2013; Levy and Wynn,
2014).

In this review we discuss the regulatory factors that infants
employ to suppress or control their developing immunity. We will
focus on regulatory T cells (Tregs) in particular, and the poten-
tial role they play in suppressing or controlling vaccine-induced
immunity in early life. We will explore the mechanisms of action
used by Tregs to confer suppression, and differences in the pheno-
typic and functional characteristics between Tregs in infants and
adults. We will discuss the role of Tregs in malaria, HIV, and hep-
atitis C virus (HCV) infections; and briefly describe the results
of clinical trials in human infants of vaccines against these three
infections. A detailed understanding of the immunoregulatory

factors controlling vaccine immunogenicity in early life may
provide potential strategies for improving vaccine efficacy in
this vulnerable age group. We will discuss immunotherapeutic
agents and vaccine adjuvants developed for use in humans that
can down-modulate Treg activity and thus enhance vaccine effi-
cacy, demonstrating that this approach is a viable option for the
future.

THE INFANT IMMUNE SYSTEM
INNATE IMMUNITY
The innate immune system which acts as the first line of defense
against infection is suboptimal at birth, and does not reach
full capacity until teenage years. Innate cells express pattern
recognition receptors (PRRs) which detect highly conserved pat-
tern associate molecular patterns (PAMPs) expressed by invading
pathogens or vaccines, including Toll-like receptors (TLRs) and
NOD-like receptors (NLRs). Newborns and young infants have
similar levels of expression of these PRRs as adults (Kollmann
et al., 2012), however, responses to PRR stimulation are low at
birth in part due to diminished innate signaling pathways such
as IRF7 translocation (Danis et al., 2008) and TLR3 and 4 signal-
ing (Aksoy et al., 2007). Reactivity to certain PRR agonists, e.g.,
TLR4 and TLR5 are acquired rapidly, and reactivity of the viral
ssRNA sensing TLR7 and TLR8 receptors is robust from birth
(Burl et al., 2011), hence TLR7/8 agonists are being investigated
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as possible adjuvants to boost immune responses to neonatal vac-
cines (Dowling et al., 2013). Th2 (IL-6, IL-10) and Th17 (IL-6,
IL-23) polarizing cytokines dominate the innate response in early
life, while TNF-α and IL-1β responses rise in the first few years
of life as the former cytokines decline (Belderbos et al., 2009;
Kollmann et al., 2009; Nguyen et al., 2010; Burl et al., 2011).
Infant dendritic cell (DC) function is also suboptimal (De Wit
et al., 2004; Goriely et al., 2004; Aksoy et al., 2007), and NK cells
(Guilmot et al., 2011) and neutrophil functions (Carr, 2000) are
less potent than in adults. Low complement levels in neonatal
plasma are thought to increase susceptibility to certain bacte-
rial infections, and lead to impaired adaptive immunity (Levy,
2007).

ADAPTIVE IMMUNITY IN INFANCY
Infant T cell immunity
The adaptive immune system is characterized by minimal
immunological memory at birth, since the newborn has been rela-
tively protected from antigenic exposure in utero, and most of their
T cells are of a naïve phenotype. Furthermore, high levels of TGF-β,
progesterone and prostaglandin E2 in utero required to prevent
the mother developing Th1 alloreactivity to her fetus (Philbin and
Levy, 2009), alongside poor innate Th1 support (Langrish et al.,
2002), result in the newborn having intrinsically skewed Th2-
type immunity from birth. Additionally, the Th17 biased innate
immunity in infants also results in a Th17 adaptive bias. This
bias against Th1 immunity results in an increased vulnerability
to microbial infections and suboptimal reactivity to many vac-
cines. Despite this, infants have been shown to stimulate adult level
Th1 type immune responses to BCG vaccination (Marchant et al.,
1999) and are thus capable of robust Th1 immunity. However,
neonatal BCG vaccination results in a Th17 biased mycobacte-
rial response compared to those receiving BCG at 4 1

2 months of
age (Burl et al., 2010), in keeping with the Th17 bias described
above.

Infant B cell immunity
Newborn infants acquire IgG antibodies transplacentally from
their mothers which provide protection against infections encoun-
tered in early life, while the other immunoglobulin subclasses are
unable to cross the maternal–placenta interface. The maternally
acquired antibody (MAb) levels wane over the first 6 months of
life and are usually absent by 1 year of age. Several studies suggest
that MAbs inhibit humoral responses to infant vaccines; including
live measles vaccine (Albrecht et al., 1977) and oral poliomyeli-
tis vaccine, and non-live vaccines including pertussis (Burstyn
et al., 1983; Englund et al., 1995), tetanus and diphtheria tox-
oids (Bjorkholm et al., 1995), Hib conjugate vaccine (Claesson
et al., 1989; Daum et al., 1991) and hepatitis A vaccine (Kanra
et al., 2000); while other studies report no influence of MAbs on
responses to these vaccines (Gans et al., 1998; Siegrist et al., 1998;
Sallusto et al., 1999). Responses may still be protective even if MAb
inhibition occurs (Jones et al., 2014), and while MAbs may inter-
fere with the generation of humoral responses to vaccination, T
cell responses do not seem to be similarly affected (Siegrist, 2003).

Human neonatal antibody responses are delayed in onset,
of shorter duration, achieve lower peak levels, and have lower

affinity than adults. The isotype distribution also differs, with
IgG1 and IgG2 levels peaking at ∼3–4 years of age, and IgG4
only reaching adult levels at 4–6 years of age, while IgG3
is stable from birth (Ngamphaiboon et al., 1998). Histological
studies of infant splenic tissue show that the marginal zone
does not reach full development until 2 years of age, which
alongside low complement levels (Zandvoort and Timens, 2002;
Kruetzmann et al., 2003) and low expression of CD21 (com-
plement receptor 2; Griffioen et al., 1993), would account for
the delayed antibody response to T cell independent glycopro-
teins and polysaccharide antigens, including encapsulated bacteria
such as Streptococcus pneumoniae and Haemophilus influenzae,
and thus poor reactivity to polysaccharide vaccines (Adkins et al.,
2004).

IMMUNOREGULATORY FACTORS IN NEONATAL AND INFANT
PLASMA
Neonatal and infant plasma contain a number of immunoregu-
latory factors that serve to maintain Th2 polarization, and limit
pro-inflammatory innate and adaptive immunity. Newborns and
infants have high levels of plasma adenosine, an endogenous
purine metabolite with immunosuppressive properties. Adeno-
sine causes mononuclear cells to produce cAMP, which acts as
a second messenger to inhibit TLR-stimulated production of
pro-inflammatory cytokines while polarizing toward IL-10 and
Th17 cytokine production (Levy et al., 2006; Power Coombs et al.,
2011; Philbin et al., 2012). Neonatal monocytes have increased
sensitivity to these effects of adenosine via their adenosine A3
receptors, thus modulation of this system could potentially be
used to enhance innate and therefore adaptive pro-inflammatory
responses.

Several studies have shown that there are high levels of the
immunosuppressive cytokine IL-10 in cord blood (CB; De Wit
et al., 2004; Belderbos et al., 2009; Nguyen et al., 2010). IL-10 can
be produced by most cell types of the immune system, including
antigen presenting cells (APCs), granulocytes, and Th1, Th2 and
many regulatory T cell subsets. IL-10 acts at a number of stages of
an immune response in order to control inflammation. It inhibits
the production of pro-inflammatory cytokines and chemokines
by monocytes, macrophages and DCs, leading to increased IL-10
production by various T cell subsets. It suppresses both Th1 and
the more recently described “Th1+Th17” cells, while enhancing
CD4+FOXP3+ (forkhead box P3) regulatory T cell survival and
activity, and promoting IgG and IgA class switching by B cells
(Banchereau et al., 2012).

HUMAN REGULATORY T CELL SUBTYPES AND THEIR MODES
OF ACTION
Regulatory T cells are unique subpopulations of T cells that play
a major role in immune homeostasis and tolerance (Sakaguchi,
2000; Belkaid et al., 2002; Mills and Mcguirk, 2004; Belkaid, 2007).
Although Tregs have been shown to be beneficial in preventing
an over-exuberant response and immune pathology following
encounter with pathogens (Belkaid, 2008; Belkaid and Tarbell,
2009), they have also been shown to limit the favorable effec-
tor responses required for sterilizing immunity, thus allowing
pathogen persistence (Kao et al., 2010).
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THYMUS DERIVED AND PERIPHERAL CD4+FOXP3+ Tregs
The Treg field was invigorated with the discovery of the transcrip-
tion factor FOXP3 which is vital for the development, function
and homeostasis of Tregs (Fontenot et al., 2003; Hori et al., 2003),
and is thus considered the master regulator of Tregs. Its impor-
tance is further highlighted by patients with mutations in FOXP3
who develop a severe fatal disorder known as immune dys-
regulation, polyendocrinopathy, enteropathy, X-linked (IPEX)
syndrome (Bennett and Ochs, 2001; Gambineri et al., 2003).

Recently a group of experts in the Treg field introduced a con-
sensus nomenclature for FOXP3+ Tregs. They suggest replacing
previously used terms which they describe as being to some extent
“inaccurate and ambiguous” (Abbas et al., 2013). They recom-
mend that the subset of FOXP3+ Tregs of thymic origin, which
are also known as natural Tregs (nTregs), should be called thymus-
derived Tregs (tTregs); while FOXP3+ Tregs that differentiate in
the periphery should be called peripherally derived Tregs (pTreg)
rather than the previous term inducible Tregs (iTregs). The pTregs
are induced in the periphery in response to antigenic stimulation,
and possess identical characteristics to tTregs, and therefore both
subsets will be described together.

Phenotype of human CD4+FOXP3+ Tregs
CD4+FOXP3+ Tregs are the most widely studied Treg subset. They
were first described as a subset of CD4+ T cells which constitutively
express the interleukin 2 (IL-2) receptor alpha-chains (CD25) and
can prevent the development of autoimmunity in mice (Sakaguchi
et al., 1995).

Determining the precise phenotype of human CD4+FOXP3+
Tregs has proved difficult with many conflicting studies.
Since CD25 is transiently expressed on conventional T cells
(Hatakeyama et al., 1989), the CD25hi subset is described as
a more reliable marker of CD4+FOXP3+ Tregs in humans
(Schmetterer et al., 2012). Human FOXP3+ Tregs also tend
to express low levels of the IL-7 receptor CD127 (Liu et al.,
2006; Seddiki et al., 2006). Therefore the most commonly ana-
lyzed phenotypes in human studies are CD4+CD25+FOXP3+
or CD4+CD25+CD127lo. Furthermore, human CD4+FOXP3+
Tregs generally express high levels of the co-inhibitory receptor
cytotoxic T lymphocyte antigen 4 (CTLA4; Sansom and Walker,
2006). More recently the chemokine markers CCR4, CCR6,
CXCR3, and CXCR10 have been proposed to define four distinct
populations of human tTregs, each with distinct functional char-
acteristics (Duhen et al., 2012). Each of these four Treg subsets
are thought to co-localize in vivo with and regulate a distinct Th
subset (Th1, Th2, Th17, Th22) expressing the same chemokine
receptors.

CD45RA expression can be used to distinguish tTregs that are
naïve or resting (rTregs; FOXP3loCD45RA+) from the memory
subset described as activated Tregs (aTregs; FOXP3hiCD45RA−;
Miyara et al., 2009). The memory Tregs can be further subdivided
into central memory (TregCM) and effector memory (TregEM)
similarly to Th cells, based on the expression of chemokine
receptor 7 (CCR7; Sallusto et al., 1999; Tosello et al., 2008).

Certain subpopulations among CD4+FOXP3+ Tregs are more
suppressive than others. For example, Tregs expressing the tumor
necrosis factor receptor 2 (TNFRII) are thought to represent

a highly suppressive CD4+FOXP3+ Treg subset (Minigo et al.,
2009). Those CD4+CD25+FOXP3+ Tregs expressing the trans-
membrane cyclic ADP ribose hydrolase CD38 (mainly thymic
derived and in the spleen) have particularly high suppressive
activity in a murine model (Patton et al., 2011). CD38 is part
of a cascade involved in the production of the immunosup-
pressive factor adenosine from NAD+ (Horenstein et al., 2013)
which can have immunoregulatory properties as discussed ear-
lier. Interestingly, the majority of infant T cells express CD38
(Scalzo-Inguanti and Plebanski, 2011), and as previously men-
tioned infants also have high plasma levels of adenosine, but a link
between these two factors has yet to be explored in neonates and
infants.

Mechanisms of CD4+FOXP3+ Treg mediated suppression
CD4+FOXP3+ Tregs can suppress the proliferation and activa-
tion of a multitude of immune cell types including T cells, NK
and NKT cells, monocytes, macrophages, B cells, DCs, and
eosinophils. They employ a variety of mechanisms to mediate
this suppression, and are thought to be flexible in this respect by
adapting their mechanism according to their local environment
(reviewed by Wing and Sakaguchi, 2012). Both IL-2 and CTLA-
4-dependent mechanisms have been described, with CD25 and
CTLA-4 knockout mice having a similar phenotype to Foxp3 defi-
cient mice (Wing and Sakaguchi, 2012). It is thought that the
constitutive expression of CD25 by CD4+FOXP3+ Tregs allows
them to consume the available IL-2, depriving effector T cells
(Teffs) and leading to effector cell death (De La Rosa et al., 2004).
Those tTregs expressing CTLA-4 can suppress T cell responses
via down-modulation of CD28 signaling (Walker, 2013), and
reduced co-stimulatory capacity of CD80/86 expressed by DCs
(Wing et al., 2011).

A commonly used mechanism of Treg action is the production
of soluble inhibitory factors, including either membrane bound or
released immunosuppressive cytokines IL-10, TGF-β, and IL-35
(Collison et al., 2007). FOXP3+ Tregs can also generate high con-
centrations of adenosine (Mandapathil et al., 2010) which binds to
the A2a receptor on immune cells activating an immunoinhibitory
loop (Sitkovsky and Ohta, 2005) which results in inhibition of
T cell proliferation and cytokine production (Raskovalova et al.,
2005).

TYPE 1 REGULATORY T CELLS (Tr1)
The Tr1 Tregs are a unique Treg subset that do not rely on the
expression of high levels of CD25 or FOXP3 for their function
(Levings and Roncarolo, 2000). They are activated in the periphery
following antigenic stimulation in the presence of IL-10 (Groux
et al., 1997; Vieira et al., 2004). Recently, lymphocyte-activation
gene 3 (LAG3) and CD49b have been described to represent
specific markers for Tr1 cells (Gagliani et al., 2013).

The Tr1 Tregs are known to produce high levels of the
immunosuppressive cytokines IL-10 and TGF-β, some IL-5,
low levels of IFN-γ and IL-2, and no IL-4 (Groux et al.,
1997). The secretion of IL-10 is the main mechanism by
which Tr1 cells are thought to mediate suppression. The IL-
10 can be either free or membrane bound, and has been
shown to suppress Teff proliferation/activation both directly
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and indirectly via a modulation of APC function (Roncar-
olo et al., 2006). They have also been shown to use cell–cell
contact mechanisms (Gregori et al., 2012) and the production
of granzyme B and perforin (Gregori et al., 2010) to mediate
suppression.

T HELPER TYPE 3 CELLS (Th3)
This unique subset of TGF-β producing Tregs was identified in
early studies investigating oral tolerance. They have been shown
to suppress the proliferation and activation of Th1 cells and sup-
press the development of autoimmunity in the mouse model of
multiple sclerosis (Chen et al., 1994). They become activated in
the periphery upon encounter with a specific antigen, and sup-
press via the production of the inhibitory cytokine TGF-β. Some
studies show that Th3 cells may have a role to play in control-
ling autoimmunity and allergy in humans (Andersson et al., 2002;
Perez-Machado et al., 2003), but the role that this subset plays in
the maintenance of immune tolerance in humans is still not clearly
defined.

CD8+++ Tregs
While CD4+ Tregs have been widely studied in humans,
CD8+ Tregs have not received the same attention. However,
there is increasing evidence that subsets of CD8+ Tregs also
play important immunoregulatory roles, and impaired CD8+
Treg function may lead to autoimmunity (Hu et al., 2004;
Lu et al., 2008). The most widely described phenotype for
CD8+ Tregs is CD25+CD28− (Ciubotariu et al., 1998; Filaci
et al., 2004). Other markers include CD122, CTLA-4, GITR,
CD38, CD103, and CD8αα (Uss et al., 2006; Simone et al.,
2008; Smith and Kumar, 2008; Liu et al., 2014); a host of
different CD8 Treg subsets have been described in humans
expressing various combinations of these markers (Suzuki et al.,
2012). While FOXP3 expression has been described in many
CD8 Treg subsets, it may also represent an activation marker
rather than acting as a regulatory factor since CD8+FOXP3+
cells have been found to be minimally suppressive in some
studies (Mayer et al., 2011). Mechanisms of action of CD8+
Tregs that have been reported include cell–cell contact medi-
ated suppression, secretion of the suppressive cytokines IL-
10 and TGF-β, and induction of APC energy (Suzuki et al.,
2008). CD8+CD45RA+CCR7+FOXP3+ cells may represent a
discrete subset of CD8 Tregs which interfere with the TCR sig-
naling cascade (Suzuki et al., 2012). More extensive work is
required to better understand the origin and role of CD8+
Tregs in immunoregulation and autoimmunity, particularly in
humans.

PHENOTYPIC AND FUNCTIONAL DIFFERENCES BETWEEN
Tregs IN INFANTS COMPARED TO ADULTS
Distinct qualitative and quantitative differences have been iden-
tified between the Tregs in adults and those of infants. Most of
the studies in infants have analyzed Tregs in neonatal CB for com-
parison with adults, and different phenotypic markers have been
used to characterize the Tregs in these studies contributing to some
discrepancies in the results.

FOXP3+ Tregs have been found in much higher levels at birth
compared to adults, whether defined as CD4+CD25+CD127lo

(Nettenstrom et al., 2013) or CD4+CD25+FOXP3+ (Flanagan
et al., 2010). Preterm infants have been shown to have higher
levels still (Luciano et al., 2014). However, a study comparing
CD4+CD25+CD127lo Tregs at different age groups, showed slight
increases in Treg frequencies with age: 6.10% in CB; 7.22% in
adults aged 20–25 years; and 7.5% in adults over the age of
60 years (Santner-Nanan et al., 2008); and another study found
that neonates had similar number of cells expressing FOXP3 com-
pared to their mothers, and a lower number of CD4+CD25bright

cells (Ly et al., 2009). The reason for these conflicting results is not
known.

Cord blood Tregs have been shown to be predominantly
of the CD45RA+CD45RO− naïve phenotype in several studies
(Kanegane et al., 1991; Wing et al., 2002; Takahata et al., 2004; Ly
et al., 2009; Flanagan et al., 2010). Other phenotypic differences
between cord and adult Tregs include the observation that CB
Tregs are mostly CD27+ and thus at an earlier differentiation state
than their mothers; they have a lower apoptotic potential as evi-
denced by lower CD95/Fas expression than their mothers; and less
CD62L suggesting less of a TregCM lymph node homing phenotype
(Flanagan et al., 2010). CB Tregs also express less CCR6 than their
matched mothers, which is the chemokine receptor that charac-
terizes the Th17- and Th22-like Tregs (Duhen et al., 2012). Since
infants are Th2 biased then their Tregs should be predominantly of
a CCR4+CCR6−CXCR3− Th2 Treg phenotype in keeping with the
classification discussed previously (Duhen et al., 2012), although
this has not been investigated in infants.

In vitro Treg suppression assays are difficult to perform in
infants due to the lack of availability of large volumes of blood,
combined with the low Treg frequencies in peripheral blood.
Studies using CB are easier since large volumes are available
for study. Several studies have shown that newborn CB Tregs
are highly functional whereby they suppress T cell proliferation
and IFN-γ production, further deviating from a Th1 response
(Godfrey et al., 2005; Wing et al., 2005). Fan et al. (2012) found
that CD4+CD25+ CB Tregs had a stronger immunosuppressive
function than adult blood Tregs following two cycles of polyclonal
stimulation. Mayer et al. (2012) found that CB CD4+CD25hi cells
failed to suppress upon TCR activation whereas those freshly
purified from adult blood did, but CB Tregs became strongly sup-
pressive after antigen-specific stimulation. Another study found
that low FOXP3 expression levels by CB Tregs correlated with
minimal suppressive activity, but following expansion there was
a significant increase in the suppressive activity of these CB
Tregs with a shift from the CD45RA+ to the CD45RA− pheno-
type (Fujimaki et al., 2008). It has recently been shown that CB
Tregs can be expanded more easily than adult peripheral blood
Tregs, and CB Tregs are better suppressors in allogeneic mixed
lymphocyte reactions than their adult counterparts (Lin et al.,
2014).

