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Editorial on the Research Topic

Recognizing the state of emotion, cognition and action from

physiological and behavioral signals

Seamless blending of humans and technology for intelligent interaction is becoming

more popular. One key aspect is to let machine understand users’ state of emotion,

cognition, and action. This Research Topic is a collection of ten papers where

physiological and behavioral signals are exploited to recognize user states. In this

collection, multiple techniques, systems, and applications are introduced, spanning

from healthcare (e.g., dementia, disorientation in aged people, alpha waves asymmetry),

workload, sleep monitoring and self-care assistive technology, to decision-making tasks

(e.g., relevance of text read, relational communication, emotion classification). We

highlight the main findings of these research studies.

Amultidisciplinary research team from the UCL Interaction Centre (Holloway et al.)

proposes a new cost-effective approach with Inertial Measurement Units (IMU) sensors

to predict dementia. The results demonstrate state-of-the-art performance in classifying

data from different dementia groups including typical Alzheimer’s disease and posterior

cortical atrophy. This approach paves the way for a simple clinical test to enable dementia

screening in real-world.

Researchers at the University of Bremen (Steinert et al.) conduct a study on the

prediction of activation ratings of people with dementia, which has been shown to be

a possible cue of cognitive functioning. With an existing dataset that includes verbal

and non-verbal cues of people with dementia, the team demonstrates the positive

contribution of behavioral cues to the prediction and discusses unique challenges in

the task.
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Teipel et al. study the features of gait and accelerometry

associated with disorientation events. The orientation ability of

older and younger cognitively normal participants navigating

on a treadmill is under investigation. Although the strength

of the association of currently studied features is not sufficient

for accurate real-time prediction of disorientation in a single

individual, it paves the way for a future system that allows

monitoring the orientation, the gait, the accelerometric and

physiological data in a controlled environment.

To better understand and apply the theory of alpha

asymmetry, Sabu et al. conduct a review on the role of

affective stimuli in event-related frontal alpha asymmetry.

They confirm that strongly engaging, salient and/or personally

relevant stimuli are important to induce an approach-avoidance

effect. Meanwhile, the selection of stimuli accounts for

part of the diversity in alpha asymmetry research, where

notably, multimodal stimuli and stimuli employing tasks induce

approach-avoidance effects more strongly than images.

A collaborative team (Meteier et al.) from Switzerland

investigates the use of physiological data to assess mental

workload in the context of automated driving. The team

confirms that respiratory indicators and heart rate variability

are effective measures of mental workload and highlights the

possible relationship between task performance and mental

workload prediction.

The author Liang investigates the relationship between brain

hemodynamics and stress in the first sleep cycle. Chemical

biomarkers and novel wearables for near-infrared spectroscopy

are coupled with machine learning in a new research paradigm.

The study sheds light on the possible role of the left rostral and

dorsolateral prefrontal cortex in stress responses.

Barz et al. conduct a study on estimating paragraph

relevance from eye movement. They confirm that eye gaze can

be used to estimate the perceived relevance of short news articles

although there is no evidence to clearly show that the approach

generalizes to multi-paragraph documents when users scroll

down to see all text passages. It can be envisaged that the gaze-

based relevance detection can be a part of future adaptive user

interfaces that leverage multiple sensors for behavioral signal

processing and analysis.

Vortmann et al. compare early, middle, and late fusion in

a classification task to infer internal (e.g., thought, memories)

or external (e.g., sensory input) attentional state. The dataset

used in this study is multimodal and composed of EEG and eye

tracking. The results indicate that middle or late fusion are better

suited than early fusion approaches.

Burgoon et al. apply the Brunswikian lensmodel of relational

communication, which measures linguistic, vocalic, and facial

cues, to establish a perception of other people on relational

attributes (dominance, affection, composure, involvement,

similarity, trust) and quantify their perceived credibility while

participants are interacting in game of Resistance. They

find that the behavior elicited during the activity correlates

with relational messages in a supportive manner, such as

the correlations between affection and longer sentences and

less hedging.

The research conducted by Menétrey et al. from

University of Geneva and University of New South Wales

aims to identify key components contributing to accurate

emotion prediction. They highlight that emotion recognition

requires the integration of various components (appraisal,

motivation, expression, physiology, and feeling). In this study

they extract mean and variance of the physiological data

and show that emotional features are encoded within the

other components.

We hope the readers enjoy this topic collection. These

studies demonstrate a growing interest in empowering machine

to understand user state and a multidisciplinary approach to

improve human and machine collaboration in the best form.
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What Does Sleeping Brain Tell About
Stress? A Pilot Functional
Near-Infrared Spectroscopy Study
Into Stress-Related Cortical
Hemodynamic Features During Sleep
Zilu Liang1,2*
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People with mental stress often experience disturbed sleep, suggesting stress-related
abnormalities in brain activity during sleep. However, no study has looked at the
physiological oscillations in brain hemodynamics during sleep in relation to stress. In
this pilot study, we aimed to explore the relationships between bedtime stress and the
hemodynamics in the prefrontal cortex during the first sleep cycle. We tracked the stress
biomarkers, salivary cortisol, and secretory immunoglobulin A (sIgA) on a daily basis and
utilized the days of lower levels of measured stress as natural controls to the days of higher
levels of measured stress. Cortical hemodynamics was measured using a cutting-edge
wearable functional near-infrared spectroscopy (fNIRS) system. Time-domain, frequency-
domain features as well as nonlinear features were derived from the cleaned hemodynamic
signals. We proposed an original ensemble algorithm to generate an average importance
score for each feature based on the assessment of six statistical and machine learning
techniques. With all channels counted in, the top five most referred feature types are Hurst
exponent, mean, the ratio of the major/minor axis standard deviation of the Poincaré plot of
the signal, statistical complexity, and crest factor. The left rostral prefrontal cortex (RLPFC)
was the most relevant sub-region. Significantly strong correlations were found between
the hemodynamic features derived at this sub-region and all three stress indicators. The
dorsolateral prefrontal cortex (DLPFC) is also a relevant cortical area. The areas of mid-
DLPFC and caudal-DLPFC both demonstrated significant and moderate association to all
three stress indicators. No relevance was found in the ventrolateral prefrontal cortex. The
preliminary results shed light on the possible role of the RLPCF, especially the left RLPCF,
in processing stress during sleep. In addition, our findings echoed the previous stress
studies conducted during wake time and provides supplementary evidence on the
relevance of the dorsolateral prefrontal cortex in stress responses during sleep. This
pilot study serves as a proof-of-concept for a new research paradigm to stress research
and identified exciting opportunities for future studies.
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1 INTRODUCTION

There is abundant evidence that mental stress is often linked to
reduced sleep quality, suggesting abnormalities in brain activity
during sleep when people are stressed (Buysse et al., 2011). While
our understanding into how stress affects brain activity when we
are awake (and are engaged in lab-based stress induction tasks)
has been greatly advanced in recent years (Alonso et al., 2015;
Kramer et al., 2017; Chang and Yu, 2018; Rosenbaum et al., 2018;
Rampino et al., 2019; Schaal et al., 2019; Rosenbaum et al., 2021),
no study has looked at how stress modulates brain activity during
sleep. Attempts to study stress during sleep face several
challenges. First, traditional neuroimaging techniques for
studying stress in daytime are not suited for in-sleep
measurement due to various methodological restraints
imposed by these techniques. Hemodynamic imaging methods
such as functional magnetic resonance imaging (fMRI) can
generate hemodynamic profiles at high spatial resolution, but
they are invasive as people could hardly fall asleep in noisy fMRI
scanners. Functional near-infrared spectroscopy (fNIRS)
achieves better trade-off between convenience and spatial
resolution, but traditional fNIRS systems still use many cables
which make them unsuited for measurement during sleep.
Electrophysiological neuroimaging techniques such as
electroencephalography (EEG) is widely used to measure
brain activity during sleep, but their spatial resolution is
limited, and they are sensitive to motion artifacts. Second,
laboratory-induced stress response is often temporary, and the
effect could barely sustain until and throughout nocturnal sleep
(Rosenbaum et al., 2021). Established methods for inducing
social stress (e.g., the Trier Social Stress Test (Chang and Yu,
2018)), emotional stress (e.g., viewing scary pictures (Rampino
et al., 2019)), and physical stress (e.g., sleep deprivation (Alonso
et al., 2015)) may fail to mirror natural stress responses, as a
laboratory setting often does not represent the typical conditions
under which stress occurs in real life (Wolfram et al., 2013).
Laboratory-induced stress responses often fade out in an hour
(Rosenbaum et al., 2021; Rosenbaum et al., 2018), while real-life
stress responses could last hours to days or even longer after the
onset of the stressors (Joëls and Baram, 2009). Another pitfall of
lab-based stress induction protocols is that they are unsuited for
longitudinal repeated measurement from individual subjects as
they are likely to cause response habituation especially in the
hypothalamic–pituitary–adrenal (HPA) axis as indicated by the
cortisol secretion level (Schommer et al., 2003; Kudielka et al.,
2006; Jönsson et al., 2010; Gianferante et al., 2014). In addition,
stress has been routinely treated as a dichotomous variable
(i.e., stress is either present or absent) in many research
studies. In real life, however, people may experience various
levels of stress with different temporal profiles (Joëls and Baram,
2009). The dichotomous perspective of stress is also unnatural
when biomarkers of stress responses such as cortisol is used as an
indicator because it is difficult to set a universal cutoff line that
accommodates interpersonal variability.

This pilot study is the first to look at how bedtime stress
associates to brain activity during sleep. We aimed to explore
which cortical areas demonstrate stress-related blood flow

patterns during the first sleep cycle. Especially, we focused on
answering the following two research questions:

• What hemodynamic features are significantly associated to
each stress indicator?

• Which sub-regions in the PFC are significantly associated to
each stress indicator?

The study design included addressing the limitations of the
existing research paradigm. Table 1 highlights the originality of
the present study in comparison with previous studies. This study
adopted the N-of-1 approach which is an idiographic research
methodology that overcomes the pitfalls of the widely adopted
large-sample approach. The large-sample approach requires
stringent conditions such as cohort homogeneity—a condition
difficult to meet no matter how large the sample size is. When the
within-subject variability is much larger than the inter-subject
variability, which is common in psychology and physiology
studies, the large-sample approach often fails to provide us
with findings that generalize well to individuals (Molenaar,
2004; Barlow and Nock, 2009; Mehl and Conner, 2012; van
Ockenburg et al., 2015; Burg et al., 2017; Fishera et al., 2018;
Piccirillo et al., 2019). In contrast, the N-of-1 approach embraces
longitudinal repeated measurement on a single subject to
generate the most relevant and reliable information for the
specific person, which represents a true scientific undertaking
(Barlow and Nock, 2009).

With respect to the experiment settings, we performed the
measurement at the subject’s home using a cutting-edge wearable
fNIRS system together with non-invasive wearable and mobile
devices to achieve the highest level of ecological validity. We also
did not rely on lab-based stress induction protocols, as they
require the subjects to be actively engaged in cognitive tasks and
often fail to induce stress responses that sustain until bedtime.
Instead, we tracked the stress indicators on a daily basis, and
utilized the days of lower levels of measured stress as natural
controls to the days of higher levels of measured stress. Stress
responses in human may manifest in multiple physiological
systems with varied temporal profile (Joëls and Baram, 2009).
In this study, stress was quantified using both objective and
subjective indicators. The objective indicators included two
widely used stress biomarkers that reflect the hormonal and
immunological responses to stress: salivary cortisol and
secretory immunoglobulin A (sIgA). The rise of salivary
cortisol reveals the stress-related changes in the
hypothalamic–pituitary–adrenal (HPA) axis. Meanwhile,
stress-associated immunological response could occur more
rapidly compared to the HPA axis, characterized by a quick
and temporal rise and then decrease in sIgA (Engeland et al.,
2016). sIgA may also be a valuable indicator for differentiating
between positive and negative stress effects or between successful
and unsuccessful adaptation or coping with situational demands
(Zeier et al., 1996). The subjective perception of stress can be
measured using psychometric instruments ranging from as
simple as a Likert scale to as complex as the 30-item Perceived
Stress Questionnaire (PSQ) (Levenstein et al., 1993). In this study,
the perceived stress level was rated on a 1–10 Likert scale that was
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implemented using a mobile application. Another significant
difference of this study is that the measurement was mostly
performed when the subject was sleeping, while in previous
stress neuroimaging studies the subjects were all awake and
were engaged in cognitive tasks.

In this study, stress response was treated as a continuous
phenomenon in contrast to the traditional dichotomous
perspective. The data analysis focused on finding significant
associations between cortical hemodynamic features and each
individual stress indicator. Previous studies mostly rely on one
feature type—the mean of the concentration changes in
oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb).
While this feature type has the merit of easy interpretation, it
fails to fully capture the characteristics of the cortical
hemodynamic signals. In search for the most useful stress-
association features, we derived a wide range of time-domain,
frequency-domain, and nonlinear features from the cortical
hemodynamic signals. We also proposed an original ensemble
feature ranking algorithm that leverages six different statistical
and machine learning techniques to generate an average
importance score for each feature.

This pilot study does not intend to generate conclusive
findings, but rather serves as a proof-of-concept for a new
research paradigm that can be implemented to study stress in
unexplored settings (e.g., during sleep). Understanding the
neurophysiological mechanism that underlies the relation
between stress and sleep has the significance of giving hint to
the development of brain activity markers of stress, which can be
readily measured and monitored using wearable brain imaging
technologies. Despite of being a small-scale pilot study, the data
collection and analysis protocols are readily applicable to large-
scale studies. The observations from this study serve as a
foundation for future research to elucidate where the brain
processes stress during sleep, based on which new stress
indicators or stress coping strategies may be developed.

2 DATA COLLECTION

2.1 Measuring Stress
In this study, we quantified stress using both objective
(i.e., cortisol and sIgA) and subjective indicators

(i.e., perceived stress rating). Salivary cortisol and sIgA were
measured using the SOMA Dual Analyte LFD test kits. These
kits can be used for real-time measurement in a naturalistic
setting. Saliva samples were collected using oral fluid collector
(OFC) swabs and were incubated for 15 min in OFC buffers
before being read. The participant was instructed not to eat,
drink, or brush teeth 30 min prior to providing saliva samples.
The calibration range of cortisol and sIgA were 1.25–40 nmol/L
and 25–800 μg/ml, respectively (Dunbar et al., 2015). The validity
of the SOMA kits has been examined in previous studies
(Mitsuishi et al., 2019). The measured salivary cortisol and
sIgA data were manually logged in a CSV file. Perceived stress
was rated on a 1–10 Likert scale (1 � not stressed at all; 10 �
extremely stressed) which was implemented using a mobile
application named HealthLog.

2.2 Measuring Prefrontal Hemodynamics
A wearable functional near-infrared spectroscopy (fNIRS) (Brite
24; Artinis Medical Systems Co., Netherlands) was used to
measure the concentration changes in oxyhemoglobin
(ΔO2Hb) and deoxyhemoglobin (ΔHHb) in the PFC. The
fNIRS is a non-invasive brain imaging technique that strikes a
good trade-off between temporal and spatial resolution (Tak and
Ye, 2014). The advantage of the Brite 24 system—which weighs
only 300 g—is that it permits the monitoring of ΔO2Hb and
ΔHHb without imposing constraints on the posture and
movement of the subject, and thus is suited for studying
cortical hemodynamics during sleep. In this study, the Brite 24
consists of 10 transmitters (Tx) and 8 receivers (Rx). The Txs take
turns to emit light at wavelengths of 760 nm (dominantly
absorbed by HHb) and 850 nm (dominantly absorbed by
O2Hb). They were fixed on a soft neoprene head cap, which
ensures the alignment of optode placement across different
measurements. The optodes were placed at an interoptode
distance of 3 cm to achieve the maximum penetration depth
of 1.5 cm and were configured into 27 channels as shown in the
Template DAQ state at the bottom of Figure 1. All optodes were
placed between the FpZ–F3–Cz–F4–FpZ regions in the PFC
according to the international 10–20 EEG system. The
sampling rate was set to 50 Hz. The Brite 24 device has a
battery life of up to 2.5 h when it is used for continuous
online measurement. While the battery life could be extended

TABLE 1 | Research paradigm comparison between the current study and previous studies.

Previous studies Current study

Approach Large-sample (nomothetic) N-of-1 (idiographic)
Data collection 1. Experiment was performed in a lab using bulky equipment 1. Experiment was performed at the subject’s home using wearable and mobile

devices
2. Lab-induced stress 2. Stress occurs in daily life setting
3. Subjects were awake and engaged in cognitive tasks 3. Subject was sleeping

Data analysis 1. Limited features derived from hemodynamic signals (usually the
mean)

1. A wide range of features derived to characterize the hemodynamic patterns

2. Stress treated as dichotomous variable (either 1 or 0) 2. Stress treated as a continuous/ordinal variable
3. Basic statistical test used to find inter-group differences 3. Original ensemble algorithm for feature ranking

Ecological
validity

Low High
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by connecting the device to an external power supply, we decided
not to use that strategy out of safety concern for the subject. The
PFC was selected as the region of interest in this pilot study
because previous studies performed during wake time have shed
light on the role of the PFC in responding to acute and chronic
stress (Cerqueira et al., 2007; Hains and Arnsten, 2008; Dedovic
et al., 2009; Yuen et al., 2009; Arnsten et al., 2015; Nejati et al.,
2021).

The Brite 24 system consists of companion software named
OxySoft. The software allows the real-time inspection of the
signal quality of each channel when the fNIRS device is paired
up via Bluetooth connection. Channels with poor quality are
marked by red dots, as shown at the bottom of Figure 1. The
OxySoft supports several visualization formats of the ΔO2Hb
and ΔHHb signals, including time series plots, 2D heatmap,
and 3D heatmap in a glass head. The data recorded by the Brite
24 device were synchronized with the software at regular time
interval and were stored in temporal files. When a
measurement was stopped, OxySoft processed the temporal
files to generate a complete data file that contained raw optical
density (OD) data.

2.3 Measuring Complementary
Physiological Data
In addition to the Brite 24 system, we also used a Fitbit Sense
together with the companion Fitbit app to collect complementary
data of sleep, heart rate, and breath rate. These data were utilized
in the data preprocessing pipeline to remove physiological
artifacts, which is described in detail in the next section. Fitbit

is well-suited to this study as it supports the collection of multiple
streams of physiological signals without imposing additional
burden to the subject. Despite that Fitbit devices may not offer
medical-grade measurements, numerous validation studies have
demonstrated that Fitbit devices can achieve reasonable accuracy
and a better trade-off between accuracy and ecological validity
(Menghini et al., 2020; Liang and Chapa-Martell, 2019; Liang and
Chapa-Martell, 2018).

2.4 Data Collection Procedure
Grounded on the N-of-1 approach, a longitudinal data
collection experiment was conducted with a healthy subject
(male, 30 years). The principle of the N-of-1 method allows the
exclusion of confounding factors pertaining interpersonal
differences in health and physiological conditions. In
comparison, the traditional large-sample approach requires
stringent conditions such as cohort homogeneity and the
findings often do not generalize well to individuals
(Molenaar, 2004; Barlow and Nock, 2009; van Ockenburg
et al., 2015; Fishera et al., 2018). The large-sample approach
becomes especially problematic when the variability within
subject is much larger than the variability across subjects
(Mehl and Conner, 2012; Fishera et al., 2018). There has
been increasing evidence that the large-sample approach may
not provide us with information that generalizes well to
individuals (Molenaar and Campbell, 2009; Burg et al., 2017;
Piccirillo et al., 2019), and hence should not be deemed as more
scientific than other approaches that explicitly address within-
person variability (Mehl and Conner, 2012). On the other hand,
the N-of-1 approach has been well-recognized to provide the

FIGURE 1 | Screenshot of the OxySoft.
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highest reliability at the individual level (Molenaar, 2004;
Molenaar and Campbell, 2009; Mehl and Conner, 2012; van
Ockenburg et al., 2015). The subject was recruited through
personal connections. The inclusion criteria were 1) healthy
subjects aged 18–65 years without chronic diseases, sleep
disorders, and mental disorders, 2) has a smartphone, and 3)
understand the contents of the informed consent. This study
was approved by the Ethics Committee of the Kyoto University
of Advanced Science. Written informed consent was obtained
from the subject before the data collection experiment started.

The data collection procedure is illustrated in Figure 2. Saliva
samples were collected before bedtime at night. We ensured that
saliva sample collection was always done during a fixed time
period 22:00–23:00 to control the confounding effect of the
circadian hormonal rhythm (Oster et al., 2017). The subject
was asked to rate how stressful he felt on the HealthLog app
after a saliva sample was collected. The Brite 24 and Fitbit Sense
were put on the subject when he was ready for sleep. The Brite 24
head cap was placed symmetrically on the subject’s head, and the
Fitbit Sense was worn on the non-dominant wrist. To reset the
brain to a common baseline, the subject first went through a wake
rest phase where he simply sat quietly for 2 min while staying
awake. The wake rest phase was followed immediately by the
sleep phase. The Brite 24 was left on until it ran out of battery. The
subject was instructed to remove and stop the Brite 24 (simply by
pressing the main button) when he needed to go to the restroom
early morning or when he woke up, whichever happened first.
The subject was asked to synchronize the Fitbit Sense with the
companion mobile application after waking up.

3 DATA ANALYSIS

The objective of the data analysis was to identify the channel-wise
features derived from the hemodynamic signals that are
significantly associated to stress indicators. We first processed
the raw OD signals to yield cleaned high quality ΔO2Hb and
ΔHHb signals, and then derived features from the cleaned signals
at each channel. The data analysis pipeline was implemented
using Python 3.8.8.

3.1 Data Preprocessing
We exported data from all the devices and instruments for
preprocessing. Stress data and Fitbit data were aggregated at a
1-day resolution (i.e., one data point for each day during the
experiment period). The perceived stress data were exported from
the HealthLog app into a CSV file with a premium account
subscription. Fitbit data of sleep, heart rate, and breath rate were
exported using a web app that we developed in our previous study
(Liang et al., 2016). All these data were then merged by matching
date stamps.

The fNIRS data were collected at a high sampling rate of 50 Hz
and required more complex preprocessing. The total raw signals
measured by the Brite 24 consist of several components, and the
ΔO2Hb and ΔHHb related to neural activity is only a small
portion. Noisy components are those related to breath, heartbeat,
and movement, which need to be removed (Tak and Ye, 2014).
The fNIRS data preprocessing pipeline is illustrated in Figure 3.

1) Export raw OD signals. Using the OxySoft, we exported raw
OD signals in EDF format so that they were semi-compatible
with the data formats supported by the MNE-NIRS Python
library (Luke et al., 2021). Although the OxySoft also allows
the export of ΔO2Hb and ΔHHb signals that have been
converted from raw OD signals, unfortunately the Artinis
format of these signals is not supported by the MNE-NIRS
library at the time of this study. It is worth noting that the
MNE-NIRS library read in the EDF data as EEG signals by
default; hence, additional processing was needed to convert
the signal type to fNIRS after loading EDF files using the
MNE-NIRS library.

2) Trim the signals. Since we were only interested in the first sleep
cycle, we discarded the signal segments before the sleep start
time and after the first sleep cycle. The sleep start time as
recorded by the Fitbit Sense was used as the start time (Ts) of
the effective data. The end time (Te) of the effective data were
set to Te � Ts + 90 min as the average sleep cycle of healthy
adults is 90 min (Feinberg and Floyd, 1979).

3) Remove channels with poor signal quality. The quality of the
OD signals could be compromised by many factors during the
measurement. While the OxySoft allows real-time inspection

FIGURE 2 | Data collection procedure.
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of signal quality, it does not provide computational tools to
remove channels with poor signals. In our data preprocessing
pipeline, we removed channels with poor signal quality using
the Scalp Coupling Index (SCI) method (Pollonini et al.,
2014). We first performed channel-wise filtering on the OD
signals at both wavelengths using a band-pass filter
(0.7–1.5 Hz) to preserve only the heartbeat components.
The resulting signals were normalized to balance any
difference between their amplitudes. The zero-lag cross-
correlation between the resulting signals of the same
channel—defined as the SCI—was computed and used as a
quantitative measure of the signal-to-noise ratio of the
channel. Channels with an SCI-value below 0.75 were
regarded as poor channels and were removed from the
subsequent analysis.

4) Transform OD to ΔO2Hb and ΔHHb. The modified
Beer–Lambert law (MBLL) was applied to convert the OD
signals to ΔO2Hb and ΔHHb signals (Delpy et al., 1988). As
shown in Eq. 1, ϵO2HB(λi) and ϵHHB(λi) are the extinction
coefficients of O2Hb and HHb at wavelength of λi,
respectively. L denotes the interoptode distance. PPF(λi)
denotes the partial pathlength factor, which represents the
sensitivity of the measured optical density to the hemoglobin
concentration change in a focal region (Steinbrink et al.,
2001). In this study, L and PPF(λi) were set to 0.03 and 0.1
(Strangman et al., 2014).

ΔOD λi( ) � ϵO2HB λi( )ΔO2HB + ϵHHB λi( )ΔHHB[ ] × L × PPF λi( ).
(1)

5) Filter out physiological systemic responses. The hemodynamic
response due to neural activity has frequency content
predominantly below 0.5 Hz (in many cases around
0.1 Hz). The ΔO2Hb and ΔHHb signals were band-pass
filtered to remove cardiac and respiratory noise. According
to the Fitbit data, the subject typically had a breath and heart
rate between 11–13 bmp and 55–80 bmp, respectively, during
sleep. Hence, the cutoff frequency of the band-pass filter was
set to 0.02–0.18 Hz.

6) Remove motion artifacts. Although fNIRS is considered more
resilient to motion artifacts than EEG, abrupt head motion
such as tossing and turning in sleep may still induce spikes
that contaminate the true cortical hemodynamic signals. We
used the correlation based signal improvement (CBSI)
method (Cui et al., 2010) for motion artifacts removal.

This method is based on the observation that the ΔO2Hb
and ΔHHb signals, which are typically strongly negatively
correlated, will become more positively correlated when
contaminated with motion artifacts. Correspondingly, the
CBSI method removes motion artifact through recovering
the negative correlation between the ΔO2Hb and ΔHHb
signals.

7) Compute epoch-wise average. The effective data of each
measurement trial spanned over 90 min (generating
270,000 data points each night). The duration was
significantly longer than that of traditional fNIRS studies
where a measurement is usually at the scale of several
minutes. To efficiently analyze such huge amount of data,
we averaged the cleaned ΔO2Hb and ΔHHb signals epoch-by-
epoch at a 30-s interval. Each epoch contains 1,500 data
points. This step was compliant with the standard
procedure for sleep analysis (Iber et al., 2017). The output
time series signals are denoted as {Xn: n � 1, . . . , N} where
N � 180.

3.2 Feature Construction
We derived 36 features from the ΔO2Hb signal and 36 features
from the ΔHHb at each channel. These features fall into three
groups. The first group contains 11 time-domain features.
These features were directly extracted from the cleaned
signals.

• Descriptive statistics: mean ( �X), standard deviation (σ),
maximum (Xmax), and minimum (Xmin).

• Skewness (skew): a normalized measure of the asymmetry of
the probability distribution of a signal.

• Kurtosis (kurt): a normalized measure of the relative
importance of tails versus shoulders in causing dispersion
of a signal.

• The 5th-order moment (mmt5): a measure of the relative
importance of tails versus center in causing skew of a signal.

• Mean absolute value (MAV): the average of the absolute
value of the signal amplitude.

• Root mean square (RMS): a measure of the average power of
a signal.

• Zero crossing (ZC): the number of times the signal changes
value from positive to negative and vice versa. It can be
interpreted as a measure of the noisiness of a signal.

• Crest factor (CF): an indicator of how extreme the peaks are
in a signal.

FIGURE 3 | Pipeline for fNIRS data preprocessing.
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The second group contains two most typical frequency-
domain features. Fast Fourier transform (FFT) was applied to
convert {Xn: n � 1, 2, 3, . . . , N} from time domain to frequency
domain to extract the following two features.

• Total power (totalSpec): the sum of the spectral components
of a signal.

• Maximal power (maxSpec): the maximum amplitude of the
spectral components of a signal.

The third group contains 23 features that characterize the
nonlinear characteristics of the cortical hemodynamic signals.
Human physiological systems are dynamical systems that often
exhibit nonlinear characteristics (Goldberger and West, 1992;
Cheffer et al., 2021). Previous studies found that nonlinearities are
particularly present in the brain (Toyoda et al., 2008; Ma et al.,
2018). To extract nonlinear features, we first used Takens’ time-
delay embedding to construct a phase space representation of the
system as:

�u i( ) � x i( ), x i + τ( ), . . . , x i + τ d − 1( )( )( ), (2)

where τ is the time delay and d the embedding dimension. The
optimal value of τ and d were decided by minimizing the time-
delayed mutual information and by the false nearest neighbors
method (Kantz and Schreiber, 2003), respectively. The search
range was set to [1, 10] for τ and [2, 6] for d at an increment of 1.
The signals were then embedded using the optimal τopt and dopt.
The maximal Lyapunov exponent (MLE), Hurst exponent (HE),
and correlation dimension (CD) were computed from the
embedded ΔO2Hb and ΔHHb signals. Several nonlinear
analysis techniques were also applied to derive features,
including recurrence quantitative analysis (RQA), Poincaré
plots (PP), and detrended fluctuation analysis (DFA). Different
measures of entropy were also calculated.

The RQA computes several quantitative metrics from a
recurrence plot (RP). A RP is a visualization of the recurrence
behavior of the phase space trajectory �u(i) of a dynamical system.
Each element in the RP is calculated by the following equation:

R i, j( ) � Θ ϵ− ‖ �u i( ) − �u j( ) ‖( ), (3)

where Θ: R → (0, 1) is the Heaviside step function, ϵ is a cutoff
distance, and ‖▪‖ is the Euclidean norm. In this study, ϵ was set to
0.85. The metrics derived from a RP quantify the recurrence
behavior of a dynamic system.

Poincaré plot (PP) is a special type of RP used to quantify
self-similarity of a dynamical system. It is a scatter plot of each
pair of consecutive data points in a time series signal
(technogram), which is often in a shape of ellipse. The
minor axis (or width) of the ellipse, denoted as SD1,
reflects the level of short-term instantaneous variability.
The major axis (or length) of the ellipse, denoted as SD2,
reflects the long-term variability. PP has been widely used in
ECG analysis to help diagnose cardio abnormalities (Hoshi
et al., 2013).

The DFA method is often used to quantify the fractal scaling
properties and is useful for revealing the statistical self-similarity

of a signal (Peng et al., 1994). It has been proven particularly
useful in neurology studies (Peng et al., 1994; Hardstone et al.,
2012). The DFA first converts a signal to mean-centered
cumulative sum. The output signal is then split into epochs,
detrended, and the RMS is computed. This process is repeated
over a range of epoch sizes n at different scale. A linear trend line
is then fit to the log (RMS) − log(n) plot. The slope of the fitted
trend line, denoted by α, is called scaling exponent.

The derived nonlinear features are summarized below.

• Optimal delay (τopt).
• Optimal embedding dimension (dopt).
• Maximal Lyapunov exponent (MLE): a measure of
separation rate of a signal’s trajectories in the phase
space. It indicates the predictability of a dynamic system.
A positive maximum Lyapunov exponent is an indicator of
the presence of chaos (Eckmann and Ruelle, 1985).

• Hurst exponent (HE): a measure of long-term memory (or
long-range dependency) of a signal. A value of HE in the
range 0–0.5 indicates long-term negative autocorrelation,
while a value in the range 0.5–1.0 indicates long-term
positive autocorrelation. A value of 0.5 can indicate a
completely uncorrelated signal.

• Correlation dimension (CD): an indicator used to
distinguish deterministic chaos from stochastic processes.

• Recurrence rate (RR): the number of black dots in a RP
excluding the main diagonal line. It is a measure of the
relative density of recurrence points in the entire RP.

• Percent determinism (DET): the fraction of recurrence
points that form diagonal lines. It reports the percentage
of recurrent points in diagonal structures.

• Maximal diagonal line length (Dmax): the length of the single
longest line in the diagonal direction within an entire RP.
The smaller the Dmax, the more divergent the trajectories.

• Average diagonal line length (Davg): the average time that
two segments of the phase space trajectory are close to
each other.

• Entropy of diagonal lines lengths (ENTD): the Shannon
entropy of the frequency distribution of the diagonal line
lengths. It reflects the complexity of the deterministic
structure in the system.

• Laminarity (LAM): the histogram of lengths of vertical lines
in a RP. It reports the percentage of recurrent points in
vertical structures.

• Trapping time (TT): the average length of the vertical lines.
It indicates the mean time the system will abide at a
specific state.

• Longest vertical line length (Vmax): the maximal length of
the vertical lines in the entire RP.

• Entropy of vertical lines lengths (ENTV): the Shannon
entropy of the frequency distribution of the vertical line
lengths.

• Standard deviation of the minor axis of a PP (SD1).
• Standard deviation of the major axis of a PP (SD2).
• Ratio of SD1 and SD2 (SDratio); computed as SD1/SD2.
• Area of the fitted ellipse (Se): the area of the ellipse fitted into
the PP. It is computed as Se � π × SD1 × SD2.
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• Scaling exponent (α): the slope of the fitted trend line in
DFA, where each epoch has no overlap.

• Scaling exponent with overlap (αOL): the slope of the fitted
trend line in DFA, where each epoch has 50% overlap.

• Sample entropy (sampEn): a measure of the negative natural
logarithm of the probability that if two sets of data points of
length m have Euclidean distance D [Xm (n1), Xm (n2)] < r
(n1 ≠ n2) then two sets of data points of m + 1 also have
Euclidean distance D [Xm+1 (n1), Xm+1 (n2)] < r. In this
study, rwas set to 0.2σ. A lower value for the sample entropy
corresponds to a higher probability indicating more self-
similarity and less noise in the signal (Richman and
Moorman, 2000).

• Permutation entropy (perEn): a complexity measure that
captures the order relations between the values of a signal.
Signals with smaller perEn are more regular and
deterministic, and those with higher perEn are noisier
and more random.

• Statistical complexity (SC): the product of the normalized
permutation and a normalized version of the
Jensen–Shannon divergence between the ordinal
distribution and the uniform distribution (López-Ruiz
et al., 1995).

3.3 Feature Ranking
We proposed an original ensemble approach to rank channel-
wise hemodynamic features for each stress indicator. As
outlined in Figure 4, this approach utilized six feature
selection statistical and machine learning techniques to
generate an average importance score for each feature �ζ ,
calculated the correlation coefficient cor and the
corresponding p-value between each feature and a target
stress indicator, and performed feature pruning based on
the specified criteria. Feature ranking was performed on

ΔO2Hb and ΔHHb features separately. The six feature
selection techniques included F-test, mutual information,
multivariate linear regression, least absolute shrinkage and
selection operator (Lasso) regression, Ridge regression, and
recursive feature elimination (RFE).

The F-test and mutual information (MI) are univariate
methods that consider the relationship between each feature
and a target stress indicator individually. The F-test method
performs a hypothesis testing between a model created by just
a constant and another model created by a constant and a
hemodynamic feature, and hence reveals the significance of
each feature in improving the model. The calculated F-statistic
was used as the importance scores of features. While the
F-statistic only reflects the linear relationship between a
feature and a target stress indicator, the MI method analyzes
nonlinear relationships by calculating information gain (Estevez
et al., 2009; Ross, 2014). The MI between a hemodynamic feature
and a target stress indicator reveals the reduction in uncertainty
for the stress indicator given the known value of the feature (Ross,
2014), which was used as the importance score of features. The
multivariate linear regression (LR) method fits a linear model
with coefficients to minimize the residual between the observed
values and the predicted values of the stress indicator. The Lasso
regression and Ridge regression methods address the over-fitting
problem of linear regression through L1-regularization and L2-
regularization, respectively. In addition, the Lasso regression is
considered a very useful technique in selecting a strong subset of
features as it aggressively produces coefficients of 0 for some
features. On the other hand, the Ridge regression is suited for data
interpretation because useful features tend to have non-zero
coefficients. The α parameters were all set to 0.5 for Lasso and
Ridge regression. For the three linear regression methods, the
estimated coefficients were used as the importance scores of the
features. The RFE method selects features by recursively

FIGURE 4 | Proposed ensemble method for selecting important hemodynamic features.
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removing the weakest features until only five features are left. The
ranking position of RFE was used as the importance score.

The cortical hemodynamic features were all scaled between [0,
1] before each feature selection technique was performed. For
feature i (i ∈ Sfeature), the importance score generated by method
k, denoted by ζki (k ∈ Smethod), were also scaled between [0, 1].
For a stress indicator j (j is either cortisol, sIgA, or perceived
stress), the scores of all feature ranking methods for feature i were
then averaged to produce an average score (denoted as �ζ i,j) of
feature i. The computation of the �ζ i,j is explained in Eq. 4. We
also defined the support of feature iwith respect to stress indicator
j (denoted as supporti,j) as the number of feature selection
methods that yielded an importance score above 0.50 for
feature i. Since the �ζ only indicates the relative ranking of a
feature, we calculated the linear correlation between individual
feature and a target stress indicator (denoted as cori,j) to better
interpret the quantitative relationships. The Pearson’s correlation
analysis was performed when cortisol and sIgA were used as the
stress indicator, and Spearman’s correlation analysis was
performed when perceived stress was used as the stress
indicator. The p-values (denoted as pi,j) were calculated to
indicate the significance of the correlation coefficients at a
significance level of 0.05. The features that satisfied the
following four criteria were selected as important features: 1)
�ζ i,j > 0.50, 2) supporti,j ≥ 3, and 3) cori,j > 0.50, and 4) pi,j < 0.05.
Feature ranking was performed in a channel-wise manner and for
ΔO2Hb and ΔHHb signals separately.

�ζ i,j � 1
6

∑
k∈Smethod

ζki,j. (4)

4 RESULTS

4.1 Descriptive Statistics
In total 15 days of data were collected from the subject. As shown
in Table 2, the average level of salivary cortisol and sIgA were 3.4
nmol and 295.3 μg/ml, respectively. These values were within the
normal ranges for healthy adults (Zeier et al., 1996; Oster et al.,
2017). Perceived stress ranges from 2.0 to 8.0 with an average
score of 3.8. Only 4 out of the 15 days were rated above 5,
indicating that the subject did not perceive constant chronic
stress during the data collection experiment. A correlation
analysis found no significant linear relationship among the
three stress indicators.

4.2 PFCHemodynamic Features Associated
to Stress
Channel-wise hemodynamic features associated to stress
indicators are summarized in Table 3–8. The aggregated
frequency of each feature type is illustrated in Figure 5.
Visualization of the channels associated to each stress
indicator is provided in Figures 6, 7.

Stress was associated to features in both time and frequency
domains as well as to nonlinear features. For cortisol, the top
three associated cortical hemodynamic features of both the
ΔO2Hb and ΔHHb signals are the �X of channel 16, the
sampEn of channel 26, and the SDratio of channel 12. These
three features were supported by all six feature selection
techniques of the ensemble feature ranking algorithm. Higher
cortisol level was strongly associated to increased mean of ΔO2Hb
but decreased mean of ΔHHb at channel 26, strongly associated
to increased sample entropy of both the ΔO2Hb and ΔHHb
signals at channel 16, and moderately associated to decreased
SDratio of both the ΔO2Hb and ΔHHb signals at channel 12. With
all channels counted in, the most frequently referred feature type
was the time-domain feature �X. Five feature types were found to
be associated only to cortisol but not to the other two stress
indicators: mmt5, sampEn, PE, DET, and maxSpec.

Less channel-wise features were found to associate to sIgA.
Only two ΔO2Hb features (i.e., HE of channel 21 and SDratio of
channel 26) and one ΔHHb feature (i.e., SDratio of channel 26)
were supported by all six feature selection technique. A lower
sIgA level was moderately associated to higher values of the Hurst
exponent of the ΔO2Hb signal at channel 21 as well as increased
SDratio of both the ΔO2Hb and ΔHHb signals at channel 26. The
most frequently referred feature type for sIgA were HE, SDratio,
τopt, and ZC. In addition, ZC was associated only to sIgA but not
to the other two stress indicators.

Two time-domain features associated to perceived stress were
supported by all six feature selection methods. These two features
were also the only features that had non-zero coefficient when the
Lasso method was applied. Higher perceived stress was strongly
associated to reduced skewness of the ΔO2Hb signal and
increased crest factor of the ΔHHb signal at channel 16. The
most frequently referred feature types wereHE,MLE, and αOL. In
the meantime, α, αOL, and Xmin were the feature types specific to
perceived stress.

Figures 6, 7 demonstrated that channel 3 (optode pair Tx3-
Rx1), 16 (Tx6-Rx5), 20 (Tx9-Rx6), 21 (Tx5-Rx7), and 26 (Tx9-
Rx8) were the most relevant channels. The features of both the

TABLE 2 | Descriptive statistics of stress indicators.

Mean SD Range corps1 pps
2 corsIgA3 psIgA

4

Cortisol (nmol) 3.4 3.3 1.5–13.2 −0.05 0.855 −0.38 0.144
sIgA (μg/ml) 295.3 163.0 89.7–674.1 0.17 0.528 — —

Perceived stress 3.8 1.6 2.0–8.0 — — — —

1Correlation coefficient to perceived stress.
2p-value of the correlation coefficient to perceived stress.
3Correlation coefficient to sIgA.
4p-value of the correlation coefficient to sIgA.
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ΔO2Hb and the ΔHHb signals at channel 16 were strongly
associated to all three stress indicators. Channel 20 had similar
relevance but with only moderate associations. The features of the
ΔO2Hb signals at channels 3 and 21 were moderately associated
to all three stress indicators. In addition, the features of both the
ΔO2Hb and the ΔHHb signals at channel 26 were moderately
associated to both cortisol and sIgA.

5 DISCUSSION

This pilot study demonstrated the feasibility of investigating
stressed brain during sleep by configuring a digital ecosystem
with wearable/portable devices and mobile applications. The
sleep data collected with Fitbit Sense provided information on
sleep start time, and the heart and breath rate data facilitated
personalized filtering of the fNIRS signals. The use of mobile
applications such as the HealthLog app can also help reduce the
burden of manual log, and thus is likely to improve subjects’
adherence to the study protocol. We do not intend to draw

conclusions due to the pilot nature of the study; instead, we
discuss several observations that may inspire future studies in the
same direction.

Stress can be measured along multiple dimensions using
several indicators. In this study, we measured salivary cortisol,
sIgA, and collected subjective ratings on perceived stress. The
correlation analysis revealed that while some features derived
from the cortical hemodynamic signals associated with all stress
indicators, others may be specific to only one or two stress
indicators. The analysis showed that the brain activity may be
characterized using various features derived from the
hemodynamic signals. Time-domain features, frequency-
domain features, and nonlinear features all showed promise.
Taken together, the top five most frequently referred feature
types were Hurst exponent, mean, the ratio of the major/minor
axis standard deviation of a Poincaré plot, statistical complexity,
and crest factor. Breaking down into individual stress indicator,
the mean of the cortical hemodynamic signals is the most
frequently referred feature type for cortisol. This coincides
with the fact that most studies that rely on cortisol as the

TABLE 3 | Channel-wise ΔO2Hb features associated to salivary cortisol.

ChID1 Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 mean 1.00 1.00 1.00 1.00 1.00 0.91 0.99 6 0.99 0.001
26 sampEn 1.00 0.85 1.00 1.00 1.00 1.00 0.97 6 0.71 0.032
12 SDratio 1.00 0.63 0.78 1.00 1.00 1.00 0.90 6 −0.59 0.045
8 PE 1.00 0.54 0.46 1.00 0.93 0.97 0.82 5 −0.55 0.027
14 mmt5 1.00 0.32 0.81 1.00 1.00 0.57 0.78 5 0.76 0.001
20 SC 1.00 0.21 0.52 1.00 1.00 0.89 0.77 5 0.52 0.038
3 CF 0.97 0.99 0.38 0.00 1.00 1.00 0.72 4 −0.56 0.045
10 mean 1.00 0.03 1.00 0.00 1.00 1.00 0.67 4 −0.81 0.004
5 DET 0.78 0.77 0.25 1.00 0.16 0.94 0.65 4 −0.69 0.003
21 skew 1.00 0.00 0.34 1.00 0.55 1.00 0.65 4 0.54 0.045
8 dopt 0.86 1.00 0.35 0.00 0.67 0.94 0.64 4 −0.52 0.038
19 mmt5 1.00 0.00 0.81 0.00 0.85 1.00 0.61 4 −0.53 0.034
11 HE 1.00 0.01 0.58 0.00 0.95 1.00 0.59 4 −0.67 0.016
11 SDratio 0.74 0.76 0.16 0.00 0.99 0.54 0.53 4 −0.62 0.033

1Channel ID.

