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Roles of HMGBs in Prognosis and
Immunotherapy: A Pan-Cancer
Analysis
Tong Lin1, Yingzhao Zhang1, Zhimei Lin1 and Lisheng Peng2*

1The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China, 2Department of Science and
Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China

Background: High mobility group box (HMGB) proteins are DNA chaperones involved in
transcription, DNA repair, and genome stability. Extracellular HMGBs also act as cytokines
to promote inflammatory and immune responses. Accumulating evidence has suggested
that HMGBs are implicated in cancer pathogenesis; however, their prognostic and
immunological values in pan-cancer are not completely clear.

Methods:Multiple tools were applied to analyze the expression, genetic alternations,
and prognostic and clinicopathological relevance of HMGB in pan-cancer.
Correlations between HMGB expression and tumor immune-infiltrating cells
(TIICs), immune checkpoint (ICP) expression, microsatellite instability (MSI), and
tumor mutational burden (TMB) in pan-cancer were investigated to uncover their
interactions with the tumor immune microenvironment (TIME). Gene set enrichment
analysis (GSEA) was conducted for correlated genes of HMGBs to expound potential
mechanisms.

Results: HMGB expression was significantly elevated in various cancers. Both prognostic
and clinicopathological significance was observed for HMGB1 in ACC; HMGB2 in ACC,
LGG, LIHC, and SKCM; and HMGB3 in ESCA. Prognostic values were also found for
HMGB2 in KIRP and MESO and HMGB3 in BRCA, SARC, SKCM, OV, and LAML. The
global alternation of HMGBs showed prognostic significance in ACC, KIRC, and UCEC.
Furthermore, HMGBs were significantly correlated with TIIC infiltration, ICP expression,
MSI, and TMB in various cancers, indicating their regulations on the TIME. Lastly, results of
GSEA-illuminated genes positively correlated with HMGBs which were similarly
chromosome components participating in DNA activity-associated events.

Conclusion: This study demonstrated that HMGBs might be promising predictive
biomarkers for the prognosis and immunotherapeutic response, also immunotherapy
targets of multiple cancers.

Keywords: HMGB, pan-cancer, prognosis, immunotherapy, biomarker
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INTRODUCTION

Immunotherapy has revolutionized the treatment landscape of
patients with advanced cancers, especially immune checkpoint
inhibitors (ICIs). Immune checkpoints (ICPs), such as
programmed death protein 1 (PD-1) and its ligand (PD-L1),
are negative modulatory signaling pathways for activation of
T cells, which in turn facilitate immune tolerance and promote
cancer. ICIs aim to unleash T cells from exhaustion and enhance
anticancer immune activity. However, only 20% of patients
derive the response to ICIs across all malignancies, which
severely limits their clinical benefits (Rameshbabu et al.,
2021). Therefore, seeking new immunotherapeutic targets
and predictive biomarkers for immunotherapy efficacy for
patient selection is a hot issue of the current research (Yi
et al., 2018).

The high mobility group box (HMGB) protein family,
consisting of HMGB1-4, includes non-histone chromatin
components (Rapoport et al., 2020). HMGB1-3 share over
80% identical sequence and structure, comprising two DNA-
binding domains and an acidic tail. However, HMGB4 lacks
the acidic tail and is not ubiquitously expressed like HMGB1-3
(Taniguchi et al., 2018). This study focused on HMGB1-3.
HMGBs are predominantly in the nucleus and act as DNA
chaperones, thereby modulating chromosome stabilization,
telomerase maintenance, replication, transcription, and
DNA repair (Cheng et al., 2020). In the cytoplasmic or
extracellular milieu, HMGBs act as chemokines or cytokines
to evoke inflammatory and immune responses (Niu et al.,
2020).

Accumulating evidence had hinted HMGBs’ participation in
cancer pathogenesis. First, effective DNA damage repair is
indispensable for cancer cells to maintain growth. Second,
excessive extracellular HMGBs induce chronic inflammation,
which is a hallmark of cancer (Mukherjee and Vasquez, 2020).
The overexpression and prognostic relevance of HMGBs had
been observed in various cancers, including prostate (Jung et al.,
2021), liver (Zhang et al., 2014), cervix (Cheng et al., 2017; Li T.
et al., 2020), breast (Fu et al., 2018), stomach (Cui et al., 2019),
esophagus (Gao et al., 2015), and hematopoietic malignancies
(Yuan et al., 2020). Given the roles of HMGBs in the regulation
of inflammation and immunity, they appear to be candidate
targets for cancer immunotherapy. However, HMGB1 is
double-faced in cancers. HMGB1 can maintain genome
stability and interact with tumor suppressor proteins, e.g.,
Rb, to prevent oncogenesis (Mandke and Vasquez, 2019).
Besides, extracellular HMGB1 can stimulate anticancer
immune responses during the process called immunogenic
cell death (ICD) (Fucikova et al., 2020; Rapoport et al.,
2020). Beyond the controversy of HMGB1, the roles of
HMGB2/3 in cancers are unclear, especially in the context of
the tumor immune microenvironment (TIME).

In this work, we comprehensively analyzed the expression,
genetic alternations, clinicopathological and prognostic
relevance, and underlying mechanisms of HMGBs in pan-
cancer. Since biomarkers reflecting TIME, including tumor
immune-infiltrating cells (TIICs) and ICP gene expression,

and tumor intrinsic features, including microsatellite instability
(MSI) and tumor mutational burden (TMB), may predict
immunotherapy efficacy (Duffy and Crown, 2019), correlations
between HMGB expression and these factors were investigated.
This study may offer novel insights into HMGBs’ potential values
in cancer immunotherapy.

MATERIALS AND METHODS

Analysis of High Mobility Group Box Genes
Expression in Cancers
The differential mRNA expression of HMGBs between human
cancers and paired normal controls was analyzed using
Oncomine (https://www.oncomine.org) (Rhodes et al., 2007)
and Gene Expression Profiling Interactive Analysis 2
(GEPIA2) (http://gepia2.cancer-pku.cn/) (Tang et al., 2017). In
the GEPIA2 portal, the data of 33 types of cancers were from the
Cancer Genome Atlas (TCGA), and the normal data were
combined TCGA and Genotype Tissue Expression (GTEx).
The screening criteria were limited to |fold change (FC)| > 2
and a p value <0.01 for both portals.

Analysis of the Prognostic Value of High
Mobility Group Box Genes in Cancers
Associations between HMGB expression and overall survival
(OS) and relapse-free survival (RFS) of patients with diverse
TCGA cancers were evaluated by five databases, Kaplan–Meier
(KM) Plotter (http://www.kmplot.com/) (Nagy et al., 2021),
Long-term Outcome and Gene Expression Profiling Database
of pan-cancers (LOGpc, http://bioinfo.henu.edu.cn/DatabaseList.
jsp), SurvExpress (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) (Aguirre-Gamboa et al., 2013), Tumor
IMmune Estimation Resource (TIMER) (http://timer.cistrome.
org) (Li Z. et al., 2020), and GEPIA2. Here, patients were divided
into high- and low-expression groups by median.

Analysis of the Clinicopathological
Relevance of High Mobility Group Box
Genes in Cancers
Associations between HMGB expression and clinicopathological
features, including major stages and tumor grades of patients with
diverse cancers, were explored using TCGA data by UALCAN
(http://ualcan.path.uab.edu) (Chandrashekar et al., 2017).

Identification of Genetic Alternations of
High Mobility Group Box Genes in Cancers
Genetic alternations of HMGBs including mutations, structural
variants, and copy number alterations were analyzed by
cBioPortal (http://www.cbioportal.org) (Cerami et al., 2012;
Gao et al., 2013), using the “TCGA PanCancer Atlas” datasets.
Associations between the global alternation of HMGBs and
patient’s survivals in pan-cancer were also analyzed; here,
samples were split into “altered” and “unaltered” groups.
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Analysis of Correlations Between High
Mobility Group Box Genes Expression and
Immune Infiltrates and Immune Checkpoint
Genes in Cancers
Correlations between HMGB expression and the infiltration of
diverse TIICs, including CD8 T cells, CD4 T cells, helper T (Th) 1
cells, Th2 cells, regulatory T cells (Tregs), natural killer (NK) cells,
global macrophages, M1/M2 macrophages, neutrophils, myeloid
dendritic cells (mDCs), B cells, and myeloid-derived suppressor
cells (MDSCs), were explored using the TIMER portal.
Correlations between HMGB expression and the infiltration of
Th17 were assessed using TISIDB (http://cis.hku.hk/TISIDB) (Ru
et al., 2019). Forty-three ICP genes were selected incorporating
three review articles (Marin-Acevedo et al., 2021b) (Marin-
Acevedo et al., 2021a) (Marin-Acevedo et al., 2018);
correlations between the expression of HMGBs and these ICP
genes were analyzed using TIMER.

Analysis of Correlations Between High
Mobility Group Box Genes Expression and
Microsatellite Instability and Tumor
Mutational Burden in Cancers
The RNA sequence data of 33 kinds of TCGA cancers were
downloaded from the Genomic Data Commons (GDC) portal
(https://portal.gdc.cancer.gov/). MSI (Bonneville et al., 2017) and
TMB (Thorsson et al., 2019) data were derived from two previous
studies, respectively. Correlations between HMGB expression and
MSI and TMB were analyzed using R software version 4.0.3.

Gene Set Enrichment Analysis for the
Correlated Genes of High Mobility
Group Box
Correlated genes of HMGB1 in ACC (n � 79), HMGB2 in LGG
(n � 516), and HMGB3 in BRAC (n � 1093) were explored using
the LinkFinder module of the LinkedOmics platform (Vasaikar
et al., 2018). Then, the significantly correlated genes of the
HMGB1/2/3 were respectively sequenced to perform gene set
enrichment analysis (GSEA), using Web-based Gene SeT
Analysis Toolkit (WebGestalt) (Liao et al., 2019). GSEA was
conducted for gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway categories. GO categories
included biological process (BP), cellular component (CC), and
molecular function (MF) aspects. The category size was restricted
between 5 and 2,000, and the number of permutations was
limited up to 1,000. A gene set with a false discovery rate
(FDR) < 0.05 was considered significantly enriched.

Statistical Analysis
A comparison of the mRNA expression was performed using
Student’s t-test (Oncomine and UALCAN) or one-way ANOVA
test (GEPIA2). Survival curves were plotted using the
Kaplan–Meier method, and the log-rank test was performed to
identify differences and calculate p values. Associations between
gene expression and survival were estimated using Cox

proportional regression to generate the hazard ratio (HR) and
95% confidence interval (CI). Spearman’s method was applied to
analyze correlations between gene expression and the infiltration
level of TIICs, MSI, and TMB. Correlations between any two
genes were evaluated using the Pearson test. Correlation strength
was measured by correlation coefficient (r) values: 0.00–0.39,
0.40–0.59, and 0.60–1.0 were weak, moderate, and strong,
respectively. All tests were two-tailed paired, and p values
<0.05 were considered statistically significant.

RESULTS

Expression of High Mobility Group Box
Genes in Cancers
Initially, the results from the Oncomine database showed that
HMGB1/2/3 were significantly highly expressed in a total of 22,
22, and 51 datasets, whereas they were lowly expressed in two,
three, and one datasets of various cancers, respectively, compared
with paired normal controls (Figure 1A). Except for several
datasets of leukemia, lymphoma, and sarcoma, HMGBs were
consistently up-expressed in most human cancers.

In the GEPIA2 database, HMGB1/2/3 were significantly
differentially expressed in a total of 8, 14, and 24 types of
TCGA cancers, respectively, compared with the corresponding
normal controls (Figures 1B–D). In detail, HMGB1/2/3 was
uniformly up-expressed in eight kinds of cancers, including
colon adenocarcinoma (COAD), lymphoid neoplasm diffuse
large B-cell lymphoma (DLBC), glioblastoma multiforme
(GBM), brain lower grade glioma (LGG), pancreatic
adenocarcinoma (PAAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thymoma (THYM).
HMGB2/3 was highly expressed in four kinds of cancers,
including adrenocortical carcinoma (ACC), bladder urothelial
carcinoma (BLCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), and uterine
carcinosarcoma (UCS), while they were down-expressed in
acute myeloid leukemia (LAML). Besides, HMGB2 was
upregulated in liver hepatocellular carcinoma (LIHC). HMGB3
was upregulated in 11 other types of cancers, including breast
invasive carcinoma (BRCA), esophageal carcinoma (ESCA), head
and neck squamous cell carcinoma (HNSC), kidney
chromophobe (KICH), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),
prostate adenocarcinoma (PRAD), testicular germ cell tumors
(TGCT), and uterine corpus endometrial carcinoma (UCEC). To
be short, HMGB expression was significantly elevated in most
cancers, except that HMGB2/3 were downregulated in LAML.
Moreover, HMGB3 was the most universally overexpressed
among the HMGB family.

Prognostic Significance of High Mobility
Group Box Genes in Cancers
In the first step, associations between HMGB expression and OS
and RFS of patients with diverse cancers were evaluated
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integrating LOGpc, KM Plotter, SurvExpres, and TIMER
platforms (Supplementary Table S1). We found that a higher
expression of HMGB1 was significantly related with worse OS of
patients with ACC (HR � 2.36, p � 0.043) and KICH (HR �
4.75 p � 0.037), whereas a better OS of patients with THYM was
found (HR � 0.11, p � 0.011) (Figure 2A). An elevated expression
of HMGB2 was significantly linked to shorter OS of patients with
ACC (HR � 4.67, p � 0.001), KICH (HR � 6.54, p � 0.004), KIRC
(HR � 1.53, p � 0.004), KIRP (HR � 2.20, p � 0.011), LGG (HR �
2.19, p � 9.00E-05), LIHC (HR � 1.85, p � 0.001), andMESO (HR
� 2.09, p � 6.72E-06), and a longer OS of patients with SKCM
(HR � 0.71, p � 0.013) and THYM (HR � 0.18, p � 0.018)
(Figure 2B). HMGB3 overexpression implied unfavorable OS of
patients with BRCA (HR � 1.58, p � 0.006), ESCA (HR � 1.64, p �
0.034), KIRC (HR � 1.52, p � 0.006), MESO (HR � 1.66, p �
0.003), SARC (HR � 2.10, p � 2.00E-04), and SKCM (HR � 1.61,
p � 0.001), but better OS of patients with LAML (HR � 0.56, p �
0.006), OV (HR � 0.76, p � 0.043), and STAD (HR � 0.71, p �
0.040) (Figure 2C).

Apart from several cancer types with insufficient sample size
that were not analyzed, we further found that HMGB1
upregulation was significantly linked with unfavorable RFS of
ACC, COAD, PAAD, and READ, but better RFS of LGG
(Figure 2D). HMGB2 high expression suggested worse RFS of
KIRP, LGG, LIHC, but better RFS of GBM (Figure 2E). HMGB3
up-expression implied better RFS of OV but worse RFS of TGCT
(Figure 2F).

Second step, heat maps exhibiting HMGBs’ prognostic values
were generated by GEPIA (Figures 2G,H). Here, HMGB1 high
expression indicated both worse OS and RFS of ACC and
LUAD; worse RFS of CESC, HNSC, and SARC; and better
OS of KIRC. HMGB2 up-expression suggested both worse
OS and RFS of ACC, KIRP, LGG, and LIHC; worse OS of
MESO and PAAD; worse RFS of LUAD and PRAD; and better
OS of SKCM. HMGB3 upregulation signified both poorer OS
and RFS of ESCA; worse OS of BRCA, LGG, SARC, and SKCM;
and better OS and RFS of LAML and OV. We took the
intersection of the findings of the two steps of survival

FIGURE 1 | The differential expression of HighMobility Group Box (HMGBs) between cancers and normal controls. (A) A summary of the datasets in which HMGBs
were significantly up- (red) or down- (blue) expressed in cancers, compared with normal controls (Oncomine). Numbers in cells represent dataset counts. The expression
of (B) HMGB1, (C) HMGB2, and (D) HMGB3 in TCGA cancers and paired normal controls (GEPIA2). A black font indicates no significant difference; red or green fonts
indicate significant up- or down-expression, respectively, with |fold change (FC)| > 2 and p values <0.01. ***p < 0.001; Δ|FC| > 4 and p < 0.01.
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analyses to improve the robustness, which was provided in the
discussion section.

Clinicopathological Relevance of High
Mobility Group Box Genes in Cancers
Subsequently, correlations between HMGB expression and
clinicopathological characteristics of diverse cancers were

investigated. We found that HMGB1 expression was elevated
with the stage progression of ACC and READ. HMGB1
expression was significantly higher in Stage-IV ACC and
Stage-III READ than in Stage-I/II ACC and Stage-II READ,
respectively (p < 0.05) (Figures 3A,B). HMGB2 expression
was elevated as stages of ACC, KIRC, and LIHC were
promoted, while stages of SKCM improved. The expression of
HMGB2 was significantly higher in Stage-IV ACC, Stage-IV

FIGURE 2 | Prognostic significance of High Mobility Group Box (HMGBs) in cancers. Associations between HMGB expression and (A–C) OS and (D–F) RFS of
patients with various cancers. Heat maps showing relations of HMGB expression with (G) OS and (H) RFS of various cancers (GEPIA2). Results with significance are
framed; red or blue frames indicate high or low survival risk, respectively. OS, overall survival; RFS, relapse-free survival; HR, hazard ratio; CI, confidence interval.
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KIRC, and Stage-II/III LIHC than in Stage-I ACC, Stage-I/III
KIRC, and Stage-I LIHC, respectively. In contrast, HMGB2
expression was significantly lower in Stage-II/III SKCM,
compared to that in Stage-I ones (p < 0.05) (Figures 3C–F).

HMGB3 expression was elevated in Stage-II/III ESCA, compared
with that in Stage-I ones (p < 0.05) (Figure 3G).

What is more, tumor grades of HNSC were significantly
increased with the elevation of HMGB expression (Figures

FIGURE 3 | Clinicopathological relevance of High Mobility Group Box (HMGBs) in cancers. Associations of the expression of (A–B) HMGB1, (C–F) HMGB2, and
(G) HMGB3 with pathological stages of several cancers. Associations of the expression of (H–K) HMGB1, (L–N) HMGB2, and (O–Q) HMGB3 with tumor grades of
several cancers (UALCAN). *p < 0.05, **p < 0.01, ***p < 0.001.
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3I,M,Q), while an opposite trend was observed for HMGB1
expression in KIRC (Figure 3J). Significantly, HMGB1/2
expression was higher in Grade-3 tumors of LIHC than in
Grade-2 (and −1) ones (p < 0.01) (Figures 3K,N). HMGB1/3
expression was higher in Grade-3 tumors of ESCA than in
Grade-2 (and −1) ones (p < 0.05) (Figures 3H,P). HMGB2/3
expression was higher in Grade-3 tumors of LGG than in
Grade-2 ones (p < 0.01) (Figures 3L,O). Collectively,
HMGB up-expression indicated the clinicopathological

advancement of ACC, ESCA, HNSC, LIHC, LGG, and
READ and the alleviation of KIRC and SKCM.

Genetic Alternations of High Mobility Group
Box Genes in Cancers
Overall, genetic alternations of HMGBs were identified in a total
of 529 (4.83%) out of 10,953 samples, including in-frame
mutation, missense mutation, splice mutation, truncating

FIGURE 4 | Genetic alternations of High Mobility Group Box (HMGBs) in cancers. (A) An overview of the genomic alternations of HMGBs occurred in pan-cancer.
(B) The alternation frequency of HMGBs in cancers. Associations of HMGBs’ global alternation with the survival of patients with (C) ACC, (D) KIRC, and (E) UCEC
(cBioPortal).
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mutation, structural variant, amplification, and deep deletion
(Figure 4A). Among all the cancers, HMGBs altered the most
frequently in DLBL, with an incidence rate of 14.58%, followed by
STAD (11.14%) and ESCA (9.89%) (Figure 4B).HMGB3 was the
most frequently altered one within HMGBs (221 out of 10950
samples).

The occurrence of HMGB alternations was significantly
related to poorer OS of ACC (Figure 4C) and poorer
disease-specific survival of KIRC (Figure 4D), but a better
progression-free survival of UCEC (p < 0.05) (Figure 4E).

Apart from these, no significant survival relevance was found
for other cancer types.

Correlations Between High Mobility Group
Box Genes Expression and Immune
Infiltrates and Immune Checkpoint Genes in
Cancers
Correlations between HMGB expression and infiltration
levels of TIICs were investigated integrating TIMER and

FIGURE 5 | Correlations between High Mobility Group Box (HMGBs) expression and (A–C) immune infiltration and (D–F) ICP genes expression in cancers. Th,
helper T cell; Treg, regulatory T cell; NK cell, natural killer cell; mDC, myeloid dendritic cell; MDSC, myeloid-derived suppressor cell.
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TISID. Generally, HMGBs were significantly positively
correlated with the infiltration of Th2 cells and MDSCs
and negatively correlated with that of Th17 cells in pan-
cancer (Figures 5A–C). Specifically, HMGB1 expression
showed positive correlations with the infiltration of CD8
and CD4 T cells, but negative ones with that of Th1 cells
and macrophages in BRCA, KIRC, KIRP, LIHC, PRAD,
SKCM, and THCA. HMGB2 expression was positively or
negatively correlated with the infiltration of diverse TIICs
in BRCA, LGG, LUAD, PCPG, and THCA, without a
consistent pattern. HMGB3 expression exhibited negative
correlations with the infiltration of macrophage lineages in
KIRP, LGG, LUAD, LUSC, OV, SARC, SKCM, TGCT, and
THCA. Notably, strong to very strong correlations were
observed as follows: HMGB expression and the infiltration
of CD8 T cells and (or) Th2 cells in THYM and UVM;
HMGB2 expression and Th2 cell infiltration in ACC,
BLCA, LIHC, and MESO; and HMGB2/3 expression and
MDSC infiltration in UCEC.

Inhibitory and stimulatory ICPs regulate immune escape and
immune efficacy, respectively. Here, we explored correlations
between the expression of HMGBs and 43 ICP genes (21
inhibitory and 22 stimulatory). In general, the relationships
between the expression of HMGBs and inhibitory or
stimulatory ICP genes were isotropic. To highlight, strong
correlations were identified for HMGB expression with many
ICP genes of THYM, with mostly negative relations, as well as

HMGB1/2 expression with numerous ICP genes of UVM.
Besides, significant positive correlations between the
expression of HMGBs and ICP genes were found in the
following cancers: HMGB1 in HNSC, LIHC, PAAD, and
PRAD and HMGB2 in HNSC, KIRC, KIRP, LGG, LIHC,
PRAD, THCA, and SKCM. In contrast, significant negative
correlations were found as follows: HMGBs in GBM and
HMGB3 in KIRP, LGG, LUAD, LUSC, and TGCT.
(Figures 5D–F).

Correlations Between High Mobility Group
Box Genes Expression and Microsatellite
instability and Tumor Mutational Burden in
Cancers
Among 33 kinds of cancers, HMGB1/2/3 expression was
significantly positively correlated with the MSI of 6 (18.2%),
10 (30.3%), and 10 (30.3%) types of cancers but negatively
correlated with the MSI of 2 (6.0%), 1 (3.0%), and 1 (3.0%)
types of cancers respectively (Figures 6A–C).

As for the TMB, HMGB1/2/3 expression was significantly
positively correlated with the TMB of 4 (12.1%), 11 (33.3%), and
16 (48.5%) kinds of cancers but negatively correlated with the
TMB of 4 (12.1%), 2 (6.0%), and 2 (6.0%) kinds of cancers,
respectively (Figures 6D–F). Particularly, HMGB expression had
almost strong negative correlations with the TMB of THYM. In
addition, positive relationships with both MSI and TMB were

FIGURE 6 |Correlations between High Mobility Group Box (HMGBs) expression and the (A–C)MSI and (D–F) TMB of cancers. MSI, microsatellite instability; TMB,
tumor mutational burden.
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identified for HMGB1 in STAD; HMGB2 in STAD, BLCA,
UCEC, LUSC, and COAD; and HMGB3 in STAD, LUAD,
PRAD, LUSC, BLCA, SAR, HNSC, and KICH.

Potential Functions of the Correlated Genes
of High Mobility Group Box Genes
To understand the potential mechanisms behind the differential
expression and immunological relevance of HMGBs in different
cancer types, we explored correlated genes of HMGB1/2/3 in

three representative cancer types and performed GSEA for them,
respectively. A total of 3,452 genes were found significantly
correlated with HMGB1 in ACC, and the top 50 of the positively
and negatively correlated ones are shown in Figures 7A,B
respectively. The results of GSEA illuminated that the positively
correlated genes of HMGB1 in ACC might comprise the ribosome,
cytosolic part, cell–substrate junction, etc., and partake in RNA
metabolic processes and translation. Signaling pathways of the
ribosome, spliceosome, and purine metabolism were involved.
Nevertheless, the negatively correlated genes of HMGB1 might

FIGURE 7 | The corrected genes of High Mobility Group Box 1 (HMGB1) in ACC and GSEA results. The top 50 genes significantly (A) positively and (B) negatively
correlated with HMGB1 in ACC (LinkedOmics). The top 20 significantly enriched (C) GO-BP, (D) GO-CC, (E) GO-MF, and (F) KEGG pathway terms of HMGB1
correlated genes based on GSEA. A bar represents a normalized enrichment score for a term, which in orange or blue represents negatively or positively enriched,
respectively.
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comprise coated vesicles and vacuolar membranes and be involved
in cell–cell adhesion via plasma–membrane adhesion molecules and
various transmembrane transports (Figures 7C–F).

A total of 12,967 genes were found significantly correlated
with HMGB2 in LGG (Figures 8A,B). The positively correlated
genes of HMGB2 in LGG might be components of the
chromosome, replication fork, and spindle and be responsible
for BPs and pathways regulating cell cycle checkpoint, DNA
replication, recombination, and damage repair, as well as somatic
diversification immune receptors. In contrast, the negatively
correlated genes of HMGB2 might consist of the synaptic

membrane, axon part, neuron projection terminus, and
transport vesicles and be involved in signaling pathways of
glutamate receptor, neurotransmitter transport, G protein-
coupled receptor, and cAMP (Figures 8C–F).

As for the correlated genes of HMGB3 in BRAC, 14,028 genes
were significantly observed in all (Figures 9A,B). Similarly, the
positively correlated genes of HMGB3 in BRAC were generally
chromosome structures and partake in BPs and pathways related
to replication, DNA repair, and chromatin remodeling.
Additionally, pathways of amino acid biosynthesis, carbon
metabolism, and citrate cycle were also enriched. The

FIGURE 8 | The correlated genes of High Mobility Group Box 2 (HMGB2) in LGG and GSEA results. The top 50 genes significantly (A) positively and (B) negatively
correlated with HMGB2 in LGG (LinkedOmics). The top 20 significantly enriched (C) GO-BP, (D) GO-CC, (E) GO-MF, and (F) KEGG pathway terms of HMGB2 correlated
genes based on GSEA. A bar represents a normalized enrichment score for a term, which in orange or blue represents negatively or positively enriched respectively.
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negatively correlated genes of HMGB3 might consist of
extracellular matrix and transporter complexes, which
contributed to angiogenesis and the negative regulation of
locomotion. Moreover, the signaling pathways of Hedgehog
and focal adhesion were related (Figures 9C–F).

DISCUSSION

This study extracted potential values of HMGBs in various
cancers, especially in the context of immunotherapy.

From the outset, we found that HMGBs were significantly up-
expressed in various TCGA cancers, except that HMGB2/3 were
down-expressed in LAML. Despite that the overexpression of
HMGB1 in cancers was the most prevalently reported (Niu et al.,
2020), we found that HMGB3 was highly expressed in the largest
variety of cancers and altered most frequently. Integrating the
results of two steps of survival analyses, high expression of
HMGBs suggested unfavorable prognosis in the following
cancers: HMGB1 in ACC; HMGB2 in ACC, KIRP, LGG,
LIHC, MESO; and HMGB3 in BRCA, ESCA, SARC, and
SKCM. In contrast, favorable prognostic indications were

FIGURE 9 | The correlated genes of High Mobility Group Box 3 (HMGB3) in BRAC and GSEA results. The top 50 genes significantly (A) positively and (B) negatively
correlated with HMGB3 in BRAC (LinkedOmics). The top 20 significantly enriched (C)GO-BP, (D)GO-CC, (E)GO-MF, and (F) KEGG pathway terms of HMGB3 correlated
genes based on GSEA. A bar represents a normalized enrichment score for a term, which in orange or blue represents negatively or positively enriched, respectively.
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found for the up-expression of HMGB2 in SKCM, as well as
HMGB3 in OV and LAML. By the way, the global alternation of
HMGBs was linked with worse outcomes of ACC and KIRC, but a
better outcome of UCEC. In addition, elevated HMGB expression
indicated clinicopathological advances in these cancers: HMGB1
in ACC, HNSC, and ESCA;HMGB2 in ACC, HNSC, KIRC, LGG,
and LIHC; andHMGB3 in ESCA and HNSC. Conversely, the up-
expression ofHMGB1 andHMGB2 suggested clinicopathological
alleviation of KIRC and SKCM, respectively.

The findings of some earlier studies were consistent with ours.
Nguyen et al. reported that HMGB1 was related to the clinical
and pathological characteristics of HNSC (Nguyen et al., 2016).
Kwon et al. stated that HMGB2 overexpression implied the
aggressiveness and worse prognosis of LIHC (Kwon et al.,
2010). In an experimental study, HMGB2 was observed to be
highly expressed in melanoma, whose silence impeded cell
proliferation and invasion, yet promoted cell cycle arrest and
apoptosis, leading to melanoma regression, indicating that
HMGB2 contributed to melanoma promotion (Mo et al.,
2019). As for HMGB3, several experiments revealed that it
was upregulated by diverse noncoding RNAs, which in turn
fomented malignant behaviors and even immune escape of
breast cancer cells (Gu et al., 2019; Chen et al., 2021; Yu et al.,
2021). A recent study indicated that hypermethylation of the
promoter of miR-216a upregulated HMGB3, which then
promoted ESCA (Sun et al., 2021). Paradoxically, HMGB3
high expression was shown to facilitate cisplatin resistance of
ovarian cancer cells; however, we found it a favorable prognostic
indicator of OV (Mukherjee et al., 2019).

It is well known that CD8 T cells, NK cells, and Th1 cells exert
anticancer immunity, while TAMs, MDSCs, Tregs, Th2 cells, and
tolerogenic mDCs foster pro-cancer immune escape in the TIME
(Zhang and Zhang, 2020; Saillard et al., 2021). ICIs can unleash
preexisting tumor-infiltrating lymphocytes (TILs) and restore
their lethality to cancer cells. Increased density of TILs,
particularly CD8 T cells, improved the therapeutic responses
and outcomes of patients across various malignancies (Nishino
et al., 2017). However, only patients with high ICP expression
may benefit from ICI therapy; a most adopted predictor is PD-L1
expression (Randrian et al., 2021). In this study, we investigated
correlations between HMGB expression and both immune
infiltration and ICP gene expression, to learn their
involvements in the TIME and predictive capacities for the
response to ICI therapy. Generally, HMGBs were positively or
negatively associated with both immune-stimulative TIICs/ICP
genes and immunosuppressive TIICs/ICP genes in pan-cancer,
suggesting that they might modulate the TIME in both
provocative and inhibitory ways. However, we inferred that
HMGBs were inclined to induce overall immunosuppression
in the TIME, since we found that they had uniformly positive
correlations with the infiltration of Th2 cells and MDSCs in pan-
cancer. Indeed, interactions between HMGB1 and its receptors
are critical for the differentiation and activation of MDSCs (Jin
et al., 2020) and Tregs (Wild et al., 2012) and the upregulation
PD-L1 in the TIME (Wang et al., 2019). Besides, it was evident
that HMGB1 could induce a dominance of Th2-type response in
inflammation (Ma et al., 2015).

HMGB expression showed strong correlations with TIICs and
ICP genes in THYM and UVM, signifying their outstanding
positions in the TIME of the two kinds of cancers. For HNSC,
HMGB up-expression suggested increased ICP gene expression
and rising density of immune-suppressive Th2 cells,
macrophages, and MDSCs, which might contribute to the
disease progress. HMGB2 up-expression indicated elevated
infiltration of Th2 cells and MDSCs and (or) ICP gene
expression in ACC, KIRP, LGG, LIHC, and MESO, with
medium to strong correlation strength, which might partly
explain the poor survival of patients with these cancers.
Oppositely, HMGB2 upregulation might benefit SKCM
patients through activating CD8 T cells and stimulatory ICPs.
In fact, an earlier study indicated that HMGB2 participated in the
cytoplasmic chromatin recognition and the subsequent response
to anticancer ICP blockade (Zhao et al., 2020). A high HMGB3
expression was a detrimental prognostic factor for BRCA, ESCA,
SARC, and SKCM, which might blame on its negative
relationships with various stimulatory ICPs and the infiltration
of CD8 T cells but positive interactions with Th2 cells and
MDSCs. In contrast, the beneficial role of HMGB3 in OV
might partially be explained by the scarce immunological
interactions. All the above manifested HMGBs might partake
in the development of these cancers through coordinating TIICs
and ICPs, thus potentially serving as immunotherapy targets.
Seeing from another angle, HMGBs could also be used as
predictive biomarkers for immunotherapeutic response in
some cancers. This is because, for a cancer type in which the
expression of ICPs and HMGBs was positively correlated, a high
HMGB expression might predict a better response to ICI therapy.

Microsatellites are short DNA stretches tandemly repeated
throughout the genome, and MSI occurs when the genome gains
or loses ≥ one repeat(s). TMB represents the total number of
mutations per DNA megabase (Duffy and Crown, 2019). High
MSI is an underlying process contributing to high TMB, and
higher MSI or TMB levels may generate potent neoantigens for
recognition by immune surveillance, thus increasing
immunotherapy responses (Duffy and Crown, 2019; Veigas
et al., 2021). We found that HMGBs were significantly
positively correlated with MSI and (or) TMB in diverse
cancers, suggesting that high HMGB expression might predict
clinical benefits from immunotherapy for patients with these
cancers. Within the HMGB family, HMGB3 expression was
associated with MSI and (or) TMB in most cancer types,
consistent with its highest alternation occurrence rate in pan-
cancer. Integrating the significance of prognosis, TIICs, ICP
genes, and MSI and (or) TMB, we induced that HMGBs
might be promising immunological targets for the following
cancers: HMGB1 for ACC and KIRC; HMGB2 for ACC and
LGG; and HMGB3 for BRAC, SARC, SKCM, and OV.

Genes positively correlated with HMGBs might be their
potential co-expressed genes, which were similarly
chromosome components regulating DNA replication,
transcription, damage repair, chromatin remodeling, and cell
cycle. These functions of HMGBs favor cancer cells to
maintain their nature of continuous proliferation and protect
them from therapy-caused DNA damages (Cámara-Quílez et al.,
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2020). What is more, genes positively correlated with HMGB3 in
BRAC were also enriched in pathways of amino acids and carbon
metabolism, indicating their participation in cancer metabolic
alternations. Beyond intracellular functions, HMGBs, especially
HMGB1, can be actively secreted by cancer cells per s, infiltrating
immune cells, and stromal cells, or passively released from
necrotic cells into extracellular milieu in response to various
stimuli. Upon HMGBs binding to cell-surface receptors or
immune receptors, e.g., receptor for advanced glycation end
product (RAGE) and toll-like receptors (TLRs), inflammatory
and immune responses are amplified via a positive feedback loop
(Kang et al., 2013; Musumeci et al., 2014). The durable chronic
inflammation then activates multiple downstream pathways, e.g.,
nuclear factor κB (NF-κB), mitogen-activated protein kinase
(MAPK), and phosphatidylinositol 3-kinase (PI3K), to
promote cancer through modulating apoptosis, autophagy,
invasion, metastasis, and angiogenesis (Bianchi et al., 2017;
Lee et al., 2019; Mukherjee and Vasquez, 2020). High levels of
HMGB1 can recruit MDSCs, macrophages, neutrophils,
immature DCs, and Tregs and increase their T cell inhibitory
properties to establish a highly immunosuppressive TIME
conducive to immune escape (Gorgulho et al., 2019).
Furthermore, HMGB1 interacts with immunomodulatory
molecules to hinder immune activities, e.g., T-cell
immunoglobulin and mucin domain-containing-3 (TIM-3)
(Kwak et al., 2020). Paradoxically, HMGB1 also stimulates
TILs and produce anticancer immunity as an immunogenic
signal during ICD, which is a kind of cell death caused by
chemo- or radiotherapies (Apetoh et al., 2007). To summarize,
HMGB up-expression is essential for cancer cells to maintain the
hallmarks of unlimited proliferation and permanent
inflammation, which made them forceful biomarkers of pan-
cancer. HMGBs are intertwined in extensive signaling pathways
of inflammation and immunity, thus affecting the immune
infiltration and ICP expression in the TIME of cancers.
Differences between diverse cancer types might attribute to
not only the inherent heterogeneity of cancers but also the
inflammation level, cytokines, chemokines, inner receptors,
targeted cells, and redox states of HMGBs in the tumor sites
(Kang et al., 2013). Despite that knowledge about HMGB2/3 is
very limited, they might have similar regulatory patterns with
HMGB1 based on their high identities. That said, there is still a
long way to go to clarify the specific mechanisms.

CONCLUSION

This study observed that HMGBs were significantly differentially
expressed in a wide range of cancers. HMGB expression was
associated with the prognosis and clinicopathologic
characteristics of various cancers, which might be partially
explained by their extensive interactions with TIICs and ICPs
in the TIME. Besides, HMGB expression was related to MSI and
TMB in multiple cancers, which further displayed their potentials
as cancer immunotherapy targets and biomarkers for
immunotherapeutic response prediction. Therefore, it is
necessary to conduct in-depth studies on the immune-related
functions of HMGBs, especially HMGB2/3. Besides, we
underscored the importance of HMGB1 in ACC and KIRC;
HMGB2 in ACC and LGG; and HMGB3 in BRAC, SARC,
SKCM, and OV. Although careful validations were warranted,
our study might deepen the understanding of the roles of HMGBs
in pan-cancer and provide novel insights for future
immunotherapy strategies.
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Colorectal cancer (CRC) is the third most common malignant cancer worldwide with the
second highest mortality. Gut microbiota can educate the tumor microenvironment (TME),
consequently influencing the efficacy of immune checkpoint inhibitors (ICIs).
Fusobacterium nucleatum is one of the most crucial bacteria contributing to colorectal
tumorigenesis, but the molecular mechanisms between F. nucleatum and TME or ICIs are
poorly investigated. In the present study, we firstly analyzed differentially expressed genes
and the biological functions between F. nucleatum-infected and uninfected CRC cell lines,
with the findings that CCL22 mRNA expression was markedly upregulated after F.
nucleatum infection. Moreover, the survival analysis showed that CCL22 was
significantly associated with the overall survival of CRC patients. Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes analysis suggested that CCL22 was related
to immune-related terms. Furthermore, the ESTIMATE analysis indicated that the high-
CCL22-expression subgroup had a higher immune/stromal/estimate score and lower
tumor purity. The CIBERSORT analysis indicated that the high-CCL22-expression group
had more immune-suppressive cells and less antitumor immune cells. In addition, immune
checkpoint genes and cytotoxic genes were positively correlated with CCL22 expression.
The immunophenoscore analysis suggested that CCL22 was associated with the IPS-
CTLA4 and PD1/PD-L1/PD-L2 score. Interestingly, CCL22 expression in the KRAS and
APC mutation groups was markedly reduced compared to that of the wild groups. In
summary, our study provided evidence that CCL22 might play a crucial role in F.
nucleatum-related colorectal tumorigenesis and correlate with TME and ICIs, which
deserves further study.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common malignant
cancer worldwide with the second highest mortality (Siegel et al.,
2020a; Siegel et al., 2020b). In order to seek effective treatment
options, it is urgent to find new therapeutic targets of CRC.

Fusobacterium nucleatum (F. nucleatum), a common member
of the oral microbiota known to have a symbiotic relationship
with its hosts, has been shown to play a critical role in the
development of CRC. Studies have reported that F. nucleatum
influenced cell metastasis, proliferation, and migration mediated
by abnormalities of lncRNA expression, activation of autophagy,
and alteration of metabolism (Yang et al., 2017; Yu et al., 2017;
Hong et al., 2020). Importantly, F. nucleatum can influence
colorectal tumorigenesis directly by regulating the tumor
microenvironment (TME) via increasing myeloid-derived
suppressor cells, inhibiting the receptors of natural killer (NK)
cells, and controlling T-cell-mediated immune responses (Kostic
et al., 2013; Mima et al., 2016; Dong et al., 2020; Serna et al., 2020),
which significantly affected the therapeutic response and clinical
outcome of patients (Quail and Joyce, 2013; Wood et al., 2014).
Hence, dissecting the underlying mechanism of cross-talk
between F. nucleatum and TME will help search for the
potential therapeutic targets.

TME, mainly constituting immune cells and stromal cells
(Guo et al., 2018; Stankovic et al., 2018), can shape the
development of tumor and impact the response to tumor
therapy (Böttcher et al., 2018). Regulating TME is one of the
most promising strategies for tumor therapy—for instance, more
CD8+ T cell infiltration in CRC was generally associated with a
favorable prognosis (Galon et al., 2006; Nazemalhosseini-
Mojarad et al., 2019). In addition, studies have shown that
TME also influenced the response to immune checkpoint
inhibitors (ICIs). Christopher et al. found that successful anti-
PD-1 immunotherapy required the communication of T cells and
dendritic cells, which involves the cytokines (Garris et al., 2018).
Another study revealed that the efficacy of anti-CTLA-4 therapy
relied on regulatory T cell (Treg) depletion during treatment
(Arce Vargas et al., 2018). Yu et al. also pointed out that re-
modulating the TME enhanced the effect of anti-PD-1
immunotherapy in CRC patients with microsatellite stability
(Yu et al., 2019). However, the specific molecular mechanisms
underlying the interactions between F. nucleatum and the TME
or ICIs are poorly understood.

Chemokines, a family of low-molecular-weight proteins, are
important parts of the communication of tumor cells and the
TME and involved in shaping the immune system in modulating
immune cell infiltration (Cabrero-de Las Heras and Martínez-
Balibrea, 2018). As a member of the chemokine family, CCL22
was reported to promote Treg communication with dendritic
cells to control immunity through their CCR4 receptor in lymph
nodes (Rapp et al., 2019). CCL22 also promoted Treg recruitment
into the TME and inhibited anticancer immunity in melanoma
(Anz et al., 2015; Martinenaite et al., 2016). In addition, some
studies showed that CCL22 mRNA expression was significantly
higher in tumor tissue compared with paired normal tissue in
colorectal adenocarcinomas (Wågsäter et al., 2008; Huang et al.,

2015; Heeran et al., 2021). Notably, CCL22 was expressed on
exposure to gut microbiota and correlated with Treg and Th1 in
CRC (Cremonesi et al., 2018). Wang et al. found that the
upregulation of CCL22 recruited Th17 cells to promote colon
carcinogenesis in miR-34a−/− mice infected by Citrobacter
rodentium (Wang et al., 2018), which linked the upregulation
of CCL22 to the gut microbiota. However, the role of CCL22 in F.
nucleatum-associated TME has not been well studied.

In this research, we firstly found that the expression of CCL22
was upregulated in CRC cell lines infected by F. nucleatum using
Gene Expression Omnibus (GEO) datasets. The upregulation of
CCL22 was accompanied by an increase in immune score and a
decrease in stromal score in patients of The Cancer Genome Atlas
(TCGA) colon adenocarcinoma (COAD). A further analysis of
the composition of immune cells in the TME showed that the
high-CCL22-expression subgroup had more immune-
suppressive cells (such as Treg and T follicular helper cells)
and less antitumor immune cells (such as activated NK cells).
In addition, CCL22 was positively correlated with immune
checkpoint genes (BTLA, CTLA4, TIGIT, HAVCR2, CD274,
PDCD1, and LAG3) and cytotoxic genes (TNFSF11, GZMA,
IFNG, PRF1, GZMK, and GZMM). The IPS-CTLA4 and PD1/
PD-L1/PD-L2 score was higher in the high-CCL22-expression
subgroup. We also found that the expression of CCL22 was
related to overall survival (OS), M stage, APC mutation, and
KRAS mutation in TCGA COAD patients. In summary, these
results indicated that CCL22 might play a pivotal role in F.
nucleatum-related colorectal tumorigenesis and correlate with
the TME and immune checkpoint therapy.

MATERIALS AND METHODS

Data Source
The RNA expression data of CRC cell lines infected by F.
nucleatum was downloaded from the GEO database, with
accession numbers GEO: GSE141805 (HCT-116) and
GSE90944 (HT-29), which respectively contains three pairs of
samples (F. nucleatum vs. control). In addition, the RNA
expression data and clinicopathological information of TCGA
COAD were obtained from the TCGA database using the
“TCGA-biolinks” package in R Studio (Colaprico et al., 2016).
Count value was transformed to transcripts per million (TPM)
for further analysis, and GSE39582, with a large sample size and
complete survival information, was downloaded as a validation
dataset. All data were normalized to ensure standardization. The
gene symbols that were detected in more than one probe were
kept for further analysis. In total, 20,407 immune-related genes
(IRGs) were downloaded from the Molecular Signature Database
(MSigDB) C7 immunologic signature gene sets (Subramanian
et al., 2005). The detailed information of datasets and online
websites used in our study are shown in Table 1 and Table 2.

Differential Gene Analysis
GSE141805 and GSE90944 were used to explore the differentially
expressed genes (DEGs) between F. nucleatum-infected and
uninfected CRC cell lines via the R package “edgeR” in R
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Studio (Robinson et al., 2010). The cutoff threshold is p-value
<.05 and |log2FC| ≥ 1. To select the IRGs related to F. nucleatum
infection, immune-related (IR) DEGs were obtained by
intersecting IRGs and DEGs, which were visualized using the
“venn” package.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) was performed to investigate
the underlying functions and pathways affected by F. nucleatum
with the “GSVA” package (Hänzelmann et al., 2013). The gene set
“c2.cp.kegg.v6.2.symbols.gmt” in MSigDB was selected as the
reference gene set. The heat map of enrichment terms was
visualized using the “pheatmap” package.

K–M Survival Analysis
To further analyze the prognostic power of the IR DEGs, patients
of TCGA-COAD and GSE39582 were divided into high-
expression and low-expression subgroups based on the median
expression value of each differentially expressed (DE) IRG, and a
survival analysis was conducted by the Kaplan–Meier (K–M)
method using the “survival” package.

Functional Enrichment Analysis
To explore the potential biological functions related to CCL22,
the top 100 genes expressing similarly to CCL22 (Sun et al., 2021),
downloaded from GEPIA 1.0 website (Tang et al., 2017), were
subjected to Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis using the “clusterProfiler”
package (Yu et al., 2012), which was also used for the visualization
of enrichment terms. In addition, Gene Set Enrichment Analysis
(GSEA) was applied to explore the changed biological functions
based on the high- and low-CCL22-expression subgroups in

TCGA COAD using the “clusterProfiler” package. The GSEA
results of GO and KEGG were respectively calculated based on
MSigDB c5.all.v7.0.symbols.gmt and
c2.cp.kegg.v7.0.symbols.gmt in R studio, which was visualized
using the “enrichplot” package.

Evaluation of Tumor Microenvironment
To dissect the TME associated with CCL22, TCGA-COAD TPM
was used to calculate the estimate/immune/stromal score and
tumor purity using the “estimate” package based on the high- and
low-CCL22-expression subgroups (Yoshihara et al., 2013). Then,
the “CIBERSORT” package was used to estimate the proportions
of 22 types of immune cells in the TME (Newman et al., 2015).

Immunophenoscore Analysis
Immunophenoscore (IPS), calculated based on the four main
types of genes that determine immunogenicity, has the ability to
predict the patients’ response to ICIs (Charoentong et al., 2017).
The IPS range is between 0 and 10. The higher the score, the
stronger the immunogenicity and the better the response to ICIs.
The IPSs of TCGA COAD patients were downloaded from The
Cancer Immunome Atlas (TCIA) (Charoentong et al., 2017).

Mutation Analysis
The mutation data of 399 COAD patients were obtained from the
TCGA website, which was analyzed using the “maftools” package
in R Studio (Mayakonda et al., 2018). The tumor mutation
burden (TMB) was calculated using the formula: (total
mutation / total covered bases) × 106. Then, TIMER 2.0
website was used to investigate the CCL22 mutation status in
COAD and the correlation between APC/KRAS mutation and
CCL22 expression (Li et al., 2020).

TABLE 1 | Detailed information of the datasets used in our study.

Data name Experiment type Sample Usage

GSE141805 High-throughput sequencing F. nucleatum-treated HCT-116 colorectal cancer (CRC) cell lines (3) Differential analysis
Normal control HCT-116 CRC cell lines (3) Gene set variation analysis (GSVA)

GSE90944 High-throughput sequencing F. nucleatum-treated HT-29 CRC cell lines (3) Differential analysis
Normal control HT-29 CRC cell lines (3) GSVA

GSE39582 Array Survival analysis (536) Survival analysis
TCGA COAD High-throughput sequencing Colon cancer samples (480) Correlation analysis

Immunophenoscore analysis
Survival analysis (453) Survival analysis
Mutation analysis (399) Mutation analysis

TABLE 2 | Detailed information of the online websites used in our study.

Website name Version Usage Accession

MSigDB v7.4 To download immune-related genes from C7 http://gsea-msigdb.org/gsea/
msigdb/To obtain the reference gene set for gene set variation analysis from C2. kegg

GEPIA v1.0 To obtain the top 100 genes with expression similar to CCL22 http://gepia.cancer-pku.cn/
TIMER v2.0 To analyze the relationships between CCL22 expression and KRAS/APC mutation http://timer.comp-genomics.org/
TCIA v1.0 To obtain the immunophenoscore of The Cancer Genome Atlas colon adenocarcinoma that predicts the

response to immune checkpoint inhibitors
https://tcia.at/
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Statistical Analysis
All statistical analyses were performed in R 4.0.3 and its
appropriate packages. Data were analyzed with standard
statistical tests as appropriate. * represented p <.05, **
represented p <.01, *** represented p <.001, and ns
represented no statistical difference.

RESULTS

F. nucleatum Affects Gene Expression and
Biological Functions in Colorectal Cancer
Cells
The flow diagram of our study is shown in Figure 1. Based on
p-value <.05 and |log2FC| ≥ 1.0, we respectively obtained 752
DEGs (373 upregulated and 379 downregulated) in GSE90944
and 589 DEGs (260 up upregulated and 329 downregulated) in
GSE141805, which were displayed as volcano plots (Figures
2A,B). The top 50 DEGs were visualized using heat maps
(Figures 2C,D). The detailed information of the DEGs is
shown in Supplementary Table S1. GSVA was used to further
investigate the biological function affected by F. nucleatum
infection. The biological functions were visualized according to
p-value <.05 and |log2FC| ≥ 1.0 (Figures 2E,F; Supplementary

Table S2). Surprisingly, there were some biological functions
that we were interested in. As shown in Figure 2E, we
found that “GO_SUCCINATE_METABOLIC_PROCESS” was
downregulated and “GO_REGULATION_OF_ACTIVATION_
INDUCED_CELL_DEATH_OF_T_CELLS”, “GO_REGULATION_
OF_MAST_CELL_CYTOKINE_PRODUCTION”, and
“GO_REGULATION_OF_NK_T_CELL_PROLIFERATION”
were upregulated in GSE90944. In GSE141805 (Figure 2F),
“TIAN_TNF_SIGNALING_VIA_NFKB” and “GO_CCR6_
CHEMOKINE_RECEPTOR_BINDING” were upregulated,
and “GO_COENZYME_A_METABOLIC_PROCESS” and “GO_
CELLULAR_RESPONSE_TO_CISPLATIN” were downregulated.
The enrichment biological functions highlighted the crucial role
of tumor immunity in F. nucleatum-related colorectal cancer.

CCL22 Plays a Crucial Role in Colorectal
Cancer Cells Infected by F. nucleatum
To explore the relationship between F. nucleatum and immunity,
we intersected DEGs of the two datasets with IRGs, and a total of
six genes remained, including BIRC3, CCL22, CPT1B, ELMO1,
PLA2G4C, and SLC25A2 (Figure 3A). Among them, CCL22,
BIRC3A, and CPT1B were significantly upregulated under F.
nucleatum treatment in two datasets. To further determine the
meaningful genes, we performed K–M analysis according to the

FIGURE 1 | Flow diagram of the present study.
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high- and low-expression subgroups of each DE IRG in TCGA
(Figures 3B–G) and GSE90944 (Supplementary Figure S1).
Interestingly, CCL22 (p = .011) and CTP1B (p = .021) were
selected as meaningful genes in patients of TCGA COAD
(Figures 3B,C), but only CCL22 was validated in GSE39582
(Figure 3H), with p = .014. CCL22 was differentially expressed in
the subgroup analyses according to tumor M stage in TCGA
COAD (Figure 3I). By reviewing the literatures, we found that
the upregulation of CCL22 played an important role in bacterial

and viral infection-associated tumors (Yang et al., 2012; Wang
et al., 2018). Hence, we identified CCL22 for further study.

CCL22 Associated With Immune-Related
Biological Functions
To dissect the biological functions of CCL22, we identified the top
100 associated genes of CCL22 in COAD using the GEPIA
database, followed by KEGG pathway enrichment analysis and

FIGURE 2 | Differentially expressed genes (DEGs) and biological functions affected by F. nucleatum. (A, B) Volcano plots of DEGs influenced by F. nucleatum
infection. Red dots represent upregulated genes, while blue dots represent downregulated genes. DEGs were selected based on p-value <.05 and |log2FC| ≥ 1. Heat
maps of the top 50 DEGs (C, D) and biological functions (E, F) between F. nucleatum-infected and uninfected colorectal cancer cells.
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GO functional enrichment analysis (Supplementary Table S3).
As shown in Figure 4A, the significantly enriched GO (ALL)
terms included “T cell activation”, “regulation of leukocyte
cell−cell adhesion”, and “lymphocyte proliferation”, which
indicated the role of CCL22 in regulating the immune function.
The detailed information of GO (BP, CC, andMF) terms are shown
in Supplementary Figure S2. The enriched KEGGpathways were as
follows: “cytokine–cytokine receptor interaction”, “chemokine
signaling pathway”, “intestinal immune network for IgA
production”, and “inflammatory bowel disease”, indicating the
potential role of CCL22 in gastrointestinal diseases (Figure 4B).
Interestingly, we also found that the “NF-kappa B signaling
pathway” was related to CCL22, which suggested a potential
relationship among NF-kappa B signaling pathway, F. nucleatum,
and CCL22. In addition, GSEA revealed that GO functions, such
as cell–cell signaling by WNT, B cell differentiation, and chemokine
production, were markedly enriched in the high-CCL22-expression

subgroup (Figure 4C). As for the KEGG pathways, GSEA showed
that B cell receptor, chemokine, JAK STAT, and theMAPK signaling
pathway were enriched in the high-CCL22-expression subgroup
(Figure 4D; Supplementary Table S4).

CCL22 Modulates the Tumor
Microenvironment in TCGA COAD
Studies have shown that chemokines recruited immune cells into
tumor beds and influenced the TME (Marques et al., 2019). To
explore whether CCL22 regulated the TME of COAD, ESTIMATE
analysis was used to calculate the immune/stromal/estimate score and
tumor purity of each patient. We excitedly found that the immune/
stromal/estimate scores (Figures 5A–C) were significantly higher,
while tumor purity (Figure 5D) was significantly lower in the high-
CCL22-expression subgroup compared to the low-CCL22-
expression subgroup, which suggested that CCL22 was closely

FIGURE 3 | Themeaningful immune-related (IR) differentially expressed genes (DEGs) influenced by F. nucleatum. (A) Venn diagram showing the common genes in
GSE90944, GSE141805, and immune-related genes. (B–G) Kaplan–Meier survival plots of the IR DEGs in The Cancer Genome Atlas (TCGA) colon adenocarcinoma
(COAD). (H) Kaplan–Meier survival plot of CCL22 in GSE39582. (I) Box plot of CCL22 expression between M0 and M1 stages in TCGA COAD.
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related to TME. Then, TPM value was applied to the CIBERSORT
algorithm to further determine the composition of immune cells in
TCGACOAD tissues with a different CCL22 expression status.We
found that CCL22 was positively associated with Treg (p < .001),
naive B cells (p < .05), activated dendritic cells (p < .01), neutrophils
(p < .01), and T follicular helper cell (p < .05), while it was
negatively associated with activated NK cells (p < .05) and
monocytes (p < .001) in COAD, as shown in Figure 5E.

CCL22 Related to Immune Checkpoint
Therapy
Studies have shown that the TME is closely related to the efficacy of
immune checkpoint therapy (Tumeh et al., 2014; Hegde et al., 2016).
To explore whether CCL22 was also associated with immune
checkpoint therapy in COAD, the correlations between CCL22
and immune checkpoint molecules were analyzed (Kim et al.,
2017; Nishino et al., 2017; Zhai et al., 2018). As shown in
Figure 6A, we found that CCL22 was positively related to BTLA,
CTLA4, TIGIT, HAVCR2, CD274, PDCD1, and LAG3 (correlation
value = 0.38, 0.54, 0.51, 0.4, 0.24, 0.29, and 0.2; all p-value <.05). As
shown in Figure 6B, CCL22 expressionwas positively correlatedwith
cytotoxic genes, such as TNFSF11, GZMA, IFNG, PRF1, GZMK, and
GZMM (correlation value = 0.31, 0.21, 0.18, 0.23, 0.32, and 0.35; all
p-value <.05). It has been reported that IPS is a predictor of response
to ICIs based on the TCGA data. To explore the relationship between
CCL22 and IPS, the IPS of TCGA COAD was downloaded from the
TCIA website. Although there was no statistical difference in IPS-
PD1/PD-L1/PD-L2 score and IPS-CTLA4 score between the high-

and low-CCL22-expression subgroups (Figures 6D,E), the high-
CCL22-expression subgroup had a statistically higher IPS-
CTLA4and PD1/PD-L1/PD-L2 score (Figure 6C).

CCL22 Associated With APC and KRAS
Mutation in TCGA COAD
Firstly, we explored the mutation status of CCL22 using the
Gene_Mutation module of TIMER 2.0 website. As shown in
Figure 7B, only 2 of the 406 samples had CCL22 mutation in
COAD, much lower than APCmutation (286 of the 406 samples)
and KRASmutation (174 of the 406 samples), which are shown in
Supplementary Figure S3. The top four mutation genes in
COAD were APC, TP53, TTN, and KRAS (Figure 7A). The
mutation of the above-mentioned genes was closely related to
colorectal tumorigenesis. Although there was no difference in
TMB between the high- and low-CCL22-expression subgroups
(Figure 7C), we were surprised to find that the expression of
CCL22 was significantly decreased in the APC and KRAS
mutation groups in the Gene_Mutation module of TIMER2.0
website (Figure 7D). This strongly supported the idea that CCL22
might play an important role in colorectal tumorigenesis.

DISCUSSION

Mounting evidence supports that gut microbiota has a profound
influence on the effectiveness of tumor immunotherapy (Vétizou

FIGURE 4 | Biological function analysis of CCL22. Representative Gene Ontology (GO) functions (A) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways (B) of the top 100 genes with expression similar to CCL22. Representative Gene Set Enrichment Analysis results of GO functions (C) and KEGG pathways (D)
based on MSigDB.
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et al., 2015; Gopalakrishnan et al., 2018)—for example,
Enterococcus hirae and Barnesiella intestinihominis enhance
cyclophosphamide-induced therapeutic immunomodulatory
effects (Daillère et al., 2016). Besides this, Akkermansia
muciniphila can specifically facilitate the effect of PD-1-based
immunotherapy by recruiting T lymphocytes into the tumor beds
(Routy et al., 2018), thus suggesting the enormous potential of gut
microbiota in regulating the TME and influencing antitumor
immune. As one of the most crucial bacteria related to CRC, F.
nucleatum can influence colorectal tumorigenesis directly by
increasing myeloid-derived suppressor cells, inhibiting
receptors of NK cells, and controlling T-cell-mediated immune
responses (Kostic et al., 2013; Mima et al., 2016; Dong et al., 2020;
Serna et al., 2020). The molecular mechanisms underlying the
interactions between F. nucleatum and the TME or
immunotherapy are deemed to be further investigated.

In the present research, we firstly analyzed the gene expression
and biological functions between F. nucleatum-infected and
uninfected CRC cell lines. In total, 589 and 752 DEGs were
respectively obtained in the GSE141805 and GSE90944 datasets.
We found that F. nucleatum upregulated
“TIAN_TNF_SIGNALING_VIA_NFKB”. Studies showed that

the activation of NF-kappaB induced by F. nucleatum
participated in metastasis, proliferation, and chemoresistance to
5-fluorouracil (5-Fu) in CRC (Yang et al., 2017; Zhang et al., 2019;
Chen et al., 2020). The downregulation of
“GO_CELLULAR_RESPONSE_TO_CISPLATIN” suggested that
F. nucleatum may contribute to chemoresistance to oxaliplatin in
CRC, and Hong et al. pointed out that F. nucleatum promoted
carcinogenesis via increasing CRC cell glucose metabolism (Hong
et al., 2020). According to our analysis,
“GO_COENZYME_A_METABOLIC_PROCESS” and
“GO_SUCCINATE_METABOLIC_PROCESS” may also be
potential mechanisms of colorectal carcinogenesis induced by F.
nucleatum. What is more, “GO_REGULATION_OF_
ACTIVATION_INDUCED_CELL_DEATH_OF_T_CELLS”,
“GO_REGULATION_OF_MAST_CELL_CYTOKINE_P
RODUCTION”, and “GO_REGULATION_OF_NK_T_CELL_
PROLIFERATION” were upregulated. The enrichment biological
functions also highlighted the crucial role of tumor immunity in F.
nucleatum-related CRC, which has been validated in many studies
(Kostic et al., 2013; Mima et al., 2015; Hamada et al., 2018).

Modulating tumor immunity was considered to be the most
promising treatment for tumor, so we further dissected the effect

FIGURE 5 | Tumor microenvironment changes associated with CCL22 in The Cancer Genome Atlas colon adenocarcinoma. (A) The immune score, (B) stromal
score, (C) estimated score, and (D) tumor purity and (E) the proportion of 22 types of infiltrating immune cells in high- and low-CCL22-expression subgroups.
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of F. nucleatum on tumor immunity. By intersecting with IRGs,
we finally obtained six DE IRGs, including BIRC3, CCL22,
CPT1B, ELMO1, PLA2G4C, and SLC25A2. Surprisingly,
BIRC3 was reported to upregulate after F. nucleatum infection
and promote chemoresistance to 5-Fu in CRC (Zhang et al.,
2019), which suggested the reliability of our analysis.
Furthermore, the survival analysis showed that CCL22 was
significantly related to the OS and M stages of CRC patients
in TCGA COAD. The prognostic power of CCL22 was also
validated in GSE39582. Hence, we identified CCL22 for
further study, and GO and KEGG analysis showed that
CCL22 were mainly related to immune-related functions.
Interestingly, we found that “NF-kappa B signaling pathway”
was related to CCL22, which was also induced by F. nucleatum
infection. This evidence suggested the potential relationships
among NF-kappa B signaling pathway, F. nucleatum, and CCL22.

It has been reported that CCL22, a member of the chemokine
family, can recruit immune cells to rewire the TME via binding to
CCR4 (Rapp et al., 2019). Our study found that the high-CCL22-
expression subgroup had a higher immune/stromal/estimate
score and lower tumor purity. The high-CCL22-expression

subgroup with a markedly higher immune score suggested
more immune cell infiltration. Further analysis of the
proportion of various immune cells indicated that the high-
CCL22-expression subgroup had more immune-suppressive
cells (such as Tregs and T follicular helper cells) and less
antitumor immune cells (such as activated NK cells). It
seemed that CCL22 induced the immune-suppressive TME to
promote colorectal tumorigenesis, and it might be a potential
target for F. nucleatum to affect the TME.

Immune checkpoint inhibitors show great potential in
multiple cancers, such as melanoma, bladder cancer, and
prostate cancer (Topalian et al., 2012). However, in CRC, only
MSI-H patients (Ganesh et al., 2019), a small proportion of CRC,
benefit from ICIs. Our study discovered that the CCL22 mRNA
expression was positively correlated with immune checkpoint
molecules and cytotoxic genes (Garzón-Tituaña et al., 2020),
which were reported to influence the functions of
immunocytes (Garzón-Tituaña et al., 2020; Cao et al., 2021).
These clues indicated that high-CCL22-expression patients may
have a better response to ICIs. It has been reported that IPS was a
predictor of response to ICIs based on the TCGA data. A higher

FIGURE 6 | Relationship between CCL22 expression and response to immune checkpoint inhibitors. (A) The correlation between CCL22 expression and immune
checkpoint genes and (B) cytotoxic genes. Red is positive, and blue is negative. The symbol “x” represented a p-value >.05, and the circles without “x” meant p-value
<.05. The numbers in the circle represented the correlation value. Box plots showing the association between (C) IPS-CTLA4 and PD1/PD-L1/PD-L2, (D) IPS-CTLA4,
and (E) IPS-PD1/PD-L1/PD-L2 scores and CCL22 expression in patients of The Cancer Genome Atlas colon adenocarcinoma.
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IPS score predicted better response to ICIs (Yan et al., 2021). In
the present study, we found that the high-CCL22-expression
subgroup had statistically higher IPS-CTLA4 and PD1/PD-L1/
PD-L2 scores, which also suggested that high-CCL22-expression
patients had a better response to the CTLA4 and PD1/PD-L1/PD-
L2 combination therapy. Surprisingly, Rapp et al. also pointed out
that the CCL22–CCR4 axis may serve as an immune checkpoint
and was important for inhibiting T cell immunity (Rapp et al.,
2019). Klarquist et al. found that the vaccination of CCL22 led to
redirecting Treg away from tumors, and the repetitive vaccination
with CCL22 sufficiently limited Treg accumulation and tumor
growth in animals, which carried the potential of local
vaccination of CCL22 to enhance the therapeutic effect of ICIs
(Klarquist et al., 2016). All of these highlighted the potential role
of CCL22 in ICIs.

TMB, defined as the total number of non-synonymous
mutations in the coding regions of genes, has been reported as
an effective predictor of response to ICIs (Sen et al., 2019). In
patients of TCGA COAD, we did not find a statistically different
TMB between the high- and low-CCL22-expression subgroups.
However, the expression of CCL22 was higher in the KRAS and
APC mutation groups compared to the KRAS and APC wild

groups. APC and KRAS are the most predominant mutation
genes closely associated with colorectal tumorigenesis (Fearon,
2011). In addition, APC mutation was used to construct a
spontaneous tumorigenesis mice model of CRC in biological
experiments (Moser et al., 1995; Yamada and Mori, 2007),
which implied the potential role of CCL22 in colorectal
tumorigenesis.