Taken together these studies suggest distinct differences
between infant and adult Tregs. Overall they seem to be present
in higher frequencies than in adults, are more naïve and less dif-
ferentiated, and are highly suppressive; all supporting an active
immunoregulatory role in early life.
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THE ROLE OF Tregs IN REGULATING IMMUNITY TO
MALARIA, HIV, AND HEPATITIS C VIRUS
Regulatory T cells have been implicated with an immunoregula-
tory role in both murine and human malaria infections (Scholzen
et al., 2010). In mice, ablation of Foxp3+ Tregs led to increased
T cell activation and decreased parasitaemia (Abel et al., 2012).
In vivo depletion of Tregs protected mice from experimental
cerebral malaria in a Plasmodium berghei model of infection
(Wu et al., 2010). A FOXP3 promoter polymorphism in children
has been associated with significant parasitaemia in a Con-
golese study suggesting a Treg role (Koukouikila-Koussounda
et al., 2013). Malaria infected red blood cells (iRBCs) induced
CD4+CD25hiFOXP3+ Tregs in vitro in healthy human volunteers
(Scholzen et al., 2009). In human malaria sporozoite challenge
experiments, Tregs have been shown to be induced rapidly after
infection, and linked to lower pro-inflammatory cytokines and
increased TGF-β production (Walther et al., 2005). Another study
showed that malaria antigens can activate latent TGF-β on the
surface of aTregs (Clemente et al., 2011). A study of 112 sub-
jects in Kenya (infants to adults) found a correlation between the
frequency of CD4+CD25hi T cells and increased risk of clinical
malaria, suggesting Tregs may negatively affect natural immunity
to malaria in humans (Todryk et al., 2008). In naturally exposed
Gambians CD4+FOXP3+CD127lo Tregs during acute infection
were inversely correlated with memory responses at 28 days, sug-
gesting suppression of immune memory. In the same study, a
CD4+FOXP3−CD45RO+ T cell population co-producing IFN-γ
and IL-10 was more prevalent among children with uncompli-
cated malaria than those with severe disease, suggesting a beneficial
immunoregulatory role for this IL-10 producing subset, presum-
ably by limiting excessive inflammation (Walther et al., 2009). A
role for the highly suppressive TNFRII+ Tregs in malaria para-
site survival has been implicated in a study of Indonesian school
children (Wammes et al., 2013). Overall, these data support an
induction of Tregs during acute malaria infection which can
limit the generation of immune memory and increase suscepti-
bility to infection, but also control immunopathology and disease
severity.

The role of Tregs in HIV infection remains poorly understood
and the data are conflicting, in part due to the different pheno-
types used to define Tregs in the various studies. However, the
studies do support a regulatory role. For example, combination
anti-retroviral therapy (cART) non-responders with persistent
CD4 counts <200 cells/μL on therapy had higher peripheral
blood Tregs and aTregs than cART responders, with higher IL-
10+ Tregs and lower FOXP3 in lymphoid tissue (Gaardbo et al.,
2014). Another longitudinal study also found higher numbers
of Tregs associated with immunological non-responders defined
as CD4 <500/μL (Saison et al., 2014). A study analyzing multi-
ple Treg phenotypes in HIV infected individuals found evidence
of Treg redistribution depending on HIV status (Serana et al.,
2014). Untreated viraemic patients with stable CD4 counts had
higher proportions of naïve Tregs with decreased TregCM com-
pared to those on cART and healthy controls (Serana et al.,
2014). The study suggests that effective cART restores Treg
homeostasis since Treg subpopulations in the cART group were
similar to those of healthy donors. Increased proportions and

decreased numbers of Tregs associate with progression of HIV
(Wang et al., 2013). Treg depletion in a murine chronic retro-
virus infection model resulted in reduced viral loads (Dietze et al.,
2013). In combination, the data suggest that Tregs may suppress
HIV-specific immunity leading to lower CD4 counts and viral
persistence.

Hepatitis C virus is characterized by its ability to establish
chronic infection in the majority of those infected, and an
immunoregulatory role for Tregs in this process has been well
described. Chronic HCV patients have increased levels of CD4+
and Tr1 Tregs in peripheral blood which are thought to suppress
anti-viral T cell responses leading to viral persistence (Chang,
2007). Certain HCV epitope variants have been shown to induce
Tregs in HCV-infected patients (Cusick et al., 2011). Chronic
HCV patients have more serum IL-10 than those with resolved
infection, which is proposed to play a role in the induction of
CD4+FOXP3+ Tregs in chronic HCV infection (Macdonald et al.,
2002; Cusick et al., 2013); and CD49b, a marker for IL-10 pro-
ducing Tr1 Treg cells, is lower in those who respond to viral
therapy, thus suggesting a regulatory role for Tr1 Tregs too (Fabien
et al., 2014). Indoleamine 2,3-dioxygenase (IDO) production by
stimulated monocyte derived DCs was higher in HCV patients
compared to healthy controls, and these DCs were more able
to induce Tregs, suggesting a role for this Treg induction path-
way in chronic HCV (Higashitani et al., 2013). Expression of
the inhibitory signaling pathway molecule T cell immunoglobu-
lin and mucin-domain-protein-3 (Tim-3) is upregulated on both
Teff and CD4+CD25+FOXP3+ Tregs in chronic HCV, correlating
with increased Treg and decreased Teff proliferation, suggesting
that the Tim-3 pathway controls the Treg/Teff balance in chronic
HCV (Moorman et al., 2012). Viral persistence following acute
HCV infection is accompanied by increased plasma Galectin-9
(Gal-9) which is the ligand for Tim-3, alongside expanded Gal-9
expressing Tregs and increased expression of Tim-3 and CTLA-4
on HCV-specific CD8+ T cells (Kared et al., 2013). Thus high lev-
els of Tregs likely contribute to viral persistence in HCV infection,
and both FOXP3+ and Tr1 Tregs have been implicated. Mecha-
nisms of Treg induction in HCV may be multifactorial but include
HCV antigen driven induction, IL-10, IDO, Gal-9/Tim-3, and
CTLA-4.

ROLE OF Tregs IN CONTROLLING VACCINE
IMMUNOGENICITY
The role that Tregs play in controlling or limiting vaccine
immunogenicity remains to be fully determined. Given that Tregs
are induced by natural infections to regulate the inflammatory
response, it makes sense that Tregs would be induced as part of
the immune response to vaccination, particularly for live atten-
uated vaccines. One might predict that their induction would
play a beneficial immunoregulatory role by preventing an over-
exuberant immune response to the vaccine. However, most studies
suggest that Tregs can interfere with the generation of vaccine-
induced immunity. Thus, depletion of Tregs pre-vaccination in
murine models has been shown to enhance immune responses
to some vaccines. In a DEREG mouse model, which allows for
in vivo depletion of Foxp3+ Treg cells at any point during an
immune response using diphtheria toxin (Lahl and Sparwasser,
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2011), Treg depletion led to an enhanced anti-tumor response
to vaccination against an established melanoma (Klages et al.,
2010). A more recent study showed that the short term deple-
tion of Tregs in DEREG mice greatly enhanced vaccine-induced
immunity against a solid tumor; increasing NK cells and CD8
T cell activation and IFN-γ production (Mattarollo et al., 2013).
Administration of vaccines with anti-CD25 monoclonal Ab has
been shown to induce more durable immunity in mice compared
to when the vaccine is administered alone, for both BCG and
hepatitis B vaccines, which has been attributed to a depletion
of CD25+ Tregs (Moore et al., 2005). Ho et al. (2010) showed
that antigen-specific Tregs induced by environmental mycobac-
teria suppress Th1 immune responses, thus compromising the
response to BCG vaccination in mice. They also showed a
correlation between the pre-existing Tregs and the subsequent
vaccine response. Murine studies of Parkinson’s disease have
shown that Tregs are induced by BCG vaccination (Lacan et al.,
2013).

It is difficult to translate these studies into primates and humans
since murine Tregs are not phenotypically identical, and in vivo
depletion of FOXP3+ Tregs in healthy humans presents logistic
and ethical challenges. An oral vaccine against simian immunode-
ficiency virus (SIV) based on a Lactobacillus commensal that favors
immune tolerance induction was used to induce T cell tolerance to
SIV antigens in macaques (Lu et al., 2012). The vaccine-induced
CD8+ Tregs that suppressed CD4+ T cell activation and ex vivo SIV
replication, and provided sterile protection against an intrarectal
SIV challenge in 15 of 16 vaccinated macaques. This strategy is
thought to work because CD4+ T cell activation drives the initial
phase of viral replication, and provides the proof-of-concept that
an oral Treg inducing vaccine could prevent the establishment of
HIV infection.

Using a DC-based vaccine in HIV patients undergoing cART,
it was shown that depletion of the Tregs in vitro significantly
enhanced the vaccine-induced anti-HIV-1-specific polyfunctional
T cell response, suggesting that Tregs can dampen vaccine-induced
immunity (Macatangay et al., 2010). This study also showed a
marked increase in the CD4+CD25hiFOXP3+ Treg numbers fol-
lowing vaccination, however, this increase did not correlate with
the effector CD8+ T cell vaccine-induced response. Increased
FOXP3 mRNA expression has been demonstrated in malaria vac-
cinated adults; however, the authors concluded that this might
be attributed to the participants being naturally exposed to the
malaria parasite rather than as a result of vaccination per se
(Mwacharo et al., 2009).

Very few studies have looked at the role that Tregs play in con-
trolling vaccine immunogenicity in infants. Our group found no
correlation between PPD-specific CD4+CD25+FOXP3+ Tregs or
CD4+IL-10+ Tregs, or PPD stimulated total IL-10 production
on the day of BCG vaccination of Gambian infants, and subse-
quent IFN-γ responses to PPD (Burl et al., 2010). No functional
Treg assays were conducted in this study. In another study we
found that placental associated malaria (PAM) infection is associ-
ated with increased malaria-specific CD4+CD25+FOXP3+ Tregs
(Flanagan et al., 2010) and that PAM also correlates with decreased
immunogenicity of BCG vaccination as evidenced by poorer PPD
reactivity persisting to 1 year of age compared to PAM negative

children (Walther et al., 2012). Whether the Tregs are the cause of
this attenuation of BCG responses is not known.

TARGETING Tregs IN VIVO TO ENHANCE VACCINE
IMMUNOGENICITY
The cancer research field has made considerable advances in dis-
secting the role that Tregs play in cancer progression and their
role in suppressing responses to cancer vaccines. Moreover, tri-
als conducted in animal models and humans have demonstrated
that certain drugs and immunotherapies can transiently decrease
Treg frequencies in vivo leading to improved anti-tumor Teff func-
tions, and in some cases reduced tumor load. Since Treg depletion
can enhance inflammation and autoimmunity then such tran-
sient depletion, as opposed to long term effects, is desirable.
In low doses, the agent cyclophosphamide transiently decreases
Treg frequencies while Teff functions are preserved, leading
to enhanced responses to vaccine antigens and improved vac-
cine immunogenicity in mouse and human cancer vaccine trials
(Barbon et al., 2010; Le and Jaffee, 2012). Anti-CD25 monoclonal
antibodies, which deplete Tregs in vivo, enhanced vaccine efficacy
in mouse models of pancreatic carcinoma (Keenan et al., 2014)
and melanoma (Tan et al., 2013). Basiliximab and Daclizumab are
anti-human CD25 MAbs that cause both decreased number and
decreased function of Tregs by blocking IL-2 signaling (Goebel
et al., 2000; Kohm et al., 2006; Mitchell et al., 2011). Daclizumab
has been used in several human breast cancer vaccine trials where it
depleted Tregs and improved effector responses, and furthermore
may reprogram naïve Tregs to become IFN-γ producers (Rech and
Vonderheide, 2009; Rech et al., 2012). The human monoclonal
antibody, Ipilimumab, inhibits Tregs by blocking CTLA-4; and
was approved by the FDA in 2011 for use in melanoma patients
(Peggs et al., 2009).

Certain innate agonists that are being used as vaccine adju-
vants preferentially expand Teff over Tregs, e.g., the TLR3 agonist
Poly(I:C) and the TLR9 agonist CpG-ODN; whereas others favor
Treg expansion, e.g., the TLR7 agonist imiquimod (Perret et al.,
2013). OX40 is part of the TNFR superfamily expressed by Teff
and Tregs, and the monoclonal antibody increases Teff function
while blocking Treg function. OX40 clones have been humanized
as potential agents to enhance the immunogenicity of vaccines
against infectious diseases (Voo et al., 2013).

An interesting approach is that of local depletion of Tregs at
the site of injection of a vaccine. Chemokine receptor 4 (CCR4)
antagonists can be used as vaccine adjuvants to target and decrease
local recruitment of CCR4+ Tregs in order to amplify vaccine
responses at the site of immunization (Bayry, 2014).

Therefore a number of agents that target Tregs are being used
experimentally in humans in order to enhance vaccine efficacy.
Some of these are non-toxic and safe for use in humans, offering
the future prospect of using this approach to enhance immuno-
genicity of vaccines against infectious diseases including malaria,
HIV, and HCV.

TRIALS OF NOVEL VACCINES AGAINST MALARIA, HIV, AND
HCV IN INFANTS
Despite the multiple obstacles to successful infant vaccination dis-
cussed above, many vaccines are currently delivered in infancy
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with good immunogenicity, including the live BCG, measles and
yellow fever vaccines; and the inactivated diphtheria, tetanus, per-
tussis and hepatitis B vaccines, H. influenzae b, and pneumococcal
conjugate vaccine. The RTS,S/AS01 malaria vaccine is the most
advanced malaria vaccine in human clinical trials, having reached
phase III testing in children and infants, with potential licensure
in 2015. It reduced clinical and severe malaria by 56 and 47.3%
respectively in children aged 5–17 months (Bejon et al., 2008;
Olotu et al., 2011); but only 31.3 and 36.6% when administered
in three doses with routine Expanded Program on Immunization
(EPI) vaccines in the 6–12 week old age group (Rts et al., 2012).
Follow up of the 5–17 month old vaccinated group over a 4 year
period found protection waned to 16.8%; with waning greater
among those with higher malaria exposure suggesting that natu-
ral immunity to malaria contributes to the waning (Olotu et al.,
2013). Whether exposure induced Tregs play a role in this waning
has not been investigated.

Fowlpox and modified vaccinia Ankara (MVA) based malaria
vaccines have been tested in 1–6 year olds with no evidence
of protective efficacy (Bejon et al., 2007). A blood stage vac-
cine FMP2.1/AS02A has been tested in Malian children aged
1–6 years with an efficacy of <10% (Laurens et al., 2013). The
blood stage alum adjuvanted GMZ2 malaria vaccine elicited good
inhibitory antibody levels in pre-school children (Jepsen et al.,
2013). Prime-boost strategies based on chimp adenovirus vector
priming followed by MVA boosting are being tested in children
and infants in Africa, and while results of these trials are not yet
available the adult studies have shown unprecedented immuno-
genicity for malaria exposed populations (Ogwang et al., 2013)
and should stimulate good immunity in infants.

Only a few human HIV vaccine trials have been conducted
in healthy uninfected and HIV-exposed infants. Immunogenicity
was limited among healthy Gambian infants given a single dose
of MVA.HIVA, but this was not surprising given that MVA alone
is known to be poorly immunogenic (Afolabi et al., 2013). In a
Ugandan trial, infants were vaccinated at birth, 4, 8, and 12 weeks
of age with ALVAC-HIV vCP1521 (ALVAC) candidate HIV vac-
cine which induced low level CD4 and CD8 T cell responses at
24 months (Kaleebu et al., 2014).

The target population for HCV vaccines include intravenous
drug abusers and health care professionals. However, HCV
infection is common throughout the world and mother-to-child
transmission is well described (Yeung et al., 2001). Thus an infant
HCV vaccine would have its place, particularly in resource poor
settings where the anti-viral therapies available are currently not
affordable. Both therapeutic and prophylactic vaccines are being
developed, and several have now entered phase I/II human clin-
ical trials, mostly of therapeutic vaccines in chronically infected
cohorts. These include recombinant protein, peptide, DNA,
and vector-based vaccines aimed at producing robust anti-T cell
responses (Halliday et al., 2011). As far as we are aware no HCV
vaccine trials have been conducted in children.

FUTURE PROSPECTS
There is very little in the literature regarding the role of Tregs
in infants in general, and even less in respect to vaccine immuno-
genicity. The fact that functional Tregs are present in high numbers

in infancy and have potent suppressive activity, coupled with poor
immunological responses to some vaccines in this vulnerable age
group, supports a need to better understand the role they play in
controlling the response to childhood vaccines in particular. The
data available suggest that Tregs suppress immunity to vaccines,
and that they can also be induced by vaccination. We have shown
that malaria, HIV, and HCV all use Tregs to evade host immune
responses, therefore vaccine-induced Tregs would be predicted
to reduce the protective efficacy of vaccines against these infec-
tions. A better understanding of the role that Tregs and other
immunoregulatory factors play in contributing to poor vaccine
immunogenicity in childhood would help with the design of bet-
ter vaccines. Studies in cancer patients have shown that transient
Treg inactivation or depletion is a viable approach to enhancing
vaccine efficacy. A number of Treg modifying agents are available
for use in humans, therefore this approach is a very real prospect
for the future and may be particularly applicable to neonates and
infants.
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Some of the central challenges for developing effective vaccines against HIV and hepatitis
C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly
replicating RNA viruses with the ability to establish long-term chronic pathogenic infection
in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both
viruses may co-exist among certain populations by virtue of common blood-borne, sexual,
or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic,
innate, and adaptive immune defenses but with some distinct mechanisms reflecting their
differences in evolutionary history, replication characteristics, cell tropism, and visibility to
mucosal versus systemic and hepatic immune responses. A potent and durable antibody
and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the
single biggest difference between the two vaccine design challenges is that in HCV, a
natural model of protective immunity can be found in those who resolve acute infection
spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+
T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui
et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-
infection suggests partial or lack of protective immunity against heterologous HCV strains,
possibly indicative of the degree of genetic diversity of circulating HCV genotypes and
subtypes. There is no natural model of protective immunity in HIV, however, studies
of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV
RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell
responses in controlling viremia and limiting reservoir burden in established infection. Here
we compare and contrast the specific mechanisms of immune evasion used by HIV and
HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in
natural infection, and the challenges these pose for designing effective preventative or
therapeutic vaccines.

Keywords: HIV, HCV, viral immune escape, preventative vaccine, anti-viral immune responses

LEADS FROM GENETIC ASSOCIATION STUDIES SUPPORT
IMPORTANCE OF IMMUNOLOGICAL MECHANISMS IN VIRAL
INFECTION OUTCOME
Genetic determinants of spontaneous HCV infection clearance
and HIV viral control using genome-wide association studies
(GWAS) and candidate gene studies have added crucial insight
into the influence of the host immune response on infection out-
come. For HIV the strongest genetic determinant of viral load
set-point and CD4+ T cell decline following infection, aside from
variants in the CCR5 molecule used by HIV for cell entry, are spe-
cific HLA class I alleles (e.g., HLA-B27 and HLA-B57; reviewed in
O’Brien et al., 2001) involved in T cell antigen presentation. More
recently, a GWAS has shown the association of HLA-C with viral
control (International HIVCS et al., 2010). The variation at HLA-C
associated with HIV outcome appears to affect cell surface expres-
sion of the HLA molecule (Thomas et al., 2009b). The HLA class I
molecules also act as ligands for natural killer (NK) cell receptors
and this interaction is known to influence the activation threshold

for NK cells. Particular combinations of killer immunoglobulin-
like receptors (KIR) and HLA class I ligands are strongly associated
with HIV infection outcome (Martin et al., 2002).

For HCV, studies that examine host genetic associations with
infection outcome clearly indicate that genotypic differences in
the interferon pathway such as interferon lambda 3 (IFN-λ3)
(Thomas et al., 2009a; Rauch et al., 2010), NK cell cytotoxicity
activation threshold (Khakoo et al., 2004) and specific HLA class I
and II alleles (McKiernan et al., 2004; Miki et al., 2013) are strongly
associated with resolution following HCV infection (reviewed in
Rauch et al., 2009a).

