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Editorial on the Research Topic

Systems biology and single-cell analysis of cancer metabolism and its
role in cancer emergent properties
Cancer cells can reprogram their metabolic activities to adapt to heterogeneous tumor

microenvironments and to survive various treatments, referred to as metabolic plasticity (1,

2). The past two decades have witnessed our advanced understanding in how cancer cells

can acquire multiple metabolic phenotypes, such as glycolysis, oxidative phosphorylation

(OXPHOS), the hybrid metabolic phenotype and the metabolically “low-low” phenotype

(2, 3). The different cancer metabolic phenotypes are associated with varying cancer

metastatic (2) and drug-tolerant potentials (4–6). To decipher the sheer complexity and the

multi-faceted nature of cancer metabolism, systems biology approaches that emphasize the

interactions between genes, proteins, and metabolites have been developed to create a

synergy between theoretical/computational and experimental biology and have led to

discoveries at a rapid pace.

Recent advancement in technologies have provided researchers with tools to rigorously

quantify cancer metabolism, particularly at the single-cell and the subcellular level. In this

Research Topic, Wei et al. reviewed the recently developed technologies for single-cell

metabolomics measurement and the integration of multi-omic measurements. To analyze

the rapidly increasing cellular metabolism data, Ng et al. provided a summary of the open-

source python-based computational toolboxes. Through integrating newly developed

technologies with computational toolboxes, we acquired a better understanding of

individual metabolic genes and metabolites. Fung et al. used non-invasive Raman-based

optical imaging techniques to conduct the 3D spatial and chemometric analyses of triple

negative breast cancer (TNBC) cells under the tandemmodulation of two key metabolites –

insulin and methionine. The authors observed altered de novo lipogenesis, 3D lipid droplet

morphology, and lipid peroxidation under various methionine and insulin concentrations

and verified significant interaction of insulin and methionine metabolism. Altered fatty
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acid metabolism is often associated with cancer development (7).

Wang et al. provided a review of Acetyl-CoA Carboxylases (ACC),

the first rate-limiting enzyme in fatty acid synthesis, covering its

structural feature, regulatory mechanism, and roles in cancer

development and other diseases. The authors highlighted the

regulation of ACC by AMPK and PI3K/Akt/mTOR pathways and

its role in post-translational modifications (e.g., acetylation). In

addition to ACC, other metabolic genes have been identified for

prognosis. Liu et al. showed that the PLA2G2D expression exhibits

a positive correlation with immune cell infiltration and favorable

immune checkpoint blockade therapy. Chedere et al. showed that

nicotinamide adenine dinucleotide (NAD) can classify

hepatocellular carcinoma (HCC) patients into three categories

depending on their nicotinate phosphoribosyltransferase status,

providing a better resolution in understanding the heterogeneity

of HCC patients. As we acquire a better understanding of

metabolites and metabolic pathways, we may intervene and

suppress cancer metabolism. Hou et al. reviewed the current state

of arginine deprivation and replenishment therapies for glioma, and

the authors emphasized the importance of assessing cancer

metabolic state to ensure the effectiveness of deprivation therapy.

In addition to the advancement of experimental technologies

and data analysis methods, mathematical modeling approach has

been widely used to elucidate the mechanisms underlying cell-fate

decision-making in metabolism. Yu and Wang applied the

landscape and flux theory to identify the normal and disease

states emerging from a core gene regulatory network, during the

development of intestinal-gastric cancer. Yu and Wang elucidated

the key regulations that are essential for the transition between

normal and disease states. To evaluate therapeutic strategies for

melanoma treatment, Hodgkinson et al. applied a data-driven

multi-dimensional mathematical modeling approach to simulate

melanoma response to different therapeutic strategies –

combination therapy, continuous therapy, adaptive therapy.

Hodgkinson et al. showed that the order in combination therapy

matters and that different therapeutic strategies can lead to different

tumor heterogeneity. Furthermore, in the computational analysis

conducted by Pillai et al., the authors showed that the

dedifferentiation of melanoma cells is accompanied by
Frontiers in Oncology 025
upregulation of mesenchymal genes, but not a concomitant loss

of an epithelial program. Interestingly, progression along the

mesenchymal axis correlates with the downregulation of

OXPHOS, while glycolytic capacity is largely maintained. The

dedifferentiation of melanoma cells is closely-linked with its

resistance to BRAF inhibitors (8).

Single-cell analysis of cancer metabolism has been a fast-

evolving field. With the increasing capacity of acquiring richer

single-cell multi-omics data at a better resolution, it is important to

leverage the systems biology approaches to make sense of the data

and to decode the mechanisms underlying cancer metabolism and

its coupling with other cancer hallmarks. With a better

understanding of cancer metabolic plasticity, therapies targeting

cancer metabolic dependency in principle can be made

more effective.
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Metabolic Molecule PLA2G2D Is a
Potential Prognostic Biomarker
Correlating With Immune Cell
Infiltration and the Expression of
Immune Checkpoint Genes in
Cervical Squamous Cell Carcinoma
Hong Liu1,2†, Ruiyi Xu3†, Chun Gao1,2, Tong Zhu1,2, Liting Liu1,2, Yifan Yang1,2,
Haihong Zeng4, Yafei Huang4* and Hui Wang1,2,3*

1 Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China, 2 Department of Gynecologic Oncology, Tongji Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 3 Department of Gynecologic
Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China, 4 Department of Pathogen Biology,
School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Cervical squamous cell carcinoma (CSCC) is the major pathological type of cervical cancer
(CC), the second most prevalent reproductive system malignant tumor threatening the
health of women worldwide. The prognosis of CSCC patients is largely affected by the
tumor immune microenvironment (TIME); however, the biomarker landscape related to
the immune microenvironment of CSCC and patient prognosis is less characterized. Here,
we analyzed RNA-seq data of CSCC patients from The Cancer Genome Atlas (TCGA)
database by dividing it into high- and low-immune infiltration groups with the MCP-
counter and ESTIMATE R packages. After combining weighted gene co-expression
network analysis (WGCNA) and differentially expressed gene (DEG) analysis, we found
that PLA2G2D, a metabolism-associated gene, is the top gene positively associated with
immune infiltration and patient survival. This finding was validated using data from The
Cancer Genome Characterization Initiative (CGCI) database and further confirmed by
quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, multiplex
immunohistochemistry (mIHC) was performed to confirm the differential infiltration of
immune cells between PLA2G2D-high and PLA2G2D-low tumors at the protein level. Our
results demonstrated that PLA2G2D expression was significantly correlated with the
infiltration of immune cells, especially T cells and macrophages. More importantly,
PLA2G2D-high tumors also exhibited higher infiltration of CD8+ T cells inside the tumor
region than PLA2G2D-low tumors. In addition, PLA2G2D expression was found to be
positively correlated with the expression of multiple immune checkpoint genes (ICPs).
Moreover, based on other immunotherapy cohort data, PLA2G2D high expression is
October 2021 | Volume 11 | Article 75566816
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correlated with increased cytotoxicity and favorable response to immune checkpoint
blockade (ICB) therapy. Hence, PLA2G2D could be a novel potential biomarker for
immune cell infiltration, patient survival, and the response to ICB therapy in CSCC and
may represent a promising target for the treatment of CSCC patients.
Keywords: cervical squamous cell carcinoma, PLA2G2D, tumor immune microenvironment, immune infiltration,
metabolism, multiplex immunohistochemistry
INTRODUCTION

Cervical cancer (CC) is the fourth commonmalignant disease for
female with an estimated 604,000 new cases and 342,000 deaths
worldwide in 2020 (1). Cervical squamous cell carcinoma
(CSCC) and adenocarcinoma are the most common
pathological types accounting for approximately 70% and 25%
of all CC, respectively (2). Among them, CSCC is mainly related
to human papillomavirus (HPV) 16 subtype infection and viral
gene integration, whereas adenocarcinoma is often complicated
with HPV18 infection (3). Despite the substantial efforts being
made in promoting HPV vaccination and early screening, the
incidence of CC remains alarming in developing countries (2). In
fact, CC is the most frequently diagnosed female cancer in 23
countries according to the latest report (2). Current therapies for
CC including surgical treatment, chemotherapy, and
radiotherapy have greatly improved the clinical outcome of
CC; however, the therapeutic efficacy remains limited for
patients with advanced and distant conditions, which
estimated a median overall survival of 17 months and 5-year
survival of 17% (4, 5). Therefore, there is an urgent need for
developing novel therapeutic strategies that can effectively treat
these patients (6, 7).

Immunotherapy is one of such strategies that has become a
rapidly developing field for cancer treatment including cervical
cancer. Through replenishing a sufficient number of expanded
autologous T cells that can specifically kill cancer cells, adoptive
cell transfer (ACT) has shown great promise in treating CC
patients with advance diseases. Two major strategies of ACT,
tumor infiltrating lymphocyte (TIL) and T-cell receptor-
engineered T cell (TCR-T), were reported to have the objective
response rate (ORR) of 44.4% and 50% (8, 9), respectively.
Immune checkpoint inhibitors (ICBs), another type of
immunotherapy that target programmed death-1(PD-1)
receptor or ligand and cytotoxic T-lymphocyte-associated
protein 4 (CTLA4), have achieved great success in various
kinds of tumors. However, in several clinical trials for
advanced cervical cancer patients, the response rate to ICBs
was relatively low (10–13). Previous studies have shown that
multiple factors are correlated with the efficacy of ICB therapy.
Among them, more immune cell infiltration, especially the
density and localization of CD8+ T cells in the tumor immune
microenvironment (TIME) has been demonstrated to be
correlated with a favorable response to ICBs in various cancer
types (14, 15). However, the prognostic value and underlying
molecular mechanism of immune infiltration in CC with or
without immunotherapy remain less characterized.
27
Here, we utilized the RNA-seq data of CSCC patients from
The Cancer Genome Atlas (TCGA) database for the sake of
finding biomarkers related to prognosis and immune cell
infiltration. To this end, we used two immune scoring
algorithms to divide them into two groups with high- and low-
immune infiltration. By applying weighted gene co-expression
network analysis (WGCNA) and differentially expressed gene
(DEG) analysis, phospholipase A2 Group IID (PLA2G2D), an
immune- and metabolism-associated molecule, was identified to
be the biomarker which is predictive for patient prognosis and
immune cell infiltration of CC. Furthermore, five immune-
related genes (i.e., SLAMF6, SLAMF1, SH2D1A, TRAT1, and
ZNF831) were found to be co-expressed with PLA2G2D. In
addition, PLA2G2D expression was also found to be positively
correlated with the expression of multiple ICP genes. Finally,
through a series of bioinformatics analysis and experimental
verification approaches at both the transcriptional and protein
levels, we proved that PLA2G2D could be a novel biomarker
correlating with immune infiltration, especially CD8+ T cells,
in CSCC.
MATERIALS AND METHODS

Data Source and Processing
The Cancer Genome Atlas (TCGA) CSCC RNA-seq gene
expression matrix based on Illumina platform and phenotype
data were downloaded from UCSC Xena (https://xenabrowser.
net/datapages/). Two hundred fifty CSCC patients were selected
for subsequent analysis according to pathological diagnosis of
squamous cell carcinoma. Two types of data including raw
counts and fragments per kilo base per million mapped
(FPKM) reads were applied. FPKM data were converted to
transcripts per kilobase of per million mapped (TPM) data. In
addition, the validation cohort dataset also based on Illumina
high-throughput platform was downloaded from The Cancer
Genome Characterization Initiative (CGCI) database (16). RNA-
seq data from two immunotherapy cohorts for melanoma (17)
and urothelial cancer (18) were downloaded from a public
database. The gene names of all expression matrix were de-
annotated through “ClusterProfiler” and “org.Hs.eg.db” package
based on R language (V4.1.1) (19).

Estimation of Tumor Immune Infiltration
and Cytolytic Activity Score
The Microenvironment Cell Populations-counter (MCP-
counter) algorithm was applied to score the level of immune
October 2021 | Volume 11 | Article 755668
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cell infiltration in tumor, based on which samples were classified
into high- and low-immune infiltration groups using the
hierarchical clustering method (20). Alternatively, the level of
immune and stromal fraction was scored by Estimation of
Stromal Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) based on log2-transformed TPM
data, and samples were further divided into high- and low-
immune infiltration groups equally with the cutoff score set at
median (21). In addition, EPIC (22) and quanTIseq (23)
algorithm were also utilized to calculate immune cell
proportion through TPM expression matrix. CYT score was
calculated by the log-transformed geometric mean of GZMA and
PRF1 TPM value (24).

Gene Screening by WGCNA
The log2-transformed TPM value expression matrix was put into
WGCNA R package to select immune-associated genes (25).
Firstly, 12,417 genes with coefficient of variation (CV) >0.5 were
selected for further analysis by WGCNA R package. Of note, five
samples were excluded for the abnormal height value in sample
dendrogram analysis. The power of b value was set at 3 to
construct the topological overlap matrix (TOM). Next, we set the
minimummodule gene size at 30 and generated 63 gene modules
with different colors based on hierarchical clustering method,
then merged multiple similar gene modules into one. Finally, the
correlation between gene modules and traits was calculated to
determine the most relevant module and WGCNA filtered genes
were screened by setting the standard of module membership
(MM) >0.8 and gene significance (GS) >0.5. Genes network was
constructed by Cytoscape (V3.8.0) based on the genes with
weight value >0.20 (26).
DIFFERENTIALLY EXPRESSED GENE
ANALYSIS AND PATHWAYS
ENRICHMENT ANALYSIS

In order to determine the DEGs between the high- and low-
immune infiltration groups, the raw read count matrix of 250
CSCC patients from TCGA database was brought into DESeq2
(27). Genes with |Log2(FoldChange)| >1 and adjusted
P-value <0.01 were considered as DEGs. ClusterProfiler R
package was used to perform Gene Ontology (GO) term
enrichment analysis for biological pathway. CGCI data matrix
was imported into GSEA software (V4.1.0) for gene set
enrichment analysis using the Hallmark gene sets database.

Tissue Collection and Processing
Tumor samples from 18 CSCC patients were collected in Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology. No patient received radiotherapy and
chemotherapy before tissue collection. Each tissue was divided
into two parts for RNA extraction and formalin-fixed and
paraffin-embedded (FFPE), respectively. FFPE tissues were cut
into 4-mm-thick sections on slides. This research was approved
by the Ethical Committee of Tongji Hospital, Tongji Medical
Frontiers in Oncology | www.frontiersin.org 38
College, Huazhong University of Science and Technology
(approval number: TJ-IRB2021207).

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted and dissolved by RNA Isolation Kit
(Vazyme, RC-112-01). cDNA library was obtained using a
quantitative real-time reverse transcription-polymerase chain
reaction (qRT-PCR) reagent kit (Vazyme, R223-01). The qRT-
PCR reaction system contained 1 mg cDNA, 0.4 ml forward
primer, 0.4 ml reverse primer, 8.2 ml H2O, and 10 ml 2× ChamQ
Universal SYBR qPCR Master Mix (Vazyme, R223-01). GAPDH
was set as internal control for gene quantification. The
expression level of each gene was detected at least three times.
The primer sequences are listed in Supplementary Table 1.

Multiplex Immunohistochemistry
All FFPE slides were deparaffinized by dipping in xylene for 1 h
and then rehydrated using the gradient ethanol method. After
deparaffinization and rehydration, all slides were put into boiled
AR6 retrieval solution for heat-induced epitope retrieval in a
microwave for 15 min. Endogenous peroxidase was eliminated
with 3% H2O2 for 15 min. Slides were cooled to room
temperature followed by washing with 1× Tris-buffered saline-
Tween 20 (TBST) buffer. Then, Opal 7-color manual IHC kit
(Akoya Biosciences, NEL811001KT) was used to stain several
markers in a single FFPE slide. To block non-specific protein
binding sites, slides were incubated with blocking buffer
(Antgene, ANT041) at room temperature for 10 min.
Subsequently, FFPE tissue slides were incubated with primary
antibody at 37°C for 30 min or 4°C overnight, HRP-labeled
secondary antibody for 10 min, and Opal fluorescein for 10 min,
successively. To stain four markers in a single slide, four rounds
of the above staining procedure were performed with indicated
primary antibody and matched Opal fluorescein pairs
(Supplementary Table 2). The slides were always washed three
times between each step with 1× TBST buffer. After four rounds,
samples were stained for cellular DNA with 4′,6-diamidino-2-
phenylindole (DAPI) (1:10, Servicebio, G1012-10ML) for 10 min
followed by mounting with Fluoromount-G (SouthernBiotech,
0100-01) and preserved in the dark at 4°C. All slides were
scanned by Verctra V3.0 System, and ×4 and ×20 objective
lens were used to acquire low-power and high-power images,
respectively. Images were analyzed with Phenochart V1.0
software and inForm V2.4 software for tissue component
segmentation of tumor, stroma, and glass regions, respectively.
To identify cell phenotypes, a threshold of fluorescein intensity
was set for each marker. The ratio of the targeted cell counts and
all cell counts in a certain region was used to calculate the
percentage of immune cells in each region. The ratio of cell
counts and area (cell/mm2) was utilized to reveal the density of a
certain cell population.

Survival Analysis and Statistical Analysis
Survival information of TCGA CSCC patients was downloaded
from the UCSC Xena database. Patients who survived less than
30 days were excluded from this analysis. Kaplan–Meier survival
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analysis was applied to educe the correlation between 5-year
overall survival and the expression level of indicated genes.
Based on the relationship with survival time, survival status,
and minus PLA2G2D TPM value, ROC curve analysis was
applied by survivalROC R package. Statistical analysis was
performed with R statistical package. Wilcoxon rank-sum
test was employed for comparison between two groups.
P-values <0.05 were considered significant: *P < 0.05,
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
RESULTS

Classification of CSCC by Immune
Cell Infiltration
The RNA-seq data and clinical information of a CSCC cohort
including 250 patients were downloaded from TCGA database
for bioinformatics analysis. Firstly, the MCP-counter, a widely
used algorithm, was used to evaluate the level of immune
infiltration for each sample, according to which CSCC patients
were divided into high- and low-immune infiltration clusters
based on the unsupervised stratification method (Figure 1A).
Subsequently, the 5-year overall survival of the high- and low-
immune infiltration groups was compared. The results
demonstrated that the high-immune infiltration cluster
determined by the MCP-counter had significantly higher
survival than the low-immune infiltration cluster in CSCC
(Figure 1B). Next, ESTIMATE, another algorithm which can
similarly stratify CSCC patients into high- and low-immune
Frontiers in Oncology | www.frontiersin.org 49
fraction clusters by a median cutoff (Figure 1C), was chosen to
verify this finding. Again, the high-immune infiltration cluster
classified by ESTIMATE was found to have higher survival than
the low-immune infiltration cluster in CSCC (Figure 1D). Of
note, ESTIMATE can also classify CSCC patients into high- and
low-stromal fraction clusters (Figure 1C). However, no
difference was found between the two stromal fraction-
stratified clusters in terms of patient survival (Figure 1E,
P = 0.22). Together, our results demonstrated that immune
infiltration, but not stromal fraction, was correlated with
patient survival in CSCC. Moreover, the other two algorithms,
EPIC and quanTIseq, were used to calculate several immune cell
proportions compared with the MCP-counter and ESTIMATE.
Moreover, the immune cell infiltration results of EPIC and
quanTIseq were consistent with the MCP-counter and
ESTIMATE (Figure S1).
Construction of Weighted Gene
Co-Expression Network and Genes
Filtering Analysis
CSCC RNA-seq data from TCGA was imported into WGCNA R
package to identify gene modules containing similarly expressed
genes, especially immune-related genes. Sample clustering and
trait distribution are shown in Figure 2A. Power value was set at
b = 3 to build a scale-free network (Figure 2B). Gene modules
were calculated and the cutoff height was set at 0.5 to merge
similar gene modules into one (Figure 2C). This analysis resulted
in 63 merged dynamic gene modules with each module
A B

D E

C

FIGURE 1 | Immune classification and survival analysis of 250 CSCC patients selected from TCGA database. (A) Heatmap of TME composition as defined by
the MCP-counter algorithm. (B) Kaplan–Meier survival curve for immune infiltration-high and infiltration-low groups determined by the MCP-counter. (C) Heatmap
showing immune and stromal fraction by the ESTIMATE algorithm. (D, E) Kaplan–Meier survival curve for patients with high and low fractions of immune cells and
stromal cells classified by the ESTIMATE algorithm.
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containing dozens to more than a thousand genes (Figure 2D,
Supplementary Table 3).

In order to identify immune-related modules and genes, we
constructed the relationship between gene modules and immune
infiltration traits (Figure 3A). We focused on the brown module
which was most relevant to immune infiltration or immune
fraction determined by the MCP-counter and ESTIMATE,
respectively. To further identify genes in the brown module
that are most correlated with the MCP-counter immune
infiltration and ESTIMATE immune fraction, the screening
criteria of MM >0.8 and GS >0.5 were applied, through which
77 genes (brown module vs. MCP-counter immune infiltration)
and 73 genes (brown module vs. ESTIMATE immune fraction)
were filtered (Figures 3B, C). Next, Venn plot was used to reveal
the overlapped filtered genes of these two groups. As shown in
Figure 3D, all 73 brown module genes contained in the
ESTIMATE high-immune fraction group were found to be
presented in the MCP-counter high-immune infiltration group
as well. Finally, GO pathways enrichment analysis for the shared
73 WGCNA genes showed that these genes were mostly involved
in immune-associated pathways, such as T-cell activation,
lymphocyte differentiation, and regulation of T-cell
activation (Figure 3E).

PLA2G2D Is Positively Correlated With
Immune infiltration and Patient Survival
To further explore hub genes from these 73 genes, DEG analysis
was performed using DESeq2 R package. DEGs were determined
between the high- and low-immune infiltration groups
determined by the MCP-counter, through which 968
upregulated genes and 323 downregulated genes were found in
the high- and low-immune infiltration groups, respectively
Frontiers in Oncology | www.frontiersin.org 510
(Figure 4A). Similarly, 1,060 upregulated genes and 650
downregulated genes were found in the high- and low-immune
fraction groups determined by ESTIMATE, respectively
(Figure 4B). Interestingly, all 73 WGCNA filtered genes were
presented in these two upregulated gene sets. Notably,
PLA2G2D, a metabolism-related gene, was identified as the
most differentially expressed gene among the 73 genes, as
determined by the log2 (FoldChange) value of these genes
(Table 1 and Figures 4A, B).

Next, we sought to identify the genes that were co-expressed
with PLA2G2D. The co-expression network between PLA2G2D
and other genes was constructed by using the criteria of
weight >0.20 (Figure 4C and Table 2). To gain insight into the
function of these co-expressed genes, GO analysis of the biological
process was conducted and the most co-expressed genes were
enriched in immune-related pathways (Figure 4D). Of note,
several genes with weight >0.3 including SLAMF6, SLAMF1,
SH2D1A, TRAT1, and ZNF831 were most co-expressed with
PLA2G2D (Figure 4E). Importantly, Kaplan–Meier survival
curve analysis showed that the expression level of PLA2G2D was
positively correlated with patient survival (Figure 4F,
P = 0.00017). Finally, ROC curve was constructed to
demonstrate the prognostic ability of PLA2G2D in TCGA-CSCC
cohort. The AUCs of PLA2G2D TPM minus value for 2, 3, and
5 years were 0.773, 0.683, and 0.639, respectively (Figure 4G).

Bioinformatic Validation Using Data From
the CGCI Database and PCR Validation
Using Tumor Tissues
To validate the correlation between overexpressed PLA2G2D and
more immune cell infiltration demonstrated in Figure 1, we
analyzed RNA-seq data of CSCC from the CGCI database that
A B

DC

FIGURE 2 | Gene modules construction by weighted gene co-expression network analysis (WGCNA). (A) Sample dendrogram and trait heatmap. (B) The
relationship of soft threshold with scale independence and mean connectivity. (C) Clustering of module eigengenes, height set at 0.5 to merge modules. (D) Cluster
dendrogram showing the hierarchical cluster tree for the identified co-expression gene modules with different colors.
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was also sequenced on an Illumina high-throughput sequence
platform. The immune characteristics of patients in the
PLA2G2D high- and low-expression clusters are illustrated in
Figure 5A by the analysis with the four algorithms.
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Overexpressed PLA2G2D was bound up with more immune
cell infiltration such as T cells, B cells, NK cells, and myeloid
dendritic cells (Figure 5B). Similarly, ImmuneScore,
StromalScore, and ESTIMATEScore were higher in the
A B

D E

C

FIGURE 3 | Key modules and genes identified based on module–trait relationship. (A) The relationship between co-expression modules and traits; each grid
includes the degree of correlation and P-value. (B, C) Scatter plots showing the relationship of module membership (MM) in brown module, with gene significance
(GS) for high-immune infiltration determined by the MCP-counter and ESTIMTE algorithms, for which MM >0.8 and GS >0.5 were set as gene filtered standard,
respectively. (D) Venn plot showing common filtered genes identified in the high-immune infiltration groups determined by the MCP-counter and ESTIMATE.
(E) GO analysis for WGCNA filtered genes in the biological process.
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PLA2G2D high-expression cluster than in the PLA2G2D low-
expression cluster (Figure 5C). CD8+ T cells, macrophages, and
B cells were also higher in the PLA2G2D-high group based on
quanTIseq and EPIC algorithms (Figure 5D). GSEA analysis
showed that the PLA2G2D high-expression cluster was
enriched in several immune-associated pathways such as
allograft rejection, interferon gamma response, interferon
alpha response, complement, and oxidative phosphorylation
pathways (Figure S2A), whereas PLA2G2D low-expression
cluster was enriched in hypoxia, apical junction, glycolysis,
mitotic spindle, and angiogenesis pathways (Figure S2B). We
also validated whether PLA2G2D was co-expressed with other
genes as indicated by the aforementioned WGCNA analysis.
Frontiers in Oncology | www.frontiersin.org 712
Our analysis demonstrated that the expression level of
PLA2G2D was also positively associated with SLAMF6,
SLAMF1, SH2D1A, TRAT1, and ZNF831 when the CGCI
database was used (Figure 5E). To further validate these
results using fresh-isolated clinical samples, 18 cervical
squamous carcinoma samples were collected and the
corresponding clinical data are shown in Table 3. Total RNA
per sample was isolated and qRT-PCR was performed to
examine the gene expression levels of PLA2G2D and other
five genes (Table 4). Our cohort was classified into PLA2G2D
high- and low-expression groups according to the median
expression level of PLA2G2D. Similarly, the expression levels
of four immune-related genes were significantly higher in the
A B

D
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C

FIGURE 4 | The expression of PLA2G2D is positively correlated with immune infiltration and patient survival. Volcano plot for DEGs identified for high- and low-
immune infiltration groups based on the MCP-counter (A) and ESTIMATE (B). The green and red dots represented the significantly downregulated and upregulated
genes, respectively, and the gray dots represented the undifferentiated genes; the purple dots showed the WGCNA filtered genes, with |Log2(FoldChange)| >1 and
adjusted P-value <0.01. (C) Cytoscape network plot showed the relationship between PLA2G2D and other co-expressed genes with weight value >0.2. The purple
nodes showing the co-expressed genes with weight value >0.3. (D) GO pathways enrichment analysis for genes co-expressed with PLA2G2D. (E) Histogram
showing the relationship between the expression levels of PLA2G2D and other five co-expressed genes, ****P < 0.0001. (F) Kaplan–Meier survival curve plot
showing the relationship between PLA2G2D expression level and patient survival. (G) Time-dependent ROC curve analysis for minus PLA2G2D TPM value at 2-, 3-,
and 5-year cutoffs.
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PLA2G2D high-expression group, except for ZNF831, which
could hardly be detected by qRT-PCR in both groups
(Figure 5F and Table 4).

More Immune Cell Infiltration Determined
by Multiplex Immunohistochemistry in
PLA2G2D High-Expression Samples
Next, the multiplex immunohistochemistry (mIHC) method
was performed to validate whether immune cell infiltration was
correlated with PLA2G2D expression in our cohort of 18 CSCC
clinical samples. As our aforementioned bioinformatic analysis
indicated that T cells and macrophages were the most prevalent
cells among the infiltrated immune cells positively correlated
with PLA2G2D expression, and previous studies have shown
Frontiers in Oncology | www.frontiersin.org 813
that the number and percentage of T cells and macrophages
were more than the other kind of immune cells in cervical
cancer (28, 29), we chose these two cells along with tumor cells
to determine the percentage and density of individual immune
cell populations in each slide. For this purpose, the mIHC panel
(Supplementary Table 2) was designed to simultaneously stain
several markers including CD3 (for all T cells), CD8 (for
cytotoxic T cells), CD68 (for macrophages), PCK (for tumor
cells), and DAPI (for nucleic identification). Of note,
CD3+CD8− TILs were defined as CD4+ TILs. Our results
indicated that CD3+ T cells, including both CD4+ and CD8+

TILs, and CD68+ macrophages were more abundant in the
PLA2G2D-high group than in the PLA2G2D-low group, as
shown by representative merged images at low magnification
TABLE 1 | Top 20 WGCNA filtered genes determined by DEG analysis of high- and low-immune infiltration groups classified by the MCP-counter and ESTIMATE algorithms.

Order Genes MCP-counter immune high vs. low Genes ESTIMATE immune high vs. low

Log2FoldChange Padj Log2FoldChange Padj

1 PLA2G2D 3.120339747 2.46E-32 PLA2G2D 3.129951852 3.07E-33
2 GZMK 2.633961849 6.52E-46 CRTAM 2.594071877 3.75E-59
3 TRAT1 2.565309728 8.77E-53 TRAT1 2.543058375 7.56E-53
4 CRTAM 2.493534917 1.38E-50 GZMK 2.526206854 1.77E-41
5 SCML4 2.461018797 1.85E-48 SH2D1A 2.46209327 2.63E-65
6 GPR174 2.451822301 5.68E-48 SCML4 2.456859681 1.78E-49
7 ZNF831 2.379191341 4.28E-49 LINC01857 2.45160968 1.25E-36
8 LINC00861 2.373752175 1.36E-41 SIRPG 2.414521914 1.33E-64
9 SLAMF6 2.370123928 2.92E-60 FCRL3 2.36471631 1.57E-43
10 GPR171 2.345873252 6.25E-49 TBX21 2.359189375 9.61E-61
11 SH2D1A 2.329233049 1.14E-52 SLAMF6 2.334677345 2.09E-59
12 LY9 2.298409977 2.26E-47 LY9 2.327353913 1.71E-50
13 SIRPG 2.296040614 5.79E-53 TLR8 2.325276706 5.66E-45
14 TBX21 2.2919668 1.58E-53 TIFAB 2.310890798 6.39E-41
15 FCRL6 2.28625033 9.57E-45 LINC00861 2.299844149 8.68E-39
16 TTC24 2.274489399 3.53E-40 CD3G 2.277158384 2.71E-61
17 CD3G 2.254820652 2.70E-57 SP140 2.272328994 4.91E-79
18 EOMES 2.21785005 9.37E-36 ZNF831 2.271868811 1.21E-43
19 FCRL3 2.206529839 7.39E-35 GPR174 2.269780489 3.33E-39
20 LINC01857 2.184645997 2.81E-26 LINC00426 2.223943929 5.04E-61
October 2021 | Volume 11 | Ar
TABLE 2 | List of genes co-expressed with PLA2G2D with weight value >0.20.

PLA2G2D co-expressed genes Weight PLA2G2D co-expressed genes Weight

SLAMF6 0.316522209 TLR8 0.224623497
SH2D1A 0.313611578 ZC3H12D 0.218210964
TRAT1 0.308061949 TIFAB 0.218179744
ZNF831 0.306000355 SIGLEC8 0.217411803
SLAMF1 0.300894868 SLFN12L 0.215513035
TESPA1 0.295561708 TTC24 0.214768858
PYHIN1 0.29293532 TNFRSF13B 0.213697367
WDFY4 0.279759397 TIMD4 0.211705633
UBASH3A 0.274771647 TCL1A 0.211489274
SAMD3 0.270901098 PTCRA 0.208689904
SCML4 0.270390467 TARP 0.208642553
PRKCB 0.26625189 TMEM156 0.207822287
SIRPG 0.262965895 ZNF80 0.206555702
TFEC 0.260430877 TMEM150B 0.20555541
TBX21 0.25827151 STAP1 0.204952535
SP140 0.256619486 RAB37 0.204841733
TRG-AS1 0.250638121 TNFRSF17 0.203896246
TNFSF8 0.246175611 SCUBE1 0.203302527
SCIMP 0.240444493 SIGLEC7 0.200210069
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(Figures 6A, D) and high magnification (Figures 6B, E) and by
single spectrum images for each marker (Figures 6C, F). After
comparing PLA2G2D-high and PLA2G2D-low groups for the
Frontiers in Oncology | www.frontiersin.org 914
compositions of individual cell populations in different
regions (Figure 7A) and the percentages of individual cell
populations in each sample (Figure S3), we found that the
percentage values of CD3+ TILs, CD8+ TILs, and macrophages in
the stromal region and all regions of thePLA2G2D high-expression
group were significantly higher compared with that of the
PLA2G2D low-expression group (Figure 7B). Importantly, in the
tumor region, CD8+ TILs were the only cell population that were
more frequently observed in the PLA2G2D high-expression
group (Figure 7B).

Next, cell density (cell counts/mm2 area) was analyzed in the
tumor and stromal region, respectively. Similar to the
comparison of cell percentage, cell densities of CD3+ TILs,
CD8+ TILs, and macrophages were significantly higher in the
stromal region of the PLA2G2D high-expression group than
those of the PLA2G2D low-expression group. Moreover, in the
tumor region, only CD8+ TIL density in the PLA2G2D high-
expression group was higher compared with that in the
PLA2G2D low-expression group (Figure 7C).
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FIGURE 5 | Further validation of the relationship between PLA2G2D expression and immune infiltration. (A) Heatmap for PLA2G2D high- and low-expression
groups based on the MCP-counter, ESTIMATE, EPIC, and quanTIseq algorithms using data from the CGCI database. (B) Violin plot showing the differential scores of
six immune cell types determined by the MCP-counter algorithm. (C) Violin plot showing the differential StromalScore, ImmuneScore, and ESTIMATEScore
determined by the ESTIMATE algorithm. (D) Violin plot showing the differential immune cell types determined by quanTIseq and EPIC algorithms. (E, F) Histograms
showing the relationship between the expression levels of PLA2G2D and WGCNA filtered five co-expressed genes using data from the CGCI database (D) and
freshly isolated clinical samples (E). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
TABLE 3 | Clinical characteristics of patients from our CSCC cohort.

Classification Total Low PLA2G2D
expression

High PLA2G2D
expression

Age
<40 3 2 1
40–49 8 5 3
≥50 7 2 5
FIGO stage
I–IIA 10 6 4
IIB–IV 8 3 5
Vascular invasion
Positive 6 4 2
Negative 12 5 7
Lymphatic metastasis
Positive 8 3 5
Negative 10 6 4
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TABLE 4 | qRT-PCR DCT value of PLA2G2D and other five co-expressed genes.

Samples Genes PLA2G2D group

SLAMF6 SLAMF1 SH2D1A TRAT1 ZNF831 PLA2G2D

SCC11 16.24 16.25 16.25 15.5 20.23 20.06 Low
SCC5 10.59 11.81 10.48 10.78 19.92 15.8 Low
SCC4 10.24 12.03 10.47 9.93 19 14.61 Low
SCC17 11.46 11.97 10.33 10.05 21.07 13.19 Low
SCC6 9.5 11.68 9.89 9.58 18.09 13.15 Low
SCC10 10.55 11.59 10.23 9.28 19.01 12.99 Low
SCC9 9.88 10.95 9.57 9.57 19.72 12.62 Low
SCC1 9.75 11.23 9.34 8.78 18.81 12.39 Low
SCC7 10.15 11.59 10.04 9.81 17.72 12.09 Low
SCC2 10.44 11.47 9.3 8.97 19.58 11.87 High
SCC18 9.48 10.78 7.89 7.82 19.14 11.8 High
SCC15 10.08 10.74 8.79 8.85 17.65 11.69 High
SCC3 8.84 10.11 7.67 7.53 19.53 11.11 High
SCC16 8.77 9.89 8.64 8.32 18.3 11.1 High
SCC14 8.09 10.35 8.11 7.22 16.35 10.72 High
SCC13 8.45 9.15 7.41 7.39 18.16 10.23 High
SCC8 7.91 11.25 7.06 6.22 16.8 9.99 High
SCC12 7.36 9.31 6.31 5.81 17.32 9.54 High
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FIGURE 6 | mIHC staining for CD3, CD8, CD68, PCK, and DAPI in cervical squamous cancer specimens with high (A–C) and low expression (D–F) of the
PLA2G2D gene. (A, D) Merged mIHC images at low magnification (×4). (B, E) Merged mIHC images at high magnification (×20) indicating the same filed in
(A, D). (C, F) Single spectral images indicating the same filed in (B, E).
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Tumor-resident macrophages were previously considered
as a major cell population in suppressing the function of
cytotoxic T cells and were reported to be associated with
poor prognosis of cancer (30). Therefore, we assessed the
CD8/CD68 ratio between these two groups. The ratio was
higher in all areas in the PLA2G2D high-expression
group (Figure 7D).

Positive Correlation Between the
Expression of PLA2G2D and ICPs
The expression of immune checkpoint genes [e.g., PDCD1
(PD1), CD274 (PDL1), CTLA4, LAG3, and HAVCR2 (TIM3)]
has been utilized in predicting the response of patients to ICB
therapy in a variety of cancers including CC. To evaluate the
Frontiers in Oncology | www.frontiersin.org 1116
possible relationship between the expression of PLA2G2D and
these ICPs, correlation analysis was performed using
transcriptomic data from TCGA database. Our analysis
indicated that the expression of ICP genes was significantly
higher in the PLA2G2D high-expression group compared with
that in the PLA2G2D low-expression group. Through Pearson
correlation analysis, we found that these common ICP genes
were positively correlated with PLA2G2D expression
(Figures 8A, C). Similar findings were noted when using the
CGCI validation cohort except for CD274, the expression of
which was comparable in the PLA2G2D low-expression and
high-expression groups and was not correlated with the
expression of PLA2G2D. This discrepancy may be attributable
to the small sample size in this cohort (Figures 8B, D).
A

B

DC

FIGURE 7 | Statistical analysis for mIHC staining. (A) Pie plots showing the composition of immune cells within different regions in PLA2G2D high- and low-
expression groups. (B) Histograms showing the comparison of the percentage of individual immune cell populations between PLA2G2D high- and low- expression
groups in different regions. (C) Histograms showing the comparison of the density of individual immune cell populations between PLA2G2D high- and low-
expression groups in different regions. (D) Histogram showing the comparison of the CD8/CD68 ratio between PLA2G2D high- and low-expression groups in
different regions. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Positive Correlation Between the
Expression of PLA2G2D and the Response
to ICB Therapy in Immunotherapy Cohorts
ICB therapy has been performed in patients with advanced
cervical cancer, but transcriptional data for these cohorts are
not accessible. To validate the relationship between PLA2G2D
and the response to ICB treatment, we analyzed the
transcriptome data from immunotherapy cohorts of melanoma
and urothelial carcinoma. In the melanoma anti-PD1 therapy
cohort, we selected patients who have not previously received
immunotherapy for enrollment analysis and divided them based
on PLA2G2D expression at pretreatment stage. The percentage
of compete response or partial response (CR/PR) was higher in
PLA2G2D-high patients (Figure 9A). PLA2G2D expression level
of CR/PR patients also showed a higher tendency compared with
stable disease (SD) and progressive disease (PD) patients;
however, these differences failed to reach statistical significance
(Figure 9B). In this cohort, 9 and 10 pairs of pre- and on-
treatment patients were assigned to the PLA2G2D-high and
PLA2G2D-low cluster, respectively. Before ICB therapy,
PLA2G2D-high patients show higher ICP expression and CYT
score (Figures 9C–E). Interestingly, after ICB therapy,
PLA2G2D-high patients also have higher ICP expression and
CYT score (Figures 9C, F, G). Importantly, compared with
pretreatment patients, on-treatment patients have stronger
Frontiers in Oncology | www.frontiersin.org 1217
cytotoxicity and higher ICP expression after anti-PD-1 therapy
regardless of PLA2G2D-high or PLA2G2D-low groups
(Figure 9C). Furthermore, in the urothelial carcinoma anti-
PDL1 therapy cohort, the percentage of CR/PR patients was
higher in PLA2G2D-high patients, which is similar to that in
melanoma immunotherapy cohort (Figure 9H). CR/PR patients
showed a higher tendency of PLA2G2D expression level than SD
and PD patients (Figure 9I). Unfortunately, only pretreatment
transcriptome data are available for this cohort, thus preventing
us from performing similar analysis for on-treatment data.
Nevertheless, PLA2G2D-high expression was also accompanied
by high expression of ICPs despite no statistical significance
(Figures 9J, K), while expression level of cytotoxicity markers
(GZMA and PRF1) and the CYT score were significantly higher
in the PLA2G2D-high group (Figures 9J–L).
DISCUSSION

The tumor microenvironment (TME) is a complex milieu that
comprises diverse cell populations including malignant cells,
immune cells, stromal cells, and other cell types (31). Each cell
population can impact others through releasing soluble
molecules and/or by direct cell–cell interaction. As a crucial
part of the tumor microenvironment, TIME plays a pivotal role
A B

DC

FIGURE 8 | Correlation of the expression level of PLA2G2D and ICPs. Histograms showing the comparison of ICP expression level between PLA2G2D-high and
PLA2G2D-low groups in TCGA (A) and CGCI database (C). Pearson correlation analysis for the expression level of PLA2G2D and ICPs in TCGA (B) and CGCI
(D) database. *P < 0.05, **P < 0.01, and ****P < 0.0001.
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in tumorigenesis and the clinical outcomes of cancer patients
(32). Accumulating lines of evidence have suggested that a
certain type of TIME characterized by more immune cell
infiltration is indicative of a better prognosis and a favorable
response to ICBs (15, 33). Furthermore, several factors from
tumor cells themselves, immune cells, and stromal cells were
reported to be implicated in shaping the landscape of TIME (34–
36). However, for CSCC, the connection between TIME
(especially immune infiltration) and cancer prognosis and the
possible underpinning molecular mechanism are far from
elucidated. This limitation greatly prevents the identification of
Frontiers in Oncology | www.frontiersin.org 1318
new therapeutic targets that can be utilized to improve patient
prognosis through transforming the TIME with poor-immune
infiltration to high-immune infiltration. Therefore, this study
was designed to address this issue. Through bioinformatics
analyses, we identified a key immune- and metabolism-
associated molecule PLA2G2D that was significantly related
to better prognosis of CSCC patients and more immune
cell infiltration.

Metabolism-associated molecules are critical components
of TIME (37). Metabolic reprograming of tumor cells may
promote tumor growth and metastasis directly or indirectly
A

B

D E F G

I

H J
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FIGURE 9 | Correlation of the expression level of PLA2G2D and response to ICB treatment in melanoma (A–G) and urothelial carcinoma immunotherapy cohorts
(H–L). (A, B) Bar and boxplot for the relationship between PLA2G2D expression and response to ICB treatment in melanoma cohort. (C) Heatmap of the
relationship of ICPs, cytotoxic genes, and CYT score with different PLA2G2D expression levels and response to treatment in paired pre- and on-treatment patients.
Boxplots showing the differential expression of ICPs, cytotoxic genes, and CYT scores between patients with different PLA2G2D expression levels before ICB
therapy (D, E) and after ICB therapy (F, G). (H, I) Bar and boxplot for the relationship between PLA2G2D expression and response to ICB treatment in urothelial
carcinoma cohort. (J) Heatmap of the relationship of ICPs, cytotoxic genes, and CYT score with different PLA2G2D expression levels. (K, L) Boxplots showing the
differential expression of ICPs, cytotoxic genes, and CYT score between patients with different PLA2G2D expression levels. *P < 0.05, **P < 0.01, and ***P < 0.001.
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through influencing the functions of a variety of immune cells,
especially T cells (38–40), and the shape of TIME. Phospholipase
A2 (PLA2) proteins are a group of lipid metabolism-associated
molecules that can catalyze the hydrolysis of the sn-2 position of
membrane glycerophospholipids to release unsaturated fatty acid
and lysophospholipid, thereby playing a pivotal role in multiple
biochemical processes including inflammatory response. While
both cytosolic and secreted forms of PLA2 have been identified,
more than one-third of the PLA2 enzymes belong to the secreted
PLA2 (sPLA2) family, which have both pro- and anti-
inflammatory functions as a result of the production of diverse
lipid mediators (41, 42). As a member of sPLA2, group IID PLA2

(encoded by PLA2G2D), is broadly expressed in human body,
such as the spleen, lymph nodes, squamous epithelium, and
colorectal cancer tissue (43–45). In the current investigation,
PLA2G2D was also found to be expressed in CSCC specimens
at the transcriptional level (Figure 5E). Previous studies have also
shown that PLA2G2D was preferentially expressed in lymphoid
tissue-resident dendritic cells and macrophages and implicated in
anti-inflammation response in an array of inflammation-related
conditions including contact hypersensitivity (43), viral infection-
associated inflammation (46), experimental encephalomyelitis and
colitis (47), and contact dermatitis and psoriasis (48). The role of
Pla2g2d in cancer has been investigated as well. Using both
Pla2g2d-deficient and Pla2g2d-transgenic mouse models, Miki
et al. found that Pla2g2d could facilitate the development of
chemical-induced skin cancer accompanied by macrophage
polarization toward M2 phenotype and decreased number of
cytotoxic T cells (48). The cancer-promoting effect of PLA2G2D
has also been suggested in human. Recently, PLA2G2D was
identified as one of the high-risk genes for colorectal and rectum
adenocarcinoma that were negatively correlated with patient
survival. However, PLA2G2D expression was also found to be
positively correlated with immune infiltration and better
prognosis in head and neck squamous cell carcinoma and breast
cancer in human (49, 50), which is consistent with our current
findings in CSCC. The opposite effects of PLA2G2D in different
cancer types may result from the distinct microenvironments and
different downstream lipid mediators presented in each cancer
type, which in turn result in either an elevated or dampened
inflammatory responses, thereby leading to the distinct clinical
outcomes reported in these investigations (48).

In this study, the relationship between PLA2G2D
overexpression and more immune cell infiltration in CSCC was
validated through two approaches. Firstly, another dataset from
the CGCI database was used for validation at the transcriptional
level. Secondly, mIHC, a multispectral microscopy technique
that can reveal the TIME profile on FFPE slides, was applied to
determine the major immune cell populations infiltrated in
tumor including CD4+ T cells, CD8+ T cells, and macrophages,
which were subsequently used to confirm their relationship with
PLA2G2D expression. Our results demonstrated that PLA2G2D
high-expressed samples had more immune cells infiltrated in the
stroma region. More importantly, CD8+ TILs were the only cell
population that were more frequently found inside the tumor
region in PLA2G2D high-expressed samples, suggesting that
Frontiers in Oncology | www.frontiersin.org 1419
PLA2G2D could participate in the recruitment of CD8+ TILs
into the cancer nests, either directly or indirectly. The presence of
tumor-associated macrophages is often associated with
tumorigenesis, immune suppression, and poor prognosis of
patients (35, 51). Indeed, macrophages can directly suppress
CD8+ T-cell proliferation in vitro (30, 52–54). Therefore, we
compared the CD8/CD68 ratio between PLA2G2D-high and
PLA2G2D-low samples. Again, a significantly higher ratio of
CD8/CD68 was found in PLA2G2D-high samples compared
with that in PLA2G2D-low samples. Taken together, these
results not only confirmed the aforementioned relationship
between immune infiltration and PLA2G2D expression, but
also revealed the spatial characteristics of immune infiltration
in PLA2G2D-high samples.

The mechanism by which PLA2G2D affects immune
infiltration in CSCC is currently unclear, and lipid mediators
downstream of PLA2G2D might contribute. For example, the
enzyme activity of PLA2G2D could result in the production of
leukotriene B4, a potent chemotactic molecule with the capacity
to recruit neutrophils, monocytes/macrophages, CD8+ cytotoxic
T lymphocyte, and Th17 cells (55). However, molecules other
than these lipid mediators may be involved as well. To explore
the possible candidates, genes that co-expressed with PLA2G2D
were determined by WGCNA analysis, which resulted in the
identification of the top 5 genes, namely, SLAMF6, SLAMF1,
SH2D1A, TRAT1, and ZNF831. These genes were successfully
validated using another dataset from the CGCI database and
confirmed by qRT-PCR using fresh-isolated CSCC samples, with
the exception of ZNF831, the expression of which was extremely
low and no statistical significance was found between PLA2G2D-
high and PLA2G2D-low samples. It is noteworthy that these five
genes are all associated with immunity. SLAMF1 (CD150) and
SLAMF6 belong to the signaling lymphocytic activation molecule
(SLAM) family and express on several immune cells including T
cells, B cells, and NK cells (56). Previous studies have shown that
the expressions of SLAMF1 in cervical cancer and SLAMF6 in
liver cancer were closely related to tumor infiltration of immune
cells and patient prognosis (57, 58). The SH2D1A gene encodes
SH2 domain-containing protein 1A, which is often known as
SLAM-associated protein. SLAM can transduce the tyrosine
signaling pathway to promote interferon-g production in the
presence of SH2D1A (56, 59). TRAT1 encodes the tripartite
motif (TRIM) protein which is essential for T-cell activation and
positively correlated with the survival of patients with metastatic
melanoma (59). ZNF831 is a transcription factor gene and was
also significantly correlated with immune cell infiltration in triple
negative breast cancer (60). Together, in light of the role of the
aforementioned co-expressed genes in various immune-related
pathways, PLA2G2D may interact with these co-expressed genes
indirect ly or direct ly , thereby influencing immune
cell infiltration.

Immune cell infiltration, along with PDL1 expression and
tumor mutation burden (TMB), has been frequently used as
independent biomarkers in predicting the response of patients to
ICB therapy in multiple cancer types (61). Therefore, the positive
correlation between immune cell infiltration and the expression
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of PLA2G2D in CSCC identified in this study indicates that
PLA2G2D expression may also represent another predictive
biomarker for ICB in CSCC. In support of this notion, we found
that the levels of ICPgenes, another independent biomarker for ICB
therapy, were markedly higher in the PLA2G2D high-expression
group than those in the PLA2G2D low-expression group at the
transcriptional level. Furthermore, a positive correlation between
the expressionofPLA2G2D and ICPgeneswasnoted inbothTCGA
and CGCI cohorts. Finally, we directly examined the predictive
value ofPLA2G2D expression forpatient response to ICB therapy in
melanoma and urothelial carcinoma immunotherapy cohorts,
given the lack of transcriptional data in CSCC immunotherapy
cohorts. Before ICB therapy, PLA2G2D-high patients have higher
ICP expression and CYT score. After ICB therapy, the expression
level of ICPs and CYT score were further increased compared with
the pretreatment stage, as indicated by paired analysis. Hence,
PLA2G2D-high patients have higher cytotoxicity and favorable
response to ICB treatment. Taken together, PLA2G2D expression
may represent a novel biomarker with a better predictive power for
ICB therapy.

In conclusion, through integrating bioinformatics and
experimental verification, we demonstrated that the metabolic
molecule PLA2G2D was positively correlated with immune
infiltration and patient prognosis in CSCC, suggesting that
PLA2G2D could be a novel prognosis biomarker for CSCC
patients. Furthermore, PLA2G2D might be a promising
biomarker for the evaluation of immune infiltration situation
across different patients and represent another independent
predictive biomarker for ICB therapy in CSCC. However, the
underpinning mechanism regarding how PLA2G2D works in
TME is unclear and warrants further investigations.
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Supplementary Figure 1 | Similarity of MCP-counter, ESTIMATE, EPIC and
quanTIseq in characterizing immune infiltrations. Heatmap and boxplot showing the
similarity between MCP-counter, EPIC and quanTIseq (A, C). Heatmap and boxplot
showing the similarity between ESTIMATE, EPIC and quanTIseq (B, D). Pie plots
showing the percentage of several kinds of immune cells based on EPIC (E) and
quanTIseq (F) algorithms. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

Supplementary Figure 2 | GSEA analysis for RNA-seq data from the CGCI
database. (A) Several pathways enriched in PLA2G2D high-expression cluster.
(B) Several pathways enriched in PLA2G2D low-expression cluster.

Supplementary Figure 3 | Frequencies of the major cell populations for each
sample calculated by mIHC method. Composition of different kind of cells for each
sample in all region (A), stromal region (B) and tumor region (C).
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Metabolic reprogramming is one of the hallmarks of malignant tumors, which provides
energy and material basis for tumor rapid proliferation, immune escape, as well as
extensive invasion and metastasis. Blocking the energy and material supply of tumor
cells is one of the strategies to treat tumor, however tumor cell metabolic heterogeneity
prevents metabolic-based anti-cancer treatment. Therefore, searching for the key
metabolic factors that regulate cell cancerous change and tumor recurrence has
become a major challenge. Emerging technology––single-cell metabolomics is different
from the traditional metabolomics that obtains average information of a group of cells.
Single-cell metabolomics identifies the metabolites of single cells in different states by
mass spectrometry, and captures the molecular biological information of the energy and
substances synthesized in single cells, which provides more detailed information for tumor
treatment metabolic target screening. This review will combine the current research status
of tumor cell metabolism with the advantages of single-cell metabolomics technology, and
explore the role of single-cell sequencing technology in searching key factors regulating
tumor metabolism. The addition of single-cell technology will accelerate the development
of metabolism-based anti-cancer strategies, which may greatly improve the prognostic
survival rate of cancer patients.