There were still some limitations in our study. On the one
hand, experiments in vitro and in vivo were lacking, and further
QPCR and Western blot were needed to verify the expression of
CCL22 as well as of other differentially expressed genes (BIRC3,
CPT1B, ELMO1, PLA2G4C, and SLC25A2) in CRC cell lines
infected by F. nucleatum. The effective impact of F. nucleatum-
induced expression of CCL22 on colorectal tumorigenesis also
needed to be validated in the future. On the other hand, the ability
of CCL22 and other differentially expressed genes to predict
survival needed to be further validated in multicenter clinical
samples. Nevertheless, we found that many literatures have
suggested the crucial role of CCL22 in F. nucleatum-related
colorectal tumorigenesis. First, it has been reported that CCL22
expression is elevated in colorectal cancer (Wågsäter et al., 2008;
Huang et al., 2015). Gut microbiota infection can induce the

FIGURE 7 | Mutation landscape related to CCL22 in The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD). (A) Oncoplot showing the top 10
mutational genes in TCGA COAD). (B) Mutation status of CCL22 in different cancer types. (C) Relationship between CCL22 expression and tumor mutation burden in
TCGA COAD. (D) Violin plots showing the CCL22 expression in mutant and wild groups of APC and KRAS.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 81190010

Wang et al. CCL22 TME and ICI Therapy

30

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


expression of some chemokines, including CCL22, in colorectal
cancer (Cremonesi et al., 2018). What is more, one study showed
that the loss of miR-34a can increase CCL22 expression and
promote the development of colorectal cancer after an infection
by the bacterium Citrobacter, while the NF-KB signaling pathway
also plays an important role in the development of colorectal
cancer (Wang et al., 2018). Our analysis showed that F. nucleatum
infection could increase CCL22 expression and influence the NF-
KB signaling pathway in two kinds of colorectal cancer cells.
Moreover, CCL22 was also related to NF-KB signaling pathway in
TCGA-COAD. In summary, it is reasonable to conclude that F.
nucleatum can also increase CCL22 expression, thereby
promoting colorectal tumorigenesis, and the NF-KB signaling
pathway is a part of its mechanism.

In summary, our study found that CCL22 mRNA expression was
upregulated in CRC cell lines infected by F. nucleatum. The
upregulation of CCL22 was associated with the TME of COAD,
in which the high-CCL22-expression subgroup had more immune-
suppressive cells and less antitumor immune cells. The high-CCL22-
expression subgroup possessed higher IPS-CTLA4and PD1/PD-L1/
PD-L2 scores. This study provides several supporting lines of
evidence that highlight the critical role of CCL22 in F. nucleatum-
related colorectal tumorigenesis and its close relationship with the
TME and ICIs, which deserved further cell and animal experiments.
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Background: Programmed death ligand-1 (PD-L1) is a biomarker for assessing the
immune microenvironment, prognosis, and response to immune checkpoint inhibitors in
the clinical treatment of lung adenocarcinoma (LUAD), but it does not work for all patients.
This study aims to discover alternative biomarkers.

Methods: Public data were obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA)
and gene ontology (GO) were used to determine the gene modules relevant to tumor
immunity. Protein–protein interaction (PPI) network and GO semantic similarity analyses
were applied to identify the module hub genes with functional similarities to PD-L1, and we
assessed their correlations with immune infiltration, patient prognosis, and immunotherapy
response. Immunohistochemistry (IHC) and hematoxylin and eosin (H&E) staining were
used to validate the outcome at the protein level.

Results: We identified an immune response–related module, and two hub genes
(PSTPIP1 and PILRA) were selected as potential biomarkers with functional similarities
to PD-L1. High expression levels of PSTPIP1 and PILRA were associated with longer
overall survival and rich immune infiltration in LUAD patients, and both were significantly
high in patients who responded to anti–PD-L1 treatment. Compared to PD-L1–negative
LUAD tissues, the protein levels of PSTPIP1 and PILRA were relatively increased in the PD-
L1–positive tissues, and the expression of PSTPIP1 and PILRA positively correlated with
the tumor-infiltrating lymphocytes.

Conclusion: We identified PSTPIP1 and PILRA as prognostic biomarkers relevant to
immune infiltration in LUAD, and both are associated with the response to anti–PD-L1
treatment.
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INTRODUCTION

Lung cancer remains the leading cause of cancer death (Travis,
2011). Lung adenocarcinoma (LUAD) is a predominant subtype
of lung cancer, and the majority of LUAD patients are diagnosed
at an advanced stage, losing the opportunity for surgery (Siegel
et al., 2017). Although chemotherapy and targeted therapy can
bring survival benefits to advanced patients, drug resistance is
inevitable (Molina et al., 2008). With the rapid development of
immunotherapy, programmed cell death 1 (PD1) and its ligand
(PD-L1) checkpoint inhibitors have become alternative options
for advanced patients, enhancing the anticancer immune
response by relaunching T-cell–mediated tumor cell death
programs through blocking the interaction between PD1 and
PD-L1 (Reck, 2018; Dhillon and Syed, 2019). Both the protein
and mRNA of PD-L1 can be used to evaluate the tumor
immunophenotype, and a high expression of PD-L1 generally
predicts benefits from anti–PD1/PD-L1 therapy, resulting in a
better prognosis (Conroy et al., 2019).

Although PD-L1 is a well-validated biomarker for
immunotherapy response (Shukuya and Carbone, 2016), its
positivity does not indicate a certain response to immune
checkpoint inhibitors (ICIs), with the objective response rates
(ORRs) fluctuating widely (20%–40%) in PD-L1–positive
patients. Meanwhile, a subset of PD-L1–negative patients can
acquire a good response (Topalian et al., 2012; Brahmer et al.,
2015; Garon et al., 2015; Rizvi et al., 2015; Brahmer et al., 2017;
Zhang et al., 2020), suggesting the unstable predictive efficiency of
PD-L1. Heterogeneity originating from distinct sub-clonal
populations of cells could be an important reason for this,
with LUAD showing high heterogeneity in immune molecules.
PD-L1 expression is diverse among different tumoral regions,
such as primary tumors and metastases, so it is likely that
immunohistochemistry fails to assess the true PD-L1 status
(Ilie et al., 2016; McLaughlin et al., 2016), thus leading to
suboptimal decision-making in clinical treatment. Therefore,
calculating the immunophenotype from PD-L1 is oversimple,
and several studies have confirmed that the signatures related to
intra-tumor immune infiltration can effectively predict the
response to immunotherapy (Teng et al., 2015; Ock et al.,
2016). The aim of this study was to discover the additional
immune response–related biomarkers.

Similar to LUAD, skin cutaneous melanoma (SKCM) has a
high ORR in first-line immunotherapy (Brahmer et al., 2015;
Garon et al., 2015; Larkin et al., 2015), and a systematic review
revealed that both PD-L1–negative and PD-L1–positive patients
can benefit from the ICIs (Teng et al., 2018), implying the strong
immunogenicity of SKCM. Many publications have indicated
shared immune characteristics between LUAD and SKCM, which
could effectively influence the immune response. A certain
proportion of SKCM and LUAD patients possess a similar
immune microenvironment, characterized by a high number
of mutations or neoantigens, which benefits the patients in
anti–PD-L1/PD1 treatment (Chen et al., 2017). In addition,
similar intra-tumor heterogeneity and a high leukocyte
fraction between SKCM and LUAD have been confirmed.
Heterogeneity is associated with the level of tumor-infiltrating

immune cells, while tumor types with high leukocyte fractions are
generally the most responsive to ICIs (Morris et al., 2016;
Thorsson et al., 2018). These transcriptome-based studies
provide evidence for the common immunophenotypic basis
between LUAD and SKCM, which indicates that they probably
have a wide universality in immune-related biomarkers and
clinical evaluation. Given that the preserved pattern of the
gene module can convey a similar phenotype (Gustafsson
et al., 2014), we presume that there could be core modules
related to tumor immunity in SKCM and LUAD, and module
hub genes, with functional similarities to PD-L1, might be used as
biomarkers to evaluate the immunophenotype. Therefore, the
introduction of SKCM to identify the common gene module
would enable us to reduce thousands of candidate genes to a small
number in specific modules, and we can also verify the prognostic
or diagnostic value of the potential genes in both SKCM and
LUAD based on their common immunophenotypic basis.

The pipeline is illustrated in Figure 1. With RNA expression
profiles from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO), the present study identified that
proline–serine–threonine phosphatase–interacting protein 1
(PSTPIP1) and paired Ig-like type 2 receptor alpha (PILRA)
have functional similarities to PD-L1, and both are prognostic
biomarkers relevant to immune infiltration and the anti–PD-L1
treatment response.

MATERIALS AND METHODS

Data and Clinical Sample Acquisition
The RNA-sequencing (RNA-seq) data [by expectation
maximization (Li and Dewey, 2011), RSEM] were obtained
from the TCGA (http://cancergenome.nih.gov) by utilizing
cBioPortal (Cerami et al., 2012), namely, SKCM (104 samples
of primary solid tumors and 368 samples of metastatic tumors)
and LUAD (515 samples of primary solid tumors). Two
validation data sets were downloaded from GEO (https://www.
ncbi.nlm.nih.gov/geo/), meeting the following criteria: 1) data
sets with whole transcriptome data, including RNAmicroarray or
sequence data; 2) data sets with human specimens or tissue
samples from animal models; 3) data sets with complete
information about the technology, platform, and data
processing; 4) data sets with available information about the
response to anti–PD-L1/PD1 treatment; and 5) the data sets
published within 10 years. We used GSE111414 (the RNA-seq
data of CD8+ peripheral blood lymphocytes (PBLs) from LUAD
patients treated with nivolumab) and GSE172320 (the RNA
microarray data of samples from SKCM mice treated with
anti–PD-L1) to determine the implications of PSTPIP1 and
PILRA in the anti–PD-L1 treatment response. In addition,
GSE68571 (the RNA microarray data of 436 LUAD samples
with available differentiation information) was downloaded to
explore the association between PSTPIP1/PILRA and LUAD
differentiation. Data normalization was performed using the R
package “limma.”

The LUAD pathological section materials of 18 patients, that
is, 9 PD-L1–positive samples and 9 PD-L1–negative samples,
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were acquired from the Department of Pathology, Xiangya
Hospital of Central South University, and PD-L1 expression
was confirmed by pathologists using the PD-L1
immunohistochemistry (IHC) 22C3 pharmDx assay (Hirsch
et al., 2017). The clinicopathological characteristics of the
patients are listed in Supplementary Table S1. The present
study was approved by the ethics committee of Xiangya
Hospital of Central South University.

Weighted Gene Co-Expression Network
Analysis
WGCNA was performed using the R package “WGCNA”
(Langfelder and Horvath, 2008). Modules produced by
WGCNA, named by different colors, refer to genes that share
a similar connectivity pattern. Module membership (MM) is the

relevance of the expression profile to eachmodule eigengene. Hub
genes, the central point of the gene module architecture, were
defined as those genes with MM > 0.8. The R package “NetRep”
was used to evaluate the replication and preservation of the target
module from seven module preservation statistics (Ritchie et al.,
2016). According to the tutorial, a gene module was considered
strongly preserved if the p value was <0.01 for all preservation
statistics, weakly preserved if the p value was <0.01 for one or
more, but not all, test statistics, and no evidence if no test statistics
had a p value < 0.01.

Gene Ontology and Pathway Enrichment
Analysis
GlueGO (Bindea et al., 2009) and the R package “Clusterprofiler”
(Yu et al., 2012) were applied to the Gene Ontology (GO) and

FIGURE 1 | The workflow of this study. First, the shared gene module related to immune regulation of LUAD and SKCMwas identified. Next, the PPI network of the
gene module was constructed by utilizing the STRING database, and the PD-L1 association network was applied as the PD-L1 interactome, which was used to evaluate
the potential biomarkers from the hub genes with functional similarities to PD-L1. Finally, biomarker correlations with patient prognosis, immune biomarkers, immune
infiltration, and anti–PD-L1 treatment response were investigated using various approaches.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and outcome visualization. Based on similarly associated
genes, GO parent–child terms construct a hierarchy from the
global to the specific level. Significant GO terms are summarized
into representative terms by the fusion of the GO
parent–child terms.

Protein–Protein Interaction Network
Construction
The PPI information of the core module was obtained from the
STRING database (https://string-db.org/), which offers the most
confident interactions among module genes. We constructed a
PPI network by using the Cytoscape 3.4.0 software (Shannon
et al., 2003). Subsequently, the plug-in Molecular Complex
Detection (Bader and Hogue, 2003) and GO analysis were
applied to determine the central submodule related to tumor
immunity, which helps to identify the core of the immune-related
network in the target module (with the parameters: degree cutoff
= 2, K-core = 2, and node score cutoff = 0.2).

Gene Ontology Semantic Similarity Analysis
The assessment of GO semantic similarity between genes can
predict their relevant functions (Tedder et al., 2010). Based on the
PPI information, the protein-coding genes having a connection
with PD-L1 were incorporated into the PD-L1 interactome. Using
the function “mgeneSim” in the R package “GOSemSim” (Yu
et al., 2010), the semantic similarities between each hub gene and
the PD-L1 interactome were calculated by taking the molecular
function (MF) and cellular component (CC) of the GO
topological structure into account. The Wang method was
used in this process, which can accurately determine the
semantic similarities of genes via a graph-based strategy
(Wang et al., 2007). We used the geometric mean of semantic
similarities in MF and CC to score the functional correlations
between each hub gene and the PD-L1 interaction partners. A
hub gene with a high score was generally considered to have a
high probability of functional similarity to PD-L1, meaning it
could be implicated in tumor immune regulation and relevant to
the PD-L1 association network. We ranked hub genes by their
average functional similarity score, providing an initial evaluation
for their functional similarities to PD-L1.

Survival Analysis
Survival analysis was performed using the R packages
“survminer” and “survival.” Based on the mRNA expression of
biomarkers, the samples were divided into two groups to plot
Kaplan–Meier survival curves. A high expression was defined as
samples with biomarker expression values above the median
value, whereas a low expression was defined as samples with
biomarker expression values below the median value.

Immune Infiltration Characterization
The R package “ESTIMATE” was used to quantify the total levels of
tumor-infiltrating immune cells. Based on the unique properties of
the transcriptional profiles, “ESTIMATE” performs a single sample
gene set enrichment algorithm, which calculates the strength of the

concerted behavior of the immune-related gene sets in each tumor
sample (Yoshihara et al., 2013). We further utilized the R package
“GSVA” to calculate the enrichment score of each infiltrating
lymphocyte. By implementing a nonparametric unsupervised
method to score the gene set enrichment in the gene microarray
and RNA-seq data, “GSVA” transforms the data from a gene to a
gene set by the sample matrix, allowing for the calculation of an
enrichment score for each sample without information about
explicitly modeling phenotypes (Hänzelmann et al., 2013).
According to the median expression value of biomarkers, samples
were separated into high expression and low expression groups, and
we explored the status of tumor-infiltrating lymphocytes (TILs) in
each tissue sample. A list of immune metagenes whose expressions
have been shown to accurately predict the infiltration of immune cell
populations was utilized as an input object for the “GSVA”
(Angelova et al., 2015).

Assay Methods
IHC was used to determine the protein levels of PSTPIP1 and
PILRA. LUAD tissue samples were sectioned into 4-mm-thick
slices, deparaffinized in xylene and rehydrated in a series of
graded alcohols. Antigen retrieval was performed by
immersing the slides in sodium citrate. Endogenous peroxidase
was blocked by a 10-min incubation with 3% H2O2. Next, the
slices were incubated with the primary antibodies anti-PSTPIP1
(11951-1-AP, rabbit, polyclonal, dilution 1:50, Proteintech,
Wuhan, China), anti-PILRA (orb38981, rabbit, polyclonal,
dilution 1:200, Biorbyt, Cambridge, United Kingdom), and
PBS (blank control) overnight at 4°C, washed three times with
PBS, and incubated with a horseradish peroxidase
(HRP)–conjugated secondary antibody (ab205718, Abcam,
Cambridge, United Kingdom) for 30 min. Finally,
immunostaining was performed with a diaminobenzidine
substrate kit (ab64238, Abcam, Cambridge, United Kingdom).
According to the outcome of IHC, we equally separated LUAD
samples into high- and low-expression groups, and TILs were
calculated in hematoxylin and eosin (H&E)–stained sections
according to the standardized evaluation of TILs in breast
cancer (Salgado et al., 2015). The IHC and H&E staining
results were evaluated using the ImageJ software. Three to five
typical fields of view per image were measured, and we obtained
the mean value. The average optical density (AOD) or stromal
TILs were calculated by counting the average of three pathological
sections from each sample. The median values of the AOD
expressed in each sample were used as the cutoff value, and
the samples were divided into the high- or low-expression group.

Statistical Analysis
R statistical software (v.3.6.1) was used for statistical analyses and
graphical visualization. The analysis was performed on log2-
transformed values. Spearman’s correlation test was applied to
assess the relationships among biomarkers. The Wilcoxon test was
used to compare the distributions of two sets of any continuous
variable. The Kruskal–Wallis test was used to compare the
distributions of three or more sets of any continuous variable.
Null hypotheses were rejected at a two-sided p value lower than
0.05, unless otherwise indicated.
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RESULTS

Identification of the GeneModule Related to
Tumor Immunity
To identify the core module, we first performed WGCNA on 104
SKCM samples from primary lesions. The weighted gene co-
expression network identified 21 modules (Figure 2A).
According to the results of the GO and KEGG analyses, we
identified the brown module, which consists of 743 protein-
coding genes such as PD-L1, involved in tumor immune
regulation. The bubble diagram shows the enriched GO terms
implicated in the functional regulation of multiple lymphocytes
and immune-related processes (Figure 2B). KEGG analysis
revealed that immune cell–mediated and PD-L1–related pathways
were enriched, including the “B-cell receptor signaling pathway,”
“T-cell receptor signaling pathway,” and “PD-L1 expression and PD-

1 checkpoint pathway in cancer,” which are closely related to tumor
immunity and immunotherapy response (Figure 2C). Compared to
other modules, GO terms associated with immune-related
regulation and biological processes were almost concentrated in
the brownmodule, meaning that the module is likely to be in charge
of tumor immunity, and thus it is a candidate for the subsequent
analysis. Then, we calculated the module’s preservation pattern,
showing its strong preservation in LUAD and metastatic SKCM,
which means that this gene module could be related to the common
immunophenotype in SKCM and LUAD (Figure 2D).

Construction of the Protein–Protein
Interaction Network
A total of 199 hub genes were identified in the brown module.
Then, we screened the central submodule in the brownmodule by

FIGURE 2 | Identification of a gene module associated with tumor immunity. (A) Dendrogram of 104 skin cutaneous melanoma (SKCM) samples. The results of (B)
GO and (C) KEGG pathway analyses for the genes belonging to the brown module. (D) Assessment of the preservation pattern of the brown module in SKCM and lung
adenocarcinomas (LUAD) from seven module preservation statistics, and the bar plots showing the observed value of each module preservation statistic. cor.cor: the
concordance of the correlation structure; avg.cor: the average magnitude of the correlation coefficients of the module; avg.weight: the average magnitude of edge
weights; cor.degree: the concordance of the weighted degree of nodes; cor.contrib: the concordance of the node contribution; avg.contrib: the average magnitude of
the node contribution; coherence: the proportion of variance in the module data explained by the module’s summary profile vector.
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constructing the PPI network, and a submodule composed of 119
genes was significantly associated with tumor immunity
(Figure 3A). In addition to regulating the functions of
multiple lymphocytes, most protein-coding genes in the
submodule are involved in “T-cell activation” and “response to
interferon-gamma (IFN-γ)” (Figure 3B). Based on the
connections among protein-coding genes provided by the
STRING database, we applied the PD-L1 association network
as the PD-L1 interactome, which is composed of 83 protein-
coding genes, including PD-L1 and its regulators. We utilized the
R package “GOSemSim” to score functional similarities between
the PD-L1 interactome and 199 hub genes. Genes with high

scores are likely to have similar molecular functions to PD-L1.
According to the results, we ranked the hub genes by the average
functional similarity scores (Figure 3C) and found that PD-L1
(namely, CD274, a hub gene of the brown module) had the 10th
highest average score among the hub genes, and the average score
of the first was significantly higher than that of PD-L1 (p =
0.0019). No significant differences were found between the
average scores of PD-L1 and the genes ranked second to 19th
(p > 0.05), while the average score of the genes ranked below the
19th was significantly lower than that of PD-L1 (p < 0.05),
meaning that the genes ranked second to 19th are most likely
to play a similar role to PD-L1 inMF and CC. Except for PSTPIP1

FIGURE 3 | Identification of the potential biomarkers relevant to tumor immunity. (A) The submodule of the PPI network involved in immune regulation. (B) GO
analysis for the genes in the submodule. Each section of the pie chart shows the representative GO global terms. The size of each section is associated with the percent
of genes within the submodule. (C) Summary of the functional similarities for the top 20 protein-coding genes in the PD-L1 (CD274) interactome. The distribution of
functional similarity scores was summarized as boxplots. The lines and rhombuses in the boxes indicate the mean and median of the functional similarity scores,
respectively. The dashed line represents the median value of PD-L1. **p < 0.01.
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FIGURE 4 | The correlations between PSTPIP1/PILRA and immune biomarkers in LUAD. Scatter plots showing the correlation between (A) PSTPIP1 and PD-L1,
(B) PSTPIP1 and IFN-γ, (C) PILRA and PD-L1, and (D) PILRA and IFN-γ in the LUAD samples (n = 515). Violin plots showing the expression of (E) PSTPIP1 and (F) PILRA
in the LUAD samples with different degrees of differentiation (including 167 with poor differentiation, 209 with moderate differentiation, and 60 with well differentiation). ns
indicates p ≥ 0.05, *p < 0.05.
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and PILRA, the other genes with high scores have been identified
to have functionally relevant roles in the immune checkpoint,
tumoral immune cells, and immune infiltration, while few studies
have reported the role of PSTPIP1 and PILRA in tumor
immunity.

Implications in Tumor Immunity
We calculated the relationship between PSTPIP1/PILRA and the
immune biomarkers, namely, PD-L1 and IFN-γ. We observed a

significantly positive correlation between PSTPIP1/PILRA and
PD-L1/IFN-γ in the LUAD samples (Figures 4A–D), and similar
outcomes were observed in SKCM (Supplementary Figure S1).
Given that LUAD differentiation can influence the expression of
PD-L1 (Takada et al., 2016), we further explored the correlation
between PSTPIP1/PILRA and tumor differentiation. The results
revealed that LUAD tissue samples with distinct differentiation
had similar levels of PSTPIP1. Compared with poorly
differentiated samples, PILRA decreased in well-differentiated

FIGURE 5 | The influence of PSTPIP1 and PILRA on immune infiltration and prognosis in LUAD. Violin plots showing (A) the immune score in samples with low or
high expression of PSTPIP1 and PILRA. GSVA-derived clustering heat maps of differentially infiltrated immune cell populations between the high and low expression
groups of (B) PSTPIP1 and (C) PILRA. Only lymphocytes with log(fold change) > 0.2 are shown. The influence of (D) PSTPIP1 and (E) PILRA on the overall survival time of
LUAD patients. The yellow line indicates samples with highly expressed genes and the blue line indicates samples with lowly expressed genes. Violin plots showing
(F) the expression of PSTPIP1 and PILRA in the LUAD patients with different responses to nivolumab (including five responders and five nonresponders) and (G) the
expression of PSTPIP1 in SKCM mice with different responses to anti–PD-L1 treatment (including 27 responders and 23 nonresponders). ns indicates p ≥ 0.05, **p <
0.01, ****p < 0.0001.
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FIGURE 6 | Histopathological examples of PSTPIP1/PILRA expression and tumor-infiltrating lymphocytes (TILs) in LUAD. (A) PSTPIP1 and PILRA expression is
demonstrated by brown staining, and the bar plot shows the average optical density of PSTPIP1 and PILRA in the PD-L1–positive or PD-L1–negative LUAD tissue
samples. (B) The TILs are displayed as purple spots in hematoxylin and eosin staining, and bar plots show the stromal TILs in tissue samples with high and low PSTPIP1/
PILRA expressions. *p < 0.05.
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LUAD, but no significant difference was observed between the
moderately and well-differentiated samples or between the poorly
and moderately differentiated samples (Figures 4E,F).

Immune Infiltration and Survival Analysis
We explored the correlation between PSTPIP1/PILRA and TILs.
The ESTIMATE immune scores revealed that the LUAD samples
with a high expression of PSTPIP1 and PILRA had significantly
richer immune infiltration (Figure 5A). GSVA confirmed that
the high expression of PSTPIP1 and PILRA led to an increased
enrichment of multiple lymphocytes (Figures 5B,C). We next
investigated the prognostic value of PSTPIP1 and PILRA and
found that the high expression of PSTPIP1 and PILRA
contributed to longer overall survival (OS) (Figures 5D,E).
Similar results were confirmed in SKCM (Supplementary
Figure S2A–E). We investigated the correlations between
PSTPIP1/PILRA and the anti–PD-L1 treatment response in
LUAD patients and found that PILRA mRNA was
significantly high in CD8+ PBLs from the patients who
responded to nivolumab, but the expression of PSTPIP1 was
not different between the responders and nonresponders
(Figure 5F). However, the significantly increased expression of
the PSTPIP1 homologous gene was confirmed in tumor tissues
from the SKCM mice that responded to the anti–PD-L1
treatment (Figure 5G).

Correlation Between Tumor-Infiltrating
Lymphocytes and Biomarkers at the Protein
Level
We validated the protein expression of PSTPIP1 and PILRA in
the PD-L1–positive and PD-L1–negative LUAD tissue samples.
In contrast to the PD-L1–negative samples, we observed that the
protein level of PILRA was higher in the PD-L1–positive samples
(p = 0.0174) (Figure 6A). Although PSTPIP1 showed a relatively
higher expression in the PD-L1–positive tissues, there was no
statistical significance when compared to the PD-L1–negative
samples (p = 0.3355) (Figure 6A). At the same time, both
PSTPIP1 and PILRA high expression samples possessed
relatively richer TILs, while relatively lower TILs were prone
to exist in samples with low PSTPIP1 and PILRA expressions (p <
0.05), and stromal TILs tended to exceed 10% in the LUAD
samples with a high expression of PSTPIP1 and PILRA
(Figure 6B).

DISCUSSION

This study applied network analysis methods to transcriptome
data to explore the immune basis of LUAD and identified that
it shares a strongly preserved immune response–related
module with SKCM. The hub genes PSTPIP1 and PILRA
are novel prognostic biomarkers positively correlated with
TILs, and both could be used to predict immunotherapy
response.

TILs are well-validated factors influencing the ICI response
(Gibney et al., 2016), and PD-L1–positive SKCM accompanied

by high TILs accounts for 40% of cases, which is the favorable
immunophenotype for immunotherapy response (Teng et al.,
2015). This provides the basis for SKCM patients with an ideal
clinical efficacy in various immunotherapeutic approaches
(Tsai et al., 2014). Researchers found that some LUAD cases
have an immunophenotype similar to that of SKCM (Morris
et al., 2016; Chen et al., 2017; Thorsson et al., 2018), which
could be explained by the existence of a shared gene module
related to tumor immunity. In the present study, we identified
this sharing module, and two hub genes were considered to
have functional similarities to PD-L1. The PSTPIP1 hub gene
was related to T-cell activation, differentiation, and migration,
modulating the function of innate immune cells and the innate
immune response, and its mutation was confirmed as a crucial
driver of immunodeficiency and auto-inflammatory diseases
(Holzinger and Roth, 2016; Janssen et al., 2018). The PILRA
hub gene was primarily expressed on multiple immune cells
(Kogure et al., 2011; Sun et al., 2012), which can trigger
increased natural killer cell–mediated IFN-γ secretion by
binding to o-glycosylated receptors (Ophir et al., 2016).
However, few studies have reported the correlation between
these two protein-coding genes and the tumor-related immune
response, and we confirmed that they have a relationship with
multiple infiltrating lymphocytes and tumor immune
regulation.

The majority of module genes are involved in the response to
IFN-γ, a well-established biomarker for tumor immunity (Dong
et al., 2016). IFN-γ is secreted from the TILs, which compromises
antitumor immunity by promoting PD-L1 expression on the
surface of tumor and immune cells (Bald et al., 2014; Remon et al.,
2016; Ayers et al., 2017). Previous studies have reported a positive
association between IFN-γ and PD-L1 at the mRNA level
(Hayano et al., 2017), and a high expression of tumoral IFN-γ
mRNA was associated with a good response to the PD-L1
inhibitor durvalumab in non–small-cell lung cancer (NSCLC)
patients; the ORR in IFN-γ–positive patients reached 33%, while
it was 8% in IFN-γ–negative patients, and the highest ORR (46%)
was observed in cases with a coexisting positive expression of
IFN-γ and PD-L1 (Higgs et al., 2015). Both PSTPIP1 and PILRA
were positively associated with PD-L1 and IFN-γ, supporting
their influence on the immune response. PILRA was lower in
well-differentiated LUAD, which contradicts the widely validated
correlations between the high PD-L1 expression and good
differentiation. Therefore, to some extent, we can exclude the
possibility that PSTPIP1 and PILRA levels are correlated with
tumor differentiation rather than immune biomarkers. However,
the protein expression of PSTPIP1 was not significantly increased
in the PD-L1–positive LUAD tissues, implying that its correlation
with PD-L1 might be indirect.

The TILs (mainly CD8+ T cells) are important biomarkers for
assessing the immune microenvironment, and both the tumor
cell surface PD-L1 and intratumoral IFN-γ are associated with the
level of the TILs (Dong et al., 2016; Tang et al., 2016). TIL-derived
IFN-γ induces the expression of PD-L1, which in turn suppresses
TIL-mediated antitumor immunity (Gowrishankar et al., 2015).
We confirmed that TILs were significant in samples with high
PSTPIP1 and PILRA levels. Tumors positive for PD-L1 and TILs
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are adaptively resistant to elimination by TILs, and this
immunophenotype is most likely to respond to anti–PD-L1
therapy (Zhang and Chen, 2016). We found that the LUAD
patients who responded to PD-1/PD-L1 blockade treatment
tended to have a high expression of PILRA mRNA in CD8+

PBLs. Although PSTPIP1 expression showed no significant
difference, we confirmed that significantly increased PSTPIP1
expression was observed in tumor tissues from SKCM mice that
responded to anti–PD-L1 treatment. This difference might be
derived from a distinctive gene repertoire between CD8+ TILs
and PBLs (Mohme et al., 2018). The high expression of PSTPIP1
inhibits CD3-dependent T-cell activation, which is significantly
higher in TILs rather than in PBLs (Marcos et al., 2014; Lukesova
et al., 2015), leading to adaptive resistance. Therefore, high
expression of PSTPIP1 in the TILs could indicate a clinical
response after immunotherapy of relaunching T-cell–mediated
actions. We presumed that the differential expression of PSTPIP1
between the responders and non-responders might be observed
in TILs rather than PBLs. Previous studies have confirmed that
subpopulations of TILs, such as effector memory and central
memory CD8+ cells, effector memory CD4+ cells, natural killer
cells, and activated dendritic cells, are associated with good
prognosis (Angelova et al., 2015), leading to an improved
survival time in NSCLC patients (Thomas et al., 2013; Teng
et al., 2015; Teng et al., 2016). The survival analysis is consistent
with these conclusions, and the survival benefits of high PSTPIP1
and PILRA expressions are possibly due to rich TILs, and their
influence is also in accord with their positive correlations with
PD-L1, which confirms that both the protein and mRNA levels of
PD-L1 are associated with increased TILs and OS in NSCLC
patients (Velcheti et al., 2014; Ma et al., 2020). In general,
PSTPIP1 and PILRA act as biomarkers for TILs and thus have
positive correlations with PD-L1 and IFN-γ.

In the present study, we confirmed that PSTPIP1 and
PILRA have a relationship with the TILs at both the protein
and gene levels. However, selection bias was inevitable because
of the small sample sizes, which is the main limitation of this
study. Moreover, there was a lack of sufficient available data to
firmly validate the conclusions made from the TCGA. Further
study is needed to verify the clinical value of PSTPIP1 and
PILRA in the additional samples and to explore their
molecular functions in tumor immune regulation.

CONCLUSION

In conclusion, the present study demonstrated that PSTPIP1 and
PILRA can reflect the status of TILs and work as prognostic
biomarkers, and they could act as biomarkers relevant to the
anti–PD-L1 treatment response.
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High Expression of DC-STAMP Gene
Predicts Adverse Outcomes in AML
Qian Liang, Lele Zhang, Wenjun Wang, Jingyu Zhao, Qiaoli Li, Hong Pan, Zhen Gao,
Liwei Fang and Jun Shi*

Regenerative Medicine Clinic, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood
Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical
Sciences & Peking Union Medical College, Tianjin, China

Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy
with poor prognosis. We explored the RNA sequence data and clinical information of AML
patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
database to search for the core molecule for prognosis. The DC-STAMP expression was
significantly higher in AML patients, which was linked to old age, unfavorable cytogenetic
risk, and death (all p < 0.05). Furthermore, it was revealed that highDC-STAMP expression
was an independent unfavorable factor for overall survival (OS) by univariate analysis
[hazard ratio (HR): 2.683; 95% confidence interval (CI): 1.723–4.178; p < 0.001] and
multivariate analysis (HR: 1.733; 95%CI: 1.079–2.781; p = 0.023). The concordance index
(C-index 0.734, 95% CI: 0.706–0.762), calibration curves, and decision curve analysis
showed the certain predictive accuracy of a nomogram model based on multivariate
analysis for OS. In addition, we found that the differentially expressed gene (DEG)
enrichment pathways of high- and low-DC-STAMP expression group enrichment
pathways were focused on channel activity and platelet alpha granule by the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), while gene
set enrichment analysis (GSEA) pathways were mainly involved in mTORC1 signaling and
TNF-α signaling via the NF-kB pathway. Moreover, a protein–protein interaction (PPI)
network demonstrated that DC-STAMP interacted with two hub genes (PPBP and PF4),
which were highly regulated and associated with poor survival. Finally, high DC-STAMP
expression showed a significantly positive correlation with four immune cell [NK CD56 (dim)
cells, macrophages, cytotoxic cells, and CD8 (+) T cells] infiltration and high level of immune
checkpoint genes (PDCD1, CD274, CTLA-4, and TIGIT). Therefore, our results suggest
that high expression of DC-STAMP predicts adverse outcomes for AML patients.

Keywords: DC-STAMP, acute myeloid leukemia, prognosis, bioinformatics, TCGA, immune checkpoints

INTRODUCTION

Acute myeloid leukemia (AML) is a malignant clonal disease originating from hematopoietic stem
cells (HSCs) or myeloid progenitors characterized by inhibiting cellular differentiation and
proliferation of blast cells (Puram et al., 2016; Assi et al., 2019). Although most patients received
traditional chemotherapy and allogeneic hematopoietic stem cell transplantation (allo-HSCT), more
than 70% of the patients failed to achieve the desired effects (Chen et al., 2019). Based on some
genetic abnormalities, the risk stratification system of AML has been refined and some AML patients
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tend to have deeper remission and longer survival through
molecular targeted therapy (Estey, 2016; Stone et al., 2017;
Kayser and Levis, 2018; DiNardo et al., 2020). However, there
are limited numbers of reliable biomarkers for indicating the
prognosis of AML and guiding therapy selection (Campos et al.,
1993; Tzifi et al., 2012; Fro€hling et al., 2002; Patel et al., 2012).
Therefore, a much more in-depth and comprehensive research of
the molecular abnormalities including genetic mutations and
validation would aid in designing effective targeted therapies
for AML.

Dendritic cell (DC)-specific transmembrane protein (DC-
STAMP), also called TM7SF4, is a seven-transmembrane
receptor protein, which is predominantly expressed in myeloid
DC, macrophages, and osteoclasts (Hartgers et al., 2000; Yagi
et al., 2005). However, DC-STAMP mRNA expression is low in
hematopoietic stem and progenitor cells (HSCPs) and monocytes
(Eleveld-Trancikova et al., 2008). It plays a role in the limitation
of myeloid cell differentiation, regulation of the antigen
presentation activity of DC, and maintenance of immune
tolerance (Eleveld-Trancikova et al., 2008; Sawatani et al.,
2008; Eleveld-Trancikova et al., 2010). A recent study
demonstrated that the DC-STAMP was considered as an
important molecule promoting the development and
progression of multiple myeloma (Silvestris et al., 2011),
whereas its role in AML is completely unknown.

In this research, we used not only the cox regression analysis
but also a nomogram model, calibration curves, and a decision
curve analysis (DCA) to assess the predictive effect of the DC-
STAMP on AML patients based on TCGA database. In addition,
we performed three types of enrichment analyses,
protein–protein interaction (PPI), and a correlation analysis of
immune infiltration or immune checkpoints to detect the
pathogenic molecular mechanisms of the DC-STAMP. Our
findings revealed the prognostic value of the DC-STAMP and
may provide novel insights into the gene marker of
leukemogenesis.

MATERIALS AND METHODS

Data Source
The transcripts per million (TPM) reads format RNA-seq data of
TCGA and GTEx were collected by the toil process from the
UCSC XENA browser (https://xenabrowser.net/datapages/)
(Vivian et al., 2017; Consortium, 2020; Goldman et al., 2020).
The data of 173 cases of AML patients and 70 cases of normal
people were extracted from TCGA’s LAML project and GTEx,
respectively. The RNA-seq data of the TPM format was
performed for an intrasample comparison after log2
transformation. The clinical data of AML patients were
downloaded from TCGA (https://tcga-data.nci.nih.gov/), and
153 patients’ data were eligible for inclusion by removing
patients without clinical data.

Differential Gene Expression Analysis
We used the median values of DC-STAMP mRNA expression to
divide the AML patients into low and high DC-STAMP

expression groups. The differentially expressed genes (DEGs)
of the aforementioned two groups were identified by comparing
the RNA-seq data of the HTSeq-count format by the DESeq2R
package (Love et al., 2014). DEGs were defined as an absolute log2
fold change (|log2 FC|) >1.0 with an adjusted p value < 0.05.

Functional and Pathway Enrichment
Analysis
The Gene Ontology (GO) functional gene annotation analysis is a
common method used for the enrichment analysis of large-scale
genes, including the biological process (BP), cellular component
(CC), and molecular function (MF) (Gene Ontology Consortium,
2021). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a widely used database for information storage of genomes,
biological pathways, and diseases and drugs (Kanehisa et al.,
2021). We performed the GO and KEGG analyses of DEGs in
AML using the R package clusterProfiler (Yu et al., 2012).

Gene Set Enrichment Analysis
GSEA is a method that evaluates the correlation between gene
expression and phenotype from a pre-defined gene set and
determines the relative contribution (Subramanian et al.,
2005). We downloaded hallmark gene sets (h.all.v7.2.
symbols.gmt) from the MsigDB and utilized the R package
clusterProfiler to conduct the GSEA (Yu et al., 2012;
Szklarczyk et al., 2019). It was considered a statistical
significance when the p value was less than 0.05.

Construction of Protein–Protein Interaction
Network
Known proteins and predicted protein–protein interaction were
investigated by using the STRINGwebsite (https://string-db.org/)
(Szklarczyk et al., 2019), which contained 9.6 million proteins and
138 million protein–protein interactions from 2,031 species. In
this research, we used the STRING database to construct a PPI
network of encoding DEGs, then visualized the results and
screened hub genes using the Cytoscape software (version 3.7.
1) (Shannon et al., 2003). We further performed the ggplot2
package in R to investigate the association of DC-STAMP
expression with hub genes by the correlation heatmap.

Correlation Analysis of Immune Infiltration
and Immune Checkpoint Genes
We applied the ssGSEA algorithm from the GSVA package
(version 1.34.0) to estimate the Pearson correlation coefficient
between DC-STAMP expression and immune cells and the
association of the DC-STAMP with the abundance of the 24
types of infiltrated immune cells (Bindea et al., 2013; Hänzelmann
et al., 2013). The involved immune cells were activated dendritic
cells (aDCs), B cells, CD8 (+) T cells, cytotoxic cells, DCs,
eosinophils, immature DCs (iDCs), macrophages, mast cells,
neutrophils, NK CD56 (bright) cells, NK CD56 (dim) cells,
NK cells, plasmacytoid DCs (pDCs), T cells, T helper cells, T
central memory (Tcm) cells, T effector memory (Tem) cells, T
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follicular helper (Tfh) cells, T gamma delta (Tgd) cells, Th1 cells,
Th17 cells, Th2 cells, and regulatory T (Treg) cells. We next
performed the ggplot2 package in R to investigate the association
of DC-STAMP expression with specific immune cells and widely
discussed immune checkpoint genes (PDCD1, CD274, CTLA-4,
LAG-3, TIGIT, and HAVCR2) by the scatter plot.

Statistical Methods
All statistical analyses were completed in R programming
(https://www.r-project.org/, version 3.6.3). The effectiveness of
theDC-STAMP in distinguishing AML from normal samples was
assessed by the receiver operating characteristic (ROC) curve
analysis using the pROC software. The difference between clinical
features and DC-STAMP expression was detected by Wilcoxon
rank sum tests and Kruskal–Wallis tests. The correlation of
clinical features between low and high DC-STAMP expression
was performed by the Pearson χ2 test. Survival curves were
constructed using the Kaplan–Meier (KM) plot. The
prognostic risk factors were identified by univariate analyses
and the multivariate Cox regression analysis, then,
independent factors were recruited for building the final
nomogram prognostic model. Additionally, we used
calibration and DCA to assess the predictive power of the
nomogram model. The nomogram plot and calibration curve
were established by using the RMS package in R and the DCA
curve was constructed by using the survival package and stdca.R.
in R. All tests were two-sided, and p < 0.05 was considered to be of
statistical significance. The research and analysis flowchart is
presented in Figure 1.

RESULTS

High Expression of DC-STAMP is Linked to
Unfavorable Clinical Characteristics in
Acute Myeloid Leukemia
We compared the difference in DC-STAMP mRNA expression
among AML, normal, and other malignancies samples by using
the RNA-seq database. Remarkably, DC-STAMP expression
was upregulated in multiple malignancies (Figure 2A),
especially in AML (p < 0.05, Figure 2B). Moreover, the
power of the expression difference was 0.672 (95%
confidence interval, CI = 0.610–0.735, Figure 2C) by the
AUC value of the ROC curve analysis. Hence, we are
interested in the clinical implications of DC-STAMP
expression in AML patients. A total of 153 AML patients
with clinical information from TCGA were analyzed in the
study. As shown in Figures 2D–G, DC-STAMP expression was
associated with old age (p < 0.01, Figure 2D), unfavorable
cytogenetic risk (p < 0.001, Figure 2E), NPM1 positive
mutation (p < 0.05, Figure 2F), and death (p < 0.001,
Figure 2G), no association with French-American-British
(FAB) classifications (Supplementary Figure S1).
Furthermore, when patients were grouped by low and high
mRNA expression, a strong correlation was found in old age
(p = 0.004), unfavorable cytogenetic risk category (p < 0.001),
normal, +8, del (7) karyotype (p = 0.008), M2, M5 FAB
subtypes (p = 0.037), and death (p = 0.001, Table 1), but no
association with gender, white blood cell count, and FLT3,

FIGURE 1 | Flowchart of research.
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IDH1, RAS, and NPM1 mutations. Together, high DC-STAMP
expression was closely related to poor clinical characteristics.

High DC-STAMP Expression Predicts
Worse Prognosis
We plotted OS curves by the KM method to identify the effect of
theDC-STAMP on the outcomes in AML patients. Patients with a
high expression presented a shorter OS than those with a low
expression (p < 0.001, Figure 3A). We further use the univariate
and multivariate Cox regression analyses to identify the value of
the DC-STAMP for survival. By the univariate analysis, high DC-
STAMP expression was associated with shorter OS [hazard radio,
(HR): 2.683; 95% confidence interval (CI):1.723–4.178; p < 0.001,
Supplementary Table S1]. Simultaneously, both age (HR: 3.333;
95% CI: 2.164–5.134; p < 0.001) and unfavorable cytogenetic risk

(Intermediate: HR: 2.957; 95% CI; 1.498–5.836; p = 0.002, Poor:
HR: 4.157; 95% CI: 1.944–8.893; p < 0.001) were related with poor
OS. Then, we included the aforementioned significant univariable
factors (p < 0.1) in the multivariate analysis and found that age
(HR: 2.548; 95% CI: 1.601–4.055; p < 0.001), poor cytogenetic risk
(HR: 2.293; 95% CI: 1.024–5.135; p = 0.044), and high DC-
STAMP expression (HR: 1.733; 95% CI: 1.079–2.781; p =
0.023) were also independent prognostic factors, respectively.
In detail, we drew forest plots to present the aforementioned
results of the Cox regression analysis (Figures 3B,C,
Supplementary Table S1).

Furthermore, to provide a quantitative prediction of the
outcomes in AML patients, we constructed a nomogram plot
using age, cytogenetic risk, and DC-STAMP expression
(Figure 3D). The concordance index (C-index) for predicting
the OS was 0.734 (95% CI: 0.706–0.762), indicating that the

FIGURE 2 | High DC-STAMP expression was related with adverse clinical features. (A) Level of DC-STAMP expression in different tumors from TCGA and GTEx
database. (B) Expression levels ofDC-STAMP in AML (n = 173) and normal samples (n = 70). (C)Receiver operating characteristic analysis (ROC) ofDC-STAMP in AML.
Clinical characteristics including (D) age, (E) cytogenetic risk classification, (F) NPM1mutation, and (G) OS events (n = 153). Analysis between two groups of unpaired
samples: Wilcoxon rank sum test, analysis among multiple groups of samples: Kruskal–Wallis rank sum test (ns p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001).
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TABLE 1 | Clinical characteristics of AML patients with differential DC-STAMP expression.

Characteristic Low expression of DC-STAMP High
expression of DC-STAMP

p

n 75 76
Age, median (IQR) 51 (39, 62) 61.5 (46.5, 69.25) 0.005a

Gender, n (%) 0.084b

Female 28 (18.5%) 40 (26.5%)
Male 47 (31.1%) 36 (23.8%)

Race, n (%) 1.000c

Asian 0 (0%) 1 (0.7%)
Black or African–American 7 (4.7%) 6 (4%)
White 67 (45%) 68 (45.6%)

Age, n (%) 0.004b

≤60 53 (35.1%) 35 (23.2%)
>60 22 (14.6%) 41 (27.2%)

WBC count (x10̂9/L), n (%) 0.255b

≤20 34 (22.7%) 43 (28.7%)
>20 40 (26.7%) 33 (22%)

Cytogenetic risk, n (%) < 0.001b

Favorable 26 (17.4%) 5 (3.4%)
Intermediate 34 (22.8%) 48 (32.2%)
Poor 15 (10.1%) 21 (14.1%)

FAB classifications, n (%) 0.037b

M0 8 (5.3%) 7 (4.7%)
M1 18 (12%) 17 (11.3%)
M2 13 (8.7%) 25 (16.7%)
M3 13 (8.7%) 2 (1.3%)
M4 16 (10.7%) 13 (8.7%)
M5 5 (3.3%) 10 (6.7%)
M6 1 (0.7%) 1 (0.7%)
M7 0 (0%) 1 (0.7%)

Cytogenetics, n (%) 0.008b

Normal 30 (22.2%) 39 (28.9%)
+8 2 (1.5%) 6 (4.4%)
del (5) 1 (0.7%) 0 (0%)
del (7) 2 (1.5%) 4 (3%)
inv (16) 5 (3.7%) 3 (2.2%)
t (15; 17) 10 (7.4%) 1 (0.7%)
t (8; 21) 7 (5.2%) 0 (0%)
t (9; 11) 1 (0.7%) 0 (0%)

Complex 12 (8.9%) 12 (8.9%)
FLT3 mutation, n (%) 0.441b

Negative 54 (36.7%) 48 (32.7%)
Positive 20 (13.6%) 25 (17%)

IDH1 R132 mutation, n (%) 0.939b

Negative 66 (44.3%) 70 (47%)
Positive 7 (4.7%) 6 (4%)

IDH1 R140 mutation, n (%) 0.745b

Negative 70 (47%) 67 (45%)
Positive 5 (3.4%) 7 (4.7%)

IDH1 R172 mutation, n (%) 0.245c

Negative 75 (50.3%) 72 (48.3%)
Positive 0 (0%) 2 (1.3%)

RAS mutation, n (%) 1.000c

Negative 71 (47.3%) 71 (47.3%)
Positive 4 (2.7%) 4 (2.7%)

NPM1 mutation, n (%) 0.237b

Negative 62 (41.3%) 55 (36.7%)
Positive 13 (8.7%) 20 (13.3%)

OS events, n (%) < 0.001b

Alive 38 (25.2%) 16 (10.6%)
Dead 37 (24.5%) 60 (39.7%)

Bold indicates p value less than 0.05
aDerived from the Wilcoxon rank sum test.
bDerived from Pearson’s chi-squared test.
cDerived from Fisher’s exact test.
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nomogram had a certain predictive accuracy for OS. Additionally,
we performed calibration curves and DCA to evaluate the
predictive performance of the nomogram model. The
calibration curves presented consistency between the predicted
OS of the nomogram and the actual proportion of OS at 1-, 3-,
and 5-year (Figure 3E). Moreover, the DCA curves also verified
the clinical utility of the predictive nomogram (Figures 3F–H). In
summary, this nomogram model had an accurate ability to
predict the patients’ survival.

Differentially Expressed Gene Enrichment
Analysis Reveals the Dysfunctional
Signaling Pathway
We further explored the potential mechanisms in AML patients.
Firstly, we identified the DEGs between high and lowDC-STAMP
expression. In total, 610 DEGs were obtained and shown in
volcano plots (Figure 4A), including 260 upregulated genes
and 350 downregulated genes (|log2FC| >1, adjusted p
value < 0.05).

Next, we performed the GO and KEGG analyses to investigate
the biological function of the aforementioned DEGs and obtained
the top 15 GO enrichment items (CC five items, BP five items,
and MF five items) and top five KEGG pathways (Figures
4B,D–F and Supplementary Table S2). Briefly, the channel
activity, platelet alpha granule, extracellular structure
organization, regulation of ion transmembrane transport,
neuroactive ligand-receptor interaction, and extracellular
matrix (ECM)–receptor interactions were the most enriched sets.

Moreover, to better understand the mutual connection, we
performed an interactive analysis derived from the results of GO
and KEGG analyses. It showed that the numbers of enrichment
genes were channel activity (counts = 29), passive
transmembrane transporter activity (counts = 29), collagen-
containing extracellular matrix (counts = 28), substrate-specific
channel activity (counts = 28), regulation of ion transmembrane
transport (counts = 27), extracellular structure organization
(counts = 25), transmembrane transporter complex (counts =
21), ion channel complex (counts = 20), neuroactive ligand-
receptor interaction (counts = 19), and skeletal system
morphogenesis (counts = 18) (Figure 4C).

Finally, the GSEA was used to investigate the enrichment
pathway of DC-STAMP expression, and a total of 28 significant
pathways were enriched (Table 2). Interestingly, some pathways,
such as IL6-JAK-STAT3 signaling, mTORC1 signaling, TNF-α
signaling via NF-κB, INF-γ response, glycolysis, and DNA repair
(Figures 4J–L) were reported to correlate with leukemogenesis
(Steelman et al., 2008; Park et al., 2010; Binder et al., 2018; Molina
et al., 2018; Gabellier et al., 2020; Grants et al., 2020).

Identification of Hub Genes ConnectedWith
DC-STAMP
As indicated in Figure 5A, the PPI network of 358 encoding DEGs
was constructed to determine the hub genes. The top 15 hub genes
were selected by the maximum neighborhood component (MNC),
density of maximum neighborhood component (DMNC), and
maximal clique centrality (MCC) algorithms, respectively (Figures

TABLE 2 | Twenty-eight items of GSEA.

Description Set size Enrichment score NES p. adjust

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 195 −0.54676 −2.25033 0.008003
HALLMARK_ESTROGEN_RESPONSE_EARLY 200 −0.54257 −2.23437 0.008003
HALLMARK_MYOGENESIS 196 −0.47064 −1.9364 0.008003
HALLMARK_UV_RESPONSE_DN 142 −0.52416 −2.07013 0.008003
HALLMARK_ANGIOGENESIS 36 −0.55865 −1.75389 0.008003
HALLMARK_MYC_TARGETS_V2 55 0.665077 2.430489 0.008003
HALLMARK_ESTROGEN_RESPONSE_LATE 199 −0.39097 −1.60534 0.008003
HALLMARK_IL6_JAK_STAT3_SIGNALING 87 0.541276 2.153534 0.008003
HALLMARK_UNFOLDED_PROTEIN_RESPONSE 110 0.42742 1.766212 0.008003
HALLMARK_INTERFERON_ALPHA_RESPONSE 83 0.654209 2.566687 0.008003
HALLMARK_SPERMATOGENESIS 123 0.48507 2.043111 0.008003
HALLMARK_ALLOGRAFT_REJECTION 199 0.554861 2.511181 0.008003
HALLMARK_MITOTIC_SPINDLE 180 0.502551 2.25991 0.008003
HALLMARK_COMPLEMENT 187 0.365865 1.643381 0.008003
HALLMARK_E2F_TARGETS 187 0.773265 3.473328 0.008003
HALLMARK_G2M_CHECKPOINT 197 0.75184 3.382364 0.008003
HALLMARK_INFLAMMATORY_RESPONSE 194 0.464461 2.091942 0.008003
HALLMARK_GLYCOLYSIS 186 0.370532 1.661545 0.008003
HALLMARK_INTERFERON_GAMMA_RESPONSE 177 0.588205 2.629924 0.008003
HALLMARK_MTORC1_SIGNALING 196 0.576452 2.590705 0.008003
HALLMARK_MYC_TARGETS_V1 193 0.621926 2.792147 0.008003
HALLMARK_TNFA_SIGNALING_VIA_NFKB 198 0.370429 1.666859 0.008003
HALLMARK_UV_RESPONSE_UP 156 0.359304 1.590277 0.014397
HALLMARK_COAGULATION 136 −0.39733 −1.56144 0.017883
HALLMARK_DNA_REPAIR 136 0.358661 1.537167 0.019802
HALLMARK_BILE_ACID_METABOLISM 99 −0.4003 −1.49457 0.034754
HALLMARK_CHOLESTEROL_HOMEOSTASIS 62 0.396308 1.470851 0.036109
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5B–D). Therefore, we observed four hub genes (SELP, SERPINE1,
PF4, and PPBP) shared from the aforementioned three gene lists. We
analyzed the association between theDC-STAMP and four hub genes.
It indicated that the DC-STAMP has significant positive correlations
with SELP (p < 0.001, correlation coefficient: 0.364), PF4 (p < 0.001,
correlation coefficient: 0.39), and PPBP (p < 0.001, correlation
coefficient: 0.406) (Figure 5E). In contrast, the DC-STAMP and
SERPINE1 were negatively correlated (p = 0.005, correlation
coefficient: 0.228) (Figure 5E). Finally, an analysis of the
relationship between the four hub genes and clinical prognosis in
AML patients revealed that only PF4 and PPBP were expressed at a
high level, which was associated with poor outcomes (Figures 5F–I).

Correlation Analysis Between DC-STAMP
and Immune Cell or Immune Checkpoint
Molecules
To describe the association of DC-STAMP expression with
immune infiltration in AML, we systematically evaluated 24
kinds of infiltrated immune cells. The result showed that the
level of DC-STAMP expression had a significant positive
correlation with the infiltrating level of NK CD56 (dim) cells,
macrophages, cytotoxic cells, and CD8 (+) T cells (Figure 6A).
The details of a quantified analysis by Spearman’s correlation are
shown in Figures 6B–E. Furthermore, we analyzed the
relationship between DC-STAMP expressions and widely

FIGURE 3 | Poor prognostic value of DC-TAMP expression in AML. (A) KM curve analysis of overall survival (OS) between high and low DC-STAMP expression
groups. (B) Univariate analyses of OS showed by forest plot. (C) Multivariate analyses of OS showed by forest plot. (D) Nomogram integrates DC-STAMP and other
prognostic factors in AML. (E) Calibration curve of nomogram. The DCA curves of nomogram (F) by 1 year, (G) 3 years, and (H) 5 years(mut; mutation, wt; wild type, Int;
intermediate, Fav; favorable).
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discussed immune checkpoint genes (PDCD1, CD274, CTLA-4,
LAG-3, TIGIT, andHAVCR2). As shown in Figure 6F, the level of
DC-STAMP gene expression was significantly and positively
correlated with PDCD1, CD274, CTLA-4, and TIGIT. The
specific correlation analysis is shown in Figures 6G–J.

DISCUSSION

AML is a hematological neoplastic disease and involves many
different molecular genetic abnormalities. The DC-STAMP is
considered to be a receptor protein, which functions by
promoting DC antigen-presentation and osteoclast activation.

Only few studies have revealed that overexpression of the DC-
STAMP would influence the differentiation of myeloid lineage
cells (Eleveld-Trancikova et al., 2008). It is also reported that
normal HSCPs remain at the low level of the DC-STAMP
(Eleveld-Trancikova et al., 2008; Eleveld-Trancikova et al.,
2010). According to a recent review, a high DC-STAMP
expression level may have potential pathogenic impacts on
myeloid malignancies. However, it is still unknown whether
DC-STAMP has an impact on AML.

Based on the aforementioned situation, we first investigated
the association between the DC-STAMP and clinical features of
AML by using TCGA database. As expected, an upregulated DC-
STAMP expression was observed, and a high level of the DC-

FIGURE 4 | DEG analysis and functional enrichment of high and low DC-STAMP expression groups in AML. (A) Volcano plot of DEGs. (B)GO and KEGG pathway
of DEGs. (C) Interactive analysis with result of GO and KEGG analyses. (D–F) GO enrichment analysis of DEGs. (G–L) GSEA of DEGs. (G) Enrichment of genes in IL6-
JAK-STAT3 signaling pathway. (H) Enrichment of genes in inflammatory pathway. (I) Enrichment of genes in mTORC1 signaling pathway. (J) Enrichment of genes in
interferon alpha response pathway. (K) Enrichment of genes in glycolysis signaling pathway. (L) Enrichment of genes in DNA repair signaling pathway.
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STAMP gene was correlated with adverse clinical characteristics
and poor survival. Thus, it was consistent with the hypothesis that
an abnormally high level of DC-STAMP expression blocked the
differentiation of HSCs in AML patients.

Additionally, we preliminarily explored the pathogenic
molecular mechanisms of the DC-STAMP by using various
bioinformatics analyses. Expectedly, we found DEG
enrichment pathways were focused on the molecular transport
process and platelet alpha granule by GO and KEGG, while GSEA
pathways were involved in mTORC1 signaling, TNF-α signaling
via NF-κB, and inflammatory and DNA repair pathways. A
previous research work reported that the activation of
mTORC1 signaling promotes the proliferation and survival of
the leukemic clones (Steelman et al., 2008; Park et al., 2010) and
cytotoxicity in AML cells from the selective AMPK agonist
(GSK621) because of mTORC1 activation which was through

the eIF2α/ATF4 signaling pathway (Sujobert et al., 2015).
Another study also revealed that the mTORC1 pathway had a
correlation with easy relapse and disease progression in AML
(Oki et al., 2021). Grants et al. (2020) mentioned that NF-κB, IL6,
and TNF were a kind of potential drivers of HSC dysfunction,
activating inflammatory signaling in myeloid malignancy. As we
know, proinflammatory factors were linked to blast cell growth,
and the dysregulation of cytokine signaling contributed to a
beneficial AML microenvironment (Binder et al., 2018).
Therefore, we think that the effect of the DC-STAMP on
potential pathogens is probably associated with the
aforementioned signaling pathways.

Furthermore, we obtained two hub genes (PF4 and PPBP) with
poor OS through different PPI calculation methods and survival
analyses. It has been reported that PF4 and PPBP belonged to the
CXC chemokine family and played roles in platelet activation,

FIGURE 5 | PPI network construction and clinical significance of hub genes. (A) The PPI network of 358 encoding DEGs. (B–D) Top 15 hub genes were selected
respectively by (B)MNC, (C) DMNC, and (D)MCC. (E) Association of DC-STAMP with four hub genes (SELP, SFRPINE1, PF4, and PPBP). (F) Expression levels of PF4
in AML (n = 173) and normal subjects (n = 70). (G)Different OS between high- and low-PF4 expression levels shown by KM curves. (H) Expression levels of PPBP in AML
(n = 173) and normal subjects (n = 70). (I) Different OS between high- and low-PPBP expression levels shown by KM curves. (*p < 0.05, **p < 0.01, ***p < 0.001).
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platelet degranulation, immune response to infection, activation
of neutrophils and monocytes, and tumorigenesis. (Yan et al.,
1994; Martí et al., 2002; Schaffner, 2005; Strieter et al., 2006;
Sakurai et al., 2016). These two genes also had been implicated in
acute megakaryocytic leukemia, lung adenocarcinoma, gastric
cancer, and several autoimmune disorders, including
rheumatoid arthritis and Crohn’s disease (Ulivi et al., 2013;
Pelleri et al., 2014; Takeyama et al., 2015; Pucci et al., 2016;

Xia et al., 2017; Wu et al., 2021). Although the DC-STAMP, PF4,
and PPBP had links with tumor-associated immune response, the
mechanisms of the synergistic effects of their interaction remain
unclear. A more in-depth detection is needed to explore this
complex correlation in AML patients in future.

Finally, when analyzing the relationship between DC-STAMP
expression and immune cell infiltration, we found that the high
DC-STAMP group was inclined to harbor more immune cells

FIGURE 6 | Correlation analysis between the level of DC-STAMP gene expression and immune cell infiltration or immune checkpoint molecules. (A) Association
between DC-STAMP expression and 24 kinds of infiltrated immune cells. (B–E) Using Spearman’s correlation in quantified analysis of the correlation of DC-STAMP
expression with infiltrating level of (B) NK CD56 (dim) cells, (C) macrophages, (D) cytotoxic cells and (E) and CD8 (+) T cells. (F) Association of DC-STAMP with five
immune checkpoint molecules (PDCD1,CD274,CTLA-4, LAG-3, TIGIT, andHAVCR2). (G–J)Using Spearman’s correlation in quantified analysis of the correlation
of DC-STAMP expression with (G) PDCD1, (H) TIGIT, (I) CTLA-4, and (J) CD274 (r was Spearman’s correlation coefficient) (*p < 0.05, **p < 0.01, ***p < 0.001).
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with cytotoxic effects. As previously demonstrated, the DC-
STAMP promoted the most efficient CD4 (+) and CD8 (+)
T-cell responses in vitro (Moulin et al., 2012). Moreover, AML
patients had a trend toward increased mature NK cells (NK CD56
(dim) cells) (Tang et al., 2020). We also found DC-STAMP
expression had a correlation with PDCD1, CD274, CTLA-4, and
TIGIT which were exhaustion markers of T cells and considered a
dysfunction of anti-tumor immunity (Noviello et al., 2019; Wang
et al., 2021). A recent study showed that PD1-positive/CD8-
positive T cells were higher in relapsed AML patients,
compared with newly diagnosed AML patients (Williams et al.,
2019). This result may suggest that the DC-STAMP was closely
related to the immune escape of AML. However, the detailed
pathological mechanism of theDC-STAMP remains unknown and
needs further exploration in the future. The research of DC-
STAMP expression or the relationship between the DC-STAMP
and immune checkpoints would be a benefit for the discovery of
new immunotherapeutic targets to improve the survival of AML
patients.

However, our study still has the following limitations that
cannot be ignored. Firstly, we investigate the diagnostic effect of
the DC-STAMP because of the publicly available TCGA AML
database and this observation needs to be subsequently validated in
larger independent cohorts. Secondly, although this research
comprehensively describes the impact of the DC-STAMP level
on the survival of AML patients, it lacks the exploration of DC-
STAMP pathogenic mutations. Lastly, all the interactions between
the DC-STAMP and AML-associated immune response lack
functional validation and detection of the potential molecular
mechanisms. Therefore, further laboratory work is required to
make up for the aforementioned shortcomings.

CONCLUSION

In this research, it was shown that high expression of DC-STAMP
has an adverse effect on the overall survival of AML patients and
is linked to both AML-associated pathway activation and special
immune cells or checkpoints, which suggests that high expression
of DC-STAMP may be a potential independent prognostic factor
and an immunotherapeutic target for AML. This finding could
help clinicians decide on optimal regimens and explore new
targeted therapies for AML patients.
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Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality
worldwide. Many studies have shown that dedicator of cytokinesis 2 (DOCK2) has a crucial
role as a prognostic factor in various cancers. However, the potentiality of DOCK2 in the
diagnosis of HCC has not been fully elucidated. In this work, we aimed to investigate the
prognostic role of DOCK2 mutation in HCC. The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) cohorts were utilized to identify the
mutation frequency of DOCK2. Then, univariate Cox proportional hazard regression
analysis, random forest (RF), and multivariate Cox regression analysis were performed
to develop the risk score that was significantly related to DOCK2 mutation. Moreover,
Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and immune
correlation analysis were conducted for an in-depth study of the biological process of
DOCK2 mutation involved in HCC. The results revealed that the mutation frequency of
DOCK2 was relatively higher than that in non-cancer control subjects, and patients with
DOCK2 mutations had a low survival rate and a poor prognosis compared with the
DOCK2-wild group. In addition, the secretin receptor (SCTR), tetratricopeptide repeat,
ankyrin repeat and coiled-coil domain-containing 1 (TANC1), Alkb homolog 7 (ALKBH7),
FRAS1-related extracellular matrix 2 (FREM2), and G protein subunit gamma 4 (GNG4)
were found to be the most relevant prognostic genes of DOCK2 mutation, and the risk
score based on the five genes played an excellent role in predicting the status of survival,
tumor mutation burden (TMB), and microsatellite instability (MSI) in DOCK2 mutant
patients. In addition, DOCK2 mutation and the risk score were closely related to
immune responses. In conclusion, the present study identifies a novel prognostic
signature in light of DOCK2 mutation-related genes that shows great prognostic value
in HCC patients; and this gene mutation might promote tumor progression by influencing
immune responses. These data may provide valuable insights for future investigations into
personalized forecasting methods and also shed light on stratified precision oncology
treatment.
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INTRODUCTION

Hepatocellular carcinoma (HCC), one of the most common
forms of cancer, ranks as the second leading cause of cancer
death in the world (Zhao et al., 2018; Roderfeld et al., 2020). At
present, the treatments for HCC mainly include liver resection,
hepatic transplantation, ablation, and transarterial
chemoembolization (TACE) (Chen et al., 2020).
Nevertheless, due to the high metastasis and recurrence rate
after surgery, the overall prognosis of HCC patients remains
poor (Li et al., 2021). Usually, liver cancer is not diagnosed
until its advanced stage, which makes the fact that most
patients receive either no treatment or only palliative
treatment (Mittal et al., 2016), indicating that delayed
diagnosis results in low patient survival rates. Although
alpha-fetoprotein (AFP) is commonly applied as a tumor
indicator for the diagnosis of HCC, its low specificity and
accuracy are its shortage, which leads to patients missing the
best treatment period (Liang Y. et al., 2021). Thus, there is an
urgent need to discover new biomarkers to facilitate early
detection and prognostic evaluation of HCC.

Dedicator of cytokinesis 2 (DOCK2), originally known as
KIAA0209, encodes CDM protein and has been discovered to
be linked with a prognostic factor in various cancers (Chen
et al., 2018). Recent research exhibited that a high expression
level of DOCK2 conferred a good prognosis of acute myeloid
leukemia (Hu et al., 2019). In prostate cancer, many
specifically hypermethylated genes were found, including
DOCK2, GRASP, HIF3A, and PKFP, among which DOCK2
is the candidate marker with the greatest potentiality (Bjerre
et al., 2019). In addition, lower DOCK2 expression was
related to a poorer prognosis in colorectal cancer, which
was attributed to the regulation of canonical and
noncanonical Wnt signaling (Yu et al., 2015). Moreover,
the DOCK2 genetic variant caused decreased DOCK2
mRNA transcript levels and might be a prognostic
biomarker of non-small-cell lung cancer survival (Du
et al., 2021). Notably, the mutation of DOCK2 was
discovered to correlate with a high risk of HCC (Huang T.
et al., 2021). However, the potentiality of DOCK2 in the
diagnosis of HCC has not been fully elucidated.

In this work, we intended to investigate the prognostic role of
DOCK2 mutation in HCC. First, The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) cohorts were utilized to identify the mutation
frequency of DOCK2. After clarifying the characteristic genes
that are most related to DOCK2 mutation, the risk score was
developed, which played an excellent role in predicting the status
of survival, tumor mutation burden (TMB), and microsatellite
instability (MSI) in DOCK2mutant patients. Furthermore, for an
in-depth study of the biological processes involved in HCC, Gene
Set Enrichment Analysis (GSEA), Gene Set Variation Analysis
(GSVA), and immune correlation analysis of DOCK2 were
performed. Our findings may identify a novel risk score
related to DOCK2 mutation for the prognosis of HCC,
contributing to early diagnosis, targeted therapy, and
prognostic assessment of HCC.