For both HIV and HCV, the genetic leads support the
involvement of CD8+ T cells and antigen presentation in infec-
tion outcome. Further evidence can be obtained from the
observed heterozygote advantage at the HLA loci for both viral
infections (Carrington et al., 1999; Hraber et al., 2007), likely
reflecting the presentation of an increased number of T cell
targets.
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VIRAL EFFECTS ON ANTIGEN PRESENTATION
To establish chronic infection, viruses such as HIV and HCV
must evade the host’s T cell response. The host’s T cell response
is governed by the assembly and presentation of antigen via the
polymorphic HLA class I and II molecules. In the case of HLA
class I presentation of viral peptides to CD8+ cytotoxic T cells
(CTL), the process requires correct folding of the HLA class I
molecules with b2-microglobulin in the endoplasmic reticulum.
In parallel, the viral peptides that have been processed by the pro-
teasome complex in the cytosol are then loaded onto the HLA
class I-β2-microglobulin complex via the transporter associated
with antigen presentation (TAP) protein. This tertiary structure is
then translocated to the surface of the cell via the golgi apparatus
for presentation to a CTL with the appropriate T cell receptor.
Both HIV and HCV have evolved several mechanisms to disrupt
this pathway including reduction of HLA class I expression and
mutational escape from antigen presentation.

EFFECTS ON HLA EXPRESSION
For HCV, the proteins core (Miyamoto et al., 2007) and NS3 (Khu
et al., 2004) have been shown to affect the function of the pro-
teasome complex (reviewed in Osna, 2009) and potentially HLA
class I presentation. Other evidence from the Huh-7 subgenomic
replicon system, suggests that HCV infection reduces HLA class
I surface expression via a stress-mediated mechanism that lowers
the efficacy of HLA class I folding in the endoplasmic reticulum,
although the mechanism does not appear to be specific for HLA
class I molecules (Tardif and Siddiqui, 2003). However, another
study by Herzer et al. (2003) utilizing liver cell lines and plas-
mid constructs showed increased HLA class I expression via the
action of the HCV core protein on TAP1 (function is dependent on
p53). Interestingly, increased HLA class I expression was only seen
in HepG2 cells (contain functional p53) and not in Huh-7 cells
(exhibit a non-functional p53), not for HLA class II (using a pan
HLA-DR antibody) and not for other HCV proteins used in a plas-
mid construct. However, the change in HLA class I expression on
the HepG2 cells did not appear to affect CD8+ T cell recognition
and may instead be related to NK cell cytotoxicity.

The ability to differentiate the effect of HCV on the expression
of the different HLA class I loci will be critical given the differ-
ing functions/interactions of HLA-A, -B, and -C alleles with NK
cell receptors and potentially CD8+ T cell antigen presentation.
It should be noted that in the studies described above, the pan
HLA-class I antibody W6/32 was used and this antibody does not
differentiate between the HLA class I loci.

Interactions between HIV and HLA surface expression are well
established. HIV Nef in particular down-modulates cell surface
expression of HLA-A and -B molecules, rendering them less vis-
ible to cytotoxic CD8+ T cells, however HLA-C and -E are not
selectively down-modulated, which renders them resistant to NK-
mediated lysis (Cohen et al., 1999). More recently, differential
expression levels of different HLA-C alleles mediated through
micro-RNA regulation were found to be important in influencing
HIV-1 control. Increased cell surface expression levels of HLA-C
were significantly associated with reduced longitudinal viral load
and rate of decline in CD4+ T cell count in a study involving over
5000 individuals with pre-treatment HIV-1 infection (Apps et al.,

2013). Furthermore, this effect was independent of all other HLA
allele-specific effects and was robust across different ethnic groups
with distinct HLA-C allele frequency distributions and linkage
relationships with HLA-A and -B alleles. Further, differential HLA-
C expression levels correlated with measured CTL responses and
frequency of viral escape mutation, signifying a direct modulatory
effect on disease outcome mediated through the quality of HLA-C
restricted T cell responses. While this is a “peptide-independent”
mechanism of control, it points to the importance of providing
sufficient epitopes for HLA-C in a vaccine immunogen not liable to
escape from responses binding with high or low expressing HLA-C
alleles.

Human leukocyte antigen class II presentation by antigen pre-
senting cells (APCs) to CD4+ T cells is important for both HIV
and HCV, but less is known about how these viruses affect HLA
class II presentation. In general, nascent HLA class II molecules in
the endoplasmic reticulum of APCs such as dendritic cells asso-
ciate with the invariant chain protein, which acts to prevent the
binding of endogenous peptides in the HLA class II pocket as well
as a chaperone for the HLA class II molecule to the golgi apparatus
for transportation to the cell surface. However, cell surface expres-
sion of HLA class II molecules is not possible until the invariant
chain is degraded by a protease such as cathepsin.

Hepatitis C virus is known to affect dendritic cell function and
maturation and has been shown to inhibit HLA class II (HLA-DR)
expression on dendritic cells (Siavoshian et al., 2005; Averill et al.,
2007; Saito et al., 2008). Subsequent studies have shown that
dendritic cells exposed to HCV exhibit decreased expression of
Cathepsin S with a corresponding decrease of HLA-DR expression
on the cell surface, mainly mediated through the HCV proteins
core and NS5A (Kim et al., 2012). Interestingly, hepatocytes may
act as APCs in the liver and similar interactions were observed
when these cells are transfected with core and NS5A (Kim et al.,
2012). More should be examined in this area for HCV as CD4+
T cells are critical in HCV infection outcome based on CD4+ T
cell depletion and HLA class II tetramer studies that clearly show
lack of CD4+ T cell help and a collapse in HCV-specific CD4+ T
cell responses within months of acute HCV infection is strongly
associated with persistence (Lucas et al., 2007; Schulze Zur Wiesch
et al., 2012).

Although less studied compared to interactions with HLA
class I, HIV Nef has been shown to influence HLA class II surface
expression through effects on intracellular trafficking (Stumptner-
Cuvelette et al., 2001). Notably, slower progression of pediatric
HIV disease has been associated with nef variants, which induced
greater down-modulation of surface HLA class II expression, pos-
sibly through reducing CD4+ T cell activation and therefore cell
loss (Schindlera et al., 2007).

VIRAL ESCAPE, DIVERSITY AND POPULATION LEVEL ADAPTATION
HIV and HCV have error-prone polymerases, rapid replication
cycles and in the case of HIV high intracellular recombination
rate, allowing for rapid generation, and selective outgrowth of
mutant strains, which escape antigen-specific antiviral responses
mediated by T cells and NK cells. There is now an exten-
sive literature documenting the predictable mutational networks,
which arise in circulating HIV and HCV strains as a result
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of escape from HLA-restricted T cell responses (Moore et al.,
2002; Gaudieri et al., 2006; Rauch et al., 2009b). The antigenic
diversity, which partly results from this escape mechanism, is
extreme compared to other vaccine-preventable virus infections,
and therefore requires especially broad-based immunity from
vaccines against HIV and HCV. What makes T cell escape partic-
ularly notable is that HLA, which mediates the peptide specific
targeting of virally infected cells, is the most polymorphic of
human gene systems, having become so as a result of myriad
microbial selective pressures in human evolution (Prugnolle et al.,
2005). To retain or even increase in vivo fitness despite muta-
tion in the context of the great diversity of HLA types across
a pandemic infection underscores the plasticity of these viruses
and the challenge of vaccinating against them at the population
level.

In terms of the diversity challenge for vaccines, among the nine
phylogenetically distinct HIV-1 group M subtypes, subtypes C
and B account for the majority of the global epidemic but have
as much as 30–40% inter-subtype diversity at certain segments of
the genome. Phylogenetic trees based on HCV sequences indicate
the challenge of diversity with HCV, which has an up to 3000-fold
higher replication rate than HIV and the absence of any constraint
imposed by overlapping open reading frames. HCV genotype 1 is
as diverse as all the subtypes of HIV (Figure 1). HCV is classified
into seven genotypes that differ by about 20–30% at the amino
acid level and multiple subtypes for each genotype that differ by
10–15% (Smith et al., 2014). We have previously shown that the
polymorphism profile of the different genotypes along sites in
the non-structural proteins of HCV vary and supports the obser-
vation that there is limited overlap in viral adaptations between
genotypes (Rauch et al., 2009b). The limited overlap in the adap-
tation profile of the genotype 1a and 3a strains likely reflects both
different T cell targets as well as different fitness costs associated
with variations at specific sites (Salloum et al., 2008; Dazert et al.,
2009).

A multi-epitope approach using non-structural proteins has
been successful to elicit effective immunity against heterologous
HCV strains suggesting potential for effective vaccine develop-
ment (Folgori et al., 2006; Lang Kuhs et al., 2012). However, a
limitation of vaccines developed for HCV is that the use of a small
number of T cell epitopes are not sufficient to cover the high
variability of HCV observed at the population level (Firbas et al.,
2006; Klade et al., 2008). A paucity in the number of known HCV-
specific HLA-restricted T cell epitopes is a challenge for a T cell
based HCV vaccine.

A further implication of T cell escape is the degree to which
escape can accumulate over time in viruses circulating in pop-
ulations, rendering natural, and vaccine-induced CD8+ T cell
responses ineffective against transmitting strains, especially those
restricted by common HLA alleles. The frequency of certain HLA-
driven escape mutations in HIV are highly correlated to HLA
allele frequency across ethnically diverse populations, including
for some well-known escape networks associated with “protec-
tive” HLA alleles (Kawashima et al., 2009). This is an inherently
difficult phenomenon to prove, however, as the more such adap-
tations might accumulate in a population, the less polymorphism
and less statistical power to show a correlation with any host trait
as evidence of an adaptive process. Notably early population-based
studies of HIV and HCV escape detected significant associations
between common population HLA alleles and the presence of
population consensus amino acids in autologous viruses, which
raised the possibility that these were HLA-driven adaptations that
had become fixed at the population level (Moore et al., 2002).
This clearly has implications for vaccine immunogens, which may
include such “population-adapted” areas.

CURRENT VACCINE DEVELOPMENT
There is recognition of the need to stimulate both arms of the
adaptive immune response for an effective preventative HCV vac-
cine (reviewed in Swadling et al., 2013) and evidence to support

FIGURE 1 | Phylogenetic analysis of (A) HIV pol and (B) HCV

NS5B polymerase sequences. Neighbor-joining trees were
constructed using the Tamura-Nei model. Note the distance bar
for HIV corresponds to 0.01 substitutions per site and for

HCV 0.025 substitutions per site. Common HCV subtypes 1a
and 1b are indicated on tree. HCV subtype and HIV clade
sequences obtained from www.hcv.lanl.gov and www.hiv.lanl.gov,
respectively.
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the inclusion of both structural and non-structural proteins
(reviewed in Torresi et al., 2011). Previous studies have shown
evidence of cross-reactive neutralizing antibodies (NAbs), par-
ticularly in the chimpanzee model (Choo et al., 1994; Forns
et al., 2000; Rollier et al., 2007; Meunier et al., 2011), but limited
data on vaccine candidates that elicit both NAbs and HCV-
specific T cell responses. Recently, encouraging results have
been reported by Martinez-Donato et al. (2014) who utilized a
mixture of HCV core, E1, E2, and NS3 in Alum (Mixpro-
tHC; containing likely conserved T cell epitopes) from a geno-
type 1b strain to induce cross-reactive IgG NAbs (to genotype
1a and 2a) and broad HCV-specific CD4+ and CD8+ T cell
responses (detected via proliferation and IFN-gamma ELISpot
assays) in immunized mice (BALB/c) and African Green Mon-
keys. Importantly, immunization with MixprotHC also sup-
presses viremia in a surrogate challenge model in mice. Other
vector-based and DNA-based vaccine candidates exist (reviewed
in Swadling et al., 2013) and outcomes from Phase II trials
should be informative as to their likely efficacy in “at-risk”
populations.

In the comparatively much larger and now 30 year old field
of HIV vaccine development, the lack of an effective vaccine
points to the many remaining barriers to inducing broadly NAbs
or effective CD8+ T cells capable of acting and persisting at the
site of mucosal HIV entry. Many current vaccine strategies pro-
gressing to clinical studies seek to address some of the evasion
mechanisms discussed here. For example, there has been testing
of various diversity-combating immunogen design approaches,
including mosaic vaccines in which inclusion of variant epitopes
is optimized, as well as strategies based on conserved immunogens
sequences. There are numerous adjuvants, vectors and delivery
vehicles designed to improve the efficiency of antigen presenta-
tion of vaccine antigens in order to stimulate effective antiviral
responses. There are two recent vaccine programs, however, which
raise the intriguing possibility that vaccines may need to induce
mechanisms of antigen presentation that are highly distinct from
those seen in natural infection for their protective effects. A novel
“tolerogenic” vaccine consisting of inactivated simian immunod-
eficiency virus (SIV) mac239 particles with particular bacterial
adjuvants has been shown to elicit CD8+ T-regulatory cells in vac-
cinated macaques. These T cell were not cytolytic but were able
to suppress the activation of SIV-positive CD4+ T cells, rendering
them less susceptible to SIV infection after challenge. In addi-
tion, these CD8+ T cells were found to be uniquely restricted by
non-classical MHCIb/E molecules (Andrieu et al., 2014), corre-
sponding to HLA-E in humans. Interestingly, recent data shows
HLA-E expression in liver biopsies correlates with HCV viral
load in chronic HCV-infected subjects and NK cells lacking the
inhibitory receptor for HLA-E (NKG2A) is associated with protec-
tion from HCV infection in high-risk exposure subjects (Thoens
et al., 2014). To date there has been no examination of non-classical
HLA-restricted CD8+ T cells in HCV infection. In contrast to the
CD8+ “T-regulatory” type cells described above, a vaccine based
on a rhesis CMV vector has produced durable protection or clear-
ance of SIV challenge infections in vaccinated macaques associated
with induction of effector memory CD8+ T cell responses. How-
ever, these CD8+ T cells have been found to target a diverse array

of promiscuous or dominant epitopes restricted by HLA class II
alleles, rather than HLA class I (Hansen et al., 2013). In both these
examples, properties of the vaccine appear to violate the usual
rules of CD8+ T cell priming and both show promising efficacy
in the SIV-macaque model, suggesting novel ways in which vac-
cines may avoid the evolutionary solutions that SIV/HIV may have
developed in natural infection.

CONCLUSION
In general, induction of CD4+ and CD8+ T cell responses a
key aim of most current vaccine candidates for HIV and HCV,
together with innate and humoral immunity as part of a coordi-
nated and long lived immune response. For preventative vaccines,
the efficacy of CD4+ and CD8+ T cells will crucially depend on the
extent to which the vaccine induced T cells can overcome natural
effects of these viruses on HLA expression, antigen presentation
and HLA-associated viral diversity.
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Despite years of research, vaccines against HIV and HCV are not yet available, due largely
to effective viral immunoevasive mechanisms. A novel escape mechanism observed in
viruses that cause chronic infection is suppression of viral-specific effector CD4+ and
CD8+ T cells by stimulating regulatory T cells (Tregs) educated on host sequences during
tolerance induction. Viral class II MHC epitopes that share a T cell receptor (TCR)-face
with host epitopes may activate Tregs capable of suppressing protective responses. We
designed an immunoinformatic algorithm, JanusMatrix, to identify such epitopes and
discovered that among human-host viruses, chronic viruses appear more human-like than
viruses that cause acute infection. Furthermore, an HCV epitope that activates Tregs in
chronically infected patients, but not clearers, shares a TCR-face with numerous human
sequences. To boost weak CD4+ T cell responses associated with persistent infection,
vaccines for HIV and HCV must circumvent potential Treg activation that can handicap
efficacy. Epitope-driven approaches to vaccine design that involve careful consideration
of the T cell subsets primed during immunization will advance HIV and HCV vaccine
development.

Keywords: HIV, HCV, T cell epitope, immunoinformatics, vaccines, cross-reactivity, regulatory T cells, MHC class II

THE CHALLENGE
Despite modern advances in preventing disease by vaccination,
persistent viral infections continue to pose a major challenge to
vaccine development. The most prominent examples are HIV-1
and HCV infections, which remain two of the largest global public
health challenges today. Highly effective medications are now
available, but these are still inaccessible to the majority of at-risk
individuals mainly due to their cost, and limitations on access to
healthcare in the developing world countries where HIV and HCV
are most prevalent. Unfortunately, no vaccine candidate against
AIDS or hepatitis C is currently nearing market approval. Only
a handful of HIV vaccine efficacy trials have been completed,
and none have yet been completed for HCV (Honegger et al.,
2014). While a range of strategies to treat infection and prevent
transmission have been studied and implemented, it is widely
believed that an effective vaccine for these global health threats
is essential to stopping new infections worldwide.

Development of effective HIV and HCV vaccines is lagging
because traditional strategies for developing vaccines have failed
to overcome the ability of the viruses to evade the human
immune response. Many obstacles to vaccine development have
been uncovered: (i) extensive viral genetic diversity, enabling HIV
and HCV to evade humoral as well as cell-mediated immune
responses (von Hahn et al., 2007; Haaland et al., 2013), (ii) lack
of suitable animal models, (iii) establishment of latent reservoirs

following integration into the host genome soon after infection
(in the case of HIV; Perreau et al., 2013), and (iv) lack of clear
correlates of protective immunity. We recently hypothesized that
viruses that tend to cause chronic diseases mutate their T cell
epitopes toward greater homology with the human genome. The
existence of several highly homologous T cell epitopes, some
of which induce regulatory T cell (Treg) responses, has been
confirmed. We postulate that this is an important means by
which HIV and HCV evade effective T cell responses, and that
failure to account for such epitopes may have contributed to
the failure of certain vaccine approaches undertaken to date.
Methods for discovering HIV and HCV Treg-activating epitopes
and strategies for improving HIV and HCV vaccines are described
briefly here.

VIRUSES FIND NEW MEANS TO EVADE HUMAN IMMUNE
RESPONSES
No matter where one stands on the subject of the correlates of
immunity to HIV and HCV infection, it is generally acknowl-
edged that strong and broadly reactive HIV- and HCV-specific
CD4+ T cell responses are required for control of acute viral infec-
tions (Rosenberg et al., 1997; Gerlach et al., 1999). Early collapse
of the CD4+ T cell response impairs antibody production and
CD8+ T cell responses; thus, an effective vaccine needs to induce
long-lived CD4+ T cells capable of sustaining these essential
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components of immunity (Lichterfeld et al., 2004; Schulze Zur
Wiesch et al., 2012).

CD4+ T cells are activated by virus-specific epitopes presented
in the context of class II MHC by antigen presenting cells. Iden-
tification of class II MHC epitopes has been an active area of
research for characterization of antigen-specific HCV and HIV
CD4+ T cell responses in infection and vaccination and for
construction of epitope-driven vaccines (De Groot et al., 2004;
El-Awady et al., 2013; Karpenko et al., 2014; Mishra et al., 2014;
Takei et al., 2014). Long-standing criteria for characterizing class
II MHC epitopes include allele coverage in the human population
and virus coverage among circulating strains, measured by how
well an epitope represents a virus-induced response in the human
host. Our group has published and validated methods by which
this might be accomplished (De Groot et al., 2004; Koita et al.,
2006; Mishra et al., 2014).

A significant epitope property that is beginning to gain
wider attention is homology with host sequences. Viral epitopes
with substantial homology to self are, at best, inert because
of clonal deletion in the development of central tolerance; at
worst, they may activate Tregs that suppress protective inflam-
matory responses and thereby enable viral persistence (Rolland
et al., 2007; Frankild et al., 2008; Calis et al., 2012). It is well
established that HCV-induced Treg activation is associated with
extended chronic infections (Losikoff et al., 2012). Several studies
of chronic HCV subjects have shown increased frequencies of nat-
ural CD4+ Tregs that express high levels of CD25, produce IL-10
(Cabrera et al., 2004), TGF-β (Bolacchi et al., 2006), and FoxP3
(Li et al., 2007), and suppress IFN-γ production (Sugimoto et al.,
2003) and proliferation of HCV-specific CD8+ T cells (Boettler
et al., 2005; Rushbrook et al., 2005). In the case of HIV, the role of
Tregs in infection is currently being debated and requires further
investigation to identify Treg subsets that may be responsible
for suppressing non-specific T cell activation (beneficial) and of
HIV-specific effector T cell responses (detrimental; Chevalier and
Weiss, 2013).

We believe that vaccines for HIV and HCV must account for
potential Treg activation that can diminish efficacy, particularly
when a strong CD4+ T helper immune response is required.
Ideally, vaccines should be carefully designed to reduce or elim-
inate potential Treg-activating sequences. That is possible today
with the availability of immunoinformatic tools to predict class II
MHC epitopes that may stimulate Tregs.