Keywords: cancer metabolism, metabolic reprogramming, metabolic heterogeneity, single-cell metabolomics,
tumor drug resistance
BACKGROUND

Cancer is one of the top lethal factors, and cancer patients bear a heavy burden of life expectancy
globally. According to the latest data reported by World Health Organization’s International
Agency for Research on Cancer (IARC), up to 19.3 million new cancer cases and approximately 10.0
million cancer deaths occurred in 2020 worldwide (1). Therefore, the development of early
diagnosis and effective treatment of cancer is urgent.

One of the most significant features of cancer is metabolic reprogramming, and increasing
evidence suggests that dysregulated cell metabolite facilitates tumor initiation, progression,
metastasis, and drug resistance. In 1924, Otto Warburg firstly identified that cancer utilizes
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glycolysis instead of oxidative tricarboxylic acid cycle (TCA) to
provide energy, nucleotide, lipid, and amino acid for the growth
even under aerobic conditions (2). Later in 1975, Ambanelli
reported that malignant tumors exhibited congenital errors of
the degradation of tryptophan (3). Several years later, it was
found that glutamine is the most rapidly consumed amino acid
in proliferating Ehrlich ascites carcinomas and also a number of
hepatomas and carcinosarcomas (4). Therefore, understanding
metabolic alterations in cancer cells may give us a hint to
discover new therapeutic targets and facilitate oncology drug
research and development of cancer therapy. The idea of cancer
metabolism-based therapy has been raised for decades, but
significant side effects of antimetabolite drugs, which are
caused by destroying normal rapidly proliferating cells, made
them limited in preclinical studies (5). For instance, although
numerous preclinical studies have manifested the anti-
proliferative effects of 2-deoxyglucose (2-DG) (6), the usage of
2-DG was limited by its toxicity related to hypoglycemia
symptoms (7). Recent clinical trials have illustrated that lower
doses of 2-DG are insufficient to inhibit disease progression (8,
9). Moreover, although lactate dehydrogenase-A (LDH-A) was
frequently identified as an overexpression gene in human cancers
(10), none of the LDH-A inhibitors have reached clinical trials as
effective antimetabolite chemotherapy drugs, suggesting either
insufficient drug exposure, unacceptable toxicity (11), or a lack of
LDH-A dependence in human tumors. Similarly, two diabetes
therapeutic biguanide compounds metformin and phenformin
have been found to reduce tumor growth (12), however, in cells
lacking a functional LKB1 pathway, the biguanide drugs have
been demonstrated to result in rapid apoptosis (13).

In this scenario, would interfering cancer cell metabolism be
wrong? Looking back at previous studies, we found that on the one
hand, since multiple metabolic pathways altered in tumor cell, by
only interfering onemetabolite is not sufficient for cancer treatment.
On the other hand, some metabolic targets of cancer are also
essential for the normal cells growth, so it is very important to
control the dosage of tumor metabolism therapeutic drugs. In
addition, considering the traditional metabolomics analysis
method, the proposed therapeutic targets have been extracted
from the average information of a cell mixture. In reality, recent
research has confirmed that even from the same tissue, individuals
of the same group of cells are different because of cell heterogeneity.
Cell heterogeneity is particularly common in tumor tissues, as the
fact that some specific cells survived by altering their metabolism
after chemotherapy, therefore cancer may re-emerge years later (14,
15). And single-cell analysis can identify the intracellular
biochemical components and features, and at the same time can
study the relationship between metabolism and cell function, cell
development, and differentiation. Using this method, the
pathological mechanism of cells in disease states can be studied,
and it is also helpful for clinical diagnosis and prognosis (16, 17)
(Figure 1). In addition, this technology can also understand detailed
cell information and reduce the problems caused by statistics and
data processing in previous research methods.

In this paper, we summarized the research progression of
single-cell metabolomics analysis technology, mainly from two
aspects: (1) Research status of single cell metabolomics
Frontiers in Oncology | www.frontiersin.org 224
technology; and (2) Application of single cell metabolomics in
tumor research.
THE DEVELOPMENT OF SINGLE-CELL
METABOLOMICS TECHNIQUES

The first single-cell metabolomics was established by Kennedy and
Jorgenson. They used open tubular capillary chromatography to
analyze the amino acid composition of a snail single giant neuron
(Figure 2A) (18, 19). At the same time, Wallingford and Ewing
reported sampling the internal contents of a single giant neuron by
using a capillary (20). However, considering the different size and
volume between the giant neurons and normal cells, the method for
extraction of single cell metabolites needs to be suitable for different
cell sizes (21). Moreover, the metabolic pathways in cells can be
easily affected by both internal and external factors and are highly
dynamic, which is very different from the genome, transcriptome,
and proteome. Compared with single-cell genomics,
transcriptomics, and proteomics, single-cell metabolomics can
provide the most sensitive dynamic picture for understanding cell
functions, but the measurement of single-cell metabolomics targets
is undoubtedly the most difficult. One of the main problems in the
preparation for single-cell samples is how to avoid or reduce the
impact on cell metabolism during the sample preparation process.
In addition, the content of substances in single cells is low, which
puts forward higher requirements for the sensitivity of the detection
method. Finally, there are many kinds of metabolites in a single cell,
and the concentration difference of metabolites can be as high as
106~109 times. This requires the detection method not only to
respond to multiple substances at the same time, but also to have a
wide response range. In short, single-cell analysis technology
requires high sensitivity, small sample size, good selectivity, fast
response speed, and no impact on cell status, while the data analysis
requires complex techniques and models.

The Single Cell Metabolite Extraction
Cell sampling is the first and arguably the most critical step in
single cell analysis. To avoid or reduce the impact of
environmental changes on cell metabolism during the sample
preparation process, one of the methods is to maintain cells in a
natural environment as much as possible. For example, use
microfluidic chips for cell culturing after cell separation, inject
quantitative chemical substances into the culture medium, and
selectively release the cells for analysis (22, 23). Another method
is to perform rapid freezing of the cells before the metabolite
determination to prevent the cells from undergoing dramatic
changes in the metabolites (24). The extraction tools for single
cell metabolites have been optimized over the past decades.
Hajime Mizuno successfully established a direct and rapid
analysis of the locations and the metabolic pathways of
tryptophan and histidine metabolites in a live rat basophil
leukemia cell by live single-cell video-mass spectrometry. The
contents of the cell were sucked into a nano-electrospray
ionization (nano-ESI) tip, dissolved in an ionization solvent,
and directly introduced into a quadrupole-time of flight mass
January 2022 | Volume 11 | Article 814085

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Single-Cell Metabolomics in Cancer Research
spectrometry (Q-TOF-MS) by nano-spray (Figure 2B) (25).
Later, based on Mizuno’s research, Ning Pan developed a new
miniaturized multifunctional sampling and ionization device, the
Single-probe, with a sampling tip size smaller than 10 mm, which
can be inserted into single cells to extract intracellular
compounds. Multiple endogenous and exogenous cellular
metabolites in a single living eukaryotic cell could be analyzed
in real-time by directly coupling the new probe with the mass
spectrometer (Figure 2D) (26, 27). Single cell mass spectrometry
(SCMS) enables to obtain higher sensitivity and accuracy of
chemical information at the single-cell level, which could
improve our understanding of biological and pharmaceutical
bioanalytical research compared with previous methods.

Raphael proposed a different method for metabolite
extraction, he combined glucose oxidase (GOx) covalently with
the nanopipettes tip (Figure 2C), and the tip was functionalized
as glucose nanosensors to quantify single cell intracellular
glucose levels. During and after the nanopipette measurement,
the cells remain viable. Therefore, nanopipette-based glucose
sensors provide a way to compare changes in glucose levels with
changes in cell proliferation or metastasis. The nanopipette-
based glucose sensors has broad prospects as a diagnostic tool
for distinguishing cancer cells from nonmalignant cells in
heterogeneous tissue biopsies and a tool for monitoring cancer
progression in situ (28). Later, Yanlin Zhu has developed a new
Frontiers in Oncology | www.frontiersin.org 325
technology that uses a silica capillary fused micropipette needle,
in which can induce Paternò-Büchi (PB) reactions at the C═C
bond, and locations of C═C bonds in unsaturated lipids can be
determined in cell lysate at the single-cell level (Figure 2E). The
capillary needle exhibits multiple functions including single cell
metabolite extraction probe, cell lysis container, micro-reactor,
and nano-ESI emitter during the measurement of metabolites in
a single human colon cancer cell HCT-116. This technique is
potentially able to apply in other reactive SCMS studies to
enhance molecular analysis for broad ranges of single cell
metabolites (29).

In addition, mitochondria are important organelles where
glucose metabolism happens. Studies on extraction of
metabolites in mitochondria are also proposed. Tsuyoshi Esaki
combined fluorescence probing with live single-cell mass
spectrometry, directly analyzed of mitochondria metabolism in
a live HepG2 cell. They stained mitochondria of target cells by
fluorescence probe and directly sucked the mitochondria into the
nanospray tip under a micromanipulator operation. The sample
was then sent to a high-resolution mass spectrometer LTQ-
Orbitrap Velos Pro equipped with a nano-electrospray ionization
source, and the final result was analyzed by comparing the data
gained from stained mitochondria with unstained cytosol blank
samples. This fluorescence imaging technique opens the door to
analysis of site- and state-specific molecular detection to clarify
FIGURE 1 | The difference between traditional method and single cell method in profiling anti-cancer targets. A、B、C and D represent four different cell types in
cancer tissue with different distribution (A: 40%, B:40%, C:15%, D:5%), and each type of the cells present a target gene as gene a, b, c and d respectively by single
cell sequencing. Drug I, II, III and IV are targeted drugs for gene a, b, c and d respectively, and with co-administration of drug I, II, III and IV the cancer is completely
curable. However, with traditional RNA-sequencing, mixture of cell A, B, C, and D only presented target gene a and b With co-administration of drug I and II, only
group of cell A and B are killed but cell C and D are still survival, leaving a chance for tumor recurrence.
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the precise molecular principles at the level of single-cell and
organelle (30).

The Single-Cell Metabolite Flux Detection
Researchers usually use mass spectrometry (MS) or nuclear
magnetic resonance (NMR) to carry out metabolomics
research, but because NMR technology is not very sensitive,
MS has become the main method. However, single-cell analysis
is still a tough challenge even with recent technologies, because
unlike genes, metabolites cannot be amplified. To analyze such a
tiny amount of metabolites in a single cell, many efforts have
been tried to improve both detection sensitivity and ionization
techniques in MS. On the one hand, considering the small
amount and wide dynamic concentration ranges of metabolites
in an individual cell, researchers have considered amplifying the
signal of the small amount of analyte. Richard B. Keithley
administrated three fluorescently labeled glycosphingolipid
substrates, GM3-BODIPY-FL, GM1-BODIPY-TMR, and
lactosylceramide-BODIPY-650/665 to simultaneous probe
metabolism at three different points in the cascade of
glycolipid metabolism in HCT 116 spheroids. Finally, they
found cells from different regions of HCT 116 spheroids
exhibited differences in metabolism, and this three-color
fluorescence labeling dramatically amplified the signal of
Frontiers in Oncology | www.frontiersin.org 426
metabolites (31). On the other hand, the direct injection of
single cells separated by microfluidic devices or micropipettes
into MS suggested the possibility of highly sensitive metabolite
analysis in single cells. Hsiao-Wei Liao applied field amplified
sample injection (FASI) to capillary electrophoresis electro spray
ionization mass spectrometry (CE-ESI-MS) to detect
intracellular metabolites from a single neuron, and achieved
100- to 300-fold enhancement of detection limit compared to
normal injections. The analytes identification and quantification
accuracy were further enhanced through the introduction of
internal standards (32). Expect for amplifying the signal of the
detected substance, to increase sensitivity of the detection
equipment can also achieve the same goal. Takayuki Kawai
firstly developed “nano-CESI” emitter, which has a thin
conductive wall (10mm) and tapered (5-10mm) end. Compared
with a conventional sheathless emitter, the nano-CESI emitter
provided up to 3.5-fold increase in sensitivity, and by coupling a
sample enrichment method, large-volume dual preconcentration
by isotachophoresis and stacking (LDIS), up to 800-fold increase
of sensitivity has been achieved compared with normal
sheathless CE-MS in total (33).

Mass spectrometry imaging (MSI) is a powerful tool that
advances our understanding of complex biological processes by
revealing unprecedented details of metabolic biology. MSI does
FIGURE 2 | Development of single cell metabolite extraction. (A) Microsyringes composed of glass straws were firstly used to extract metabolites from giant neuron
cells of snails (1988); (B) Nanospray ionization captures the sample from a single living cell, and this process is controlled by a cell manipulation system (2008); (C) A
nanotube that can measure glucose levels in single-cell level (2011); (D) The Single-probe coupled with a sampling tip size < 10 mm, is a miniaturized multifunctional
sampling and ionization tool which can achieve in situ metabolomic analysis of individual living cells with real-time performance (2014); (E) The micropipette needle
accommodated with PB reactions inside to determine C=C bond locations in unsaturated lipids at single-cell level (2020).
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not require labeling, so it can analyze any compound present on
the tissue, which is in stark contrast to most label-based imaging
methods, which require prior knowledge of clearly defined
targets. In addition, hundreds of compounds can be imaged
simultaneously in MSI, which is different from traditional optical
imaging in which by using limited number of different
fluorescent label colors, only a few targets can be imaged at a
time. MSI can be performed by combining any desorption
ionization technique with MS in microprobe mode, with the
application of matrix-assisted laser desorption ionization
(MALDI), the laser can be focused to a micrometer size,
thereby reducing the sampling area to a subcellular size. By
using the high spatial resolution MALDI-MSI, high-precision
metabolite positioning can be obtained at cellular and subcellular
levels in situ (34).

Single-Cell Metabolomics Data Analysis
In addition to optimize the methods of sample preparation and
detection, high-throughput information acquisition is also
essential in single cell metabolomics analysis to understand the
metabolic process in a single cell. Although the application both
of traditional bioinformatics methods and unspecialized software
MassLynx (35, 36) to interpret the experimental results of single-
cell metabolomics is not a problem, the main challenge is to
develop a method that can analyze multiple single cells at the
same time and detect the metabolites in each cell while making
the results statistically significant. Renmeng Liu analyzed
combined SCMS experiments with a generalized integrated
data analysis workflow, including data preprocessing,
visualization, statistical analysis, machine learning, and
pathway enrichment analysis, to conduct single cell
metabolomics studies of live cancer cells to discover
phenotypic biomarkers and unveil related biological pathways
changes during liver cancer chemotherapy (37). Luca Rappez
applied SpaceM together with a fluorescence-based readout to
detect >100 metabolites from >1,000 individual cells per hour
with retention of morpho-spatial features (38). To minimize
labor-intensity and enhance the analytical sensitivity, Anqi Chen
combined mass spectrometry analyses with a visual serving
robotic micromanipulation platform, which sequentially
extracted, aspirated, and ionized single cells. This system is the
first automated single cell mass spectrometry (SCMS) system.
Compared with traditional methods, the automated SCMS
system functions without manual operation and facilitates a
high-performance single cell metabolic analysis (39).

Chapter Summary
The typical analysis of living cells is a delicate process, mainly
start with using nano ESI capillary to extract the contents from
the cells, and then use the same capillary to inject the contents
directly into the MS. The conceptual schematic diagram of the
workflow of MS analysis of single cell metabolites is shown in
Figure 3. However, the current single-cell metabolomics
technology is still under the way to get more refined.
Extraction, detection and analysis are the three major difficult
problems which must be resolved. With continuous optimization
of current single-cell metabolomics techniques, a comprehensive
Frontiers in Oncology | www.frontiersin.org 527
portrait of metabolic features of each unique cell can be expected
in the near future.
THE APPLICATION OF SINGLE-CELL
METABOLOMICS IN CANCER RESEARCH

The detection and understanding of cancer cells is one of the
most important the potential applications of single-cell
metabolomics. One application is the discovery of cancer cells
with abnormally high metabolic rates within cells undergoing
normal metabolism, including circulating tumor cells that cause
cancer metastasis (40, 41). In current cancer treatment, single-
cell metabolomics technology can be applied to dig out why some
cancer cells are still able to survive after being stimulated by the
environment or drugs by altering their metabolic pathways (42,
43). Other potential applications single-cell metabolomics
technology include understanding the mechanism of tumor
metastasis (44, 45) and obtaining the input and output data
required to establish a mathematical model of cell metabolism
and to learn more about the fate of cancer cells (46).

Single-Cell Metabolomics Reveals
Mechanisms of Tumor Drug Resistance
During tumor chemotherapy, part of the patients develop drug
resistance, resulting in treatment failure and tumor recurrence,
which causes more than 90% of cancer-related deaths. Solid
cancers have shown the intratumor heterogeneity spatially and
temporally, which has become the biggest obstacle in tumor
therapy (47, 48). Single-cell technology is a powerful tool to
analyze tumor heterogeneity, and it pulls the dimension of our
observation of tumors to the dimension of a single cell (49). By
analyzing the genetic and metabolite information of individual
cells, we can distinguish genes and regulatory pathways driving
drug resistance development (50). For example, Renmeng Liu
exposed HCT-116 cells to taxol and vinblastine, which are two
mitotic inhibitors, under a series of treatment conditions, then
they used Single-probe SCMS system to measure metabolomics
change in cells. Phenotypic biomarkers related to the emerging
phenotypes resulted from drug treatment were discovered and
compared through a series of rigorous statistical analysis with the
single cell study and traditional liquid chromatography-MS (LC-
MS) study from bulk cell samples. Through pathway enrichment
analysis, four biological pathways that may be involved in the drug
treatment of colorectal carcinoma have been identified, and this
technique can be potentially applied to future pharmaceutical and
chemotherapeutic research (51). Clinical studies demonstrated
that high concentration (10 mM) erlotinib inhibited cancer
proliferation, but beyond the normal tolerance level, while low
concentration (1 mM) erlotinib exhibited no treatment effect.
Based on Xue Min’s research, the low-dose (1 mM) of erlotinib
actually increased the energy potential of cells, even if glucose
uptake and phosphoprotein signaling were inhibited, which may
help explain the resistance of some cancer patients to EGFR
inhibitors (52). Mei Sun used the Single-probe mass
spectrometry (MS) technique to inspect the metabolic features
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of individual live colorectal cancer stem cells (CSCs). Comparison
with non-stem cancer cells (NSCCs), she/he found CSCs
contained relatively higher amount of tricarboxylic acid (TCA)
cycle metabolites and unsaturated lipids. Application of inhibitors
of stearoyl-CoA desaturase-1 (SCD1), nuclear factor kB (NF-kB),
and aldehyde dehydrogenases (ALDH1A1) in CSCs significantly
contracted the abundance of unsaturated lipids and hindered the
formation of tumor spheroids, leading to reduced stemness of
CSCs. This indicates that single-cell metabolomics can potentially
be used for metabolomics research on rare types of cells, and
provides a new method to discover functional biomarkers as
therapeutic targets (53). Yapeng Su integrated single-cell flow
cytometry with theoretical investigation to study the cell-state
transition dynamics associated with BRAF inhibitor drug
resistance in BRAF-mutant melanoma cell. They concluded that
in certain plastic cancers, the population heterogeneity and
evolution of cell phenotypes may be comprehended by
explaining the competitive interaction between the epigenetic
potential landscape and state-dependent cell proliferation. Their
research suggested that experimentally verifiable predictions can
potentially determine the trajectories that single BRAFV600E
mutant melanoma cancer cells take between drug-naive and
drug-tolerant states and guide the design of effective treatment
strategies (54). Therefore, the resolved heterogeneous drug-
response trajectories by single-cell technique update our current
understanding of how drug resistance developed and can provide
a powerful methodology for identifying effective combined
treatment (55).
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Single-Cell Metabolomics Reveals
Tumor Metastasis
Much effort had also been made to explore the predictive
genomic changes in disease prognosis (56, 57). Recent studies
showed that even individual cells from the same clonal can
display a broad landscape of different properties, such as different
patterns of gene expression (58) and invasive behaviors (59),
further increased the challenge of deciphering the mechanism of
metastasis in cancer. In this scenario, single-cell omics are
applied in tumor metastasis studies. For instance, Ryan T.
Davis used single-cell RNA sequencing, flow cytometric and
metabolomics to analyze patient-derived-xenograft models of
breast cancer, and they found breast cancer micrometastases
display a distinct metabolic profile and many of them implicated
with metastasis—such as glutamine, fatty-acid and proline
metabolism. Most importantly, they found the breast cancer
micrometastases converged on or produced critical metabolites
to drive oxidative phosphorylation (OXPHOS), and
pharmacological inhibition (oligomycin) of OXPHOS
substantially attenuates lung metastasis (60). Circulating tumor
cells (CTCs) which are released from primary tumor lesion sites
into the blood circulation are an important source of tumor
metastasis to distant body organs (61). Yasmine Abouleila
analyzed untargeted molecular profile of single CTCs collected
from gastric cancer (GC) and colorectal cancer (CRC) patients
by using live single cell mass spectrometry integrated with
microfluidics-based cell enrichment techniques. The authors
revealed significant differences in metabolites between the
FIGURE 3 | Scheme of single-cell metabolomics analysis of live cell. The content of a live single cell is extracted by micropipette needle under the guidance of an
inverted micro-scope, and a cell manipulation system was used to control the micropipette needle to aim the targeted cell. After assistant solvent was added to the
sampling tip, the biomolecules were dissolved into the assistant solvent and immediately ejected from the tip into the MS under the impetus of the electric field. The
raw data then analyzed by software.
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CTCs and lymphocytes from the same patient, and Principal
component analysis-discriminant analysis (PCA-DA) showed
obviously different clustering behavior between CTCs and
lymphocytes in each cancer. And due to the metabolic
differences between GC and CRC, CTCs were clustered into
two different groups corresponding to different cancer types,
suggesting that the characteristics of CTCs metabolome may
become a tool for cancer diagnosis in the future (62). According
to the above studies, we learn that at single cell level, it is possible
to find new potential biomarkers which promoting tumor
metastasis and accelerating tumor deterioration that cannot be
detected by traditional methods. In addition, different types of
cancer can be classified based on their metabolic fingerprints,
which may play a role in identifying clinical targets that may slow
down or prevent tumor metastasis.

Single-Cell Metabolomics Reveals
Cell Fate
Single-cell technology also allows you to track the state change of
the cells under different environment. Qi Zhang published a
comprehensive study on the heterogeneity of Hepatocellular
carcinoma (HCC) from genome to phenotype and from single-
cell level to body level. By single cell sequencing, they classified
HCC as the immunocompetent subtype, immunodeficient
subtype, and immunosuppressive subtype, respectively. Among
three subtypes of cells, the immunosuppressive subtype showed
inhibited glycolysis and enhanced mitochondrial respiration, the
immunodeficient subtype showed increased nucleotide
biosynthesis, while immunocompetent subtype was featured by
upregulated urea cycle (Figure 4). They also found that although
the heterogeneity of tumor cells is significant in all dimensions,
the local immune status of HCC is less heterogeneous, therefore
they believe that targeting local immunity might be suitable for
HCC treatment (63). To track the state of cells, Felix J. Hartmann
employed single-cell metabolic regulome profiling (scMEP), an
approach applies antibody-based assays to analyze cellular
identity and metabolic regulation in the single-cell level. They
used a mass spectrometry flow cytometry, time-of-flight flow
cytometry (CyTOF), to compare scMEP with a large number of
metabolic assays by reconstructing the metabolic remodeling of
naive and memory CD8+ T cells activated in vitro. Based on the
changes in the expression of metabolic characteristics over
pseudo-time, three inflection points in the metabolic
remodeling process of naive human CD8+ T cells were
defined. The first inflection point was marked by the concerted
and accelerated up-regulation of metabolic proteins, such as
GLUT1, ASCT2, OGDH and VDAC1, leading to the second
inflection point, which was characterized by the onset of RNA
synthesis and activated cellular stress responses. The third
metabolic inflection point was defined by the expression levels
of stable or reduced metabolic proteins, such as GLUT1 and
ASCT2, and peak translation activity. Therefore, the application
of scMEP allows us get a better understanding of tumor–immune
boundary and helps identify disease-related metabolic changes,
which can be used as potential biomarkers and therapeutic
targets for various human diseases (64).
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If the cell identity can indeed exist as a continuum, this
provides an opportunity to stabilize the transient phenotype and
create new cell identities, giving new functions to known cell
types. These questions are also related to the field of cell fate
reprogramming. At least, we will obtain a high-resolution
template to summarize the identities of the main functional
cell types. Through the above analysis, we fully understand that
single-cell metabolomics techniques serve as a fast, high-
throughput predictive tool in cancer research, which can
predict metabolite targets in cancer therapy and pharmacology.
At the same time, single cell metabolomics is expected to find
reliable and effective clinical biomarkers for cancer prognosis
and diagnosis.
CONCLUSIONS

In the past decade, single-cell technology has pushed biological
research into a new era of exploring cellular and molecular
phenotypes at an unprecedented level of resolution. This
progress is mainly due to the innovative progress of high-
throughput technology and the development of new
computing tools, which enable us to capture the genome,
transcriptome, proteome, metabolic status, and other multi-
dimensional information of thousands of single cells at the
same time without relevant information. With these emerging
technologies, we can study cell types, cell states, and individual
cell responses to external stimuli or internal biological processes.
Although metabolomics started late, with the continuous
advancement and innovation of detection technology, more
breakthroughs will surely be made in the future. Nevertheless,
before single-cell metabolomics is truly applied to systems
biology and medical diagnosis of cancer research, some
challenges of experimental technology or bioinformatics still
need to be overcome. There are still many problems need to be
solved, including expanding the coverage of metabolites in living
cells, faster identification of single-cell metabolites while
achieving high-throughput detection, and reduce cost.

In the next few years, greater progress is likely to be made
toward new combinations of different single-cell omic techniques
to capture of all molecules in an individual cell. We also expect
that by further combining existing indexing or microfluidic
technologies, technologies that can analyze four or five-layer
omics data in parallel can be developed, resulting in single-cell
multiomics methods capable of high-throughput processing of
thousands of cells. Currently, each omics data set need to be
analyzed separately and compare the final results to get the
conclusion, therefore novel computational methods and
specialist multiomics algorithms that allow the integrated study
of two or more omic layers per cell of large heterogeneous
populations and data analysis of the different layers together
will also need to be developed. Future multi-omics technologies
will eventually need to cover all single-cell omics technologies in
order to characterize these omnisciently for different layers, three-
dimensional coordinates, phenotypes, and cell lineage history.
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FIGURE 4 | Comprehensive exploration of the heterogeneity of HCC analysis scheme. Through single-cell sequencing, HCC could be classified as three subtypes
according to the expression level of marker genes PTPRC and FOXP3. Further single-cell metabolomic analysis revealed that the immunocompetent subtype is with
upregulated urea cycle, the immunosuppressive subtype is with upregulated TCA cycle and inhibited glycolysis pathway, and the immunodeficient subtype presents
upregulated nucleotide biosynthesis pathway.
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Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that is
difficult to diagnose due to its discriminating epidemiology and obscure metabolome. For
the first time, 3D spatial and chemometric analyses uncover the unique lipid metabolome
of TNBC under the tandem modulation of two key metabolites – insulin and methionine -
using non-invasive optical techniques. By conjugating heavy water (D2O) probed Raman
scattering with label-free two-photon fluorescence (TPF) microscopy, we observed
altered de novo lipogenesis, 3D lipid droplet morphology, and lipid peroxidation under
various methionine and insulin concentrations. Quantitative interrogation of both spatial
and chemometric lipid metabolism under tandem metabolite modulation confirms
significant interaction of insulin and methionine, which may prove to be critical
therapeutic targets, and proposes a powerful optical imaging platform with subcellular
resolution for metabolic and cancer research.

Keywords: stimulated Raman scattering, heavy water, TPF, lipid metabolism, methionine, insulin, breast cancer,
DO-SRS
INTRODUCTION

Breast cancer is the most reported form of cancer in biological women, but the pathophysiology is
rife with subtypes that have material consequences on patient outcomes. Triple negative breast
cancer (TNBC) is a particularly aggressive cancer subtype that accounts for approximately 15% of
all breast cancer cases and its epidemiology reveals a discriminating predilection for non-Hispanic
African women (1, 2) (Figure S1). Although the genomes and proteomes of these breast cancer
subtypes are distinguishable, little is known about their metabolic phenotypes and the consequential
prognoses they manifest.

Recently, lipid metabolism has emerged as a major indicator of cellular stress, phenotypic state, and
disease status in biological research and medicine. Dysregulation of lipid metabolism and heightened
lipid synthesis are hallmarks of cancer, as varying demands of lipids for energymaintenance, metastasis,
and angiogenesis warrant transcriptional changes that contribute to the metabolic phenotype (3–5).
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The quantity and diversity of lipids and their functions have been
instrumental in profiling cancers as well. For example, membrane
lipid compositions of cholesterol, phosphatidylcholine (PC), and
phosphatidylethanolamine (PE) are essential to cell membrane
fluidity, which has become a target for cancer treatments (6–9).
Additionally, the degree of saturation of lipid content in a cell may
provide further insight into its state of stress, as breast cancer cells
may produce more saturated and monounsaturated membrane
lipids to guard against oxidative stress (10–12). To interrogate lipid
metabolism, lipid droplets (LD) were the primary organelle of
interest since their ubiquitous structures not only serve as energy
stores, but are also involved in protein folding and trafficking,
signaling pathways, and have diverse spatial and chemical
information that may reflect oxidative stress, metabolic flux, and
disease status (10–18). However, direct visualization of LD
metabolism manipulated by tandem nutritional interventions at a
subcellular level has not yet been reported in TNBC cells, which is
partially due to a lack of spatial resolution in conventional
lipidomic modalities. Optical techniques such as spontaneous
Raman spectroscopy and SRS imaging microscopy are well
suited to both the chemometric and spatial dimensions for
imaging LD metabolism; they can analyze not only the size,
Frontiers in Oncology | www.frontiersin.org 234
number, and distribution of LDs, but also their protein and lipid
diversity and metabolism at subcellular resolution.

Despite the many mysteries of TNBC, a documented hallmark
is its hyperactivity of mammalian target of Rapamycin (mTOR)
pathways, which play important roles in glucose, protein, and lipid
metabolism (19–23). Insulin and L-methionine (an essential
amino acid involved in protein translation, genetic/epigenetic
control, nutrient sensing, and redox homeostasis) (24) are both
involved in mTOR pathways but have not been directly studied in
tandem to date (25–30). This is due, in part, to previous studies
that observed MDA-MB-231 cells to be insulin insensitive to
mitogenic effects, despite having many receptors that bind
insulin (31). Other studies observe insulin effects in the same
cell line, and there is currently no consensus on the independent
effects of insulin. With respect to TNBC, insulin and methionine
both independently drive cancer proliferation (32–35) and affect
lipid metabolism (25, 34, 36–40), and separate studies indicate
insulin metabolism directly affects the uptake of amino acids in
yeast and dogs (41, 42). Given the well-documented relationships
between insulin, methionine, and mTOR, it is possible that
TNBC’s mTOR hyperactivity exhibits a unique lipidomic
response to insulin and methionine manipulation. The
FIGURE 1 | Hypothesized pathway illustrating a potential methionine and insulin interaction mediated through mTOR. Bi-directional control of methionine and
mTORc1 depicts general mechanisms by which methionine is sensed by and activates mTORc1. Insulin also activates mTORc1 by phosphorylating TSC2, and
consequently affecting mTORc1 regulation of methionine. Insulin stimulates SREBP mediated lipid synthesis and metabolism. Methionine stimulates SAM PC and PE
membrane lipid synthesis. Increased production of reduced glutathione via SAM is thought to reduce the extent of lipid peroxidation.
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conceptual pathway detailing macroscopic mTOR-mediated lipid
response to insulin and methionine (Figure 1) highlights the
points discussed in this paper. Lipid peroxidation, de novo
synthesis, and chemical diversity can all be investigated using
optical techniques that provide subcellular spatial and chemical
information. Given that TNBC has been an archetype for
methionine dependence (35), and that PI3K/AKT/mTOR is a
key driver of the aggressive biology of TNBC (23), the interplay
between methionine and insulin, coupled with the perspective of
lipid biology, may illuminate promising directions for future
therapeutic research.

Non-linear optical techniques such as coherent Raman
scattering microscopy and two-photon fluorescence (TPF)
microscopy have been used to profile breast cancer metabolism
by revealing correlations between cancer metastasis and cellular
redox state, and lipid metabolism (43). Recent studies have
identified several metabolites implicated in tumorigenesis and
lipid metabolism in cancer, such as glutamine (44–46) and serine
(47) dependence. Raman spectroscopy/microscopy coupled with
D2O probing allows for direct visualization of metabolic
dynamics of a variety of biomolecules including lipids, protein,
and DNA in cells, C. elegans, zebrafish, and rodents by
highlighting the newly synthesized macromolecules (48). In
this study we first employed spontaneous Raman spectroscopy
to differentiate molecular signatures within LDs between TNBC
and normal cells. Using D2O probing and SRS (DO-SRS)
imaging we then examined the impacts of methionine and
insulin on lipid metabolism in cancer cells. The effects of
methionine and insulin on cellular respiration and lipid
peroxidation were also examined by using TPF microscopy. To
analyze the rich chemometric dataset and inspire targeted image
analyses, we applied a relative entropy approach to Raman
spectra for the first time. This method can quickly highlight
distinct or tandem effects of independent variables in any Raman
spectroscopy study.
Frontiers in Oncology | www.frontiersin.org 335
RESULTS

Lipid Droplet Metabolism
We first examined the effects of methionine on LDmetabolism in
TNBC cells (MDA-MB-231), luminal A breast cancer cells
(MCF-7), and normal breast epithelial cells (MCF10A, as a
control) by adding excess (20x) methionine to the growth
media supplemented with 50% D2O. Cells were scanned by
using a spontaneous Raman spectroscopy, and revealed that
TNBC cells most starkly contrasted MCF10A cells with respect
to overall lipid content (CH2 stretching at 2850cm-1). This
attenuated lipid:protein ratio difference between excess and
physiological methionine concentrations is shown in
Figure 2A. This absence of marked differences is also
personified by poorer ReLu neural network classification
between TNBC cells with and without excess methionine
(Figure S3). Despite the absence of insulin in TNBC cell
culture growth media recipes (49), we then added various
concentrations of insulin (1mg/L, 10mg/L, and 20mg/L,
correspondingly, 0.1x, 1x and 2x) to the media and evaluated
its interaction with methionine in both cell lines. In this second
part, insulin concentration in growth media was modulated in
tandem with methionine, and augmented effects in several
Raman spectral regions were observed, including the C-H
stretching region, which illustrates the relative contents of CH2

(lipid) and CH3 (protein) (Figure 2B). TNBC contrasted
MCF10A cells which exhibited decreased lipid:protein ratios in
the presence of excess methionine at all insulin concentrations.
Importantly, it was found that the difference in lipid:protein ratio
between excess and physiological methionine increased with the
addition of insulin in TNBC. Figure 2C highlights this effect,
marked by orange arrows in Figure 2B, and supports potential
interactions between insulin and methionine. A significant
interaction term was confirmed by 2-way ANOVA (Table S1)
in TNBC.
A B C

FIGURE 2 | (A) Average CH stretching region spectra for TNBC with highlighted CH2 and CH3 (2850cm
-1 and 2935cm-1) levels ascribed to total lipid and protein

content, respectively. Regular and excess methionine groups refer to 0.03g/L and 0.6g/L respectively. Of note, TNBC did not exhibit significant relative lipid and
protein changes in the presence of excess methionine. One standard deviation is indicated by shaded areas surrounding the lines. (B) With tandem insulin control
CH2:CH3 peak ratios at each insulin and methionine concentration group are shown. 2-way balanced ANOVA results for TNBC cells highlights significance of
methionine and insulin-methionine interaction term in lipid:protein ratios. Error bars indicate one standard deviation. (C) The difference in CH2:CH3 ratios for the 15x
methionine and 1x methionine groups of the MDA-MB-231 subtype is negligible at the lower insulin concentration but is increased ten-fold in the 2x insulin case.
Error bars are propagated in quadrature from (B). **P < 0.01.
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In TNBC cells, the ratio of total lipid-to-protein did not change
with the increase of methionine concentration alone, but slightly
decreased in normal cells (Figure 2B). With the addition of
insulin, this difference was augmented with higher
concentrations of insulin (Figure 2C). At this point, it is still
unclear whether de novo lipid synthesis increased alone, or if
protein synthesis decreased, or some combination of both.
Perhaps de novo lipid synthesis decreased, but not as much as
protein synthesis. This clarity entails DO-SRS, which provides
insight into de novo synthesis. As cells incorporate deuterium from
heavy water into macromolecules such as lipids and proteins, the
C-D bonds in the newly synthesized molecules become visible in
the cell silent region around 2150 cm-1. Even though lipids and
proteins are the main biomolecular constituents of cells, the CH2

and CH3 peaks may only paint part of the picture. Figures 3A, B
shows average Raman spectra of both cell lines treated with D2O
and different concentrations of methionine and insulin. These
spectra are consistent with previous LD studies using Raman
spectroscopy, which display minute protein peaks in the
fingerprint region such as the phenylalanine peak at 1000cm-1

and amide I-III peaks at 1660cm-1, 1450cm-1, and 1200-1300cm-1,
respectively, as well as elevated CH2 stretch at 2850cm

-1, saturated
CH2 stretch at 2880cm

-1 (typical of cholesterol and other saturated
lipids) (50), and H-C= stretch at 3010cm-1 (typical of unsaturated
lipids) (51). Common lipid components of LD are shown in
Figure 3C in descending order of prevalence. The structure of
LDs is such that a phospholipid monolayer surrounds a core of
neutral lipids such as cholesterols and TAGs. Less prevalent lipid
species such as ceramides, sphingolipids, and their metabolites
only account for a small percentage of LD composition, but have
gained increasing significance in LD physiology and diseases (52).
Furthermore, there are hundreds of apo-lipoproteins on or near
the surface of LDs, which may contribute to the observed Raman
spectra of LDs. The presence of the C-D peak in the spectra
confirm de novo synthesis. Some Raman shifts of interest are
shown, but minute differences may be difficult to discern by raw
visual inspection alone.

Although the delineated Raman shifts in Figures 3A, B
highlight several aspects of lipid and protein metabolism, there
are others ascribed to lipids and other important molecules as
well. Principal component analysis (PCA) shows that 12
principal components (PCs) account for nearly all the variance
in the 6 groups of MDA-MB-231 LD spectra. To visualize this
while avoiding over-fitting, a t-SNE diagram of the top 10 PCs is
shown in Figures 4A, B. There exists at least one dimension that
discriminates insulin effects and methionine effects on Raman
spectra of TNBC LD. Importantly, this demonstrates that LD,
alone, contain sufficient chemometric data to discriminate cell
phenotypes. This confirms the ability of LDs to reflect cellular
state. To date, label-free chemometric demonstrations of this
ability are sparse. PCA initialization can be a robust step to
reduce dimensions, denoise data, and preserve global structure in
t-SNE visualizations, but even though PCA can vectorize these
values, the PCs themselves do not take the form of Raman peaks
suitable for direct assignment of methionine and insulin
effects individually.
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Statistical quantification of independent variable effects at
every Raman shift entails a new measure in which the separation
of insulin and methionine effects, as well as relative significance
in class attribution is shown. To quickly rank and visualize all the
wavenumber variables that may have been influenced by a
particular treatment, the Kullback-Leibler divergence (DKL), a
metric for the distance between two distributions for
classification problems (53), at each Raman shift is plotted for
each metabolite manipulation (Figure 4C). This method is also
known as relative entropy.

KL divergences of Raman spectra were plotted on the same
axes for MCF10A and MDA-MB-231 with selected
wavenumbers labeled for clarity (Figure 4C). From Figure 4C,
it is apparent the lipid peak of MCF10A cells at 2850cm-1 was
heavily influenced by both insulin and methionine
concentrations, while the protein peak at 2940cm-1 seems to be
more heavily influenced by insulin concentration. This contrasts
with the MDA-MB-231 TNBC cells in which divergences at most
wavenumbers were dominated by the delineation of methionine
concentration. Although these representations are not perfect
(see Supplementary Material), this is especially useful when
simultaneous treatment groups have both compound and
independent effects . For example, MCF10A spectra
(Figure 4A) exhibit changes in the unsaturated lipid peak
(3010cm-1) under either insulin or methionine manipulation,
while the TNBC spectra (Figure 4B) exhibit changes here
(3010cm-1) mainly under methionine manipulation. This can
be easily seen though the relative entropy at that Raman shift in
Figure 4C, in which MCF10A has high relative entropy at
3010cm-1 when examined along either the insulin or
methionine dimension, while TNBC shows a higher relative
entropy when examined along the methionine dimension.

While excess methionine appears to decrease the lipid-to-
protein ratio in MCF10A cells and increase the ratio in MDA-
MB-231 cells, the results do not necessarily indicate discrepant
rates of de novo lipogenesis since these values are affected by both
synthesis and degradation of lipid and protein. For instance, the
decreased lipid-to-protein ratio might be due to enhanced lipid
utilization. To explore how much lipid and protein were
synthesized, we quantitatively examined the carbon-deuterium
(CD) peaks at 2135cm-1 (de novo synthesized lipids, CDL)
relative to 2180 cm-1 (de novo synthesized proteins, CDP), and
2850cm-1 (total lipids, CH2) for each treatment group (48)
(Figures 5A, B). Figure 5C shows that excess methionine
stimulates de novo lipogenesis in TNBC. Together, Figure 5
illustrates both direct and relative de novo lipid and protein
synthesis and metabolism, and informs the potential reasons for
the discrepant lipid:protein effects of excess methionine on
TNBC and normal-like breast cells.

Two-way ANOVA (Table S2) confirms a significant
interaction term for methionine and insulin concentrations in
TNBC for the de novo synthesized lipids relative to the total
lipids (Figures 5A, B Right). Contrarily, only the insulin
independent variable was significant for the MCF10A in the de
novo synthesized lipids relative to the total lipids (Figures 5A, B
Right), but no interaction term, or even a significant methionine
March 2022 | Volume 12 | Article 858017

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fung et al. Breast Cancer Lipid Droplet Metabolism
A

B

C

FIGURE 3 | Average spectra of LD from (A) MCF-10A and (B) MDA-MB-231 cells under various methionine and insulin concentrations. Manual identification of
potential Raman peak targets is highlighted with vertical lines and labels. For example, the CDLipid peak in the cell silent region at 2135cm-1 has a noticeable increase
relative to the CDProtein peak at 2180cm-1 in the excess methionine groups. This could indicate preference for de novo lipogenesis in excess methionine
environments. (C) Raman spectra of common lipid species in LD, in descending order of prevalence.
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FIGURE 4 | LD chemometric data is sufficient to discriminate cell phenotype (A) tSNE separates experimental groups for MCF-10A and (B) MDA-MB-231 tSNE
plots of the top 10 PCs from PCA of LD spectra. Global structure is preserved, and no exaggeration was applied. Each point represents the average of 5 LD spectra
taken from a single cell of the corresponding sample. (C) Relative entropy provides a metric for ranking features (Raman peaks) by their ability to classify the spectra
as belonging to 20x methionine or 1x methionine groups, as well as 0.1x, 1x, 2x insulin groups. Raman peaks that appear to be influential in both classification
schema are denoted in purple text labels for clarity. These cell subtype plots are aligned manually for clarity. Subplots are not generated in such a fashion
automatically.
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term. Only in TNBC did the methionine term have a significant
impact on this ratio, which lead us to believe the discrepant
effects on CH2:CH3 ratios we observed (Figure 2B) might arise
from differential de novo lipogenesis, rather than protein
synthesis and metabolism. Since the excess methionine
stimulated de novo lipogenesis (Figure 5C) and was a
significant term in the ratio of de novo synthesized lipids to
proteins for both cell lines (Figures 5A, B), methionine is likely
to preferentially stimulate lipid production more than protein
production. Despite these findings, the relative proportion of
lipids to proteins in MCF10A still decreases under excess
methionine (Figure 2B). Therefore, either the pool of proteins
must be getting larger, or the lipid utilization must increase.
Excess methionine did not stimulate lipid utilization because
CDL : CH2 did not significantly increase (Figure 5A Right). This
leads us to believe that the protein signal must increase excess
methionine. However, excess methionine did not stimulate
protein production faster to a greater extent than lipid
production since the CDL : CDP slightly increased under excess
methionine (Figure 5A Left). If there was no relative increase in
protein nor decrease in lipids, then MCF10A may not
breakdown proteins as much in the presence of excess
methionine, or uptake and retain the excess methionine itself
more efficiently than TNBC. The hydrophobic amino acid can
interact with the acyl chains of the fatty acids in lipid droplets,
Frontiers in Oncology | www.frontiersin.org 739
and since the excess methionine supplied was not deuterated,
this protein would not appear in the cell silent region. This way,
the excess methionine can affect the CH3 peak without affecting
the CDP peak, and explain the behavior observed in Figures 2, 5.
Excess methionine can also incite endoplasmic reticulum stress
due to complex interactions with cysteine pathways since both
are sulfur containing and are critical in protein folding due to
disulfide bonds. These misfolded proteins may be sequestered by
LDs differently across subtypes.
Morphological Changes in Lipid Droplet
3D SRS images were taken for each individual cell at 2850cm-1

(Figures 6A–D) to assess the size and number of LDs more
accurately. LDs were computationally segmented using
MATLAB (Figures 6E–H) to acquire individual LD volume
and number of LDs per cell. The addition of excess methionine
produced the most noticeable changes in lipid droplet
morphology – a decrease in lipid droplet number but increase
in volume. This effect was observed in both MCF10A and TNBC
cells (Figures 6I, J). Of note is the insulin restricted case in
TNBC cells, which had no discernible change to lipid droplet
number or size. Qualitatively, the lipid droplets also appeared
more clustered in excess methionine cases. Lipid droplet volume
was also observed to slightly increase from restricted insulin
A B D

EC

FIGURE 5 | Quantitative de novo lipid synthesis (A) Normalized CDL intensities show excess methionine stimulates de novo lipogenesis. (B, C) CDL Ratios show
violin box-plots of de novo lipid synthesis CDL ratios for MCF10A and MDA-MB-231, respectively. CDL : CH2 illustrates the relative de novo lipid synthesized to total
ascribable lipid content. Balanced 2-way ANOVA with constrained sum of squares results of CDL ratios shows methionine concentration significantly influenced the
CDL: CDP ratio in both MCF10A and MDA-MB-231 lipid droplet spectra with rejection levels of #P < 0.05 and ####P < 0.0001, respectively. (D, E) CDL: CDP

illustrates the relative de novo lipid and protein synthesized biomolecules for MCF10A and MDA-MB-231, respectively. Values were taken from spectra of lipid
droplets only. while. There was no significant evidence of interactions between these two independent variables for these ratios. Balanced 2-way ANOVA with
constrained sum of squares results of CDL ratios indicate insulin significantly influenced the CDL: CH2 ratio in MCF-10A lipid droplet spectra with a rejection level of
####P < 0.0001, but no significant evidence of interactions between these two independent variables. However, in TNBC insulin, methionine, and the interaction term
significantly influenced the CDL : CH2 ratio in MDA-MB-231 lipid droplet spectra with a rejection level of ####P < 0.0001 and #P < 0.05 for the individual and
interaction terms, respectively.
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(0.1x) to physiological and excess insulin (1x and 2x) in TNBC
under excess methionine conditions. This corroborates the
potential interplay between insulin and methionine in TNBC.

Lipid droplet distribution can be a major indicator of cell
cycle status, nutrient availability, and ER stress (54). LD size may
influence the degree to which beta oxidation occurs in cells and
be affected by mitochondrial recruitment during LD expansion
in nutrient rich environments. Regardless, the physical contact
between these organelles is thought to mediate their proper
function (55, 56). A label-free approach to identifying
mitochondrial presence near lipid droplets may be the spectral
presence of cytochrome C (cytC), which is found in the
intermembrane space of mitochondria. Some peaks canonically
representative of cytC are the heme backbone at 1558cm-1 and
the side chains of tryptophan, tyrosine, and phenylalanine in
alpha structures at 1610cm-1 (57) which were weakly present
near the fingerprint region of the spectra in MCF10A and TNBC
cells. It was found in Figures 7A, 8A that excess methionine
cases displayed a diminished spectral presence of unmixed cytC
peaks. This suggests LDs in excess methionine may cluster near
other organelles such as lysosomes, or even with other LDs for
fusion events, instead of co-localizing with mitochondria
for energy. Examples of Gaussian-Lorentzian peak unmixing
Frontiers in Oncology | www.frontiersin.org 840
for MCF10A and TNBC (Figures 7B, 8B), respectively, with
quantitative summaries in the form of bar graphs (Figures 7D,
8C, D). The number of unmixed peaks was optimized such that
the overall fit is accurate, while the unmixed peaks are easily
ascribed to canonical protein and lipid deformations. The Amide
II’ region contains various CH2 and CH3 deformations such as
wagging, stretching, scissoring, and twisting (58, 59). The Amide
I region contains secondary structure information and has been
used to study proteins such as collagen (60). Between these peaks
lies the C-C bond of the heme backbone. MCF10A and TNBC
exhibited distinct peak shapes in all areas of this region. In
MCF10A, the Amide II’ peak had a narrower shoulder at
1458cm-1 under excess methionine (Figure 7C), while TNBC
had a narrower Amide I peak under excess methionine
(Figures 8E–G). The Amide I and II’ regions also contain
protein and lipid information and have various assignments in
the literature. Figure 8G quantifies the width and prominence of
the Amide I peak in TNBC with and without excess methionine.
Results indicate altered protein folding, in which methionine
plays crucial roles. Methionine is not only a protein translational
initiator, but its metabolism is also involved in purine synthesis,
epigenetic control, and secondary disulfide bond formation (24).
Misfolded proteins have tangible effects on ER stress and lipid
A
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FIGURE 6 | 3D SRS image lipid droplet analysis (A–D) 3D isosurface reconstructions of the single cell SRS images taken at 2850cm-1. (E–H) LD segmentation
shows representative maximum intensity projections of SRS image stacks shown in (A–D) with lipid droplets highlighted in blue outlines. (I, J) Quantitative LD
structure summary shows average lipid droplet number and volume for each experimental group. Excess methionine groups display decreased lipid droplet number
and increased size. Lipid droplets also appear qualitatively more clustered in excess methionine as well. Scale bar is 20 µm. Two-tailed t-tests were performed
between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for LD number: *P < 0.05, **P < 0.01. Octothorps
‘#’ correspond to the following p-values for LD volume: #P < 0.05, ##P < 0.01. Scale bar is 20 µm.
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droplet distribution and chemistry (13), as these proteins have
been shown to accumulate in LDs destined for proteasomal
breakdown (54). In this manner, LDs may serve as reservoirs
and chaperones to mitigate lipid and protein toxicity. Although
further investigations are required to confidently assign the
phenomenon observed herein, the fact that consistent
alterations in these areas were observed using label-free
vibrational imaging techniques sets the stage for more in-depth
studies of dietary methionine-controlled protein folding in breast
cancer cells. Figure 7C quantifies the changes in the Amide II’
peak of MCF10A and may indicate altered lipid and protein
structure as well. Various bond deformations occur at slightly
different wavenumbers, with CH2 scissoring being red-shifted
with respect to CH2 stretching. Acyl chains of different length
and saturation may influence the degrees to which each of these
deformations take place. Further investigation into purified LD
content with other techniques such as gas chromatography and
mass spectrometry are warranted. Spectroscopic data are usually
sensitive to baseline correction, background subtraction, and
normalization methods, and are therefore better suited to
Frontiers in Oncology | www.frontiersin.org 941
relative observations, while chromatography and spectrometry
offer absolute quantification and detailed chemical structure.
Conjugating these techniques is beyond the scope of this label-
free optical platform, but is promising and critical step in
progressing this technology.