FIGURE 5 | Frequency of associated feature types summed across all channels.
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stress indicator solely characterize the cortical hemodynamic
patterns using the mean of the ΔO2Hb and the ΔHHb signals.
On the other hand, nonlinear features of the hemodynamic
signals could be more useful when sIgA and perceived stress
are used as stress indicators. Four feature types had the same
highest frequency for sIgA: Hurst exponent, major/minor axis
standard deviation ratio of the Poincaré plot, optimal delay,
and zero crossing. For perceived stress, Hurst exponent,
maximal Lyapunov exponent, and over lapped α in DFA
were the most frequently referred feature types. It is also

found that the time-domain features (e.g., mean) derived from
theΔO2Hb signals and those from theΔHHb signals demonstrated
opposite correlation directions to stress indicators, whereas the
nonlinear features (e.g., Hurst exponent, correlation dimension,
and statistical complexity) derived from the two cortical
hemodynamic signals demonstrate the same correlation
direction. While the two hemodynamic signals share some
common important features, each one also contributed unique
features. This suggests the necessity of consider both signals when
investigating braining activity using fNIRS, which provides support

FIGURE 6 | Visualization of channels associated to ΔO2Hb on the optode template. Stress indicator is (A) cortisol, (B) sIgA, and (C) perceived stress, respectively.

FIGURE 7 | Visualization of channels associated to ΔHHb on the optode template. Stress indicator is (A) cortisol, (B) sIgA, and (C) perceived stress, respectively.
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to the argument made in previous studies (Tachtsidis and
Scholkmann, 2016). It is also worth mentioning that the time-
domain and frequency-domain features have the merit of their

interpretability, whereas some nonlinear features such as the Hurst
exponent and the optimal delay may hinder straightforward
interpretation.

TABLE 4 | Channel-wise ΔHHb features associated to salivary cortisol.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

26 sampEn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6 0.71 0.032
16 mean 1.00 0.80 1.00 1.00 1.00 1.00 0.97 6 −0.99 0.002
12 SDratio 1.00 0.69 0.60 1.00 1.00 0.83 0.85 6 −0.59 0.045
15 HE 1.00 0.91 0.46 1.00 0.88 0.37 0.77 4 0.54 0.030
8 PE 1.00 0.34 0.58 1.00 0.86 0.66 0.74 5 −0.55 0.027
10 mean 1.00 0.40 1.00 0.00 1.00 1.00 0.73 4 0.71 0.020
9 dopt 1.00 0.20 0.58 1.00 0.47 1.00 0.71 4 0.57 0.022
13 mean 1.00 1.00 0.91 0.00 1.00 0.34 0.71 4 −0.63 0.009
11 HE 1.00 0.36 0.89 0.00 1.00 0.91 0.69 4 −0.76 0.004
20 SC 1.00 0.11 0.30 1.00 1.00 0.69 0.68 4 0.52 0.038
24 kurt 0.77 0.81 0.11 1.00 0.45 0.77 0.65 4 −0.54 0.031
21 skew 1.00 0.31 0.63 0.00 0.64 1.00 0.60 4 −0.59 0.026
6 mmt5 1.00 0.65 0.37 0.00 0.83 0.69 0.59 4 0.68 0.004
19 CF 1.00 0.50 0.38 0.00 0.50 1.00 0.57 4 0.55 0.027
8 dopt 0.86 0.74 0.25 0.00 0.62 0.86 0.56 4 −0.52 0.038
14 maxSpec 0.64 0.14 0.14 1.00 0.54 0.54 0.50 4 0.69 0.003

TABLE 5 | Channel-wise ΔO2Hb features associated to salivary sIgA.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

21 HE 1.00 0.81 1.00 1.00 1.00 1.00 0.97 6 −0.58 0.029
26 SDratio 1.00 0.62 1.00 1.00 1.00 1.00 0.94 6 −0.69 0.041
7 MLE 1.00 0.00 0.95 1.00 1.00 1.00 0.82 5 0.55 0.029
16 ZC 0.17 0.75 1.00 1.00 1.00 1.00 0.82 5 −0.97 0.005
16 τopt 1.00 0.75 0.86 0.35 0.82 1.00 0.80 5 1.00 0.000
3 HE 1.00 1.00 0.22 0.03 1.00 0.83 0.68 4 −0.61 0.027

TABLE 6 | Channel-wise ΔHHb features associated to salivary sIgA.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

26 SDratio 1.00 0.55 1.00 1.00 1.00 1.00 0.93 6 −0.69 0.041
16 τopt 1.00 0.75 0.91 0.31 0.86 1.00 0.81 5 1.00 0.000
8 CD 1.00 0.85 0.66 0.47 1.00 0.74 0.79 5 −0.50 0.047
16 ZC 0.17 0.75 0.81 1.00 1.00 1.00 0.79 5 −0.97 0.005
20 dopt 0.79 1.00 0.41 0.42 0.60 0.91 0.69 4 −0.59 0.017
20 SC 1.00 0.63 0.32 0.49 1.00 0.69 0.69 4 −0.63 0.009

TABLE 7 | Channel-wise ΔO2Hb features associated to perceived stress.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 skew 1.00 0.58 1.00 1.00 1.00 1.00 0.93 6 −0.89 0.041
23 MLE 1.00 1.00 1.00 0.00 1.00 1.00 0.83 5 0.86 0.003
12 α 0.94 0.98 0.64 0.00 0.86 1.00 0.74 5 0.69 0.013
12 αOL 1.00 1.00 0.61 0.00 1.00 0.80 0.73 5 0.74 0.006
1 CD 1.00 1.00 0.39 0.00 1.00 0.97 0.73 4 0.57 0.032
18 mean 1.00 0.20 1.00 0.00 1.00 1.00 0.70 4 −0.62 0.010
20 HE 1.00 0.92 0.48 0.00 1.00 0.74 0.69 4 0.58 0.018
3 CF 1.00 1.00 0.29 0.00 1.00 0.80 0.68 4 0.62 0.025
21 τopt 1.00 1.00 0.13 0.00 0.82 0.71 0.61 4 0.73 0.003
9 SC 1.00 0.00 0.78 0.00 0.99 0.69 0.58 4 0.51 0.042
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This study also generated preliminary observations on the sub-
regions in the PFC associated to stress. The left rostral prefrontal
cortex (channel 16; optode pair Tx6-Rx5), or RLPFC for short, is
undoubtedly the most relevant sub-region. Significantly strong
correlations were found between the hemodynamic features
derived at this sub-region and all three stress indicators. The
specific features selected at channel 16 varied depending on the
target stress indicator. Higher cortisol level (indicating stronger
stress response) was associated to increased mean ΔO2Hb and
decreased mean ΔHHb. Lower sIgA level (indicating stronger
stress response) was associated to higher levels of noisiness in
the ΔO2Hb and ΔHHb signals characterized by increased zero
crossing. Higher perceived stress level was associated to increased
symmetry in the ΔO2Hb signal and higher peak in the ΔHHb
signal. The dorsolateral prefrontal cortex (DLPFC) was also a
relevant cortical area. The area of mid-DLPFC (channel 3;
optode pair Tx3-Rx1) and caudal-DLPFC (channel 20; optode
pair Tx9-Rx6) both demonstrated significant and moderate
associations to all three stress indicators. In the case of the
caudal-DLPFC (channel 20), consistent relationships were found
between stress and a same feature: the statistical complexity of the
ΔHHb signal. In contrast, a ΔO2Hb feature at the mid-DLPFC
(channel 3) correlates differently to different stress indicators. To
be more specific, lower crest factor of the ΔO2Hb signal at channel
3 was associated to higher cortisol level (indicating stronger

hormonal stress response) but at the same time higher sIgA
level (indicating weaker immunological stress response). Rather
than viewing this as contradictory, an alternative interpretation
could be that different stress indicators characterize different facets
of the human stress response, suggesting the necessity of using
multiple indicators in stress studies. The relevance of the DLPFC in
stress response of healthy subjects during wake time has been
documented in previous stress studies using near-infrared
spectroscopy (NIRS) technique (Yang et al., 2007; Yanagisawa
et al., 2011; Rosenbaum et al., 2018; Schaal et al., 2019). Table 9
summarizes the experiment protocols and the main findings of
these studies, which were all conducted when subjects were awake
and were engaged in cognitive tasks. Our findings provide
supplementary support to the within-person role of the DLPFC
in processing stress during sleep. In addition, the preliminary result
shed light on the possible role of the RLPFC, especially the left
RLPFC, in processing stress during sleep. On the other hand, no
relevance was found in the ventrolateral prefrontal cortex
(VLPFC). While (Yanagisawa et al., 2011) found negative
association between the activity in the VLPFC and the
subjective ratings on social pain (which was induced by a
feeling of social isolation), our finding suggests that this region
may not be involved in processing daily life stress during sleep.

The preliminary findings should be interpreted with caution
due to the strong limitations of the present study. First, while the

TABLE 8 | Channel-wise ΔHHb features associated to perceived stress.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 CF 1.00 0.80 0.98 1.00 1.00 1.00 0.96 6 0.89 0.041
12 α 1.00 0.91 1.00 0.00 1.00 1.00 0.82 5 0.69 0.013
23 MLE 1.00 1.00 1.00 0.00 1.00 0.94 0.82 5 0.79 0.011
1 CD 1.00 1.00 0.81 0.00 1.00 1.00 0.80 5 0.62 0.019
16 kurt 0.52 1.00 1.00 0.00 0.84 1.00 0.73 5 0.89 0.041
12 αOL 1.00 0.94 0.52 0.00 0.96 0.86 0.71 5 0.72 0.008
9 MLE 0.92 1.00 0.36 0.00 0.92 0.94 0.69 4 0.50 0.047
10 Xmin 1.00 1.00 0.55 0.00 0.58 0.89 0.67 5 0.70 0.024
24 αOL 1.00 0.00 1.00 0.00 1.00 1.00 0.67 4 0.52 0.039
25 HE 1.00 0.72 0.47 0.00 1.00 0.69 0.65 4 0.58 0.018
20 HE 1.00 0.59 0.53 0.00 1.00 0.66 0.63 5 0.54 0.031
9 SC 1.00 0.00 0.76 0.00 1.00 1.00 0.63 4 0.51 0.042

TABLE 9 | Comparison of Experiment Protocols and Main Findings of Previous Daytime fNIRS Stress Studies and the Current In-sleep fNIRS Stress Study.

Study Stress induction Stress indicators Main findings

Yang et al. (2007) Negative pictures None Increased activity in the PFC among females of the experiment group
Yanagisawa et al.
(2011)

Cyberball task Subjective rating on social pain Decreased activity in the VLPFC

Rosenbaum et al.
(2018)

Trier Social Stress Test
(TSST)

Cortisol1, heart rate, subjective
stress rating

Positive association between the activity in the right DLPFC and cortisol response;
positive association between the activity in the bilateral DLPFC and subjective
stress rating

Schaal et al. (2019) Maastricht Acute Stress
Test (MAST)

Cortisol, heart rate, subjective
stress rating

Increased activity in the left DLPFC and the bilateral orbitofrontal cortex (OFC)
during the mental arithmetic task; decreased activity in the left DLPFC during the
hand immersion task

This study Naturalistic daily life
stressors

Cortisol, sIgA, subjective stress
rating

Positive association between the activity in the right caudal-DLPFC, the left RLPFC
and cortisol response; positive association between the activity in the caudal-
DLPFC and subjective stress rating

1Refers to salivary cortisol unless otherwise specified.
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idiographic N-of-1 approach adopted in this study represents a
true scientific undertaking (Barlow and Nock, 2009), the
preliminary findings solely hold for this specific subject.
Future studies may conduct the longitudinal measurement on
more subjects to identify possible common patterns across
subjects. Second, the data analysis protocol in this study did
not count in the interplay among different channels nor the
confounding effect of different sleep stages. Analyzing the
orchestration of the cortical hemodynamic signals from a
dynamic network perspective may leads to new insights into
how the brain responds to stress during sleep. Furthermore, this
study only focused on the activity in the PFC area in the first sleep
cycle. The potential role of other cortical areas in stress response
during a full course of sleep demands further studies.
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Physical, social and cognitive activation is an important cornerstone in

non-pharmacological therapy for People with Dementia (PwD). To support long-term

motivation and well-being, activation contents first need to be perceived positively.

Prompting for explicit feedback, however, is intrusive and interrupts the activation flow.

Automated analyses of verbal and non-verbal signals could provide an unobtrusive

means of recommending suitable contents based on implicit feedback. In this study, we

investigate the correlation between engagement responses and self-reported activation

ratings. Subsequently, we predict ratings of PwD based on verbal and non-verbal signals

in an unconstrained care setting. Applying Long-Short-Term-Memory (LSTM) networks,

we can show that our classifier outperforms chance level. We further investigate which

features are the most promising indicators for the prediction of activation ratings of PwD.

Keywords: dementia, activation, rating prediction, engagement, LSTM

1. INTRODUCTION

Dementia describes a syndrome that is characterized by the loss of cognitive function and
behavioral changes. This includes memory, language skills, and the ability to focus and pay
attention (WHO, 2017). It has been shown that the physical, social, and cognitive stimulation
of People with Dementia (PwD) has significant positive effects on their cognitive functioning
(Spector et al., 2003; Woods et al., 2012) and can lead to a higher quality of life (Schreiner
et al., 2005; Cohen-Mansfield et al., 2011). It is furthermore often (implicitly) assumed, that
activation contents need to be perceived positively to help maintain long-term motivation and
well-being. This can be supported by a recommender system that suggests appropriate activation
contents. Here, an activation content is defined as a stimulus of a certain type (image gallery,
video, audio, quiz, game, phrase or text) on a certain topic, e.g. gardening, sports, or animals
to cognitively, socially, or physically activate PwD and which aims for the general maintenance
or enhancement of the according functions (Clare and Woods, 2004). However, prompting for
explicit user feedback is intrusive as it disturbs the activation flow. Studies have shown that verbal
and non-verbal signals can be promising indicators for the internal states of healthy individuals
(Masip et al., 2014; Tkalčič et al., 2019). Even PwD who might suffer from blunted affect or aphasia,
might remain able to provide verbal and non-verbal signals throughout all stages of the disease
(Steinert et al., 2021). For this study, we use the I-CARE dataset (Schultz et al., 2018, 2021) which
consists of verbal and non-verbal signals of PwD who used a tablet-based activation system over
multiple sessions in an unconstrained care setting. Previous studies have already investigated the
recognition of engagement of PwD (Steinert et al., 2020, 2021), which is defined as “the act of
being occupied or involved with an external stimulus” (Cohen-Mansfield et al., 2009). Here, we
explicitly consider the argument that activation contents should not only be engaging but also need
to be perceived positively to maintain long-term motivation and well-being. In this study, we thus
first investigate the correlation between engagement responses and self-reported activation ratings.
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Second, we analyze if self-reported activation ratings of PwD
can be predicted based on verbal and non-verbal signals.
Third, we explore the permutation-based feature importance of
our classifier to generate hypotheses about possible underlying
mechanisms. Last, we discuss the unique challenges involved
with predicting activation ratings of elderly PwD. To the best of
our knowledge, there are no prior studies that have investigated
the prediction of activation ratings of PwD based on verbal and
non-verbal signals.

2. RELATED WORKS

Research into the preservation of cognitive resources of PwD
has a long history. A number of studies have investigated the
effects of activation on perceived well-being, affect, engagement,
and other affective states. However, detecting and interpreting
the verbal and non-verbal signals of PwD can be particularly
challenging due to the broad range of deleterious effects of
aphasia or blunted affect on communication (Jones et al., 2015;
WHO, 2017). In this section, we will (1) provide an overview
of different non-pharmacological interventions that target the
activation of PwD and (2) highlight relevant research into the
production of (interpretable) verbal and non-verbal signals of
PwD.

Over 20 years ago, Olsen et al. (2000) introduced “Media
Memory Lane,” a system that provides nostalgic music and
videos to elicit long term memory stimulation for people with
Alzheimer’s Disease (AD). An evaluation of this system with
15 day care clients showed positive effects on engagement,
affect, activity-related talking, and reduced fidgeting. Astell
et al. (2010) evaluated the Computer Interactive Reminiscence
and Conversation Aid (CIRCA) system, a touch screen
system that presents photographs, music and video clips to
enhance the interaction between PwD and caregivers. Their
study demonstrated significant differences in verbal and non-
verbal behavior when comparing the system with traditional
reminiscence therapy sessions. Smith et al. (2009) produced
audiovisual biographies based on photographs and personally
meaningful music in cooperation with families of PwD. They
further used a television set and a DVD player as a familiar
interface for their participants. Several studies have also proposed
music as a promising factor in non-pharmacological approaches
(Spiro, 2010). Accordingly, Riley et al. (2009) introduced a
touch screen system that allows PwD to create music regardless
of any prior musical knowledge. Evaluating the system in
three pilot studies, the authors reported engagement in the
activity for all participants. Manera et al. (2015) developed a
tablet-based kitchen and cooking simulation for elderly people
with mild cognitive impairment. After four weeks of training,
most participants rated the experience to be interesting, highly
satisfying, and as eliciting more positive than negative emotions.
Together, these findings underline the positive effects of non-
pharmacological interventions for PwD, as well as for their
(in)formal caregivers.

Asplund et al. (1995) investigated affect in the facial
expressions of four severe demented participants during activities

such as morning care or playing music. The authors compared
unstructured judgements of facial expressions with assessments
using the Facial Action Coding System [FACS, Ekman et al.
(2002)] and showed that while facial cues become sparse and
unclear, they are still interpretable to a certain degree. Mograbi
et al. (2012) conducted a study with 22 participants with
mild to moderate dementia who watched films for emotion
elicitation. The authors manually annotated facial expressions,
namely happiness, surprise, fear, sadness, disgust, anger, and
contempt of the PwD and the controls. While they reported
little difference in their production, PwD showed a narrower
range of expressions which were less intense. This is in line with
other studies that report that PwD may suffer from emotional
blunting (Kumfor and Piguet, 2012; Perugia et al., 2020). To
examine the quality and the decrease of emotional responses of
PwD, Magai et al. (1996) conducted a study with 82 PwD with
moderate or severe dementia and their families. Two research
assistants were trained tomanually code the participants’ affective
behavior, namely interest, joy, sadness, anger, contempt, fear,
disgust, and knit brow expressions. Their results suggest that
emotional expressivity, however, may not vary much depending
on the stage of the disease.

Another important modality for the recognition of affective
states is speech (Schuller, 2018). Nazareth (2019) demonstrated
that lexical and acoustic features can be used to predict emotional
valence in spontaneous speech of elderly. However, research
has shown that speech also undergoes disease-related changes
in dementia, e.g. impairments in the production of prosody
(Roberts et al., 1996; Horley et al., 2010). This is particularly
pertinent in frontotemporal dementia (Budson and Kowall,
2011).

Overall, there seems to be no strong direct link between the
ability to produce (interpretable) verbal and non-verbal signals
of emotions and the stage of the disease. It rather appears to be
a combination of multiple factors such as the dementia type, co-
morbidities, medication, and personality. Also, the context seems
to play a role. Lee et al. (2017) showed that social and verbal
interactions increase positive emotional responses. Notably even
the merely implicit presence of a friend has been shown to be
sufficient for eliciting this effect in healthy adults (Fridlund,
1991). Thus, emotional expressiveness appears to be extremely
sensitive to contextual factors, and PwD might stand to benefit
from such factors.

3. DATA COLLECTION

3.1. I-CARE System
The dataset used in this study was collected with the I-CARE
system. I-CARE is a tablet-based activation system that is
designed to be jointly used by PwD and (in)formal caregivers.
The system is mobile and can be used at any location with
and internet connection. It provides 346 user-specific activation
contents (image galleries, videos, audios, quizzes, games, phrases
and texts) on various topics such as gardening, sports, baking, or
animals. The system also allows for the uploading of one’s own
contents to put more emphasis on biographical work (Schultz
et al., 2018, 2021). At the same time, it allows for a multimodal
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FIGURE 1 | The left figure shows two participants and one instructor from a

project partner, who explains the procedure. The right figure shows two

participants during an activation session (©AWO Karlsruhe).

data collection using the tablet’s camera and microphone to
capture video (30 FPS) and audio signals (16 kHz), respectively.
The tablet used in the present work was a Google Pixel C
(10.2-inch display) or Huawei MediaPad M5 (10.8-inch display).
Figure 1 shows exemplary how an activation session could look
like.

3.2. Experimental Setting
The data collection for this study was conducted in different
care facilities in Southern Germany as a part of the I-CARE
project (Schultz et al., 2018, 2021). Participants of the study were
PwD who fulfilled the clinical criteria for dementia according
to the ICD-10 system (Alzheimer dementia, vascular dementia,
frontotemporal dementia, Korsakoff’s syndrome, or Dementia
Not Otherwise Specified) ranging from mild to severe, and their
(in)formal caregivers. All participants provided written consent
and there was no financial compensation. For this study, a setup
with minimal supervision and setup requirements was selected
with activation sessions taking place in private rooms or in
commonly used spaces in the care facilities. The tablet was placed
on a stand in front of the participant with dementia so that their
face was well-aligned with the field of view of the tablet camera.

At the beginning of each session, the system enquired about
the daily well-being (“How are you today?”) of the PwD using
a smiley rating scale (positive, neutral, negative). Next, the
system’s recommender system suggested four different activation
items, based on interests, personal information of the PwD, and
previous ratings. The system also provided the opportunity to
search for specific contents and view an activation history. Next,
the PwD chose the activation content, e.g. an image gallery on
baking, a video on gardening and so on. After each activation,
the system asked the PwD for a rating of how well they liked
the activation (“Did you enjoy the content?”), again, on a smiley
rating scale (positive, neutral, negative). Figure 2 shows the
thumbnail images of four activation recommendations (left) and
the rating options after the activation (right). Following the
smiley rating, the system went directly back to the overview with
recommended activation contents. Here, the PwD could decide
whether or not to continue with another activation. Usually,
activation sessions consisted of multiple individual activations.

The dataset used in this study consists of 187 activation
sessions comprising 804 individual activations and,

correspondingly, 804 activation ratings. These sessions cover
25 PwD (gender: 15 f, 10m; age: 58–95 years, M: 82.4 years,
SD: 9.0 years; dementia stage: 8mild-moderate, 5 severe,
12 unspecified). Individual participants contributed with
different number of sessions (M = 7.48, SD = 2.42, Min = 2,
Max = 12).

4. METHODS

4.1. Rating Measurement
Self-reported activation ratings of the PwD were collected using
an smiley rating scale (positive, neutral, negative) at the end
of each activation. Figure 3 shows the distribution of activation
ratings for the participants individually and in total. The colors
correspond to the rating (positive = green, neutral = yellow,
negative = red). It is evident that activation contents were more
frequently perceived as positive than neutral or negative by most
participants. A Kruskal-Wallis test shows that these differences
are statistically significant (H = 54.571, p < 0.001). Accordingly,
investigating the class distribution across all participants provides
a similar picture (positive= 68.23%, neutral= 25.46%, negative
= 6.3%). This demonstrates that the activation contents were
mostly perceived positively.

4.2. Engagement Analysis
While effective activation contents are typically perceived as
positive, not all positive contents are likely to be highly engaging.
Furthermore, activation contents will only be effective in the
long run if they succeed in engaging PwD. Thus, predicting
engagement from verbal and non-verbal signals can be regarded
as a separate challenge. As shown by previous work (Steinert
et al., 2020, 2021), engagement can indeed be automatically
recognized from verbal and non-verbal signals. Engagement
in I-CARE was annotated retrospectively based on audio-
visual data using the “Video Coding-Incorporating Observed
Emotion” (VC-IOE) protocol (Jones et al., 2015) by two
independent raters. We computed Cohen’s Kappa (κ) between
both raters after intensive training on six random test sessions
to evaluate inter-rater reliability. The VC-IOE defines different
engagement dimensions which were evaluated separately. These
are emotional (κ = 0.824), verbal (κ = 0.783), visual (κ =

0.887), behavioral (κ = 0.745), and agitation (κ = 0.941) 1. To
obtain the level of engagement for each activation content, we
calculated an engagement score by summing up the number of
positive engagement outcomes per dimension over all frames
of an activation content, divided by the total number of frames
covering that activation.

Figure 4 shows the distribution of engagement scores with
regards to the self-reported activation ratings of the participants.
A Kruskal-Wallis test demonstrated a statistically significant
difference (H = 7.199, p < 0.05) in the group means between
the negative (M = 0.75, SD = 0.56), the neutral (M = 0.78, SD

1The VC-IOE further suggests collective engagement as a dimension which

is defined as “Encouraging others to interact with STIMULUS. Introducing

STIMULUS to others.” (Jones et al., 2015).We interpreted “others” as third persons

who did not originally take part in the session. As collective engagement was not

apparent in this dataset, we dismissed this dimension.
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FIGURE 2 | User interface of the I-CARE system. The left figure shows the activation recommendations (top left: memory game, top right: image gallery, bottom left:

video, bottom right: phrase). The right figure illustrates the rating options after the activation.

FIGURE 3 | Rating distribution for individual participants (left) and in total (right) grouped based on their dementia stage. Bar colors correspond to the ratings

(positive = green; neutral = yellow; negative = red). Positive ratings significantly outweigh neutral and negative ratings (H = 54.571, p < 0.001).

= 0.51) and the positive class (M = 0.89, SD = 0.47), indicating
a small effect of slightly more evidence for engagement toward
positively evaluated activations compared to more negatively
perceived contents. Similarly, a Spearman rank correlation
analysis (ρ = 0.094, p < 0.001) showed a significant but small
correlation between the engagement score and the rating of
individual activation contents.

4.3. Multimodal Features
Human affective behavior and signaling is multimodal by nature.
Thus, it can only be fully interpreted by jointly considering
information from different modalities (Pantic et al., 2005). We
argue that this is especially valid for PwD in an unconstrained
care setting because PwD might suffer from aphasia or blunted
affect (Kumfor and Piguet, 2012; Perugia et al., 2020). As
individual channels begin to degrade, compensation by other
channels is well-known to become more important. However,

PwDmay not only face greater challenges when decoding signals
from by their interaction partners (receiver role) - but also
with respect to clearly encoding their own socio-emotional
signals in any individual channel (sender role). The Signal-
to-Noise Ratio (SNR) can also be low for some modalities
due to (multiple) background speakers, room reverberation or
adverse lighting conditions. Accordingly, we use video-based
features (OpenFace, OpenPose, and VGG-FACE) and audio-
based (ComParE, DeepSpectrum) features, for the prediction of
activation liking of PwD.

4.3.1. Video

The face is arguably the most important non-verbal source
for information about another person’s affective states (Kappas
et al., 2013) and can provide information about affective states
throughout all stages of dementia (see section 2). Here, we use
the video signal captured with the tablet’s camera to detect,
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FIGURE 4 | Distribution of engagement scores with regards to the

self-reported activation ratings (negative, neutral, positive). There are

statistically significant difference (H = 7.199, p < 0.05) in the group means

between the negative (M = 0.75, SD = 0.56), the neutral (M = 0.78, SD =

0.51) and the positive class (M = 0.89, SD = 0.47). Outliers were not removed

from further analyses. The * symbol indicates the arithmetic mean.

align, and crop faces from the participants with dementia. From
these pre-processed video frames, we extract facial features,
namely the (binary scaled) presence of 18 and the (continuously
scaled) intensity of 17 Action Units (AUs)2 ranging from 0
to 5, the location and rotation of the head (head pose), and
the direction of eye gaze in world coordinates using OpenFace
2.0 (Baltrusaitis et al., 2018). In the same vein, we extract
skeleton features using OpenPose (Cao et al., 2019) to calculate
relevant features, namely the distance between shoulders, eyes,
ears, hands to nose, and the visibility of the hands. Last, we
apply transfer learning using the pre-trained VGG-Face network
(Parkhi et al., 2015). We retrained the network for five epochs
using the FER2013 dataset with stochastic gradient descent, a
learning rate of 0.0001, and a momentum of 0.9. Next, all video
frames are rescaled to 224x224 pixels to match the input size
of the Convolutional Neural Network (CNN), and normalized
by subtracting the mean. The feature vectors for each video
frame is the extracted from the fc6 layer of the network. Overall,
concatenating the feature vectors from all feature extractors leads
to a 4138-dimensional feature vector for each video frame.

4.3.2. Audio

The recognition of affective states from speech is also a
highly active research area (Akçay and Oǧuz, 2020). While
previous research has shown that speech undergoes disease-
related changes in dementia, e.g. impairments in the production
of prosody (Roberts et al., 1996; Horley et al., 2010), recent
studies suggest that speech of PwD may still help to improve
the automatic recognition of engagement (Steinert et al., 2021).
We first apply denoising on all raw audio files recorded

2AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14, AU15,

AU17, AU20, AU23, AU25, AU26, AU45. For AU28, OpenFace only provides

information about whether the AU is present.

with the tablet’s microphone to remove stationary and non-
stationary background sounds, and to enhance participant’s
speech (Defossez et al., 2020). From the denoised audios,
we extract the 2013 Interspeech Computational Paralinguistics
Challenge features set (ComParE) using OpenSMILE (Eyben
et al., 2010, 2013).We extract audio frame-wise (60ms frame size;
10ms steps) frequency, energy, and spectral related Low-Level
Descriptors (LLD) which leads to a 130-dimensional feature
vector (65 LLDs + deltas) for each step of 10ms. Next, we create
mel spectrograms using Hanning windows (512 samples size,
256 samples steps). We forward spectrograms (227x227 pixels,
viridis colormap) to the pre-trained CNN AlexNet to receive
bottleneck features from the fc7 layer which results in a 4096-
dimensional feature vector (Amiriparian et al., 2017).

4.4. Data Pre-processing
To take interpersonal and intrapersonal variations into account,
we scale each feature to a range between zero and one.We assume
that the verbal and non-verbal signals from the time interval
shortly before the rating are likely to be most diagnostic for
the subsequent activation rating. Correspondingly, we consider
the 30 s of verbal and non-verbal signals before the rating was
provided. Next, we slice features into 1 s segments with 25%
overlap and assign each segment to the corresponding rating
label. Due to the class imbalance (see Figure 3), we combine the
neutral and negative classes to formulate a two-class prediction
problem. This seems reasonable as especially the prediction
of positively perceived activation contents is relevant for an
individual’s well-being and motivation (Cohen-Mansfield, 2018).
These pre-processed and labeled feature sequences are then
forwarded to the classifier.

4.5. Prediction and Evaluation
The applied prediction approach is based on Long-Short-Term-
Memory (LSTM) networks which allow for the preservation of
temporal dependencies. This is especially important as verbal
and non-verbal signals such as speech or facial expressions are
subject to continuous change, especially in interactive activation
sessions. Due to the different sampling rates of the feature sets
of video and audio features (ComParE and DeepSpectrum), the
classifier consists of three different input branches. Each input
branch consists of a CNN layer (filter size = 256, 64, 256)
followed by aMaxPooling layer (pool size= 3, 5, 3). Next, outputs
are forwarded to an LSTM layer (units = 512, 64, 512). The
three resulting context vectors are concatenated and passed to
a Dense layer (units = 256) followed by the output layer (units
= 2) with a Softmax activation function which outputs the class
prediction. Figure 5 shows the proposed system architecture. For
regularization, we use a dropout rate of 0.3 in the LSTM layers
and after the concatenation layer. We train the model for 50
epochs with a batch size of 16. We use a cross-entropy loss
function and Adam optimizer with a learning rate of 0.001. To
retrieve the overall rating prediction from individual segments,
we apply majority voting. We apply a session-independent model
evaluation through 10-fold cross-validation on session level
where individual folds contain multiple sessions (18–19) and,
thus, multiple activation ratings (67–87) ranging from negative
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FIGURE 5 | Overview of our proposed prediction model.

to positive. Based on this approach, the proposed system learns
behavioral characteristics elicited through subjective activation
likings of multiple participants for inference on unseen sessions.
The performance of our approach is compare to chance level. We
select Unweighted Average Precision, Recall and F1-Score as the
evaluation metrics as they are particularly suitable for unevenly
distributed classes. To test for statistical significance between our
model and the baseline, i.e. chance level, we apply a McNemar
Test.

4.6. Permutation-Based Feature
Importance
Explainable artificial intelligence has become an important
research field in recent years (Linardatos et al., 2021). Knowing
about the underlying mechanisms behind the predictions
of black-box classifiers such as neural networks helps to
understand and interpret their output. Accordingly, we compute
permutation-based feature importances to investigate the
importance of individual features for the prediction results
(Molnar, 2020). For this, we break the association between
individual features and labels by shuffling each feature sequence
and adding random noise. For particularly relevant features,
this should increase the model’s prediction error, i.e. the cross-
entropy loss (Kuhn and Johnson, 2013; Molnar, 2020). This
is especially useful because it (1) provides insights into which
verbal and non-verbal signals are relevant for the prediction of
activation rating/ liking of PwD and allows for comparison with
healthy individuals, and (2) it can help reveal irrelevant features,
which can then be removed to decrease model complexity and
computational costs.

5. RESULTS AND DISCUSSION

Table 1 shows the prediction results as the M and SD, Precision,
Recall and F1-Score for each class individually and as an
unweighted average over all folds. It is apparent that the model
is especially capable of correctly predicting the positive class. A
possible explanation for this may be the imbalance toward this

TABLE 1 | Prediction results based on the session-independent 10-fold

cross-validation on session level.

Class Precision Recall F1-Score

Pos. 0.726 (0.096) 0.754 (0.209) 0.729 (0.127)

Neu./ Neg. 0.308 (0.224) 0.364 (0.277) 0.328 (0.238)

Unweighted avg. 0.517 (0.272) 0.559 (0.312) 0.528 (0.277)

Chance 0.342 (0.354) 0.500 (0.513) 0.405 (0.417)

Results are reported as the M and SD Precision, Recall and F1 Score for each class

individually and as the unweighted average over all folds.

FIGURE 6 | Permutation-based feature importance averaged over all folds.

The y-axis represents the perceptual change when comparing the

cross-entropy loss before and after permutation, the x-axis shows the feature

candidates. The colors indicates the set the feature belongs to (Video = blue,

ComParE = Orange, DeepSpectrum = green).

class (see Figure 3). The model might not have seen a sufficient
variation of data to accurately predict neutral and negative
activation ratings. We also assume that participants showed only
rather subtle negative expressions due to the highly supportive
social context (Lee et al., 2017).

What stands out is that overall the prediction model
significantly (χ2

= 4.91, p < 0.05) outperforms the baseline.
Accordingly, verbal and non-verbal signals of PwD in different
stages of the disease contain sufficient information for the
prediction of activation ratings - despite the challenging
recording conditions. The standard deviation indicates
performance fluctuations throughout the folds. There are
several possible explanations for this result. Participants in our
study contributed substantially different numbers of sessions
and, thus, different numbers of training samples (see section 3.2).
As individual folds do not necessarily represent the overall data
distribution, predictions can be based on a variable number of
training samples of the same participant. The unstable recording
conditions (background speakers, room reverberation, or
lighting) throughout individual sessions might further increase
the heterogeneity within folds. At the same time, this seems
inevitable as the I-CARE system is designed for mobile usage.
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Thus, these results are not comparable to clean and unambiguous
data obtained in laboratory studies with healthy individuals.

Figure 6 provides an overview of the permutation-based
feature importance averaged over all folds. The y-axis indicates
the percentage change when comparing the cross-entropy loss
before and after permutation. The bigger the negative change,
the more important we consider the feature to be. This x-axis
represents all 8364 feature candidates (see section 4.3). It is
apparent that video-based and DeepSpectrum features seem to
be important for the prediction. Especially video-based have
been found as an import predictor in other tasks, namely the
investigation of music (Tkalčič et al., 2019) or image (Masip
et al., 2014) preferences. The curve progression further suggests
that there are no individual features that stand out. Instead, it is
rather the combination of different features on which the model
relies. This finding could also be due to colinearity in the features,
i.e. if one feature is permuted, the model relies on a highly
correlated neighbor.

6. CONCLUSION

The main goal of the current study was to determine if activation
ratings of PwD can be predicted in a real-life environment.
We investigated a dataset collected with the I-CARE system of
25 PwD throughout all stages of the disease, and showed that
contents provided by the system are mainly perceived positively,
which can lead to more engagement and positive mood (Cohen-
Mansfield, 2018). Moreover, participants’ verbal and non-verbal
signals contain sufficient information to successfully predict
their activation ratings. Also, we could show that, in line with
studies on healthy individuals (Masip et al., 2014; Tkalčič et al.,
2019), the face remains an important source of information
for inferring preferences. Interestingly, in our sample, there
seems to be only a weak link between observed engagement
and subjective activation liking. In general, this finding is indeed
more consistent with prior reviews andmeta-analyses focused on
healthy adults, which have demonstrated only weak to moderate
associations between subjective experience and different types
of physiological or behavioral responses to emotion-eliciting
stimuli in healthy adults (Mauss and Robinson, 2009; Hollenstein
and Lanteigne, 2014). However, it is remarkable that (1) this
relationship appears to be even further degraded among PwD
and (2) that machine learning approaches based on multimodal
data may still succeed in successfully predicting subjective ratings
of PwD. At the same time, our approach still faces a number
of limitations. A session-independent model evaluation implies
the existence of annotated samples of the participants. While

user-independent modeling would be preferable for the real-
world application, this seems too ambitious with a small and
heterogeneous dataset. As the presented results are not easily
comparable to other studies, future work could also consider the
assessments of the present caregivers. This could provide further
information about the validity of our results. Despite these
limitations, the present results make an important contribution
to a, thus far, sparsely populated part of the field with regards to
predicting activation liking of PwD.
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Eye movements were shown to be an effective source of implicit relevance feedback

in constrained search and decision-making tasks. Recent research suggests that

gaze-based features, extracted from scanpaths over short news articles (g-REL), can

reveal the perceived relevance of read text with respect to a previously shown trigger

question. In this work, we aim to confirm this finding and we investigate whether it

generalizes to multi-paragraph documents from Wikipedia (Google Natural Questions)

that require readers to scroll down to read the whole text. We conduct a user study

(n = 24) in which participants read single- and multi-paragraph articles and rate their

relevance at the paragraph level with respect to a trigger question. We model the

perceived document relevance using machine learning and features from the literature

as input. Our results confirm that eye movements can be used to effectively model the

relevance of short news articles, in particular if we exclude difficult cases: documents

which are on topic of the trigger questions but irrelevant. However, our results do

not clearly show that the modeling approach generalizes to multi-paragraph document

settings. We publish our dataset and our code for feature extraction under an open

source license to enable future research in the field of gaze-based implicit relevance

feedback.

Keywords: implicit relevance feedback, reading analysis, machine learning, eye tracking, perceived paragraph

relevance, eye movements and reading

1. INTRODUCTION

Searching for information on the web or in a knowledge base is pervasive. However, search queries
to information retrieval systems seldom represent a user’s information need precisely (Carpineto
and Romano, 2012). At the same time, a growing number of available documents, sources, and
media types further increase the required effort to satisfy an information need. Implicit relevance
feedback, obtained from users’ interaction signals, was proposed to improve information retrieval
systems as an alternative to more accurate, but costly explicit feedback (Agichtein et al., 2006).
Behavioral signals that were investigated in this regard include clickthrough data (Agichtein et al.,
2006; Joachims et al., 2017), dwell time of (partial) documents (Buscher et al., 2009), mouse
movements (Eickhoff et al., 2015; Akuma et al., 2016), and eye movements (Buscher et al., 2012).
This data may originate from search logs, which can be used to tune the ranking model of a search
engine offline, or from real-time interaction data to extend search queries during a search session
or to identify relevant text passages. In this work, we aim at identifying relevant paragraphs using
real-time eye tracking data as input.

30

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2021.808507
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.808507&domain=pdf&date_stamp=2022-01-07
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michael.barz@dfki.de
https://doi.org/10.3389/fcomp.2021.808507
https://www.frontiersin.org/articles/10.3389/fcomp.2021.808507/full


Barz et al. Implicit Estimation of Paragraph Relevance

Eye movements play an important role in information
acquisition (Gwizdka and Dillon, 2020) and were shown to be an
effective source of implicit relevance feedback in search (Buscher
et al., 2008a) and decision-making (Feit et al., 2020). However,
eye movements highly depend on the user characteristics, the
task at hand, and the content visualization (Buchanan et al.,
2017). Related approaches use eye tracking to infer the perceived
relevance of text documents with respect to previously shown
trigger questions (Salojarvi et al., 2003, 2004, 2005a; Buscher
et al., 2008a; Loboda et al., 2011; Gwizdka, 2014a; Bhattacharya
et al., 2020a,b), and to extend (Buscher et al., 2008b; Chen
et al., 2015) or generate search queries (Hardoon et al., 2007;
Ajanki et al., 2009). A common disadvantage of approaches for
gaze-based relevance estimation is that they are tested using
documents with constrained layouts and topics such as single
sentences (Salojarvi et al., 2003, 2004, 2005a) or short news
articles that fit on the screen at once (Buscher et al., 2008a;
Loboda et al., 2011; Gwizdka, 2014a; Bhattacharya et al., 2020a,b).
Hence, it is unclear whether related findings generalize to
more realistic settings such as those that include Wikipedia-like
web documents.

We investigate whether eye tracking can be used to infer the
perceived relevance of read documents with respect to previously
shown trigger questions in a less constrained setting. We include
multi-paragraph documents that exceed the display size and
require scrolling to read the whole text. For this, we conduct
a user study with n = 24 participants in which participants
read single- and multi-paragraph articles and rate their relevance
at the paragraph level while their eye movements are recorded.
Pairs of single paragraph documents and questions are taken
from the g-REL corpus (Gwizdka, 2014a). Multi-paragraph
documents with corresponding questions are selected from the
Google Natural Questions (GoogleNQ) corpus (Kwiatkowski
et al., 2019). We assemble a corresponding dataset, the gazeRE
dataset, and make it available to the research community under
an open source license via Github (see section 3.5). Using the
gazeRE dataset, we aim for confirming the findings from the
literature on short news articles and investigate whether they
generalize to the multi-paragraph documents from Wikipedia.
We model the perceived relevance using machine learning and
the features from Bhattacharya et al. (2020a) as input.

2. RELATED WORK

Prior research addressed the question whether eye movements
can be linked to the relevance of a read text and how this implicit
feedback can be leveraged in information retrieval settings.

2.1. Relevance Estimation From Reading
Behavior
One group of work addressed the question whether the relevance
of a text with respect to a task or trigger questions can be
modeled using the user’s gaze. For instance, Salojarvi et al.
(2003, 2004, 2005a) investigated whether eye tracking can be
used to estimate the user’s perceived relevance of a document.
They used machine learning to predict the relevance using the

eye movements from reading the document titles as input. The
authors organized a related research challenge, which is described
in Salojarvi et al. (2005b). Loboda et al. (2011) presented an
approach for gaze-based estimation of sentence relevance using
fixations to sentence-terminal words, i.e., words at the end of
a sentence, as there is empirical evidence that these words are
fixated longer on average. This is known as the sentence wrap-
up effect, which is a manifestation of the integrative process
in reading. Buscher et al. (2008a) investigated the relation
between reading behavior and document relevance using eye
tracking technology. They found that the ratio of skimming
is higher in irrelevant documents and the ratio of continuous
reading behavior is higher for relevant documents. Further, they
introduced the concept of attentive documents that keep track
of the perceived relevance based on eye movements (Buscher
et al., 2012). Gwizdka (2014a,b) modeled the relation between eye
movements and perceived document relevance and investigated
the cognitive effort involved in the relevance judgement. They
introduced the g-REL corpus, a collection of short news stories
and corresponding questions, which they used for collecting
ground-truth and eye tracking data. The authors could confirm
the findings from Buscher et al. (2012) that relevant documents
tend to be read continuously, while irrelevant documents are
rather skimmed (Gwizdka, 2014a). Akuma et al. (2016) compared
gaze-based relevance feedback with implicit relevance feedback
from more common sensors such as mouse movements. They
found a high correlation between both feedback options and
a relationship between gaze-based features and the perceived
document relevance. Li et al. (2018) investigated the reading
behavior for relevant and irrelevant documents for factual and
intellectual tasks. Based on data from a user study, they suggested
a two-staged readingmodel for explaining the cognitive processes
inherent in relevance judgements. Jacob et al. (2018) investigated
whether eye movements can be used to infer the interest of a
reader in a currently read article. Bhattacharya et al. (2020b)
encoded fixations from participants’ scanpaths over documents
from the g-REL corpus and trained a convolutional neural
network (CNN) with the perceived relevance as prediction target.
This approach is limited to small texts of similar lengths. Further,
they suggested novel features based on the convex hull of
scanpath fixations to model the participants’ perceived relevance
(Bhattacharya et al., 2020a). In addition, they simulated the
user interaction to investigate whether their approach can be
used in real-time scenarios by cumulatively adding fixations
of the scanpath and normalizing the convex hull features
with the elapsed time of interaction. Other related approaches
include, for instance, a generic approach to map gaze-signals
to HTML documents at the word level (Hienert et al., 2019).
Davari et al. (2020) use this tool to investigate the role of
word fixations in query term prediction. Feit et al. (2020)
modeled the user-perceived relevance of information views in a
graphical user interface for decision-making. They showed room
advertisements in a web-based interface via multiple viewports
and asked users what information was perceived as relevant
for their decision to book a room or not. In this paper, we
investigate whether the perceived relevance can be estimated
for paragraphs of long Wikipedia-like documents in contrast to
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sentences or short articles. This requires to compensate for the
scrolling activity, which may distort the gaze signal and fixation
extraction, and to develop a method for effectively extracting
consecutive gaze sequences to individual paragraphs.