For over 20 years and until very recently, T cell epitope-
mapping algorithms have focused on the MHC-facing side of
epitopes and ignored the T cell receptor (TCR) face; thus,
their usefulness was limited to identifying MHC ligands. While
MHC binding is necessary to stimulate a T cell response, it is
not sufficient. Hence, immunoinformatic-identified MHC lig-
ands have been screened experimentally for T cell activation to
validate predictions. Because Tregs are responsive to HIV and
HCV epitopes, T cell assays should be performed to ascertain
which T cell subsets are activated. Indeed, Treg-activating epi-
topes have been discovered using overlapping peptide arrays and
tetramers in HCV core, NS3, NS4, and NS5 antigens (Li et al.,
2007, 2009; Ebinuma et al., 2008; Langhans et al., 2010) and
HIV Gag (Angin et al., 2012). These approaches are extremely

cumbersome, however, when screens are conducted on a genomic
scale with the intent to broadly cover human MHC diversity.

ACCELERATING THE DISCOVERY OF VIRAL CAMOUFLAGE
SEQUENCES
An informatic tool that rapidly screens thousands of candidate
epitopes could address the problem of viral immune escape, but
also needs to consider the vast variability and degeneracy of TCRs,
making prediction extremely challenging. Fortunately, the prob-
lem can be significantly reduced by searching directly for virus-
encoded human homologs that potentially stimulate natural and
inducible Tregs, even if some Treg-activating epitopes are not
necessarily human homologs. Specifically, pathogen sequences
that bind MHC and share the same TCR-face with human MHC
ligands may stimulate pre-existing Tregs that emerged from devel-
opment of central and peripheral tolerance. Shared sequence
patterns on the TCR-face are easily searchable.

To better define and rapidly assess viral camouflage epi-
topes, i.e., those epitopes homologous to human, we developed
the JanusMatrix algorithm, which leverages our existing algo-
rithm (EpiMatrix) to define MHC-binding peptide epitopes while
searching for cross-conservation at the TCR-face. JanusMatrix can
be applied to any viral or bacterial target protein to compare
its TCR-faces to others in any genomes of interest. JanusMatrix
analyzes the two faces of peptide sequences of pathogen origin
for T cell activation potential (Moise et al., 2013). MHC-facing
residues are analyzed for MHC binding potential using the Epi-
Matrix epitope-mapping algorithm (De Groot et al., 1997). We
have examined TCR-facing residues for conservation against a
variety of sequence databases, including the complete human
proteome, the human microbiome, and human pathogens (Moise
et al., 2013). For example, we screened a wide range of human-
host viruses for TCR-face similarity to self and discovered that
chronic viruses generally appear more human-like than viruses
that cause acute infection (He et al., 2014), and that H7N9
influenza may evade immune response in a similar way (De Groot
et al., 2013, 2014).

Using JanusMatrix, we discovered a promiscuous class II epi-
tope located within non-structural HCV protein p7 that exhibits
homology with hundreds of human sequences (Figure 1). The
epitope induces an increase in CD4+CD25+FoxP3+ Treg num-
ber and function in peripheral blood leukocyte cultures derived
from an HLA-diverse cohort of HCV-infected patients, but not
in cultures derived from patients who spontaneously cleared
HCV or from non-infected individuals (Losikoff et al., 2014).
A human analog of the HCV epitope stimulates Tregs in both
HCV-infected and non-infected people, suggesting that toler-
ance to HCV is promoted by activating Tregs that recognize a
common TCR-face. It is well known that HCV and HIV CD8+

and CD4+ T cell epitopes mutate over the course of infection,
decreasing MHC binding as a mechanism of viral escape (Har-
court et al., 1998; Norris et al., 2006; Petrovic et al., 2012).
The p7 HCV epitope exhibits a novel escape mechanism, evolv-
ing a TCR-face similar to that found in autologous T cell epi-
topes, thus stimulating Treg responses and suppressing immune
clearance.
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FIGURE 1 | Predicted Treg-activating HIV and HCV sequences
possess TCR faces shared by numerous human proteins. Epitope
networks are shown, illustrating the abundance of TCR faces one HCV
and one HIV peptide share with the human genome as determined by
JanusMatrix analysis. The HIV and HCV source peptides are
represented by green diamonds, their constituent 9-mer epitopes by

gray squares, their cross-conserved partners in the human genome by
blue triangles, and the source human proteins by light purple circles. In
the HIV peptide (right) a single cross-conserved epitope can be found
in 32 different HLA class I alleles; several additional 9-mer epitopes are
cross-conserved with 12 other HLA sequences (source protein orange
highlight).

At first glimpse, JanusMatrix analysis indicates that HIV also
exhibits curious patterns of potential T cell cross-reactivity. While
searching HIV envelope sequences for TCR-face conservation in
the human genome, we recently uncovered a high frequency of
human MHC (HLA) molecule sequences that share a TCR-face
with a highly conserved epitope located in the HIV envelope
protein (orange circles, Figure 1). Because HLA is highly variable
in the human population, conservation of this sequence across
HLA subtypes is noteworthy. The phenotype of T cells responding
to this epitope has not yet been evaluated in our laboratory but
an Immune Epitope Database search identified a closely related
epitope capable of stimulating CD4+ T cell recognition and
proliferation (Atassi and Atassi, 1992). If these CD4+ T cells are
T-effector in nature, their activation could restrict HIV expansion
(Sanjuán et al., 2013). We believe that it is more likely, however,
that T cells that recognize this epitope possess a Treg phenotype,
which may promote HIV expansion and/or persistence instead.

These HIV and HCV epitope examples are consistent with
our previously published observation that “hit-and-stay” viruses
escape protective immune responses by stimulating cross-reactive
Tregs (He et al., 2014). This suggests that Treg-activating HCV
and HIV sequences may affect HCV and HIV vaccine efficacy. We
find similar patterns of cross reactivity in EBV, CMV, and HSV, all
viruses that establish chronic infection and for which no vaccine
exists.

ADDRESSING VIRAL CAMOUFLAGE IN VACCINE DESIGN
Homology with the human genome represents a novel means
by which viruses that seek to establish chronic infections escape
human immunity and ensure their survival. Better classification
of viral epitopes as either effector- or Treg-activating will improve
the design of HIV and HCV vaccines. Knowledge of which epi-
topes to include or exclude makes it possible to generate virus-
specific T cell responses that are essential for protection and
that sidestep suppression. One potential solution to the challenge
of HCV and HIV vaccine design is to develop epitope-driven
subunit vaccines, either as whole antigen protein vaccines, using
a structure-based approach, or alternatively, as platform-neutral
epitope-based vaccines that do not contain Treg-activating epi-
topes. Such vaccines would have major advantages over conven-
tional, but as yet unsuccessful approaches because they would
simultaneously account for viral and human diversity for the
purpose of broad reactivity and promote protective virus-specific
T cell responses.

Importantly, the impact of Treg-activating epitopes may have
different inhibitory effects depending on the level of viral replica-
tion and immune activation in acute or chronic HIV infection.
Thus, Treg epitopes to exclude may differ for prophylactic and
therapeutic HIV vaccines. With respect to HCV, we believe the
maximum effectiveness of an HCV vaccine used either prophylac-
tically or therapeutically would be achieved by always excluding
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Treg-activating epitopes because (i) unlike HIV, which infects
and replicates in Tregs, HCV is primarily hepatotropic and (ii)
a better understanding of Treg function in chronic HCV infection
could lead to treatments that are capable of balancing the com-
peting needs for sustained effector T cell-mediated immunity and
limited tissue damage moderated by Tregs (Self et al., 2013).

Finally, we are exploring means to fine-tune the epitope con-
tent of HIV and HCV vaccines to induce nuanced T cell responses
associated with protection. We believe that careful design is
needed to improve efficacy. Cross-reactivity at the individual
level owing to HLA and HIV or HCV sequence variation may
necessitate the development of personalized vaccines that contain
T effector, but not Treg epitopes. While personalized vaccines
may seem futuristic, tools are available to design such vaccines.
As this technology becomes ever more accessible, there will be
an even greater incentive to define the means of personalizing
vaccines.
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Emerging evidence suggests that antibodies against merozoite proteins involved in
Plasmodium falciparum invasion into the red blood cell (RBC) play an important role in
clinical immunity to malaria. The protein family of parasite antigens known as P. falciparum
reticulocyte binding protein-like homolog (PfRh) is required for RBC invasion. PfRh5 is the
only member within the PfRh family that cannot be genetically deleted, suggesting it plays
an essential role in parasite survival. This antigen forms a complex with the cysteine-rich P.
falciparum Rh5 interacting protein (PfRipr), on the merozoite surface during RBC invasion.
The PfRh5 ectodomain sequence and a C-terminal fragment of PfRipr were cloned and
expressed in Escherichia coli and baculovirus-infected cells, respectively. Immunization
of rabbits with these recombinant proteins induced antibodies able to inhibit growth of
various P. falciparum strains. Antibody responses to these proteins were investigated in a
treatment–re-infection study conducted in an endemic area of Papua New Guinea (PNG) to
determine their contribution to naturally acquired immunity. Antibody titers to PfRh5 but not
PfRipr showed strong association with protection against P. falciparum clinical episodes.
When associations with time-to-first infection were analyzed, high antibody levels against
PfRh5 were also found to be associated with protection from high-density infections but
not from re-infection. Together these results indicate that PfRh5 is an important target of
protective immunity and constitutes a promising vaccine candidate.

Keywords: malaria, Plasmodium falciparum, reticulocyte binding protein homolog 5, antibodies, immunity

INTRODUCTION
Malaria is one of the most serious infectious diseases of humans
causing 500 million clinical cases annually, with nearly 25% of
the global burden occurring in the Asia-Pacific. The blood stage
of the Plasmodium parasite is entirely responsible for malaria-
associated pathology (Miller et al., 2002). Fatalities are associated
with a spectrum of disease syndromes including acute respira-
tory distress, hypoglycemia, renal failure, pulmonary oedema and
cerebral involvement. The most susceptible population to severe
malaria are children under the age of 5, who have experienced
few parasitic infections. After years of repeated exposure, indi-
viduals living in endemic areas develop clinical immunity. This
form of protection does not result in sterilizing immunity but pre-
vents clinical episodes by significantly reducing parasite burden.
Naturally acquired immunity predominantly targets blood-stage
parasites and appears to require antibody responses since passive
transfer of sera from clinically immune individuals protects non-
immune recipients from high parasitemia and disease symptoms
(Cohen et al., 1961).

During blood-stage replication, Plasmodium falciparum mero-
zoites invade erythrocytes through a complex multistep process
that requires initial contact of the parasite with the red blood
cell (RBC) surface followed by apical reorientation of the mero-
zoite, tight junction formation and final entry into the erythrocyte
(reviewed in Cowman and Crabb, 2006). These invasion steps
depend on interactions between specific parasite proteins and their
receptors on the erythrocyte surface. Two families of invasion lig-
ands have been identified in P. falciparum: the erythrocyte-binding
antigens (EBAs) and the P. falciparurm reticulocyte binding
protein-like homologs (PfRhs; reviewed in Cowman and Crabb,
2006). EBAs are orthologs of the Duffy-binding protein of P. vivax
and include EBA-140, EBA-175, and EBA-181. They consist of an
N-terminal cysteine-rich domain, a highly conserved domain, a
C-terminal cysteine-rich domain and a transmembrane and cyto-
plasmic domain (reviewed in Cowman and Crabb, 2006). EBAs
are located in the micronemes and are secreted onto the parasite
surface just before invasion. Whereas EBA-175 has been shown
to interact with glycophorin A on the surface of the erythrocyte
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(ref), EBA-140 binds to glycophorin C (Maier et al., 2009). The
receptor for EBA-181 has not been identified. The PfRhs family
consists of five proteins located in the parasite’s rhoptries. Mem-
bers of this family include: PfRh1, PfRh2a, PfRh2b, PfRh4, and
PfRh5. So far only the host receptor for PfRh4 (Tham et al., 2010;
complement receptor 1) and PfRh5 (Crosnier et al., 2011; basi-
gin) have been identified. Except for PfRh5 (Baum et al., 2009), all
the other members of this family are large type-1 transmembrane
proteins.

PfRh5 is considerably smaller than the other PfRh proteins
and lacks a transmembrane domain (Baum et al., 2009). After its
release from the rhoptries, PfRh5 forms a complex with a cysteine-
rich antigen named P. falciparum Rh5 interacting protein (PfRipr),
which facilitates its expression on the merozoite’s surface for ery-
throcyte invasion (Chen et al., 2011). The genes encoding both
PfRh5 and PfRipr are refractory to gene targeted deletion, sug-
gesting essential roles for these antigens in parasite invasion (Baum
et al., 2009; Chen et al., 2011).

P. falciparum invasion ligands are targets of inhibitory anti-
bodies that prevent parasite invasion and subsequent replication
in the erythrocyte (reviewed in Cowman and Crabb, 2006). Thus
these molecules have been proposed as vaccine candidates. With
this in view, PfRh5 has recently received considerable attention,
since unlike many other merozoite antigens, it has limited genetic
diversity among P. falciparum isolates (Bustamante et al., 2013).
Moreover, rabbit antisera raised against PfRh5 have been shown
to inhibit parasite replication in vitro (Baum et al., 2009; Dou-
glas et al., 2011). Parasite growth inhibition was observed across
a wide range of laboratory-adapted parasite lines, suggesting that
PfRh5 could be an effective vaccine target (Bustamante et al., 2013;
Douglas et al., 2014; Reddy et al., 2014). Similarly, antibodies to
PfRipr have been shown to inhibit parasite growth in vitro (Chen
et al., 2011).

To date, it is unclear whether PfRipr is recognized by naturally
acquired antibodies from individuals residing in malaria-endemic
areas. Moreover, despite promising results in experimental animals
and in vitro assays on the potential for PfRh5 as a leading vaccine
candidate, there are conflicting reports on whether this antigen is
the target of naturally acquired immunity, with studies suggesting
suggesting that PfRh5 has poor natural immunogenicity (Douglas
et al., 2011) or that anti-PfRh5 responses predict protection from
clinical malaria (Tran et al., 2014). To further address this question,
we have expressed stable, soluble forms of PfRh5 and PfRipr. The
association between antibody responses to the PfRh5 and PfRipr
recombinant proteins with reduced risk to re-infection and symp-
tomatic disease was investigated in a treatment–reinfection study
in a malaria-endemic area. Our main results indicate that in a
population of children who are actively acquiring immunity to
malaria, anti-PfRh5 antibody responses are associated with pro-
tection against P. falciparum clinical episodes and high-density
infections.

MATERIALS AND METHODS
STUDY POPULATION AND ETHICS STATEMENT
Plasma samples were obtained from a prospective treatment–
reinfection study of 206 children aged from 5 to 14 years conducted
in Madang province of Papua New Guinea (PNG). Full details

of this cohort have been previously described (Michon et al.,
2007). Briefly, venous blood was collected at study enrolment
into heparinized tubes and plasma was stored at −80◦C. All
participants received a 7-day treatment of oral artesunate to
clear existing infections. During a 6-month follow up period,
participants were monitored every two weeks for symptomatic
illness and/or parasitemia (active surveillance) and when a child
presented with symptoms at the local Mugil Health Centre (pas-
sive surveillance). Re-infection was detected by post-PCR ligase
detection reaction–fluorescent microsphere assay (LDR-FMA)
and light microscopy (LM) on Giemsa stained blood smears.
Re-infections were categorized to (1) PCR-detectable, (2) LM-
detectable, (3) LM-detectable re-infection with >500 parasites
per μl, and (4) LM-detectable re-infection with >5000 para-
sites per μl. Clinical episode was defined as the presence of
fever with ≥37.5◦C and >5000 parasites/μl. The study was
approved by the Medical Research Advisory Committee (MRAC),
PNG Ministry of Health, The Walter and Eliza Hall Institute
Human Research Ethics Committee and the institutional review
board of the Veteran’s Affairs Medical Center (Cleveland, OH,
USA). Written consent was obtained from parents/guardians of all
participants.

EXPRESSION OF RECOMBINANT PROTEINS AND ANTIBODY
GENERATION
The PfRh5 ectodomain sequence was codon-optimized for
Escherichia coli expression and cloned into the pET-303 vector
(Invitrogen, MA, USA). The C-terminally HIS tagged expres-
sion product was refolded from the insoluble pellet material
under standard conditions. PfRipr (AA604-1086) was cloned
into pTri-Ex 2 vector for expression in baculovirus-infected
Hi-5 cells (Life Technologies, MA, USA). HIS-FLAG tagged
PfRiPr protein was purified from the cell culture supernatant
by incubation with M2-FLAG beads (Sigma, MO, USA), fol-
lowed by elution with FLAG peptide in NaCl-Tris buffer pH
8.0. The peptide was removed by dialysis prior to immu-
nization. Purity and integrity of recombinant proteins were
assessed in SDS–polyacrylamide gels (Invitrogen, MA, USA).
Rabbits were immunized twice with 100 μg PfRh5 in GLA-
SE adjuvant (a kind gift from Darrick Carter, IDRI), or three
times with 200 μg PfRipr in Freund’s adjuvant. Total IgG
was purified from immune sera as described (Healer et al.,
2013). All experiments were performed in compliance with
the Walter and Eliza Hall Institute Animal Ethics Committee
requirements.

GROWTH INHIBITION ASSAYS
Growth inhibition assays (GIA) using IgG isolated from immu-
nized rabbits were performed as described (Healer et al., 2013).
Briefly, serial dilutions of purified IgG starting at 2 mg/ml
were added to P. falciparum-infected RBC (3D7, W2mef, and
FCR3) at a parasitemia of 0.5%. Parasitemia was counted
after 48 h and specific growth inhibition calculated relative to
parasites grown in non-immune IgG. Specific growth inhibi-
tion was calculated relative to parasites grown in non-immune
IgG.
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ELISA
Microtiter plates were coated with recombinant PfRh5 (2 μg/ml)
and PfRipr (0.5 μg/ml) in carbonate buffer pH 9.6 by overnight
incubation at 4◦C. Empty sites were blocked with 5% skim milk
for 1 h at 37◦C. After washing with 0.05% Tween-PBS, 100 μl of 1:2
serially diluted plasma samples were added to plates and incubated
at 37◦C for 1 h. The plates were washed three times and incu-
bated with a peroxidase-conjugated mouse anti-human antibody
(Southern Biotech, AL, USA). Bound complexes were detected by
reaction with tetramethy-benzidine (KBL, MD, USA) and H2O2.
Absorbance was read at 450 nm. Plasma samples from malaria
naïve anonymous Australian blood donors were included as nega-
tive controls. Antibody titers were calculated as the plasma dilution
with an optical density (OD) value higher than that observed for
negative controls at a 1/100 dilution.

STATISTICAL ANALYSES
Statistical analysis was performed using STATA 9.2 (STATA-Corp.,
College Station, TX, USA). For analysis of associations with clin-
ical outcomes, participants with no detectable parasitemia by
PCR or LM during follow up were regarded as non-exposed and
excluded from the analysis. Demographic and clinical variables
were assessed as potential confounders. Kaplan–Meier method and
log-rank test were used to explore associations between antibody
titers and time to P. falciparum re-infection or clinical episodes.
Cox proportional hazards modeling was used to calculate hazard
ratios (HR) for time-to-first P. falciparum infection by PCR, LM,
and time-to-first infection of >500 and >5000 parasites/μL. Pois-
son model was used to obtain incidence rate ratio (IRR) for the
incidence of clinical malaria episodes throughout the study period.
HR and IRR were adjusted for identified confounders. Differences
in antibody titers between categorical variables were assessed using
Wilcoxon rank sum test or Kruskal–Wallis tests.

RESULTS
RECOMBINANT PfRh5 AND PfRipr ARE IMMUNOGENIC AND INDUCE
PARASITE GROWTH INHIBITORY ANTIBODIES
The PfRh5 ecotodomain sequence and the C-terminal PfRipr
fragment from 3D7 were cloned and expressed in E. coli and
baculovirus-infected insect cells, respectively. HIS-FLAG tagged
proteins were purified with M2-FLAG beads. SDS-PAGE analysis
of the purified recombinant proteins revealed highly pure protein
preparations with predominant bands at 63 kDa corresponding to
PfRh5 and 65 kDa corresponding to PfRipr (Figure 1A).

To determine if the recombinant proteins were immunogenic,
rabbits were immunized twice with 100 μg PfRh5 in GLA-SE
adjuvant or three times with 200 μg PfRiPr in Freund’s adjuvant.
Seroconversion of immunized rabbits was successfully confirmed
by ELISA using PfRh5 and PfRipr recombinant proteins (data not
shown). Total IgG was purified from immune sera 2 weeks after
the last immunization and added to P. falciparum trophozoite
cultures to determine their capacity to inhibit parasite growth.
Figures 1B,C shows that both anti-PfRh5 and anti-PfRipr anti-
bodies inhibit growth of P. falciparum 3D7, W2Mef, and FCR3 in
a dose dependent manner. Incubation with 2 mg/ml of both anti-
bodies resulted in ∼40% of growth inhibition of all parasite strains
tested. Thus immunization with these novel recombinant proteins

induces antibodies that prevent growth of multiple P. falciparum
clones.