MATERIALS AND METHODS

Data Processing
In this study, The Cancer Genome Atlas (TCGA, http://cancerge.
nome.nih.gov/) (Tomczak et al., 2015) and the International
Cancer Genome Consortium (ICGC, www.icgc.org) (Zhang
et al., 2019) were used to download somatic mutation data
(MAF files) of TCGA-LIHC cohort and the LIRI-JP cohort.
The primary objective of the ICGC database was to provide a
comprehensive elucidation of genome changes in multiple
cancers that result in human disease burden. Among the
ICGC database, the tumor data from different cancer types (or
subtypes) were collected, including abnormal gene expression,
somatic mutation, epigenetic modification, and clinical data. The
ICGC database contains 25,000 tumor genomes. Meanwhile, the
clinicopathologic characteristics and the prognostic information
of the patients in TCGA-LIHC cohort, such as gender, age, and
clinical stage, were obtained from the UCSC Xena website (http://
xena.ucsc.edu/) (Goldman et al., 2019). Moreover, RNA
sequencing data (count value), containing mutation data and
survival data of 353 patient samples (TCGA-LIHC), were
downloaded from TCGA database for subsequent analysis and
were annotated by the annotation file of the GRCh38 version
from the Ensembl database (http://ftp.ensembl.org/pub/current_
gtf) (Howe et al., 2021). In addition, the copy number variations
data were obtained from TCGA database. The clinical
characteristics of patients are listed in Table 1.

Mutation Analysis
With the development of tumor genomics, the mutation
annotation format (MAF) is being widely accepted and used
to store detected somatic mutations. In this study, the maftools
package (Mayakonda et al., 2018) and the GenVisR package
(Skidmore et al., 2016) were utilized to visualize the somatic
mutation data downloaded from TCGA; meanwhile, the
GenVisR package was also used to visualize the somatic
mutation data obtained from ICGC. Moreover, the mutation
of DOCK2 was revealed by the G3viz package (Guo et al., 2019).

TABLE 1 | Summary of patient data sets.

Variable TCGA set (n = 353) ICGC set (n = 258)

Age (years) — —

≤55 119 29
>55 234 229

Gender — —

Female 116 67
Male 237 191

Histologic grade — —

G1 52 39
G2 171 116
G3 113 80
G4 12 23

TNM stage — —

I/II 247 N/A
III/IV 85 N/A

Family history — —

No 199 164
Yes 106 77
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Additionally, to evaluate whether the genes have copy number
variation in liver cancer, GISTIC2.0 in the Genepattern (https://
cloud.genepattern.org/) cloud analysis platform was used to
analyze the copy number variation data of liver cancer in
TCGA database (M. et al., 2006).

Construction of Dedicator of Cytokinesis 2
Mutation Prediction Model
The liver cancer patients were divided into mutation group
(DOCK2-MUT) and wild group (DOCK2-WT) according to
the DOCK2 mutation status of the gene expression data
downloaded from TCGA. A survival analysis was performed
based on the DOCK2 mutation and prognosis information of
liver cancer patients, thus investigating the prognostic difference
between the DOCK2 mutation group and the wild group.
Moreover, the patients’ data obtained from TCGA was
randomly divided into a training set (N = 264) and a testing set
(N = 89) at a ratio of 7:3. The DOCK2 mutation prediction model
was conducted using the random forest (RF) method (Yperman
et al., 2019) in the training set, and the model performance was
quantified via the receiver operating characteristic (ROC) curve.

Construction of the Prognostic Model
The prognostic model was built in light of the gene expression data
of 28 DOCK2mutant liver cancer patients with clinical information.
First, univariate Cox proportional hazard regression analysis was
performed to initially identify overall survival (OS)-related genes
(p-value<0.05). Next, RF and multivariate Cox regression analyses
were conducted to construct a prognostic model. The formula for
calculating the risk score is risk score = exp gene 1 × β gene 1 + exp
gene 2 × β gene 2 + exp gene 3 × β gene 3 + . . . exp gene n × β gene n
(exp gene n indicates the expression level of gene n; β gene n
indicates the regression coefficient of gene n calculated by
multivariate Cox regression). Moreover, correlation analysis was
performed between the DOCK2 mRNA expression and the risk
score, as well as between the DOCK2 mRNA expression and the
characteristic genes mRNA expression in the model.

Assessment of the Prognostic Model
The liver cancer patients in the DOCK2 mutant group with clinical
information were divided into high-risk groups and low-risk groups
in light of the median risk score. The OS analysis was performed
using the Kaplan–Meier (KM) survival curve and time-dependent
ROC, thus evaluating the prediction accuracy of the model. Then,
the univariate Cox regression analysis and the multivariate Cox
regression analysis were conducted in light of the age, gender, clinical
stage, tumor stage, and risk score in DOCK2 mutant liver cancer
patients. Meanwhile, the risk score and clinical characteristics were
analyzed using correlation analysis.

Tumor Mutation Burden and Microsatellite
Instability Analysis
Given that different DOCK2 mutation types may have different
effects on tumorigenesis, the expression data of liver cancer
patients were divided into two subgroups: inactivated mutation

subgroup and other non-silent mutation subgroups. The two
subgroups were assessed via the KM survival curve and time-
dependent ROC.

Tumor mutation burden (TMB) refers to the total number of
somatic mutations in the exon coding region of the genome that
have substitutions, insertions, or deletions perMb base in a tumor
sample. The TMB score of each liver cancer sample is the total
number of somatic mutations (including non-synonymous point
mutations, insertions, and deletions in the coding region of
exons)/target region size, and the unit is mutations/Mb (Chan
et al., 2019). Microsatellite (MS) is defined as a short tandem
repeat (STR) in the human genome including single-nucleotide
repeats, dinucleotide repeats, and even more nucleotide repeats;
microsatellite instability (MSI) refers to the change of any length
of microsatellites due to the insertion or deletion of repeat units in
tumor tissues compared to normal tissues (Hile et al., 2013). MSI
is calculated as the number of insertions or deletions in gene
repeats. In this study, the relationship between the risk score and
TMB and the correlation between the risk score and MSI were
analyzed, respectively.

Differential Analysis
In order to assess the impact of gene expression value on the
DOCK2 mutant type compared to the DOCK2 wild type, the
limma R package (Ritchie et al., 2015) was used to conduct the
discrepant analysis between the DOCK2 mutant group and
DOCK2 wild-type group. The absolute value of log fold
change (logFC) > 0.5 and p-value <0.05 were set as the
threshold for differentially expressed genes. Among them, the
genes with logFC > 0.5 and p-value <0.05 were considered
upregulated differential genes, while the genes with logFC <
−0.5 and p-value <0.05 were regarded as downregulated
differential genes, and the aforementioned results were
displayed with heat maps and volcano maps.

Gene Functional and Pathway Enrichment
Analysis
Gene Ontology (GO) enrichment analysis is a common method
for large-scale functional enrichment studies of genes in different
dimensions and levels and generally includes three aspects:
biological process (BP), molecular function (MF), and cellular
component (CC) (Ashburner et al., 2000). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Ogata et al.,
1999) is a widely applied database that stores numerous data
about genomes, biological pathways, diseases, and drugs.
Additionally, the clusterProfiler R package (Yu et al., 2012)
was applied to identify significantly enriched biological
processes and pathways by GO functional annotation and
KEGG biological pathway enrichment analysis. A p-value
<0.05 was considered statistically significant.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
Gene Set Enrichment Analysis (GSEA) is a calculation method to
assure whether a set of predefined genes show statistical
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differences between two biological states, generally applied to
estimate changes in the pathway and bioprocess activity in sample
expression datasets (Subramanian et al., 2005). Based on the gene
expression profile data of DOCK2 mutant group and
DOCK2 wild-type group patients in TCGA-LIHC dataset and
the reference gene sets “c5.go.v7.4.entrez.gmt” and
“c2.cp.kegg.v7.4.entrez.gmt” downloaded from the MSigDB
database (Liberzon et al., 2015), the GSEA method included in
the clusterProfiler R package was used to conduct enrichment
analysis of TCGA-LIHC gene expression profile data, thus
studying the differences in the biological processes of genes
between the DOCK2 mutant group and DOCK2 wild group.
A p-value <0.05 was considered statistically significant.

Gene Set Variation Analysis (GSVA) (Hnzelmann et al., 2013;
Liberzon et al., 2015), a nonparametric unsupervised analysis
method, is widely utilized in the evaluation of metabolic pathways
enriched in different samples by converting the expression matrix
of genes between different samples into the expression matrix of
gene sets between samples. To study the biological process
variation of the DOCK2 mutant group compared with the
DOCK2 wild group, the “GSVA” R package (Hnzelmann
et al., 2013; Liberzon et al., 2015) was used to perform gene
set variation analysis, and the enrichment scores of each sample
in each pathway in the reference gene set “h.all.v7.4.symbols.gmt”
were downloaded from the MSigDB database. Moreover, the
GSVA results were also analyzed for correlation with the risk
scores.

Immunoassay
The immune microenvironment is a comprehensive LoAD
system, which is mainly composed of immune cells,
inflammatory cells, fibroblasts, interstitial tissues, and various
cytokines and chemokines. The infiltration analysis of immune
cells in tissues has an important guiding role in disease research
and treatment prognosis.

ESTIMATE analysis, an algorithm that quantifies the immune
activity (immune infiltration level) in tumor samples on the basis
of gene expression data, can reflect the richness of the gene
characteristics of the matrix and immune cells. The content of
stromal cells and immune cells in TCGA-LIHC was calculated by
an ESTIMATE R package (Yoshihara et al., 2013). The
correlation between the ESTIMATE score and the expression
level of characteristic genes and DOCK2 in the prognostic model
was also evaluated.

CIBERSORT is an algorithm that deconvolves the expression
matrix of immune cell subtypes in light of the principle of linear
support vector regression, making use of RNA-Seq data to assess
the abundance of immune cells in the tissue. In this study, the
proportion of 22 immune cell subtypes in TCGA-LIHC immune
microenvironment was calculated by the CIBERSORT algorithm
(Newman et al., 2019) in the R package. The number of
permutations was 1,000, and a p-value <0.05 was considered
accurate for calculating the content of immune cells. Based on
Pearson correlation analysis, the correlation between the
expression levels of characteristic genes and DOCK2 in the
prognostic model and 22 types of immune cells in liver cancer
was calculated.

To test the biological processes and cell signal transduction
pathways that the characteristic genes of the prognostic model
may be involved in, an immune gene set was obtained from the
ImmPort database (Bhattacharya et al., 2014) (https://www.
immport.org), and the relationship between the characteristic
genes and DOCK2 in the prognostic model and immune genes
was determined. The correlation between the expression of the
HLA family and the risk score of the prognostic model was also
conducted.

Statistical Analysis
All data calculations and statistical analysis were performed using
R programming (https://www.r-project.org/, version 3.6.3).
Multiple testing corrections were determined using the
Benjamini–Hochberg (BH) method, and FDR correction was
conducted using multiple tests to reduce the false-positive rate.
For the comparison of two groups of continuous variables, the
statistical significance of normally distributed variables was
estimated by independent Student’s t test, and the differences
between non-normally distributed variables were analyzed by
using the Mann–Whitney U test (the Wilcoxon rank-sum test).
The survival R package (Durisová and Dedík, 1993) was utilized
in the survival analysis. The Kaplan–Meier survival curve was
used to reveal differences in survival, and the significance of the
difference in survival time between the two groups of patients was
assessed via a log-rank test. Univariate and multivariate Cox
analyses were applied to determine independent prognostic
factors. As for assessing the accuracy of the risk score to
estimate the prognosis, the receiver operator characteristic
(ROC) curve was drawn by the pROC package and ROCR
package, and the area under the curve (AUC) was calculated
(Sing et al., 2005; Robin et al., 2011). All p-values reported from
statistical tests were two-sided, and a p-value <0.05 was
considered statistically significant.

RESULTS

Genes With High-Frequency Mutations
in HCC
First, 54 genes with mutation frequencies greater than 6% in
TCGA-LIHC patients obtained from TCGA were identified
(Figure 1A). Moreover, the 54 genes were further confirmed
using the data downloaded from the ICGC database (Figure 1B).
Among them, the mutation frequency of DOCK2 was relatively
high, and the DOCK2 mutation was visualized (Figures 1C, D).
GISTIC 2.0 was utilized to analyze copy number variation data in
TCGA, identifying obviously amplified or deleted genes, and the
results showed that DOCK2 had no significant amplification or
deletion (Figures 1E, F).

Construction of Dedicator of Cytokinesis 2
Mutation Prediction Model
Survival analysis was conducted based on the DOCK2 mutation
data and prognostic information of liver cancer patients, and the
results revealed that the mutation of DOCK2 had an essential
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FIGURE 1 | Analysis of somatic mutation and copy number variation in patients with HCC. (A) 54 genes with the highest mutation frequency in LIHC patients in
TCGA cohort. (B)Mutations of 54 genes in ICGC. The panels on the left of the twowaterfall charts show genes with high-frequencymutations in different cohorts, and the
order was based on their mutation frequency; The panels on the right side of the two waterfall charts reveal different types of mutations represented by various color
modules. (C) DOCK2 mutation in TCGA cohort. (D) DOCK2 mutation in the ICGC cohort. (E,F) Identification of significantly amplified and deleted genes. The
mRNA located at the focal CNA peak was related to LIHC. The false discovery rate (Q value) and the change score of GISTIC2.0 (x-axis) corresponded to the genome
position (y-axis). The dotted line indicates the centromere. The green line represents the significant cutoff (q value of 0.25).
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impact on the prognosis and survival of patients (Figure 2A). In
the training set, the RF method was used to construct a DOCK2
mutation prediction model in the mRNA data (Figures 2B, C).
The ROC curve was used to evaluate the performance of the
model, and AUC scores close to 1 indicated that the model had
high sensitivity under a very low false-positive rate. The model
AUC value in the training cohort was 1.00 and that in the
validation cohort was 80.4% (Figure 2D), which demonstrated
that the performance of this model was sufficient to effectively
predict DOCK2 mutation in other transcription cohorts.

Construction of the Prognostic Model
Univariate Cox proportional hazard regression analysis was
carried out in the gene expression data of 28 DOCK2 mutant
LIHC patients with clinical information and 641 genes related to
OS were discovered (p-value <0.05) (Figure 3A). Then, we
conducted the RF method to find out the most important
features connected with prognosis, and 15 genes were screened
out (Figure 3B). Finally, a multivariate Cox proportional hazard

regression analysis identified the five genes associated with OS,
which are secretin receptor (SCTR), tetratricopeptide repeat,
ankyrin repeat and coiled-coil domain-containing 1 (TANC1),
Alkb homolog 7 (ALKBH7), FRAS1-related extracellular matrix 2
(FREM2), and G protein subunit gamma 4 (GNG4). Cox
regression coefficients of the characteristic genes were
calculated, and the risk score of each sample was defined as
the sum of the expression of each characteristic gene multiplied
by its regression coefficient. To assess the predictive power of the
prognostic model, the risk scores of DOCK2 mutant and
DOCK2 wild-type patients were calculated and ranked, the
survival status of each patient was displayed on the dot chart,
and the expression of characteristic genes was shown on the heat
map (Figures 3C, D). Meanwhile, the correlation between
DOCK2 expression and risk score and characteristic gene
expression was analyzed, respectively. The expression of
DOCK2 was dramatically negatively correlated with the risk
score (Figure 3E). DOCK2 expression was significantly
positively correlated with SCTR (r = 0.293, p-value = 9.6e-10),

FIGURE 2 | DOCK2 mutation survival analysis and model construction. (A) Effect of DOCK2 mutation on OS and its significance. Blue indicates the DOCK2 wild
type; red indicates the DOCK2 mutant type. (B) Relationship between the model error and the number of decision trees. (C) Importance of DOCK2 mutation model
variables. (D) Performance of the DOCK2 mutation model in the test set.
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FIGURE 3 | DOCK2 mutation prognostic model. (A) Forest plot of the top 20 prognostic-related genes obtained by univariate regression analysis. The left side of
the vertical red line is the protective gene, and the right side is the dangerous gene. (B) 14 important features selected based on RF. (C,D) Risk score, survival status, and
characteristic gene expression of DOCK2 mutant and DOCK2 wild type, respectively. (E) Scatter plot of the correlation between DOCK2 expression and risk score. (F)
Correlation between DOCK2 and characteristic genes. The size of the dot represents the strength of the correlation between DOCK2 and the characteristic gene;
the size of the point is proportional to the correlation. The color of the dot represents the p-value; the greener the color, the smaller the p-value, and the pinker the color,
the greater the p-value. p-value ≤ 0.05 was considered statistically significant.
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TANC1 (r = 0.607, p-value = 1.8e-43), and FREM2 (r = 0.252,
p-value = 1.8e-07), whereas the expression of DOCK2 had a
significant negative correlation with ALKBH7(r = −0.162, p-value
= 0.0009) (Figure 3F).

Assessment of the Prognostic Model
According to the median risk score, DOCK2 mutant liver cancer
patients with clinical information were divided into the high-risk
group and low-risk group. The results of survival analysis showed
that there was a significant difference in OS between the two risk
groups of 28 DOCK2 mutant samples (Figure 4A). The 1- and 3-
year AUCs on the basis of the risk score obtained by the
prognostic model were 0.791 and 0.822, respectively
(Figure 4B). Additionally, the correlation analysis results of
the risk score and the clinical characteristics of 28 DOCK2
mutant samples revealed that there were no significant
differences in risk scores, different ages, genders, clinical
stages, and tumor stages (Figures 4C–F). Then, univariate Cox
analysis and multivariate Cox analysis were performed based on
the age, gender, clinical stage, tumor stage, and risk score of
DOCK2 mutant liver cancer patients, thus building a clinical
prediction model, the efficacy of which in 28 DOCK2 mutant
samples was 85.8% (Figure 4G). Meanwhile, the calibration curve
showed both good discrimination ability and calibration
(Figure 4H).

Tumor Mutation Burden and Microsatellite
Instability Analysis
Given that different DOCK2 mutation types may have different
effects on the occurrence of liver cancer, this study further divided
the gene expression data of 28 DOCK2 mutant LIHC patients
into two subgroups: the inactivated mutation subgroup (n = 8,
containing nonsense mutation and silent mutation) and other
non-silent mutation subgroups (n = 20). Survival analysis showed
that significant differences in OS were observed between the two
risk groups of samples in other non-silent mutation subgroups
(Figures 5A, B). The time-dependent ROC analysis showed that
in the subgroup of inactivated mutations, the 1- and 3-year AUCs
of the risk score were both 0.833 (Figure 5C); moreover, in other
subgroups of non-silent mutations, the 1- and 3-year AUCs of
risk scores were 0.651 and 0.665, respectively (Figure 5D),
suggesting that the risk score could still maintain good
predictive performance in subgroups with different mutation
types. After acquiring the total number of mutations to obtain
TMB and assessing the relationship between the risk score and
the TMB, we found that there were obvious differences in TMB
between samples with different risk scores (p-value＜0.05)
(Figure 5E). In addition, MSI between samples with different
risk scores also had a significant difference (p-value＜0.05)
(Figure 5F).

Differential Analysis and Functional
Enrichment
To analyze the effect of gene expression values on the DOCK2
mutant samples compared with the DOCK2 wild-type samples,
we conducted a limma discrepant analysis to obtain differentially
expressed genes. The gene expression profile data of 28 DOCK2
mutant samples and 325 DOCK2 wild-type samples were
included in TCGA-LIHC, from which 12 upregulated
differential genes (p-value <0.05, logFC > 0.5) and 4

FIGURE 4 | Analysis of the prognostic model and clinical prediction
model. (A) The impact of risk score on patients’ OS and its significance. Blue
meant a low-risk score, and green meant a high-risk score. (B) Time-
dependent ROC analysis of risk score. (C–F) Correlation analysis of risk
score with age, gender, tumor stage, and clinical stage. (G) ROC curve of a
clinical prediction model in 28 DOCK2 mutant samples. (H) Calibration curve
of the clinical prediction model. The X-axis was the outcome probability
predicted by the model. The Y-axis was the value obtained by actual
observation, and the calculation was repeated 1,000 times. The blue solid line
is the calibration curve, and the diagonal line is the ideal curve. The closer the
calibration curve was to the ideal curve, the better the predictive ability of
the model.
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FIGURE 5 | Assessment of risk score. (A,B) Impact of risk score on OS in the subgroup of inactivated mutations and other subgroups of non-silent mutations and
its significance, respectively. Blue means a low-risk score, and green means a high-risk score. (C,D) Time-dependent ROC analysis of the risk score in the subgroup of
inactivated mutations and other subgroups of non-silent mutations. (E) Analysis of the correlation between TMB and risk score. Pink represents the high-risk group, and
green represents the low-risk group. (F) Correlation analysis between MSI and risk score. Pink represents the high-risk group, and green represents the low-
risk group.
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FIGURE 6 | Differential gene and its functional enrichment analysis. (A) Abscissa is log2FoldChange, and the ordinate is −log10 (adjust p-value). The red nodes
indicates upregulation, the blue nodes indicate downregulation, and the gray nodes represent insignificant expression. (B) Abscissa is the patient ID, and the ordinate is
the differential gene. Red represents high gene expression, and blue represents low gene expression. The green comment bar indicates the DOCK2 mutant sample,
while the red comment bar indicates the DOCK2 wild-type sample. (C–F) GO function enrichment analysis of differential genes and display of BP, MF, and CC.
(D–F)Color of the node indicates the level of gene expression value. Blue represents that the expression value was downregulated, and red indicates that the expression
value was upregulated. The middle quadrilateral represents the effect of genes on the enriched GO terms. Light color means inhibition; dark color means activation. (G)
KEGG pathway enrichment analysis. The abscissa is the gene ratio, and the ordinate is the pathway name. The size of the node indicates the number of genes enriched in
the pathway, and the color of the node indicates −log10 (p-value). (H) Display of the first five items in the KEGG enrichment analysis of differential genes.
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downregulated differential genes (p-value <0.05, logFC < −0.5)
were screened out, and the volcanic map and heat map of the
differential genes were shown in Figures 6A,B. To determine the
value of the differential genes, the biological processes, the cellular
components, and the molecular functions were performed. GO
functional enrichment analysis was first assessed on the 16
differential genes (Figure 6C and Table 2), and the results
showed that these genes were mainly enriched in biological
processes such as antimicrobial humoral response,
antimicrobial humoral immune response mediated by
antimicrobial peptides, regulation of cardiac muscle
contraction, humoral immune response, regulation of striated
muscle contraction, regulation of membrane potential, cardiac
muscle contraction, and skeletal muscle tissue development

(Figure 6D); in cellular components including fascia adherens,
transport vesicle membrane, GABA-A receptor complex, GABA
receptor complex, mast cell granule, integral component of
synaptic vesicle membrane, postsynaptic membrane, and
dendrite membrane (Figure 6E); and in molecular functions
including benzodiazepine receptor activity, secondary active
monocarboxylate transmembrane transporter activity, GABA-
gated chloride ion channel activity, amino acid:sodium
symporter activity, oligosaccharide binding, inhibitory
extracellular ligand-gated ion channel activity, peptidoglycan
binding, and amino acid:cation symporter activity (Figure 6F).
Then, pathways significantly affected by 16 differential genes
were also performed (Figure 6G and Table 3), and the data
revealed that the 16 differential genes were involved in

TABLE 2 | GO enrichment analysis.

Ontology ID Description p-value

BP GO:0019730 Antimicrobial humoral response 0.00011696
BP GO:0061844 Antimicrobial humoral immune response mediated by antimicrobial peptides 0.001532039
BP GO:0055117 Regulation of cardiac muscle contraction 0.001927973
BP GO:0006959 Humoral immune response 0.002637965
BP GO:0006942 Regulation of striated muscle contraction 0.002684261
BP GO:0042391 Regulation of membrane potential 0.004609488
BP GO:0060048 Cardiac muscle contraction 0.005272199
BP GO:0007519 Skeletal muscle tissue development 0.007122358
BP GO:0035821 Modification of morphology or physiology of other organisms 0.007470229
BP GO:0060538 Skeletal muscle organ development 0.007915771
BP GO:1900426 Positive regulation of defense response to bacterium 0.008007218
BP GO:0006937 Regulation of muscle contraction 0.0080973
BP GO:0006941 Striated muscle contraction 0.008373123
BP GO:0033148 Positive regulation of intracellular estrogen receptor signaling pathway 0.008804639
BP GO:0048742 Regulation of skeletal muscle fiber development 0.008804639
CC GO:0005916 Fascia adherens 0.008087095
CC GO:0030658 Transport vesicle membrane 0.012058338
CC GO:1902711 GABA-A receptor complex 0.015313019
CC GO:1902710 GABA receptor complex 0.016112846
CC GO:0042629 Mast cell granule 0.017710673
CC GO:0030285 Integral component of synaptic vesicle membrane 0.027246665
CC GO:0045211 Postsynaptic membrane 0.027593411
CC GO:0032590 Dendrite membrane 0.031982049
CC GO:0098563 Intrinsic component of synaptic vesicle membrane 0.037479348
CC GO:0030133 Transport vesicle 0.039367589
CC GO:0014704 Intercalated disc 0.039826362
CC GO:0,034,707 Chloride channel complex 0.039826362
CC GO:0031252 Cell leading edge 0.041396752
CC GO:0032589 Neuron projection membrane 0.045281879
CC GO:0097060 Synaptic membrane 0.04693445
MF GO:0008503 Benzodiazepine receptor activity 0.008670141
MF GO:0015355 Secondary active monocarboxylate transmembrane transporter activity 0.008670141
MF GO:0022851 GABA-gated chloride ion channel activity 0.010239011
MF GO:0005283 Amino acid:sodium symporter activity 0.011022581
MF GO:0070492 Oligosaccharide binding 0.011805575
MF GO:0005237 Inhibitory extracellular ligand-gated ion channel activity 0.012587993
MF GO:0042834 Peptidoglycan binding 0.013369837
MF GO:0005416 Amino acid:cation symporter activity 0.014151105
MF GO:0004890 GABA-A receptor activity 0.014931799
MF GO:0099095 Ligand-gated anion channel activity 0.015711918
MF GO:0016917 GABA receptor activity 0.017270437
MF GO:0030552 cAMP binding 0.018048836
MF GO:0004190 Aspartic-type endopeptidase activity 0.019603918
MF GO:0005328 Neurotransmitter:sodium symporter activity 0.020380602
MF GO:0070001 Aspartic-type peptidase activity 0.020380602
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GABAergic synapse, nicotine addiction, endometrial cancer,
adherens junction, and bacterial invasion of epithelial cells
(Figure 6H).

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
GSEA biological function enrichment analysis of DOCK2-MUT
and DOCK2-WT genes was performed, and the results showed
that the genes in DOCK2-MUT and DOCK2-WT were enriched
in biological processes including coagulation and regulation of
cytosolic calcium ion concentration (Figures 7A, B and Table 4).

Next, the results of GSEA biological pathway enrichment
analysis suggested that biological pathways such as
complement and coagulation cascades, glycosphingolipid
biosynthesis, and ganglio series were identified among the
targets in DOCK2-MUT and DOCK2-WT (Figures 7C, D
and Table 4).

Furthermore, in order to comprehensively evaluate the roles of
the targets in DOCK2-MUT and DOCK2-WT in liver cancer, the
GSVA was conducted. The data showed three hallmarks:
reactive_oxygen_species_pathway, spermatogenesis, and
uv_response_dn (Figure 7E). Among them, spermatogenesis was
significantly negatively correlated with risk score (p-value <0.05);
uv_response_dn was obviously positively related with risk score
(p-value <0.05); however, reactive_oxygen_species_pathway had no
significant correlation with risk score (Figures 7F–H).

Immunoassay
As liver cancer is considered an immunogenic tumor, the
relationship between the expression of DOCK2, SCTR,
TANC1, ALKBH7, FREM2, and GNG4 and the levels of
immune cells and stromal cells was assessed (Figures 8A, B).
The data showed a positive correlation between stromal cells and
DOCK2, SCTR, TANC1, and FREM2, and a negative correlation
between stromal cells and ALKBH7 and GNG4. Moreover,
immune cells had a positive correlation with DOCK2 and
TANC1 and a negative correlation with ALKBH7 (p-value <0.05).

In addition, the six target genes, DOCK2, SCTR, TANC1,
ALKBH7, FREM2, and GNG4, were significantly correlated with
specific immune-related genes. For example, DOCK2 was
significantly related to the immune gene of SEMA3F; SCTR
was correlated with SEMA3F and FGR; and the same situation

occurred between GNG4 and SEMA3F and NFYA, FREM2 and
FGR, NFYA and MPO, ALKBH7 and SEMA3F, FGR, NFYA and
CALCR (p-value <0.05) (Figure 8C).

More importantly, the six target genes were obviously
interrelated with the infiltration of numerous immune cells.
DOCK2 gene expression was distinctly related to the
infiltration of 11 immune cells; SCTR gene expression was
dramatically correlated with the infiltration of 7 immune cells;
TANC1 gene expression was obviously interrelated with the
infiltration of 10 immune cells; FREM2 gene expression was
distinctly related to the infiltration of one immune cell; ALKBH7
gene expression was dramatically correlated with the infiltration
of 4 immune cells; GNG4 gene expression was markedly
interrelated with the infiltration of 7 immune cells (p-value
<0.05) (Figure 8D). Furthermore, the expression value of
HLA-DOA was statistically significant in different risk groups
(Figure 8E).

DISCUSSION

It is worth noting that genetic mutation plays an essential role in
HCC. Some reports showed that the genetic mutation of some
important genes, including TP53, CTNNB1, and AXIN1, was
relevant to poor outcomes for patients with HCC (Zhan et al.,
2013; Schulze et al., 2015). It is suggested that exploring genomic
instability is a great way to discover promising prognostic
biomarkers for the treatment of HCC. DOCK2 has been
discovered to be linked with a prognostic factor in various
cancers such as acute myeloid leukemia, prostate cancer,
colorectal cancer, and non-small-cell lung cancer (Du et al.;
Yu et al., 2015; Bjerre et al., 2019; Hu et al., 2019).
Nevertheless, research on the diagnosis ability of DOCK2 in
HCC remains insufficient. In the present study, a high mutation
of DOCK2 was found in TCGA-LIHC cohort, which was further
verified in the LIRI-JP cohort, indicating that DOCK2 mutation
was significantly frequent in HCC. Moreover, survival analysis
showed that patients with DOCK2 mutation had a low survival
rate and a poor prognosis compared with the DOCK2 wild-type
group, suggesting that DOCK2 might exhibit a great value in the
prognosis of HCC.

Given the frequency of DOCK2 mutation in HCC, it is
essential to conduct an in-depth study of an effective method

TABLE 3 | KEGG enrichment analysis.

Ontology ID Description p-value

KEGG hsa04727 GABAergic synapse 0.000356208
KEGG hsa05033 Nicotine addiction 0.014756278
KEGG hsa05213 Endometrial cancer 0.021348965
KEGG hsa04520 Adherens junction 0.026092015
KEGG hsa05100 Bacterial invasion of epithelial cells 0.028275936
KEGG hsa05412 Arrhythmogenic right ventricular cardiomyopathy 0.028275936
KEGG hsa04721 Synaptic vesicle cycle 0.028639606
KEGG hsa04742 Taste transduction 0.031545693
KEGG hsa05032 Morphine addiction 0.033359051
KEGG hsa04670 Leukocyte transendothelial migration 0.041671347
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for predicting the prognosis of DOCK2 mutant HCC patients.
Thus, we calculated the risk score on the basis of the five most
relevant prognostic genes including SCTR, TANC1, ALKBH7,

FREM2, and GNG4. The risk score exhibited great predictive
ability in different DOCK2 mutation statuses, risks, and types.
Moreover, the risk score showed an excellent correlation with

FIGURE 7 |GSEA andGSVA. (A,B)Results of GSEA biological function enrichment. (C,D)Results of biological pathway enrichment. (E)Heat map of the significant
hallmark analyzed by GSVA. (F,H) Scatter plot of correlation between significant hallmark and risk score.
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TABLE 4 | GSEA.

ID Description ES p-value

go_coagulation go_coagulation −0.409069157 0.001672241
go_regulation_of_cytosolic_calcium_ion_concentration go_regulation_of_cytosolic_calcium_ion_concentration −0.373853775 0.001692047
go_ventricular_cardiac_muscle_cell_action_potential go_ventricular_cardiac_muscle_cell_action_potential −0.635035665 0.001769912
go_cell_cell_adhesion_via_plasma_membrane_adhesion_molecules go_cell_cell_adhesion_via_plasma_membrane_adhesion_molecules −0.432720305 0.00177305
go_negative_regulation_of_execution_phase_of_apoptosis go_negative_regulation_of_execution_phase_of_apoptosis -0.756145207 0.001785714
go_negative_regulation_of_myoblast_differentiation go_negative_regulation_of_myoblast_differentiation −0.729056439 0.001785714
go_regulation_of_execution_phase_of_apoptosis go_regulation_of_execution_phase_of_apoptosis −0.642047088 0.001785714
go_regulation_of_inflammatory_response_to_antigenic_stimulus go_regulation_of_inflammatory_response_to_antigenic_stimulus -0.726196139 0.001798561
go_negative_regulation_of_synapse_organization go_negative_regulation_of_synapse_organization -0.72808206 0.001801802
go_negative_regulation_of_inflammatory_response_to_antigenic_stimulus go_negative_regulation_of_inflammatory_response_to_antigenic_stimulus −0.827265127 0.001805054
go_lipid_translocation go_lipid_translocation −0.601531891 0.001808318
go_cytokine_receptor_activity go_cytokine_receptor_activity −0.540903843 0.001828154
go_blood_microparticle go_blood_microparticle -0.531068688 0.001838235
go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules go_homophilic_cell_adhesion_via_plasma_membrane_adhesion_molecules −0.531976492 0.001848429
go_complement_activation go_complement_activation −0.566062924 0.001865672
go_immune_receptor_activity go_immune_receptor_activity −0.526876463 0.001872659
go_organophosphate_ester_transport go_organophosphate_ester_transport −0.455964352 0.001879699
go_dna_replication_independent_nucleosome_organization go_dna_replication_independent_nucleosome_organization 0.584583627 0.002118644
go_odorant_binding go_odorant_binding 0.524374367 0.002132196
go_digestion go_digestion 0.456798178 0.002145923
go_diencephalon_development go_diencephalon_development 0.542992829 0.002159827
go_ear_morphogenesis go_ear_morphogenesis 0.482732218 0.002164502
go_neuron_fate_commitment go_neuron_fate_commitment 0.623987975 0.002164502
go_endocrine_system_development go_endocrine_system_development 0.486005649 0.002169197
go_appendage_morphogenesis go_appendage_morphogenesis 0.489850317 0.002178649
go_keratinization go_keratinization 0.454250476 0.002178649
go_cornification go_cornification 0.531790615 0.002188184
go_embryonic_skeletal_system_development go_embryonic_skeletal_system_development 0.503417996 0.002188184
go_skeletal_system_morphogenesis go_skeletal_system_morphogenesis 0.440722934 0.002188184
go_embryonic_appendage_morphogenesis go_embryonic_appendage_morphogenesis 0.475526703 0.002192982
go_cell_fate_specification go_cell_fate_specification 0.504467657 0.002197802
go_divalent_inorganic_anion_homeostasis go_divalent_inorganic_anion_homeostasis 0.825664161 0.002202643
go_embryonic_skeletal_system_morphogenesis go_embryonic_skeletal_system_morphogenesis 0.578909723 0.002207506
go_anterior_posterior_pattern_specification go_anterior_posterior_pattern_specification 0.475479352 0.002222222
go_proximal_distal_pattern_formation go_proximal_distal_pattern_formation 0.65212998 0.002227171
go_appendage_development go_appendage_development 0.473257146 0.002247191
go_cornified_envelope go_cornified_envelope 0.629843229 0.002252252
go_hindlimb_morphogenesis go_hindlimb_morphogenesis 0.642853948 0.002252252
go_negative_regulation_of_response_to_extracellular_stimulus go_negative_regulation_of_response_to_extracellular_stimulus 0.795788231 0.002252252
go_muscle_cell_fate_commitment go_muscle_cell_fate_commitment 0.824992566 0.002277904
go_neuron_fate_specification go_neuron_fate_specification 0.68805324 0.00228833
go_cell_fate_commitment go_cell_fate_commitment 0.400964549 0.002309469
go_monovalent_inorganic_anion_homeostasis go_monovalent_inorganic_anion_homeostasis 0.667695897 0.002309469
go_sensory_organ_morphogenesis go_sensory_organ_morphogenesis 0.430365367 0.002309469
go_embryonic_organ_morphogenesis go_embryonic_organ_morphogenesis 0.424037318 0.002364066
kegg_complement_and_coagulation_cascades kegg_complement_and_coagulation_cascades −0.533293095 0.001824818
kegg_glycosphingolipid_biosynthesis_ganglio_series kegg_glycosphingolipid_biosynthesis_ganglio_series 0.773222168 0.004329004
kegg_propanoate_metabolism kegg_propanoate_metabolism −0.574271735 0.018248175
kegg_renin_angiotensin_system kegg_renin_angiotensin_system −0.660325041 0.023897059
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TMB and MSI. Moreover, the clinical prediction model based
on age, gender, clinical stage, tumor stage, and risk score
revealed both good discrimination ability and calibration,
suggesting that these clinical features could independently
predict the prognosis of patients with HCC. In addition to
providing prognostic information, these five genes can also
be used in precise oncology as biomarkers to guide targeted
therapy.

SCTR, encoding the protein named G protein-coupled
receptor, belongs to the glucagon–VIP–secretin receptor family
(Bayliss and Starling, 1902). It has been reported that in colorectal
cancer, hypermethylation of SCTR had a diagnostic value (Li
et al., 2020). Moreover, SCTR was also found to be a predictor of
the risk for breast cancer and pancreatic ductal adenocarcinoma
(Zheng et al., 2018; Park et al., 2020). TANC1 has an ankyrin
repeat (AR) domain that participates in many cell functions,
especially tumorigenesis (Yang et al., 2019). Through Ingenuity
Pathway Analysis (IPA), genes regulated by TANC1 were
enriched in hepatic inflammation and HCC (Wu et al.,
2021). ALKBH7, a mitochondrial ketoglutarate dioxygenase,
decreases ROS formation to regulate programmed necrosis
(Meng et al., 2019; Kulkarni et al., 2020). A single-nucleotide
polymorphism (SNP) of ALKBH7 was clarified as a new
prostate cancer biomarker in 2017 (Walker et al., 2017).
FREM2 belongs to an extracellular matrix protein located in
the dense layer of the epithelial basement membrane (Wang
et al., 2021). In prostate adenocarcinoma, FREM2 was found to
be one of the most recurrently mutated genes (Zhao et al.,
2019). Upregulated FREM2 protein expression was
demonstrated in glioblastomas compared to normal samples
(Jovcevska et al., 2019). GNG4 is one of the fourteen γ-subunit
proteins of the G protein-coupled receptor (Kishibuchi et al.,
2020). As a tumor suppressor gene, abnormal expression of
GNG4 was reported in multiple cancers containing colorectal
cancer, bladder cancer, and glioblastoma (Pal et al., 2016;
Zhang et al., 2018; Liang L. et al., 2021). To sum up,
evidence has shown that the five genes clarified in this work
all have essential roles in malignant development, indicating
that developing corresponding targeted therapies for high-risk
DOCK2-mutant HCC was feasible.

To understand the role of DOCK2 mutation in HCC from
multiple angles, its potential mechanism in this disease should be
focused on. Through the analysis of GO, KEGG, GSEA, and
GSVA, we found that DOCK2 mutation could influence humoral
immune response, transport vesicle membrane, mast cell granule,
adherens junction, complement and coagulation cascades, and
reactive oxygen species pathway. More importantly, these
biological processes and pathways are closely correlated with
immune function. Immunity plays an essential role in tumor
development including tumor proliferation, invasion, and
metastasis. A significantly important reason for tumor
initiation and progression is that the tumor microenvironment
(TME) changes from immune activation to immune suppression,
thereby avoiding immune surveillance (Han et al., 2019). In
addition, increasing evidence showed that genetic mutation
was not adequate to start tumors, and TME acted as the
second hit that might be needed to drive tumor developmentT
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(Sahoo et al., 2018). The TME consists of the stromal and
immune cells (Huang H. et al., 2021). Both stromal cells and
immune cells were found to be significantly correlated with

DOCK2 and the characteristic genes of the prognostic model,
indicating that DOCK2 might regulate the immune process to
promote the development of HCC. There are many immune cells

FIGURE 8 | Immune correlation analysis. (A,B) Correlation of DOCK2 and characteristic genes with the content of immune cells and stromal cells. (C) Correlation
between DOCK2 and characteristic genes and immune genes. (D)Correlation of DOCK2 and characteristic gene expression with immune cell infiltration. (E) Correlation
between HLA family expression and the risk score.
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involved in tumorigenesis and progression. For the in-depth
investigation, SEMA3F, FGR, NFYA, MPO, and CALCR
showed a high correlation with DOCK2 and its
characteristic genes. In addition, the expression level of
HLA-DOA revealed a significant difference in different
DOCK2 risk groups. Thus, the six immune genes, namely,
SEMA3F, FGR, NFYA, MPO, CALCR, and HLA-DOA, might
be the targets of DOCK2 immune-related treatments in the
future.

Although the current work sheds new light on the
relationship between DOCK2 and HCC, there were still
some limitations. First of all, the number of cohorts with
both TCGA-LIHC and LIRI-JP was restricted, and multi-
center large sample research is needed. Second, given that
the data were obtained from public resources, the bias of the
analyzed profile could not be ignored. Finally, all the results in
this work came from in silico analyses, and further clinical
validations and experiments are required to promote the
clinical application of our findings, which will be our next
research content in the near future.

In conclusion, the present study identifies a novel prognostic
signature based on DOCK2 mutation-related genes that shows
great prognostic value in HCC patients, and this gene mutation
might promote tumor progression by influencing immune
responses. These data provide valuable insights for future

investigations into personalized forecasting methods and also
shed light on stratified precision oncology treatment.
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Correlated With Immune Checkpoints
in Ovarian Cancer
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Background: Microchromosome maintenance protein 10 (MCM10) is required for DNA
replication in all eukaryotes, and it plays a key role in the development of many types of
malignancies. However, we currently still do not know the relationship between MCM10
and ovarian cancer (OV) prognosis and immune checkpoints.

Methods: The Gene Expression Profiling Interactive Analysis and Tumor Immunology
Estimation Resource (TIMER) databases were used to investigate MCM10 expression in
Fan cancer. The Kaplan-Meier Plotter and PrognoScanwere used to assess the relationship
between MCM10 and OV prognosis. The LinkedOmics database was used to analyze the
MCM10 co-expression network and explore GO term annotation and the KEGG pathway.
The relationship betweenMCM10 expression and immune infiltration in OVwas investigated
using the Tumor Immunology Estimation Resource database. cBioPortal database was
used to explore the relationship between MCM10 expression and 25 immune checkpoints.
Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect
MCM10 expression. The prognosis was also analyzed by distinguishing between high and
low expression groups based on median expression values.

Results: The results of the three data sets (220,651_s_at, 222,962_s_at and 223,570_at)
in KM Plotter all indicated that the overall survivalof the high MCM10 expression group was
lower than that of the low expression group OV, and the results of GSE9891 also reached
the same conclusion. The expression level of MCM10 was negatively correlated with
B cells and CD8+T cells, and positively correlated with CD4+T Cells and Macrophages.
GO term annotation and KEGG pathway analysis showed that the co-expressed genes of
MCM10 were mainly enriched in cell cycle and DNA replication. The alterations in MCM10
coexisted statistically with the immune checkpoints CTLA4, TNFSF4, TNFSF18, CD80,
ICOSLG, LILRB1 and CD200. PCR results displayed that MCM10 was highly expressed in
OV tissues, and the increased expression of MCM10 was significantly associated with
poor overall survival.

Conclusion: These results demonstrated that high expression of MCM10 was associated
with poor prognosis in OV and correlated with immune checkpoints.
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INTRODUCTION

Ovarian cancer (OV) is a common but fatal gynaecological
malignancy. Although the mortality rate from OV has
declined over the past 40 years as medical care has improved,
it still remains the second leading cause of death from
gynaecological cancers in women and the eighth leading cause
of death in women (Irusta, 2021). The current treatment for OV is
mainly surgical resection and platinum-based chemotherapy, the
combination of which usually brings good outcomes, with the
addition of anti-angiogenic agents usually for poorly operated
and stage IV patients (Lheureux et al., 2019). Despite many efforts
to treat OV, the prognosis still remains poor due to the recurrence
and metastasis of OV. Thus, identifying novel regulators as
diagnostic and therapeutic targets for OV is still urgently
required.

Minichromosome maintenance (MCM) proteins are essential
for the initiation of DNA replication, and it has been detected to
be overexpressed in various cancer tissues, including lung
squamous cell carcinoma (Wu et al., 2018), breast cancer
(Juríková et al., 2016), glioma (Cai et al., 2018), hepatocellular
carcinoma (Liu et al., 2018), etc. As an important player in the
initiation pathway of DNA replication, Minichromosome
maintenance 10 (MCM10) was first identified in a yeast
genetic screen and only presents in eukaryotes (Aves et al.,
1998). At the same time, the involvement of MCM10 has also
been found in DNA elongation, bolstering the activity of the
CMG helicase on bypassing replication blocks (Langston et al.,
2017; Lõoke et al., 2017) and promotion of replication fork
progression and stability (Baxley and Bielinsky, 2017). In
addition to the above group roles, MCM10, like other MCM
family proteins, is abnormally expressed in various tumors and
associated with prognosis. The overexpression of MCM10 is
thought to promote the abnormal proliferation of prostate
cancer (PC) cells and associated with poor prognosis of PC
(Cui et al., 2018). Meanwhile, it is positively related to poor
prognosis in breast cancer (Yang andWang, 2019). In glioma, the
knockdown of MCM10 in glioma cells resulted in decreased cell
proliferation, migration and invasion (Kang et al., 2020).
However, we have not found many articles on the relationship
between MCM10 and OV. Based on the close relationship
between MCM10 and various malignant tumors, we have
reasons to believe that MCM10 is a potential prognostic marker.

Increasing research results proved that immunotherapy is a
very promising therapeutic method in the treatment of malignant
tumors, among which the blockade of immune checkpoints has
displayed significant efficacy in various types of tumors (Topalian
et al., 2016). Interfering with Cytotoxic T lymphocyte (CTLA-4)
and ProgrammedDeath-1 (PD-1) reportedly has clinical benefits
in several human cancers (Odunsi, 2017), so the characterizing
associations between MCM10 and immune checkpoints will
potentially enhance OV treatment.

In this study, the online tools TIMER and GEPIA were used to
explore the expression of MCM10 in various malignancies. The
prognostic value of MCM10 expression in OV was determined
using the Kaplan-Meier Plotter and PrognoScan databases.
LinkedOmics database was used to view genes and pathways

associated with MCM10. The cBioPortal database was used to
visualize and compare genetic alterations and explore the
association between MCM10 and 25 immune checkpoints.
Finally, qRT-PCR was used to detect the expression of
MCM10 and analyze the relationship between its expression
and prognosis. Our findings revealed an significant role for
MCM10 in OV expression and prognosis, and also elucidated
the relationship between MCM10 and multiple immune
checkpoints.

MATERIALS AND METHODS

Tissue Samples
A total of 22 cancerous and 50 paracancerous ovarian tissue
samples were obtained during surgery. The study was approved
by the jurisdictional clinical research ethics committees. All
patients consented to the study.

qRT-PCR
Frozen tissues (100mg) were ground into powder in liquid nitrogen,
and then suspended in 1 ml TRIZOL Reagent (Invitrogen, United
States of America), Total RNAwas extracted using TRIZOL reagent.
RNA was quantified using a spectrophotometer (Beckman, United
States of America). RNA template and random primers were
incubated at 70°C for 10 min to melt the secondary structure
within the template, and cooled on ice for more than 2min.
Then the complete reaction mixture was incubated at 30°C for
10 min, 42°C for 60min and 70°C for 15 min. PCRwas performed in
a total volume of 25 μl containing 1 μl of reverse-transcribed cDNA.
After an initial incubation at 94°C for 5 min, the reaction mixtures
were subjected to 35 cycles of amplification using the following
protocols: 94°C for 45 s, 55°C for 45 s and 72°C for 45 s, followed by a
final extension step at 72°C for 7 min. PCR products were analyzed
by 1.2% agarose gel electrophoresis and stained with GoldView
nucleic acid dye. Real-time RT-PCR was performed using ABI
PRISM 7500 Sequence Detection System instrument and software
(Applied Biosystems, United States). The relative expression level of
MCM10 was measured using SYBRGreen I dye-based method. The
results were normalized to the expression of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). The Ct values of the
amplified products were used in conjunction with the 2−ΔΔCt

method to analyze the data (Schmittgen and Livak, 2008; Zhang
et al., 2010). The primers used were GAPDH: 5′-AGAAGGCTG
GGGCTCATTTG-3′ (F), 5′-AGGGGCCATCCACAGTCTTC-3′
(R); MCM10:5′-CACAGAAATGAACAAGAA-3′(F),5′-
AATAAGAACAAGGACACA-3′(R)；Primers were synthesized
by BGI Company.

GEPIA Database Analysis
GEPIA (http://gepia.cancer-pku.cn/index.html) is a recently
developed bioinformatics platform that incorporates genotype
tissue expression data from 9,736 tumors and 8,587 normal
samples. In the current study, the “Expression DIY”
component was used to analyze the EFNA1 expression levels
in a variety of cancers and adjacent tissues, and p < 0.05 was used
as the screening threshold significance level (Tang et al., 2017).
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TIMER Database
TIMER (https://cistrome.shinyapps.io/timer/) is a tumor
immunity database, including 10,897 cancer samples from the
TCGA database, together with an abundance of tumor-
infiltrating immune cells (TIICs) based on a deconvolution
method from gene expression profiles. In the present study,
the “Gene” module was applied to analyze the correlations
between EFNA1 expression and immune cell infiltration. The
immune cells analyzed included CD4+ T cells, CD8+ T cells,
B cells, neutrophils, macrophages, and dendritic cells (DCs). The
“Correlation” module of TIMER was used to analyze the
associations between EFNA1 and other prognosis-related
immune cell markers, including CD8+ T cells, all T cells

collectively, B cells, monocytes, tumor-associated macrophages
(TAMs), M1 and M2 macrophages, neutrophils, natural killer
(NK) cells, and DCs (Li et al., 2017).

Survival Analysis and Prognostic Evaluation
Kaplan–Meier Plotter (http://kmplot.com/analysis/) and
PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/index.
html) were used for prognostic analyses. Kaplan–Meier Plotter
evaluated the prognostic significance of MCM10 mRNA
expression in OV. Patients’ samples were divided into two
groups based on the median MCM10 expression level, and the
overall survival (OS) of patients with OV was analyzed. The
examination probe ID was used for MCM10 was 220,651_s_at,

FIGURE 1 | MCM10 expression levels in different types of human cancers. (A) MCM10 expression in different tumor types in TIMER. (B) MCM10 expression in
different tumor types in GEPIA. (C) Box plots comparing MCM10 expression in OV and unpaired normal tissues in GEPIA based on analysis of variance method (TCGA
tumor versus TCGA normal + GTEx normal).*p < 0.05, **p < 0.01, ***p < 0.001.
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222,962_s_at and 223,570_at. The log-rank p-value and hazard
ratio (HR) with 95% confidence intervals were calculated. The
PrognoScan database mainly collects clinical prognostic
information derived from 14 cancers from GEO (Gene
Expression Omnibus) and various laboratories, and then
applies a minimum p value approach in analyses. In the
current study, it was used to analyze the prognostic value of
MCM10 in OV and adjust the threshold to a Cox p value (Mizuno
et al., 2009; Lánczky and Győrffy, 2021).

cBioPortal Database
cBioPortal for Cancer Genomics (http://cbioportal.org) is a large
repository of genomics datasets. In the present study, cBioPortal
was used to visualize and compare the changes in EFNA1 and
immune checkpoints in OV. The correlations between MCM10
and immune checkpoints were also investigated. The immune
checkpoints analyzed included PD-L1 (CD274), PD-L2
(PDCD1LG2), CD80, CD86, VTCN1, VSIR, HHLA2,
TNFRSF14, PVR, CTL4, CD112 (NECTIN2), CD200,
LGALS9, ICOSLG, TNFSF9, TNFSF4, CD70, TNFSF18, CD48,
CTLA4, CD276, LILRB1, LILRB2, HAVCR2, CD47 and
TNFRSF9(CD137) (Wu et al., 2019).

COSMIC Database Analysis of MCM10
Mutations in OV
The Catalogue of Somatic Mutations in Cancer (COSMIC)
(https://cancer.sanger.ac.uk) is the most detailed and
comprehensive resource to explore the effects of somatic
mutations in human cancer. COSMIC database Contains 6
million coding mutations (Tate et al., 2019). Ovary in
the“tissue distribution”and “mutation distribution”were chosen.

LinkedOmics Database Analysis of
MCM10-Related Pathways
The LinkedOmics (http://www.linkedomics.org) database includes
32 cancer types from TCGA project and 11,158 patients with
multiple omics and clinical data. It is also the first multi-omics
database that integrates mass spectrometry–based global
proteomics data generated by the Clinical Proteomics Cancer
Analysis Alliance on selected TCGA tumor samples (Vasaikar
et al., 2018). The differentially expressed genes related to MCM10
were screened from the TCGA OV cohort through the LinkFinder
module in the database, and the correlations of the results were
presented in volcano plots and heat maps, respectively, by Pearson

FIGURE 2 | Correlations between MCM10 expression and prognostic indicators in OV. (A–C) Correlations between MCM10 and OV prognoses in the
Kaplan–Meier Plotter database from different expression callers (220,651_s_at,222,962_s_at, 223,570_at). (D) Survival curve from PrognoScan analysis for OS of
patients with OV. HR = hazard ratio.
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correlation coefficient test. Gene Set Enrichment Analysis (GSEA)
in the LinkInterpreter module performed functional module
analysis of the Gene Ontology Biological Process (GO_BP),

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
And 0.05 was considered as the p-value cutoff and the Spearman
correlation test was conducted to analyze the results statistically.

FIGURE 3 | The co-expression genes with MCM10 from the LinkedOmics database in OV. (A) The whole significantly associated genes with MCM10 distinguished
in OV cohort. (B–D) Top 50 genes positively and negatively related to MCM10 in OV (C,E) GO annotations and KEGG pathways of CLEC10A in LUAD cohort.
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Statistical Analysis
All data were expressed as means and standard deviations, and
SPSS 19.0 software (SPSS Inc. Chicago, IL, United States) was the
statistical analysis tool used. The student’s t-test and one-way
analysis of variance were carried out to analyze the differences
between groups. p < 0.05 was deemed to indicate the statistical
significance. All experiments were conducted in triplicate as a
minimum. The Kaplan–Meier Plotter and GEPIA results are
presented as hazard ratios (HRs) and p values, and
PrognoScan results are presented as Cox p values.

RESULTS

mRNA Expression Levels of MCM10 in
Different Types of Human Cancers
To evaluate the differences of MCM10 expression in tumor and
normal tissues, the MCM10 mRNA levels in tumor and normal
tissues of patients with multiple types of cancer were analyzed using
the GEPIA and TIMER database. MCM10 expression was higher in
BLCA, BRCA, CHOL, COAD, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, PRAD, READ, STAD, THCA, and UCEC, compared with
normal tissues in TIMER (Figure 1A). In GEPIA, high expression in
BLCA, BRCA, CESC, COAD, DLBC, ESCA, GBM, HNSC, LUAD,
LUSC, OV, READ, SKCM, STAD, TGCT, THYM, UCEC and UCS
was observed. In addition, lower expression was observed in LAML
(Figure 1B). MCM10 was highly expressed in OV (Figure 1C).

Relationships Between MCM10 and the
Prognosis of OV
The prognostic value of MCM10 expression in OV was evaluated
using Kaplan-Meier plots and PrognoScan. The expression of
MCM10 was significantly associated with the prognosis of OV
patients. In analyses with the Kaplan-Meier plots, the OS
220651_s_at [HR = 1.14 (1 -1.3), p = 0.043], 222,962_s_at
[HR = 1.59 (1.29 -1.97), p = 1.3e-05] and 223,570_at [HR =
1.43 91.17 -1.760, p = 0.00049] of OV patients with high MCM10
expression (Figures 2A–C) values were significantly lower than
those of patients with low MCM10 expression. In PrognoScan
database analysis of the prognostic potential of MCM10 in OV,
high MCM10 expression in the GSE9891 cohort was associated
with poor OS [HR = 1.36 (1.02 -1.810, p = 0.035626] (Figure 2D).

MCM10 Co-Expression Network in OV
To understand the biological function of MCM10 in OV, the
LinkFinder module in the LinkedOmics portal was used to
examine the co-expression pattern of MCM10 in TCGA-OV. As
shown in Figure 3A genes positively correlated with MCM10 were
dark red dots, and 3,613 genes negatively correlated with MCM10
were dark green dots. Figures 3B–D represents the top 50 genes
associated and negatively associated with the MCM10 signature,
respectively. GO term annotation proved that the co-expressed genes
of MCM10 join mainly in chromosome segregation, spindle
organization, DNA replication, cell cycle G2/M phase transition,
mitotic cell cycle phase transition, cell cycle checkpoint, double-
strand break repair, cytokinesis, negative regulation of mitotic cell

cycle and protein localization to chromosome, etc (Figure 3C).
KEGG pathway analysis indicated the enrichment in Cell cycle,
DNA replication, Fanconi anemia pathway, Oocyte meiosis,
Progesterone-mediated oocyte maturatio, Homologous
recombination, Mismatch repair, Asthma, Graft-versus-host
disease, and Staphylococcus aureus infection, etc (Figure 3C). It
was found that GO terms and KEGG pathways were more
concentrated in cell cycle and DNA replication.

Mutation of MCM10 in OV
The cBioPortal was used to explore the mutation status of MCM
families (MCM2, MCM3, MCM4, MCM5, MCM6, MCM7,
MCM8, MCM9, MCM10 and MCMBP). Totally, 30.87% (96/
311) of patients had genetic alterations (Figure 4A), of which
MCM10 accounted for 6.43% (20/311), and the amplification was
the most frequent mutation (Figure 4B). In COSMIC, we further
assessed the mutation type of MCM10, Missense substitutions
occurred in approximately 21.43% of the samples, synonymous
substitutions occurred in 3.57% of the samples, and nonsense
substitutions occurred in 3.57% of the samples (Figure 4C). The
substitution mutations mainly occurred at A > G (25.00%) and G
> T (25.00%), followed by A > T (12.50%), C > A (12.50%), C >G
(12.50%), and G > A (12.50%) (Figure 4D).

Correlation of MCM10 With Immune
Infiltration and Immune Checkpoints
The presence of immune infiltration within tumors can generate
important biomarkers to predict the prognosis of tumor patients,
with impacts on radiotherapy, chemotherapy and therapy. Therefore,
it is cardinal to study the relationship between MCM10 and
immunity. We used the “Gene” module in TIMER for database
search, entered the target gene MCM10, and selected OV. This
module displays infiltration results, including TIMER, EPIC, MCP-
COUNTER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
XCELL, QUANTISE and TIDE. The expression of MCM10 was
positively correlated with CD4+T Cells (cor = 0.109, p = 0.0166) and
Macrophages (cor = 0.101,p = 0.0275), and was positively correlated
with B cells(cor = -0.1,p = 0.0288) and CD8+TCells(cor = -0.139, p =
0.00223) (Figure 5A). The relationship between genetic changes in
the MCM10 gene and 25 immune checkpoints was explored. Three
datasets (MSK, TCGA and MSKCC), including 612 samples, were
selected, and genomic studies revealed that MCM10 was involved in
the alteration of OV immune checkpoints. The alterations of
MCM10 and immune checkpoints in OV were visualized in a
compact manner. In OV, the Genetic Alteration of MCM10 was
5% and mainly concentrated in Amplification. There was a part of
Missense Mutation, second only to 6% of the immune checkpoint
CD47, which was equal to HHLA2 and CD200. This indicated that
MCM10 had a high mutation rate during the progression of OV
(Figure 5B). Then, the association between MCM10 and each
immune checkpoint was examined. Notably, the alterations in
MCM10 showed statistically significant coexistence rather than
rejection with the immune checkpoints CTLA4, TNFSF4,
TNFSF18, CD80, ICOSLG, LILRB1 and CD200 (Table 1). These
findings strongly suggested thatMCM10 is a potential co-regulator of
the OV immune checkpoint.
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Validation of MCM10 in OV Tissues
To explore the expression ofMCM10 in OV, qRT-PCR validation
was chosen. The results suggested that the expression of MCM10
was elevated in OV (Figure 6A). According to the median value
of expression, the patients were divided into high and low
expression groups to judge the prognosis of patients
(Figure 6B). The results illustrated that OV patients with high
MCM10 had a worse prognosis.

DISSCUSSION

One of the characteristics of tumor cells is unlimited
proliferation. Therefore, many proteins related to DNA
replication have been considered as potential cancer
biomarkers, including MCM protein (Yu et al., 2020). MCM

protein has been considered as a biomarker of dysplasia and
tumor (Wang et al., 2020). There are several hypotheses about the
mechanism of MCM dysregulation leading to tumorigenesis. The
first is genomic instability (GIN), because the formation of cancer
cells is caused by the accumulation of mutations in oncogenes and
tumor suppressor genes. In many studies, GIN caused by MCM
mutation has been proved to be related to the occurrence of
malignant tumors. (Chuang et al., 2010). Secondly, damage to
MCM induces replicative stress, a critical step in the initiation of
the oncogenic process (Gaillard et al., 2015). Finally, the study
found that MCM family proteins participate in the progression of
cell cycle pathways. For example, knockdown of MCM2 reduces
the expression of cyclinD1, cyclinA and CDK4, knockdown of
MCM3 reduces the expression of cyclinA, knockdown of MCM6
causes CyclinA, CyclinB1,CyclinD1, silencing of MCM7 reduces
cyclinD1, cyclinE2 and CDK2, and down-regulation of cyclinD1

FIGURE 4 |Mutation analysis of MCM10 in OV. (A)Mutation frequency of MCM10. (B)Mutation frequency of MCM10. (C–D) The mutation types of MCM10 in OV
by Catalogue of Somatic Mutations in Cancer (COSMIC) database.
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in breast cancer cells with MCM10 knockdown (Zhang et al.,
2015; Qiu et al., 2017; Liu et al., 2018; Yang and Wang, 2019).
These results all suggest that mutations in MCM proteins cause
changes in various cyclins, and ultimately aberrant cell cycle
progression leads to tumorigenesis. There are few studies on
MCM10 in the MCM protein family, especially its relationship
with OV, so this study focused on this gene, which has not
receivedmuch attention but is extremely significant. MCM10 acts
as an vital scaffold for DNA replication and protection against
replication stress under normal conditions. However, under
pathological conditions, MCM10 is frequently deregulated, and
gene amplification and overexpression are very common in
cancer (Baxley and Bielinsky, 2017). Our results also
demonstrated that the changes of the MCM10 gene in OV are
mainly concentrated in the amplification, and it was discovered
that most of the mutations in MCM10 are missense mutations
(93%), and the rest are roughly divided into splicing mutations
(3.7%) and nonsense mutations (3.2%) (Gao et al., 2013; Kang
et al., 2013), which is consistent with our findings. The
mechanism by which MCM10 causes OV, in addition to the
aforementioned, may also be related to the specific relationship
between MCM10 and female ovaries, where MCM10 is highly

expressed in adult female ovaries (Graveley et al., 2011). Based on
this, Reubens et al. conducted further research and believed that
MCM10 plays a unique biological role in the development or
maintenance of the female germline (Reubens et al., 2015). So the
mutation of MCM10 may be another cause of OV progression.
These data clearly indicated that MCM10 changes in the cancer
genome, but whether these changes are the causes or the results of
OV still needs further studies to confirm.

Our results proved that the expression of MCM10 in various
malignant tumors is different from that in normal tissues, except
for the low expression of LAML in the GEPIA database, because
the data in the TIMER database are all from TCGA, and normal
control samples of some malignant tumors are insufficient, but
MCM10 is highly expressed in malignant tumors with differential
expression. Since we only obtained high expression of MCM10 in
OV fromGEPIA, we further verified the expression of MCM10 in
OV by qRT-PCR, and it was found that the expression ofMCM10
in OV was higher than that in normal ovarian tissue.
Subsequently, the relationship between the expression of
MCM10 and the prognosis of OV patients was examined in
four databases, and it was obvious that the prognosis of OV
patients with high expression of MCM10 was worse. After being

FIGURE 5 | Correlation of MCM10 with immune infiltration and immune checkpoints. (A) the correlations between MCM10 and immune cell infiltrations from
TIMER. (B) Landscape of MCM10 and immune checkpoint alteration in OV from cBioPortal.
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divided into high and low expression, the patients in the high
expression group also had a poor prognosis. These findings all
demonstrated that MCM10, as a promising prognostic
biomarker, is increased in OV.

Having verified the differential expression and prognostic potential
of MCM10 in OV, in order to better serve the clinic, we next explored
the possible pathogenic mechanism of MCM10. In order to test our
previous speculation about the pathogenic mechanism of MCM10,
the effects of MCM10 changes in OV on the transcriptome were
explored, and it was found that 4,297 positively correlated genes and

3,613 negatively correlated genes were changed accordingly, which
suggested that the alterations in MCM10 have broad impacts on the
transcriptome. The analysis results of GO and KEGG both illustrated
that the pathway enrichment of other gene changes caused by
MCM10 changes mainly concentrated in the related pathways of
cell cycle and DNA replication. Since MCM10 itself participates in
DNA replication, it is not surprising that the changes are mainly
concentrated in DNA replication. However, the changes of MCM10
are closely related to the cell cycle, which may be closely related to the
cell cycle, because the DNA replication process depends on the

TABLE 1 | Mutual-exclusivity analysis between MCM10 and multiple-immune checkpoints in ovarian cancer.