2.2. Query Expansion Methods
Other work focused on generating or expanding search queries
based on the user’s gaze behavior. Miller and Agne (2005)
presented a system that extracts relevant search keywords from
short texts based on eye movements. Hardoon et al. (2007) and
Ajanki et al. (2009) proposed methods for implicitly generating
search queries from eye movements during an information
retrieval task. The generated query is used to proactively retrieve
relevant documents using content-based ranking algorithms.
Buscher et al. (2008b) proposed a technique for automatic query
expansion and re-ranking for document retrieval. They use
relevance estimates to identify recently read paragraphs that are
relevant to the user and, eventually, to reformulate the search
query. Chen et al. (2015) presented a query expansion method
based on eye tracking and topic modeling. They identified fixated
terms and modeled the user’s latent intent using the Latent
Dirichlet Allocation (LDA) for topic modeling.

2.3. Factors That Influence Eye Movements
Buchanan et al. (2017) surveyed works in the field of gaze-based
implicit relevance feedback. They identified several factors that
might influence gaze patterns and, hence, should be considered
when building gaze-enhanced information retrieval systems. Key
factors include the task type, the task complexity, individual
differences such as expertise, and the presentation of the search
results. For instance, Cole et al. (2013) showed that “the user’s
level of domain knowledge can be inferred from their interactive
search behaviors.” Bhattacharya and Gwizdka (2018) modeled
the knowledge-change while reading using gaze-based features: a
high change in knowledge coincides with significant differences
in the scan length and duration of reading sequences, and in
the number of reading fixations. Gwizdka (2017) investigated the
task-related differences in reading strategies between word search
and relevance decisions during information search. Eickhoff et al.
(2015) studied the relationship between the user’s visual attention
to tokens in a search engine result page (SERP) or document and
the corresponding search query: users fixate terms, which are part
of their current querymore often and longer than others. Further,
they found that the semantic proximity of the search query to the
user’s attention increases for different reformulation strategies
such as specialization, generalization, and reformulation.

3. USER STUDY

We conduct a user study (n = 24) with the goal to collect
eye movement data during relevance estimation tasks. The
participants are asked to read documents of different lengths
and to judge, per paragraph, whether it provides an answer to
a previously shown trigger question. We use this data to model
the relation between the recorded eye movement data and the
perceived relevance using machine learning (see section 4).

3.1. Participants
For our study, we invited 26 students (15 female) with an average
age of 27.19 years (SD = 5.74). Data from two participants
had to be discarded, because they withdrew their participation.
The remaining participants reported to have normal (11) or
corrected to normal (13) vision of which 11 wore eyeglasses and
2 wore contact lenses. Ten of them participated in an eye tracking
study before. The participants rated their language proficiency in
English for reading texts as native (1), fluent (18), or worse (5).
Each participant received 15 EUR as compensation.

3.2. Stimuli
The stimuli data used in our study are pairs of trigger
questions and documents with one or multiple paragraphs (see
Figure 1). We use a subset from the g-REL corpus (Gwizdka,
2014a) with single-paragraph documents that fit on one page
and selected pairs from the Google Natural Questions (NQ)
corpus, which includes multi-paragraph documents that require
scrolling (Kwiatkowski et al., 2019). Both corpora include
relevance annotations per paragraph to which we refer as
system relevance.

3.2.1. g-REL Corpus
The g-REL corpus includes a set of 57 trigger questions and 19
short English news texts that fit on one page. Questions include,
for instance, “Where is the headquarters of OPEC located?”
and “What was Camp David originally named?”. The news
texts are either irrelevant, topically relevant, or relevant with
respect to these questions: the corpus includes three questions
per document. If a document is irrelevant, it is off-topic and
does not contain an answer to the question. Topically relevant
and relevant documents are on topic, but only the relevant texts
contain an answer to the question. The original news texts were
selected from the AQUAINT Corpus of English News Texts
(Graff, 2002) as used in the TREC 2005 Question Answering
track.1 The questions and judgements (system relevance) from
TREC data were further revised and tested by Michael Cole and
Jacek Gwizdka. Prior results for this corpus have been published
in, e.g., Gwizdka (2014a,b, 2017), Bhattacharya et al. (2020a,b).
Like Bhattacharya et al. (2020a,b), we consider a binary relevance
classification. Hence, the topically relevant document-question
pairs are counted as irrelevant ones.

For our user study, we select a balanced subset of 12 distinct
documents of which four are relevant, four are topical, and
four are irrelevant with respect to the accompanying trigger
question. We select two additional documents for the training
phase of which one is relevant and one is topical. We select
the news texts such that the length distribution is similar to the
whole corpus. The mean number of tokens of the selected news
texts is 170.5 (SD = 14.211). The mean number of tokens,
if all documents were included, is 176.404 (SD = 12.346).
We used a simple whitespace tokenizer, which segments each
document into a list words, to determine the number of tokens in
each document.

1https://trec.nist.gov/data/qa.html
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FIGURE 1 | We sample stimuli from (A) the g-REL corpus, which includes pairs of questions and short English news articles, and (B) from the Google NQ corpus,

which includes pairs of questions and English Wikipedia articles.

3.2.2. Google Natural Questions Corpus
The Natural Questions (NQ) corpus2 by Google includes 307k
pairs of questions and related English Wikipedia documents
(Kwiatkowski et al., 2019). Example questions include “What is
the temperature at bottom of ocean?” and “What sonar device
let morse code messages be sent underwater from a submarine in
1915?”. Each document includes multiple HTML containers such
as paragraphs, lists, and tables. Each container that provides an
answer to the accompanying question is listed as a long answer.
We consider this container to be relevant (system relevance). In
addition, the corpus provides a short answer annotation, if a short
phrase exists within a container that fully answers the question.
The Google NQ questions are longer andmore natural compared
to other question answering corpora including TREC 2005 and,
hence, g-REL.

For our user study, we select a subset of 12 pairs of documents
and questions (plus one for training) from the NQ training
data using a set of filters followed by a manual selection. Our
filter removes all documents that include at least one container
different than a paragraph, because we focus on continuous texts
in this work. Further, it selects documents that have exactly one
long and one short answer. This means that all but one paragraph
per document can be considered to be irrelevant. Also, it removes
all documents that have very short (less than 20 tokens) or very
long (greater than 200 tokens) documents. Finally, our filter
selects all documents with five to seven paragraphs, which leaves
355 of the 307k pairs for manual selection. The manual selection
is guided by two factors: the average number of tokens and the
position of the relevant paragraph. The remaining documents
have an average length of 420.083 (SD = 54.468) tokens, which
approximately corresponds to two times the height of the display,
i.e., participants need to scroll through the document to read
all paragraphs. The position of relevant paragraphs is balanced:
we select two documents with an answer at position i with
i ranging from 0 to 5. On average, each paragraph contains
72.55 tokens.

2https://ai.google.com/research/NaturalQuestions

3.3. Tasks and Procedure
In the beginning of the study, each participant is asked to sign an
informed consent form and to fill in a demography questionnaire.
The remainder of the study is divided in two blocks, which follow
the same pattern (see Figure 2). In each block, stimuli from
one of the two corpora are presented (within-subjects design).
The starting order is alternating to avoid ordering effects. In
the beginning of each block, the experimenter provides block-
specific instructions and asks the participant to calibrate the
eye tracking device. Next, the participant completes a training
phase to get familiar with the task, the user interface, and with
characteristics of the stimuli from the current corpus. We include
two training examples for g-REL and one for Google NQ. The
participant is encouraged to ask questions about the system and
the task in this phase. Subsequently, the participant completes
the main phase of the block, which includes 12 stimuli of the
respective corpus. After both blocks are finished, participants
receive the compensation payment. The task of participants is
to mark all paragraphs of a document as relevant that contain
an answer to the previously shown trigger question (query).
First, participants read the query and, then, navigate to the
corresponding document, which is either a news article or a wiki
article. There is no time constraint for reading the article. Next,
participants move to the rating view which enables to enter a
binary relevance estimate (perceived relevance) per paragraph. At
this stage, the query and the text of the paragraph are available to
the participant. For stimuli from the g-REL corpus, participants
have to provide one relevance estimate (there is one paragraph).
For stimuli from the Google NQ corpus, participants have to
provide five to seven relevance estimates (depending on the
number of paragraphs).

3.4. Apparatus
The study is conducted in a separate room of our lab. We use
the Tobii 4C eye tracker3, a non-intrusive remote eye tracker,
which is attached to the lower bezel of a 27-inch screen. This
monitor has a resolution of 2560 × 1440 pixels and the attached

3https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-

Tobii-Eye-Tracker-4C
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FIGURE 2 | Procedure of our user study with one block of tasks per corpus of stimuli: g-REL and Google NQ.

FIGURE 3 | Setup of our user study: A user is seated approximately 60 cm

from a 27 inch display with the remote eye tracker mounted at its lower bezel.

eye tracker collects the gaze data with a sampling rate of 90 Hz.
The monitor and eye tracker are connected to an experimenter
laptop running the study software and a monitoring tool. The
participants are seated approximately 60 cm in front of the
connected display (see Figure 3). A mouse is provided to scroll
through documents, to navigate between views, and to rate each
paragraph for its relevancy. The text-based stimuli are displayed
in black, 38-points Roboto font4 on a white background. Before
the user starts executing the tasks, we perform a calibration using
the built-in 9-point calibration of the eye tracker. During the
calibration process, the user is asked to look at calibration dots on
the connected display until they vanish. We use the multisensor-
pipeline (Barz et al., 2021), our Python-based framework for
building stream processing pipelines, to implement the study
software that is responsible to show the stimuli and record the
interaction signals according to our experiment procedure.

4https://fonts.google.com/specimen/Roboto (accessed February 16, 2021).

3.5. gazeRE Dataset
We assembled the stimuli and the recorded interaction signals
into the gazeRE dataset, a dataset for gaze-based Relevance
Estimation. It includes relevance ratings (perceived relevance)
from 24 participants for 12 stimuli from the g-REL corpus
and 12 stimuli from the Google NQ corpus. Also, it includes
participants’ eye movements per document in terms of 2D gaze
coordinates on the connected display. We use the gazeRE dataset
formodeling the perceived relevance based on eye tracking in this
work and make it publicly available under an open source license
on GitHub.5

3.5.1. Processing of Eye Tracking Data
The gaze data included in the gazeRE dataset is preprocessed and
cleaned. We correct irregular timestamps caused by transferring
the gaze signal to our study software by resampling the signal
with a fixed sampling rate of 83 Hz. Further, we use the gap_fill
algorithm, similar to Olsen (2012), which linearly interpolates
the gaze signal to close small gaps between valid gaze points,
which may occur due to a loss of tracking. In addition, we use the
Dispersion-Threshold Identification (I-DT) algorithm to detect
fixation events (Salvucci and Goldberg, 2000).

3.5.2. Dataset Format
The gazeRE dataset includes synchronized time-series data
per document and user. Each record includes a column for
timestamps, gaze coordinates (x and y), a fixation ID, if the
gaze point belongs to a fixations, the scroll position, and the
ID of the paragraph that is hit by the current point of gaze.
The origin of the gaze and fixation coordinates is the lower-
left corner of the display (0, 0) while (2560, 1440) denotes the
upper-right corner. The scroll position reflects the status of the
scrollbar and lies between 0 and 1. The position is 1, if the
document head is visible, or the document is not scrollable.
It is 0, if the tail of the document is visible. We provide the
perceived relevance per document and user: True is used for
positive ratings, i.e., if a paragraphwas perceived as relevant, False
represents irrelevant ratings.

5https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset
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3.5.3. Descriptive Statistics
We report descriptive statistics and agreement statistics of
the relevance ratings in our dataset. We use Fleiss’ κ to
determine, if there was an agreement in our participants’
judgement on whether paragraphs are relevant with respect to
a trigger question. If the agreement among participants is low,
the rating task might have been too difficult or participants
might have given inadequate ratings. Further, we compute
Cohen’s κ to determine the level of agreement between each
participant’s relevance rating (perceived relevance) and the
ground-truth relevance (system relevance). We report the mean
agreement over all participants. We expect that the ratings of our
participants moderately differ from the system relevance, similar
to the findings in Bhattacharya et al. (2020a). For the g-REL
corpus, we include a total of 288 trials, i.e., eye movements and
a corresponding relevance estimate per paragraph (see Figure 1).
The 12 different documents include 4 relevant paragraphs
(system relevance), while one document corresponds to one
paragraph. On average, the participants rated 4.46 (SD = 1.04)
paragraphs as relevant: they perceived 107 (37%) as relevant and
181 (63%) as irrelevant. Fleiss’ κ reveals a good agreement for
perceived relevance ratings with κ = 0.641. The mean of Cohen’s
κ of 0.769 (SD = 0.197) indicates a substantial agreement
between participant and ground-truth relevance ratings. We
obtained a total of 1, 680 trials using the Google NQ corpus.
The 12 stimuli include 12 relevant paragraphs out of 70. On
average, the participants rated 18.75 (SD = 4.361) paragraphs as
relevant: they perceived 450 (27%) as relevant and 1, 230 (73%)
as irrelevant. Fleiss’ κ reveals a moderate agreement for perceived
relevance ratings with κ = 0.576. Also, the mean of Cohen’s κ of
0.594 (SD = 0.126) indicates a moderate agreement between the
perceived and the system relevance.

4. GAZE-BASED RELEVANCE ESTIMATION

We investigate different methods for predicting the perceived
relevance of a read paragraph based on a user’s eye movements.
We consider the relevance prediction as a binary classification
problem because each paragraph could be marked as either
relevant or irrelevant in our user study. Each classification model
takes a user’s eye movements from reading a paragraph as input
to predict the perceived relevance for this paragraph. The explicit
user ratings are used as ground truth. In the following, we
describe our method for extracting gaze-based features at the
paragraph level, we depict our procedure for model training and
evaluation, and we report the results based on the gazeRE dataset.

4.1. Extraction of Gaze-Based Features
To encode the eye movements of a user for a certain paragraph
p, we have to extract coherent gaze sequences that lie within the
paragraph area. A user might visit a paragraph multiple times
during the relevance judgement process. We refer to these gaze
sequences as visits vip ∈ Vp where i indicates the order of visits.
We implement an algorithm that extracts all visits to a paragraph
with a minimum length while ignoring short gaps. It identifies
consecutive gaze samples that lie within the area of the given
paragraph and groups them into a visit instance each. As long

as there is a pair of two subsequent visits with a gap shorter
than 0.2 s, these are merged. Afterwards, all visits that satisfy a
minimum length of 3 s are returned as a list. We found that this
duration ensures that at least 3 fixations are contained in each
visit, which is required to compute the convex hull features.

We use the longest visit per paragraph v∗p for encoding the eye
movements.

To encode eye movements, we implement a set of 17 features
that was successfully used to model the perceived relevance of
short news articles in Bhattacharya et al. (2020a). This requires to
select one visit or to merge them. We decided to use the longest
visit under the assumption that the largest consecutive sequence
of gaze points has the highest likelihood to capture indicative eye
movements. Our feature extraction function f returns a vector
of size 17 per visit: f (v) → R

17. Four of these features are
based on fixation events, eight are based on saccadic movements,
and five are based on the area spanned by all fixations. Table 1
provides an overview of all features and describes how they are
computed. Some features are normalized by a width factor wor a
height factor h. In Bhattacharya et al. (2020a), these correspond
to the display width and height, respectively. We set w and h
to the width and height of the current paragraph, because the
display size does not respect the different paragraph sizes and the
scrolling behavior.

The absolute reading time of a visit (scan_time) is used
to compute velocity-based or time-normalized features. The
hull_area, i.e., the area of the convex hull around all fixations,
is used to compute two area-based features.

4.2. Model Training and Evaluation
We build and compare several machine learning models that
take an encoded paragraph visit v∗p as input and yield a binary
relevance estimate as output. The models are implemented using
the scikit-learn machine learning framework (Pedregosa et al.,
2011). Model training and testing is done using our gazeRE
dataset, which includes eye movements and relevance estimates
for documents from the g-REL corpus and from the Google NQ
corpus. We refer to these partitions as g-REL data and Google
NQ data.

4.2.1. Model Training Conditions
We largely replicate the conditions for model training and
evaluation from Bhattacharya et al. (2020a) because we aim for
confirming their findings: we group all visits v ∈ V∗ by their
relevance rating into three subsets, train each model on 80% of
the data of each subset, and evaluate it on the remaining 20% of
the data. The grouping yields an agree subset, a topical subset,
and the complete data denoted as all. Table 2 depicts how many
relevant and irrelevant samples are included in our dataset per
subset. The agree subset includes all visits for which the perceived
relevance rating agrees with the system relevance. All visits to
topical articles, i.e., visits to on-topic articles that are irrelevant,
are excluded as well. The topical subset includes visits to topical
articles only, which are expected to be more difficult to classify.
This subset is empty for the Google NQ corpus, because its
paragraphs are marked as either relevant or irrelevant. We report
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TABLE 1 | Overview of the 17 features adapted from Bhattacharya et al. (2020a) based on fixation events, saccadic eye movements, and the scanned area, which we

use to encode paragraph visits.

Feature Description

fixation-based fixn_n Number of fixations

fixn_dur_sum Sum of fixation durations

fixn_dur_avg Mean of fixation durations

fixn_dur_sd Standard deviation of fixation durations

saccade-based scan_dist_h Sum of horizontal amplitudes of all saccades, normalized by a factor w

scan_dist_v Sum of vertical amplitudes of all saccades, normalized by a factor h

scan_dist_euclid Sum of Euclidean distances of normalized amplitudes of all saccades

scan_hv_ratio Ratio of horizontal to vertical amplitudes: scan_dist_h/scan_dist_v

avg_sacc_length Average saccade amplitude: scan_dist_euclid/( fixn_n − 1)

scan_speed_h Horizontal saccade velocity: scan_dist_h/scan_time

scan_speed_v Vertical saccade velocity: scan_dist_v/scan_time

scan_speed Saccade velocity: scan_dist_euclid /scan_time

area-based box_area Area spanned by summed saccade amplitudes: scan_dist_h ∗ scan_dist_v

box_area_per_time The box_area normalized by the scan time: box_area/scan_time

fixns_per_box_area Number of fixations per scanned area: fixn_n /box_area

hull_area_per_time The hull_area normalized by the scan time: hull_area/scan_time

fixns_per_hull_area Number of fixations per convex hull area: fixn_n/hull_area

TABLE 2 | Number of samples in our dataset per corpus and subset.

Corpus Subset Relevant Irrelevant Total

g-REL agree 86 (48%) 95 (52%) 181 (63%)

topical 20 (20%) 76 (80%) 96 (33%)

all 107 (37%) 181 (63%) 288 (100%)

Google NQ agree 248 (17%) 1190 (83%) 1438 (86%)

all 450 (27%) 1,230 (73%) 1,680 (100%)

The topical subset includes samples for irrelevant paragraphs that are on topic of

the trigger questions. The agree subset includes samples for which the participant’s

relevance rating matches with the system relevance and which is not in topical. Each

trial corresponds to one paragraph that was either perceived as relevant or irrelevant.

the model performance metrics averaged over 10 random train-
test splits to estimate the generalization performance. We use
the train_test_split() function of scikit-learn to split the
visits in a stratified fashion with prior shuffling.

4.2.2. Metrics
We include the same metrics than Bhattacharya et al. (2020a):
the F1 score, i.e., the harmonic mean of precision and recall, the
area under curve of the receiver operator characteristic (ROC
AUC), and the balanced accuracy. In addition, we report the true
positive rate (TPR) and the false positive rate (FPR), which allow
us to estimate the suitability of our models for building adaptive
user interfaces similar to Feit et al. (2020).

4.2.3. Model Configurations
We consider the random forest classifier of scikit-learn with
default parameters (n_estimators = 100) as our baseline
model (RF), which turned out to work well in Bhattacharya
et al. (2020a). In addition, we investigate the effect of using two

pre-processing steps with either a random forest classifier (RF∗)
or a support vector classifier (SVC∗) with default parameters
(kernel = “rbf”, C = 1) in an estimator pipeline. First, we
apply the oversampling technique SMOTE Chawla et al. (2002)
from the imbalanced-learn package Lemaitre et al. (2017) because
visits to relevant paragraphs are underrepresented in our dataset
(seeTable 2). Second, we apply a standard feature scalingmethod
that removes the mean and scales features to unit variance. We
train separate models for g-REL data and Google NQ data.

4.2.4. Hypotheses
We hypothesize that our models can effectively estimate
the perceived relevance of short news articles as shown in
Bhattacharya et al. (2020a), but using our newly assembled
gazeRE dataset (H1). Confirming this hypothesis would also
serve as a validation of our dataset. Further, we assume that
the visit-based scanpath encoding enables the prediction of a
participants’ perceived relevance for individual paragraphs of
long Wikipedia articles. In particular, if the participant must
scroll through the document to read all contents (H2).

4.3. Results
We compare the performance of three models in predicting a
user’s perceived relevance using our gazeRE dataset, which is
based on documents of the g-REL and the Google NQ corpus.
The performance scores for each model and subset are shown in
Table 3 (g-REL) and Table 4 (Google NQ). For the g-REL data,
we observe the best performance for the agree subset. Models
trained on the topical subset achieve the worst results. Models
for the all subset, which includes both other subsets, rank second.
Across all subsets, the SVC*model performs best, or close to best,
for most metrics. For the topical subset, the RF model without
over-sampling and feature scaling achieves better ROC AUC and
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TABLE 3 | Scores for all relevance prediction models trained and evaluated with

data collected based on the g-REL corpus.

Model F1 Score ROC AUC Balanced accuracy TPR FPR

agree RF 0.674 0.748 0.680 0.694 0.333

RF* 0.677 0.747 0.689 0.688 0.317

SVC* 0.702 0.787 0.683 0.782 0.417

topical RF 0.119 0.546 0.527 0.100 0.047

RF* 0.247 0.528 0.518 0.250 0.213

SVC* 0.270 0.460 0.509 0.325 0.307

all RF 0.458 0.650 0.594 0.405 0.217

RF* 0.495 0.652 0.594 0.505 0.317

SVC* 0.506 0.652 0.605 0.510 0.300

TABLE 4 | Scores for all relevance prediction models trained and evaluated with

data collected based on the Google NQ corpus.

Model F1 Score ROC AUC Balanced accuracy TPR FPR

agree RF 0.052 0.54 0.502 0.03 0.027

RF* 0.246 0.543 0.543 0.278 0.229

SVC* 0.297 0.563 0.54 0.467 0.388

all RF 0.189 0.552 0.517 0.129 0.095

RF* 0.331 0.552 0.527 0.343 0.289

SVC* 0.428 0.596 0.57 0.552 0.412

FPR scores. However, we observe a very low TPR and F1 score
in this case. For the Google NQ data, models trained on the all
subset rank best compared to their counterpart trained on the
agree subset. Similar to our experiment on the g-REL data, the
SVC*model performs best, or close to best, for both subsets. Also,
the RF model achieves the best FPR score, but the worst TPR and
F1 scores.

5. DISCUSSION

The results of our machine learning experiment for short news
articles (g-REL data) are similar to those in Bhattacharya et al.
(2020a) (see Table 3). Our results indicate that we can effectively
predict the perceived relevance for the agree subset, i.e., if
the user’s relevance rating agrees with the actual relevance of
a paragraph and if irrelevant articles are not on topic. The
topical trials are most difficult to classify: our models fail in
differentiating between relevant and irrelevant paragraphs if they
are on topic. Including all samples for training, our models
perform better than chance with an F1 score greater than 0.5.
The best-performing model pipeline, on average, is SVC*, a
support vector classifier with over-sampling and feature scaling.
Bhattacharya et al. (2020a) reported results for the RF model
based on the original g-REL corpus using the same features for
training, but with data from other participants. For the agree
subset, their best model achieved an F1 score of 0.82, an ROC
AUC of 0.92, and a balanced accuracy of 0.84. For the topical
subset, they observed an F1 score of 0.3, an ROC AUC of 0.77,
and a balanced accuracy of 0.59. Using all data samples results in

an F1 score of 0.65, an ROCAUC of 0.85, and a balanced accuracy
of 0.73. Even though we observed worse results per subset, we
found the same overall pattern: the best performance is observed
for models trained on the agree subset, followed by models for
the all subset, and model for the topical subset rank last. This
similarity is a good indicator for the validity of our gazeRE
dataset and, eventually, it suggests that we may confirm our
hypothesis H1. The differences in model performance may have
several reasons. For instance, it is likely that the higher amount of
training data in Bhattacharya et al. (2020a) yields better models.
They used 3355 trials from 48 participants compared to 288 trials
from 24 participants in our experiment. Further, our user study
was conducted at a University in Germany with participants
being, besides one, non-native English speakers, while the studies
reported in Bhattacharya et al. (2020a) were conducted at two
universities in the Unites States and predominantly included
native English speakers. This may lead to a higher degree of
variance in eye movements from our study. Another aspect may
be that we used another eye tracking device and, hence, the data
quality and pre-processing steps likely differ.

Using the Google NQ data in our machine learning
experiment, we observe better scores when training on all data
than when training on the agree subset only (see Table 4).
However, the best-performing model, which is also the SVC*
model, achieves F1 scores less than 0.5 in both cases although
we have access to a higher number of training samples (see
Table 2). The area under the ROC curve indicates classification
performances better than chance, but we do not see enough
evidence to confirm our hypothesis H2. A potential reason for
the low performance might be that irrelevant paragraphs in fact
belong to the same Wikipedia article than the relevant ones: the
agree subset is rather a topical subset for which all user ratings
agree with the system relevance. This would explain why models
for the agree subset perform worse than models trained on all
data. Also, the individual paragraphs in the Google NQ corpus
are smaller than the ones in the g-REL corpus. Thismeans that we
aggregate less information per scanpath, which may deteriorate
the model performance. Further, having multiple paragraphs
allows the participants to revisit paragraphs. As we decided to
encode the longest visit to a paragraph, we may miss indicative
gaze patterns from another visit, which would have a negative
impact on model training. In addition, the gaze estimation error
inherent in eye tracking (Cerrolaza et al., 2012) may lead to a
higher number of incorrect gaze-to-paragraph mappings: gaze-
based interfaces should be aware of this error and incorporate it
in the interaction design (Feit et al., 2017; Barz et al., 2018).

5.1. Feature Importance
We use 17 features as input to model the perceived paragraph
relevance. In the following, we assess the importance of
individual features to our best-performing model, the SVC*
model. We use the permutation feature importance6 method
of the scikit-learn package (Pedregosa et al., 2011) to estimate
feature importance, because SVCs with an rbf kernel do not

6https://scikit-learn.org/stable/modules/permutation_importance.html (accessed

on Dec 2nd, 2021).
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FIGURE 4 | The heatmap (right) shows the pairwise Spearman rank-order correlations for our features using all samples of the g-REL data. The dendrogram (left)

shows feature groupings based on their correlation-based distances. Setting the distance threshold to t = 0.3 yields six feature clusters (see colored leafs).

allow direct feature analysis. This method randomly shuffles
the values of one feature at a time and investigates the impact
on the model performance. The loss in model performance
reflects the dependency of the model on this feature. We report
the mean loss in the f1 score from 30 repetitions per feature
as importance measure. We analyze the feature importance
for the all and agree subsets of the g-REL corpus only, because
we observed f1 scores lower than 0.5 for all other conditions.
The importance is reported on the training and test set of a
single train-test split (80/20 split). We include both because
features that are important on the training data but not on the
test data might cause the model to overfit. The f1 test scores are
0.714 for the agree subset and 0.682 for all samples. However,
this method might return misleading values if two features
correlate. A model would still have access to nearly the same
amount of information, if one feature was permuted but could
be represented by another one. Hence, we perform a hierarchical
clustering on the feature’s Spearman rank-order correlations and
use one feature per cluster to asses its importance.7 The pairwise
correlations and a grouping of our features based on correlation-
based distances are visualized in Figure 4 (all samples of the
g-REL data). We set the distance threshold to t = 0.3 for the

7We follow the scikit-learn manual for handling multicollinearity:

https://scikit-learn.org/stable/auto_examples/inspection/

plot_permutation_importance_multicollinear.html (accessed on Dec 2nd,

2021).

feature importance analysis for which we obtain six feature
clusters as indicated by the colored leafs of the dendrogram. We
obtain the same feature clusters for the agree subset and for both
subsets of the Google NQ data. Using one feature per cluster
to train and evaluate the SVC* model, we observe a drop in f1
scores of 0.015 for the all subset and no decline for the agree
subset. These representative features include fixn_dur_avg,
scan_speed_h, scan_speed_v, scan_distance_v ,
scan_distance_h , and hull_area_per_time . We
remain at t = 0.3 because higher thresholds lead to substantially
lower f1 scores and to differences in the resulting feature clusters
between subsets and corpora.

The importance of feature clusters is visualized in Figure 5.
For the all subset, we observe f1 losses ranging from 0.065
for scan_speed_v and 0.142 for scan_distance_h for
the test set. For the train set, we observe slightly lower losses
but the same importance ranking. Eventually, the features
scan_distance_h and hull_area_per_time are most
important when using all samples. For the agree subset,
hull_area_per_time is by far the most important feature
with an f1 loss of 0.162 on the train set and 0.137 of the test
set. The features scan_distance_v and fixn_dur_avg
are somewhat important with losses of 0.036 and 0.032. For
scan_speed_h, we observe a higher importance on the train
set (0.057) than on the test set (0.01), which may indicate that
this feature causes the model to overfit to the training data.
Overall, the hull_area_per_time feature introduced by
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FIGURE 5 | Permutation feature importance in terms of the f1 loss for the all subset (A) and the agree subset (B) of the g-REL data. We show the mean loss in f1

scores from 30 permutation iterations ± the standard deviation. We include the feature importance estimates for the train and test split.

Bhattacharya et al. (2020a) is of high importance formodeling the
perceived paragraph relevance and stable when including topical
samples and samples for which the user rating disagrees with the
ground truth. The remaining five features are important when
including all samples, in particular the scan_distance_h .
This result suggests that, in a first stage, these five features could
be used to identify topical (irrelevant) samples and, in a second
stage, the hull_area_per_time can predict paragraphs
perceived as relevant among the remaining, non-topical samples.

5.2. Application to Adaptive User Interfaces
Our relevance estimation method can enable the development of
adaptive user interfaces (UIs) that emphasize relevant contents
or suppress irrelevant ones similar to Feit et al. (2020). Over
time, their system detects relevant and irrelevant elements of a
UI that shows different records of flat advertisements: a certain
UI element always shows the same type of information, which
depends on the currently viewed flat record. Our use case differs
in that we want to highlight relevant text passages of a document
or hide irrelevant ones. Adaptations may be based on perceived
relevance estimates from recent eye movements and could,
e.g., ease revisiting of relevant paragraphs in a document by
immediately highlighting them or by hiding irrelevant passages.
Alternatively, collecting relevant and irrelevant text passages
in the pass of a search session may allow an adaptive UI to
properly format text passages of documents hitherto unseen by
the user. An adaptation method requires a precise recognition of
relevant (true positive) or irrelevant (true negative) paragraphs
to emphasize or suppress them, respectively. Misclassifications
would lead to incorrect adjustments and subsequently to usability
problems. Emphasizing irrelevant content (false positive) or
suppressing relevant content (false negative) is likely to have a
stronger negative impact on the user interaction than failing to
suppress irrelevant content or to highlight a relevant one (Feit
et al., 2020). To avoid strong negative impacts, adjustments by
accentuation require a relevance model with a low false positive
rate (FPR) and adjustments by suppression require a model with

a high true positive rate (TPR), i.e., with a low number of false
negatives. Depending on the type of adjustment, the TPR and
FPR could be traded off against each other by using different
decision thresholds. We show possible trade offs for our SVC*
models using ROC curves. One model is trained on all g-REL
data and one on all Google NQ data (see Figure 6). We do not
consider other subsets for realistic application scenarios, because
we would not be able to determine whether a user agreed with
the actual (system) relevance of a paragraph or whether a text
passage was on topic but irrelevant (topical). This differentiation,
which is aligned to the work in Bhattacharya et al. (2020a),
requires prior knowledge about the paragraphs and was meant
to identify topical samples as being the most challenging cases
for classification algorithms. Analogous to Feit et al. (2020), the
shaded areas in our ROC plots in Figure 6 indicate acceptable
true and false positive rates for emphasizing or suppressing
contents. For g-REL data, the ROC curve of the SVC* model
hits the emphasize area, which indicates that it could be used to
emphasize short news articles that were perceived as relevant,
if the decision threshold is tuned accordingly. However, many
relevant contents would be missed, as indicated by the low true
positive rate (recall). Also, the shaded areas reveal that our
models are not suitable for other kinds of UI adjustments.

6. CONCLUSION

In this work, we investigated whether we can confirm the
findings from Bhattacharya et al. (2020a) that gaze-based features
can be used to estimate the perceived relevance of short news
articles read by a user. Further, we investigated whether the
approach can be applied to multi-paragraph documents that
require the user to scroll down to see all text passages. For
this, we conducted a user study with n = 24 participants
who read documents from two corpora, one including short
news articles and one including longer Wikipedia articles
in English, and rated their relevance at the paragraph-level
with respect to a previously shown trigger question. We used
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FIGURE 6 | Receiver Operator Characteristic curves for the SVC* relevance prediction models trained and tested using all samples from the g-REL data (A) and the

Google NQ data (B). The curves are averaged over the 10 training and test cycles; the gray area indicates the standard deviation (± 1 SD). The elliptic areas indicate

acceptable true and false positive for emphasizing or suppressing contents based on Feit et al. (2020).

this data to train and evaluate machine learning models that
predict the perceived relevance at the paragraph-level using
the user’s eye movements as input. Our results showed that,
even though we achieved lower model performance scores than
Bhattacharya et al. (2020a), we could replicate their findings
under the same experiment conditions: eye movements are
an effective source for estimating the perceived relevance of
short news articles, if we leave out articles that are on topic
but irrelevant. However, we could not clearly show that the
approach generalizes to multi-paragraph documents. In both
cases, the best model performance was observed when using
over-sampling and feature scaling on the training data and a
support vector classifier with an RBF kernel for classification.
Future investigations should aim to overcome the limited
estimation performances. A potential solution could be to use
higher-level features such as the thorough reading ratio, i.e.,
the ratio of read and skimmed text lengths (Buscher et al.,
2012), or the refixation count, i.e., the number of re-visits to a
certain paragraph (Feit et al., 2020). Another solution could be
found in using scanpath encodings based deep learning Castner
et al. (2020); Bhattacharya et al. (2020b). We envision the gaze-
based relevance detection to be a part of future adaptive UIs
that leverage multiple sensors for behavioral signal processing
and analysis Oviatt et al. (2018); Barz et al. (2020a,b). We
published our new gazeRE dataset and our code for feature
extraction under an open source license on Github to enable
other researchers to replicate our approach and to implement
and evaluate novel methods in the domain of gaze-based implicit
relevance feedback.
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In future conditionally automated driving, drivers may be asked to take over control of the

car while it is driving autonomously. Performing a non-driving-related task could degrade

their takeover performance, which could be detected by continuous assessment of

drivers’ mental load. In this regard, three physiological signals from 80 subjects were

collected during 1 h of conditionally automated driving in a simulator. Participants were

asked to perform a non-driving cognitive task (N-back) for 90 s, 15 times during driving.

The modality and difficulty of the task were experimentally manipulated. The experiment

yielded a dataset of drivers’ physiological indicators during the task sequences, which

was used to predict drivers’ workload. This was done by classifying task difficulty (three

classes) and regressing participants’ reported level of subjective workload after each task

(on a 0–20 scale). Classification of task modality was also studied. For each task, the

effect of sensor fusion and task performance were studied. The implemented pipeline

consisted of a repeated cross validation approach with grid search applied to three

machine learning algorithms. The results showed that three different levels of mental load

could be classified with a f1-score of 0.713 using the skin conductance and respiration

signals as inputs of a random forest classifier. The best regression model predicted the

subjective level of workload with a mean absolute error of 3.195 using the three signals.

The accuracy of the model increased with participants’ task performance. However,

classification of task modality (visual or auditory) was not successful. Some physiological

indicators such as estimates of respiratory sinus arrhythmia, respiratory amplitude, and

temporal indices of heart rate variability were found to be relevant measures of mental

workload. Their use should be preferred for ongoing assessment of driver workload in

automated driving.

Keywords: automated driving, classification, driver, indicators, physiology, regression, workload, non-driving

related task
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1. INTRODUCTION

A recent study of critical reasons for traffic crashes found that
the driver was at fault in 94% of the cases (Singh, 2015). It
includes recognition errors (including driver inattention and
distractions), decision errors (driving too fast, misjudging the
gap), performance errors, and non-performance errors (such
as sleeping). To address this issue, car manufacturers are
automating several functions of the driving task to assist the
driver. In 2021, the last cars sold on the market are defined
as partially automated vehicles and classified as Level 2 in the
Society of Automotive Engineers (SAE) taxonomy (Society of
Automotive Engineers, 2018). These vehicles automate certain
functions such as maintaining speed, keeping distance from the
car in front, or keeping the vehicle in the lane laterally. However,
automotive manufacturers are already preparing for the next
step by developing conditionally automated cars (Level 3), but
also highly and fully automated cars (Levels 4 and 5) (Society
of Automotive Engineers, 2018). At higher levels of automation,
the car will be responsible for performing the dynamic driving
task and monitoring the driving environment. It frees drivers
from the primary task of driving and allows them to engage
in a non-driving related task (NDRT). However, performing a
NDRT may distract them and increase their mental workload
(MWL; Mehler et al., 2009). Previous research has shown that
an underloaded or overloaded state impacts the performance of
a user interacting with automation (Wickens et al., 2014). The
increase in automation in cars should therefore prompt solutions
to intelligently and non-intrusively measure the mental load of
drivers. The use of machine learning techniques coupled with
the increasing amount of available data allows the development
of intelligent models that can accurately predict the level of
workload (Mehler et al., 2009). Depending on the level of driver
workload, the driver-vehicle interaction must be continuously
adapted to ensure safe use of the automation and improve the
user experience.

2. RELATED WORK

2.1. Definition of Mental Workload
The tasks performed by drivers will change as cars increase
in automation. Some secondary tasks may lead to an increase
in MWL, which needs to be evaluated in this context. MWL
is defined as a balance between the exigencies of a situation
and the resources available to the operator to deal with that
situation. (Wickens, 2008). Multiple dimensions play a role in
this complex construct such as operator characteristics (skills
and attentional resources), task characteristics difficulty and
modality) and environmental context (Young et al., 2015).

In the driving context, MWL is of great importance because
a suboptimal level of MWL (mental underload or overload) can
lead the driver to errors in attention, which can result in accidents
(Brookhuis and De Waard, 2001). Three categories of measures
are effective for assessing MWL: task performance measures
(primary and secondary task), subjective questionnaire-based
assessments and psychophysiological measures (Paxion et al.,
2014; Gawron, 2019).

The primary-secondary task paradigm has proven to be a
good indicator of MWL in experimental research, specifically
in the context of driving (Engstrm et al., 2005; Mehler et al.,
2009). In general, the assessment of task performance is done on
the primary task (dynamic driving task) and the secondary task
(NDRT). An acceptable level of performance can be maintained
in the primary task under high workload conditions. It is typically
measured by longitudinal (speed and distance from the car in
front) and lateral (direction and position in the lane) parameters
computed from driving data collected in simulators or road
experiments (Engstrm et al., 2005; Mehler et al., 2009). The
secondary task performance is highly correlated with MWL since
it is associated with a spare capacity not used for completion
of the primary task (Young et al., 2015). Thus, secondary task
performance (e.g., NDRT) is an indicator of MWL in the context
of driving (Engstrm et al., 2005; Mehler et al., 2009). However,
measuring MWL by task performance presents some downsides,
including control of the task scenarios, monitoring of task
performance and artificial configuration of the test environment
(Fisk et al., 1986).

Operators’ can also report the perceived MWL with subjective
ratings. There are several standardized questionnaires for
subjectively measuring MWL such as the NASA Task Load Index
(NASA-TLX; Hart and Staveland, 1988), the SubjectiveWorkload
Assessment Technique (SWAT; Reid and Nygren, 1988) or the
Workload Profile (WP; Tsang and Velazquez, 1996). Two other
questionnaires can evaluate, respectively, the mental effort and
the mental workload generated by the dynamic driving task
: the Rating Scale Mental Effort (RSME; Zijlstra and Doorn,
1985) and the Driving Activity Load Index (DALI; Pauzié, 2008).
These questionnaires are easy to apply and implement (Rubio
et al., 2004) but present some methodological drawbacks. The
subjective nature of the measure, as well as the recall bias due
to post-task assessment can lead to a discrepancy between the
subjective report and the actual level of MWL (Bulmer et al.,
2004; Paxion et al., 2014). In addition, a subjective post-task
assessment of the MWL does not capture the MWL variation
during the task, which could be of great interest (Paxion et al.,
2014).

Another approach to measure MWL is the use of
psychophysiological indicators. It includes indicators of the
central and autonomic nervous system s, such as measures
of cardiac activity (heart rate and heart rate variability),
electrodermal activity (tonic and phasic skin conductivity), and
brain activity through electroencephalography (EEG). Previous
research showed that they are reliable indicators of MWL
(DeWaard, 1997; Dornhege et al., 2007; Haapalainen et al., 2010;
Ferreira et al., 2014; Hogervorst et al., 2014; Paxion et al., 2014).
Recently, near-infrared spectroscopy (NIRS) has shown great
potential as source of data for evaluating driver’s MWL (Le et al.,
2018). However, EEG and NIRS might not be used in real-world
driving conditions, as many drivers may be reluctant to wear a
headset while driving. There are some disadvantages to assessing
MWL using physiological indicators, such as tedious and delicate
placement of electrodes on the user’s body, noise in the signal and
the spurious influence of physical activity (Huigen et al., 2002).
Recent advances in smart wearable devices and clothing (Baek
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et al., 2009) may help democratize the use of physiological signals
to measure MWL in real-world driving conditions. Physiological
signals could thus be collected in a continuous, non-intrusive
manner to provide a robust assessment of driver’s MWL.

2.2. Assessment of MWL Through
Physiological Indicators
2.2.1. Relevant Physiological Indicators of MWL
Similarly, as indicators of Electrodermal activity (EDA)
(Boucsein, 2012), indices of cardiac activity computed from an
electrocardiogram (ECG), such as heart rate (HR) and heart
rate variability (HRV), are widely used to assess changes in the
autonomic nervous system. Previous research has shown that
EDA and HRV indicators are sensitive to increases in MWL
(Brookhuis et al., 2004; Engstrm et al., 2005; Collet et al., 2009;
Mehler et al., 2009, 2012; Brookhuis and de Waard, 2010).
Indicators can be temporal measures (SDNN, RMSSD..), or
frequency measures such as the ratio of power in the low and
high frequency bands of the HRV (Malik and Terrace, 1996).
Recent studies have shown that 10–60 s may be sufficient to
obtain reliable time-based measurements of HRV, whereas 20–90
s may be sufficient to capture changes in the autonomic nervous
system using frequency-based measures (Salahuddin et al., 2007;
Baek et al., 2015). Besides, the respiratory system can influence
both EDA and cardiac activity. The close coupling of ECG and
respiration (RESP) signals is no longer in question (Cacioppo
et al., 2007). This phenomenon is referred to as Respiratory
Sinus Arrhythmia (RSA) and describes how the respiratory
pattern modulates the heart rate (Hirsch and Bishop, 1981).
Several methods can be used to quantify this phenomenon, but
its assessment by the Porges-Bohrer method may be the most
appropriate measure of RSA according to Lewis et al. (2012).

2.2.2. Effect of Task Difficulty and Modality
Task difficulty has been shown to have an effect on mental
workload measured by physiological indicators. Whether in a
simulation environment or a real-world driving environment,
MWL has been shown to increase with task difficulty (Engstrm
et al., 2005; Mehler et al., 2009, 2012). Physiological indicators
that were found to be sensitive to increased workload were
mean skin conductance level (Engstrm et al., 2005; Mehler et al.,
2009, 2012), heart rate (Collet et al., 2009; Mehler et al., 2009),
some HRV indicators such as beat-to-beat intervals (Engstrm
et al., 2005) or frequency-based measures (Brookhuis et al.,
2004; Brookhuis and de Waard, 2010), and respiratory rate
(Mehler et al., 2009). An increase in MWL is accompanied by
an increase in heart rate, skin conductance, and respiratory rate
(Mehler et al., 2009, 2012). Among these previous studies, only
a non-significant effect was found for the task difficulty on skin
conductance during an auditory task in the work of Engstrm
et al. (2005). This could be due to low driver engagement in
the non-driving task, as suggested later by Mehler et al. (2012).
Therefore, task performance should be carefully recorded if
the workload is measured using physiological indicators. This
ensures that the participants are engaged in the non-driving-
related task, and possibly uses performance as a control variable
in statistical analysis. The effect of task modality on workload

was not analyzed. Yet, results of increased workload due to
task difficulty have been shown using different tasks involving
various modalities such as visual (Engstrm et al., 2005), auditory
(Engstrm et al., 2005; Collet et al., 2009; Mehler et al., 2009, 2012)
or verbal (Engstrm et al., 2005; Collet et al., 2009; Mehler et al.,
2009, 2012) tasks. In other words, regardless of task modality, the
same increase in workload is observed as task difficulty increases,
based on different physiological measures. This suggests that it
might be more difficult to predict task modality with this source
of data. This hypothesis will be tested in this work.