Lipid Peroxidation Status
Another global lipid response to excess methionine takes form
in the lipid peroxidation status. Under oxidative stress, long
chain unsaturated fatty acids can undergo a vicious cycle of
lipid peroxidation (51). Several Raman shifts have been used to
describe the degree of unsaturation of fatty acids, including the
one near 3010 cm-1 that corresponds to the H-C= stretching
region (51). Interrogating the relative entropy plot in
Figure 4C, we find that the saturated lipid peak at 3010 cm-1

and the lipid peak at 2850 cm-1 both rank highly for both cell
types, but TNBC is more heavily influenced by methionine
concentration. That is, we can see from the spectroscopic data
that MCF10A, whether L-methionine was normal or in excess,
expressed relatively different levels of unsaturated lipids
A B

DC

FIGURE 7 | Spontaneous Raman Spectroscopy detects CytC presence and protein folding (A) normal vs excess methionine Expanded view of lipid droplet spectra
grouped by methionine concentration shows a high relative entropy in the 1550cm-1 region, ascribable to the heme backbone of cytochrome C. (B) Unmixing Peaks
with four peaks using a Gaussian-Lorentzian blend yields an error of 2.367% and an R2 of 0.98854. (C) Amide II’ Peak Shoulder shows an expanded view of normal
and excess methionine groups’ Amide II’ regions highlight a relatively narrowed shoulder at 1458cm-1. Unmixed peaks follow the overall shape of the average Amide
II’ peaks, with the error and correlation coefficient reported in the table below. Width and area information is also summarized in the table to clearly communicate the
disparate shoulder widths. (D) Quantitative summary of the heme backbone unmixed peak intensities for each experimental condition of MCF-10A cultures shows
decreased spectral presence. Two-tailed t-tests were performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the
following p-values: *P < 0.05, ***P < 0.001.
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depending on the level of insulin. This suggests that de novo
synthesis of branched chain fatty acids, or perhaps their
accumulation in LDs was upregulated in excess insulin
conditions. So, while insulin was critical in influencing de
Frontiers in Oncology | www.frontiersin.org 1042
novo synthesis of lipids in TNBC, it may not influence lipid
peroxidation as much as methionine does. Figure 9 shows the
effects of excess methionine in TNBC using multi-modal
optical techniques.
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FIGURE 8 | Spontaneous Raman Spectroscopy detects CytC presence and protein folding differences (A) normal vs excess methionine shows expanded view of
lipid droplet spectra grouped by methionine concentration shows a high relative entropy in the 1550cm-1 and 1650cm-1 regions, ascribable to the heme backbone of
cytochrome C and side chains of tryptophan, tyrosine, and phenylalanine, respectively. (B) Unmixing peaks with four peaks using a Gaussian-Lorentzian blend yields
an error of 2.620% and an R2 of 0.98544. (C, D) Quantitative summary of the unmixed peak intensities for each experimental condition of MDA-MB-231 cultures
shows decreased spectral presence of cytochrome C. (E, F) Amide I peak width shows an expanded view of lipid droplet from 1x Methionine (LEFT), and 20x
Methionine (RIGHT) experimental conditions. Two-tailed t-tests were performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’
correspond to the following p-values: *P < 0.05, **P < 0.01. (G) Peak analysis shows that the peak prominence and peak width at half prominence is significantly
narrower at the Amide I region in excess methionine lipid droplet spectra.
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FIGURE 9 | Multi-modal optical analysis depicts MDA-MB-231 1x insulin sample images demonstrate the conjugated SRS and TPF system. (A-G) Multichannel
Images illustrate SRS and TPF image channels of interest for lipidomic responses to excess methionine. (H) Overlaid Composite Regions image of the 15x
Methionine lipid (CH2), flavins, and de novo synthesized lipids (CDL). Channels were masked according to the indicated thresholds using ImageJ and contrast was
adjusted for optimal clarity. (I) Intensity profile plot depicts the intensities of pixels along the dotted yellow line shown in (H) of each of the three composite channels.
(J) Composite intensity histograms of the unsaturated lipid channel (3010cm-1). Bolded distribution outlines represent the average frequency of pixel intensities
among the cells in each group. Shaded areas around the bolded distribution outline represent the standard error of the mean of each bin of pixel intensities. Each
distribution curve represents the pixel intensities of a cell sampled from the experimental condition. (K) Quantitative Lipid saturation summary depicts the 3010cm-1

pixel intensities (Left axis) in each of the three regions shown in (H) of a typical cell from the indicated experimental condition. Additionally, the lipid arrangement
indicator ratio (2850cm-1:2880cm-1) for each of the regions in (H) is also depicted for the typical cell from each experimental condition. Two-tailed t-tests were
performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for the unsaturated lipid peak
(3010cm-1) intensities: **P < 0.01, ***P < 0.001, ****P < 0.0001. Octothorps ‘#’ correspond to the following p-values for the Lipid Arrangement Indicator (2850cm-1:
2880cm-1) intensities: #P < 0.05, ##P<0.01. (L) Optical redox ratio (Flavin/(Flavin+NADH) autofluorescence intensity) for the typical cell from each experimental
condition. Results corroborate and extend spectral data findings, as well as previous third-party studies. Scale bar is 50um. Two-tailed t-tests were performed
between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for the unsaturated lipid peak (3010cm-1)
intensities: ***P < 0.001.
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Conjugated SRS and TPF microscopy display spatial
distributions of points of interest regarding excess methionine
effects in TNBC cells (Figures 9A–G). These results also
corroborate with the spectroscopic data. Figure 9B reveals that
the cells undergo enhanced de novo lipogenesis under excess
methionine with respect to control groups. Contrary to
expectations, the unsaturated lipid signal in the excess
methionine group was weaker than the control overall but was
stronger near the large lipid droplets (Figure 9C). This
information is lost in spectral acquisitions alone because
spectra were obtained from lipid droplets only. Excess
methionine treated cells exhibited larger cross-sectional area
(Figure 9J) and may be due to the cells being more spread out
and flatter. Due to the point spread function of the confocal laser
scanning microscope, this spreading out of the cells may
contribute to an apparent decrease in concentration of
unsaturated fatty acids because the scattering cross section
along the beam path is smaller. Consistent contrast makes it
difficult to discern the abundance of smaller lipid droplets in the
control images without oversaturating the excess methionine
images. There were no discernible differences in spatial
distribution of heme groups at the 1580 cm-1 (Figure 9D), but
co-localization algorithms may help in future studies. The
indicator of crystalline arrangement in lipids corresponding to
the symmetric:antisymmetric CH2 stretching ratio indicates
that the excess methionine group may have less lipid
saturation near the plasma membrane (Figure 9E). Higher
ratios would indicate a lower concentration of 2880 cm-1

species, which has been ascribed to the Fermi resonance of CH
methylene groups (50). This ratio has been found to inversely
correlate with thermodynamic stability, and when the ratio is
larger, there may be less lattice order in the structure (61). In the
context of cell membranes, fluidity and saturation are critical
functional properties, and the decreased lipid saturation score
near the plasma membrane may also contribute to the observed
“flattness” of the cells with excess methionine, as the cells may be
able to spread out more easily.

Different areas of the cells provide niche microenvironments,
in which lipid peroxidation may vary. Three subcellular regions
of interest include where all lipids exist (Figure 9H, region 1),
where flavins are more present (region 2), and where newly
synthesized lipids are present (region 3). As shown in
Figures 9H, I, these regions do not necessarily overlap. Flavins
have been shown to report on oxidative stress, and certain flavin
enzymes have been associated with lipid peroxidation as well.
The quantitative image analyses of unsaturated lipids (3010cm-1)
and the lipid arrangement indicator ratio (2850cm-1:2880cm-1)
are summarized in Figure 9K, in which distinct regions are
separately quantified. Figure 9J highlights a larger cross-
sectional area of the imaged cells, which may be afforded by a
more fluid cell membrane. In certain cells, oxidative stress has
been found to increase lipid saturation for protection.
Furthermore, the presence of higher ratios near LDs suggests
there is less synthesis of saturated lipid species as well. Finally,
flavin autofluorescence decreased in the presence of excess
methionine (Figure 9F), while NADH autofluorescence
Frontiers in Oncology | www.frontiersin.org 1244
remained more consistent (Figure 9G). The flavin/(NADH +
flavin) ratio has been shown to be an indicator of oxidative stress
and estimator for NAD+:NADH (62). Results corroborate with
previous studies in which this ratio was used to differentiate
breast cancer cell lines (63), with the TNBC having relatively
weaker flavin autofluorescence than the normal-like cell type.
Under oxidative stress, this ratio has been shown to increase. A
decrease here (Figure 9L) may demonstrate the antioxidant
properties of methionine. Flavin autofluorescence data is
summarized in Figure S2.
DISCUSSION

For the first time, the unique lipid metabolism of triple negative
breast cancer was studied under tandem excess methionine and
insulin conditions, and revealed key insights that span the
metabolic, spatial, and biochemical dimensions. Not only did
this study confirm lipid droplets are reflective of cellular
phenotypes and demonstrate their efficacy in classifying breast
cancer subtypes, and even phenotypes, it improves
morphological analysis using 3D imaging, as opposed to 2D,
and efficiently displays relevant chemical disparities using the
first demonstration of relative entropy for Raman data.
Considering the critical impact lipid metabolism has on the
progression of diseases such as cancer, the analyses on lipid
saturation and peroxidation, optical redox status, and LD size
and distribution solidify the effects of methionine and insulin,
which may prove to be therapeutic targets for breast cancer in
the future.

These experiments demonstrate the power of nearly label-free
optical techniques to probe LD phenotypes for the study of
TNBC’s unique metabolism. Methionine dependence, also
known as the Hoffman effect, has been explored in TNBC and
other cancers, but fewer studies explored the effects of excess
methionine, and fewer still, the tandem manipulation of
methionine and insulin. Upon the addition of insulin in TNBC
growth media, macromolecular changes appeared in the CH
stretching region of excess methionine treated cells, as the CH2:
CH3 ratio increased in TNBC, but decreased in MCF10A control
cells. A potential pathway that involves both insulin and
methionine in LD metabolism may be mediated by TNBC’s
elevated mTOR activity, and was explored through the
chemometric, spatial, and molecular imaging dimensions with
subcellular resolution. Currently the stoichiometric mass action
of this pathway remains to be investigated in these breast cancer
subtypes, but several studies have linked methionine, mTOR,
and insulin signaling pathways (25–30), albeit transitively.
Paramount in this investigation is the implication of these
metabolites in the pursuit of TNBC diagnosis and treatment.
Unmixing the interplay between insulin and methionine may
afford targeted therapies that address the rampant lipid
metabolism that facilitates breast cancer progression.

LD chemical composition also demonstrated excellent
classification ability, as lipid and protein Raman cross sections
are not only larger, but also very diverse and highly implicated in
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metabolic cellular states. Classification of breast cancer subtypes,
and even more so their phenotypic states, can be critical in
improving patient outcomes due to the necessity of early
diagnosis. MCF10A cells may exhibit differential protein
metabolism by retaining scavenged methionine or not
metabolizing proteins as much as TNBC, which is due, in part,
to very different doubling times. Several other considerations
including LD size may also contribute to these disparities, as
larger LDs have a greater volume:surface area ratio, and thus a
greater lipid:protein ratio since the apolipoproteins stud the
phospholipid surface of the lipid core. LD fusion can affect this
as well, since newly synthesized LDs may have a diluted CD
signal if fused with older LDs. Further investigation is warranted
to uncover the details of differential lipid metabolism in breast
cancer subtypes using LDs, but this platform has set the stage for
macroscopic observations using efficient optical techniques.

Both TNBC and MCF10A cells exhibited similar spatial
information of LDs under these treatments as excess
methionine conditions generally decreased the number of lipid
droplets while increasing their volume in both cell types, while
insulin generally increased both size and number of LDs. Insulin
restriction appeared to increase LD number as well, and in
TNBC, appeared to attenuate the effects of excess methionine
on LD number. This interesting pattern not only suggests that
TNBC has unique insulin-mediated lipid metabolism, but that
insulin and methionine may have more complex concentration-
dependent interactions in general as well. LD distribution also
seemed to be more clustered in the excess methionine cases, and
we intuit from the diminished spectral presence of cytC that
these lipid droplets were less co-localized with mitochondria.
Finally, the antioxidant properties of methionine expectedly
diminished flavin autofluorescence and resulting lipid droplet
spectra showed higher degrees of lipid unsaturation. In
Figures 9K, L the optical redox ratios and the lipid
arrangement indicator ratios indicate that methionine plays a
large role in lipid peroxidation and saturation. The degree of
saturation of lipids is a critical consideration for cell membrane
fluidity, especially in aggressive cancers that can alter their extra
cellular matrix (ECM), or those that metastasize and migrate
rapidly. For the first time, the dynamics of lipid saturation and
peroxidation under nutritional control has been imaged with
label-free subcellular resolution.

To broaden the scope of the investigation and capitalize on
the rich chemical data of the Raman spectrum, relative entropy
was used to rank the features that exhibited the greatest variance
between different groups. As expected, there are several areas
other than the CH stretching region that offer strong
classification ability despite lower Raman intensities. This may
be attributed to the higher intensity deviations at higher
intensities typical of multiplicative scattering effects.
Additionally, the effects of individual nutritional manipulations
become clearer with all Raman peaks being visible
simultaneously. From this insight, the interrogation of
pathways with Raman spectra can be done more efficiently, as
the relative entropy scores for each Raman shift can be seen at
once, reducing the number of spectra and subplots that need to
Frontiers in Oncology | www.frontiersin.org 1345
be displayed. With this demonstration of efficacy, more critical
quantitative analyses, as well as algorithmic improvements will
be conducted. For example, incorporation of directional shifts
in intensities can be made visible on the relative entropy plot, as
opposed to absolute distance metrics alone. This will not only
identify discriminating variables but will also circumvent the
need to manually determine significant ratios, ratio differences,
and other trends as well. Further, this relative entropy plot may
be useful in feature reduction, so that fewer hyperspectral
imag e s may be r equ i r ed f o r d i s c r im ina t i n g LD
microenvironments and subpopulations. Other methods more
directly identify the wavenumbers that contribute the most to a
spectrum ’s classification, such as the hybrid variable
combination population analysis (VCPA) and iterative
retaining important variables (IRIV) approach (64). However,
due to the large number of variables, IRIV can be time and
resource intensive.

The diverse pathophysiology of breast cancer may have
important mechanisms involving methionine and insulin that
can be studied with optical techniques such as spontaneous
Raman spectroscopy and SRS/TPF microscopy. This study also
emphasizes that LDs are organelles diverse in structure and
function and can yield rich metabolic information when
interrogated by Raman techniques. Future studies that involve
automated high-throughput acquisitions of spectra and images
at more finely tuned concentrations of insulin and methionine
may increase the power of the results discussed here. Different
distribution fits for the relative entropy algorithm, displaying
directionality of peak intensity changes, as well as the
multiplexing of dietary manipulations such as glucose,
pyruvate, and glutamine may paint a clearer picture of the
metabolic dynamics in breast cancer (65, 66). This will also
help make hyperspectral imaging more efficient in terms of disk
space and clustering ability. Utilizing morphological
characteristics and intensity changes to augment classification
has not been performed in this study but will be a prudent next
step in developing these optical techniques for classification
purposes. Additionally, spatial distribution of LD by size and
chemometric composition, as well as quantitative descriptions of
LD distribution and co-localization would further enrich this
investigation. This kind of quantitative hyperspectral image data
will bolster the utility of LD analysis in the study of breast cancer,
and ultimately improve not only our understanding of the
complex disease, but patient outcomes in eventual translation
as well.
MATERIAL AND METHODS

Experimental Design
An experimental outline is shown below (Figure 10). First, three
cell subtypes were grown in media with either 1x methionine
(0.03g/L) or 20x methionine (0.6g/L). Then the experiment was
repeated with the addition of 3 insulin concentrations for each of
the groups to investigate their relationship.
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Cell Culture
Human triple negative breast cancer cell line (MDA-MB-231)
and normal-like breast epithelial cell line (MCF10A) were
cultured in Dulbecco’s modified Eagles’ medium (DMEM),
Frontiers in Oncology | www.frontiersin.org 1446
supplemented with 5% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (Fisher Scientific, Waltham, MA), and
incubated with 5% CO2 at 37°C. Cell cycles were synchronized
using double thymidine block (67). After passaging at 80%
A

B

FIGURE 10 | Experimental Design and Points of Interest A Experimental design illustration of the groups in this study. Only methionine concentration is modulated
at first, and then insulin and methionine were modulated in tandem. DMEM used in this experiment already contains 0.03g/L of L-methionine, which corresponds to
the 1x methionine group. NOTE: in part 2, the excess methionine concentration is 20x for the Raman spectroscopy, and 15x for SRS imaging. (B) Points of interest
where SRS images relating to lipid metabolism are acquired, related to the lipidomic investigation. Hyperspectral Image (HSI) format is shown conceptually to convey
the multi-modal approach to quantitative optical analysis. Vibrational modes are color coded, with an example image of a HSI of MCF10A control cells.
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confluence, cells were seeded at a concentration of 2×105/mL
atop 70% ethanol-soaked cover glass in 24-well plates and
incubated for 8 hours. Then the growth media was changed to
50% heavy water (D2O) and treatment media as follows.

For MDA-MB-231 and MCF10A cell culture media, 57 mg/L
and 42 mg/L L-methionine (M8439, Sigma Aldrich) was added
to DMEM for the excess methionine group for spontaneous
Raman spectroscopy and SRS imaging (20x and 15x
concentration), respectively. The DMEM powder used in this
study already contains 0.03g/L (1x concentration) L-methionine
and corresponds to the physiological concentration group. The
reason for lowering the excess methionine concentration for SRS
imaging analysis is because the cell morphological changes were
more varied and poorer with 20x methionine, making it more
difficult to acquire quantitative metabolic activity from images
on a per-cell basis. Insulin (Sigma Aldrich, St. Louis, MO) was
added at 1µg/mL, 10 µg/mL, and 20 µg/mL for the 0.1x, 1x, and
2x insulin groups, respectively.

Cells were incubated for 48 hours, which corresponds to a
deuterium-retarded cell cycle. Cyclin dependent kinase 1
(CDK1) inhibitor (RO-3066, Sigma) was added with 8 hours
remaining to arrest growth before mitosis. Cells were gently
rinsed with 1x PBS with Calcium and Magnesium ions at 4°C
(Fisher Scientific, 14040216), and finally fixed in 4% methanol-
free PFA solution (VWR, 15713-S) for 15 minutes. The cover
glass was mounted on 1mm thick glass microscope slides with
120 µm spacers filled with 1x PBS without calcium and
magnesium ions. These samples are stored at 4°C submerged
in PBS when not in use.
Spontaneous Raman Spectroscopy
Spontaneous Raman scattering spectra were obtained by a
confocal Raman microscope (XploRA PLUS, Horiba) equipped
with a 532 nm diode laser source and 1800 lines/mm grating. The
acquisition time is 30 s with an accumulation of 4. The excitation
power is ~40 mW after passing through a 100x objective
(MPLN100X, Olympus). The background spectra were taken
for each LD at the same focus plane as the LD and were
subtracted from each LD spectrum immediately. Spectra were
preprocessed using vector normalization and simplex
normalized. Peaks were normalized to the protein peak at 2940
cm-1. Previous studies suggest Raman microspectroscopy can
quantify lipids non-invasively (68).
Stimulated Raman Scattering
Imaging Microscopy
An upright laser-scanning microscope (DIY multiphoton,
Olympus) with a 25x water objective (XLPLN, WMP2, 1.05
NA, Olympus) was applied for near-IR throughput.
Synchronized pulsed pump beam (tunable 720–990 nm
wavelength, 5–6 ps pulse width, and 80 MHz repetition rate)
and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz
repetition rate) were supplied by a picoEmerald system (Applied
Physics & Electronics) and coupled into the microscope. The
pump and Stokes beams were collected in transmission by a high
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NA oil condenser (1.4 NA). A high O.D. shortpass filter (950nm,
Thorlabs) was used that would completely block the Stokes beam
and transmit the pump beam only onto a Si photodiode for
detecting the stimulated Raman loss signal. The output current
from the photodiode was terminated, filtered, and demodulated
in X with a zero phaseshift by a lock-in amplifier (HF2LI, Zurich
Instruments) at 20MHz. The demodulated signal was fed into the
FV3000 software module FV-OSR (Olympus) to form the image
during laser scanning. All 3D lipid droplet images were obtained
with a pixel dwell time 40 µs with 3-frame averaging for a total
imaging speed of ~10-15 min per image stack. Laser power
incident on the sample is approximately 40mW.
Two Photon Fluorescence Microscopy
Autofluorescence of flavins was excited at 820 nm and
autofluorescence of NADH was excited at 780nm using the
same tunable picosecond laser described in section 2.3. Epi-
detected emission offlavin autofluorescence was collected using a
460 nm filter cube (OCT-ET460/50M32, Olympus), and NADH
was collected using a 515nm filter. These images were also
512x512 pixels and were acquired with a 12.5 µs/pixel dwell
time using a 300mW power at the laser shutter. Autofluorescence
images were background subtracted using a rolling ball
algorithm with a radius of 50px, which is intended to
approximate cell size in these images.
Data Analysis
Spectral Clustering
Previous studies have shown these breast cancer subtypes have
unique Raman features (16, 69). Machine learning was
conducted to determine the extent to which these features can
be used to segregate these subtypes and be augmented using the
metabolic dimension of excess methionine. Neural network
classification was done using a simple multi-layer perceptron
(MLP) model with 100 neurons in the hidden layer and a
rectified linear unit (ReLU) activation function for each
neuron. An L2 regularization term with hyperparameter
a=0.0002 penalizes the model for incorrect classification
during learning with cross-entropy loss minimization. The
classification is stochastically optimized using an adaptive
moment estimation algorithm called Adam. Advantages of this
choice of activation function and solver in an MLP include
invariance to rescaling gradients, the ability to learn non-linear
models, and a natural simulated annealing to optimize the
gradient (70). MLP are, however, sensitive to parameter
tuning, and all spectra were normalized to have the same range.

The input for the MLP model consists of a matrix of Raman
spectra, and a vector of target classes. In this study, target
classes are of categorical type and correspond to the cell subtype
and metabolite concentration groups. Each spectrum Xi is
represented as a vector containing m wavenumbers which are
each input into a first layer of neurons. Each neuron in the
hidden layer accepts the weighted linear combination of input
features and applies the ReLU activation function, outputting
the data to the output layer. Softmax is used to probabilistically
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determine the target class of the multiclass model. The model is
trained via backpropagation to minimize cross-entropy loss
with a maximum of 200 iterations in which subsequent weight
vectors reflect a subtracted loss gradient according to equation
1 below.

Wi+1 = Wi− ∈ ∇LossiW (1)

where, ϵ corresponds to the learning rate. A python
implementation of model is readily available from scikit-learn
v0.24.1 (71). The width of the hidden layer, k=100, as well as its
depth of 1 single layer, are tunable depending on the dataset.
Larger datasets may require more neurons and deeper networks
to perform better. The geometric mean of input variables and
classes roughly totaled 100, and an underlying assumption of a
simple binary effect of excess methionine and very distinct
Raman spectra was comfortable with only a single layer.
However, multiplexing of variables such as cell subtype,
methionine concentration, and other manipulations may
intuitively justify additional hidden layers in future
experiments. Classification in this study mainly attempts to
highlight the higher dimensionality of methionine’s non-linear
effects on breast cancer subtypes, and discuss potential pathway
interactions for further investigation. That is, if all breast cancer
subtypes responded similarly and to a similar degree, more
complex neural nets may not be necessary to achieve
good performance.

Principal component analysis (PCA) is performed using
Orange 3.26 on the pre-processed data. The first 10 PCs are
used as the vectors for tSNE visualization without any
exaggeration and a perplexity of 30. A graphical method
outline can be found in Figure S2.
Selected Raman Feature Analysis
Spectroscopic data is extracted using MATLAB and is plotted
using either MATLAB or Prism 7. To visualize the influence of
all Raman peaks on classification simultaneously, relative
entropy is employed. For binary classification systems, the
amount of data lost in classifying data B as data A is described
by the one-dimensional cross entropy equation 2 below.

H(A,B) = −Sn
i (pA 〚 (v〛i ) log pB(vi)) (2)

H(A,B) is the cross-entropy, pA(vi) and pA(vi) are probability
vectors from the distributions of intensity values a wavenumber
variable vi. Probability vectors can be derived from various
distributions, but only gaussian normal distributions were used
in this study. The DKL is related to cross-entropy as it is the
additional entropy beyond the entropy of the data A. Since both
distributions are already labeled and we are not interested in
generating probability vectors, but rather supply them, the DKL is
described by Equation 3 below.

DKL(AjjB) =on
i (PA(vi) log

pA(vi)
pB(vi)

� �
(3)

This divergence is made symmetric by equation 4 below. For
this analysis probability vectors are of length 107
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DKL =
DKL(AjjB) + DKL(BjjA)

2
(4)

For multiclass situations in which the number of groups
exceeds two, the average divergence is calculated following
equation 5 (72, 73).

D(P1 … Pk) =
1

k(k − 1)o
k
iok

j DKL(PijjPj) (5)

Relative Entropy is an excellent method for quantifying the
relative importance of a wavenumber in the discrimination of
spectral datasets because it is computationally fast and capitalizes
on the tremendous chemometric potential afforded by the
spectral resolution of modern spontaneous Raman systems. To
date, this method has not yet been employed and reported in
Raman spectroscopy applications. Second derivative barcode
analysis may be coupled with this method, and improve it, as
barcode analysis contains both amplitude and width
information (74).

Image Analysis
Images were processed using MATLAB and ImageJ. 3D image
stacks of lipid droplets underwent bandpass filtering to suppress
horizontal noise artifacts from laser beam scanning, and
smoothed. Lipid droplets received a sphericity score based on
Euclidean distance from perfect spheres emanating from the
center of mass of the lipid droplet to the surface of the lipid
droplet. Those with low sphericity scores were discarded.
Autofluorescence images underwent sliding paraboloid
background subtraction before manual cell segmentation and
measurement was conducted via ImageJ.

Statistical Analysis
All experiments were run in triplicate. LD spectra for display,
ratiometric peak analysis, subtype clustering, and relative
entropy comprise 5 LD spectra per cell, and 5 cells per
experimental group per trial. SRS and TPF images used in
multi-modal analysis consist of 3 or 4 ROI of approximately 5
cells per ROI in each experimental group per trial. SRS images
used in 3D spatial analysis consist of 4 cells per experimental
group per trial. 2-way balanced ANOVA results were consistent
between trials, so to communicate the impact patterns of
methionine and insulin, results were pooled such that each
datum represents a measurement, not a trial mean.
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Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-
CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs.
ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo
fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and
produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1)
that involves in the b-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of
physiological and pathological conditions. ACC1 is the major member of ACCs in
mammalian, mountains of documents record the roles of ACC1 in various diseases,
such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in
protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA
and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-
translational modifications, resulting in alternated biological processes in mammalian cells.
In the review, we summarize our understandings of ACCs, including their structural
features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a
promising target for diseases treatment, so that the specific inhibitors of ACC1 for
diseases treatment are also discussed.

Keywords: acetyl-CoA carboxylase, lipogenesis, cancer metabolism, tumorigenesis, metabolic diseases
INTRODUCTION

In mammalian cells, acetyl-CoA is a global currency that can mediate the carbon transactions
between metabolic pathways, including glycolysis, tricarboxylic acid cycle, amino acid metabolism,
gluconeogenesis, and fatty acid synthesis. Lipid metabolism or fatty acid metabolism is the bank of
acetyl-CoA. It can deposit extra acetyl-CoA in the form of fatty acids and regulate the intracellular
availability of acetyl-CoA to the global metabolism network by controlling the conversion of acetyl-
CoA into fatty acids. As such, fatty acid synthesis is a central pathway in harnessing a myriad of
metabolic pathways and related physiologies in cells.

Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to
produce malonyl-CoA, which in turn is utilized by the fatty acid synthase (FASN) to produce long-
chain saturated fatty acids (1). There are two members of ACCs in mammalian cells. ACC1 localizes
in the cytosol and takes the major responsibility of converting cytoplasmic acetyl-CoA into
March 2022 | Volume 12 | Article 836058152
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malonyl-CoA for fatty acid synthesis (2). Despite ACC2 also
catalyzing the conversion of acetyl-CoA into malonyl-CoA, it
localizes on the outer membrane of mitochondria that makes the
downstream pathways of ACC2-produced malonyl-CoA
different from ACC1. It is reported that the ACC2-produced
malonyl-CoA can allosterically influence the activity of carnitine
palmitoyltransferase 1 (CPT1) in the b-oxidation of fatty acid (3).
More functional studies about ACC2 are expected in this field.

Fatty acid synthesis controls the storage and expenditure of
carbon source and energy, which can regulate the activities of
other metabolic pathways, such as amino acid metabolism and
glucose metabolism, so that fatty acid synthesis is frequently
alternated to harness the intracellular metabolism network to
meet the requirement of materials and energy for diseases
progressions, such as cancer and metabolic diseases (4–8).
ACC1 is the first rate-limiting enzyme in the fatty acid
synthesis that plays a central role in fatty acid synthesis, so
that ACC1 is the hub of the fatty acid synthesis-related
metabolism network. Its dysregulation in diseases is intensively
studied, including the roles of ACC1 in regulating tumour cell
proliferation, migration, and metabolic disease progression
(9–12). In addition, because acetyl-CoA and malonyl-CoA are
cofactors in protein acetylation and malonylation, respectively,
the emerging non-metabolic functions of ACC1 in diseases are
discussed in recent studies (11, 13, 14), which further expand
the roles of ACC1 in physiologies and pathophysiologies. ACC1
is therefore considered as a promising therapeutic target for
treating diseases, such as cancer and metabolic diseases.

This review summarizes our current knowledge about ACCs,
including the structure of ACCs, the regulatory mechanisms, and
the roles of ACCs in tumorigenesis and metabolic diseases.
Besides, we briefly introduce ACCs inhibitors that are under
investigation for cancer and metabolic diseases therapy.
Frontiers in Oncology | www.frontiersin.org 253
STRUCTURE OF ACETYL-COA
CARBOXYLASES

In mammals, ACCs have two isoforms: ACC1 and ACC2.
Human ACC1 (ACCa, 265 kDa) is encoded by the ACACA
gene on chromosome 17q12 while ACC2 (ACCb, 275 kDa) is
encoded by the ACACB gene on chromosome 12q23 (15). ACC1
and ACC2 share 75% identity in amino acid sequence and are
composed of conservative domains for enzyme activity (16, 17).

ACC1 and ACC2 have similar structures and molecule bases
in catalyzing carboxylation of acetyl-CoA to produce malonyl-
CoA. ACC1 is discussed here in terms of ACCs’ structure. ACC1
contains three major functional domains: a biotin carboxylase
domain (BC domain), a carboxyl transferase domain (CT
domain), and a biotin carboxyl carrier protein domain (BCCP
domain) that links the BC domain and CT domain (Figure 1).
To perform the catalytic activity, the BC domain of ACC1 firstly
consumes ATP and bicarbonate to catalyze the carboxylation of
biotin, in which bicarbonate serves as the donor of the carboxyl
moiety (18). Then, the BCCP domain transfers the carboxyl
moiety from the carboxylated biotin to the CT domain (19),
where the carboxyl moiety is transferred to the acetyl-CoA to
accomplish the carboxylation of acetyl-CoA, converting acetyl-
CoA into malonyl-CoA (20) (Figure 1). Although the BC
domain and CT domain are linked by the BCCP domain in a
single ACC1 molecule, the spatial dimension of ACC1 is so
broad that the functional domains are spatially separated, which
makes the carboxylated biotin in the BC domain can hardly
reach to the acetyl-CoA that bond by the CT domain of the same
molecule of ACC1. To link the cascade reactions of acetyl-CoA
carboxylation, ACC1 molecules form homodimers to enable
the carboxylated biotin in the BC domain reaching to the
acetyl-CoA in the CT domain of the other ACC1 molecule of
FIGURE 1 | Structure of ACC1 and function of three main domains. Three steps to a functional ACC1: First, the BC domain consumes ATP and catalyzes the
carboxylation of biotin, in which bicarbonate serves as the donor of the carboxyl moiety. Subsequently, the BCCP domain transfers the bicarbonate moiety from
carboxylated biotin to the CT domain of ACC1. Lastly, the CT domain catalyzes the carboxylation of acetyl-CoA carboxyl moiety, converting acetyl-CoA into malonyl-
CoA. Created with BioRender.com.
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the homodimer (19–23). Therefore, regulating the formation of
ACC1 homodimers is considered as an important mechanism
controlling the acetyl-CoA carboxylation activity of ACC1.
DISTRIBUTION AND FUNCTIONS OF
ACETYL-COA CARBOXYLASES

ACC1 and ACC2 are widely distributed in organs and tissues in
mammals. ACC1 is highly enriched in lipogenic tissues, such as
liver and adipose tissue, while ACC2 is majorly expressed in
oxidative tissues, such as cardiac and skeletal muscle (24), which
are consistent with the functions of ACC1 in lipogenesis and
ACC2 in regulating fatty acid b-oxidation. In mammalian cells,
ACC1 and ACC2 are differently distributed (Figure 2). ACC1 is
a cytoplasmic protein that catalyzes the conversion of acetyl-CoA
into malonyl-CoA, which is utilized by the fatty acid synthetase
(FASN) and subjected to the de novo fatty acid biosynthesis (2).
It controls the synthesis of mid-and long-chain fatty acids that
serve as building blocks for the cell biology process. Inhibiting
ACC1 by 5-tetradecyloxy-2-furoic acid (TOFA) can completely
inhibit hepatic de novo lipogenesis (DNL), which is considered a
new strategy for non-alcoholic fatty liver disease (NAFLD)
treatment (25). Soraphen A, another ACC1 inhibitor, can
pharmacologically inhibit fatty acid synthesis in diet-induced
obesity mice and significantly suppress weight gain, which sheds
new light on controlling diet-induced obesity (26). Liver-specific
ACC1 knockout (LACC1 KO) mice can survive but show
dysregulated lipid metabolism and deficiency in triglycerides
metabolism (27). In cancer cells, inhibition of ACC1 by
Soraphen A significantly reduces saturated and mono-
unsaturated phospholipid species and increases the proportion
of poly-unsaturation, rendering cells vulnerable to oxidative
Frontiers in Oncology | www.frontiersin.org 354
stresses (28). Moreover, activity-impeded ACC1 reduces
cytoplasmic membrane fluidity and impairs mobilities of
transmembrane receptors, ultimately impairing cell membrane-
dependent biological processes (29).

ACC2 contains a hydrophobic N-terminal region that leads
ACC2 attaching to the outer membrane of mitochondria (25). The
mitochondria-located ACC2 also catalyzes the conversion of
acetyl-CoA into malonyl-CoA. However, instead of entering the
de novo fatty acid biosynthesis, the ACC2-generated malonyl-CoA
locally interacts with carnitine palmitoyltransferase 1 (CPT1) that
also localizes on the outer mitochondrial membrane. CPT1
accounts for the first step of long-chain fatty acids b-oxidation
in mitochondria. The binding of malonyl-CoA allosterically
inhibits the activity of CPT1 and therefore influences the
process of fatty acid b-oxidation in mitochondria (30). In animal
experiments, inhibition of ACC2 can increase hepatic fat
oxidation, reduce hepatic lipids, and improve hepatic insulin
sensitivity in mice with NAFLD (31), which is further confirmed
inmice with genetic depletion of ACC2 (3, 32, 33). In addition, the
fatty acid oxidation rate in the soleus muscle of the ACC2-/- mice
is 30% higher than that of wild-type mice and is not affected by the
addition of insulin, leading to reduction of body weight under
normal food intake and slower weight-gain with high-fat/high-
carbohydrate diets (34).

In addition to the roles in metabolic flow, fatty acids, acetyl-
CoA, and malonyl-CoA are effector molecules that participate in
signaling pathways in cells (35–37). Correspondingly, ACCs, as
the consumer of acetyl-CoA and the producer of malonyl-CoA
that function as the rate-limiting enzyme in fatty acid synthesis,
play intriguing roles in regulating cellular signaling networks. For
example, polyunsaturated fatty acids (PUFAs) are the precursors
of various signaling molecules, such as eicosanoids, that regulate
the activity of sterol-regulatory-element-binding protein 1c
(SREBP1c) in fatty acid metabolism in liver (38). Inhibition of
FIGURE 2 | ACCs in fatty acid metabolism. ACC1 is a cytoplasmic protein that catalyzes the conversing of acetyl-CoA to malonyl-CoA in the de novo fatty acid
biosynthesis (2). On the other hand, the hydrophobicity of the N-terminal region of ACC2 allows its localization to the outer membrane of the mitochondria, regulates
CPT1 which controls fatty acid b-oxidation (25). Created with BioRender.com.
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ACCs is considered as a promising strategy for treating liver
diseases (39). However, on the other hand, it leads to a decrease in
malonyl-CoA and the synthesis of downstream PUFA, which in
turn activates SREBP1c and upregulates the expression of glycerol-
3-phosphate acyltransferase 1 (GPAT1) that catalyzes triglyceride
synthesis, stimulating hepatic VLDL secretion and leading to
hypertriglyceridemia (40). As such, hypertriglyceridemia is used
to be accompanied with the ACCs-targeting therapies. Acetyl-
CoA is another instance. It can regulate gene transcription by
donating the acetyl-moiety in the acetyltransferases-mediated
histone acetylation (41). Inhibition of ACCs can increase the
intracellular acetyl-CoA level and stimulate the influx of calcium
into the cells, which lead to the activation and translocation of
NFAT (nuclear factor of activated T cells 1) into the nucleus to
promote the transcription of adhesion and migration-related
genes, promoting adhesion and migration of glioblastoma cells
through Ca2+– NFAT signaling. Malonyl-CoA plays roles in
regulating dietary behavior and appetite (42). It is shown that
mammalian neural tissue was able to rapidly convert administered
acetate into acetyl-CoA, which subsequently entered the Krebs
cycle to promote ATP production. Excessive ATP level, in turn,
down-regulates AMPK activity and secures ACC2’s enzymatic
activity. As a result, malonyl-CoA was produced to a great extent,
causing the downstream effector molecular pro-opiomelanocortin
upregulation and neuropeptide Y downregulation, eventually
leading to loss of appetite in mice (43, 44).

In addition to the metabolic functions, ACC1 and ACC2
regulate protein acetylation by manipulating the availability of
acetyl-CoA in cells. In liver-specific ACC1 knockout mice, the
amount of acetyl-CoA in the extra-mitochondrial space is
substantially elevated, which can serve as the substrate cofactor
for acetyltransferases and increase the acetylation of proteins to
regulate the functionome, including metabolic enzymes that
regulate the metabolism network in ACC1 KO mice (13).
Another study also shows that attenuated expression of ACC1
leads to a substantial increase in histone acetylation and alters
transcriptional regulation, resulting in increased histone
acetylation that consequently regulates biological processes in
cells via influencing gene transcription (14). While the causal
relationship between ACCs’ activities and protein acetylation is
confirmed, the detailed mechanism underlying ACC1-related
hyperacetylation remains elusive. Besides, ACC1 regulating
protein acetylation by control l ing the intracel lular
concentration of acetyl-CoA might also play a role in disease
development. A supportive study reported that ACC inhibition
regulates smad2 acetylation, which consequently affects the
activity of smad2 and breast cancer metastasis (11). Malonyl-
CoA is the product of ACCs’ enzymatic reactions. It can also
serve as the substrate cofactor in the enzyme-catalyzed protein
malonylation. Increased intracellular malonyl-CoA can result in
upregulation of protein malonylation, which might affect protein
functions and biological activities in cells (9). Despite evidences
are supporting the importance of the non-metabolic functions of
ACC1 in regulating protein modifications and functions, it is
premature to conclude the non-metabolic functions of ACC1 in
diseases development and treatment.
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Altogether , ACCs regulate the physiologies and
pathophysiological processes of cells by executing metabolic and
non-metabolic functions. It should sense the alternatives in cells
and precisely translate the alternated signals into the responses of
cells. As such, sophisticated regulation of ACCs is required to
secure the metabolism network matching the physiologies of cells.
REGULATION OF ACETYL-COA
CARBOXYLASES

The activities of ACCs in cells can be transcriptionally and post-
transcriptionally regulated that are tightly associated with the
metabolic status of cells. In general, the protein level and
enzymatic activities of ACCs are upregulated in nutrient and
energy abundant conditions, aiming to store the excess nutrient
and energy in the form of fatty acids. Correspondingly, the protein
level and enzymatic activities of ACCs are suppressed in nutrient
and energy-deficient conditions, aiming to secure the limited
energy and nutrients being utilized for survival (45, 46). The
AMP-activated protein kinase (AMPK) is the most studied
energy sensor that senses the nutrient and energy status of cells
and is an important regulator of ACC1. When cells suffering
metabolic stresses, such as glucose deprivation or hypoxia,
AMPK is activated that can phosphorylate the serine-79 residues
in ACC1 (equivalent to ACC2 Ser212) (47). Phosphorylation of the
Ser-79 residue effectively blocks the formation of ACC1
homodimer, leaving ACC1 molecules as monomers that are
unable to catalyze acetyl-CoA carboxylation (21). The fatty acid
synthesis pathway is therefore suppressed. However, when cells
return to a nutrient and energy-abundant environment, the
phosphorylation of Ser-79 in ACC1 can be removed by the type
2A protein phosphatase (PP2A), allowing the reformation of ACC1
homodimer that is active in catalyzing acetyl-CoA carboxylation
(48, 49). Besides nutrient and energy stresses, the Ser-79 residue in
ACC1 can be phosphorylated and maintained to prevent
lipogenesis in certain pathophysiological processes. For example,
the susceptibility gene 1 (BRCA1) C-terminal (BRCT) domain
binds to p-ACC1 to from BRCA1/p-ACC1 complex (50), which
prevents dephosphorylation of p-ACC1 and constantly suppress
the activity of ACC1 to reprogram the metabolism network in
breast cancer. Insulin-like growth factor-1 (IGF-1) treatment can
disrupt the interaction between BRCA1 and p-ACC1, which leads
to the dephosphorylation and reactivation of ACC1 (51).

In addition to phosphorylation, metabolites that are associated
with changes in metabolism can allosterically regulate the
activities of ACCs. For example, citrate is an intermediate
metabolite in the TCA cycle that can allosterically activate
ACC1 to drive the fatty acid synthesis pathway in normal
condition (52, 53). Intriguingly, opposite effects of citrate on
ACCs’ activities were reported (54), the underlying mechanism
remains elusive. Glutamate can allosterically activate phosphatase
that mediates dephosphorylation and activation of ACCs in
cardiomyocytes, which may contribute to the cardioprotective
effects of glutamine against lipolysis (55).. Fatty acyl-CoAs can
induce the de-dimerization of ACC1 that inhibits the activities of
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ACC1 and fatty acid synthesis in cells (54). By interplay with
metabolites from different metabolic pathways, ACCs mediate the
cross-talk between fatty acid synthesis and other metabolic
pathways, forming a sophisticated regulation network to secure
the metabolic status fit the physiologies of cells.

The protein levels of ACC1 and ACC2 are dynamically
regulated in cells. The expression level of ACC1 can be regulated
by certain transcription factors. SREBP1c is a well-studied instance.
The ACACA gene has two distinct SREBP binding sites, which
recruit SREBP1c to initiate RNA Polymerase II-dependent
transcription. Carbohydrate response element (ChRE) -binding
protein (ChREBP) is another transcription factor that regulates
ACC1. It binds to the promoter regions and activates the
transcription of ACACA, in response to the high-carbohydrate
diet (56, 57). Besides transcription, the protein stability of ACC1
can also be regulated. In breast cancer, small interfering RNA-
mediated Aldo-keto reductase family 1B10 (AKR1B10)
knockdown induces ACC1 degradation via the ubiquitination-
proteasome pathway, resulting in a markedly drop in fatty acid
synthesis in RAO-3 cells (58). In prostate cancer, the expression of
prolyl isomerase Pin1 positively correlates with the protein level of
ACC1. It binds to ACC1 to prevent ACC1 from entering the
lysosomal pathway, leading to the stabilization of ACC1 protein
and resulting in enhanced activity of ACC1 in cells (59).

ACC1 activity can also be regulated by post-transcriptional
and translational mechanisms. There are 64 exons included in
the gene ACACA that result in 7 alternatively spliced minor
exons (1A, 1B, 1C, 3, 5A’, 5A, and 5B). The exon 5B can lead to
transcriptional termination of the upstream exon 5 in two
different transcripts, producing a short peptide that leads to
the production of truncated ACC1 that affects the transcriptional
efficiency and activity of ACC1. These studies suggest that ACC1
activity can be regulated by post-transcriptional and translational
mechanisms and consequently result in suppression of fatty acid
synthesis (60). The protein level of ACC1 can be post-
transcriptionally reduced in calcium/calmodulin-dependent
protein kinase kinase2 (CAMKK2) knock out cells, suppressing
the proliferation of human prostate cancer cells (61).

Taken together, ACC1 and ACC2 are sophisticatedly regulated
in cells to make the process of fatty acid synthesis, as well as its
cross-talk metabolic networks, meet the physiologies of cells.
There are myriad factors that regulate ACC1’s activities,
including nutrients, protein kinases, phosphatases, allosteric
regulators, transcriptional factors et al. Dysregulation of these
regulatory factors usually serves as causative signaling for the
development of cancer and metabolic diseases (10, 54, 61–63).
Dysregulation of ACCs in diseases is therefore intensively studied.
DYSREGULATION OF ACETYL-COA
CARBOXYLASES IN DISEASES

Fatty acid synthesis is central in the cross-talk between multiple
biological processes, including membrane biosynthesis, energy
storage, and the generation of signaling molecules (64).
Lipogenesis is dynamically regulated in response to the
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physiologies of cells. Correspondingly, dysregulation of fatty
acid synthesis can induce or promote the development of
diseases. ACCs is the first rate-limiting enzyme in fatty acid
synthesis. It is therefore the focus of mountains of studies and be
validated as a critical participant in diseases, especially cancer
and metabolic diseases (11, 65–71).

Signaling regulators of lipid biosynthesis are major
downstream targets of oncogenes and tumour suppressor
pathways. Alternations of oncogenes and tumour suppressor
pathways can manipulate de novo fatty acid synthesis.
Dysregulation of fatty acid metabolism, in turn, influences the
cellular processes that are linked to diseases, such as cancer. For
example, the AMPK pathway is important in regulating cell
growth, lipid and glucose metabolism, and autophagy (72). It
senses the relative level of ADP to ATP and be activated when the
ratio of ADP to ATP increased. When tumour cells suffering
metabolic stresses, AMPK can be activated, which then
phosphorylates ACCs to suppress the lipid biosynthesis
pathway, resulting in metabolism reprogramming that influences
the survival and growth of tumour cells. Mutagenic blockage of the
AMPK phosphorylation site of ACC (ACC1 Ser76Ala and ACC2
Ser212Ala) increases liver DNL and accelerates the development
of hepatocellular carcinoma (HCC). Liver-specific inhibitor ND-
654, which mimics ACC phosphorylation, inhibits liver DNL and
the progression of HCC, resulting in an improved prognosis for
tumour-bearing mice (73). In head and neck squamous cell
carcinoma cells (HNSCC), the AMPK activator cetuximab and
5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside
(AICAR) can suppress tumour cell growth (74, 75). Abolishing the
AMPK phosphorylation sites on ACC1 by mutagenesis can
protect HNSCC from cetuximab-induced growth inhibition.
Decreased AMPK activity in hereditary leiomyomatosis renal
cell cancer (HLRCC) leads to the elevated activity of ACC1,
which contributes to the oncogenic growth of HLRCC (76).
Metformin is an agonist of AMPK that can promote
phosphorylation of ACCs. Metformin treatment can effectively
suppress lipogenesis and cancer cell proliferation (10). Because
ACC1 can mediate the AMPK-sensed metabolic stress and the
downstream of cancer metabolism reprogramming, it is
considered a potential target for cancer therapy. However, some
studies also show exceptional viewpoints on the AMPK/ACC
signaling pathway for tumour growth (77). For example, under
energy stress conditions, activated AMPK can phosphorylate and
inhibit ACC1, which can suppress the NADPH-consuming fatty
acid synthesis and maintain the NADPH homeostasis in tumour
cells. Similarly, ACC1 depletion can also suppress the NADPH
consumption by fatty acid synthesis, which in turn partially
facilitates solid tumour survival under stress conditions (77).
Thus, under special conditions, the AMPK/ACC signaling
pathway that can alternatively regulate tumour cell proliferation
by maintaining NADPH homeostasis.

The phosphatidylinositol-3 kinase (PI3K)/Akt/mammalian
target of the rapamycin (mTOR) is another signaling pathway
that senses the physiologies of cells and executes important
functions by regulating ACC1 activities. In general, receptor
tyrosine kinases (RTKs)-mediated activation of PI3K can activate
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Akt. Hyperactivated Akt then activates mTOR, which processes the
upstream signals and forms mTORC1 (78). PI3K/Akt/mTOR
signaling pathway regulates tumour metabolism, growth, survival,
and metastasis (79, 80). ACC1 is tightly associated with the PI3K/
Akt/mTOR signaling pathway in cancer cells. For example, the
melanoma antigen ganglioside GD3 is a downstream target of
PI3K/Akt/mTOR signaling. In melanoma, GD3 can induce the
activation of SREBP-1, which is a transcription factor that regulates
the expression of ACC1 (81). In breast cancer, the HER2 oncogene
can induce ACC1 expression through translational regulation of
the mTOR signaling pathway (82). Correspondingly, inhibition of
ACC1 by siRNA or chemical inhibitors can inhibit AKT-related
pathways, which is detrimental for cancer, such as human HCC
(83). It is therefore concluded that ACC1 protein level and activity
can be regulated by various internal alterations, which in turn
affects lipid synthesis in tumors. Dysregulated lipid metabolism
impacts multiple intracellular processes, such as membrane
synthesis and energy metabolism that may influence tumor
development ultimately. However, the mechanisms underlying
lipid metabolism influencing tumor progressions, such as
proliferation and metastasis, have not been fully elucidated. How
ACC1 cross-talk with other pathways remains open for discussion.

Metabolic diseases are also tightly associated with the
dysregulation of ACCs. In mammals, the accumulation of lipid
in tissues, such as muscle and liver, is closely related to insulin
resistance that associates with a myriad of metabolic disorders (84,
85). Likewise, dysregulated lipogenesis may lead to metabolic
diseases such as obesity, diabetes, and NAFLD (6–8). As a
central player of lipogenesis, ACCs promptly participates in the
progression of metabolic disease. For example, a high-fat diet leads
to increased ACC1 activity and obesity in mice while inhibition of
ACC1 antagonizes the high fat diet induced obesity. ACC2 plays
roles in controlling diet-induced diabetic nephropathy (DN).
High-glucose diets promote lipid deposition and reduce fatty
acid b-oxidation in human podocytes. Depletion of ACC2
attenuates the high-glucose diet-promoted lipid deposition and
podocyte injury. The expression of glucose transporter 4 (GLUT4)
is also restored by ACC2 depletion, which hampers the insulin
signaling pathway. Besides, the expression of SIRT1/PGC-1a, an
important complex related to the insulin metabolic pathway is also
restored in the cells with ACC2 depletion, leading to the reduction
of cellular insulin resistance and ultimately alleviating DN-
induced cell injury (86). ACCs knockout animal models are
powerful tools to understand the roles of ACCs in the
progression of metabolic diseases, with which, a study
demonstrated that ACC1 is necessary to maintain functional
pancreatic b cells and glucose homeostasis in vivo, which
indicates that ACC1 might be used to improve insulin secretion
during diabetes (71). Liver-specific ACC1-KO mice (LACC1 KO)
accumulate 40%-70% lower triglycerides in livers than that of
wide-type mice when overnutrition is provided. Similarly, ACC2
knockout (ACC2 KO) mice do not gain weight when fed with
high-fat diet (HF) (34). It might be due to the hepatic peroxisome
proliferator-activated receptor-g (PPAR-g) proteins that are
significantly reduced in ACC2 KO mice that are fed with high-
fat and high-carbohydrate diet (HFHC). In this case, lipid
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synthesis-related enzymes such as ACC1, FASN, and ATP
citrate lyase (ACL) are decreased, which in turn reduced diet-
induced obesity. Besides, ACC2 KO mice are able to alleviate the
HFHC diet-induced insulin resistance. ACC2 KO mice with HF
diet show reduced AKT level and increased phosphorylation of
AKT, which is critical in the insulin signaling pathway that can
protect the mice from diabetes (87). The above researches
demonstrate that ACCs is responsible for metabolic disorders
caused by dietary factors (27). Moreover, hyper-activation of
ACC1 can also result in abnormal physiologies in metabolic
disease. For instance, the enhanced activity of ACC1 accelerates
lipogenesis and lipid accumulation when animal suffering
overnutrition and obesity, which leads to the accumulation of
triglycerides in hepatocytes and thus causing NAFLD (88).

In general, dysregulated lipogenesis leads to the development
of tumorigenesis and metabolic diseases. The roles of ACCs in
regulating metabolism reprogramming in cancer and metabolic
diseases are revealed in accumulated studies, which shed bright
light on diseases treatment. As such, ACCs are becoming a
promising therapeutic target for discovering novel therapeutic
strategies and therapeutics development.
ACETYL-COA CARBOXYLASES-
TARGETING SMALL MOLECULES FOR
THERAPEUTIC PROPOSES

With the evidence of ACCs participating in the progression of
diseases and its structural information, countless screenings for
ACCs antagonists are performed and several promising leading
compounds are confirmed for further validations (65, 83, 89–94).
The ACCs inhibitors mainly target its BC domain and CT domain.

The BC domain accounts for the biotin carboxylation and
formation of the homodimer of ACCs molecules. The main
mechanism of action (MOA) of the BC domain targeting
inhibitors is allosterically inhibiting the dimerization of the BC
domain, maintaining ACC1 molecules as inactive monomers
that are unable to perform the catalytic activity (21). Soraphen A,
AMPK activators, and ND-series inhibitors (ND-630, ND-646,
ND-654) inhibit ACC1 belong to this category (73, 91, 95–98).
These inhibitors can effectively inhibit ACCs activity and affect
the process of lipid metabolism and the development of disease
(10, 26, 28, 29, 90, 99, 100). It is worth noting that there are
studies already confirmed that inhibiting ACCs in the liver by
using ND-630 (GS-0976) can significantly reduce 29% liver fat,
hepatic steatosis, and markers of liver injury in NAFLD patients
(101, 102), which further encourage the finding of ACCs
inhibitors for therapeutic proposes.

The CT domain catalyzes the transfer of carboxyl-moiety
from the carboxylated biotin to the acetyl-CoA to produce
malonyl-CoA. Competitive inhibitors targeting the binding of
acetyl-CoA by CT domain are therefore another promising
strategy for inhibiting ACCs. TOFA, CP-640186, piperidinyl
derived analogs, and spiropiperidine derived compounds are
antagonists that belong to this category (103–108). These
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antagonists can reduce the mice’s appetite and accelerate weight
loss (93, 109) and lead to apoptosis in different cancer cell lines
(92, 110, 111). Despite no relevant clinical trials of this class of
antagonists are found, it keeps recruiting screenings for new
leading compounds.