A B Neither A not B B not A Both Log2
Odds
ratio

p-value q-value Tendency Significant

MCM10 CTLA4 477 25 6 3 >3 0.01 0.154 Co-occurrence MCM10
MCM10 TNFSF4 474 25 9 3 2.66 0.023 0.329 Co-occurrence MCM10
MCM10 TNFSF18 473 25 10 3 2.505 0.029 0.379 Co-occurrence MCM10
MCM10 CD80 472 25 11 3 2.364 0.036 0.401 Co-occurrence MCM10
MCM10 ICOSLG 472 25 11 3 2.364 0.036 0.401 Co-occurrence MCM10
MCM10 LILRB1 472 25 11 3 2.364 0.036 0.401 Co-occurrence MCM10
MCM10 CD200 461 24 22 4 1.804 0.047 0.506 Co-occurrence MCM10
MCM10 NECTIN2 465 25 18 3 1.632 0.101 0.819 Co-occurrence MCM10
MCM10 LILRB2 472 26 11 2 1.723 0.156 0.928 Co-occurrence MCM10
MCM10 CD86 467 26 16 2 1.167 0.258 0.928 Co-occurrence MCM10
MCM10 PVR 467 26 16 2 1.167 0.258 0.928 Co-occurrence MCM10
MCM10 CD274 465 26 18 2 0.991 0.301 0.928 Co-occurrence MCM10
MCM10 PDCD1LG2 465 26 18 2 0.991 0.301 0.928 Co-occurrence MCM10
MCM10 HAVCR2 475 27 8 1 1.137 0.4 0.928 Co-occurrence MCM10
MCM10 HHLA2 460 26 23 2 0.621 0.404 0.928 Co-occurrence MCM10
MCM10 VSIR 473 27 10 1 0.809 0.465 0.928 Co-occurrence MCM10
MCM10 CD276 473 27 10 1 0.809 0.465 0.928 Co-occurrence MCM10
MCM10 TNFRSF14 472 27 11 1 0.668 0.495 0.928 Co-occurrence MCM10
MCM10 CD47 454 26 29 2 0.268 0.519 0.928 Co-occurrence MCM10
MCM10 CD48 471 27 12 1 0.54 0.524 0.928 Co-occurrence MCM10
MCM10 TNFRSF9 469 27 14 1 0.311 0.576 0.928 Co-occurrence MCM10
MCM10 LGALS9 475 28 8 0 <-3 0.635 0.928 Mutual exclusivity MCM10
MCM10 VTCN1 465 27 18 1 -0.064 0.72 0.928 Mutual exclusivity MCM10
MCM10 CD70 478 28 5 0 <-3 0.754 0.928 Mutual exclusivity MCM10
MCM10 TNFSF9 479 28 4 0 <-3 0.798 0.928 Mutual exclusivity MCM10

FIGURE 6 | Expression of MCM10 in Independent OV Cohorts. (A) qRT-PCR showed that MCM10 expression was up-regulated in OV tissues. (B) High MCM10
expression have worse prognosis in OV patients.
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regulation of the cell cycle (Tachibana et al., 2005). Previous studies
suggested that MCM10 may be part of a high-priority group of genes
that may promote cell cycle-related processes in cancer cells (Cerami
et al., 2012). A series of cell cycle checkpoint inhibitors targeting OV
are already under development or clinical trials (Pujade-Lauraine,
2017). For example, cells initiate multiple responses to protect the
genome and ensure survival against DNA damage, and unsuccessful
DNA damage repair can lead to mitotic abnormalities and cell death
(Lin et al., 2017). High-grade serous ovarian cancer (HGSOC) relies
heavily on G2 checkpoint blockade to promote DNA damage repair,
which is a process that opens up a newperspective for the treatment of
OV (Haynes et al., 2018). If blocking MCM10 can affect both DNA
replication and cell cycle, whynot? Therefore, the combined treatment
of DNA replication and cell cycle intervention may benefit OV
patients.

People who care about OV treatment know that OV treatment
cannot be cured by single-agent therapy because the results of single-
agent studies onOV so far have been disappointing (Disis et al., 2019).
The results of the drug combination may have some benefit, but the
results are not better than the historical control (Lee et al., 2019).
Therefore, it is necessary to explore a new combination therapy
method. Tumor immunotherapy is considered as a new and
potential tumor treatment method. The infiltration state of tumor-
associated immune cells in vivo together constitutes the immune
microenvironment of tumor cells, and these immune cells may have
tumor antagonism or tumor promotion (Jain, 2021). Our results
demonstrated that the expression level of MCM10 is negatively
correlated with B cells and CD8+T Cells, and positively correlated
withCD4+TCells andMacrophages. This suggests thatMCM10plays
a particular role in the immune infiltration of OV. In addition to the
critical role of the immune microenvironment in anticancer
immunity, another most popular approach in immunotherapy is
immune checkpoint blockade (Huang et al., 2020). PD-1/PD-L1 and
CTLA-4 are considered as the most principal immune checkpoints at
present. In the past decade, great progress has beenmade in thefield of
immune checkpoint-related researches. immune checkpoint blockade
(ICB) has been very successful in this type of cancer (Havel et al.,
2019). However, since the current FAD-approved immune
checkpoint inhibitors (ICI) are all monoclonal antibodies (mAbs),
there aremany shortcomings. Therefore, the therapeutic effects of ICB
on OV are still limited. The study on small molecule inhibitors to
eliminate the limitations of mAbs is a new direction for ICB therapy
(Zhang et al., 2020; Zhang et al., 2021). More and more evidence
showed that small molecule inhibitors that target oncogenic play a role
far beyond the biological behavior of tumors. Some studies have found
that some small molecule inhibitors directly participate in mediating
the tumor microenvironment and promoting tumor cell death (Chen
et al., 2019; Ziogas et al., 2021). For example, the inhibitors of CDK4/6
can synergize with PD-1 blockade and benefit the treatment of OV
(Zhang et al., 2020). It has been revealed that the matrix
metalloproteinases (MMPs) inhibitor, SB-3CT, can enhance the
effects of PD-1 and CTLA-4 blockade in primary and metastatic
tumors in studies (Ye et al., 2020). Small-molecule inhibitor JQ1
targeting BET bromodomains reduces PD-L1 expression, while
attenuating progression in PC models (Mao et al., 2019). All of the
above studies have proved that ICI combined with small molecule
inhibitors is an effective way to address the shortcomings of current

ICIs such as low oral availability, long tissue retention time and poor
membrane permeability. Changes in seven ICIs occurred
simultaneously, and considering that MCM10 is a member of a
high-priority gene, the combination of its small-molecule inhibitor
and ICI greatly benefits OV patients.

In our study, the expression and prognosis of MCM10 in OV
were analyzed by bioinformatics methods, and the related
pathways of MCM10 that were related to immune infiltration
and immune checkpoints were analyzed. However, inevitably,
our tests have certain limitations. Firstly, the number of patients
enrolled in our validation experiment is relatively small, and we
will update the number of patients in the later stage. Secondly, we
only propose possible pathogenic pathways, and further
experimental verification is needed, for example, we could test
the effects of an artificial knockdown of MCM10 expression on
tumor size and progression in cell models, validate qPCR results
from tumor samples with Western blots, test for differences
between MCM10 expression in CD8 mutant backgrounds and
check if MCM10 expression differences cause differences in
replication timing, genome stability or cell cycle defects.
Finally, we need animal experiments and long-term clinical
experiments for MCM10 small-molecule inhibitors, and then
apply them to patients and use them in combination with ICI.
Most importantly, we will solve these problems slowly, and our
efforts have also achieved certain results. Therefore, future
researches on Mcm10’s relationship to cancer development
and progression may lead to discoveries with momentous
prognostic and even therapeutic value.
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Background: Previous studies have verified that Inscuteable Spindle Orientation Adaptor
Protein (INSC) can regulate cell proliferation and differentiation in the developing nervous
system. It also plays an important role in spindle orientation during mitosis and asymmetric
division of fibroblasts and participates in the process of stratification of the squamous
epithelium. The role and potential mechanism of INSC in the development of colonic
adenocarcinoma (COAD) have not been fully understood. This study aimed at exploring the
prognostic value of INSC in COAD and the correlation of its expression with immune
infiltration.

Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx)
project, Gene Expression Profiling Interactive Analysis (GEPIA), and Gene Expression
Omnibus (GEO) database were used to analyze the expression of INSC in COAD. The
INSC protein expression level was analyzed by immunohistochemistry staining and the
Human Protein Atlas (HPA) database. The diagnostic and prognostic values of INSC in
COAD patients were analyzed using receiver operating characteristic (ROC) and
Kaplan–Meier (KM) survival curves. In order to understand whether INSC is an
independent prognostic factor, we used univariable and multivariate Cox analyses to
analyze INSC expression and several clinical characteristics with survival. We use STRING
analysis to find INSC-related proteins and related biological events analyzed by Gene
Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. At last, GEPIA and the Tumor Immune Estimation Resource (TIMER) were
employed to explore the relationship between INSC and immune infiltrates and its
marker gene set.

Results: INSC was lower expressed in COAD tissues than in normal colon tissues, which
was correlated with tumor stage. Patients with lower expression of INSC had shorter
overall survival (OS). Moreover, univariable Cox analysis demonstrated that high
expression of INSC was an independent prognostic factor for COAD. ROC analysis
showed INSCwas an accurate marker for identifying tumors from normal colon tissue, and
the AUC of the curve was 0.923. Significant GO term analysis by GSEA showed that genes
correlated with INSC were found to be enriched in several immune-related pathways.
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Specifically, INSC expression showed significant negative correlations with infiltration
levels of B cells, CD4+ T cells, macrophages, DCs, and their marker sets in COAD.

Conclusion: INSC was provided with prognostic value in COAD and related to immune
invasion.

Keywords: INSC, immune cell infiltrates, prognosis, colon cancer, bioinformatics analysis

1 INTRODUCTION

Colonic adenocarcinoma (COAD) is one of the most prevalent
digestive tract cancers, with a significant fatality rate (Sanoff
et al., 2007). Worryingly, the rates of recurrence and death of
COAD are rising (Bray et al., 2018). Despite recent
advancements in therapy, the 5-year survival rate has not
increased appreciably. As a result, finding gene signatures
or biomarkers to detect the intrinsic genetic and epigenetic
heterogeneity of COAD, as well as developing prognostic
models to guide therapy, is critical.

In terms of morbidity, colon cancer, a malignancy of the
alimentary canal, ranks third among malignant tumors globally
(Bray et al., 2018). According to recent research, more than one
million people are diagnosed with colon cancer each year, with a
disease-specific death rate of over 33% in industrialized nations
(Ferlay et al., 2015). Colon cancer mortality is on the rise as a
result of dietary and lifestyle changes (Mcguire, 2016). Despite
significant improvements in colon cancer treatment choices, the
5-year survival rate remains poor. As a result, we must seek novel
biomarkers to aid in the correct and early diagnosis of COAD, as
well as identify effective targets to increase the treatment impact.

INSC (INSC Spindle Orientation Adaptor Protein) is a
protein-coding gene according to previous studies. Apico-basal
polarity in epithelial stem cells is produced by apical enrichment
of the polarity proteins Par3: Par6: aPKC, which can recruit an
adaptor called Inscuteable at the apical membrane. INSC codes
for a conserved 35-residue peptide (INSC PEPT hereon) that
binds to the N-terminal TPR domain of LGN/dLGN with
nanomolar affinity 10, 11, and 19 (Culurgioni et al., 2018).

The INSC-dependent system, which includes INSC, BAZ, and
PINS, is active throughout mitosis, whereas the cryptic INSC-
independent pathway is functional only late in mitosis (anaphase
and telophase) and is essential for telophase rescue (Wang et al.,
2006). The mitotic spindle is also directed to align along the
polarity axis by INSC (Bowman et al., 2008). Current findings in
the mouse epidermis reveal that the protein INSC plays a critical
function in appropriate spindle orientation as both an
instructional and regulatory signal (Poulson and Lechler,
2010), which keeps the polarity of the Par complex and the
neuroblast (Schober et al., 1999). A genome-wide association
study identified INSC gene was associated with Alzheimer’s
disease-related cognitive phenotypes (Wang et al., 2021).
However, the role of the INSC gene in COAD malignancy has
not been reported.

In the present study, public databases such as The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
were used to comprehensively investigate the relationship

between INSC and the prognosis of COAD. TIMER was
employed to assess the correlation between INSC and tumor
immune cell infiltration. The results provided new insights into
the function of INSC and novel targets for the COAD diagnosis
and prognosis.

2 METHODS

2.1 RNA-Sequencing Data and
Bioinformatic Analysis
Expression data of INSC gene and clinical information of
COAD patients were collected from The Cancer Genome
Atlas (TCGA, https://tcga.xenahubs.net), Genotype-Tissue
Expression (GTEx) project (https://gtexportal.org/) (GTEx
Consortium, 2020), and Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) database (Barrett et al.,
2013). The data of 521 samples, including 41 para-cancerous
tissues and 480 tumor tissues, from TCGA were extracted.
There were 308 normal colonic tissues obtained from GTEx.
Additionally, the INSC expression data were obtained from
GSE44076 and GSE39582 datasets in the GEO database to
verify the INSC expression level in tumor and non-tumor
tissues. The boxplot was realized by using the R software
package “ggplot2.”

2.2 Protein Expression Analysis
The human protein atlas (HPA) database (https://www.
proteinatlas.org/) (Uhlén et al., 2015) was applied to
determine INSC protein expression levels through
immunohistochemistry (IHC) staining (antibody
HPA039769). We obtained the INSC IHC photographs of
COAD patients from the HPA database.

In order to further confirm the expression of INSC in the colon
and COAD tissues, 82 paired normal and COAD tissues (49 men
and 33 women, average age of 63 ± 13 years old) were enrolled
and determined by IHC staining (Li et al., 2021a). Briefly,
deparaffinized and rehydrated sections were subjected to 3%
H2O2 and then antigen retrieval by citric acid buffer (pH 6.0).
After sealing at room temperature for 20 min with 5% bovine
serum albumin, the slices are incubated overnight (16–18 h) at
4°C with primary anti-INSC antibody (1:50 dilution for colon
tissues, HPA039769, Atlas Antibodies AB, Sweden). Then, the
sections were incubated with biotinylated-linked antibodies and
peroxidase-labeled streptavidin (UltraSensitive™ SP (Mouse/
Rabbit) IHC Kit-9710; Maixin Bio, Fujian, China) for 15 min
at room temperature. Then, the reaction products were stained
with 3,3′-diaminobenzidine (DAB) and lightly counterstained
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with hematoxylin. The sections with PBS instead of primary
antibody served as a negative control. The INSC expression levels
were evaluated according to the average score of two independent
pathologists’ evaluations who were unaware of the diagnosis
outcome. INSC expression in tumor cells was classified based
on a four-tier grading system (scores: 0 = absent, 1 = weak, 2 =
moderate, and 3 = strong staining). Generally, a score less than 1
was considered negative, and a score more than 1 was considered
positive.

2.3 Prognosis Analysis of Inscuteable
Spindle Orientation Adaptor Protein
Expression in Colonic Adenocarcinoma
First, we applied the KM survival and receiver operating
characteristic (ROC) curves to assess the prognostic values of
INSC in patients with COAD. Second, we performed univariate
and multivariate regression analyses to evaluate the relationship
between the expression of INSC and the overall survival (OS) of
patients with COAD as we previously reported (Zhu et al., 2021a;
Li et al., 2021b). The forest realized through the “forestplot” R
package was applied to display the p-value, hazard ratio (HR),
and 95% confidence interval (CI) of each variable.

2.4 Functional Analysis of Inscuteable
Spindle Orientation Adaptor Protein in
Colonic Adenocarcinoma
The (protein–protein interaction) PPI network of INSC was
conducted by the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) (version: 11.5, https://cn.string-db.
org/) database. The minimum required interaction score was
set as medium confidence 0.400. The max number of interactors
to show is as follows: first shell: no more than 10 interactors;
second shell: none. We use the R packs such as clusterProfiler
[version 3.14.3] and Org Hs. Eg.db [version 3.10.0] to perform the
Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the obtained
genes, and the p-value is set to be less than 0.05. The results are
visualized and displayed in a bubble chart with the ggplot2
package [version 3.3.3].

We further used LinkOmics (http://www.linkedomics.org/
login.php) (Vasaikar et al., 2018) to conduct the GO and
KEGG pathway enrichment analysis. The cancer type: TCGA_
COADREAD; data type: RNAseq; platform: HiSeq RNA; and
target dataset: (data type: RNAseq; platform: HiSeq RNA).

2.5 Association Between Immune Cell
Infiltration and Inscuteable Spindle
Orientation Adaptor Protein in Colonic
Adenocarcinoma
We used Tumor Immune Estimation Resource (TIMER) (https://
cistrome.shinyapps.io/timer/) and Gene Expression Profiling
Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/api.
html) to investigate the correlations between INSC and tumor-
infiltrating immune cells (TIIC). Spearman correlation analysis

and the CIBERSORT method were further employed to evaluate
the correlation between INSC and TIIC and their corresponding
molecular markers.

2.6 Statistical Analysis
The data analysis and mapping involved in this study are
completed by R software (version 3.6.3) and R language
package ggplot2 (version 3.3.3). RNAseq data were converted
into TPM (transcripts per million reads) format, and log2
conversion is performed. For the comparison between groups,
the normality test should be conducted first. If the samples do not
meet the normality test (p < 0.05), then the MannWhitney U test
(Wilcoxon rank sum test) will be selected. The chi-square test was
used to analyze the correlation of INSC expression with the
clinicopathological factors of COAD. The Kaplan–Meier
method was used to calculate the relationship between INSC
expression and prognosis of COAD. Univariate and multivariate
Cox regression analyses were conducted to assess the effect of
INSC on the prognosis of COAD. The “survival” package (3.2-10
version) was applied for statistical analysis of survival data, and
the “survminer” package (0.4.9 version) was employed for
mapping survival curves. The forest was applied to show the
p-value, HR, and 95% CI of each variable. Spearman correlation
analysis was used for genetic correlation. p ≤ 0.05 was considered
to be statistically significant.

3 RESULTS

3.1 Association Between the Expression of
Inscuteable Spindle Orientation Adaptor
Protein and Clinicopathological Features in
Colonic Adenocarcinoma Patients
The clinicopathological features of 478 COAD patients were
extracted from TCGA, including age, gender, TNM stage,
pathologic stage, and CEA level. According to the expression
level of INSC, we divided all samples into high expression and low
expression INSC groups by median. Detailed clinical information
was shown in Supplementary Table S1.

3.2 Expression of Inscuteable Spindle
Orientation Adaptor Protein mRNA in
Colonic Adenocarcinoma
We investigated numerous sets of data from different
databases in order to better understand INSC expression in
tumors and normal tissues. The GEPIA database was used to
validate INSC mRNA expression. The data are presented as a
body heat map (Supplementary Figure S1). The color red
denotes cancerous tissue, whereas the color green denotes
normal tissue. The higher the intensity of expression, the
darker the hue. The region around the large intestine is
brightly colored, showing that INSC is abundantly
expressed in a healthy large intestine. The differential
expression of INSC mRNA in pan-cancer cells was next
investigated. Figures 1A and B show the data from TCGA
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FIGURE 1 | INSC expression levels in cancers. (A–B) The expression levels of INSC were different in pan-cancer tissues compared to those in normal tissues
according to TCGA datasets (A) and GEO datasets (B), respectively. (C–D) Compared to the normal colon tissue, the expression level of INSC was significantly
decreased in COAD tissues (p <0.001). (C)Unpaired samples in TCGA datasets and GTEx datasets. (D) Paired samples in only TCGA datasets. The expression of INSC
from GSE44076 (E) and GSE39582 (F) in GEO datasets (*p < 0.05, **p <0.01, ***p < 0.001, ****p < 0.0001).

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8218264

Yu et al. INSC Prognostic Value in COAD

93

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


and GEO, respectively. It was found that in adrenocortical
carcinoma, breast cancer, bladder cancer, colon cancer, head
and neck cancer, kidney cancer, stomach adenocarcinoma,
prostate cancer, lung cancer, and COAD, the INSC mRNA

expression was lower in tumors than in normal tissues. Figures
1C–F illustrate the mRNA expression of INSC in COAD from
TCGA and GEO. INSC expression was considerably lower in
COAD tissues than in normal tissues (p < 0.001).

FIGURE 2 | INSC expression in normal colon and COAD tissues was determined by immunohistochemistry. The level of INSC protein in COAD (A) and normal
tissues (B) (Antibody HPA039769) form the HPA database; (C) INSC protein expression in COAD and non-cancerous colon tissues and its immunohistochemical
staining in representative tissue specimens. Original magnification, ×40; (D) immunohistochemical staining of INSC proteins in representative COAD and non-cancerous
colon specimens. The left side represents cancer tissues and the right side represents non-cancer tissues. Original magnification, ×100; (E–H) the score of INSC
expression in representative tumor cells of COAD ((E) score = 3, (F) score = 2, (G) score = 1, and (H) score = 0); magnification, ×100; (I) expression of INSC in
representative normal colon cells ((I) score = 3); magnification, ×100; (J) positive rate of INSC protein expression in adjacent non-cancerous colon tissues and COAD
tissues (p <0.001, cancer vs. non-cancerous tissues, chi-squared test), n = 82, and six samples were lost.
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3.3 Protein Expression of Inscuteable
Spindle Orientation Adaptor Protein in
Colon Normal and Cancer Tissues
The protein expression of INSC was analyzed by
immunohistochemical staining images obtained from HPA.
INSC protein was highly expressed in colonic mucosal
glandular epithelial cells located in cytoplasmic and
membranous (Figure 2A). On the contrary, there was less
expression of INSC protein in COAD tissue (Figure 2B). To
further investigate the protein expression of INSC in non-
cancerous colon and COAD tissues, the INSC protein
expression was detected in a larger size of 76 COAD tissues
and its adjacent non-cancerous colon tissues by IHC staining.
The results showed that non-cancerous colon tissues had stronger
IHC staining than COAD tissues (Figures 2C, D). The scores of
INSC protein expression ranging from 3, 2, 1, and 0 in
representative COAD tissue specimens were presented in
Figures 2E–H. The representative IHC staining of non-
cancerous colon tissue with a score of 3 was shown in
Figure 2I. It was also found that the positive expression rate
of INSC was higher in normal colon tissues (85.53%) than that in
COAD tissues (40.00%) (p < 0.001, Figure 2J).

3.4 Prognostic Potential of Inscuteable
Spindle Orientation Adaptor Protein in
Colonic Adenocarcinoma
First, we explored the association of INSC with clinical
manifestation in COAD. Lower INSC expression was shown
to be related to greater T and M stages (p <0.05) but not age
and gender (Figures 3A–D). The connection between INSC
expression and survival outcomes was assessed by the KM
survival curve. The median was used as the cutoff value for
the high and low INSC expression groups. OS was shown to be
longer in patients with increased INSC expression (log-rank test,
p = 0.014) (Figure 3E). The ROC curve results were reported as
AUC scores (area under the ROC curve) (Figure 3F). The AUC in
this trial was 0.923 (CI: 0.901–0.946). INSC was able to
discriminate between normal and malignant tissues according
to these findings. Figures 4A, B showed a univariable and
multivariable Cox regression analysis of INSC and clinical data
that might be linked to OS. In the univariate Cox model, a low
INSC level (p = 0.028) was linked with age and pathologic TNM
stage in OS occurrences (p < 0.01). Age and pathologic TNM
stage were independent variables associated with OS in COAD
(p <0.01) in the multivariate Cox model.

FIGURE 3 | (A,B) Association between INSC expression and clinical features such as age and gender in COAD. (C,D) The association between INSC expression
and clinical features such as T andM stages in COAD. Lower INSC expression was related to higher T andM stages (*p < 0.05). (E) The KM survival curve displayed a low
level of INSC with a poor prognosis for COAD patients. (F) ROC analysis illustrated that INSC was an accurate marker to distinguish tumor from normal tissue. The AUC
was 0.923.
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3.5 Protein–Protein Interaction Networks
and Enrichment Analyses of Inscuteable
Spindle Orientation Adaptor
Protein-Related Genes
In order to study the functional network of INSC-related genes in
COAD, we first identified INSC-related genes with the STRING
webtool. INSC-related genes included NAGLU, NUMBL, PCP2,
PARD3B, PROX1, PARD3, NUMB, and TTC28 (Figure 5A).
Their annotation and combined scores are presented in Figure 5C.
Combined with the GO/KEGG enrichment analysis, we found that
genes correlated with INSC were located mainly in the apical part of
the cell (p < 0.001), cell–cell adherens junction (p < 0.001), and
bicellular tight junction (p = 0.023). They were involved in the
biological process of forebrain generation of neurons, lateral
ventricle development and neuronal stem cell division. KEGG
pathway analysis showed they were enriched in the Notch
signaling pathway and glycosaminoglycan degradation (Figure 5B).
The top 50 positively and negatively correlated genes with INSC were
presented in Figures 5D, E. We further assessed the GO biological
process and KEGG pathway analysis from LinkedOmics. The results
showed that INSCwas related to several immunological processes and
pathways. The GO biological process analysis revealed that INSC was
related to leucocyte cell–cell adhesion, B cell activation, negative
regulation of cell activation, myeloid dendritic metabolic process,
mast cell activation, regulation of leukocyte activation, and adaptive
immune response (Figures 6A,C). The KEGG pathway analysis
showed that INSC was associated with the IL-17 pathway, drug
metabolism, and Notch signaling pathway (Figures 6B, C).

3.6 Association Between Inscuteable
Spindle Orientation Adaptor Protein
Expression and Immune Cell Infiltration in
Colonic Adenocarcinoma
To further explore how the INSC gene affects tumor progression,
the TIMER database was employed to analyze whether INSC
expression was associated with TIIC in COAD. The results
indicated that the expression of INSC was significantly related
to the major immune cell infiltrates, such as B cells and
macrophages (Figure 7A). INSC copy number variation
(CNV) was correlated with the infiltration levels of B cells,
CD8+ T cells, and dendritic cells (Figure 7B). There was a
positive correlation between INSC and B cell markers, CD19,
and CD79A (Figure 7C). In addition, the CIBERSORT method
was further used to assess the cellular composition of TIIC in
COAD. It suggested statistical significance between INSC and
B cells, CD4+ T cells, macrophages, and dendritic cells (p < 0.05)
(Figure 7D). These results suggest that INSC played a critical role
in regulating TIIC infiltration in COAD.

3.7 Correlation of Inscuteable Spindle
Orientation Adaptor Protein Expression
With Immune Marker Sets
We focused on the association of INSC with marker genes of
diverse immune cells, including CD8+ T cells, T cells (normal),
B cells, monocytes, TAMs, macrophagesM1 andM2, neutrophils,
NK cells, and DC, in order to further validate the link between

FIGURE 4 | Univariate and multivariate Cox regression of the INSC gene and other five clinical characteristics. (A) The forest plot of univariate regression analysis.
(B) The forest plot of multivariate regression analysis.
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INSC and immune infiltrating cells. INSC expression was shown
to be substantially linked with the overwhelming majority of
B cell and macrophage immunological markers in COAD. As a
result, we were able to demonstrate the COAD
microenvironment’s unique relationship with immune
infiltrating cells.

4 DISCUSSION

As described in the background, it is urgent to understand the
molecular mechanism of the genesis and progression of COAD
and to explore newmarkers and therapeutic targets in the context
of the high mortality rate and the lack of early diagnosis and

effective therapeutic targets. This study aims to explore the
diagnostic value of the INSC gene in COAD and its influence
on tumor immune infiltration.

Studies have confirmed that INSC is mainly involved in cell
mitosis. So far, few studies have paid attention to its role in the
occurrence and development of colon cancer. In the present
study, we investigated the differential expression of INSC in
pan-cancer, including COAD. We discovered that INSC was
depressed in a variety of tumor tissues compared to normal
tissues as well as in COAD. The immunohistochemical results
from 76 COAD patients also confirmed this conclusion.
Moreover, INSC mRNA levels were markedly related to
pathological T and M stages. Next, the ROC and KM survival
analyses were employed to illustrate the relationship between

FIGURE 5 | PPI and GO/KEGG analysis of INSC. (A) PPI network of INSC. (B) Bubble chart showing the enrichment results. (C) The detailed information of INSC-
related genes. (D) Top 50 positively or negatively significant correlated genes with INSC.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8218268

Yu et al. INSC Prognostic Value in COAD

97

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


INSC and the survival rate of COAD patients. To ensure the
accuracy of the conclusion, we used the data obtained from
TCGA and GEO databases at the same time. We further

assessed the relationship between INSC expression and
clinicopathological features that were related to OS in COAD
by univariate and multivariate Cox regression analyses. It

FIGURE 6 | GO (A) and KEGG (B) pathway analyses from LinkOmics. (C) Immune-related biological processes and pathways that related to INSC in COAD.
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revealed that low INSC expression (p < 0.001) was an important
risk factor for the prognosis of COAD. These results illustrate that
low INSC expression is related to worse prognosis, and INSC has
potential value in predicting prognosis in COAD.

The PPI network was employed in this investigation to find
INSC co-regulatory proteins using string tools. INSC-related
genes, such as NUMB and NUMBL, were found to be enriched
in the Notch signaling pathway. Notch receptors and their
ligands are abnormally active in several forms of human
malignancies, including COAD, according to recent
research (Suliman et al., 2016). Furthermore, in
mammalian cells, dysregulation of the Notch system causes
disastrous mitosis (Převorovský et al., 2016). The Notch

signaling pathway’s abnormal activation may be involved in
the formation of cancers, particularly in colon carcinoma
(Zhang et al., 2017). In addition, INSC has been shown to
alter mitosis in previous investigations (Wang et al., 2006),
and the results obtained in our study are the same. But how
INSC affects the Notch signaling pathway remains to be
further studied.

An immune infiltration within the tumor often affect the
prognosis of patients (Hu et al., 2021; Zhu et al., 2022) and
treatment response in many malignancies (Buisseret et al., 2018;
Zhu et al., 2021b). So, we focused on INSC-related immune
infiltration levels in COAD to learn more about the latent
mechanisms of INSC. According to our findings, INSC and

FIGURE 7 | Correlations of INSC expression with TIIC infiltration level in COAD. (A) The correlation of INSC expression with tumor purity and TIIC from the TIMER
database. (B) The effect of INSCCNV on the infiltration levels of immune cells in COAD. (C)Relationship between INSC and B cell markers such as CD79A and CD19. (D)
The effect of INSC on the level of TIIC infiltration in COAD using the CIBERSORT method (*, p < 0.05, **, p < 0.01, ***, p < 0.001).
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B cells, CD4+ T cells, macrophages, and dendritic cells showed a
substantial difference. INSC expression was positively correlated
with B cells, CD4+ T cells, and dendritic cell infiltration in COAD,
but negatively correlated with M0 and M1 macrophages.
According to publications, B cells and CD4+ T cells have been
related to better clinical outcomes in COAD (Yang et al., 2018).
B cell differentiation into antibody-secreting cells is facilitated by
the interaction of follicular CD4+ T cells with B cells (Wongthida
et al., 2020). As the same, contact between CD4+ T cells and
follicular B cells enhances CD4+ T cell activation and
differentiation into effector and memory cells (Tay et al.,
2019). To sum up, low INSC expression indicates a low
amount of B cells and CD4 + T cell infiltration, as well as a
poor prognosis.

According to further study, monocytes and macrophages
M0 and M1 were also connected with colon cancer survival
risk in addition to B-cell naive and B-cell memory (Wu et al.,
2020). Several studies demonstrated that macrophages
enhance colon cancer cell proliferation, which is consistent
with the fact that more macrophages are related to a worse
prognosis for colon cancer (Wu et al., 2020). As we know, M1
macrophages and M2 macrophages are two types of
macrophages (Han et al., 2020). M1-polarized TAM exerts
pro-inflammatory and anticancer effects, whereas M2-
polarized macrophages boost carcinogenesis and tumor
growth through mediating tumor-promoting immune-
suppressive actions in colon cancer (Mühlberg et al., 2016).
M2 macrophages predominated in tumor-infiltrating
macrophages but M1 macrophages predominated in the
non-cancerous inflammatory zone around cancer cell
infiltrates (Ino et al., 2013). As a consequence, in this study,
we can observe the paradoxical but practical results in Figure 7
and Supplementary Table S1, where INSC as a favorable
prognostic marker of COAD has a negative connection with
M1 macrophages.

However, there were some limitations to this work, such as the
small number of normal samples from the TCGA database and
the lack of animal models to test the results. These results will very
certainly need to be confirmed in future research. Therefore, cell
and animal models will be conducted to further confirm our
conclusions through experiments.

5 CONCLUSION

Our findings revealed the correlation of INSC expression
levels with the prognosis and clinicopathological features
of COAD and the association between INSC expression
levels and TIIC infiltration. Thus, our findings imply that

INSC expression may have predictive relevance in COAD
patients and that it might be a novel target for COAD
immunotherapy.
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Background: KIFC3, belongs to kinesin superfamily proteins (KIFs), is well known for its
role in intracellular cargo movement. KIFC3 has been identified as a docetaxel resistance
gene in breast cancer cells, however, the role of KIFC3 and its potential mechanism in
colorectal cancer (CRC) remains elusive.

Objectives: We aims to investigate the effects of KIFC3 in proliferation, migration, and
invasion in CRC as well as the potential mechanism inside.

Methods: We investigated the expression of KIFC3 in the Oncomine, Gene Expression
Profiling Interactive Analysis databases. The KIFC3 protein expression and mRNA level in
CRC cells were evaluated by western blot and qRT-PCR. Cell proliferation ability was
detected by CCK-8, EdU, colony formation assay and xenograft tumor in nude mice. Flow
cytometry was used to detect the cell cycle. The effect of KIFC3 on the epithelial-to-
mesenchymal transition (EMT) was investigated by transwell and wound healing assay.
The association of KIFC3 with EMT and PI3K/AKT/mTOR signaling pathway were
measured by western blot and immunofluorescence staining.

Results: The expression of KIFC3 was higher in CRC tissues than normal colorectal
tissue, and was negatively correlated with the overall survival of patients with CRC. KIFC3
silencing inhibited the proliferation, migration and invasion of CRC cells. Meanwhile, it could
decrease the number of cells in S phase. KIFC3 silencing inhibited the expression of
proliferating cell nuclear antigen, Cyclin A2, Cyclin E1, and CDK2 and increased the
expression of p21 and p53. KIFC3 overexpression promoted the G1/S phase transition.
KIFC3 silencing inhibited the EMT process, which decreased the level of N-cadherin,
Vimentin, SNAIL 1, TWIST, MMP-2, MMP-9 and increased E-cadherin, while KIFC3
overexpression show the opposite results. Furthermore, the knockdown of KIFC3
suppressed the EMT process by modulating the PI3K/AKT/mTOR signaling pathway.

Edited by:
Alip Ghosh,

University of Maryland, United States

Reviewed by:
Gisela Ceballos,

Instituto Nacional de Medicina
Genómica (INMEGEN), Mexico

Olivia Fromigue,
Institut National de la Santé et de la

RechercheMédicale (INSERM), France

*Correspondence:
Weiguo Dong

dongweiguo@whu.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 05 January 2022
Accepted: 06 June 2022
Published: 22 June 2022

Citation:
Liao H, Zhang L, Lu S, Li W and
Dong W (2022) KIFC3 Promotes

Proliferation, Migration, and Invasion in
Colorectal Cancer via PI3K/AKT/

mTOR Signaling Pathway.
Front. Genet. 13:848926.

doi: 10.3389/fgene.2022.848926

Abbreviations: CRC, colorectal cancer; KIFs, Kinesin Superfamily Proteins; KIFC3, kinesin family member C3; PI3K,
phosphatidylinositol 3-kinase; p-PI3K, phosphorylated phosphatidylinositol 3-kinase; t-PI3K, total phosphatidylinositol 3-
kinase; p-AKT, phosphorylated Akt; mTOR, mammalian target of rapamycin; p-mTOR, phosphorylated mammalian target of
rapamycin; PCNA, proliferating cell nuclear antigen; MMP, matrix metalloproteinase; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8489261

ORIGINAL RESEARCH
published: 22 June 2022

doi: 10.3389/fgene.2022.848926

102

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.848926&domain=pdf&date_stamp=2022-06-22
https://www.frontiersin.org/articles/10.3389/fgene.2022.848926/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.848926/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.848926/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.848926/full
http://creativecommons.org/licenses/by/4.0/
mailto:dongweiguo@whu.edu.cn
https://doi.org/10.3389/fgene.2022.848926
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.848926


KIFC3 silencing decreased the expression of phosphorylated PI3K, AKT, mTOR, but total
PI3K, AKT, mTOR have no change. Inversely, the upregulation of KIFC3 increased the
expression of phosphorylated PI3K, AKT and mTOR, total PI3K, AKT, mTOR have no
change. In a xenograft mouse model, the depletion of KIFC3 suppressed tumor growth.
the increased expression levels of KIFC3 could enhance the proliferation, migration and
invasion of CRC cells, and enhance the EMT process through the PI3K/AKT/mTOR
pathway.

Conclusion: Our study substantiates that KIFC3 can participate in the regulation of CRC
progression by which regulates EMT via the PI3K/AKT/mTOR axis.

Keywords: KIFC3, proliferation, migration, invasion, epithelial-to-mesenchymal transition, PI3K/Akt/mTOR signal
pathway

INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent
malignancies in the digestive system. The incidence of CRC is
rising year after year, and CRC ranks third in terms of incidence,
but second in terms of mortality (Siegel et al., 2020; Sung et al.,
2021). CRC is an important barrier to increasing life expectancy
in every country of the world, which seriously threatens human
health (Dekker et al., 2019; Sung et al., 2021). Despite that there
have been great improvements in CRC treatment in the clinic,
and that comprehensive therapy has partly prolonged the survival
rate, the prognosis of CRC patients was still not satisfied, as well
as that the 5-year survival rate of patients with CRC remains low
(Chen et al., 2014; Ishikawa et al., 2019). Most patients are
diagnosed at an advanced stage, and accompanied by
metastasis, which limits their options for therapeutic strategies
(Zhou et al., 2019; Hao et al., 2021). Moreover, the postoperative
recurrence rate and metastasis remain high (Li et al., 2020a).
Hence, there is an urgent need to seek novel, sensitive and specific
biomarkers to improve CRC prognosis and therapeutic targets
for CRC.

Intracellular organelle transport is essential for cell
morphogenesis, promoting cell survival and maintaining the
function of the cell. Among the molecular motors that are
involved in intracellular transport, three large superfamilies
have been identified—kinesins, dyneins and myosins
(Hirokawa and Tanaka, 2015). The Kinesin Superfamily
Proteins (KIFs) is a group of proteins that share a highly
conserved motor domain, which have been shown to transport
organelles, protein complexes, and mRNAs to specific
destinations in a microtubule- and ATP dependent manner
and also participate in chromosomal and spindle movements
during mitosis and meiosis (Miki et al., 2003; Liu et al., 2013).
KIFs consist of 45 family members, which play different roles in
the genesis and development of tumors (Seog et al., 2004;
Hirokawa and Tanaka, 2015). A number of KIFs show
aberrant overexpression in various cancer cells, such as KIF4A,
which is upregulated in cervical cancer and lung cancer, inhibits
the repair of damaged DNA double-strand in lung cancer cells
sensitive to cisplatin (Wan et al., 2019). KIF20B is overexpressed
in bladder cancer and is considered as a cancer-testis antigen

specific to human bladder cancer (Kanehira et al., 2007; Liu et al.,
2013). KIF2A is overexpressed in squamous cell carcinoma of the
oral tongue, and the downregulation of KIF2A can induce
apoptosis in squamous cell carcinoma of the oral tongue
through the inhibition of the PI3K/AKT signaling pathway
(Wang et al., 2014). KIF18B is highly expressed in colon
adenocarcinoma tissues and negatively correlated with
patients’ prognosis (Zhao et al., 2020).

The kinesin family member C3 (KIFC3) gene, is located on the
human chromosome 16q13-q21 (Hoang et al., 1998). KIFC3 has
minus end–directed microtubule motor activity and functions in
golgi localization, integration and apical transport of epithelial
cells (Noda et al., 2001; Xu et al., 2002). KIFC3 has been identified
as a docetaxel resistance gene in breast cancer cells (Tan et al.,
2012; Li and Bakhoum, 2019). Besides, KIFC3 was also found to
be associated with hepatocellular carcinoma. The high expression
of KIFC3 suggests shorter survival time, and KIFC3 is associated
with migration and invasion of hepatocellular carcinoma (Li
et al., 2017). However, our knowledge of its function in CRC
is still limited.

In this study, we determined whether KIFC3 will have an effect
in the progression of CRC on the proliferation, migration and
invasion. Then, we performed subcutaneous tumor formation
experiments to verify the effects of KIFC3. Furthermore, we
explored the potential mechanism by which KIFC3 is involved
in the process with a focus on the regulation of the PI3K/AKT/
mTOR signaling pathway.

MATERIALS AND METHODS

Gene Expression Data From Public
Databases
We analyzed KIFC3 mRNA levels in CRC and normal colorectal
tissues using the Oncomine (http://www.oncomine.org) and
GEPIA (http://gepia.cancer-pku.cn/) databases. The GEPIA
database was used to analyze the information in The Cancer
Genome Atlas (TCGA) database (https://tcga-data.nci.nih.gov/
tcga/) to evaluate the prognostic value of KIFC3 level. Raw counts
of RNA-sequencing data and corresponding clinical information
from KIFC3 in CRC were obtained from International Cancer
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Genome Consortium (ICGC) database (https://dcc.icgc.org/
releases/current/Projects). The Kaplan–Meier survival analysis
with log-rank test were also used to compare the survival
difference between above two groups. Time-ROC analysis was
performed to compare the predictive accuracy of each gene and
risk score. For Kaplan–Meier curves, p-values and hazard ratio
(HR) with 95% confidence interval (CI) were generated by log-
rank tests and univariate Cox proportional hazards regression. All
analytical methods above and R packages were performed using R
software version v4.0.3 (The R Foundation for Statistical
Computing, 2020). p < 0.05 was considered as statistically
significant. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) enrichment analysis was
performed with KIFC3-associated genes using the
clusterProfiler package in R (https://bioconductor.org/
packages/clusterProfiler). FDR p < 0.05 is used to distinguish
significant enrichment items. Enter the gene and use the
“enrichment GO” and “enrichment KEGG” functions for
enrichment analysis. The bubble chart, bar chart and network
chart are used to show the results of the enrichment analysis.

Cell Culture
Human colorectal cancer cell lines (HT29, HCT116, SW480,
DLD-1 cell) and the normal intestinal epithelial cell line
(NCM460) were purchased from the China Center for Type
Culture Collection (Wuhan, China). These cells were cultured
in Roswell Park Memorial Institute (RPMI) 1640 medium
(HyClone, United States) containing 10% heat-inactivated fetal
bovine serum (FBS, Gibco, United States) and 1% penicillin-
streptomycin (Gibco, United States) under a humidified
atmosphere incubator of 5% CO2 at 37°C.

Antibodies and Reagents
Antibodies against KIFC3 were purchased from Abcam (Cambridge,
MA, United States). Antibodies against proliferating cell nuclear
antigen (PCNA), matrix metalloproteinase (MMP)-2, MMP-9,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), p21, Cyclin
A2, Cyclin E1, CDK2, E-cadherin, N-cadherin, Vimentin, Snai1 were
purchased from Proteintech (Rosemont, IL, United States).
Antibodies against p53, TWIST1 were obtained from Affinity
(Cincinnati, United States). Antibodies against total
phosphatidylinositol 3-kinase (t-PI3K), phosphorylated
phosphatidylinositol 3-kinase (p-PI3K), total AKT (t-AKT),
phosphorylated Akt (p-AKT), total mammalian target of
rapamycin (t-mTOR), phosphorylated mammalian target of
rapamycin (p-mTOR) were obtained from Cell Signaling
Technology (Danvers, MA, United States). Antibodies against
PCNA, GAPDH, E-cadherin, N-cadherin, Vimentin, were used at
a working concentration of 1:5000, and the other antibodies were
used at aworking concentration of 1:1000 andwere stored at 4°C. The
secondary antibodies were purchased from Proteintech (Rosemont,
IL, United States) and used at a dilution ratio of 1:10,000.

Lentivirus Vectors and Transfection
Three pairs of short hairpin RNA (shRNA) targeting KIFC3
lentivirus vectors (shKIFC3#1, shKIFC3#2, shKIFC3#3) and
negative controls (NC) that contain green fluorescent protein

(GFP) and purinomycin resistance were purchased from
Shanghai Genechem Company (Shanghai, China). The cells
were assigned as follows: control group (SW480 or HT29
cells), negative control (NC) group (SW480 or HT29 cell
transfected with blank plasmid), shKIFC3 group (SW480 or
HT29 cell transfected shKIFC3). SW480 and HT29 cells
silenced stably for KIFC3 expression were generated using
lentiviral constructs expressing shKIFC3 and negative control.
The encoding sequence of KIFC3 was cloned into lentivirus
GV248 vector, and the component sequence was hU6-MCS-
Ubiquitin-EGFP-IRES-puromycin. Transfection was performed
in accordance with the manufacturer’s instructions. SW480 and
HT29 cells in logarithmic growth phase were collected and
inoculated in 6-well plates after digestion with pancreatin. The
density of inoculation was 5 × 104 cells/ml, and the cells were
cultured overnight in a CO2 incubator with a volume fraction of
5% at 37°C. According to the instructions, and as growth reached
approximately 60%, a RPMI 1640 medium containing lentivirus
was added at a multiplicity of infection (MOI) of 100 and mixed
with the cells. We use HiTransG A to improve infection
efficiency. Also, the overexpression of KIFC3 lentivirus and
control vector, which contains red fluorescent protein (RFP)
and purinomycin resistance, infected the DLD-1 cell
respectively. The KIFC3 lentivirus and control vector were
synthesized by Shanghai Genechem Company (Shanghai,
China). Similarly, as the procedure described above, DLD-1
cells were transfected with lentivirus vectors carrying OVER or
Vector, respectively. We added puromycin (Thermo Fisher
Scientific, Waltham, United States) to the medium to screen
stable transfected cell lines. The efficiency of knockdown or
overexpression were measured at 48 h post-transfection by
western blotting and qPCR. The vector with the highest
knockdown efficiency was selected for subsequent experiments.

Total RNA Extraction and Quantitative
Real-Time PCR
TRIzol reagent (Takara, Japan) was used to extract total RNA from
cell lysates, according to themanufacturer’s instructions.We used the
NanoDrop™ One (Thermo Fisher Scientific, United States) to
determine the RNA concentration and purity. Total RNA was
reverse transcribed into cDNA using the PrimeScriptTMRT
reagent kit with gDNAEraser (Perfect Real Time, Takara, Japan).
Target gene mRNA expression levels were detected using TB Green®
Premix Ex Taq™ II (TliRNaseH Plus, Takara, Japan). KIFC3mRNA
level was measured by qPCR with CFX Connect Real-Time System
(Bio-Rad, United States) and the β-actin was used as an internal
reference. The primers sets are as follows: KIFC3 forward, 5′-GCA
GATTGCCATGTACGAGTC-3′; reverse, 5′- CGGACGCCTGCT
AGATTCTC -3′, β-actin forward, 5′-GCACAGGGTGCTCCT
CAG-3′; reverse primer 5′-CTAGGCACCAGGGTGTGATG-3′.
The data were calculated by the 2−ΔΔCt method. All qPCR
reactions were run in triplicates.

Western Blot Analysis
The proteins in CRC cells lines (HT29, HCT116, SW480, DLD-1
cell) and the NCM460 cell were extracted from the cell lysates
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using Radio Immunoprecipitation Assay (RIPA) buffer
(Biyotime, China) which containing phosphatase inhibitors
and protease inhibitor cocktail, and the concentration of
protein was tested with a bicinchoninic acid (BCA) protein
assay kit (Biyotime, China) following the instructional manual.
Equal mass of protein was separated by SDS-polyacrylamide gel
electrophoresis (10% or 8%) and then transferred onto 0.45 µm
polyvinylidene difluoride (PVDF, Millipore, United States)
membranes. All the PVDF membranes were incubated in Tris-
Buffered Saline with 1% TWEEN 20 (TBST, Cell Signaling
Technology) blocking solution containing 5% skim milk or 5%
Bovine Serum Albumin (BSA) at room temperature for 1–2 h.
Next, the membranes were washed on a shaker for 3 × 10 min
using TBST. The primary antibodies were added and incubated at
4°C, overnight. Then, after being washed with TBST three times,
the membranes were incubated with horseradish peroxidase
(HRP)-conjugated secondary antibodies Proteintech
(Rosemont, IL, United States) for 1 h at room temperature
and washed with TBST again. Finally, the protein bands were
detected by ChemiDocTM Touch (Bio-Rad, United States).

Cell Counting Kit-8 Assay
Cell proliferation was examined using the Cell Counting Kit-8 (CCK-
8, Beyotime, Shanghai, China) assay. SW480, HT29, and DLD-1 (at
4× 103 cells/well) were resuspended and seeded in 96-well culture
plates, and allowed to attach overnight in complete growth medium
at 37°C with 5% CO2. The supernatant was removed, 10 µl of CCK-8
was added to each well and incubated for 2 h. After 2 h of incubation,
the absorbance of the colored formazan reaction product was
evaluated at 450 nm by a microplate reader (Perkin Elmer,
United States). We measured when the cells were cultured for 24,
36 and 48 h, respectively. All experiments were performed in
triplicate to determine their reproducibility.

5-Ethynyl-2-deoxyuridine Assay
According to the operation instructions of the EdU assay kit
(Beyotime, Shanghai, China), the transfected cells (at 1 × 104

cells/well) were seeded into 24-well plates for 24 h. Then, add
1ml culture solution containing EdU to each well, and incubate
at 37°C for 2 h. Adding 1ml of 4% paraformaldehyde solution
(Servicebio, China) to fix the fine cells for 15min; after being
washed with Phosphate-buffered saline (PBS), cells were
permeabilized with 0.3% TritonX-100 (Biotech, China) for 10min
at room temperature. Cells were washed with PBS three times.
Subsequently, cells were reacted with Apollo reaction mixture for
30min. Then cells were washed 3 times using PBS. Cell nuclei were
stainedwithHoechst 33,258 to keep away from light for 10min. After
being washed by PBS, the proliferation of cells was visualized under a
fluorescence microscope (Olympus BX51, Japan). The percentage of
the EdU-positive cells and the average fluorescence intensity were
calculated by Image J software (NIH, United States). Each group
repeated the process thrice.

Colony Formation Assay
Colony forming ability was detected with colony formation assay.
The cell suspensions of SW480, HT29, and DLD-1 (at 1 × 103 cells/
well) were plated into 6-well plates and incubated at 37°C and at an

atmosphere of 5% CO2 for 7–10 days. The supernatants were
discarded, and the colonies washed with PBS for three times, and
fixed in 4% paraformaldehyde solution (Servicebio, China) to fix the
cells for 15min. Next, cells were stained with 0.2% crystal violet at
room temperature for 10min. Finally, the plate was washed
moderately with running tap water. The number of colonies
containing more than 50 cells was microscopically counted to
calculate the colony formation rate as the number of colonies/
number of cells × 100% divided by control. The data was
analyzed by Prism software 7.0 (GraphPad Software, Inc.). All
experiments were performed in triplicate to determine their
reproducibility.

Wound Healing Assay
The cell suspensions of SW480, HT29, and DLD-1 (at 1×105 cells/
well) were placed into a 6-well plates chamber and incubated in
RPMI 1640 medium at 37°C with 5% CO2. When the cells reached
90% confluence, a 200-µl pipette tip was used to scratch shaped
wounds consistently on the cell monolayer across each well. Then,
PBS was utilized to remove floating cells, and serum-free RPMI 1640
medium was added. The wound was photographed immediately
(0 h), using an inverted optical microscope (×200) (Olympus IX51,
Japan). The cells were then cultured in the medium. The wounds
were photographed at 48 h to measure the extent of wound healing.
The change in the scratch area with time and the wound healing
percent were calculated as follows: Wound healing (%) = (the initial
scratch area—the scratch area after 48 h)/the initial scratch area ×
100%. The process abovewas conducted by Image J. Each experiment
was repeated 3 times.

Flow Cytometry
Cell cycle analysis was found using flow cytometry. The cells growing
in exponential phase were seeded into 6-well plates cells and treated
for 48 h. Next, cells were digested by 0.25% trypsin without EDTA,
and then harvested and resuspended in one volume of PBS. Following
treatment, cells were fixedwith ice-cold 75% ethanol at 4°C overnight.
The fixed cell pellets then centrifuged at 1,200 rpm for 10min. With
the removal of the supernatants, cells precipitation was suspended in
1ml propidium iodide (PI, Antgene, China) staining solution (50 μg/
ml PI and 100 μg/ml RNase A in PBS) in darkness before flow
cytometric analysis. After incubating for 30min, the percentages of
cells in the G0/G1, S, and G2/M cell cycle phases were analyzed by
flow cytometry (FACS Calibur, Becton Dickinson, Franklin Lakes,
NJ, United States). Data from at least three independent experiments
were analyzed using the Modfit LTTM Software.

Immunofluorescence
Cells were cultured on coverslips (14mm) in 24-well plates at 37°C
with 5% CO2. After 24 h, the supernatant was removed and PBS was
used to wash it. Then, add 1ml 4% formaldehyde to each well for
15min. After being washed by PBS, cells were permeabilized with
0.3% Triton X-100 at room temperature for 10min. Then, blocked
with 5% BSA for 30min and washed by PBS three times. After that,
the washed cells were incubated with polyclonal antibodies against
E-cadherin (Proteintech, 1: 50), N-cadherin (Proteintech, 1: 50),
p-PI3K (Cell Signaling Technology, 1: 400), and p-AKT (Cell
Signaling Technology 1: 400), overnight at 4°C in darkness. After
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being washed with PBS, add FITC-labeled and Cy3-labeled secondary
antibody, 1:500 dilution, for 1 h at dark. DAPI (Biosharp Biotech,
Hefei, China, 1: 1000) was used to counterstain the nuclei for 10min.
The slides were mounted on coverslips with an anti-fade mounting
medium. All the images were collected by an upright fluorescence
microscope (Olympus BX51, Japan). Each experiment was repeated
3 times.

Transwell Migration and Invasion Assay
Cell migration and invasion ability were examined by Corning
transwell insert chambers (8 mm pore size, Corning). The
transwell chamber was placed into the 24-well culture plate, the
chamber was called the upper chamber, and the culture plate was
called the lower chamber. In the migration assay, 2 × 105 cells were
suspended in 100 μl FBS-free medium and were added to the upper
chamber. 600 μl RPMI 1640 with 20% FBS were seeded in the lower
compartment of the chamber and the cells were incubated in an
environment of 37°C and 5% CO2. After 24 h, 4% paraformaldehyde
(Servicebio, China) was used for fixation. Afterwards, 0.5% crystal
violet was dyed for 10min and the membrane was washed with PBS.
Themigrated cells on the lower surface were photographed randomly
with anOlympus IX51 invertedmicroscope in five visual fields (×200
magnification) and the migrated cells were quantified using Image J
software. For invasion assay, the upper compartment was precoated
with one hundred microliters of matrigel and 5 × 105 cells per
invasion well were added to the upper chamber. After incubating for
48 h, the rest of the protocol was similar to the migration assay. Each
assay was performed at least three times.

Xenograft Tumor Model
5-week-old male BALB/c nude mice were purchased from Beijing
HFK Experimental Animal Center (Beijing, China). SW480 cells
stably transfected with shKIFC3 and shNC were suspended in PBS,
about 200 μl of cells suspensionwere subcutaneously injected into the
lower right dorsal flank of all mice. Each group included seven mice.
Tumor formation was observed and tumor volume was measured by
the vernier caliper on day 7 after injection of cell suspension. Then the
growth of tumors was monitored for an interval of 1 day. The tumor
volume was calculated at the same time intervals, according to the
formula: volume (mm3) = 0.5 × longest diameter × (shortest
diameter)2. When the tumors reached a minimal diameter of
1.0 cm, the subcutaneous tumors were dissected and then
measured and weighted after the sacrifice of the mice. The tumor
sections were removed from paraffin-embedded blocks of the
harvested tissues and we used KIFC3 and ki67 antibodies on the
sections for IHC. All animal experiments were performed following
the procedures and principles outlined in the National Institutes of
Health guidelines for the care and use of laboratory animals, andwere
approved by the Animal Care and Use Committee of Renmin
Hospital of Wuhan University.

Statistical Analysis
All data was expressed as mean ± standard deviation (SD). All
statistical analyses were performed using GraphPad Prism 8.0.
Comparisons between two groups were determined using Student
t-test, while comparisons between multiple groups were analyzed
using one-way ANOVA followed by Tukey’s post-hoc tests. Overall

survival (OS) and disease-free survival (DFS) curves was calculated by
Kaplan-Meier method and tested by log-rank test. p values <0.05
were considered statistically significant.

FIGURE 1 | Analysis of KIFC3 mRNA expression in normal colorectal
and colorectal cancer (CRC) tissues from public databases. (A) Data from the
Oncomine databases showed that KIFC3 mRNA expression was upregulated
in CRC tissues compared to normal colorectal tissues. (B,C) Data from
the GEPIA databases showed that KIFC3 mRNA level was higher in CRC
tissues compared to normal colorectal tissues. (D,E) Data from the GEPIA
database showed that the expression level of KIFC3 could affect the OS of
CRC (p = 0.00069), but did not affect the disease-free survival (p = 0.056). The
OS of patients with high expression of KIFC3 was shorter than that of patients
with low expression of KIFC3.
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RESULTS

Kinesin Family Member C3 mRNA Levels
Are Significantly Upregulated in Colorectal
Cancer Tissues
We analyzed gene expression data in the Oncomine and GEPIA
databases to compare KIFC3 mRNA levels in the tumor and normal
tissues from CRC patients. The CRC tissues showed significantly higher
KIFC3 mRNA expression than the adjacent tissues (Figures 1A–C).
Then, we use the GEPIA database to evaluate the prognostic value of
KIFC3 level. Kaplan-Meier plotter survival analysis showed that the
expression level of KIFC3 could affect the OS of CRC (p = 0.0069), but
did not affect the disease-free survival (p = 0.056). The OS of patients in

the groupwith highKIFC3 expressionwas shorter than that in the group
with low KIFC3 expression, as shown in Figures 1D,E. We used ICGC
database to analyze the relationship betweenKIFC3 gene expression and
survival time and survival status. As shown in Figure 2A, the top
represents the scatter plot from low to high expression level of the gene.
The middle represents the scatter plot distribution of survival time and
survival state corresponding to gene expression in different samples. The
image at the bottom represents a heat map of the gene expression. The
Kaplan-Meier survival curve distribution ofKIFC3 in the ICGCdatabase
is shown in the Figure 2B, the dotted line represented the median risk
score and divided the patients into low-risk and high-risk group, the
disease-free survival of patients in the groupwith highKIFC3 expression
was shorter than that in the groupwith lowKIFC3expression.Figure2C
display the ROC curves and AUC of the KIFC3 gene at different times.

FIGURE 2 | Prognostic analysis of gene signature in the ICGC database. (A) KIFC3 expression and survival time and survival status in ICGC data set. (B) Kaplan-
Meier survival curve distribution of KIFC3 in ICGC data database. (C)ROC curve and AUC of KIFC3 at different times. The abscissas of the upper, middle and lower three
graphs in Figure 2A all represent samples, and the order of the samples is consistent.
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The results showed that CRC patients with higher KIFC3 mRNA levels
were associatedwith poorerOS than theCRCpatientswith lowerKIFC3
expression.

Kinesin Family Member C3 and Gene
Ontology Enrichment Analyses of Kinesin
Family Member C3
To analyze the biological classification of KIFC3, function
enrichment analyses were performed using clusterProfiler
package in R. KEGG pathway analysis revealed that DEGs
were mainly enriched in focal adhesion and pathways in

cancer (Figures 3A, 4A, 5A). GO analysis results showed
that changes in biological processes (BP) of KIFC3 were
significantly enriched in angiogenesis and positive
regulation of cellular component movement (Figures 3B,
4B, 5B) Changes in cell component (CC) of DEGs were
mainly enriched in extracellular matrix and collagen-
containing extracellular matrix (Figures 3C, 4C, 5C).
Changes in molecular function (MF) were mainly enriched
in extracellular matrix structural constituent and cell
adhesion-molecule binding (Figures 3D, 4D, 5D). These
result show, KIFC3 may be involved in the process of cell
adhesion and tight connection.

FIGURE 3 | KEGG pathway and GO enrichment analyses of KIFC3-associated genes. (A) The bubble chart of KEGG pathway. (B) The bubble chart of GO
enrichment in biological processes. (C) The bubble chart of GO enrichment in cell component. (D) The bubble chart of GO enrichment in molecular function.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8489267

Liao et al. KIFC3 and Colorectal Cancer

108

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kinesin Family Member C3 is Expressed at
High Levels in Colorectal Cancer Cell Lines
The protein and mRNA levels of KIFC3 in CRC cell lines were
validated by western blotting and qRT-PCR. It is confirmed that the
protein levels of KIFC3 were significantly higher in CRC cells (HT29,
HCT116, SW480, DLD-1) compared with that in the normal
colorectal epithelium cell line NCM460 (Figures 6A,B). Likewise,
the mRNA levels of KIFC3 in CRC cells were also higher than in
NCM460 (Figure 6C). Among the CRC cell lines, the expression level
of the KIFC3 was highest in SW480 cell followed by HT29 cell, while
DLD-1 had the lowest level of KIFC3. Based on the above, we

established a stable knockdown cell line of SW480 and HT29 cells,
and KIFC3-overexpressing in DLD-1 cells. The picture (Figures
6D–J) shows the efficiency of knockdown or overexpression at the
protein level and mRNA level. We selected the best knockdown effect
for subsequent experiments, and a fluorescence microscope showed
the transfection efficiency was over 95% (Figure 7A).

Kinesin Family Member C3 Promotes
Colorectal Cancer Cell Proliferation
To elucidate the function of KIFC3 in cell growth, we performed EdU
assay, CCK-8 assay and colony formation assay. Evaluation of EdU

FIGURE 4 | KEGG pathway and GO enrichment analyses of KIFC3-associated genes. (A) The bar chart of KEGG pathway. (B) The bar chart of GO enrichment in
biological processes. (C) The bar chart of GO enrichment in cell component. (D) The bar chart of GO enrichment in molecular function.
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staining showed that depleted-KIFC3 in SW480 and HT29 cells gave
rise to a decrease in the number of EdU-positive cells (Figures 7B–E),
while the overexpression of KIFC3 significantly increased the number of
EdU labelled cells in contrast with Control and Vector groups (Figures
7F,G). CCK-8 assay results demonstrated that the growth of KIFC3-
depleted in SW480 cells was slower than the Control and NC group at
24, 36 and 48 h (Figure 7H). Similar results were shownwhen the assay
was conducted in the depletion of KIFC3 in HT29 cells (Figure 7I).
Conversely, KIFC3 overexpression group had a higher proliferation
vitality than those transfected with Vector and Control groups
(Figure 7J). Meanwhile, colony formation assay found that KIFC3

downregulation impaired cell viability in SW480 and HT29 cells
(Figures 7K–N), whereas KIFC3 upregulation promoted cell viability
in DLD-1 cells (Figures 7O,P). Due to the observed effects of KIFC3 on
CRC cells growth, we assessed the cell cycle assay and found that the
knockdown of KIFC3 in SW480 cell lines could increase the number of
cells inG1 phase, decrease the number of cells in S phase (Figures 8A,B,
Supplementary Figure S1A). Meanwhile, the knockdown of KIFC3 in
HT29 cell lines could increase the number of cells in G1 phase and the
number of cells inG1 phase, and decrease the number of cells in S phase
(Figures 8C,D, Supplementary Figure S1B). Next, we evaluated the
expressionofCyclinA2,CyclinE1, andCDK2,which are important and

FIGURE 5 | KEGG pathway and GO enrichment analyses of KIFC3-associated genes. (A) The network chart of KEGG pathway. (B) The network chart of GO
enrichment in biological processes. (C) The network chart of GO enrichment in cell component. (D) The network chart of GO enrichment in molecular function.
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tightly initiate DNA replication in S phase. We also evaluated the
expression of p21 and p53. The downregulation of KIFC3 suppress the
expression of Cyclin A2, Cyclin E1 and CDK2, enrich the expression of
p21 and p53 (Figures 8E–H).Moreover, we added the cell cycle assay of
KIFC3-overexpression cells to verify whether KIFC3 has an effect on the
growth cycle of CRC. The result show that KIFC3 overexpression
increase the numbers of cells in S phase, decrease the number of cells in
G1 phase, further promoted the G1/S phase transition (Supplementary
Figure S2). PCNA is a key marker of cell proliferation, which assists in
DNA replication. We found that the cells transfected shKIFC3 had
lower protein levels of PCNA than those in Control and NC, whereas
the protein level of PCNA was enhanced after KIFC3 overexpression
compared to the Control and Vector groups (Figures 9A–F). Those
results indicate that KIFC3 was sufficient to increase the proliferation of
CRC cells.

Kinesin Family Member C3 Promotes the
Migration and Invasion of Colorectal Cancer
Cells
To test the relevance of KIFC3 on cell migration and invasion, we
conducted the scratch and transwell assays. We used a wound healing
assay to demonstrate the roles of KIFC3 on migration capability of

CRC cells.When the cell transfectedwith shKIFC3, the wound-healing
speed was slower than the Control and NC groups and the wound-
healing speedwas faster in the group of KIFC3 overexpression than the
Control and Vector groups (Figures 9G–L). Moreover, the transwell
assay showed similar results as wound healing assay. From the Figures
10A–D, transwell migration assays showed that the downregulation of
KIFC3 significantly weakened the migratory ability in SW480 and
HT29 cell lines. On the contrary, the cell migratory capability was
enhanced after KIFC3 overexpression in DLD-1 cell lines (Figures
10E,F). Similarly, the invasion ability of CRC cells through the filter
coated with Matrigel were reduced (Figures 10G–J). As expected, the
results of transwell assay exhibited that the cell invasion rate were
increased in KIFC3 overexpression groups compared with the Control
and Vector groups (Figures 10K–L). The combined data
demonstrated that KIFC3 may act as a regulator in promote
migration and invasion in CRC cells.

Kinesin Family Member C3 Enhances the
Epithelial-to-Mesenchymal Transition
Process in Colorectal Cancer Cells
Epithelial cells may develop invasive mesenchymal stem cell-
like properties through epithelial-to-mesenchymal transition

FIGURE 6 | KIFC3 was expressed at higher levels in CRC cell lines. (A–C) Western blot and qRT-PCR analysis of KIFC3 expression in CRC cell lines (HT29,
HCT116, SW480, DLD-1) and normal colon mucosal epithelial cells (NCM460), and quantification analysis results. (D–G) Western blot analysis of the efficiency of sh-
KIFC3 and sh-NC transfection compare with Control group in SW480 and HT29 cells, and the efficiency of KIFC3-overexpress and over-Control transfection in DLD-1
cell, and quantification analysis results. (H–J) qRT-PCR analysis of the efficiency of the best knockdown effect in SW480 and HT29 cells, and the efficiency of
KIFC3-overexpress, NC and Control transfection in DLD-1 cell. The transfected cells above are all stable transfectants. The data are presented as the mean ± standard
deviation of triplicate independent experiments and were normalized to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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(EMT). Many researches have revealed that EMT plays a
critical role in tumorigenesis and metastasis. MMP-2 and
MMP-9, which are proteolytic proteins of the outer
membrane, are thought to be involved in cell metastasis
and cell invasion. Herein, we found that KIFC3 silencing
repressed the protein level of MMP-2 and MMP-9, while
the KIFC3 overexpression showed the opposite results
(Figures 11A–F). To further assess the role of KIFC3 in
EMT, we measured the EMT-related marker through
western blot analyses after KIFC3 downregulation and
overexpression. The results displayed that KIFC3 silencing

lead to epithelial marker E-cadherin up-regulated, while the
mesenchymal markers including N-cadherin, Vimentin,
SNAIL one and TWIST were down-regulated. Yet, after
KIFC3 was upregulated in DLD-1 cells, the opposite results
were displayed (Figures 11A–F). To further investigate the
role of KIFC3 in EMT, immunofluorescence staining was
conducted, and it showed dramatic upregulation of
E-cadherin expression and downregulation of N-cadherin
expression when KIFC3-depleted in SW480 and HT29
cells, while the opposite results were investigated when
KIFC3 was upregulated in DLD-1 cells, as well (Figures

FIGURE 7 | KIFC3 promotes the proliferation of CRC cells. (A) The transfection efficiency of SW480, HT29 and DLD-1 were observed under microscope. (B–G)
EdU assay of KIFC3 silencing or overexpression on CRC cells’ proliferation, and quantification analysis results. (H–J) The effects of KIFC3 silencing or overexpression on
the proliferation ability of SW480, HT29 and DLD-1 cells were measured by the CCK-8 assay. (K–P) Colony formation assay of KIFC3 silencing or overexpression on
CRC cells’ proliferation, and quantification analysis results. The data are presented as the mean ± standard deviation of triplicate independent experiments and
were normalized to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 84892611

Liao et al. KIFC3 and Colorectal Cancer

112

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


11G–L). As demonstrated by those experiments, it could be
possible that the KIFC3 could enhance the EMT process in
CRC cells.