2.3. Workload Evaluation Using
Physiological Signals and Machine
Learning
One of the objectives of this paper is to predict drivers’ MWL
using physiological indicators and artificial intelligence (AI)
techniques. Previous studies that predicted subjects’ MWL using
physiological signals and machine learning were reviewed. Only
studies that used at least 2 signals among ECG, EDA, and RESP
as inputs of machine learning models were reviewed. The studies
considered are presented in Table 1. They are compared and
discussed on several parameters that can affect the accuracy of
a model trained with machine learning techniques, including
the environmental settings, the task used to induce MWL, the
time intervals used for calculating physiological indicators, the
number of classes, and the evaluation approach. Previous studies
were conducted in different environments, such as laboratories
(Haapalainen et al., 2010; Ferreira et al., 2014; Hogervorst et al.,
2014), driving simulators (Son et al., 2013; Darzi et al., 2018;
Meteier et al., 2021) or on roads (Solovey et al., 2014). For the
driving studies, participants were required to drive manually
and perform an additional NDRT to manipulate the level of
MWL, except for Meteier et al. (2021) study in which the car
drove in conditional automation, and participants were required
to count backward orally. Different cognitive tasks were used
to manipulate MWL, such as the Pursuit test, the Scattered X
(Ferreira et al., 2014), or the N-back task. The latter can involve
visual resources with letters displayed on a screen (Hogervorst
et al., 2014) or auditory and verbal when the letters are auditory
stimuli and participants have to respond verbally (Son et al., 2013;
Solovey et al., 2014). Also, the difficulty of the task has an impact
on the workload, suggesting that the task used to manipulate the
MWL experimentally should be chosen carefully (Mehler et al.,
2009, 2012).

The time window used to calculate features can also influence
the models’ performance in time-series classification tasks. The
length of time windows differed between studies, ranging from
30 to 240 s. Solovey et al. (2014) and Meteier et al. (2021)
investigated the influence of time window length on model
accuracy. For windows shorter than 30 s, Solovey et al. (2014)
showed that model accuracy increases with time window size. For
longer time windows (30 s–20 min), Meteier et al. (2021) showed
that model accuracy increases up to a size of 4 min but decreases
if it is longer.

As shown in Table 1, previous studies only classified the
user’s MWL at two levels. Model performance were evaluated
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TABLE 1 | State of the art of previous similar studies.

Reference Only physio Study Task Time

window

Classes Evaluation Perf. (%)

Haapalainen et al.

(2010)

Yes, with EEG In lab, on a computer
6 tasks, testing speed of closure,

flexibility of closure and perceptual speed

43 s (easy task),

106 s (hard task)
2 Within-subject 83.7

Son et al. (2013) Yes
Driving simulator :

Manual driving on a highway
Auditory N-Back task 30 s 2 Between-subject 82.9

Ferreira et al.

(2014)

Yes, with EEG In lab, on a computer
2 tasks: testing perceptual speed (Pursuit Test)

and visio-spatial capacities (Scattered X)
60 s 2 Within-subject 86.0

Hogervorst et al.

(2014)

Yes In lab, on a computer Visual N-Back task 120 s 2 Within-subject 75.0

Solovey et al.

(2014)

Yes
Manual driving on a highway Auditory stimuli verbal prompt N-back 30 s (sliding) 2

Within-subject 75.7

Yes Between-subject 90.0

Darzi et al. (2018) Yes
Moving-base driving simulator :

manual driving
Cell phone use 240 s 2 Between-subject 82.3

Meteier et al.

(2021)

Yes
Driving simulator :

Conditionally automated driving
Oral backwards counting 240 s 2 Between-subject 95.0

Perf. column is the best score achieved in the study, using mean accuracy as metric.

using the mean accuracy as a metric. Accuracy scores range
from 75 to 95%, either using between-subject or within-subject
evaluation. A three-level workload classification was done with
EEG signals (Plechawska-Wojcik et al., 2019), but not using only
physiological signals.

Complex and recent approaches of time series classification
can be used in order to classify continuously the user’s state
(Bagnall et al., 2016). The recent emergence of deep learning
offers new possibilities to build even more efficient models for
time series classification (Ismail Fawaz et al., 2019). The ResNet
model (He et al., 2016) showed to outperform other models
on different categories of datasets, but not on ECG datasets
(Ismail Fawaz et al., 2019). A fully convolutional network (FCN)
might be a best option for classification with physiological signals
(Wang et al., 2017; Ismail Fawaz et al., 2019). However, these
types of deep architectures require to have a large dataset to
achieve good accuracy. Other recent models such as XGBoost are
also efficient for predicting cognitive workload with physiological
signals (Momeni et al., 2019).

3. PRESENT STUDY

The present study aims to classify drivers’ MWL at three
different levels (low vs. medium vs. high) based on physiological
indicators. These different levels of MWL are induced by
NDRTs performed by the drivers during conditionally automated
driving. To obtain a more refined assessment of MWL, post-
task subjective reports are used to regress drivers’ MWL (on a
0–20 scale). Task modality is also classified at two levels (visual
vs. auditory task). For these classification and regression tasks,
the effect of sensor fusion and task performance are investigated,
because some drivers might disengage from the tasks (mental
fatigue or task too difficult) and thus result in lower physiological
activation (Mehler et al., 2012).

The main novelty of this work is to perform a finer evaluation
of drivers’ MWL than in previous studies, by doing three-class
classification and regression tasks only with physiological signals.
This work uses ECG, EDA, and RESP for assessing drivers’
workload as EEG or NIRS may be considered less suitable for
real-world condition. Also, the effect of drivers’ task performance
on models’ accuracy has not been done in previous research.
Finally, using a data-driven approach with an explainable AI
(xAI) technique to find the most relevant indicators of MWL
has not been done so far. To summarize, the following are the
contributions made in this manuscript:

• Statistical analysis of the effect of task difficulty, modality,
measurement time and interaction of them on three
physiological measures (one for each signal).

• Analysis of task performance and sensor fusion on the
performance of classification and regression models to predict
MWL.

• Use of an xAI approach to find the most relevant indicators of
MWL in the context of conditionally automated driving.

Drivers’ MWL prediction is done in the specific context of
automated driving, while most of previous studies focused on
assessing MWL in manual driving scenarios. Only one recent
study focused on the evaluation of MWL in conditionally
automated driving (Meteier et al., 2021), but authors used a
verbal task to induce MWL and suggested that it might have
induced a bias in the classification of the driver’s state. For this
reason, the manipulation of drivers’ MWL was done at three
different levels, with participants performing a succession of
short non-verbal tasks (90 s each). Previous research showed
that indicators of skin conductance and heart rate variability are
reliable measures of MWL (Engstrm et al., 2005; Collet et al.,
2009; Mehler et al., 2009, 2012), so we expect to see higher
performance when EDA and ECG signals are used to train
the models.
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4. MATERIALS AND METHODS

4.1. Experimental Method
4.1.1. Participants and Experimental Design
For this study, 80 participants were recruited. 67.5% consider
themselves as female (N = 54) and 32,5% as male (N = 26).
The sample of drivers was rather young (M = 23,9 years old,
SD = 8.2), ranging from 19 to 66 years old. They reported
holding their driving license for 5.42 years (SD = 8.08 years)
and driving 6312 kilometers per year on average (SD = 14
415 km). 76.3% of participants did not have an accident in
the last 3 years and 36% indicated that they have already used
an automated car. 25% of them reported that they drove in
a simulator before. Most of the participants were students at
the university. They were recruited by e-mail and advertising
flyers. The participants needed a driving license and adequate
knowledge of German, French, or Italian to participate in the
study. Thirty-eight were German native speakers, 18 were French
native speakers, 21 were Italian native speakers, and 2 had
another mother tongue. As compensation for participating in
the experiment, the participants received 2 experimental hours
counting for their study program. Before taking part in the study,
all participants were informed in detail about the automated
driving systems, the purpose of the study and the procedure. They
agreed to our consent form based on the ethics committee of the
university and the federal law on data protection. Participants
were randomly assigned to the experimental groups.

The study consisted of an experimental mixed design with
four independent variables. Two of were within-subject variables:
the task difficulty (low vs. medium vs. high cognitive task) and the
task modality (no task vs. auditory vs. visual task). To manipulate
these two factors, the N-back task was chosen (Kirchner, 1958).
It is a continuous performance task that has been widely used in
research as a tool to induce various levels ofMWL to participants,
through different modalities (either visual or auditory). “N” is
the factor that can be varied to make the task more or less
difficult. The participant has to press a button if the current letter
is the same as the one presented N-steps before, as shown in
Figure 1. In this study, the 1-back and 3-back tasks, respectively,
correspond to the condition of the medium and high cognitive
tasks. For the task modality, the sequence was either presented
visually on a screen or played through audio files. Bothmodalities
were done on the same tablet. Audio files were recorded before
the experiment and played in the participant’s native language.
Additionally, a control variable was used and common to both
variables. It is a condition in which participants did not perform
the N-back task. During these periods, they were only asked to
monitor the driving environment while the car was driving in
conditional automation. The order of the non-driving related
task sequences was randomized throughout the experiment but
controlled before the takeover situations by following a Latin
Square design (Kirk, 2013).

There were two other between-subject factors in the
experimental design: the information on automated cars
limitations before the experiment (information vs. no
information) and the presence of a mobile application giving
context-related information of the driving situation on the

FIGURE 1 | Illustration of the N-back task operation according to the difficulty

modality (1-back vs. 3-back).

FIGURE 2 | Top: The icons showing the state of the automation. Gray icon:

Autopilot OFF, Green icon: Autopilot ON, Red icon: Takeover Request (TOR).

Bottom: The display of the dashboard, showing the state of automation mode,

the speed and the number of engine’s revolutions per minute of the car.

tablet (application vs. no application). Also, participants had
to react to five different takeover situations. The effect of these
two between-subject factors and takeover situations are not
presented in this work, see the work of Meteier et al. (2020) for
more details.

4.1.2. Material and Instruments
The experiment was carried out in a fixed-base driving simulator.
It was a semi-enclosed cabin with low luminosity, with two car
seats, a steering wheel (Logitech G27), and the pedals (throttle
and brake). The orientation and position of the seats were
adjustable. The scenario was a 2-lane road passing through a
national park (Yosemite National Park, USA) without traffic. The
car used conditionally automated driving features. The driving
simulation was projected on a large screen (62 x 83 inch) using
a beamer (Epsilon EH-TW3200). Two speakers behind the seats
played sounds of the driving environment to immerse the driver
in the simulation. The drivers could steer the wheel (more than 26
degrees), brake, or press a button on the steering to turn off the
autopilot and regain full control of the vehicle. The dashboard
(speed, engine rotations per minute, and autopilot mode) was
run on a laptop and was displayed to the participant on a screen
behind the steering wheel (cf. Figure 2).

Besides, a data acquisition unit (Biopac MP36) recorded
the physiological signals of drivers at a sample rate of 1,000
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Hz. A digital low pass filter (cut-off frequency: 66.5Hz, Q-
factor: 0.5) removed the noise from the signals. The filters
had a respective gain of 2,000 and 1,000 gain for EDA and
RESP signals. Disposable Ag/AgCl pre-gelled electrodes (EL507
and EL503, Biopac) plugged on lead sets (SS57LA and SS2LB,
Biopac) collected the EDA and ECG signals. Three electrodes
were attached to record the ECG, two above both ankles and
one at the right wrist. Two electrodes for recording EDA were
attached to the non-dominant hand (one on the ring finger and
one on the little finger) to ensure easy use of the tablet and the
steering wheel during the experiment. The SS5LB respiratory
effort transducer (Biopac) was attached to the participants’
chest to collect the respiration signal. The Biopac Student
Lab 3.7.7 software recorded the signals on a computer with
a 17-inch display for a visual check of signals before starting
the experiment.

Participants performed the successive sequences of non-
driving-related tasks and answered midterm questionnaires on
a tablet (10). An Android mobile application was developed to
administer the N-back task and collect data on task performance.
The N-back task was constructed using the design from Jaeggi
et al. (2007). They used the letters “C,” “G,” “H,” “K,” “P,”
“Q,” “T,” and “W.” In this study, the letters “G” and “W”
were replaced by “N” and “F” due to the translations into
French, German and Italian letters, to ensure that all letters
were pronounced as differently as possible from the other
letters in all three languages. It was important for the correct
comprehension and recall of letters during sequences of auditory
n-back. Each sequence lasted 90 s and contained 28 letters,
with four letters considered as correct answers (targets) on
which the participant had to press a button located on the
middle of the screen. Each letter was displayed/played for 2.5
s, with an inter-stimulus of 500 ms. In the visual condition,
the letter was displayed in the middle of the screen, above
the red button, while in the auditory condition, the letter was
only announced orally through the audio file and no letter
was displayed.

4.1.3. Measures
Physiological signals (EDA, ECG, RESP) of participants were
recorded continuously during the experiment. Based on these
raw signals, physiological indicators could be calculated during
the baseline phase (rest) and during each N-back task sequence.
The tonic level of skin conductance, heart rate, and respiration
rate during task epochs (with baseline correction) were used
to evaluate the effect of task difficulty and modality on drivers’
MWL (Mehler et al., 2009).

After each N-back task sequence, the participants reported
their level of MWL through the mental demand item of
the NASA-TLX questionnaire (Hart and Staveland, 1988).
Participants rated it on a Likert scale from 0 (low) to 20 (high).
Also, the performance on the N-back task was recorded by the
mobile application. For each participant and each task sequence,
the number of correct, wrong, and missed answers as well as
the mean reaction time was saved. Each task sequence contained
28 items, but the participants could achieve a maximum of 27
correct answers for the 1-back task and 25 for the 3-back task.

To take that into account, an indicator of performance was
computed according to this formula:

TaskScore = (TotalAnswers−WrongAnswers−MissedTargets)

∗100/TotalAnswers (1)

withWrongAnswers the number of wrong answers,MissedTargets
the number of missed targets, and TotalAnswers the total number
of letters that could be a target in a sequence. This aggregated
score was computed to allow a fair comparison of performance
between 1- and 3-back tasks. Each measure was computed
15 times because every five types of tasks (medium/high and
visual/auditory + no task) was performed three times. Other
dependent variables such as trust in automation, situation
awareness, takeover quality, and user experience about the
mobile application and the driving simulator were measured but
the results are not presented in this work.

4.1.4. Procedure
Figure 3 shows the experimental procedure of the study. After
initial instructions about the experiment, participants answered
a questionnaire containing socio-demographic questions.
Electrodes and respiration belt were then attached on the
participant’s body.

The experiment consisted of three main periods, which took
place in the same environment: baseline, training and main
driving session. During the baseline (5 min), participants were
only asked to monitor the environment of the car while it was
driving in conditional automation for 5 min. No takeover could
be requested by the car during this period. Indicators computed
during this period corresponded to the physiological baseline of
each participant.

During the training period, (5 min) participants had to
familiarize themselves with the driving functions (steering
wheel and pedals) and the takeover process. The experimenter
reminded that the car was a conditionally automated vehicle and
explained the meaning of icons on the dashboard (cf. Figure 3).
When a takeover was requested, the car displayed a red icon
on the dashboard and played an audio chime in the speakers.
Participants also received instructions on different ways for
taking over control. In this practice session, three false alarms
(e.g., no stimuli on the road) were triggered. The experimenter
made sure that participants understood the takeover process and
then they could drive manually until the end of the 5 min. The
classification and regression tasks did not consider data from that
training phase.

The main driving session lasted about an hour. The
participants were given a tablet. The mobile application led them
through the whole driving session and presented sequentially
the instructions, the N-back tasks, and the questionnaires.
Participants were asked to focus on completing the N-back task
while the car was driving. No specific instruction regarding visual
attention was provided for the auditory task. Participants were
instructed to react accordingly to takeover requests and drive the
car manually until the critical situation was handled. They were
instructed to activate the automation again when they estimated
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FIGURE 3 | Global experimental procedure of the study.

FIGURE 4 | Top: The experimental procedure during the whole driving session. Captions below images correspond to the cause of takeover request sent by the car in

each block. Bottom: The experimental procedure in one block of the main driving session. TOR, Take-Over Request; SART, Situation Awareness Rating Technique.

The TOR did not appear in the same position in each block.

that the situation was safe after a takeover situation. Figure 4
shows an overview of the procedure during the main session. It
consisted of five blocks, each composed of a takeover situation.
During each block, the participant had to perform three N-
back task sequences. The same Figure 4 shows the procedure
in one block. Each N-back task sequence was followed by a
questionnaire and 60 s of rest. After the NDRT sequence in
which the takeover occurred, participants had to answer the
questionnaire on the tablet. At the end of the session, participants
were asked to stop the car and leave the simulator to fill in
the last part of the questionnaire. Electrodes were removed and
participants were thanked and discharged.

4.1.5. Statistical Analysis
To check for the success of MWL manipulation, repeated
measures analyses of variances (ANOVAs) were calculated using
mental demand ratings and task performance for each task
sequence. For both dependant variables, instructions before
driving and mobile application while driving were included as
between-subject factors, while task difficulty, task modality, and
measurement time (2 measures) were included as within-subject
factors in the statistical analysis. For the task performance, two
levels were used for the task difficulty as a between-subject
factor (1- vs. 3-back). For the mental demand and physiological
indicators (corrected with baseline), three levels were used for
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FIGURE 5 | Procedure employed for the classification and regression tasks. RF, Random Forest; NN, Neural Network; KNN, k-Nearest Neighbors.

the task difficulty as a between-subject factor (no task vs. 1-
vs. 3-back). The Bonferroni method was used for adjusting
the significance level (p < 0.05) in pairwise comparisons. The
analyses were done on IBM SPSS Statistics 25.

4.2. Classification Method
This section describes the methodology used to predict the
task difficulty (no task vs. low cognitive task vs. high cognitive
task) and the task modality (visual cognitive task vs. auditory
cognitive task), based on physiological indicators. In that regard,
classification and regression tasks were both performed using
machine learning techniques. As mentioned before, the effect of
sensor fusion and task performance on the model’s performance
was also explored. The tasks performed in this study are
summarized below:

• Task 1: Classification of task difficulty: effect of task
performance

• Task 2: Classification of task difficulty: effect of sensor fusion
• Task 3: Regression of task difficulty: effect of task performance
• Task 4: Regression of task difficulty: effect of sensor fusion
• Task 5: Classification of task modality: effect of task

performance
• Task 6: Classification of task modality: effect of sensor fusion.

For each task, the procedure employed is shown in Figure 5,
which is similar to the one employed by Meteier et al. (2021).
The following subsections explain in more detail each step
of that procedure. For the classification, the model had to
predict the conditions manipulated experimentally, while for the
regression, the model had to predict the level of MWL on a
scale between 0 and 20 (using subjective ratings as ground truth).
An additional goal is to find out what are the most important
features in the classification and regression processes, using an
xAI technique. This might help researchers to select the most
relevant physiological indicators to evaluate MWL.

4.2.1. Data Preprocessing
The process of raw physiological signals collected during
the experiment was automated using the Neurokit library
(Makowski et al., 2021) in a pipeline coded in Python. Raw
signals from the baseline and each N-back task sequence

were processed separately. Physiological data corresponding to
takeover situations was used to provide the model with more
training samples and potentially increase the performance. EDA,
ECG, and RESP signals were all filtered with either low-pass
(EDA) or band-pass (ECG and RESP) filters with adequate cut-
off frequencies. The EDA signal was downsampled to 50 Hz and
processed using a recent convex optimization method (Greco
et al., 2016). Heartbeats were extracted from the ECG signal
using a QRS-detector algorithm (Hamilton, 2002). Additional
RSA features were calculated from the RESP and ECG processed
signals, using the peak-to-trough (P2T) and the Porges-Bohrer
methods (Lewis et al., 2012).

4.2.2. Feature Engineering and Dataset Preparation
At the end of the processing step, a large range of physiological
features described in Table 2 were computed with Neurokit
(Makowski et al., 2021). For each indicator, two features
were created:

• the value of the indicator while performing the N-back task
(for instance, the heart rate during a task sequence)

• the difference between the value while performing the N-back
task and the value during baseline (for instance, heart rate
during N-back subtracted by heart rate during baseline).

The purpose of this process was to remove the physiological
individual differences between drivers. Overall, 162 features from
81 indicators (10 from EDA, 48 from ECG, 16 from RESP, 7 from
RSA) were calculated, for the all N-back task sequences. The size
of the dataset was 162 features * 15 sequences * 80 participants=
162 x 1,400.

To test the sensor fusion, the classification with features
computed from each signal alone (ECG, EDA, RESP), each
possible pair of signals (EDA + ECG, EDA + RESP, ECG + RESP)
and all signals combined (EDA + ECG + RESP). To investigate
the effect of task performance, features from the three signals
were used (EDA + ECG + RESP) and a varying threshold (from
70 to 100 by steps of 5) was applied to each task epoch. A
sample (e.g., row in the dataset) was considered for training the
model if the performance corresponding to that task sequence
was at least higher than the chosen threshold (e.g., TaskScore in
Equation 1, section 4.1.3). The number of samples considered
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TABLE 2 | Indicators calculated from raw physiological signals collected from participants.

Signal Indicator Domain Description

EDA

Mean raw EDA level The mean value of filtered EDA signal

Min raw EDA value The minimum value of filtered EDA signal

Max raw EDA value The maximum value of filtered EDA signal

Std raw EDA value The standard deviation of filtered EDA signal

Mean tonic EDA level The mean value of tonic EDA signal

Max tonic EDA value The minimum value of tonic EDA signal

Min tonic EDA value The maximum value of tonic EDA signal

Std tonic EDA value The standard deviation of tonic EDA signal

Mean amplitude of

NS-SCRs

The mean amplitude of NS-SCRs (computed from phasic EDA signal)

Frequency of NS-SCRs The number of NS-SCRs per minute (computed from phasic EDA signal)

ECG/RESP

Mean Rate

Time domain

The mean number of cardiac cycles per minute

Mean The mean time of IBIs/BBs

Median The median of the absolute values of the successive differences between adjacent IBIs/BBs

MAD The mean absolute deviation of IBIs/BBs

SD The standard deviation of IBIs/BBs

SDSD The standard deviation of the successive differences between adjacent IBIs/BBs

CV The Coefficient of Variation, i.e., the ratio of SD divided by Mean

mCV Median-based Coefficient of Variation, i.e., the ratio of MAD divided by Median

RMSSD The square root of the mean of the sum of successive differences between adjacent IBIs/BBs

CVSD The coefficient of variation of successive differences; the RMSSD divided by Mean IBI

HF Frequency domain The spectral power density pertaining to high frequency band (.15 to .4 Hz)

SD1

Non-linear domain

Measure of the IBIs/BBs spread on the Poincar plot perpendicular to the line of identity

(short-term fluctuations)

SD2 Measure of the IBIs/BBs spread on the Poincar plot along the line of identity (long-term

fluctuations)

SD2/SD1 Ratio between long and short term fluctuations of IBIs (SD2 divided by SD1)

ApEn Approximate entropy

ECG

pNN50

Time domain

The proportion of successive IBIs greater than 50 ms, out of the total number of IBIs

pNN20 The proportion of successive IBIs greater than 20 ms, out of the total number of IBIs

TINN The baseline width of IBIs distribution obtained by triangular interpolation

HTI The HRV triangular index, measuring the total number of IBIs divided by the height of the IBIs

histogram

IQR The interquartile range (IQR) of the RR intervals

VHF

Frequency domain

Variability, or signal power, in very high frequency (0.4–0.5 Hz)

HFn The normalized high frequency, obtained by dividing the low frequency power by the total

power

LnHF The log transformed HF

CSI

Non-linear domain

The Cardiac Sympathetic Index

CVI The Cardiac Vagal Index

CSI_modified The modified CSI obtained by dividing the square of the longitudinal variability by its transverse

variability.

S Area of ellipse described by SD1 and SD2

SampEn Sample entropy

PIP Percentage of inflection points of the RR intervals series.

IALS Inverse of the average length of the acceleration/deceleration segments

PSS Percentage of short segments

PAS Percentage of IBIs in alternation segments

GI Guzik’s Index

SI Slope Index

AI Area Index

PI Porta’s Index

(Continued)
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TABLE 2 | Continued

Signal Indicator Domain Description

C1d/C1a Indices of respectively short-term HRV deceleration/acceleration

SD1d/SD1a Short-term variance of contributions of decelerations and accelerations

C2d/C2a Indices of respectively long-term HRV deceleration/acceleration

SD2d/SD2a Long-term variance of contributions of decelerations and accelerations

Cd/Ca Total contributions of heart rate decelerations and accelerations to HRV

SDNNd/SDNNa Total variance of contributions of heart rate decelerations and accelerations to HRV

RESP Mean amplitude Time domain The mean respiratory amplitude.

RSA

Mean (P2T) Mean of RSA estimates (peak-to-trough method)

Mean Log (P2T) The logarithm of the mean of RSA estimates (peak-to-trough method)

SD (P2T) The standard deviation of all RSA estimates (peak-to-trough method)

Mean (Gates) Mean of RSA estimates (Gates method)

Mean Log (Gates) The logarithm of the mean of RSA estimates (Gates method)

SD (Gates) The standard deviation of all RSA estimates (Gates method)

PorgesBohrer The Porges-Bohrer estimate of RSA, optimal when the signal to noise ratio is low, in ln(ms^2)

Those computed from both ECG and respiration (RESP) signals are grouped in the same section (ECG/RESP). IBIs, interbeat intervals; BBs, breath-to-breath intervals.

TABLE 3 | Number of samples in each class used for training the algorithms at each threshold value of task performance.

Threshold for task performance

70 75 80 85 90 95 100

Task difficulty (Task 1 and 2) 453 446 442 434 393 341 254

Task modality (Task 5 and 6) 442 429 416 348 278 208 137

for training the models was hence different for each threshold
value. Also, there was not an equal number of samples in each
class for classifying task difficulty, because the No Task condition
had twice fewer samples than the other classes. To address this
imbalanced dataset issue, the minority classes were oversampled
using the Synthetic Minority Oversampling Technique (Chawla
et al., 2002). To summarize, the number of samples used for each
threshold value can be found in Table 3.

4.2.3. Feature Normalization and Selection
A feature normalization process has been applied to feature
scale sensitive models, using the RobustScaler function of the
scikit learn machine-learning framework (Pedregosa et al., 2011).
For each feature, the median was subtracted to all samples,
which were scaled according to the interquartile range (between
the first quartile and the third quartile of data distribution
for each feature). For all models, a univariate feature selection
process reduced the dimension of the feature space and so
the computation time. The main goal of this process was also
to optimize models’ performance by selecting only the most
relevant features. The 20 best features were selected based on
univariate statistical tests, using the SelectKBest method of the
scikit learn framework.

4.2.4. Selected Algorithms
The selected features are used as input of machine learning
algorithms for training these models and then validating their
performance. Three algorithms were selected because they can
be used for both classification and regression tasks. They were

implemented in Python using the scikit learn machine learning
framework (Pedregosa et al., 2011). The selected algorithms
were Random Forest (RF), Neural Network (NN), k-Nearest
Neighbors (KNN).

4.2.5. Model Evaluation and Explanation
For each task performance threshold or combination of
physiological signals, a repeated k-fold procedure was employed.
The training and evaluation procedure was run 5 times, to report
accurate results over several iterations. For each iteration, the
dataset was randomly split into a training set (80%) and a test
set (20%). To optimize the performance of models, the grid
search approach was employed during the training phase. The
goal was to find the set of hyperparameters that maximizes the
performance of each algorithm (Claesen and De Moor, 2015). A
k-fold cross-validation approach was selected to train the models.
The training set was split into k = 4 folds, each fold acting as
the validation set once. Each set of hyperparameters shown in
Table 4 was tested for each split of the dataset. The best model
(e.g., the one that gave the best score over the 4 folds) was
then evaluated on the test set. For the classification tasks, the
weighted f1-score was used as an evaluation metric, since Task
1 and Task 2 are multi-label classification tasks (3 classes). For
the regression tasks (Task 3 and 4), the mean absolute error
(MAE) was computed to evaluate the performance of models. To
compare the models’ performance to a reference, the following
baseline metrics were calculated:

• Random : a random value between 0 and 20
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• MeanScale : mean value of NASA-TLX scale (10)
• MeanParticipants : the mean of mental demand score reported

by participants for NASA-TLX (M = 8.625)
• MeanGroup : Mean of participants in each condition (no task

vs. 1- vs. 3-back); the mean of mental demand score reported
by participants in each condition (Mnotask = 3.247, M1−back =

5.852, M3−back = 14.099).

Results are reported in graphs and tables, which are the best
mean weighted f1-score or MAE achieved by each algorithm
on the test set over the 5 iterations. The effect of sensor fusion
was tested with a threshold value of 100, while the effect of
task performance was tested using the three signals (EDA +

ECG + RESP). To find the most relevant indicators of MWL,
the most important features (e.g., physiological indicators) in
the classification/regression process had to be extracted using
the SHAP (SHapley Additive exPlanations) library in Python
(Lundberg and Lee, 2017). By assigning an importance value
to each feature for a particular prediction, it helps visualize the
values of the most important features depending on the predicted
class. After the training and evaluation procedure for classifying
task difficulty, the best model was saved and used for generating
SHAP values. The 10 most significant features were extracted, in
descending order (ordered by absolute mean of SHAP value).

5. RESULTS

5.1. Statistical Validation of MWL
Inducement
5.1.1. Performance on Task
The correct implication of participants in the non-driving related
task was assessed using the aggregated score of task performance.
Data analysis revealed only a significant effect of task difficulty
on task performance [F(1,76) = 228.83, p < 0.001, η

2
p = 0.75].

Participants performed better at doing the 1-back task (M =

97.6, SD = 0.5%) than the 3-back task (M = 86.2, SD = 0.6%).
Otherwise, there was no significant effect of task modality [F(1,76)
= 2.90, p > 0.05, η

2
p = 0.04] and measurement time [F(1,76) =

1.14, p > 0.05, η
2
p = 0.01]. The double and triple interaction

effects were not significant (Fs < 1).

5.1.2. Subjective Reports of MWL
The success of the MWL manipulation was evaluated using
subjective ratings of workload from the mental demand item
of thr NASA-TLX questionnaire. Figure 6 shows the ratings of
participants, depending on the modality and difficulty of the
task. Data analysis revealed a significant effect of task difficulty
on MWL of drivers [F(2,152) = 338.39, p < 0.001, η

2
p = 0.82].

Pairwise comparisons showed that participants found the 3-back
task significantly more demanding (M = 14.26, SE = 0.40) than
the 1-back task (p < 0.001; M = 5.18, SE = 0.38) or when
performing no secondary task (p < 0.001;M = 2.46, SE = 0.39).
Interestingly, the effect of measurement time (first vs. second
task epoch) was significant on subjective reports of MWL from
the drivers [F(1,76) = 4.57, p < 0.05, η

2
p = 0.06]. Participants

reported that the first epoch of each task was significantly more
demanding (M = 7.53, SE = 0.33) than the second one (M =

7.07, SE= 0.27). Otherwise, there was no significant effect of task
modality [F(1,76) = 2.56, p > 0.05, η2p = 0.03] alone. Also, there
was a significant interaction effect of task difficulty and modality
[F(2,152) = 4.15, p < 0.05, η

2
p = 0.05]. Pairwise comparisons

showed that participants reported that the visual 1-back task (M
= 5.52, SE = 0.40) was significantly more demanding (p < 0.01)
than the auditory 1-back task (M = 4.84, SE = 0.40), while the
visual 3-back task (M = 14.24, SE = 0.41) was not significantly
more demanding (p < 0.05) than the auditory 3-back task (M =

14.28, SE= 0.44). A significant interaction effect of task difficulty
and measurement time on MWL [F(2,152) = 3.70, p < 0.05,
η
2
p = 0.05] was also found. Pairwise comparisons showed that

participants reported higher mental demand the first time they
did not perform any secondary task (M = 3.05, SE = 0.54) than
the second time (p < 0.05; M = 1.86, SE = 0.38), while it was
not the case for 1-back and 3-back tasks (p > 0.05). Besides, the
interaction effect of measurement time and modality, as well as
the triple interaction effect were not significant (Fs < 1).

5.1.3. Physiological Indicators
Figure 7 shows the change in EDA tonic level, heart rate and
respiratory rate of participants, depending on the task difficulty
and modality. Data analysis revealed a significant effect of task
modality [F(1,73) = 7.23, p < 0.01, η2p = 0.09] and measurement

time [F(1,73) = 4.83, p < 0.05, η
2
p = 0.06] on EDA tonic level

of drivers, but no significant effect of task difficulty [F(2,146) =
0.869, p > 0.05, η2p = 0.01]. Drivers had a higher change in EDA
tonic level when performing the auditory tasks (M = 2.78, SE =

0.22) compared to the visual tasks (M = 2.65, SE = 0.20). They
also showed a higher change in the second epoch of each type
of task (M = 2.82, SE = 0.22) compared to the first one (M =

2.61, SE = 0.20). The double and triple interaction effects were
not significant (p < 0.05).

Data analysis revealed a significant effect of task difficulty
[F(2,146) = 8.82, p < 0.001, η

2
p = 0.11] and measurement time

[F(1,73) = 37.96, p < 0.001, η
2
p = 0.34] on heart rate of drivers,

but no significant effect of task modality (F < 1). Pairwise
comparisons showed that participants that the change in drivers’
heart rate was significantly higher when performing the 3-back
task (M = –0.35, SE = 0.51) than when performing the 1-
back task (p < 0.001; M = –1.67, SE = 0.50) or no task (e.g.,
monitoring the driving environment; p < 0.05;M = –1.46, SE =

0.51). They also had a higher heart rate in the first epoch of each
type of task (M = –0.34, SE = 0.42) compared to the second one
(M = –1.97, SE= 0.54). The double and triple interaction effects
were not significant (p < 0.05).

Identically to heart rate, results show a significant effect
of task difficulty [F(2,146) = 37.72, p < 0.001, η

2
p = 0.34]

and measurement time [F(1,73) = 8.22, p < 0.001, η
2
p = 0.10]

on respiratory rate of drivers, but no significant effect of
task modality [F(1,73) = 2.30, p > 0.05, η

2
p = 0.03]. Pairwise

comparisons showed that participants that the change in drivers’
respiratory rate was significantly different between one condition
to another (p < 0.001). Figure 7 show that the change was the
highest during the 3-back task, followed, respectively, by 1-back
task and no task conditions. Also, participants had a higher
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TABLE 4 | Hyperparameters values tested during the grid search procedure, with chosen ranges and step values for each parameter.

Classifier Parameter name Parameter definition Range

RF

n_estimators Number of trees in the forest. [10, 257, 505, 752, 1,000]

max_features Number of features to consider when looking for the best split. sqrt

max_depth

Maximum depth of the tree.

If None, then nodes are expanded until all leaves are pure

or until all leaves contain less than 2 samples.

[None, 10, 40, 70, 100]

KNN

n_neighbors Number of neighbors considered. [5, 10, 20, 30]

weight weight function used in prediction. [uniform, distance]

algorithm Algorithm used to compute the nearest neighbors. [auto, ball_tree, kd_tree, brute]

NN
alpha L2 penalty (regularization term) parameter. [1e-4, 1] by step of 10

hidden_layer_sizes The number of neurons in the hidden layer. [32, 64, 128, 256]

RBF, Radial Basis Function.

FIGURE 6 | Effect of task modality and difficulty on subjective ratings of mental demand reported after each sequence of N-back task.

respiratory rate in the first epoch of each type of task (M = 1.23,
SE = 0.56) compared to the second one (M = 0.32, SE = 0.48.
The double and triple interaction effects were not significant (p
< 0.05).

5.2. Classification of Drivers’ Workload
Through Task Difficulty
5.2.1. Task 1 : Effect of Task Performance on

Classification Accuracy
As mentioned earlier, task performance may decrease with
increasing task difficulty, either because of drivers’ skills or
because some drivers may be tempted to abandon the task
if it becomes too complicated. In this case, the physiological
activation induced by the task would be reduced. For this reason,
the influence of task performance on the model’s accuracy for
predicting task difficulty was investigated. Table 3 (Task difficulty
row) summarizes the number of samples contained in all classes
for training themodel at each threshold value. Figure 8 shows the
average f1-score (with standard deviation) on the test set over the

5 iterations, as a function of classifier and threshold value used for
the task performance. Features were considered if the participant
performed at least above the performance threshold during the
task.Table 5 summarizes the best score achieved by each classifier
for each threshold value. To better understand the predictions of
the best model (a Random Forest classifier with the three signals
and a task performance threshold of 100), a confusion matrix
is proposed in Figure 9. Figures 10, 11 show the features that
had the most impact on the model predictions for predicting the
MWL of drivers between the three levels. They show the SHAP
values calculated with the bestmodel for all samples of the test set.

5.2.2. Task 2 : Effect of Sensor Fusion on Accuracy
As shown in Figure 8, the task performance affects the
physiological activation of the drivers and thus the accuracy of
the models. Therefore, the effect of sensor fusion was analyzed.
The performance of the models in classifying drivers’ MWL
as a function of task difficulty (no task, 1-back task, 3-back
task) is presented in Figure 12. It shows the weighted average
f1-score (with standard deviation) of each classifier and each

Frontiers in Computer Science | www.frontiersin.org 12 January 2022 | Volume 3 | Article 77528254

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Meteier et al. Assessing Workload in Conditionally Automated Driving

FIGURE 7 | EDA tonic level (top left), heart rate (top right) and respiratory rate (bottom) measured during the tasks and corrected with baseline, as a function of task

difficulty and modality. Error bars represent standard error.

FIGURE 8 | Classifiers’ performance for predicting task difficulty (no task vs. 1- vs. 3-back), as a function of classifier and task performance. The three signals (EDA +

ECG + RESP) were used to train the classifiers.

signal combination on the test set over the 5 iterations. Table 6
summarizes the best score obtained for each combination of
input signals.

5.3. Regression of Drivers’ Workload Using
Subjective Reports
5.3.1. Task 3 : Effect of Task Performance on

Regression Error
Regression tasks were performed to obtain a finer assessment of
MWL. The goal was to study whether a machine learning model
can assess the self-reported MWL with low error (on a scale
of 0–20). First, the effect of task performance on the regression
error was tested. Figure 13 shows the model error for the MWL

regression, depending on the algorithm and the threshold value
used for the task performance. It shows the average MAE on the
test set over the 5 iterations. As the MAE is used as a metric, this
means that the lower the score, the better the model (closer to
the ground truth). Table 7 summarizes the best scores obtained
by the algorithm for each threshold value, compared to various
baseline metrics (defined in section 4.2.5).

5.3.2. Task 4 : Effect of Sensor Fusion on Regression

Error
As with the classification tasks, the effect of sensor fusion
was also investigated to see if the model performs better with
a certain combination of signals. Figure 14 shows the model
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TABLE 5 | Best score achieved by the model to predict task difficulty at each

threshold of task performance.

Threshold for task performance Best classifier f1-score [Mean (SD)]

70 KNN 0.519 (0.018)

75 RF 0.548 (0.026)

80 NN 0.549 (0.033)

85 RF 0.602 (0.026)

90 NN 0.688 (0.015)

95 NN 0.705 (0.021)

100 RF 0.710 (0.022)

The value in bold is the best score achieved by the model among all possible

combinations.

FIGURE 9 | Confusion matrix of the best model’s predictions for classifying

task difficulty, using the three signals (EDA + ECG + RESP) and a task

performance threshold of 100. Labels : Low = No task; Medium = 1-back

task; High = 3-back task.

error for MWL regression, as a function of the algorithm and
the combination of signals used for training the algorithm. It
shows the average error on the test set over the 5 iterations
after the quadruple cross-validation training procedure. Table 8
summarizes the best score obtained by the corresponding
algorithm for each combination of signals, compared to various
baseline metrics (defined in section 4.2.5).

5.4. Classification of Task Modality: Visual
vs. Auditory
5.4.1. Task 5 : Effect of Task Performance on

Classification Accuracy
Table 3 (TaskModality rows) summarizes the number of samples
from each class that was considered for training the model at
each threshold value. Figure 15 shows the average performance
of the model over 5 iterations, as a function of the classifier
and the threshold value used for the task performance. Table 9

summarizes the best score obtained by the corresponding
classifier for each threshold value.

5.4.2. Task 6 : Effect of Sensor Fusion on

Classification Accuracy
The accuracy of the model for the classification of the task
modality (visual vs. auditory task) is presented in Figure 16.
It shows the averages (and standard deviations) of the
weighted f1 score obtained by the model for each classifier
and each signal combination on the test set over the 5
iterations. Table 10 summarizes the best result obtained for each
signal combination.

6. DISCUSSION

6.1. Manipulation of MWL : Task
Performance and Subjective Reports
Data analysis revealed only a significant effect of task difficulty
on task performance, which is consistent with previous studies
(Mehler et al., 2009, 2012). Participants were correctly implicated
in the 1-back task (task score of 97.6/100), and performed
worse at the 3-back task (task score of 86.2/100), which is
coherent with the increase in task difficulty. Results obtained
on task performance are in line with subjective reports of
mental demand after the tasks. because the task difficulty had
a significant effect on MWL. Figure 6 shows that the subjective
mental demand increases with task difficulty. This result also
means that according to participants, performing a 1-back task
is more demanding than only monitoring the environment of
the car.

Besides, there was a significant effect of measurement time
(first vs. second epochs) on subjective reports of MWL. The
significant interaction effect of measurement time and task
difficulty suggests that it was only the case while monitoring the
driving environment (no task condition). Participants reported
that the first sequence of No Task was more demanding than
the second one. They might have been used to monitor the
environment of the car and hence it required less mental
resources throughout the experiment. Also, they might have
compared with sequences of 1-back and 3-back tasks, so they
have probably lowered the score associated with mental demand
after the second sequence ofNo Task. Nevertheless, this may only
be a subjective feeling.

Task modality did not show any significant effect on task
performance, meaning that participants performed equally in
auditory and visual tasks. It also did not show an effect on
subjective reports of MWL. However, an interaction effect of task
modality and difficulty was found. Participants felt that at the 1-
back level, the visual task was significantly more demanding than
the auditory task. However, this result was not consistent at the
3-back level, so it is hard to conclude this significant effect.

Since the effect of task difficulty on measures of task
performance and workload was significant, we can say that the
manipulation of workload at three levels was successful. Based
on that, the no task, 1-back, and 3-back conditions can be
considered, respectively to states of a low, medium, and high
MWL in the remaining part of the manuscript.
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FIGURE 10 | Plot bar graph of the 10 most impacting features to predict drivers’ condition based on mean absolute SHAP values, arranged in descending order. The

three signals (EDA + ECG + RESP) and a threshold for task performance of 100 were used. The meaning/description of each feature can be found in Table 2. RRV,

Respiratory rate variability; HRV, Heart Rate Variability; RSA, Respiratory Sinus Arrhythmia.

6.2. Influence of MWL on the Physiological
State of Drivers
Data analysis revealed a significant effect of task difficulty on
the mean heart rate and respiration rate but not on EDA. Heart
rate was higher in periods of high MWL (3-back) compared
to medium and low MWL, while respiration rate was different
between each level of MWL. These results are in line with
previous findings (Collet et al., 2009; Mehler et al., 2009, 2012),
since heart and respiration rates increase with task demand
(e.g., increasing workload). However, there was no difference
in drivers’ heart rate while monitoring the environment and
performing the 1-back task. However, it is unexpected to find
no significant effect of task difficulty of EDA tonic level like
in previous findings (Engstrm et al., 2005; Mehler et al., 2009,
2012). This was most probably due to the low engagement of
some drivers in the NDRTs, as suggested by Mehler et al. (2012)
after the non-significant effect found for task difficulty on EDA
in the work of Engstrm et al. (2005). This unexpected result is
consistent with the claim made in the related work section that
it is important to control task performance when manipulating
the MWL. The non-significant difference of physiological values
between No Task and 1-back task is further discussed below. In
addition, the tonic level of EDA was also higher on the second
occurrence of each type of task, probably due to the repetition
of the cognitive tasks to be performed and the demands for car
pickup throughout the experiment. However, the opposite effect
was found for heart and respiratory rates, which were higher in
the first measurement. This could suggest a habituation effect
to the task, or that heart and respiratory rates do not increase
significantly with a long period of conditionally automated

driving (1 h) and repeated takeover requests (5) to manage. EDA
is also likely to be more sensitive to takeover requests (an audio
sound was played for each request) and the tonic level of EDA
may take longer to return to a “normal” state of physiological
activation (Boucsein, 2012).