In conclusion, numbers of commercially available ACCs
inhibitors have exhibited strong therapeutic effects on disease
models in vivo and in vitro, supporting that ACCs are promising
therapeutic targets for the treatment of tumour and metabolic
diseases. However, no agonist can specifically inhibit one ACCs
member and keep another member intact. This might lead to
adverse effects, because ACC1 and ACC2, indeed, are different in
physiologies and pathophysiologies. To this end, the
development of agonists that are specifically against ACC1 or
ACC2 might be a promising strategy to target ACCs for
diseases treatment.
LIMITATIONS AND PROSPECTS

Antagonists that target ACCs are intensively studied in clinic but
hampered by several side-effects. For example, inhibiting lipogenesis
via suppressing the expression of ACCs can reduce hepatic steatosis,
but it simultaneously results in hypertriglyceridemia due to the
activation of SREBP-1c and increased VLDL secretion (40).
Another instance is PF-05175157, the first-in-human clinical trials
ACC inhibitor, contributes to DNL reduction in treatment for
T2DM but with concomitant reductions in platelet count (112).
Recently, an exciting result in phase II clinical trial shows that the
co-administration of PF-0522134 (a new ACC1 inhibitor in clinical
trial) and PF-6865571 (DGAT2 inhibitor) has a strong effect in
treating NASHwithout the side effect of hypertriglyceridemia (113).
However, there are several challenges to address the side-effects of
ACCs inhibition in clinical practice.

The principal challenge is that the inhibitors can hardly
distinguish ACC1 from ACC2. As described above, ACC1 and
ACC2 share 75% identity in amino acid sequence and are similar
in structures that are composed of conservative domains for
enzyme activity. However, the ACCs antagonists, such as
Soraphen A and TOFA, can target and influence the activity of
both ACC1 and ACC2, which might lead to the side-effects
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caused by the inhibition of unwanted ACC isoform. In nutrient-
abundant condition, fatty acid synthesis and breakdown are
coordinately controlled, avoiding a wasteful cycle of
metabolism. However, in cancer cells, both fatty acid synthesis
and breakdown are boosted to support cancer growth. To this
end, coordinately antagonizing the dysregulation of ACC1 and
ACC2 in cancer cells would be a promising strategy for cancer
treatment. So far, none of ACCs inhibitors is approved useful in
clinic. This might be due to the fact that ACC inhibitors that are
not isoform-specific only partially reverse cancer’s preferences.
Moreover, it is shown that the selectively inhibition of ACC2
may be ineffective in treating some metabolic diseases (114). A
selective inhibitor targeting ACC1 that shows anti-NAFLD/
NASH effects in pre-clinical models is reported in a recent
study (115), which is expected to strengthen the efficacy.

Accumulating studies indicate the importance of ACCs in
tumour cell growth which shows the great potential of ACCs
in the treatment of cancer. However, studies on the role of ACCs
in cancer have been attributed to their roles in fatty acid
synthesis, the exact mechanism of which remains to be
investigated. The role of fatty acid metabolism in cancer
biology is not fully understood (116). More in-depth research
about fatty acid metabolism in cancer will help examine and
detail the roles of the ACCs, in cancer initiation, progression,
and development.
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Cutaneous melanoma is a highly invasive tumor and, despite the development of recent
therapies, most patients with advanced metastatic melanoma have a poor clinical
outcome. The most frequent mutations in melanoma affect the BRAF oncogene, a
protein kinase of the MAPK signaling pathway. Therapies targeting both BRAF and
MEK are effective for only 50% of patients and, almost systematically, generate drug
resistance. Genetic and non-genetic mechanisms associated with the strong
heterogeneity and plasticity of melanoma cells have been suggested to favor drug
resistance but are still poorly understood. Recently, we have introduced a novel
mathematical formalism allowing the representation of the relation between tumor
heterogeneity and drug resistance and proposed several models for the development
of resistance of melanoma treated with BRAF/MEK inhibitors. In this paper, we further
investigate this relationship by using a new computational model that copes with multiple
cell states identified by single cell mRNA sequencing data in melanoma treated with
BRAF/MEK inhibitors. We use this model to predict the outcome of different therapeutic
strategies. The reference therapy, referred to as “continuous” consists in applying one or
several drugs without disruption. In “combination therapy”, several drugs are used
sequentially. In “adaptive therapy” drug application is interrupted when the tumor size is
below a lower threshold and resumed when the size goes over an upper threshold. We
show that, counter-intuitively, the optimal protocol in combination therapy of BRAF/MEK
inhibitors with a hypothetical drug targeting cell states that develop later during the tumor
response to kinase inhibitors, is to treat first with this hypothetical drug. Also, even though
there is little difference in the timing of emergence of the resistance between continuous
and adaptive therapies, the spatial distribution of the different melanoma subpopulations is
more zonated in the case of adaptive therapy.
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INTRODUCTION

More than one half of melanomas carry mutations of the gene
coding the BRAF kinase, a key upstream component of the
MAPK signaling pathway, which is involved in cell growth and
proliferation. In this pathway, BRAF phosphorylates and
activates MEK that in turn phosphorylates and activates ERK,
a potent effector that induces the transcription of many
important genes that play a dominant role in survival and
development of tumor cells. In melanoma, targeted therapies
based on BRAF inhibitors (vemurafenib, dabrafenib,
encorafenib) and MEK inhibitors (trametinib, cobimetinib,
binimetinib) aim at reducing the activity of this key signaling
cascade (1–4). BRAF inhibitors act differentially on cancer and
healthy cells. Indeed, elevated MEK and ERK activity is induced
mainly by BRAF dimers, and less by monomers. In BRAF-
mutated melanomas, RAS-GTP levels are insufficient to
promote BRAF dimerization, therefore the inhibition of BRAF
monomers is sufficient for ERK inactivation. This specificity
reduces the toxicity of this type of treatment (5). Although the
treatment based on these kinase inhibitors initially leads to
efficient tumor regression, resistance appears almost
systematically. Several mechanisms have been associated to
acquired resistance, such as RAS mutation, receptor tyrosine
kinase activation that either compromise ERK inactivation or
induce other survival pathways such as PI3K/AKT (5).

We focus here on a non-exclusive, but different cause of
resistance, that involves the development of several drug tolerant
cell states by non-genetic mechanisms. The non-genetic nature
of adaptive resistance in melanoma was first suggested by the
reversibility of this process: resistant tumors can re-sensitize
upon a drug holiday (6, 7). Coexistence of sensitive and resistant
cells with anti-correlated fitness in treated and untreated
conditions can also explain apparent tumor re-sensitization in
the absence of drug by positive selection of sensitive cells and
negative selection of resistant cells, without the need for
transitions between different cell states (8). Moreover, single
cell RNA analysis has demonstrated plastic transitions between
distinct cellular phenotypes in cell lines (9–11) and in patient-
derived xenograft (PDX) mouse models (12, 13) submitted to
BRAF/MEK inhibitors. Treatment-induced transitions between
cell states have robust features, common to many patient-derived
cultures and different cell lines (11). Between the melanocytic
and mesenchymal-like states which represent the sensitive and
resistant extremes there are intermediate states resembling
nutrient-starved cells and evolving via several trajectories
towards mensenchymal-like states. The intermediate states and
the trajectories originating therein show intrinsic variability of
the gene expression, which suggests that the transitions between
states are continuous rather than discrete (9, 11, 12).

These fundamental findings could be used to design new
therapeutic strategies to avoid resistance. The re-sensitization,
either real or apparent, arising when resistant cells are slowly
growing in untreated conditions, suggest that a discontinuous
adaptive treatment, alternating ‘on’ and ‘off’ drug periods, may be
able to control tumor size, at least for some time. Combination
therapy may also depend on one’s capacity to predict the changes
Frontiers in Oncology | www.frontiersin.org 263
induced by the primary tumor treatment, in space and time. For
instance, drug tolerant neural crest stem cells, which are enriched
upon treatment with BRAF/MEK inhibitors, display an RXR-
driven signature, suggesting that these cells could eventually be
targeted pharmacologically by using RXR-inhibitors (12). Besides
anti-BRAF/MEK targeted therapies, the recent discovery that
immune checkpoint inhibitors, targeting regulatory molecules
on T lymphocytes (anti-CTLA4, anti-PD-1, and anti-PD-L1),
are highly efficient in melanoma patients has revolutionized the
treatment of metastatic melanoma. However, each treatment
modality has limitations. While treatment with targeted
therapies is associated with a strong beneficial short-term
response but is followed by systematic resistance, treatment with
immune checkpoint inhibitors has a lower response rate but
associates with better long-term responses on a subset of
melanoma patients. Thus, despite these considerable
improvements in melanoma treatment, the development of new
clinical strategies remains necessary and a better understanding of
melanoma biology is likely to provide additional therapeutic
options to patients with resistant cancers (14, 15).

In this paper we use a computational framework to study the
heterogeneity of melanoma and develop a predictive model for
various therapeutic outcomes. We base our model on data
obtained in MEL06 patient-derived melanoma cells, which
were demonstrated to develop non-genetic resistance to BRAF/
MEK inhibitors (12). Given the complexity of the resistance
mechanisms in melanoma, our conclusions may not hold true
for all melanomas, which may evolve during treatments through
multiple mechanisms of resistance.
RESULTS

Multidimensional, Data Driven
Model of Heterogeneity
Our main assumption is that under treatment melanoma cells
undergo a series of non-genetic transitions, leading to drug
tolerant and resistant cell states. Contrary to more traditional
models of heterogeneity that consider a finite number of discrete
cell states (16), our model can cope with a continuous spectrum
of states. In this model, cell populations are represented as
distributions (heatmaps) over many dimensions; spatial, coping
with cell motility and cell interactions with extracellular matrix,
diffusive drug and signaling molecules, but also structural,
representing internal cell-state variables such as gene
expression, signaling, and metabolic activities (Figures 1A, B).
An interesting possibility is to use single cell data and feature
extraction methods such as t-distributed stochastic neighbor
embedding (t-SNE) in order to define reduced structural
dimensions (Figures 1C, D). In this case, the distributions
(heatmaps) predicted by the model (Figure 1B) can be directly
compared to the empirical single cell distributions. We call this
approach ‘mesoscopic’ as it is intermediate between a
microscopic approach, which simulates each cell individually,
and a macroscopic one, in which the cell-to-cell variability is
averaged out. Even though this method can be applied to any
April 2022 | Volume 12 | Article 857572
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type of single cell data (transcriptomic, proteomic or
metabolomic), our analysis is based on the single cell mRNA
sequencing data from (12).

In order to clarify the structural dimensions of our tumor, we
distinguished six different melanoma subpopulations; namely
proliferative, invasive, pigmented cells, neural-crest stem cells
(NCSCs), starved-like melanoma cells (SMCs), and
uncharacterized resistant cells (URCs). These are schematically
represented in the structural plane in Figure 1D and are in line
with previous experimental results (12). It should be recalled that
individual cells may concurrently occupy several states, existing in
a continuum of gene expression profi les across the
structural domain.

The model predicts dynamic heterogeneity, meaning that the
multidimensional distributions depend also on time. The evolution
of these distributions is driven by spatial fluxes, involving undirected
(diffusive) and directed (advective) spatial cell motility, and by
structural fluxes, corresponding to changes of the cell state. The
undirected spatial diffusion fluxes describe a cellular spatial random
walk process, whereas directed spatial fluxes describe controlled cell
migration mediated by adhesive extracellular matrix substrates or to
sites of more elevated nutritional content (see Methods and
Supplementary Methods). The undirected structural fluxes
(structural diffusion) correspond to random changes of the cell
state leading to the spread of the cell distributions (increased
heterogeneity) without changes of modal positions in the
structural dimensions. The directed structural fluxes (structural
advection) correspond to deterministic changes of the cell state,
leading to shifts of the distribution modes. The cell distribution
dynamics, represented as one 4D (2 spatial and 2 structural
dimensions) partial differential equation (PDE), is coupled to five
Frontiers in Oncology | www.frontiersin.org 364
other 2D (2 spatial dimensions) PDEs coping with the spatial
distribution of other variables such as extracellular nutritional
environment (ECNE), chemo-attractant molecules (surrogate for
mediated cell-cell communications), and drug concentrations. The
effect of the drugs on the cells’ distribution is taken into account in
the negative (degradative) source terms that depend on their
position within the structural domain, i.e., on the cell state. For
details, see Methods.

Targeted Treatment Exacerbates
Heterogeneity
The model recapitulates the dynamics of the cell heterogeneity
observed in (12) (seeMovies S1, S2). Starting with a naïve tumor
containing a population of sensitive melanocytes, several cell
subpopulations are induced by the therapy. In our simulations,
this is seen by the multimodality of the cell population’s
structural distribution, with positions of the modes depending
on time. As shown in Figure 1D, each sub-population is
characterized by the position of the mode and by its spread in
the structural domain. For a more quantitative approach, we use
the variance in the cell structural distribution as a metric and
show that heterogeneity increases with time upon drug
administration (Figure S1).

The model predicts the typical three phase tumor growth
curve under kinase inhibitors; a first phase wherein the tumor
responds and shrinks, a second phase wherein the tumor is no
longer visible corresponding to the minimal residual disease
(MRD), and a third phase during which tumor growth
resumes after the emergence of resistance. During the MRD
phase, heterogeneity strongly increases through continuous
spreading of the cell distributions in the structural dimensions
A
B

D
E F

C

FIGURE 1 | Components of the data driven heterogeneity model: (A) Dimensions of the model. (B) Multidimensional cell distributions predicted by the model
emphasizing treatment induced zoning. (C) Reduced representation of single cell expression data, from (12). (D) Cell states represented as domains in structural/
gene expression space. (E) Directed (advective) structural fluxes. (F) Undirected (diffusive) structural fluxes.
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and, moreover, by development of co-existing, drug-tolerant,
intermediate states between sensitivity and resistance (multi-
modality, see Movie S2).

Order in Combination Therapy Matters
We have tested, in our computational setting, combination
therapies by successively applying two differing types of
treatments: (1) using BRAF/MEK inhibitors (BRAF/MEKi) as in
(12), and (2) a hypothetical cancer treatment (HCT). We have
considered that the tumor has the same intrinsic dynamics, defined
by the same diffusion and advection terms, for the two treatments.
In particular, the cell states and their transitions will be the same for
the two treatments. However, the two treatments eliminate cells
differently, depending on their states. This difference between
treatments was modeled by using a drug response function,
defining how the drug dependent cell degradation changes with
the cell state. This function peaks in the modal position of the
primary tumor, in the case of BRAF/MEKi, or in the positions of the
BRAF/MEKi resistant states, typically invasive and URC cell
populations, in the case of HCT (see Methods and Figure S2).
Applied alone, the BRAF/MEKi treatment induces immediate and
drastic tumor reduction, followed by MRD and development of
resistance after approximately four months of continuous
administration of the drugs. The HCT treatment leads to a mild
response initially, but like BRAF/MEKi treatment, induces tumor
adaptation. However, the representation of invasive and URC cell
states is only moderate because they are now more
effectively eliminated.

Treatments using BRAF/MEKi (Figure 2A and Movie S3) or
HCT (Figure 2B and Movie S4), alone, resulted in a re-
establishment of initial tumor volume, prior to the end of the
study period, with HCT inducing resistance far earlier than BRAF/
MEKi. For the combination therapy, BRAF/MEKi then HCT, we
observe a later time-point for the re-establishment of the initial
tumor volume, in comparison to BRAF/MEKi only, but still resulted
in a significant increased tumor growth rate (Figure 2C andMovie
S5). Starting first with HCT and then using BRAF/MEKi, however,
Frontiers in Oncology | www.frontiersin.org 465
was a better strategy that significantly delayed resistance and also
reduced the tumor load by combining the advantages of the two
treatments (Figure 2D and Movie S6).

Output in Terms of Heterogeneity
Depends on the Therapeutic Strategy
The dynamics of melanoma cells submitted to kinase inhibitors is
typically robust. In the case of adaptive therapy, although the
intermediate dynamics is modified by allowing the tumor to grow
before re-applying treatment, our model predicted that resistance
development cannot be avoided (Movies S7, S8). However, in
terms of spatial heterogeneity, the outcome is much more variable.
In Figure 3 we have represented the spatial distribution of
different cell states at the end of MRD and beginning of
resistance, for various treatments. In all cases cell states depend
on position, a phenomenon called zoning. The details of this
phenomena depend on the type of therapy. Our model predicted
that the adaptive therapy generates more pronounced zoning, with
steeper and mutually exclusive patterns (Figure 3) than those
predicted under continuous therapies.
DISCUSSION AND CONCLUSION

Treatment by kinase inhibitors leads to a heterogeneity upsurge in
melanoma. At least part of this heterogeneity is generated by non-
genetic mechanisms and involves continuous modifications of
gene expression programs which lead to transitions between cell
states. Our mathematical model captures the essential features of
non-genetic transitions and explains the heterogeneous dynamics
by diffusive and advective spatial and structural fluxes. The
increased heterogeneity results from the multiplicity of drug
tolerant and resistant states induced by the treatment, and from
cooperative strategies in a spatially heterogeneous tumor where
resistant cells protect sensitive cells from elevated drug exposure.

Moreover, our model predicts in silico the outcomes of
various therapies.
A B

DC

FIGURE 2 | Outcomes from combination therapy, with treatment intervals indicated by graphical shading for BRAF/MEKi (green) and HCT (yellow). Panels show the
outcomes from (A) continuous BRAF/MEKi, (B) continuous HCT, (C) combination BRAF/MEKi then HCT, and (D) combination HCT then BRAF/MEKi treatment regimes.
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Here, we show that, considering combination therapies, it is
better to treat first with a less effective hypothetical drug, targeting
sub-populations that develop during tumor resistance phases,
before treating with BRAF/MEKi. The explanation of this rather
counter-intuitive result can be found in the cell population
dynamics. We supposed that the intermediate response of the
tumor to any of the treatments results in increased heterogeneity
by non-genetic processes. If the first applied treatment is BRAF/
MEKi, this acts mainly on cells belonging to early modes and there
is a non-negligible probability that some cells escape treatment and
become resistant. The same probability is very small when the first
applied treatment is HCT that acts preferentially on cells belonging
to late modes; the role of HCT initial application is to avoid starting
the BRAF/MEKi treatment with some cells that are not sensitive.
Then, the application of BRAF/MEKi kills practically all the
remaining cells and resistance takes much longer time to develop
(see Movies S5, S6). One should note that, due to structural
diffusion, any cell state can, in theory, give rise to all other cell
states. Therefore, in order to confine cells to BRAF/MEKi-sensitive
modes, the drug has to act on a large domain of cell states, not only
on a single intermediate drug tolerant sub-population. This is
difficult to perform using targeted therapies.

A possible candidate for the hypothetical cancer treatment
(HCT) is the drug family of immune checkpoint inhibitors (ICIs).
Although this treatment does not act directly on melanoma cells, it
can have a differential indirect effect on melanoma sub-populations,
Frontiers in Oncology | www.frontiersin.org 566
and acts more generally than targeted treatments. Very recent Phase
III trials combining kinase inhibitors and ICIs show that starting a
first line treatment with ICIs leads to better results in terms of
survival time and duration of response than starting with kinase
inhibitors (17). This is explained if checkpoint inhibitors induce
effective prior elimination of resistant stage sub-populations. There
are, however, other interpretations of the interplay between kinase
inhibitors and immunotherapy. Obenauf et al. (18) showed that
kinase inhibitors induce changes in the stroma and cell secretome
and hypothesized changes of immune cells infiltration. Other
authors suggested that treatment with BRAFi leads to favorable
changes in the tumor microenvironment in synergy with immune
checkpoint inhibitors (see (14) for a review). The interactions
between the immune cells and the various melanoma sub-
populations are still poorly defined. We hope that future
experimental and modelling work in the field, will elucidate the
mechanistic aspects of these interactions.

Simple models of adaptive therapy were based on the idea that,
in the absence of drugs, resistant cells grow more slowly than
sensitive cells (10). It is believed that this fitness advantage allows
sensitive cells to recover at least partially during a drug holiday.
Although this effect is present in our model, it is compensated by
structural and spatial diffusion that led to increased heterogeneity
and delay only moderately the time to resistance. The resulting
tumor, however, depends on the type, continuous or adaptive, of
treatment. Irrespective of the treatment, zoning is a population-scale
A

B

C

FIGURE 3 | Adaptive therapy. (A) Outcome of adaptive therapy, with BRAF/MEKi treatment intervals indicated in green and drug hollidays in pink. Decision about
treatment is taken every day. Treatment is applied if the volume is higher than the upper threshold, stopped if the volume is lower than the lower threshold
(thresholds are indicated as dotted lines). Spatial heterogeneity (zoning) generated by continuous (B) and adaptive (C) therapy.
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strategy to increase the mean fitness by cooperative protection of
sensitive cells by resistant cells. In the adaptive treatment, the
growth of sensitive cells is also favored by drug holidays, which
lead to a more pronounced zoning.

From a theoretical perspective, our model shows the interplay
between directed and undirected structural fluxes for the
development of plasticity and heterogeneity. Undirected fluxes
correspond to diffusion and random changes of cell states. As
well known in physics, or in neutral theory of molecular
evolution, free diffusion can reach any state from any other state
if one waits a time proportional to the square of the state change. In
the presence of treatment, diffusion is not free and has to cross
barriers generated by the drugs action. In this case, the escape
transition time is exponential. The escape transition time and the
proportion of escaping cells depend on the position, height, and
width of the barriers, which are different for different treatments.
This dependence further explains why order matters in
combination therapy and why heterogeneity may differ when
employing adaptive strategies, since the barrier is time-transient.
Another important theoretical aspect is the symmetry breaking
induced by the treatment. Although a barrier can be crossed in both
directions, the transition probability is asymmetric if one of the
states is more stable than the others. This leads to the notion of
metastable states hierarchy, in which states are distinguished by the
time that cells spend in each one of these; this time can be very long
for highly stable states. Adaptive therapies favor the stabilization of
one metastable state by alternating treatment and holiday periods.
The success of this strategy depends on conditions that may be
difficult to guarantee, especially in a multidimensional context and
for a spatially heterogeneous drug distribution.

We should nevertheless emphasize that our model is mostly
phenomenological with structural dimensions representing
nonlinear functions of the gene expression data. As several
findings point towards the role of BRAFi in metabolic remodeling
(19), it would be very useful to interpret the structure variables in
terms of metabolic changes. This is possible within our formalism as
metabolic ODE models [see for instance (20)] are transposable into
structural advection fluxes, where metabolic stochasticity or
uncertainty would translate to diffusive fluxes. This possibility will
be investigated in future work. Furthermore, the distribution of
blood vessels that are sources of nutrition and drug compounds is
an important variable for understanding zoning aspects of cancer
adaptation to treatment [see also (21)]. Like in (21), we expect that
the spatial distribution of sensitive and resistant cells depends on the
distance to these sources. Blood vessels distribution can be
reconstructed from ex vivo tumor sections (22) and we will use
these distributions to increase the realism of future models.
METHODS

General Formalism
Mesoscale models of cancer heterogeneity are based on partial
differential equations and can be generically obtained from the
Liouville continuity equation (8, 23, 24). Let us consider that there
are n types of cells. In this model cells are distinguished by two types
of variables, a discrete one representing the type i e {1,…, n} and a
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continuous one y = (y1, …, ym) representing the internal state
(vector of concentrations of biochemical species, for instance). Then
c = (c1,…, cn) represents a vector of cell distributions satisfying the
equation

∂ c x, y, tð Þ
∂ t

= − ∇ x ·Fx x, y, tð Þ − ∇ y · Fy x, y, tð Þ + S x, y, tð Þ, (1)

where x is the spatial position, y is the cell’s internal state
(structure variable), Fx is the spatial flux, Fy is the structural
flux and S is the source term. If the cell’s internal state follows
ODEs dy

dt = F(y), then the structural flux is advective Fy = cF. If
the cell’s state follows random Brownian motion in the structural
space, then the structural flux is diffusive resulting from Fick’s
law Fy = –Dy ∇yc, where Dy is the structural diffusion coefficient
matrix. The spatial flux contains terms related to cell motility:
undirected (diffusion), or directed (chemotaxis, haptotaxis) (25).
The source term can integrate cell proliferation, death, and
discrete stochastic changes (finite jumps) of the cell state y,
other than those included in the continuous flux Fy.

Model Derived From Single Cell
Expression Data
In this section we present only the broad lines of the
model construction. The details can be found in the
Supplementary Methods.

Model Components
Our melanoma progression model has two main components:
the cancer cell population density c(t, x, y) and the extra-cellular
nutritional environment (ECNE) density v(t, x). In our minimal
melanoma model, space positions x, and structural positions y
are two dimensional (in space we consider a 2D tumor section,
and in structure we use a 2D t-SNE representation of the tumor
transcriptome). We also consider spatial gradients of three types
of diffusible molecules, namely 1) the nutritional molecular
species, provided by the ECNE and consumed by cells, 2) the
acidic molecular species, produced by cells and degrading the
ECNE as in (26), and 3) drugs.

The fluxes defining the model dynamics have been derived
using the following assumptions:

Spatial Variables and Fluxes
We assume, consistently with previous mathematical studies of
spatial cancer dynamics (25), that the spatial dynamics of
melanoma cells are governed by both random (diffusive) and
deterministic (advective) components. The random (diffusive)
component is assumed to occur as a result of tissue-scale
reorientation and volume-filling processes. The deterministic
(advective) component is assumed to result from directed cell
motility and is driven by cell-environment interactions. In
particular, we assume that cells exhibit controlled migration to
sites of chemically elevated nutritional content (chemotaxis), as
well as to sites of higher ECNE density (haptotaxis).

Structural Variables and Fluxes
The definition of the structural variables follows from the data
analysis in (12). Unsupervised clustering of single cell mRNA-seq
April 2022 | Volume 12 | Article 857572
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data identified several types of cell sub-populations with distinct
transcription states. The high-dimensional transcriptome was
compressed to a 2D map using t-distributed stochastic neighbor
embedding (t-SNE). The support of this 2D map is our structure
space domain. The different transcription states represent sub-
domains in this representation (see Figure 1D). The cell-state
transitions observed experimentally can be represented as
diffusion and advective flow in this domain. The flow changes
the positions of the cells in the 2D structure domain, moving them
from one state to another. Thus, rather than considering a number
of distinct cell types, we have built a model with only one cell type
whose state can change continuously by the structural fluxes. A
cell is added to a sub-population if its state enters the
corresponding structural sub-domain and is subtracted if it dies
or if it leaves the sub-domain. In order to define the structural
fluxes, we start by identifying the sub-domains corresponding to
different sub-populations inside the tumor at different times.
Although seven transcriptional signatures were identified [Table
S1 of (12)], we focus upon the description of six primary states
important for resistance. For their localization in the structural
domain, we use cardinal points, as follows:

i. Melanoma cells with a “proliferative” signature are
predominant in naive tumors, localized south-west (SW).

ii. Invasive cells are also present in naive tumors. They are
localized east (E).

iii. Pigmented cells expressing markers of differentiation are
induced by the treatment. They are localized north-west (NW).

iv. Neural crest stem cells (NCSC) are enriched by the
treatment, have a maximum during the minimal residual
disease and are diluted out during the development of
resistance. They are localized north-east (NE).

v. Starved-like melanoma cells (SMC) are rapidly induced by
the treatment, and become predominant during MRD. They
are localized north (N).

vi. Uncharacterized resistant cells (URCs) were not thoroughly
biologically investigated, though the model predicts they
may have a biological interest. They are localized south-west
(SW).

The structural fluxes describe the metabolic adaptation within
the structural domain and diffusion-like exchanges between cell
populations (Figures 1E, F). In order to define these fluxes, we
use the following dynamical assumptions:

• Horizontal advection is assumed to stabilize the proliferative
(SW) state, since there is no known emergence of URCs prior
to resistance;

• SMC states (N) are also stabilized by horizontal advection
fluxes that converge towards this state, allowing cells to
populate this minimally mitotic state;

• advection is assumed to interpolate linearly at intermediate
phenotypes between proliferative cells and SMCs;

• horizontal diffusion is assumed to be maximal in the northern
regions of the structural plane and decreases in southern
regions, illustrating rare, stochastic transitions between
proliferative and URC states;
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• vertical diffusion is maximal towards the western and eastern
regions, allowing transitions between proliferative, invasive,
and NCSC or pigmented and URC populations, but lower
transition rates between SMC and southern states.

In principle, by diffusion any cell state can give rise to all cell
states. However, advection maintains a certain degree of cellular
hierarchy. These assumptions have been made upon a reasoned
analysis of the figures presented in (12), as a minimal set of
functional assumptions to reproduce observed patterns, but do
not necessarily represent an optimal or biologically motivated set
of assumptions.

Source Terms and Degradation
The source and degradation terms describe cell proliferation and
death, respectively. Like in (12) we consider that proliferation is
significantly reduced among SMC cells and increased among
proliferative cells. We consider that treatment is the only cause of
active cell death. Due to the nature of our modelling framework,
drugs may target cells with a spectrum of specific expression
markers as would be the case in the clinical scenario. In this case,
we assume the existence of two particular treatments. Firstly,
BRAF and MEK inhibitors were employed within the study
conducted by (12) and, as such, are assumed to primarily target a
distribution centered around the proliferative population,
stretching into the invasive population but with diminished
success among cells in the NW of the structural domain
(Figure S2). Secondly, a hypothetical cancer therapeutic
(HCT) has been used for the sake of illustration and targets
primarily the invasive and URC cell populations, with an
expansive effectiveness span E and SW (Figure S2).

Spatial Dynamics of Other Components
Given the complexity of the dynamics in the primary cancer cell
population, the dynamics of other components have been kept as
simple as possible. It is assumed that the ECNE exhibits only a
natural restorative growth process, as well as acidic species-
induced and natural degradation kinetics. Nutritional and acidic
species exhibit diffusion, as well as controlled production, and
natural degradation. Finally, the drug species also exhibit
diffusion, time dependent administration, as well as natural
and cell-based degradation.
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Gastric cancer is a daunting disease with a tragic impact on global health. It is the fourth
most common cancer and has become the second most frequent cause of cancer death
in recent times. According to the Lauren classification, gastric cancer can be classified into
two types: intestinal and diffuse. Intestinal-type gastric cancer (IGC) is more common in
elderly people, and atrophic gastritis (AG) and intestinal metaplasia (IM) have been proven
to be the main premalignant causes of intestinal-type gastric cancer. In turn, Helicobacter
pylori infection has been identified as the most significant cause of AG and IM. In this
study, we determine the mechanism of IGC progression and how H. pylori infection
induces IGC. Through researching the relevant literature, we identified the key genes
associated with gastric cancer and the specific genes associated with IGC. We then use
hese genes to build up a gene regulatory network for IGC. Based on this gene regulatory
network, we quantify the IGC landscape. Within this landscape, there are three stable
states, which are classified as the normal, AG, and gastric cancer states. Through
landscape topography, we can determine the biological features and progression
process of IGC. To investigate the influence of H. pylori infection on IGC, we simulated
different degrees ofH. pylori infection. As theH. pylori infection becomes more serious, the
landscape topography changes accordingly. A fourth state, named the intestinal
metaplasia (IM) state, emerges on the landscape and is associated with a very high risk
of developing gastric cancer. The emergence of this state is due to the interactions/
regulations among genes. Through variations in the landscape topography, we can
determine the influence of H. pylori infection on IGC. Finally, we use global sensitivity
analysis to research the regulations most sensitive to IGC prevention or therapies. This
study presents a new approach and a novel model with which to explore the mechanism
of IGC. The simulations of different degrees of H. pylori infection can provide us with a
systematic view of IGC progression. The key regulations found can give us some insight
and guidance for clinical trials and experimental studies.
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1 INTRODUCTION

Cancer has long been considered the most daunting disease, and
gastric cancer is the second most aggressive cancer, having a
tremendous, large-scale impact on global health. Despite a huge
amount of research, gastric cancer remains the fourth most
common cause of cancer-related deaths worldwide (1). Despite
a decline in incidence in the last several decades, the prognosis
for gastric cancer is still very poor. The five-year survival rates for
gastric cancer are less than 20% (2). Early-stage gastric cancer has
a better prognosis, with five-year survival rates of up to 95% (3).
According to the Lauren classification, gastric cancer can be
divided into two types: intestinal and diffuse. The intestinal type
occurs more frequently, in about 54% of cases, and more
commonly in men and elderly people (4, 5). Atrophic gastritis
(AG) and intestinal metaplasia (IM) have been proven to be the
main premalignant factors in the intestinal type of gastric
cancer (2).

Intestinal-type gastric cancer (IGC) is caused mainly by
environmental factors such as salty food, alcohol, and cigarette
smoking. These factors may contribute to AG, which is
considered one of the main precursor lesions of IGC (6).
Moreover, Helicobacter pylori infection can increase the risk of
IGC developed from AG. The stomach is the natural reservoir of
H. pylori. Studies show that about 50% of the world’s human
population is chronically colonized by H. pylori and about 15%
of infected people develop gastric cancer from AG and IM (7).H.
pylori infection may cause epithelial damage, which can trigger a
multistep progression to gastric cancer from AG, gastric atrophy,
and IM (8, 9). These changes are mainly caused by epigenetic
alterations (10). Epigenetic modifications such as DNA
methylation and histone modifications can alter cell cycles.
Aberrant DNA methylation can also induce IGC formation.

However, the oncogene gene c-met is related to the
development of about 20% of IGC cases, and alterations in c-
met have also been associated with many types of diseases,
particularly diseases of the digestive system (11). IM, dysplasia,
and invasive carcinomas are associated with K-Ras mutations
(12). Abnormal expressions of tumor suppressor genes, such as
TP53 and APC, are found in many IGC subjects (13). Therefore,
the development of IGC is genetic and epigenetic, and neither of
these two factors can be ignored. In the study of tumor biology,
network-based models have received more and more attention
recently. Many studies have shown that molecular targeted
therapy can help predict cancer biomarkers, design network-
based anti-cancer therapies, and provide clinical strategies for
cancer studies (14–17). This is because gene regulatory networks
can help resolve key issues in cancer research by reflecting not
just information at the genetic level but also epigenetic
information embedded in gene regulation strengths.

In this study, we investigate IGC formation and mechanisms
at both the genetic and epigenetic levels. From literature
research, we built an IGC-related gene regulatory network.
Some other network-based methods, such as the correlation
network (18), do not contain information on gene regulations.
The regulations in networks built using regression methods do
not contain regulatory directions (19). Networks built using
Frontiers in Oncology | www.frontiersin.org 272
other machine learning methods, such as dynamic Bayesian
networks, contain regulatory directions and feedback loops,
but researchers must consider biases in the algorithm’s
accuracy (20). The regulations in the gene regulatory network
we build are all from the experimental literature and contain the
regulation directions and regulatory types (activation or
repression) from experiments that are more reliable compared
to high-throughput data mining. Based on the IGC gene
regulatory network, we quantify the corresponding landscape.
There are three stable states on the landscape—the normal, AG,
and gastric cancer (IGC) states. The landscape can give us a
better understanding of IGC formation through molecular
mechanisms and epigenetic information. The dominant paths
between state attractors can be quantified and used to
understand the development and progression of IGC.

To investigate how H. pylori infection can increase the risk of
IGC developed from AG and IM, we simulated different degrees
of H. pylori infection to provide a global perspective on IGC
development. Finally, we use global sensitivity analysis to
determine which regulations are more sensitive to IGC
prevention and treatment strategies. Three regulations are
found—RAS ! HIF-1a, ZEB ! TGF-b, and HIF-1a! RAS.
These results may guide clinical treatment and the design of
drugs based on network strategies.
2 DEVELOPMENT OF INTESTINAL
GASTRIC CANCER MODEL

We researched the literature to collect information on genes
related to gastric cancer and then used these gastric genes to
build the gastric-cancer-related gene regulatory network shown
in Figure 1. In Figure 1, there are 17 genes and 82 regulations.
The activating regulations are represented by arrows, and the
repression regulations are represented by blunted arrows. The 17
genes were identified by mining the gastric cancer literature. We
first collected the genes that are highlighted in publications about
gastric cancer, then those related to the 10 hallmarks of cancer
and mentioned in the gastric cancer literature. We put these
genes into the EVEX database to do text mining and search for
interactions. The regulations were collected and the results with
low confidence were removed. Very high or high confidence
regulations were kept. Moreover, we examined the literature to
make sure the regulations identified were correct. All of these
results are from the experimental literature. Such literature can
clarify how one gene or protein influences another gene or
protein. We then identified two genes and determined the
regulated relationship between them. These interactions are
listed in the Supplementary Material. The genes Bcl-2, c-
erBb2, and K-ras are the specific genes for IGC. Another 14
genes are crucial for gastric cancer. The genes DCC and Beta-
caterin are also specific genes associated with IGC. However,
regulation of these two genes in the gene regulatory network does
not have feedback loops. Therefore, we remove them from the
gene regulatory network. Feedback loops are important because
they ensure interactions are non-trivial. Genes with feedback
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loops must be included in the network. The behavior of genes
without feedback loops is relatively straightforward to
understand. To simplify the computational process, we reduce
the dimensionality by taking these genes as one effective node
instead of many until feedback occurs. When the gene does not
have incoming edges (there is no gene activating or repressing it),
gene expression or protein concentration will be determined by
its own self-generation and degradation. Even if a gene has no
feedback edges, it can regulate downstream genes. It can
influence other genes or proteins through its regulation of
others, which depends on its expression or concentration. The
regulation of the downstream genes can be manifested by a
regulation parameter that is kept constant in the process and
determined from the ODEs of the model. Due to the constant
regulation, the influence of the gene on others is kept constant.
Therefore, we can simplify the model by using the network
without it to avoid redundant computations. We list the entire
network in the Supplementary Material.

In the gene regulatory network, P53 and APC are vital for gastric
disease (13, 21) and are both tumor suppressor genes. Abnormalities
in TP53 expression have also been observed inH. pylori-related AG,
IM,dysplasia, andothers (22).C-mycparticipates in cell proliferation
and apoptosis, which is significant for gastric cancer and other
digestive-system-related cancers (23). HIF-1a is involved in
glycolysis pathways for hypoxia (24) and is a critical prognosis
element for gastric cancer (25). The RAS gene participates in
certain cellular functions such as cell proliferation, differentiation,
survival, and apoptosis (26). TGF-b plays a major role in cancer
metastasis and participates in the transduction of self-sufficiency
Frontiers in Oncology | www.frontiersin.org 373
growth signals (27). TNF-a is involved in gastric cancer progression,
such as in invasion and metastasis (28). The gene c-erbB2 encodes a
type of kinase that shows a response to prognosis and is associated
with IGC therapy (29). ZEB is a key gene for epithelial–mesenchymal
transitions (EMT) that promotes cancer metastasis (30). EGFR is a
vital prognostic factor of IGC that is related to the transduction of
proliferative signals (31). TheVEGF gene is often highlighted in IGC
prognosis and has a vital gene response to angiogenesis (32, 33). The
c-met gene is a prominent drug target of IGC (34). Bcl-2 plays a key
role in apoptosis, and the dysfunction of Bcl-2 is the basis of
carcinogenesis (35). COX2 is a key player in IGC development and
is associatedwith risks for numerous types of cancer (36). hTERT is a
potent part of IGC and is related to unlimited DNA replication (37).
CDK2 is known as an evading growth suppressor and is
indispensable in gastric cancer therapy (38). IL-1b is a cytokine
associated with lesions, inflammation, and wound healing (39).

Once the gene regulatory network has been developed, we can
use ordinary differential equations to describe the dynamics of
the related network, with the equations as shown below:

dXi

dt
= Fi = gi

Yni
j=1

Hji − kiXi (1)

In Eq. (1), dXi
dt represents the gene expression (protein

concentrations), which changes with respect to time. The
parameters g and k are used to illustrate the protein generation
rate and the protein self-degradation rate, respectively. Xi is used
to represent the gene expression or the amount of protein that
causes the transcript of the gene i. The subscript j represents the
gene regulating the gene i. ni is the amount of gene regulating the
gene i. Hji quantifies the regulations among genes through a Hill
function (40), which can be defined as the following:

Hji =
Snji

Snji + Xn
j
+ lr

ji

Xn
j

Snji + Xn
j
 (2)

Here, the parameter S denotes the threshold, which is the half-
maximumvalueof the sigmoid function.When the value ofS is very
large, the regulation strength will tend toward a fixed value of 1.
When the value of S is very small, the regulation strength will tend
toward another fixed value, lr

ji. To keep the regulation strength
in an appropriate range, S is set to be 2.5. The meanings of the
subscripts i and j are equivalent to those in Eq. (1). The parameter n
denotes the steepness of the sigmoid function and demonstrates the
protein cooperatives. In a biochemical system, a protein binding
complex can be a monomer, dimer, trimer, tetramer, etc. In our
system, since tetramers are more frequent, the parameter n is set to
4. The parameter lji is defined to be greater than 1, and denotes the
regulation strength of Xj in regulating Xi. The parameter r denotes
the regulation type (r = +1 represents the activation type and r = -1
represents the inhibition type). The parameters g and k denote the
protein generation rate and the protein self-degradation rate,
respectively. To simplify the calculation of the whole system, we
set them to be comparable with each other, with g = 1 and k = 1.

The parameter l is a matrix representing the weight of the
gene regulatory network (see Table S1 of the Supplementary
Material). The gene regulatory network contains 17 genes.
FIGURE 1 | The 17-node gene regulatory network for intestinal-gastric
cancer. The network contains 17 genes and 82 regulations (There are 67
activating and 15 repressing regulators. The arrows and the blunted arrows
denote the activating and repressing regulations, respectively).
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Therefore, 17 ODEs were used to describe the dynamics of the
whole biological system. The weights of the network are different,
and related to the gene-gene regulation strengths. We
determined the weights of the network from the biological
functions and gene expression in different stages of gastric
cancer. For example, P53 is a tumor suppressor gene, and the
gene expression of P53 will be high in the normal state and low in
the gastric cancer state. Another 16 gene expressions are
consistent with the literature results. If the behavior of gene
expressions is inconsistent with the results in the literature, we
modify the parameters of the network accordingly until the
simulated gene expressions are consistent with experiments. As
there are ranges of parameters that can produce similar behavior,
we vary the parameters by about 10% and ensure that the gene
expressions of the normal and cancer states, as well as the
associated landscape topography, do not change significantly.
We believe this gives a range of parameters that lead to behavior
consistent with the literature.
3 RESULTS AND DISCUSSION

3.1 The IGC Landscape and Related
Kinetic Paths
The gene regulatory network (Figure 1) of IGC contains 17 genes.
Through the collection of our simulation trajectories and associated
statistics, we can quantify the landscape on a 17-dimensional
probability distribution. The related potential landscape U can be
defined as U = -lnPss (41, 42). Pss is the probability of the steady-
states, with’ss’ being an abbreviation of steady state. It is difficult to
visually display a 17-dimensional landscape, sowe take twogenes or
dimensions (HIF - 1a and COX2, two genes very crucial to IGC) to
visualize the landscape clearly. In Figure 2, the X-axis shows the
expression level of hypoxia-inducible factor-1a (HIF-1a), which
plays the role of an ‘angiogenic switch’ in the hypoxia
microenvironment in many types of tumors, including IGC (43).
The Y-axis shows the expression level of Cyclooxygenase-2
(COX2), which plays a crucial role in cancer development and
clinicalmetastasis (44).We can also choose twoother genes (suchas
EGFR andVEGF), as shown in the SupplementaryMaterial. Here,
there are still three stable states. There are some changes in the
landscape topography, as different genes have different values for
the three stable points.

On the IGC landscape, there are three stable state attractors,
which are the normal, AG, and cancer (IGC) states, respectively.
The definition of these three stable states is based on the biological
functions and gene expression levels of the 17 genes in the gene
regulatory network. The parameters we set in ourmodel depend on
the simulated gene expression levels of the 17 genes, and are all in
agreementwith the trends seen in the clinical data atdifferent cancer
stages (different states). P53 and APC are tumor suppressor genes
that have high expression levels in the normal state but low
expression levels in cancer cells. The other 15 genes have high
expression levels in cancer and low expression levels innormal cells.
The simulated gene expression levels of the 17 genes are all
consistent with the experimental literature (details can be seen in
Supplementary Material Table S3).
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In Figure 2, the genes HIF-1a and COX2 have high
expression levels in the cancer state, low expression levels in
the normal state, and intermediate expression levels in the
intermediate state (AG state) (45). The barrier height between
the normal and AG states is relatively low, which indicates that
AG infection and recovery is relatively achievable. The barrier
height between AG and gastric cancer states is much higher,
which indicates that gastric cancer formation and recovery is
much more difficult. The barrier height can quantify the difficulty
of attractor transfer from one state to another. The barrier height
from gastric cancer to the AG state is very high, which shows
why gastric cancer is so difficult to cure (or reverse).

To describe the gastric cancer progression process quantitatively,
we quantified the dominant paths from normal to AG to gastric
cancer states using previously-explored approaches (path integral
approaches) (46, 47). In Figure 2B, we can see the dominant paths
colored in red, blue, yellow, and purple, respectively, as the
dominant paths from the normal to the AG state, from the AG
to the normal state, from the AG to the gastric cancer state, and
from the gastric cancer to the AG state, respectively. These
dominant paths are separated and irreversible (48) as the
rotational flux force (as part of the driving force) in addition to
the gradient force makes the dominant path separate from the
gradient direction of the potential. In our model, the driving force
can be mathematically decomposed into two directions, the
rotational flux force and the gradient force of the potential
landscape. The green arrows represent the rotational flux force
and the white arrows represent the gradient force direction. The
dominant paths through the normal state to the AG and gastric
cancer states are irreversible, which can help us understand why the
processes of IGC formation and IGC treatment are separate and
irreversible biological processes.

3.2 Simulations of the Effect of H. pylori
Infection on IGC
To investigate the influence of H. pylori on IGC, we performed
simulations to observe the cancer progression on the landscape.
We used a term in the ODEs to simulate different degrees of H.
pylori infection. The term F(xi) can be rewritten as F′(xi) = F
(xi) + Hi(i = 1,2…,17). The term Hi is used to denote the degree
of Helicobacter pylori infection on the related gene expression
level. The value of H is set according to the experiments. If the
gene expression level is increased from theH. pylori infection, the
value of H will be >0. In the opposite case, H < 0.

For Figure 3, we chose genes hTERT and MYC to show the
landscape layers with variations associated with the development
of IGC under the effects of H. pylori infection. H. pylori infection
can result in the gene expression levels of both genes being
increased. From Figure 3, we can see that when the term H = 0,
the normal, AG, and gastric cancer states are visible on the first
layer of the landscape. A value of H = 0.05 indicates infection.
There are normal, AG, IM, and gastric cancer states on the
second layer of the landscape. The probability of the AG state is
dominant, indicating that the H. pylori infection accelerates the
development of AG. When the term H = 0.1, there are normal,
IM, and gastric cancer states on the third layer of the landscape.
The AG state has disappeared and the IM state is dominant,
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FIGURE 2 | The IGC landscape, which contains three stable states. (A) The 3-dimensional landscape of IGC. (B) The 2-dimensional landscape of IGC. The lines in
red, blue, yellow, and purple represent the dominant kinetic path from the normal to the AG state, from the AG to the normal state, from the AG to the gastric cancer
state, and from the gastric cancer to the AG state, respectively. The white arrows denote the negative gradient of the potential landscape, and green arrows denote
the curl flux force of the potential landscape.
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which indicates that the H. pylori infection worsens gastritis and
causes further change into intestinal metaplasia. When the term
H = 0.2, there are normal and gastric cancer states on the fourth
layer of the landscape. The IM and gastric cancer states gradually
converge and merge into one. The cancer state becomes the
dominant state. When the term H = 0.6, there is only one gastric
cancer state on the fifth layer of the landscape. The normal state
disappears and the cancer state is dominant. It is impossible for a
patient to recover to their normal state while suffering from H.
pylori infection can lead to the aggravation of AG, and then the
appearance of the IM state. The IM state can be considered very
close to the cancerous state during IGC development. When the
Frontiers in Oncology | www.frontiersin.org 575
H. pylori infection becomes more and more serious, the AG state
disappears and the IM state becomes dominant, finally leaving
only one gastric cancer state.

This simulation is on the epigenetic level to illustrate the
progression and development of IGC when one gets infected
with H. pylori. The regulations of the network do not change
with this series of variations in the landscape. The effect of H.
pylori infection results in variations in the IGC landscape.
Depending on the degree of H. pylori infection, which is
becoming more and more serious, landscape development is
moving on the cancer direction. As AG and IM are seen in the
development of the landscape, which demonstrates the dynamic
May 2022 | Volume 12 | Article 853768
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FIGURE 3 | A comparison of the landscape topography variations fir IGC with Helicobacter pylori infection. The X and Y-axes represent the gene expression levels
of hTERT and MYC, respectively, while the Z-axis represents the variations in H. H denotes the degree of Helicobacter pylori infection. N, AG, IM, and C represent
the normal, atrophic gastritis, intestinal metaplasia, and gastric cancer states, respectively. (A) is the comparison of the 2-dimensional landscape. (B) is the
comparision of the 3-dimensional landscape.
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process of IGC development as the degree of H. pylori
infection changes.

3.3 Identifying Key Regulations of IGC
Through Global Sensitivity Analysis
To further investigate the key regulations crucial to IGC therapy or
prevention, we apply a global sensitivity analysis method to the
landscape model. Each gene regulation or protein concentration
can contribute to system dynamics. A small change in the
regulatory strength of one gene in the gene regulatory network
can lead to the whole landscape topography varying accordingly.
As the barrier heights between the biological states can quantify
the difficulty associated with transferring between the states, we
calculate the variation in the barrier height when regulation
strength is changed. The greater the variation, the more sensitive
the regulation is.

Figure 4 shows the global sensitivity analysis for IGC. We
selected the top 10 most sensitive regulations, which are shown
in Figure 4A. When we changed the regulation strength to 0.9 of
the original regulation strength, these regulations showed the
most significant variations in DUng and DUgn. DUng is the
variation of the barrier height from the normal state to the AG
state. DUgn is the variation of the barrier height from the AG state
Frontiers in Oncology | www.frontiersin.org 676
to the normal state. From Figure 4A, we can see that the values
of DUng changed most significantly are for regulating RAS !
HIF-1a and ZEB ! TGF-b. The higher value of DUng indicates
that it is more difficult for the cells to transform from the normal
state to the AG state than before. This is because the barrier
height between the normal and the AG state is much higher than
before. The variations of DUng are most significant when the
regulation strengths of the RAS ! HIF-1a and ZEB ! TGF-b
are varied. This type of variation can be used in gastritis
prevention as the cell transformation to the AG state becomes
more difficult. When the regulation strength is reduced to 0.9 of
the original value, the activation of the genes HIF-1a and TGF-b
decreases and the concentrations of HIF-1a and TGF-b decrease
accordingly. Experiments show that the expression levels of HIF-
1a in gastric cancer patients are higher than those in healthy
subjects (25). HIF-1a participates in the activation of numerous
target genes to adapt to the hypoxic environment (49), which
leads to gastric cancer development. We changed the regulation
strength, which can cause the concentration of HIF-1a to
decrease. This will inhibit the transcription of those target
genes and reduce the ability of the cells to adapt to the hypoxic
environment, which leads to higher DUng. Therefore, reducing
the regulation strength to 0.9 times the original regulation
May 2022 | Volume 12 | Article 853768
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FIGURE 4 | The global sensitivity analysis for IGC. The X-axis represents the top 10 most sensitive regulations, and the Y-axis represents variations in the barrier
height (ΔBarrier). (A) The variations in the barrier height between the normal and AG states. ΔUng is the variation in the barrier height between the normal and AG
states. ΔUgn is the variation in the barrier height between the AG and normal states. (B) The variations in the barrier height between the AG and cancer states. ΔUgc
is the variation in the barrier height between the AG and cancer states. ΔUcg is the variation in the barrier height between the cancer and AG states.
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strength can inhibit the cells from adapting to the hypoxic
environment, which can prevent the gastritis cells from
developing into gastric cancer. Studies show that inhibiting
TGF-b expression can serve as a potential therapeutic target or
a biomarker for gastric cancer treatment (50, 51). Therefore, the
decreased regulation strength can reduce the transcription of
TGF-b, which increases in DUng and inhibits gastritis from
developing into gastric cancer.

Figure 4B shows the top 10 most sensitive regulations when
we changed the regulation strengths to 0.9 times their original
Frontiers in Oncology | www.frontiersin.org 777
values. These regulations show the most significant variations of
DUgc and DUcg. A higher value of DUgc compared to before
indicates that switching from the AG state to the gastric cancer
state becomes more difficult, because the barrier height between
the AG and gastric cancer states is much higher. Reducing the
regulation strength can inhibit the expression level of RAS, which
increases in DUgc and helps inhibit gastric cancer progression
and development. Such variation can be used in gastric cancer
prevention, as the transformation of the cell from the AG state to
the gastric cancer state becomes more difficult. When the
May 2022 | Volume 12 | Article 853768
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regulation strength is reduced to 0.9 times the original value, the
activation of the RAS gene decreases and the concentration of
RAS also decreases accordingly. There are many studies showing
that K-ras is associated with the development and progression of
gastric cancer. Overexpression of K-ras can increase the risk of
gastric cancer development (52) (K-ras is a protein of the RAS
family). Reducing the regulation strength can inhibit the
expression level of RAS, which increases in DUgc and helps
inhibit gastric cancer progression and development.