Kinesin Family Member C3 Enhances the
PI3K/AKT/mTOR Signaling Pathway in
Colorectal Cancer Cells
The PI3K/AKT/mTOR signaling pathway plays a vital role in cancer
which regulated cell proliferation, migration and invasion. To further
elucidate the possible mechanism of KIFC3 in regulating the EMT
process of CRC cells, we inspected the expression of the related proteins
in PI3K/AKT/mTOR pathway. As shown by western blot assay, the

protein expression levels of p-PI3K, p-AKT, and p-mTOR of KIFC3
silencing cells (SW480-shKIFC3, HT29-shKIFC3) group were notably
lower compared with the Control andNC group. At the same time, the
total protein levels of PI3K, AKT, and mTOR showed no changes
(Figures 12A,B,D,E). As displayed in Figures 12C,F, when the KIFC3
expression was upregulated in DLD-1 cell, the protein levels of t-P13K,
t-AKT and t-mTOR were unchanged, whereas the protein expression
level of p-PI3K, p-AKT and p-mTOR were significantly upregulated.
What is more, when KIFC3 was knocked down in SW480 and HT29
cells, immunofluorescence staining showed a downregulated expression
of p-PI3K and p-AKT, the same as the western blot results, whereas the
upregulation of KIFC3 reverted this phenomenon in DLD-1 cell lines
(Figures 12G–L). The results above showed that the KIFC3 enhances

FIGURE 8 | KIFC3 affects the expression of cell cycle-mediated factors. (A–D) Effects of KIFC3 silencing on the cell cycle distribution in SW480 and HT29 cells as
showed by flow cytometry assay, and quantification analysis results. (E–H) Effect of KIFC3 silencing on the expression of cell cycle-mediated factors like p21, p53, Cyclin
A2, Cyclin E1, and CDK2, as measured by western blot, and quantification analysis results. The data are presented as the mean ± standard deviation of triplicate
independent experiments and were normalized to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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the EMT process by activating the PI3K/AKT/mTOR signaling
pathway in CRC cells.

Loss of Kinesin Family Member C3 Inhibits
Tumor Growth in vivo
Given the significant inhibition of CRC cell survival and EMT
through PI3K/AKT/mTOR signaling by the knockdown of

KIFC3 in vitro, we examined its activity in vivo. We
established a tumor xenograft model, via the subcutaneous
injection of the SW480 cells transfected with shKIFC3#1 or
transfected with a negative control vector. One week after the
tumor cell implantation, apparent subcutaneous tumor
formation was observed. We then observed and measured the
size of the tumor every 2 days. We found that the growth rate of
tumors in the KIFC3 silencing groups were slower than that in the
NC groups (Figures 13A,B). After 22 days, nude mice were
sacrificed and we weighted the tumors. We found that the
tumor growth rate was significantly slower in the KIFC3-
depletion group than in the NC group (Figure 13C, p <
0.001). Then, we detected the tumor weight, and we found
that the tumors in the knockdown groups were significantly
smaller than those in the NC groups (Figure 13D).
Furthermore, we detected the KIFC3 and ki67 expression on
the tumor section. Immunofluorescence staining revealed that the
xenograft tumor tissues injected with sh-KIFC3 reduced the
expression of KIFC3 and ki67, indicating the decrease of CRC
cell proliferation (Figures 13E,F). Collectively, these findings
elucidated that the down-regulation of KIFC3 could suppress
tumor growth in CRC in vivo.

Inhibition of the PI3K/AKT/mTOR Pathway
Attenuates the Tumorigenic Effect of
Kinesin Family Member C3 on Colorectal
Cancer Cells
To explore whether the PI3K/AKT/mTOR signaling pathway was
related to KIFC3, the DLD-1 cells that transfected with KIFC3
overexpression were preincubated with LY294002 (20 μM,
Selleck Chemicals, Shanghai, China) or Triciribine (5 μM,
MCE, Shanghai, China). LY294002 is an inhibitor of the PI3K/
AKT/mTOR pathway, whereas Triciribine is an AKT inhibitor.
As represented in the Figures 14A–C, compared with the KIFC3
overexpression group, the phosphorylation levels of PI3K, AKT,
andmTOR decreased after using LY294002 or Triciribine, but the
total protein levels of P13K, AKT, and mTOR had no changes.
Besides, LY294002 reversed the promoting effects of KIFC3 on
the proliferation of CRC cells. DLD-1 cells preincubated with
Triciribine shows the same trend as LY294002 (Supplementary
Figure S3A). Moreover, we can find the ability of migration and
invasion of CRC cells were restrained after DLD-1 cells culture
with LY294002 or Triciribine (Supplementary Figures S3B,C).
This finding may be attributed to the fact that KIFC3 is indeed
related to the PI3K/AKT/mTOR signaling pathway (Figure 15).

DISCUSSION

More and more evidences indicate that KIFs play critical roles in
the genesis and development of human cancers. Some KIFs are
associated with malignancy and drug resistance in solid tumors
(Liu et al., 2013). For example, KIF5B plays an important role in
determining phenotype and aggressiveness of breast cancer
(Moamer et al., 2019), high expression level of KIF11 was
associated with unfavorable prognosis in clear cell renal cell

FIGURE 9 |KIFC3 promotes the proliferation andmigration of CRC cells.
(A–F) The expression of PCNA in SW480, HT29 and DLD-1 cells after
lentivirus vectors delivery in each group as measured by western blot, and
quantification analysis results. (G–L) Effects of KIFC3 silencing or
overexpression on the wound healing of SW480, HT29 and DLD-1 cells, and
quantification analysis results. The data are presented as themean ± standard
deviation of triplicate independent experiments and were normalized to the
control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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carcinoma (Jin et al., 2019), KIF2C/4A/10/11/14/18B/20A/23
predict poor prognosis and promote cell proliferation in
hepatocellular carcinoma (Li et al., 2020b) and KIF26A could
inhibit migration and invasion (Ma et al., 2021). Aside from this,
chemotherapeutic drug resistance is the main obstacle in effective
tumor treatment, which hinders the efficacy of cytostatic drugs
(Li et al., 2019; Tian et al., 2019; Ashar et al., 2020). In breast
cancer, the overexpression of KIFC3 increased the resistance of
breast cancer cells to docetaxel through opposing the microtubule
stabilizing effect of docetaxel (De et al., 2009). In this study, we
found that KIFC3 was expressed at higher levels in human CRC
tissues and cell lines than in normal colorectal tissues and cells.
That means KIFC3 may play a notable role in the occurrence and
development of differential expression of the CRC.

Cellular proliferation is essential for normal development and
for maintaining tissue homeostasis. Excessive proliferation of
cells is closely related to the occurrence of tumors (Shi et al.,
2020). Zhao et al. (2020) found that the KIF18B promotes cell
proliferation in colon adenocarcinoma and tumor growth in vitro
and in vivo. In our research, we found that the ability and speed of
CRC cells proliferation were slower in the KIFC3-depleted groups
in the EdU assay, CCK-8 and colony formation assay. The
opposite results were observed in the KIFC3 overexpression
groups. We further determined whether KIFC3 promotes
tumor growth in vivo. The results showed that tumor growth
rates in nude mice with KIFC3-depleted were significantly lower
than in the mice of NC group. The result of the in vivo experiment
was consistent with that of the in vitro experiment. Moreover, an

FIGURE 10 | KIFC3 promotes the migration and invasion of CRC cells. (A–F) Effects of KIFC3 silencing or overexpression on the migration ability of SW480, HT29
and DLD-1 cells, and quantification analysis results. (G–L) Effects of KIFC3 silencing or overexpression on the invasion ability of SW480, HT29 and DLD-1 cells, and
quantification analysis results. The data are presented as the mean ± standard deviation of triplicate independent experiments and were normalized to the control group.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 11 | KIFC3 affected the expression of the related factors in the EMT progress. (A–C) Effects of KIFC3 silencing or overexpression on the expression of the
related factors in the EMT progress like E-cadherin, N-cadherin, Vimentin, TWIST1, SNAI1, MMP-2, and MMP-9, as measured by western blot. (D–F) Quantification to
the protein level of the related factors in the EMT progress. (G–I) Immunofluorescence staining of E-cadherin and N-cadherin. (J–L) Statistical analysis of the relative
mean fluorescence of E-cadherin and N-cadherin. The data are presented as the mean ± standard deviation of triplicate independent experiments and were
normalized to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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abnormal cell cycle causes carcinogenesis and cancer progression
(Kometani et al., 2020). Many studies have proved that the
dysregulation of KIFs has been revealed to influence the cell
cycle to cause abnormal cell growth and affect cell adhesion to
promote EMT in breast, bladder, ovarian and prostate cancer.

Wang et al. (2015) found that the silencing of KIF3C by shRNA
inhibited epithelial-mesenchymal transition and metastasis by
inhibiting TGF-β signaling and suppressed breast cancer cell
proliferation through inducing G2/M phase arrest. The cell
cycle assay was performed through flow cytometry. We used

FIGURE 12 | KIFC3 affected the expression of the related factors in the PI3K/AKT/mTOR pathway. (A–C) Effects of KIFC3 silencing or overexpression on the
expression of the related factors in the PI3K/AKT/mTOR pathway like PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR, as measured by western blot. (D–F)
Quantification to the protein level of the related factors in the PI3K/AKT/mTOR pathway. (G–I) Immunofluorescence staining of p-PI3K and p-AKT. (J–L) Statistical
analysis of the relative mean fluorescence of p-PI3K and p-AKT. The data are presented as the mean ± standard deviation of triplicate independent experiments
and were normalized to the control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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propidium iodide (PI), a commonly fluorescent dye that is
permeable for the cell membrane and intercalates into the
nucleic acid. The intensity of the signal is directly proportional
to the nucleic acid content. In our study, the knockdown of
KIFC3 decreased the expression of PCNA and the number of cells
in S phase, whereas the overexpression of KIFC3 increased the

expression of PCNA and promoted the G1/S phase transition. S
phase is the phase of the cell cycle in which DNA is replicated and
represents the proliferation index (Minisy et al., 2020). Cell cycle
progression is co-regulated by Cyclin/Cyclin-dependent kinase
(CDK) complexes. Different Cyclin-CDK complexes are involved
in regulating different cell cycle transitions. Cyclin E-CDK2 plays

FIGURE 13 | KIFC3 knockdown inhibited tumor growth and proliferation. (A–D) Transplanted tumor mice image, tumor xenograft image, tumor xenograft volume,
tumor xenograft weight of sh-NC and sh-KIFC3 SW480 cells in nude mice. (E,F) Analysis of KIFC3 and Ki67 in tumor xenografts derived from sh-NC and sh-KIFC3
SW480 cells by Immunohistochemistry. The data are presented as the mean ± standard deviation of triplicate independent experiments and were normalized to the
control group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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a key role in the G1-S transition, while Cyclin A-CDK2 palys a
key role in S-phase progression (Lee et al., 2013). Defects in many
molecules that regulate the cell cycle also contribute to tumor
progression. The factor p21, as a CDK inhibitor, is known to be
mediated in the regulation of the cell cycle in cancer cells (Park
W. et al., 2019). Expression of p21 is mediated by p53 and is
essential for DNA-damage-induced cell cycle arrest (Sidor-
Kaczmarek et al., 2017). The factor p53, as a tumor suppressor
factor, suppresses cell growth, migration, and invasion. Not only
does p21 serve as a downstream mediator of p53, but it also
cooperates with p53 to suppress cell invasion (Kim et al., 2017).
PCNA is a cofactor of DNA polymerases, which is involved in
DNA synthesis during genome replication in the S phase of the
cell cycle and is used as a marker reflecting the activity of cell
proliferation (Lee et al., 2019). Collectively, we hypothesize that
the KIFC3 increases the proliferation of CRC cells.

The misregulation of KIFs may contribute to uncontrolled cell
growth, highlighting their involvement in tumorigenesis on the
course of the cell cycle (Lucanus and Yip, 2018). The resulting

daughter cells may exhibit cancerous behavior, including the
ability of increased metastasis (Almeida and Maiato, 2018;
Lucanus and Yip, 2018). The invasion and migration of tumors
are the main reasons leading to the failure of tumor treatment and
poor prognosis, which cause low 5-year survival rates (Zhan et al.,
2020; Zhao et al., 2020). In tumorigenesis and metastasis, EMT plays
a critical role. During EMT, epithelial tumor cells undergo distinct
morphological and phenotypic changes, including loss of tight
junctions, cell polarity and cytoskeletal reorganization, which
renders cells more invasive properties and phenotypes. During
metastasis, down-regulation of epithelial-associated marker
proteins and up-regulation of mesenchymal marker proteins
induce cell adhesion to the stroma and enhance tumor cell
invasiveness. Vimentin is an intermediate filament protein and a
mesenchymal marker of fibrosis. Snail as a mesenchymal marker
protein affects the ability of cancer cells to invade the surrounding
tissue. There is an evidence that TWIST1 upregulates vimentin
expression in EMT (Meng et al., 2018). The loss of intercellular
adhesion makes it easy for tumor cells to migrate and invade,

FIGURE 14 | LY294002 and Triciribine attenuates the effect of KIFC3 on PI3K/AKT/mTOR pathway in CRC cells. (A) The expression of the related factors in the
PI3K/AKT/mTOR pathway was reversed to some extent under the effect of LY294002 and Triciribine. (B,C)Quantification to the protein level of the related factors in the
PI3K/AKT/mTOR pathway. The data are presented as the mean ± standard deviation of triplicate independent experiments and were normalized to the control group.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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eventually leading to metastatic dissemination (Liu et al., 2018). In
order to penetrate into neighboring tissues and metastasize to distant
organs, cancer cells require the motility and degradation of the
extracellular matrix (ECM). Under this condition, certain types of
ECM-degrading enzymes play a critical role in promoting the
migration and subsequent metastasis of cancer cells (Pan et al.,
2013). Cancer cells often release matrix metalloproteinase
(MMPs), which can degrade ECM proteins. Among them, MMP-
2 and MMP-9 are highly-expressed in malignant tumors, and have
been proved to have participated in degradation of the ECM, a crucial
component of the basal membrane, leading to cancer metastasis (Wu
et al., 2019). Increased cell motility, along with the ability to digest
ECM, affords cancer cells greater ability to invade tissues, leading to
metastasis and diffuse tissue dissemination. Nakamura et al. (2007)
established a gastric cancer cell line stably expressing KIF2C, it was
found that cells transfectedwithKIF2Chad a high rate of proliferation
and increased migratory ability compared to mock-transfected cells.
In our study, we found that not only the number of invading cells but
also the number of migrating cells were less in the knockdown of
KIFC3 group than control and NC groups. Conversely, both the
number of invading and migrating cells in the KIFC3 overexpression
group was higher than that in the Control and NC groups. As shown
by western blot assay, KIFC3 increased the protein content of MMP-
2, MMP-9 and mesenchymal associated markers, decreased the
protein level of associated markers. These findings may be
attributed to the fact that KIFC3 serves a key role in facilitating
tumor cell invasiveness and metastasis by regulating MMP-2, MMP-
9 and EMT-associated marker proteins expression.

The PI3K/AKT/mTOR pathway not only plays a vital role in
physiologically cell biology but has also been identified as a
growing target for tumor therapy (Dey et al., 2019; Reddy
et al., 2019; Wang et al., 2019; Mannella et al., 2021).
Increasing researches have reported that the PI3K/AKT/mTOR
molecular signaling pathways play an essential role in the
development and progression of CRC which regulate cell

survival, growth, proliferation, angiogenesis, invasion,
migration and glucose metabolism (Park S. H. et al., 2019;
Deng et al., 2019; Jin et al., 2020; Smit et al., 2020). PI3K
belongs to lipid kinases family that activated by a large
number of RTKs, once stimulated, can produce
phosphotidylinositol-4,5-bisphosphate (PIP2) and
phosphatidylinositol-3,4,5- trisphosphate (PIP3). PIP3 plays a
key role in cell growth and survival by activating downstream
signaling pathways through AKT. AKT, also called as protein
kinase B (PKB), when the double-phosphorylated AKT separates
from the membrane, thus resulting in the activation of mTOR
complex, which activates the translation of proteins, enhances cell
growth, promotes cell proliferation and cell metabolism.
Additionally, the complex of mTOR could exert its positive
feedback and then enhance the basal phosphorylation of AKT.
It has been reported that Akt plays a critical role on post-
transcription of Vimentin, which is involved in the EMT
process (Zhuang et al., 2012; Treesuwan et al., 2018). Also,
researchers found that KIFs help to cross-link vimentin in
microtentacles, which are important for cancer metastasis
(Lucanus and Yip, 2018). Current researchers showed that
activation of the PI3K/AKT/mTOR pathway could facilitate
the process of EMT, thus increasing the metastatic ability of
tumor cells. In this study, we evaluated the effects of KIFC3 on the
PI3K/AKT/mTOR pathway in CRC cells. Our research data
indicate that the phosphorylation levels of PI3K, AKT and
mTOR were significantly increased in KIFC3-overexpressing
cells, while t-PI3K, t-AKT, and t-mTOR levels had no change.
The opposite trend was shown in the KIFC3-depletion groups. In
order to further elucidate whether the effect of KIFC3 on CRC
cells is related to PI3K/AKT/mTOR pathway, LY294002 (an
inhibitor of PI3K/AKT/mTOR pathway) and Triciribine (an
inhibitor of AKT) was used to treat KIFC3-overexpressing
cells individually. The results showed that LY294002 and
Triciribine significantly attenuated the tumor-promoting effect

FIGURE 15 | The relationship between KIFC3 and thePI3K/AKT/mTOR pathway.
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of KIFC3 on CRC cells. We speculate that overexpress of KIFC3
may promote the proliferation, migration and invasion on CRC
cells, by activating the PI3K/AKT/mTOR pathway.

In summary, our study presented here demonstrates, for
the first time, that an increased KIFC3 expression is correlated
with the proliferation, migration and invasion of CRC cells
through regulating the EMT process via the PI3K/AKT/
mTOR signal transduction pathway. Therefore, we propose
that KIFC3 is an important protein in the development of
CRC. KIFC3 may be a promising biomarker that provides a
new perspective into human CRC treatment, as well as
targeting KIFs therapy seems to be a promising anti-cancer
strategy.
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Objective: The purpose of this study was to investigate the relationship betweenGSDMB
gene polymorphism and genetic susceptibility to cervical cancer in the Han population in
Northeast China.

Methods: In this case–control study, the genotypes and alleles of rs8067378 in the
GSDMB gene were analyzed by multiplex polymerase chain reaction (PCR) and next-
generation sequencing methods in 482 cervical cancer (CC) patients, 775 cervical
squamous intraepithelial lesion (SIL) patients, and 495 healthy women. The potential
relationships between the SNP of the GSDMB gene with SIL and CC were analyzed by
multivariate logistic regression analysis combined with 10,000 permutation tests.

Results: In the comparison between the SIL group and the control group, the genotype
and allele distribution frequencies of rs8067378 SNP of theGSDMB gene were statistically
significant (p = 0.0493 and p = 0.0202, respectively). The allele distribution frequencies of
rs8067378 were also statistically significant in the comparison between high-grade
cervical squamous intraepithelial lesion (HSIL) and low-grade cervical squamous
intraepithelial lesion (LSIL) groups with control group ( p = 0.0483 and p = 0.0330,
respectively). Logistic regression analysis showed that after adjusting for age, the
rs8067378 SNP of the GSDMB gene was significantly associated with the reduced
risk of SIL under the dominant model (p = 0.0213, OR = 0.764, CI = 0.607–0.961)
and the additive model (p = 0.0199, OR = 0.814, and CI = 0.684–0.968), and its mutant
gene G may play a role in the progression of healthy people to LSIL and even HSIL as a
protective factor. However, there was no significant association between cervical cancer
and its subtypes with the control group (p > 0.05). After 10,000 permutations, there was
still no correlation that has provided evidence for the accuracy of our study.

Conclusion: The results of this study showed that rs8067378 single nucleotide
polymorphism of the GSDMB gene may reduce the risk of SIL and protect the
susceptibility to cervical precancerous lesions in the Northeast Chinese Han
population, but it has no significant correlation with the progression of cervical cancer.
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1 INTRODUCTION

Cervical cancer is the fourth most frequently diagnosed cancer and
the fourth leading cause of cancer death in women. It is estimated
that by 2020, there were 604,000 new cases and 342,000 deaths in
the world (Sung et al., 2021). The progression of cervical cancer is a
complex process with multiple steps and factors. In addition to the
risk factors such as long-term chronic inflammation caused by
high-risk human papillomavirus (HPV) persistent infection, long-
term oral contraceptives, and fertility and sexual life disorder, the
occurrence of cervical cancer also has obvious individual genetic
susceptibility (Nkfusai et al., 2019; Olusola et al., 2019; Sadri
Nahand et al., 2020; van der Waal et al., 2020; Yang et al.,
2020). Single nucleotide polymorphism (SNP) is the most
common form of genetic variation, which widely exists in the
human genome and is related to the susceptibility to a variety of
cancers such as cervical cancer. Therefore, the study of SNP will
also contribute to the early diagnosis and treatment of cervical
cancer (Shastry, 2009; Tan, 2017).

Gasdermin B (GSDMB) is a member of the GSDM protein
superfamily that exists only in vertebrates. The GSDMB gene,
located on chromosome 17q21.2, has a conserved gasdermin
domain, a potential nuclear localization signal, and two
nuclear receptor-binding motifs LXX(L/I)L. It is 1518 bp
length and encodes 411 amino acids. It is often expressed
in normal esophageal and gastrointestinal epithelium and
bronchial epithelium of asthmatic lungs (Sun et al., 2008;
Zheng et al., 2020). GSDMB has six splice variants, and
GSDMB-1 is the longest and most important subtype
which is expressed in human cancer cell lines (Feng et al.,
2018).

Recently, several studies have identified that the expression
of GSDMB has a potential relationship with the occurrence and
development of tumors. GSDMB can regulate its lipid binding
and pore-forming activity through different mechanisms of the
intramolecular domain and then participate in pyrocytosis
(Chen et al., 2019; Li et al., 2020). Pyrocytosis is a pro-
inflammatory form that regulates cell death. Its essence is a

TABLE 1 | Clinical characteristics in the control group with the CC and SIL groups.

Control CC SIL P1 P2 P3

Age (years) 39.44 ± 8.22 49.33 ± 9.29 42.22 ± 9.68 <0.0001 <0.0001 <0.0001
Menarche age (years) -- 14.92 ± 1.86 14.61 ± 1.90 -- -- 0.0058
Amenorrhea n (%) -- 216 (44.8%) 148 (19.1%) -- -- <0.0001
Smoking n (%) -- 30 (6.22%) 23 (2.97%) -- -- 0.0091
Drinking n (%) -- 4 (0.83%) 4 (0.52%) -- -- 0.4952

CC, cervical cancer; SIL, cervical squamous intraepithelial lesion.
p-value (P1, comparison of controls with CC; P2, comparison of controls with SIL; P3, comparison of CC with SIL).
p values < 0.05 are considered statistically significant, and shown in bold.

TABLE 2 | Comparison of genotypes and allele distribution frequencies between the CC group and its subgroups with the healthy control group.

Genotype
and allele

Control Case P OR [95% CI] Statistical
model

P9 P99 OR [95% CI]

Controls
(n= 495)

CC(n = 482)

AA 259 (52.3%) 235 (48.8%) Dominant 0.2054 0.2095 0.829[0.620–1.108]
AG 189 (38.2%) 199 (41.3%) Recessive 0.5305 0.5327 0.852[0.516–1.406]
GG 47 (9.49%) 48 (9.96%) 0.5322 Additive 0.2132 0.2088 0.868[0.696–1.084]
A 707 (71.4%) 669 (69.4%)
G 283 (28.6%) 295 (30.6%) 0.3290 0.908[0.747–1.102]

Controls
(n= 495)

SCC (n = 416)

AA 259 (52.3%) 204 (49.0%) Dominant 0.2967 0.2968 0.851[0.628–1.152]
AG 189 (38.2%) 169 (40.6%) Recessive 0.4040 0.4110 0.801[0.476–1.348]
GG 47 (9.49%) 43 (10.3%) 0.6110 Additive 0.2443 0.2437 0.872[0.692–1.098]
A 707 (71.4%) 577 (69.4%)
G 283 (28.6%) 255 (30.6%) 0.3362 1.104[0.902–1.351]

Controls
(n= 495)

AUC(n = 36)

AA 259 (52.3%) 16 (44.4%) Dominant 0.2542 0.2631 0.659[0.321–1.350]
AG 189 (38.2%) 16 (44.4%) Recessive 0.5203 0.5204 0.680[0.209–2.207]
GG 47 (9.49%) 4 (11.1%) 0.6589 Additive 0.2441 0.2462 0.727[0.425–1.243]
A 707 (71.4%) 48 (66.7%)
G 283 (28.6%) 24 (33.3%) 0.3909 0.801[0.481–1.332]

CC, cervical cancer; SCC, squamous carcinoma of cervical; AUC, adenocarcinoma of the uterine cervical; OR, odds ratio; CI, confidence interval.
P: p-value (control vs. CC; control vs. SCC; control vs. AUC ); p-values <0.05 are shown in bold.
P’: age was adjusted.
P”: the p-value was calculated using 10,000 permutations for each model to correct the multiple tests.
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TABLE 3 | Comparison of genotypes and allele distribution frequencies between the SIL group and its subgroups with the healthy control group.

Genotype
and allele

Control Case P OR [95% CI] Statistical
model

P9 P99 OR [95% CI]

Control
(n= 495)

SIL (n = 775)

AA 259 (52.3%) 351 (45.3%) Dominant 0.0213 0.0228 0.764[0.607–0.961]
AG 189 (38.2%) 337 (43.5%) Recessive 0.1861 0.1881 0.773[0.528–1.132]
GG 47 (9.49%) 87 (11.2%) 0.0493 Additive 0.0199 0.0208 0.814[0.684–0.968]
A 707 (71.4%) 1,039 (67.0%)
G 283 (28.6%) 511 (33.0%) 0.0202 0.814[0.684–0.968]

Control
(n= 495)

HSIL (n = 619)

AA 259 (52.3%) 283 (45.7%) Dominant 0.0356 0.0366 0.773[0.608–0.983]
AG 189 (38.2%) 270 (43.6%) Recessive 0.3067 0.3102 0.811[0.543–1.211]
GG 47 (9.49%) 66 (10.7%) 0.0903 Additive 0.0406 0.0401 0.827[0.689–0.992]
A 707 (71.4%) 836 (67.5%)
G 283 (28.6%) 402 (32.5%) 0.0483 0.832[0.694–0.999]

Control
(n= 495)

LSIL (n = 156)

AA 259 (52.3%) 68 (43.6%) Dominant 0.0631 0.0633 0.702[0.484–1.019]
AG 189 (38.2%) 67 (42.9%) Recessive 0.0928 0.0916 0.614[0.348–1.084]
GG 47 (9.49%) 21 (13.5%) 0.1180 Additive 0.0308 0.0327 0.740[0.564–0.973]
A 707 (71.4%) 203 (65.1%)
G 283 (28.6%) 109 (34.9%) 0.0330 0.745[0.569–0.977]

SIL, cervical squamous intraepithelial lesion; HSIL, high-grade cervical squamous intraepithelial lesion; LSIL, low-grade cervical squamous intraepithelial lesion; OR, odds ratio; CI,
confidence interval.
P: p-value (control vs. SIL; control vs. HSIL; control vs. LSIL ); p values <0.05 are considered statistically significant, and shown in bold.
P’: age was adjusted.
P”: the p-value was calculated using 10,000 permutations for each model to correct the multiple tests.

TABLE 4 | Comparison of genotypes and allele distribution frequencies between the CC group and the SIL group.

Genotype
and allele

CC (n = 482) SIL (n = 775) P OR [95%
CI]

Statistical
model

P9 P99 OR [95%
CI]

AA 235 (48.8%) 351 (45.3%) Dominant 0.2191 0.2195 1.165[0.913–1.485]
AG 199 (41.3%) 337 (43.5%) Recessive 0.5878 0.5914 1.116[0.751–1.657]
GG 48 (9.96%) 87 (11.2%) 0.4616 Additive 0.2419 0.2423 1.115[0.929–1.339]
A 669 (69.4%) 1,039

(67.0%)
G 295 (30.6%) 511 (33.0%) 0.2165 1.115[0.938–1.326]

CC, cervical cancer; SIL, cervical squamous intraepithelial lesion; OR, odds ratio; CI, confidence interval.
P: p-value (CC vs. SIL ); p-values <0.05 are shown in bold.
P’: age was adjusted.
P”: the p-value was calculated using 10,000 permutations for each model to correct the multiple tests.

TABLE 5 | Comparison of genotypes and allele distribution frequencies between the SCC group and AUC group.

Genotype
and allele

SCC (n = 416) AUC (n = 36) P OR [95% CI] Statistical
model

P9 P99 OR [95% CI]

AA 204 (49.0%) 16 (44.4%) Dominant 0.6073 0.6082 1.197[0.603–2.374]
AG 169 (40.6%) 16 (44.4%) Recessive 0.8808 0.8827 1.087[0.367–3.222]
GG 43 (10.3%) 4 (11.1%) 0.8690 Additive 0.6495 0.6511 1.123[0.680–1.856]
A 577 (69.4%) 48 (66.7%)
G 255 (30.6%) 24 (33.3%) 0.6362 0.884[0.530–1.474]

SCC, squamous carcinoma of cervical; AUC, adenocarcinoma of the uterine cervical; OR, odds ratio; CI, confidence interval.
P: p-value (SCC vs. AUC ); p-values <0.05 are shown in bold.
P’: age was adjusted.
P”: the p-value was calculated using 10,000 permutations for each model to correct the multiple tests.
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cascade amplification of inflammatory response. It often
participates in the body’s immune defense and plays a
“double-edged sword” role in the occurrence and
development of tumor (Li et al., 2020). In addition, the level
of sulfatide on the apical surface of many tumor epithelial cells is
significantly increased, and the metastatic ability of tumor cells
is related to the specific binding of GSDMB to sulfatide (Chao
et al., 2017). Increasingly, a large number of case–control studies
have also suggested that the GSDMB gene polymorphism is
associated with susceptibility to many autoimmune diseases and
malignant tumors such as cervical cancer (Hergueta-Redondo
et al., 2016; Wiemels et al., 2018; Molina-Crespo et al., 2019; Li

et al., 2020; Li et al., 2021). At present, the relationship between
GSDMB gene polymorphism and the risk of cervical cancer in
the Han population in Northeast China has not been reported.
Therefore, this study aimed to explore the relationship between
rs8067378 polymorphism of the GSDMB gene and the risk of
cervical cancer in the Northeast Chinese Han population. Since
cervical squamous intraepithelial lesions, as a form of
precancerous lesions, reflect the continuous development of
cervical cancer (de Rycke et al., 2020), we will also study
whether rs8067378 polymorphism is associated with cervical
squamous intraepithelial lesions in Han women in Northeast
China.

TABLE 6 | Comparison of genotypes and allele distribution frequencies between the HSIL group and LSIL group.

Genotype
and allele

HSIL
(n = 619)

LSIL
(n = 156)

P OR [95% CI] Statistical
model

P9 P99 OR [95% CI]

AA 283(45.7%) 68 (43.6%) Dominant 0.5822 0.5860 1.105[0.774–1.578]
AG 270(43.6%) 67 (42.9%) Recessive 0.2686 0.2713 1.347[0.794–2.286]
GG 66(10.7%) 21 (13.5%) 0.6043 Additive 0.3525 0.3554 1.132[0.872–1.470]
A 836(67.5%) 203(65.1%)
G 402(32.5%) 109(34.9%) 0.4080 0.896[0.690–1.163]

HSIL, high-grade cervical squamous intraepithelial lesion; LSIL, low-grade cervical squamous intraepithelial lesion; OR, odds ratio; CI, confidence interval.
P: p-value (HSIL, vs. LSIL ); p-values <0.05 are shown in bold.
P’: age was adjusted.
P”: the p-value was calculated using 10,000 permutations for each model to correct the multiple tests.

FIGURE 1 | Results of chi-square tests show the comparison of genotypes and allele distribution frequencies between groups.
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2 MATERIALS AND METHODS

2.1 Study Subjects
2.1.1 Case Group
All subjects in this case–control study were recruited from the
same center (Department of Obstetrics and Gynecology, Second
Affiliated Hospital of Harbin Medical University, Harbin City,
Heilongjiang Province, China) from September 2014 to October
2018. The case group included 482 cases of primary cervical
cancer without any treatment, among which were 416 cases of
SCC, 36 cases of AUC, and 30 cases of other pathological types.
Another 775 patients with SIL were recruited, which included 619
patients with HSIL and 156 patients with LSIL. All the patients
were confirmed by pathology experts of the Second Affiliated
Hospital of Harbin Medical University. Exclusion criteria:
cervical benign lesions, cervical benign tumors, other cervical
malignant tumors, cervical lesions after preoperative
chemoradiotherapy, and patients combined with other cancers.

2.1.2 Control Group
The control group consisted of 496 healthy people from the
physical examination center of the same hospital in the same
period. Inclusion criteria: there was no abnormality in the
ThinPrep cytologic test (TCT), no cancer, or family history of
cancer. Exclusion criteria: all gynecological diseases and surgical
history of gynecological diseases, hypo-immunity and immune

diseases, cervical surgery, skin or genital condyloma, and other
cancer history, etc.

All subjects signed informed consent, and all studies in this
report were approved by the Ethics Committee of the Second
Affiliated Hospital of Harbin Medical University.

2.2 Candidate SNP Selection
Based on the data from the previous literature and combined with
the characteristics of the East Asian population in the dbSNP
database, the SNP rs8067378 (A > G) at 17q12 identified by
previous cervical cancer GWAS (Shi et al., 2013) was selected for
the current study.

2.3 Extraction and Genotyping of DNA
After fasting for 12 h, 1 ml peripheral venous blood samples were
collected and put into a 2% EDTA-Na₂ anticoagulant tube. The
samples were numbered and stored in an −80°C refrigerator until
DNA extraction. The genomic DNA of all subjects was extracted
from peripheral venous blood samples for genotyping according
to the standard steps of the TIANamp Genomic DNA Kit
(Tiangen Biotech, Beijing, China). All genotyping experiments
for the selected SNP (rs8067378) were performed using two
rounds of multiplex PCR combined with next-generation
sequencing methods by the Shanghai Biowing Applied
Biotechnology Company (Chen et al., 2016). Primer3 online
software (v0.4.0) was used to amplify the primer sequences.

FIGURE 2 |Results of the logistic regression analysis after adjusting for age show the comparison of genotypes and allele distribution frequencies between groups.
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PCR was performed for SNP analysis with the following primers:
rs8067378 (sense, 5′-GTTGACAGTCAAAACAAAAACCTG-
3′). After two rounds of multiplex PCR, the PCR products
were mixed into the centrifugal tube, then sealed with the
sealing membrane, and placed overnight. The mixture was
purified using a TIANgel Midi Purification Kit (Tiangen
Biotech, China). The purified PCR products were then paired-
end sequenced (2 × 150 bp) by the Illumina HiSeq XTen platform
according to the manufacturer’s instructions. The read data were
compared to the human reference genome using the
Burrows–Wheeler (BWA, v0.7.12) (Slater et al., 2009), and
SAMtools (v0.1.19) (Li, 2011) was used for SNP calling and
genotyping. In total, ninety-one samples were randomly
selected for blind DNA replication to control the quality of
genotyping.

2.4 Physiological and Biochemical Index
Collection and Analysis
The general information and clinical data of each subject in the
case group were recorded in detail: age, menstrual history,
smoking and drinking history, past disease history, operation
history, family history of tumor, relevant laboratory examination
results, histopathological diagnosis, clinically confirmed
diagnosis, and relevant gynecological examination (ultrasound
or colposcopy), etc.

In addition, the general situation and some clinical data of the
healthy control population in the physical examination center
during the same period were recorded: age, ThinPrep cytologic
test (TCT), and HPV, etc. Moreover, due to the influence of
traditional Chinese culture, the subjects in this study almost
refused to answer questions about sexual life history, so this
part of the data could not be collected.

Squamous cell carcinoma (SCC) antigen, carcino-embryonic
antigen (CEA), alpha-fetoprotein (AFP), CA125, D-dimer, and
other biochemical indicators were detected by the laboratory of
the Second Affiliated Hospital of Harbin Medical University. The
histopathological diagnosis of cervical tissue samples was
confirmed by the pathology department of the Second
Affiliated Hospital of Harbin Medical University.

2.5 Allele, Genotypes, and Statistics
SPSS 21.0 software was used to analyze the clinical characteristics
of the case group and the control group. Student’s t-test was used
to compare the continuous variables among the groups. The
Pearson chi-square test was used to compare the categorical
variables between groups (the Fisher exact test was used when
the expected value was less than 5). Plink1.9 single nucleotide
polymorphism software was used for genotyping analysis. The
Hardy–Weinberg equilibrium was analyzed. We established the
following three models: dominant model: major allele
homozygous vs. heterozygous + minor allele homozygous;

FIGURE 3 | Results after 10,000 permutation tests show the comparison of genotypes and allele distribution frequencies between groups.
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recessive model: major allele homozygous + heterozygous vs.
minor allele homozygous; and additive model: major allele
homozygous vs. heterozygous vs. minor allele homozygous.
The 95% confidence interval (CI) and odds ratio (OR) of each
genetic model were calculated. Multivariate logistic regression
analysis was performed to adjust age to evaluate the association of
SNP with cervical cancer, cervical intraepithelial neoplasia, and
their subtypes. Moreover, the chi-square test combined with
logistic regression analysis was used to analyze the relationship
between genotypes and alleles with clinical parameters. All
statistical analyses showed that p < 0.05 had statistical
significance.

3 RESULTS

3.1 SNP Genotype and Quality Controls
The SNP of the GSDMB gene was rs8067378, and its genotype
distributions in the CC and SIL groups conform to the
Hardy–Weinberg equilibrium (p = 0.9108 and p = 0.9508,
respectively). In addition, we controlled the quality of 73
samples in this experiment, and the accuracy rate is 98.5%,
and the error rate is within a reasonable range, which ensures
the reliability and repeatability of the follow-up research results.

3.2 Clinical Characteristics of the Study
Population
The clinical characteristics of all CC patients, SIL patients, and
healthy controls in this study were statistically analyzed, as shown
in Table 1. The results showed that compared with the healthy
control group, the average age of CC and SIL patients was old, and
the comparison between the control group and CC and SIL
groups was statistically significant (p < 0.0001). The analysis
of other clinical characteristics of the CC group and SIL group
showed that there were significant differences in menarche age
and amenorrhea between the two groups (p < 0.05). In addition,
smoking was significantly correlated between the two groups (p =
0.0091) while drinking was not (p = 0.4952).

3.3 Analysis of Genotypes and Allele
Distribution Frequencies
The genotypes and allele distribution frequencies of GSDMB
gene polymorphism (rs8067378) in the CC group and its
subgroups with the healthy control group are shown in
Table 2. The results of the chi-square test showed that the
genotypes and allele frequencies of rs8067378 single
nucleotide polymorphism of the GSDMB gene had no
significant difference between the CC group and healthy

TABLE 7 | Comparison of genotype distribution frequencies with clinical parameters in the CC group.

Parameter ALL AA AG GG P P9 OR [95% CI]

Histology 0.8204
SCC 416 198 175 43 AG/AA 0.6203 0.834 [0.406–1.712]
AUC 36 19 14 3 GG/AA 0.6206 0.727 [0.206–2.567]
Menarche age 0.7900
＜15 years 229 113 91 25 AG/AA 0.5695 1.119 [0.760–1.646]
≥15 years 234 111 100 23 GG/AA 0.8370 0.937 [0.502–1.748]
Amenorrhea 0.1083
Yes 220 96 97 27 AG/AA 0.1336 0.744 [0.506–1.095]
No 246 129 97 20 GG/AA 0.0663 0.551 [0.292–1.041]
Parity 0.2469
Never 29 10 16 3 AG/AA 0.1002 0.504 [0.222–1.141]
Ever 396 196 158 42 GG/AA 0.6207 0.714 [0.188–2.708]
HPV 0.7248
( - ) 8 5 3 0 AG/AA 0.8795 1.123 [0.250–5.044]
( + ) 83 46 31 6 GG/AA 0.9740 78185.319
D-dimer 0.8988
≤243 ng/ml 392 188 163 41 AG/AA 0.8218 1.086 [0.531–2.217]
>243 ng/ml 36 17 16 3 GG/AA 0.7446 0.809 [0.227–2.890]
SCC 0.4132
≤1.5 ng/ml 205 99 89 17 AG/AA 0.6246 0.907 [0.613–1.342]
>1.5 ng/ml 245 119 97 29 GG/AA 0.2951 1.419 [0.737–2.733]
CEA 0.6549
≤5 ng/ml 183 81 80 22 AG/AA 0.8885 0.945 [0.428–2.085]
>5 ng/ml 31 15 14 2 GG/AA 0.3679 0.491 [0.104–2.310]
CA125 0.3928
≤35 U/ml 197 88 86 23 AG/AA 0.5395 1.302 [0.560–3.028]
>35 U/ml 26 11 14 1 GG/AA 0.3238 0.348 [0.043–2.835]
CA199 0.0898
≤37 U/ml 194 83 87 24 AG/AA 0.1570 0.477 [0.171–1.330]
>37 U/ml 18 12 6 0 GG/AA 0.9654 0.000

P: p-value; p-values <0.05 are shown in bold.
P’: logistic regression analysis.
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control group (p > 0.05), and there was no significant
difference between the SCC and AUC groups with healthy
control group (p > 0.05). Logistic regression analysis showed
that after adjusting for age, rs8067378 single nucleotide
polymorphism was not significantly associated with cervical
cancer and its subtypes (p > 0.05). After 10,000 permutations,
the results were still not statistically significant. The
consistency of 10,000 permutations further supports the
reliability of our results.

Table 3 shows the comparison of genotypes and allele
distribution frequencies between the SIL group and its subgroups
with healthy control group. The results of the chi-square test showed
that the genotype frequencies of rs8067378 single nucleotide
polymorphism of the GSDMB gene were statistically significant
between the SIL group and healthy control group (p = 0.0493),
and the A/G allele frequency was also statistically significant between
the two groups (p = 0.0202). Compared with the healthy control
group (28.6%), the G mutation of rs8067378 accounted for 32.5% in
the HSIL group and 34.9% in the LSIL group, and the A/G allele
frequency was significantly correlated between the HSIL group and
LSIL group with the healthy control group (p = 0.0483 and 0.0330,
respectively). Logistic regression analysis showed that after adjusting
for age, rs8067378 SNP was statistically significant between the SIL

group and its subgroup (HSIL group) with the healthy control group
in the dominantmodel and additivemodel (p = 0.0213 and 0.0356 in
the dominant model, and p = 0.0199 and 0.0406 in the additive
model, respectively). The difference between the LSIL group and
healthy control group was statistically significant in the additive
model (p = 0.0308). It can be seen that under the additive model,
rs8067378 plays a protective role in the progression of healthy people
to LSIL and even HSIL (P2 = 0.0308, OR = 0.740, CI = 0.564–0.973;
P1 = 0.0406, OR = 0.827, CI = 0.689–0.992). This correlation still
exists after 10,000 permutations.

Table 4 shows the comparison of genotypes and allele
distribution frequencies of rs8067378 SNP of the GSDMB gene
between the CC group and SIL group. The results show that there is
no significant difference in genotypes and allele distribution
frequencies of rs8067378 SNP between the CC group and SIL
group (p > 0.05). Logistic regression analysis showed that there was
no significant difference in rs8067378 SNP between the CC group
and SIL group after adjusting for age (p > 0.05). After 10,000
permutations, the results were still not statistically significant.

Finally, we made intra-subgroup comparisons. Tables 5, 6
summarized the comparisons of genotypes and allele distribution
frequencies of rs8067378 SNP of theGSDMB gene between the SCC
group and the AUC group, and the HSIL group and the LSIL group,
respectively. The results show that there is no significant difference in
genotypes and allele distribution frequencies of rs8067378 SNP
between the two intra-subgroups (p > 0.05). After adjusting for
age, there is still no significant difference among the genetic models
(p > 0.05). After 10,000 permutations, the results were still not
statistically significant, which has provided evidence for the accuracy
of our study. In addition, in order tomore clearly and definitely show
the comparison of genotypes and allele distribution frequencies
between groups, we drew three graphs: Figure 1 shows the
results of chi-square tests, Figure 2 shows the results of logistic
regression analysis after adjusting for age, and Figure 3 shows the
results after 10,000 permutation tests.

3.4 Analysis of Genotypes and Allele
Frequencies With Clinical Parameters
In the CC group and SIL group, the comparisons of genotypes and
allele distribution frequencies of GSDMB gene rs806778
polymorphism with clinical parameters are shown in Tables 7–10.
It is worth noting that in patientswith cervical cancer, allele frequencies
are significantly correlatedwith amenorrhea (p= 0.0328). After logistic
regression analysis, the correlations still exist (p = 0.0330). In addition,
no significant correlation was observed between genotypes and allele
frequencies with other clinical parameters (p > 0.05). Moreover, there
was also no significant correlation between genotypes and allele
frequencies with clinical parameters in patients with cervical
squamous intraepithelial lesions (p > 0.05).

4 DISCUSSION

Cervical cancer is characterized by a high incidence rate and
high mortality rate, and it is a major public problem affecting
the health of middle-aged women, especially in countries with

TABLE 8 | Comparison of allele distribution frequencies with clinical parameters in
the CC group.

Parameter ALL A G P P9 OR [95% CI]

Histology 0.5275 0.5280 0.841[0.492–1.438]
SCC 832 571 261
AUC 72 52 20
Menarche age 0.8926 0.8926 1.019[0.772–1.347]
<15 years 458 317 141
≥15 years 468 322 146
Amenorrhea 0.0328 0.0330 0.739[0.559–0.976]
Yes 440 289 151
No 492 355 137
Parity 0.2413 0.2428 0.720[0.415–1.250]
Never 58 36 22
Ever 792 550 242
HPV 0.5295 0.5320 1.515[0.412–5.573]
( - ) 16 13 3
( + ) 166 123 43
D-dimer 0.9031 0.9036 0.968[0.573–1.634]
≤243 ng/ml 784 539 245
>243 ng/ml 72 50 22
SCC 0.5975 0.5981 1.079[0.812–1.435]
≤1.5 ng/ml 410 287 123
>1.5 ng/ml 490 335 155
CEA 0.4535 0.4542 0.798[0.443–1.440]
≤5 ng/ml 366 242 124
>5 ng/ml 62 44 18
CA125 0.6940 0.6941 0.882[0.472–1.648]
≤35 U/ml 394 262 132
>35 U/ml 52 36 16
CA199 0.0272 0.0328 0.375[0.152–0.923]
≤37 U/ml 388 253 135
>37 U/ml 36 30 6

P: p-value; p values <0.05 are considered statistically significant, and shown in bold.
P’: logistic regression analysis.
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low resources (Hu et al., 2018; Arbyn et al., 2020; Zhang et al.,
2020). Persistent infection of high-risk HPV is the most
important risk factor associated with cervical cancer (Faridi
et al., 2011; Paaso et al., 2019). However, studies have shown
that other risk factors associated with HPV may also play
important roles in the pathogenesis of cervical cancer, such as
immune or genetic factors. SNP has become an important
biomarker for locating cancer, such as cervical cancer (Shastry,
2009). Therefore, this case–control study was conducted to
research the association between GSDMB gene polymorphism
and the risk of cervical cancer in the Han population in
Northeast China. In this study, we investigated the
relationship between rs8067378 SNP of the GSDMB gene
and susceptibility to cervical cancer in Han population in
Northeast China. According to the histopathological
classification, CC patients were further divided into the SCC
group and AUC group, and the SIL group was divided into the
HSIL group and LSIL group. Then, intragroup and intergroup
comparisons were performed.

Our results replicated previous studies and showed that the
average age of the CC group was 49.33 ± 9.29 years, and the
average age of the SIL group was 42.22 ± 9.68 years. This is
consistent with the conclusion that the peak of CC in the Chinese
mainland is 40–60 years old and the peak of SIL is 30–50 years old

(Wang et al., 2018; Liu et al., 2020). This may be related to the fact
that women in the 30–40 age group are in the period of sexual
activity and childbearing, while most of the women after the age
of 50 are postmenopausal (Misra et al., 2018).

In this case–control study, we investigated the relationship
between rs8067378 polymorphism of the GSDMB gene and the
risk of CC in the Han population in Northeast China. The results
showed that there was no significant correlation between
rs8067378 polymorphism with CC and its subtypes. These are
different from the existing research studies. A genome-wide
association study on cervical cancer in the Chinese Han
population proved that rs8067378 SNP is a susceptible site for
cervical cancer (Shi et al., 2013). Miura et al. (2016) showed for
the first time that there was a significant correlation between
rs8067378 SNP and invasive cervical cancer and further proved
that Japanese women with the GG genotype were at high risk of
invasive cervical cancer. Lutkowska et al. (2017) studied the
relationship between rs8067378 SNP and stage III and IV of
cervical cancer in the Polish population, in which the G allele
plays a role in the diffusion of tumor cells to adjacent tissues,
indicating that rs8067378 SNP increases the risk of occurrence
and development of cervical cancer. Such findings have also been
confirmed in some parts of southern China. Based on previous
studies, the specific mechanism of GSDMB in the occurrence and

TABLE 9 | Comparison of genotype distribution frequencies with clinical parameters in the SIL group.

Parameter ALL AA AG GG P P9 OR [95% CI]

Histology 0.4017
HSIL 619 285 269 65 AG/AA 0.6491 0.916 [0.628–1.336]
LSIL 156 66 68 22 GG/AA 0.1781 0.684 [0.394–1.189]
Menarche age 0.1808
<15 years 445 201 186 58 AG/AA 0.6156 1.081 [0.798–1.463]
≥15 years 325 148 148 29 GG/AA 0.1244 0.679 [0.414–1.113]
Amenorrhea 0.4376
Yes 156 68 74 14 AG/AA 0.3993 0.853 [0.589–1.235]
No 607 278 258 71 GG/AA 0.5038 1.240 [0.660–2.332]
Parity 0.5740
Never 57 29 21 7 AG/AA 0.3058 1.357 [0.756–2.436]
Ever 654 293 288 73 GG/AA 0.9427 1.032 [0.435–2.450]
HPV 0.4522
( - ) 27 10 15 2 AG/AA 0.3170 0.656 [0.288–1.497]
( + ) 440 195 192 53 GG/AA 0.6978 1.359 [0.289–6.391]
D-dimer 0.6396
≤243 ng/ml 743 336 323 84 AG/AA 0.8382 0.892 [0.296–2.681]
>243 ng/ml 16 7 6 3 GG/AA 0.4418 1.714 [0.434–6.770]
SCC 0.5749
≤1.5 ng/ml 472 211 208 53 AG/AA 0.7599 1.092 [0.620–1.926]
>1.5 ng/ml 58 26 28 4 GG/AA 0.3802 0.612 [0.205–1.831]
CEA 0.7043
≤5 ng/ml 191 87 84 20 AG/AA 0.9663 1.036 [0.203–5.276]
>5 ng/ml 6 3 3 0 GG/AA 0.9719 0.000
CA125 0.3617
≤35 U/ml 193 90 82 21 AG/AA 0.3162 1.585 [0.644–3.903]
>35 U/ml 23 9 13 1 GG/AA 0.4929 0.476 [0.057–3.967]
CA199 0.9019
≤37 U/ml 177 80 79 18 AG/AA 0.8067 0.868 [0.279–2.697]
>37 U/ml 15 7 6 2 GG/AA 0.7765 1.270 [0.243–6.630]

P: p-value; p-values <0.05 are shown in bold.
P’: logistic regression analysis.
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development of cervical cancer is not clear. Some studies suppose
that GSDMB may participate in the regulation of the
estrogen–estrogen receptor-target gene expression pathway
under the action of endogenous and exogenous estrogen (Sun
et al., 2008). Studies have shown that GSDMB containing two
nuclear receptor-binding motifs can be used as a nuclear receptor
co-activator, recruited in the estrogen receptor to form a complex,
provide related enzymatic activity and scaffolding function,
promote the high expression of E6/E7 oncogene in patients
with high-risk HPV persistent infection, and cause
uncontrolled cell proliferation, cervical intraepithelial lesions,
and even cervical cancer (Sun et al., 2008). In addition, these
differences may be related to the sample size and case
determination protocol. Also, the genetic background and
lifestyle may also change the genetic susceptibility of the
GSDMB gene, which explain the differences in the intensity of
research correlation between different regions and races.
Therefore, we should repeat the study with a larger sample, to
determine the relationship between GSDMB gene polymorphism
with SCC and AUC and even other special types of CC.

GSDMB can participate in pyrocytosis and the production of
inflammatory factors, and studies found that GSDMB can be
highly expressed in cervical inflammatory lesions and

precancerous lesions (Sun et al., 2008). Therefore, in order to
further study the role of GSDMB gene rs8067378 polymorphism
in the development of cervical cancer in healthy women, we also
analyzed the susceptibility of SIL. Surprisingly, under the
dominant and additive models, the rs8067378 polymorphism
of the GSDMB gene is significantly correlated with SIL and its
subtypes, and rs8067378 single nucleotide polymorphism may
reduce the risk of SIL and protect the susceptibility to SIL. This
may be related to the dual role of GSDMB-mediated pyrocytosis
in tumor, and the occurrence of pyrocytosis is concentration-
dependent on GSDMB. Studies have pointed out that (Kayagaki
et al., 2015; Tsuchiya, 2020) macrophages and monocytes lacking
GSDMB almost completely lose the transmission ability of
lipopolysaccharide (LPS) in the cytoplasm and will not
activate inflammatory caspases, so they will not induce
pyrocytosis. In the process of pyrocytosis, caspases are the
inducer and GSDMB is the substrate. Precursor caspases are
activated by a variety of inflammatory bodies such as the NOD-
like receptor (NLR) and are absent in melanoma 2 (AIM2). Active
caspases bind to the cutting site of GSDMB. This process releases
the N-terminal and C-terminal, which are inserted into the cell
membrane to cause pyrocytosis and release a large number of
inflammatory factors such as tumor necrosis factor (TNF),
interleukin-1β (IL-1β), and interferon-α (IFN-α). This process
can not only directly kill pathological and tumor cells but also
further recruit immune cells, so as to expand the inflammatory
response. Therefore, some scholars believe that active caspases
cutting GSDMB-induced pyrocytosis is a positive feedback
mechanism in the immune process, so that most newborn
tumor cells are eliminated by the process of pyrocytosis before
the formation of tumor. It plays a role in preventing the further
development of precancerous lesions (Dinarello, 2009; Guo et al.,
2015; Xia et al., 2019; Zhou and Fang, 2019; Ruan et al., 2020).
This is consistent with the research results of Zhang WH. The
study has shown that after CC cells are infected by HPV, AIM2
can play a tumor inhibitory role by inducing pyrocytosis (So et al.,
2018).

The study confirmed for the first time that GSDMB gene
polymorphism was significantly correlated with cervical
squamous intraepithelial lesions, but not with cervical cancer
in the Han population in Northeast China. The studies of Miura
et al. and Lutkowska et al. have confirmed that GSDMB gene
polymorphism was significantly associated with cervical cancer.
Compared with previous existing studies, the sample size in our
study was relatively large, including 482 cases of cervical cancer,
775 cases of cervical squamous intraepithelial lesions, and 495
healthy controls. Moreover, our study was analyzed from
multiple perspectives such as cervical cancer subgroups and
cervical precancerous lesions. A large sample size is very
important for exploring and verifying the potential mechanism
of cervical cancer and precancerous lesions in Chinese women
and will also play an important role in the research of different
pathological types of cervical cancer and precancerous lesions in
the future. In addition, we also added the comparison of
genotypes and alleles with clinical parameters to understand
more clinically related risk factors. However, this study also
has some limitations. First, this study adopts a case–control

TABLE 10 | Comparison of allele distribution frequencies with clinical parameters
in the SIL group.

Parameter ALL A G P P9 OR [95% CI]

Histology 0.2180 0.2183 0.849[0.655–1.102]
HSIL 1,238 839 399
LSIL 312 200 112
Menarche age 0.3557 0.3558 0.903[0.728–1.121]
<15 years 890 588 302
≥15 years 650 444 206
Amenorrhea 0.9314 0.9315 1.012[0.776–1.319]
Yes 312 210 102
No 1,214 814 400
Parity 0.5893 0.5895 1.121[0.741–1.696]
Never 114 79 35
Ever 1,308 874 434
HPV 0.8422 0.8422 0.943[0.530–1.677]
( - ) 54 35 19
( + ) 880 582 298
D-dimer 0.5960 0.5965 1.216[0.590–2.508]
≤243 ng/ml 1,486 995 491
>243 ng/ml 32 20 12
SCC 0.6301 0.6302 0.903[0.596–1.369]
≤1.5 ng/ml 944 630 314
>1.5 ng/ml 116 80 36
CEA 0.5861 0.5884 0.694[0.185–2.607]
≤5 ng/ml 382 258 124
>5 ng/ml 12 9 3
CA125 0.9470 0.9468 1.022[0.532–1.963]
≤35 U/ml 386 262 124
>35 U/ml 46 31 15
CA199 0.9242 0.9238 1.039[0.471–2.292]
≤37 U/ml 354 239 115
>37 U/ml 30 20 10

P: p-value; p-values <0.05 are shown in bold.
P’: logistic regression analysis.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 86072710

Li et al. Cancer and Genetics

133

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


study, which inevitably has selective bias. Second, our study
population is limited to Han women in Northeast China, so it
is necessary to conduct a multicenter and large-scale replication
study to confirm the results, including people from different
regions and races. Finally, cervical cancer is a complex disease
affected by multiple genes. This study only discussed the limited
loci of the GSDMB gene, and other functional genes and loci have
not been studied. Therefore, the combined role of the GSDMB
gene and other genes in the occurrence and development of
cervical cancer needs to be further explored.

In conclusion, our study is the first to prove that rs8067378
polymorphism of the GSDMB gene is significantly associated with
SIL in the Northeast Chinese Han population. Rs8067378
polymorphism may be used as a protective factor to reduce the
risk of SIL and even CC in the Han population in Northeast China
during the progression of healthy people to LSIL and even HSIL. It is
necessary to conduct more in-depth research to understand the
specific mechanism of the GSDMB gene in the occurrence and
development of cervical cancer, so as to provide theoretical support
for the diagnosis and treatment of cervical cancer in the future.
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Pyroptosis, defined as programmed cell death, results in the release of inflammatory
mediators. Recent studies have revealed that pyroptosis plays essential roles in antitumor
immunity and immunotherapy efficacy. Long noncoding RNAs (lncRNAs) are involved in a
variety of biological behaviors in tumor cells, although the roles and mechanisms of
lncRNAs in pyroptosis are rarely studied. Our study aimed to establish a novel pyroptosis-
related lncRNA signature as a forecasting tool for predicting prognosis and ascertaining
immune value. Based on lung adenocarcinoma (LUAD) patients from The Cancer Genome
Atlas (TCGA), we performed Pearson’s correlation analysis to identify pyroptosis-related
lncRNAs. After differentially expressed gene analysis and univariate Cox regression
analysis, we selected prognosis-related and differentially expressed lncRNAs. Finally,
we performed multivariate Cox regression analysis to establish the three pyroptosis-
related lncRNA signature. Kaplan–Meier (KM) survival analyses and receiver operating
characteristic (ROC) curves indicated the excellent performance for predicting the
prognosis of LUAD patients. At the same time, we applied multidimensional
approaches to further explore the functional enrichment, tumor microenvironment
(TME) landscape, and immunotherapy efficacy among the different risk groups. A
nomogram was constructed by integrating risk scores and clinical characteristics,
which was validated using calibrations and ROC curves. Three lncRNAs, namely,
AC090559.1, AC034102.8, and AC026355.2, were involved in this signature and used
to classify LUAD patients into low- and high-risk groups. Overall survival time (OS) was
higher in the low-risk group than in the high-risk group, which was also validated in our
LUAD cohort from Shandong Provincial Hospital. TME landscape analyses revealed that a
higher abundance of infiltrating immune cells and a greater prevalence of immune-related
events existed in the low-risk group. Meanwhile, higher expression of immune checkpoint
(ICP) genes, higher immunophenoscore (IPSs), and greater T cell dysfunction in the low-
risk group demonstrated a better response to immunotherapy than the high-risk
group. Combined with predictions from the Tumor Immune Dysfunction and Exclusion
(TIDE) website, we found that LUAD patients in the low-risk group significantly benefited
from programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte–associated protein 4
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(CTLA4) immune checkpoint blockade (ICB) therapy compared with those in the high-risk
group. Furthermore, drug susceptibility analysis identified potential sensitive
chemotherapeutic drugs for each risk group. In this study, a novel three pyroptosis-
related lncRNA signature was constructed, which could accurately predict the
immunotherapy efficacy and prognosis in LUAD patients.

Keywords: lung adenocarcinoma, pyroptosis, prognosis, long noncoding RNA, immunotherapy

INTRODUCTION

Lung cancer is currently the leading cause of cancer-related death
worldwide, and its 5-year survival rate varies from 4% to 17%
depending on stage and regional differences (Hirsch et al., 2017;
Siegel et al., 2021). Lung adenocarcinoma (LUAD), as the most
common subtype of lung cancer, accounts for approximately 40%
of lung cancer cases (Denisenko et al., 2018). Despite the
tremendous progress in a variety of treatment strategies, the
survival rate of LUAD remains low. Therefore, there is an
urgent need of developing accurate and reliable biomarkers for
effective prognosis prediction of LUAD.

Pyroptosis is a novel programmed inflammatory cell death
mediated by gasdermin proteins (GSDMs) (Yu P. et al., 2021;
Deets and Vance, 2021). The activation of caspases-1/4/5/11 by
inflammasomes mediates the cleavage of GSDMs, which results
in the rupture of cell membranes and release of intracellular
proinflammatory substances such as interleukin-1 β (IL-1 β) and
interleukin-18 (IL-18). This is followed by a strong inflammatory
response that is triggered in the immune microenvironment
(Rathinam and Fitzgerald, 2016). In cancer, the complex
effects of pyroptosis are dependent on genetic characteristics,
which vary across different tissues. Several studies have reported
that pyroptosis can suppress tumorigenesis, and even if only a few
tumor cells undergo pyroptosis, a strong inflammatory response
is triggered to recruit immune cells and enhance T cell-mediated
antitumor immunity (Wang et al., 2020; Zhang et al., 2020).
Another study has reported that pyroptosis also creates a tumor
microenvironment (TME), which was a requirement of tumor
growth (Zhang et al., 2021). Nevertheless, the mechanisms of
action and effects of pyroptosis are still largely unknown
in LUAD.

Long noncoding RNAs (lncRNAs) are transcripts longer than
200 nucleotides that are encoded by the genome but usually not
translated into proteins (Bhan et al., 2017). Recent studies have
reported that lncRNAs can regulate pyroptosis in a variety of
ways such as targeting microRNAs (miRNA) and directly or
indirectly binding to pyroptosis-associated proteins (Evavold,
Hafner-Bratkovic et al., 2021). As lncRNAs can remain stable
in the blood, which is easily collected from patients, they have
good prospects as prognostic or predictive markers that are
radiosensitive, chemosensitive, and sensitive to target therapy
(Chen et al., 2021).

With the development of next-generation sequencing, various
biomarkers have been identified to construct signatures for
subgroup classification and prognosis prediction (Seijo et al.,
2019; Lazzari et al., 2020). However, due to the lack of effective

subgroup classification and prognostic prediction models, LUAD
patients remain to be undertreated. Therefore, the construction of
accurate subgroup classification and prognostic prediction
models is urgently needed to guide clinicians on
chemotherapy and immunotherapy.

In this study, we aimed to develop a prognostic risk model
based on pyroptosis-related lncRNAs in LUAD patients. Based
on LUAD patients from The Cancer Genome Atlas (TCGA), we
constructed and validated a prognostic risk model to accurately
predict the prognosis and overall survival (OS) of LUAD patients,
which consisted of three pyroptosis-related lncRNAs. The risk
score was significantly associated with tumor-infiltrating immune
cells, immune function, and immunotherapy response. Our study
revealed the potential connection and mechanism of action
between pyroptosis, TME, and immunotherapy response.

MATERIALS AND METHODS

Collection and Processing of Data Sets
Gene transcriptome profiling data, mutation data, and
corresponding clinical information of LUAD patients were
downloaded from (https://portal.gdc.cancer.gov/). Fragments
per kilobase of exon model per million mapped fragments
(FPKM) were converted to log2 (FPKM + 1) as a reflection
of the gene expression level to visually display the results
when constructing the figures. The dataset from TCGA served
as a training cohort to construct the pyroptosis-related lncRNA
prognostic model.

Clinical LUAD Patient Specimens
A total of 45 LUAD patient specimens were recruited at
Shandong Provincial Hospital, Shandong, China. The
biomedical research ethic committee of Shandong Provincial
Hospital approved this study (SWYX: NO. 2021-433).

Differential Gene Expression and Mutation
Analyses of Pyroptosis-Related Genes
We identified 33 pyroptosis-related genes from the literature, as
listed in Supplementary Table S1 (Deets and Vance, 2021; Liu
et al., 2021; Ye et al., 2021). The R software (R, vision 4.1.0)
package “limma” (Ritchie et al., 2015) was used to determine the
differently expressed pyroptosis-related genes with the absolute
log2-fold change ( |log2FC|) > 1 and adjusted p value <0.05. In
addition, copy number variations (CNVs), mutation frequencies,
and location analyses of pyroptosis-related genes were performed

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8386242

Liu et al. A Pyroptosis-Related lncRNA Signature

137

https://portal.gdc.cancer.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


using “maftools” (Mayakonda et al., 2018) and “RCircos” with R
software (Zhang et al., 2013).

Identification of Pyroptosis-Related
lncRNAs
Pyroptosis-related lncRNAs were extracted using Pearson’s
correlation analysis between pyroptosis-related genes and
lncRNAs (correlation coefficient >0.60, p < 0.001, and false-
discovery rate (FDR) < 0.05).

Construction of an mRNA–lncRNA Network
We extracted differently expressed pyroptosis-related lncRNAs
with an |log2FC| > 1 and an adjusted p value <0.05 using R
package “limma”. Subsequently, 17 prognostic pyroptosis-related
lncRNAs were identified by applying univariate Cox regression
analysis (p < 0.05). A hazard ratio (HR) < 1 represented that
lncRNAs were protective factors. To explore the regulatory
mechanism of the selected pyroptosis-related lncRNAs, an
mRNA–lncRNA regulatory network was constructed based on
the 17 lncRNAs and two co-expressed mRNAs.

Survival Analysis and Differential
Expression Analysis of Co-expressed
mRNAs by the Website
The Kaplan–Meier plotter (https://kmplot.com/analysis/) was
used to analyze the impact of co-expressed mRNAs, while
TIMER2.0 (Li et al., 2020) (http://timer.cistrome.org/) and
gene expression profiling integrative analysis (Tang et al.,
2017) (GEPIA, http://gepia.cancer-pku.cn/) were used for
differential expression analysis of co-expressed mRNAs.