6.3. Classification and Regression of
Drivers’ Workload
To further investigate the effect of sensor fusion and task
performance on the physiological state of automated vehicle
drivers, classification and regression tasks were performed using
machine learning techniques. For the 3-level classification task,
the results show that MWL can be predicted with 71% accuracy
(with f1-score as the measure) using the EDA and RESP signals
as input of a random forest classifier and a task performance
threshold of 100. The results are close to those obtained in
some previous studies that classified MWL at only two levels
(Hogervorst et al., 2014), which is encouraging for the future.
The results for the regression task are consistent with those
obtained for the classification. The regression showed that the
level of subjective mental load reported by the participants can
be predicted to plus or minus 3.195 error (on a scale of 0–
20), using the 3 input signals and a task performance threshold
of 100. All models tested outperformed the baseline measures,
which means that the implemented model can be considered
intelligent and more effective than a random prediction of
mental load.

Results for both types of tasks are consistent since they
show an effect of task performance on model performance.
Indeed, model performance increased with better performance
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FIGURE 11 | The 10 most important features to predict drivers’ mental workload at each level : low (top left), medium (top right) and high (bottom) mental workload.

The three signals (EDA + ECG + RESP) and a threshold for task performance of 100 were used. A high SHAP value (to the right on the x-axis) indicates that this

feature influenced positively the model to predict that class. The meaning/description of each feature can be found in Table 2. RRV, Respiratory rate variability; HRV,

Heart Rate Variability; RSA, Respiratory Sinus Arrhythmia.

on the cognitive tasks. This result suggests that participants’
physiological activation is higher when they are properly
involved in a cognitive task Mehler et al. (2012). This also
suggests that task performance must be controlled during
experimental manipulation of the workload in order to obtain
consistent results. The effect of sensor fusion was also similar
for classification and regression. Model performance increases
slightly with signal fusion, although the difference is small
between the models using 2 or 3 signals. From the results,
it is difficult to conclude that one signal is more effective in
predicting mental load than another. Still, the effect of sensor
fusion on models’ performance are in line with a previous
recent study also conducted in conditionally automated driving
Meteier et al. (2021). In both studies, EDA is the input
signal that performed the worst, which is also in line with
the results obtained in the statistical analysis. This unexpected
result can be explained by the fact that the participants were
holding a tablet to perform the task, which may have induced

some noise in the signal. In addition, the repetition of the
takeover requests may have attenuated the increase in skin
conductance due to the increase in cognitive load during
the tasks. The fusion of the three signals (EDA + ECG +
RESP) was always among the best results. This shows the
importance ofmulti-modality, allowing to combine features from
different signals and thus ensuring a robust evaluation of the
mental load.

In this work, the f1-score obtained by the models remains
relatively low. This can be explained by the difficulty of the model
to distinguish between phases of low cognitive task (1-back) and
phases of observation of the vehicle environment (no task). This
is illustrated by the confusion matrix in Figure 9. This suggests
that observing the vehicle environment or performing a mildly
cognitive task on a digital device could induce the same level of
cognitive load to the driver. Thus, this implies that drivers might
be allowed to engage in mildly cognitive NDRTs in conditional
automated driving, with respect to physiological activation.
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FIGURE 12 | Classifiers’ performance for predicting task difficulty (no task vs. 1- vs. 3-back), as a function of classifier and selected physiological signals. A threshold

for task performance of 100 was selected.

TABLE 6 | Best score achieved by the model to predict task difficulty for each

combination of physiological signals.

Selected signal Best classifier f1-score [Mean (SD)]

EDA RF 0.620 (0.027)

ECG RF 0.683 (0.020)

RESP RF 0.684 (0.028)

EDA + ECG RF 0.681 (0.018)

ECG + RESP RF 0.695 (0.023)

EDA + RESP RF 0.713 (0.015)

EDA + ECG + RESP RF 0.710 (0.022)

The value in bold is the best score achieved by the model among all possible

combinations.

6.4. Relevant Indicators of Workload
In order to go even further in the explainability of the machine
learning models, an explainable AI technique was applied to the
best classifier to find the most relevant indicators to measure
MWL. Figure 11 shows that among the 10 indicators with the
highest impact in predicting mental load, 4 are respiratory sinus
arrhythmia indicators, 3 are respiratory rate variability indicators
and 3 are cardiac variability indicators, which is consistent with
the literature (Boyce, 1974; Muth et al., 2012; Hidalgo-Muoz
et al., 2019). In particular, respiratory sinus arrhythmia (corrected
to baseline) according to the Gates method (Gates et al., 2015)
seems to be themost relevant indicator, especially for highmental
load states. According to the results obtained in this experiment,
RSA estimates decrease with increasing mental load (low values
toward the right of the x-axis in Figure 11), which is consistent
with previous studies (Boyce, 1974; Muth et al., 2012). This is
associated with a decrease in cardiac variability and an increase in
respiratory amplitude. Whereas, a previous study indicated that
respiratory amplitude appears to remain stable with increasing
MWL (Grassmann et al., 2016), the results obtained in this study

suggest that participants breathed more heavily in a high mental
load condition. This should be further investigated.

6.5. Classification of Task Modality
An additional goal of this work was to test whether the task
modality performed by the driver could be recognized using
physiological signals and machine learning. The results show
that the model was only able to predict the task modality with
an accuracy of 61.8% measured by the f1-score, using ECG
and RESP as input signals and a threshold of 100 for the task
performance. Most models tested with various combinations of
thresholds for task performance and input signals have often
achieved a performance of around 50%-accuracy. Hence, the
effect of task performance on model performance to predict
task modality is unclear. Only the threshold of 100 significantly
increased model performance. These results suggest that it is
difficult to predict the modality of the task performed by the
driver from physiological signals alone. With the results obtained
in our study, we suggest using other data sources such as cameras
to predict the modality of the task performed by drivers and
support them accordingly. Previous studies have shown that
certain task modalities can negatively impact the driver’s ability
to take control of automated driving (Wandtner et al., 2018;
Roche et al., 2019) and the driver’s awareness of his or her
environment (Meteier et al., 2020). Thus, knowing the type of
task the driver is performing would optimally convey contextual
information about the driving environment and thus increase
situational awareness.

6.6. Limitations and Further Research
This study was conducted with young drivers (average age 24)
in a simulator. This may have influenced the results obtained,
as the mental workload induced in real driving conditions or
with drivers of different ages is certainly not the same. Also, the
scenario did not include traffic, which could have influenced the

Frontiers in Computer Science | www.frontiersin.org 17 January 2022 | Volume 3 | Article 77528259

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Meteier et al. Assessing Workload in Conditionally Automated Driving

FIGURE 13 | Models’ performance for predicting MWL on a 0–20 scale, as a function of algorithm and task performance. The three signals (EDA + ECG + RESP)

were used to train the classifiers.

TABLE 7 | Best score achieved by the model to predict task difficulty at each threshold of task performance.

Threshold Best model MAE [Mean (SD)] Random MeanScale MeanParticipants MeanGroup

70 KNN 5.123 (0.208) 7.177 5.903 5.831 6.425

75 KNN 5.123 (0.277) 7.197 5.671 5.556 6.339

80 KNN 4.919 (0.146) 7.485 5.892 5.726 6.369

85 KNN 4.7968 (0.177) 7.131 5.917 5.655 6.223

90 RF 4.522 (0.166) 7.700 6.157 5.613 5.748

95 RF 4.113 (0.235) 7.748 6.592 5.854 5.328

100 KNN 3.195 (0.384) 8.085 6.912 5.934 4.438

Scores obtained for baseline metrics are also reported. The value in bold is the best score achieved by the model among all possible combinations.

FIGURE 14 | Models’ performance for predicting MWL on a 0–20 scale, as a function of selected physiological signals and algorithm. A threshold for task

performance of 100 was selected.
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TABLE 8 | Best score achieved by the model to predict task modality for each combination of physiological signals.

Signal(s) Model MAE [Mean (SD)] Random MeanScale MeanParticipants MeanGroup

EDA RF 3.436 (0.154) 7.870 6.981 5.954 4.665

ECG RF 3.425 (0.236) 7.905 6.527 5.562 4.180

RESP RF 3.432 (0.329) 7.871 6.792 5.850 4.772

EDA + ECG KNN 3.348 (0.348) 7.642 6.954 5.923 4.561

ECG + RESP RF 3.206 (0.165) 7.634 6.696 5.691 4.267

EDA + RESP RF 3.249 (0.105) 8.035 6.886 5.832 4.266

EDA + ECG + RESP KNN 3.195 (0.384) 8.085 6.912 5.934 4.438

Scores obtained for baseline metrics are also reported. The value in bold is the best score achieved by the model among all possible combinations.

FIGURE 15 | Classification accuracy for predicting task modality (visual vs. auditory), as a function of classifier and task performance. The three signals (EDA + ECG +

RESP) were used to train the classifiers.

drivers’ MWL. Other factors were experimentally manipulated in
this experiment but were not presented in this work. These may
have influenced the participants’ physiological and mental state.
For example, the presence of a split-screen mobile application on
the tablet for half of the participants throughout the experiment
may have induced additional mental load (Meteier et al., 2020).
In addition, some participants commented on the repetitive and
monotonous nature of the non-driving-related task. They may
have lost motivation during the experiment, which was reflected
in the effect of task performance on the results. To mitigate this
problem, a question could have been administered to them to
subjectively measure their engagement in the NDRT.

For the non-significant effect found for task difficulty on EDA,
one solution would be to take task performance into account in
the statistical analysis. Another possibility would be not to take
into account the periods after each takeover request, as this could
have induced a large increase in EDA and thus biased the results
for the non-driving-related task periods.

Regarding the classification results, we are still far from an
accuracy of 100%. On the other hand, the results obtained for
the regression are encouraging since the model can be considered
as intelligent. However, the results obtained must be interpreted
with caution. Indeed, the label used as ground truth was a

TABLE 9 | Best score achieved by the model to predict task modality at each

threshold of task performance.

Threshold for task performance Best classifier f1-score [Mean (SD)]

70 RF 0.460 (0.050)

75 NN 0.469 (0.015)

80 RF 0.478 (0.021)

85 NN 0.431 (0.045)

90 KNN 0.391 (0.050)

95 RF 0.408 (0.023)

100 RF 0.584 (0.047)

The value in bold is the best score achieved by the model among all possible

combinations.

subjective value. Even if this score was reported just after the
task to limit recall problems, the score predicted by the model
during the regression was perhaps sometimes closer to reality. A
solution to this problem would be to use the performance during
the task to regress the mental load instead, to assess the mental
load more accurately.

To improve the results obtained for the classification and
regression of mental load from physiological indicators, more
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FIGURE 16 | Classification accuracy for predicting task modality (visual vs. auditory), as a function of selected physiological signals and classifier. A threshold for task

performance of 100 was selected.

complex and recent models could be used, such as deep neural
network architecture (Bagnall et al., 2016; Ismail Fawaz et al.,
2019) or gradient boosted decision trees like XGB (Momeni
et al., 2019). Data augmentation would hence be required to train
models with deep architectures. This can be done using sliding
windows to generate more training samples, or recent techniques
of data augmentation such as Gaussian Mixture Models (GMMs)
and Generative Adversarial Networks (GANs) (Hatamian et al.,
2020). However, data augmentation using overlapping windows
does not improve drastically models’ performance to predict
cognitive workload (Solovey et al., 2014; Momeni et al., 2019).
This raises other research questions, such as the length of time
windows used to generate the physiological indicators. Ninety
second may not be the optimal time window for measuring
mental load. The work ofMeteier et al. (2021) shows that 4–5min
were optimal for measuring the mental load induced by a verbal
task, while Solovey et al. (2014) found that 30 s gave the best
results. This should be explored in future studies. The ultimate
goal is to find the best trade-off between model accuracy and the
time window used to predict mental load in a dynamic context
such as automated driving. Another way to improve the results
obtained would be to manipulate the MWL in the laboratory to
limit the influence of external factors. However, the trainedmodel
would then be very efficient but less close to reality, which is less
relevant for the concrete use of these intelligent models in our
future cars.

7. CONCLUSION

This work studied the assessment of mental workload through
physiological data in the specific context of automated driving.
Three physiological signals (EDA, ECG, and respiration) from
80 subjects were collected during 1 h of conditionally automated

TABLE 10 | Best score achieved by the model to predict task modality for each

combination of physiological signals.

Selected signal Best classifier f1-score [Mean (SD)]

EDA RF 0.496 (0.030)

ECG NN 0.582 (0.035)

RESP RF 0.591 (0.553)

EDA + ECG RF 0.601 (0.030)

ECG + RESP RF 0.618 (0.030)

EDA + RESP RF 0.609 (0.027)

EDA + ECG + RESP RF 0.584 (0.047)

The value in bold is the best score achieved by the model among all possible

combinations.

driving in a simulator. The difficulty and modality of the task
were experimentally manipulated with the N-back task. A wide
range of physiological indicators was calculated from the signals
collected during 15 task sequences (90 s each). Statistical analysis
showed an effect of task difficulty on drivers’ heart and respiratory
rates, but not on the tonic level of the EDA. This could be
explained by the low engagement of the drivers in the task or by
the repeated requests to take over control during the experiment.
A machine learning pipeline was set up, using a repeated 4-fold
cross-validation approachwith grid search on three algorithms. A
random forest classified three different levels of mental workload
with a f1-score of 0.713, using skin conductance and respiration
as input signals. The drivers’ subjective level of mental workload
could be predicted with a mean absolute error of around 3 (on a
scale of 0–20) using the three signals. In both the classification
and regression tasks, the models’ performance increased with
task performance. This suggests the importance of controlling
for task performance when using the dual-task paradigm to
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experimentally manipulate workload. High engagement in the
secondary task resulted in greater physiological activation and
therefore helped the model to better classify or regress driver
workload. In addition, the model had difficulty predicting the
driver’s state between monitoring the environment (no task)
and performing a mild cognitive task (1-back task). The results
suggest that these two tasks might induce a similar amount
of physiological activation in drivers. As expected, classification
of the task modality (visual or auditory) using physiological
signals was not successful. Finally, the most important features
in the classification process were extracted using a technique
of explainable artificial intelligence. Physiological measures such
as estimates of respiratory sinus arrhythmia and indicators of
respiratory and heart rate variability were among the most
relevant measures of mental workload, according to the results
obtained in this study. This is consistent with previous literature
and we suggest that these indicators should be used to assess the
MWL of drivers in automated driving.
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The Component Process Model is a well-established framework describing an

emotion as a dynamic process with five highly interrelated components: cognitive

appraisal, expression, motivation, physiology and feeling. Yet, few empirical studies

have systematically investigated discrete emotions through this full multi-componential

view. We therefore elicited various emotions during movie watching and measured their

manifestations across these components. Our goal was to investigate the relationship

between physiological measures and the theoretically defined components, as well as

to determine whether discrete emotions could be predicted from the multicomponent

response patterns. By deploying a data-driven computational approach based on

multivariate pattern classification, our results suggest that physiological features are

encoded within each component, supporting the hypothesis of a synchronized

recruitment during an emotion episode. Overall, while emotion prediction was higher

when classifiers were trained with all five components, a model without physiology

features did not significantly reduce the performance. The findings therefore support

a description of emotion as a multicomponent process, in which emotion recognition

requires the integration of all the components. However, they also indicate that

physiology per se is the least significant predictor for emotion classification among these

five components.

Keywords: emotion, component model, autonomic nervous system, physiological responses, computational

modeling

INTRODUCTION

Emotions play a central role in human experience by changing the way we think and behave.
However, our understanding of the complex mechanisms underlying their production still remains
incomplete and debated. Various theoretical models have been proposed to deconstruct emotional
phenomena by highlighting their constituent features, as well as the particular behaviors and
particular feelings associated with them. Despite ongoing disagreements, there is a consensus
at least in defining an emotion as a multicomponent response, rather than a unitary entity
(Moors, 2009). This conceptualization concerning the componential nature of emotion is not
only central in appraisal theories (Scherer, 2009) and constructivist theories (Barrett et al., 2007),
but also found to some extent in dimensional (Russell, 2009) and basic categorical models

66

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.773256
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.773256&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maelan.menetrey@epfl.ch
https://doi.org/10.3389/fcomp.2022.773256
https://www.frontiersin.org/articles/10.3389/fcomp.2022.773256/full


Menétrey et al. Physiological Contributions in a Multi-Componential Model of Emotion

(Matsumoto and Ekman, 2009) that consider emotions as
organized along orthogonal factors of “core affect” (valence
and arousal), or as discrete and modular adaptive response
patterns (fear, anger, etc.), respectively. Among these, appraisal
theories, such as the Component Process Model (CPM) of
emotion proposed by Scherer (1984), provide an explicit account
of emotion elicitation in terms of a combination of a few
distinct processes that evaluate the significance and context of
the situation (e.g., relevance, novelty, controllability, etc.) and
triggers a set of synchronized and interdependent responses at
different functional levels in both the mind and body (Scherer,
2009). Hence, it is suggested that multiple and partly parallel
appraisal processes operate to modify the motivational state (i.e.,
action tendencies such as approach, avoidance, or domination
behaviors), the autonomic system (i.e., somatovisceral changes),
as well as the somatic system (i.e., motor expression in face
or voice and bodily actions). Eventually, synchronized changes
in all these components—appraisal, motivation, physiology, and
motor expression—may be centrally integrated in a multimodal
representation (see Figure 1) that eventually becomes conscious
and constitutes the subjective feeling component of the emotion
(Grandjean et al., 2008).

Because the CPM proposes to define an emotion as a
bounded episode characterized by a particular pattern of
component synchronization, whereby the degree of coherence
among components is a central property of emotional experience
(Scherer, 2005a), it offers a valuable framework to model
emotions in computationally tractable features. Yet, previous
studies often relied on physiological changes combined with
subjective feeling measures, either in the perspective of discrete
emotion categories (e.g., fear, anger, joy, etc.) or more restricted
dimensional descriptors (e.g., valence and arousal) (see Gunes
and Pantic, 2010). As a consequence, such approaches have
generally overlooked the full componential view of emotion.
On the other hand, studies inspired by the appraisal framework
have often analyzed emotional response with linear analyses and
simple linear models (Smith and Ellsworth, 1985; Frijda et al.,
1989; Fontaine et al., 2013). Yet, based on the interactional
and multicomponent account of emotions in this framework
(Sander et al., 2005), non-linear classification techniques from the
field of machine learning may be more appropriate and indeed
provide better performances in the discrimination of emotions
(Meuleman and Scherer, 2013; Meuleman et al., 2019). However,
in the few studies using such approaches, classification analyses
were derived from datasets depicting the semantic representation
of major emotion words, but participants were not directly
experiencing genuine emotions.

In parallel, while physiology is assumed to be one of the
major components of emotion, the most appropriate channels
of physiological activity to assess or to differentiate a particular
emotion is still debated (see Harrison et al., 2013). For example,
dimensional and constructivist theories do not assume that
different emotions present specific patterns of physiological
outputs (Quigley and Barrett, 2014) or argue that evidence
is minimal for supporting specific profiles in each emotional
category, spotlighting the insufficient consistency and specificity
in patterns of activation within the peripheral and central

nervous systems (Wager et al., 2015; Siegel et al., 2018). It has
also been advocated that an emotion emerges from an ongoing
constructive process that involves a set of basic affect dimensions
and psychological components that are not specific to emotions
(Barrett et al., 2007; Lindquist et al., 2013). Therefore, the
modulation of autonomic nervous system (ANS) activity might
be tailored to the specific demand of a situation and not to a
discrete emotion. Peripheral physiological state occurring during
a given emotion type is therefore expected to be highly variable
in its physiological nature.

In contrast, some authors argue that measures of peripheral
autonomic activity may contain diagnostic information enabling
the representation of discrete emotions, that is, a shared pattern
of bodily changes within the same category of emotion that
becomes apparent only when considering a multidimensional
configuration of simultaneous measures (Kragel and LaBar,
2013). Because univariate statistical approaches, which evaluate
the relationship between a dependent variable and one
or more experimental independent variables, have shown
inconsistent results in relating physiology measures to discrete
emotions (Kreibig, 2010), the development of multivariate
statistical approaches to discriminate multidimensional patterns
offers new perspectives to address these issues. By assessing
the correlation between both dependent and independent
variables and by jointly considering a set of multiple variables,
multivariate analyses can reveal a finer organization in data
as compared with univariate analyses where variables are
treated independently. Accordingly, several recent studies used
multivariate techniques and described separate affective states
based on physiological measures including cardiovascular,
respiratory and electrodermal activity (Christie and Friedman,
2004; Kreibig et al., 2007; Stephens et al., 2010). Such results
support theoretical accounts from both basic (Ekman, 1992) and
appraisal models (Scherer, 1984) suggesting that information
carried in autonomic responses is useful to distinguish between
emotional states. In this view, by using the relationships
between multiple physiological responses in different emotional
situations, it should be possible to infer which emotion is
elicited. However, empirical evidence suggests that it is still
complicated to figure out from patterned physiological responses,
whether ANSmeasures are differentiated among specific emotion
categories or more basic dimensions (Mauss and Robinson,
2009; Quigley and Barrett, 2014). Moreover, it is often observed
that self-reports of emotional experience discriminate between
discrete emotions with a much better accuracy than autonomic
patterns (Mauss and Robinson, 2009).

In sum, there is still no unanimous conclusion about
distinguishable patterns of activation in ANS, due to the difficulty
to identify and associate reliable response patterns to discrete
emotions. As a consequence, the debate is not closed concerning
the functionality of physiology during an emotional experience.
Based on the CPM model, physiology is involved in shaping
emotion and can contribute to differentiating emotion. However,
while relevant, we hypothesize that the use of physiology alone is
limited in discriminating emotion but could be better understood
if integrated with the other major components of emotion.
Therefore, to provide further insights about the contribution
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FIGURE 1 | Component model of emotion with five components. As suggested by Scherer (1984), it starts with an evaluation of an event (Appraisal component)

which leads to changes in Motivation, Physiology and Expression components. Changes in all these four components modulate the Feeling component.

of physiology in emotion differentiation, we propose here
to examine how a full componential model can account for
the multiple and concomitant changes in physiological and
behavioral measures observed during emotion elicitation. In
addition, we examine the added information by each component
and hypothesize that considering the synchronized changes in
all components, the information in each component is already
encoded in the other components. To the best of our knowledge,
the present work represents one of the first attempts to investigate
the componential theory by explicitly considering a combination
of multiple, theoretically defined, emotional processes that occur
in response to naturalistic emotional events (from cinematic film
excerpts). By deploying a data-driven computational approach
based onmultivariate pattern classification, we aim at performing
detailed analyses of physiological data in order to distinguish
and predict the engagement of different emotion components
across a wide range of eliciting events. On the grounds of such
multicomponent response patterns, we also aim at determining
to what extent discrete emotion categories can be predicted
from information provided by these components, and what is
the contribution of each component in such predictions. We
hypothesize that a multicomponent account, as proposed by
the CPM (Scherer, 1984, 2009), may allow us to capture the
variability of physiological activity during emotional episodes, as
well as their differentiation across major categories of emotions.

MATERIALS AND METHODS

Assuming that a wide range of emotional sequences will engage
a comprehensive range of component processes, we selected a
number of highly emotional film excerpts taken from different
sources (see below). Physiological measures were recorded
simultaneously during the initial viewing of movie clips, with
no instructions other than be spontaneously absorbed by the
movies. Participants were asked, during a second presentation,
to fill out a detailed questionnaire with various key descriptors
of emotion-eliciting episodes derived from the componential
model (i.e., CoreGRID items) that assess several dimensions
of appraisal, motivation, expression, physiology, and feeling
experiences (Fontaine et al., 2013). We then examined whether

the differential patterns of physiological measures observed
across episodes could be linked to a corresponding distribution
of ratings along the CoreGRID items, and whether the combined
assessment of these items and physiological measures could be
used together to distinguish between discrete emotions.

Population
A total of 20 French-speaking and right-handed students (9
women, 11 men) between 19 and 25 years old (mean age =

20.95, SD = 1.79) took part in the main study. All of them
reported no history of neurological or psychiatric disorder, gave a
written informed consent after a full explanation of the study and
were remunerated. One participant completed only 2 sessions
out of 4, but the data collected were nevertheless included in the
study. This work was approved by Geneva Cantonal Research
Committee and followed their guidelines in accordance with
Helsinki declaration.

Stimuli Selection
To select a set of emotionally engaging film excerpts which could
induce variations along different dimensions of the component
model, a first preliminary study was conducted in separate
study (for more details, see Mohammadi and Vuilleumier, 2020;
Mohammadi et al., 2020). We selected a set of 139 film clips
from the previous literature on emotion elicitation, matching
in terms of time and visual quality (Gross and Levenson, 1995;
Soleymani et al., 2009; Schaefer et al., 2010; Gabert-Quillen
et al., 2015). Emotion assessment was collected in terms of
discrete emotion labels and componential model descriptors.
Initially, clips were evaluated over 14 discrete emotions (fear,
anxiety, anger, shame, warm-hearted, joy, sadness, satisfaction,
surprise, love, guilt, disgust, contempt, calm) based on amodified
version of the Differential Emotion Scale (McHugo et al., 1982;
Izard et al., 1993). For the component model, 39 descriptive
items were selected from the CoreGRID instrument, capturing
emotion features along the five components of interest: appraisal,
motivation, expression, physiology, and feeling (Fontaine et al.,
2013). This selection was performed based on the applicability
to emotion elicitation scenarios while watching an event in a
clip. The study was performed on Crowdflower, a crowdsourcing
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platform, and a total number of 638 workers participated. Based
on average ratings and discreteness, 40 film clips were selected for
this study (for more details, see Mohammadi and Vuilleumier,
2020). Shame, warm-hearted, guilt and contempt were excluded
from the list of elicited emotions because no clips received high
ratings for these four emotions.

Finally, another preliminary study was conducted to isolate
the highest emotional moments in each clip. To this aim,
five different participants watched the full clips and rated the
emotional intensity of the scene using CARMA, a software for
continuous affect rating and media annotation (Girard, 2014).
The five annotations were integrated to find the most intense
emotional events in each time series.

The final list of film excerpts was thus represented by 4 clips
for each of the 10 selected discrete emotions, with a total duration
of 74min (average length of 111 seconds per clip). Moreover,
between 1 and 4 highly emotional segments of 12 seconds were
selected in each film excerpt, for a total of 119 emotional
segments. The list of the 40 selected films in our final dataset is
presented in Supplementary Table S1. The duration, the initially
assigned emotion label, and the number of highly emotional
segments are indicated for each film excerpt.

Experimental Paradigm
The whole experiment consisted of four sessions scheduled
on different days. Each session was divided into two parts,
fMRI experiment and behavioral experiment, lasting for about
1 and 2 h, respectively. In the current study we focus
only on the behavioral analysis and will not use the fMRI
data. Stimuli presentation and assessment were controlled
using Psychtoolbox-3, an interface between MATLAB and
computer hardware.

During the fMRI experiment, participants were engaged
in an emotion elicitation procedure using our 40 emotional
film excerpts. No explicit task was required during this phase.
They were simply instructed to let themselves feel and express
emotions freely rather than controlling feelings and thoughts
because of the experiment environment. Movies were presented
inside the MRI scanner on an LCD screen through a mirror
mounted on the head coil. The audio stream was transmitted
throughMRI-compatible earphones. Each session was composed
of 10 separate runs, each presenting a film clip preceded by a
5-seconds instruction screen warning about the imminent next
display and followed by a 30-seconds washout periods introduced
as a low-level perceptual control baseline for the fMRI analysis
(not analyzed here). Moreover, a session consisted of a pseudo-
random choice of 10 unique film clips with high ratings on
at least one of the 10 different pre-labeled discrete emotion
categories (fear, anxiety, anger, joy, sadness, satisfaction, surprise,
love, disgust, calm). This permitted to engage potentially different
component processes in every session. To avoid any order effect,
the presentation of all stimuli was counterbalanced.

The behavioral experiment was performed at the end of each
fMRI session, in a separate room. Participants were let alone
with no imposed time constraints to complete the assessment.
They were asked to rate their feelings, thoughts, or emotions
evoked during the first viewing of the film clips and advised not to

report what might be expected to feel in general when watching
such kinds of events. To achieve the emotion evaluation, the 10
film excerpts seen in the preceding session were presented on a
laptop computer with LCD screen and headphones. However,
the previously selected highly emotional segments (see “stimuli
selection” above) were now explicitly highlighted in each film
excerpts by a red frame surrounding the visual display. In order
to ensure that emotion assessment corresponded to a single event
and not the entire clip, the ratings were required right after each
segment by pausing the clips. The assessment involved a subset
of CoreGRID instrument (Fontaine et al., 2013), which is to
date the most comprehensive attempt for multi-componential
measurement in emotion. The set of 32 items (see Table 1) had
been pre-selected based on their applicability to the emotion
elicitation scenario with movies, rather than according to an
active first-person involvement in an event. Among our set of
CoreGRID items, 9 were related to the appraisal component, 6
to the expression component, 7 to the motivation component,
6 to the feeling component, and 4 to the bodily component.
Participants had to indicate how much they considered that the
description of the CoreGRID items correctly represented what
they felt in response to the highlighted segment, using a 7-level
Likert scale with 1 for “not at all” and 7 for “strongly.”

Thus, each participant had to complete 119 assessments
corresponding to 119 emotional segments. All responses were
collected through the keyboard, for a total of 3,808 observations
per participant (32 items × 119 emotional segments). Finally,
they were also asked to label the segments by selecting one
discrete emotion term from the list of 10 emotion categories.
Therefore, the same segment may have been classified by
participants into different emotion categories, and differently
from the pre-labeled category defined during the pilot phase
(where ratings were made for the entire film clip). In this study,
we always used the subjectively experienced emotions reported
by the participants as ground-truth labels for subsequent
classification analyses. The frequency histogram showing the
categorical emotions selected by the participants is presented in
Supplementary Figure S1.

Physiological Data Acquisition
A number of physiological measures were collected
during the first part of each session in the MRI scanner,
including heart rate, respiration rate, and electrodermal
activity. All the measures were acquired continuously
throughout the whole scanning time. The data were
first recorded with a 5,000Hz sampling rate using the
MP150 Biopac Systems software (Santa Barbara, CA),
before being pre-processed with AcqKnowledge 4.2 and
MATLAB 2012b.

Heart rate (HR) was recorded with a photoplethysmogram
amplifier module (PPG100C). This single channel amplifier
designed for indirectmeasurement of blood pressure was coupled
to a TSD200-MRI photoplethysmogram transducer fixed on
the index finger of the left hand. Recording artifacts and
signal losses were corrected using endpoint function from
AcqKnowledge, which interpolates the values of a selected
impaired measure portion. Secondly, the pulse signal was
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TABLE 1 | List of the 32 CoreGRID items.

Major components CoreGrid items

Appraisal

To what extent did you… 1) think it was incongruent with your standards

and ideas?

2) feel it was unpleasant for you?

3) think it violated laws or socially accepted

norms?

4) think it was unpleasant for somebody (in the

clip)?

5) think it was important and relevant for the goals

or needs of somebody?

6) feel the event was unpredictable?

7) feel the event occured suddenly?

8) think the event was caused by chance?

9) think the consequences were predictable?

Expression

To what extent did you… 10) press lips together?

11) close your eyes?

12) show tears?

13) have the jaw drop?

14) have eyebrows go up?

15) produce abrupt body movements?

Motivation

To what extent did you… 16) want to destroy something?

17) want to do damage, hit or say something that

hurts?

18) feel the urge to stop what was happening?

19) want to undo what was happening?

20) want the ongoing situation to last or be

repeated?

21) feel motivated to pay attention to what was

going on?

22) want to tackle the situation and do something?

Feeling

To what extent did you.… 23) feel bad?

24) feel calm?

25) feel good?

26) feel strong?

27) feel an intense emotional state?

28) experience an emotional state for a long time?

Body

To what extent did you… 29) experience muscles tensing (whole body)?

30) have a feeling of a lump in the throat?

31) have stomach troubles?

32) feel warm?

Participants were asked to indicate on a 7-point Likert scale how much the descriptions

represented what they felt.

exported to MATLAB and downsampled to 120Hz. To remove
scanner artifacts, a comb-pass filter was applied at 17.5Hz.
The pulse signal was then filtered with a band-pass filter

between 1 and 40Hz. Subsequently, the instantaneous heart
rate was computed by identifying the peaks in the pulse signal,
calculating the time intervals between them and converting
this distance into beats per minute (BPM). The standard heart
rate in humans goes from 60 to 100 bpm at rest. Hence,
it was considered that a rate above 100 bpm was unlikely
and the minimum distance between peaks will not exceed
this limit. This automatic identification was manually verified
by adding, changing or removing the detected peaks and
possible outliers.

Respiration rate (RR) was measured using a RSP100C
respiration pneumogram amplifier module, designed specifically
for recording respiration effort. This differential amplifier worked
with a TSD201 respiration transducer, which was attached with a
belt around the upper chest near the level of maximum amplitude
in order to measure thoracic expansion and contraction. Using
a similar procedure as for HR preprocessing, the connect
endpoint function of AcqKnowledge was first employed to
correct manually the artifacts and losses of signal. After exporting
the raw signal to MATLAB, it was downsampled to 120Hz and
then filtered with a band pass filter fixed between 0.05 and 1Hz.
Lastly, the signal was converted to breaths per minute using the
same procedure as above. The standard respiration rate in human
goes from 12 to 20 breaths per minute at rest. Since participants
were performing a task inside a scanner which could be an
unusual environment, the higher maximum rate was increased
at 35 cycles per minute. Therefore, it was estimated that a rate
above 35 was unlikely and the minimum distance between peaks
will not exceed this limit. Again, this information was used in the
automatic detection of the signal peaks. The respiration rate was
thenmanually verified by looking at the detected signal peaks and
corrected, with outliers being removed when it was necessary.

Electrodermal activity (EDA) was registered using an
EDA100C electrodermal activity amplifier module, a single-
channel, high-gain, differential amplifier designed to measure
skin conductance via the constant voltage technique. The
EDA100C was connected to Adult ECG Cleartrace 2 LT
electrodes. Electrodes were placed on the index and the median
fingers of the participants left hand. Following the manual
correction of artifacts and losses of signal with the connect
endpoint function on AcqKnowledge, the raw signal was
exported to MATLAB. Similar to the two other physiological
signals, the EDA signal was downsampled to 120Hz. This
signal, recorded by BIOPAC in microSiemes (µS), was then
filtered with a 1Hz low pass filter. An IIR (infinite impulse
response) high-pass filter fixed at 0.05Hz was applied to derive
the Skin Conductance Responses (phasic component of EDA)
representing the rapidly changing peaks, while a FIR (finite
impulse response) low-pass filter fixed at 0.05Hz was applied to
derive the Skin Conductance Levels (tonic component of EDA)
corresponding to the smooth underlying slowly-changing levels
(AcqKnowledge 4 Software Guide, 2011).

Features and Normalization
MATLAB was used to select physiological values during
the 12-s duration of high emotional segments. From these
values, the means, variances, and ranges of each physiological
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signals (HR, RR, phasic and tonic EDA) were calculated.
We chose to focus specifically on the mean and variance
of these physiological signals, as these are the most reliable
and frequently reported features in studies associating discrete
emotions and physiological responses (Kreibig, 2010). For HR
and RR measures, respectively 4 and 17 responses during highly
emotional segments had to be removed in one participant due
to a corrupted signal, potentially induced by movements. For
EDA, 267 values had to be removed due to temporary losses
of signal, resulting in flat and useless measures. In particular,
EDA responses of two subjects were completely removed as
the EDA sensor could not capture their response. In order to
handle the missing values in the physiological data, dropouts
were replaced by mean value of the whole session during which
the signal loss has happened (i.e., missing value imputation).
Furthermore, the variance in physiological responses could be
very large and different across participants. Because it was
particularly important to reduce such variability in order to
avoid inter-individual biases, all physiological measures were
normalized within-subject using RStudio (1.1.383). To achieve
this, standardized z-scores were calculated from the physiological
data during the 4 sessions of each participant.

Regarding responses collected for the 32 CoreGRID items for
each high emotional segment, a within-subject normalization
into z-score was also performed. These normalized behavioral
data and the discrete emotion labels selected by the participants
for each emotional segment were incorporated to the related
physiological measures. In the end, for each of the 119 emotional
segments, we obtained a set of observations including 32
standardized CoreGRID items and 1 discrete emotion label, as
well as 8 standardized physiological values calculated offline.
However, the final dataset included 19 participants who attended
all 4 sessions (19 x 119 = 2,261), while 1 participant completed
2 sessions out of 4 (1 × 55 = 55). Also, for 11 participants, the
assessment of one of the emotional segments did not get recorded
due to a technical issue. Therefore, in total, there were (2,261
+ 55 – 11 =) 2,305 sets of observations instead of the possible
maximum of (20× 119=) 2,380 (∼3% of points loss).

Predictive Analyses
To investigate the relationship between physiology and the
component model descriptors, two analyses were performed.
First, we examined whether the physiology measures allowed
predicting component model descriptors and vice versa. Second,
we assessed whether distinct features from the componential
model allowed predicting discrete emotion categories and
compared the value of different components for this prediction.
For both analyses, multivariate pattern classifications using
machine learning algorithms were undertaken to predict the
variables of interest. Linear and non-linear classifiers including
Logistic Regression (LR) and Support Vector Machine (SVM)
with different kernels (linear, radial basis function, polynomial
and sigmoid) were applied. All analyses were carried out
using the RStudio statistical software, Version 1.1.383. Logistic
regressions were conducted with the “caret” package, Version
6.0 and multinomial logistic regressions with the “nnet” package,
Version 7.3. The binary and multiclass classifications using

Support Vector Machine were conducted with the “e1071”
package, Version 1.7.

First, the CoreGRID items were used as predictor variables
to predict the dependent variable, which was either the mean
or the variance of each physiological measure. To enable such
analyses and to simplify the computational problem, the scores of
the dependent variable were converted into two classes of “High”
and “Low” using the median value across all the participants
as a cutoff threshold. LR and SVM with linear and non-linear
kernels using 10-fold cross-validation were applied. To guarantee
test and training independence, each participant’s assessment was
included in either a test set or a training set. Conversely, similar
analyses were carried out to determine whether physiology
measures could encode the component model descriptors, but
now using the physiology measures as independent variables in
an attempt to predict the ratings of each CoreGRID item as either
above or below the median.

Secondly, to examine the relationship between the
component process model and discrete emotion types,
multiclass classifications using SVM were performed on
different combinations of CoreGRID items and physiological
measures in order to predict specific emotion categories as
labeled by the participants. Given the large number of classes
and limited number of samples per class with too many
predictors, a leave-one-subject-out cross-validation was used to
guarantee a complete independence between the training and
testing datasets.

For all analyses, we used a grid search method to optimize
the parameters, but no significant improvement was observed,
so the default parameters were kept. Moreover, SVM with radial
basis function (RBF) kernel outperformed LR and other SVM
models. Therefore, we will only report the result from SVM with
RBF kernel.

It should be mentioned that the classes used for binary
classifications were pretty balanced since they were defined based
on the median value of the dependent variable, resulting in a
distribution close to 50–50 split. However, in the case of multi-
class classification, although the number of movie clips for each
pre-labeled emotion category was balanced, the final dataset was
not since we used the subjectively experienced emotions reported
by each participant as emotional labels. This imbalance may have
slightly affected the classification performance for some under-
or over-represented categories. To account for an effect of class
distribution, we reported the chance level in all comparisons as
well as the confusion matrix.

RESULTS

Multivariate Pattern Analyses: Binary
Classifications
Our first predictive analyses aimed to assess classification based
on multivariate patterns using either physiology measures or
CoreGRID items for different emotional movie segments. The
variables to be discriminated were treated as binary dependent
variables (High vs. Low), the classes being defined with respect
to the median value. One of the main assumptions of the CPM is
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that emotions rely on interdependent and synchronized changes
within the five major components, suggesting that changes
in any component might partly result from or contribute to
changes in other components. Therefore, our initial exploratory
analyses intended to examine whether physiological data (which
represent an objective proxy to some of the CoreGRID items
related to the physiology component) can be predicted using
the CoreGRID items (which evaluate the five components of
emotions), and vice versa. In other words, the idea was to
investigate whether physiological changes are encoded in other
emotional components. Based on the CPM, we expected to
observe that physiological responses could predict not only
physiology-related CoreGRID items, but also the items assessing
the other components.

In the first instance, we deployed SVM classifications with
10-fold cross-validation to predict each physiological measure
(mean or variance) as high or low from responses to the 32
CoreGRID items. Cross validation was applied to evaluate the
generalizability of the results to some extent. This classifier
yielded accuracies significantly greater than the chance rate of
50% for all physiological measures (Table 2). However, while
these binary classifications were statistically significant and effect
sizes were large, their discriminative performance remained weak
(on average, about 58% of correct responses).

Conversely, using the same classification approach, the ratings
of each CoreGRID item were predicted from the combination of
physiological measures and physiology items in the CoreGRID
questionnaire. Results from SVM showed that a majority of the
CoreGRID items could be predicted significantly better than the
chance level (Table 3), even though the classification accuracies
were still relatively low (on average, about 55% of correct
responses). The most reliable discrimination levels (highest t
values relative to chance rate) were observed for appraisals and
feelings of unpleasantness (55% of correct responses) as well
as action tendencies (want to destroy / to do damage, 58% of
correct responses).

Multivariate Pattern Analyses: Multiclass
Classifications
Our second and main aim was to investigate whether discrete
emotion categories as indicated by the participants can be
predicted from ratings of their componential profiles. Here, we
wanted to test whether the discrimination of discrete emotions
is supported by one particular component (e.g., the appraisal
component), distributed (equally) across the components, or
requires the full combination of all components. The first step
was to test how the entire data (physiological measures and
behavioral responses) could predict discrete emotion labels. This
more global pattern analysis for a multiclass variable required
to go further than simple binary classification. To achieve
this, a multiclass SVM classifications with leave-one-subject-
out cross-validation was performed, taking the combination of
within-subject normalized mean and variance measures from
the four physiological signals and all behavioral responses to
the CoreGRID items for the five emotional components as
predictors. Applying the SVM classifiers (generated with training

datasets) on separate testing datasets, we obtained an average
accuracy rate of 45.4% in comparison to a rate of 17.6% for the
chance level [t(19) = 10.852, p < 0.001, Cohen’s d = 3.41, 95% CI
(1.75 5.06)] (Figure 2A).

The confusion matrix showed that five emotion categories
(anger, calm, sadness and surprise) were correctly predicted
more than half of the times, with an accuracy range from 55
to 59.4% (Figure 2B). By contrast, predictions were extremely
unsuccessful for fear (misclassified as anxiety) and satisfaction
(misclassified as joy or calm). However, it is worth noticing that
these categorical emotions had a smaller number of instances
since they were less often selected by the participants (see
Supplementary Figure S1). Interestingly, incorrect predictions
for these two emotions were still related to some extent to the
target category. Indeed, mainly anxiety but also disgust and
surprise were predicted instead of fear, whereas joy and calm
were predicted instead of satisfaction. Love was also frequently
misclassified as joy and calm.

Concomitantly, statistical measures allowing the assessment
of prediction performance indicated that specificity and negative
predictive value were particularly high for all emotions
(Figure 2C). This suggests that the classification algorithm had a
notable ability to correctly reject observations that did not belong
to the emotion of interest, that is, to provide a good degree of
certainty and reliability for true negatives. In contrast, sensitivity
and positive predictive value were not as good and fluctuated
substantially across the emotions, with the best performance for
calm and the worst for fear and satisfaction (Figure 2C).

The second step consisted in investigating the added
information brought by each component in the classification
performance. To better identify the relation between discrete
emotions and interactions of different component processes,
we began by examining the effect on overall performance
when one component was excluded. Five multiclass SVM
classifications with leave-one-subject-out cross-validation were
performed using different combinations of these components
(Figure 3). In comparison to the accuracy rate of the complete
model using physiology and all the CoreGRID items (45.4%), the
accuracy rate of the reduced model without the body physiology
component (4 CoreGRID items and all physiological measures)
was lower but did not significantly change [45.2%, t(19) = −0.17,
p = 0.866, Cohen’s d = −0.01, 95% CI (−0.13 0.11)]. These
results suggest that information coming from features of the
body physiology component in our study may have already been
encoded in other components. On the other hand, with respect
to performance with the full model, reduced models without the
appraisal component [41.4%, t(19) = −4.598, p < 0.001, Cohen’s
d = −0.33, 95% CI (−0.48 −0.18)], without the expression
component [41.9%, t(19) =−4.358, p< 0.001, Cohen’s d=−0.29,
95% CI (−0.43 −0.15)], without the motivation component
[43%, t(19) = −2.489, p = 0.022, Cohen’s d = −0.21, 95% CI
(−0.37 −0.03)] or without the feeling component [44%, t(19) =
−2.349, p = 0.029, Cohen’s d = −0.12, 95% CI (−0.22 −0.02)]
were statistically less predictive, even though the effects sizes
remained relatively small.

In addition, we examined the specific contribution in emotion
classification of all major components. These contributions
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TABLE 2 | Predictions of physiological changes from the 32 CoreGRID items.