ANTI-PfRh5 ANTIBODIES ARE ASSOCIATED WITH PROTECTION FROM
HIGH PARASITEMIA AND REDUCE INCIDENCE OF MALARIA CLINICAL
EPISODES
A preliminary screen conducted in the Madang Province of PNG
suggested that antibodies to PfRh5 and to the EGF-like domain
of PfRipr show an intermediate association with protection from
clinical malaria (Richards et al., 2013). To further explore this
hypothesis, antibody titers to the recombinant PfRh5 and PfRipr
proteins described above, were measured by ELISA in a lon-
gitudinal cohort of PNG children. Similar to other endpoints
previously examined in this cohort (Michon et al., 2007; Richards
et al., 2010; Hill et al., 2013), antibody responses to PfRh5 were
heterogeneous and thus divided into terciles for analysis. The
relationship between antibody levels amongst low (L), medium
(M), and high (H) responders and time-to-reinfection of differ-
ent parasite densities was investigated in Kaplan–Meier survival
curves and a log-rank test was used to determine the differ-
ence between groups. Figure 2 shows that anti-PfRh5 responses
protected from high-density (≥5000 parasites/μL) parasitemia
(H vs L: p < 0.0001, M vs L: p = 0.019) but not against
re-infection per se (assessed by PCR or LM). The association
between antibody titers and the risk of acquiring new P. falci-
parum infections was also analyzed by Cox regression model. In
agreement with previous studies with this cohort (Michon et al.,
2007; Richards et al., 2010; Hill et al., 2013), age (<9 years and
≥9 years) and location of residence were identified as confounders.
Thus HRs were adjusted for those variables. Anti-PfRh5 antibody
responses did not reduce the risk of P. falciparum re-infection
by PCR, LM or moderate density infection (>500 parasites/μL).
However, a reduced risk of developing a high-density infec-
tion (>5000 parasites/μL) was observed for high anti-PfRh5
titers, even after adjustment for age and location of participants
(Table 1).

The association of anti-PfRh5 antibody responses with time-
to-first clinical episode was also determined. Anti-PfRh5 antibody
levels were found to be significantly associated with a protection
from clinical malaria, as medium and high antibody responders
showed 61.7 and 82.2% reduced risk of experiencing a clinical
episode than low responders after the adjustment for confounders
(M vs L: adjusted HR = 0.383, 95% CI = 0.216–0.678, p = 0.001;
H vs L: adjusted HR = 0.178, 95% CI = 0.082–0.389, p < 0.001;
Table 2). A Poisson regression was used to test for associations
between antibody levels and overall incidence of clinical disease.
Increased anti-PfRh5 antibody responses were found to be strongly
associated with reduced incidence of malaria clinical episode dur-
ing the 6 month follow-up period (M vs L: adjusted IRR = 0.539,
95% CI = 0.344–0.842, p = 0.007; H vs L: adjusted IRR = 0.257,
95% CI = 0.134–0.492, p < 0.001; Table 3). Moreover, anti-PfRh5
antibody titers were found to be significantly higher in individuals
that did not experience clinical episodes compared to those that
experienced 1, 2, or 3 malaria clinical episodes over the follow up
period (Figure 3). Thus together these results indicate that natu-
rally acquired anit-PfRh5 antibodies protect from parasitemia of
high density and clinical illness.
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FIGURE 1 | Immunization of rabbits with recombinant PfRh5 and PfRip5

induces strain-transcending parasite growth inhibitory antibodies. The
PfRh5 ectodomain sequence and the C-terminal PfRipr fragment were cloned
and expressed in E. coli and baculovirus-infected Hi-5 cells, respectively.

SDS-PAGE analysis (A) of the purified recombinant proteins. Total IgG purified
from sera of PfRh5 (B) and PfRipr (C) immunized rabbits was added to P.
falciparum 3D7, W2Mef, and FCR3 cultures to determine their capacity to
inhibit parasite growth.

FIGURE 2 | Probability of remaining free of malaria re-infection

amongst individuals with different anti-PfRh5 antibody levels.

Time-to-first PCR-positive P. falciparum blood-stage infection (A),
LM-positive (B), LM-positive with ≥500 parasites/μL (C) and LM-positive
with ≥5000 parasites/μl (D) in individuals with low, medium or high

anti-PfRH5-specific antibody titers at study enrolment, as determined by
Kaplan–Meier survival analysis. Log-rank was used to determine differences
among responder groups, p < 0.0001 between high and low responders
and p = 0.019 between medium and low responders with
LM ≥ 5000 parasites/μl.
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Table 1 | Associations between anti-PfRh5 antibody titers and risk of acquiring P. falciparum infections of varying density.

Anti-PfRh5 responses

Medium vs low High vs low

HR 95% CI P HR 95% CI P

PCR Unadjusted 0.95 (0.66–1.35) 0.76 0.88 (0.61–1.27) 0.51

PCR Adjusted 0.98 (0.68–1.42) 0.93 0.87 (0.57–1.33) 0.53

LM Unadjusted 0.99 (0.68–1.45) 0.96 0.89 (0.61–1.31) 0.56

LM Adjusted 1.10 (0.74–1.64) 0.64 1.05 (0.67–1.65) 0.83

LM500 Unadjusted 0.87 (0.58–1.30) 0.49 0.63 (0.41–0.97) 0.03

LM500 Adjusted 1.00 (0.64–1.54) 0.99 0.85 (0.51–1.42) 0.55

LM5000 Unadjusted 0.56 (0.34–0.93) 0.03 0.27 (0.15–0.50) <0.001

LM5000 Adjusted 0.61 (0.36–1.05) 0.07 0.37 (0.18–0.72) <0.001

Hazard ratio (HRs) were determined to assess associations with anti-PhRh5 antibody responses and time-to-first PCR detectable, LM detectable, ≥500 parasites/μl,
and ≥5000 parasites/μl P. falciparum infections. HRs were adjusted for age and location of participants. Significant associations are shown in bold.

Table 2 | Association between IgG responses to PfRh5 and PfRipr and time-to-first clinical episode.

PfRh5 PfRipr

M vs L H vs L M vs L H vs L

HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P

Unadjusted 0.45 (0.26–0.77) <0.01 0.17 (0.08–0.35) <0.01 0.90 (0.51–1.60) 0.73 0.55 (0.30–1.00) 0.053

Adjusted 0.38 (0.22–0.68) <0.01 0.18 (0.08–0.39) <0.01 0.90 (0.50–1.61) 0.72 0.64 (0.35–1.17) 0.150

Hazard ratios (HRs) were determined to assess associations with anti-PhRh5 and anti-PfRipr antibody responses and time to P. falciparum clinical episodes with
≥5000 parasites/μl. Values represent unadjusted and adjusted ratios (age and location) ±95% confidence intervals (CI). Significant associations are shown in bold.

Table 3 | Association between IgG responses to PfRh5 and PfRipr and incidence of malaria clinical episodes.

PfRh5 PfRipr

M vs L H vs L M vs L H vs L

IRR 95% CI P IRR 95% CI P IRR 95% CI P IRR 95% CI P

Unadjusted 0.55 (0.35–0.85) <0.01 0.21 (0.12–0.39) <0.01 1.03 (0.64–1.65) 0.90 0.81 (0.49–1.33) 0.41

Adjusted 0.54 (0.34–0.84) <0.01 0.26 (0.13–0.49) <0.01 1.05 (0.65–1.69) 0.83 0.87 (0.53–1.44) 0.58

Incidence rate ratios (IRR) were determined to assess associations between antibody responses and overall incidence of clinical episodes for all individuals. Values
represent unadjusted and adjusted ratios (age and location) ± 95% confidence intervals (CI). Significant associations are shown in bold.

ANTI-PfRipr ANTIBODIES ARE NOT ASSOCIATED WITH REDUCED RISK
OF P. falciparum RE-INFECTION AND SYMPTOMATIC MALARIA
The relationship between anti-PfRipr antibody titers and time
to reinfection of different parasite densities was investigated
in Kaplan–Meier survival curves and a log-rank test was used
to determine the difference between high, medium and low
responders. Figure 4 shows that only high responders (H vs L:
p = 0.01) appeared to be protected from parasitemia of high
density (>5000 parasites/μl) but not from moderate-density par-
asitemia (>500 parasites/μl) or re-infection. Before adjustment

for confounders, high responders showed a reduced risk to
develop a high-density infection (H vs L, HR: 0.49, 95% CI
0.28–0.86, p = 0.02). However, this association did not reach
statistical significance after adjustment for age and location of
the study participants (H vs L, HR: 0.38, 95% CI 0.33–1.05,
p = 0.07).

The association of anti-PfRipr antibody levels with risk of expe-
riencing a malaria clinical episode was also determined. The risk
of developing clinical episodes (Table 2) as well as the overall
incidence of malaria episodes throughout the 6 month follow-up
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FIGURE 3 | High anti-PfRh5 antibody levels in individuals protected

from clinical malaria. Anti-PfRh5 antibody titers were stratified on the
basis of the number of clinical episodes during the 6 month follow-up
period. Statistical significance was determined by Kruskal–Wallis test and
by Wilcoxon rank sum test (*p < 0.01, **p < 0.001).

period (Table 3) were similar amongst all responders, suggesting
anti-PfRipr antibodies do not play an important role in clinical
outcome.

DISCUSSION
Antibodies that prevent P. falciparum invasion into erythrocytes
are an important effector mechanism mediating immunity against
blood-stage malaria parasites. Over the past 10 years, a large body
of data has been generated towards understanding the molecu-
lar basis of merozoite invasion into the erythrocyte and many
parasite antigens have been characterized. From those antigens,
PfRh5 has been identified as an attractive vaccine candidate since
it appears to be essential for parasite survival (Baum et al., 2009),
has limited sequence polymorphisms and upon animal immuniza-
tion induces broadly growth inhibitory antibodies (Douglas et al.,
2011; Bustamante et al., 2013; Reddy et al., 2014). Consistent with
those findings, immunization of rabbits with the PfRh5 recom-
binant protein described here induced strong antibody responses
able to inhibit parasite growth across three different P. falciparum
lines.

Previous studies suggested that PfRh5 is not highly immuno-
genic in humans exposed to malaria (Douglas et al., 2011) and that
antibody responses to this antigen are rapidly lost at the end of high
transmission season. However, a recent study conducted in Mali
reported that naturally acquired anti-PfRh5 antibody responses
predict protection from clinical malaria (Tran et al., 2014). Con-
sistent with those findings, our study revealed strong associations
between anti-PfRh5 antibody titers and protection from symp-
tomatic malaria and high-density parasitemia but not re-infection.
Moreover, anti-PfRh5 antibodies at study baseline were found to

FIGURE 4 | Probability of remaining free of malaria re-infection

amongst individuals with different anti-PfRipr antibody levels.

Time-to-first PCR-positive P. falciparum blood-stage infection
(A), LM-positive (B), LM-positive with ≥500 parasites/μL (C) and
LM-positive with ≥5000 parasites/μl (D) in individuals with low,

medium, or high anti-PfRipr-specific antibody titers at study
enrolment, as determined by Kaplan–Meier survival analysis. Log-rank
was used to determine differences among responder groups,
p = 0.01 between high and low responders with ≥5000
parasites/μl.
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reduce the overall incidence of clinical episodes throughout the
6-month follow-up period.

PfRh5 exists in a membrane-associated complex with the
cysteine-rich protein PfRipr. We have previously found antibod-
ies to E. coli expressed C-terminal and N-terminal fragments of
PfRipr inhibit merozoite attachment to the erythrocytes as well
as in vitro parasite growth (Chen et al., 2011). Here immuniza-
tion of rabbits with a baculovirus-expressed C-terminal fragment
of PfRipr induced strong antibody responses, able to inhibit
the in vitro growth of several P. falciparum lines to a simi-
lar level than that observed for anti-PfRh5 rabbit antibodies.
Recombinant PfRipr was readily recognized by plasma from PNG
participants in our cohort study. However, unlike anti-PfRh5
responses, antibodies against PfRipr showed only a modest asso-
ciation with protection from high-density parasitemia, which
did not reach statistical significance after adjustment for con-
founder variables. Interestingly, despite the close association of
PfRipr and PfRh5 on the surface of the merozoite, antibody
responses against the two antigens appeared to be only weakly cor-
related (data not shown). To date, antibody responses to PfRipr
have not been extensively investigated. Further work in other
settings is required to determine whether this Plasmodium anti-
gen is an important target of naturally acquired immunity to
malaria.

There is an urgent need for a blood stage component in an
anti-malarial vaccine to reduce parasite burdens responsible for
morbidity and mortality in susceptible individuals. Development
of a blood stage vaccine against malaria has been largely delayed
mainly due to the high level of polymorphism in the few anti-
genic targets that were tested in clinical trials (Lyon et al., 2008;
Ogutu et al., 2009). Thus it has been suggested that an effective
blood stage vaccine should include more than one (preferably
conserved) antigenic components to circumvent parasite phe-
notypic diversity. This report and others (Douglas et al., 2011;
Bustamante et al., 2013; Reddy et al., 2014) demonstrated that
immunization with PfRh5 results in the induction of strain-
transcending parasite growth inhibitory antibodies. Similarly,
we have recently found that immunization of rabbits with a
highly conserved region of EBA-175 (region III–V) also induces
potent, parasite strain-transcending growth inhibitory antibod-
ies, which appear to be active at concentrations even lower
than those described for anti-PfRh5 antibodies (Healer et al.,
2013). Further studies are now required to investigate whether
co-immunization with PfRh5 and the III–V EBA-175 region
results in synergistic interactions and induces robust antibody
responses required for the development of an effective malaria
vaccine.
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Malaria is a significant global burden but after >30 years of effort there is no vaccine
on the market. While the complex life cycle of the parasite presents several challenges,
many years of research have also identified several mechanisms of immune evasion by
Plasmodium spp. Recent research on malaria, has investigated the programmed cell death-
1 (PD-1) pathway which mediates exhaustion of T cells, characterized by poor effector
functions and recall responses and in some cases loss of the cells by apoptosis. Such
studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells
in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates
up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T
cells, thus masking their role in protection. The role of T cell exhaustion during malaria
provides an explanation for the absence of sterile immunity following the clearance of acute
disease which will be relevant to future malaria-vaccine design and suggests the need for
novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell
exhaustion in preventing lasting immunity against malaria.

Keywords: CD8+ T cell, malaria, exhaustion, PD-1, chronic disease, CD4+ T cells, B cells, PD-L1

INTRODUCTION
Malaria is a mosquito-borne infectious disease of humans caused
by parasitic protozoans of the genus Plasmodium. There are five
species that infect humans and annual deaths from the malaria par-
asite Plasmodium falciparum (Pf) alone are estimated at 780,000,
with approximately 225 million clinical infections worldwide
(Schwartz et al., 2012). The Anopheles mosquito, serves as a trans-
mission vector for the parasite. An infected mosquito introduces
sporozoites into the blood or lymph of bitten individuals when
taking a blood meal. These sporozoites then migrate to the host’s
liver, where they begin to invade and multiply. During the first
week of infection, sporozoites develop into merozoites and then
exit the hepatocytes to invade red blood cells progressively, result-
ing in massive destruction of red blood cells. This eventually leads
to anemia in infected subjects due to the loss of erythrocyte and
severe symptoms associated with malaria.

Over the last 10 years, more than 40 vaccines were developed
to control the morbidity of malaria which then reached the clini-
cal trial stage (Schwartz et al., 2012). Most of these vaccines were
specifically designed to target liver or blood stage parasites, the
majority through protection by antibodies and/or CD4+ T cells.
Although some of them showed potent protection at pre-clinical
trials (Schwartz et al., 2012), none to date conferred complete pro-
tection against both clinical and severe malaria. The only vaccine to
reach stage 3b, RTS,S/AS01E, showed approximately 50% efficacy
for 18 months (Alonso et al., 2005) but immunity was significantly
diminished within 4 years (Olotu et al., 2013). Notably, protection
declined over time and with increasing malaria exposure.

To explain why these vaccines have been unsuccessful, it is
important to understand natural immunity against malaria. Per-
haps most informative has been an intensive longitudinal study
of immunity in Malian children and adults (Tran et al., 2013).

In this study, 251 healthy children and adults who were free of
blood-stage Plasmodium infections, by polymerase chain reaction
(PCR), were enrolled just prior to an intense 6-month malaria
season. Subsequent clinical malaria episodes were detected by
weekly active surveillance or self-referral. Asymptomatic infec-
tions were detected by blood-smear microscopy and PCR analysis
of blood collected every 2 weeks for 7 months. These studies
found that while the risk of symptomatic malaria decreased with
increasing age, the risk P. falciparum infections did not change.
This means that despite years of exposure to intense Pf trans-
mission, there was no evidence of acquired, sterile immunity
to the parasite in this population, even as clinical immunity to
blood-stage malaria was clearly acquired (Tran et al., 2013). Signif-
icantly, this indicates that while anti-malarial immune responses to
protect against symptoms were effectively induced, sterile immu-
nity against the parasite was not acquired in the same time
frame.

NATURALLY ACQUIRED IMMUNITY
The factors that regulate anti-parasite immunity (i.e., those pro-
cesses that kill parasites and reduce parasite biomass in the
body) are not completely understood. For decades it has been
known that antibodies play an important role in protection
against malaria, and it has been assumed that antibody responses
alone can provide sufficient protection to control this disease.
This was predominantly based on studies where the transfer
of IgG from malaria-immune individuals to non-immune indi-
viduals markedly reduced parasite burden (Cohen et al., 1961).
Studies indicating that antibodies protect against malaria have
led to a large-scale effort to develop a B cell targeted vaccine
against malaria, with limited success to date. In endemic set-
tings, memory antibody responses against Plasmodium parasites
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are short-lived and require constant parasite exposure (Crompton
et al., 2010). Furthermore, a year-long study in malaria-endemic
Mali, found that both Pf-specific memory B cells (MBC) and anti-
body titers increased after acute malaria and then, after 6 months
of decreased Pf exposure, contracted to a point slightly higher
than pre-infection levels (Weiss et al., 2010). Further, the 19-
kDa carboxyl-terminal fragment of merozoite surface protein 1
(MSP119) was a leading malaria vaccine candidate, tested in Kenya
which has holoendemic transmission of Pf. In these trials, vaccina-
tion with MSP119 generated very high titers of antibodies, but did
not protect against infection (Ogutu et al., 2009). An evaluation
of this vaccine using an experimental mouse model found that
vaccination with MSP119 generated MSP119-specific MBC capa-
ble of secreting antibodies in response to the vaccine (MSP119),
but not infection (Wykes et al., 2005). In fact, infection caused
apoptosis of MBC. Subsequent studies showed malarial infections
result in a decrease in the proportion of dendritic cells (DCs) that
expressed the B-cell survival factor, BAFF, resulting in a decreased
ability of these DCs to support MBC survival (Liu et al., 2012).
A review proposes a model of how the parasite may mediate
these effects by direct interaction with B cells and modulation
of the host’s BAFF-immune pathway (Scholzen and Sauerwein,
2013).

CD4+ T cells consist of several helper-subtypes which shape
immune responses against particular pathogens. During malaria,
CD4+ T cell subsets have multiple roles in protection, pathogen-
esis and also escape from immune responses. CD4+ T cells have
been demonstrated to be the major source of both interferon-γ
(IFN-γ) and tumor necrosis factor alpha (TNF-α) during experi-
mental malaria in mice (Muxel et al., 2011) which are implicated
in both protection and pathology of this disease. Studies in
mice infected with Plasmodium chabaudi malaria have shown
that IFN-γ and TNF-α cooperatively induce nitric oxide synthase
expression in the spleen to control peak parasite burden (Jacobs
et al., 1996). Similarly, in humans, early IFN-γ responses to Pf
correlate with better anti-parasite immunity (McCall et al., 2010).
IFN-γ contributes to a vast network of protective responses against
malaria, summarized in McCall and Sauerwein (2010). Of par-
ticular note is a study which investigated the effects of chronic
malaria on MSP1-specific transgenic CD4+ T cells (Stephens and
Langhorne, 2010). These parasite-specific T cells were seeded
into Thy1.1 congenic mice which were then infected with 105 P.
chabaudi infected red cells. One half of the mice were treated
with Chloroquine on days 30–34 to clear chronic malaria. After
60 days, flow cytometric analysis of transgenic T cells found
that approximately 25% of memory CD44+IL-7R+ CD4+ T
cells were lost in untreated mice compared to drug-treated mice
which had cleared the infection (Stephens and Langhorne, 2010).
This study highlights that ongoing infections cause a loss of
some parasite-specific memory T cells capable of protection from
re-infection.