Figure 4 displays the most sensitive regulations on global
topography in terms of the barrier height between normal and
cancer states. When the regulation strengths of P53 ! RAS, c-
myc! RAS, HIF-1a ! RAS and TGF-b ! RAS are reduced to
0.9 of the original values, the expression of RAS will decrease
accordingly. Studies show that K-ras regulates cell survival,
motility, proliferation, angiogenesis, and metastasis (53).
Therefore, this participates in gastritis and gastric cancer
formation and metastasis. When the regulation strengths of
RAS ! HIF-1a, VEGF ! HIF-1a, and Bcl-2 ! HIF-1a are
reduced to 0.9 of the original values, the expression of HIF-1a is
reduced accordingly. The gene HIF-1a can activate the
transcription of many target genes to adapt to the hypoxic
environment of cancer cells (54). The overexpression of the
gene HIF-1a can induce cancer cell development. When the
regulation strengths ofP53 ! TGF-b and ZEB ! TGF-b are
reduced to 0.9 of the original values, TGF-b expression decreases.
TGF-b promotes cancer-related characteristics in most gastric
cancer cell lines (55). In TGF-b and HIF-1a gene expressions
appear twice as that of the target genes in Figure 4A. Ras
expression appears thrice in Figure 4, and the expressions of
HIF-1a, P53, and hTERT genes appear twice as that of the target
genes. We can pay more attention to these genes in designing
strategies in clinical experiments or trials to prevent gastritis or
gastric cancer formation.
3.4 Identifying Key Regulations of IGC
With H. pylori Infection
In Figure 3, we can see that when a patient is infected with H.
pylori (term H = 0.05), four stable states emerge, which are the
normal, AG, IM, and gastric cancer states. To figure out which
regulations are more sensitive to IGC with H. pylori infection, we
performed a global sensitivity analysis on this condition.

Figure 5 shows global sensitivity analysis for IGC with H.
pylori infection. We reduced the regulation strength to 0.9 of the
original value. Figure 5A displays the top 10 regulations most
sensitive to variations in DUgm and DUmg. DUgm is the variation
in the barrier height from the AG state to the IM state. DUmg is
the variation in the barrier height from the IM state to the AG
state. The regulations for HIF-1a!c-myc and CDK2!c-myc
cause the most significant changes in DUgm. The value of DUgm

becoming higher indicates that it becomes more difficult for cells
to transform from the AG state to the IM state as the barrier
height is higher. This type of variation can be used to prevent cell
transformation from the AG state to the IM state. As the
activation strengths of HIF-1a!c-myc and CDK2!c-myc are
decreased, the expression of c-myc will be reduced accordingly.
Frontiers in Oncology | www.frontiersin.org 878
Gene c-myc has been studied as a biomarker with which to
identify H. pylori infection (56). Gastric cancer treatment and
gastric cancer progression are complicated by aberrant
expressions of c-myc (57). Therefore, inhibiting the expression
of c-myc will benefit the treatment of IGC with H. pylori
infection and prevent transformations from AG to an IM state.

Figure 5B displays the top 10 regulations most sensitive to
variations in DUmc and DUcm. DUmc is the variation of the barrier
height from the IM state to the gastric cancer state. DUcm is the
variation of the barrier height from the gastric cancer state to the
IM state. The regulation RAS! TGF-b caused the most
significant changes in DUmc. The value of DUmc becoming
higher indicates that it becomes more difficult for cells to
transform from the IM state to the gastric cancer state because
the barrier height between the two states is higher. As the
activation strength of RAS! TGF-b is decreased, the
expression of TGF-b will be reduced accordingly. TGF-b can
trigger epithelial–mesenchymal transition (EMT) markers,
which are crucial for canceration and metastasis. H. pylori
infection can induce TGF- b to trigger the EMT pathway.
When H. pylori is eradicated, TGF- b is inhibited from
triggering the EMT pathway (58). TGF- b is a key gene in
gastric cancer prevention and treatment, which we have
identified in this study. C-myc and TGF- b are vital for the
treatment and prevention of IGC from H. pylori infection.

From Figure 4 and Figure 5 we can see that the key regulations
are different depending on whether the H. pylori is infected or
uninfected. When infected with H. pylori, another state (IM state)
emerged on the landscape, which is different from the IGC
landscape without H. pylori infection. The c-myc gene is essential
as it appears in the two key regulations (HIF-1a!c-myc and
CDK2!c-myc). The c-myc gene is a biomarker to identify
H. pylori infection in clinical trials (56). We can take other
regulations such as TGF-b! IL-1b and TGF-b! ZEB, which are
more sensitive in clinical experiments. The gene TGF-b is vital for
both H. pylori infected and uninfected as it is sensitive to the two
conditions when the cell states switch from AG (or IM) state to
cancer state. TGF-b plays a critical role in cancer metastasis (58).
TGF-b appears thrice in the top 10 regulations in Figure 5B, while
TNF-a and c-myc genes appear twice. We should take these genes
into consideration in designing strategies in clinical experiments for
preventing of gastric cancer with H. pylori infection.
4 CONCLUSIONS

In this work, we have studied the formation and development of
IGC in a systematic and quantitative way. We have built a gene
regulatory network for IGC. The genes and gene regulations were
collected through experimental literature research. The gene
regulatory network reflects both genetic and epigenetic level
information. After the construction of the gene regulatory
network, we used ODEs to describe the dynamics of IGC. We
then obtained a systematic landscape for IGC. There are normal,
AG, and gastric cancer states on the IGC landscape. The landscape
can provide us with a global overview of IGC progression and
development, which can help us understand IGC formation
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FIGURE 5 | The global sensitivity analysis for IGC with Helicobacter pylori infection. The meanings of the X-axis and Y-axis are the same as Figure 3. (A) The barrier
height variations between the AG and IM states. ΔUgm represents the barrier height variation between the AG and IM states. ΔUmg is the barrier height variation
between the IM and AG states. (B) The barrier height variation between the IM and cancer states. ΔUmc is the barrier height variation between the IM and cancer
states. ΔUcm is the barrier height variation between the cancer and IM states.
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systematically. The dominant paths can describe the IGC
progression and dynamical transitions can help us understand the
IGC development quantitatively. The dominant paths between
neighboring states (the normal and AG states or the AG and
gastric cancer states) are separate and irreversible. The
irreversibility of the dominant paths explains why the IGC
formation and recovery processes are complex and independent.

To investigate the effect of H. pylori infection on IGC formation,
we simulated different degrees of H. pylori infection, resulting in
variations in the landscape topography. When one is infected with
H. pylori (H = 0.05), a state called intestinal metaplasia IM appears
in the landscape, and the atrophic gastritis (AG) state becomes
dominant. When the degree of H. pylori infection becomes serious,
the AG state disappears and the IM state becomes dominant. As the
degree of H. pylori infection increases, the normal state disappears,
eventually leaving only one gastric cancer state. This demonstrates
that H. pylori infection leads to gastric cancer progression and
illustrates how H. pylori infection can increase the risk of gastric
cancer development.

To further highlight the key regulations associated with IGC
therapy and treatment, we performed a global sensitivity analysis
and found three key regulations to be more sensitive than the others
as the landscape topography varies. The three regulations are RAS
! HIF-1a, ZEB! TGF-b, and HIF-1a! RAS. We predicted that
these regulations would serve as a guide for developing network-
based anti-cancer drug targets.

This study provides a new approach and a novel yet simple
model to analyze IGC in a global and systematic way. This model
can help us understand the formation and development of IGC,
not only from genetic variations but also from epigenetic
modifications. Furthermore, H. pylori infection can be
simulated and investigated with the landscape model. Global
sensitivity analysis can help us determine which regulations are
more sensitive for gastric cancer prevention or therapy. The
results can help us develop clinical strategies by designing
polygenic drugs to fight cancer.
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5 SUPPORT MATERIALS

5.1 Landscape-Flux Decomposition of the
Driving Force
A gene regulatory network consists of genes and gene regulatory
relationships, represented by nodes and edges in the network,
respectively. We use an n-component vector x = (x1, x2,…, xn) to
quantify the genes in the network. Here n is the number of genes in
the network and xi (i =1,2,…, n) denote the expression levels
(or protein concentrations) of the corresponding genes. A system
of ordinary differential equations, written in the compact form
_x = F(x), can be employed to study the deterministic dynamics
of the network, where F(x) denotes the driving force of the
deterministic dynamics.

In biological systems, stochastic fluctuations of internal or
external origins are ubiquitous and may have a significant impact
on the dynamics of the system. To incorporate the effects of
stochastic fluctuations, a stochastic force x(t) may be attached to
the ordinary differential equations _x = F(x). This leads to a
stochastic differential equation of the form _x = F(x) + x(t), also
known as the Langevin equation. The stochastic force x(t)
modeling random fluctuations is assumed to be Gaussian white
noise in time, with the mean〈 x(t) 〉=0 and the correlation 〈 x(t)xT

(t') 〉=2Dd(t−t'). Here D is the diffusion matrix characterizing the
fluctuation strength.

An equivalent description of the Langevin dynamics is in terms
of the probability distribution P(x, t), whose time evolution is
governed by the corresponding Fokker-Planck equation: ∂P/∂t =
-∇ · [FP - ∇· (DP)]. It can also be written as ∂P/∂t = - ∇ · J, with J
denoting the probability flux. The steady state characterized by ∂Pss/
∂t =∇ · Jss = 0 is of particular interest. In an equilibrium system, the
probability flux at the steady state vanishes, i.e. Jss = 0. In a non-
equilibrium system, there is in general a nonvanishing probability
flux at the steady state, i.e. Jss ≠ 0, which signifies the time-
irreversible nature of the non-equilibrium steady state. From the
expression Jss = FPss –D ·∇Pss, the driving force F can be written in
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the landscape-flux decomposition form (59): F = -D · ∇U + Jss/Pss.
Here –D · ∇U is the part of the driving force contributed by the
gradient of the potential landscapeU = -ln Pss, and Jss/Pss is the other
part contributed by the probability flux that is associated with the
nonequilibrium nature of the system.

5.2 Self-Consistent Mean Field Approach
Self-consistent mean field (60) serves as an effective approximation
method of solving Fokker-Planck equations with a large number of
variables. In this approximation, the joint probabilitydistributionof
all the variables is substituted by the product ofmarginal probability
distributions of eachvariable, namely,P(x1, x2,…, xn, t) ~Pi P (xi, t),
so that the latter can be solved in a self-consistent manner. The
dimensionality of the problem is reduced significantly from mn to
m × n, wherem is the number of possible values each variable may
take. This makes the computations much more feasible.

A further approximation is invoked to simplify the problem,
which postulates P(x1,x2,…,xn, t) with the form of a multivariate
Gaussian distribution.When themagnitude of the diffusionmatrix
D is small, the equations governing the mean vector�x(t) and the
covariance matrix s(t) of the Gaussian distribution are given by:

_x(t) = F(�x(t)) (3)

_s (t) = A(t)s (t) + s (t)AT (t) + 2D : (4)

Here the matrix A has elements Aij(t) =
∂ Fi(�x(t))
∂ �xj(t)

. Given the
self-consistent mean field approximation, only the diagonal
elements of s(t) need to be considered. The combination of
the self-consistent mean field approach and the Gaussian
distribution approximation leads to the following form of
probability distribution evolution for each xi:

P(xi, t) =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2psi(t)
p exp  −

½xi − �xi(t)�2
2si(t)

� �
: (5)

The steady-state probability distributionof amonostable system
with onefixed point can be easily obtainedon the basis of Eq.(5) as a
singleGaussiandistribution. Inamultistable systemwithmore than
one fixed point, the steady-state distributionmay be constructed as
a combination of multiple Gaussian distributions with the form Pss
(x) = SkwkPk(x), where k labels different fixed points,wk represents
theweight of eachfixedpoint, andPk(x) is theGaussiandistribution
corresponding to each fixed point.

5.3 The Path Integral Approach
Based on the Onsager-Machlup functional, the transition
probability of the Fokker-Planck equation has the following path-
integral formulation (46):
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P(xf , tf ; x0, t0) =
Z

D ½x(t)�exp −S½x(t)�f g

=
Z

D ½x(t)�exp −

Z
L(x(t))dt

� �
:

 (6)

In the above, x0 denotes the initial state at time t0 and xf
represents final state at time tf. P(xf, tf; x0, t0) is the transition
probability from the initial state to the final state. The notation
∫ D [x(t)] represents an integral over the all possible paths
starting from the initial state x0 at time t0 and ending at the
final state xf at time tf. L(x(t)) is the Lagrangian with the
expression L(x(t)) = 1

4 ( _x − F(x)) · D−1 · ( _x − F(x)) + 1
2 ∇ ·F(x).

Its time integration gives the action S[x(t)] = ∫ L(x(t))dt
associated with each path as in classical mechanics. The action
S[x(t)] determines the probability weight e-S[x(t)] contributed by
the corresponding path. The summation (or integration) of these
probability weights over all the paths gives the transition
probability. Since the contribution of each path has the
exponential form e-S[x(t)], the dominant path with maximum
probability is the path with minimum action, which can be
determined by the variational principle dS[x(t)] = 0 and the
resulting Euler-Lagrange equation. For non-equilibrium systems
the existence of nonvanishing probability flux Jss cannot be
ignored. As a consequence, the dominant kinetic paths in non-
equilibrium systems are separated and irreversible (46).
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The influence of metabolism on signaling, epigenetic markers, and transcription is highly
complex yet important for understanding cancer physiology. Despite the development of
high-resolution multi-omics technologies, it is difficult to infer metabolic activity from these
indirect measurements. Fortunately, genome-scale metabolic models and constraint-
based modeling provide a systems biology framework to investigate the metabolic states
and define the genotype-phenotype associations by integrations of multi-omics data.
Constraint-Based Reconstruction and Analysis (COBRA) methods are used to build and
simulate metabolic networks using mathematical representations of biochemical
reactions, gene-protein reaction associations, and physiological and biochemical
constraints. These methods have led to advancements in metabolic reconstruction,
network analysis, perturbation studies as well as prediction of metabolic state. Most
computational tools for performing these analyses are written for MATLAB, a proprietary
software. In order to increase accessibility and handle more complex datasets and
models, community efforts have started to develop similar open-source tools in Python.
To date there is a comprehensive set of tools in Python to perform various flux analyses
and visualizations; however, there are still missing algorithms in some key areas. This
review summarizes the availability of Python software for several components of COBRA
methods and their applications in cancer metabolism. These tools are evolving rapidly and
should offer a readily accessible, versatile way to model the intricacies of cancer
metabolism for identifying cancer-specific metabolic features that constitute potential
drug targets.

Keywords: cancer, metabolism, constraint-based modeling, genome-scale metabolic models, systems biology,
omics, python, single-cell analysis
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INTRODUCTION

Cancer involves a complex set of dysregulations in multiple
biomolecular layers including metabolism. Metabolic changes in
cancer result from and lead to profound changes in the behavior
of cancer cells and their surrounding environment. Although
extensively studied, these metabolic changes are difficult to
accurately measure and model in an unbiased manner due to
the need to consider a heterogeneous tumor environment
encompassing different cell types, many difficult-to-measure
metabolites, and lack of standardization of models (1). While
recent years have yielded a wealth of methods to measure and
analyze biological systems at multiple omics layers (genomic (2,
3), epigenomic (4), proteomic (5–8), and metabolomic (9–11),
often extending to single-cell resolution (12), metabolic systems
are difficult to systematically assess because gene expression or
protein levels may not directly translate into metabolic
activity (1).

Genome-scale metabolic models (GEMs) can provide a
compelling approach towards understanding cellular
metabolism. GEMs are curated computational descriptions of
entire cellular metabolic networks. Derived from genome
annotations and experimental data, GEMs are composed of
mass-balanced metabolic reactions and gene-protein
associations that map the relationship of genes to proteins
involved in each reaction (Figure 1). The accumulation of
high-throughput data has contributed to the reconstruction of
GEMs for hundreds of organisms, from microbes and model
organisms to animals and humans (13). Whole-organism GEMs
can further be reduced into context-specific and cell type-specific
Frontiers in Oncology | www.frontiersin.org 284
models for analyzing specific tissue phenotypic states performing
different cellular functions. Metabolic flux analyses of GEMs
have led to various model-guided applications, such as
hypothesis generation, strain design, drug target discovery,
multicellular interactions modeling, and disease etiology (14–
16). With the rapidly increasing availability of high-resolution
multi-omics datasets, there is an increasing need for tools to
interpret data using a mathematical framework that also
integrates existing vast and complex biological knowledge. In
particular, dysregulated metabolic systems in cancer interact
heavily with the surrounding environment, and metabolic flux
analysis may prove especially beneficial to modeling
these systems.

Compared to omics analysis, cancer metabolism may be more
accurately modeled by combination of GEMs and a family of
methods called Constraint-Based Reconstruction and Analysis
(COBRA). COBRA methods perform systems-level analyses on
metabolic networks to uncover how genetic and environmental
factors affect phenotype on a biomolecular basis. COBRA
framework utilizes a stoichiometric matrix that transcribes
mass-balanced metabolic reactions of a cellular system,
including the system’s uptake and secretion rates, into a matrix
that represents the change in levels of reactants and products for
each reaction (Figure 1). While there are many allowable states
of reaction fluxes through a metabolic network, COBRA reduces
this solution space of feasible flux distributions by adding
constraints. Some basic constraints are mass conservation
(stoichiometry of reaction and products in a reaction), steady-
state assumption (input and output fluxes are balanced), and
reaction flux bounds (inequalities of upper and lower bounds).
A CB

FIGURE 1 | Constraint-based metabolic modeling. (A) A genome-scale metabolic model is a compartmentalized network of mass-balanced reactions that convert
products to reactants, and boundary pseudo-reactions that import or export metabolites. Biological objectives, such as biomass production, require activity through
a subset of internal reactions. (B) The metabolic model is converted into a stoichiometric matrix (S) of size m × n, with rows representing m metabolites and columns
n reactions. Reaction flux through all internal reaction (vi) and exchange reactions (ei) is represented by vector v of length n. Objective function Z = cTv is formulated
as a linear combination of desired fluxes, weighted by vector c. (C) At steady state, the rate of production and consumption of a metabolite must be zero, which is
described by the system of equations Sv = 0. There are many solutions to this system of equations, but the solution space can be constrained by imposing flux
bounds (vlb≤ v ≤ vub) and optimization such as maximization of objective function.
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Additional constraints can be determined by metabolite and
enzyme levels, thermodynamics directionality, enzyme
capacities, spatial compartmentalization, and genome
regulatory mechanisms (15, 17). This induces a space of
feasible fluxes which fulfill the used balance equations and
constraints, often called the “flux cone”. Constraint-based
analysis methods then aim to find biologically relevant flux
distributions within the flux cone.

COBRA methods for metabolic network analysis are now
incorporated into many software packages across several
programming languages like MATLAB and Python (15). Of
these, MATLAB packages such as COBRA Toolbox, Raven
Toolbox, and CellNetAnalyzer have been the leading standard
platforms that integrate with many existing COBRA methods
(18–20). However, the reliance on MATLAB, a proprietary and
closed-source software, reduces the accessibility of metabolic flux
analysis, especially for teaching and reproducibility purposes.
Recent open-source community efforts have promoted the
development of a similar ecosystem of COBRA software in
Python, starting with the development of COBRApy (21)
under the openCOBRA Project (22) and PySCeS CBMPy (23).
As an open-source language, Python opens COBRA methods to
greater possibilities by enabling deployment on machines
without a proprietary license, which is especially convenient
for cloud computing. Due to Python being widely adopted for
data science and computation, it provides state-of-the-art
scientific tools for accessing databases, integrating various data
modalities, and interfacing with computational tools like parallel
computing, machine learning, visualizations, and web applications.

This review will summarize the set of packages currently
available in Python for various COBRAmethods. We identify the
advantages and shortcomings of the Python ecosystem to guide
users’ decisions on their choice of a software platform and inspire
future research ideas. We focus on the application of COBRA
methods to cancer metabolism. Finally, we will explore the future
directions of COBRA methods development and their
importance in cancer modeling.
COBRA METHODS IN PYTHON

To make COBRA open-source and accessible, multiple Python
packages have been developed by the scientific community to
perform the different analyses within COBRA. Here we describe
the major components of COBRA and list their associated
packages (Figure 2; Table 1), and assess their strengths and
weaknesses (Table 2). First, we start with the core package
COBRApy, which handles the details of metabolic models and
basic simulations. We then describe methods for determining
metabolic flux, such as flux balance analysis, flux variability
analysis, and in silico perturbation. Next, we summarize
various methods for adding biological constraints like multi-
omics and biophysics. In addition, we review methods for
unbiased pathway analysis and sampling methods. We also
summarize the development of COBRA methods for models at
the single-cell and population level. Finally, we touch upon
packages for visualization and interactive web applications.
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Modeling Framework
COBRA for Python (COBRApy) uses an object-oriented
programming approach to represent models, metabolites,
reactions, and genes as class objects with accessible attributes.
Using this design, COBRApy recapitulates functions for
standard metabolic flux analyses of its MATLAB counterpart
while being extendible and accessible. First, it has the
capabilities to read and write models in various formats such
as MAT-file (for storing MATLAB variables), JSON, YAML,
and Systems Biology Markup Language (SBML) (93), the
current community-accepted standard for computational
systems biology. SBML incorporates the Flux Balance
Constraints (FBC) version 2 package (94), which supports
constraint-based modeling by encoding objective functions,
flux bounds, model components , and gene-protein
associations, whose usage will be discussed below. COBRApy
can also load SBML models from web databases such as BiGG
and BioModels (95, 96). The quality of such metabolic models
can be assessed using a Python test suite called MEMOTE that
integrates version control of models via GitHub and checks for
correct annotation, model components, and stoichiometry (24).
To use these models for various optimization problems,
COBRApy interfaces with either commercial or open-source
solvers that implement linear programming algorithms. We will
detail additional built-in or integrated functionalities for various
COBRA methods (Figure 2).

Flux Balance Analysis
The most common COBRA method is flux balance analysis
(FBA), which assumes the system is at steady state, follows
mass-balance described in the stoichiometric matrix, and
restricts reaction fluxes by bounds. Furthermore, FBA
searches for sets of steady-state reaction fluxes that maximize
or minimize an objective function representing a biological
function, such as using biomass production objective to model
cellular growth (29). The objective function is an artificial
reaction formulated by linear combinations of reactions that
would contribute to the desired biological function. For
example, the biomass production can be represented by the
consumption of biomass precursors in different proportions.
Components of the biomass production may include amino
acids, lipids, nucleotides, carbohydrates, cofactors, and other
molecules based stoichiometrically on the macromolecular
composition of a cell measured as weight fractions under
specific experimental conditions, typically during exponential
growth. Although the biomass equation is the de facto choice
for the objective function and macromolecular compositions
are more similar across related species, certain components
such as fatty acids are sensitive to environmental and genetic
conditions (97). Therefore, caution is required when choosing
an appropriate objective function that reflects the system’s
experimental condition. Sensitivity analysis of FBA could be
performed using different objectives (or ensemble of objectives)
accounting for the natural variation in biomass equation across
different conditions (97). Assessment of bias introduced by the
objective function would require experimental validation of
growth dynamics or knockout simulations discussed below.
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FIGURE 2 | Overview of Python software for major components of COBRA methods. Constraint-based metabolic modeling first requires loading a metabolic model
into software that handles the various parts of the modeling framework (grey), such as metabolites, reactions, genes, stoichiometric matrix, and flux solutions. New
metabolic models can be reconstructed from genome sequences and database, quality-checked by model testing software, made consistent using gap-filling tools,
and visualized using web-based packages. Using the metabolic model, FBA (yellow) finds an optimal flux distribution that follows stoichiometry under steady state
and can further be extended to dynamic systems. Since there are alternative optima (blue) to FBA, FVA and geometric FBA can be used to characterize the solution
space. We can perturb (red) the system to predict the effect of knockouts and use such predictions to design an optimal system (‘strain’). To improve FBA
predictions, we can add biophysical (green) constraints based on thermodynamics, proteins, and macromolecular expression. Metabolic modeling can be further
enhanced by integration of multi-omics (purple) data, such as extracting reduced models based on omics data and adding regulatory constraints. Using omics data,
metabolic modeling can become high-dimensional (brown), through single cell modeling and community modeling. Multiple metabolic models can be reduced into
ensemble objects. In contrast to FBA, unbiased (pink) approaches do not require an objective function. These include methods for sampling flux distributions and
pathway analyses. Names of software packages are in bold.
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TABLE 1 | Python tools for constraint-based modeling.

Category Method Software URL Doc.

Modeling framework Object-oriented programming COBRApy (21) https://cobrapy.readthedocs.io
https://github.com/opencobra/cobrapy

✔

Testing MEMOTE (24) https://memote.readthedocs.io
https://github.com/opencobra/memote

✔

Reconstruction Template-based AuReMe (25) https://aureme.readthedocs.io
http://aureme.genouest.org

✔

Template-based, gap-filling CarveMe (26) https://carveme.readthedocs.io
https://github.com/cdanielmachado/carveme

✔

Template-based MetaDraft (27) https://systemsbioinformatics.github.io/cbmpy-metadraft/ ✔

Homology-based, multi-species, gap-
filling

CoReCo (28) https://github.com/esaskar/CoReCo ✔

FBA FBA (29) COBRApy See above ✔

Dynamic metabolic
modeling

Dynamic FBA (30) dfba (31) https://dynamic-fba.readthedocs.io
https://gitlab.com/davidtourigny/dynamic-fba

✔

Michaelis-Menten kinetics DMPy (32) https://gitlab.com/wurssb/DMPy ✔

Alternative optima Geometric FBA (33) COBRApy See above ✔

FVA (34)
VFFVA VFFVA (35) https://vffva.readthedocs.io

https://github.com/marouenbg/VFFVA
✔

Knockout Simulation Single/Double deletions (36) COBRApy See above ✔

MOMA (37)
ROOM (38)
Flux- and graph-based Conquest (39) https://github.com/laniauj/conquests ✔

Strain Design OptGene (40) Cameo (41) https://cameo.bio/
https://github.com/biosustain/cameo

✔

OptKnock (42)
Differential FVA
FSEOF (43)
OptRAM (44) MEWpy (45) https://mewpy.readthedocs.io

https://github.com/BioSystemsUM/mewpy
✔

OptORF (46)
Omics constraints E-flux (47) ReFramed (48) https://reframed.readthedocs.io

https://github.com/cdanielmachado/reframed
✔

CORDA CORDA (49) https://github.com/resendislab/corda ✔

GIM3E GIM3E (50) https://github.com/brianjamesschmidt/gim3e ✔

FASTCORE (51) Troppo (52) https://github.com/BioSystemsUM/troppo ✘

CORDA (49)
GIMME (53)
tINIT (54)
iMAT (55)

Regulatory constraints rFBA (56) MEWpy See above ✔

SR-FBA (57)
PROM PROM (58) https://github.com/jseidel5/Python-Probabilistic-Regulation-of-

Metabolism
✔

GEM-PRO (59) ssbio (60) https://ssbio.readthedocs.io ✔

arFBA arFBA (61) https://github.com/cdanielmachado/arfba ✘

Thermodynamics ll-FBA (62) COBRApy See above ✔

CycleFreeFlux (63)
PTA PTA (64) https://probabilistic-thermodynamic-analysis.readthedocs.io

https://gitlab.com/csb.ethz/pta
✔

TFA, TVA (65) ReFramed See above ✔

TFA, TVA (65) pyTFA (66) https://pytfa.readthedocs.io
https://github.com/EPFL-LCSB/pytfa

✔

Protein constraints pFBA (67) COBRApy See above ✔

GECKO (68) MEWpy See above ✔

sMOMENT AutoPACMEN
(69)

https://github.com/klamt-lab/autopacmen ✔

ECMpy ECMpy (70) https://github.com/tibbdc/ECMpy ✔

ME-modeling COBRAme COBRAme (71) https://cobrame.readthedocs.io ✔

Gap filling MILP COBRApy See above ✔

Ensemble modeling FBA Medusa (72) https://medusa.readthedocs.io/
https://github.com/opencobra/Medusa

✔

FVA
Deletion
ML

(Continued)
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Under the above mathematical constraints, FBA is an
optimization problem involving a system of equations that
can be solved by linear programming, as initially proposed in
1984 (98). Functions for FBA and customization of objective
functions are included in COBRApy. With these basic
constraints, FBA is the foundation from which many forms
of COBRA methods evolved.

Dynamic Metabolic Modeling
Although FBA assumes that a system is unchanging at steady
state, these pseudo-steady states can be coupled to a dynamical
system with changing environmental variables using dynamic
FBA (DFBA) (99). There are several approaches to DFBA: 1)
dynamical optimization approach (DOA) that uses ordinary
differential equations (ODEs) to describe an optimization
problem of entire time profiles of metabolites, 2) statistic
optimization approach (SOA) that divides the time period into
time intervals to perform instantaneous optimization (LP) per
time interval with flux rate-of-change constraints, 3) direct
approach (DA) that resolves the LP of the right-hand side of
ODEs, and 4) reformulation of the ODEs as differential-algebraic
equation (DAE) system (30, 89, 99). The fourth approach via
DAE is implemented in Python package dfba (31), while the
second approach via SOA can be implemented using COBRApy
and SciPy. Alternatively, a very different approach to dynamical
metabolic modeling was proposed by DMPy, which translates a
GEM into a dynamic reaction equation model using Michaelis-
Menten approximations and infers missing kinetic constants
using Bayesian parameter estimation with thermodynamics
constraints (32). However, this method requires extensive
measurements of reaction rates to accurately parameterize a
large-scale model. All these constraint-based methods for
dynamical metabolic modeling enable the utilization of high-
throughput and longitudinal data to interrogate changes
in metabolism.
Frontiers in Oncology | www.frontiersin.org 688
Alternative Optimal Solutions
Flux distributions, even under an optimal objective, are usually
not unique as many alternative fluxes can yield a maximum
biomass production. The most representative solution can be
found using geometric FBA in COBRApy, which looks for a
unique flux distribution that is central to the entire solution
space (33). To better characterize all alternative optima that
satisfy the constraints of FBA, flux variability analysis (FVA)
finds the range of alternative fluxes for a reaction that maintains
optimization of the objective function within a margin of error
(34). The search for alternate optimal solutions is time-intensive,
but COBRApy has addressed this problem in FVA by
implementing parallel computing. For example, Very Fast Flux
Variability Analysis (VFFVA) is available in Python and its
implementation of FVA is much faster and more memory-
efficient than its analog in MATLAB, fastFVA (35).

System Perturbations, In Silico Knockout,
and Strain Design
Quantitative flux predictions are useful to experimentalists
because of their potential to explain or even predict the effect
of environmental and genetic changes. For investigating the
relationship between the external environment and
the modeled system, COBRApy provides tools for specifying
the growth medium and exchange rates of a model. Instead of
extracellular conditions, intracellular changes such as genetic
mutations and gene modulation can be interrogated as well. To
identify essential genes and reactions for biological functions,
FBA is performed with gene knockout simulations to assess the
effects of the knockouts on objective functions (36). Similar to
COBRA Toolbox, COBRApy includes functions for knocking
out single or double genes and reactions by restricting the flux
through associated reactions. Another algorithm for assessing
the effect of a perturbation is minimization of metabolic
adjustment (MOMA), which determines the post-perturbation
TABLE 1 | Continued

Category Method Software URL Doc.

Single cell modeling Compass Compass (73) https://yoseflab.github.io/Compass/
https://github.com/YosefLab/Compass

✔

scFEA scFEA (74) https://github.com/changwn/scFEA ✔

Community modeling MICOM MICOM (75) https://micom-dev.github.io/micom/
https://github.com/micom-dev/micom

✔

Dynamic FBA surfin_fba (76) https://github.com/jdbrunner/surfin_fba ✔

Sampling ACHR (77) COBRApy See above ✔

OPTPG (78)
Pathway analysis EFM EFMlrs (79) https://github.com/BeeAnka/EFMlrs ✔

EFM (80) CoBAMP (81) https://cobamp.readthedocs.io
https://github.com/BioSystemsUM/cobamp

✔

Minimal cut sets (82)
Elementary flux patterns (83)

Visualization and web apps Plug-in, website Escher (84) https://escher.readthedocs.io
https://escher.github.io

✔

Plug-in, website SAMMIpy (85) https://sammipy.readthedocs.io
www.SammiTool.com

✔

Plug-in d3flux (86) https://pstjohn.github.io/d3flux/
https://github.com/pstjohn/d3flux

✔
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TABLE 2 | Pros and cons of COBRA methods.

Category Method/Tool Pros Cons

Reconstruction AuReMe - Support for eukaryotes model
- Good traceability
- Automatic integration of experimental data

- Some manual refinement assistance
- Not FBA-ready

CarveMe - GEMs ready for FBA
- Fast
- Customizable for large number of genomes

- No manual refinement assistance
- Some support for eukaryotes model

MetaDraft -Support for eukaryotes model
- Fast

- No manual refinement assistance
- Not FBA-ready

CoReCo - Support for eukaryotes model
- GEMs nearly ready for FBA
- Simultaneous reconstruction for multiple species (parallelizable)

- Requires KEGG license
- No manual refinement assistance

FBA FBA - Does not require kinetic parameters - Requires objective function
- Requires reaction bounds (especially exchange flux)

Dynamic
modeling

Dynamic FBA
(SOA and DAE)

- Couples pseudo-steady states to dynamical systems
- Does not require kinetic parameters

- SOA requires small steps and thus more computation

DMPy - Infers missing kinetic parameters using thermodynamics constraints - Requires >80% of kinetic parameters for accuracy
Alternative
optima

Geometric FBA - Gives single representative solution – Reproducible typical solution
(avoids randomly picking one solution from flux cone)

- Weak correlation with protein levels (without omics
constraint)

FVA/VFFVA - Determines min and max flux for a reaction would achieve optimal
objective state
- (VFFVA) Increased speed and reduced memory usage

- Varies one reaction at a time

Sampling - Estimates probability distribution of feasible fluxes
- Can be unbiased (not using an objective function)

- Computationally intensive

Omics
constraints

E-flux - Constraints reaction bounds only
- No discretization of data

- May over-constrain model based on noisy data
- Poor growth rate prediction

GIMME - LP problem (fast)
- Ensures operability of required metabolic function
- Predicts growth rate, uptake/secretion rates, essential genes, and
oncogenes

- Discretizes data
- Models have high fractions of blocked reactions,
moderate resolution power, poor robustness to missing
data/noise

GIM3E - Ensures operability of required metabolic function
- Integrates metabolomics data

- Discretizes data
- MILP problem (slow)

(t)INIT - Ensures operability of required metabolic functions
- (INIT) predicts oncogenes and tumor suppressor genes, consistent
model, good resolution power, robust to noise/missing data

- MILP problem (slow)
- (INIT) Poor predictions of growth rate, uptake/
secretion rates, and essential genes

iMAT - No objective required
- Consistent model, good resolution power, robust to noise/missing
data
- Predicts oncogenes

- Discretizes data
- MILP problem (slow)
- Weak predictions of growth rate, uptake/secretion
rates, and essential genes

FASTCORE - LP problem (fast)
- Obtains minimal consistent model
- Predicts oncogenes and loss of function mutations
- Moderately consistent model, good resolution power, robust to noise

- Requires specification of core reactions
- Poor predictions of growth rate, uptake/secretion
rates, and essential genes

CORDA - LP problem (fast)
- Non-parsimonious pruning
- Predicts oncogenes and loss of function mutations

- Requires specification of core reactions
- Weak predictions of growth rate and essential genes
- Poor predictions of uptake/secretion rates

Regulatory
constraints

rFBA - Predicts flux over time intervals
- Models transcriptional regulation

- Uses boolean TRN
- Stepwise calculation of metabolic and regulatory
states
- Chooses only one solution per time interval

SR-FBA - Combined calculation using metabolic and regulatory constraints
- Models transcriptional regulation

- Uses boolean TRN
- Calculates flux for one time step (steady-state)
- Does not account for metabolic transitions and
feedback loops

PROM - Uses continuous TRN
- Models transcriptional regulation

- Requires TF-target gene relationships

GEM-PRO - Models protein instability - Requires protein structures
arFBA - Models allosteric regulation - Requires regulation matrix defining effector-reaction

relationship
- Small-scale applications

Thermodynamics ll-FBA - Does not require metabolite concentrations or free energies - MILP problem (slow)
CycleFreeFlux - Post-process using LP problem (fast)

- Can be applied to any flux distribution including sampled solutions
- Does not require metabolite concentrations or free energies

- Biased towards solutions with small total flux and
those with same direction as their overlapping internal
cycles

(Continued)
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flux vector that is closest to a reference flux vector (e.g., FBA
solution before change) (37). Currently, COBRApy
implementation of MOMA is the only one that does not
require a commercial quadratic programming solver but
instead uses OSQP, which is an open-source solver (100).
Another method, called Regulatory-on-off minimization
(ROOM), finds the new flux distribution with minimal
reaction changes compared to a reference state (38). Available
in COBRApy, these methods characterize the effects of gene
deletion relative to a wild-type reference. Adding to flux-based
determination of essentiality, a new metabolite essentiality
analysis combining graph-based and flux-based analysis was
proposed by Conquests (Crossroad in metabOlic Networks
from Stoichiometric and Topologic Studies) (39).

The iterative testing of gene or reaction deletions was initially
developed for in silico strain design, which determines optimal
genetic changes that would maximize production of desired
metabolites. Straight maximization of only the desired reaction
is problematic, since it ignores the drainage of cellular resources
Frontiers in Oncology | www.frontiersin.org 890
needed for cellular growth. Therefore, strain design methods
couple product yields with cellular objectives to optimize for fast-
growing cells that have high productivity. Such metabolic
engineering tools are available in a COBRApy-derived package
called cameo (41). It provides efficient, parallelized
implementations of standard in silico strain design methods for
predicting gene knockout strategies (OptGene [evolutionary
algorithm] (40), OptKnock [linear programming] (42) and for
predicting gene expression modulation targets (Differential FVA,
Flux Scanning based on Enforced Objective Flux [FSEOF] (43).
Instead of modulating genes, there are algorithms that optimize
at the regulatory level by changing transcription factors, such as
OptRAM (44) and OptORF (46) in MEWpy (Metabolic
Engineering Workbench in python) (45). These simulation
tools for strain design and in silico knockouts/perturbations
can be easily adapted to study metabolism in the context of
physiology and disease, especially cancer. For example, we will
later discuss studies that use in silico knockout to screen for
cancer drug targets. Other studies integrated genetic variants by
TABLE 2 | Continued

Category Method/Tool Pros Cons

TFA, TVA - Explicitly models thermodynamics - Requires metabolite concentrations and free energies
- Over-approximates uncertainty

PTA - Explicitly models thermodynamics for optimization and sampling
- Models uncertainty of free energies and metabolite concentrations

- Requires metabolite concentrations and free energies
- Computationally intensive

Protein
constraints

pFBA - Predicts growth rate, uptake/secretion rates, and essential genes - Assumes that flux distribution with smallest magnitude
minimizes protein costs

Enzymatic
constraints
(GECKO,
sMOMENT,
ECMpy)

- Model proteome limitation at enzyme resolution
- (sMOMENT) Automates enzyme database query
- (ECMpy) Automates enzyme parameters calibration
- (ECMpy) Does not increase model size

- Requires experimentally measured enzyme turnover
numbers
- (GECKO) Increases model size
- (sMOMENT) Moderately increases model size
- (ECMpy) Manually obtains protein subunit composition
data

ME-modeling COBRAme - Modeling proteome composition improves predictive accuracy
- Framework for building ME-models for new organisms

- Large model size and complexity
- No standardized SBML format for ME-models
- Only applied to bacteria so far

Ensemble
modeling

Medusa - Compresses multiple models into compact ensemble objects
- Reduces memory usage of storing ensembles
- Interfaces with machine learning

- No standardized SBML format for ensemble objects

Single cell
modeling

Compass - Genome-scale modeling
- Maximizes agreement with gene expression
- Handles sparsity by sharing information across neighbors
- Uses multiple objective functions

- Map gene expression to reaction expression using
boolean relationships (GPR)

scFEA - Minimizes flux imbalance of all cells to simulate exchange of
metabolites
- Less stringent flux balance and steady-state assumption
- Uses neural net to model nonlinear relationship between gene
expression and reaction rates

- Not easily scalable due to large memory usage
- Applied to small-scale models

Community
modeling

MICOM - Models exchanges and interactions between communities and
environment
- Automates building community models from a model database
- Predicts replication rates in human gut microbiome

- Assumes trade-offs between individual and
community growth rate (gut microbiome specific)
- Metabolic models may not be accurate (labratory vs.
gut conditions, species differences)

Dynamic FBA
(surfin_fba)

- Reduces optimizations problems (and parameter space) required for
dynamic FBA for communities

- Non-biological approach to choosing between non-
unique optima

Pathway
Analysis

EFM - Unbiased characterization of models (no objective function required)
- (EFMlrs) Pre- and post-process models for EFM calculations

- (EFMlrs) EFM calculation performed by other tools not
included in program
- EFM calculations are memory intensive and not
scalable
Some method comparisons extracted from literature for reconstruction (87, 88), dynamic modeling (89), omics constraints (90, 91), and regulatory constraints (92). Growth rate, uptake/
secretion rates, and cancer essential gene prediction performances from Jamialahmadi et al. are based on humanmetabolic models and available only for GIMME, INIT, iMAT, FASTCORE,
CORDA, and pFBA (91).
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simulating knock out of enzymes with loss of function mutations
(101–103).

Integrating Multi-Omics Data With GEMs
Integration of omics data into metabolic models is now critical to
standard analysis of GEMs to improve flux predictions and
interpret multi-omics data. Prior to applying constraints, gene-
level data must first be processed to reflect reaction-level data.
This involves calculating a reaction expression matrix that
evaluates gene-protein-associations (GPR, nested logic rules
representing gene essentiality and redundancy). For example,
we take the minimum expression of required subunits, but take
the sum of isozyme expression. This calculation can be
performed in Python packages l ike CORDA (Cost
Optimization Reaction Dependency Assessment) (49) and
MEWpy (45). Marıń de Mas et al. further improved GPR
evaluation in their Python implementation of stoichiometric
GPR (S-GPR) that considers the stoichiometry of protein
subunits (104).

The resulting reaction expression levels are used subsequently
to extract a context-specific metabolic model of active reactions
from the whole-organism GEM to reflect a phenotypic state
specific to cell type and condition, such as disease state or
nutrient level. The simplest transcriptome constraints can be
applied by setting associated expression levels as the reaction
upper bound, as demonstrated in E-flux and other studies (47,
105, 106). Instead of constraining all genes, PRIME is method
that adjusts reaction upper bounds of phenotype-associated
genes that are correlated with phenotypic data such as growth
rate (90). Additional methods for extraction of context-specific
models from transcriptome, metabolome, and proteome have
been reviewed previously and can be summarized into three
main families of approaches (107): 1) GIMME-like (GIMME
(53), GIM3E (50), tINIT (54)), which aims to maximize the
correspondence of flux phenotype to data while maintaining
required metabolic functions; 2) iMAT-like (iMAT (55), INIT
(108), Lee-12 (109), which only maximizes similarity of flux
phenotype to data; and 3) MBA-like (MBA (110), mCADRE
(111), FASTCORE (51), FASTCORMICS (112), CORDA (49),
which removes non-core reactions while ensuring consistency of
the model. Currently, integration of these methods with
COBRApy is still in development within the DRIVEN project
(113). Fortunately, some of these reconstruction methods have
been reimplemented in other Python packages (Table 1). For
example, ReFramed implemented E-flux (48), CORDA and
GIM3E have standalone Python packages, and Troppo
implemented FASTCORE, CORDA, GIMME, tINIT, and
iMAT (52). Nonetheless, the Python ecosystem has
shortcomings in reconstruction methods, such as the
unavailability of some methods (INIT, MBA, mCADRE,
FASTCORMICS, and PRIME), and the lack of documentation
and usage examples for the Troppo package.

Reconstruction methods could result in incomplete and
infeasible networks, partly due to errors in experimental data
and curated knowledge, and partly due to parsimonious
approaches when pruning reactions. To make reconstructed
models feasible, one can use the gap-filling functionality in
Frontiers in Oncology | www.frontiersin.org 991
COBRApy to infer missing pathways using mixed-integer
linear program (MILP). However, due to stochasticity and
existence of alternative optima, GEM reconstruction and gap-
filling of the same network can give rise to multiple GEMs that
could yield different flux predictions. To account for the
uncertainty in network structure, ensemble modeling
compresses such a set of alternative models into an ensemble
object to reduce redundancy while capturing variation. Ensemble
modeling can be performed through Medusa, a Python package
for generating ensembles, performing ensemble simulations, and
coupling ensembles with machine learning (ML) (72).

Despite reconstruction of context-specific GEMs, GEMs are
still flawed in flux prediction due to their inability to account for
cellular mechanisms that regulate metabolic activity. A recent
review has outlined the major methods for integrating regulatory
mechanisms into metabolic models as the following:
transcriptional regulatory networks (TRNs), post-translational
modifications, epigenetics, protein–protein interactions and
protein stability, allostery, and signaling networks (92). Several
methods using TRNs have been translated from MATLAB to
Python (Table 1), including boolean TRN methods like
regulatory FBA (rFBA) (56) and steady-state regulatory FBA
(SR-FBA) (57) available via MEWpy, and a continuous TRN
method called probabilistic regulation of metabolism (PROM)
(58, 114). Other regulatory mechanisms are also available: 1)
GEM-PRO (59) integrates protein structure information, and 2)
arFBA (61) integrates allosteric interactions respectively.
However, methods for integrating post-translational
modifications, epigenetics, and signaling networks are not yet
available in Python. Future development is needed to account for
the complex cellular regulatory activity.

Extraction of context-specific GEMs requires a reference
GEM that is often manually curated. To automate the
laborious process of GEM reconstruction, several tools were
developed to reconstruct microbial GEMs from genome
sequences (87). Several examples of Python-based software are
AuReMe (25), CarveMe (26), MetaDraft (27), and CoReCo (28).
Among these, Mendoza et al. (87) reviewed the first three and
found them all to generate GEMs that have high reaction sets
similarity to manually curated models, but only CarveMe
generates GEMs ready-to-use for FBA (Table 2). A more
recent tool called gapseq (88) was shown to outperform
CarveMe, but it is written in shell-script and R.

Biophysical Constraints
To ensure that reaction directionalities in computational results
agree with biological findings, COBRAmethods include addition
o f t h e rmod yn am i c c o n s t r a i n t s v i a r emov a l o f
thermodynamically infeasible pathways or calculations of
Gibbs free energy. The vastness of solution space can also be
attributed to thermodynamically infeasible loops where
metabolites are cycled infinitely. COBRApy includes two
implementations for removing such loops: one method ll-FBA
(add_loopless) utilizes mixed-integer linear programming (62),
and another faster method CycleFreeFlux (loopless_solution)
uses postprocessing of solutions (63). Additionally, there are
other Python packages that interface with COBRApy to
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implement thermodynamics analysis. For example, probabilistic
thermodynamics analysis (PTA) models use joint probability
distributions of free energies and concentrations for stream
optimization and sampling flux analysis (64). Earlier methods
such as thermodynamic flux analysis (TFA) and thermodynamic
variability analysis (TVA) (65) were implemented in ReFramed
(48). Another Python package for thermodynamic-based flux
analysis (pyTFA) couples thermodynamics feasibility into FBA
calculations (66). Thermodynamics constraints ensure
physiological flux predictions and help to reduce the
solution space.

Another theme of biophysical constraints involves modeling
the proteome limitation of a cell due to molecular crowding in a
cell. A simple method within this theme is parsimonious FBA
(pFBA), which assumes that minimizing overall total flux
approximately finds efficient pathways that minimizes the total
enzyme mass (67). Available in COBRApy, pFBA first
determines the maximum value of the objective function, then
adds it as a model constraint and solves for the flux distribution
with the smallest magnitude, minimizing protein costs (67).
However, this assumption may not always hold for all
conditions and complex cellular networks. Another way to
limit proteins is to add constraints based on enzyme
parameters such as turnover number (kcat) and molecular
weight. These protein allocation constraints are applied by
Python package MEWpy using a method called GECKO
(Genome-scale model enhancement with Enzymatic
Constraints accounting for Kinetic and Omics data), which
adds many pseudo-metabolites and pseudo-reactions to
represent enzymes (68). Another package for protein allocation
constraints is AutoPACMEN (Automatic integration of Protein
Allocation Constraints in MEtabolic Networks) (69).
AutoPACMEN can automate database query and creation of
models using sMOMENT (short metabolic modeling with
enzyme kinetics), which introduces only one pseudo-reaction
and pseudo-metabolite. Further improving upon these methods,
ECMpy adds enzyme constraints without increasing model size
(70). Studies have shown that adding protein constraints
improves the accuracy of flux predictions by explaining
suboptimal overflow metabolism and metabolic switches (69,
70). Instead of high-level protein constraints, the machinery cost
of protein expression can be explicitly modeled using genome-
scale models of metabolism and macromolecular expression
(ME-models). ME-models extend GEMs by computing optimal
composition of macromolecules like proteins, nucleotides, and
cofactors, to model the entire process from transcription and
translation, to complex formation and metabolic reaction.
Software for building and simulating ME-models is currently
only available in Python via COBRAme (71) and was extended to
dynamic systems via dynamicME (115). All packages for protein
constraints mentioned above are compatible with COBRApy.

Unbiased Characterization of
Solution Space
There are unbiased methods for analyzing distribution of steady-
state flux through a metabolic model. One set of unbiased
Frontiers in Oncology | www.frontiersin.org 1092
methods performs network-based pathway analysis without
knowledge of traditional pathway annotations: elementary flux
mode (EFM) analysis finds the minimum reaction sets (i.e.,
pathways) that can maintain steady state. Different variations
of EFM have been implemented in Python. For example, EFMlrs
is a Python package that performs EFM enumeration via
lexicographic reverse search, an implementation that
significantly improves performance and memory usage (79). In
addition, CoBAMP is another package that has implemented
EFM (80), minimal cut sets (82), and elementary flux patterns
(81, 116). Extreme pathway (ExPa) analysis is another method
for identifying reaction sets but it is not currently available in
Python (83).

Another set of unbiased methods is Markov chain Monte
Carlo (MCMC) sampling methods, which can characterize the
solution space by estimating the probability distribution of
feasible fluxes. This could be performed with or without
constraining by an objective function. Currently, COBRApy
integrated MCMC methods such as artificial centering hit-and-
run (ACHR) (77) and optimized general parallel (OPTPG) (78)
samplers, but not coordinate hit-and-run with round (CHRR)
(117) that was found to be the best performing (118).

Single-Cell Metabolic Modeling
Our ability to interrogate the heterogeneity of cell populations
has grown rapidly due to advances in single-cell technologies that
can measure the transcriptome, proteome, epigenome, and even
metabolome at the single-cell level (2–7, 11, 12, 119–126). While
single cell multi-omics data can be analyzed by pathway
enrichment, clustering, and correlation methods (16, 122, 123),
recent studies have developed algorithms in Python to calculate
metabolic flux from single-cell transcriptome (119, 127). Zhang
et al. demonstrated the usage of CORDA for the reconstruction
of cell type-specific metabolic models from murine single-cell
transcriptome and their subsequent FBA simulations of NAD+

biosynthesis using COBRApy (128). Instead of optimizing for a
specified objective function, Compass is an FBA-based method
that scores the ability of cell transcriptome to maintain high flux
through each reaction (73). Rather than using linear
programming to solve for flux distribution, scFEA first
reconstructs a metabolic model into a directed factor graph,
then trains a deep neural network to learn metabolic flux
distributions by minimizing flux imbalance across all cells and
maximizing correspondence with gene expression (74). Due to
drop-outs in single-cell RNA-seq, these algorithms took different
approaches to handle the sparsity of expression data: 1) Zhang et
al. calculated mean expression profiles per tissue and cell
ontology class, 2) Compass allows information sharing
between cells that are similar in transcriptional space, and 3)
scFEA trains the model on all cells and removes metabolic
modules only if they are entirely composed of significantly
unexpressed genes. These methods allow metabolic flux
interpretation of single-cell transcriptome at the single-cell
resolution; however, not all flux estimation methods account
for the interaction of cells via uptake and secretion of metabolites
into the environment.
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Multicellular Metabolic Modeling
To account for metabolic interactions, multicellular modeling
was devised to model interplay between multiple metabolic
networks coming from different species or tissues, with
applications from microbiology to human physiology (129).
Community modeling of the human gut microbiome reveals
community-level function and cross-feeding interactions, as
demonstrated by Python package MICOM (75). Community
models are further extended using dynamic FBA of microbial
communities, which can be efficiently calculated using Python
package called surfin_fba that reduces the number of
optimization timesteps when modeling communities (76).
Early attempts to model human cell populations were explored
using MATLAB, beginning with popFBA that simulated clones
of cancer cells with identical stoichiometry and capacity
constraints while allowing extracellular fluxes (130). PopFBA
searched for combinations of individual metabolic flux
distributions that would maximize a population object, e.g.,
total biomass, to explore metabolic heterogeneity and
cooperation between single cells. However, this method gives
many possible solutions and ignores the differences in metabolic
requirements, functions, and proliferation rates of heterogeneous
populations. To address both issues, single-cell FBA (scFBA) in
MATLAB optimizes individual objective functions within a
multi-scale model constrained by single-cell transcriptome and
bulk extracellular fluxes to reduce the solution space (131).
Overall, the added complexity of multicellular modeling can
improve our interpretation of omics data and provide insights
into cell-cell interactions important to many biological systems.

Visualization and Web Application
While algorithm development for COBRA is important, the
utility of COBRA methods also depends on the usability and
dissemination of scientific results. Python libraries have enabled
the development of more interactive, user-friendly applications
for analysis and visualization of metabolic networks. For
example, Escher is a web application for visualizing metabolic
models and also a Python package with interactive widgets for
Jupyter Notebooks that can visualize COBRApy models (84).
Escher has been integrated into other Python COBRA packages
such as cameo to visualize flux analysis results. Additional
interactive visualization packages include SAMMI for semi-
automated visualization and d3flux for d3.js based plots (85,
86). Due to open-source nature of Python packages, future
COBRA web applications can be deployed for public use
without licensing limitations.
GENOME-SCALE MODELING OF CANCER
METABOLISM WITH COBRA TOOLS

Cancer cells undergo metabolic reprogramming to promote
proliferation and invasion, and in turn alter the nutrient-levels
and cell types within the tumor microenvironment (TME). We
here summarize these metabolic changes and provide the
Frontiers in Oncology | www.frontiersin.org 1193
rationale for using COBRA methods to analyze cancer
metabolism and TME. Indeed, COBRA methods have been
utilized for various applications in cancer research in the past
decades. We describe how the analyses begin with building
cancer-specific metabolic models, from which one can infer
metabolic dysregulation through pathway and network
analyses. Next, we showed how these models were used for
quantitative prediction of cancer metabolic activity and drug
targets. Finally, we highlight the frontiers of modeling the TME
using multicellular or single-cell COBRA methods.