Binary classification Accuracy Chance level t df p-value Cohen’s D 95% CI

SVM classifier

HR Mean 0.59 0.5 7.175 9 <0.001 3.497 [0.76 6.23]

Variance 0.55 0.5 4.308 9 0.002 1.480 [0.43 2.52]

RR Mean 0.56 0.5 8.490 9 <0.001 2.950 [1.26 4.63]

Variance 0.54 0.5 7.133 9 <0.001 2.246 [1.00 3.48]

Phasic EDA Mean 0.58 0.5 8.549 9 <0.001 4.494 [0.81 8.17]

Variance 0.61 0.5 12.641 9 <0.001 2.616 [1.70 3.53]

Tonic EDA Mean 0.59 0.5 10.691 9 <0.001 5.231 [1.29 9.17]

Variance 0.60 0.5 17.761 9 <0.001 7.062 [2.08 11.31]

Cross-subject binary SVM classifications. Accuracy rate represents the percentage of correct classifications. Paired t-tests were conducted to verify significant differences between

SVM classifier and chance level. Bold values indicate statistically significant differences (p < 0.05). As estimates of effect size, we report Cohen’s d and 95% confidence interval.

were assessed by predicting discrete emotion labels from each
component separately. Five multiclass SVM classifications with
leave-one-subject-out cross-validation were performed from the
appraisal, expression, motivation, feeling, and body components
(body items and all physiological measures). Since prediction
performance from each of the five emotion components yielded
accuracies significantly greater than the chance rate of 17.6%
(Figure 4), we also analyzed the average sensitivity rate across
the different classifiers in order to determine more precisely
the power of each component to distinguish the different
discrete emotions.

While the results above suggested that the percentage
of correct predictions was generally similar regardless of
the particular component used to train the classifiers, these
additional analyses indicate that the pattern of features from
specific components may yield a more reliable detection of
particular emotions relative to others (Figure 5A). Moreover,
it appeared also that some emotion classes were consistently
well-discriminated by all components (e.g., calm and sadness),
while others (fear, love, and satisfaction) were poorly predicted
by any component. Conversely, some components could have
more importance for particular emotions (e.g., surprise is well-
predicted by appraisal features but not by the combination of
body and physiological features, while motivation features seem
best at predicting anger and joy).

Furthermore, since we observed that the body and physiology
component was the least effective in discriminating discrete
emotions, we also examined the sensitivity rates for each
emotion and compared the performance of models using either
the body-related CoreGRID items (i.e., subjective ratings),
the physiological measures (i.e., objective recordings), or both
information (Figure 5B). Consistent with the results above, we
found that the sensitivity rates obtained with these models
all showed a very poor discrimination for the majority
of emotions, except for calm which was more successfully
discriminated in comparison to predictions based on other
components. Interestingly, the subjective body-related items
from CoreGRID tended to surpass the objective physiology
data [t(19) = 3.448, p = 0.002, Cohen’s d = 0.88, 95% CI
(0.27 1.49)].

DISCUSSION

The CPM defines emotions by assuming that they are
multicomponent phenomena, comprising changes in appraisal,
motivation, expression, physiology, and feeling. A considerable
advantage of this theory is that it offers the possibility of
computational modeling based on a specific parameter space,
in order to account for behavioral (Wehrle and Scherer,
2001; Meuleman et al., 2019) and neural (Leitão et al., 2020;
Mohammadi et al., 2020) aspects of emotion in terms of
dynamic and interactive responses among components. The
current research applied multivariate pattern classification
analyses for assessing the CPM framework with a range of
emotions experienced during movie watching. Through this
computational approach, we first investigated the links between
physiology manifestations and the five emotion components
proposed by the CPM to determine predictive relationships
between them. Second, we investigated whether discrete
emotion types can be discriminated from the multicomponent
pattern of responses and assessed the importance of
each component.

Assuming that physiological responses are intertwined with
all components of emotion, we expected that ratings on the
32 CoreGRID features would carry information sufficient to
predict corresponding physiological changes. Effectively, SVM
classifications provided prediction accuracies significantly better
than the chance level. However, information from the CoreGRID
items did not allow a high accuracy, even though prediction
was simplified by being restricted to a binary distribution.
This modest accuracy may be explained by a great variability
across participants, which could reduce the generalizability of
classifiers when they were applied to all individuals rather than
within subject. It might also reflect heterogeneity in intra-
individual physiological responses among emotions with similar
componential patterns. In parallel, the opposite approach to
predict ratings of CoreGRID features based on the means and
variances of physiological responses also yielded a performance
significantly higher than chance level but still relatively low.
Because each CoreGRID item focuses on quite specific behavioral
features, it is however not surprising that the sole use
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TABLE 3 | Predictions of individual CoreGRID item ratings from physiological responses.

Binary classification Accuracy Chance level t df p-value Cohen’s D 95% CI

SVM classifier

Appraisal

Think it was incongruent with your standards and ideas 0.55 0.50 4.587 9 0.001 1.924 [0.43 3.41]

Feel it was unpleasant for you 0.54 0.50 4.319 9 0.002 2.322 [0.14 4.49]

Think it violated laws or socially accepted norms 0.55 0.50 6.011 9 <0.001 2.780 [0.63 4.92]

Think it was unpleasant for somebody (in the clip) 0.55 0.50 7.981 9 <0.001 4.409 [0.60 8.21]

Think it was relevant for the goals or needs of somebody 0.51 0.50 0.31 9 0.763 0.083 [−0.48 0.64]

Feel the event was unpredictable 0.52 0.50 2.900 9 0.017 1.352 [−0.002 2.71]

Feel the event occured suddenly 0.55 0.50 5.454 9 <0.001 2.298 [0.61 3.98]

Think the event was caused by chance 0.54 0.50 3.194 9 0.011 0.925 [0.19 1.65]

Think the consequences were predictable 0.55 0.50 7.949 9 <0.001 3.891 [0.88 6.90]

Expression

Press lips together 0.55 0.52 5.251 9 <0.001 2.790 [0.32 5.25]

Close your eyes 0.56 0.54 4.019 9 0.003 1.279 [0.37 2.18]

Show tears 0.57 0.52 4.272 9 0.002 2.001 [0.29 3.70]

Have the jaw drop 0.56 0.51 4.929 9 <0.001 2.748 [0.18 5.31]

Have eyebrows go up 0.53 0.50 4.316 9 0.002 2.059 [0.28 3.83]

Produce abrupt body movements 0.56 0.54 3.069 9 0.013 1.106 [0.14 2.06]

Motivation

Want to destroy something 0.58 0.54 6.843 9 <0.001 3.312 [0.72 5.90]

Want to do damage, hit or say something that hurts 0.58 0.52 5.223 9 <0.001 2.683 [0.36 4.99]

Urge to stop what was happening 0.53 0.51 1.862 9 0.095 0.727 [−0.19 1.65]

Want to undo what was happening 0.54 0.51 3.605 9 0.005 1.381 [0.25 2.50]

Want the ongoing situation to last or be repeated 0.54 0.53 0.925 9 0.378 0.397 [−0.53 1.33]

Motivated to pay attention to what was going on 0.53 0.50 2.719 9 0.023 1.476 [−0.17 3.12]

Want to tackle the situation and do something 0.54 0.53 1.329 9 0.216 0.469 [−0.31 1.25]

Feeling

Feel bad 0.55 0.50 9.361 9 <0.001 4.547 [1.11 7.98]

Feel calm 0.53 0.50 2.614 9 0.028 1.197 [−0.06 2.45]

Feel good 0.54 0.50 3.537 9 0.006 1.252 [0.25 2.24]

Feel strong 0.59 0.54 4.406 9 0.002 1.792 [0.41 3.17]

Feel an intense emotional state 0.54 0.51 2.689 9 0.024 0.943 [0.05 1.82]

Experience an emotional state for a long time 0.52 0.50 2.323 9 0.045 0.78 [−0.02 1.59]

Body

Experience muscles tensing (whole body) 0.54 0.51 4.202 9 0.002 1.905 [0.31 3.50]

Feeling of a lump in the throat 0.53 0.51 2.958 9 0.015 1.095 [0.11 2.07]

Have stomach troubles 0.54 0.54 1.006 9 0.340 0.428 [−0.50 1.36]

Feel warm 0.56 0.50 6.414 9 <0.001 2.549 [0.82 4.27]

Cross-subject binary SVM classifications. Accuracy rate represents the percentage of correct classifications. Paired t-tests were conducted to test for significant differences between

SVM classifier and chance level. Bold values indicate statistically significant differences (p < 0.05). As estimates of effect size, we report Cohen’s d and 95% confidence interval.

of physiology would be insufficient to precisely determine
the ratings.

More importantly, if experiencing an emotion affects
simultaneously more than one major component of emotion,
one would expect that componential responses are clustered
into qualitatively differentiated patterns (Scherer, 2005a;
Fontaine et al., 2013). In the CPM view, an emotion arises
when components are coherently organized and transiently
synchronized (Scherer, 2005b). Accordingly, subjective emotion
awareness might emerge as the conscious product of the feeling

component generated by such synchronization (Grandjean
et al., 2008). However, verbal accounts of conscious feelings may
restrict the richness of emotional experience when using only
declarative reports. Therefore, we anticipated that integrating
the five components together into multivariate pattern analyses
would provide higher accuracy rates in emotion prediction.
This hypothesis was effectively confirmed, as the best prediction
performances were obtained from non-linear multiclass
SVM when the 32 CoreGRID items and the physiological
measures were used all together in the model. Nevertheless, it is
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important to note that through our one-component-out model
comparisons, we found that the body and physiology component
was negligible in the overall discrimination of discrete emotion
labels. Indeed, prediction performances of a model without body
and physiology features were not significantly different from
those of the complete model, demonstrating that information
derived from these data may have already been encoded in other
components. However, further analyses could help to better
confirm this observation.

Critically, the CPM assumes a strong causal link between
appraisal and other components of emotion, since appraisal
processes are the primary trigger of emotion and should
account for a major part of qualitative differences in feelings
(Moors and Scherer, 2013). For example, a cross-cultural study
demonstrated that an appraisal questionnaire alone (31 appraisal
features) could discriminate between 24 emotion terms with an
accuracy of 70% (Scherer and Fontaine, 2013). In our study, we
found all components provided relevant information. Moreover,
although being the best predictor, the appraisal component did
not provide significantly more information compared to the
other components, except in comparison to the model using
only body and physiology features. Overall, prediction from
components did not significantly differ across emotions. At
least three components were always predicting one emotion
category within the same range of accuracy. These results are
consistent with the assumption of a synchronized and combined
engagement of these components during emotion elicitation. It is
possible, however, that some results were affected by the uneven
distribution of events across classes (Supplementary Figure S1),
such as for calm (high representation) which stood out as the
most recognizable state regardless of the component used, or
for fear, love, and satisfaction (low representation) where all
classifiers were poorly sensitive.

In line with our data indicating that physiological measures
did not reliably discriminate among emotion categories, the
relationship between physiological responses and emotions has
long fueled conflicting views. Some authors claimed that there
is no invariant and unique autonomic signature linked to
each category of emotion (Barrett, 2006), or that physiological
response patterns may only distinguish dimensional states
(Mauss and Robinson, 2009). In contrast, because emotions
imply adaptive and goal-directed reactions, they might trigger
differentiated autonomic states to modulate behavior (Stemmler,
2004; Kragel and LaBar, 2013). In this vein, Kreibig (2010)
reviewed the most typical ANS responses induced across
various emotions and pointed to fairly consistent and stable
characteristics for particular affective experiences, but without
explicitly confirming a strict emotion specificity since no unique
physiological pattern could be highlighted as directly diagnostic
of a single emotion. It has also been shown that a single or
small number of physiological indices are not able to differentiate
emotions (Harrison et al., 2013). Our findings support this view
by suggesting that a broader set of measures should be recorded
to increase discriminative power, including physiology as well as
other components.

Our study is not without limitations. First, statistical machine
learning methods may be considered as uninterpretable black

boxes. Indeed, SVM analysis gives no explicit clue on functional
dimensions underlying classification performances. Second,
these data-driven methods often need large amounts of data. We
acquired data over a large number of videos and events covering
a range of different emotions, but discrimination of specific
patterns among the different emotion components was relatively
limited with our sample of 20 participants. Third, although
participants were asked to report their initial feelings during the
first viewing, changes in emotional experience due to repetition
or potential recall biases may not be completely excluded since
each movie segment was played again before rating CoreGRID
items. Fourth, we used a restricted number of CoreGRID items
due to time and experimental constraints. It would certainly
be beneficial to measure each component in more detailed
ways by taking more features into account. For instance, motor
behaviors (e.g., facial expressions) could be evaluated with direct
measures such as EMG rather than self-report items. This could
help to provide more objective and perhaps more discriminant
measures, particularly concerning variations of pleasantness
(Larsen et al., 2003). As another example, given that the appraisal
component is crucial for emotion elicitation, a wider range of
appraisal dimensions might allow a more precise discrimination
of discrete emotions and physiological patterns. In the same
way, it is also possible that the set of items selected from
the original CoreGRID instrument may account for suboptimal
discrimination performances (i.e., improving or degrading the
classification of certain categories of emotion). Lastly, even
though using film excerpts has many advantages (e.g., naturalistic
and spontaneous emotion elicitation, control over stimuli and
timing, standardized validation, and concomitant measurement
of physiological responses), an ideal experimental paradigm
should evoke first-person emotions in the participants to fully test
the assumptions of the CPM framework. In other words, the only
way to faithfully elicit a genuine emotion is to get participants
to experience an event as pertinent for their own concerns,
in order to activate the four most important appraisal features
(relevance, implication, coping, normative significance) that are
thought to be crucial to trigger an emotion episode (Sander
et al., 2005). Viewing film excerpts is an efficient (Philippot, 1993)
but passive induction technique and, therefore, the meaning
of some appraisal components might be ambiguous or difficult
to rate. As a result, subjective reports of behaviors and action
tendencies were most likely different compared to what they
would be for the same event in real life. We also cannot rule
out that the correspondence found between CoreGRID items and
discrete emotion labels could partially be affected by the order
of the measures collected. For example, providing component-
related ratings first may have activated knowledge of the emotion
construct that was then used to select a label. Future research
should developmore ecological scenarios that can be experienced
by participants according to their self-relevance and followed
by true choices of possible actions. For example, a sophisticated
and ecological method was recently developed by connecting a
wearable physiological sensor to a smartphone (Larradet et al.,
2019). Upon detection of relevant physiological activity, the
participant received a notification on her smartphone requesting
to report her current emotional state. Alternatively, a study
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FIGURE 2 | (A) Predictions of discrete emotion labels from physiological measures and responses to the 32 CoreGRID features. Cross-subject multiclass SVM

classification with leave-one-subject-out cross-validation. Accuracy rate represents the percentage of correct classifications. The error bars show the standard

deviation. Paired t-tests were conducted to assess significant differences between SVM classifier and chance level, as highlighted by asterisks indicating the p-value

(***p < 0.001). (B) Confusion matrix of emotion labels. The diagonal running from the lower left to the upper right represents the correct predicted emotion.

(C) Statistical measures of classification performances across emotions. Average of statistical measures assessing the performances from the 20 classifiers. The error

bars show the standard deviation.

FIGURE 3 | Emotion classification using one-component-out models. Cross-subject multiclass SVM classifications with leave-one-subject-out cross-validation.

Accuracy rate represents the percentage of correct classifications. The error bars show the standard deviation. Paired t-tests have been conducted and significant

differences between SVM classifier and chance level are highlighted (asterisks indicate the p-value: ***p < 0.001).
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FIGURE 4 | Emotion classification using the components independently. Cross-subject multiclass SVM classifications with leave-one-subject-out cross-validation.

Accuracy rate represents the percentage of correct classifications. The error bars show the standard deviation. Paired t-tests have been conducted and significant

differences between SVM classifier and chance level are highlighted (asterisks indicate the p-value: **p < 0.01, ***p < 0.001).

FIGURE 5 | (A) Sensitivity of emotion detection using the components independently. (B) Sensitivity of emotion detection using body and physiology components

separately. Sensitivity rate represents the average of the sensitivity measures for each emotion label across the leave-one-subject-out cross-validation. The error bars

show the standard deviation.

used virtual reality games to assess the CPM across various
emotions (Meuleman and Rudrauf, 2018) and found that fear
and joy were predicted by appraisal variables better than by other

components, whereas these two emotions were generally poorly
classified in our study. Other recent studies have also made use
of (virtual reality) video games to assess appraisal and other
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emotion components during brain imaging (Leitão et al., 2020)
or physiological (Bassano et al., 2019) measurements.

CONCLUSION

Taken together, our results support the reliability and the
interindividual consistency of CPM in the study of emotion.
Multivariate pattern classification analyses generated results
better than chance level (with statistical significance) to
predict (1) changes in physiological measures from the 32
CoreGRID items, (2) ratings of the majority of CoreGRID
items from physiological measures, and (3) discrete emotion
labels that refer to conscious feelings experienced by the
participants and presumably emerge from a combination of
physiological and behavioral parameters. Overall, we observed,
however, that physiological features were the least significant
predictor for emotion classification. Yet, since our results also
suggest that physiology was encoded within each of the other
major components of emotion, they support the hypothesis
of synchronized recruitment of all components during an
emotion episode.

Further work is now required to determine why certain
patterns of behavioral and physiological responses were
misclassified into incorrect emotion categories and to study
more deeply the links between different emotions. Similarly, it
is also needed to explain the importance of various components
in the recognition of different emotion categories. For instance,
it would be valuable to determine whether poor discrimination
stems from a too low sensitivity of the CoreGRID items and
physiological measures or whether some categories of emotions
simply cannot be differentiated into distinct entities with such
methods, perhaps due to a high degree of overlap within the
different components of emotion. Future developments allowing
objective measures for each component during first-person
elicitation paradigms are required to limit as much as possible
the use of self-assessment questionnaires and ensure ecological
validity. Overall, the current study opens a new paradigm to
explore the depth of processes involved in emotion formation
as well as a means of unfolding the necessary processes to be
considered in developing a reliable emotion recognition system.
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Posterior Cortical Atrophy is a rare but significant form of dementia which affects people’s

visual ability before their memory. This is often misdiagnosed as an eyesight rather

than brain sight problem. This paper aims to address the frequent, initial misdiagnosis

of this disease as a vision problem through the use of an intelligent, cost-effective,

wearable system, alongside diagnosis of the more typical Alzheimer’s Disease. We

propose low-level features constructed from the IMU data gathered from 35 participants,

while they performed a stair climbing and descending task in a real-world simulated

environment. We demonstrate that with these features the machine learning models

predict dementia with 87.02% accuracy. Furthermore, we investigate how system

parameters, such as number of sensors, affect the prediction accuracy. This lays the

groundwork for a simple clinical test to enable detection of dementia which can be carried

out in the wild.

Keywords: health—clinical, wearable computers, empirical study that tells us about people, lab study, dementia

INTRODUCTION

The rate of people living with dementia is increasing. Alzheimer’s Disease (AD) is themost common
cause of dementia and is often seen as simply part of the aging process and something which will
affect most people (International Alzheimer’s Disease, 2019) as the average living age increases.
AD is a progressive disease which affects a person’s memory and therefore their ability to conduct
activities of daily living independently which decreases their quality of life (Gale et al., 2018).
However, AD is not a single disease type, instead there is the typical presentation and a number
of atypical presentations (Graff-Radford et al., 2021). Posterior Cortical Atrophy (PCA) is one such
atypical presentation which typically results in “a progressive, often striking, and fairly selective
decline in visual-processing skills and other functions that depend on the parietal, occipital, and
occipitotemporal regions of the brain” (Crutch et al., 2012). Different types of AD may often be
misdiagnosed until quite advanced. This is indeed the case for PCA where the atypical vision-based
symptoms present themselves at an early age (typically emerging during 50–65 years old) leading
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to a simple vision-problem diagnosis (Crutch et al., 2012).
Therefore, it is important to develop methods that can identify
AD regardless of its type so that people with rare forms can
efficiently get the treatment they need. We do this by building
on previous studies into everyday walking tasks detection.

People with typical Alzheimer’s Disease (tAD) have
characteristic issues when navigating their everyday
environments (McCarthy et al., 2019) with a noticeable
general decline in gait patterns (Valkanova and Ebmeier, 2017).
Previous lab-based research has demonstrated differences in
gait parameters such as step-time and walking speed between
people with dementia and age-matched controls (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al., 2007;
Cedervall et al., 2014; Rosso et al., 2017). These studies indicate
that the decline is linked to both phenotype and stage of the
disease (Allali et al., 2016; Castrillo et al., 2016; Del Campo et al.,
2016; McCarthy et al., 2019; Yong et al., 2020). Furthermore, a
noticeable decline in gait is thought to predate other cognitive
decline (Hall et al., 2000). Therefore, a decline in gait appears
to be an appropriate biomarker for the detection of dementia
(Montero-Odasso, 2016). However, it is important to move out
of the laboratory setting to in-the-wild settings for clinical tools
to better aid persons with disability (Holloway and Dawes, 2016).
In the recent disability interactions manifesto (Holloway, 2019)
the need for in-the-wild data collection was clearly stated. Such
data sets were deemed essential to ensure future technologies
to aid persons with disabilities such as dementia in living
more independently.

This work is part of a wider investigation of gait and spatial
navigation in people with dementia in a living lab environment,
which specifically focuses on both people with tAD and PCA.
Within the field of dementia there is a need for research in living
labs, which move beyond highly controlled lab-based settings
(Duff, 2020; Schneider and Goldberg, 2020). The living labs serve
as a stepping-stone to full in-the-wild testing (Alavi et al., 2020).
Full in-the-wild testing for dementia could reduce the stress of
clinical tests for patients and allow for continuous monitoring
of decline. Therefore, in this research we aim to pave the way
to in-the-wild detection of dementia by discriminating people
with dementia from controls in a living lab. Furthermore, we
include a rare form of dementia—PCA—that is often missed
by clinicians, demonstrating the benefits of this approach
to dementia detection. The evidence-based discrimination
of dementia, particularly its atypical presentations, not only
has clinical applications, but also addresses a key desire of
health and social-care professionals for better understanding
of rarer presentations of dementia, for appropriate evidence-
based assessment (McIntyre et al., 2019). Our apparatus uses
low-cost, unobtrusive devices to discriminate dementia, which
not only increases the applicability of our research, but also
has not been achieved before. Furthermore, we analyze system
parameters that led to accurate discrimination, which could aid
future research seeking to extend this research or deploy it in
the wild.

Therefore, in this paper we focus specifically on the question—
can wearable, low-cost, unobtrusive devices be used to detect
AD regardless of its presentation? In answering this question, we
contribute the following:

• Demonstrate the feasibility of discriminating controls from
people with two types of dementia [the more typical
Alzheimer’s disease (tAD) and a rare form of dementia—
Posterior Cortical Atrophy (PCA)] in a simulated real-world
environment—a staircase. To do this we analyzed data from
a low-cost, IMU system using machine learning classifiers.
The developed analysis software tools are available at https://
github.com/williambhot/detecting_dementia_stairs.

• Examine different system parameters and the direction of
traversal that promote accurate discrimination of dementia.

• Release a data set of IMU data from people with tAD,
older adults and people with PCA to foster this work in the
research community.

• Discuss use cases for the proposed system.

While the primary aim of this study is to discriminate both the
rare PCA and more typical Alzheimer’s Disease from healthy
controls, we also analyze differences in the detection of these two
types of the disease by analyzing the performance of a ternary
model that seeks to discriminate the two types of dementia from
each other as well as from controls.

We believe that this research, could provide a key stepping-
stone in enabling potential applications in detecting dementia
such as a screening tool for healthcare workers and practitioners,
general self-screening and support tool. Nevertheless, further
research would be required before this is possible to address
some of the limitations of this study (such as generalization
issues) and full in-the-wild testing. We discuss this further in
section Discussion.

RELATED WORK

Posterior Cortical Atrophy
PCA is a rare early-onset syndrome which presents with visual
complaints and is most commonly caused by Alzheimer’s disease
(AD) pathology. PCA has been identified as a distinct clinical
syndrome as opposed to just AD with specific, noticeable visual
deficits (Mendez et al., 2002). It also affects literacy, numeracy
and gesture (Crutch et al., 2016). People with PCA, as opposed
to typical AD (tAD) have better language and memory abilities
(Crutch et al., 2016; Firth et al., 2019), but these come at the
cost of a greater understanding of the disease and higher levels
of depression (Mendez et al., 2002). Specific interventions need
to be developed for people with PCA which help overcome
the difficulties they face in visual tasks and help aid better
mental health (Mendez et al., 2002). However, such interventions
can only be developed once the disease has been detected
and detection is often delayed due to the atypical symptoms
compared to tAD and the early onset of the disease (Crutch et al.,
2012; Graff-Radford et al., 2021).

Detecting rare forms of dementia like PCA with confidence
is not an easy task. People often notice something going wrong
with their eyes, e.g., being unable to see a shuttlecock once it
has landed on the ground but being able to see it when in flight.
The first stop for people following these visual oddities is to visit
the optician or GP. It is rare that the symptoms as presented are
immediately associated with a form of AD. More generally health
and social care practitioners are often unaware of, and find it
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difficult to appreciate that forms of dementia can affect people’s
visual abilities (McIntyre et al., 2019).

Dementia Detection
Previous work in the detection of dementia has ranged
from mobile-based automatic speech recognition tools (e.g.,
Shibata et al., 2018; Tröger et al., 2018) to oculomotor
performance during web browsing and multimodal interactions
with computer avatars (Cano et al., 2017). However, to date
these screening tools remain proofs of concept rather than
clinical tools.

Previous research has identified that changes in gait are
sensitive to dementia, even at early disease stages (Hall et al.,
2000), and during the transitional stage between normal
cognitive decline and dementia also known as Mild Cognitive
Impairment (Gwak et al., 2018; Halloway et al., 2019; Schaat et al.,
2020). It was found that a decline in gait predates observable
cognitive changes associated with dementia, and gait continues
to decline with the progression of dementia (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al.,
2007; Cedervall et al., 2014). By comparing the gait of healthy
age-matched controls to that of people with dementia, clinical
research has identified that changes in the pace, rhythm and
variability of gait are associated with the decline into dementia
(Verghese et al., 2007). Researchers have found people with
dementia to have a lower natural walking speed (Marquis et al.,
2002; Waite et al., 2005; Wang et al., 2006; Verghese et al.,
2007), lower cadence, shorter stride length, shorter swing times
and longer stance times as well as longer double support times
(Verghese et al., 2007). Furthermore, studies have also shown that
variability in gait is higher amongst people with dementia, who
lack rhythmic and consistent gait (Verghese et al., 2007).

While previous clinical research has helped to identify the
changes in gait that occur during the decline into dementia, this
research has ignored two important factors that would allow
such knowledge to be used for detection of the disease in the
wild. Firstly, previous research relies heavily on experiments
conducted in laboratory settings that do not mirror the
complexities of the real-world environments through which
people with dementia must navigate (McCarthy et al., 2019).
These laboratory experiments usually involve monitoring the
gait of participants while they walk along a straight, uninclined
path for a short distance and use full biomechanics models to
determine changes in gait (Marquis et al., 2002;Waite et al., 2005;
Wang et al., 2006; Verghese et al., 2007). For example, many
use electronic walkways with inbuilt pressure sensors (Verghese
et al., 2007; Wittwer et al., 2013; Callisaya et al., 2017) or
motion capture systems (Cedervall et al., 2014). The form factor,
complicated setup procedures and price of these measurement
systems limit their use in real world environments. Secondly,
while some previous studies have analyzed different types of
dementia (Mc Ardle et al., 2020), previous studies ignore the
differences between types of dementia and either focus on one
type of dementia (Wittwer et al., 2013; Cedervall et al., 2014;
Callisaya et al., 2017) or consider dementia without looking at
its type (Marquis et al., 2002; Wang et al., 2006). Furthermore, to
our knowledge, gait of people with PCA has only been analyzed
by previous research in this line of investigation (Carton et al.,

2016; Ocal et al., 2017; Yong et al., 2018, 2020; McCarthy et al.,
2019; McCarthy et al., Unpublished1). This research has found
that some patients with dementia show a consistent pattern
of hesitation (which can be identified from step times) when
navigating complex routes (McCarthy et al., 2019; Yong et al.,
2020). However, it was not possible within that task to identify
patterns which could be used for predictive purposes. We believe
that the regular pattern offered by stairs will help to regularize
these irregularities within the gait pattern whichwould then allow
for successful detection of tAD and PCA. Once the feasibility of
this approach is established, it will enable a low-cost detection
device to be added to footwear. This could enable the detection
of dementia in the wild, minimizing stressful laboratory tests,
and promoting data-driven methods for appropriate detection of
dementia for both typical AD and the rarer PCA. Furthermore,
the ability of the device to detect the typical Alzheimer’s disease
(tAD) provides the final product with a much wider number
of use cases. The unobtrusive, low-cost nature of such a device
enables its deployment in high-risk populations to continuously
monitor changes in risk of developing dementia.

MATERIALS AND METHODS

In this section, we present the proposed STEP-UP framework and
technical details.

Data Collection Protocol
Participants’ gait was monitored using Inertial Measurement
Units (IMUs) while they climbed a staircase in the living
lab environment. This living lab was co-designed by clinical,
engineering and computer science researchers, with inputs from
patients. The IMUs used were MTw (Xsens Technologies B.V.,
The Netherlands). They are comprised of an accelerometer, a
gyroscope, and amagnetometer (however, themagnetometer was
not used for this study). Each participant had a sensor attached
to the outside of each heel with the long axis being horizontal, as
well as a sensor on the back of the pelvis attached orthogonally
to the sensors on the heels (Figure 1). Participants were asked
to walk up or down a short flight of stairs consisting of four
steps (the dimensions of each step were 23 × 112 × 25 cm, H
× W × D) (Figure 1) in a variety of environmental conditions.
These environmental conditions included different lighting levels
(low: 20 lux; high: 190 lux) and either the presence or absence
of visual cues (i.e., hazard tape over the edge of steps). Each
participant was asked to attempt 16 versions of the trial (twice for
each combination of conditions—dim light/bright light, visual
cues/no visual cues—in the upwards and downwards direction).
No constraints were imposed on the way of descending or
ascending the stairs. The ordering of trials was randomized for
each participant (see Figure 2A).

Participants
Participants were from one of three groups—the group with PCA
[containing 11 participants—6 female and 5 male—of age 64.6

1McCarthy, I. D., Suzuki, T., Holloway, C., Poole, T., Frost, C., Carton, A., et al.

(Unpublished). Gait Assessment of People with Alzheimer’s Disease Traversing

Routes of Varying Complexity.

Frontiers in Computer Science | www.frontiersin.org 3 January 2022 | Volume 3 | Article 80491782

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Holloway et al. STEP-UP

FIGURE 1 | Project STEP-UP: to enable low-cost and wearable IMU sensors to infer dementia types in the wild whilst climbing stairs.

FIGURE 2 | Technical details of Step-up framework: (A) Gait Recording procedure using wearable IMUs, (B) Procedure for the exclusion of corrupted files, (C)

Feature extraction procedure using windowed averaging, (D) Model training and tuning procedure, (E) Validation procedure using Leave One Out Validation. The

procedure for splitting the dataset into training and testing sets is shown under (D,E).

± 5.9 years, height 168.92 ± 6.49 cm, weight 68.22 ± 13.31 kg,
with Mini Mental State Examination (MMSE) score 18.6 ± 6.1],
the group with tAD (containing 10 participants—6 female and 4
male—of age 66.2 ± 5.0 years, height 167.91 ± 11.82 cm, weight
66.21 ± 5.03 kg, with MMSE score 18.6 ± 5.0) and the control
group consisting of age matched participants with no diagnosed
form of dementia (containing 14 participants—6 female and
8 male—of age 64.2 ± 4.1 years, height 172.36 ± 13.21 cm,
weight 73.23 ± 15.23 kg). The experimental design of having a
control group of healthy age-matched participants is the standard
experimental protocol used in this field (Callisaya et al., 2017;
McCarthy et al., 2019). MMSE tests were only conducted on
people with dementia, and not on control participants. One-way
ANOVAs demonstrated that there were no statistically significant

differences between the groups in age [F(2,32) = 0.506; p = 0.61],
weight [F(2,30) = 0.404; p = 0.67] or height [F(2,31) = 0.580; p =

0.57]. Furthermore, a student’s t-test showed that there was no
difference between MMSE scores for participants in the PCA
and tAD conditions [t(18) = 0; p = 1]. Ethical approval for
the study was provided by the National Research Ethics Service
Committee LondonQueen Square, and written informed consent
was obtained from all 35 participants.

Pre-processing and Classification Strategy
The data was processed in Python 3.7 (Python
Programming Language, RRID:SCR_008394) using standard
data processing libraries including NumPy (NumPy,
RRID:SCR_008633), SciPy (SciPy, RRID:SCR_008058),
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TABLE 1 | The dataset before removing the corrupted files compared to the

dataset after this removal.

Group Number of trials Number of trials

(before removal) (after removal)

Control 208 207

PCA 159 150

tAD 160 159

Total 527 516

Pandas (Pandas, RRID:SCR_018214), Matplotlib (MatPlotLib,
RRID:SCR_008624) and Scikit Learn (scikit-learn,
RRID:SCR_002577). The data pre-processing and classification
strategy is shown in Figure 2. This process included
hyperparameter optimization on the models to select the
best parameters and analysis of how direction of traversal and
different system setups affected the performance of this model.
This section summarizes the methods we used to achieve this.
The software tools we developed are released to foster this work
in the research community (https://github.com/williambhot/
detecting_dementia_stairs).

Exclusion of Participants
On visualizing the IMU data—acceleration and gyroscope data—
data for some trials was found to be corrupted. Visualizing the
raw data from these trials showed only noise and no evidence of
cyclic, step-like motion (Figure 2B). Therefore, these trials were
removed from further analysis.

This resulted in the removal of 11 trials from a total of 527
trials (Table 1). After removing excluded trials, 40.12% of trials
were controls, 29.07% were in the PCA condition and 30.81%
were in the tAD condition. Up-sampling was conducted on the
trials from the different conditions before training any models,
so that the models did not overfit to these differences in the
frequencies in the groups.

Dead Reckoning and Gait Parameters
Initially we tried to calculate velocity and displacement from the
IMU data using a dead-reckoning technique with a zero-offset to
account for sensor drift (Ojeda and Borenstein, 2007; Park and
Suh, 2010). Using this we calculated gait parameters that have
been previously associated with dementia such as lower walking
speed (Marquis et al., 2002; Waite et al., 2005; Wang et al.,
2006; Verghese et al., 2007) and shorter stride length (Verghese
et al., 2007). However, we found that in our current set up it
was not possible to conduct dead reckoning with a high enough
degree of accuracy for calculating the gait parameters required.
We attribute this to the experimental setup as well as issues
with controlling the task across participants, especially those with
more advanced dementia. See the discussion for more details
on this.

Lower-Level Features
Considering the difficulty of conducting dead-reckoning and
calculating gait parameters in a system designed to be useable

in the real world, we propose more low-level features that, from
a low-cost IMU system, can be more easily designed for real-
world use. This involved calculating the vector length of the 3d
linear and angular acceleration to obtain the resultant linear and
angular acceleration (see Figure 2C):

R =

√

x2 + y2 + z2

These two signals—resultant linear acceleration and resultant
angular acceleration—were then split into a constant number of
windows (k) and the averages of each window (µi where i is the
number of the window) were used as the features. The windows
were calculated in the following way—across the entire dataset,
the same number of windows (k) were used and in a single
trial these windows were of the same length (l), however, across
multiple trials window length was different (see Figure 2C):

µi =

∑

(i+1)×l
t=i×l

Rt

l

Where i ∈ [0, k) is the number of the current window varying
between 0 and k−1, k is the total number of windows and t is the
current sample for the linear or angular acceleration.

These windowed averages were used as the feature values,
allowing a constant number of features for each trial, while
providing the model with information from different sections of
the trial. The primary reason for using this approach was to have
a constant number of features for all trials, which is required
by many Machine Learning models. The number of windows
was set using hyperparameter optimization. Specifically, different
numbers of windows were experimented with, but it was found
that models using a multiple of four windows achieved a
higher performance than others and specifically eight windows
yielded the best performance (Figure 3). One reason for this
could be that there were four steps in the staircase and,
therefore, setting the number of windows to a multiple of
four provides an approximate way to separate the data based
on steps, assuming each step is traversed in approximately
the same amount of time in a single trial. However, every
participant did not take the same amount of time on each
step, and several participants waited for a while on some
steps. Therefore, for these participants segmenting the data in
this way would not segment the trial by steps. Nevertheless,
this was not our motivation for doing this, but rather it was
to segment the trial into an equal number of windows so
that models that required a fixed number of features could
be employed.

Machine Learning Models
We assessed the ability of different machine learning models to
classify the data, including decision trees (Random Forest and
Gradient Boosting Models) and Multi-Layer Perceptron (MLP)
models. To this end, we fit the models to the data and evaluated
the models’ ability to generalize by testing it on unseen data (see
the following section). Furthermore, we chose the parameters of
this model through hyper-parameter optimization discussed later
(see Figure 2D).

Frontiers in Computer Science | www.frontiersin.org 5 January 2022 | Volume 3 | Article 80491784

https://scicrunch.org/resolver/RRID:SCR_018214
https://scicrunch.org/resolver/RRID:SCR_008624
https://scicrunch.org/resolver/RRID:SCR_002577
https://github.com/williambhot/detecting_dementia_stairs
https://github.com/williambhot/detecting_dementia_stairs
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Holloway et al. STEP-UP

FIGURE 3 | A plot of the prediction accuracies of the Random Forest Classifier when using different numbers of windows (1–15) for constructing the features.

Two variants of all the models were fit to the data—a binary
model to discriminate dementia from control participants and
a ternary model to discriminate between controls, tAD and
PCA participants. While we were able to discriminate people
with dementia from control participants, we were unable to
discriminate PCA from tAD with high accuracy (see section
Results for more details). We suggest that this is because the
gait of the two types of dementia was similar to each other
and therefore could not be discriminated using these low-level
features (see discussion for more details).

Nevertheless, given features (µi;where i ∈
[

0, k
)

) the models
learnt a mapping (Ŵ) from features to the probability (p)
of this data belonging to the different classes (c;where c =
{

control, dementia
}

or c = {control, PCA, tAD}). This is
as follows:

p (c|µ0, . . . ,µk) = Ŵ(µ0, . . . ,µk)

Based on the value of this probability for each class, the most
likely class for that data can then be ascertained as the class with
the maximum probability.

Evaluation of Models
A Leave-One-Person-Out (also called leave-one-subject-out,
LOSO) cross validation was used to evaluate the generalization
capabilities of our predictions (see Figure 2E). In this method,
the model is trained on the data from all but one participant
(Cho et al., 2019). Predictions are thenmade on the data from the
remaining participant to gauge how well the model performs on
unseen data from a participant on which it has not been trained.

As data from each model are not independent from one another,
the Cochran’s Q test was used to determine the significance of
the overall accuracy of each model. This was done using the
dichotomous “true” or “false” prediction for each fold. A pairwise
post-hoc Dunn test with Bonferroni adjustments was used to test
for differences between models. All statistical tests were run with
a significance level of α = 0.05 and were conducted using IBM
SPSS V25 (IBM SPSS Statistics, RRID:SCR_019096).

Furthermore, we report accuracy and F1 scores for all models.
These are calculated by exhaustively leaving each participant
out (as explained above), training the model on the remaining
participants and evaluating the model on the participant left out.
The accuracy and F1 score were then calculated across all these
folds of the data. The accuracy was calculated as the number of
correctly classified trials over the total number of trials. F1 scores
with respect to each class were calculated as:

F1 =
2× precision× recall

precision+ recall

Hyper-Parameter Optimization
The hyper-parameters for all models were chosen using
hyperparameter optimization—a standard method in Machine
Learning for systematically choosing the parameters of the model
that are not directly learnt. All the models were tuned for this
study using a type of hyper-parameter tuning—exhaustive grid
search (Buitinck et al., 2013) in which variations of the model
are run repeatedly using different values of the hyper-parameters,
that have been identifiedmanually. The hyper-parameters chosen
for the model for the final analyses were the parameters that
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TABLE 2 | Values of the hyper-parameters (for each model) that yielded the

highest performance and were used in all analyses.

Model Parameter name Binary

parameters

Multiclass

parameters

Gradient

boosting

Number of trees 80 70

Maximum depth of trees 1 3

Minimum samples in leaf nodes 2 2

Learning rate 0.15 0.05

Random

forest

Number of trees 120 120

Maximum depth of trees None 3

Minimum samples in leaf nodes 5 2

MLP Number of units in hidden layer 8 8

Non-linearity Logistic/

sigmoid

function

Maximum number of iterations 750 750

Learning rate 0.0002 0.0002

produced the best performance while conducting the grid search
(Table 2). This approach was also used for selecting the number
of windows to use in constructing the features (see Figure 3).

Direction of Traversal and System Analysis
A secondary aim of the study was to identify the components
of the system that promote a high classification accuracy. This
involved analyzing: the importance of the three sensors, the
importance of the different features and the importance of the
direction of traversal of the stairs.

For the analysis of the importance of the sensors, the
performance of different variants of the models was analyzed.
These variants of the models used features from different
combinations of the sensors. The importance of the different
features was analyzed using the tree-based models (i.e., the
Random Forest and Gradient Boosting models), firstly, because
they provide methods for determining the importance of
features in making a prediction and secondly, due to their high
performance. This analysis was done, by calculating the reduction
in impurity (or error) that each node (or partition) provides
weighted by the probability of reaching that node in the tree and
then averaged over all trees to give the final metric of importance.
Therefore, importance represents how well the feature portioned
the data into the relevant classes weighted by the likelihood of
this feature being used in classifying a datapoint. The analysis
of traversal direction was done by training the model on all the
data, then separating predictions into those made on trials in the
upward direction and those made in the downward direction and
calculating the accuracy on these subsets separately.

To understand which sensors were most effective a Kruskal-
Wallis H-test was conducted and pairwise post-hoc Dunn tests
with Bonferroni adjustments were used to determine which
sensors to use in further analyses. Finally, a Friedman’s Two-
Way Analysis of Variance was conducted to understand the
importance of features and the influence of upwards and
downwards traversal.

TABLE 3 | Results from a representative run of the models for detecting the

dementia (PCA/tAD).

Model Accuracy

(%)

F1 score (wrt the

control class) (%)

F1 score (wrt the

dementia PCA/tAD

class) (%)

Gradient boosting 86.05 82.78 88.27

Random forest 87.02 83.14 88.38

MLP 86.63 82.71 87.75

FIGURE 4 | A confusion matrix for the binary Random Forest model.

RESULTS

Prediction Results
This section presents the results achieved in detecting whether
participants had dementia as well as the type of dementia.

In the binary models, trained to discriminate people with
dementia from controls, the Random Forest Classifier was the
most successful at predicting the presence of dementia, which
it accurately did in 87.02% of cases (see Table 3; Figure 4 for
more details). Furthermore, the F1 score with respect to control
class was 83.14 and 88.38% with respect to the dementia class,
both of which were higher than the same for any other model.
The Cochran’s Q test confirmed the differences between the
performance of the models, χ2 (4, N = 516)= 47.56, p < 0.001.

In the case of the ternary type-based classification (Control vs.
tAD vs. PCA), the MLP classifier outperforms all other classifiers
and accurately predicts the type of dementia in 68.22% of cases.
Furthermore, the F1 score with respect to the control class was
83.72%, 64.8% with respect to the PCA class, and 47.69% with
respect to the tAD class. The Cochran’s Q test confirmed that
there were differences between the performance of the models,
χ
2 (4, N = 516)= 47.56, p < 0.001.
Furthermore, analyzing the confusion matrix of the winning

model (the MLP classifier) in the ternary case suggests that
the model misclassifies more often between the two types
of dementia than with controls (see Table 4; Figure 5). This
could be because people with dementia share some similar
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TABLE 4 | Results from a representative run of the models for detecting the type

of dementia.

Model Accuracy F1 score (wrt the

control class)

F1 score (wrt the

PCA class)

F1 score (wrt the

tAD class)

MLP 68.22% 83.72% 64.8% 47.69%

FIGURE 5 | A confusion matrix for the ternary MLP model.

symptoms no matter the type and therefore their gait is much
more similar to each other than to that of controls. Moreover,
it is more common for the model to confuse participants
with tAD with the control group than it is for the model
to confuse participants with PCA with the control group.
This could be because PCA affects visual processing more
than tAD, and therefore the effects of this disease are more
prominent in a trial such as this. This trend has also been
identified by previous research done in the same program
of work at Pedestrian Accessibility Movement Environment
Laboratory (PAMELA), which found that participants with
early stage PCA performed worse than people with tAD
(Yong et al., 2020). Therefore, because the gait of participants
with PCA is more easily distinguishable from “normal” gait
than the gait of participants with tAD, the model does not
confuse PCA with controls as often as it confuses tAD
with controls.