The loss of CD4+ T cells during malaria was perhaps first sug-
gested when up to 99% of parasite-specific T cells labeled with the
fluorescent dye 5-(and -6)-carboxy-fluorescein succinimidyl ester
(CSFE), were found to be deleted only following infection of mice
(Hirunpetcharat and Good, 1998). Subsequent studies also found
deletion of T cells specific for the malaria vaccine, MSP119 during

malaria infections (Wipasa et al., 2001). Further studies excluded a
role for TNF or Fas pathways but implicated IFN-γ in loss of these
cells (Xu et al., 2002). However, FOXP3-expressing CD4+CD25+
regulatory T cells were also shown to correlate with more rapid
parasite growth in human malaria infections (Walther et al., 2005)
which may explain why protective cells subside. Mouse models
also showed IL-10 produced by these cells was responsible for
poor immunity (Couper et al., 2008). Finally, other studies identi-
fied elevated numbers of a highly suppressive subset of regulatory
T cells in patients with severe malaria (Minigo et al., 2009).

The role of CD8+ T cell-mediated immunity against blood-
stage malaria has been largely overlooked, with research being
limited to protection against liver-stage infection, the pathogene-
sis of cerebral malaria (Hafalla et al., 2006) and damage to splenic
architecture (Beattie et al., 2006). This view was adopted because
parasites and infected erythrocytes have no known antigen presen-
tation machinery and therefore T cells supposedly cannot interact
directly with these potential targets (Langhorne et al., 2008). How-
ever, early studies in experimental animal models found that
depletion of CD8+ T lymphocytes during blood stage P. chabaudi
infections, significantly delayed clearance of the infection (Podoba
and Stevenson, 1991). Other groups showed that naive mice, trans-
fused with CD8+ T cells derived from mice that survived two
successive bouts of lethal P. yoelii infections with drug cure, subse-
quently survived lethal blood stage malaria challenge (Imai et al.,
2010). More recent studies in experimental mouse models have
shown that malaria parasites can parasitize erythroblasts, which
have the capacity to activate CD8+ T cells (Imai et al., 2013). What
has remained unclear is that while these studies showed CD8+ T
cells had potential to protect against blood stage malaria, direct
studies did not find a clear role for these cells in protection against
blood stage disease.

PROGRAMMED CELL DEATH 1
Programmed cell death-1 (PD-1) is a member of the extended
family of molecules that are known to down-regulate T cell func-
tion. PD-1 has two known ligands, PD-L1 (B7-H1; Dong et al.,
1999; Freeman et al., 2000) and PD-L2 (B7-DC; Latchman et al.,
2001; Tseng et al., 2001), which both belong to the B7 co-signaling
molecule family. Expression of PD-1 can be observed on T cells,
B cells, natural killer T cells, DCs, and activated monocytes (Keir
et al., 2008). PD-1 is not expressed on resting T cells but is inducible
upon activation (Agata et al., 1996). Functional effects of PD-1
ligation can be observed within a few hours after T cell activation
but PD-1 cell surface protein up-regulation requires 24 h (Chem-
nitz et al., 2004). When PD-1 is engaged simultaneously with T
cell receptor signals, it can trigger an inhibitory signal, although
no signal transduction occurs when PD-1 is cross-linked alone
(Sharpe et al., 2007). In general, interactions between PD-1 on T
cells and its ligand, PD-L1, control the induction and maintenance
of peripheral T-cell tolerance and negatively regulate proliferation
and cytokine production by T cells during immune responses to
pathogens or cancer (Sharpe et al., 2007).

A main feature of potent immunity against intracellular
pathogens is the development of an optimal T cell response which
shows rapid proliferative potential, low apoptosis and polyfunc-
tionality (Lukens et al., 2008). During acute infections, optimal
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functioning T cells clear the pathogen, eventually leading to devel-
opment of robust memory T cells. Those T cells have the ability
to mount rapid recall response and re-establish polyfunctional
effector mechanisms upon antigen re-exposure (Wherry, 2011). T
cell exhaustion is defined by inferior effector function, sustained
expression of inhibitory receptors (such as PD-1), poor recall
responses and a transcriptional state distinct from that of func-
tional effector or memory T cells (Wherry, 2011). In many chronic
infectious diseases, antigen specific T cells become functionally
impaired or exhausted. For example, viruses, such as human
immunodeficiency virus (HIV) and hepatitis C virus (HCV) have
been shown to induce T cell exhaustion mediated by PD-1 (Day
et al., 2006; Urbani et al., 2006). Significantly, blockade of the PD-1
pathway improved immunity (Freeman et al., 2006; Urbani et al.,
2008). PD-1-related exhaustion has also been implicated in other
chronic protozoan infections, such as Leishmaniasis (Liang et al.,
2006; Joshi et al., 2009). Further, the apicomplexan parasite, Tox-
oplasma gondii has been shown to induce PD-1 expression on
CD8+ T cells, but function was restored by experimental blockade
of the PD-1 pathway during chronic murine infections (Bhadra
et al., 2011). Together these data have established T cell exhaus-
tion by PD-1 as a key mechanism in chronicity of infectious
diseases.

EXHAUSTION OF CD4+ T CELLS DURING MALARIA
PD-1 has been implicated in the pathogenesis of malaria. One of
the first studies to examine PD-1 expression during malaria used
a mouse model to show PD-1 expression on IL-7Rlo-expressing
CD4+ and CD8+ T cells (Chandele et al., 2011). These PD-1-
expressing cells (especially CD8+ T cells) were almost completely
lost within 30 days of infection (Chandele et al., 2011). The study
did not however measure functional responses to identify T cell
exhaustion. Similarly, subsequent studies showed that PD-1 was
also expressed on CD4+ (Butler et al., 2012; Illingworth et al.,
2013) and CD8+ T cells (Illingworth et al., 2013) in blood of Pf-
infected individuals in Mali and Kenya, but no functional evidence
of exhaustion was provided.

To validate these observations, a murine model of blood stage
malaria was adopted to explore the effects of increased expression
of PD-1 and LAG-3 on CD4+ T cells (Butler et al., 2012). The
combined blockade of PD-L1 and LAG-3 inhibitory molecules
with antibodies, during P. yoelii and P. chabaudi malaria in mice
accelerated clearance of parasitemia (Butler et al., 2012). This dual
blockade of PD-L1 and Lag-3 improved CD4+ follicular T helper
cell (TFH) numbers which correlated with enhanced antibody-
mediated immunity (Butler et al., 2012). Moreover, infected mice
treated with the anti-malarial drug chloroquine at day 8 and 9 post-
infection, showed a lower level of CD4+ T cell dysfunction (Butler
et al., 2012). These studies showed that lymphocyte exhaustion
modulated immunity against malaria.

Subsequent studies used mice with a deletion of PD-1 (PD-
1KO) to conclusively determine if PD-1 had a role in modulating
immunity, given that PD-L1 can interact specifically with both
B7-1 (Butte et al., 2007) and PD-1 (Iwai et al., 2003) to inhibit T
cell activation. P. chabaudi malaria was investigated as this infec-
tion develops into chronic infections. It was shown that PD-1
mediated a reduction in the capacity of parasite-specific CD4+

T cells to proliferate and secrete IFN-γ and TNF-α during the
chronic phase of malaria (day 35) indicating exhaustion of these
cells (Horne-Debets et al., 2013). However, in contrast to the com-
bined PD-L1/Lag-3 blockade study, no changes to TFH numbers
were observed. One likely explanation for this apparent contradic-
tion is that PD-1 KO mice compared with wild type (WT) mice
had a significantly higher proportion of regulatory T follicular
cells (TFR cells; Horne-Debets et al., 2013). TFR cells are known
to be suppressive in vitro and to limit the numbers of TFH cells
and germinal centers (GC) B cells in vivo (Linterman et al., 2011).
Alternatively, since PD-L1 can also interact specifically with B7-1
to inhibit T cell activation (Butte et al., 2007), this pathway may
control TFH numbers in PD-1 KO mice.

B CELLS AND EXHAUSTION
Antibodies are known to have a key role in controlling blood-stage
infections (Cohen et al., 1961). Investigations into the mechanism
of protection, found mice deficient in mature B cells developed a
chronic relapsing parasitemia, confirming the need for antibodies
to control chronic malaria (von der Weid et al., 1996). For anti-
bodies to be protective, they have to undergo processes of class
switching, somatic mutation, and affinity selection within GC
where antibodies of the highest affinity are generated and selected.
The formation of GC requires TFH which also contribute to B cell
differentiation into plasma and memory cells (Crotty, 2011).

The combined blockade of PD-L1 and LAG-3 increased num-
bers of CD4+ TFH and GC B cells along with higher antibody
titers which contributed to better control of blood stage of malaria
(Butler et al., 2012). In contrast, PD-1 KO mice showed no signif-
icant improvement in numbers of germinal center B cells, plasma
cells or antibody titers (Horne-Debets et al., 2013). The absence
of any improvement in B cell function in PD-1KO mice could
be explained by an absence of improvement in TFH numbers or
inhibitory signals to LAG-3 expressed on B cells (Kisielow et al.,
2005).

EXHAUSTION OF CD8+ T CELLS DURING MALARIA
PD-1-mediated cellular exhaustion has been best associated with
exhaustion of CD8+ T cells. However, as described earlier, a
role for CD8+ T cells in the clearance of blood-stage malaria
is not widely acknowledged although their role in pathogenesis
of cerebral malaria and damage to splenic architecture (Beat-
tie et al., 2006) are known. Critically, PD-1 was recently shown
to mediate a 95% loss in the numbers and functional capac-
ity of parasite-specific CD8+ T cells during the acute phase
of malaria, which exacerbated the infection leading to chronic
malaria (Horne-Debets et al., 2013). This study examined the
progression of chronic malaria in PD-1 KO mice compared to
WT where 100% of mice develop chronic infections. Interest-
ingly, <30% of the PD-1 KO mice developed chronic infections,
and parasitemia levels in these mice were >100-fold lower than
those in the WT mice. However, depletion of CD8+ T cells
in PD-1 KO mice, increased peak parasitemia by 2-fold and
100% of the PD-1 KO mice developed chronic malaria (Horne-
Debets et al., 2013). Overall, PD-1-mediated 80% reduction in
numbers of tetramer+CD8+CD62L− T cells and 95% reduction
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in capacity of CD8+ cells to proliferate in response to para-
sites, during the chronic phase of malaria (Horne-Debets et al.,
2013). Of particular note is that even though PD-1 KO mice
had more functional CD4+ T cells than WT mice and similar
titers of parasite-specific antibodies, they still developed chronic
malaria if CD8+ T cells were depleted. Finally, PD-1 KO mice
had more granzyme B-expressing CD8+ T cells than WT mice
suggesting that cytotoxic-killing of infected cells was involved.
These observations highlight the crucial role of CD8+ T cells
in protection against chronic malaria. In contrast, a previous
study had found blockade of PD-L1 augmented experimental
cerebral malaria which is mediated by pathogenic CD8+ T cells
(Hafalla et al., 2012), indicating the pathway protects against
cerebral malaria. The clinical significance of these findings are
highlighted by studies in Kenya which found human CD8+ T cells
from individuals infected with malaria, express PD-1 (Illingworth
et al., 2013). Thus the role of CD8+ T cells requires particular
consideration as it may explain why despite years of exposure
to intense Pf transmission there was no evidence of acquired,
sterile immunity (Tran et al., 2013). It may be that antibod-
ies and CD4+ T cells provide protection against symptomatic
malaria but CD8+ T cells are required for sterile immunity.
Thus with PD-1 mediated exhaustion of CD8+ T cells, ster-
ile immunity is never acquired as recently reported (Tran et al.,
2013).

CONCLUSION
Antibodies and CD4+ T cells are known to protect against blood-
stage Plasmodium spp. infections. However, there is a growing
body of evidence that show that CD8+ T cells have a role in
protection. Furthermore, there is also increasing evidence that
lymphocyte exhaustion mediates loss of protection by CD4+ and
CD8+ T cells. Finally, studies have shown MBC numbers (Weiss
et al., 2010) and antibody (Crompton et al., 2010) titers specific
for the parasite decline following malarial infections. Accord-
ingly, the likelihood of making a malaria vaccine is declining. The
new frontier may be the development of therapeutics to block
Plasmodium-mediated pathogenesis.
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Traditional prophylactic vaccination to prevent illness is the primary objective of many
research activities worldwide.The golden age of vaccination began with an approach called
variolation in ancient China and the evolution of vaccines still continues today with modern
developments such as the production of GardasilTM against HPV and cervical cancer. The
historical aspect of how different forms of vaccination have changed the face of medicine
and communities is important as it dictates our future approaches on both a local and global
scale. From the eradication of smallpox to the use of an experimental vaccine to save a
species, this review will explore these successes in infectious disease vaccination and
also discuss a few significant failures which have hampered our efforts to eradicate certain
diseases. The second part of the review will explore designing a prophylactic vaccine for
the growing global health concern that is allergy. Allergies are an emerging global health
burden. Of particular concern is the rise of food allergies in developed countries where 1
in 10 children is currently affected. The formation of an allergic response results from the
recognition of a foreign component by our immune system that is usually encountered
on a regular basis. This may be a dust-mite or a prawn but this inappropriate immune
response can result in a life-time of food avoidance and lifestyle restrictions. These foreign
components are very similar to antigens derived from infectious pathogens. The question
arises: should the allergy community be focussing on protective measures rather than
ongoing therapeutic interventions to deal with these chronic inflammatory conditions? We
will explore the difficulties and benefits of prophylactic vaccination against various allergens
by means of genetic technology that will dictate how vaccination against allergens could
be utilized in the near future.

Keywords: vaccine, vaccine history, allergy, food allergy, allergen, prophylactic vaccination, vaccine challenges

INTRODUCTION
Globally, the burden of disease and infection is diverse and
inescapable. It is a shared affliction for humanity and one that
is constantly moderated by better hygiene, enhanced education,
and improved vaccines and therapeutic interventions. In terms
of healthcare, it is always more beneficial to prevent a disease
or infection from occurring than to treat and cure it. The
development of vaccines is dependent on the knowledge of:
what pathogen causes the disease; how it establishes itself in the
host; how the host’s innate and cell-mediated immunity responds
to pathogens; and how it maintains ongoing protection after
the disease using antibodies. Whilst there are many successful
vaccines currently available, there are still no registered vaccines
for some globally prevalent infectious diseases such as malaria
and human immunodeficiency virus (HIV). Although we have
made enormous progress in medicine over the last 300 years since
the practice of vaccination first began, there are still diseases that
are killing millions of people globally which desperately require
a vaccine. Furthermore, there is a multitude of autoimmune
conditions such as food allergies which may benefit from a
traditional prophylactic vaccination approach. This review will

explore the progression of traditional vaccines from empirical
vaccines to the more recent novel vaccines and how recent
advancements could change the field of allergy research.

A BRIEF HISTORY OF VACCINATION
The first crude attempt at disease control was the procedure of
variolation where the inoculated person stood a good chance at
surviving both the procedure and later exposure to the pathogen.
Variolation consisted of directly transferring the infection from
a sick person to a healthy person, through direct contact or by
infectious matter such as pus, saliva or blood (Dinc and Ulman,
2007). This form of vaccination is believed to have begun in either
ancient China or India, but was only brought to the UK by the
wife of a British diplomat, Lady Wortley-Montagu in 1721 (Dinc
and Ulman, 2007).

Lady Wortley-Montagu had observed that harem girls in
Constantinople had pox-free faces which were attributed to them
being variolated; hence she had her son variolated in Istanbul
in 1718 to save him from experiencing what she had as a young
adult – smallpox. Later she also variolated her daughter in London;
however, this was only after she had confirmed that it did not
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result in death or disease in eleven orphans and six convicted
murderers from Newgate Prison (Dinc and Ulman, 2007). Lady
Wortley-Montagu was so impressed that she implored her surgeon,
Dr. Charles Maitland, to learn the technique and demonstrate
it to the Royal British Court (Stewart and Devlin, 2006). After
this demonstration, 200 upper-class members of British
society, including members of the royal family, underwent
the procedure, and in 1729 a further 897 more inoculations
were performed with only 17 deaths post-procedure which
is infinitely fewer than smallpox mortality at the time
(Dinc and Ulman, 2007).

Even though Lady Wortley-Montagu was severely criticized
for bringing the procedure to Britain, it was slowly implemented
throughout the UK over the following years, and in 1757 a young
boy named Edward Jenner would be variolated against smallpox
(Dinc and Ulman, 2007). This ultimately saved countless lives
from smallpox; the most devastating disease of the time. However,
there were two issues with variolation: (1) it could impair the
patient or even kill them if the dosage was incorrect or if they
were not physically fit enough to withstand the infection, and
(2) whilst the patient would be protected from further infections,
they would become contagious during the active infection
(Bazin, 2003).

Although variolation was popular in the cities, in the
English countryside there were many rumors that if you
contracted cowpox you were protected from the deadly smallpox.
Subsequently, a farmer named Benjamin Jesty in Yetminster,
England, inoculated his wife and two sons with cowpox in the
hope of surviving a smallpox epidemic (Pead, 2003, 2006). Even
though his wife became very ill, she and the whole family survived
and went on to survive many smallpox epidemics in the area.
This transpired a full 20 years before scientist Jenner began
his experiment with a boy called James Phipps (Pead, 2003);
however, Jesty was recognized for his contribution in 1805 by a
published statement and a portrait commissioned by the Original
Vaccine Pock Institution, London (Pead, 2006). It is believed that
Jenner was also aware of the rumors of cowpox protecting against
smallpox, and that this was the inspiration for his experiment,
resulting in him being the first to document that a person infected
with cowpox would survive subsequent exposure to smallpox
(Stewart and Devlin, 2006). This technique evolved into using
cow inoculums as the vaccine, which did provide immunity to
smallpox although not to the same degree as natural disease or
variolation. This discovery was heralded as the new age of vaccines
and instigated new research into other common diseases.

A couple of centuries later, medicine would again make another
considerable leap forward with the separate works of scientists
Louis Pasteur and Robert Koch, and the publication of germ
theory. The most famous of these works would be Pasteur’s
and his attenuation of the bacteria Pasteurella multocida, which
causes fowl cholera, by exposing the cultures to air and room
temperature for extended periods of time (Bordenave, 2003).
He demonstrated that whilst the bacteria were avirulent, they
provided full protection from the virulent strain of the bacteria,
which was a revolutionary idea at the time. Pasteur also went on
to attenuate the rabies virus by passage through rabbits (Bazin,
2003). Koch, on the other hand, would discover the bacterial

agents of anthrax, tuberculosis and cholera whilst also compiling
postulates with fellow scientist Jacob Henle that would transform
the world of microbiology (Kaufmann and Schaible, 2005). All
of these discoveries led to the development of immunology and
non-empirical vaccines.

The first whole cell vaccine was produced by Salmon and
Smith in 1886 and was based on a Salmonella strain that was
killed by heat and injected into pigeons to provide immunity
(Bazin, 2003). Around the same time, others were investigating
bacterial components and methods to purify them. This was the
beginning of traditional vaccine methodology. During this era
there were many great innovations in the field of immunology and
vaccinology, such as the discovery of toxins and the consequent
inactivation of toxins by heat and formalin, killed vaccines,
adjuvants, sub-unit or acellular vaccines, tissue culture and live
attenuated vaccines. With the establishment of molecular biology
and genetic engineering in the late 1950s, a new era began
where vaccine development no longer needed to be empirical and
bacterial components could be produced artificially or even in vivo
by unrelated vectors.

VACCINES IN THE MODERN ERA
What makes a good vaccine?
The traditional definition of a vaccine is one that protects
against a particular (or group of) infectious agent(s); however,
these days there are many vaccines that could be designated
as therapeutic agents against diseases such as cancer (Bergman
et al., 2006), although the goal is still to prevent illness. In
this review we will focus on prophylactic vaccines. The global
market for vaccines is estimated to be around US$8 billion per
year whilst the cost to develop each vaccine from concept to
commercialism is around US$300–800 million (Plotkin, 2005).
The reason for the high expenditure is that each vaccine has to
be rigorously tested before commercial release and the average
time it takes to fully develop a vaccine is between 15 and 20 years
(Arntzen et al., 2005). A successful vaccine is measured by its
effectiveness, its spectrum of protection, the duration of immunity
and the strength of immunological memory that it induces.
Secondary considerations of a good vaccine are its stability, ease
of administration and storage, achievable mass production and its
toxicity.