Metabolism of Cancer and the
Tumor Microenvironment
The dramatic functional and environmental changes that occur
during cancer formation and progression are accompanied by
accordingly dramatic metabolic reprogramming in cancer cells
(Figure 3). These changes canonically include theWarburg effect
(132, 133), the switch from predominantly mitochondrial
oxidative phosphorylation to aerobic glycolysis, potentially
done to increase biomass production critical to maintain high
proliferation (133); this leads to increased glucose uptake and
lactate secretion by cancer cells. Increased energy and biomass
production in cancer cells is also associated with increased
uptake and synthesis of amino acids (134), fatty acids (135),
and nucleotides (136). The TME is also quite distinct from
normal physiology as it espouses a different set of spatial
structures, nutrient/metabolite compositions, and cellular
heterogeneities, and thus the metabolism of cancer cells is
further perturbed just as the cancer cells metabolically
influence the TME in turn (137). In the TME, tumor cells also
inhibit immune cells by outcompeting them for critical nutrients
with finite supply, such as glucose and amino acids, thereby
limiting immune anti-tumor activity. The manifold metabolic
changes that occur in cancer pose a challenging question to
faithfully model. However, overcoming this challenge to establish
an accurate model of this complicated metabolic reprogramming
may prove useful for identifying potential targets, such as cell-cell
metabolic interactions between tumor and immune cells, for
cancer therapy.

COBRA methods offer a way to computationally achieve this
goal, such as inferring metabolic state via FBA which requires an
objective function. While designing an objective function for
tissue-specific eukaryotic cells is usually challenging, cancer cells
can be reasonably modeled by biomass objective function,
because cancer is mainly characterized by cellular growth
(138). This makes flux predictions better suited for modeling
cancer than healthy tissues, which do not actively proliferate. To
simulate flux through cancer GEMs, studies have used objective
functions representing growth as consumption of biomass
precursors (139), or individual required metabolic tasks such
as energy and redox, internal conversions, substrate utilization,
biosynthesis, and biomass growth (54, 108). Some studies found
gene-essentiality predictions from GEMs to be robust to
definition of biomass composition (139) and capable of
predicting growth kinetics in small-scale model (140),
suggesting that the biomass equation is not significantly biased.
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However, another small-scale model claimed that elemental
mode flux predictions using lactate objective is better than
biomass objective at predicting experimental fluxes (141).
These differences emphasize the importance of experimental
validation to look for bias and sensitivity analysis to see if our
biological insights are heavily affected by objective function
definition and other system assumptions. Furthermore, the
assumption that cancer cells optimize for cell growth may not
always hold as tumors adapt, especially under selective pressure
from therapies and immune system to adopt a quiescent state
(138). Even if a proper objective is used, there are many optimal
FBA solutions, and some may not be biologically viable due to
inaccurate reaction bounds, violation of steady-state assumption,
regulatory processes, and other limitations to our biological
knowledge. Despite these limitations, past cancer applications
of COBRA methods strived to improve our understanding of the
disease and identify drug targets via comparative analysis,
network analyses, quantitative flux simulations, and TME
modeling. These studies have been reviewed multiple times
(13, 14, 138, 142–144), and we have compiled the collection of
these studies in Table 3 and summarized their applications
below (Figure 4).
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Reconstruction of Cancer
Metabolic Models
To date, numerous efforts have iteratively improved
reconstruction of the human metabolic network within the
Recon series (Recon 1, 2, 3D) (103, 183, 184), the Human
Metabolic Reaction (HMR) series (HMR 1 and 2) (185, 186),
and their derived unified model Human1 (187) (Table 4). From
these generic human GEMs, cancer-specific metabolic models
were generated by integrating multi-omics data to reduce the
number of reactions to reflect cancer-specific activity. To extract
multiple healthy and cancerous tissue-specific GEMs, studies
utilized protein levels from Human Protein Atlas along with
INIT algorithm (108) or CORDA algorithm (170). Other studies
constructed cancer GEMs using transcriptomic data from 1)
cancer cell lines in combination with different integration
algorithms such as MBA (139), tINIT (150), a likelihood-based
method (156), PRIME (90), and FASTCORMICS (112), or 2)
transcriptomic data from tissue samples in combination with
mCADRE algorithm (111). While transcriptome measurements
can capture more genes, its data is noisy and does not correlate
well with protein levels (190). In contrast, proteomic data more
directly corresponds to enzymatic activity, but was previously
FIGURE 3 | Overview of metabolic interactions within the tumor microenvironment. The TME is composed of cancer cells, immune cells, and stromal cells
embedded in extracellular matrix (ECM). Limited nutrients and oxygen lead to metabolic competition between cancer and various lymphocytes, especially hampering
anti-tumor activity of effector T cells (TEFF). Cancer cells adapts via upregulating nutrient transport and altering cancer-associated fibroblasts (CAF) to replenish
metabolites. T cell immunity is further suppressed by cancer cells’ release of lactate produced by glycolysis and by recruitment of immune-suppressive cells due to
Indoleamine 2,3-dioxygenase (IDO) activity. TMEM, memory T cell; NK, natural killer cell; Treg, regulatory T cell; TAM, tumor-associated macrophage.
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TABLE 3 | List of cancer metabolic modeling studies.
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Integration Model Analysis Constraints Objective

(145) Breast x x Lee-12 HMR 1 FBA, Comparative,
Topological

Transcriptome, Fluxomic Data
Correlation

(146) Colorectal x x tINIT Human1 TFA, TFVA, pTFVA Thermodynamic,
Transcriptome, Biomass

Biomass

(147) Eye x x iMAT Recon 2 Gap filling, FBA,
FVA, Knockout

Transcriptome Biomass,
Tasks

(148) Head and Neck x x Upper bound Recon 2 FBA, Sampling,
Knockout

Thermodynamics, Enzyme
kinetics, Transcriptome,
Metabolome

ATP, NADPH

(149) Liver x x iMAT-like Recon 1 Comparative, FBA,
Sampling

Transcriptome Data
Similarity

(150) Multiple x x tINIT HMR 2 Comparative,
Knockout

Transcriptome Tasks

(151) Multiple x x tINIT HMR 2 FBA, Knockout Transcriptome Biomass,
Tasks

(140) Generic x x Small-scale FBA, DFBA, FVA,
Knockout, Sampling

Biomass

(152) Kidney x x tINIT iCancer-
Core

FBA, Knockout Transcriptome Biomass

(153) Brain x tINIT HMR 2 Comparative, FBA,
Knockout

Transcriptome Biomass,
Tasks

(105) Breast, Lung, Multiple x Upper bound HMR 1 FBA, Sampling,
Knockout

Transcriptome Biomass

(139) Generic x MBA Recon 1 FBA, Knockout Transcriptome Biomass
(154) Kidney x MBA Recon 1 FBA, Knockout Transcriptome Biomass
(54) Liver x tINIT HMR 2 Comparative, FBA,

Knockout
Proteome Biomass,

Tasks
(155) Liver x tINIT HMR 2 FBA, Knockout,

Topological
Transcriptome Biomass,

Tasks
(156) Multiple x iMAT Recon 1 FBA, ML,

Topological
Transcriptome Data

Similarity
(102) Multiple x GIMME Recon 2 FBA, Sampling,

Knockout
Mutations, Transcriptome Biomass

(157) Prostate x tINIT iCancer-
Core

FBA, Knockout,
Sampling

Transcriptome, Proteome Biomass,
Tasks

(158) Breast, Kidney, Liver,
Prostate

x x KEGG Network
Propagation,
Knockout, ML

Transcriptome

(159) Colorectal x x tINIT HMR 2 Comparative Transcriptome
(160) Multiple x x Recon 2 Regulatory,

Topological, ML
Transcriptome, Metabolome

(111) Multiple x x mCADRE Recon 1 Comparative Transcriptome Tasks,
Biomass

(103) Multiple, Brain, Lung,
Breast, Leukemia,
Prostate

x x tINIT Recon 3D Comparative,
Knockout, ML

Mutations, Protein Structures Biomass

(161) Prostate x x iMAT Recon 2 FBA, FVA Transcriptome Data
Similarity

(162) Kidney, Prostate x INIT HMR 1 Knockout Proteome, Fluxomic Biomass
(108) Multiple x INIT HMR 1 Comparative Proteome
(163) Multiple x Topological
(164) Generic x x C2M2N FBA Biosynthesis,

Biomass

(Continued)
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limited by antibody or spectrometry methods that are low-
throughput and less quantitative. Emerging evidence shows
that newly developed quantitative proteome may better explain
genetic disease and metabolism (191), emphasizing the
advantage of using proteome evidence for metabolic model
reconstruction. However, accuracy of proteome-based
reconstructions is still limited due to various regulatory
mechanisms such as protein modifications that have yet to be
integrated into cancer metabolic models.

In the past decade, many more cancer-specific models have
been reconstructed for liver (106, 149, 155, 166, 173, 181), kidney
(152, 154, 162, 172, 172), breast (103, 105, 131, 145, 168),
Frontiers in Oncology | www.frontiersin.org 1496
prostate (103, 104, 157, 161, 162, 175), brain (103, 153, 167),
colorectal (159, 170, 192), head and neck (148), eye (147), and
lung (103, 105, 131, 175) cancer to generate cancer-specific
hypotheses. To compare these various methods for
reconstruction of cancer metabolic models, a study
benchmarked their predictive performance and consistency
(91), with relevant findings summarized in Table 2. In pursuit
of personalized medicine to find optimal treatment based on
patient’ genetic factors, researchers have also built personalized
cancer GEMs from patient sample data to identify metabolic
features that are commonly-shared or patient-specific (54).
Furthermore, patient genetic variants were integrated in the
TABLE 3 | Continued
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Integration Model Analysis Constraints Objective

(165) Breast, Colorectal x x Recon 2 FVA, ML Metabolome Metabolite
Change

(166) Liver x x tINIT HMR 2 Comparative Transcriptome, Proteome Biomass,
Tasks

(167) Brain x GIMME, MADE iMS570 pFBA, Sampling Transcriptome Biomass
(168) Breast x E-Flux Recon2 FBA Proteome Biomass
(169) Colorectal x Recon 2.2 Comparative Transcriptome
(170) Colorectal x CORDA Recon 2.2 FBA, FVA,

Topological
Proteome Biomass,

ATP
(130) Generic x HMRcore popFBA, Sampling Loopless Biomass
(171) Kidney x Recon 1 pFBA Flux measurements Biomass
(172) Kidney x INIT HMR 1 Comparative Proteome
(173) Liver x tINIT HMR 2 Comparative, Gap

filling, Regulatory,
FBA

Transcriptome, Metabolome Biomass

(174) Lung x 13C flux analysis Flux measurements, Labeling
measurements

(141) Lung x Central
Carbon,
Recon 2

Elementary modes,
Structural fluxes,
pFBA

Protein efficiency Biomass,
Biosynthesis

(131) Lung, Breast x E-Flux HMRcore scFBA scRNA-seq, metabolomics Biomass
(175) Lung, Prostate x E-Flux Recon 1 FVA Transcriptome Biomass
(176) Multiple x tINIT HMR 2 Comparative Transcriptome
(104) Prostate x IMAT, GIMME,

Gonçalves,
MADE

HMR 2 FBA Transcriptome Data
Similarity

(177) Generic x Recon 1 FBA, FVA, Sampling Protein efficiency, Enzyme
kinetics

Biomass

(178) Generic x ATP FBA Protein efficiency ATP
(179) Generic x ATP, BiGG FBA Protein efficiency ATP, Nutrient

cost
(180) Liver x MADE Recon 2 Comparative Transcriptome Data

Similarity
(106) Liver x Upper bound Recon 3D FBA, FVA Transcriptome, Nutrient

availability
Biomass

(181) Liver x Bounds Recon 2 FBA Protein efficiency,
Transcriptome

ATP

(182) Multiple x E-Flux Recon 1 FBA Transcriptome Biomass
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Recon3D model with protein structures to look for cancer
mutation hotspots in glioblastoma patients (103). Nam et al.
modeled loss of function mutations via knockouts and analyzed
potential gain of function mutations by adding promiscuous
reactions predicted by chemoinformatics (102). Overall, these
various reconstructions of cancer metabolic models aim to
capture the heterogeneity of cancer.

Pathway and Network Analyses of
Cancer GEM
To find metabolic differences between cancer and healthy cell
types and between patients, these reconstructed metabolic
Frontiers in Oncology | www.frontiersin.org 1597
networks are analyzed for enrichment of biological features,
generating biologically relevant hypotheses that can guide
mechanistic interpretation, biomarker discovery, and drug
development. Comparative analysis involves statistical testing
for the enrichment of reactions, genes, and metabolites to
identify differentially activated pathways. Comparing networks
of healthy and cancer cell types using hypergeometric test
identified enrichment of not only well-known drug targets
(polyamines, isoprenoid biosynthesis, prostaglandins and
leukotrienes), but also new drug targets explained by
protection against oxidative stress and methylglyoxal toxicity
(108). Another study that used Wilcoxon rank sum test to
FIGURE 4 | Applications of COBRA methods to cancer research. Workflow diagram of using various COBRA methods (colored) in combination to achieve different
objectives (grey).
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compare tumor and normal metabolic models also found
enrichment of leukotriene synthesis in addition to other tumor
supporting pathways such as folate metabolism, eicosanoid
metabolism, fatty acid synthesis, and nucleotide metabolism
(111). Of note, these pathways were not statistically significant
from pathway analysis of gene expression data alone,
emphasizing the importance of systems-level network analysis
to extract biological signal. In addition, the presence and absence
of active genes, metabolites, and reactions can be characterized
by clustering to validate similarity of related cell types (108), and
calculating Hamming distance or pairwise comparisons to find
the most different cancer GEMs (150). Comparing cancer-
specific GEMs can reveal cancer types with more severe
metabolic dysfunction. For example, clear cell renal cell
carcinoma (ccRCC) GEM showed loss of redundant genes in
key metabolic pathways (162, 172), suggesting that ccRCC might
be more responsive to metabolic anticancer drugs due to reduced
capacity to evade drug inhibition via alterative enzymes
and pathways.

While the presence of pathways is indicative of activity,
analyzing the pattern of how these pathways connect could
provide additional insights. For this purpose, topological
analysis is a network-based analysis that characterizes
metabolic models based on network properties that describes
the degree and patterns of connection between metabolites,
genes, and reactions. The same models from Agren et al. (108)
were converted to enzyme-enzyme networks and re-analyzed
using topological analysis, which revealed that most approved
cancer drugs do not correlate with centrality (measure of
importance) of individual enzymes, but do belong to a specific
cluster in a cancer enzyme-centric networks (163). Furthermore,
the analysis found that certain network motifs, such as feed-
forward loop, are enriched in cancer networks compared to
healthy cell type. Utilized in several other cancer studies
(Table 3), topological analyses reveal insights about cancer
based on the structure of cancer-specific metabolic networks
without using flux simulations. Topological analyses emphasize
the importance of system-oriented cancer drug design to find
therapy that change the entire metabolic state instead of a single
Frontiers in Oncology | www.frontiersin.org 1698
drug t a r g e t t h a t c an be ea s i l y compensa t ed by
alternative pathways.

Quantitative Prediction of Cancer Behavior
To better understand metabolic reprogramming within cancer
cells, cancer-specific metabolic models were used to simulate flux
distributions to illustrate their metabolic state. Initial efforts built
generic small-scale cancer models that only included the major
pathways in cancer such as ATP and biomass production (140,
178) to demonstrate the usefulness of standard COBRA methods
as such FBA, FVA, and in silico knockouts (140). Performing
dynamical FBA on such model was able to predict the growth
rates of HeLa cells, validating the use of biomass objective with
FBA for cancer predictions (140). While constraints on glucose
uptake and solvent capacity initially predicted theWarburg effect
(178), later implementations of protein constraints in these
small-scale (179) and genome-scale (177) cancer models
explained the Warburg effect as a result of maximizing enzyme
efficiency. Another protein efficiency constraint, flux
minimization with FBA, predicted the Warburg effect in liver-
specific GEMs and agreed with metabolic profiling of Mir122a
knockout mice (181). Another cancer metabolic adaptation that
bypass mutation of enzymes from the TCA cycle was
recapitulated by adding upper flux bounds during flux
simulations (154). In addition to these methods for modeling
intracellular constraints, it is also important to account for cell-
extrinsic factors imposed by the tumor microenvironment.
Approaches to impose nutrient constraints include
constraining exchange reaction bounds by experimentally
measured flux (145, 162), transporter expression (105),
concentration and membrane potential-dependent free energy
calculations (148), and concentration gradient over time (106).
These quantitat ive predict ions of cancer metabolic
reprogramming further demonstrate the applicability of
COBRA methods to model cancer metabolic programs.

In Silico Drug Discovery
Furthermore, quantitative flux predictions can guide drug
therapy design by simulating the effect of enzyme inhibition on
TABLE 4 | Human metabolic generic models and cancer models.

Model Scale No. of
Reactions

No. of
Metabolite

No. of Genes Web link

HMR 1 (185) Genome 8174 6006 3674 https://metabolicatlas.org/gems/repository/366
HMR 2 (186) Genome 8181 6007 3765 https://metabolicatlas.org/gems/repository/367
Recon 1 (183) Genome 3741 2766 1905 http://bigg.ucsd.edu/models/RECON1
Recon 2 (184) Genome 7440 5063 2194 https://www.ebi.ac.uk/biomodels/MODEL1109130000
Recon 3D (103) Genome 10600 5835 2248 https://www.vmh.life/#downloadview

http://bigg.ucsd.edu/models/Recon3D
Human1 (187) Genome 13069 8366 3067 https://github.com/SysBioChalmers/Human-GEM
Cancer central metabolism (140) Small 80 66 46 https://doi.org/10.1371/journal.pone.0012383
iCancer-Core (iHCC2578) (151, 166) Genome 7762 5566 2892 https://github.com/sysmedicine/phd2020/tree/master/GEM/data
C2M2N (164) Small 77 54 – https://doi.org/10.3390/metabo9050081
HMRcore (131, 188) Intermediate 315 256 418 https://github.com/BIMIB-DISCo/scFBA
Central Carbon (141) Small 114 120 – https://doi.org/10.1042/bst20150149
iMS570 (brain) (189) Genome 630 524 570 http://dx.doi.org/10.1016/j.fob.2014.05.006
This table describes various human reconstructions that are used as the starting reference models in various cancer applications listed in Table 3. The most updated online links to these
models may be different than previously described in their original manuscripts.
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cellular metabolic function in both cancer and healthy GEMs to
maximize therapeutic effect while minimizing toxicity. In silico
knockouts are performed by constraining one or more reactions’
flux to zero, setting an objective function that represents growth
or other metabolic tasks, and finally performing FBA to calculate
the change in maximum objective. One approach aims to find
drug targets based on gene essentiality–knock out of enzymes
that inhibit cancer growth. In silico gene knockout simulations of
genome-scale cancer model identified drug targets and
combination drug strategies (double gene knockout) that could
reduce cancer growth (139). These candidates include known
drugs and are validated via shRNA gene silencing data and
cancer somatic mutations. Another study found that gene
essentiality by FBA using biomass objective is better than
chance but has limited accuracy depending on cancer type,
especially after adding exchange flux constraints (162). A
second approach based on metabolite essentiality screens for
antimetabolites (metabolite analogs), which would compete with
endogenous metabolites to inhibit their associated enzymes. By
simulating in silico knockout of all enzymes acting on each
metabolite, studies have identified antimetabolite drug
candidates that could selectively disable critical metabolic task
in cancer cell line-specific GEMs (150) and personalized
hepatocellular carcinoma (HCC) patient GEMs (54). Out of
101 antimetabolite candidates, many were already used (22%)
or proposed as anticancer drug targets (60%), and some targets
were shown to be highly patient-specific, supporting the use of
flux predictions of cancer GEMs for both general and
personalized drug discovery (54). Many more studies applying
in silico knockouts are listed in Table 3. While using FBA for in
silico drug design is well established, the predictions maybe
inaccurate due to bias introduced by the choice of objective
function and reaction bounds, such as those for cell-specific
exchange fluxes that are not always experimentally determined
(91, 162). Furthermore, simulations based on cell line
measurements and culturing conditions cannot faithfully
reflect multi-cellular tissues and physiological environments
in vivo.

Multicellular and Single-Cell
Modeling of TME
To analyze cell-heterogeneous systems like the TME, it is
important to investigate metabolic programs within a multi-
scale population model and at the single-cell level. To model
interactions between multiple cells, multicellular modeling
accounts for metabolite exchange between single cells within
the environment. This was attempted by popFBA (130), which
simulated a spatial model of identical cancer cells that adapted
heterogeneously and cooperatively to maximize growth of the
entire tumor mass. To account for tumor heterogeneity, a
population model can be constrained by single-cell RNA-seq
(scRNA-seq) data containing different tissue subpopulations in
the scFBA method (131). When applied to lung adenocarcinoma
and breast cancer cells, scFBA reveals metabolically defined
subpopulations, some of which have coordinated metabolic
fluxes (e.g., uptake or secretion of opposite sets of metabolites)
Frontiers in Oncology | www.frontiersin.org 1799
suggesting potential cell-cell metabolic interactions. Other
methods, such as scFEA or Compass, calculates cell-wise
metabolic flux from scRNA-seq data to interpret cellular
metabolic activity. Compass revealed metabolic states
associated with functional states of T helper 17 (Th17) cells, in
particular an increase in arginine and polyamine metabolism
that resulted in a regulatory T cell (Treg)-like, dysfunctional cell
state (73). The other single-cell method, scFEA, applied to
patient-derived pancreatic cancer cells with metabolic
perturbations (gene knockout, hypoxia), predicted flux
variation that correlates with measured metabolomics. These
methods could be applied to infer metabolic states of tumor and
immune cells from existing scRNA-seq datasets of tumor
samples. In future studies, algorithms for microbial
community-modeling can be repurposed to investigate the
interactions of cancer and immune cells in the TME (MICOM)
and model the dynamics of immunosurveillance and tumor
resistance (surfin_fba).
DISCUSSION

COBRA methods have proved useful for systems-level inference
of metabolic activity under a mathematical framework built
upon biomolecular knowledge. The accessibility and algorithms
of COBRA methods have been improved with the development
of open-source COBRA Python packages. We have identified
Python packages available to handle the major areas of COBRA
methods: FBA, FVA, gene knockout, strain design, omics
integration, regulatory constraints, reconstruction, gap filling,
ensemble modeling, thermodynamics, enzymatic constraints,
EFM, sampling, single-cell modeling, multicellular modeling,
and visualization. However, the Python COBRA ecosystem is
currently missing some methods for constraining models by
regulatory mechanisms and reconstruction of context-specific
GEMs. However, these gaps are only due to limitations of time
and effort, not limitations of the Python programming language.
In fact, many features involving complex models, parallelization,
and efficient memory management are available in Python
instead of MATLAB. For example, ME-models, a set of multi-
scale problems describing multiple biological processes across
different space and time scales such as transcription, translation,
and protein interactions, are handled by Python packages only
for now. Integration of protein structure into the Recon3D
human GEM was facilitated by Python packages ssbio and
GEM-PRO (103). GEMs interface with machine learning in
Medusa and scFEA. Likewise, upcoming COBRA packages will
likely integrate with existing Python tools for statistical learning
and analysis of single-cell multi-omics data. As models and
omics datasets increase in complexity, COBRA methods will
thrive in the open-source Python environment. While we
improve our modeling techniques, it is also important to
validate flux predictions using experimental techniques such as
metabolomics profile and label tracing experiments. To interpret
isotope tracing data, 13C-Metabolic Flux Analysis was developed
to infer intracellular fluxes. While 13C-MFA allows direct
July 2022 | Volume 12 | Article 914594
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measurement of metabolic flux, the method is limited to small-
scale models (central metabolism) and requires more expertise
than the typical omics measurements for constraining COBRA
methods. Python packages for modeling label tracing data are
available via FluxPyt and mfapy (193, 194). While these
experimental techniques are outside the scope of this review,
they have been reviewed previously for bulk, single-cell, and
cancer applications (119, 195, 196). Another alternative
computational metabolic modeling approach is parametric
kinetic modeling, which mathematically describes enzyme
activity involving regulatory mechanisms (17). While this
paradigm may offer accurate prediction of perturbation
outcomes, systems emergent properties (e.g., switches,
oscillations, bistability), and non-steady state concentrations,
scaling kinetic models to genome-scale metabolic models is a
challenge due to the requirement for intracellular concentrations,
kinetic parameters, and rate laws. DMPy attempts to overcome
the challenge by incorporating thermodynamics constraints to
infer missing kinetic parameters. Hybrid approaches combining
kinetic modeling with constraints-based models may bring
kinetic modeling closer to genome-scale.

Applications of GEMs and COBRA methods to cancer
research have improved our understanding of how molecular
mechanisms translate to cancer phenotype, aiding interpretation
of multi-omics data and guiding drug designs that target cell
metabolism at the systems-level. Metabolic models of cancer
have evolved from small-scale models of essential pathways to
genome-scale cancer-specific models, and they are now
expanding to the realm of single-cell modeling. The
computational resources required for numerous single-cell
reconstructions and optimizations can be costly. Single-cell
methods reduce complexity by pooling of reactions and similar
cells and could benefit from ensemble modeling techniques that
reduce a large number of models into ensemble objects. As
demonstrated by bulk-level modeling, future single-cell
modeling can improve prediction accuracy by incorporating
constraints determined by multi-omics, thermodynamics,
protein crowding and kinetics, genotype, and regulatory
mechanisms. Furthermore, single-cell methods that estimate
the metabolic flux of individual cells can be improved by
Frontiers in Oncology | www.frontiersin.org 18100
integration of spatial information and inter-cell metabolic
exchange to model crosstalk between cancer, immune, and
stromal cells within the TME. By understanding the cancer-
immune metabolic competition, we can design drugs that disrupt
pathophysiologic interactions to enhance antitumor immune
response and prevent evasion of immunosurveillance.
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Efforts in the treatment of glioma which is the most common primary malignant tumor of
the central nervous system, have not shown satisfactory results despite a comprehensive
treatment model that combines various treatment methods, including immunotherapy.
Cellular metabolism is a determinant of the viability and function of cancer cells as well as
immune cells, and the interplay of immune regulation and metabolic reprogramming in
tumors has become an active area of research in recent years. From the perspective of
metabolism and immunity in the glioma microenvironment, we elaborated on arginine
metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in
the tumor microenvironment. Reduced arginine availability significantly inhibits the
proliferation, activation, and function of T cells, thereby promoting the establishment of
an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to
enhance the anti-tumor activity of T cells is a promising strategy for the treatment of
glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are
unable to synthesize arginine; thus, they are highly dependent on the availability of arginine
in the extracellular environment. This metabolic weakness of glioma has been utilized by
researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by
consuming large amounts of arginine in circulation. Although it has shown good results,
this treatment modality that targets arginine metabolism in glioma is controversial.
Exploiting a suitable strategy that can not only enhance the antitumor immune
response, but also “starve” tumor cells by regulating arginine metabolism to cure
glioma will be promising.

Keywords: glioma, arginine metabolism, T lymphocytes, tumor microenvironment, metabolic reprogramming
INTRODUCTION

Glioma is the most common primary malignant tumor of the central nervous system (CNS),
accounting for 48% of all primary malignant CNS tumors (1); the most malignant type of glioma is
glioblastoma (GBM). Although various treatment modalities including surgery, radiotherapy,
chemotherapy, tumor treatment fields, molecular targeted therapy as well as supportive care have
been employed in the treatment of GBM, the median survival time of the patients is less than two
years, and the 5-year survival rate is less than 10% (2). The main reasons for the poor prognosis of
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patients with GBM are tumor infiltration, recurrence, and
resistance to conventional therapy, which are closely related to
intra-tumoral heterogeneity and phenotypic plasticity in
GBM (3).

The CNS was considered an immune-privileged organ.
However, this dogma was broken with the discovery that
lymphatic vessels exist in the CNS (4) and that immune cells can
cross the blood-brain barrier (BBB) (5). Many innate and acquired
immune cells reside in the boundary zones of the CNS (6, 7).
Different from the brain parenchyma, there is a large amount of
lymphocyte infiltration that mediates the immune response (8). The
lymphatic system in the meninges, and the cerebrospinal fluid, and
the lymphocytes present in the meninges form a relatively mature
network. This network allows antigens in the cerebrospinal fluid to
enter the lymphatic system through the cervical lymph nodes,
thereby initiating the activation of T cells (9, 10). This process has
been confirmed in various diseases, including GBM. However, in
pathological conditions such as GBM, the blood-brain barrier is
destroyed; this results in increased permeability. Leukocytes,
including antigen-presenting cells, enter the CNS through the
choroid plexus, meningeal barrier, and postcapillary venules (5,
11), leading to infiltration of immune cells into tumor tissues (12,
13). GBM is a “cold” tumor owing to a lack of lymphocyte
infiltration (14). The immune cells that infiltrate GBM are mainly
macrophages and lymphocytes, such as CD4+ and CD8+ T cells;
the concentration of T lymphocytes is positively correlated with the
survival time of patients (15).

Advances in immunotherapy, such as the use of immune
checkpoint inhibitors, have revolutionized cancer therapy.
Unfortunately, these have been unsuccessful in the treatment of
GBM (14, 16). The main obstacle in the treatment of GBM is the
heterogenous and immunosuppressed tumor microenvironment,
which results partly due to altered cellular metabolism (17).
Cellular metabolism has become a determinant of the viability and
function of cancer cells as well as immune cells. Tumors are
metabolically reprogrammed to maintain enormous anabolic
demands, which leads to the development of a microenvironment
that is acidic, hypoxic, and devoid of the key nutrients required by
immune cells. In this context, tumor metabolism is a checkpoint
because it mediates tumor immune escape (18). The interplay
between immune regulation and metabolic reprogramming in
GBM is an active and stimulating area of research (18, 19). For
example, enhanced glycolysis results in a glucose-starved
microenvironment that makes tumors more aggressive. Glucose is
a key nutrient that supports the rapid and dynamic transition of
immune cells from the naïve state to an activated state (20).
Reprogramming of amino acid metabolism in tumors often
involves nutritional competition between cancer and immune cells.
A largenumberofbasicandclinical studieshave shownthat theuseof
new drugs that target tumor-dependent amino acid metabolism can
effectively inhibit tumor growth. We noticed that arginine in the
GBM microenvironment may be associated with the antitumor
function of T lymphocytes.

Arginine promotes a series of metabolic reactions, including
the synthesis of nitric oxide, polyamines, glutamine, and proline,
all of which are important regulators of cell growth and survival
Frontiers in Oncology | www.frontiersin.org 2107
(21). Arginine also exerts an essential regulatory effect on the
immune system. Arginine-deficient T cells exhibit cell cycle
arrest, impaired proliferation, reduced activation, and reduced
antitumor activity (22–25). The reprogramming of arginine
metabolism in GBM includes upregulation of the expression of
amino acid transporters for intake of arginine, upregulation of
the expression of arginase to decompose arginine, and
downregulation of the expression of key enzymes involved in
the endogenous arginine synthesis pathway. The former causes a
deficit of arginine in the microenvironment, thereby inhibiting
the function of T lymphocytes and promoting the formation of
an immunosuppressive microenvironment. The latter represents
a defect in cancer cell metabolism, and targeting this metabolic
defect is a strategy used for treating tumors. Since the rate of
proliferation of cancer cells is much higher, they require more
nutrients, which exceeds their ability to synthesize amino acids
(26). Cancer cells are dependent on extracellular arginine
because of the decreased expression of arginine-synthesizing
enzymes , a rg in inosucc ina t e syn thase (ASS1) and
argininosuccinate lyase (ASL). In the absence of extracellular
arginine, cancer cells become arginine dystrophic, or “arginine
auxotrophic” (27). This strategy has been successfully used to
treat acute lymphoblastic leukemia, in which asparaginase
combined with chemotherapy has become the standard
treatment (28). Mycoplasma infection was initially found to
kill cancer cells (29). It was subsequently found that this is due
to arginine deaminase (ADI), which degrades arginine in
Mycoplasma (30, 31). Researchers then began using arginine
deaminase and another enzyme, arginase (ARG), to break down
arginine for the treatment of various tumors, including gliomas.
Extensive preclinical and clinical research is being conducted on
arginine deprivation therapy (32).

In this review, we describe how the unique metabolism of
arginine in the glioma microenvironment leads to the suppression
of the antitumor activity of T lymphocytes, thereby leading to tumor
immune escape.We also discuss how targeting arginine metabolism
in gliomas not only inhibits tumor growth, but also promotes
effective and durable antitumor immunity.
METABOLISM OF ARGININE

Arginine Metabolism in Humans
Arginine is a semi-essential amino acid that is found in adults.
The humans can synthesize arginine, but under certain
physiological stresses, such as burns or severe immune
challenges, the humans needs to supplement dietary arginine
(33–36). Arginine in adult circulation has a short half-life (37).
Plasma arginine concentration is regulated by dietary arginine
intake, endogenous arginine synthesis, arginine catabolism,
hepatic urea cycle, and protein synthesis. It is important to
note that changes in the dietary intake of arginine do not alter
the rate of its endogenous synthesis, which lays the foundation
for targeting arginine metabolism for the treatment of some
specific diseases (38). Endogenous arginine is mainly synthesized
July 2022 | Volume 12 | Article 938847
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through the intestinal–renal axis (39, 40). Although the urea
cycle in the liver can synthesize arginine, there is very little net
arginine synthesis in the liver (41, 42).

CNS tumors, such as gliomas, require more arginine;
however, the CNS cannot increase the synthesis of arginine to
meet the needs of cancer cells, and it can only increase arginine
intake from the blood (43). For infiltrating immune cells,
macrophages can express both ASS1 and ASL to synthesize
arginine from citrulline (44, 45), which may be related to the
fact that macrophages can account for 30%-50% of cells in the
glioma microenvironment (46). However, not all immune cells
simultaneously express all the enzymes required for de novo
synthesis of arginine. For example, T cells rely only on a
circulating supply of arginine or its immediate precursor.

In addition to protein synthesis, arginine has multiple
functions such as vasodilation, neurotransmission, cell
proliferation, and immune regulation (47, 48). The effect of
arginine on the immune system has been gradually discovered
in the last century. In 1968, the inhibitory effect of arginine
deficiency on T lymphocyte activation in vitro was first described
(49). Clinically, arginine is required for wound healing (50–52).
Immune-enhancing diets (IED) use dietary arginine to stimulate
the immune system (53, 54). These diets contain two to six times
the arginine content of a normal diet. IEDs can boost immunity
in trauma patients and reduce infection risk in surgical patients
(55–57). It is important to note that IEDs do not benefit all
patients (58). Determining whether arginine metabolism
modulates immune cell function in specific diseases will
undoubtedly lead to the development of more efficient
individualized treatments.
Frontiers in Oncology | www.frontiersin.org 3108
Metabolism of Arginine in Cells
The intracellular arginine concentration is much higher than the
extracellular or plasma arginine concentration. The arginine
transporter in most cells is CAT-1, which transports arginine
into cells to form the arginine pool. Several enzymes can break
down arginine, including arginase, nitric oxide synthase (NOS),
arginine decarboxylase, and arginine: glycine amidinotransferase
(Figure 1) (33, 59).

Quantitatively, arginase is the most important enzyme for
arginine decomposition in the body (60). Intracellular arginase
hydrolyzes arginine to urea and ornithine. There are two arginase
isoenzymes in humans, arginase 1 (Arg1) and arginase 2 (Arg2).
Arginase 1 is located in the cytoplasm, its expression is restricted to
specific cell types. Moreover, it is transcriptionally regulated by
cytokines. Arginase 2 is primarily located in the mitochondria and
exhibits a more ubiquitous and constitutive expression pattern,
independent of cytokine regulation (61, 62). Ornithine is a
metabolite of arginine. Ornithine can enter the urea cycle and is
converted to citrulline by ornithine transcarbamylase (OTC).
Citrulline synthesizes argininosuccinate through ASS1, which in
turn synthesizes arginine through ASL, thus repeating the urea
cycle. Ornithine can also generate polyamines via ornithine
decarboxylase (ODC). Polyamines, including putrescine,
spermine, and spermidine, are important products of the arginase
metabolic pathway and have tumor-promoting effects (60, 63).

NOS is another important enzyme that breaks down arginine.
It breaks down arginine to produce nitric oxide (NO) and
citrulline. Notably, arginine is the only substrate for NO
production (64). Intracellular arginine increases NO production
in a dose-dependent manner (65). There are three distinct
FIGURE 1 | Diagram of the arginine metabolism pattern in normal cells. After entering the extracellular matrix from the circulation, arginine enters the cell through the
CAT-1 transporter on the cell membrane. Arginine can be broken down by NOS into NO and citrulline, or be broken down by arginase into ornithine, thus entering
the urea cycle. Ornithine can also generate polyamines through ODC. Arginase II in mitochondria is also involved in the degradation of arginine. NO, Nitric oxide;
NOS, nitric oxide synthase; ARG, arginase; ODC, ornithine decarboxylase; OTC, ornithine transcarbamylase; ASS1, argininosuccinate synthase; ASL,
argininosuccinate lyase.
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isoforms of nitric oxide synthase in the body: NOS1, NOS2, and
NOS3, which are encoded by different genes. NOS1 and NOS3 are
constitutively expressed in neural and endothelial cells,
respectively. NOS2 is a ubiquitous isoform in immune cells, but
is not constitutively expressed. Instead, its expression is induced by
lipopolysaccharide and inflammatory cytokines; thus, it is called
inducible NOS. The roles of NO in tumors are conflicting andmay
depend on the concentration of NO, type of effector cells, and
duration of exposure (66). In general, low concentrations of NO
may promote carcinogenesis, cancer cell proliferation, and tumor
angiogenesis (67). However, high concentrations of NO can exert
cytotoxic effects on tumor cells by inducing DNA damage (68).
The complex role of NO in tumors suggests that a comprehensive
evaluation of the effect of NO on tumors in vivo is essential when
targeting arginine metabolism for the treatment of gliomas.
REPROGRAMMING OF ARGININE
METABOLISM IN GLIOMA

Healthy adults obtain arginineprimarily throughdietary intake and
intracellular protein degradation but can also synthesize arginine
when needed. This is sufficient to meet the body’s general arginine
requirements (69). However, owing to metabolic reprogramming,
cancer cells have a greater demand for arginine and rely on the
extracellular pool of arginine to sustain their growth (70, 71).
Moreover, ASS1 and ASL are downregulated in cancer cells,
resulting in the inability to synthesize endogenous arginine,
which makes cancer cells more dependent on the extracellular
arginine pool (21, 72). This has laid the foundation for arginine
deprivation therapy. The expression of ASS1 is varied in different
types of tumors; further, the expression of ASS1 is heterogenous
even within the same tumor, reflecting tumor heterogeneity
(Figure 2). In the case of gliomas, 30% of GBM cell lines lack
ASS1 expression (Figure 3) (73). In general, the downregulation of
ASS1 is mediated by promoter methylation or hypoxia-inducible
factor (HIF) 1a in multiple cancers. ASS1 levels in cancer are
Frontiers in Oncology | www.frontiersin.org 4109
differentially regulated under various environmental conditions to
metabolically benefit cancer progression. For example, ASS1 is
downregulated under acidic conditions, and ASS1-depleted
cancer cells maintain a higher intracellular pH, depend less on
extracellular glutamine, and display higher glutathione levels.
Cancer cells in an acidic or hypoxic environment downregulate
the expression of the urea cycle enzymeASS1, which provides them
with redox and pH advantages, resulting in better survival (74). In
response to genotoxic stress, p53 directly promotes ASS1
expression, resulting in increased ASS1 activity. P53-mediated
ASS1 induction is a systemic response to genotoxic stress, which
can lead to the rearrangement of arginine metabolism at the
organism level, as seen in mice (75). Additionally, proline,
creatine, and metabolites related to the arginine synthesis
pathway were upregulated in ASS1-positive GBM cells compared
to ASS1-negative cells. Pyruvic acid, citric acid, and a-ketoglutaric
acid aremetabolites in the initial phaseof the citric acid cycle andare
decreased in ASS1 positive cell lines (32). Similarly, tumor cells
resistant to the arginine deprivation agent ADI-PEG20, which had
upregulatedASS1 expression comparedwith sensitive cells, showed
enhanced expression of glucose transporter-1 and lactate
dehydrogenase-A, reduced expression of pyruvate dehydrogenase,
and elevated sensitivity to the glycolytic inhibitors, 2-deoxyglucose
and 3-bromopyruvate, consistent with the enhanced glycolytic
pathway (the Warburg effect). Simultaneously, these cells showed
higher glutamine dehydrogenase and glutaminase expression (76).
Furthermore, activity-based proteomic profi l ing and
phosphoproteomic profiling were performed before and after
ADI-PEG20 treatment of ADI-PEG20-sensitive and -resistant
sarcoma cells. Proteomic changes that facilitate oxaloacetate
production by enhancing glutamine and pyruvate anaplerosis and
altering lipid metabolism to recycle citrate for oxidative
glutaminolysis have been elucidated (77). However, whether
alterations in these metabolites affect the biological characteristics
of gliomas is unclear. However, there is evidence that ASS1may act
as a tumor suppressor gene. For example, patients with GBM
lacking ASS1 expression have worse prognosis than ASS1-
FIGURE 2 | The expression of ASS1 in human normal tissue and cancer cells.The gene expression profile across all tumor samples and paired normal tissues. The
figure was excerpted from GEPIA2 (http://gepia2.cancer-pku.cn/#index).
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positive patients (32). Consistent with this finding, decreased ASS1
levels were also significantly associated with postoperative lung
metastases and poor clinical outcomes in patients with
osteosarcoma. In preclinical studies, overexpression of ASS1
inhibited tumor growth (78). Epigenetic silencing of ASS1 can
stimulate tumor cell proliferation andmigration (79). These results
suggest that ASS1 is a tumor suppressor gene (80). Interestingly,
ASS1 may have opposite effects on other tumors. For example, the
expression of ASS1 in gastric cancer can promote the invasion of
cancer cells, resulting in poor prognosis in patients with gastric
cancer (81, 82). Additionally, high ASS1 levels are an indicator of
poor disease-free survival in patients with head and neck cancer
(83). The dual role of ASS1 in tumors is not fully understood.
However, these findings indicate that it is essential to fully
understand the expression of ASS1 and its role, before using
arginine deprivation therapy for the treatment of specific tumors.
The influence of individual differences and tumor heterogeneity
should also be considered. The mechanism of ASS1
downregulation, even though not fully elucidated, is undoubtedly
beneficial for tumors if ASS1 acts as a tumor suppressor gene.
Recent studies have shown that epigenetic changes in two genes
involved in arginine biosynthesis in gliomas, namely CpG island
methylation ofASS1 andASL, lead to decreased protein expression.
Frontiers in Oncology | www.frontiersin.org 5110
This results in glioma sensitivity to arginine deprivation
therapy (84).

Reprogramming of arginine metabolism in gliomas provides
a new approach for targeted therapy. But the downside is that
this reprogramming also profoundly affects the infiltrating T
lymphocytes. This has often been overlooked by researchers who
use arginine deprivation therapy to treat gliomas. However, it is
not clear whether adaptive changes in T lymphocytes in an
arginine-deficient environment can cause glioma tolerance to
arginine deprivation therapy. In the following discourse, we
explain how gliomas cause a deficit of arginine in the tumor
microenvironment and subsequent immunosuppression.
GLIOMA LEADS TO AN ARGININE-
DEFICIENT IMMUNOSUPPRESSIVE
MICROENVIRONMENT

Glioma Leads to an Arginine-Deficient
Microenvironment
Solid tumors reside in harsh tumor microenvironments together
with various stromal cell types. Tumor cells metabolically
coordinate or compete with their “neighbors” to meet
FIGURE 3 | Arginine reprogramming in glioma cells. In glioma cells, ASS1 expression was downregulated while CAT-1 and arginase were upregulated. The
upregulated arginase is mainly arginase II located in the mitochondria. The use of ADI-PEG20 and HuArgI(CO)-PEG5000 to break down Circulating arginine results in
a significant decrease in arginine concentration in the extracellular environment. Among the downstream metabolites of arginine, polyamines can promote tumor
proliferation and metastasis, low concentrations of NO promote tumor proliferation and angiogenesis, and high concentrations of NO cause DNA damage. NO, nitric
oxide; NOS, nitric oxide synthase; ARG, arginase; ODC, ornithine decarboxylase; OTC, ornithine transcarbamylase. ASS1,, argininosuccinate synthase; ASL,
argininosuccinate lyase.;ADI-PEG20, pegylated arginine deaminase; HuArgI(CO)-PEG5000 ,Pegylated recombinant human arginase I.
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biosynthetic and bioenergetic demands, while escaping
immunosurveillance or therapeutic interventions. The
consumption of essential nutrients by cancer cells directly
limits the availability of nutrition to the tumor-killing immune
cells; this is observed especially with cytotoxic T cells, leading to
impaired antitumor immunity. In addition to rapid proliferation,
cancer cells outcompete cancer cells by overexpressing
transporters for nutrient uptake, and enzymes for nutrient
catabolism (85). By upregulating amino acid transporters,
glioma cells take up more arginine from the extracellular
environment to meet their own proliferation and metabolism
requirements. As their requirement of arginine is more than
what they are capable of synthesizing, they are highly dependent
on arginine availability in the extracellular environment.
Therefore, arginine is an essential amino acid (86, 87).
Elevated arginine catabolism is a common feature of the tumor
microenvironment. The most important enzyme involved in
arginine catabolism is arginase, which converts arginine into
urea and ornithine. Arginase expression and activity are
increased in patients with cancers including glioma, colon
cancer, lung cancer, breast cancer, thyroid cancer, prostate
cancer, compared to the surrounding healthy tissues in these
patients (Figure 3) (88, 89). Arginase II is a major subtype
expressed by tumor cells (90, 91). Moreover, arginase II is
released from tumor cells, such as acute myeloblastoma, and is
present in patient plasma at high concentrations (91). Whether
arginase II is released outside the cell depends on the type of
tumor, as neuroblastomas do not release free arginase II (90). It is
unclear whether glioma cells that highly express arginase II
release this enzyme. However, regardless of whether tumor
cells release arginase, tumors with high arginase expression
lead to local and systemic arginine deficiency. For example,
patients with renal cell carcinoma and cervical cancer have a
corresponding decrease in plasma arginine concentrations at
diagnosis, which leads to a poorer prognosis (92, 93).

The increased uptake of arginine and high expression of arginase
by tumor cells results in an immunosuppressive phenotype. As
mentioned above, arginine deficiency leads to a series of inhibitory
phenotypes such as decreased T-cell activation, impaired
proliferation, and cycle arrest through multiple mechanisms. It was
found that co-culture ofArg2-expressing cancer cellswithT cellswas
sufficient to induce arginine depletion and lead to impaired T-cell
proliferation, decreased IFN-g release, and PD-1 upregulation (25).
Moreover, T-cell andmyeloid cell infiltration is reduced in head and
neck squamous cell carcinomaswithhigh arginase II expression (94).
Likewise, in acutemyeloid leukemiawith high arginase II expression,
the surrounding monocytes were more polarized to M2-like
macrophages (91). Conversely, arginine replenishment (95) or the
use of small-molecule inhibitors of arginase II (91) can alleviate
arginine-deficient immunosuppression and reduce T-cell
dysfunction (25).

In addition to tumor cells, immunosuppressive cells
expressing arginase 1 form an inhibitory immune barrier. The
accumulation of ARG1-expressing immunomodulatory cells,
including M2-like tumor-associated macrophages, tolerogenic
DCs, MDSCs, and Treg cells, in the tumor microenvironment
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(TME) may suppress antitumor immunity by degrading
arginine, thus limiting the availability of this amino acid to T
cells (96, 97). Mouse and human tumor cells can secrete soluble
factors, such as GM-CSF and G-CSF, which lead to the
recruitment and accumulation of MDSCs (98). In GBM
patients, the number of circulating MDSCs with high Arg1
expression increases (99). Overexpression of Arg1 in MDSCs
leads to downregulation of the CD3z chain, which adversely
affects CD4+ and CD8+ T cells (100). Additionally, MDSCs
exhibit functional similarities to M2-like macrophages (101),
including IL-10, TGF-b, and IDO expression (102). This suggests
that immunosuppressive cells are closely linked to arginine
metabolism; however, this requires further investigations.

Depleting important nutrients such as arginine is a key
strategy for cancer cells to evade immunity. Although many
tumors are arginine auxotrophic (21), a large proportion can
tolerate a low-arginine state (91, 103). This suggests that there
must be a unique mechanism that allows these tumors to tolerate
an arginine-deficient environment. These tumor cells can
synthesize arginine from citrulline by upregulating ASS1. In
the absence of arginine, ASS1 transcription is induced by the
binding of ATF4 and CEBPb to the enhancer of ASS1. But in T
cells, the situation is completely different. Arginine deficiency
leads to chromatin compaction and inhibits histone methylation
in T cells, which disrupts the binding of ATF4 and CEBPb to
ASS1 enhancers and prevents the transcription of target genes
(104). These findings help explain the differences in arginine
metabolism between tumor cells and T cells and can aid in the
development of more effective targeted therapies for the
treatment of gliomas.

Arginine Deficiency Suppresses the
Antitumor Function of T Lymphocytes
Tumor-infiltrating immune cells typically experience metabolic
stress as a result of the dysregulated metabolic activity of tumor
cells, leading to impaired antitumor immune responses.
Activated T cells consume a large amount of arginine and
rapidly convert it into downstream metabolites, resulting in a
significant decrease in intracellular arginine levels. T cells are
extremely sensitive to extracellular concentrations of arginine
because of their low or absent expression of arginine synthase
ASS1 and OTC (105, 106). Various studies have demonstrated
that arginine deficiency leads to decreased T-cell activation,
impaired proliferation, cycle arrest, decreased cytokine (IFN-g)
release, and increased expression of immunosuppressive
molecules (PD-1) (Figure 4) (22–25). The low arginine levels
in the TME also impairs the proliferation of chimeric antigen
receptor T cells (CAR-T), limiting their therapeutic effects (107).

In contrast to the lack of arginine, high arginine levels can
increase the antitumor activity of T cells, which may be due to a
combination of phenotypic alterations, including increased T-
cell viability, improved metabolic adaptability, and maintenance
of a central memory-like phenotype (95). Therefore, sufficient
extracellular arginine is critical for T-cell function. Researchers
have exploited the beneficial effects of arginine on T-cell survival
and antitumor function to improve adoptive T-cell therapy. For
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example, CAR-T cells have been reconstituted to express the
enzymes ASS1 and OTC, which are required for arginine
synthesis. This increases the arginine content in CAR-T cells,
thus enhancing the activity of CAR-T cells in vivo against solid
and hematological tumors (107).

Arginine deficiency-mediated suppression of T-cell function
is caused due to a myriad of factors including downregulation of
the CD3z subunit of the T-cell receptor complex (108–111),
damage to cofilin dephosphorylation (112), blockade of protein
translation by activation of general control nonderepressible 2
(GCN2) (113), blockage of glycolysis (114), decreased expression
of early T-cell activation markers CD25 and CD69 (115), and
aberrant expression of D-type cyclins (22, 116, 117).