In summary, these models could enable an in-the-wild
screening tool for dementia, allowing people to conduct an initial
screening, with reasonably high accuracy, before potentially
receiving a clinical test to verify this. However, further research
is required before this is possible, particularly in the case of
the type-based classification where accuracy for the two types
of dementia is lower than that for controls, suggesting that the
current system may be sensitive to dementia, but not its type. See
the discussion for more details.

Direction of Traversal and System Analysis
Analysis of Number of Sensors
A Kruskal-Wallis H test showed that there was a statistically
significant difference in the importance of the sensors, χ2(6) =

TABLE 5 | Average accuracies of Binary Gradient Boosting Classifiers using

different sensors.

Position of sensors used Accuracy (%)

Left foot 81.99

Right foot 84.78

Pelvis 74.45

Left, right foot 85.94

Left foot, pelvis 81.90

Right foot, pelvis 83.25

Left foot, right foot, pelvis 83.41

The table shows the average accuracies (across 25 samples) of the Binary Gradient

Boosting classifier when using the data from different combinations of the sensors to

construct the features.

157.13, p < 0.001. Specifically, we tested the performance across
model variants that used all different combinations of sensors
(left foot; right foot; pelvis; left foot and right foot; left foot
and pelvis; right foot and pelvis; left foot, right foot and pelvis).
Post-hoc analysis showed the best performing combination was
found to be the left and right foot sensor features together. These
together gave a mean rank of 163.22 and an average accuracy
of 85.94%. In contrast the worst performance was given by
the pelvis features alone which had a mean rank of 13.00 and
an accuracy of 74.45%. The importance of the placement and
number of sensors, as given by the resulting accuracy, are given
in Table 5.

The importance of the feet sensors in predictions could be
explained simply because gait, which is heavily based on steps,
can be more easily deduced from the movement of the feet, than
the pelvis. Therefore, the accuracy of the model that uses a sensor
on each foot is significantly higher than the others. Furthermore,
it is interesting to note that the model that uses all three sensors
yields a significantly lower accuracy than the model that uses
only just two sensors—one on each foot. A potential reason
for this is that given the data from each foot sensor, the pelvis
sensor provides little additional useful information. Therefore,
this information does not enhance the performance of the model,
but could allow the model to identify trends that exist in the
training set (or a subset of it) but do not generalize to other cases,
causing the model to overfit to the training data.

The rest of the analyses (presented in this paper) used
only the sensors attached to the feet as these produced
the best performance. This analysis shows that when the
data from sensors is processed independently of each other,
sensors attached to participants’ feet are more informative for
making predictions.

These results of this analysis could not only be interesting to
clinicians, and other researchers aiming to build similar systems,
but also means that the sensor system can be truly unobtrusive
as it does not require a pelvis sensor that can cause discomfort,
thereby allowing its use in the wild. See the Discussion for more
information about this.

The Importance of Features
Further analysis of the models was conducted to better
understand how features from the gyroscope and the
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FIGURE 6 | The importance of the features for the Random Forest Classifier when predicting dementia. The features used were the windowed averages (number of

windows 8) of linear acceleration (blue bars) and angular acceleration data (orange bars) for both the left (left hand side) and right sensor (right hand side). Feature

importance was calculated as the reduction in impurity (or error) that each node (or partition) provides weighted by the probability of reaching that node in the tree and

then averaged over all trees.

accelerometer contributed to the overall prediction (Figure 6).
This was analyzed by looking at the feature importance, using
the tree-based models. Feature importance was calculated as the
reduction in impurity (or error) that each node (or partition)
provides weighted by the probability of reaching that node
in the tree and then averaged over all trees. A Kruskal-Wallis
H test showed that linear acceleration was statistically more
important than angular acceleration χ

2(31)= 795.47, p < 0.001.
While there is no conclusive explanation for this it is possible
that this occurs because acceleration and velocity are directly
related. Therefore, acceleration provides the model with useful
information about the speed of a participant, the points when
the foot is at rest, and how quickly the participant progresses
through the trial. These have been identified by previous research
(Verghese et al., 2007; Cedervall et al., 2014; Carton et al., 2016;
Castrillo et al., 2016; Del Campo et al., 2016; Montero-Odasso,
2016) as factors that help distinguish participants with dementia
from those without.

Furthermore, it appears (Figure 6; Table 6) that if we divide
the trial into two halves (windows 1–4 and 4–8, respectively),
then the second half appears more important generally for the
model. To analyze this further the importance of the linear
accelerations and the angular accelerations for the 4 windows
in the two halves were summed together for each sensor and
each type of acceleration. A second Kruskal-Wallis H-test was
applied followed by pairwise post-hocDunn tests with Bonferroni
adjustments. Each of the pairwise comparisons was significant.
The importance of the linear acceleration in the second half of
the trial was found to be significantly greater than that of the first
(p = 0.014), which in turn was found to be significantly greater
than the angular acceleration in the last half (p < 0.001). The
angular acceleration in the first half was the least important and

TABLE 6 | Results of hypothesis testing comparing the linear and angular

acceleration in the first (windows 1–4) and second (windows 5–8) halves of the

trial.

First half (%) Second half (%) p-value

Linear acceleration 24.17 42.25 <0.001

Angular acceleration 19.20 14.37 <0.001

significantly less than the angular acceleration in the second half
(p= 0.014).

This analysis was conducted on all tree-based models (in both
the binary and multi-class settings) which provide easy ways to
calculate and analyze the importance of features, as well as being
among the best performing models, and the trends identified
across all these tree-based models were similar. Therefore, this
analysis identified the most informative components of the trial
for distinguishing participants with dementia from controls,
however, further research is required to provide an explanation
for why these trends occur.

The Effect of Traversal Direction
The analysis of the direction of traversal of the stairs that helps
distinguish people with dementia from controls is presented in
this section. The mean accuracy of the upward or downward
directions are given in Table 7. This suggested that for people
with dementia the binary models were more accurate in the
upwards direction as compared to the downwards direction.

To analyze this further, the same analysis was conducted in the
multiclass setting with accuracies split according to the class. The
results of this analysis are summarized in Table 8.
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TABLE 7 | Results of hypothesis testing comparing the prediction accuracies

attained in the upward and downward directions.

Model Upward accuracy (%) Downward accuracy (%)

Random forest 86.77 85.31

Gradient boosting 86.97 86.08

MLP 89.29 82.79

TABLE 8 | The average accuracies (across 25 samples) of the better performing

models for predicting dementia phenotype.

Model Upwards accuracy Downwards accuracy

Control PCA tAD Control PCA tAD

(%) (%) (%) (%) (%) (%)

Random forest 80.12 56.43 51.1 79.46 63.11 41.16

Gradient boosting 79.03 61.95 45.90 89.69 71.37 30.03

MLP 79.42 74.32 49.5 92.19 71.9 34.89

A Friedman’s Two-Way Analysis of Variance was conducted
which proved there was a significant difference between the
models and between up and down conditions χ

2(17) = 415.41,
p < 0.001. Pairwise analysis across two independent variables
(models and up/down) was not conducted as it was thought to
be over analysis of the data. However, from Table 8 it can be
seen that in the multiclass tree-based models the percentage of
the trials that were correctly classified as PCA is generally higher
in the downward direction, which is in contrast to the results
found for classifying dementia with binary models. This could
be attributed to the fact that on the way down, the stairs are
not directly in participants’ line of sight when looking forward
and, therefore, it is harder for them to process this information.
Alternatively, it could be that descending stairs is less physically
demanding, but the consequence of falling is greater when
descending, causing anxiety in the participants.

While this analysis provides interesting insights into which
direction of traversal is more informative for predicting
dementia, the varied results across different models led to
this analysis being inconclusive. Moreover, further research is
required to provide an explanation for these differences.

The analysis of the importance of features and the direction
of traversal provides some initial insights into how the gait
of people with dementia (both PCA and tAD) could differ
from that of controls, which may be informative to healthcare
workers and patients. However, further analysis is required into
the varied results and generalizability of these findings to other
environments. See the Discussion for more details.

DISCUSSION

This section discusses the contributions made, current
limitations and future possible use cases of the STEP-UP system.

Detection and Discrimination of Dementia
While previous research has helped to identify the changes in
gait that occur during the decline into dementia, the research has
ignored two important factors that would allow such analyses
to be used in the real world. Firstly, previous research relies
heavily on experiments conducted in laboratory settings, using
technologies such as optical systems that cannot be used in the
real-world (Verghese et al., 2007; Wittwer et al., 2013; Callisaya
et al., 2017) and treadmills which constrain the way of walking
to a straight line. This limits the applications of this research
as people hoping to use this method to screen for early cues
of dementia would need to be subjected to these laboratory
tests. Secondly, previous research often ignores different types
of Alzheimer’s focusing instead on tAD. The use of low-cost
wearable technology offers the opportunity to gather data about
people’s ability to conduct everyday tasks, including climbing or
descending stairs as they go about their life. Previous research
(Plant and Barton, 2020) suggests that data from everyday life
are more informative about a person’s disease than data in
clinical assessment laboratory where people may attempt to
over control their behavior. In addition, as such sensors get
integrated into people’s clothes and accessories, early detection
of possible problems (especially rarer types of dementia like
PCA) could be detected before people purposely look for a
dementia assessment.

Our study has demonstrated the feasibility of deploying low-
cost sensors to measure gait patterns for predicting dementia
(both tAD and a rarer type of dementia: PCA) in everyday
tasks of climbing and descending stairs. We have achieved
this by focusing on low-level input features and investigating
their non-linear mapping onto types of dementia and controlled
groups with supervised classifiers. This is of critical importance
when it comes to low-cost systems being used in the real
world as calculating hand-engineered high-level gait features
(e.g., Verghese et al., 2007) is often infeasible and requires high
level controls. Also, low-level features used with artificial neural
networks have been shown repeatedly to have higher robustness
for other sensing modalities (Kostek et al., 2004; Cho et al., 2019).

In this research we analyzed the detection of dementia
as compared to healthy participants, however, real-world
deployment could enable larger datasets. This could further lead
to an improvement in the performance not only on the detection
of dementia cues but also on discriminating between different
types of dementia. Moreover, the inclusion of more varied data
such as that of participants with Mild Cognitive Impairement or
early stages of dementia could enable this system to be used by
these populations, allowing for early-stage detection. While we
did not look at these populations, previous research analyzing
gait using similar methods and measures has found that gait is
sensitive to early signs of dementia and can predict cognitive
decline (Marquis et al., 2002; Waite et al., 2005; Wang et al., 2006;
Verghese et al., 2007; Cedervall et al., 2014; Gwak et al., 2018;
Halloway et al., 2019; Schaat et al., 2020). Therefore, deployment
of this system in real-world settings could enable dementia
detection in everyday settings which could bring several use
cases and potential benefits. While in-depth analysis of this is
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left to future research, some of the potential future examples are
discussed below:

Screening Tool for Healthcare Workers and

Practitioners
A screening tool which could be deployed in clinical settings or as
an at-home test can be developed. The clinical tool could be used
by community healthcare workers as well as general practitioners
to enable easy detection of typical and atypical presentations of
Alzheimer’s disease. Carers’ wellbeing can often be neglected,
however they are often under considerable stress (Gilhooly et al.,
2016). The amount of stress carers experience decreases with
acceptance of the diagnosis and social support networks, and is
increased with wishful thinking, denial and avoidance strategies
(Gilhooly et al., 2016). An early diagnosis gives more time for
acceptance and support networks to be established. These benefit
the person diagnosed, their families and carers. It could be that
beyond the benefits of simple screening we could also investigate
ways of developing support tools for the carers, which could be
linked to the stage of dementia of the person for whom they are
caring.

General Self-Screening
As sensors are increasingly integrated into our daily activities
(e.g., sensor in shoes for running, imaging for fitness tracking)
and used to quantify our wellbeing (Cho et al., 2017; Cho, 2021),
such sensors could be used together to detect and identify cues
of decline and dementia. Our results provide some insights on
how the sensors could be used in the wild. Firstly, our research
found that the presence of dementia is more easily detected
during upwards stair climbing, suggesting that the gait of people
with dementia is more abnormal during upwards stair climbing.
The same sensors placed on the shoes could first detect upward
stair climbing (Formento et al., 2014) and data from this activity
can be prioritized for more accurate predictions. Similarly, the
sensors could also detect long periods of activity and even fatigue
or pain (Wang et al., 2019) and consider such variables when
evaluating the assessment tool outcome. Finally, as any motor
activity modeling suffers from people’s idiosyncrasy, such models
could take advantage of the long history of sensor data gathered
from the person to build personal models of what is a normal
pattern (given the physical ability including vision of the person)
and hence detect possible sudden declines that may indicate such
underlying causes of dementia and even atypical causes.

Support Tool for Patients
It would seem feasible to also develop the ability to classify
deteriorations in a person’s condition following diagnosis. This
would need a larger data set collected in the wild. Once developed
decline in gait such as those detected by lab-based studies (e.g.,
Verghese et al., 2007; Callisaya et al., 2017) could be detected
as people conduct their daily activities and be directly linked to
clinical care pathways. This would enable person-centered care
to be established, rather than simply asking people to return for
appointments based on standard time predictions of decline.

An important perspective is on the effect of different
combinations of sensors on the detection performance. Our
research found that of all combinations of the sensors, models

using only the sensors attached to the feet performed best.
This led to us dropping the pelvis sensor from further analyses.
Additionally, a sensor constantly attached to a person’s pelvis
may cause discomfort. Therefore, our research suggests that a
truly unobtrusive system could be built simply with sensors
attached to people’s shoes. Furthermore, the support tool could
be further developed to be predictive of decline, providing further
support to people with dementia and their care givers.

Limitations
Despite promising results, there is room for improvement. We
discuss points to help the deployment of such a system.

Discriminating Type
While the model has shown a good performance (from LOSO
cross-validation) in themulti-class classification (Control vs. tAD
vs. PCA), we have found lower performance in discriminating
the two types of dementia when samples from the controlled
group are not considered in the classification task. This can
provide insights. First, this could be related to the fact that
the gait of the two subtypes of dementia was very similar to
each other, suggesting that gait is sensitive to dementia as a
whole, but less sensitive to the type of dementia. This could
suggest that different measures may be required to provide a
more comprehensive diagnosis. For example, in PCA vision
is predominantly affected with memory often being (initially)
unaffected. Second, the data from healthy participants could play
an essential role in discriminating patterns associated with each
dementia type. Third, when it comes to the dementia detection
task (dementia vs. control), the proposed system results in a very
high accuracy of 87.02%.

Generalization Issues and Dataset
Another potential limitation in this study is that models might
be overfit to the data, reducing its ability to generalize to unseen
data. While we prevented this as much as possible by using LOSO
validation, ensuring themodel was not only tested on unseen data
but on data from an unseen participant. However, all the data
from all participants was collected on the same staircase using the
same system setup to collect the data. Therefore, these models
may not generalize to other environments, other staircases or
other IMU systems. This may limit the direct application of
this system to the real-world diagnosis of dementia. Therefore,
further research is required to prove the generalizability of this
research to other environments and system implementations.

Another related issue was that it was more difficult to achieve
a high degree of control in the task especially in people with
dementia. This may have resulted in patients taking breaks in
the middle of the task, not initially standing in the correct start
position, etc. Therefore, the model might use these artifacts
to discriminate patients from controls rather than their gait.
Nevertheless, these behaviors are symptoms of dementia that
should generalize across patients.

Furthermore, in this study we only compared the gait of
participants with dementia to healthy age-matched controls.
Therefore, this model may be overfit to distinguishing healthy
and unhealthy participants and may not be able to distinguish
dementia from other diseases with similar presentations or
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people with a bad physical condition. Therefore, this requires
further research and fine-tuning of this issue. We believe that
the deployment of this system in the real-world would enable
overcoming these overfitting issues by allowing more varied data
to be tested.

CONCLUSION

This research demonstrates the feasibility of automatically
detecting both the more typical Alzheimer’s Disease (tAD) as
well as a rarer and distinct form of dementia—Posterior Cortical
Atrophy (PCA)—based on gait in a real world-environment.
To this end, we propose the use of low-level features based
on windowed averaging of data from a low-cost, unobtrusive
IMU system. These features are easy to calculate from a
small number of IMU sensors, enabling their use in a real-
world system. We also demonstrate that these features can be
used with Machine Learning models to predict dementia with
87.02% accuracy. Furthermore, we demonstrate that a sensor
placed on each foot is sufficient for this analysis. Lastly, we
demonstrate the models are better able to discriminate people
with dementia from healthy controls when they are climbing
up stairs, suggesting that people with dementia find it harder to
climb up stairs.

Therefore, this research concludes that machine learning
analysis of IMU data, gathered from a person’s gait in a real-
world environment, could unobtrusively be used to assess the
risk of having dementia. Once further researched, a system
such as this could provide an initial assessment of the risk
of having a certain type of dementia before conducting any
clinical tests, thereby streamlining and enhancing the diagnostic
process. Therefore, not only are these results interesting from
a research perspective, but also have potential real-world
applications.
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Social relationships are constructed by and through the relational communication that
people exchange. Relational messages are implicit nonverbal and verbal messages that
signal how people regard one another and define their interpersonal relationships—
equal or unequal, affectionate or hostile, inclusive or exclusive, similar or dissimilar, and
so forth. Such signals can be measured automatically by the latest machine learning
software tools and combined into meaningful factors that represent the socioemotional
expressions that constitute relational messages between people. Relational messages
operate continuously on a parallel track with verbal communication, implicitly telling
interactants the current state of their relationship and how to interpret the verbal
messages being exchanged. We report an investigation that explored how group
members signal these implicit messages through multimodal behaviors measured
by sensor data and linked to the socioemotional cognitions interpreted as relational
messages. By use of a modified Brunswikian lens model, we predicted perceived
relational messages of dominance, affection, involvement, composure, similarity and
trust from automatically measured kinesic, vocalic and linguistic indicators. The relational
messages in turn predicted the veracity of group members. The Brunswikian Lens
Model offers a way to connect objective behaviors exhibited by social actors to
the emotions and cognitions being perceived by other interactants and linking those
perceptions to social outcomes. This method can be used to ascertain what behaviors
and/or perceptions are associated with judgments of an actor’s veracity. Computerized
measurements of behaviors and perceptions can replace manual measurements,
significantly expediting analysis and drilling down to micro-level measurement in a
previously unavailable manner.

Keywords: nonverbal communication, relational communication, dominance, affection, involvement, trust,
similarity, nervousness
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INTRODUCTION: RELATIONAL
COMMUNICATION AND THE
BRUNSWIKIAN LENS MODEL

Relational communication forms the architecture through
which social relationships are constructed. As expressed by
Hawes (1973), “communication functions not only to transmit
information but to bind symbol users (p. 15).” Through
ubiquitous verbal and nonverbal relational messages, people
reciprocally signal the nature of their interpersonal relationships.
Implicit signals express how people regard one another and how
they gauge the ongoing status of their interpersonal relationships
(Guerrero et al., 2017). The signals form non-orthogonal, generic
message themes known as topoi (Burgoon and Hale, 1984).
Drawn from a synthesis of literature and theorizing from multiple
social science disciplines, these topoi are universal forms of
expressions between humans. They represent the fundamental
meanings that define how people relate to one another along such
dimensions as dominance, affection, involvement, composure,
similarity, and trust.

One way to understand the cognitive and emotional
components of relational communication is through the
application of a Brunswikian lens model (e.g., Bernieri et al., 1996;
Scherer, 2003; Hartwig and Bond, 2011) in which objective distal
indicators contribute to psychological judgments, also called
proximal percepts, which are imbued with cognitive or emotional
overtones that hold a predictive relationship with outcomes
such as deception or credibility. The Brunswikian lens model
(Figure 1) brings insight into how relational communication
can be expressed either through psychological perceptions or
through the kinesic, vocalic and linguistic signals that create
those meanings. Some people relate to one another according
to the concrete, objective signals, such as “my partner stood
seven feet away from me and did not touch me.” Others
relate to one another according to the meanings such signals
express, such as, “my partner was detached and cold.” These
alternative layers of expression can be combined to convey the
cognitive and emotional meanings being encoded (expressed)
and decoded (deciphered and interpreted). The Brunswikian
lens model shows how the different aspects of the signaling
process can be combined. The distal, objective signals that
can be measured and factored with automated computer tools
can be linked to the psychological perceptual judgments that
represent relational message themes. These subjective percepts
in turn predict communicative outcomes such as successful
identification of another’s deception or credibility.

Our demonstration of the lens model comes from a deception
project conducted in eight different locations (three in the
United States and five in diverse international locations). Groups
of 5–8 participants played a game called Resistance, during
which they carried out a series of decisions to win (or lose)
missions and thus to win (or lose) the game. Those who
intended to sabotage the missions employed deception and
misdirection, which enabled them to win the game. The interest
here is in the automatically measured, objective signals emitted
by participants. These formed meaningful clusters that were

“read” and responded to as relational messages. We illustrate
how a modified Brunswikian lens model combines collections
of concrete, objective behaviors to form subjective cognitive
and emotional states that represent relational communication.
Various relational communication themes in turn predict various
social outcomes. Put differently, multimodal distal signals link
to proximal percepts of relational messages that, in turn, predict
outcomes such as the accurate identification of veracity.

METHODS

Sample
College-age participants (N = 695; mean age = 22 years)
from universities in 3 United States states (Arizona, California,
and Maryland), and 5 international ones (Israel, Zambia, Fiji,
Singapore and Hong Kong) were recruited to participate in an
interactive social game called Resistance in exchange for payment
for their time and possible bonuses. Universities were ones where
local and national IRBs approved participation. The Human
Research Protection Office of the United States Army Research
Laboratory served as the IRB for the United States institutions
and approved the project. The diverse international sample
was intended to test the generalizability and universality of
findings (see Ting-Toomey et al., 2000, regarding various cultural
styles). However, comparisons among the eight locations failed to
show significant differences, apart from Fijians expressing more
dominance, and sample sizes within United States locations were
too small to compare cultural differences, so we have omitted
cultural comparisons (see Dunbar et al., 2021; Giles et al., 2021
for the cultural comparisons).

Procedures
A detailed description of the game is found in Dorn et al. (2021).
An ice-breaker activity introducing one another established a
baseline for players’ behaviors and perceptions of one another.
The games consisted of participants conducting a series of make-
believe missions. Teams of up to eight players selected a leader,
approved the composition of the teams, then voted for the
missions to succeed or fail. Players had been randomly assigned
the role of Villager or Spy. Villagers were expected to vote for
missions to succeed. Those designated as Spies were expected to
engage in occasional deception to cause missions to fail. Spies
knew one another’s identity; Villagers did not.

After every other round, players rated other team members
on 7-point Likert (1932) format scales measuring each other’s
relational communication (see below). The ultimate winners of
the game (Spies or Villagers) were determined by which team won
the most rounds (see Dorn et al., 2021, for more details). Players
also received bonuses if chosen as the leader or a team member.

Nonverbal audiovisual signals (described below) were
captured by tablet computers in front of each player, a 360-
degree overhead camera and a webcam on the side that recorded
the group as a whole. The audiovisual recordings became the
basis for kinesic (body language) and vocalic analysis. The audio
signals were translated into text for linguistic analysis.
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FIGURE 1 | Brunswikian lens model of relational communication.

Affective and Cognitive Measures
The measures that gauged players’ emotional and cognitive
states were self-report items from the Relational Communication
Scale (RCS; Burgoon and Hale, 1987). These generic themes are
context-independent. They represent fundamental dimensions
along which people identify how they relate to one another
and regard themselves in the context of their interpersonal
relationships, without regard to the actual verbal content being
expressed. The RCS includes 12 non-orthogonal dimensions,
6 of which were measured here: dominance-nondominance,
liking-dislike, involvement-detachment, similarity-dissimilarity,
composure-nervousness, and trust-distrust. Coefficient alpha
reliabilities were 0.91, 0.89, 0.84, 0.78, 0.84, and 0.91, respectively.
Some dimensions that were expected to vary across the time
course of the game were measured periodically; others that were
expected to be more stable were measured at its conclusion.

Outcomes/Attributions
Attributions were based on theories of how people relate to
one another and use linguistic, kinesic, and vocalic features to
express those relationships. Some features appear in multiple
relational messages because relational messages are comprised
of constellations of nonverbal and verbal signals. For example,
lip corner puller that forms smiles appear in liking, composure,
involvement, and trust. The typical compositions of these
relational message topoi can be found in Burgoon et al. (2022).

Table 1 lists the message themes investigated here and the
significant linguistic, vocalic and facial features that emerged
for each relational dimension. The linguistic features are
a small subset of lexical and syntactic features chosen to
illustrate their role in conveying relational message themes
measured by SPLICE software (Moffitt et al., 2012). The acoustic
features are ones that are measured by OpenSmile (Eyben
et al., 2010), an open-source software. The facial features are
Action Units and combinations measured by the OpenFace
software (Baltrušaitis et al., 2015, 2018), also an open-source
software program.

RESULTS

Significant indicators are listed in Table 1. Complete statistical
results are reported in the Supplementary Material. Here we
summarize main findings.

Dominance-Nondominance
A central theme defining interpersonal relationships is
dominance: who is more powerful, who is more subservient,
and whether relationships are more egalitarian. In Burgoon and
Dunbar (2006), a number of macro-level strategies are outlined
for exhibiting power, dominance, and status or their bipolar
opposites. In the current analysis we are more concerned with
micro-level nonverbal and verbal behaviors through which those
strategies are enacted.

As with previous studies (Zhou et al., 2004; Pentland
et al., 2021), dominant players talked more often, for a longer
duration, and were more likely to contribute to the conversation.
Unexpectedly, mean pitch did not correlate with perceptions
of dominance. Rather, the standard deviation of pitch had a
significant effect on the player’s perceived dominance, indicating
dominant individuals talk with more variability in pitch. Further,
HNR, which is the proportion of harmonic sound to noise in
the voice in decibels (Pentland et al., 2021), was also significant.
Higher mean level and lower variability of HNR correlated with
a higher perceived dominance. The face was a very active site
for signaling dominance or non-dominance. The eye and mouth
region were the most involved as dominance signals; language
choice played a lesser role.

Affection-Hostility
Whereas dominance represents the vertical aspect of human
relations, affection represents the horizontal dimension. Whether
called affiliation, liking, positivity, or valence, this dimension is
meant to capture the positive to negative sentiment individuals
express toward one another. Many of the behaviors associated
with expressions of liking are part of other expressions as
well, including expressions of immediacy. Immediacy is an
amalgam of proxemic, kinesic, vocalic and linguistic features
that signal psychological closeness or distance (Burgoon et al.,
1985, 2022). In the case of this game, in which seating
location, facing and body orientation, and proxemic behaviors
were fixed and therefore excluded from consideration, we
looked instead for facial pleasantness, smiling, expressivity
and other facial signals of positive affect. Predicted vocalic
indicators of liking were pitch variety, relaxed laughter, and
rapid turn-switches, while linguistic indicators were predicted to
include inclusive language like first person plurals and positive
affect language.
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Results showed numerous facial expression features
correlating with liking and dislike, especially in the mouth,
cheek, nose and brow regions. Vocally, only duration of turns-
at-talk was positively associated with liking, and mean shimmer

(a measure of vocal hoarseness) was negatively associated with
liking. Pitch, loudness and other aspects of voice quality did not
matter. Longer sentences, less hedging, and (unexpectedly), more
dysfluencies were associated with perceived liking.

TABLE 1 | Significant linguistic, vocalic, and facial cues of dominance, affection, composure, involvement, similarity, and trust (p < 0.1).

Constructs Linguistic Cues Vocalic Cues Facial Cues

Dominance-Non-
dominance

Number of Words (+) Turn-at-talk duration (+)
Standard deviation of pitch (+)
Average harmonic-to-noise ratio (+)
Standard deviation of
harmonic-to-noise ratio (−)

Mean cheek raiser (−)
Mean lid tightener (+)
Mean lip corner puller (+)
Variance of brow lowerer (+)
Variance of upper lip raiser (+)
Variance of dimpler (−)
Max inner brow raiser (+)
Max outer brow raiser (−)
Max brow lowerer (−)
Max cheek raiser (+)
Max lip corner puller (−)
Max dimpler (+)

Affection-Hostility Number of sentences (+)
Hedge ratio (−)

Turn-at-talk duration (+)
Average shimmer (−)

Mean cheek raiser (−)
Mean dimpler (+)
Mean lip tightener (+)
Variance of brow lowerer (+)
Variance of nose wrinkler (−)
Variance of lip tightener (−)
Max inner brow raiser (+)
Max brow lowerer (−)
Max cheek raiser (+)
Max lid tightener (−)
Max nose wrinkler (+)
Max lip corner puller (−)

Composure-
Nervousness

Disfluency ratio (−) Average loudness (+)
Average shimmer (−)

Mean upper lip raiser (−)
Mean lip stretcher (+)
Mean blink (+)
Variance of brow lowerer (+)
Variance of lip stretcher (−)
Max brow lowerer (−)
Max nose wrinkler (+)
Max chin raiser (−)

Involvement-
Detachment

Number of words (+)
Number of sentences (+)

Turn-at-talk duration (+)
Average shimmer (−)

Mean cheek raiser (−)
Mean lid tightener (+)
Mean nose wrinkler (+)
Mean lip corner puller (+)
Variance of brow lowerer (+)
Variance of dimpler (−)
Max brow lowerer (−)
Max cheek raiser (+)
Max lid tightener (−)
Max dimpler (+)

Similarity-
Dissimilarity

Number of sentences (+)
Number of words (−)

Standard deviation of
harmonic-to-noise ratio (+)
Average shimmer (−)
Standard deviation of shimmer (+)

Mean inner brow raiser (−)
Mean outer brow raiser (+)
Mean cheek raiser (−)
Mean lip corner puller (+)
Mean lip tightener (+)
Variance of inner brow raiser (+)
Variance of outer brow raiser (−)
Variance of brow lowerer (+)
Variance of cheek raiser (+)
Variance of lip tightener (−)
Variance of jaw drop (+)
Max lid tightener (−)
Max chin raiser (−)

(Continued)
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TABLE 1 | (Continued)

Constructs Linguistic Cues Vocalic Cues Facial Cues

Trust-Distrust Number of sentences (+) Turn-at-talk duration (+)
Average shimmer (−)

Mean cheek raiser (−)
Mean jaw drop (−)
Variance of nose wrinkler (−)
Variance of jaw drop (+)
Max brow lowerer (−)
Max lip corner puller (−)
Max dimpler (+)
Max lip suck (−)

Positive (and negative) signs in the parentheses indicate significant positive (or negative) unstandardized beta weights in regression analyses between the behavioral cue
and the focal relational message construct.

Composure-Nervousness
Composure in the case of relational messages means signaling
that one is comfortable, at ease and relaxed in the other’s presence.
Composure is manifested as facial and postural relaxation.
Acoustically, composure presents as a more expressive and
pleasant voice. The bipolar opposites of composure are signals
of nervousness. In addition to higher anxiety being associated
with speech dysfluencies like stuttering (Ezrati-Vinacour and
Levin, 2004), nervousness may present in the form of rigid
faces, voices, posture and heads; gaze avoidance; fidgeting or
other adaptor (self-touching) gestures; softer vocal amplitude;
higher pitch; more dysfluencies; and shorter and fewer turns-
at-talk. Additionally, nervousness often conveys detachment or
unpleasantness (Burgoon et al., 2021).

Results in this experiment showed that more fluent speakers
were perceived as more composed, with higher average loudness
and lower average shimmer, indicating that those who speak
more loudly and less hoarsely are perceived as more composed;
conversely, dysfluent, quieter and hoarser voices conveyed
discomfort. In terms of facial behaviors, perceived composure
(or nervousness) was positively (or negatively) associated with
several features in the brow, eye, lip and chin regions, confirming
the expectation that nervousness is shown particularly in the
upper and lower action units of the face.

Involvement-Detachment
Involvement is a relational message that can have positive
or negative connotations. Dillard et al. (1999) proposed that
involvement is an intensifier dimension between competing
meanings of dominance or affiliation, which could alter which set
of features is associated with involvement. Coker and Burgoon
(1987) analyzed over 50 features that could be associated with
involvement, most either value-neutral or more tilted in favor of
a positive sentiment.

Here, results showed that higher perceived involvement was
associated with more words, sentences and longer turns-at-talk
duration, indicating that perceived involvement increased with
participation in the group conversation. Findings from the audio
channel are consistent with Coker and Burgoon (1987), which
showed greater involvement corresponded to fewer silences
in speech, more vocal warmth and relaxation, but no effect
of disfluency. Average magnitude and variability of pitch and
loudness were non-significant, contrary to a previous finding

that higher pitch, pitch range, and voice intensity are indicative
of conversational involvement (Oertel et al., 2011). Meanwhile,
perceived involvement was negatively associated with average
shimmer. Additionally, significant facial cues included many in
the eye, brow and cheek regions. Thus, facial activation played a
significant role in expressing involvement.

Similarity-Dissimilarity
Interpersonal similarity measures the degree to which
people share like attitudes, beliefs, personal characteristics,
experiences, and so forth (Burgoon and Hale, 1984).
Similarity promotes communication and bolsters influence
(Krishnan and Hunt, 2021).

The results here showed that, linguistically, the number of
sentences was a significant contributor to perceived similarity,
while the number of words curiously detracted. Vocally,
variability in shimmer had a positive effect on the similarity
ratings, while mean shimmer was negatively related. Thus, less
overall shimmer but more variability in shimmer expressed
similarity. Additionally, perceived similarity was positively
associated with the standard deviation of HNR (Harmonic to
Noise Ratio), again a signal of variability. It is worth noting
that two behavioral indicators, number of sentences and average
shimmer, affected the similarity ratings and the trust ratings in
the same direction, implying the close relationship between these
two relational dimensions. The face model revealed a rich set of
significant correlates with similarity, many involving variability
or maximums and signifying that more active faces were read as
greater similarity.

Trust-Distrust
As the glue that holds society together, trust plays an essential
role in interpersonal (Golembiewski and McConkie, 1975)
and commercial (Morgan and Hunt, 1994) relationships and
consequently has attracted abundant scholarly attention. Trust
fosters cooperation (Balliet and Van Lange, 2013) and reduces
costs of social transactions (Dyer and Chu, 2003). Though the
concept of trust has been investigated extensively, defining the
construct remains a challenging task due to its multi-contextual
nature. A typology derived from various definitions (McKnight
and Chervany, 2000) suggests that benevolence, integrity,
competence, and predictability are the defining characteristics
of trust. A rich set of verbal and nonverbal cues, such as smile
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(Centorrino et al., 2015), eye contact or gaze aversion (Bayliss and
Tipper, 2006), facial expressivity (Krumhuber et al., 2007), voice
pitch (McAleer et al., 2014), prosody dynamics (Chen et al., 2020),
verbal politeness (Lam, 2011) and use of technical terms (Joiner
et al., 2002) have been reported to convey interpersonal trust and
promote cooperative behavior.

In the current study, we found that the greater number of
sentences enhanced a participant’s perceived trustworthiness,
though the total amount of speech (i.e., words) had no such
effect. The vocalic model showed that turn-at-talk duration,
which contributes to the total amount of speech, also boosted
perceived trustworthiness, corroborating the positive effect of
sentence quantity. Meanwhile, average shimmer had a negative
effect on perceived trustworthiness, indicating a less hoarse
voice with less breathiness can stimulate trust. The face model
produced mixed results. While speaking activity (reflected by
the variance of jaw drop) and maximum magnitude of dimpler
(a lower face muscle movement driven by smiling) increased
perceived trustworthiness, the average level of cheek-raising, jaw-
dropping, variance of nose-wrinkling, and maximum level of
brow-lowering, lip corner-pulling and lip-sucking all negatively
affected trust. Apparently, too much activity and adaptor
behavior in the lip and cheek region diminished trust, contrary
to the benefit of such vocal and facial activity in expressing
involvement and similarity.

Perceived Veracity
One way to analyze the effect of the six relational dimensions
on the outcome of perceived veracity is to use two-stage least
squares regression with deception manipulation (i.e., players’
role) as an instrumental variable. We operationalized perceived
deceptiveness as the percentage of Villagers who regarded
a player as a Spy. Results in the Supplementary Material
show that the regression coefficients for all the relational
dimensions are significantly negative, suggesting that players with
higher perceived dominance, affection, composure, involvement,
similarity (with Villager raters), and trustworthiness are less
often judged as deceivers. Composure and affection have the
largest effect sizes. Thus, players whose relational communication
includes nonverbal and verbal signals that convey the least
nervousness and engender the most liking are least likely to
be suspected as Spies. This analysis demonstrates how the
Brunswikian lens model links distal communication signals to
meaningful psychological and emotional percepts of interaction
to social outcomes of that interaction (e.g., perceived veracity).

DISCUSSION

Interactants in social contexts send and interpret relational
messages using a broad array of verbal and nonverbal behaviors.
Applying a modified Brunswikian lens model, we investigated
how individuals form proximal percepts based on multimodal
behavioral indicators.

We undertook the current approach to illustrate how
multimodal signals can be combined to predict some focal
variable of interest. Our indicators were not intended to be

exhaustive but rather a sampling that could be incorporated
into a Brunswikian lens model and thus demonstrate how
perceptual and objective variables can be combined to predict
whatever outcome is of interest, in this case, deception. Objective
distal indicators combine to form proximal percepts; subjective
percepts predict outcomes. Modeling social behavior in this
manner makes clear the importance of distinguishing objective
indicators from subjective perceptions. Distal indicators usually
represent more objective, discrete, and microscopic variables
that are often regarded as ground truth, whereas percepts are
the subjective, macroscopic, interpretive layer of judgments that
are formed from the distal cues. Percepts are the intermediate
judgment that predicts outcomes of interest. In the case of
deception, distal clues might include objective behaviors such as
eye blinks and immobile facial muscles that lead to the percept
nervousness and thus to the conclusion that the speaker’s frozen,
impassive face conveys deceptiveness.

The Brunswikian lens model is a very flexible model that
permits choosing few or many indicators of a given type (e.g.,
facial expressiveness signals), depending on the research question
of interest. It also permits beginning with the most distal
physical and physiological indicators, then working to the more
proximal interior psychological and emotional states to arrive at
a predicted behavioral outcome, or instead beginning with the
psychological emotional and cognitive states, such as emotional
stress and cognitive overload, then working backward to the
objective behaviors that account for those cognitive-emotional
states. Either the distal indicators or proximal percepts can be
used to predict ultimate attributions. Here, where our interest
was in deception, the analysis showed that relational messages are
one way to conceptualize the implicit social meanings that are the
percepts predicting deceptiveness.

Important from a communication (Subrahmanian et al.,
2021) standpoint is that all three modalities—linguistic, vocalic
and kinesic–contribute variance to the final prediction. The
model encourages deeper investigation into what objective
indicators contribute to the relational topoi that are so deeply
embedded in the process of interpersonal communication.
An example: A member of a decision-making group may
characterize another member’s communication as involved,
expressing commonality and similarity, and engendering trust.
But these interpretive characterizations leave unanswered what
behaviors contribute to those perceptions. AI models can probe
what distal signals combine to form these relational messages and
lead to perceptions that another is credible or deceptive.

Our findings open up many avenues for future CS research
into relational communication. First, the CS community could
apply state-of-the-art machine learning methods to predict
relational messages. These predictions would facilitate a better
understanding of dynamic human interactions. They might
show, for instance, how certain actions lead to distrust among
group members and account for deterioration of a sense of
homophily and liking as the group’s interaction unfolds. Or they
might identify what group members’ behaviors promote trust
and ultimately, to favorable decisions. Such analysis could assist
with decision making scenarios such as business negotiations
or discussions of pandemic relief programs. One possible
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direction is to make inferences on multiple non-orthogonal
relational messages through transfer learning (Zhuang
et al., 2020). Another direction would be to apply time
series analysis to model long interactions, which would
allow predictions of dynamic changes in these relational
messages over time. Besides making predictions, recent
developments in explainable artificial intelligence (Adadi
and Berrada, 2018) would help interpret the models and
benefit the social science community in identifying more
nuanced behavioral indicators of relational messages and in
developing relevant theories. Presenting intelligible explanations
also increases users’ trust (Gunning et al., 2019). These
advancements in CS research present exciting opportunities
to further investigate relational messages during human
interactions and create synergy between the CS and social
science communities.

Second, it would be of great value for the CS community
to develop more powerful tools for analyzing behaviors of
multiple modalities. Besides the linguistic, vocalic, and facial
features, other physiological and behavioral signals, such as
gestures and posture, would also be valuable to investigate.
In addition, an integrated tool for processing speech, voice,
and video in real-time would be beneficial. Although real-
time speech (Gao et al., 2019), voice (Acharya et al., 2018),
and video processing (Ananthanarayanan et al., 2017) and
their integration (Kose and Saraclar, 2021) have been widely
studied in computer science, the analysis of physiological and
behavioral signals in psychological, emotional, and cognitive
states and relational messages presents a new and interesting
path, especially for real-time applications (e.g., decision support
in business negotiations). Another useful future direction is to
harness the power of computer-based techniques to perform
real-time audio and video quality checks for better data
inputs in a non-laboratory setting. Although we have taken
extensive actions to ensure the quality of data collected in
labs, unexpected factors, such as uneven lights and background
noise, may distort the data collected in the field or in online
experiments. A real-time data input quality checker would
provide guidance on high-quality data collection and reduce the
influence from unforeseen human and environmental matters.
We urge further developments in these automated tools for better
data collection and analysis.

Although computer scientists and social scientists routinely
call for more cross-disciplinary collaboration, such lip service
is rarely accompanied by true integration of the work. The
Brunswikian lens model offers a productive vehicle for creating
that collaboration and integration.
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Often, various modalities capture distinct aspects of particular mental states or activities.

While machine learning algorithms can reliably predict numerous aspects of human

cognition and behavior using a single modality, they can benefit from the combination

of multiple modalities. This is why hybrid BCIs are gaining popularity. However, it is not

always straightforward to combine features from a multimodal dataset. Along with the

method for generating the features, one must decide when the modalities should be

combined during the classification process. We compare unimodal EEG and eye tracking

classification of internally and externally directed attention to multimodal approaches for

early, middle, and late fusion in this study. On a binary dataset with a chance level of

0.5, late fusion of the data achieves the highest classification accuracy of 0.609–0.675

(95%-confidence interval). In general, the results indicate that for these modalities,

middle or late fusion approaches are better suited than early fusion approaches.

Additional validation of the observed trend will require the use of additional datasets,

alternative feature generation mechanisms, decision rules, and neural network designs.

We conclude with a set of premises that need to be considered when deciding on a

multimodal attentional state classification approach.

Keywords: feature fusion, convolutional neural networks, attention, eye tracking, EEG, Markov Transition Fields,

Gramian Angular Fields

1. INTRODUCTION

Human-machine interaction is becoming increasingly ubiquitous. In our daily lives, we want
to seamlessly incorporate technology and thus rely on usability. By integrating implicit input
mechanisms, the synergy between users and machines is further enhanced: These enable a system
to infer information about the user without the user taking any explicit action, such as pressing a
button or speaking a command, and modify their behavior accordingly.

One way of implementing implicit input mechanisms is via biosignal-based recognition of
cognitive states. Biosignal-based recognition of cognitive states or activities in humans is a
broad research field because of the manifold options for input signals, classification algorithms,
and possible applications. For instance, a Brain-Computer Interface (BCI) can predict a user’s
attentional state from electroencephalographic (EEG) data and adapt the system’s behavior using
machine learning (Vortmann and Putze, 2020). Certain modalities are more suited to certain
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applications and scopes than others, but for the majority
of applications, more than one possible input signal can be
considered. For instance, brain activity can be supported by eye
gaze behavior. Such systems are commonly referred to as hybrid
BCIs (Kim et al., 2015).

The fundamental premise of such multimodal approaches
in the context of BCI machine learning is that the two
modalities may capture distinct aspects of the user state and
thus complement one another. While using a single modality
can result in reliable classification accuracy, combining two or
more modalities can enhance the system’s recognition power and
robustness, thereby improving its overall performance. D’Mello
and Kory (2012) demonstrated in a review of 30 studies that
multimodal classification yielded on average 8.12% improvement
over the unimodal classifiers. Possible aims of the combination
are to correct for temporally noisy data, resolve ambiguity, or the
exploitation of correlations (Baltrušaitis et al., 2018).

In this work, we want to systematically explore the
combination of EEG and eye tracking data for the classification
of internally and externally directed attention. The result of such
a classification could be used in a BCI to adapt the system to the
user state.

1.1. Multimodal Feature Fusion
Biosignal data is heterogeneous in nature due to its inherent
properties and recording mechanisms. For example, brain
activity can be recorded using an EEG, which measures
electrophysiological changes on the scalp and is usually recorded
in microvolt, whereas eye gaze behavior is recorded by eye
tracking devices that measure pupil dilation and infer gaze
coordinates. During unimodal approaches, the feature extraction
is either explicitly designed to generate meaningful features
from the data, or the classification process implicitly learns to
extract modality- and task-specific features (Kim et al., 2020). A
combination of several modalities for the classification process is
therefore not trivial.