Construction of a Risk Score
According to the prognostic-related lncRNAs, multivariate Cox
regression analysis was performed to identify the best prognostic
signature, which consisted of three lncRNAs, namely,
AC090559.1, AC026355.2, and AC034102.8. We calculated the
risk score as follows: risk score = (−0.2603×AC090559.1) +
(−0.0974×AC026355.2) + (−0.9235×AC034102.8). Based on
the median of risk score, the LUAD patients from the TCGA
database were divided into high- and low-risk groups for further
analysis. Subsequently, risk score distribution maps, survival
status maps, and lncRNA expression heat maps were plotted.
Kaplan–Meier analysis was applied to compare the overall
survival (OS) of the two groups. The time receiver operating
characteristic (ROC) curve was plotted using the “timeROC”
package with R software, which was used to evaluate the
predictive capability of the risk model. The area under the
curve (AUC) of the constructed risk model in predicting the
OS of LUAD patients was compared with several previously
published lncRNA signatures, including the ferroptosis-related
lncRNA signature of Lu (Lu et al., 2021), hypoxia-associated
lncRNA signature of Shao (Shao et al., 2021), autophagy-related
lncRNA signature of Liu (Liu and Yang, 2021), and six-lncRNA-
based prognostic signatures of Yang (Yang et al., 2021).

Establishment of the Nomogram
The prognostic significance of the risk score and other clinical
characteristics was evaluated by using univariate and multivariate
Cox regression analyses. A nomogram was established to predict
the 1-, 3-, and 5-year OS, which consisted of the risk score, age,
and stage. Calibration curves were plotted to assess the accuracy
of the risk model.

Functional Enrichment Analysis
GO enrichment analysis was applied to investigate the potential
pathways of the differentially expressed pyroptosis genes using
“org.Hs.eg.db,” “clusterProfiler,” and “enrichplot” modules within
the R package. By applying the “GSVA” tool, GSVA enrichment
analysis was performed based on hallmark gene sets extracted from
the MSigDB database (Hänzelmann et al., 2013).

TME Landscape Analyses
Single-sample gene set enrichment analysis (ssGSEA) was performed
to compare the difference in abundance of 28 types of infiltrating
immune cells, 13 immune functions, and 13 other tumor-related
biological processes, which were extracted from previous articles
(Şenbabaoğlu et al., 2016; Charoentong et al., 2017;Mariathasan et al.,
2018). In addition, we used computational methods to assess the
infiltrating immune cells, including the TIMER (Li et al., 2020),
CIBERSORT (Chen et al., 2018), quanTIseq (Finotello et al., 2019),
MCP-counter (Becht et al., 2016), xCell (Aran et al., 2017), EPIC
(Racle et al., 2017), and TIDE (Jiang et al., 2018) algorithms. Immune
score and tumor purity were calculated using the “ESTIMATE” tool
within the R package (Chakraborty and Hossain, 2018). In addition,
correlation analysis was performed using the correlation heat map
tool in HiPlot (https://hiplot.com.cn), a comprehensive web platform
for scientific data visualization.

Prediction of Response to Immune
Checkpoint Blockade (ICB) Therapy
The immunophenoscore (IPS) was obtained from The Cancer
Immunome Atlas (https://tcia.at/). Information on the
dysfunction and exclusion of infiltrating cytotoxic T
lymphocytes (CTLs) was downloaded from the Tumor
Immune Dysfunction and Exclusion (TIDE) website (http://
tide.dfci.harvard.edu/). In addition, TIDE was used to evaluate
patients who received a benefit or no benefit from ICB therapy
through the comprehensive biomarkers of the ICB response in
different groups (Fu et al., 2020).

RNA Extraction and Real-Time PCR
Following the manufacturer’s protocol, total RNA was extracted
from clinical specimens using AG RNAex Pro Reagent (Accurate
Biotechnology (Hunan) Co., Ltd., China). The Evo M-MLVRT
Master Mix kit (Accurate Biotechnology (Hunan) Co., Ltd.,
China) was used for reverse transcription to obtain cDNA.
Relative gene expression was detected using the SYBR Premix
Ex Tap kit (Accurate Biotechnology (Hunan) Co., Ltd., China)
and normalized to the expression using 18S. The primers are
listed in Supplementary Table S1.
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FIGURE 1 | Landscape of expression, genetic variation, and functional enrichment of pyroptosis-related genes in LUAD. (A) Expression of pyroptosis-related
genes between normal tissues and LUAD tissues (Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ns, not statistically significant). (B) Landscape of mutation profiles in
LUAD patients from the TCGA cohort. (C) CNV frequency of 33 pyroptosis-related genes. (D) Location of CNV alternation of pyroptosis-related genes in the
chromosome. The red dots represent more samples with increased copy number gains than samples with copy number losses, while the blue dots are the
opposite. The black dot means the two are equal. (E) Enrichment analysis of GO biological process, cellular component, and molecular function. LUAD, lung
adenocarcinoma; CNV, copy number variation.
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Statistical Analysis
Student’s t test was used to compare the differences between the
two groups. Pearson’s correlation test was used for correlation
analysis. Survival analysis was performed by the Kaplan–Meier
method and compared with the log-rank test. All statistical
analyses were performed using R software (vision 4.1.0), and
p < 0.05 was considered statistically significant.

RESULTS

Landscape of Pyroptosis-Related Genes in
LUAD
We identified 33 pyroptosis-related genes and performed
differential gene expression analysis between LUAD and

normal lung tissues. A total of 15 genes, namely, AIM2,
CASP4, CASP8, GSDME, NLRP7, GPX4, CASP6, TIRAP,
GSDMD, PLCG1, GSDMA, GSDMC, GSDMB, CASP3, and
PJVK were highly expressed in LUAD, while the expression of
IL1B, IL6, NLRP3, IL18, PYCARD, TNF, CASP1, PRKACA,
NLRP1, CASP5, NOD1, ELANE, and NLRC4 was decreased
(Figure 1A). Subsequently, we developed a panorama of the
somatic mutations of pyroptosis-related genes. A total of 30.48%
of the samples had mutations, and the three genes with the
highest mutation rates were NLRP3 (11%), NLRP7 (5%), and
NLRP2 (4%) (Figure 1B). Figures 1C and D show the frequency
of the CNV alterations of the 33 pyroptosis-related genes and
their locations on the chromosome. The frequency of copy
number mutations in pyroptosis-related genes was greater

FIGURE 2 | Identification and characteristics of pyroptosis-related lncRNAs. (A) Volcano plot showing the differently expressed pyroptosis-related lncRNAs. (B)
Heat map visualizes the differential expression of prognostic pyroptosis-related lncRNAs between normal and LUAD. (C) Forest plot showing the result of univariate Cox
regression analysis for screening prognosis-related lncRNAs (p < 0.05). (D) Interaction network of the 17 prognostic prognosis-related lncRNAs–mRNAs. (E)
Visualization of prognosis-related lncRNA–mRNA correlation. ***p < 0.001, LUAD, lung adenocarcinoma.
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than the frequency of copy number deletions. To clarify the
functions of the pyroptosis-related genes, we conducted GO
functional enrichment analyses. Apart from the pyroptosis
pathway, pyroptosis-related genes were also enriched in
defense response to bacterium, regulation of interleukin-1 or
interleukin-1β production, and inflammasome complex
(Figure 1E).

Identification of Prognostic
Pyroptosis–Related lncRNAs
We first performed correlation analysis (correlation
coefficients >0.60, p < 0.001, FDR<0.05) between
14,057 lncRNAs and 33 pyroptosis-related genes in LUAD
samples, and 1,070 pyroptosis-related lncRNAs were identified.
Subsequently, 320 differently expressed pyroptosis-related
lncRNAs were identified and exhibited in a volcano map after
differential expression analysis (Figure 2A). Finally, 17 lncRNAs
related to LUAD prognosis were identified after applying
univariate COX regression analysis (Table 1). A heat map was
plotted to show the differential expression of the 17 lncRNAs
between normal and tumor tissues (Figure 2B). The forest map
indicated that the hazard ratios of these 17 lncRNAs were all <1,
suggesting that they were protective factors for prognosis
(Figure 2C). In addition, we used Cytoscope to construct a
co-expression network for the 17 pyroptosis-related lncRNAs
and two corresponding genes (Figure 2D). The correlation scores
between NLRC4, SCAF11, and 17 lncRNAs are shown in
Figure 2E, suggesting that these lncRNAs may perform
functions through NLRC4 and SCAF11. Next, we analyzed the
impact of NLRC4 and SCAF11 on survival by applying the
Kaplan–Meier plotter, which indicated that high expression
was significantly associated with high overall survival
(Supplementary Figure S1A). TIMER2.0 and GEPIA were
used for differential gene expression analysis, and the results
showed a significant downregulation of NLRC4 in LUAD but no
change in SCAF11 (Supplementary Figure S1B–D).

Establishment of a Risk Model
We subsequently performed multivariate COX regression
analysis on the previously obtained 17 lncRNAs and three
lncRNAs were identified (Figure 3A). A risk score was
established based on the multivariate regression coefficients
(Table 2). According to the median risk score, LUAD patients
were divided into high- and low-risk groups. Most pyroptosis-
related genes were significantly upregulated in the low-risk group,
suggesting a more active involvement of pyroptosis (Figure 3B).
By contrast, survival analysis revealed that patients in the low-risk
group showed a better prognosis, indicating that pyroptosis was
associated with survival advantages (Figure 3C). Principal
component analysis (PCA) indicated significant distinction in
transcription profiles between the two groups (Figure 3D). The
risk score, survival status, and lncRNA expression are shown in
Figure 3E, revealing that mortality was significantly related to
risk score. Moreover, a higher risk score was significantly related
to advanced stage (Figure 3F). These results indicated that a
lower risk score was associated with active pyroptosis and better
clinical outcome. The areas under the curves (AUCs) of the 1-
year, 3-year, and 5-year ROC curve were 0.775, 0.730, and 0.705,
respectively, revealing a high accuracy in the prognosis prediction
of the risk model (Figure 3G). Compared with four published
lncRNA signatures, the risk model we constructed had higher
accuracy in predicting 1-, 3-, and 5-year survival for
TCGA–LUAD patients (Figure 3H).

Construction of a Predictive Nomogram
After incorporating the risk scores and clinical features,
univariate and multivariate COX regression analyses were
performed, and the results indicated that the risk score could
serve as an independent factor affecting the survival of LUAD
patients, similar to stage and age (Figures 4A,B). To better
predict the 1-, 3-, and 5-year OS of LUAD patients, we
constructed a nomogram by incorporating risk score, age, and
stage (Figure 4C), and calibration curves were constructed to
assess the accuracy of nomogram (Figure 4D).

Differences in Landscape of the TME
Between the High- and Low-Risk Groups
To further understand the significance of the risk score, we
conducted GSVA analysis. Several immune-related pathways
and events, including interferon (IFN) gamma/alpha response,
IL-6–JAK-STAT3 signaling, allograft rejection, and inflammatory
response, were upregulated in the low-risk group, while in the
high-risk group, metabolic and cancer-promoting pathways, such
as oxidative phosphorylation, glycolysis, MYC signaling, E2F
signaling, and MTORC1 signaling, were activated (Figure 5A).

We investigated the differences in various immune-related
functions, immune-infiltrating cells, and other tumor-related
functions between high- and low-risk groups using ssGSEA. As
expected, the low-risk group, with a higher level of pyroptosis, was
more involved in immune-related functions such as antigen-
presenting cell (APC) co-stimulation/inhibition, inflammation,
cytolytic activity, human leukocyte antigen (HLA) function,
T cell co-stimulation/inhibition, and type I/II IFN responses,

TABLE 1 | Results of univariate Cox regression.

ID HR HR.95L HR.95H p-Value

AC090559.1 0.79477 0.68402 0.923452 0.002699
IFNG-AS1 0.626928 0.396886 0.990309 0.045315
AP4B1-AS1 0.624799 0.397789 0.98136 0.041187
EP300-AS1 0.831072 0.702447 0.983248 0.031015
PELATON 0.955892 0.915806 0.997732 0.039035
AL355075.2 0.818529 0.677601 0.988767 0.037789
AC026355.2 0.879216 0.79625 0.970827 0.010915
AC006017.1 0.685354 0.48061 0.97732 0.036918
MIR223HG 0.752638 0.622047 0.910645 0.003471
AC103591.3 0.874798 0.767129 0.997579 0.045919
LINC02785 0.386337 0.17719 0.842352 0.016787
AC005884.1 0.360554 0.154291 0.842556 0.018495
AC026202.2 0.712373 0.532036 0.953836 0.022767
AC006033.2 0.517374 0.268118 0.99835 0.049427
PTPRN2-AS1 0.671347 0.4684 0.962225 0.030035
AC034102.8 0.380262 0.204576 0.706823 0.002236
AC087854.1 0.360318 0.140624 0.923239 0.033476
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indicative of active immune functions (Figure 5B). Consistently,
the higher abundance of most infiltrating immune cells existed in
the low-risk group, including activated B cells, activated CD8+

T cells, dendritic cells, eosinophils, MDSCs, and macrophages
(Figure 5C, Supplementary Figure S2). In addition, several
tumor-related pathways and events, including immune

checkpoint, angiogenesis, antigen processing machinery, and
CD8+ T effector function, were also upregulated in the low-risk
group. By contrast, DNA damage repair, mismatch repair,
nucleotide excision repair, and DNA replication were
upregulated in the high-risk group, which may play roles in
genome stability and LUAD progression (Figure 5D). In
addition, HLA-related genes were significantly upregulated in
the low-risk group, indicative of antigen presentation
(Figure 5E). Finally, tumor purity, immune score, ESTIMATE
score, and stromal score were calculated using the “estimate” tool
within the R package (Figure 5F). Significantly upregulated
immune and stromal scores were features of the low-risk group,
while the high-risk group was characterized by higher tumor
purity.

FIGURE 3 | Construction of risk model and clinical correlation of high- and low-risk groups. (A) Three lncRNAs were identified in multivariate Cox regression
analysis for model construction. (B) Differential expression of pyroptosis-related genes between high- and low-risk groups (Wilcoxon test, *p < 0.05; **p < 0.01; ***p <
0.001). (C) Kaplan–Meier curve of high- and low-risk groups. (D) PCA of high and low-risk groups. (E) Risk curve based on the risk score of each sample. Scatterplot
showing the survival status of LUAD patients. Heat map showing the expression of identified lncRNAs in high- and low-risk groups. (F) Relationship between tumor
stage and risk score. (G) Time-dependent ROC curves of OS at 1, 3, and 5 years. (H) Comparison of the risk model with four published lncRNA signatures. OS, overall
survival; PCA, principal component analysis.

TABLE 2 | Results of multivariate Cox regression.

ID Coef HR HR.95L HR.95H p-Value

AC090559.1 −0.26027 0.77084 0.662457 0.896955 0.000761
AC026355.2 −0.09742 0.907175 0.822133 1.001013 0.052403
AC034102.8 −0.9235 0.397127 0.205362 0.76796 0.006058
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Prediction of Response to ICB Therapy
Considering the significant differences in the TME landscape, we
identified several ICPs and performed differential expression
analysis between low- and high-risk groups. As shown in
Figure 6A, all 39 selected ICPs were upregulated in the low-
risk group, indicating the potential benefit of ICI therapy.
Furthermore, we used IPS obtained from TIDE as a predictor
of the response to anticytotoxic T lymphocyte antigen-4 (CTLA-
4) and antiprogrammed cell death protein 1 (anti-PD-1)
antibodies (Charoentong et al., 2017). The results showed a
higher IPS level in the low-risk group, revealing a better
response to combined PD1 and CTLA4 blockade therapy or
PD1 monotherapy (Figures 6B,C). Considering the upregulation
of immune checkpoints and infiltration of Treg cells in the low-
risk group, which could suppress the effect of CD8+ T cells, we
further investigated the status of T cells in the TME. Consistently,
the low-risk group was characterized by higher T cell dysfunction
and lower exclusion, suggesting a potential advantage to ICI
therapy (Figures 6D,E). To further investigate the response to
ICIs, we utilized the TIDE website to predict the “responder” and
“nonresponders” of PD1 and CTLA4 blockade therapy in
TCGA–LUAD patients, which were constructed by integrating

TIDE score, IFNG, MSI, MDSC, CAFs, and other published
modules. We found that 44% of patients in the low-risk group
were identified as responders to PD1 and CTLA4 blockade
therapy, while only 31% in the high-risk group were classified
as responders (Figure 6F). In further analysis, only 4% of patients
in the low-risk group showed no benefit from ICB compared with
13% in the high-risk group (Figure 6G). In addition, patients who
were not responders or showed no benefit from PD1 and
CTLA4 blockade therapy had significantly higher risk scores
(Figures 6H,I).

In conclusion, the low-risk group could be clarified as an
immune “hot” phenotype, with a high abundance of infiltrating
immune cells and better efficacy for PD1 and CTLA4 blockade
therapy, while the high-risk group represented the immune
“cold” phenotype which was characterized by less sensitivity
to ICB.

To explore whether the risk score affected immune function
through NLRC4 or SCAF11, we performed a correlation
analysis between NLRC4 or SCAF11 and infiltrating immune
cells. The heat map showed that lncRNA AC090559.1 and its
corresponding mRNA NLRC4 were closely correlated with
infiltrating immune cells, suggesting that AC090559.1 may

FIGURE 4 | Construction and validation of a nomogram. Univariate (A) and multivariate (B) Cox regression analyses of age, gender, stage, and risk score. (C)
Nomogram for predicting the OS of LUAD patients at 1, 3, and 5 years. (D)Calibration curves of the nomogram for OS prediction at 1, 3, and 5 years. OS, overall survival;
LUAD, lung adenocarcinoma.
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exert its regulatory function by targeting NLRC4
(Supplementary Figure S3). The scatter plots of NLRC4,
SCAF11, and various infiltrating immune cells downloaded
from TIMER indicated that NLRC4 was highly correlated
with a variety of immune cells (Supplementary Figure S4).
Finally, we predicted the sensitivity of several common
chemotherapy drugs in high- and low-risk groups. The high-
risk group was more sensitive to doxorubicin, sorafenib,

docetaxel, and erlotinib but less sensitive to gefitinib
(Supplementary Figure S5).

Validation of the Risk Model With the
Clinical Cohort
We detected the relative expression levels of the three lncRNAs in
LUAD specimens by using qRT-PCR. The risk score was

FIGURE 5 | Differences in landscape of the TME between high- and low-risk groups. (A)GSVA enrichment analysis of tumor hallmark pathways. (B–E) Differences
in immune-related functions, TME infiltrating immune cells, other tumor-related functions, and HLA-related gene expression in the high- and low-risk groups. (F)
Comparison of tumor purity, immune score, stromal score, and ESTIMATE score between high- and low-risk groups. TME, tumor microenvironment, *p < 0.05; **p <
0.01; ***p < 0.001; ns, not statistically significant.
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subsequently calculated, and the patients were divided into high- and
low-risk groups based on the median value. The overall survival of
the low-risk group was significantly better, consistent with previous
results (Figure 7A). TheAUCvalues of 3 year, 5 year and 7 year were
0.599, 0.671, and 0.704, respectively (Figure 7B). By correlation
analysis of the three identified lncRNAs and immune checkpoint
genes in LUAD specimens, we found a strong correlation between
risk score and CTLA4, indicative of a better response to anti-CTLA4
immunotherapy (Figures 7C,D).

DISCUSSION

In recent years, the development of immunotherapy and
chemotherapy has brought about a paradigm shift in the

treatment of LUAD patients. However, only some patients can
benefit from immunotherapy due to drug resistance (Boumahdi
and de Sauvage, 2020). Furthermore, it is still difficult to identify
patients who may benefit from immunotherapy. Therefore, it is
important to identify novel therapeutic targets.

Pyroptosis is a type of GSDM-mediated programmed cell
death that is accompanied by the release of damaged-
associated molecular pattern (DAMP) and mature IL-1
proteins, which can lead to recruitment of immune cells
(Rathinam and Fitzgerald, 2016; Liu et al., 2021). Pyroptosis
plays distinct roles in tumor microenvironments, and thus,
tumorigenesis. On the one hand, long-term chronic
inflammation induced by pyroptosis can stimulate and
promote tumorigenesis. On the other hand, pyroptosis can
also alter the abundance of infiltrating immune cells and

FIGURE 6 | Prediction of response to ICB therapy. (A) The expression of ICPs between high- and low-risk groups (Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001).
The response to combined PD1 and CTLA4 blockade therapy (B) and PD1monotherapy (C) between high- and low- risk groups. Differences in T cell status, including T
cell dysfunction (D) and T cell exclusion (E), in high and low risk groups. (F–I) Prediction of the “responder” and “no benefit” of PD1 and CTLA4 blockade therapy in
TCGA- LUAD patients from TIDE website. ICB immune checkpoint blockade, ICP immune checkpoint, PD1 programmed cell death protein 1, TCGA The Cancer
Genome Atlas, LUAD lung adenocarcinoma.
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transform “cold” tumors into “hot” tumors, which could enhance
the antitumor immune response (Du et al., 2021; Zhang et al.,
2021). Moreover, pyroptosis plays important roles in activating
antitumor immunity. Granzyme A, which is released by CTLs
and natural killer cells, can directly cleave GSDMB to mediate
tumor cell pyroptosis (Zhou et al., 2020). Meanwhile, the
inflammatory response triggered by pyroptosis in a small
proportion of tumor cells can trigger a strong antitumor
immune response (Wang et al., 2020). Similarly, GSDME also
converts apoptosis, a noninflammatory programmed cell death,
into pyroptosis, and exerts antitumor functions while enhancing
CTL and natural killer cell infiltration (Zhang et al., 2020).
Therefore, we speculate that pyroptosis can improve the
prognosis and efficacy of immunotherapy in LUAD patients.
In addition, abnormally expressed lncRNAs in tumors can be
detected in plasma, urine, or saliva specimens, which indicates
that they have potential value as biomarkers of lncRNAs
(Chandra Gupta and Nandan Tripathi, 2017). Therefore, we
aimed to develop a pyroptosis-related lncRNA-based signature
to accurately predict the immunotherapy efficacy and prognosis
of LUAD patients.

In this study, we first extracted pyroptosis-related genes from
previously published articles, and 17 prognostic-related lncRNAs

were identified after correlation analysis, differential expression
analysis, and univariate Cox regression analysis. After
multivariate regression analysis, we developed a risk model
consisting of three pyroptosis-related lncRNAs. Based on the
median risk score, we divided patients into high- and low-risk
groups and analyzed the differences in prognosis and immune
microenvironment. ROC curves were used to verify the accuracy
of the risk score. In addition, 39 LUAD patients from Shandong
Provincial Hospital were used as a test cohort to verify the risk
score.

The risk score served as an independent factor, which was
significantly associated with stage and survival. A better prognosis
was observed in the low-risk group, accompanied by highly
expressed pyroptosis-related genes. Consistent with previous
studies, active pyroptosis was associated with better prognosis.
GSVA enrichment analysis showed that a greater inflammatory
response existed in the low-risk group, which involved interferon
γ/α and IL6/JAK/STAT3 pathways, allograft rejection,
complement, and inflammatory response. By contrast, the
high-risk group was more related to MYC, E2F, MTORC1,
and glycolytic pathways, which are essential for tumorigenesis.
Similarly, the abundance of infiltrating immune cells was
generally higher in the low-risk group. Considering the results

FIGURE 7 | Validation of risk score using clinical specimens of LUAD patients. (A) Kaplan–Meier curve of high- and low-risk groups in clinical LUAD patients. (B)
Time-dependent ROC curves of OS at 1, 3, and 5 years. (C) The correlation between 3 identified lncRNAs, risk score and immune checkpoints. LUAD, lung
adenocarcinoma; OS, overall survival.
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of ssGSEA (Figure 5C) and correlation analysis (Supplementary
Figure S3), we noticed that the significantly enriched infiltrating
immune cells were mainly associated with inflammation and
antigen presentation (eosinophils, mast cells, monocytes,
macrophages, immature dendritic cells, and activated dendritic
cells) and immunomodulatory events (regulatory T cell and
various T helper cells) in the low-risk group. As shown in
Figure 5E, HLA function was significantly activated in the
low-risk group, further confirming antigen presentation.

Interestingly, activated CD8+ T cells highly infiltrated the low-
risk group, accompanied by the high abundance of
immunosuppressive cells such as Treg and MDSCs
(Figure 5C). Considering simultaneous T cell co-stimulation
and co-inhibition, we examined whether T cells could exercise
their conventional function of antitumor immunity in the low-
risk group (Figure 5B). As such, we analyzed the dysfunction and
exclusion of T cells, which revealed significant T cell dysfunction
in the low-risk group (Figures 6D,E). A previous study has
reported that a broad spectrum of dysfunctional states can
exist in intratumoral T cells, which essentially blocks the
durable clinical benefits of patients (Thommen and
Schumacher, 2018). The upregulation of ICPs mediated by
PD-1 was the main manifestation of T cell dysfunction,
accompanied by a variety of other inhibitory factors such as
Treg cell infiltration, cytokine production, and metabolic stress
(Speiser et al., 2016; Zarour, 2016; Gajewski et al., 2013).
According to previous reports on the simultaneous blockade
of PD-1, other inhibitory receptors such as CTLA-4, Tim-3,
Lag-3, and TIGIT have been shown to reactivate dysfunctional
T cells and provide benefit from ICBs, which was also verified in
our results (Figures 6F–I).

Therefore, the low-risk group was considered an immune
“hot” phenotype, indicative of a beneficial response to
immunotherapy. Alternatively, the high-risk group was
identified as an immune “cold” phenotype, whose efficacy of
immunotherapy was poor.

In our study, the constructed risk score consisted of only three
pyroptosis-related lncRNAs, namely, AC090559.1, AC034102.8, and
AC026355.2, which have been rarely mentioned in previous studies.
Nevertheless, AC090559.1 was also identified as an independent risk
factor related to autophagy and ferroptosis, suggesting that itmay be a
key regulator in programmed cell death (Guo et al., 2021; Wu et al.,
2021). We also found that AC090559.1 may have a potential
regulatory relationship with NLRC4. NLRC4 is the core
component of NLRC4 inflammasomes, which was composed of a
trigger (e.g., cytosolic flagellin), sensor (NAIP), nucleator (NLRC4),
adapter (ASC), and effector (CASP1) (Duncan and Canna, 2018).
The activation of NLRC4 inflammasomes can activate caspase-1,
which cleaves pro-IL-1β and pro-IL-18 and simultaneously cleaves
and activates gasdermin-D, thereby activating pyroptosis (Kay et al.,
2020). Similar to pyroptosis, the effects of NLRC4 depend on the type
and genomic background of the tumor. Continuously aberrant
activation of chronic inflammation mediated by NLRC4 can
promote the malignant progression of tumor cells. A previous
study revealed that obesity-associated NLRC4 inflammasomes
mediated IL-1β release, which promotes the growth of breast
cancer by triggering VEGF production and angiogenesis (Kolb

et al., 2016). Similarly, in nonalcoholic fatty liver, IL-1 signaling
promoted metastasis (Ohashi et al., 2019). Consistent with our
research, NLRC4 could also suppress tumor development while
inducing antitumor immunity. In another study, Flagrp170, an
artificially designed immunomodulator, showed protective
antitumor immunity in an NLRC4-dependent manner (Yu X.
et al., 2021). Sutterwala et al. demonstrated that NLRC4 enhanced
inflammation in tumor-associated macrophages (TAMs) in a
noninflammasome-dependent manner and the antimelanoma
effects of IFN-γ produced by CD4 + and CD8 + T cells
(Janowski et al., 2016). Moreover, NLRC4/NAIP5 also participated
in the antigen recognition of flagellin-expressing tumor cells to
facilitate antigen presentation to T cells, thereby activating CD4+

and CD8+ T cells and exerting antitumor effects (Garaude et al.,
2012). However, studies on NLRC4 in lung cancer are still limited.

We found that NLRC4 was highly associated with immune
cells such as activated/immature/plasmacytoid dendritic cells, γ
delta T cells, MDSCs, macrophages, natural killer cells, regulatory
T cells, T follicular helper cells, and type 1 T helper cells.
Interestingly, AC090559.1 showed a similar effect compared
with NLRC4 in the aforementioned immune cells
(Supplementary Figure S3), suggesting that AC090559.1 may
affect the extent of pyroptosis and the abundance of immune cells
through NLRC4. Here, we performed correlation analysis of the
three identified lncRNAs and several immune checkpoints and
observed that these three lncRNAs were highly correlated with
CTLA4 expression, suggesting that the risk model may reveal
more significant effects on CTLA4 blockade; regardless of this,
there were some limitations. Presently, there are few studies
supporting the mechanisms of action of NLRC4 and
AC090559.1, and thus, further studies are needed to clarify
these mechanisms.

CONCLUSION

In conclusion, we constructed a prognostic model based on
pyroptosis-related lncRNAs. In addition to prognosis prediction,
this model was significantly associated with pyroptosis extent and
immune phenotype. We believe that these lncRNAs may serve as
new targets for inducing pyroptosis, and stimulating pyroptosis-
mediated antitumor immunity may provide new insights for the
treatment of LUAD patients.
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microenvironment.
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family CARD domain containing 4, SCAF11: SR-related CTD associated factor 11,
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GLOSSARY

AUC Area under the curve

APC Antigen-presenting cell

CCR C-C chemokine receptor

ceRNA Competing endogenous RNA

CNV Copy number variations

CTL Cytotoxic lymphocyte

CTLA-4 Cytotoxic T lymphocyte antigen-4

DAMP Damaged-associated molecular pattern

FDR False-discovery rate

FPKM Fragments per kilobase of exon model per million reads mapped

GEPIA Gene Expression Profiling Integrative Analysis

GSDMs Gasdermins

HLA Human leukocyte antigen

HR Hazard ratio

ICB Immune checkpoint blockade

ICP Immune checkpoint

IFN Interferon

IL Interleukin

IPS Immunophenoscore

KM Kaplan–Meier

lncRNA long noncoding RNA

LUAD Lung adenocarcinoma

miRNA MicroRNA

NK cell Natural killer cell

OS Overall survival

PCA Principal component analysis

PCD Programmed cell death

PD-1 Programmed cell death 1

ROC Receiver operating characteristic

ssGSEA Single-sample gene set enrichment analysis

TAM Tumor-associated macrophage

TCGA The Cancer Genome Atlas

TIDE Tumor Immune Dysfunction and Exclusion

TME Tumor microenvironment
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Identification and Validation of an m6A
Modification of JAK-STAT Signaling
Pathway–Related Prognostic
Prediction Model in Gastric Cancer
Fei Jiang1,2, Xiaowei Chen1,2, Yan Shen1,2 and Xiaobing Shen1,2,3*

1Key Laboratory of Environmental Medical Engineering and Education Ministry, Nanjing Public Health College, Southeast
University, Nanjing, China, 2Department of Epidemiology and Health Statistics, School of Public Health, Southeast University,
Nanjing, China, 3Department of Occupational and Environmental Health, School of Public Health, Southeast University, Nanjing,
China

Background:Gastric cancer (GC) is one of themalignant tumors worldwide. Janus (JAK)–
signal transduction and activator of transcription (STAT) signaling pathway is involved in
cellular biological process and immune function. However, the association between them
is still not systematically described. Therefore, in this study, we aimed to identify key genes
involved in JAK-STAT signaling pathway and GC, as well as the potential mechanism.

Methods: The Cancer Genome Atlas (TCGA) database was the source of RNA-
sequencing data of GC patients. Gene Expression Omnibus (GEO) database was used
as the validation set. The predictive value of the JAK-STAT signaling pathway-related
prognostic prediction model was examined using least absolute shrinkage and selection
operator (LASSO); survival, univariate, and multivariate Cox regression analyses; and
receiver operating characteristic curve (ROC) analyses to examine the predictive value of
the model. Quantitative real-time polymerase chain reaction (qRT-PCR) and chi-square
test were used to verify the expression of genes in the model and assess the association
between the genes and clinicopathological parameters of GC patients, respectively. Then,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set
enrichment analysis, version 3.0 (GSEA), sequence-based RNA adenosine methylation
site predictor (SRAMP) online websites, and RNA immunoprecipitation (RIP) experiments
were used to predict the model-related potential pathways, m6A modifications, and the
association between model genes and m6A.

Results: A four-gene prognostic model (GHR, PIM1, IFNA8, and IFNB1) was constructed,
namely, riskScore. The Kaplan–Meier curves suggested that patients with high riskScore
expression had a poorer prognosis than those with low riskScore expression (p = 0.006).
Multivariate Cox regression analyses showed that the model could be an independent
predictor (p < 0.001; HR = 3.342, 95%, CI = 1.834–6.088). The 5-year area under time-
dependent ROC curve (AUC) reached 0.655. The training test set verified these results.
Further analyses unveiled an enrichment of cancer-related pathways, m6A modifications,
and the direct interaction between m6A and the four genes.
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Conclusion: This four-gene prognostic model could be applied to predict the prognosis of
GC patients and might be a promising therapeutic target in GC.

Keywords: gastric cancer, TCGA, prognosis, mRNA, M6A

INTRODUCTION

Gastric cancer (GC) is a malignant tumor that occurs worldwide.
According to the latest global cancer statistics from 2020, globally,
the incidence of GC ranks fifth and the mortality ranks fourth
(Sung et al., 2021). At present, the commonly used methods for
the treatment of GC include surgery, radiotherapy, and
chemotherapy or combination (Song et al., 2017). Although
these methods have improved the survival rate of patients,
surgery is invasive, radiotherapy is nontargeted, chemotherapy
has toxic side effects (Shao et al., 2021a), and the 5-year survival
rate of patients is not high (Zhao et al., 2021). Therefore, a
prognostic model that can predict the prognosis of GC and
provide a new effective target for the treatment of GC should
be urgently established.

The Janus (JAK)–signal transduction and activator of
transcription (STAT) signaling pathway is involved in gene
expression, inflammation, transcriptional programs, and
immune response (Meng et al., 2020). Previous research has
confirmed that the activation of the JAK-STAT signaling pathway
is closely related to many diseases (Yue et al., 2020), including
ovarian cancer (Gao et al., 2022), nonsmall cell lung cancer
(Prabhu et al., 2021), breast cancer (Chen et al., 2021), and
cardiovascular diseases (Baldini et al., 2021).

Some reports regarding the JAK-STAT signaling pathway and
GC also exist. Li et al. (2022) found that STAT1 is activated in
human H. pylori-positive gastritis, whereas STAT1 and its target
gene programmed death ligand-1 (PD-L1) are significantly
elevated in GC. Bei et al. (2022) found that apatinib enhances
GC cell sensitivity to paclitaxel by inhibiting the JAK/
STAT3 signaling pathway. Yang et al. (2021) observed that
STAM2 knockdown may inhibit malignant processes by
targeting the JAK2/STAT3 signaling pathway in GC. These are
reports on the association between this pathway and GC, and
there are also reports on genes associated with GC that are
associated with this pathway. Huang et al. (2022) found that
gamma-glutamyltransferase 5 could be a potential prognostic
molecular predictor in GC and is involved in the JAK-STAT
signaling pathway. Similarly, Lysyl oxidase is also a potential
molecular predictor in prognostic GC and also participates in the
JAK-STAT signaling pathway (2021).

However, few studies have directly analyzed the effect of genes
related to both this pathway and GC on the prognosis of GC and
explored the underlying mechanism, and we must learn more
about the influential genes and related mechanisms to explore
effective therapeutic targets for GC.

Thus, in this study, we aimed to identify and explore the key
genes involved in the JAK-STAT signaling pathway and GC based
on TCGA and GEO databases. Differentially expressed genes
were identified to construct a GC prognosis-related model by
following a series of bioinformatic analyses to ensure the

predictive value of the model, as well as training test set
verification. Moreover, we verified the gene expression and
assessed the association between genes and the
clinicopathological parameters of GC patients in our samples.
Afterward, we explored the mechanism of the genes in the model,
which plays a role in the progression of GC via Gene Ontology
(GO); Kyoto Encyclopedia of Genes and Genomes (KEGG); gene
set enrichment analysis, version 3.0 (GSEA); and sequence-based
RNA adenosine methylation site predictor (SRAMP) online
websites and RNA immunoprecipitation (RIP)–quantitative
real-time polymerase chain reaction (qRT-PCR) experiments.
Our results may provide additional evidence about the
prognostic biomarkers and therapeutic targets for GC.

METHODS AND MATERIALS

Data Collection
The training RNA-seq data were obtained from the Cancer
Genome Atlas Stomach Adenocarcinoma (TCGA STAD)
database; the testing RNA-seq data were obtained from GEO
(GSE84437). JAK-STAT signaling pathway–related genes were
acquired from the GSEA online websites.

Tissue Samples
A total of 25 pairs of GC tissues and adjacent normal tissues were
acquired from GC patients, who were treated in the Department
of General Surgery, Nanjing No. 1 City Hospital, from 2015 to
2016 following the Helsinki Declaration. Informed consent was
obtained from each patient before they participated in this study.
This project was approved by the Ethics Committee of Nanjing
Medical University.

Cell Samples
Gastric cancer cell lines AGS, HGC-27, and gastric epithelial cells
GES-1 used in this study were purchased from Saiku Biological
Company (Guangzhou, China). All the cells were cultured in
Roswell Park Memorial Institute (RPMI) 1640 medium. Both
media were supplemented with 10% fetal bovine serum (Gibco,
USA) and 1% streptomycin and penicillin (Gibco, USA). Cells
were incubated at 37℃ and 5% CO2.

LASSO Cox Regression Analysis and
Identification of Different Expression Genes
The glmnet and survival packages were used to construct the
LASSO Cox regression analysis. First, the glmnet package was
applied to determine the penalty parameter lambda via cross-
validation and identify the optimal lambda value that
corresponded to the minimum value of the cross-validation
error mean. Then, the best gene group was selected to
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construct a risk model (riskScore model), and the results were
categorized into high-risk and low-risk groups based on the
median curve. The calculation of the risk score was based on
the linear combination of the coefficients obtained from the
LASSO Cox regression model multiplied by the expression
value of each selected gene. We created a heat map that shows
gene expression using the PheatMap software package in R.

Furthermore, the analysis of differentially expressed genes in
the GC tissues and adjacent cancer tissues was identified using the
limma package. The selection criteria: | log2 fold change| > 1 and
p < 0.05.

Survival Analysis, ROC Curve Analysis, and
Univariate and Multivariate Cox Regression
Analyses
We used the Survival and Survminer packages in R to analyze patient
survival and prognosis in the high-risk or low-risk group. The survival
curve was plotted using the Kaplan–Meier method, and the log-rank
test was used to assess statistical significance.

The survival ROC package was used to perform ROC analysis
to analyze the prediction effectiveness of the constructed
assessment model. Moreover, the area under the ROC curve
was calculated. An area under the curve of more than
0.5 indicated that the model could accurately predict patient
survival.

Then, using the survival package in R, we performed
univariate and multivariate Cox regression analyses to analyze
the independent prognostic role of the riskScore model, which
also included age, sex, grade, stage, T stage, M stage, and N stage.

Quantitative Reverse Transcription
Polymerase Reaction
TRIzol reagent was used to extract total RNA from tissues and
cells according to the manufacturer’s protocol (GenStar, China).
RNA was then reverse-transcribed using a reverse transcription
kit (Takara Bio, Japan, RR036A). Quantification of mRNA was
performed using an SYBR Green PCR Kit (Yeasen Biotech Co.,
Ltd., China). GAPDH was used to normalize mRNA levels. The
primers were presented in Supplementary Table S1A.

Functional Annotation, Protein–Protein
Interaction, m6AModification of Genes, and
Correlation Between Genes
ClusterProfiler package was performed to visualize and compare
multiple GO and KEGG] enrichment results. In addition,
protein–protein interaction (PPI) analyses were performed to
investigate the potential molecular mechanisms using STRINGV11.5.

GSEA was used to explore the signaling pathways related to
GHR of the model in GC. GSEA was carried out between datasets
with low or high GHR mRNA expression in TCGA. The low
expression group was selected as the reference. Gene set
permutations were performed 1,000 times for each analysis to
identify significantly different pathways. The normalized
enrichment score, nominal p-value, and false discovery rate

q-value indicated the importance of the association between
gene sets and pathways.

SRAMP online website (http://www.cuilab.cn/sramp) was
used to predict whether the gene contains m6A modifications.

Corrplot package was used to analyze the correlation between
m6A regulators and genes of the model.

RNA Immunoprecipitation Experiment
According to the manufacturer’s instructions, first, AGS cells
(approximately 1 × 107) were lysed with RIP lysis buffer (EMD
Millipore, Billerica, MA, USA). Then, the cell lysates were
incubated with RIP immunoprecipitation buffer containing
magnetic beads conjugated with rabbit N6-methyladenosine
(m6A) antibody (ABclonal, China) and negative control rabbit
immunoglobulin G (IgG) (Millipore, Billerica, MA, USA).
Samples were incubated with Proteinase K, and then,
immunoprecipitated RNA was isolated. Extracted RNAs were
analyzed using qRT-PCR to determine whether GHR, PIM1,
IFNA8, and IFNB1 could be pulled down by m6A protein
significantly.

Statistical Analysis
R software and Prism 6 were used to analyze all data. Perl
language was used to merge all datasets. The Wilcox test or
paired t-test was used to assess the difference in mRNA
expression between GC tissues and adjacent cancer tissues.
The difference in overall survival in the low- or high-risk
score group patients was analyzed using Kaplan–Meier and
log-rank tests. The correlation between risk scores and
patients’ clinicopathological characteristics was examined using
the Kruskal–Wallis test. The association between gene expression
and clinicopathological parameters was analyzed using the χ2 test.
Univariate and multivariate analyses were conducted based on a
Cox proportional hazard regression model. Statistical significance
was set at p < 0.05.

RESULTS

Identification of Different Jak-STAT
Signaling Pathway–Related Expression
Genes in TCGA
Through the GSEA online website http://www.gsea-msigdb.org/
gsea/msigdb/collections.jsp, we obtained 155 genes on the Jak-
STAT signaling pathway (Supplementary Table S1B).

Then, we identified 98 different expression genes with the
Wilcoxon test from the STAD dataset in TCGA (The criterion is
p < 0.05, Figure 1, Supplementary Table S1C).

Acquisition of the Shared Different
JAK-STAT Signaling Pathway–Related
Expression Genes via GEO Dataset and
TCGA
We obtained a total of 74 species of human results when we used
“gastric cancer” and “survival” as the search keywords. In our
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FIGURE 1 | Heatmap identified different expression Jak-STAT pathway-related mRNAs in GC based on TCGA.

FIGURE 2 | Prognostic ability of the DJSEGs model. (A). Univariate Cox regression analysis identifiedmRNAs with prognostic values. Hazard ratios were visualized
in forest plots. (B). LASSO regression analysis was used to build the final prediction model based on the optimal gene. The number on top of the plot represents the total
number of genes. Partial likelihood deviance is plotted against log lambda. Dotted vertical lines were drawn at the optimal values. The optimal gene group was chosen by
10-fold cross-validation and the minimal value of lambda. (C). LASSO coefficient profiles of the four shared genes. The number on top of the plot represents the
total number of genes. Each curve represents the corresponding shared gene, and the number next to it is the serial number of each gene; (D,E). Kaplan–Meier survival
curves for patients with GC in the training set (TCGA) and the testing set (GEO) stratified by high- and low-risk scores, and high-risk patients had shorter overall survival
than low-risk ones. (F). Accuracy of the riskScore model in predicting 1-, 3-, and 5-year overall survival of GC patients, according to the training set (TCGA).
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further analysis of the title and abstract, we selected the
GSE84437 data set because of its large sample size
(433 samples) and because each sample has the survival index.

When we used p < 0.05 and |FC | > 2 as our criterion for
screening (according to Supplementary Table S1C, there were
32 genes with p < 0.05 and |FC |> 2), 28 DJSEGs were finally
obtained, which were shared both in GEO and TCGA
(Supplementary Tables S2A,B). At the same time, we used
the surrogate variable analysis package for batch correction of
data in two datasets. Furthermore, the data used in our
subsequent analysis are all normalized data.

Construction and Validation of the
Prognostic Model of DJSEGs
To investigate the effect of shared DJSEGs on GC prognosis,
univariate Cox regression analysis was used first. Furthermore, we
found that four DJSEGs had prognostic value (Figure 2A; p <
0.05). Then, the LASSO Cox regression analysis results suggested
that the model worked best when all four DJSEGs were included
(Figures 2B,C). The computation of the risk score is elucidated in
terms of the expression level of each gene: riskScore =

GHR×0.21087289828517 + PIM1×0.149236426661109 +
IFNB1×0.589611733452815 + IFNA8×0.277049597016476. The
median risk score was applied to categorize patients into high-risk
(TCGA: n = 185, GEO: n = 241) and low-risk (TCGA: n = 186;
GEO = 192) groups.

We found that the low-risk group patients had a lower
probability of mortality than the high-risk group patients, both
in the training set (TCGA normalized data set, Figure 2D) and
the testing set (GEO normalized data set, Figure 2E). Thereafter,
the area under the ROC curve (AUC) result of the training set was
0.598 at 1 year, 0.636 at 3 years, and 0.655 at 5 years (Figure 2F);
the AUC of the testing set was 0.558 at 1 year, 0.565 at 3 years, and
0.572 at 5 years (Supplementary Figure S2A), which indicated
that this model could be an indicator for patients’ prognosis.

The Prognostic Model Was an Independent
Prognostic Factor in GC
Given the predictive power of the prognostic model, we were
interested in determining whether the model could be used as an
independent prognostic factor for GC patients. Therefore,
univariate and multivariate Cox regression analyses were

FIGURE 3 | The prognostic model could be an independent prognostic factor in GC. (A,B). Univariate Cox risk ratio analysis of the training set (TCGA) and the
testing set (GEO) revealed that the risk model could predict GC prognosis. (C,D). Multivariate Cox risk ratio analysis of the training set (TCGA) and the testing set (GEO)
revealed that the risk model could predict GC prognosis independently.
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applied to elucidate the independence of the model. Univariate
Cox regression analysis showed that the model of four DJSEGs
was significantly related to the overall survival of GC
patients. The HR of training set was 3.223 (p < 0.001, 95%
CI = 1.776–5.849), and the HR of testing set was 2.185 (p =

0.007, 95% CI = 1.234–3.868) (Figures 3A,B). Multivariate
analyses indicated that this model could be an independent
predictor for predicting the prognosis of GC patients (training
set: HR = 3.342, 95%CI = 1.834–6.088, p < 0.001; testing set: HR =
1.996, 95% CI = 1.086–3.671, p = 0.026) (Figures 3C,D).

FIGURE 4 | The expression of four DJSEGs in cells, tissues, and the association between four DJSEGs and clinicopathological characteristics in GC patients. (A).
The expression of GHR, PIM1, IFNA8, and IFNB1 in HGC-27, AGS, and GES-1. (B–E). The expression of GHR, PIM1, IFNA8, and IFNB1 in 25 pairs of GC tissues and
adjacent tumor tissues (the paired sample t-test was performed using the 2−ΔΔCT value of each pair of samples). (F). The expression of four DJSEGs and the correlation of
clinicopathological parameters with different risk groups are shown in the heatmap. Red indicates overexpression, and green indicates low expression.
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TheRelationship Between the Expression of
Four DJSEGs and Clinicopathologic
Characteristics in GC patients
Our bioinformatic results had shown that the four DJSEGs
constructed model could predict the prognosis of GC patients,
independently. Therefore, we intended to conduct further studies
on the expression of these four DJSEGs in our GC cells, patient
samples, and their relationship with the clinicopathological data
of patients.

According Supplementary Table S1B, GHR and PIM1 were
downregulated in TCGA GC patients (GHR: FC = −3.502462468,
p < 0.001; PIM1: FC = −2.23633752, p < 0.001), whereas
IFNA8 and IFNB1 were upregulated mRNAs (IFNA8: FC =
20.16667288, p = 0.031718147; IFNB1: FC = 3.31414108, p <
0.001), in comparison with normal tissues. In our experimental
results, we found that the expression trends of GHR and
PIM1 were downregulated in HGC-27 and AGS compared
with that in GES-1; IFNA8 and IFNB1 were upregulated in
HGC-27 and AGS, compared with the expression trend in
GES-1 (Figure 4A). Next, we detect all of them in our
patients’ sample; the results indicated that the expression
trends of GHR, PIM1, and IFNA8 were consistent with TCGA
results (Figures 4B,C,E), while there was no difference in the
expression trend in IFNA8 between tumor tissues and adjacent
tumor tissues (Figure 4D). The results in Table 1 show that only
the high- and low-PIM1 groups had different expression trends in
different blood types, whereas the rest had no significant
statistical differences (In this study, genes were divided into
high and low expression groups based on median gene
expression levels). Nevertheless, when the model composed of
these four genes was analyzed with the clinicopathological data of
TCGA patients, it was found that the high- and low-risk groups of
the model were significantly correlated with the patient’s age and
pathological grade (Figure 4F). These results indicated that four
DJSEGs might be involved in the development of GC.

The Four DJSEGs Function Analysis
Through GO, KEGG, and GSEA
Next, we explored the four DJSEGs function by performing GO
and KEGG analyses. The GO analysis revealed that the four
DJSEGs were mainly enriched in extracellular matrix
organization, external encapsulating structure organization,
cell-substrate adhesion, and Wnt-protein binding
(Figure 5A). The KEGG analysis revealed that the four
DJSEGs were mainly enriched in vascular smooth muscle
contraction, focal adhesion, and Wnt signaling pathway
(Figure 5B). Then, the STRING database was used to explore
the interactions of the four DJSEGs, with a confidence score of
more than 0.400 (medium confidence). The PPI network
showed that GHR, IFNA8, and IFNB1 protein could interact
with each other, except for PIM1 protein (Figure 5C). Because
the confidence score of GHR interacting with other proteins was
higher (Supplementary Table S3A) and the different
expression of GHR in our GC patient samples was most
significant, we further explored the potential pathways of
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GHR by regulating the development of GC with the GSEA
database. The results showed that “base excision repair,” “RNA
polymerase,” “peroxisome,” “ribosome,” and “cell cycle”
signaling pathways were enriched in the GHR low expression
group; “pathways in cancer,” “basal cell carcinoma,” “mapk
signaling pathway,” “TGF beta signaling pathway,” and “Jak-stat
signaling pathway” were enriched in the GHR high expression
group (Figure 5D). All of these pathways were related to the
occurrence and development of GC.

Therefore, it is reasonable to infer that the four DJSEGs model
does play a role in the progression of GC and is likely to play the
role through these signaling pathways.

The Four DJSEGs Had Enrichment m6A
Modifications
In recent years, them6Amodification of noncoding RNAhas become
a research focus, but m6A modification is more common on mRNA,
which plays important regulatory roles in a variety of physiological
processes and disease progression (Wu et al., 2021). Therefore, we
performedm6A site prediction via the SRAMP online website (http://
www.cuilab.cn/sramp), which achieves promising performance both
in cross-validation tests on its training dataset and in the rigorous
independent tests. The thresholds for very high/high/moderate/low-
confidencem6A sites correspond to the thresholds that achieved 99%/
95%/90%/85% specificities (in other words, had a 5%/10%/15% false-
positive rate) on cross-validation tests, respectively. As shown in

Figures 6A–D, very high confidence m6A sites universally existed
in the four DJSEGs—GHR, PIM1, IFNA8, and IFNB1.

RIP-qRT-PCR results showed that the m6A antibody could
significantly pull down these four genes, indicating that they had
direct interaction with the m6A protein (Figure 6E).

To gain further insight into the role of m6A on the four DJSEGs in
GC, we studied the correlation between the four DJSEGs (GHR,
PIM1, IFNA8, and IFNB1) and m6A writer (KIAA1429, METTL3,
METTL14, RBM15, WTAP, and ZC3H13), reader (HNRNPC,
YTHDC1, YTHDC2, YTHDF1, and YTHDF2), and eraser
proteins (ALKBH5 and FTO) based on TCGA STAD data. The
results showed that GHR is strongly positively correlated with FTO
and negatively correlated with YTHDF1, YTHDF2, and HNRNPC,
whereas PIM1 is weakly negatively correlated with HNRNPC,
KIAA429, and METTL3 (Figure 6F). Our RIP experiment results
also show that GHR and PIM1 have stronger interaction effects on
m6A than IFNA8 and IFNB1.

Thus, we speculated that the function of four DJSEGs on GC
progression may also be correlated with m6A modification or
m6A regulators.

DISCUSSION

At present, endoscopicmucosal resection and endoscopic submucosal
dissection are the preferred treatments in the early stages of GC (Simić
et al., 2019; Min et al., 2021). However, the disease progresses rapidly

FIGURE 5 | GO, KEGG, and GSEA analysis of the four DJSEGs. (A,B). The GO and KEGG network analysis of the four DJSEGs. (C). PPI network of the four
DJSEGs. (D). The multiple GSEA analysis of GHR.
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whenpatients are diagnosedwithGC that are already beyond the early
stages; so, the 5-year disease survival rates of GC patients remain low
(Li et al., 2018). Chemotherapy regimens, such as SOX (oxaliplatin +
S1)/CapeOX (oxaliplatin + capecitabine), FOLFOX (oxaliplatin +
leucovorin + 5-fluorouracil), and DCF (docetaxel + cisplatin + 5-
fluorouracil)/DOF (docetaxel + oxaliplatin + 5-fluorouracil), are
commonly used in patients with advanced GC (Zhang et al.,
2020); however, their efficacy is limited. Many current studies
suggest the combination of chemotherapy with surgery,
radiotherapy, or targeted therapy as a first-line treatment strategy
to improve patient survival (Digklia, 2016; Ruan et al., 2020; Mocan,
2021). However, because of the toxicity of chemotherapeutic drugs,
the difficulty in screening beneficiaries of targeted therapy drugs, and
the tendency of drug resistance, the prognosis of GC patients has not
significantly improved (Li et al., 2021; Sun et al., 2021).

However, immunotherapy offers new hope for some cancer
patients, and a breakthrough has been made (Li et al., 2021; Liang
et al., 2021). In recent years, research on immune checkpoint
inhibitors, such as programmed cell death protein-1/PD-
L1 inhibitors and anti-cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) inhibitors, has become important for identifying key roles
in tumor-induced immunosuppression (Van Limbergen et al., 2017).
Nevertheless, some studies have pointed out that not all patients can

benefit from immunotherapy. Some researchers have pointed out that
tumor mutation burden (Guo et al., 2021), microsatellite instability,
and Epstein–Barr virus positivity (Muti et al., 2021) are all correlated
with the extent to which patients benefit from immunotherapy, which
means that patients need an effective marker to assess their response
to immunotherapy. We aimed to identify the key genes related to GC
that can be effective independent predictors of immune pathways in
GC patients. Thus, we aimed to identify a potential target for the
treatment of GC or a biomarker that can reflect the immune response
in GC.

In this study, we identified 155 key genes in the JAK-STAT
signaling pathway. Thus, we established a refined model that
included four different expression genes (GHR, PIM1, IFNA8,
and IFNB1). To our knowledge, few studies have reported the
function of the JAK-STAT signaling pathway–related key genes in
GC. After a PubMed search, we found that only a few pieces of
literature reported the role of GHR (Yan et al., 2021; Meng et al.,
2022) and PIM1 (Yan et al., 2012; Kim et al., 2020) in GC, whereas
there is no relevant report of IFNA8 and IFNB1 in GC at present.
In addition, we found that in the four DJSEGs model, the low-risk
group patients had a lower probability of mortality than the high-
risk group patients, both in training (Figure 2D) and testing
(Figure 2E) sets. In the further ROC diagnosis of the

FIGURE 6 | m6A modifications on the four DJSEGs. (A–D) M6A modifications of GHR, PIM1, IFNA8, and IFNB1. (E). The RIP-qRT-PCR results of the four
DJSEGs. Results indicated that GHR, PIM1, IFNA8, and IFNB1 had enrichment m6A modification than the IgG group. (F). Spearman correlation analysis clarified the
association between m6A regulators and four DJSEGs.
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constructed model, this study found that the AUC result of the
training set was 0.598 at 1 year, 0.636 at 3 years, and 0.655 at 5 years
(Figure 2F), whereas the AUC of the testing set was at 0.55–0.58
(Supplementary Figure S2A). In the analysis of related studies on
prognostic models, it is found that the AUC of most models is
between 0.7 and 0.9, for example, Kunfu Dai et al. found that the
AUC of their risk scoring model was 0.75–0.78 for predicting the 1-,
3-, and 5-year overall survival (Dai et al., 2022). In contrast, there are
also AUCs below 0.7, for example, Qiansan Zhu et al. found the
AUC of the prognosis model was 0.641and 0.677 in forecasting the
2- and 3-year prognosis of rectal cancer, respectively (Zhu et al.,
2022). It is generally thought that AUC 0.5 = noninformative; AUC
0.5–0.7 = less accurate; AUC 0.7–0.9 = moderate accuracy; AUC
0.1–1 = high accuracy; and AUC 1 = perfect test (Park and Cho,
2022). Therefore, the model we constructed this time has the
predictive ability, but the accuracy is not very high.

In addition, this model was significantly correlated with the
patient’s age and pathological grade based on TCGA data, although
no statistically significant correlation was found in the
clinicopathological parameters of GC patients in our laboratory.
When we further analyzed GRHR-related pathways, we found that
GHR was highly expressed in a large number of cancer-related
pathways and related to some m6A regulators, as well as PIM1.
We also found that the m6A antibody could directly interact with
GHR, PIM1, IFNB1and IFNA8, suggesting that the function
mechanism of four DJSEGs may be related to m6A modifications
or m6A regulators.

In recent years, circRNAshave been continuously studied as targets
for cancer diagnosis or treatment (Zhang et al., 2017; Arnaiz et al.,
2019; Zhou et al., 2019a; Wang et al., 2021). Some researchers have
revealed that circRNAs can regulate the expression or function of their
parental genes; for example, circEIF3J and circPAIP2 can regulate
their parental gene transcription by binding to U1snRNP and RNA
Pol II (Li et al., 2015). Other studies suggested that circRNAs could
also regulate parental gene expression by acting as miRNA sponges
(Zhou et al., 2019b; Kong et al., 2019) and mRNA traps or through
translational modulation and posttranslational modification processes
(Shao et al., 2021b). In addition, we should consider the influence of
miRNA, because miRNA usually regulates the expression or function
of its target genes (Zhou et al., 2013; Ho et al., 2017). Such that GHR
was regulated by miR-139 (Cui et al., 2017), miR-33a decreased
PIM1 expression to inhibit GC cell proliferation (Wang et al.,
2015). Therefore, we speculate that the mechanism of the four
DJSEGs model influences GC, which may be regulated by
upstream circRNAs or miRNAs; however, we still need to verify
this through experiments, such as the double luciferase experiment.

According to the above results, the four DJSEGs model could be
used as a prognostic indicator ofGCpatients. Furthermore, they could
co-function or be affected by their related pathway genes or proteins,
upstream circRNA, miRNA, or their own m6A modification. This
study has carried out a comparatively comprehensive prediction and
analysis of these four aspects. Thus, this study could be used as a
reference basis for future research. In addition, we have to consider the
influence of the tumor microenvironment because chronic
inflammation and immune cell damage in the tumor
microenvironment are also key factors in the development and
progression of GC (Zhao et al., 2021).

Nevertheless, this paper has its own limitations. The biggest
problem is that the above prediction analysis results lack
sufficient experimental verification. We only verified the
expression levels of the four genes in GC cells, patient tissues,
and their association with m6A, which undoubtedly affected the
certainty of the research conclusions.

CONCLUSION

Through predictive analysis, we found that GHR, PIM1, IFNA8, and
IFNB1 could effectively predict the prognosis of GC, and this
predictive ability may be related to their m6A modifications.
Overall, our study provides a basis for relevant experimental
transformation.
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Effects of the PLK4 inhibitor
Centrinone on the biological
behaviors of acute myeloid
leukemia cell lines

Xing-Ru Mu1†, Meng-Meng Ma1†, Zi-Yi Lu1†, Jun Liu1,
Yu-Tong Xue1, Jiang Cao2, Ling-Yu Zeng2, Feng Li3*,
Kai-Lin Xu1,2* and Qing-Yun Wu1,2*
1Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China, 2Department of
Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,
3Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, China

Polo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, is frequently

overexpressed in cancer cells. However, roles and the mechanism of PLK4 in

the leukemiagenesis of acute myeloid leukemia (AML) remain unclear. In this

study, the PLK4 inhibitor Centrinone and the shRNA knockdown were used to

investigate roles and the mechanism of PLK4 in the leukemiagenesis of AML.

Our results indicated that Centrinone inhibited the proliferation of AML cells in a

dose- and time-dependent manner via reduced the expression of PLK4 both in

the protein and mRNA levels. Moreover, colony formation assay revealed that

Centrinone reduced the number and the size of the AML colonies. Centrinone

induced AML cell apoptosis by increasing the activation of Caspase-3/poly

ADP-ribose polymerase (PARP). Notably, Centrinone caused the G2/M phase

cell cycle arrest by decreasing the expression of cell cycle-related proteins such

as Cyclin A2, Cyclin B1, and Cyclin-dependent kinase 1 (CDK1). Consistent with

above results, knockdown the expression of PLK4 also inhibited cell

proliferation and colony formation, induced cell apoptosis, and caused G2/M

phase cell cycle arrest without affecting cell differentiation. All in all, this study

suggested that PLK4 inhibited the progression of AML in vitro, and these results

herein may provide clues in roles of PLK4 in the leukemiagenesis of AML.

KEYWORDS

acute myeloid leukemia, PLK4, small molecule inhibitors, centrinone, biological
behaviors

Introduction

Acute myeloid leukemia (AML) is a malignant proliferative disease of bone marrow

hematopoietic stem cells with a high mortality rate (Siegel et al., 2020). Continuing for

nearly four decades, the treatment of AML is still dominated by induction chemotherapy

combined with allogeneic hematopoietic stem cell transplantation, with low cure rates and

certain limitations (Vakiti and Mewawalla. 2021). AML patients often have genetic
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abnormalities which were associated with the poor prognosis.

Targeted therapy for AML with the therapeutic advantages of

selective removal of leukemia cells and the ability to overcome

drug resistance has received increasing attention in recent years

(Kayser and Levis. 2018). Although many inhibitors were used

in the clinical trials, the therapeutic effect was still

unsatisfactory. Thus, it is necessary to explore new

therapeutic strategies for AML, particularly individualized

molecularly targeted therapies.

Polo-like kinases (PLKs) are a family of serine/threonine

kinases, which are involved in the centrosome replication

and cell cycle regulation (Archambault and Glover. 2009; de

Carcer et al., 2011). PLK family members feature similar

structures with an N-terminal kinase catalytic domain and

C-terminal Polo-box structural domains (PBDs)

(Strebhardt. 2010; Archambault et al., 2015). PLK4, also

known as serine/threonine kinase (SAK), contrasts with

other PLKs in that it contains only a PBD structural

domain (Leung et al., 2002; Sillibourne and Bornens.

2010). PLK4 high expression contributes to excessive

centriole formation, which causes genomic instability and

tumorigenesis (Holland et al., 2010).

The aberrant expression of PLK4 has a close relationship

with a variety of malignancies. Although many studies have been

done on roles of PLK4, there was a controversy in whether

PLK4 promoted or suppressed the progression of cancers. A

series of studies indicated that PLK4 promoted the progression of

cancers. PLK4 was prevailing high expressed in the breast cancer,

with only 2.6% samples being negative (Li et al., 2016). Similarly,

over half of the gastric cancer cell lines showed significantly

elevated PLK4 mRNA levels (Shinmura et al., 2014). Kawakami

et al. also demonstrated that the PLK4 was high expressed in lung

adenocarcinoma tissues compared to normal lung tissues which

indicated a low overall survival and progression-free survival

(Kawakami et al., 2018a). Besides, PLK4 was also overexpressed

and promoted the progression of melanoma, hepatocellular

carcinoma and brain tumors (Denu et al., 2018). Similar to

roles of PLK4 in the solid tumors, in 80% of classical

Hodgkin’s lymphoma were high expressed and promoted its

progression (Ward et al., 2015). But the expression of PLK4 was

decreased in some hematologic malignancies compared to

normal tissues, such as in 82.0% of lymphomas, 80.5% of

myelodysplastic syndromes (MDS) and 60% of acute

lymphoblastic leukemia (ALL) and did not display oncogene

roles. In our previous study, the RNA-Seq analysis revealed that

PLK4 was highly expressed in AML and had a close relationship

with the overall survival of AML patients. However, roles and

mechanisms of PLK4 in the leukemiagenesis of AML were still

unclear. In this study, effects of PLK4 inhibitor Centrinone and

lentivirus-mediated PLK4 knockdown on the biological

behaviors of AML cell lines were used to investigate roles and

mechanisms of PLK4 in the pathology of AML.

In recent years, due to key roles of PLK4 in the progression of

cancers, several PLK4 inhibitors have been identified, but the

clinical therapeutic effects on cancers were still unsatisfactory

(Holland and Cleveland. 2014; Mason et al., 2014; Liu et al., 2017;

Lei et al., 2018). Thus, to elucidate roles and mechanisms of

PLK4 in the progression of cancers was important for the new

drug design and screen. In this study, effects of PLK4 inhibitor

Centrinone and lentivirus mediated knockdown the expression

of PLK4 on the AML cell lines’ biological behaviors such as cell

proliferation, apoptosis, cell cycle, and colony formation were

investigated to clarify roles and mechanisms of PLK4 in the

leukemiagenesis of AML. Our results suggested that

PLK4 inhibited AML cell proliferation, colony formation,

induced AML cell apoptosis and caused the G2/M cell cycle

arrest by affecting the activation of Caspase-3/PARP and the

expression of cell cycle-related proteins such as Cyclin A2, Cyclin

B1 and CDK1. Thus, these results herein may provide clues in

roles and mechanisms of PLK4 in the leukemiagenesis of AML.

Materials and methods

Cell culture and reagents

Human AML cell lines MOLM-13, KG-1 and OCI-AML3

were cultured in RPMI-1640/IMDM (HyClone, United States)

medium, supplemented with 10% fetal bovine serum (FBS;

Gibco, United States) and 1% penicillin/streptomycin mixture.

All cells were incubated at 37°C with 5% CO2 in a humidified

atmosphere. Centrinone (MCE, China) was dissolved in the

dimethyl sulfoxide (DMSO; Sigma, United States) to a storage

concentration of 50 mM.

Cell viability assays

AML cells were seeded into a 96-well plate at a density of

20,000 cells/well for cell viability assay. Cells were treated with

different Centrinone concentrations or the vehicle DMSO for

24–96 h, then 10 μL/well Cell Counting Kit-8 (CCK-8; Absin,

China) was added to the medium and incubated at 37°C for 3 h,

followed by measuring absorbance at 450 nm by Spectra Max

M2 Microplate Reader (Molecular Devices, United States).

Cell apoptosis assay

AML cells with the designed treatment were collected and

incubated with Annexin V-APC and 7-Aminoactinomycin D (7-

AAD; BD, United States) for 15 min. Then, cells were subjected

to flow cytometry. The rates of apoptotic cells were acquired on

the Navios flow cytometer (Beckman Coulter, United States).
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Cell cycle assay

AML cells were treated with a serum-free medium to

synchronize cells. Then cells were treated with Centrinone

at different concentrations for 48 h. Cells were collected and

fixed with 70% ethanol overnight at 4°C, then stained with

propidium iodide (PI)/RNase staining buffer (BD,

United States) for 15 min. The DNA content was

monitored by the Navios flow cytometer (Beckman Coulter,

United States), and the data was analyzed using FlowJo

Version 7.6 software (TreeStar, United States).

Cell differentiation assay

AML cells were treated with different concentrations of

Centrinone and incubated with fluorescein isothiocyanate

(FITC) CD 11b (BD, United States) for 30 min. Then cells

were subjected to flow cytometry and acquired on Navios flow

cytometer (Beckman Coulter, United States).

colony formation assay

AML cells (300 cells/well) were inoculated in the 6-well plates

filled with methylcellulose, treated with different concentrations

of Centrinone, and incubated in an incubator at 37°C, 5% CO2 for

2 weeks. Colonies were observed and counted with an inverted

microscope, stained with Giemsa (Beyotime, China), and

photographed.