It is important to note that most studies on the effects of
arginine on T cells are based on interventions in extracellular
arginine concentrations. For example, change in the
concentration of arginine in the T-cell medium. However,
extracellular and intracellular arginine pools are not freely
interchangeable (118), which means that extracellular arginine
supply may not be a reliable indicator of intracellular arginine
availability. Recent studies on Arg2 in T cells further
demonstrated that the intracellular metabolism of arginine
profoundly alters T-cell function. Pharmacological inhibition
of arginase increases activation and survival of human T cells
in vitro. Since human T cells express ARG2, but not ARG1, this
suggests that such effects are caused by Arg2 (48). Studies have
also found that deletion of Arg2 germline and adoptive transfer
of Arg2−/− CD8+ T cells significantly reduced tumor growth in
preclinical cancer models by enhancing CD8+ T-cell activation,
cytotoxic function, and persistence (48, 119). Importantly, these
experiments were performed under arginine excess conditions
and, therefore, did not depend on extracellular arginine
Frontiers in Oncology | www.frontiersin.org 7112
availability. This indicates that the observed changes are
mainly caused by a cellular autonomous mechanism, and that
we should focus on the direct effects of intracellular arginine
pools on T-cell functions.
ARGININE REPLENISHMENT THERAPY
FOR GLIOMA

Researchers have attempted arginine replenishment therapy to
treat tumors, by increasing the availability of arginine to improve
antitumor immunity. One study found that oral administration
of arginine and an anti-PD-L1 antibody restricted tumor growth
and increased survival in mice, suggesting a synergistic effect of
arginine and PD-L1 blockers. To achieve the desired antitumor
effect, mice must be administered a relatively high dose of
arginine (2 mg/g of body weight). In comparison, an adult
patient weighing 75 kg would require 150g of arginine per day,
which is unrealistic. Therefore, researchers have developed
metabolically engineered bacteria called L-Arg bacteria, to be
planted in the tumors, which will produce large amounts of
arginine. L-Arg bacteria and PD-L1 blockers can synergistically
inhibit tumor growth, increase the infiltration of CD4+ and
CD8+ T cells, and reduce the infiltration of Treg cells in the
tumor. Further studies also found that this combination reduced
the percentage of PD-1+LAG-3+ T cells, indicating the
persistence of effector T-cell function with the simultaneous
increase in the formation of tumor-specific memory T cells
(120). Similar studies have found that arginine increases
radiosensitivity in patients with brain metastases. Additional
oral administration of arginine before standard radiotherapy in
31 patients with brain metastases significantly improved the
FIGURE 4 | Arginine-deficient glioma microenvironment suppresses T-cell function.
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therapeutic effect of radiotherapy. This therapeutic effect is due
to NO-induced metabolic inhibition, which increases the
susceptibility of NOS2-expressing cancer cells to DNA damage
(121). NOS2 activity is required for tumor brain metastasis and it
can decompose arginine to NO. Arginine increases
radiosensitivity through an NO-mediated mechanism, and
high intratumoral NO concentrations lead to a decrease in
tumor glycolysis and thus a decrease in lactate levels. These
metabolic changes ultimately impair the repair of radiation-
induced DNA damage in cancer cells. In addition, the authors
suggested that the enhanced overall antitumor effect may also be
due to immune activation. In mouse tumor models, oral
administration of arginine improved the metabolic adaptability
of T cells, which is critical for antitumor responses (95).
Administration of arginine prior to radiation therapy reversed
radiation-induced T-cell and B-cell dependent immune
dysfunction in mice (122). Although this mechanism has not
been fully elucidated, it is speculated that arginine-induced
reduction in lactate levels may also contribute to the enhanced
antitumor activity of tumor-infiltrating lymphocytes (123).
ARGININE DEPRIVATION THERAPY
FOR GLIOMA

Arginine deprivation therapy is a novel antimetabolic strategy
that exploits the differential expression of key urea cycle enzymes
to treat arginine auxotrophic tumors. Arginine deaminase (ADI),
a metabolic enzyme extracted from Mycoplasma (124), catalyzes
the conversion of arginine to citrulline. Owing to its instability,
strong immunogenicity, and short half-life (5 h), ADI is
combined with polyethylene glycol (ADI-PEG20) to reduce
antigenicity and prolong half-life (125). Synthetic human
arginase 1 (HuArgI) is another arginine deprivation agent used
to treat arginine auxotrophic tumors. Its activity is also enhanced
by adding polyethylene glycol and replacing Mn2+ with Co2+,
resulting in HuArgI(CO)-PEG5000. HuArgI(CO)-PEG5000 lasts
longer in serum, has better catalytic activity, and is less exposed
to the immune system (126–128).

If the cells were not rescued by adding citrulline after arginine
depletion, these cell lines were completely auxotrophic to arginine;
however, when rescued after adding citrulline, the cell lines became
partially auxotrophic. Pegylated recombinanthumanarginase Iwas
used to target nineGBM cell lines and human fetal glial cells (SVG-
p12), and was found to be cytotoxic to all GBM cell lines except
SVG-p12 cells, which shows selective cytotoxicity induced by
arginine deprivation. Subsequent addition of citrulline rescued
these six GBM cell lines. The ability of citrulline to rescue cells
was dependent on argininosuccinate synthase 1 expression, and
cells that were not rescued were negative for ASS1 expression.
KnockdownofASS1 reversed the ability of citrulline to rescueGBM
cells, further illustrating the dependence onASS1 expression (129).
Approximately 30% of GBMs lack ASS1 expression and can be
targetedbyarginase I,whichhasnocytotoxicity tonormal glial cells.
Likewise, depletion of arginine using pegylated arginine deaminase
resulted in cell death in vitro and tumor regression in orthotopic
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xenograft models, whereas ASS1-expressing GBM cells were
unaffected (84, 130). In addition, researchers also found that the
use of arginine deprivation agents in combination with other
treatments showed better therapeutic effects. Many studies have
described the molecular mechanism of arginine deprivation in
ASS1 deficient tumors, thereby uncovering additional
vulnerabilities in these tumors. This has prompted the use of
other drugs in combination with arginine deprivation therapy for
more effective killing of tumor cells. For example, TRAIL is used for
mesothelioma (131), cisplatin is used for various tumor types (132),
and chloroquine is used for sarcoma (133). The combination of
arginine deprivation and canavanine, a plant-derived arginine
analog, is a novel approach to glioma treatment. This
combination therapy profoundly affects cell viability,
morphology, motility, and adhesion. It also disrupts the
cytoskeleton and mitochondrial network, thereby inducing
apoptosis. At the molecular level, canavanine inhibits pro-survival
kinases such as FAK, AKT, and AMPK. Importantly, these effects
are selective toGBMcells, as shown by their less pronounced effects
on rat glial cells (134). Similarly, the combination of ADI and
Palomid 529, an inhibitor of mTORC1 and mTORC2 complexes,
showed a potent cytotoxic effect in glioma cell lines. In addition,
ADI combined with chloroquine showed an enhanced antitumor
effect. In vivo, ADI alone and the combination ofADI and SAHA, a
protein deacetylase inhibitor, effectively inhibited the growth of
xenograft tumors (135). A recent phase I clinical trial preliminarily
verified the therapeutic effects of arginine deprivation therapy. Ten
patients with severe ASS1-deficient recurrent high-grade gliomas
were treated with ADI-PEG20 in combination with pemetrexed
and cisplatin. The treatment was safe and well tolerated by the
patients. The best overall response was stable disease in eight
patients (80%). The results showed that the treatment was well
toleratedand80%ofpatientshad stable overall efficacy,withplasma
arginine significantly suppressed below baseline levels. However,
the titers of anti-ADI-PEG20 antibodies in patients increased,
indicating the production of neutralizing antibodies, which may
affect the therapeutic effect ofADI-PEG20 (136).Additional clinical
studies on arginine depletion in glioma treatment are presented
in Table 1.

The above findings suggest that arginine deprivation therapy is
only effective inASS1-negative glioma and has little effect onASS1-
positive glioma (including adaptive transcriptional upregulation of
ASS1 after treatment), which greatly limits the clinical applications
of ADT. Therefore, researchers have attempted to combine ADT
with other treatmentmodalities to improve the curative effect of the
treatment for ASS1-positive gliomas. Animals bearing intracranial
human GBM tumors of varying ASS status were treated with ADI-
PEG20 alone or in combinationwith temozolomide andmonitored
for tumor growth and regression. ADI-PEG20 monotherapy
significantly reduces intracranial growth of ASS1-negative GBM
and extends survival of mice carrying ASS1 negative GBMwithout
obvious toxicity. ADI-PEG20 combined with temozolomide shows
enhanced antitumor effects in both ASS1-negative and ASS1-
positive backgrounds. The mechanism underlying this effect is
unclear, but these results suggest that ADI-PEG20 in
combination with TMZ may be clinically useful in both ASS1-
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negative and ASS1-positive settings (130). In addition, ADT
combined with radiotherapy may be a new treatment strategy for
patients with GBM. ADT caused significant radiosensitization,
which was more pronounced in a GBM cell model with loss of
function of p53 than in its p53- wildtype counterpart. This
synergistic effect was independent of basic and induced ASS1 or
ASL expression (137). ADI-PEG20 also significantly enhanced the
efficacy of radiotherapy for ASS1-positive GBM in vivo (73).
However, ADT combined with radiotherapy has not yet been
studied in clinical trials.

The mechanism of glioma cell death in the absence of
arginine has not yet been fully elucidated. GBM exhibits
caspase-independent, non-apoptotic cell death upon arginine
deprivation. The latter, a process known as autophagy,
provides a temporary but limited supply of arginine through
the destruction of intracellular organelles. Therefore, this process
protects against cell death, but leads to non-apoptotic death in
the long run. The autophagy inhibitor, chloroquine, was added to
GBM cells treated with HuArgI(CO)-PEG5000. As expected, the
inhibition of autophagy increased the sensitivity of cells to
HuArgI(CO)-PEG5000 (129, 138). After emphasizing the effect
of arginine deficiency on cell viability, it is important to observe
the effect of arginine deficiency on cell motility and migration
ability. Arginine deficiency affects tumor cell morphology and
inhibits motility, invasiveness, and adhesion. Moreover, it has
little effect on normal glial cells. This is because of specific
changes in actin assembly caused by arginine deprivation in
gliomas. Arginine deprivation reduces b-actin filament content
and affects N-terminal arginylation. This suggests that arginine
deprivation-based therapeutic strategies can inhibit the invasive
process of highly malignant brain tumors (139).

The combined treatment with ADI-PEG20 significantly
enhanced the efficacy of GBM radiotherapy in a non-arginine
auxotrophic background. This combination results in a durable,
complete radiological, and pathological response. It also
prolonged disease-free survival in an in situ model of GBM
with no apparent toxicity (73). Further studies found that the
combination treatment resulted in downregulation of Arg1 and
upregulation of inducible NOS. Under arginine-deficient
conditions, inducible NOS has a higher affinity for arginine
Frontiers in Oncology | www.frontiersin.org 9114
than for Arg1. Combination therapy increased the production
of NO, which further formed cytotoxic peroxynitrite (140). This
could enhance the sensitivity of ASS1-positive GBM to ionizing
radiation (141). In addition, arginine deficiency greatly reduces
vasogenic edema and neovascularization, which are typical
features of GBM (142, 143). The antiangiogenic activity of ADI
appears to be partly due to the twisting of actin filaments, which
prevents blood vessels from sprouting, blooming, and growing.
ADI-PEG20 also inhibits HIF, particularly HIF-1a (144). HIF-
1a is associated with a decrease in the expression of vascular
endothelial growth factor, which induces blood vessel growth.
HIF has also been implicated in the pathogenesis of GBM (145).
High HIF-1a levels also reduce glioma responsiveness to TMZ
(146). Thus, ADI-PEG20 has antitumor effects, at least in part,
due to its anti-HIF effects.

The antitumor properties of ADT have been extensively
investigated. ADT inhibits the growth of auxotrophic cancers in
vitro and in vivo. However, its impact on immune cells in the tumor
microenvironment remains, largely, unknown. The removal of
arginine can theoretically impair the immune function of T cells.
Interestingly, ADI-PEG20 led to a marked increase in tumor-
infiltrating CD4+ and CD8+ T cells in a syngeneic B16-F10-
melanoma mouse model (147). Similarly, arginine deprivation
combined with radiotherapy increased recruitment of microglia
into tumors in a glioma model and enhanced their activity and
phagocytic phenotype. Arginine deprivation switched the activation
of tumor-associated macrophages/microglia from a tumor-
supporting phenotype to a more phagocytosis-competent and,
hence, tumor-inhibiting phenotype. Simultaneously, a significant
increase in the number of CD4+ and CD8+ T cells and a
corresponding decrease in FoxP3+ regulatory cells was observed
in the glioma microenvironment (73). Despite the increased
number of infiltrating T cells, it remains unknown whether T-cell
function is affected. It is important to further explore changes in the
tumor immune microenvironment after ADT treatment.

Studies on the potential mechanism of ADT resistance have
found that the re-expression of ASS1, production of neutralizing
antibodies to arginine deprivation agents, and autophagy are the
main causes. ADT, by nutrient starvation or exposure to ADI-
PEG20, induces adaptive transcriptional upregulation of ASS1 and
TABLE 1 | Clinical studies on arginine depletion in glioma treatment.

Disease Treatment Clinical
phase

No. of patients Status Clinical Trials.gov
Identifier

Recurrent high-grade
glioma
(ASS1-deficient)

ADI-PEG20 with pemetrexed and cisplatin Phase I 10 Terminated NCT02029690

Glioblastoma multiforme ADI-PEG 20 with Radiotherapy and Temozolomide Phase I 32
(Estimated)

Recruiting NCT04587830

Advanced solid cancers ADI-PEG 20 with pembrolizumab Phase I 33 Terminated NCT03254732
High-grade gliomas
and others

rhArg1peg5000 phase I/II 64
(Estimated;

Children and Young
Adults)

Unknown NCT03455140

Advanced/Metastatic
solid tumors

INCMGA00012 (PD-1 Inhibitor), INCB001158(Arginase
Inhibitor), and the combination

Phase I 18 Completed NCT03910530

Advanced/Metastatic
solid tumors

INCB001158 with chemotherapy phase I/II 149 Active, not
recruiting

NCT03314935
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ASL in glioma cells in vitro, thereby conferring resistance to ADI-
PEG20 treatment. The specific mechanism of the adaptive
transcriptional upregulation of ASS1 and ASL is unknown, but
studies in melanoma suggest that accumulated cMyc can induce
ASS1 expression by interacting with the ASS1 promoter (148, 149).
Although themodification of ADI by conjugation with polyethylene
glycol can reduce its immunogenicity, the production of anti-ADI
antibodies has also been observed in patients enrolled in clinical
trials. This suggests that long-term treatment may lead to the
development of resistance due to the production of neutralizing
antibodies. This phenomenon may explain the negative correlation
between plasma neutralizing antibody levels and duration of
arginine depletion after ADI-PEG20 treatment (136). When
arginase I was combined with the autophagy inhibitor,
chloroquine, to treat GBM in vitro, the inhibition of autophagy
increased cellular sensitivity to arginase I. This finding suggested
that autophagy plays a supporting role in ADI resistance (129).
Arginine deprivation agents for cancer treatment should have low
toxicity, non-immunogenicity (to prevent antibody production and
allergic reactions), rapid action (to delay the emergence of
resistance), and long circulating half-lives (to achieve sustained
arginine consumption) (150). It is worth investigating whether
low arginine levels during arginine deprivation therapy can
adversely affect antitumor immunity, since T-cell function is
regulated by arginine. In addition, the reconstruction of adaptive
immune function against the background of arginine-mediated
tumor immune escape is a promising therapeutic strategy.

Metabolic reprogramming is often mediated by oncogenic
signaling pathways. In particular, mTOR signaling is commonly
activated in tumors and controls cancer cell metabolism by altering
theexpressionand/or activity of several keymetabolic enzymes (151).
Conversely, metabolic alterations affect mTOR signaling. mTORC1
isoneof themechanisms that checks cellular aminoacid levels and/or
nutritional deprivation in cells. For example, arginine activates
mTORC1 through the GATOR1/2-Rag pathway by directly
binding to the arginine sensor CASTOR1 (Cellular Arginine
Sensor for mTORC1) (151). Interestingly, ASS1 knockdown results
in increasedmTORC1 activity in osteosarcoma cells, potentially due
to increased aspartate levels (86). Treatment with rhARG reduces
mTORC1 activity and induces cytotoxicity and apoptosis in non-
SCLC cells (152). However, resistance to arginine deprivation agents
has been observed. ADI-PEG20-resistant tumor cells exhibited
reduced mTOR signaling but enhanced AKT signaling, which led
to the stabilizationofMYC.MYC in turn inducesASS1 expressionby
competing with HIF1a for ASS1 promoter-binding sites (76). The
molecular mechanism underlying the downregulation of mTOR
signaling in ADI resistance remains unclear.
ADVANTAGES AND DISADVANTAGES OF
TARGETING ARGININE THERAPIES
FOR GLIOMA

We now summarize the advantages and disadvantages of
Arginine deprivation therapy and Arginine replenishment
therapy as follows:
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Advantages of Arginine deprivation therapy (1): There are
mainly five enzymatic agents catabolizing free arginine in theory
(NOS, glycine amidinotransferase, arginine decarboxylase,
arginase, and arginine deiminase) (153). This provides a
variety of options for arginine deprivation therapy (2).
Arginine deprivation therapy achieves its therapeutic effect by
lowering the plasma arginine concentration, which is especially
appropriate for intracranial tumors and is no longer hindered by
the blood-brain barrier (3). Arginine deprivation therapy has
completed different clinical trials in patients with metastatic
melanoma and mesothelioma with promising results (154, 155)
(4). Arginine deprivation therapies have different mechanisms in
tumors, such as induction of autophagy, ROS overproduction,
cell cycle arrest, and caspase-dependent/independent apoptosis
in cells. Thus, AD therapy has the potential to treat tumors in
combination with other treatments.

Disadvantages of Arginine deprivation therapy (1): The
resistance of tumors to arginine deprivation agents is currently
the biggest obstacle, mainly due to the re-expression of ASS1,
production of neutralizing antibodies to arginine deprivation
agents, and autophagy. We urgently need to elucidate the
underlying mechanisms of drug resistance to increase their
therapeutic efficacy against tumors (2). The therapeutic effect
of arginine deprivation depends largely on whether the tumor is
auxotrophic. In other words, it depends on the expression of
ASS1 in tumor cells. This greatly limits the application of
arginine deprivation agents. However, there are ongoing
research studies to circumvent this problem. For example, a
combination of arginine deprivation therapy with radiotherapy
or TMZ has shown a good therapeutic effect on ASS1-
positive gliomas.

Advantages of Arginine replenishment therapy: Arginine is
an inexpensive, readily available amino acid that cancer patients
only need to consume orally. This greatly increases the
convenience of this treatment. Moreover, arginine is a nutrient
needed by the body and does not produce toxic side effects like
other chemotherapeutic drugs.

Disadvantages of Arginine replenishment therapy: Arginine
replenishment therapy requires a high concentration of arginine
in the tumor microenvironment in order to achieve a good
therapeutic effect. Achieving the required concentration poses a
challenge that needs to be addressed urgently.
DISCUSSION

The advantages of targeting arginine in the treatment of gliomas
are evident. It kills tumor cells directly or indirectly by interfering
with tumor cell metabolism, without affecting normal cell
function. Concurrently, it can bypass the blood-brain barrier,
which is especially suitable for intracranial diseases. Arginine
deprivation therapy works directly on tumor cells. The
combination of arginine deprivation with other treatments has
shown great potential and application value, and requires further
in-depth research. Arginine replenishment therapy is more likely
to act on immune cells and affect tumor cells, which is an indirect
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mechanism. Although the two treatments seem contradictory,
differences in their mechanisms of action make us interested in
finding ways to combine them. Currently, targeting arginine
metabolism to treat glioma faces the dilemma of choosing
arginine deprivation therapy or arginine replenishment
therapy. The former achieves tumor inhibition by “starving”
tumor cells, but its negative effects are often ignored by
researchers. The arginine-deficient extracellular environment
created by arginine deprivation agents undoubtedly exerts a
strong inhibitory effect on antitumor T cells. Further studies
are required to determine whether the suppressed T cells are
responsible for the poor effects of arginine deprivation therapy.
The latter increases the antitumor activity of T cell by fulfilling
their arginine requirements. Likewise, the arginine
replenishment therapy “feeds” tumor cells. The direct effect of
excess arginine on glioma cells is unclear, but we do not want
tumor cells to be “nutrient-rich.” Another strategy to increase
arginine levels in the body is to prevent its breakdown. In mouse
tumor models, ARG1 inhibitors, which prevent the breakdown
of arginine, increase CD8+ T-cell infiltration and stimulate the
production of inflammatory cytokines in the TME (97, 156).
Further studies are needed to determine the therapeutic effect of
ARG1 inhibitors on glioma. Most existing studies describe
arginine deprivation therapy as the chosen method to treat
brain tumors; however, a few studies have also described
arginine replenishment therapy to treat brain tumors. Here, we
hope to adopt a suitable strategy to combine the two strategies,
both “starving” tumor cells and enhancing antitumor immune
response. CAR-T therapy combined with arginine deprivation
therapy may be an effective strategy to circumvent this pitfall.
Frontiers in Oncology | www.frontiersin.org 11116
CAR-T cells can recombinantly express ASS1 and OTC,
increasing the arginine content in cells. This increases the
persistence of CAR-T cells in vivo (107). However, we still
need to conduct extensive preclinical studies to determine the
effectiveness of this therapy. We hope that this will open new
avenues for comprehensive treatment for glioma.
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Mapping phenotypic
heterogeneity in melanoma
onto the epithelial-hybrid-
mesenchymal axis

Maalavika Pillai 1,2†, Gouri Rajaram3†, Pradipti Thakur3,
Nilay Agarwal1,2, Srinath Muralidharan1, Ankita Ray3,
Dev Barbhaya4, Jason A. Somarelli5 and Mohit Kumar Jolly1*

1Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
2Undergraduate Programme, Indian Institute of Science, Bangalore, India, 3Department of
Biotechnology, Indian Institute of Technology, Kharagpur, India, 4Department of Biological
Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India, 5Department of
Medicine, Duke University, Durham, NC, United States
Epithelial to mesenchymal transition (EMT) is a well-studied hallmark of epithelial-

like cancers that is characterized by loss of epithelial markers and gain of

mesenchymal markers. Melanoma, which is derived from melanocytes of the

skin, also undergo phenotypic plasticity toward mesenchymal-like phenotypes

under the influence of various micro-environmental cues. Our study connects

EMT to the phenomenon of de-differentiation (i.e., transition from proliferative to

more invasive phenotypes) observed in melanoma cells during drug treatment. By

analyzing 78 publicly available transcriptomic melanoma datasets, we found that

de-differentiation in melanoma is accompanied by upregulation of mesenchymal

genes, but not necessarily a concomitant loss of an epithelial program, suggesting

a more “one-dimensional” EMT that leads to a hybrid epithelial/mesenchymal

phenotype. Samples lying in the hybrid epithelial/mesenchymal phenotype also

correspond to the intermediate phenotypes in melanoma along the proliferative-

invasive axis - neural crest and transitory ones. As melanoma cells progress along

the invasive axis, the mesenchymal signature does not increase monotonically.

Instead, we observe a peak in mesenchymal scores followed by a decline, as cells

further de-differentiate. This biphasic response recapitulates the dynamics of

melanocyte development, suggesting close interactions among genes

controlling differentiation and mesenchymal programs in melanocytes. Similar

trendswere noted formetabolic changes often associatedwith EMT in carcinomas

in which progression along mesenchymal axis correlates with the downregulation

of oxidative phosphorylation, while largely maintaining glycolytic capacity. Overall,

these results provide an explanation for how EMT and de-differentiation axes

overlap with respect to their transcriptional andmetabolic programs inmelanoma.

KEYWORDS

phenotypic plasticity, EMT, melanoma, metabolic reprogramming, dedifferentiation,
phenotypic heterogeneity
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Introduction

Epithelial to mesenchymal transition (EMT) is a well-

characterized phenomenon involved in multiple axes of cancer

progression, such as metastasis and drug resistance. EMT is

commonly associated with morphological changes, functional

changes (increased migration, invasion, and immune invasion)

(1–3) and molecular changes, including upregulation of EMT

markers and transcription factors (TFs), such as VIM, ZEB1,

SNAI1 and TWIST1. While the phenomenon of EMT has largely

been characterized for epithelial cancers (such as breast cancer

and lung adenocarcinoma), similar molecular, functional and

morphological changes have also been observed in non-

epithelial cancers, such as sarcomas (4, 5), glioblastoma (6),

myeloma (7), lymphoma (8, 9), leukemia (10, 11) and melanoma

(12) in preclinical and clinical settings.

Treatment of melanoma tumors harboring BRAFV600E

mutation often involves targeted therapy strategies that inhibit

BRAF or MEK signaling. While these targeted agents provide

clinical benefit to melanoma patients, resistance to these

therapies is common. Therapy-resistant melanomas often

undergo de-differentiation, which is characterized by loss of

melanocytic markers such as MLANA, TRPM1 and TYR and

gain of invasive molecular markers such as c-JUN, NGFR and

ZEB1 (13–16). The de-differentiation trajectory of melanoma

cells is characterized by a transition along the proliferation-

invasion axis, from a melanocytic phenotype to an

undifferentiated phenotype while passing through the

intermediate transitory and neural crest stem cell-like (NCSC)

phenotypes (Figure 1A). This trajectory is the reverse of the

differentiation that occurs during melanocyte development,

where undifferentiated tissue in the embryonic neural plate

give rise to highly migratory and mesenchymal neural crest

cells, some of which differentiate into melanocytes upon

reaching the epidermis (17). Therapy resistant melanoma is

also commonly associated with a mesenchymal-like phenotype

with more invasive and aggressive features (13, 16, 18–20). These

relationships between de-differentiation, invasion, and EMT

pathways in response to therapy suggest EMT and de-

differentiation programs in melanoma may be linked.

The similarity between EMT and de-differentiation

programs extends beyond cell-intrinsic alterations and impacts

cell-extrinsic changes as well. EMT often leads to varied

extracellular matrix (ECM) stiffness and density (21–23) and

altered cell-matrix and cell-cell interactions (24, 25). In

melanoma, acquisition of de-differentiated and invasive

phenotypes is often accompanied with changes in composition

and physical properties of ECM, and modified cell-matrix

interactions and cell morphology (26–28). Increased

expression of matrix metalloproteases (MMPs), immune

evasion (characterized by both signal ing-mediated

immune suppression (e.g. by TGF-ß release) and prevention of
Frontiers in Oncology 02
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immune cell entry into tumors by dense collagen matrix/low a-
SMA expression), increased inflammatory markers (such as

TNF-a, NF-kB and AP-1) and cytoskeleton remodeling have

been closely linked to the acquisition of an invasive phenotype

and loss of melanocytic differentiation regulator MITF (29–34).

All of these changes are reported with EMT progression as well

in multiple epithelial cancers (35–37). Such extensive similarity

between EMT and de-differentiation programs in cancer-

microenvironment cross-talk and niche construction

underscore the potential of common regulatory pathways

involved in both EMT and de-differentiation.

Another common feature that links EMT in epithelial

cancers to de-differentiation in melanoma is the presence of

intermediate or hybrid phenotypes. Hybrid epithelial/

mesenchymal (E/M) cells express molecular and functional

characteristics of both epithelial (high proliferation and cell-

cell adhesion, low invasion) and mesenchymal (low proliferation

and cell-cell adhesion, high invasion) cells (38). On the other

hand, melanoma intermediate phenotypes, which comprise

transitory and neural crest-like stem cell-like (NCSC)

phenotypes, exhibit combined features of proliferative and

invasive phenotypes (39, 40) (Figure 1A). Gene regulatory

networks for EMT and melanoma provide a mechanistic basis

for explaining the existence of these hybrid/intermediate states

(41, 42). An overlap in key regulators and stabilizers for hybrid

E/M phenotypes and melanoma phenotypes (such as ZEB1,

NFATC2, CDH1, SNAI2, NRF2) suggest common regulatory

links (13, 43–49). For instance, SNAI2, a stabilizer of the hybrid

E/M phenotype, is a key regulator of the NCSC phenotype and

metastasis in melanoma, suggesting its involvement in

regulating the intermediate phenotypes in melanoma as well

(45, 49). However, certain regulators show opposite trends in

melanoma and EMT. For instance, ZEB2 is considered an

inducer of EMT in epithelial cancers, but in the context of

melanoma, it inhibits the mesenchymal phenotype (19, 50).

Other molecules that show opposite effects include KLF4 (51,

52) and TFAP2A (53, 54). Thus, understanding the mechanistic

underpinning of how the de-differentiation and EMT programs

are linked can help decipher reasons for the similarities and

differences between these pathways across cancers.

In this study, we map the de-differentiation axis in melanoma

(also called proliferative-invasive/P-I axis) to the EMT axis using

previously defined scoring metrics (3, 55–57). We compare the

extent to which a gain in a mesenchymal signature corresponds to a

loss in the epithelial signature during de-differentiation of

melanoma. By deciphering the interdependencies between de-

differentiation and mesenchymal programs, the differences in

molecular regulation between EMT and de-differentiation can be

better understood. We have identified that the mesenchymal

program, but not the epithelial program, is closely linked to de-

differentiation. Although the mesenchymal signature enrichment

shows a strong negative correlation with a differentiated/
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melanocytic transcriptional program, it does not increase

monotonically during de-differentiation. This non-monotonic

trend is also captured by metabolic programs associated with

EMT, such as glycolysis and HIF1a, but not with metabolic

programs associated with differentiation/melanocytic genes, such

as the MITF-regulated OXPHOS pathway. Our results indicate that

phenotypic heterogeneity in melanoma occurs along a proliferative-
Frontiers in Oncology 03
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invasive axis that correlates with a “one-dimensional EMT” in

which cells transition along a mesenchymal axis without an

alteration in epithelial phenotype. Deciphering such inter-

connections among multiple axes of plasticity in a cancer cell

population may guide potent combinatorial therapeutic strategies

aimed at controlling transitions to a more hybrid cell type with

combined features of both proliferation and invasion.
B C D

E F G

A

FIGURE 1

Mapping phenotypic heterogeneity in melanoma onto the EMT axis. (A) A schematic representation. Volcano plots depicting Spearman’s
correlation coefficients and -log10(p-value) of 78 datasets for the Verfaillie proliferative and invasive gene set with (B) 76GS EMT scoring metric,
and with (C) KS EMT scoring metric (D) Boxplot depicting range of correlation coefficients for KS and 76GS with Verfaillie invasive and
proliferative gene sets. Volcano plots depicting the Spearman’s correlation coefficient and -log10(p-value) of 78 datasets for Verfaillie
proliferative and invasive gene set with (E) Epithelial gene set (E scores) and (F) Mesenchymal gene set (M scores). (G) Boxplot depicting range of
correlation coefficients for E and M scores with Verfaillie invasive and proliferative gene sets. Inset labelled “Significant” is calculated as the
fraction of datasets (out of 78) which show a significant correlation trend (r < - 0.36 or r > 0.36, p < 0.05). The absolute number of significant
points (datasets) for the specified cut-off is indicated in brackets. “Proliferative” and “Invasive” labels represent the percentage of significant
correlations that are between the EMT score and proliferative score or invasive score, respectively.
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Materials and methods

Software and datasets

Publicly available datasets from Gene Expression Omnibus

(GEO), The Cancer Genome Atlas (TCGA), Cancer Cell Line

Encyclopedia (CCLE- Broad Institute) (58), and National Cancer

Institute-60 (NCI-60) databases were analyzed. Microarray data

were downloaded from GEO using GEOquery Bioconductor R

package. All analyses done on R version 4.1.0. ggplot2, and ggpubr

R packages were used to create and customize plots.
Pre-processing of datasets

Microarray datasets, with un-mapped probe IDs, were pre-

processed by mapping the probe IDs onto their gene symbols

using the relevant platform annotation table. In the case of

multiple probes mapping to the same gene, the mean
Frontiers in Oncology 04
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expression of all the probes was considered for that gene.

For non-normalized RNA-Seq datasets TPM normalization

followed by log2 transformation with an offset value of 1

was used.
ssGSEA

Single-sample Gene Set Enrichment Analysis, an

extension of Gene Set Enrichment Analysis (GSEA) (56,

59), calculates separate enrichment scores for each sample

and a gene set. Each score represents the degree to which

genes in a gene set are up or down-regulated in a sample. We

calculated ssGSEA scores for the Verfaillie proliferative and

Verfaillie invasive gene sets (60), Hoek proliferative and Hoek

invasive gene sets (39), the epithelial (E) and mesenchymal

(M) gene sets of the EM tumor gene signature genes and cell

lines gene signatures in the KS scoring metric (57), and the
TABLE 1 List of scores used for quantifying various axes of heterogeneity.

Score Description Significance Reference

76 Gene Signature
(76GS)

Metric for how epithelial a sample is. Calculated by using a weighted sum
of gene expression for 76 genes.

Shows weak correlation with de-differentiation scores 55

Kolmogorov
-Smirnov test (KS)

Metric for how mesenchymal a sample is. Ranges from -1 to +1.
Calculated by
subtracting expression-level based scores for epithelial genes from that for
mesenchymal genes,

Shows weak correlation with de-differentiation scores 57

E score ssGSEA score for only epithelial genes used in KS score. No mesenchymal
genes are used for quantification.

Shows no correlation with de-differentiation scores 3

M Score ssGSEA score for mesenchymal genes used in KS score. Na epithelial
genes are used for quantification.

Shows strong overall correlation with de-
differentiation scores, non-monotonic

3

OXPHOS ssGSEA score for oxidative phosphorylation geneset Shows strong overall correlation with de-
differentiation scores, monotonic

61

Glyco ssGSEA score for glycolysis geneset Shows strong overall correlation with de-
differentiation scores, non-monotonic

61

HIF-1 Singscore calculation for 59 downstream targets of HIF-1 Shows strong overall correlation with de-
differentiation scores, non-monotonic

62

FAO Average Z-scores for 14 FAO enzyme genes Shows strong overall correlation with de-
differentiation scores, monotonic

63

Verfaillie proliferative
score

ssGSEA score for proliferative geneset NA 60

Verfaillie invasive
score

ssGSEA score for invasive geneset NA 60

Hook proliferative
score

ssGSEA score for proliferative geneset NA 39

Hook invasive score ssGSEA score for invasive geneset NA 39

Tsoi Melanocytic
score

ssGSEA score for melanocytic geneset NA 40

Tsoi Transitory score ssGSEA score for Transitory geneset NA 40

Tsoi NCSC score ssGSEA score for NCSC geneset NA 40

Tsoi Undifferentiated
score

ssGSEA score for undifferentiated geneset NA 40
fro
Not Applicable.
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Tsoi melanocytic, transitory, NCSC, and undifferentiated

gene set (40) (Table 1).
Calculation of EMT scores

We calculated EMT scores of datasets using four metrics- 76

Gene Signature (76GS), Kolmogorov -Smirnov test (KS), E score

and M score (Table 1). 76GS and KS were calculated as defined

earlier (1, 55, 57). 76GS score is a metric for how epithelial a

sample is, i.e., higher scores reflect greater association with an

epithelial phenotype. The KS score is a metric for how

mesenchymal a sample is. The higher the KS score of a

sample, the greater is its association with a mesenchymal

phenotype. While 76GS scores do not have a pre-defined

range of scores, KS scores lie within a +1 to -1 range. The E

and M scores are ssGSEA scores for epithelial and mesenchymal

gene lists, respectively, for the KS scoring metric (3). For

calculating KS, E and M scores, datasets were classified based

on whether the samples were derived from cell-lines or tumors

and the appropriate gene sets were used.
Correlations

All correlation values were calculated using Spearman’s

correlation coefficient, unless mentioned otherwise. Spearman’s

correlation coefficient method generates a coefficient ranging

between –1 to +1, where +1 indicates a strong positive

correlation, and –1 indicates a strong negative correlation

between two variables. It determines the correlation between

any monotonically related variables- linear or non-linear.

Correlations with R >0.36 and p<0.05 are considered significant.
Moving window average

A moving window average is used to quantify the gradient for

a variable along a given axis. A window covering 60% of the entire

range of the axis is created and the average value of the variable for

all samples in the window is calculated. Then the window is then

shifted by 1% and the average is re-calculated. This is iteratively

repeated to cover the entire range. The slope of the averages

determines the magnitude and direction of the gradient.
Conditional probabilities

Once the cell lines were sorted into their respective

phenotypes and the conditional probabilities were obtained,

the statistical significance and p-values for the conditional

probabilities were calculated using the one-proportion Z test.
Frontiers in Oncology 05
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The z-score was calculated using the equation

z =
p̂ − p0ffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1−p0ð Þ

n

q

where p̂ is the observed proportion, p0 is the null probability,

and n is the sample size. The obtained value of z was then

converted into the corresponding p-value using the standard

normal distribution. If the obtained p-value < 0.05, it was

considered significant.
Assigning phenotypes to samples

In order to identify samples belonging to the 4 phenotypes

(melanocytic, transitory, NCSC and undifferentiated), we

calculated ssGSEA scores based on gene sets for each of these

phenotypes (40). Samples lying in the top 10% scores were

assigned that particular phenotype. Taking a cut-off value of less

than 10% would can enable only one point being selected for

each phenotypes in datasets having less than 20 samples (e.g. int

in Figure 4D, GSE101434) while increasing this threshold might

lead to non-specific phenotype cells being selected in larger

datasets. Thus, 10% was chosen as an optimal cut-off.
Metabolic scores

The oxidative phosphorylation (OXPHOS) and glycolysis

(Glyco) scores in our study were calculated using ssGSEA

carried out with the corresponding hallmark gene sets for these

pathways [obtained from Molecular Signature Database

(MSigDB) (61)]. The HIF-1 signature - which is a surrogate for

glycolysis - was quantified based on a method previously reported

(64). This method uses expression levels of their downstream

target genes to capture the respective enzyme activities. A total of

59 downstream genes for HIF-1 were used and the scores were

obtained using the Singscore method performed on these gene sets

(62, 65). The fatty acid oxidation (FAO) scores were calculated

based on the equation previously reported (63) which uses

expression levels of 14 FAO enzyme genes.
Results

Enrichment of mesenchymal genes can
capture the extent of de-differentiation
in melanoma

To test whether EMT and de-differentiation in melanoma

programs are correlated with one another, we used previously-

defined EMT scores – KS and 76GS (55, 57) – and ssGSEA

scores for Verfaillie proliferative and invasive (60) and Hoek
frontiersin.org
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proliferative and invasive melanoma gene sets (39) and

investigated their correlation coefficients across 78 datasets.

Additionally, to dissect the contributions of epithelial and

mesenchymal gene set separately, we calculated the ssGSEA

scores (56, 59) for corresponding gene sets individually too (57),

referred here as E andM scores, respectively (3). A sample with a

higher 76GS or E score is more epithelial while a higher KS or M

score refers to more mesenchymal phenotype. Thus, given the

overlap between mesenchymal and invasive programs, we

expected invasive scores to correlate positively with KS and M

scores and negatively with 76GS and E scores. We also expected

opposite trends for proliferation scores: negative correlations

with KS and M scores and positive correlation with 76GS and E

scores. We visualized the relationships between these pathways

as volcano plots in which each dot corresponds to a dataset

analysed. For positively-correlated metrics, we expect the

majority of data sets to lie in the top right rectangle, while

those displaying a significant negative correlation are expected to

lie in the top left rectangle.

A total of 34 out of 78 datasets (43.59%) showed a significant

negative correlation (r < - 0.36, p < 0.05) between 76GS and one

of the two Verfaillie (proliferative, invasive) scores (66). In 30

out of those 34 datasets (88.23%), 76GS scores correlated

negatively with invasive scores, while in remaining 4 datasets

(11.76%), 76GS scores correlated negatively with proliferative

scores (Figure 1B, left). Similarly, among 45 datasets that showed

a positive correlation (r > 0.36, p < 0.05) between 76GS scores

and one of Verfaillie scores, 38 (84.4%) cases had a positive

correlation between 76GS and proliferative scores, and in the

remaining seven datasets, 76GS scores correlated positively with

invasive scores (Figure 1B, right). Overall, both the scoring

metrics (76GS and KS) displayed correlations with Verfaillie

and Hoek proliferative and invasive scores across the 78 datasets

to support a relationship between E/M plasticity and the

proliferative/invasive axis (Figures 1B–D, S1A–C).

Because gain of mesenchymal features is reported more

commonly in melanoma as compared to loss of epithelial

features, we decoupled the epithelial and mesenchymal

components of the scoring metrics (E and M scores,

respectively). The KS method provides separate information

on genes that are associated with an epithelial phenotype and

those with a mesenchymal state. Using the genes from the KS

scoring method we segregated the genes and calculated

individual ssGSEA scores for epithelial and mesenchymal gene

lists and re-evaluated their correlation with proliferative and

invasive scores in melanoma. While epithelial genes continued

to show random distributions of samples throughout the plot,

mesenchymal genes showed clear segregation of proliferative

and invasive scores based on Spearman’s correlation coefficients,

i.e., invasive scores were positively correlated with M score while

proliferative scores were negatively correlated with the M scores

(Figures 1E-G, S1D–F). This observation suggests that
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mesenchymal genes, but not epithelial genes, can capture the

phenotypic heterogeneity displayed by melanoma along the

proliferative-invasive axis.

To provide further support for these observations, we

focused only on Verfaillie gene sets, since they have levels of

overlap with gene sets for the intermediate phenotypes that were

previously identified (40) (Figure S1G). Thus, a continuous

scoring metric defined for the Verfaillie gene set is expected to

be more sensitive for capturing intermediate phenotypes as

compared to the Hoek gene set.

Because correlation coefficients only provide an overall trend

in data, we wished to determine how proliferative and invasive

scores vary along the E and the M axis. For this purpose, we

generated two dimensional EMT plots of the data sets in which E

and M scores are represented along each of the two axes. These

plots display the relative position of a sample along an epithelial

or mesenchymal axis (3, 56, 59). We then overlay information on

the proliferative and invasive scores for each sample. As

expected, across various datasets, proliferative and invasive

scores for samples had a stronger visible gradient along the M

axis as compared to the E axis (Figures 2A–B). To quantify this

gradient, we used a rolling window to estimate the increase of

average proliferative and invasive scores across the E and M axis.

For this, we start with a rolling window covering 60% of the

entire range along a given axis and calculate the average

proliferative (P) or invasive (I) score within that window.

Then the window is shifted by 1% and the average is re-

calculated. This process is repeated until the entire range is

covered, and the change in averages is plotted. For an axis that

strongly correlates with the change in scores, we expect a steeper

slope. The nature of a slope (positive or negative) is determined

by the correlation between the axis and the score. Both axes

trend in the expected direction, with a positive slope for invasive

scores and negative slope for proliferative scores along the M

axis and vice versa for the E axis (Figure 2C). This analysis also

reveals that the M axis has a steeper curve than the E axis for

both P and I scores. These results suggest that proliferative-

invasive heterogeneity in melanoma can be considered as a “one-

dimensional form” of EMT where the mesenchymal program

enrichment increases as cells become more invasive, but the

epithelial program need not be suppressed concomitantly

(Figures 2, S2), as often tacitly assumed for the case of EMT.

Other non-epithelial cancers, such as glioblastoma (GBM) and

sarcoma, also display larger variation along the M-score axis as

compared to the E-score axis, suggesting that “one-dimensional

EMT”might not be specific to melanoma alone (Figures S3A–B).

Moreover, we also observe that more de-differentiated

phenotypes in sarcoma display higher M scores, while in GBM

a switch from proneural to mesenchymal phenotypes is clearly

visualised along the M-score axis. Thus, phenotypic plasticity

along a mesenchymal axis in non-epithelial cancers can take

various trajectories.
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The mesenchymal axis follows a non-
monotonic relationship with
de-differentiation

Because the M score axis was able to capture the

phenomenon of de-differentiation quantified by continuous
Frontiers in Oncology 07
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scoring metrics, such as the proliferative and invasive scores,

we next tested if the discretized phenotypes also arrange

themselves in order of appearance along the two dimensional

EMT plane. The classification of samples into four categories -

melanocytic, transitory, NCSC and undifferentiated (in order of

increasing de-differentiation) - for GSE80829, GSE10916,
B CA

FIGURE 2

Scoring metrics based on mesenchymal genes capture de-differentiation better than metrics based on epithelial genes. Two dimensional EMT
plots of different types of datasets- (i) GSE7127 (63 melanoma cell lines - microarray), ii. CCLE (59 cell lines - microarray), iii.GSE4843 (45 tumor
samples - microarray), iv.GSE65904 (214 tumor samples - microarray),v. GSE72056 (1257 single-cell tumor samples), vi.GSE81383 (307 single-
cell tumor sample) depicting the variation of (A) Proliferative scores along the E and M score axes. (B) Invasive scores along the E and M score
axes. (C) Quantifying the proliferative and invasive score gradient along the E-M axes using a rolling window.
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GSE4843, GSE7127 and GSE116237 was done as previously

defined (15, 42). Along the proliferative-invasive plane, samples

displayed a strong negative relationship between the two scores,

i.e., proliferative scores of samples decreased as their invasive

score increased. The four phenotypes also appeared in the

expected order (18, 40), with the melanocytic samples having

the highest proliferative scores and lowest invasive scores, and

the undifferentiated samples displaying the lowest invasive

scores and highest proliferative scores (Figure 3A). However,
Frontiers in Oncology 08
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the two dimensional EMT plane failed to resolve the four

phenotypes in terms of these four phenotypes showing non-

overlapping scores. Since the E score axis performed poorly

previously (Figures 1E, G) in these metrics, we quantified the

ability of M score axis alone to resolve the four phenotypes by

quantifying the conditional probability of a sample to belong to

the intermediate phenotypes (transitory and NCSC), given that

they lie in an intermediate M score range. Interestingly, samples

with intermediate M scores were significantly likely to belong to
B

A

FIGURE 3

Variation of the four molecular phenotype scores along the epithelial, mesenchymal, proliferative, and invasive axes. (A) Plotting samples
classified into four phenotypes onto the E-M, proliferative-invasive score axes. (B) Venn diagram depicting the intersection of the four
phenotype scores of samples and intermediate M scores. p represents p-value for the conditional probability that a sample belongs to the
phenotype given that they lie in the intermediate M score range.
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the transitory phenotype (Figures 3B, S3C, Table 2). However,

the probability of these samples to belong to the NCSC

phenotype was negligible. In some datasets (GSE7127,

GSE116237), the melanocytic phenotype was also significantly

enriched in the intermediate M score populations. However, the

melanocytic phenotype cells were enriched in the bottom M

score population as well, and were not uniquely present in the

intermediate score range like the transitory phenotype cells

(Figures S3D–F).

To further dissect the relationship between the four

phenotypes and the M score axis, we quantified the change in

M score with respect to the invasive scores for the four

phenotypes. To identify the four phenotypes, we used ssGSEA

scores for gene sets defined for each of the four phenotypes (40).

The top 10% of samples that had the highest scores for a

particular gene set, were assigned the label of that particular

phenotype. We observed that in these samples there was a non-

monotonic increase in M scores as invasive score/de-

differentiation increased. As samples progressed from NCSC to

undifferentiated, M scores either decreased (Figures 4C–E) or

remained the same (Figures 4A–B, F). In the context of

melanocyte development, neural crest cells are precursors for

melanocytes with high migratory potential and high levels of

EMT markers (17, 67, 68). Thus, the non-monotonic increase in

the mesenchymal program seen here is reminiscent of the

differentiation of melanocytes.
Metabolic reprogramming along the
proliferative-invasive axis in melanoma

The EMT status of epithelial cancer cells is often associated

with distinct metabolic programs. Generally speaking, EMT is

negatively correlated with the enrichment of oxidative

phosphorylation (OXPHOS) and fatty acid oxidation (FAO),

but positively correlated with glycolysis (62). In melanoma, the

proliferative state is associated with high levels of OXPHOS and

the invasive phenotype is associated with high levels of glycolysis

(69–72), reinforcing the commonalities between these two

different instances of phenotypic plasticity. Computational

analysis has suggested the existence of four metabolic sub-

populations (63): 1) OXPHOS-high/glycolysis-low, 2)

OXPHOS-low/glycolysis-high, 3) OXPHOS- low/glycolysis-

low, and 4) OXPHOS high/glycolysis-high.
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To assess whether the OXPHOS-glycolysis metabolism axis

can be mapped onto the proliferation-invasion axis, we calculated

Spearman’s correlation coefficients between the metabolic scores

(OXPHOS and glycolysis) and the de-differentiation scores

(proliferative and invasive scores) (Figures 5A–C) across the 78

datasets. In 38 out of 78 datasets where the OXPHOS scores

correlate significantly with proliferative scores, 34 datasets show a

positive correlation. Similarly, among 43 datasets showing a

significant correlation of OXPHOS scores with invasive scores,

all of them showed negative correlation. Thus, overall, OXHOS

scores corelated positively with proliferative scores and negatively

with invasive scores (Figure 5A). Glycolysis scores, on the other

hand, did not show a clear relationship with EMT status, with a

subset of datasets showing trends in both the directions (positive

and negative correlation) both for proliferative and invasive scores

(Figure 5B). This difference is reminiscent of prior observations

for the association of EMT with OXPHOS and glycolysis in which

glycolysis is only moderately correlated with EMT status, but

OXPHOS is consistently negatively correlated with EMT (62).

This trend is substantiated by observations that in cases where

OXPHOS is positively correlated with proliferative scores or

negatively correlated with invasive scores, glycolysis scores do

not show any particular direction of enrichment with either

proliferative or invasive axes (Figure 5C).

We next sought to dissect whether intermediate melanoma

phenotypes might be enriched for a specific metabolic profile. To

investigate this trend, we calculated the Spearman’s correlation

coefficients for metabolic scores and ssGSEA scores for gene

signatures corresponding to each of the four molecular

phenotypes of melanoma (Figure 5D–F). OXPHOS showed a

clear shift from datasets with a significant positive correlation

with a melanocytic phenotype to a significant negative correlation

for the undifferentiated phenotype (Figure 5D). On the contrary,

glycolysis scores do not show a clear shift from negative to positive

correlations with de-differentiation (Figure 5E). Similar to the non-

monotonic trend observed for M-scores, the glycolysis scores show

the strongest positive correlation trends for the NCSC phenotype.

Undifferentiated phenotype scores have a mixture of positively

correlated and negatively correlated datasets with respect to

glycolysis scores. Put together, these observations suggest that the

regulatory modules controlling the switch to glycolysis are likely

linked to the mesenchymal program rather than the de-

differentiation one. On the other hand, regulatory modules for

OXPHOS are likely to be closely linked to the melanocytic
TABLE 2 Conditional probabilities for a sample belonging to a particular phenotype given that it lies in the intermediate M score range.

Dataset P (Melanocytic|
Intermediate M

Score)

p-value P (Transitory|
Intermediate M

Score)

p-value P (NCSC|
Intermediate
M Score)

p-value P (Undifferentiated|
Intermediate M Score)

p-value

GSE80829 0.17 0.8 0.43 0.02 0 1 0.39 0.06

GSEE7127 0.48 0.01 0.43 0.02 0 1 0.09 0.96

GSE116237 0.36 0 0.49 0 0.09 1 0.06 1
fronti
ersin.org

https://doi.org/10.3389/fonc.2022.913803
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pillai et al. 10.3389/fonc.2022.913803
differentiation program. This trend is in accordance with

experimental evidence that suggests that OXPHOS in melanoma

cells is regulated by PGC1a, a downstream target of MITF, a key

regulator of melanocyte differentiation (73, 74). Interestingly, fatty

acid oxidation, which is also directly controlled by MITF via SCD

(75), also displays trends similar to OXPHOS (Figure S4A) while a

HIF1a signature, that is commonly associated with the invasive

phenotype follows a non-linear trend similar to glycolysis
Frontiers in Oncology 10
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(Figure S4B), suggesting that it is linked to the mesenchymal

program rather than the de-differentiation program.
Discussion

De-differentiation in melanoma occurs in response to

targeted therapy. This process may be mediated by transitions
B

C D

E F

A

FIGURE 4

The mesenchymal axis follows a non-monotonic relationship with de-differentiation. Plotting M scores against invasive scores for different
phenotypes along the P-I axis in many datasets: (A) GSE7127 (B) GSE158607 (C) GSE80829 (D) GSE101434 (E) GSE65904 (F) GSE19234.
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B C

D E F

A

FIGURE 5

Mapping metabolic programs associated with EMT onto the de-differentiation program axes. Volcano plots depicting Spearman’s correlation
coefficient and -log10(p-value) of 78 datasets for (A) Hallmark OXPHOS and Verfaillie gene set. (B) Hallmark glycolysis and Verfaillie gene set.
(C) Spearman’s correlation coefficient between OXPHOS and Glycolysis and Verfaillie scores. (D) Hallmark OXPHOS and Tsoi gene set. (E)
Hallmark glycolysis and Tsoi gene set. (F). Spearman’s correlation coefficient between OXPHOS and Glycolysis and Tsoi scores. N represents
number of samples present in a given quadrant.
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across a spectrum of phenotypes in which melanocytic cells

treated with BRAF/MEK inhibitors pass through a transitory

phenotype, followed by the NCSC phenotype, before becoming

completely un-differentiated (15, 18, 40). This trajectory is

accompanied by loss of a proliferative signature and gain of

invasive characteristics. Here, we decipher the relationship

between de-differentiation and EMT in melanoma. These

processes are often considered to co-occur during drug

treatment (14, 16, 34); however, comparison of EMT and de-

differentiation scores reveal that the two processes may be more

closely related to the mesenchymal program rather than the loss

of an epithelial-like state or an EMT program per se. This

observation is reminiscent of previous results in breast cancer

and melanoma in which regulatory genes for the mesenchymal

and de-differentiated phenotypes overlapped while those

corresponding to epithelial and differentiated (melanocytic)

phenotypes did not overlap and were tissue-specific (76).

Previous pan-cancer studies have also highlighted that

downregulation of epithelial components and upregulation of

mesenchymal features need not always be as strongly coupled as

often assumed (77, 78). Moreover, differences along these two

axes need not be necessarily reflected at a transcriptional level

(79). Together, these observations highlight the need to analyze

epithelial and mesenchymal axes independently, rather than as a

conventional single metric for EMT.

Our results also indicate that metabolic programs can be

linked either with the de-differentiation program or the

mesenchymal program. OXPHOS and fatty acid oxidation are

both indirectly regulated by MITF. In the case of OXPHOS, MITF

regulates PGC-1a (74); in the fatty acid oxidation pathway, MITF

regulates SCD (75). MITF, which controls both metabolic

pathways, decreases with increasing de-differentiation. This

trend is explained by the decline in MITF associated with de-

differentiation, in accordance with the MITF rheostat model (80).

On the other hand, glycolysis and HIF-1a signatures seem to be

co-regulated with the mesenchymal program. Previous studies in

epithelial cancers have shown how well-established EMT

transcription factors (EMT-TFs) regulate the metabolic profile

of a cell and cause a switch to glycolysis (also called Warburg

effect) (81). Consistently, neural crest cells also display decay of

glycolytic capabilities as they differentiate into melanocytes (82).

Our analysis suggests that the metabolic state of a cell is closely

linked to the transcriptional program governing it at a given time

point. Thus, de-differentiation captures the transcriptional and

metabolic states observed during melanocyte development.