Biotechnology is a rapidly developing area which allows
continued improvement into the exploration of antigens
suitability as vaccine candidates. Choosing the right antigen is
a core decision in the development of a vaccine candidate as
some antigens that are immunogenic in vivo may not elicit long
term protection. The same antigen may also vary in structure
and sequence between strains, limiting its usefulness. Some
antigens are also hard to express and purify on a large scale
which is required for mass production (Mora et al., 2003). This
is where novel vaccine methodology hopes to improve how
vaccines are made and administered; this will be examined
subsequently.

Routes of administration
The oldest technique for vaccination is that of subcutaneous
delivery via scarification and one of the newest techniques is
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intramuscular injection (Bazin, 2003). Whilst the intramuscular
route of vaccination is quite standard today in developed countries,
it is an inconvenient method of application as it requires
sterile needles and syringes, and usually a medical physician
to administer it. This is the major drawback of vaccines that
rely on intramuscular injections to be effective. In one study, a
viral vectored vaccine was found to elicit stronger systemic and
detectable mucosal responses via a single intramuscular injection
than if it was applied via the oral route. The oral route proved
to stimulate suboptimal T-cell responses and did induce a higher
level of mucosal antibody than the intramuscular route (Lin et al.,
2007).

Nasal and oral administration routes of a vaccine are more
desirable than intramuscular as they are non-invasive, painless,
not required to be sterile and do not require a physician for
administration. This final point is most important as it is one
of the reasons that third world countries have the lowest level
of immunizations in the world (Costantino et al., 2007). Nasal
immunization would place the vaccine in contact with the large
surface of the nasal mucosa which consists of the nasal-associated
lymphoid tissue (NALT), which can lead to both humoral and
cellular immune responses (Zuercher et al., 2002; Costantino et al.,
2007). The most well-known nasal vaccine is FluMist®; a live
cold-adapted influenza virus. It can be given as one or two
doses from a syringe sprayer, is licensed for use in the USA
for persons aged 5–50 and has shown high efficacy from its
inception (Plotkin, 2005; Costantino et al., 2007). However, one
of the detriments of a nasal vaccine is that an unpleasant taste
and nasal discomfort can occur often discouraging repeated use
(Atmar et al., 2007).

Oral administration is a practical method of application if
it can be achieved without diminishing the effectiveness of the
vaccine, and immunity can be achieved with a single dose. The
objective of oral vaccines is to mimic a natural infection and
provide mucosal immunity. Orally delivered vaccines can induce
suboptimal T-cell responses with high levels of mucosal antibody
than the intramuscular route; however, the vaccine must be very
stable as it will have to survive the acidic environment of the
stomach before it reaches the M cells of the intestinal wall where
it can be processed by antigen-presenting cells (APCs; Lin et al.,
2007).

Adjuvants
Adjuvants are defined as compounds that influence the immune
system into mounting a Th1 or Th2 response and whilst doing so,
greatly enhances the magnitude of immune response against the
antigen (Marciani, 2003). They are an important aspect of vaccines
due to their tendency to make an ineffective antigen become
effective. It is vital that adjuvants have the following properties:
a non-toxic nature or have minimal toxicity at the dosage to
elicit effective adjuvanticity; able to stimulate a strong humoral
and/or T-cell immune response; provide good immunological
memory or long-term protection; not induce autoimmunity;
are non-mutagenic, non-carcinogenic, non-teratogenic, and
non-pyrogenic; and be stable under broad ranges of storage
time, temperature and pH levels (Marciani, 2003). The most
popular adjuvants are aluminum-based and were first described

and published in 1926 (Glenny et al., 1926). There are three
adjuvants that are currently licensed for human use: aluminum
hydroxide, also known as alum (Davies and Flower, 2007);
monophosphoryl lipid A (MPL) and AS03 consisting of D,L-
alpha-tocopherol (vitamin E), squalene and polysorbate 80 (U.S.
Food and Drug Administration, 2014). It is well established that
aluminum adjuvants stimulate the production of IgE and a Th2
immune profile, yet for some diseases this would not be adequate
protection against pathogens as a Th1 response would be required
(Lindblad, 2004). MPL and AS03 have demonstrated clinical
efficacy when used in a HPV and influenza vaccine, respectively
(Mohan et al., 2013).

Adjuvants are used to lengthen the dissemination time of the
antigen from the site of injection which allows the antigen to be
released over a prolonged period improving the effectiveness of the
vaccine. This feature is called the depot effect and is traditionally
associated with aluminum-based adjuvants (Lindblad, 2004;
Mohan et al., 2013); however, recently the depot effect has been
questioned as reducing the dissemination time of the antigen
does not alter the magnitude of the immune response (Hutchison
et al., 2012) along with other evidence suggesting other modes of
action (reviewed in De De Gregorio et al., 2013). Other methods
in which adjuvants improve the immune response are to form
complexes with the antigen and to target the vaccine towards
specific receptors. For example, the use of mannose in the adjuvant
is recognized by pattern recognition receptors (PRRs) that initiate
endocytosis and antigen processing (Stahl and Ezekowitz, 1998).
The use of pathogen-associated molecular patterns (PAMPs) such
as lipopolysaccharide (LPS) and CpG-DNA, and of synthetic
low-MW imidazoquinolines in adjuvants, all trigger innate
immune responses that lead to a Th1 or Th2 response in the
vaccinated person (Marciani, 2003). Other adjuvants consist of
cytokines (Cheng et al., 2007) and glycolipids (Singh et al., 1999;
Ko et al., 2005) and other immunomodulators (Morrow et al.,
2004) that bind to highly specific receptors on T cells which
activate them.

TRADITIONAL VACCINE METHODOLOGY
The early development of vaccines focused on using killed
organisms, inactivated toxins or modified organisms, but currently
there are many different approaches to vaccine development,
which will be examined subsequently. As these approaches were
empirical in design, these types of vaccines, whilst being successful,
are now viewed as being traditional vaccines. These can be divided
into three different types: (a) killed vaccines; (b) attenuated
vaccines; and (c) sub-unit vaccines.

Killed vaccines
A killed or“inactivated”vaccine is developed by the pathogen being
grown and then being made inactive by means of heat, chemical
or radiation treatment and was the basis of most vaccines until
the 1980s. This results in the pathogen being unable to cause
disease whilst providing the immune system with stimulation
via its normal antigenic epitopes on its cell surface. One major
disadvantage of this approach is that, whilst these vaccines are
immunogenic, they do not replicate in vivo infectivity limiting the
spectrum of the immunity acquired as the agent is incapable of
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going through its normal antigenic variation over the course of the
infection. This results in decreased immunity and a requirement
of booster shots to maintain immunity (Moylett and Hanson,
2003). Another disadvantage of this vaccine type is that during
the inactivation process the antigenic epitopes can be modified
resulting in a less efficacious vaccine (Tano et al., 2007). Despite
these limitations, killed vaccines are commonly used today with
the typhoid, Salk poliomyelitis, and seasonal influenza vaccines
still being administered (Bazin, 2003; Palese, 2006).

Attenuated vaccines
Among the more efficacious of the traditional vaccines are the
attenuated ones. In this case, a pathogen is subjected to altered
growth conditions, is passage through a host or is genetically
modified to eliminate its virulence, yet retaining its ability to
replicate albeit at a greatly reduced rate. These vaccines are
more successful at eliciting a robust lifelong immunity than other
traditional vaccines. This can be attributed to their ability to cause
an asymptomatic infection which stimulates both the humoral and
cellular branches of the immune system.

However, this ability to replicate carries the greatest risk
as the vaccine can persist in immune-compromised persons
or the elderly due to limited immune responses. A benefit to
these vaccines is they express their own immunogenic antigens
which stimulate the immune system strongly thereby negating
the need for an adjuvant to be used (Loessner et al., 2008). The
most commonly used attenuated vaccine is the MMR vaccine
which protects children worldwide against measles, mumps
and rubella and with subsequent boosters provides lifelong
immunity (Vandermeulen et al., 2007). Attenuated vaccines have
further progressed into carrier vaccines where they can deliver
heterologous antigens (Bachtiar et al., 2003; Lotter et al., 2008;
Schoen et al., 2008). For live carrier vaccines that deliver multiple
heterologous antigens, there is a risk that the host immune system
will dampen the immune response to the heterologous antigens by
misdirecting the immune response against the carrier (Berzofsky
et al., 2004). However, if the immunity induced is cell-mediated
the response can be enhanced by pre-existing immunity to the
carrier strain (Saxena et al., 2013).

Subunit vaccines
Traditionally, it was thought that the only way to protect against
a disease was to use the whole organism to vaccinate the host.
However, it was elucidated that specific parts of the organisms,
when purified or isolated, demonstrated immunogenic properties.
These components could be the capsule, the flagella or even an
outer membrane protein of the cell wall. These types of vaccines
are known as subunit vaccines or acellular vaccines. These vaccines
are not able to cause the disease and in comparison to whole
cell killed vaccines they are not as efficacious. This is both an
advantage as they are safe for immune-compromised patients and
a disadvantage as they do not elicit long-term immunity and
will often require multiple vaccinations to maintain immunity
(Schmitt et al., 2008). An advantage of this type of vaccine is
that it can be engineered to protect against various strains of
the organism. An example of a successful subunit vaccine is the
Haemophilus influenzae type b (HiB) conjugate vaccine which

consists of a polysaccharide-protein conjugate. This vaccine has
eliminated or significantly reduced this disease in children in
regions of South America (Ribeiro et al., 2007; Franco-Paredes
et al., 2008) and Africa (Adegbola et al., 2005; Muganga et al.,
2007) where it was once endemic. In the UK, the success of this
vaccination program was compromised by a highly publicized
paper (which has now been retracted) that linked autism to early
childhood vaccination which lead to a rise in HiB infections
as parents chose not to vaccinate; however, subsequent booster
campaigns by the NHS has seen a reduction in infection rates
again (Ladhani et al., 2008). A recent meta-analysis covering
studies involving over 1.2 million children has discredited any
link between vaccinations or vaccine components thimerosal
or mercury to the development of autism or autism spectrum
disorders (Taylor et al., 2014).

DNA VACCINES – A NEXT GENERATION EXAMPLE
There are multiple novel types of vaccines that are currently under
development, such as bacterial ghosts (Szostak et al., 1996; Jawale
and Lee, 2014) and nanovaccines (Cho et al., 2014). However,
one that holds great promise and has had documented successes
is DNA vaccines. DNA vaccines differ from traditional vaccines
as they do not consist of a protein or a cell component but
only the DNA that encodes an immunogenic antigen within a
plasmid vector. The plasmid can be administered by injection, gene
gun, electroporation, or aerosol delivery, upon which the host’s
immune cells, usually dendritic cells, will sample the plasmid and
express the encoded antigens. These antigens are then degraded
by the cell into peptides and presented via MHC class I and class
II molecules depending on the mode of administration and the
cell type. From this, both antibody and cellular responses can be
induced (Forde, 2005).

The first reported use of a plasmid DNA vaccine outside of
trial or experimental conditions was in 2003 and was a desperate
attempt to save an endangered species from extinction (Bouchie,
2003). The vaccine was for the highly endangered California
condors against the lethal West Nile virus. West Nile virus had
emerged in New York in 1999 and spread to 41 out of the 50
US states killing birds from 138 species in a matter of years. It
was believed that if the virus spread to California, the remaining
200 or so condors would face extinction. The US Centers for
Disease Control and Prevention (CDC) expedited the manufacture
of an experimental vaccine and permitted the condors to be
vaccinated with it (Bouchie, 2003). The DNA vaccine expressed
West Nile virus pre-membrane/membrane and envelope proteins.
The vaccinated condors were monitored and it was observed that
the DNA vaccination stimulated protective immunity in adults,
nestlings and newly hatched chicks. Following two intramuscular
vaccinations, the condors demonstrated excellent neutralizing
antibodies 60 days post-vaccination with a continued increase
until approximately 1 year post-vaccination. It was also noted
that the birds did not show any unusual behaviors, health changes
or side effects post-vaccination (Chang et al., 2007). This vaccine
has also demonstrated efficacy in other bird species such as the
American robins (Turdus migratorius) (Kilpatrick et al., 2010) and
the fish crows (Corvus ossifragus; Turell et al., 2003). The first two
DNA vaccines for veterinary use were granted US approval in
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2005 for West Nile virus vaccine for horses and haematopoietic
necrosis vaccine for farm-reared Atlantic salmon (Chalmers,
2006). Even though there are no currently approved DNA vaccines
for human use, as of May, 2014 there are 128 open trials listed
on Clinicaltrials.Gov (2014) that involve DNA-based vaccines and
therapies

GLOBAL VACCINE SUCCESS
The global eradication of smallpox is, to date; the most successful
vaccination campaign in history. Smallpox has existed for many
thousands of years and spread through the world following the
migration of humans to new settlements (Barquet and Domingo,
1997). As mentioned previously, Edward Jenner is famously
credited with developing a smallpox vaccination using the cow-pox
virus (vaccinia virus) and published many observations on both
the successful and adverse events (Jenner, 1809) associated with
his vaccination protocol. Small pox was an indiscriminate disease
that is caused by two virus variants Variola major and Variola
minor and was responsible for 300–500 million deaths before its
eradication (Theves et al., 2014). The smallpox vaccine that was
developed by Jenner produces both neutralizing antibodies and
cell mediated responses that are protective against other members
of the Orthopoxvirus genus (Barquet and Domingo, 1997). After
years of vaccination success but with deaths from smallpox still
common, the World Health Assembly, the executive body of
the [World Health Organization (WHO), 2013] set a target to
eradicate smallpox. This was only achievable as humans are the
only reservoir for the virus and the vaccine had demonstrated high
efficacy (Fenner et al., 1988). In the late 1960s, the efforts of the
WHO were strengthened with more funding and new surveillance
protocols.

The last natural occurrence of smallpox occurred in Somalia,
where cook Ali Maow Maalin developed the rash on October 26th
1977, but tragically it was not the last global smallpox death [World
Health Organization (WHO), 1980]. Medical photographer Janet
Parker became the last person to die of smallpox in the world
when she was accidently exposed to it in her workplace at the
University of Birmingham and unfortunately a lapse in obtaining
her booster vaccination led to her being susceptible at the time of
exposure (Barquet and Domingo, 1997). Eradication of smallpox
was declared on May 8, 1980 by the WHO when the Final Report
of Global Commission for Certification of Smallpox Eradication
was published [World Health Organization (WHO), 1980]. As of
2014, two depositories of smallpox still exist at the CDC in the
USA and the State Research Center of Virology and Biotechnology
VECTOR in Koltsovo, Russia. The destruction of these viral stocks
has been delayed and debated since the declaration of eradication
occurred in, 1980. Discovery of smallpox victims during building
excavations often fuels these debates although no viable virus
has been recovered from these corpses, so the risk of a modern
smallpox outbreak is improbable (Reardon, 2014; Theves et al.,
2014). The WHO is again debating the existence of these stocks in
May, 2014 (Reardon, 2014).

Another successful vaccine that has been implemented globally
is those against poliomyelitis – the Salk, and Sabin vaccines. There
are three different poliovirus serotypes and all of them can lead to
serious disability in children, even death by acute flaccid paralysis

[World Health Organization (WHO), 2014a]. Due to its moderate
mortality rates, its long-term severe disability consequences and
like smallpox, humans being the only natural reservoir for the
virus, the World Health Assembly set a target of eradication by the
year 2000. This project is known as the Global Polio Eradication
Initiative. Poliovirus Type 2 infection has not been observed
since 1999 in India and Type 3 since 2012. However, in 2014,
poliovirus Type 1 is still endemic in regions of Nigeria, Pakistan,
and Afghanistan [World Health Organization (WHO), 2014a].
The reasons behind these persisting endemics will be discussed
later.

There are two vaccines, an oral live attenuated vaccine known
as the Sabin vaccine and the inactivated poliovirus vaccine also
known as the Salk vaccine [World Health Organization (WHO),
2014a]. The Sabin vaccine was derived from passages of the
poliovirus strains through rats and mice and then through cell
cultures more than 50 times resulting in an attenuated forms
of the virus types that all induced good antibody levels (Sabin,
1957; Baicus, 2012). In 1972, Sabin donated his vaccine strains
to the WHO which increased the number of vaccine recipients
from 5 to 80% [Baicus, 2012; World Health Organization (WHO),
2014a]. The Sabin vaccine is no longer in use in the USA or UK
as the only poliomyelitis cases reported in the populations were
vaccine-associated paralytic poliomyelitis where the vaccine strain
has caused an outbreak but it is still used in some developing
countries due to its ease of administration and cost (US$0.14 a
dose vs US$2–3 a dose for Salk vaccine; Willyard, 2014). There
are now plans to eliminate the Sabin vaccine entirely in the 124
countries that still use it by 2015 (Willyard, 2014).

The Salk vaccine is grown in monkey kidney cells and
inactivated with formalin (Salk et al., 1954) and was introduced
in the USA in 1955 and by 1961, the incidence of poliomyelitis
had decreased from 13.9 cases per 100,000 in 1954 to 0.8 cases
per 100,000 in 1961 [Baicus, 2012; World Health Organization
(WHO), 2014a]. Besides preventing deaths, the main benefit
to come from polio vaccination is the cost savings to the
healthcare system which is estimated at US$40–50 billion for
the period between 1988 and 2035 in the USA alone [World
Health Organization (WHO), 2014a]. Most countries that have
been certified polio-free still have rare isolated cases which have
come from travelers importing the virus from endemic areas, for
example in Australia had one such case in 2007 (Paterson and
Durrheim, 2013). However, the Global Polio Eradication Initiative
has a new timeline for eradication and with a new strategy of
phasing out the Sabin vaccines, hopefully the world will be certified
polio-free in 2018 (Willyard, 2014).

A more recent vaccine accomplishment is the pneumococcal
conjugate vaccine (PCV) against Streptococcus pneumoniae
(pneumococcus) infections which include acute otitis media,
sinusitis, pneumonia and invasive pneumococcal diseases such
as meningitis and sepsis. The first conjugate vaccine was
a heptavalent vaccine which protects against seven different
serotypes of pneumococcus and it was licensed in the USA
in 2000 (Black et al., 2000; Lee et al., 2014). Since that time,
10- (Domingues et al., 2014), 13- (Spijkerman et al., 2013), and
23-valent (Grabenstein and Manoff, 2012) vaccines have been
licensed with all producing strong immunity against a broad
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spectrum of strains. In the USA, all age groups from children
under 5 years to adults over 65 years had dramatic reductions in
incidence of pneumococcal infections over a seven year period
after the PCV was available (Pilishvili et al., 2010).

It is predicted that if the heptavalent PCV was implemented
in China it would prevent 4222 cases of invasive pneumococcal
disease, 4,061,524 cases of otitis media and 472,527 cases of
pneumonia, as well as preventing an additional 2682 deaths
from pneumococcal disease; however, the implementation cost
would be estimated at US$6.44 billion (Che et al., 2014). The
current overall cost of pneumococcal disease in the unvaccinated
population in China is estimated to be US$3.5 billion (Che et al.,
2014). Following the introduction of PCV in the USA,an estimated
211,000 serious pneumococcal infections and 13,000 deaths were
prevented in the period of 2000–2008 (Pilishvili et al., 2010). The
influence of this vaccine on public health is in its early stages and
has already had impacts on child mortality in over 88 countries that
have included various PCV on their recommended immunization
schedule (Whitney et al., 2014).

There are other vaccines that have been successfully
implemented in the past decade. The most recent and highly
publicized vaccine is the quadrivalent human papillomavirus
vaccine against cervical cancer, marketed as Gardasil®, which
prevents the premalignant disease that leads to cervical cancers
and fulfills all the above criteria of being a successful vaccine
(Zhou et al., 1991; Govan, 2008). Initially the cost of Gardasil®
was extremely prohibitive at US$120 per dose with three doses
required; however, in collaboration with GAVI Alliance, the
cost from the supplier has dropped to US4.50 per dose which
increases its affordability and likelihood of being implemented in
developing countries (Anon, 2013). As the cost of the vaccine
decreases and more people are immunized this vaccine which
has been included in over 30 countries immunization schedules,
in conjunction with regular Pap screening, may lead to a long-
term reduction in cervical cancer incidence (Harper et al., 2010;
Ribeiro-Muller and Muller, 2014).