RNA Isolation and quantitative real-
time PCR

Total RNA was extracted using Trizol reagent (Invitrogen,

United States), and cDNA was synthesized by reverse

transcription with OligodT as a primer and M-MLV reverse

transcriptase (Invitrogen, United States). PLK4 and GAPDH

were amplified by real-time PCR on the Light Cycler480 II

system (Roche, United States) using Platinum SYBR Green

qPCR Super Mix-UDG kit (Roche, United States), and the

relative expression levels of each group of genes were

calculated by relative gene quantification (2-ΔΔCt) using

GAPDH expression levels as an internal reference. The primer

sequences were as follows:

PLK4 forward: 5′-GTGGGGAAATCAAGAAACCA-3′;
PLK4 reverse: 5′-GGTGGCTCCATACCCCTAGT-3′;
GADPH forward: 5′-CGAGATCCCTCCAAAATCAA-3′;
GADPH reverse: 5′-TGTGGTCATGAGTCCTTCCA-3′.

western blot analysis

Total protein was extracted using radio immunoprecipitation

assay (RIPA) lysis buffer (Beyotime, China) containing protease

inhibitor cocktail tablets (KeyGen, China) and phosphatase

inhibitor cocktail (KeyGen, China), according to operating

instructions. Protein concentrations were measured using a

bicinchoninic acid (BCA) assay (Beyotime, China), and then

equal amounts of total protein were separated by electrophoresis

on a 10% polyacrylamide gel (Bio-Rad, United States). The

protein extracts were transferred onto polyvinylidene fluoride

(PVDF) membranes (Millipore, Billerica, United States), and

then membranes were blocked in Tris-buffered saline

(contained 0.05% Tween) with 5% defatted milk for 1.5 h.

Then membranes were incubated with primary antibodies at

4°C overnight. The primary antibodies were used with a

concentration of 1: 1,000 as follows: PLK4 (Proteintech,

China), Caspase-3, PARP, Cyclin A2, Cyclin B1, CDK1,

signal transducers and activators of transcription 3 (STAT3),

and p-STAT3 (Cell Signaling Technology, United States).

GAPDH (Bioworld, United States) was used as the

endogenous control. Goat anti-rabbit or goat anti-mouse

secondary antibodies labeled with horseradish peroxidase

(HRP) (1: 5,000, Bioworld, United States) were hybrid

bindings at room temperature for 1.5 h, and signals were

detected with the AI600 Imaging System (General Electric,

United States) using an enhanced chemiluminescence (ECL)

kit (Bio-Rad, United States).

Construction of lentiviral interference
vector and transfection

The specific shRNA sequence of the PLK4 was annealed

and ligated with the pLV-shRNA-EGFP linear vector after

double digestion with EcoRI and BamHI to construct the

recombinant interfering vector OCI-AML3-sh-PLK4-1/2,

which was sent to Invitrogen for sequencing. The virus

particles were packaged using a triple plasmid system, and

ultracentrifugation was used to concentrate the virus and

stored at −80°C. 1 day before transfection, OCI-AML3 cells

were seeded into 24-well plates at a concentration of 5 × 104

cells per well. Appropriate doses of lentivirus and transfection

enhancers were co-cultured with cells. Both empty vector and

PLK4 knockdown lentivirus vectors expressed green

fluorescent protein (GFP) and puromycin resistance genes.

2 days later, 8 μg/ml puromycin (VICMED, China) was added

to the culture medium to screen stably transfected cells.

Infection efficiency was determined by GFP and then

validated by RT-PCR and Western blot.
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Statistical analysis

All experiments were repeated at least three times, and the

data were statistically analyzed and processed with

SPSS16.0 software or GraphPad Prism7.03 software. The

measurement data were expressed as mean ± standard

deviation, and t-test was used for comparison of two sample

means, and one-way ANOVA was used for comparison of more

than two sample means. The test level was α = 0.05, and *p <
0.05 indicated that the difference was statistically significant.

Results

Centrinone inhibited the proliferation of
AML cells in a dose- and time-dependent
manner

In order to investigate effects of Centrinone on the

proliferation of MOLM-13, OCI-AML3, and KG-1 AML cell

lines, CCK-8 assay was done. AML cells were inoculated in 96-

well plates at a density of 2×104 cells/well, and different

Centrinone concentrations (50, 100, 200 and 400 nM) were

used to treat AML cells for 24, 48 and 72 h. Our results

indicated that the proliferation of OCI-AML3, and KG-1

AML cells gradually decreased with Centrinone concentrations

increased compared with the control group (Figures 1A–C),

while the proliferation of MOLM-13 gradually decreased

when the Centrinone concentrations were between

50–200 nM, and no obvious changes were observed when the

Centrinone concentrations between 200–400 nMwhich might be

caused by the high drug concentrations (Figures 1A–C).

Similarly, the proliferation of MOLM-13, OCI-AML3, and

KG-1 AML cells gradually decreased with the Centrinone

treatment time increased compared with the control group

(Figure 1D). These results suggested that Centrinone inhibited

the proliferation of AML cell lines in a dose- and time-dependent

manner.

Centrinone inhibited the expression of
PLK4 in AML Cell lines

In order to elucidate effects of Centrinone concentrations (0,

100, 200 nM) on the expression of PLK4 in the MOLM-13, OCI-

AML3, and KG-1 cells, the RT-PCR and Western blot

FIGURE 1
Centrinone inhibited the proliferation of AML cells in a dose- and time-dependent manner. (A–C) Effects of different Centrinone
concentrations (0, 50, 100, 200, 400 nM) on the proliferation of AML cells were determined by treatment MOLM-13, OCI-AML3, and KG-1 cells for
72 h, then CCK-8 was added, incubated for 3 h, finally the OD450 absorbance was detected. (D) The indicated Centrinone concentrations was used
to treat MOLM-13 (54.26 nM), OCI-AML3 (177.7 nM), and KG-1 (189.9 nM) cells for 1-5 days to detect the effect of Centrinone on the
proliferation of AML cells at different treatment times. Columns, means (n ≥ 3); bars, SD. *p < 0.05 versus the control group.
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FIGURE 2
Centrinone inhibited the expression of PLK4. (A) The mRNA expression levels of PLK4 were detected by RT-PCR after AML cells treated with
different concentrations of Centrinone for 72 h. Compared with the control group, *p < 0.05. (B) The expression of PLK4 were detected by Western
blot in AML cells treated with diverse concentrations of Centrinone for 72 h and the expression of GAPDH was used as an internal control.

FIGURE 3
Centrinone induced the apoptosis of AML cells via increasing the expression of cleaved Caspase-3 and cleaved PARP. (A) The apoptosis of AML
cells treated with different Centrinone concentrations after 72 h was analyzed by flow cytometry with Annexin V/7-AAD double staining. (B)
Statistical analysis of apoptosis of AML cells treated by Centrinone (compared with the control group, *p < 0.05). (C) The expression of cleaved
Caspase-3 and cleaved PARP were detected by Western blot.
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experiments were done. Our results indicated that Centrinone

inhibited the expression of PLK4 both in the mRNA and protein

levels with the increased Centrinone concentrations in the

MOLM-13, OCI-AML3 and KG-1 cells (Figures 2A,B).

Centrinone induced the apoptosis of AML
cells

In order to investigate effects of Centrinone on the

apoptosis of AML cells, flow cytometry was used to detect

the number of double staining cells with Annexin V and 7-

AAD. The early apoptotic cells were defined as Annexin V+/7-

AAD-, late apoptotic cells were defined as Annexin V+/7-

AAD+ and the total percentage of apoptotic cells was the

sum of early apoptotic cells and late apoptotic cells. Our

results suggested that the percentage of apoptotic cells in all

three AML cell lines increased with the elevated Centrinone

concentrations (0, 100, 200 nM) after 72 h treatment (Figures

3A,B). The expression of apoptosis-related proteins was also

detected to clarify the mechanism of Centrinone led to the

AML cell apoptosis. As shown in Figure 3C, the expression of

cleaved Caspase-3 and cleaved PARP were significantly

increased in AML cells after Centrinone treatment. Thus,

these observations suggested that Centrinone induced the

apoptosis of AML cells via the activation of Caspase-3 and

PARP pathway.

Centrinone induced AML cells in the G2/M
phase cell cycle arrest

In order to clarify effects of the Centrinone on the cell cycle of

AML cell lines, the PI stain experiments were done.MOLM-13, OCI-

AML3, and KG-1 cells were treated with different Centrinone

concentrations (0, 100, 200 nM) for 48 h. DNA from ethanol-

fixed cells was stained with PI, and the DNA content was

measured by flow cytometry. The number of cells in the G2/M

phase increased continuously with Centrinone concentrations

increased (Figures 4A,B). At the same time, the expressions of cell

cycle-related proteins were detected to explore the mechanism of

Centrinone caused the cell cycle arrest of AML cells. As shown in

Figure 4C, the expression of Cyclin A2, Cyclin B1 and CDK1 were

significantly reduced in AML cells after Centrinone treatment. This

result suggested that Centrinone arrested the cell cycle in the G2/M

phase by reducing the expression of CyclinA2, Cyclin B1, andCDK1.

Centrinone suppressed the colony
formation of AML cells

The colony formation assay was conducted to evaluate effects

of Centrinone on colony formation ability of AML cell lines.

MOLM-13, OCI-AML3, and KG-1 cells were seeded in

methylcellulose medium and treated with different Centrinone

concentrations (0, 100, and 200 nM) for 14 days, and the number

FIGURE 4
Centrinone caused AML cells in the G2/M phase cell cycle arrest by reducing the expression of Cyclin A2, Cyclin B1, and CDK1. (A) AML cells
were treated by Centrinone for 48 h, and the cell cycle of ethanol-fixed cells with PI staining was analyzed by flow cytometry. (B) Statistical analysis of
the distribution of G1, S and G2/M phase AML cells treated by Centrinone (compared with the control group, *p < 0.05). (C) The expression of Cyclin
A2, Cyclin B1, and CDK1 were detected by Western blot.
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of colonies was counted under the microscope. Compared with

the control group, the quantity and size of cell colonies markedly

decreased and significantly reduced after Centrinone treatment

for 14 days (Figures 5A–C).

Centrinone had no effect on the
differentiation of AML cells

The blockage of cell differentiation was one reason for the

pathology of AML (Denu et al., 2018). In order to elucidate whether

Centrinone affected the differentiation of AML cell lines, the

expression of myeloid differentiation maker CD 11b was

determined. MOLM-13, OCI-AML3, and KG-1 cells were

treated with different Centrinone concentrations (0, 100,

200 nM) for 48 h. Then, cells were collected, stained with FITC

CD11b, and detected by flow cytometry. No significant cell

differentiation changes were observed compared with the

control group (Figure 6A).

Centrinone inhibited the activation of
STAT3 in AML cells

Previous study indicated that STAT3 was involved in the

regulation of centrosome clustering in cancer cells (Morris et al.,

2017). In order to investigate whether Centrinone affected the

activation of STAT3, the expression of STAT3 and p-STAT3 in

AML cells was detected by Western blot. MOLM-13, OCI-

AML3, KG-1 cells were treated with different Centrinone

concentrations (0, 100, 200 nM) for 72 h, and then cell

harvest, protein extraction and the Western blot experiment

was done. As shown in Figure 6B, the expression of

STAT3 and p-STAT3 significantly decreased with the

Centrinone concentrations increased, which suggested that

PLK4 inhibited the progression of AML via reducing the

activation of STAT3.

Knockdown the expression of
PLK4 inhibited the Cell proliferation and
suppressed the clonogenic ability of OCI-
AML3 cells

The OCI-AML3 cells that stably knockdown the expression

of PLK4 were obtained by the lentivirus-mediated transduction

and sorted by the flow cytometry. The expression of PLK4 was

significantly decreased both in the mRNA and protein levels in

the knockdown groups compared with the control group

(Figures 7A,B). In order to investigate effects of knockdown

the expression of PLK4 on the proliferation of OCI-AML3 cells,

CCK-8 assay was done. OCI-AML3-sh-EGFP, OCI-AML3-sh-

FIGURE 5
Centrinone reduced the clonogenic ability of AML cell lines. AML cells were co-incubated with Centrinone for 14 days. Single colonies were
observed and counted under the microscope. (A) Microscopic observation of cell colony generation size (100×). (B) The number of colony
generations was observed after Giemsa staining. (C) Statistical analysis of the number of colony formation of MOLM-13, OCI-AML3, and KG-1 AML
cells (Compared with the control group, *p < 0.05).
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PLK4-1 and OCI-AML3-sh-PLK4-2 cells were inoculated

uniformly in 96-well plates at a density of 2 × 104 cells/well,

at 24, 48 and 72 h, CCK-8 was added and incubated for 3 h, and

then the OD450 was detection. Similar to results of Centrinone

inhibition experiments, knockdown the expression of

PLK4 significantly suppressed the proliferation of OCI-AML3

cells compared with the control group (Figure 7C). At the same

time, effects of knockdown the expression of PLK4 on the

clonogenic ability of OCI-AML3 cells were investigated by

colony formation assay. As shown in Figures 7D,E,

knockdown the expression of PLK4 reduced the number and

the size of colonies compared to the control group.

Knockdown the expression of
PLK4 promoted the apoptosis, arrested
Cell cycle, while had no effect on the
differentiation of OCI-AML3 cells

The blockage of cell apoptosis and cell differentiation were

important for the leukemiagenesis of AML. In order to detect

effects of knockdown the expression of PLK4 on cell apoptosis

and cell differentiation, the cell numbers with Annexin V and 7-

AAD double stain, the expression of apoptosis related proteins

and the myeloid differentiation maker CD11b was determined by

flow cytometry and Western blot. As shown in Figures 8A,B, the

proportion of apoptotic cells was significantly higher in the

PLK4 knockdown groups than that of the control group. At

the same time, knockdown the expression of PLK4 promoted the

expression of cleaved Caspase-3 and cleaved PARP (Figure 8C).

Similar to the result of Centrinone inhibition, knockdown the

expression of PLK4 significantly reduced the expression of cell

cycle-related proteins Cyclin A2, Cyclin B1 and CDK1

(Figure 8D), which indicated the cell cycle arrested. No

significant cell differentiation changes were observed between

the PLK4 knockdown groups and the control group, since the

expression of CD 11b in the knockdown groups was almost

similar to that of control group as detected by flow cytometry

(Figure 8E).

Discussion

In recent years, the impact of centrosome abnormalities on

human cancers has been attracting attention (Anderhub et al.,

2012; Denu et al., 2016; Levine et al., 2017). Centrosomes played

vital roles in accurate chromosome segregation during mitosis,

making precisely per copy during each cell division and helping

to maintain genomic integrity (Neben et al., 2004). Centrosome

abnormalities caused spindle formation and dysfunction,

chromosome segregation imbalance, triggering subsequent

genomic instability and promoting tumorigenesis (Cosenza

FIGURE 6
Effects of Centrinone on the expression of CD11b and the activation of STAT3 in AML cell lines. (A) Effects of Centrinone on the expression of
myeloid cell differentiation marker CD11b in AML cell lines. AML cells were treated with Centrinone for 48 h, and the expression of CD11b was
analyzed by flow cytometry. (B) Centrinone inhibited the activation of STAT3. AML cells treated with different concentrations of Centrinone for 72 h,
and then the expression of STAT3 and p-STAT3 were detected by Western blot. The expression of GAPDH was used as an internal control.
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et al., 2017). Genetic instability was one of the common features

of AML. Neben et al. revealed that centrosomal aberrations as a

possible cause of aneuploidy in AML and the proportion of cells

carrying abnormal centrosomes was associated with increased

cytogenetic risk status and poor prognosis (Neben et al., 2004).

PLK4 is a regulator of centrosome replication and plays

important roles in centriole replication (Maniswami et al.,

2018). PLK4 dysregulation led to abnormal number of

centrosomes, mitotic defects, chromosomal instability and

consequently tumorigenesis. Therefore, inhibition of

PLK4 might be a new strategy for the treatment of many

cancers, including AML (Zhao and Wang. 2019). The

PLK4 high expression always leads to defective cell mitosis,

which triggers tumorigenesis (Bettencourt-Dias et al., 2005;

Habedanck et al., 2005). Although roles of PLK4 in solid

cancers have been studied, there was a controversy in whether

PLK4 as an oncogene or tumor suppressor. Our previous RNA-

Seq analysis indicated that PLK4 was high expressed in the AML

cells, but roles and mechanisms of PLK4 in the leukemiagenesis

of AML were still unclear. So, to inhibit the expression of

PLK4 either by the PLK4 inhibitor or lentivirus-mediated

knockdown in the AML cell lines would help us to clarify

roles and mechanisms of PLK4 in the leukemiagenesis of

AML, and thus provide clues in whether PLK4 was a potential

target for AML clinical treatment and therapy. In this study,

lentivirus-mediated PLK4 interference and PLK4 inhibitor

Centrinone was used to investigate roles and mechanisms of

PLK4 in the pathology of AML. Our results suggested that

knockdown the expression of PLK4 inhibited the cell

proliferation, colony formation of AML cell lines, promoted

the cell apoptosis, and caused the G2/M phase cell cycle arrest

of AML cell lines. These observations herein may provide clues in

roles of PLK4 in the leukemiagenesis of AML.

Previous studies indicated that PLK4 was high expressed in

several human cancers, including hepatocellular carcinoma,

colorectal cancer, gastric cancer, glioblastoma, neuroblastoma,

breast cancer, and lung cancer (Zhang et al., 2021), and had a

close relationship with the progression of cancers. Due to the vital

roles of PLK4 in the regulation of centrosome replication and the

pathology of cancers, more and more PLK4 inhibitors were

developed, such as Centrinone, Centrinone-B, CFI-400495 and

YLT-11 (Mason et al., 2014; Wong et al., 2015; Kawakami et al.,

2018b; Denu et al., 2018; Lei et al., 2018; Kerschner-Morales et al.,

2020; Zhao et al., 2021; Singh et al., 2022). The already known

studies information about above PLK4 inhibitors, such as

structures, mainly studied cancer cells and effects of these

inhibitors on the biological behaviors have been summarized

in Table 1. Since the Centrinone was a selective and reversible

FIGURE 7
Knockdown the expression of PLK4 inhibited the proliferation and the colony formation of OCI-AML3 cells. (A) Relative mRNA expression levels
of PLK4 in the OCI-AML3 cells after lentivirus medicated transduction, *p < 0.05, compared with OCI-AML3-sh-EGFP group. (B) Expression of
PLK4 in transfected OCI-AML3 cells was detected by Western blot. (C) Knockdown the expression of PLK4 inhibited the proliferation of OCI-AML3
cells. *p < 0.05, compared with OCI-AML3-sh-EGFP group. (D) Knockdown the expression of PLK4 inhibited the size and the numbers of the
colony formation. Microscopic observation of cell colony generation size (100×) and the number of colony generations was observed after Giemsa
staining. (E) Statistical analysis of the number of cell-forming colonies (compared with control, *p < 0.05).
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FIGURE 8
Knockdown the expression of PLK4 induced the apoptosis and the cell cycle arrest of OCI-AML3, while had no effect on the differentiation of
OCI-AML3 cells. (A) The apoptosis of each group was analyzed by flow cytometry with Annexin V/7-AAD double stain. (B) Statistical analysis of the
apoptosis of PLK4 knockdown OCI-AML3 cells (compared with the control group, *p < 0.05). (C) The expression of cleaved Caspase-3 and cleaved
PARPwas detected byWestern blot. (D) The expression of Cyclin A2, Cyclin B1 and CDK1was detected byWestern blot. (E) Effect of PLK4 on the
differentiation of OCI-AML3 cells were stained with FITC CD11b and analyzed by flow cytometry.

TABLE 1 The summary of the structure, studied cancer cells and roles of the inhibitors of PLK4.

Inhibitors Structure Target Mainly studied
cancer cells

Effects References

Centrinone PLK4 Ewing’s sarcoma cells; Cervical
carcinoma cells

Cell proliferation inhibition; cell
cycle arrest; cell apoptosis induction;
colony formation inhibition

Kerschner-Morales et al. (2020);
Wong et al. (2015)

Centrinone-
B

PLK4 Melanoma cells; Prostate cancer
cells

Cell proliferation inhibition; cell
apoptosis induction; colony
formation inhibition

Denu et al. (2018); Singh et al. (2022)

CFI-400495 PLK4 Breast cancer cells; Lung cancer
cells; Prostate cancer cells; Diffuse
large B-cell lymphoma cells

Cell proliferation inhibition; cell
cycle arrest; cell apoptosis induction;
colony formation inhibition

Mason et al. (2014); Kawakami et al.
(2018a); Singh et al. (2022); Zhao et al.
(2021)

YLT-11 PLK4 Breast cancer cells Cell proliferation inhibition; colony
formation inhibition; cell apoptosis
induction

Lei et al. (2018)

The structures of inhibitors were taken from database PubChem.
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PLK4 inhibitor with the lowest Ki values among all known

inhibitors, in this study the Centrinone was used to treat

AML cell lines to explore roles and mechanisms of PLK4 in

the pathology of AML. Our results suggested that Centrinone

inhibited the proliferation of AML cells in a dose- and time-

dependent manner. This observation was consistent with

previous studies which indicated that PLK4 promoted the

progression of cancers (Zhang et al., 2021). Moreover, our

study revealed that Centrinone induced the apoptosis of AML

cells in a dose-dependent manner. Mechanismly, Centrinone

induced the apoptosis of AML cells via increased the expression

of cleaved Caspase-3 and cleaved PARP. This result implied that

Centrinone induced the apoptosis of AML cells by activating the

Caspase signaling pathway.

The cell cycle engine is located downstream of the

confluence of oncogenic signaling networks and it is an

important target for cancer diagnosis and therapy. The cell

cycle dysregulation was responsible for the aberrant cell

proliferation of cancer cells (Williams and Stoeber. 2012).

Previous studies showed that PLK4 was involved in the

regulation of the cell cycle and stress response, and its

abnormal expression levels were associated with the

progression of tumors (Raab et al., 2021). In this study, our

results indicated that knockdown or Centrinone inhibited the

expression of PLK4 caused AML cells in the G2/M phase cell

cycle arrest by decreasing the expression of Cyclin A2, Cyclin

B1, and CDK1. This result was consistent with previous

studies which suggested that PLK4 was involved in the

regulation of the cell cycle and promoted the development

of cancers (Raab et al., 2021).

The leukemia stem cell (LSC) was the source of leukemia

relapse and the death of AML patients (Knorr and Goldberg.

2020). In this study, effects of PLK4 on the stemness

maintenance of LSC were detected by the colony formation

assay. Our results suggested that the colony size and the

number of colonies were significantly decreased when the

expression of PLK4 was downregulated. Thus, our results

suggest that downregulation of PLK4 reduces the stemness

maintenance of LSC.

All in all, our results suggested that either the Centrinone

or the lentivirus-mediated interference the expression of

PLK4 inhibited cell proliferation, induced cell apoptosis

and suppressed cell colony formation of AML cells. This

study provided an experimental basis for PLK4 in the

leukemiagenesis of AML. However, our understanding of

PLK4 aberrant expression in cancer development is far

from adequate, and more research is needed to investigate

the novel mechanisms of their involvement in maintaining

genomic stability and new strategies for AML targeted

therapies.
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High-grade serous ovarian carcinoma (HGSOC) is a genomically unstable

malignancy responsible for over 70% of all deaths due to ovarian cancer.

With roughly 50% of all HGSOC harboring defects in the homologous

recombination (HR) DNA repair pathway (e.g., BRCA1/2 mutations), the

introduction of poly ADP-ribose polymerase inhibitors (PARPi) has

dramatically improved outcomes for women with HR defective HGSOC. By

blocking the repair of single-stranded DNA damage in cancer cells already

lacking high-fidelity HR pathways, PARPi causes the accumulation of double-

stranded DNA breaks, leading to cell death. Thus, this synthetic lethality results

in PARPi selectively targeting cancer cells, resulting in impressive efficacy.

Despite this, resistance to PARPi commonly develops through diverse

mechanisms, such as the acquisition of secondary BRCA1/2 mutations.

Perhaps less well documented is that PARPi can impact both the tumour

microenvironment and the immune response, through upregulation of the

stimulator of interferon genes (STING) pathway, upregulation of immune

checkpoints such as PD-L1, and by stimulating the production of pro-

inflammatory cytokines. Whilst targeted immunotherapies have not yet

found their place in the clinic for HGSOC, the evidence above, as well as

ongoing studies exploring the synergistic effects of PARPi with immune agents,

including immune checkpoint inhibitors, suggests potential for targeting the

immune response in HGSOC. Additionally, combining PARPi with epigenetic-

modulating drugs may improve PARPi efficacy, by inducing a BRCA-defective

phenotype to sensitise resistant cancer cells to PARPi. Finally, invigorating an

immune response during PARPi therapy may engage anti-cancer immune

responses that potentiate efficacy and mitigate the development of PARPi

resistance. Here, we will review the emerging PARPi literature with a focus

on PARPi effects on the immune response in HGSOC, as well as the potential of

epigenetic combination therapies. We highlight the potential of transforming

HGSOC from a lethal to a chronic disease and increasing the likelihood of cure.

OPEN ACCESS

EDITED BY

Alip Ghosh,
University of Maryland, Baltimore,
United States

REVIEWED BY

Giovanna Damia,
Mario Negri Pharmacological Research
Institute (IRCCS), Italy
Nicholas Pavlidis,
University of Ioannina, Greece

*CORRESPONDENCE

Clare L. Scott,
scottc@wehi.edu.au

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 28 February 2022
ACCEPTED 05 August 2022
PUBLISHED 09 September 2022

CITATION

Bound NT, Vandenberg CJ,
Kartikasari AER, Plebanski M and
Scott CL (2022), Improving PARP
inhibitor efficacy in high-grade serous
ovarian carcinoma: A focus on the
immune system.
Front. Genet. 13:886170.
doi: 10.3389/fgene.2022.886170

COPYRIGHT

© 2022 Bound, Vandenberg, Kartikasari,
Plebanski and Scott. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Review
PUBLISHED 09 September 2022
DOI 10.3389/fgene.2022.886170

175

https://www.frontiersin.org/articles/10.3389/fgene.2022.886170/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.886170/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.886170/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.886170/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.886170&domain=pdf&date_stamp=2022-09-09
mailto:scottc@wehi.edu.au
https://doi.org/10.3389/fgene.2022.886170
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.886170


KEYWORDS

high-grade serous ovarian carcinoma, poly ADP-ribose polymerase inhibitors,
epigenetics, immunotherapy, combination (combined) therapy, clinical trials,
checkpoint inhibition, PARPi combinations

1 Introduction

Even with years of research and the development of a new

effective therapy, high-grade serous ovarian carcinoma

(HGSOC) remains, to this day, one of the most lethal

gynaecological malignancies. HGSOC belongs to the type II

class of epithelial ovarian cancers (EOC) and mostly develops

from fallopian tube secretory cells into aggressive high-grade

tumours with early metastatic potential (Pavlidis. et al., 2021). In

contrast, type 1 EOC, such as endometrioid OC, is relatively

indolent and genetically stable, with a better prognosis, arising

from precursors such as endometriosis (McCluggage, 2011).

Responsible for over 70% of all ovarian cancer (OC) deaths,

only 30% of women affected with HGSOC are expected to survive

five years (Dion et al., 2020). Current treatment for HGSOC

includes a complete resection of the cancer and platinum/taxane

chemotherapy, however, only 30% of women will remain in

remission following this, with the remainder undergoing more

chemo-resistant relapse occurring within 4–16 months (Agarwal

and Kaye, 2003; Cooke and Brenton, 2011; Vaughan et al., 2011;

Korkmaz et al., 2016). This high mortality rate is largely due to

late-stage diagnosis and disease recurrence (Dion et al., 2020).

The intra-tumoral heterogeneity that arises within HGSOC,

enables the acquisition of resistance mechanisms to first-line

treatments (Milanesio et al., 2020). Thus, there have been efforts

to improve the first-line regimen, to introduce additional

therapies, particularly in the maintenance setting, to combat

recurrence, in order to improve outcomes for women with

HGSOC.

Women who have received first-line therapy can be stratified

into having platinum-resistant or platinum-sensitive HGSOC/

OC (defined as women whose cancer progresses within six

months or after six months respectively) (Lee and Matulonis,

2020). However, the fifth Ovarian Cancer Consensus Conference

(OCCC) convened by the Gynecologic Cancer Intergroup

(GCIG) in Tokyo, Japan in 2015 concurred that, “as time

since last platinum chemotherapy represents a continuum of

probability of response to further chemotherapy, a fixed 6-month

cut-off decision on platinum sensitivity was neither sensible nor

biologically relevant” suggesting a greater degree of flexibility

should be taken into account when considering a patient’s

treatment options (Colombo et al., 2019). Upon recurrence,

platinum-sensitive OC continues to be treated with a

platinum-based chemotherapy regimen, with combination

platinum regimens having a better OS when compared with

single-agent carboplatin, with a median overall survival (OS) of

around 30 months (Lendermann et al., 2003; Lee and Matulonis,

2020; Vanacker et al., 2021). In the ICON7 trial (NCT00262847),

the addition of the anti-angiogenic drug, bevacizumab (BV), to

the platinum/taxane chemotherapy combination offered a

slight extension of progression-free survival (PFS) for these

women and of OS in those at high-risk for disease progression

(Perren et al., 2011). However, regardless of treatment, most

HGSOC patients relapse, with the degree of benefit derived

from treatment and duration of remission decreasing with each

subsequent line of treatment (Lee and Matulonis, 2020).

Women with platinum-resistant OC are treated with non-

platinum chemotherapies such as pegylated liposomal

doxorubicin (PLD), weekly paclitaxel, gemcitabine, topotecan

or oral cyclophosphamide. These non-platinum-containing

regimens are comparable in terms of efficacy and typically

have poor response rates, as low as 10%–15% with median

OS of 12 months (Lheureux et al., 2019a; McMullen et al.,

2020). In the AURELIA trial (NCT00976911), the addition of

BV, to these second-line and beyond lines of chemotherapy

increased the PFS of patients from 3.4 months to 6.7 months,

however, there was no significant improvement in OS

compared with chemotherapy alone (Pujade-Lauraine et al.,

2014; Lee and Matulonis, 2020).

In 2014, the use of poly(ADP-ribose) polymerase inhibitors

(PARPi) was approved for the treatment of recurrent, advanced

BRCA1/2-mutant HGSOC (George et al., 2017). Within four

years, phase III clinical trials of PARPi in the relapsed setting

(SOLO2/ENGOT-Ov21 (NCT01874353), ARIEL3

(NCT01968213) and NOVA/ENGOT-OV16 (NCT01847274))

demonstrated improved PFS for women with either mutated or

wild-type BRCA1/2 (Tomao et al., 2019; Banerjee and Lord,

2020). This led to the use of PARPi as a maintenance therapy

regardless of BRCA status in recurrent OC, and subsequent phase

III first-line trials (SOLO1 (NCT01844986), PAOLA-1/ENGOT-

ov25 (NCT02477644), PRIMA/ENGOT-OV26/GOG-3012 trial

(NCT026555016) and VELIA/GOG-3005 (NCT02470585) ) led

to PARPi’s more recent use as a front-line maintenance

therapeutic for women with mutant BRCA1/2 (both germline

and somatic) and then in the setting of platinum-responsive or

HR defective (HRD) HGSOC (HRD status determined through

tests such as the Myriad MyChoice™ test) (Banerjee and Lord,

2020).

This was a major advance, as PARPi was the first targeted

treatment approved for women with HGSOC which was

dependent on certain genetic mutations being present in the

cancer itself. However, the presence of specific HRD gene

mutations have been concluded by recent phase III trials to

not be essential, rather to predict which women will benefit

from experiencing the strongest responses to PARPi therapy

and summarised in a meta-analysis of a trial in relapsed OC
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(Coleman et al., 2017; Lee et al., 2019; Ray-Coquard et al., 2019;

Matulonis et al., 2021). Treatment with PARPi offers a

significant benefit to women, however acquired resistance

has driven the requirement for the development of

combinatorial therapeutic approaches, as women treated

with single agent PARPi may develop recurrence which is

resistant to both subsequent PARPi and to chemotherapy

(Park et al., 2022). Extensive research has been performed to

characterize the effects and mechanisms of action of PARPi.

This has better defined which women with HGSOC would

derive the most benefit from PARPi, including as single agent

therapy, and continues to improve the likelihood that more

women who are more likely to need PARPi combination

therapy will be identifiable so that they can receive it.

Additionally, this characterisation has demonstrated the

effects of PARPi beyond its role as a DNA repair inhibitor,

such as in inflammation and checkpoint expression,

illuminating new pathways for combinatorial therapeutic

approaches (Shen et al., 2019). This review summarizes the

actionable mechanisms of PARPi in relation to HGSOC,

highlighting effects on immune responses and epigenetic

modulation, as well as relevant combinatorial clinical trials

of PARPi.

2 Genomic and immune
characteristics of HGSOC

In order to improve outcomes for PARPi, we must first

understand the disease. HGSOC are chromosomally unstable

malignancies characterised by widespread genomic structural

variation and copy number aberrations (Bowtell et al., 2015;

Wang et al., 2017). Aside from mutations in TP53 and BRCA1/

BRCA2, driver mutations in other tumour suppressor or oncogenes

are less common (Figure 1) (Kurman and Shih, 2016). Instead,

structural change through DNA gains and losses are the main

mechanisms for the inactivation of tumour suppressor genes

(Wang et al., 2017). Pathogenic TP53mutations were identified

in 96.7% of HGSOC cases and are believed to be an early

mutational event essential for pathogenesis (Ahmed et al., 2010;

Bowtell, 2010). Roughly 50% of HGSOC have defects in DNA

repair and are a result of somatic/germline mutations and/or

epigenetic silencing via methylation of HR related genes

(Bowtell, 2010; Bowtell et al., 2015).

Mutations in BRCA1/2 account for 10%–18% of hereditary

OC cases, with somatic mutations in BRCA1/2 accounting for

another ~4% of cases (Alsop et al., 2012; Cunningham et al.,

2014). BRCA1 and BRCA2 are essential components of the HR

FIGURE 1
Characteristics, initiation, and molecular progression of HGSOC. (A)Most commonmutations include ubiquitous loss of TP53 (96.7% of cases),
loss of BRCA1/2 (somatic/germline mutations, promoter methylation), CCNE1 amplification, NF1, RB1 and PTEN mutations. (B) The loss of TP53 is
thought to be the initiating event that with subsequent loss of HR pathways stimulates the chromosomal instability and widespread copy number
changes seen in HGSOC. This causes changes in gene expression and promotes the development of specificmolecular changes that define the
4 HGSOC subtypes (C1, C2, C4, and C5). Loss of HR, specifically BRCA1, can elicit immune responses through increased neoantigen loads and
upregulation of inflammatory pathways. Additionally, HRD and BRCA mutant tumours have been associated with elevated levels of TILs. Common
immune evasion mechanisms that HGSOC develop to negate these innate immunogenic traits include the upregulation of immune checkpoints,
overexpression of angiogenesis factor VEGF-A and the downregulation of immune-stimulating molecules.
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pathway and are required for the repair of DNA double-stranded

breaks (DSB) in DNA (Bowtell, 2010). In normal tissue, loss of

BRCA1/2 triggers an apoptotic response involving p53. However,

in HGSOC with loss or dysfunction of p53 as an initiating event,

BRCA1/2 loss leads to chromosomal instability and widespread

copy number changes (Bowtell, 2010). G (Bowtell, 2010). Apart

from BRCA1/2 mutations, hypermethylation of the BRCA1 or

RAD51C gene promoters resulting in gene silencing is the next

most common event, occurring in another 14% of cases (11% and

3% of cases respectively) (Network, 2011; Nesic et al., 2018). The

remaining HRD HGSOC can be attributed to alterations in the

Fanconi Anemia genes and other genes also involved in genome

stability and DNA damage repair (RAD51C, RAD51D, PALB2,

ATM, ATR, and EMSY) (Network, 2011). Loss of HR pathways

requires tumours to rely on alternative, low fidelity mechanisms

to repair DNA damage (Strickland et al., 2016). These error-

prone pathways accumulate point mutations and random

insertions/deletions resulting in the increase in mutational

load, of potential relevance for immune therapies, as well as a

distinct mutational signature (Patch et al., 2015; Strickland et al.,

2016). This HRD signature has also been observed in carcinomas

without known mutations in BRCA1/2 or other HR genes, so it is

possible there are more HRD HGSOC than currently

hypothesised (Strickland et al., 2016). This HRD cohort likely

contributes to the sensitivity of HGSOC to platinum and other

DNA damaging agents, with an improvement of PFS and OS for

HRD HGSOC compared to HR proficient cohorts.

Gene expression analysis has allowed the identification and

validation of four subtypes of HGSOC: C1 (mesenchymal), C2

(immunoreactive), C4 (differentiated), and C5 (proliferative)

(Tothill et al., 2008; Leong et al., 2015). Each subtype has

distinct patterns of gene expression and clinical outcomes

(Tothill et al., 2008). The C1 subtype displays a mesenchymal

gene expression signature, extensive myofibroblast infiltration

and poor survival rates (Tothill et al., 2008; Leong et al., 2015). In

contrast, the C2 subtype is characterized by the presence of

tumour infiltrating lymphocytes (TILs) and a more favourable

prognosis (Zhang et al., 2003). Similarly, the presence of TILs has

been noted in the C4 differentiated subtype along with a low

stromal response and high expression of MUC16/CA125 and

MUC1 (Tothill et al., 2008; Network, 2011). Thus, compared with

C1 and C5 subtypes, C2 and C4 subtypes have a better prognosis,

and may benefit from the use of immunotherapies in

combination with chemotherapy or other DNA damaging

agents such as PARPi (Tothill et al., 2008; Network, 2011).

The C5 subtype is driven by the suppression of the Let7

family of microRNAs, leading to the amplification of stem-cell

associated factorsMYCN and LIN28B, and the low expression of

differentiation markers including MUC-16/CA-125 and other

immune cell markers (Tothill et al., 2008; Helland et al., 2011;

Leong et al., 2015). C1, C2 and C4 HGSOC displayed multiple

subtype signatures, with most samples having a dominant

signature (Zhang et al., 2014). The C5 subtype did not display

a more dominant subtype, attributed to its stem-cell like, de-

differentiated state (Zhang et al., 2014; Leong et al., 2015).

HRD positive and BRCA-mutant HGSOC have improved

prognoses compared with their HR proficient counterparts,

especially BRCA2-mutant HGSOC (Yang et al., 2011; Bolton

et al., 2012; Strickland et al., 2016). This has been attributed to

increased platinum sensitivity, however, the increased

immunogenicity of these tumours could be an important

contributing factor. A robust anti-tumour immune

response relies on a cascade of interactions from the

presentation of tumour-specific antigens, activation and

trafficking of cytotoxic lymphocytes and the recognition

and killing of tumour cells (Dunn et al., 2004a; Dunn et al.,

2004b; Li et al., 2019). Specifically, the BRCA1/2mutant subset

of HGSOC are associated with higher neoantigen loads,

elevated levels of tumour infiltrating lymphocytes (TILs),

and increased expression of immune pathway genes

(Strickland et al., 2016).

Different lymphocyte subsets present in the tumour

microenvironment (TME) can affect prognosis and tumour

progression (Hendry et al., 2017). Most notably for HGSOC,

the presence of CD8+ T cells, CD3+ T cells, and CD20+ B cells

positively correlates with an improved overall survival (Hwang

et al., 2012; Preston et al., 2013; Nelson, 2015; Hendry et al.,

2017). Particularly, a higher ratio of CD8+ T cells to CD4+ CD25+

FOXP3+/− regulatory T cells (Tregs) is associated with a better

prognosis (Barnett et al., 2010; Preston et al., 2013). The

mechanisms that define TIL attraction to these tumours

continue to be studied but part could be attributed to the

generation of tumour-specific antigens or neoantigens (Patch

et al., 2015). Neoantigens are a class of human leukocyte antigen

(HLA)-bound peptides that arise from tumour-specific

mutations that elicit anti-tumour T-cell responses (Brown

et al., 2014; Ott et al., 2017). HR-deficient HGSOC have a

significant increase in neoantigen load compared to their HR

proficient counterparts, correlating with the elevated level of TILs

observed in HR-deficient carcinomas (Patch et al., 2015;

Strickland et al., 2016). An additional mechanism of TIL

attraction can be attributed to the activation of cyclic GMP-

AMP synthase (cGAS) and STING pathways. The chromosomal

instability that arises from BRCA1/2 loss in HGSOC lends to an

increase in cytosolic DNA (ctDNA) fragments that bind to and

stimulate the DNA-sensing cGAS/STING pathways and

subsequently activates interferon (IFN) responses (Härtlova

et al., 2015; Harding et al., 2017; Heijink et al., 2019;

Reisländer et al., 2019). These pathways are an important part

of the innate immune response and critical for dendritic cell (DC)

activation and subsequent T cell priming against tumour cells

(Flood et al., 2019).

A recent study demonstrated that BRCA1 mutant HGSOC

are prone to maintaining an obligatory inflammatory state

through the upregulation of cGAS/STING signalling and

producing an abundance of ctDNA fragments (Bruand et al.,
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2021). The loss of BRCA1 facilitated the enrichment of enhancers

and the transcriptional upregulation of key genes in

inflammatory pathways, DNA sensing pathways and IFN

responses, committing tumour cells to an inflammatory state

that promotes TIL recruitment (Bruand et al., 2021). To combat

these immune responses, BRCA1/2 mutant cells commonly

downregulated CCL5 which significantly reduced T cell

infiltration and attenuated inflammatory responses. This was

supported by the prevalence of HGSOC with a methylated

CCL5 locus lacking CD8+ TILs (Dangaj et al., 2019).

Additionally, deletions of NFKB1 and IFNB1 alongside

CCL5 were the most common in HRD HGSOC lacking

immune activation and signalling (Bruand et al., 2021). Other

immune evasion mechanisms included the upregulation of

immune checkpoints such as programmed cell death-1 (PD-1)

and the overexpression of vascular endothelial growth factor A

(VEGF-A) an inducer of tumour angiogenesis, commonly seen in

BRCA1/2-mutant HGSOC (Ruscito et al., 2018; Bruand et al.,

2021). These evasion mechanisms present potential targets for

treatment, as inhibiting these mechanisms may invigorate anti-

tumour immune responses for more effective tumour clearance.

3 PARP inhibitor therapy in HGSOC

3.1 The PARP family and PARP inhibitors

PARPs are a family of proteins that are essential for several

cellular processes including DNA repair, replication fork stability

and genomic stability (Schreiber et al., 2006; Lord and Ashworth,

2017; Forment and O’Connor, 2018). PARP-1 and 2 act as DNA

damage sensors, rapidly binding to breaks in DNA strands to

hydrolyse NAD+ and produce linear and branched PAR chains in

a process called poly(ADP-ribosyl)ation (PARylation)

(Krishnakumar and Kraus, 2010; Rouleau et al., 2010; Murai

et al., 2012). PARylation of chromatin proteins recruits DNA

repair proteins to sites of damage causing PARP-1/2 to then

dissociate from DNA via auto-PARylation (El-Khamisy et al.,

2003; Schreiber et al., 2006; Murai et al., 2012). The PARylation

by PARP is not only important in DNA repair but chromatin

modulation, regulation of DNA transcription and replication,

protein degradation and cell cycle (Schreiber et al., 2006; Martí

et al., 2020).

PARPi bind to the catalytic domains of PARP-1/2 and

compete with NAD+, inhibiting PARylation, effectively

disrupting recruitment of DNA repair proteins and PARP

dissociation, thereby “trapping” PARP-1/2 on damaged DNA,

and further reviewed in (D’Andrea, 2018; Wakefield et al., 2019).

The trapping of PARP proteins on DNA stalls replication forks

leading them to become dysregulated and collapse (Murai et al.,

2012;Wakefield et al., 2019). Active PARP-1 regulates replication

fork progression and when inhibited, replication fork stalling

leads to a majority of single-stranded breaks (SSBs) being

processed into double-stranded breaks (DSBs) (Berti et al.,

2013). In healthy cells, these DSBs are repaired by the high-

fidelity homologous recombination (HR) DNA repair pathway to

successfully repair the damage (Ter Brugge et al., 2016).The HR

DNA repair pathway is pivotal in accurate repair of DSBs and

restarting stalled/collapsed replication forks, with BRCA1 and

BRCA2 being crucial for the protection of replication forks

during replication stress (Chen et al., 2018). In HGSOC cells

with mutant BRCA1/2 or other defective HR genes, the

inhibition of PARP forces cancer cells to rely on error-

prone repair DNA pathways or otherwise unrepaired

damage persist into mitosis, leading to the rapid

accumulation of mutations, genomic instability, and

eventual cell death. The dual loss of the HR pathway and

PARP function is synthetically lethal, in that the simultaneous

inhibition of the two pathways leads to cell death, whereas loss

of only one does not (Ashworth and Lord, 2018). It is within

this realm of synthetic lethality that PARPi works best, as seen

in the treatment of women with BRCA-mutant HGSOC

experiencing sustained and profound responses to PARPi,

compared with women with HR proficient carcinomas.

3.2 PARPi mechanisms of action

There are currently several PARPi available including

olaparib, rucaparib, niraparib, veliparib, pamiparib and

talazoparib being tested in phase III trials, with the first three

mentioned having both Food and Drug Administration (FDA)

and European Medicines Agency (EMA) approval for use in OC

in the clinic (Pilié et al., 2019; Lee and Matulonis, 2020). A key

feature of all PARPi molecules is a benzamide moiety that binds

to the catalytic center of PARP, disrupting enzymatic activity.

However, the disruption of catalytic activity alone is not enough

to explain the vastly different outcomes in anti-tumour responses

and efficacy in the clinic (Sun et al., 2018; Kim et al., 2021). The

most effective PARPi trap PARP at sites of DNA damage and this

could be due to difference in size and flexibility of each molecule

influencing how PARPi bind and effect conformational changes.

Allosteric destabilization of a critical helical regulatory domain

neighboring the catalytic domain was crucial for cytotoxic and

PARP-trapping effects with this being most prominent for

rucaparib, niraparib and veliparib compared with olaparib and

talazoparib (Zandarashvili et al., 2020). Talazoparib was reported

to trap PARP roughly 100-fold more than niraparib, olaparib and

rucaparib (Murai et al., 2014). However, the capacity for PARPi

trapping does not relate to overall clinical benefit, as talazoparib

is also noted for having increased toxicity in the clinic (Murai

et al., 2014).

Additionally, another aspect of PARPi to consider is

substrate selectivity and specificity. Most PARPi are highly

selective toward PARP-1/2 although, computational in-silico

analyses have uncovered 58 potential interactions with kinases
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of which only 10 were previously known (Thorsell et al., 2017;

Antolin et al., 2020). Supporting this is evidence of rucaparib

inhibiting the activity of kinases CDK16, PIM3 and DYRK1B in

catalytic inhibition assays and additionally niraparib inhibiting

the activity of two others, DYRK1A and DYRK1B (Antolin et al.,

2020). Additional research in deciphering the specific

mechanisms unique to each PARPi may elucidate novel

pathways for clinical benefit. Investigation into improving

PARPi specificity, tolerability and pharmacokinetic properties

continues, with several PARPi in phase I/II clinical trials;

including senaparib, which is 20-fold more potent than

olaparib, and the highly selective, PARP-1 specific, PARP-1-

DNA-trapper, AZD5305 (Cao, 2019; Johannes et al., 2021).

3.3 PARPi as a monotherapy in HGSOC

The PARPi olaparib and niraparib have been approved by

both the EMA and FDA for use as maintenance therapy after

response to first-line treatment with chemotherapy for women

with germline or somatic BRCA1/2 mutations or platinum-

sensitive HGSOC respectively (Veneris et al., 2020).

Additionally, olaparib, rucaparib, and niraparib are approved

for use as a maintenance treatment for recurrent platinum-

sensitive HGSOC patients and in some additional recurrent

OC settings.

The phase III SOLO-1 trial evaluated the efficacy of olaparib

in women with advanced BRCA-mutant platinum-sensitive

HGSOC and demonstrated a 67% decrease in risk of disease

progression or death (hazard ratio [HR] 0.33; 95% confidence

interval [CI]: 0.25–0.43). Strikingly, at 5-year of follow-up, the

PFS for the placebo arm was 13.8 months compared with the

olaparib arm, on which women had achieved an unprecedented

56.0 months PFS, a 4-fold improvement, and 48% of women on

olaparib remained disease free at this time, compared with only

20.5% of women on the placebo arm (Banerjee et al., 2021).

Similarly, the phase III PRIMA/ENGOT-OV26/GOG-3012 trial

(NCT026555016) examined responses to niraparib in platinum-

sensitive advanced HGSOC and high grade endometrioid OC,

regardless of BRCA mutation and/or HRD status (González-

Martín et al., 2019). A significant improvement in PFS on

niraparib maintenance was observed in the overall population

with a median PFS of 13.8 months compared with 8.2 months for

the placebo (HR 0.62, CI 0.50–0.76, p < 0.001). Roughly 50% of

women were classified as having HGSOC with HRD and the

greatest benefit derived from niraparib was seen in the subset of

these with BRCA-mutations (median PFS 22.1 versus

10.9 months, HR 0.40, CI 0.27–0.62); followed by that

observed in the non-BRCA HRD HGSOC subset (19.6 versus

8.2 months, HR 0.50, CI 0.31–0.83); lastly the remaining ~50% of

women had HGSOC which was HR proficient and responded the

least well to PARPi (8.1 versus 5.4 months, HR 0.68, CI

0.49–0.94) (González-Martín et al., 2019). As seen in both

clinical trials, response rates in women with HR proficient

and platinum-resistant HGSOC were modest in comparison

to HRD and platinum-sensitive HGSOC, thus a spectrum to

the benefits derived from PARPi was observed. The combination

of PARPi with other drugs to induce HRD in HR proficient

disease or targeting other pathways that PARP-deficient tumours

rely on, may be the answer to improving response further in

HGSOC.

3.4 PARPi resistance

Regardless of the efficacy of PARPi as a monotherapy, a

growing concern is the development of resistance with the

prolonged use of PARPi. There are five main classes of

resistance that have been characterised; drug efflux, changes in

PAR metabolism, mutational changes of binding sites or target

proteins, rewiring of stalled fork replication and restoration of

the HR pathways (Wakefield et al., 2019). Several articles have

reviewed these mechanisms in detail (Noordermeer and van

Attikum, 2019; Wakefield et al., 2019; Kubalanza and

Konecny, 2020), however the relevance of the different

resistance mechanisms will need to be studied in large

clinical cohorts for a better understanding of the selective

pressures from PARPi in tumour evolution. The resistance

landscape in patients is likely more diverse than what has

been observed in research settings to date, thus developing a

better understanding of the diversity could better inform

therapeutic strategies moving forward. New technologies,

including in proteomics (e.g., mass spectrometry and protein

array analysis), that allow for the dissection of underlying

molecular signaling events, could reveal clinically relevant

biomarkers and new therapeutic choices for HGSOC,

especially in the setting of the prediction and analysis of

acquired PARPi resistance (Ghose et al., 2022). However,

with our current knowledge, instigating early treatment with

PARPi, rapid retreatment upon relapse and use of PARPi in

combination therapies are important tools in maximizing

PARPi efficacy. Treating early in the upfront maintenance

setting, having first performed molecular analysis during

first-line chemotherapy in order to match the HGSOC to

appropriate combination PARPi therapy, may yield the most

success in the treatment of highly heterogenous HGSOC.

4 PARP inhibitor effects beyond DNA
repair

Studies of PARPi initially focused on DNA damage repair

and BRCA1/2mutations. However, since then, the field of PARPi

has expanded to include the roles PARP-1 has in chromatin

structure, gene expression, and innate and adaptive immune

responses.
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4.1 Function of PARP-1 in chromatin
remodeling and DNA methylation

In a normal state, DNA is wound around histones and non-

histone proteins to form highly compact structures known as

chromatin. When access to DNA is required, chromatin

structures relax, unravelling bound DNA to allow protein

complexes to bind and function, this reorganization of bound

DNA is called chromatin remodelling (Sinha et al., 2021).

Chromatin remodelling is important for maintaining genomic

stability and is important in processes like DNA transcription,

replication, and repair. PARP-1 plays an important role in these

processes, by regulating chromatin remodelling via PARylation

of the histones. In its latent state, PARP-1 is found bound to

linker DNA and/or histone proteins, resulting in the condensed

structure of chromatin called heterochromatin. In this state, no

transcription machinery can access the DNA, repressing gene

transcription. In the presence of DNA damage however, PARP-1

becomes active (Kim et al., 2004; Muthurajan et al., 2014). Active

PARP-1 PARylates itself and histones, promoting the

remodelling of chromatin to become euchromatin as the

addition of negatively charged PARs on the histones repels

DNA. At sites of DNA damage, histone PARylation causes its

eviction from DNA strands, facilitating the recruitment of other

chromatin remodelers and further loosening of chromatin for

subsequent recruitment of DNA repair proteins (Quénet et al.,

2009). More specifically, PARP-1 PARylates and then binds to

chromatin remodelers at their PAR-binding domain for

subsequent alteration of chromatin structures (Andronikou

and Rottenberg, 2021). For example, PARylation of the lysine

specific demethylase 4D (KDM4D) at its C-terminal promotes

demethylation of the methylated forms of H3K9, reducing

chromatin compaction, and allowing gene transcription

(Khoury-Haddad et al. 2014). However, PARylation of

KDM4D at its N-terminal inhibits the action of this enzyme

at the promoter of retinoic acid receptor-dependent genes and

represses gene transcription (LeMay et al., 2012). In this case, the

use of PARPi may abolish this specific PARP activity in

chromatin remodelling machinery. Particularly, PARPi

interferes with the recruitment of KDM4D to double stranded

breaks and thus inhibits the repair process (Khoury-Haddad et al.

2014).

There are several natural inhibitors that can counteract

PARP-1’s involvement in chromatin remodelling machinery,

one of them is poly-ADP-ribose glycohydrolase (PARG).

PARG counteracts the action of PARP-1 by cleaving the PAR

on PARylated PARP-1, rendering it inactive (Kim et al., 2004).

Amplified in liver cancer protein 1 (ALC1) is a chromatin

remodeler that is rapidly recruited to DNA-damage and binds

to PARylated PARP-1 (Pines et al., 2012; Ahel et al., 2009). When

ALC1 binds to PARylated PARP-1, it not only activates the

protein but secondarily protects PAR on PARP-1 from PARG

hydrolysis (Ahel et al., 2009; Gottschalk et al., 2012; Singh et al.,

2017). Loss of ALC1, and subsequent loss of PAR protection by

ALC1, was found to enhance PARP-1/2 trapping on DNA by

PARPi, effectively sensitising cells to PARPi (Blessing et al., 2020;

Juhász et al., 2020).

Another natural inhibitor of PARP-1 activity is

macroH2A1.1 which binds to autoPARylated PARP-1 to

prevent PAR hydrolysis, which can promote chromatin

recondensation to interfere with transcriptional processes

(Timinszky et al., 2009). MacroH2A1.1 is a splice variant of

macroH2A1, which is recruited to DSBs and is implicated in

regulating PAR metabolism and NAD + turnover (Ruiz et al.,

2019). The alternative splice variant, macroH2A1.2, interacts

with other enzymes to recondense chromatin through the

production of H3K9 methylation marks (Khurana et al., 2014;

Alagoz et al., 2015). These compact chromatin marks attract

BRCA1, promoting the use of the HR pathway to repair DNA

damage (Lee et al., 2013; Alagoz et al., 2015). Loss of

macroH2A1.1 has been noted in several cancers and, due to

its roles in chromatin condensation and BRCA1 recruitment,

depletion of this histone may increase PARPi sensitivity (Ruiz

et al., 2019).

DNA methylation is another major epigenetic modification

which occurs at the fifth carbon of cytosine when followed by

guanine (CpG) in eukaryotic genomes. The methylated cytosine

(5 mC) is induced and maintained by DNA methyltransferase

(DNMT). Promoter hypermethylation commonly promotes

gene silencing. This epigenetic silencing has been observed in

HR genes, including BRCA1 or RAD51C, occurring as an early

clonal event, contributing to the development of OC cases (Alsop

et al., 2012) BRCA1 can in fact partially predict BRCAness in OC

(Aref-Eshghi et al., 2020). Homozygous methylation (of all copies

present) of the BRCA1 promoter can predict sensitivity to PARPi

therapy. On the other hand, heterozygous methylation, (loss of

methylation of any copy of the gene present in the cancer),

correlates with PARPi resistance (Kondrashova et al., 2018).

Similarly, for RAD51C, complete gene silencing correlates with

PARPi response whilst loss of methylation of even one allele of

RAD51C drives resistance to PARPi (Nesic et al., 2021).

PARP-1 interaction with DNMT1 contributes to the

regulation of DNA methylation. PARylation has been shown

to maintain unmethylated CpG at specific sites of the genome,

while blockade of PARylation increases DNA methylation levels

in the genome (DE CAPOA et al., 1999; Zampieri et al., 2012).

Interestingly, the modulation of DNA methylation by PARP-1

can be counteracted by CCCTC-binding factor (CTCF), that can

induce the auto-modification of PARP-1 (Guastafierro et al.,

2008; Zampieri et al., 2012). Pharmacological inhibition of

PARP-1 has been shown to change the genome-wide DNA

methylation profile, confirming PARP involvement in DNA

methylation processes (Nalabothula et al., 2015). Besides

inducing more DNA methylation, PARPi has been shown to

induce the expression of enhancer of zeste homolog 2 (EZH2), a

histone methyltransferase that catalyses trimethylation of the
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lysine residue on histone3 (Martin et al., 2015). This in turns

results in a genome-wide increase of H3K27me3 and thus

chromatin compaction (Martin et al., 2015). Both increases in

DNA methylation and H3K27me3 in the genome result in

increased heterochromatin structure and further silencing of

various genes.

4.1.1 Exploiting the epigenome with PARPi
In BRCA1/2 defective cancer cells, when the backupDNA repair

pathways are disrupted, PARPi can induce synthetic lethality. Thus,

inducing the complete loss of DNA repair capability has been

strategized to kill BRCA-proficient cancer cells, by combining

PARPi with epigenetic drugs that can induce a BRCA defective-

like phenotype (DE CAPOA et al., 1999; Caiafa et al., 2009; Abbotts

et al., 2019). Combining PARPi with epigenetic drugs can also

sensitize PARPi-resistant cancer cells, thus overcoming resistance to

treatment (DE CAPOA et al., 1999; Abbotts et al., 2019; Caiafa et al.,

2009; Cimmino et al., 2017; Eckschlager et al, 2017). Several

epigenetic-targeting drugs have been suggested for use in

combination therapy with PARPi for not only BRCA-defective

cancers, but also BRCA-proficient cancers, for which therapy

choices are more limited (Abbotts et al., 2019; Cimmino et al.,

2017; Eckschlager et al, 2017).

Several studies have demonstrated the use of low doses of

DNMT inhibitors (DNMTi) in combination with PARPi to

target HR pathways in BRCA-proficient triple-negative breast

cancer, ovarian cancer, acute myeloid leukemia, and non-small

cell lung cancer (Muvarak et al., 2016; Pulliam et al., 2018;

Abbotts et al., 2019). DNMTi are cytidine analogs that, following

their incorporation into DNA, covalently entrap the methylation

maintenance enzyme, DNMT1 (Santi et al., 1984). Several DNMTi

are currently in clinical trials, and two of them, decitabine and 5-

azacytidine, have been approved for the treatment ofmyelodysplastic

syndrome and acute myeloid leukemia (Hu et al., 2021). PARP-1 is

in fact crucial for DNMT1 to function properly by protecting the

DNMT1 promoter from being methylated, and also by non-

covalently interacting with DNMT1 to promote its methylating

activity (Reale et al., 2005; Caiafa et al., 2009; Zampieri et al.,

2009). A combination of PARPi and DNMTi has been shown to

promote cytotoxicity, as DNMTi creates a BRCA-defective-like

phenotype through repression of HR and nonhomologous end-

joining (NHEJ) genes, while PARPi inhibits HR and thus enhances

DNMTi functionality (Abbotts et al., 2019). Additionally, Muvarak

et al. (2016) shows that a combination of a DNMTi, 5-azacytidine,

and PARPi, talazoparib, increased the trapping time of PARP at

DNAdamage sites from 30min to up to six hours, preventing PARP

from fixing DNA damage for a longer period, providing a potential

therapeutic strategy.

A genome-wide RNAi screen by Kharat et al. (2020) associated

loss of TET2 with the development of resistance to PARPi.

Depletion of TET2 reduces the conversion of DNA methylation

mark 5-methylcytosine, to 5-hydroxymethycytosine (5 hmC), the

first step in the demethylation process. Subsequently, replication

forks in cancer cells fail to degrade and in turn, this promotes

resistance to PARPi in cancer cells. When cells were treated

chemically to increase 5 hmC abundance, the replications forks

were degraded by the recruited base excision repair-associated

apurinic/apyrimidinic endonuclease (APE1), independent of

BRCA status (Kharat et al., 2020). These findings suggest that

exposure to epigenetic drugs that induce TET2 activity or

increase 5 hmC abundance may induce PARPi sensitivity.

Indeed, Sajadian et al. (2015) showed that the active

demethylation by anti-cancer DNMTi, 5-azacytidine, is

TET2 dependent, while Cimmino et al. (2017)restored sensitivity

of TET2-deficient cancer cells to PARPi by increasing the

abundance of 5 hmC using ascorbic acid.

Another type of epigenetic drug that could augment the effect of

PARPi is the histone deacetylase inhibitors (HDACi). HDAC

removes acetyl groups from the lysine residues of histone tails

and has been shown to play various roles in cancer initiation,

progression, metastasis and angiogenesis, thus it has emerged as

anticancer drug (Eckschlager et al, 2017). Several HDACi have

entered clinical trials, and four have been approved by the FDA.

These include vorinostat, romidepsin and belinostat for T-cell

lymphoma and panobinostat for multiple myeloma (Eckschlager

et al, 2017). In prostate cancer, HDAC inhibition by HDACi results

in downregulation of HR DNA repair genes by reduction of the

recruitment of the activating transcription factor, E2F1 to the

promoter of these genes (Kachhap et al., 2010). Several in vitro

studies show an augmented efficacy of PARPi at targeting HR

pathways when combinedwithHDACi (Adimoolam et al., 2007; Ha

et al., 2014; Liu et al., 2015). Here, the HDACi induces a BRCA

defective-like phenotype, by depleting the expression and reducing

the recruitment of HR proteins thus increasing the sensitivity of the

cancer cells towards PARPi (Ha et al., 2014; Liu et al., 2015). Since a

monotherapy with HDACi alone has not resulted in an effective

treatment, a combination of HDACi with PARPi therapy is now

under investigation for OC in the clinic (NCT03924245) (Mackay

et al., 2010). The induction of BRCAness by HDACi may allow the

combination therapy to effectively treat OC, independent of their

BRCA status.

5 Immuno-modulatory effects of
PARPi

5.1 Extra-tumoural effects of PARPi in
immune cell subsets

With important roles in DNA regulation, PARP-1/2 play a

role in T-cell development, differentiation, and function. The

development of T-cells is a complex and highly regulated process

that begins in the thymus with bone marrow-derived lymphoid

precursors and through well-characterized maturation steps give

rise to mature T-cells (Koch and Radtke, 2011). PARP-1

modulates activity of nuclear factor of activated T-cells
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(NFAT) which drives CD4+ T-cell differentiation (Olabisi et al.,

2008; Valdor et al., 2008). A reduction in the expression of NFAT

reliant cytokines was observed in PARP-1 deficient T-cells and

furthermore PARP-1 deficiency creates a bias for CD4+ T-cell

differentiation to a Th1 phenotype (Macian, 2005; Olabisi et al.,

2008; Sambucci et al., 2013). The Th1 subset of CD4+ T-cells is

associated with the production of cytokines such as IFN- γ, IL-2
and TNF -β that induce inflammation and cell-mediated

immune responses (Constant and Bottomly, 1997). The

Th2 subset promotes B-cell proliferation and differentiation

through IL-4 and IL-5 cytokine production and is associated

with humoral-type immune responses (Constant and Bottomly,

1997). There is conflicting data on PARP-1 deficiency driving

Th1 differentiation of CD4+ T-cells, with one study in a model of

airway inflammation observing olaparib promoting the

Th1 phenotype whereas a model of inflammatory arthritis

observed PARP inhibition associated with a suppression of

Th-1-associated cytokines. Thus, PARP driven

Th1 differentiation is likely mediated by other context-specific

factors.

During early T-cell development, PARP2 is essential for the

development of CD4/CD8 double positive thymocytes and

PARP-1 regulates expression of Foxp3 in CD4+ T-cells (Zhang

et al., 2013; Luo et al., 2015; Navarro et al., 2017). In-vitro studies

show that PARP-1 and PARP2 deficient T cells have a decrease in

total CD8+ and CD4+ populations (Navarro et al., 2017). This

observation was prevalent in singular deficiencies and with the

dual loss of both PARP-1 and PARP2, with the dual loss having a

more dramatic reduction suggesting a, and there was prevalent

amounts of DNA damage detected suggesting the reduction in

these T-cell populations are a result of accumulating DNA

damage and genomic instability and not entirely a block in

maturation (Navarro et al., 2017). In the circumstance of

PARP-1 deficiency, populations of CD4+ T-cells expressing

Foxp3 increases due to the lack of Foxp3 PARylation for

subsequent degradation (Luo et al., 2015). Expression of

Foxp3 on CD4+ T-cells causes differentiation into Tregs which

are immunosuppressive through their production of inhibitory

cytokines, mediation of cytolysis and modulation of DC

maturation or function (Vignali et al., 2008; Zhang et al.,

2013; Luo et al., 2015). In vivo models studying olaparib in

BRCA1-deficient ovarian cancer observed significantly increased

proportions of CD4+ and CD8+ effector T-cells infiltrating

intratumorally and peripherally and, notably, an increase in

intra-tumoral CD4/Foxp3+ Tregs was not seen (Ding et al.,

2018). Suggesting that treatment with PARPi in an in vivo

setting does not disrupt T-cell development and function to

the extent of tumour benefit. Additionally, olaparib-treated CD8+

T-cells showed reduced expression of immune receptors, such as

PD-L1, that are associated with T-cell inhibition and exhaustion

and produced higher levels of TNFα and IFNγ (Ding et al., 2018).
The recruitment of DC to the tumour microenvironment is

an important step in the anti-tumour immune response as they

play roles in activating and inducing the differentiation of T-cells

(Patente et al., 2019). There is evidence PARPi has an indirect

effect in activating DC though its DNA-damaging abilities and

creation of cytosolic DNA fragments. Cytosolic DNA activates

the cGAS/STING pathway within the cell but can also be

exocytosed to activate STING pathways in neighbouring DC

(Mouw et al., 2017; Pantelidou et al., 2019). The activation of

cGAS/STING was noted in a PARPi treated BRCA1-deficient

mouse model of TNBC, but not in DC treated with PARPi alone

(Pantelidou et al., 2019). This suggests that DC cGAS/STING

activation is not induced by PARPi alone. This notion was

supported in a BRCA1 deficient model of OC, with activation

of cGAS/STING observed upon treatment with olaparib (Ding

et al., 2018). To confirm the paracrine effect of PARPi on DC

activation, PARPi treated ovarian cells were co-cultured with

naïve DC. Increased levels of TBK-1, IRF3, CXCL10 and IFNβ
were observed, confirming cGAS/STING activation and

expression of downstream genes, further supporting the

indirect activation of DC upon treatment with PARPi (Ding

et al., 2018). Furthermore, treatment with PARPi increased DC

populations with increased antigen presentation machinery,

specifically upregulated costimulatory CD80 and CD86 and

antigen presenting major histocompatibility complex class II

(MHC II) (Ding et al., 2018; Pantelidou et al., 2019).