Although our study focuses on melanoma, EMT-like

phenotypic switching is also characteristic of other non-

epithelial cancers and de-differentiation of melanocytes

independent of malignant transformation. De-differentiation of

melanocytes into pluripotent stem cells demonstrated a reduction

in expression levels of E-Cadherin, an epithelial marker, and

similarities to mesenchymal stem cells (83). Molecular subtypes
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of glioblastoma multiforme (GBM), a non-epithelial cancer,

include the pro-neural, classical, and mesenchymal phenotypes,

which exist along a spectrum of worsening prognosis (84). Single-

cell analysis reveals that these molecular subtypes recapitulate

neurodevelopmental trajectories, with proneural cells forming a

major composition of proliferative glial progenitor-like cells (85,

86). A proneural-to-mesenchymal transition (PMT) is

characterized by an increase in mesenchymal markers, such as

SNAI1 and ZEB1. Similarly, glioma stem cells (GSCs) exist as

proneural GSCs and mesenchymal GSCs, which can give rise to

the complete spectrum of intra-tumor heterogeneity, including

the classical phenotype (87), reminiscent of epithelial and

mesenchymal CSCs reported in breast cancer (88). Moreover,

samples belonging to the classical subtype are depleted of pro-

neural GSCs and enriched for mesenchymal GSCs, possibly

suggesting that mesenchymal GSCs are more likely to give rise

to the classical subtype. This trend strengthens the semi-

independent nature of EMT and stemness as seen in epithelial

cancers (78). Another study in GBM cell lines reports that loss of

N-cadherin (a well-established mesenchymal marker) increases

invasiveness (89), reinforcing the trends that increased migration

and invasion is not always an inevitable consequence of

carcinoma-associated EMT (90). These scenarios of non-

overlapping behaviors in terms of invasiveness, stemness and

EMT, seen both for epithelial and non-epithelial cancers, advocate

for improving existing therapeutic strategies by targeting multiple

axes of cellular plasticity simultaneously rather than individually.

Our study focuses on the overlap between the de-

differentiation and the EMT axis during drug treatment in

melanoma samples. However, de-differentiation is not the only

trajectory altered by drug treatment. Cells can follow multiple

paths to therapy resistance, one of which is by attaining a hyper-

pigmented phenotype (15, 91, 92). The mapping of these

trajectories and states to the E-M axis remains to be studied. In

addition, another axis of cellular plasticity commonly associated

with EMT is immune suppression and immune evasion. Previous

studies have shown that the expression levels of programmed

death-ligand 1 transmembrane protein (PD-L1) – a driver of

immune evasion - does not increase monotonically with EMT (3).

Consistently, in melanoma, the expected trend of worse response

to anti-PD-1 therapy with increasing de-differentiation is not

observed; rather, results from the CheckMate 038 clinical trial

indicate that the NCSC phenotype is associated with a better

outcome to immune checkpoint blockade therapy as compared to

the melanocytic phenotype (93). The extent of overlap between

the axes of EMT, immune evasion, and de-differentiation require

further study to design temporally-sequenced effective

combination therapies that can shift the differentiation and

EMT status of melanoma toward a less invasive and more

immune activated state. Recent in vitro investigations in

melanoma have shown proof-of-principle evidence of

phenotypic plasticity driven drug resensitization as a
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mechanism underlying the beneficial impact of intermittent

therapy (94).

Despite providing the abovementioned insights, our study

suffers from various limitations. First, no mechanism-based

models have been developed to gain insights into the emergent

dynamics for the observed trends. A better understanding of the

dynamics can help identify more effective therapeutic strategies by

fine-tuning the interval, sequence, and dosage for combinatorial

and/or sequential therapeutic strategies (95). Second, our analysis

only characterizes phenotypes at a transcriptomic level, although

preliminary investigation supports consistent trends at a proteomic

level too (Figure S5). Third, due to limited availability of longitudinal

transcriptomic data for varying treatment durations, our analysis is

not restricted to time-resolved data exclusively. Preclinical data

shows that short duration of drug treatment can induce a NCSC

phenotype that is highly mesenchymal (14, 16), while prolonged

treatment (8-12 weeks) can drive an undifferentiated phenotype.

Our study indicates that a prolonged treatment can induce further

de-differentiation but not always a concomitant increase in

mesenchymal status, a prediction that needs detailed experimental

validation. However, this observation of the NCSC phenotype being

the most mesenchymal is in accordance with melanocyte

development. Neural crest cells are progenitors of melanocytes

that undergo EMT during development to delaminate and

migrate from the neural tube to the epidermis, where they lose

their EMT signature and differentiate into melanocytes (17, 67, 68).

Thus, the non-monotonic variation in EMT during development

(the initial increase during migration followed by decrease during

differentiation) can be possibly recapitulated during treatment-

induced de-differentiation. We propose that the often-presumed

overlap between the mesenchymal and invasive axes may arise from

the lack of information for longer time scales (since most in vitro

drug treatment studies are performed in under three weeks), and

often held assumptions about linearly increasing trends. However,

increasing evidence suggests that maximum stemness is

associated with hybrid E/M phenotypes rather than ‘extreme’

mesenchymal or epithelial phenotypes, suggesting that many such

associations among axes of plasticity can be non-monotonic in

nature (96–98).

Overall, our transcriptomic data-based analysis highlights

the partially overlapping nature of EMT with molecular

attributes of de-differentiation and metabolism during drug

treatment in melanoma. We provide a framework for studying

multiple intertwined axes of plasticity and heterogeneity (EMT,

metabolic reprogramming, proliferative-invasive status) and

identifying the degree to which these axes overlap.
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Cancer cells are known to undergo metabolic adaptation to cater to their

enhanced energy demand. Nicotinamide adenine dinucleotide (NAD) is an

essential metabolite regulating many cellular processes within the cell. The

enzymes required for NAD synthesis, starting from the base precursor -

tryptophan, are expressed in the liver and the kidney, while all other tissues

convert NAD from intermediate precursors. The liver, being an active metabolic

organ, is a primary contributor to NAD biosynthesis. Inhibition of key enzymes

in the NAD biosynthetic pathways is proposed as a strategy for designing anti-

cancer drugs. On the other hand, NAD supplementation has also been reported

to be beneficial in cancer in some cases. As metabolic adaptation that occurs in

cancer cells can lead to perturbations to the pathways, it is important to

understand the exact nature of the perturbation in each individual patient. To

investigate this, we use a mathematical modelling approach integrated with

transcriptomes of patient samples from the TCGA-LIHC cohort. Quantitative

profiling of the NAD biosynthesis pathway helps us understand the NAD

biosynthetic status and changes in the controlling steps of the pathway. Our

results indicate that NAD biosynthesis is heterogeneous among liver cancer

patients, and that Nicotinate phosphoribosyl transferase (NAPRT) levels are

indicative of the NAD biosynthetic status. Further, we find that reduced NAPRT

levels combined with reduced Nicotinamide phosphoribosyl transferase

(NAMPT) levels contribute to poor prognosis. Identification of the precise

subgroup who may benefit from NAD supplementation in subgroup with low

levels of NAPRT and NAMPT could be explored to improve patient outcome.

KEYWORDS

NAD metabolism, pathway model, NAPRT, NAMPT, liver cancer, precision medicine,
patient subtyping
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Introduction

Nicotinamide adenine dinucleotide (NAD) is an essential

cofactor for the cell. It mediates various biological processes such

as energy metabolism, DNA repair, signalling, and gene-

expression regulation. NAD regulates energy metabolism

pathways, including glycolysis, fatty acid oxidation

(b-oxidation), the tricarboxylic acid (TCA) cycle, and

oxidative phosphorylation (1). NAD exists in both oxidised

(NAD+) as well as in reduced (NADH) forms; the total

concentration of NAD+ and NADH is considered as the NAD

pool in the cell (2). The NAD+/NADH ratio maintains the redox

potential of the cell and thereby acts as a metabolic regulator of

various NAD-dependent reactions (3). This includes more than

600 metabolic reactions as well as some involved in the

signalling. The utilisation of NAD at the global level in the cell

makes it an indispensable currency metabolite for the cell (1).

Three routes that lead to NAD biosynthesis are well

characterised, the first route from tryptophan as a precursor

(kynurenine pathway) (Figure 1A and Table 1: reactions J1-J10),

the second from nicotinic acid (Preiss-Handler pathway)

(Figure 1A and Table 1: reaction J22), and the third, a salvage

pathway that utilizes several alternative precursors (4–6)

(Figure 1A and Table 1: reactions J8, J17-J20). All the known

genes involved in the NAD biosynthesis are expressed in the

liver (7–9). In particular, hepatocytes can utilise all precursors

from vitamin B3 and from tryptophan to NAD+, indicating that

the precursors and the synthesis of NAD are high in the liver.

The liver also serves as a reservoir of the NAD pool by

converting NAD precursors from nutrient sources to

nicotinamide (Nam) that can be released into the bloodstream

when required (8, 9). Thus, it can be said that the liver regulates

the overall physiological requirement of this essential energy

currency. NAD does not get degraded in metabolic processes but

only interconverts between oxidised NAD+ form to the reduced
Abbreviations: ADPR, ADP-ribose; cADPR, Cyclic ADP Ribose; COPASI,

COmplex PAthway Simulator; CoRC, COPASI R Connector; DNA,

Deoxyribonucleic acid; HCC, hepatocellular carcinoma; HR, Hazards ratio

value; log2FC, log2 of Fold Change value; Na, Nicotinic acid; NaAD, Nicotinic

acid adenine dinucleotide; NAD, Nicotinamide adenine dinucleotide;

NADnet, quantitative kinetic model of the NAD biosynthetic pathway;

NADP, Nicotinamide adenine dinucleotide phosphate; Nam, Nicotinamide;

NaMN, Nicotinic acid adenine mononucleotide; NAMPT, Nicotinamide

phosphoribosyl transferase; NAPRT, Nicotinate phosphoribosyl transferase;

NAR, Nicotinic acid riboside; NL, normal liver; NMN, Nicotinamide

mononucleotide; NMNAT, NMN adenylyltransferase; NR, Nicotinamide

riboside; ODE, Ordinary differential equations; PRPP, Phosphoribosyl

diphosphate; PARP, Poly (ADP-ribose) polymerase; PaxDb, Protein

Abundance Database; RNASeq, RNA sequencing; ROS, reactive oxygen

species; TCA, tricarboxylic acid cycle; TCGA-LIHC, The Cancer Genome

Atlas-Liver Hepatocellular Carcinoma.
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NADH form. On the other hand, processes related to DNA

repair, MAPK signalling, Ca+2 signalling, and gene expression

utilise NAD and degrade it to Nam, which can be later converted

back to NAD (7, 10). Hence, any imbalance in the NAD pool will

lead to global perturbations in the cell and are known to be

associated with various disease conditions such as ageing,

inflammation, and cancer.

In cancer, three routes of NAD utilisation are known to be

perturbed and are associated with carcinogenesis (7). The first

route of NAD utilisation is the NAD mediated central carbon

metabolism which is highly altered in cancer (Warburg effect).

Reduced values of the NAD+/NADH ratio lead to activation of

HIF1a through oxidative stress, which in turn activates

transcriptional expression of glucose metabolism. Interestingly,

not only the central carbon metabolism but other NAD utilising

metabolic processes such as fatty acid oxidation, bile acid synthesis,

glycerophospholipid metabolism, amino sugar metabolism, etc.,

are also known to be altered in cancer, especially in hepatocellular

carcinoma (HCC) (1, 11). The second utilisation route of the NAD

pool is the phosphorylation of NAD+ to NADP+ by the NAD

kinase enzyme (Figure 1A and Table 1: reaction J11). NADP+ also

has a variety of cellular functions which are associated with

carcinogenesis, such as the reactive oxygen species (ROS)

defence, detoxification, and oxidative burst in an immune

response. The third and the most important utilisation route of

NAD is the NAD degrading ADP-ribose (ADPR) transfer

reactions (Figure 1A and Table 1: reaction J13-J15). NAD acts as

a co-substrate for three families of proteins namely Sirtuins, PARPs

and cADPR synthases (5). These reactions are critical for CD38

signalling, P53, FOXO, MAPK-dependent growth signalling,

mono-ADP-ribosylation reactions, and many more (7). Most of

the above-mentioned processes are not only altered in cancer but

also have a carcinogenic role in tumour progression. The preferred

route of NAD synthesis and utilization is tissue-dependent, and is

epigenetically encoded in the cells (5, 10–12). Extracellular NAD

pools, partially produced by extracellular NAMPT and NAPRT,

aid in inflammation and immune suppression further enhancing

the tumour progression (13). The enzymes and metabolites

involved in de novo pathway are known to be associated with

inflammation and immune response (14, 15). Gut bacteria also

help in maintaining the NAD pool in the body by producing NAD

pathway intermediates, like NaAD, which can be directly

converted into NAD (refer to Figure 1A and Table 1: reactions

J9, J10), especially in the liver as well as other organs (16).

Therefore, synthesis and NAD utilising reactions, in particular

the NAMPT, Sirtuins, and PARPs, have been explored as potential

drug targets in the last two decades (17–21). However, many drugs

targeting NAD and associated pathways have failed in clinical trials

for various reasons such as drug toxicity, patient heterogeneity, and

alternate routes of signalling (7, 22).

On the other hand, reports from various epidemiologic

studies suggest an association between low NAD precursor

diets with an increased rate of cancer incidence (23). NAD
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levels decrease with ageing, thus forming an association with

diseases related to ageing, such as neurodegenerative diseases,

cardiovascular diseases, bone dysfunctions, and cancer (24–26).

Studies using mice models of cancer and ageing also exhibit low

NAD levels and therefore are more prone to oxidative stress.

Current knowledge about this suggests that a low NAD level can

lead to oxidative stress-induced DNA damage and thereby

promote mutagenesis and tumour initiation (10, 27). Thus, a
Frontiers in Oncology 03
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high level of NAD can have a preventive role in tumorigenesis.

Another recent study Tummala et al. reported that an increased

expression of unconventional prefoldin RPB5 interactor (URI)

leads to AhR- and/or ER-mediated reduction of the NAD pool

and thereby promotes HCC tumorigenesis due to increased

DNA damage (28). This seemed to suggest that NAD

supplementation can have a protective role against HCC

development and progression in cirrhotic patients (29, 30).
B C

A

FIGURE 1

NAD Biosynthesis is perturbed in HCC. (A) Diagrammatic representation of the liver NADnet. Metabolites are represented as yellow nodes;
enzymes are in cyan colour. NAD+ can be synthesised by the three different routes - (A) Route I: de novo biosynthesis pathway starting with the
precursor tryptophan (B) Route II: Preiss−Handler pathway from nicotinic acid and (C) Route III: NAD salvage pathway utilising nicotinamide and
nicotinamide riboside for NAD+ biosynthesis. Note: NAD represents total NAD in the system (both oxidised and reduced form). (B) Validation of
the liver NADnet. The above panel (Measured) is adopted from the report of Mori et al. and represents the metabolic reconstruction of NAD
biosynthesis in mouse liver tissue and reflects the main route of NAD generation is via NMN. The below panel (Calculated) is the reconstruction
of NAD biosynthesis from steady-state concentrations and fluxes obtained from model simulation. r is the Spearman correlation between
measured and calculated fluxes. r* is the Spearman correlation between measured and calculated metabolite concentrations. (C) Time course
simulation of NAD levels for the base model. The blue curve shows the changes in NAD concentration (µM) (log10 scale) with respect to time(s)
(log10 scale).
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However, while on the one hand, an increase in NAD related

activities are linked to metabolic and signalling alterations in

cancers, leading to the hypothesis that the pathway is an

attractive drug target for tumour killing. On the other hand,

NAD protects cells from DNA damage and is found to be

downregulated in many cancers including HCC, hence suggesting

that supplementation of NAD can stop carcinogenesis. These

seemingly opposite findings of NAD imbalance in HCC have led

to a controversy about the role of NAD in tumorigenesis. Therefore,

it is important to first address the role of NAD in tumorigenesis in

individual HCC patients and understand whether it acts as a

tumour suppressor or a tumour promoter.

The main objective of this study is to decipher the role of

NAD in HCC and to understand whether NAD biosynthesis
Frontiers in Oncology 04
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inhibition or alternately NAD supplementation will be beneficial

in treating HCC. To address this objective, it is important to

understand the NAD pathway profile in HCC and whether there

is any heterogeneity among HCC patients. Pathway modelling

offers a useful method to profile the individual enzymes in the

pathway and decide whether it is altered in a given individual as

compared to the normal liver (NL) and, if so, in which direction.

Knowledge of the NAD pathway profile in individual HCC

patients will enable precision targeting and ultimately aid the

clinician in decision-making for the management of HCC. To

answer these questions, in this work, a quantitative kinetic model

of the NAD biosynthetic pathway (NADnet) is constructed and

simulated for each individual patient by integrating patient-

specific transcriptomics data available through TCGA-LIHC.
TABLE 1 NADnet pathway reactions to gene, enzyme, and Factor mappings information.

No. Reaction
ID

Gene Enzyme name EC Reaction Factor

1 J1 TDO2, IDO2, IDO1 Tryptophan 2,3-dioxygenase 1.13.11.11 L-Tryptophan + O2 = N-Formyl-L-kynurenine F1

2 J2 AFMID Formylkynurenine
formamidase

3.5.1.9 N-Formyl-L-kynurenine + H2O = Formate + L-Kynurenine F2

3 J3 KMO Kynurenine 3-hydroxylase 1.14.13.9 L-Kynurenine + NADPH + H+ + O2 = 3-Hydroxy-L-kynurenine
+ NADP+ + H2O

F3

4 J4 KYNU Kynureninase 3.7.1.3 3-Hydroxy-L-kynurenine + H2O = 3-Hydroxyanthranilate + L-
Alanine

F4

5 J5 HAAO 3-Hydroxyanthranilate 3,4-
dioxygenase

1.13.11.6 3-Hydroxyanthranilate + O2 = 2-Amino-3-carboxymuconate
semialdehyde ! Quinolinate

F5

6 J6 QPRT Quinolinate
phosphoribosyltransferase

2.4.2.19 Quinolinate + PRPP = NMN + PPi + CO2 F6

7 J7 NMNAT1, NMNAT2,
NMNAT3

NMN adenylyltransferase 2.7.7.1 NaMN + ATP = NaAD+ + PPi F7

8 J8 NMNAT1, NMNAT2,
NMNAT3

NMN adenylyltransferase 2.7.7.1 NMN + ATP = NAD+ + PPi F8

9 J9 NADSYN1 NAD+ synthetase (glutamine-
hydrolyzing)

6.3.5.1 NaAD+ + ATP + L-Gln + H2O = NAD+ + AMP + PPi + L-Glu F9

10 J10 NADSYN1 NAD+ synthetase (ammonia-
dependent)

6.3.1.5 NaAD+ + ATP + NH3 = NAD+ + AMP + PPi F10

11 J11 NADK NAD+ kinase 2.7.1.23 NAD+ + ATP = NADP+ + ADP F11

12 J12 BST1, CD38 NAD+ glycohydrolase 3.2.2.5 NAD+ + H2O = Nicotinamide + ADP-ribose F12

13 J13 BST1, CD38 NAD(P)+ nucleosidase 3.2.2.6 NAD(P)++ H2O = Nicotinamide + ADP-ribose(2¢-phosphate) F13

14 J14 PARP1 Poly (ADP-ribose) polymerase 2.4.2.30 NAD+ + (ADP-ribose) n = Nicotinamide + (ADP-ribose) n+1 F14

15 J15 ART3, ART4, ART5,
SIRT6

Mono ADPribosyltransferase 2.4.2.31 NAD
+

+ L-Arg = Nicotinamide + N(2)-(ADP-ribosyl)-L-Arg F15

16 J16 ENPP1, ENPP3 NAD+ pyrophosphatase 3.6.1.22 NAD+ + H2O = AMP + NMN F16

17 J17 NAMPT Nicotinamide
phosphoribosyltransferase

2.4.2.12 Nicotinamide + PRPP = NMN + PPi F17

18 J18 NT5E, NT5C1A,
NT5C2

5’-Nucleotidase 3.1.3.5 NMN + H2O = Nicotinamide riboside + P F18

19 J19 PNP Nicotinamide nucleoside
phosphorylase

2.4.2.1 Nicotinamide riboside + P = Nicotinamide + R-1-P F19

20 J20 NMRK1 Ribosylnicotinamide kinase 2.7.1.22 ATP + Nicotinamide riboside = ADP + NMN F20

21 J22 NAPRT Nicotinate
phosphoribosyltransferase

2.4.2.11 Nicotinate + PRPP = NaMN + PPi F22
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Materials and methods

Model building of NADnet

The base structure of the network
The liver NADnet, a liver-specific NAD biosynthesis

network, was reconstructed in the laboratory using the

previously published NAD model on glioma from our

laboratory (31). The model comprehensively captures known

reactions in the NAD biosynthesis, covering the de novo pyridine

ring formation via the kynurenine pathway, the utilisation of

dietary precursor nicotinate through the Preiss−Handler

pathway, and the utilisation of nicotinamide and nicotinamide

riboside through the NAD salvage pathway for NAD+ synthesis

in cancer. A base model was first constructed by considering

reactions that can occur in any human tissue, which was

subsequently curated to check for the feasibility of each

reaction in the human liver. It was observed that out of 24

enzymatic reactions from the base model, only 21 enzymatic

reactions were feasible in the liver and were therefore retained.

Other than the enzymatic reactions, four non-enzymatic sink

reactions were added to the model for the model stability. A list

of enzymatic reactions in the model is provided in Table 1.

Kinetic parameters for each of the enzymes in the model were

manually curated from the primary literature. Kcat, Km, and Ki

for inhibitory interactions were also obtained from the same

primary sources, and wherever possible, the parameters for the

liver tissue were used. A full list of parameters is provided in

Supplementary Table 1. A list of fixed metabolites for simulation

purposes is provided in Supplementary Table 2.

Estimation of FKcat and Fconc
One of the most challenging tasks in kinetic modelling is to

deal with various types of inconsistencies in units of reported

parameters. In order to get all parameters in a comparable

framework, a factor (FKcat) was calculated so as to represent

Kcat in 1/sec units for all enzymes. The detailed calculation of

(FKcat) factor for each type of specific activity is provided in

Supplementary Table 3. For each enzyme in the model, enzyme

concentration was estimated from the PaxDB database (32).

Then, using these estimated Kcat values and enzyme

concentrations, Vmax for each reaction was calculated. The

estimated Vmax values are listed in Supplementary Table 3.
Transcriptome data: TCGA dataset

The Cancer Genome Atlas (TCGA) Liver Hepatocellular

Carcinoma (LIHC) RNASeq HT-Seq gene expression (counts

data) and phenotype data were collected through UCSC Xena

(http://xena.ucsc.edu) (TCGA-LIHC cohort) (33, 34). The

dataset contains 374 HCC tissue biopsy samples, out of which
Frontiers in Oncology 05
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three are samples from recurrent HCC samples, and the rest are

from primary HCC. The dataset included 50 normal liver (NL)

tissue biopsy samples as well. For this analysis, we have

considered only primary HCC and Normal liver samples.

RNASeq counts data was normalised using edgeR package (V

3.34.1) (35). The mean of normalised gene count was calculated

for all normal samples and was used as a control to calculate the

fold change of each gene for each tumour sample. All ensembl

ids were mapped to gene symbols using org.Hs.eg.db package in

R Language (V 3.15.0) (36).
Integration of gene expression data into
the model

Fold change values of gene expression of each enzyme were

integrated into the model as described previously (37). The

correlation between RNA and protein is ~ 0.5, indicating that

the transcript levels of genes and the corresponding proteins

follow the same trend in their concentrations, justifying the use

of RNA levels an indicator for the protein levels (38). For

reactions catalysed by multiple genes, the cumulative sum of

fold change values in the expression of all associated genes was

used. The F-factor for each reaction across all patients was

calculated using the mean expression profile of Normal Liver

(39). The F-factors differ between the NL model and any patient

model. For the NL model, F-factors are all equal to one. For

patient models, F-factors are substituted as the cumulative sum

of FC values of genes involved in the corresponding reaction.

The changes in F-factor values influence the reaction rates. For a

given reaction, if the F-factor value is greater than one, the

reaction rate is increased by the F-factor value times as

compared to the NL model; similarly, if the F-factor value is

less than one, the reaction rate is decreased by the F-factor value

times as compared to the NL model.
Mutation analysis

Pre-processed mutation data for each cancer type was

obtained from the cBioPortal resource (40). From this,

mutation frequencies of genes from the NADnet were retrieved.
ODE simulation

Ordinary differential equations (ODE) of the reconstructed

models were solved to obtain steady-state values using the getSS

function, with the modified option of resolution to 1E-03 and the

maximum duration for forward integration to 1E+20, in the

CoRC (V 0.11.0) package (41) in R (V 4.1.3) (42). Steady-state

metabolite concentrations and reaction flux values were analysed.
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Sensitivity analysis

Sensitivity analysis provides a measure of how much a

selected model variable (the effect) changes when a selected

parameter (the cause) is changed. Sensitivity was calculated for

the perturbation effect of individual parameters on the steady-

state concentration of NAD. Therefore, it can identify parameters

having an effect on NAD concentration. For models which gave

results for steady-state analysis, parameter sensitivity analysis was

performed. In the current model, there are 114 parameters, so

each parameter for a given simulation was only varied by 1 %

from the original value, thus resulting in a total of 229 simulations

for each model, i.e., one unaltered parameter simulation and

2*114 single parameters altered either by +1 % or -1 % of the

original parameter value. All the altered parameter simulations

were scaled by taking the percentage change compared to the

unaltered parameter simulation. Results were summarised

separately for concentrations of metabolites and flux of

reactions in the form of a 2D plot with a colour scale

representing the percentage change in the simulation value,

using the corrplot (V 0.92) package in R (43). The red colour

represents an increase in the concentration of the metabolite as

compared to the unaltered parameter simulation, whereas the

blue colour represents a decrease in concentration of the

metabolite. The extent of colour filled in the squares represents

the extent of percentage change in the metabolite due to the

change in the parameter value.

For a summary of all patient model changes, the percentage

change in the altered parameter simulation is calculated and

represented as a pie chart of the percentage of models with

alterations among all the steady-state models.
Correlation analysis

The correlation analysis was performed between NAD genes

and NADmetabolites using Pearson correlation (log2FC values -

for numeric variables) in cor.test function from the stats package

in R. Corrplot function from the corrplot (V 0.92) package was

used to represent the correlogram (43).
Clustering and heatmap

Hierarchical clustering of gene expression data and

metabolite steady-state values with the patient profiles was

carried out using the Heatmap function in ComplexHeatmap

(V 2.8.0) package in R (44). Gene expression data and calculated

metabolite fold changes were categorized into three groups; Up

(log2FC ≥ +1), No_change (-1 < log2FC < +1) and Down (log2FC

≤ -1); and substituted with an integer value before Hierarchical

clustering; Up (+1), No_change (0) and Down (-1).
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Survival analysis

Survival analysis and univariate Cox regression analysis were

performed using the survival (V 3.3-1) package in R (45, 46).

Genes and metabolites for each patient were classified as

upregulated ( log2FC ≥ +1) or downregulated (log2FC ≤ -1).

Hazards ratio values (HR) were obtained using the coxph

function from the survival package. HR in survival analysis is

the hazard ratio which essentially is the ratio of the hazard rates

corresponding to the conditions described by two levels of gene

expression. If the gene has a value HR > +1, the given gene is a

poor prognostic marker (over-expression of the gene is

associated with high mortality of the patients) and vice-versa.

The survdiff function from the survival package was used to

identify the significant genes/metabolites (p-value < 0.05)

associated with patient survival. Survival plots were generated

using the ggsurvplot function from the survminer (V 0.4.9)

package (47). The survival analysis was performed among the

distinct groups.
Results

NAD biosynthesis is perturbed in HCC

NAD biosynthesis network in the human liver
The first objective was to reconstruct a NAD biosynthesis

network that captures the physiological processes in the human

liver tissue. The liver NADnet model consisting of 26 reactions,

29 genes, 31 metabolites, and 138 parameters (Figure 1A) was

reconstructed using the model published in Padiadpu et al. (31).

The liver NADnet model retains all three routes of NAD+

biosynthesis - (a) Route I - production of NAD+ from

tryptophan through the kynurenine pathway, which is known

to be active in the liver (b) Route II - utilisation of Nicotinic acid

(Na) as a substrate for NAD+ generation through the Preiss–

Handler pathway and (c) Route III - the salvage pathway of

synthesising NAD from extracellular precursors provided by the

diet (for, e.g., Nicotinamide (Nam) and nucleosides

(Nicotinamide riboside (NR) and Nicotinic acid riboside

(NAR)) (4–6, 48). Nam, Na, NR, and NAR are collectively

referred to as Vitamin B3. Detailed information about

enzymatic reactions is given in Table 1 and Supplementary

Table 1. A steady-state analysis of the NADnet was performed

using CoRC (V 0.11.0). Steady-state values of metabolites and

fluxes of the corresponding reactions are given in Table 2.

Kinetic stability analysis of the model revealed that it was

asymptotically stable.

Validation of NADnet

The liver NADnet was first inspected for validity by (a)

Steady-state metabolite concentrations from the simulations
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were compared with the experimentally determined values

reported in the literature (8); (b) Steady-state fluxes of

enzymes of the enzymatic reactions were compared with the

experimentally determined values. The available experimental

data about metabolite concentrations were from diverse sources,

including liver tissue, blood, and cerebral fluid. Moreover, some

were from humans, and some from mice and other model

organisms. To add to this difficulty, some were reported as

nmol/gm while some others were given as mmol/gm of the liver

tissue, making direct comparisons difficult. To overcome this

problem, a rank-based correlation, using the Spearman

correlation metric, was calculated for both experimental and

simulated data. Experimentally constructed NAD biosynthesis

rate for mouse liver reported by Mori et al. (8) was compared

with the model-predicted metabolite level and flux rate for

human hepatocytes (Figure 1B). A relative ranking of the

metabolites (NAD, NaAD, NaMN and, NMN) and separately

of the fluxes obtained from the experimental and from the

simulation profile were used to compare the correlation

between experimental and computational predictions. For the

metabolites, the correlation was found to be +1, and for
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enzymatic reactions, it was found to be +0.86, suggesting that

the model is consistent with experimental data. Utilisation of

NMN through NMNAT1 (3) is seen to be the main route of

NAD biosynthesis in the liver (Figure 1B). Further time-course

analysis was performed on the NADnet, and the NAD time

course was plotted (Figure 1C) and compared against

experimentally determined time course after labelled NAD

supplementation in a mouse model (9). The time course

profiles of NAD were in excellent agreement with that

reported in the Liu et al. model.
HCC patients exhibit heterogeneity in
their NAD profiles

Construction of personalised NADnet models
Our next goal was to build personalised NADnet models for

each HCC patient by integrating the transcriptomics data

available in the TCGA-LIHC cohort. First, we studied the

transcriptomic variation in the enzymes of the NADnet in 365

patients in the dataset. The fold change of each gene for a patient
TABLE 2 Steady-state concentration of metabolite and fluxes of reaction.

A) Steady-state metabolite concentrations B) Steady-state fluxes of reactions

Metabolite Concentration (mM) Reaction ID Flux (mM/s)

L-Tryptophan 1.60E + 01 J1 1.90E-03

L-Formyl-kynurenine 6.12E + 01 J2 1.90E - 03

O2 1.00E + 03 J3 1.90E - 03

Hydroxy-L-kynurenine 1.34E - 01 J4 1.90E - 03

NADPH 4.00E + 02 J5 1.90E - 03

Hydroxyanthranilate 6.06E - 07 J6 1.90E - 03

Quinolinate 6.70E - 01 J7 3.74E - 02

NaMN 3.28E + 00 J8 1.53E + 01

PRPP 1.00E + 03 J9 3.63E - 02

PPi 1.54E + 04 J10 1.11E - 03

NaAD 9.53E + 02 J11 1.59E - 02

NAD 2.15E + 04 J12 1.70E - 08

NMN 5.68E + 03 J13 1.98E - 11

ATP 1.00E + 03 J14 9.88E + 00

NH3 1.00E+02 J15 5.03E + 00

Glutamine 6.00E + 02 J16 3.72E - 01

NADP 1.59E + 01 J17 1.49E + 01

Nam 4.98E + 04 J18 4.81E - 12

ADPribose 1.70E - 05 J19 2.75E - 24

ADPriboseP 1.98E - 08 J20 4.81E - 12

L-Kynurenine 9.21E - 02 J22 3.55E - 02

Arginine_protein 1.00E + 03 re23 2.15E - 02

NR 4.12E - 10 re25 1.59E - 02

P 1.00E + 03 re26 1.54E + 01

R1P 5.00E + 01 re27 1.98E - 11

Na 1.00E + 01 re28 1.70E - 08
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sample was calculated by dividing the gene expression values of

tumour tissue by the mean gene expression value of the normal

liver tissues in the TCGA-LIHC cohort. Most of the NADnet

gene expressions in tumours were observed to be significantly

different from the normal tissue (Supplementary Tables 4, 5).

The distribution of log2FC gene expression values among the

NADnet genes was analysed, as shown in Supplementary

Figure 1A, and heterogeneity among patients is shown in

Figure 2A. To build personalised models, the fold change in

expression value of each gene was converted as an expression

factor (F1 - F22), which was further integrated into their

corresponding reaction of the pathway (by utilising gene-

protein-reaction association). As J1, J7, J8, J12, J13, J15, J16,

and J18 reactions are associated with multiple genes, a

cumulative sum of the fold change of genes associated with

each reaction was considered as expression factors. For example,

for the J1 reaction, the cumulative sum of TDO2, IDO1, and

IDO2 gene expression values was taken as the expression

factor (F1).

A distribution of expression factors, shown in Figure 2B,

clearly indicates high heterogeneity across the TCGA-LIHC

cohort for this model. The variation was seen to be the highest

for F7 and F8 (NMN adenylyltransferase), F15 (Mono

ADPribosyltransferase), F1 (Tryptophan 2,3- dioxygenase),

F18 (5’-Nucleotidase), F16 (NAD+ pyrophosphatase), F12

(NAD+ glycohydrolase), F13 (NAD(P)+ nucleosidase), and F22

(Nicotinate phosphoribosyltransferase) reactions (refer to

Supplementary Table 6). The observed gene expression

variations also suggest that there is likely to be variation in the

reaction flux and the metabolite levels across different patients in

the cohort (Supplementary Figure S1A and Supplementary

Table 7). The mutation frequencies of the genes related to

NADnet were also obtained and analysed using the cBioPortal.

The most frequent of them, which was in the PARP1 gene, was

seen to occur only in ~1% of the patients, while the rest of them

were mutated in less than 1% of the patients (Supplementary

Figure S2), clearly indicating that alterations in the NAD

biosynthesis network are because of alteration in gene

expression values, and not because of mutations.

Personalised NADnet models indicate high
patient heterogeneity in the dataset

The previous analysis (Supplementary Figure 1) reflected that

the alterations in NADnet profile in HCC could be attributed to

variations in gene expression of the associated enzymes and also

that there was no indication of any significant alteration in

enzyme kinetics (Km, Kcat). To construct personalised models

for each HCC patient, the corresponding gene expression data was

integrated into the base liver NADnet as a surrogate measure of the

enzyme abundance. Kinetic simulations and steady-state analysis

of each personalised model were performed. Steady-state analysis

was performed for all the models using different resolution

thresholds. With the default COPASI resolution of 1E-09, we
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obtained 39 models with stable states. When the resolution

threshold was lowered to 1E-03, we got 168 models obtaining

stable states. With 1E-01 resolution threshold, we obtained 326

models. Considering the accuracy of defining a steady state and

the number of models obtaining steady states, we used 1E-03 as

the final resolution threshold. After steady-state analysis with the

resolution threshold of 1E-03, 168 models out of 365 models were

found to reach a stable state. As F-factors were the only difference

among all the personalised models, the distribution of F-factors

was compared between both the models, stable (models which

obtained a stable state) and unstable (models which did not obtain

a stable state) (refer to Supplementary Figure S1B and

Supplementary Table 7). The unstable models had a significant

difference in the values of F1, F2, F3, F12, F13, F14, F17, and F22

as compared to the stable models. Also, most of the F-factors

distributions of the unstable models had a higher mean compared

to the stable models. Notably, rate limiting reactions of the three

routes of NAD synthesis, i.e., F1, F17, and F22, are significantly

different and have higher values in the unstable models compared

to stable models. Further, the NAD-consuming reactions F13 and

F14 are also significantly higher in unstable models. Only the

stable models are included for further analysis. Further, fold

change values of each metabolite and reaction flux were

calculated by dividing their respective steady-state values by the

corresponding values in the NL model for the stable models. In

the distribution of log2FC steady-state metabolites among stable

models, shown in Figure 2C, all metabolites, except NADP, show

high variance, clearly indicating high heterogeneity at the

metabolite level as well (Supplementary Table 8).

A comparison of the steady-state concentrations of

metabolites and the reaction fluxes in the pathway of individual

HCC patients with that of NL revealed that the patients could be

classified into three groups: (a) the pathway, on the whole, is

downregulated, and the NAD pool is low (NAD_low), (b) the

pathway, on the whole, is upregulated and the NAD level is high

(NAD_high) and (c) the pathway does not show any significant

change with respect to NL (NAD_No_change) (Figures 2D, E).

The analysis clearly indicated that (a) the kynurenine pathway

(Route I) was observed to be significantly downregulated or

unchanged [J1, J2, J3, J4, J5, and J6] in all except six patients.

(b) biosynthesis of NAD fromNA (Route II) - [J22, J9, and J7] was

found to be upregulated in one subset and downregulated in

another subset of patients, while it is unchanged in all others (c)

the salvage route of NAD biosynthesis (Route III) - [J18, J19, and

J20] was also found to be upregulated in a subset of patients and

downregulated in the rest (Figure 2D). These changes put together

result in an accumulation of Nam in most patients. (d)

Interestingly Route II and Route III are not upregulated

together in any given patient (in one sub-subset of patients,

Route II is upregulated, while in another Route III is

upregulated), suggesting that upregulation of NAD biosynthesis

occurs through different routes. Hierarchical clustering analysis of

the fluxes and metabolites led to the identification of 4 clusters
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FIGURE 2

HCC patients exhibit heterogeneity in their NAD profiles. (A) Heatmap of NADnet genes log2FC values in tumour tissue calculated with respect to
the normal tissue, rows correspond to genes (n = 29) and columns correspond to patients (n = 371). The red colour represents the upregulation
of gene expression in tumour tissue compared to the normal tissue (log2FC ≥ +1), the blue colour represents a downregulation of gene
expression in tumour tissue compared to the normal tissue (log2FC ≤ -1), yellow colour represents no change of gene expression in tumour
tissue compared to the normal tissue (-1 < log2FC < +1). Rows and columns are arranged based on the complete hierarchical clustering
method. Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the key in the image for more details).
(B) Violin plot of log2 F-factor values of NADnet model. The X-axis shows the F-factors and the Y-axis shows the log2 (fold change) values.
(C) Violin plot of log2FC values of NADnet metabolites. The X-axis shows the Genes, and the Y-axis shows the log2 (fold change) values.
Metabolites are arranged according to the routes mentioned in Figure 1A. (D) Heatmap of reaction Fluxes obtained after steady-state analysis,
rows correspond to reaction flux (n = 21), and columns correspond to patients (n = 168). The red colour represents an increase in flux
compared to the base model, the blue colour represents a decrease in flux compared to the base model, and the yellow colour represents no
change in flux compared to the base model. Rows and columns are arranged based on the complete hierarchical clustering method.
Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the key in the image for more details). (E) Heatmap of
Metabolites obtained after steady-state analysis, rows correspond to metabolites and columns correspond to patients (n=168). The red colour
represents an increase in the concentration of metabolite compared to the base model, the blue colour represents a decrease in the
concentration of metabolite compared to the base model, yellow colour represents no change in concentration of metabolite compared to the
base model. Rows and columns are arranged based on the complete hierarchical clustering method. Annotations on the top of the heatmap are
Stage, Grade, Gender, and Vital status (refer to the key in the image for more details).
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among the genes, largely corresponding to the route of NAD

synthesis and utilisation, the fluxes, and metabolites among each

route correlating positively within the same route (Supplementary

Figures S1C, S1D).
NAPRT levels are suggestive of NAD
biosynthetic status

A steady-state concentration of a metabolite depends not

only on the enzyme concentration but also on various other

parameters such as the concentration of the input metabolite for

the given reaction, Km, and Kcat of the enzymatic step, as well as

on any feedback or feedforward loops for the given reaction.

Therefore, metabolite abundance depends on the gene

expression of the enzyme, metabolite inputs into the system,

product metabolites, and the kinetics of the enzyme. The extent

of correlation between the gene expression of all NADnet genes

and metabolites obtained after steady-state analysis was

estimated for all patients in the TCGA-LIHC cohort using the

Pearson correlation method (Figure 3A). Further, NAPRT was

seen to have the highest correlation, which was statistically

significant. The correlation values for all genes and

metabolites, along with the statistical significance values [p-

value and rho(r2)], are given in Supplementary Table 9. This

study clearly demonstrated that NAD steady-state levels in a cell

are correlated to the NAPRT gene expression (r2 = 0.92)

(Figure 3B), and therefore, NAPRT gene expression can be

used as a readout for NAD biosynthesis in the cell. As NAPRT

levels are indicative of NAD levels, all the patients can be

grouped based on NAPRT levels into three groups a)

NAPRT_Up group, where NAD levels are high as compared

to normal liver, b) NAPRT_Down group, where NAD levels are

low as compared to normal liver, and c) NAPRT_No_change

group, where NAD levels are comparable with the normal liver

(Figures 3C, D). The analysis also clearly shows that Route II is

the critical determinant of NAD status in HCC patients.
NAPRT is a control point in NADnet

Our next goal was to identify reactions that wielded the

highest control on the NADnet, so as (a) to understand how the

pathway dynamics are controlled and (b) to explore possible

intervention points to manipulate the pathway. Further, it was of

interest to investigate if the pathway control points varied

significantly in different individuals in the cohort. Although

the overall topology of the network remains the same, the

weights associated with nodes (metabolites) and edges

(reactions) change based on the gene expression patterns in

different individuals, leading to the possibility of altering the

control structures. To address this, the individual patient-wise

kinetic models were used, and a parameter sensitivity analysis
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was performed on each of them using CoRC (refer to methods

section parameter sensitivity analysis) and those reactions (and

their corresponding genes) that had the highest influence on

NAD levels were identified (Figure 4 and Supplementary Figure

S3). Each model parameter sensitivity was calculated as a

percentage change from the unaltered model, and models

showing greater than one percent are concerned as altered

models. If any parameter had greater than +1 percent change,

it was taken that it positively influences the metabolite

concentrations, whereas parameters with less than -1 percent

have a negative influence on the metabolite concentrations. F22

(NAPRT, (Nicotinate phosphoribosyltransferase)) was observed

to have a positive influence on NaAD, NAD, and Nam

metabolites, and F22 had a negative influence on ADPriboseP

across all patients in the cohort. Therefore, an increase in the

gene expression of the NAPRT gene will lead to enhanced levels

of the NaAD, NAD, and Nam metabolites. F22 has a positive

influence on NaMN, NMN, and NR in only a subset of patients.

F11 (NAD+ Kinase) showed a negative influence on NAD in

only a subset of patients but was not a control point in other

patients. F1 (Tryptophan 2,3 dioxygenase) has a positive

influence on the de novo pathway metabolites across all the

patients in the cohort (Figure 4 and Supplementary Figure S3).

F1 is known to be the rate-limiting step of the de novo pathway

(15), and the same was observed in our analysis. Further, even in

the base model, F1, F17 and F22 were identified as the key factors

controlling metabolite concentrations of their respective routes

(Supplementary Figure S3).
Survival analysis suggests potential
benefits of NAD supplementation in
NAPRT down subgroup

With the previous analysis, we identified NAPRT to be an

indicator of NAD levels. We were interested in testing if there

was any variation in survival in the groups based on NAPRT

levels. For this, we performed a univariate cox-regression

analysis using the predicted NAPRT level of individuals in the

TCGA-LIHC cohort and calculated the extent of association of

NAPRT level with HCC progression. Patients were divided into

three groups based on NAPRT levels, NAPRT_Down (log2FC ≤

-1), NAPRT_No_change (-1 < log2FC < +1) and NAPRT_Up (

log2FC ≥ +1) (Figure 3D). A Kaplan-Meier analysis was

performed, and a log-rank test was used to determine

significant differences in the overall disease progression in all

group pairs. We first tested if NAPRT levels by themselves have

any prognostic value, but the correlation with the risk of patient

mortality was non-significant when compared between NAPRT

UP and Down subgroups (p-value = 0.407 and HR (Up) = 0.783)

(Supplementary Table 10), but NAPRT Down subgroup was

correlated significantly with patient mortality when compared

with NAPRT No_change subgroup (p-value = 0.0158 and HR
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(No_change) = 0.596) (Figure 5A). NAMPT is known to be a

poor prognosis marker and a known drug target for the NAD

pathway in many cancers, and we tested if the levels of this gene

had any prognostic value (49). Here too, we found the

correlation with the risk of mortality to be non-significant

(p-value = 0.451, HR (No_change) = 0.854) (Figure 5B).

Clearly, neither NAPRT nor NAMPT did not have any

survival prognosis by itself. We then tested if pairs of groups

with different NAPRT and NAMPT statuses exhibited any

survival difference. In total, six groups were tested (Figure 5).

NAMPT did not have any upregulated patients in the TCGA-

LIHC cohort; also, Route III was downregulated in most of the

patients. Upon Kaplan-Meier analysis, we found that the

NAPRT_NAMPT Down_Down group has a significantly

poorer prognosis than other groups (Figures 5C, D;

Supplementary Table 10). This suggests that, in the
Frontiers in Oncology 11
147
NAPRT_NAMPT Down_down group, the prognosis could be

improved by NAD supplementation to improve survival.
Discussion

Nicotinamide adenine dinucleotide (NAD), being an

important cofactor in various biochemical reactions, plays a

pivotal role in enabling and governing essential cellular

activities. The levels of NAD are used by the cell as sensors for

deciding what metabolic state it attains. A systems ’

understanding of the pathways involved in NAD biosynthesis

that provide quantitative insights is therefore important. The

enzymes in the pathway have been well studied individually, and

a wealth of biochemical information is available on each of them,

enabling the reconstruction of a systems model of a NAD
B

C D
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FIGURE 3

NAPRT alone is sufficient to indicate the NAD status in patients. (A) Correlogram between gene log2FC values and metabolite log2FC values.
Rows represent metabolites and columns represent genes. The red colour corresponds to positive correlation, the blue colour corresponds to
negative correlation, the area covered in the square corresponds to the absolute value of the correlation, and the black squares correspond to
significant correlations (p-value < 0.05). Rows and columns are arranged based on the routes mentioned in Figure 1A. (B) Correlation plot
showing the NAPRT and NAD log2FC values. The X-axis represents NAPRT log2FC values and the Y-axis represents NAD log2FC values. The
points are coloured based on the NAD status of the samples. Red points indicate NAD up samples, blue points indicate NAD no change
samples, and green points indicate NAD down samples. (n = 168) (C) Above panel shows the heatmap of NAD log2FC values obtained after
steady-state analysis, rows correspond to NAD groups and columns correspond to patients (n = 168). The Red colour represents up NAD levels
(log2FC ≥ +1), blue colour represents NAPRT down levels (log2FC ≤ -1), yellow colour represents NAD no change levels (-1 < log2FC < +1). The
below panel shows the heatmap of NAPRT log2FC values in tumour tissue calculated with respect to the normal tissue, rows correspond to
NAPRT groups and columns correspond to patients (n = 371). The Red colour represents up NAPRT levels (log2FC ≥ +1), the blue colour
represents NAPRT down levels (log2FC ≤ -1), yellow colour represents NAPRT no change levels (-1 < log2FC < +1). Columns are arranged based
on the complete hierarchical clustering method. Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the
key in the image for more details). (D) Schematic showing the division of patients into three groups based on NAPRT gene levels.
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biosynthetic network (NADnet). We then use a kinetic modelling

approach to study if there is variation in the NAD levels in HCC

patients. Using NADnet as a base model, we then construct

personalised models for each patient by integrating with patient-

specific gene expression values for all the enzymes in the

network. While normal liver cells are known to use de novo

NAD biosynthetic routes to maintain intracellular NAD levels,

our model suggests that cancer cells are primarily dependent on

the Preiss-Handler pathway (Route II in NADnet). NAPRT being

a rate-limiting step of this route, is clearly seen to have altered

gene expression in several HCC patients. While most studies

provide population or cohort-level insights, our modelling

approach of constructing personalised models has a unique

advantage of providing insights at the individual patient level.

The effect of NAD on disease progression presents a complex

picture. The analysis carried out here by studying perturbations at

a patient level provides insights leading to sub-grouping. This, in

turn, serves as a framework to resolve some of the inconsistencies

evident in the literature. A subgroup of HCC patients with high

NAD biosynthetic status responds differently to the subgroup that

has low NAD biosynthetic status. While the first subgroup can be

envisaged to benefit from an inhibitor of NAD biosynthesis, the

latter subgroup will benefit from supplementation. Enhanced

levels of NAD have been shown to support tumour

proliferation. Inhibition of the pathway, specifically with

NAMPT and NAPRT as drug targets, has been suggested as a

strategy for reducing NAD levels (26). Both NAPRT and NAMPT
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are critical enzymes of two different routes of NAD synthesis. A

combination of both gives a better representation of NAD levels.

A group with NAMPT and NAPRT (Down_Down) group, has

low levels of NAD, and they require supplementation; on the

other hand, a group with NAMPT Down and other combinations

of NAPRT (except NAPRT Down) can still maintain NAD levels.

Our study shows that identifying the precise subgroup is essential

for determining whether NAD inhibit ion or NAD

supplementation would be beneficial.

Supplementation using readily available vitamin B3

supplements is an easy intervention to achieve if the subgroup

is correctly identified. There are multiple lines of evidence in

support of the supplementation. First, inhibition of NAD

production has been associated with higher levels of DNA

damage and triggering of hepatocarcinogenesis (28). Boosting

NAD+ levels with supplements has been shown to have

prophylactic effects in a genetically engineered mouse model

of unconventional prefoldin RPB5 interactor (URI) used to

study the mechanism of HCC development (28, 50). Second,

in some other cancers, such as colorectal cancer, NAMPT and

NAPRT high expression are seen to be associated with poor

prognosis for the patient (51). Third, NAD levels were reported

to be declining with age as well as implicated in a few liver

diseases, including NAFLD (30). Due to this, several studies have

proposed supplementation with NAD, and many NAD

precursors are tested as supplements to increase NAD levels

(52, 53). Among the precursors, Na was reported to be one of the
B
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FIGURE 4

NAPRT is the control point in the NAD biosynthesis pathway in HCC patients. Correlogram between Metabolites and F-factors summarising the
extent of patients affected with changes in the parameter values by -1 % in F-factors (A) by +1 % in F-factors (B) -1 % in K-constants (C), and
+1 % in K-constants (D). The X-axis represents the parameters, and the Y-axis represents the metabolites. The red colour represents an increase
in concentration and the blue colour represents a decrease in concentration. The area occupied by the coloured pie shows percentage of
stable models, with greater than 1 % change in the concentration due to the change in the parameter value, out of 168 stable models.
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best precursors with the least side effects and greater potential of

getting converted into NAD (54).

The reconstructed model has the following three major

limitations- (a) As the model has only biosynthesis reactions

but not all the utilisation reactions of NAD, the model fails to

capture the quantitative level of NAD in the cell, and (b) even

though NAD metabolism is known to have subcellular

compartmentalization of NAD pools both at the metabolite as

well as the enzyme level; the reconstructed model considers the

total NAD pool only, and there is no subcellular compartment in

the model and therefore it cannot capture intracellular

compartmental dynamics of NAD biosynthesis and (c) As
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metabolism is one of the most tightly regulated processes in

the cell, regulatory interactions i.e., transcription factors that

may govern the gene expression of enzymes of the NAD

biosynthesis pathway are not included here, and therefore the

effect of perturbation at transcription regulation cannot be

modelled directly here.

Nevertheless, the model is useful for understanding the

extent of variation in NAD biosynthesis at an individual

patient level. From the correlation analysis, it is evident that

the changes in gene expression are captured at the metabolite

level. NAPRT levels are found to indicate the NAD biosynthetic

status in the sample. Furthermore, NAPRT levels are regulated
B

C D

A

FIGURE 5

NAPRT_NAMPT Down_Down status corresponds to poorer survival. The panel on the top shows the distribution of patients into groups based
on the NAPRT and NAMPT gene expression status. Kaplan-Meier Overall survival curve for HCC patients classified based on NAPRT Down and
No_change groups (A) NAMPT Down and No_change groups (B), NAPRT_NAMPT Down_Down versus No_change_No_change groups (C), and
NAPRT_NAMPT Down_Down versus Down_No_change groups (D). HR and p-values reported in the figure panels are for the group
represented in blue colour.
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by MYC and TP53 transcription factors which are involved in

cell growth and proliferation. NAPRT is also involved in

immune and inflammation signalling (55).

In conclusion, we find high levels of heterogeneity in the NAD

levels in HCC patients, and NAPRT gene expression levels are

sufficient to indicate the NAD levels. Based on the NAPRT status,

HCC patients can be subtyped into three categories corresponding

to upregulation, no change, and downregulation of NAPRT with

respect to a healthy liver. The NAPRT_Down group, when

combined with NAMPT_Down, is seen to show poorer survival

as compared to a group of HCC patients where the levels of these

two enzymes are unaltered. Lower NAD levels correlate with

lower levels of NAPRT and suggest that supplementation of NAD

may be beneficial in this group of patients. Our study provides a

rationale, and a means to explore subgrouping in HCC patients,

paving the way for precision diagnosis and intervention.
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