VACCINE FAILURES AND CHALLENGES
Historically there have been more vaccine failures than successes
and unfortunately those failures can be publicized and instill
fear in the general public long after the event. One such failure
is one that occurred early in the rollout of the Salk polio
vaccine is known as the Cutter incident. In April, 1955 a few
weeks after Salk’s polio vaccine had been declared safe and
efficacious, there were reports from California that five children
had become paralyzed after receiving the vaccine (Offit, 2005).
These vaccines were traced to Cutter which was one of the
five pharmaceutical companies that were granted a license to
produce the vaccine in the USA (Nathanson and Langmuir,
1995). It was found that two production batches failed the
deactivation steps; so live virulent poliovirus was found in
120,000 doses of the vaccine. Of the children vaccinated from
this pool, 40,000 developed abortive polio, 51 suffered from
permanent paralysis and five died (Nathanson and Langmuir,
1995). Unfortunately this was not the end of the tragedy, a polio
outbreak followed where a further 113 people in close contact
with the vaccinated children were infected and subsequently

paralyzed, and a further five deaths (Nathanson and Langmuir,
1995; Offit, 2005). This incident halted the implementation of
the polio vaccine program and severely affected public confidence
in the vaccination, not only in the USA but as far reaching
as New Zealand (Day, 2009), Germany, the UK and Sweden
(Axelsson, 2012) and in the end, it caused the USA to recommend
Sabin’s vaccine in the long term which, barring manufacturing
failures, proved to be the more risky of the two vaccines
as it could revert to full virulence and cause outbreaks of
vaccine-associated paralytic poliomyelitis (Offit, 2005; Fitzpatrick,
2006).

Following its emergence in 1981, HIV infections and its
subsequent disease acquired immunodeficiency syndrome (AIDS)
has become a global pandemic with millions of deaths and over
34 million people living with HIV (De Cock et al., 2012). According
to the [World Health Organization (WHO, 2014c) ] and the Joint
United Nations Programme on Hiv/Aids (2013) the pandemic
appears to have peaked as AIDS-related deaths have decreased by
25% in the past decade as well as new infections decreasing by 20%
since 2006. This is the combined effect of the development of anti-
retroviral drugs, and better education about the transmission of
this disease. However, a vaccine is desperately needed to prevent
new infections and to stop this pandemic from affecting future
generations.

Multiple HIV vaccines have been tested in clinical trials with
limited success (Johnson et al., 2013). In the last decade, the
most prominent vaccine trial failures was that of the Merck STEP
phase II test of concept and efficacy trial for an Adenovirus5
(Ad5) vaccine. It showed that the MRKAd5 HIV-1 gag/pol/nef
vaccine was highly immunogenic and elicited a higher magnitude
of HIV-specific CD8+ T cells than any of the other HIV candidate
vaccines over the past 15 years but it did not prevent HIV
infection or reduce viral loads in infected patients (Buchbinder
et al., 2008). In fact, more disturbingly, there was an increase
in the number of HIV-1 infections in male recipients of the
vaccine compared to the controls (McElrath et al., 2008). This
trial was immediately ceased when the independent data and
safety monitoring board determined that the study could not
demonstrate efficacy (Buchbinder et al., 2008).

One of the reasons behind the failure of the Merck STEP clinical
trial was the pre-existing neutralizing antibodies against Ad5. A
recent study confirmed that the international epidemiology of
pre-existing immunity to different adenovirus types can severely
compromise its efficacy as only 14.8% of the 1904 participants
were seronegative for neutralizing antibodies against Ad5 (Mast
et al., 2010). This indicates that naturally acquired infections from
virulent forms of the vaccine vectors can limit their usefulness
in the same species. However, choosing a virus from a different
species for which no prior exposure is possible but may sound
too risky to be accepted by the general population. It was also
found that whilst the group of men that became more susceptible
to HIV infection post-vaccination were seropositive against the
Ad5 vector, they were also uncircumcised and had sexual relations
with the same sex implying that pre-existing immunity may not
be the sole factor that caused this vaccine failure (Gray et al., 2010;
Duerr et al., 2012). Whilst this phase II trial failure was a major
setback for the HIV research community, it raised fundamental
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questions about the pathogenesis of HIV and also gave insight
into immunological mechanisms that were previously unexplored
(Johnson et al., 2013; Fauci et al., 2014). The search for a HIV
vaccine is ongoing and as of May 2014, there are 92 open HIV
vaccine trials according to Clinicaltrials.Gov (2014).

Another infectious disease that is under surveillance by health
departments worldwide is a double-stranded RNA virus called
rotavirus. Rotavirus causes acute enteritis resulting in severe,
dehydrating diarrhea in infants and young children and is very
transmissible through close contact [Bishop et al., 1976; World
Health Organization (WHO), 2013]. In the pre-vaccination era,
rotavirus caused 111 million cases of illness with 25 million
medical visits, 2 million hospitalizations and between 352,000
and 592,000 rotavirus gastroenteritis-associated deaths worldwide
annually with most of these occurring in low income countries
(Parashar et al., 2003). The first rotavirus vaccine was RotaShield
which was developed by Wyeth-Lederle Vaccines and Pediatrics,
Philadelphia, as an oral vaccine and showed high efficacy at 80%
protection from severe illness; hence it was recommended for all
infants in the USA once it was approved by the Food and Drug
Administration (FDA) on August 31, 1998 (American Academy of
Pediatrics, 1998). Over the eleven month period after the vaccine
was approved until July 7, 1999, 15 cases of intussusception, a
type of intestinal blockage requiring surgical intervention, were
reported and linked to the vaccination. In consultation with
the FDA, Wyeth-Lederle Vaccines withdrew Rotashield from the
market on October 15, 1999. Before this withdrawal, the cases of
confirmed intussusception had risen to 101 (Delage, 2000) and
fortuitously, because there were no deaths caused by this vaccine,
physician trust in vaccine safety measures were not compromised
by this withdrawal (McPhillips et al., 2001).

In 2006, two new oral rotavirus vaccines were released onto the
market: Rotarix® – a live monovalent attenuated human strain by
GlaxoSmithKline Biologicals (Vesikari et al., 2004; Keating, 2006b)
and RotaTeq® – a live pentavalent human-bovine reassortant
vaccine by Merck & Co. Inc. (Clark et al., 2004; Keating, 2006a).
After 6 years of use, a Cochrane Review found that both of
these vaccines are efficacious with no increased risk of adverse
side effects such as intussusception (Soares-Weiser et al., 2012).
However, in 2013, a small increase in risk was confirmed when
the data was analyzed comparing the risk of intussusception in the
post-vaccine period with other periods (Haber et al., 2013; Quinn
et al., 2014).

A year later, the vaccines are still on the market albeit with
an intussusception warning even though there is an estimated
up to sixfold increase with the use of these two rotavirus
vaccines. So far the Vaccine Safety Datalink has reported that
Rotarix® has had 66 intussusception cases in 200,000 doses, whilst
RotaTeq® had eight cases for 1.3 million doses administered
with most occurring within 7 days after the first dose [World
Health Organization (WHO), 2014b]. Currently the risk of
intussusception is estimated to be 1–2 per 100,000 infants
vaccinated [World Health Organization (WHO), 2013]. However,
the general view is that there are great benefits to vaccination
against rotavirus as the infant mortality rates in countries that
have added this to their vaccination schedule have significantly
decreased (Buttery et al., 2014) and this is reflected in the WHO’s

Global Advisory Committee on Vaccine Safety in their weekly
epidemiological record [World Health Organization (WHO),
2014b] stated this in regards to the new intussusception risk:
“the findings remain reassuring that the risk of intussusception
following current rotavirus vaccines remains small compared
to the benefits of preventing the impact of severe diarrhea.”
Surveillance of such adverse effects requires long-term study in
order to make sound decisions about the appropriateness of the
vaccine. There may come a time where the relative risk is too
high and the vaccine is withdrawn like Rotashield which had a
rate of intussusception of 1 in 10,000 infant doses [World Health
Organization (WHO), 2013], even though it provided strong
immunological protection. This is one of the hardest aspects in
vaccine development to plan for and may lead to public distrust
in future vaccines, if it is not done expediently when those risks
increases.

POLITICAL AND GLOBAL ASPECTS OF VACCINE USAGE
When a vaccine is designed, it is assumed that if it proves effective
it will be used in various countries around the world to vaccinate
the population; however, this is not always the case. Within each
country there are government agencies, industry and community
health advocates, and outside agencies such as the WHO that
will make recommendations for vaccination strategies. Often this
process will result in a successful vaccination strategy such as the
global eradication of smallpox (Stewart and Devlin, 2006), but it
can also lead to confusion and scepticism in the chosen strategy.
One such example was the choice of pertussis vaccine for a national
vaccination campaign in the Netherlands.

Originally, the Dutch government chose to use a whole cell
vaccine based on the Bordetella pertussis bacterium; however,
after speculation that the vaccine could cause brain damage,
alternative vaccines were sought. At this time, acellular vaccines
comprising three to five bacterial components were being used
by many countries in Europe as they were comparable in
protection to the whole cell vaccines and demonstrated minimal
side effects (Blume and Zanders, 2006). Over the course of
7 years, the debate over the new vaccine became very convoluted
as many government agencies, drug companies, and consumer
groups presented opposing studies and evidence. There was also
external pressure from neighboring countries and global non-
profit groups including the WHO and United Nations Children’s
Fund (UNICEF) for the Dutch government to make a decision.
Concurrently, many parents had lost faith in the old vaccine
strategy; hence an epidemic of pertussis ensued. To combat
the growing epidemic the Dutch government chose an acellular
vaccine which was used in primary vaccinations in 2005; however,
the Health Minister advised that this decision was not based on
recommendations and evidence provided by the Dutch Health
Council, but on the need to appease parents and re-establish
their confidence in the vaccine strategy (Blume and Zanders,
2006). By contrast, in areas where any disease is endemic and
the health system is overwhelmed, often the vaccination strategy
proposed by governing bodies will be accepted by the population
and acquiesced as mandatory (Chalmers, 2006).

Unfortunately this has not worked in areas such as Pakistan,
Nigeria, and Afghanistan where the eradication of polio has failed
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due in part to misinformation, violence, politics, and mistrust
about vaccination. There is a distinct divide in these populations
between vaccine acceptors and non-acceptors which is based in the
abundance of misinformation about the vaccine, religious beliefs
and the emotional fear about the agenda; however, if there is an
outbreak many non-acceptors will accept the vaccination as the
fear of disease outweighs the perceived risks (Murele et al., 2014).
Socio-cultural, educational and perceptual factors are particularly
strong in these regions and in some cases targeting male authority
figures could improve vaccination uptake (Murele et al., 2014);
however, in other regions maternal education and empowerment
has been suggested as a strong motivator in vaccine acceptance
(Larson et al., 2014).

Violence is another contributing factor to this program’s
failure particularly when there are fatal attacks on vaccination
workers in Pakistan and Nigeria (Abimbola et al., 2013). In
Afghanistan, both the Taliban regime and the militant Islamist
terrorist group Al Qaeda support the Global Polio Eradication
Initiative; however, factions within these groups can disrupt it
as they view it as a Westernization issue, rather than a health
one (Abimbola et al., 2013). In Nigeria and Pakistan, militants
can gain international media attention by attacking polio health
workers (Riaz and Rehman, 2013) and spreading propaganda
that immunization programs are actually covert sterilization
campaigns to reduce the Muslim population, which puts more
fear into the local communities than the disease itself (Abimbola
et al., 2013; Willyard, 2014).

All of the aforementioned issues affect the successful
eradication of infectious diseases with well documented
epidemiology and pathology. However, there exist conditions and
disorders where the mechanisms of development and ongoing
chronic pathology are yet to be fully ascertained. One such
condition causing concern among health professionals globally
is allergy.

ALLERGY AND VACCINE POTENTIAL
Allergy is a hypersensitivity disease characterized by the
production of IgE antibodies against antigenic components (i.e.,
allergens) that can enter the body via the respiratory and
gastrointestinal tract, the skin, an insect sting or injection of
a drug (Sicherer and Sampson, 2014). The clinical reactions
experienced by sensitized patients vary in different target organs
and include rhinitis, urticaria, and allergic asthma to life-
threatening anaphylactic shock (Sampson, 2003, 2004). The acute
symptoms of allergy are usually due to the release of inflammatory
mediators by tissue-bound mast cells and circulation basophils.
These inflammatory mediators include histamine, platelet-
activating factor, leukotrienes, mast cell proteases, and a range
of cytokines. Mediators are released when allergen binds to IgE
antibody attached to FεRI receptors on the cell surface, causing
degranulation. Studies show a skewing towards a Th2 response,
with elevated levels of IL-4, IL-5, and IL-13, while tolerant
individuals usually have higher levels of the Th1 cytokines IFN-
gamma and TNF-alpha, and the regulatory cytokine IL-10 (Andre
et al., 1996; Noma et al., 1996; Schade et al., 2003; Turcanu et al.,
2003; Tiemessen et al., 2004). The class switch to produce IgE
antibody occurs during primary sensitization in allergic patients

and seems to be driven by IL-4, which is a direct product
of Th2 cells and other effector cells of the allergic immune
response. The activation of allergen-specific T cells is achieved
by the presentation of allergens via APCs, including dendritic cells
(Grainger et al., 2014; Nagai et al., 2014).

As the prevalence and potential fatality of this disease
has increased, so have the efforts to find effective therapies
and prophylaxis also intensified (Valenta et al., 2010). Specific
immunotherapy (SIT) is effective for desensitization against
inhalant allergens; however, it is not advised as a therapy against
food allergy because of the high risk of adverse side-effects (Sabato
et al., 2014). Oral administration of antigens usually leads to
tolerance, and has been effective in decreasing allergic sensitization
to antibiotics and other medications (Stevenson, 2000, 2003).
Obviously native food allergens cannot be administered in
this way, but it may be possible for hypoallergenic or CpG-
conjugated derivatives. Microencapsulation provides a promising
way of delivering allergens without degradation in the stomach
(Litwin et al., 1996), thereby inducing oral tolerance, and
has already been applied in clinical trials (TePas et al., 2004).
Conjugation or co-administration of recombinant allergens with
Th1-inducing heat-killed bacteria has yielded good protective
results in mice (Li et al., 2003a,b) and allergic dogs (Frick et al.,
2005). Various approaches have been attempted to develop safe
and effective DNA vaccines and are discussed in the following
section.

DNA VACCINES AND ALLERGY
DNA vaccines, as demonstrated in the California condors, can
induce protective immune responses against infectious diseases.
Plasmid DNA injected intramuscularly, intraperitoneally or with
a gene gun results in transcription and translation of encoded
genes and elicits an antibody response in the host (Tang et al.,
1992; Ulmer et al., 1993; Hsu et al., 1996b). This method of
immunization preferentially induces a Th1 immune response and
suppression of IgE (Raz et al., 1996; Yoshida et al., 2000). These
effects appear to be mediated by both CD8+ and CD4+ cells (Hsu
et al., 1996a; Lee et al., 1997; Peng et al., 2002), and plasmid DNA
requires immunostimulatory sequences such as CpG for optimal
immunogenicity (Sato et al., 1996; Adel-Patient et al., 2001; Jilek
et al., 2001; Hartl et al., 2004). Unmethylated CpG motifs either in
bacterial DNA or as synthetic oligodeoxynucleotides (CpG-ODN)
are recognized by the mammalian immune system via toll-like
receptor 9 (and possibly other PRRs) and trigger a Th1 response
(Hartmann and Krieg, 1999; Stacey et al., 2000; Bauer et al., 2001).
Experiments in murine models of allergic asthma, rhino sinusitis,
and conjunctivitis show that administration of CpG-ODN alone
prevents symptoms and reduces already established disease by
reducing Th2 immune responses and IgE (Kline et al., 1998,
1999; Magone et al., 2000; Serebrisky et al., 2000). Allergen/CpG-
ODN conjugates have been shown to be less allergenic and more
immunogenic than native allergen (Tighe et al., 2000; Horner et al.,
2002). The major allergen from ragweed, Amb a 1, linked to
an immunostimulatory DNA sequence promoted Th1 cytokine
expression and down regulated Th2 expression in vitro (Simons
et al., 2004), reversed established airway hyperreactivity in a
murine model of asthma (Marshall et al., 2001; Santeliz et al., 2002)
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and yielded promising results in Phase II clinical trials (Tulic et al.,
2004).

Genetic immunization to specific allergens using plasmid DNA
offers a powerful solution to the major problems associated with
protein immunization, such as cross-linking of IgE antibody on
effector cells or even de novo synthesis of IgE antibodies to the
immunized protein itself. However, genetic vaccination may lead
to an uncontrolled synthesis of allergens in the vaccinated host
(Slater et al., 1998) and has been a major hurdle for application in
allergic patients. Three approaches are currently used to prevent
this from occurring: (a) cutting the allergen-coding gene into
fragments, lacking the antigenic determinant but containing the
original T cell epitope repertoire, (b) the use of hypoallergenic
protein derivatives, or (c) fusing allergen with proteins that
promote immune responses.

Several allergens have been tested in DNA vaccination
approaches using murine models, including Ara h 2 (peanut),
bovine beta-lactoglobulin (cow’s milk), Cry j 1 (Japanese
cedar), phospholipase A2 (bee venom), Der f 11 and Der p 1
(dust-mite), and Bet v 1 and Phl p 2 (grass; Roy et al.,
1999; Toda et al., 2000; Adel-Patient et al., 2001; Jilek et al., 2001;
Kwon et al., 2001; Peng et al., 2002; Hochreiter et al., 2003;
Ludwig-Portugall et al., 2004). Most studies observed elicitation of
a Th1 response and increased IL-10 production. Mice vaccinated
against phospholipase A2 were protected against fatal anaphylaxis
following allergen challenge (Jilek et al., 2001), while mice
receiving an oral DNA vaccine containing the peanut allergen
Ara h 2 (Roy et al., 1999) experienced significantly less severe
and delayed allergic reactions upon subsequent sensitization and
challenge. However, prophylactic effects, while promising, are not
sufficient to aid patients who have existing food allergy. In mice
pre-sensitized to phospholipase A (bee venom), therapeutic gene
vaccination prevented only 30% of mice from anaphylaxis (Jilek
et al., 2001).

In addition to direct DNA vaccination, these approaches
provide the option of co-delivering genes or adjuvant molecules
with immunomodulatory properties together with the antigen
sequence (Hartl et al., 2004; Mutschlechner et al., 2009). Allergen–
allergen hybrid molecules may combine different allergens from
one complex allergen source or use allergens from different sources
as demonstrated for grass pollen (Linhart et al., 2005; Wallner et al.,
2009). Furthermore, hybrid molecules using only T cell epitopes
have been successfully used (Linhart et al., 2008). Vaccination
of mice with a plasmid containing the cDNA for OVA fused to
the cDNA of IL-18 (Allergen–cytokine fusion protein), a potent
Th1 inducer, reversed established airway hyperreactivity, while
a plasmid containing OVA alone had only a prophylactic effect
(Maecker et al., 2001).

Ubiquitination of allergens represents another routine
approach for destroying IgE-binding epitopes on proteins to
produce hypoallergenic DNA vaccines. This approach has been
applied for the production of a DNA-based vaccine encoding an
ubiquitinated version of Linhart v 1, the major allergen from birch
pollen (Bauer et al., 2006). It was demonstrated in a murine study
that this vaccine did not produce any detectable antibody response,
but T cell reactivity was preserved as well as allergic reactions
prevented.

In summary, several novel therapeutic and prophylactic
therapies against allergy are currently under investigation
(Nieuwenhuizen and Lopata, 2005; Flicker et al., 2013; Weiss et al.,
2013). Genetic immunization has proven a powerful method to
induce anti-allergic immune responses. The underlying functional
principle described seems to be based on the recruitment of
allergen-specific Th1 cells, CD8+ cells and the establishment
of a Th1 cytokine milieu. This response can be protective by
preventing the development of a Th2-biased response towards
allergens, as well as balance an ongoing Th2-type response in a
more therapeutic application. More studies are needed to increase
our understanding of the pathophysiology and immunological
mechanisms of allergy, and to characterize the molecular structure
and epitopes of allergens, to develop safer and more effective
ways of combating this debilitating and potentially life-threatening
disease.

CONCLUSION
The advent of vaccination changed global society and our everyday
lives dramatically, especially in conjunction with improved
healthcare, infrastructure and technology. Over the last century
with increasing knowledge of the immune system and infectious
diseases, infant mortality associated with infectious diseases
dropped, in developed countries debilitating illnesses like polio
disappeared from public view, and the youth of today did not
experience the threat or fear of death via infectious diseases.
However, some diseases such as HIV and malaria are yet to have
efficacious vaccines developed and successfully complete Phase
III clinical trials. So the fight continues against these known
enemies and with each failure, we learn more. The list of global
health threats consists of many incurable infectious diseases;
immunological disorders such as allergy should be added to that
list. Currently, therapeutic interventions are adequate, but with
population and allergy prevalence increasing there is a strong need
for a prophylactic vaccine. Although the establishment of allergy
is not fully elucidated, researchers should be mining the already
long history of infectious disease vaccines to create new avenues
of allergen vaccine development.
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