Natural killer (NK) cells are effector lymphocytes utilized in

the innate immune response against “non-self” cells and “self”

cells undergoing stress in the form of infections or malignant

transformations (Vivier et al., 2004). When activated, NK cells

either have direct cytotoxic attacks on targets or produce large

arrays of cytokines and chemokines to initiate antigen-specific

immune responses. Specifically, NK cells can directly interact

with cells through TNF-related apoptosis-inducing ligand

(TRAIL) and the Fas ligand to induce apoptosis or indirectly

through secretion of IFNγ and TNFα (Barrow and Colonna,

2017; Souza-Fonseca-Guimaraes et al., 2019). In tumour cells,

TRAIL stimulates PARP-1 activation and subsequently the

PARylation of high-mobility group box protein 1 (HMGB1)

which results in HMGB1 localisation to the cytoplasm. This

localisation from nucleus to cytoplasm promotes an autophagic

response and protects the tumour cells from TRAIL mediated

apoptosis (Yang et al., 2015). Treatment with PARPi suppressed

the PARP-1/HMGB1 pathway and re-sensitized tumour cells to

TRAIL induced cell death suggesting PARPi can sensitize

tumours to NK-cell mediated apoptosis (Yang et al., 2015).

Treatment with PARPi has also been shown to upregulate

death receptors Fas and death receptor 5 in several cancer cell

lines (Meng et al., 2014). Upregulation of these receptors

sensitized cells to TRAIL induced apoptosis. This was further

supported by a study observing NK cell killing in prostate cancer

cells with and without PARPi treatment independent of BRCA

status (Fenerty et al., 2018). They found treating tumour cells

with olaparib upregulated death receptor TRAIL-2 and

significantly increase tumour cell sensitivity to NK cell killing
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in both BRCA-wildtype and BRCA-mutant cells. Additionally,

they replicated these results in additional tumour cell lines,

including breast, chordoma, non-small cell lung carcinoma

(Fenerty et al., 2018). It is important to note that the presence

of NK cells has a favourable impact on OS for HGSOC patients

and these findings suggest that PARPi can recruit and sensitize

tumour cells to NK cells, and that NK cells contribute to PARPi

anti-tumour effects (Henriksen et al., 2020).

5.2 Intra-tumoural effects of PARPi on
inflammation, the cGAS-STING pathway,
and immune checkpoint expression

Tumours with existing DNA repair defects initially stimulate

inflammation and TH1 immune responses, however, maintaining

a constant level of DNA damage and subsequent chronic

inflammatory responses encourages the infiltration of

immune-suppressive cells (Schreiber et al., 2011; Crusz and

Balkwill, 2015; Fridman et al., 2017). Chronic inflammation

promotes immunosuppression and in cancer this promotes

tumour progression. However, studies suggest PARPi has the

potential to counteract this and reinvigorate the anti-tumour

immune response (Fridman et al., 2017).

Inflammatory responses can be promoted by PARP-1

through its regulation of several transcription factors,

cytokines and chemokines (Pazzaglia and Pioli, 2020). Nuclear

factor κB (NF-κB) is a transcription factor that is important in

the regulation of genes for inflammatory, apoptotic and cell

proliferative responses, and for complete NF-κB-dependent
gene transcription PARP-1 acetylation is required (Hassa

et al., 2005). Additionally, PARP-1 can activate NF-κB
through several mechanisms including through the mono-

ubiquitination of NF-κB essential modulator (NEMO) for NF-

κB nuclear translocation and sustaining toll-like receptor (TLR)

induced NF-κB activation (Stilmann et al., 2009; Hinz et al., 2010;

Ji et al., 2016). To study whether treatment with PARPi affects

inflammatory responses, Alvarado-Cruz et al. (2021)

interrogated BRCA1-mutant triple negative breast cancer

(TNBC) cell lines and tumours samples after treatment with

veliparib for three weeks. Upregulation of hallmark

inflammatory TNFα pathways were observed after treatment

with PARPi specifically in the BRCA1-deficient cells, and the

mechanistic basis for this upregulation was through the cGAS/

STING pathways. Separately, a study using genetically

engineered mouse models (GEMM) of HGSOC investigated

the effects of olaparib in BRCA1 deficient and BRCA1

wildtype settings. Treatment with olaparib elicited an increase

in CD4+ and CD8+ T-cells as well as a pronounced increase in

IFNγ and TNFα (Ding et al., 2018). The increase in CD4+ and

CD8+ T-cells was also associated with the increased presence of

DC with a potent antigen presenting capacity, and a decrease in

MDSCs in the tumour, spleen and blood (Ding et al., 2018).

These responses seen were restricted to the BRCA1 deficient

GEMM and mechanistically were associated with the stimulation

of the STING pathway. It was proposed that PARPi induced

DSBs creating cytosolic DNA fragments that are bound by cGAS,

activating STING, and subsequently the production of pro-

inflammatory cytokines and IFN responses (Pantelidou et al.,

2019; Shen et al., 2019). The recent study by Bruand et al.(2021)

suggests that BRCA mutant cells are intrinsically programmed

for the cGAS/STING/IFN signalling seen in HGSOC and that

PARPi enhances this signalling by increasing the amount of

ctDNA present. This potentially explains why the immune

responses observed after treatment with PARPi were isolated

to BRCA1 deficient GEMM models.

Another study interrogated the role of STING in relation to

PARPi in both in vitro and in vivo experiments regardless of

BRCA1/2 status (Shen et al., 2019). Treating OC cells with

talazoparib markedly elevated the phosphorylation of two key

components along the STING pathway, IRF3 and TBK1. An

increase of total IRF3 and TBK1 translocation from the

cytoplasm to the nucleus was observed, suggesting functional

signaling of STING (Shen et al., 2019). Additionally, CCL5 and

CXCL10, which are two major chemokines activated by STING

that positively correlate with the presence of CD8+ T-cells, were

seen to be upregulated post PARPi treatment. The knockdown of

STING, TBK1, IRF3 or cGAS significantly reduced the

upregulation of CCL5 and CXCL10 in PARPi treatment in

OC cell lines. Further work in mouse models validated these

findings showing treatment with PARPi elicited the expression of

CCL5 and CXCL10 and induced higher percentages of CD8+

T-cells and PD-L1+ cells infiltrating the TME. Treatment with

PARPi had no therapeutic effects in immunodeficient mice but

prolonged survival and limited tumour growth in immune

competent mice (Shen et al., 2019). Additionally, knockout of

STING abolished the anti-tumour effects of PARPi establishing

PARPi efficacy is based in an immunogenic response. These

results do not correlate with the previous studies mentioned thus

further work to determine the role of BRCA-loss in STING and

IFN responses in HGSOC is needed, which will hopefully further

elucidate mechanisms by which PARPi invigorates immune

responses.

Both studies also noted the increased expression of

programmed cell death-ligand 1 (PD-L1) in cells when treated

with PARPi (Ding et al., 2018; Shen et al., 2019). Programmed

death-ligand 1 is the ligand of PD-1, which is an immune

receptor expressed on CD4+/CD8+ T-cells and B cells, and

mediates the inhibition of T-cell proliferation and IFNγ
production (Iwai et al., 2017). The role of PD-1/PD-L1 is to

mediate autoimmune responses, however in cancer, the

upregulation of immune checkpoints can be used to suppress

the anti-tumour immune response. Upregulation of PD-L1

expression can occur through several mechanisms including

PD-L1 promotor binding by NF-kB, JAK1/2 activation and

IFNy secretion following type I IFN response (Bellucci et al.,
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2015; Chabanon et al., 2019; Cai et al., 2020). All of these effects

can be stimulated through the cGAS/STING pathway that is

activated upon treatment with PARPi. Shen et al., found

treatment with PARPi increased percentages of PD-L1+ cells

and explored the effects of combining talazoparib and an anti-

PD-L1 antibody. Tumours treated with the combination therapy

significantly reduced tumour burden compared to either

monotherapy, and had the most significant increase in CD8+

cell recruitment (Shen et al., 2019). Additionally Jiao et al. (2017)

demonstrated that PARPi induced PD-L1 expression regardless

of BRCA-status, and effectively reduced the efficacy of active

cytotoxic T-cells. Combination of olaparib and an anti-PD-

L1 antibody desensitised PARPi treated cells and found the

combination more effective than either agent alone (Jiao et al.,

2017). Due to the encouraging results of PARPi and checkpoint

inhibitor combinations in research, this combination is being

explored in several clinical trials.

5.2.1 Combining PARPi with immune checkpoint
inhibitors

Currently, the most promising immunotherapy for HGSOC

are immune checkpoint inhibitors (ICI), which are monoclonal

antibodies that disrupt signalling that would promote effector

T-cell deactivation. Most common ICI for HGSOC are antibodies

that target PD-1 and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-

4), as a monotherapy they have had some efficacy in patients but

few durable responses (Cortez et al., 2018; Färkkilä et al., 2020).

The phase II KEYNOTE-100 clinical trial of pembrolizumab (an

anti-PD-1) as a monotherapy in EOC had an objective response

rate (ORR) of only 8% and median progression free survival

(PFS) of 2.1 months (Matulonis et al., 2018). Similarly, results

from the clinical trial JAVELIN in recurrent OC with avelumab

(anti-PD-L1) yielded an ORR of 9.6% and median PFS of

2.6 months (Disis et al., 2019). This could be, in part, due to

the low expression of PD-L1 on tumour cells or the highly

immunosuppressive TME that develops during a prolonged

immune response (Gashi, 2022). Offering ICI early in the

treatment of EOC could improve poor responses rates by

treating before an immunosuppressive TME develops,

potentially delaying the development of immune evasion.

Alternatively, the combination of ICI therapy with other

therapeutics such as PARPi could mitigate issues of timing of

delivery, by driving immunogenicity and reviving immune

responses through accumulative DNA damage and tumour

specific mutations.

In the phase I/II clinical trial TOPACIO/KEYNOTE-162

(NCT02657889) investigating the combination of niraparib/

pembrolizumab (anti-PD-1) in recurrent OC and TNBC, an

ORR of 25% was achieved in the general cohort which was an

improvement compared to response rates of PARPi or IC as a

monotherapy (Konstantinopoulos et al., 2018;

Konstantinopoulos et al., 2019). Additionally, the study

highlighted the importance of using predictive biomarkers to

identify patients who will benefit most from this combination

therapy and found that tumours with a mutational signature 3

(HRD signature) and a positive immune-score for exhausted

CD8+ T cells were associated with an improved response

(Färkkilä et al., 2020). The phase II MEDIOLA

(NCT02734004) trial evaluating the combination of olaparib/

durvalumab in recurrent platinum-sensitive EOC observed a

median PFS of 11.1 months (95% CI: 8.2, 15.9) and ORR of

71.9% (95% CI: 53.25%, 86.25%) with a partial response (PR) rate

of 53% (17/32) and complete response (CR) rate of 21.8% (7/32).

To date, the median overall survival (OS) for all patients has not

been reached, with 87% of patients alive at 24 months (Drew

et al., 2019). The combination treatment was well tolerated with

the most common adverse events (AE) being anaemia (17.6%),

elevated lipase (11.8%), neutropenia (8.8%) and lymphopenia

(8.8%), and only eight out of 32 patients discontinuing olaparib

or durvalumab due to an AE. Currently there are several clinical

trials ongoing, looking at PARPi and ICI in the frontline

maintenance setting and the results should further define the

benefits to be derived from this combination (Table 1). However,

the response rates from available clinical trial data in platinum-

sensitive HGSOC look promising and exploring the potential of

ICI in other combinations may also be beneficial. There are other

clinical trials investigating triple combinations of PARPi and ICI

with other drugs commonly used in the treatment of HGSOC

with varying success and these will be discussed below.

5.2.2 Anti-angiogenics and PARPi
Bevacizumab (BV) is an anti-VEGFR antibody already in use

for the treatment of HGSOC in combination with standard

chemotherapies. It targets the cytokine VEGF-A which is

secreted by tumour cells and binds to VEGFR-1 and VEGFR-

2 receptors, promoting angiogenesis (the formation of blood

vessels that allow for tumour growth) and metastasis. VEGF-A

has been shown to be overexpressed in BRCA1 mutant HGSOC

and its inhibition increases hypoxia and subsequent

downregulation of HR genes (specifically BRCA1/2 and

RAD51C) as a result (Bindra et al., 2004; Bindra et al., 2005;

Ruscito et al., 2018; Bruand et al., 2021). This decrease in DNA-

repair potential could sensitise tumours to PARPi, thus providing

a rationale for combining PARPi plus BV therapy in clinical

trials. Inhibition of VEGF has also been shown to reduce MDSC,

Treg and TAM populations and increase T-cell activation and

priming, enhance DC antigen presentation and encourage TIL

presence (Goel et al., 2011; Hegde et al., 2018). It has been studied

in combination with both olaparib and niraparib in phase I

studies, with both showing tolerability without dose-limiting

toxicities (Dean et al., 2012). The phase II clinical trial

NSGO-AVANOVA2/ENGOT-ov24 studied BV and niraparib

compared to niraparib monotherapy in platinum-sensitive

recurrent HGSOC or endometrioid ovarian cancer. The

combined treatment of BV and niraparib significantly

improved patient outcomes compared to niraparib alone with
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TABLE 1 Clinical trials combining PARP inhibitors with chemotherapy or with therapeutics with relevance for the immune system. This includes
immune checkpoint inhibitors and/or angiogenesis agents in order to attempt to elicit more robust and durable responses.

Study and Phase Drugs Cohort Outcomes Side effects

TOPACIO/KEYNOTE-162 Phase I/II
(NCT02657889)

Niraparib +
Pembrolizumab

Recurrent platinum-resistant
HGSOC

ORR 18%; DCR 68%; overall ORR
45%; DCR 73% in BRCAmut pts

Common grade ≥ 3 AEs; anemia
(19%) and
thrombocytopenia (9%)

MEDIOLA Phase II (NCT02734004) Olaparib + Durvalumab Recurrent platinum-
sensitive EOC

28-wk DCR 65.6%; ORR 71.9%;
mPFS 11.1 mos; mOS for all pts
not yet reached

Common ≥ Grade 3 AEs; anaemia
(17.6%), elevated lipase (11.8%),
neutropenia (8.8%), and
lymphopenia (8.8%).

Phase I/II (NCT02571725) Olaparib +
Tremelimumab

Recurrent BRCA mutant OC Awaiting results N/A

Phase I/II (NCT02953457) Olaparib + Durvalumab
+ Tremelimumab

Recurrent platinum-
sensitive/resistant/refractory
EOC, Fallopian Tube, or
Primary Peritoneal Cancer

Awaiting results N/A

NSGO-AVANOVA2/ENGOT-
ov24 Phase II

Niraparib +
Bevacizumab

HGSOC or endometrioid
platinum-sensitive
recurrent OC

mPFS 11.9 mos; mPFS 14.4 mos
in BRCAmut pts; mPFS 11.9 mos
in HRD pts; mPFS 11.3 mos in
non-BRCAmut pts;

Common ≥ Grade 3 AEs; anaemia
(15%), thrombocytopenia (10%)
and hypertension (21%)

PAOLA-1/ENGOT-ov25 Phase III
(NCT02477644)

Olaparib +
Bevacizumab

Recurrent HGSOC mPFS 36.5 mos; mPFS 50.3 mos in
HRD positive pts; mPFS 24.4 mos
in HRD negative pts; mPFS
34.0 mos in HRD unknown pts

Common Grade ≥3 AEs;
hypertension (19% ) and anaemia
(17%). Five treatment emergent
AEs of death (olaparib, n = 1;
placebo, n = 4)

MITO25 Phase II (NCT03462212) Rucaparib +
Bevacizumab

HRD and HR HGSOC Ongoing and awaiting results N/A

Phase II trial Olaparib + Cediranib Recurrent platinum-
sensitive, HGSOC or
endometrioid OC

mPFS 16.5 mos; overall No
significance in OS; mPFS 16.4 vs.
16.5 mos (control arm) in
BRCAmut pts; mPFS 23.7 vs.
5.7mos (control arm) in BRCA-
wildtype pts

Grade 3 and 4 AEs; fatigue
(12 pts), diarrhoea (10 pts), and
hypertension (18 pts)

NRG- GY004 phase III trial
(NCT02446600)

Olaparib + Cediranib
vs. Olaparib vs. Chemo

Recurrent platinum-sensitive
HGSOC or high-grade
endometrioid ovarian,
primary peritoneal, or
fallopian tube cancers.

mPFS 13.7 mos in HR-deficient
pts; mPFS 8.3 mos in HR
proficient pts; mPFS 20.4 vs.
12.3 vs. 13.1 mos (combo vs.
chemo vs. PARPi) in HR-
deficient pts

N/A

Single arm trial EVOLVE Phase II Olaparib + Cediranib PARPi-resistant HGSOC 16-week PFS rates 55% (platinum-
sensitive after PARPi), 50%
(platinum-resistant after PARPi),
and 39% (exploratory cohort)

Grade 3 toxicities; diarrhea (12%)
and anemia (9%)

ICON9 Phase III (NCT03278717) Olaparib + Cediranib Recurrent platinum-
sensitive OC

Ongoing N/A

COCOS Phase II/III (NCT02502266) Olaparib + Cediranib Recurrent Platinum-
Resistant or -Refractory
Ovarian, Fallopian Tube, or
Primary Peritoneal Cancer

Ongoing N/A

Phase II open-label study
(NCT03574779)

Niraparib +
Dostarlimab +
Bevacizumab

Recurrent platinum-
resistant EOC

mPFS 7.6 mos; DCR 76.9% Common grade ≥3 TEAEs;
hypertension (22.0%), fatigue
(17.1%), and anemia (17.1%).
Common serious TEAEs;
thrombocytopenia (7.3%), anemia
(4.9%), and hypertension (4.9%).

MEDIOLA Phase II (NCT02734004) Olaparib + Durvalumab
+ Bevacizumab

Recurrent platinum-sensitive
non-germline BRCA
mutant OC

24-week DCR 77.4%; ORR 77.4%;
mPFS 14.7

Common grade ≥ 3 AEs in O + D;
anaemia, lipase increased and
neutropenia and anaemia,
hypertension, fatigue, lipase
increased, and neutropenia

Phase I trial (NCT00516724) Olaparib + Carboplatin
+/or paclitaxel

Advanced solid tumours
refractory to standard
treatments

Increased hematologic toxicities,
made establishing a dosing
regimen difficult

Grade 1/2 DLTs;
thrombocytopenia and
neutropenia. Non-hematologic
grade 1/2 AEs; fatigue (70%),
nausea (40%), neutropenia (51%) ,
thrombocytopenia (25%)

(Continued on following page)
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a median PFS of 11.9 versus 5.5 months (HR: 0.35, CI 0.21–0.57,

p < 0.001) (Mirza et al., 2019). The BRCA-mutant patient cohort

derived the most benefit with a PFS of 14.4 versus 9.0 months,

(HR 0.49, CI 0.21–1.15), followed by the HR-deficient subgroup

with a PFS of 11.9 vs. 4.1 months (HR 0.19, CI 0.06–0.59 and then

the non-BRCA-mutant patients with a PFS of 11.3 versus

4.2 months (HR 0.32, CI 0.17–0.58) (Mirza et al., 2019).

Overall, patients on the combination of BV and PARPi did

significantly better regardless of HR-status.

In phase III PAOLA-1 clinical trial (ENGOT OV25,

NCT02477644), the olaparib and BV combination was

studied in a maintenance setting after first-line

chemotherapy in HGSOC patients. In the overall cohort,

the combination of BV and olaparib resulted in a median

PFS of 36.5 months compared to the 32.6 months in the

placebo and BV combination [HR 0.78, CI (0.64–0.95), p =

0.0125]. The biggest benefit gained was in the BRCA-mutant

cohort where the median PFS has not been reached versus

45 months for placebo and BV (HR 0.53, CI 0.34–0.83). The

next best group to benefit was the HRD cohort at 50.3 versus

35.3 months for placebo (HR 0.56, CI 0.41–0.77)

comparatively the HRD negative cohort performed the

worst at 24.4 vs. 26.4 months (HR 1.04, CI 0.77–1.42)

(Martín et al., 2020). The combination of PARPi and BV

offers a benefit in extending PFS, especially in BRCA-mutant

and HRD HGSOC, however the magnitude of clinical benefit

in HR proficient cohorts is less clear. The phase II

MITO25 study (NCT03462212) investigating rucaparib and

BV in a maintenance setting in HRD and HR proficient newly

diagnosed HGSOC and endometrioid patients is currently

recruiting and results may confirm the benefit of this

combination in the HR proficient setting.

The pan-VEGFR and PDGFR tyrosine kinase inhibitor

Cediranib is another antiangiogenic agent being investigated

with PARPi. In a phase II trial with olaparib and cediranib in

relapsed platinum-sensitive HGSOC or endometrioid ovarian

cancer, a PFS advantage was observed in the combination arm

with a median PFS of 16.5 months compared to the olaparib only

arm with 8.2 months (HR 0.50, CI 0.30–0.83, p = 0.006) (Liu

et al., 2014; Liu et al., 2019). The overall cohort did not show a

significant OS difference between treatment arms (44.2 versus

33.3 months, HR 0.64, CI 0.36–1.11, p = 0.11), and similarly the

BRCA-mutant cohort did not have a significant difference in PFS

(16.4 versus 16.5 months, HR 0.76, CI 0.38–1.49, p = 0.42) or OS

(44.2 versus 40.1 months, HR 0.86, CI 0.41–1.82, p = 0.70)

between combination and olaparib only arms. Comparatively,

women in the BRCA-wildtype cohort had a significant

improvement in the combination arm versus the olaparib only

with PFS at 23.7 versus 5.7 months (HR.0.31, CI 0.15–0.66, p =

0.0013). The OS for this cohort was also significantly improved at

37.8 versus 23.0 months (HR 0.44, CI 0.19–1.01, p = 0.047) (Liu

et al., 2014; Liu et al., 2019). This phase II trial suggested that

women with BRCA-wildtype HGSOC derived the most benefit

from this regimen.

However, this combination was also studied in the

randomised NRG-GY004 phase III trial (NCT02446600)

comparing patients with platinum sensitive recurrent high-

grade serous or high-grade endometrioid ovarian, primary

peritoneal, or fallopian tube cancers. Patients were screened

for HR and LOH status with the BROCA-HR targeted next

generation sequencing assay on germline and tumour DNA in

491 of 565 patients and compared across treatment arms of

olaparib only, chemotherapy only and combination cediranib

and olaparib. The HR-deficient cohort did the best compared to

the HR proficient cohort, with a median PFS of 13.7 vs.

8.3 months (HR 0.41, p < 0.0001). When compared across

treatment arms the cediranib and olaparib combination

extended PFS to 20.4 months (HR 0.55, 95% CI 0.32–0.95)

compared to 12.3 months in the chemotherapy arm and

13.1 months in olaparib only arm (HR 0.78, 95% CI

0.48–1.27). There was no difference between treatments in the

HR proficient cohort, with a median PFS of 8.5 months in the

cediranib and olaparib combination arm (HR 0.93 m, CI

0.68–1.27), and 9.0 months in the chemotherapy arm and

TABLE 1 (Continued) Clinical trials combining PARP inhibitors with chemotherapy or with therapeutics with relevance for the immune system. This
includes immune checkpoint inhibitors and/or angiogenesis agents in order to attempt to elicit more robust and durable responses.

Study and Phase Drugs Cohort Outcomes Side effects

VELIA/GOG-3005 Phase III Veliparib +
carboplatin-paclitaxel

Newly diagnosed HGSOC mPFS 29.3 mos vs. 19.2 mos
(veliparib combo vs. placebo)

Nausea and fatigue common in
overall cohort. Veliparib combo
had higher incidence of anemia
and thrombocytopenia

Phase II clinical trial (NCT01306032) Veliparib + Oral
cyclophosphamide

Recurrent BRCA-mutant OC mPFS 2.3 mos vs. 2.1 mos (combo
vs. cyclophosphamide alone)

Common grade 2/3 AEs;
leucopenia and lymphopenia

Phase II clinical trial (NCT02853318) Pembrolizumab +
Bevacizumab + Oral
cyclophosphamide

Recurrent OC ORR 47.5%; mPFS 10 mos Common AEs fatigue; [18
(45.0%)], diarrhea [13 (32.5%)],
and hypertension [11 (27.5%)].

ORR, overall respone rate; DCR, disease control rate; BRCAmut, BRCAmutant; mos, months; pts, patients; mPFS, median progression free survival; mOS, median overall survival; AEs,

adverse events; TEAEs, treatment emergent adverse events; N/A, not available; HRD, homologous repair deficient; HGSOC, high grade serous ovarian carcinoma; EOC, epithelial ovarian

cancer; OC, ovarian cancer; PARPi, PARP inhibitor
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6.4 months in the olaparib only arm (HR 1.56, CI 1.15–2.12).

This study also looked at LOH as a prognostic factor and found it

was not predictive of response to olaparib, combination

cediranib/olaparib or chemotherapy possibly suggesting that

the HRD assay used was not sufficiently discriminatory

(Swisher et al., 2021).

The phase II single arm trial EVOLVE interrogated PARPi-

resistant HGSOC patients with a combination of cediranib and

olaparib to identify objective response rates in PARPi-sensitive

(PS), PARPi resistant (PR) and in patients who had

chemotherapy post-PARPi progression (PE). A total of

34 patients were enrolled, with 9/11 PS, 8/10 PR and 7/13 PE

patients with BRCA1/2 mutations. Additionally, out of the

34 patients, four had a partial response to treatment and

18 patients were noted with stable disease. Of the cohorts

54.5% of PS patients (31.8–93.6), 50% of PR patients

(26.9–92.9) and 36% of PE patients (15.6–82.8) reached the

16-weeks PFS with OS at 1 year 81.8% (61.9–100) in PS,

64.8% (39.3–100) in PR and 39.1% (14.7–100) in PE

(Lheureux et al., 2019b). This study establishes that using

patient response to PARPi could determine patient response

to cediranib and PARPi combinations and suggests that this

combination could have potential in PARPi-resistant disease.

Overall, the results from these clinical trials establish that there

may be an OS benefit to be gained from the combination of

cediranib and PARPi in the treatment of HGSOC, however results

are inconclusive and are being investigated further in the phase III

ICON9 trial assessing cediranib and olaparib vs. olaparib alone as a

maintenance therapy in platinum sensitive recurrent OC currently

enrolling and the phase II/III GY005 platinum-resistant relapsed

OC cediranib PARPi combination therapy clinical trial

(NCT02502266) (Lee, 2018; Elyashiv et al., 2021).

The triple combination of PARPi, bevacizumab and anti-PD-

L1 therapy has also been trialed in the clinic. The phase II open-

label study (NCT03574779) of dostarlimab, BV and niraparib in

platinum-resistant recurrent EOC resulted in a median PFS of

7.6 months, disease control rate (DCR) of 76.9% with 23 patients

with stable disease, seven patients with PRs and no CRs (Liu et al.,

2021). The clinical side effects were tolerable however 34.1% of

patients discontinued one of the three drugs due to adverse

events. Other trials ongoing include the phase II DUO-O study

investigating durvalumab, olaparib and BV after treatment with

carboplatin, paclitaxel and BV (AGO-OVAR23/ENGOT-OV46,

NCT3737643) and the phase II study combining nivolumab,

rucaparib and BV in recurrent ovarian cancer. The MEDIOLA

study also compared treatment of olaparib and durvalumab (O +

D) to O + D and BV (O + D + BV). The O + D + BV cohort had

better a ORR at 77% (95% CI 58.9%–90.4%) compared to 31.3%

(95% CI 16.1%–50.0%) in the O + D cohort. This was reflected in

the PFS with the triple combination eliciting a PFS of

14.7 months compared to 5.5 months. Both treatments were

tolerable however the triplet combination had a higher rate of

patients discontinuing treatment, 17% versus 6% in the O + D

cohort (Drew et al., 2020). The triplet therapy of PARPi,

bevacizumab and CI seems to elicit more durable responses

compared to PARPi and CI alone, however the tolerability of

this treatment long term is unclear.

5.2.3 PARPi and chemotherapy
In recent years, studies have demonstrated platinum

compounds can act as immune modulators effectively

inducing immunogenic cell death alongside their DNA-

damaging characteristics (de Biasi et al., 2014; Rébé et al.,

2020). Platinum chemotherapies were primarily known as

DNA-damaging agents that HR-deficient tumours readily

respond to as they interfere with DNA transcription and

replication. This leads to DNA damage and subsequent

activation of DNA repair pathways which in HR-deficient

cells, induces cell death (Martin et al., 2008). However, there

is variation between platinum agents in their ability to augment

immune responses, some can promote anti-tumour immune

responses through the recruitment of effector cells,

upregulation of MHC molecules and downregulation of

immunosuppressive factors (de Biasi et al., 2014). The use of

PARPi in combination with platinum chemotherapy has the

potential to sensitise tumour cells to DNA-damaging agents and

potentially the anti-tumour immune response (Nguewa et al.,

2006; Cheng et al., 2013). However, PARPi effects on DNA repair

enhances chemotherapy-induced myelosuppression, creating a

major concern in patient tolerability to this combination therapy

(Dent et al., 2013). The overlapping toxicities affect dosing and

scheduling, resulting in attenuated doses of either or both PARPi

and platinum therapeutics, potentially affecting the efficacy of

either drug, due to the use of concentrations below the

recommended monotherapy dose. The recent development of

PARP-1-specific PARPi may provide new opportunities

(Johannes et al., 2021).

A phase I study (NCT00516724) trialled olaparib with

paclitaxel or carboplatin or carboplatin or the paclitaxel (CP)

combination in advanced solid tumours refractory to standard

treatments (van der Noll et al., 2020a). Patients treated with daily

olaparib continuously in combination with CP experienced

hematologic toxicities resulting in the attenuated scheduling

(van der Noll et al., 2020a). Patients receiving intermittent

olaparib increased tolerability but still experienced significant

myelosuppression (van der Noll et al., 2020b). However, results

from this trial did identify two olaparib treatment schedules that

were tolerable in patients. Further interrogation of the olaparib and

CP combination in study 41(NCT01081951) in platinum sensitive

recurrent ovarian cancer achieved a significant improvement in

PFS in the combination arm compared to chemotherapy alone

(12.2 versus 9.6 months; HR 0.51, CI 0.34–0.77, p = 0.0012). The

combination was well tolerated with only 15% reporting adverse

events in the combinational group versus the 21% in the

chemotherapy group alone. Most benefit was assumed derived

from the maintenance phase of olaparib and specifically in the
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BRCA1/2mutant cohort. Regardless, the ORRwas 64% versus 58%

between the different treatment arms.

Veliparib is a relatively weaker PARP trapper therefore

potentially better tolerated for combination studies. Veliparib

has been trialed with the standard carboplatin and paclitaxel

(CP) chemotherapy combination in the phase III VELIA study in

women with newly diagnosed HGSOC (Coleman et al., 2019;

Aghajanian et al., 2021). Patients were to receive 6 cycles of CP

following primary cytoreduction or with an interval

cytoreduction. Veliparib or placebo was administered during

CP at an attenuated dose of 150 mg twice daily and subsequently

a full dose at 400 mg twice daily after CP treatment. Of the

1,140 patients enrolled, 26% were BRCA-mutant and 55% noted

as HRD. Overall, the addition of Veliparib significantly improved

PFS with median PFS of 23.5 months vs. 17.3 (HR 0.68%, 95% CI

[0.56,0.83], p < 0.001] for Veliparib vs. placebo. The greatest PFS

benefit was seen in BRCA-mutant and HRD cohorts at

34.7 months vs. 22.0 months (HR 0.44, 95% CI [0.28,0.68],

p > 0.001) and 31.9 months vs. 20.5 months (HR 0.57, 95% CI

[0.43,0.76], p > 0.001) respectively. Veliparib has currently not

been approved for use in the treatment of OC.

Another chemotherapy agent that has been generating

interest is low-dose cyclophosphamide (LDCy), it is a potent

immunostimulant when delivered at low doses and is well

tolerated, eliciting clinically beneficial responses in roughly

44% of recurrent OC cases (Handolias et al., 2016). Studies

have shown that LDCy promotes anti-tumour immunity

through the selective depletion of Tregs and enhancing the

function of effector T cells (Handolias et al., 2016; Madondo

et al., 2016). A phase II clinical trial (NCT01306032) explored the

combination of veliparib and cyclophosphamide in recurrent

BRCA-mutant OC and HGSOC (Kummar et al., 2015). The

addition of the low dose or 60 mg of veliparib to 50 mg of LDCy

had no improvement in ORR or median PFS compared to LDCy

monotherapy. Stratifying patients according to BRCA status and

DNA repair defects also did not predict response to either

monotherapy or combination. But, two patients from this trial

had a prolonged clinical benefit from the combination treatment,

receiving over two years of treatment, which was still ongoing at

the time of data analysis (Kummar et al., 2015). This trial

encompassed not only HGSOC but primary peritoneal,

fallopian tube or BRCA-mutant OC which could have affected

the ability to decipher characteristics that determine patient

responses. Additionally, the doses of veliparib used were

below the standard 250–400 mg, thus higher doses of veliparib

may yield more significant results or alternatively the addition of

a third drug could potentially boost responses. Although their

correlative studies could not identify characteristics that

determine patient prognosis to treatment further studies could

possibly interrogate features of patients that respond to this

combination to broaden treatment cohorts.

The NCT02853318 phase II clinical trial observed the

effects of pembrolizumab (anti-PD1), bevacizumab and

LDCy in recurrent OC (Zsiros et al., 2021). The triple

combination had an ORR of 47.5% and a median PFS of

10 months, with 100% of platinum-sensitive patients meeting

the 6-month PFS rate compared to only 59% of the platinum-

resistant patients (p = 0.024). Combining LDCy with PARPi

and CI could elicit similar responses, targeting cancer cells

and invigorating immune responses, particularly in platinum-

sensitive/HRD patients that derive the most benefit from these

drugs.

The combination of olaparib and LDCy has been

examined in recurrent OC and triple negative breast cancer

to determine its safety and tolerability (Lee et al. Br J Cancer).

A tolerable regimen was identified and in HGSOC and the

gBRCAm subset, the unconfirmed objective RR was 48% and

64% respectively.

6 Conclusion

The treatment of HGSOC provides an ongoing challenge,

due to the heterogenous and metastatic nature of this disease

rendering women susceptible to disease relapse. Extensive

research performed to characterise the disease has led to a

better understanding of which characteristics correlate with

clinical benefit from current therapeutic regimens. However,

monotherapies do not effectively target the multiple aspects of

HGSOC tumours that can occur simultaneously, in the vast

majority of cases. The development of drug resistance is a

growing concern, especially following treatment with PARPi

and thus the use of combination regimens has garnered

increasing interest. The characterisation of PARPi has

elucidated its myriad roles in DNA repair and regulation,

including roles in chromatin remodelling and methylation.

Additionally, effects of PARPi on immune cells and immune

responses offer alternative pathways for therapeutic exploitation.

To date we have seen PARPi combined with chemotherapy,

angiogenesis agents, immune checkpoint inhibitors and more

recently novel therapeutics including epigenetic drugs and other

DNA repair inhibitors, with some trials investigating triple

combination treatments. The benefit of these therapies for

women with platinum-resistant and HR proficient OC are still

unclear when compared to their platinum-sensitive and HRD

OC counterparts. One of the most challenging aspects of

combination therapy is tolerability. Investigating alternative

treatment sequencing and scheduling could result in triple-

combination therapies becoming more tolerable and in

prolongation of survival if successfully matched to the

molecular characteristics of the HGSOC. Additionally, clinical

trials involving correlative studies to investigate outcomes are

essential to establish ideal biospecimen cohorts to enable the

most complete understanding of a trial outcome and for further

research. Understanding the characteristics that drive responses

could improve strategies for driving prolonged remissions and
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ultimately improve the survival outcomes for women with

HGSOC.
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Background: The involvement of glycolysis in the regulation of the tumor

immunemicroenvironment has become a novel research field. In this study, the

specific functions and clinical significance of glycolysis-related genes (GRGs)

and immune-related genes (IRGs) were systematically characterized in lung

squamous cell carcinoma (LUSC).

Methods: We evaluated the prognostic value, interactions, somatic mutations,

and copy-number variations of GRGs and IRGs in LUSC from a dataset of The

Cancer Genome Atlas (TCGA). An integrated glycolysis–immune score (GIS)

model was generated by random forest algorithm and stepwise Cox regression

analysis. The predictive power of the GIS was examined by survival analysis,

receiver operating characteristics, univariate and multivariate analyses, and

subgroup analysis. The correlations between GIS and biological functions,

glycolysis, immune activity, immune cell infiltration, and genomic changes

were analyzed, and the potential of GIS to guide clinical treatment decisions

was evaluated.

Results: A total of 54 prognostic GRGs and IRGs were identified, and a

strong correlation was noted among them. However, most of them had

somatic mutations and a high incidence of CNV. The GIS model that

contained two GRGs (PYGB and MDH1) and three IRGs (TSLP, SERPIND1,

and GDF2) was generated and a high GIS indicated poor survival. Moreover,

we found that low GIS was associated with immune pathway

activation, M1 macrophage infiltration, and higher immune scores. Finally,

patients with low GIS were more sensitive to chemotherapy and

immunotherapy.

Conclusion: An integrated model based on glycolysis and immune

genes can distinguish the biological functions and immune infiltration

patterns of individual tumors, quantitatively estimate the prognosis

of patients with LUSC, and guide chemotherapy and immunotherapy

decisions.
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Introduction

Lung cancer is one of the leading causes of cancer-related

deaths worldwide and is the most common type of cancer (Siegel

et al., 2020). Overall, 80%–85% of human lung cancers are non-

small cell lung cancers (NSCLCs), and most NSCLCs contain two

major histological subtypes, namely, lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC), which

account for approximately 25–30% of all lung cancers (Chen

et al., 2014). Recent advances in targeted therapies have greatly

benefitted patients with LUAD. However, little progress has been

made in the development of LUSC-targeted therapies; as a result,

traditional chemotherapy remains the first-line treatment of

LUSC for decades. The 5-years survival rates of patients with

advanced LUSC treated with currently used chemotherapy were

less than 5% (Sun et al., 2007; Drilon et al., 2012), which appears

overwhelmingly discouraging. Thus, there is an urgent need to

determine prognostic biomarkers to identify patients who are

sensitive to treatment. This will enable clinicians to predict

clinical outcomes of LUSC timely and accurately and initiate

personalized treatment regimens.

Abnormal tumor immune microenvironment (TIME) and

tumor metabolic reprogramming are two important features of

tumors (Hanahan and Weinberg, 2011). Cancer cells have

traditional oxidative metabolism and glycolysis anaerobic

metabolism. However, their proliferation is characterized by

increased glycolysis metabolism, even in the presence of

oxygen (Warburg effect) (Icard et al., 2018). Previous studies

have focused on the Warburg effect, supporting the

aggressiveness and drug resistance of cancer cells (Lu et al.,

2015; Icard and Lincet, 2016), whereas the involvement of

glycolysis and its product, lactic acid, in the regulation of

TIME has recently become a research area. Studies have

reported that lactic acid leads to tumor immune escape and

inhibits the activity of T cells and natural killer (NK) cells while

being up-taken by regulatory T (Treg) cells andmaintaining their

immunosuppressive ability (Brand et al., 2016; Watson et al.,

2021). It can also inhibit monocyte activation and dendritic cell

differentiation (Colegio et al., 2014). Moreover, it induces the

M2 polarization of macrophages and promotes tumor growth

through mechanisms by involving the hypoxia-inducible factor

1-alpha (HIF-1α) (Colegio et al., 2014). Although glycolysis has a
clear inhibitory effect on the TIME, few studies have focused on

this relationship comprehensively.

In this study, we integrated glycolysis-related genes (GRGs)

and immune-related genes (IRGs) and constructed a systematic

glycolysis–immune score (GIS) model. This GIS model showed

stable prognostic efficacy in different datasets and clinical

subgroups of LUSC. We also demonstrated the relationship of

the GIS model to glycolysis and immune status and

systematically explored the biological mechanisms of GIS

from the perspectives of pathway activity, immune infiltration,

and genomic changes. Finally, the study presents that GIS can

identify patients with LUSCwho are susceptible to chemotherapy

and immunotherapy.

Methods

Genomic data and clinical information

RNA-sequencing data and clinical follow-up data from

TCGA-LUSC patients were downloaded from the database of

The Cancer Genome Atlas (TCGA). A total of 492 patients with

LUSC were enrolled after excluding patients who had missing

clinical information (such as stage, sex, and age) and who were

lost to follow-up. In addition, three datasets, namely, GSE29013,

GSE30219, and GSE37745, from the same chip platform

(GPL570) were downloaded from the Gene Expression

Omnibus (GEO) database. We enrolled patients whose

pathological diagnosis was squamous cell carcinoma and

excluded patients without detailed clinical information.

Finally, 166 patients with LUSC were enrolled and used as a

validation queue. The R Package ComBat was used to remove

batch effects among datasets.

The corresponding MAF data of TCGA-LUSC patients on

the Mutect2 platform were downloaded by the “TCGAbiolinks”

package. Then, we used the R package maftools to process the

MAF data, calculate the mutation load of samples, and draw the

mutation map of genes.

Copy-number variation (CNV) data of patients were

downloaded from the UCSC Xena Data Center (https://xena.

ucsc.edu/) and preprocessed by GISTIC 2.0. Amplifications and

deletions are defined with a threshold of 0.3.

The GRGs were collected from the MSIGDB database (www.

gsea-msigdb.org), and the IRGs were collected from the ImmPort

database (www.immport.org). The detailed gene list is provided

in Supplementary Table S1.

Construction of the GIS model

Initially, we screened the independent prognostic factors in

GRGs and IRGs by univariate Cox regression. For significant

independent prognostic factors (p < 0.05), we then used the

random forest algorithm to identify the 10 most important

prognostic genes within them. Then, we summarized all

possible gene combinations of these 10 genes and determined

the p-values of all combinations through Kaplan–Meier (KM)

analysis. Based on the p-values, the gene combinations with the
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best prognostic efficiency were screened out. Then, the

prognostic genes were used to construct a GIS model, as

provided below:

GI Score � ∑ iCoef f icient(mRNAi) × Expression(mRNAi)

The “servcomp” R package was used to calculate the

consistency of the C index, and a larger C-index indicated

that the prediction ability of the model was more accurate

(Schröder et al., 2011). The high- and low-risk groups were

divided based on the median GIS, and the prognostic value of the

risk model was evaluated by the KM survival curve, univariate

and multivariate Cox regression analyses, and time-dependent

receiver operating characteristics (ROC) curve system.

Functional enrichment analysis

The relative abundance of 22 immune cells per patient in the

TCGA-LUSC cohort was calculated using the cibersortR package

and LM22 feature. The ESTIMATE algorithm was used to

calculate the immune score and matrix score of the samples.

The R package gsva was used for single-sample gene set

enrichment analysis (ssGSEA) to evaluate the pathway

enrichment scores of the samples. The related pathway

activity was collected from previously published references

(Liberzon et al., 2011; Ayers et al., 2017; Gibbons and

Creighton, 2018; McDermott et al., 2018; Liang et al., 2020).

In addition, we collected the homologous recombination defect

(HRD) score, neoantigens, and microsatellite instability (MSI)

score (Thorsson et al., 2018) of samples from the study by

Thorsson et al. to evaluate patient response to

immunotherapy. Detailed gene sets are provided in

Supplementary Table S2.

Prediction of chemotherapy and
immunotherapy responses

The R package “pRRophetic” can evaluate patients’ response

to chemotherapy based on the Genomics of Drug Sensitivity in

Cancer database. Five first-line agents for treating LUSC (namely,

cisplatin, docetaxel, gemcitabine, paclitaxel, and vinorelbine)

were selected, and the median maximum inhibitory

concentration (IC50) for each patient was calculated using

ridge regression to assess the sensitivity to chemotherapy in

high- and low-risk groups. Then, the 10-fold cross-validation

was used to enhance the predictive accuracy. The Tracking of

Indels by Decomposition (TIDE) algorithm was used to assess

patient response to anti-programmed death-1 (PD1) and anti-

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) therapy.

Then, we matched the genome data of the high and low

subgroups to a publicized cohort of 47 patients who can react

to anti-PD1 and anti-CTLA4 therapy by using unsupervised

subclass mapping (https://cloud.genepattern.org/gp/) and thus

predict the response of high and low subtypes to

immunotherapy.

Finally, we constructed a GIS model of a PD1-treated NSCLC

cohort (GSE135222) and a mature PDL1-treated urothelial

carcinoma cohort (IMvigor210) to evaluate the predictive

power of GIS for immunotherapy response rates.

GSE135222 included 27 patients with NSCLC treated with

PD1, and the IMvigor210 cohort included 298 patients with

melanoma treated with PDL1 and has integrated clinical

information.

Bioinformatics and statistical analysis

All statistical analyses and mappings were performed using R

software version 4.04 (R Foundation for Statistical Computing,

Vienna, Austria). The time-dependent area under the curve

(AUC) was calculated using the R package “survivalROC” to

evaluate the predictive power of variables. Univariate and

multivariate COX regression analyses were performed using

the R package “Survival.” A nomogram was drawn using the

“rms” package. The R package “DCA” was used to draw decision

curve analysis (DCA) curves. The Kruskal–Wallis test was used

to compare more than two groups and the Wilcoxon test to

compare two groups. The proportion differences were compared

by the chi-square test. KM plotters were used to generate survival

curves for subgroups in each dataset. Pearson correlation was

used for correlation tests.

Results

Preliminary screening of prognostic GRGs
and IRGs in LUSC

We screened for independent prognostic factors in GRGs

and IRGs in the training dataset (i.e., TCGA-LUSC cohort) and

performed univariate Cox regression analysis to select genes that

are significantly associated with prognosis. A total of

54 prognostic factors were identified, which included 48 risk

factors and six protective factors (Figure 1A). Figure 1B displays

their correlation network; six protective genes were negatively

correlated with other genes, and 48 risk genes were positively

correlated with other genes. Oncoplot presented mutation maps

of prognostic factors in LUSC (Figure 1C). Specifically, the most

common mutation of prognostic factors was a nonsense

mutation, the most common change in base started from

cytosine to thymine, and the HGF gene had the highest

mutation frequency (Figure 1D). Fifty-four prognostic factors

had extensive CNV events in LUSC (Figure 1E). The circle

diagram presents their overall CNV status on chromosomes
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(Figure 1F). Most of the mutations in prognostic genes were

nonsense mutations, whereas CNV events occurred extensively,

suggesting that prognostic genes were mainly regulated by CNV

than by single nucleotide variation.

Generation and evaluation of GIS models

We used the random forest algorithm to identify the

10 most important genes among the 54 prognostic factors

FIGURE 1
Identify prognostic-related GRGs and IRGs. (A) The volcano map illustrates the results of the univariate Cox analysis. (B) Correlation network of
prognostic GRGs and IRGs. (C)Oncoplot displays mutationmaps of prognostic GRGs and IRGs. (D) Summary of prognostic GRGs and IRGsmutation
events in TCGA-LUSC. (E) Summary of CNV events for prognostic GRGs and IRGs in TCGA-LUSC. (F) The circle diagram presents the CNV maps of
prognostic GRGs and IRGs on chromosomes. CNV, copy number variation; IRGs, immune-related genes; GRGs, glycolysis and immune score;
TCGA-LUSC, The Cancer Genome Atlas Lung Squamous Cell Carcinoma.
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(Figure 2A). Then, we used the exhaustion method to find all

combinations of the 10 genes and found 1,023 of them. A Cox

regression model was constructed by gene combination, and

the p-value of each model was evaluated by KM analysis.

Finally, a five-gene model was selected to be the best

prognostic model (Figure 2B), and detailed results are

provided in Supplementary Table S3. The model contains

two GRGs (PYGB and MDH1) and three IRGs (TSLP,

SERPIND1, and GDF2), and the gene coefficients are listed

in Supplementary Table S4. The C-index display model

demonstrated good predictive performance in TCGA

queues and external validation queues (Figure 2C). In the

survival analysis, the survival rate of the high GIS group was

significantly lower than that of the low GIS group (Figure 2D,

p < 0.0001). The AUC values of the model at 1, 3, and 5 years

were 0.64, 0.69, and 0.65, respectively (Figure 2E). Figure 2F

presents the distribution of GIS in the TCGA cohort and the

transcription map of the model genes. We also evaluated the

effectiveness of GIS in an external validation queue. In the

survival analysis, the survival of patients with high GIS was

significantly worse (Supplementary Figure S1A, p = 0.013). In

the ROC analysis, the AUC values of GIS in 1, 3, and 5 years

were 0.61, 0.61, and 0.63, respectively (Supplementary Figure

S1B). Supplementary Figure S1C illustrates the distribution of

GIS in the GEO queue and the transcription map of the model

genes.

Evaluation of the predictive independence
of GIS models

We firstly used univariate Cox and multivariate Cox

regressions to analyze the relationship between the risk

score, clinical characteristics, and prognosis. Univariate Cox

regression was an independent prognostic indicator in both

training and validation sets (Figure 3A, p < 0.01). Multivariate

Cox regression indicated that GIS was still an independent

prognostic factor of overall survival in both training and

validation cohorts after correcting other clinical features

(Figure 3B, p < 0.01). The subgroup analysis also revealed

FIGURE 2
Construction of the GIS risk model. (A) Random forest screening of top10 important prognostic genes. (B) Log-rank test of p-value for each
genemodel. (C)C-index of the best model in TCGA and GEO queues. (D) KM survival curves of high and lowGIS groups in the TCGA cohort. (E) ROC
curves of GIS in the TCGA cohort at 1, 3, 5, and 8 years (F) Survival status and model gene expression of patients in the TCGA cohort. GEO, Gene
Omnibus Expression; KM, Kaplan–Meier; ROC, receiver operating characteristics curve; GIS, glycolysis–immune score; TCGA, The Cancer
Genome Atlas.
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that GIS remained a reliable prognostic factor in different

clinical subgroups (Supplementary Figure S2). The GIS model

proved to be a promising prognostic indicator for predicting

the survival of patients with LUSC, and we subsequently

constructed a nomogram to better quantify the risk

assessment for these patients (Figure 3C). The nomogram

correction curves reflected that the nomogram model had

good stability and accuracy at 1, 3, and 5 years (Figure 3D).

The TROC analysis revealed that the nomogram model was

the best predictor when compared with clinical features

(Figure 3E). We subsequently performed DCA to evaluate

the decision benefits of the nomogram model and found that

the nomogram is suitable for risk assessment of patients with

LUSC at 1, 3, and 5 years (Figures 3F–H).

Functional enrichment analysis and
glycolysis spectrum of GIS

Furthermore, we quantified the activity of some typical

biological pathways using the ssGSEA algorithm and assessed

the correlation between GIS and pathways. The heat map

illustrates the relationship among GIS, biological pathway

activity, classical glycolysis, and immune gene expression

(Figure 4A). The corresponding correlation analysis is given

on the right side of the heat map (Figure 4B). We found that

EMT, hypoxia, and some immune-related pathways (such as

the CCR, major histocompatibility complex [MHC] class 1,

and type II interferon [IFN] response) GIS was significantly

negatively correlated and significantly upregulated in the low

FIGURE 3
Verifying the GIS-related risk model. (A) Univariate Cox regression analysis of GIS and clinical features in the TCGA and GEO datasets. (B)
Multivariate Cox regression analysis of GIS and clinical features in the TCGA and GEO datasets. (C) Nomogram based on the GIS model to quantify
individual patient risk. (D)Nomogram calibration curve. (E) tROC curves of nomogram and clinical features. NomogramDCA curves at 1 (F), 3 (G), and
5 (H) years. DCA, decision curve analysis; GEO, Gene Omnibus Expression; ROC, receiver operating characteristics curve; GIS,
glycolysis–immune score; TCGA, The Cancer Genome Atlas.
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FIGURE 4
Functional analysis of the GIS risk model. (A) Heat maps of the correlations among GIS, biological pathway activity, glycolysis gene expression,
immune gene expression, and clinical features. Red name with * represents upregulation in the high GIS group, and green name with * represents
upregulation in the low GIS group; *p < 0.05, **p < 0.01, ***p < 0.001. (B) Correlation analysis of GIS and biological pathway activity, glycolysis gene
expression, and immune gene expression (top to bottom). (C) GSEA enrichment map shows the five pathways of interest within the high GIS
group. (D) GSEA enrichment map shows the five pathways of interest within the low GIS group. GIS, glycolysis–immune score; GSEA, gene set
enrichment analysis.
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GIS group. In addition, four glycolysis genes were positively

correlated with GIS and upregulated in high GIS, whereas four

immunity genes were negatively correlated with GIS and

upregulated in low GIS. GSEA revealed that cell cycle,

oxidative stress, and DNA replication activity were

significantly increased in the high GIS group (Figure 4C),

whereas lysosome and lymphocyte migration pathways were

significantly enriched in the low GIS group (Figure 4D). In

summary, these results suggest increased glycolysis activity

and active tumor replication and proliferation in the high GIS

group, whereas increased immune and cytotoxic activity in the

low GIS group.

Immune infiltration analysis of GIS

We further evaluated the correlation between GIS and

immune landscape in detail. The heat map illustrates the

correlation of GIS, estimate score, and abundance of

immune-infiltrating cells (Figure 5A). The corresponding

correlation analysis results are provided on the right side of

the heat map (Figure 5B). The results revealed that patients

with high GIS had higher tumor purity, whereas patients with

low GIS had increased immune scores and estimate scores.

Immune cell infiltration analysis also indicated that GIS was

positively correlated with M2 macrophages and mast cells and

increased in the high GIS group, whereas M1 macrophages

and gamma delta T cells were negatively correlated with GIS

and increased in the low GIS group. These results further

suggest that antitumor immunity is suppressed in patients

with high GIS, whereas antitumor immunity is active in

patients with low GIS. Furthermore, we analyzed four

indexes that affect the response to immunotherapy.

Accordingly, the MSI and HRD scores were significantly

negatively correlated with GIS and increased in the low GIS

group (Figure 5C,D). This suggests that patients with low GIS

have more chromosomal instability, leading to more tumor-

specific neoantigen generation (Ganesh et al., 2019; Eso et al.,

2020; Shi et al., 2021). However, no difference was found in

insertion and deletion (indel) neoantigens and single-

nucleotide variant (SNV) neoantigens between the high and

low GIS groups (Figure 5E,F).

FIGURE 5
Immune landscape of the GIS risk model. (A)Heat maps of the correlations among GIS, estimate score, immune cell infiltration abundance, and
clinical features. Red namewith * represents upregulation in the highGIS group, and green namewith * represents upregulation in the lowGIS group;
*p < 0.05, **p < 0.01, ***p < 0.001. (B)Correlation analysis of GIS, estimate score, and immune cell infiltration abundance (top to bottom). Scatter and
box plots of the correlation between GIS and (C)MSI score, (D) HRD score, (E) indel neoantigens, and (F) SNV neoantigens. Indel, insertion and
deletion; GIS, glycolysis–immune score; MSI, microsatellite instability; HRD, homologous recombination deficiency; SNV, single-nucleotide variant.
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Correlation between GIS and genome
changes

Recent studies have proposed using the tumor mutation

burden (TMB) as a novel indicator in predicting

immunotherapy response and prognosis, as more mutated

genes may generate new antigenic peptides that can be

recognized by the immune system. Antigens containing

mutated peptides can activate the immune system and

enhance anti-tumor immunity (Matsushita et al., 2012; Rizvi

FIGURE 6
Genomic mutation landscapes of GIS models. (A) Forest map of the high-frequency mutated genes with significant mutation differences
between the high GIS and low GIS groups. (B) Correlation between GIS and all mutant loads. (C) Correlation between GIS and non-synonymous
mutation load. (D)Oncoplot of the high-frequency mutated genes in the high GIS group. (E)Oncoplot of the high-frequency mutated genes in the
low GIS group. (F) Circle diagram summarizing CNV events on different chromosome arms in the high and low GIS groups. (G) Box plot of the
difference in chromosome amplification between the high GIS and lowGIS groups. (H) Box plot of the difference in chromosome deletions between
the high GIS group and the low GIS group. GIS, glycolysis–immune score; CNV, copy number variation.
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et al., 2015; Chan et al., 2019). Therefore, we explore the

correlation between TMB and GIS. Through Fisher’s test, we

identified three high-frequency mutated genes with significant

mutation differences, namely, TP53, ZFHX4, and TTN, with

increased mutation frequency in the low GIS group

(Figure 6A). However, the number of mutation techniques

and non-synonymous mutations demonstrated an increasing

trend in the low GIS group, but it was not significant (Figures

6B,C). The waterfall diagram illustrates the mutation maps of

high-frequency mutated genes in the high and low GIS groups

(Figures 6D,E). CNV caused genomic changes in patients as

chromosome segment changes, and we subsequently analyzed

the correlation between CNV and GIS. The circle graph presents

the overall CNV landscape of patients with high and lowGIS, and

the results revealed that patients with low GIS have more CNV

events (Figure 6F). The box plot illustrates that both

amplification and missing events in the low GIS group were

significantly higher than those in the high GIS group

(Figures 6G,H).

The GIS model can guide clinical
treatment decision

We firstly assessed the sensitivity of patients to five

commonly used chemotherapy agents for lung cancer, namely,

FIGURE 7
The GIS model guides the clinical treatment decision. (A) Box plot of the predicted IC50 values of five commonly used lung cancer drugs in the
high and low GIS groups. (B) KM survival curves of patients receiving chemotherapy in the TCGA cohorts with high and low GIS. (C) The TIDE
algorithmwas used to predict the overall response rate to immunotherapy in the high and low GIS groups. (D) Subclass mapping was used to predict
the sensitivity of patients in the high and low GIS groups to anti-PD1 and anti-CTLA4 therapy. (E) KM survival curves of high and low GIS groups
in the GSE135222 cohort. (F) KM survival curves of the high and lowGIS groups in the IMvigor210 cohort. (G)Correlation between GIS and TMB in the
IMvigor210 cohort. (H) Correlation between GIS and neoantigens in the IMvigor210 cohort. GIS, glycolysis–immune score; GSEA, gene set
enrichment analysis; TMB, tumor mutation burden; KM, Kaplan–Meier; TCGA, The Cancer Genome Atlas; TIDE, Tracking of Indels by
Decomposition.
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cisplatin, docetaxel, gemcitabine, paclitaxel, and vinorelbine.

Accordingly, patients with low GIS were more sensitive to

these five chemotherapeutic agents (Figure 7A). In the

validation cohort, the low GIS group was more sensitive to

the other four drugs, except for gemcitabine (Supplementary

Figure S1D). The survival analysis revealed that among patients

receiving chemotherapy in the TCGA cohort, survival was better

in patients with low GIS (Figure 7B, p = 0.029). Previous results

suggested that patients with low GIS may be more sensitive to

immunotherapy; thus, we subsequently assessed patient response

to immunotherapy. In the TIDE analysis, patients with low GIS

were more sensitive to immunotherapy (Figure 7C), although not

significant in the validation cohort (Supplementary Figure S1E).

Subclass mapping indicated that patients with lowGIS were more

sensitive to anti-PD-1 and anti-CTLA-4 therapy, and the same

results were observed in the validation cohort (Figure 7D,

Supplementary Figure S1F). Subsequently, we validated GIS in

an NSCLC cohort that received anti-PD-1 therapy, and the

results presented poorer survival in patients with high GIS

(Figure 7E, p = 0.066). The efficacy of GIS was also evaluated

in IMvigor210, a large immunotherapy cohort, which exhibited

significantly worse survival in patients with high GIS (Figure 7F).

Further analysis revealed that TMB and neoantigens were

negatively correlated with GIS in the IMvigor210 cohort and

significantly increased in the low GIS group (Figures 7G,H). This

may explain the high benefit of immunotherapy in patients with

low GIS.

Discussion

With the limited success of LUSC-related targeted

therapies, traditional chemotherapy remains the first-line

treatment for decades; thus, patients with advanced LUSC

treated with current chemotherapy show poor 5-years survival

rates, that is, less than 5%. Therefore, there is an urgent need to

identify prognostic biomarkers to accurately and timely

predict clinical outcomes of LUSC and initiate personalized

treatment programs. Glycolysis not only plays an important

role in tumor invasion and drug resistance but also has a

strong inhibitory effect on the TIME (Brand et al., 2016;

Watson et al., 2021). The complex role of glycolysis and

TIME reflects great promise in immunotherapy and

targeted cancer therapy (Ganapathy-Kanniappan and

Geschwind, 2013; Ganapathy-Kanniappan, 2017). In this

study, we constructed a GIS model based on GRGs and

IRGs and demonstrated that this model has satisfactory

predictive efficacy in different clinical subgroups of

datasets. Therefore, it can be used as an independent

prognostic factor for patients with LUSC. Furthermore, we

explored the relationship between the GIS model and

biological function, immune cell infiltration, and genome

changes. Several transcriptomic models are proved to have

promising applications in lung cancer and have surprising

potential in predicting prognosis (Wang et al., 2021a; Gao

et al., 2021; Feng et al., 2022; Guo et al., 2022; Jiang et al.,

2022). Compared with these models, our model not only has

good performance in predicting prognosis but also can

distinguish between “cold” and “hot” tumors and provide a

reference for clinical treatment decisions of patients

with LUSC.

Immunotherapy has developed rapidly in LUSC in recent

years (Lazzari et al., 2017). LUSC tends to be highly

immunogenic and has higher TMB. Therefore, LUSC is an

ideal indication for immunotherapy (Li et al., 2018). However,

the overall response rate to immunotherapy is relatively low, and

only a subset of patients with LUSC can benefit from

immunotherapy (Forde et al., 2018). Therefore, the

identification of patients with LUSC having “hot” tumors is

expected to enhance treatment response to immunotherapy.

Through functional enrichment analysis, we found that low

GIS was associated with increased activity of some immune-

related pathways, such as CCR, MHC class 1, and type II IFN

response, and lysosome and lymphocyte migration, suggesting

that the low GIS group was a “hot” tumor with anti-tumor

immunoactivity (Ivashkiv, 2018; Dersh et al., 2021). We also

analyzed the immune cell infiltration in the low GIS group and

we found that the low GIS group had higher immune scores and

increased M1 macrophages and gamma delta T cells, suggesting

that low GIS tumors are immuno-activated “hot” tumors with

antitumor activity (Chanmee et al., 2014; Kabelitz et al., 2020;

Yazdanifar et al., 2020). The cell cycle and DNA replication

pathway were enriched in the high GIS group, indicating that

tumor proliferation was active in this group. Furthermore,

oxidative stress activity increased in the high GIS group, and

oxidative stress stimulates tumorigenesis and supports tumor cell

proliferation (Hayes et al., 2020; Kotsafti et al., 2020). Moreover,

high GIS was associated with increased glycolysis activity, and

low GIS was associated with increased immune gene activity.

Furthermore, we analyzed the immune cell infiltration in the

TIME of high GIS group, and the results revealed that a high GIS

was associated with higher tumor purity and M2 macrophages,

which may lead to immunosuppression and tumor-promoting

TIME (Chanmee et al., 2014) in the high GIS group. These results

suggest that high GIS could identify patients with “cold” tumors,

high glycolysis, metabolically active tumors, and suppressed

antitumor immunity. Subsequently, we found that the HRD

and MSI scores were negatively correlated with GIS and

significantly increased in the low GIS group, indicating that

tumors with low GIS may be more sensitive to chemotherapy,

have high immunogenicity, and are more sensitive to

immunotherapy (Le et al., 2017; Overman et al., 2017; Hoppe

et al., 2018; Silva et al., 2022). However, no significant difference

was found in the number of neoantigens between the two groups.

We subsequently found that TP53, ZFHX4, and TTN

mutated more frequently in the low GIS group. TP53 is
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generally considered a tumor-suppressor gene (Bykov et al.,

2018; Skoulidis and Heymach, 2019), whereas the TP53 gene

in the low GIS group shows a better survival rate and more

mutations, which may be caused by the active immune function

of low GIS. Recent studies have reported that genomic changes

are closely related to neoantigen formation and immunotherapy

response (Anagnostou et al., 2017). Our results indicate that

TMB differences between low and high GIS groups are not

significant, and GIS can better reflect patients’ immune

activity than TMB. We also found that both CNV

amplification and deletion events were significantly higher in

the low GIS group, and the chromosomal changes were more

closely related to GIS than the single nucleotide variation. Studies

have shown that chromosomal somatic rearrangement events

actively promote carcinogenesis and lead to immunosuppression.

However, our analysis showed that immunoactivity was stronger

in the low GIS group than in the high GIS group. These results

suggest that GIS can better reflect tumor immune status and

predict immunotherapy response than TMB and CNV.

In summary, low GIS appears to indicate “hot” tumors with

an immunoactivated phenotype that may be more sensitive to

treatment. We then systematically assessed patient response to

chemotherapy and immunotherapy. Accordingly, we found that

the low GIS group was more sensitive to chemotherapy than the

high GIS group. In addition, TIDE and subclass mapping

algorithms predicted that patients with low GIS would be

more sensitive to immunotherapy. More convincingly, we

found that a low GIS was associated with better outcomes in

the immunotherapy cohort of NSCLC. In a further large-scale

immunotherapy cohort, IMvigor210, better survival was

observed in patients with low GIS. A negative correlation was

noted between GIS and TMB and neoantigens in the

IMvigor210 cohort. Immunotherapy mainly relies on CD8+

T cells to recognize tumor-specific mutant antigens to induce

antitumor immunity (Wang et al., 2021b; Jhunjhunwala et al.,

2021). In addition, more somatic mutations will lead to the

formation of more potential new antigens (Matsushita et al.,

2012; Rizvi et al., 2015). Therefore, more neoantigens and TMB

in the low GIS group may lead to the increased sensitivity of

patients with low GIS to immunotherapy. Taken together, these

results demonstrate that the GIS model is a powerful tool for

guiding the treatment of patients with LUSC and that patients

with low GIS have a higher sensitivity to chemotherapy and

immunotherapy.

Despite its findings, this study has some limitations. First, this

study was based on high-throughput sequencing and only

considered inter-patient heterogeneity, but there was no intra-

tumor heterogeneity. Second, immunotherapy and chemotherapy

sensitivity predictions are based on computations and should be

validated in further clinical cohorts. Thus, additional in vivo and

in vitro experiments are needed to explore the specific biological

functions of GIS in LUSC.

In conclusion, the results of this study suggest a close

relationship between glycolysis and immune activity.

Moreover, the integrated model based on glycolysis and

immune genes can distinguish “cold and hot” patterns of

individual tumors from biological function and immune

infiltrating system, can quantitatively estimate the prognosis of

patients LUSC, and guide chemotherapy and immunotherapy

decisions.We thank all the participants who supported our study.

In particular, thanks to the TCGA database and GEO database

for the analytical data.
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SUPPLEMENTARY FIGURE S1
External validation of GIS (A) KM survival curves of high and low GIS
groups in the GEO cohort. (B) ROC curves of GIS in the GEO cohort at
1, 3, 5, and 8 years (C)GIS, survival status, andmodel gene expression
profile of patients in the GEO cohort. (D) Box plot of the predicted
IC50 values of five commonly used lung cancer drugs in the high and

low GIS groups of the GEO cohort. (E) The TIDE algorithm was used
to predict the response of high and low GIS groups to immunotherapy
in the GEO cohort. (F) Subclass mapping was used to predict the
sensitivity of patients in the high and low GIS groups to anti-PD1 and
anti-CTLA4 treatment in the GEO cohort. GIS, glycolysis–immune
score; KM, Kaplan–Meier; GEO, Gene Omnibus Expression; TIDE,
Tracking of Indels by Decomposition; PD1, programmed death-
1 (PD1); CTLA4, anti-cytotoxic T-lymphocyte-associated protein 4.

SUPPLEMENTARY FIGURE S2
Subgroup Cox analysis of GIS Subgroup Cox regression analysis of GIS in
the TCGA queue (A) and GEO queue (B). GIS, glycolysis–immune score;
GEO, Gene Omnibus Expression; TCGA, The Cancer Genome Atlas.
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