The first opportunity to merge modalities is before the
beginning of the classification process. Such early fusion

approaches combine the biosignals on a feature level (Cheng
et al., 2020). The joint representation of previously extracted
meaningful features or preprocessed raw data presupposes that
all modalities can be aligned properly for classification. This
approach allows for the learning of cross-modal correlations
during the classification process, but requires concatenation of
the inputs and limits the extraction of modality-specific features.

Oppositely, late fusion approaches merge the modalities at
the end of the classification process. The inputs are separately
processed in individually tailored steps, typically until the
prediction of individual labels. The fusion happens on the
decision level based on the multiple predictions (Cheng et al.,
2020). In Mangai et al. (2010), this was discussed as classifier
combination because several classifiers are trained individually
per modality before the results of the classifiers are combined (or
one classifier is selected as overall output). The authors suggested
different approaches how to choose the classifier combination,
based on the available individual output formats per modality
classifier. For instance, if each classifier predicts only a class

label, an odd number of classifiers should be chosen to allow
for (weighted) majority votes for the final output. In other
cases, the classifiers could produce vectors in which the values
represent the support for each label. Such certainty evaluations
per modality classifier allow for a more sophisticated assessment
of the final combined multimodal output. A decision rule has
to define how the individual predictions are combined for the
final prediction. This rules can either be set or learned using
machine learning. The setting of a decision rule requires good a
priori knowledge on the expected results, while machine learning
based late fusion requires a large amount of data to enable the
training of such decision rule. Especially regarding the proposed
attention classification biosignal data, such large datasets are
often not available and rule-based late fusion approaches should
be favored. An apparent advantage of late fusion is the power of a
tailored classification processes, whereas the shortcoming lies in
the exploitation of modality correlations (Polikar, 2012).

One can also steer a middle course in fusing the modalities
in the middle of the classification process. The idea of middle

fusion (or halfway fusion) approaches is to first process the
modalities individually but merge intermediate results as soon
as possible, followed by further classification steps. In terms
of neural networks, the first layers process the distinct inputs
simultaneously before concatenating the layers’ outputs for the
following shared layers. The advantage of this fusion approach
is that the modalities could first be processed tailored to their
individual properties before exploiting the cross-correlations and
arriving at a joint prediction.

1.2. EEG and Eye Tracking Based Mental
State Detection
Hybrid BCIs have been used to detect a variety of mental states by
analyzing eyemovement patterns rather than relying on the user’s
explicit gaze behavior for direction control or target selection.
As mentioned before, MI is a suitable use case for BCIs in
general. Dong et al. (2015) used the natural gaze behavior of the
participants to smooth the noisy predictions that resulted only
from EEG motor imagery tasks. Cheng et al. (2020) explicitly
compared late and early fusion of the multimodal features for
their MI task. For the feature level fusion, they remarked that
EEG and eye tracking data are so dissimilar, fusing them is not
trivial and requires several preprocessing steps. For the decision
level fusion, they used a decision rule based on the D-S evidence
theory (Zhang et al., 2018). They found that feature fusion
outperforms single modalities and that late fusion outperforms
early fusion of eye tracking and EEG data.

In Guo et al. (2019), the authors investigate emotion
recognition using a multimodal approach. They combine eye
tracking and EEG data and classify the input after an early fusion
using a deep neural network model that combines Convolutional
Neural Networks (CNN) and Long Short-TermMemory (LSTM)
networks. For the early fusion of the modalities, they apply a
Bimodal Deep AutoEncoder (BDAE) that extracts a high-level
representation of features. This approach was first presented in
Liu et al. (2016). Another early fusion approach for emotion
recognition was examined in Lu et al. (2015). They fused 33
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different features from eye movement data with 62 channel
EEG signals and achieved 87.59% accuracy in classifying three
emotions. Zheng et al. (2014) combined EEG signals and pupil
dilation either in an early fusion approach or in a late fusion
approach and found that both improved the performance of the
emotion recognition model compared to unimodal approaches
with a slightly higher accuracy for early fusion. Later, the authors
presented a multimodal emotion recognition framework called
EmotionMeter that also combines EEG and eye tracking data to
recognize emotions in real-world applications. They successfully
classified four different emotions with an accuracy of more
than 85% using a multimodal neural network, outperforming
both single modalities (Zheng et al., 2019). Another study on
multimodal emotion recognition was conduced by López-Gil
et al. (2016) who found that combining different signal sources on
the feature level enables the detection of self-regulatory behavior
more effectively than only using EEG data. Most recently, Wu
et al. (2021) fused EEG and eye tracking data for emotion
classification using effective deep learning for a gradient neural
network. They report an 88% accuracy for the recognition of
eight emotions.

The authors of Zhu et al. (2020) demonstrated that
when eye movement and EEG data are combined for the
detection of depression, a content-based ensemble method
outperforms traditional approaches. The mental workload level
is another cognitive state that can be classified using the
proposed multimodal data. Debie et al. (2021) state in their
review, that the combined features outperform single modalities
for workload assessments. For example, Lobo et al. (2016)
fused previously extracted eye tracking and EEG features
on the feature level before training person-dependent and
person-independent classifiers on them. They found that an
almost perfect classification performance could be achieved for
individual classifiers while independent classifiers only reached a
lot worse accuracy.

1.3. Attentional State Classification
This study will examine different feature fusion strategies for
a multimodal classification of EEG and eye tracking data
to recognize internally and externally directed attention in a
paradigm that manipulates internal/external attention demands.
In general, attentional mechanisms are applied to filter the
vast amount of available information at every moment for
a better focus on relevant goals. Internally directed attention
refers to a focus on information that is independent of sensory
input, such as thoughts, memories, or mental arithmetic. It
can occur deliberately (e.g., planning; Spreng et al., 2010)
or spontaneously (e.g., mind wandering; Smallwood and
Schooler, 2006). Externally directed attention instead describes
a state of attentiveness to sensory input produced by the
surroundings (Chun et al., 2011). Because concurrent self-
evaluation of attentiveness to internal/external states while
completing particular tasks would directly interfere with the
direction of attention itself, a common approach is to ask
participants in retrospect. Arguably, a system that would
concurrently monitor the attentional state without interfering
with the user may be better suited for application.

The suitability of eye tracking data for this classification task
was shown by Annerer-Walcher et al. (2021) who achieved a
classification accuracy of 69% for 4 s windows of raw eye tracking
data. They compared gaze-specific properties and found that
blinks, pupil diameter variance, and fixation disparity variance
indicated differences in attentional direction. In Putze et al.
(2016) and Vortmann et al. (2019a), the authors showed that such
attentional differences can also be classified from EEG in different
settings. They achieved 74.3% for 2 s windows and 85% for 13 s
windows, respectively.

Eye tracking and EEG data have been collected simultaneously
in several studies on attention (e.g., Vortmann and Putze, 2021).
Kulke et al. (2016) investigated neural differences between covert
and overt attention using EEG. The eye gaze was analyzed to
control the correct labeling of the data. Dimigen et al. (2011)
performed a co-registration of eye movement and EEG data
for reading tasks and analyzed the fixation-related potentials.
However, in these studies, the modalities were not combined but
used for different purposes during the analysis.

To the best of our knowledge, the only paper that addresses
feature fusion of EEG and eye tracking data for internally
and externally directed attention in the context of attention
classification is by Vortmann et al. (2019b). The authors
implemented a real-time system for the attentional state
classification and found that a late fusion approach with a
decision rule improves the classification result of both single
modalities. For 1.5 s data windows, the classification accuracy for
the EEG data ranged between 0.56 and 0.81, for eye tracking data
between 0.46 and 0.78 and for the late fusion approach between
0.58 and 0.86, calculated for 10 participant and a chance level
of 0.5.

This work will systematically compare the unimodal
approaches for EEG and eye tracking data with early, middle,
and late fusion multimodal approaches for internally and
externally directed attention.

2. METHODS

A dataset of 36 participants was analyzed for within-person
classification accuracies of different multimodal neural networks.

2.1. Data
The data used in this study was recorded by Ceh et al. (2020)1. It
encompasses EEG and eye tracking recordings of 36 participants
(24 female, 12 male; age: M = 24 SD = 2.72; all right-handed;
four had corrected-to-normal vision). The data set was chosen
because the EEG and the eye tracking data were sampled with
the same sampling rate. This makes the temporal alignment
for the early fusion approaches easier and more accurate. The
data collection was performed in a controlled laboratory setup
which results in higher quality data and less confounding factors
compared to more flexible setups that require, for instance, free
movements (Vortmann and Putze, 2020).

1Publicly available at 10.17605/OSF.IO/5U6R9.
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2.1.1. Task
During the recording, the participants had to perform two
different tasks under two different conditions each. For all tasks,
a meaningful German word of four letters was presented. For
one task, the participants had to create anagrams of the word
(i.e., “ROBE” is transformed to “BORE”). For the other task,
a four-word long sentence had to be generated, each word
starting with one of the four letters from the presented word (i.e.,
“ROBE” is transformed to “Robert observes eye behavior”). The
employed paradigm builds on both a convergent (anagram) and
divergent (sentence generation) thinking task and has been used
in several studies investigating the effect of attention demands
in the visual domain (Benedek et al., 2011, 2016, 2017; Ceh
et al., 2020, 2021). Within the tasks, the attentional demands
are manipulated using stimulus masking: in half of all trials,
the stimulus is masked after a short processing period (500
ms), requiring participants to keep and manipulate the word
in their minds. This enforces completion of the task relying
on internally directed attention. In the other half of all trials,
the stimulus word is continuously available (20 s), allowing
for continuous retrieval using external sensory processing. The
paradigm thus differentiates convergent and divergent thinking
in a more internal vs. external attentional setting. For a detailed
description of the task, see the original article.

2.1.2. Conditions
The effects of manipulating attention using these tasks were
previously looked at for EEG (Benedek et al., 2011), fMRI
(Benedek et al., 2014), and eye tracking (Benedek et al.,
2017) data, or a combination of EEG and ET (Ceh et al.,
2020), and fMRI and eye tracking (Ceh et al., 2021) data.
Across these studies, the investigators found robust differences
between the internal and external conditions on the level of
eye behavior (e.g., increased pupil diameter during internally
directed cognition; Benedek et al., 2017; Ceh et al., 2020, 2021),
EEG (e.g., relatively higher alpha power over parieto-occipital
regions during internally directed cognition; Benedek et al., 2011;
Ceh et al., 2020), and fMRI (e.g., internally directed cognition
was associated with activity in regions related to visual imagery,
while externally directed cognition recruited regions implicated
in visual perception; Benedek et al., 2016; Ceh et al., 2021). The
observed attention effects were highly consistent across both
tasks in all studies (i.e., across different modalities).

In this study, we will not differentiate between the two tasks.
The classification will be based on masked (internally directed
attention) and unmasked (externally directed attention) stimuli.
Each participant performed 44 trials of each condition (chance
level for the classification= 0.5).

2.1.3. Recordings
EEG was recorded with a BrainAmp amplifier by Brain Products
GmbH with a sampling rate of 1,000 Hz using 19 active
electrodes, positioned according to the 10-20 system in the
following positions: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz,
C4, T8, P7, P3, Pz, P4, P8, O1, and O2. Additionally, three
electrooculogram electrodes were included (left and right of the
eyes, and adjacent to the radix nasi). References were placed on

the left and right mastoid and the ground electrode was placed
centrally on the forehead. Impedances were kept below 30 kOhm.

The eye tracking data was recorded using an EyeLink 1000
Plus eye tracker by SR Research Ltd. with a sampling rate of 1,000
Hz. For amore detailed description of the experimental setup and
procedure (see Ceh et al., 2020).

2.2. Preprocessing
Simple preprocessing steps were applied to both data input sets to
reduce the noise in the data. The classification will be performed
per participant, with participant-dependently trained classifiers.
Thus, correcting data to account for inter-individual differences
is not necessary.

For the eye tracking, the X- and Y- coordinates and the
pupil diameter of the left and the right eye were cleaned
from non-existing values by dropping the respective samples.
Binocular blinks (as defined by the eye tracker’s built-in detection
algorithm) were also excluded. The X- and Y-coordinates
recorded by the eye tracker can be interpreted as the current gaze
position relative to the screen.

The EEG data were processed using the MNE toolbox by
Gramfort et al. (2013). First, the data was bandpass-filtered
between 1 and 45 Hz using windowed FIR filters. An additional
notch filter was applied at 50 Hz (power-line noise). Afterward,
the data was re-referenced to average. Bad channels or epochs
were not excluded from the data.

For both data sets, each trial was cut into four non-overlapping
3 s windows: 3–6, 7–10, 11–14, and 15–18 s after trial onset. The
first seconds of each trial were not used to avoid an effect of
the masking process in the data. In total, each participant’s data
set contained 4∗44 = 176 data windows. No baseline correction
was applied.

We generated two feature sets for each modality. As argued
earlier, for early feature fusion approaches, the input format
from both modalities must be temporally compatible so it can
be combined. The data synchronization was performed on the
basis of the available timestamps. Missing values were dropped
for both modalities. The first feature set is the plain preprocessed
time series, without any further computations or feature
extraction steps. This raw input has been proven suitable for
EEG data classification (Schirrmeister et al., 2017). To generate
the second feature set, we followed an approach introduced
in Wang and Oates (2015). The authors suggest transforming
time-series data into representative images that convolutional
neural networks can classify. The first algorithm for the
image generation is called Markov Transition Field (MTF).
MTFs represent transition probabilities between quantiles of the
data. As a second algorithm, they suggest Gramian Angular
Summation Fields (GASF), which visualizes the distances
between polar-coordinates of the time series data. They argue that
both approaches keep spatial and temporal information about the
data. The application of this feature generation approach for eye
tracking data during internally and externally directed attention
was implemented by Vortmann et al. (2021). They were able to
show that the imaging time-series approach with a convolutional
neural net achieve higher classification accuracies than classical
eye gaze-specific features.
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TABLE 1 | Shallow FBCSP Convolutional Neural Network structure (shallow

FBCSP CNN) from Schirrmeister et al. (2017), implemented using the braindecode

toolbox by Schirrmeister et al. (2017).

Layer name Type Properties

conv_time Conv2d Out = 40, kernel_size = (25, 1), stride = (1, 1)

conv_spat Conv2d Out = 40, kernel_size = (1, 23), stride = (1, 1)

bnorm BatchNorm2d Out = 40, eps = 1e-05, momentum = 0.1

pool AvgPool2d Kernel_size = (75, 1), stride = (15, 1), padding = 0

drop Dropout p = 0.5

conv_classifier Conv2d Out = 2, kernel_size = (194, 1), stride = (1, 1)

TABLE 2 | Simple Convolutional Neural Network structure (simple CNN) similar to

Vortmann et al. (2021), implemented using the PyTorch library by Paszke et al.

(2019). fc, fully connected.

Layer name Type Properties

conv1 Conv2d Out = 60, kernel_size = (5, 5), stride = (1, 1)

conv2 Conv2d Out = 120, kernel_size = (5, 5), stride = (1, 1)

conv_dropout Dropout2d p = 0.5

fc1 Linear In = 9,720, out = 500

fc2 Linear In = 500, out = 120

fc3 Linear In = 120, out = 20

fc4 Linear In = 20, out = 2

We calculated theMTF and the GASF image with 48x48 pixels
for each channel in the data, resulting in 12 images for the eye
tracking data: 2 images ∗ 2 eyes ∗ [x-coordinate, y-coordinate,
pupil diameter] and 44 images for the EEG data: 2 images ∗

(22 EEG channels + 3 EOG channels). This results in an image
matrix of 56 images per trial.

2.3. Classifier
The classification was performed in a person-dependent manner,
resulting in an individual model for each participant. We used
two different convolutional neural networks as classification
algorithms, one for each feature set (time-series features and
image features). Schirrmeister et al. (2017) introduced a shallow
CNN that was inspired by Filterbank Common Spatial Pattern
(FBCSP) analysis for EEG time-series. The layers of the network
can be seen in Table 1. This shallow FBCSP CNN will be
used to classify the time series feature set of both modalities.
As optimizer, we used the AdamW optimizer (Loshchilov and
Hutter, 2017), null loss, a learning rate of 0.0625 ∗ 0.01, and a
weight decay of 0.5∗0.0001.

The second neural network that we used for the image features
was the simple CNN adapted from Vortmann et al. (2021).
Table 2 describes the network structure in detail. This time, the
Adam optimizer (Kingma and Ba, 2014), cross-entropy loss, a
learning rate of 0.0001, and no weight decay were used. The
label prediction the maximum of the softmax of the output layer
was calculated.

In the first step, we classified the data using single modality
approaches. The data were randomly split into training and

FIGURE 1 | (A) Single modality classification approach for EEG data using the

shallow FBCSP Convolutional Neural Network. The preprocessed time-series

is used as the input. (B) Single modality classification approach for eye

tracking data using a Simple Convolutional Neural Network. The stacked

images represent the Markov Transition Fields and Gramian Angular Fields

computed on the raw data (see section 2.2). Both: ŷ is the class prediction.

testing data, using 33% for testing (stratified). We trained for a
maximum of 30 epochs with a batch size of 40. Early stopping
was applied if the classification accuracy on the training data was
above 95% for more than five epochs to avoid overfitting.

The EEG data were classified using the time series feature set
and the shallow FBCSP CNN (see Figure 1A). The eye tracking
data were classified using the image feature set and a simple
CNN (see Figure 1B). All evaluations are based on the network
accuracy tested on the test data. Because of the equal distribution
of the two conditions, the chance level for a correct window
classification is 50%. The training and testing split, followed
by the classification process, was repeated five times for each
participant with each modality and fusion approach. As a final
result for each participant, we calculated the average accuracy for
the five runs.

2.4. Fusion Approaches
We compared the single modality results to four different fusion
approaches. For the early feature fusion, we implemented two
different versions: (1) the image feature sets of the EEG and
eye tracking data are concatenated and classified by a simple
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FIGURE 2 | (A) Early fusion approach using image features for EEG and eye tracking data. The stacked images are classified by a Simple Convolutional Neural

Network. (B) Early fusion approach using time series of EEG and eye tracking data. The combined input is classified by the shallow FBCSP Convolutional Neural

Network. Both: ŷ is the class prediction.

CNN, and (2) the time series feature sets of both modalities
are combined and classified using the shallow FBCSP CNN (see
Figure 2). All parameters and training strategies were identical to
the single modality classification process described in section 2.3.

In the middle fusion approach, the time-series features of
the EEG data and the image features of the eye tracking data
were used. As described in Figure 3, both feature sets were
first processed simultaneously by different neural networks. A
reduced version of the shallow FBCSP CNN got trained on the
EEG data. The reduced model is identical to the model described
in Table 1 but the output size of the last layer (conv_classifier)
was increased to 40. The eye tracking data were used to train
the first layers of a simple CNN, until after the first linear layer
(fc1; see Table 2). At this point, the outputs of both networks
got concatenated, changing the input size of the second fully
connected layer (fc2) before passing through the rest of the linear
layers of a simple CNN.

Lastly, in the late fusion approach, the EEG and eye tracking
data were classified separately as described for the single modality
approaches. The prediction probabilities of both classes were
used to decide on the final prediction (see Figure 4). We used
the following decision rule: if both modalities predict the same
label, use it as the final prediction. Else, if the probability of
the EEG prediction P(ŷ) > 0.5, use the label predicted by the
EEG classifier. Else, use the label that was predicted by the eye
tracking classifier.

The decision was mutual (case 1) in 0.572± 0.074 of the trials.
For 0.368± 0.071 of the trials, the EEG prediction was passed on
and for 0.06± 0.024 the eye tracking decision was used.

3. RESULTS

All reported results are the statistics computed across all
participants. We will first report the mean, standard deviation,

range, and 95%-confidence interval of each approach, before
testing for significant differences. All results can be seen in
Figure 5.

The EEG-based single unimodal classification reached an
average accuracy of 0.635± 0.095. The results ranged from 0.450
to 0.859, and the 95%-confidence interval of the classification
accuracy for a new subject is [0.603, 0.668].

For the eye tracking approach, the average accuracy was 0.582
± 0.092 within the range [0.397, 0.870]. The 95%-confidence
interval was [0.551, 0.614].

When both modalities were represented by their time-series
and processed with the shallow FBCSP CNN (Early Fusion—TS),
the mean accuracy was 0.572± 0.077 (range [0.386, 0.853]).With
a 95% confidence, the classification accuracies for this approach
will reach between 0.545 and 0.598. The early fusion approach
using image features (Early Fusion—Images) reached an average
accuracy of 0.608 ± 0.083 over all participants. The range for
this approach was [0.422, 0.887] and the 95%-confidence interval
[0.580, 0.636].

For the middle fusion, the mean accuracy was 0.617 ±

0.101, range of [0.431, 0.870], and 95%-confidence interval of
[0.583, 0.652].

Finally, the late fusion approach with the decision rule
described in section 2.4 achieved the highest mean classification
accuracy with 0.642 ± 0.096, a range of [0.456, 0.881] and a
confidence interval between 0.609 and 0.675.

We performed the significance analysis using a paired
two-tailed t-test of the accuracy on all combinations of
approaches (see Table 3). Our main aim in this study was to
identify promising approaches for the feature combination of
a multimodal classifier. These results hint at which approach
is worth improving, adjusting, and optimizing further. Thus,
we would prefer a False Positive over a False Negative because
it would make us “exclude” a promising approach for further
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FIGURE 3 | Middle fusion approach using image features for eye tracking data

in combination with the first steps of a Simple Convolutional Neural Network

and the time series of EEG data with the reduced shallow FBCSP

Convolutional Neural Network. The concatenated outputs are put through

further linear layers. ŷ is the class prediction.

studies on this topic. Following this philosophy, we chose a
less conservative correction for multiple testing. By controlling
the False Detection Rate (FDR) following Benjamini and
Hochberg (1995), we find six significant differences. For the
single modalities, the results for the EEG classification are
not significantly better than the eye tracking results because
they were identified as a false positive. Between the two early
fusion approaches, the results obtained by the image feature set
were significantly better than for the time-series features. No
classification approach was significantly different from all other
approaches, but the multimodal late fusion outperformed both
unimodal classification approaches.

4. DISCUSSION

A system requires information in order to adapt more effectively
to the needs of its users. The synergy may increase further,
if a user does not have to explicitly state such requirements.
Biosignals are a means of implicitly acquiring information,
and combining multiple signals concurrently may result in a
more accurate fit. Thus, we classified attention as internally or
externally directed using 3 s multimodal EEG and eye tracking

FIGURE 4 | Late fusion approach using image features for eye tracking data in

combination with a Simple Convolutional Neural Network and the time series

of EEG data with the shallow FBCSP Convolutional Neural Network. The

probabilities of the predictions P(ŷ) are used for the final prediction ŷ.

data in the current study. We compared different feature sets
and feature fusion strategies. For the two feature sets and neural
networks, we chose one combination that was previously used for
EEG data (Schirrmeister et al., 2017) and one combination that
was previously used for eye tracking data (Vortmann et al., 2021).

In a preliminary analysis of classification accuracies for the
two single modalities, we discovered that prediction accuracies
based on EEG data (M = 0.635) were significantly higher than
those based on eye tracking data (M = 0.582). Regardless of the
suitability of the modalities themselves, the disparities could also
be explained by the disparate classification processes.

Interestingly, fusion of image features (M = 0.608)
outperformed time series classification (M = 0.572) significantly
for the two early fusion approaches. The image features were
previously used for the eye tracking classification. As a result,
we conclude that the different accuracies cannot be attributed
solely to the quality of the classification approaches themselves.
Rather than that, it appears as though the classification strategy
and modality being used interact.

Neither of the early fusion approaches outperformed the
single modalities by a significant margin. The time-series-based
early fusion approach (M = 0.572) performed even worse than
the unimodal EEG classification (M= 0.635). As discussed in the
related work, other early fusion strategies have been used in the
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TABLE 3 | P-values of two-tailed paired t-test for the comparison of the feature fusion approaches.

EEG ET Early—TS Early—images Middle Late

Only ET <0.001

Early fusion—TS = 0.005 = 0.578

Early fusion—images = 0.141 = 0.068 = 0.038

Middle fusion = 0.42 = 0.091 = 0.002 = 0.648

Late fusion =0.016 <0.001 = 0.003 = 0.0693 = 0.268

Average accuracy (%) 63.5 58.2 57.2 60.8 61.7 64.2

Significant differences are marked in bold. A significance threshold of α < 0.05 is assumed. FDR correction by Benjamini and Hochberg (1995) was applied to correct for multiple

testing. TS, time series.

FIGURE 5 | Boxplots for the classification accuracies of the different fusion approaches visualizing the lower to upper quartile values of the data, with a line at the

median. The whiskers represent the 95% range of the data. Diamonds represent outliers.

past to combine EEG and eye tracking data (Mangai et al., 2010;
Liu et al., 2016; Guo et al., 2019). Different feature extraction
algorithms or early statistics-based feature fusion techniques
could be used in future studies to improve classification accuracy
for the early fusion approaches. However, it was already noted in
Polikar (2006) that early fusion is not reasonable as opposed to
late fusion because of the diversity in the data. Thus, we see an
advantage for middle and late fusion approaches.

As proposed in the section 1, a middle fusion could be
an effective way to combine the advantages of feature-level
and decision-level fusion. Individual modalities are processed
independently first, resulting in classifier branches that are
optimally adapted and trained for each modality. The two
branches are connected in themiddle, and the available data from
both modalities can be used to train the rest of the network.
While this approach enables correlations to be exploited, it also
identifies significant unimodal data patterns that would bemissed

by other feature extraction approaches used in early fusion
strategies. The primary difficulty with themiddle fusion approach
is network design. While it combines the strengths of the other
two fusion strategies, it also incorporates their challenges. In a
first step, suitable feature extraction and representation, as well
as network structure for each modality, have to be found. These
neural network branches must be designed in such a way that
they allow for concatenation at a predetermined point. Finally,
the neural network’s subsequent layers must be appropriately
designed for the merged modalities. On the one hand, complex
correlations, and interactions must be discovered in order for
the network to outperform a late fusion approach. On the
other hand, the network’s complexity must remain reasonable in
comparison to the amount of data available. Otherwise, middle
fusion networks will almost certainly have an excessively large
number of parameters, rendering them unsuitable for a wide
variety of applications.
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It is difficult to generalize the results of the middle fusion, in
particular: The neural network’s structure is extremely adaptable,
with an infinite number of possible configurations. The fully
connected layers add parameters for successfully classifying
multimodal data by learning correlations. The results of this
study indicate that middle fusion is more promising than
unimodal and early fusion approaches, but does not outperform
late fusion. We assume that the network structure chosen was
not optimal for maximizing the benefits of intermediate fusion.
The layers were designed to resemble the individual unimodal
networks and merged appropriately to maintain comparability.
We hypothesize that more conservative and informed neural
network engineering could significantly improve classification
results. On the downside, this engineering is likely to be highly
dataset and application dependent and will require a thorough
understanding of the modalities’ interactions.

In conclusion, our findings indicate that performing feature
fusion in the middle of the classification process can slightly
improve classification performance when compared to early
fusion approaches. But supposedly, the neural network that
intermediately combines the two modalities is subject to many
adjustments and requires special engineering for each feature set
combination and application.

While there was no significant difference between the middle
fusion (M = 0.617) and the late fusion (M = 0.642), the
late fusion approach was the only approach to significantly
outperform both unimodal approaches in this data set. However,
it did not outperform both early fusion approaches.

By comparison, the late fusion approach’s optimization of the
decision rule contains fewer parameters and is easily adaptable to
new feature sets. However, the approach suggested here required
expert knowledge to come up with a decision rule. For more
efficient decision level fusion, statistical approaches or attention
mechanisms could be applied (Mirian et al., 2011).

Improved unimodal classification pipelines would be a
primary goal of improving late fusion. The primary disadvantage
of the late fusion approach discussed in section 1 is the absence
of correlation exploration between the modalities, which are
processed independently. Thus, any information encoded in
the early combination cannot be discovered using late fusion
approaches that combine the modalities only at the decision
level. A possible solution to this issue would be to add another
“branch” of classification that predicts an output based on fused
input, while maintaining the single modality classification. In our
example, the decision rule would consider the EEG, ET, and a
third combined prediction in addition to the two predicted labels
and their probabilities.

We discovered during the training process that classification
accuracy was highly dependent on the current training and test
split for the same data set. Increasing the size of the data set
may eliminate this effect. If more training data were available, the
variance in the data would help to reduce bias and the likelihood
of overfitting on the training data.

Another aspect that requires further thought is the inter-
subject variability. The appropriate classification approach may
depend on the participant and the quality of the data of each
modality. For subjects with low individual EEG and eye tracking

TABLE 4 | Summary of the advantages, challenges, and premises for each fusion

approach.

Fusion approach Advantages (+), Challenges (−), and Premises (*)

Early fusion + Possibly finds correlations between modalities

− Very different data structures to combine

− Must use similar feature structures for all modalities

* The same sampling rates for the data

* Or preprocessing to adapt the data to each other

* Best used when high chance of important modality

interactions

Middle fusion + Tailored initial modality specific layers

+ Possibly finds correlations between modalities

+ Can work with different feature structures

− Advanced NN engineering

* Enough data for complex NN structure

* Preliminary individual engineering of individual

modalities was very different

* Possibly important modality interactions

Late fusion + Tailored modality specific network design and features

+ Missing data from one modality can be easily

compensated

− Finding a suitable decision rule or algorithm

* Either good insight to find decision rule

* Or enough data to train decision using ML

* Best used when low chance of important modality

interaction

classification accuracies a middle or early fusion approach might
increase the accuracy significantly. On the other hand, it the
individual classification accuracies are already good, a late fusion
might benefit from the modality specific classification.

We used a designated EEG and eye tracking co-registration
study to have similar data quality for both modalities. The
data was collected in a controlled laboratory environment.
Applications and use cases with a more flexible setup and varying
data qualities require another examination because one of the
suggested approaches could be better suitable to correct for the
worse quality of one modality than the others.

Overall, the differences between the approaches are not
substantial enough to generally recommend the use of one over
the others. We were able to show that a classification of more
strongly internally vs. externally directed attention based on
short data windows is possible above chance level for several
approaches. We assume that the best fusion approach is highly
dependent on the structure of the available multimodal data (e.g.,
sampling rate, data quality) and conclude that testing several
approaches is necessary to find the most suitable for the data set.
Table 4 summarizes the advantages, challenges, and premises for
each fusion approach.

4.1. Future Work
The current results may inspire further, more fine-grained
comparisons even within the groups of early fusion approaches,
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middle fusion networks, and late fusion decisions. On top of
the presented suggestions on improving the current approaches,
classification accuracy might increase if pre-trained models or
transfer learning were applied For future work, other comparable
data sets will be used to enlarge the data available for the
training. The generalizability of the presented results should also
be tested with further unrelated data sets. This study exclusively
analyzed the data person-dependently. In the future, person-
independence should be evaluated. The classification of unseen
participants would include training the model on a pooled
dataset of other participants, for example, in a leave-one-out
approach. While the increased size of the training dataset might
improve the accuracy of the classifier, the differences between
participants might increase the variance in the dataset. Previous
results have shown that the person-independent classification
of EEG data is difficult and person-specific models are still
the norm (Vortmann and Putze, 2021), whereas attempts to
classify the eye tracking data of unseen participants for different
attentional states were promising on larger datasets (Vortmann
et al., 2021). However, the problem of generalizability was
already discussed by Annerer-Walcher et al. (2021) who state
that for internally and externally directed attention eye tracking
data does not generalize well over participants. Our results
have shown that a multimodal classifier outperforms unimodal
classifiers for within-person training and testing and the next
step will be to explore whether these improvements also hold for
person-independent classification. For the real-time application
of such a classifier in a BCI, the possibility to classify unseen

participants without the need for person-dependent training

data would highly increase the range of applications and the
usability.
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Objective: To determine whether gait and accelerometric features can predict
disorientation events in young and older adults.

Methods: Cognitively healthy younger (18–40 years, n = 25) and older (60–85 years,
n = 28) participants navigated on a treadmill through a virtual representation of the city
of Rostock featured within the Gait Real-Time Analysis Interactive Lab (GRAIL) system.
We conducted Bayesian Poisson regression to determine the association of navigation
performance with domain-specific cognitive functions. We determined associations
of gait and accelerometric features with disorientation events in real-time data using
Bayesian generalized mixed effect models. The accuracy of gait and accelerometric
features to predict disorientation events was determined using cross-validated support
vector machines (SVM) and Hidden Markov models (HMM).

Results: Bayesian analysis revealed strong evidence for the effect of gait and
accelerometric features on disorientation. The evidence supported a relationship
between executive functions but not visuospatial abilities and perspective taking with
navigation performance. Despite these effects, the cross-validated percentage of
correctly assigned instances of disorientation was only 72% in the SVM and 63% in
the HMM analysis using gait and accelerometric features as predictors.

Conclusion: Disorientation is reflected in spatiotemporal gait features and the
accelerometric signal as a potentially more easily accessible surrogate for gait features.
At the same time, such measurements probably need to be enriched with other
parameters to be sufficiently accurate for individual prediction of disorientation events.
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INTRODUCTION

Aging is associated with a decline in walking ability (Baudendistel
et al., 2021) and cognitive performance (Iachini et al.,
2009). These changes become particularly evident in dual-task
conditions. For example, older people have difficulties walking
and navigating in a new environment (Lithfous et al., 2013; Lester
et al., 2017), resulting in reduced wayfinding abilities. These
changes are even more pronounced during the transition from
healthy aging to cognitive impairment and dementia (Gazova
et al., 2012; Cohen and Verghese, 2019; Costa et al., 2020). They
represent a high burden on older people and lead to fear of
getting lost, social withdrawal, and a subsequent decrease in
physical mobility (Panel on Prevention of Falls in Older Persons,
American Geriatrics Society and British Geriatrics Society, 2011).

At the same time, wayfinding problems are amenable to
technical assistance. Navigation systems are already part of our
everyday environment; they support drivers and pedestrians,
for example. For older people and people with cognitive
impairments, in particular, it is important that assistance systems
do not replace remaining cognitive abilities, but rather make
use of them. Previous work has shown that habitual use
of navigation aids may decrease spatial memory performance
even in cognitively healthy people (Dahmani and Bohbot,
2020). Current technology development is therefore aimed at
situation-aware navigation assistance that supports the user
only when necessary (Teipel et al., 2016). Such systems require
accurate detection of navigation behavior, especially real-time
detection of episodes of disorientation before the user is lost
(Yordanova et al., 2017).

Previous studies used experiments in virtual reality (VR)
environments to assess spatial orientation (Zakzanis et al., 2009;
Kizony et al., 2017; Tascon et al., 2018; Costa et al., 2020;
Paliokas et al., 2020). VR approaches are highly controlled but
lack the dual-task characteristic of combining spatial navigation
with walking. One previous study found that navigational
performance results were comparable between a VR and a real-
world navigational test in young and older cognitively normal
adults and people with dementia (Cushman et al., 2008), but
VR testing alone obviously does not allow assessment of gait
and motion features during spatial navigation. On the other
hand, several studies used wearable sensors to assess the gait
and movement characteristics of cognitively normal older people
and people with dementia in real-life situations (Becu et al.,
2020; Mc Ardle et al., 2021; Pawlaczyk et al., 2021; Weizman
et al., 2021). Some of these real-world studies were primarily
aimed at exploring different components of spatial orientation
in normal human behavior and the underlying neural basis but
did not aim to map the full range of navigational behavior
in everyday situations (Wei et al., 2020). Other studies mainly
focused on the early detection of dementia symptoms using gait
characteristics in real-world environments (Mc Ardle et al., 2021;
Mulas et al., 2021; Weizman et al., 2021) or under dual task
conditions (Oh, 2021).

In a previous study, we had assessed whether accelerometric
features from wearable sensor devices were useful to identify
episodes of disorientation even before an individual has deviated

from the intended route (Schaat et al., 2019). We found that
accelerometry-detected episodes of disorientation with an area
under the receiver operating characteristics (ROC) curve (AUC)
of 75% and 79% correctly allocated disorientation episodes in
people with mild cognitive impairment (MCI) or dementia
moving through an urban environment (Schaat et al., 2019). This
level of accuracy suggested that there were relevant features in
the accelerometric signal to detect disorientation at the group
level. At the same time, the accuracy was not high enough for
individual situation detection. In addition, people with dementia
or MCI experienced a relatively small number of disorientation
episodes, which limited the training of an accurate model based
on positive events (Schaat et al., 2019).

Here, we transferred our previous approach to the better-
controlled environment within the Gait Real-Time Analysis
Interactive Lab (GRAIL) system. The GRAIL consists of a
physical treadmill combined with a large hemisphere screen
(Amaefule et al., 2020). In our experiment, the GRAIL
screen featured a virtual representation of the city center of
Rostock, resembling the environment of the previous real-
world experiment (Schaat et al., 2019). Participants were asked
to navigate through this environment while walking on the
treadmill. In a previous pilot study, we showed that this set-up
was feasible for use with older participants, including people with
cognitive decline, and allowed us to record a comprehensive set
of predictive features, including accelerometry, gait features, and
physiological signals (Amaefule et al., 2020). In addition, we were
able to induce disorientation episodes by removing landmarks
from the virtual environment to provide more instances for
model training. The key role of landmarks for spatial orientation
in virtual environments has previously been shown (Caffo
et al., 2018). In this study, we presented the results of this
approach in young and older adults without manifest cognitive
impairment. As a primary aim, we wanted to determine whether
a combination of accelerometry and gait characteristics was
accurate enough to immediately detect episodes of disorientation.
We hypothesized that the accerelometric and gait features may
yield sufficient accuracy for individual detection of disorientation
episodes in real time. Especially, we expected a level of
accuracy above 80% for the binary outcome of oriented vs.
disoriented. As a secondary aim, we determined whether the
number of disorientation events per participant was associated
with cognitive scores and aggregated accelerometric and gait
characteristics. The results of this study will be relevant to the
design of experiments with individuals with manifest cognitive
decline and also to the design of future real-world experiments
targeting situation-aware navigation aids.

MATERIALS AND METHODS

Subjects
For the ongoing GRAIL study, we recruited three groups of
participants: mobile, physically and cognitively healthy younger
(18–40 years) and older (60–85 years) participants, and physically
healthy persons with diagnosed MCI or mild dementia due to AD
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(Age: 60–85 years, MMSE: 15–27) according to NIA-AA criteria
(Albert et al., 2011; McKhann et al., 2011).

Patients and healthy older adults were recruited from the
memory clinic of the Rostock University Medical Center,
while the healthy young adults were recruited from within
the University of Rostock student community. Exclusion
criteria for all groups were other neurological conditions
besides MCI or dementia in the patient group, inability to
understand task instructions and questionnaire items, deaf-
muteness, and blindness.

Due to the COVID pandemic restrictions, recruitment of
patients with MCI and dementia was not possible for a longer
time interval so only four patients had been recruited during
the planned run-time of the project. Therefore, for the current
analysis, we used only the data of a subset of 28 older and 25
young cognitively healthy participants that had complete data
sets and behavioral annotation.

This study has been reviewed and approved by the Ethics
committee of the Rostock University Medical Center (Approval
No. A 2019-0062).

Experimental Set-Up
The experimental set-up has been described before (Amaefule
et al., 2020). In brief, the participants were guided along a path
in the virtual environment. Afterward, they were set back to
the starting point and asked to walk the same path again, this
time unguided. Navigation was possible by walking more to
the left or right on the treadmill; this rotated the participant’s
position in the virtual environment to the left or right. The
navigation route consisted of 14 major decision points (DP)
which were primarily locations at which the participant had to
decide to either continue in a particular direction, make a turn,
or identify the goal position. For half of the healthy young or
older subjects (the experimental group), phases of disorientation
were induced by changing landmarks or decision points in
the VR environment. These changes included (a) moving a
landmark from one intersection to the next intersection, (b)
adding a decision point, that is, an intersection, (c) blocking a
road, and (d) moving the goal indicator to a different location.
Overall, five locations were manipulated in the experimental
group as follows: DP4 – a red pillar was moved from DP7
to DP4; DP9 – the road was blocked; DP11 – a new path
was introduced; DP13 – the color of the pillar was changed to
red; DP14 – the goal location was moved a little further away
to DP14a. No changes to the environment were conducted in
the control group.

Before the experiment, the participants were familiarized with
the depicted city center by briefly showing them a map, such
that problems in wayfinding would be due to disorientation
instead of exploration in an unknown environment. We
recorded spatiotemporal and kinematic gait parameters through
the GRAIL system. In addition, we recorded accelerometric
signals from three wearable sensors on the left wrist, right
ankle, and chest, respectively, that each contained a three-axes
accelerometer and three-axes gyroscope sampled with 64 Hz.
Additionally, the chest sensor recorded an electrocardiogram

(ECG, 1,024 Hz), and the wrist sensor recorded electrodermal
activity (EDA, 32 Hz).

The experiments were video-recorded for subsequent offline
annotation of behavior.

Randomization of the young and older participants into the
experimental or control group was carried out using the program
Research Randomizer, accessible at https://www.randomizer.org.

Behavior Annotation
An offline annotation procedure was applied to the video
data recorded during the orientation task, for assessing the
observable orientation behavior of the participants using
the ELAN 5.8 tool (Wittenburg et al., 2006). As a coding
scheme, we used an adequate adaption of the coding scheme
provided by Yordanova et al. (2017). The same scheme
had been used in one field study before (Schaat et al.,
2019). This coding scheme also covers aspects of orientation
behavior, which were beyond the scope of wayfinding in
our VR set-up (e.g., behaviors associated with attention to
traffic). For this reason, we adapted the coding scheme to
capture only those behaviors that are obtainable within our
virtual reality set-up.

Specifically, to identify instances of disorientation, we
annotated when participants showed wandering behavior (i.e.,
non–goal-directed walk), communication behavior (i.e., asking
for help when disoriented), topological orientation (i.e., trying
to orient themselves based on the surrounding environment),
or spatial orientation (i.e., trying to orient themselves based
on landmarks). In addition, different types of errors that
are associated with disoriented behavior were annotated (i.e.,
initiation, realization, sequence, and completion errors). The
annotations were being evaluated based on the level of agreement
between two annotators independently rating the data of five
individuals, resulting in a Cohen’s kappa of 0.87.

For the current analysis, the different types of disorientation
behaviors were collapsed into a single feature of disorientation to
provide a binary outcome of oriented vs. non-oriented state at a
given time interval.

Neuropsychological Assessment
Neuropsychological assessment was only conducted on the older
participants and the MCI or dementia patients. The assessment
included the CERAD neuropsychological battery (Morris et al.,
1989), the Rey–Osterrieth Complex Figure Test (Rey, 1941;
Osterrieth, 1944), and the Perspective Taking/Spatial Orientation
Test (PTSOT) (Hegarty and Waller, 2004). Cognitive domain
composite scores assessing visual memory, executive functions,
visuospatial constructional ability, and spatial orientation were
computed by transforming raw scores of single tests to z-scores
(Coley et al., 2016; Voss et al., 2018). Each of these domain
scores were calculated as the mean score of specific tests,
after transformation to z-scores. The visual memory composite
included the delayed figural recall scores from the CERAD
and the Rey Complex Figure Test after 3 min; the visuospatial
composite included the direct figure copy scores from CERAD
and the Rey Complex Figure Test. For executive function, we
used the ratio of Trail Making Test B to A, and for the domain
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of spatial orientation, we included cognitive scores from the
Perspective Taking/Spatial Orientation Test.

Predictors
We included spatiotemporal and kinematic gait parameters from
the GRAIL system, as well as the mean accelerometric signal
from ankle, chest, and wrist-worn sensors and variability of these
measures. To reduce the dimensionality of the models for the
association analysis, we selected a priori features of interest. These
included the ankle, wrist, and chest-worn mean accelerometric
signal as well as the mean values of the spatiotemporal gait
characteristics of walking speed, step length, stride time, step
width, stance time, and swing time (Beauchet et al., 2017).
The explorative multivariate models for real-time detection were
allowed to select across all spatiotemporal and kinematic gait
features (Lohman et al., 2011) first and second moments (mean
and variance), the accelerometric signal means and variances at
the time point of behavior assessment as well as the time-lagged
features one, two, or three time intervals before the rated behavior
(lagged features). Supplementary Table 1 provides an overview
of the feature sets defined for the different analyses.

Gait and Accelerometric Data
Preprocessing
Accelerometric data, gait parameters, as well as video annotations
were synchronized by an event-based mechanism (participants
performed a distinctive movement at the beginning of the
recording, which could be easily located in all sensors). The data
were resampled at 100 Hz using cubic spline interpolation. We
then aggregated the data in non-overlapping segments of length
10 s. Specifically, for the accelerometric data, we computed the
mean, variance, skewness, and kurtosis of the magnitude of each
of the three sensor positions, resulting in 12 features per segment.
For the spatio-temporal gait parameters (walking speed, step
length, stride time, stance time, swing time, and step width), the
mean and coefficient of variation (CV) were computed for each
segment. The CV was calculated for each gait parameter as the
ratio of the standard deviation to the mean multiplied by 100.

We assigned a binary disorientation label to each 10-s
segment based on the video annotation using the following rule:
Whenever a navigation error or disoriented behavior was noted
at any time during the segment, the segment was labeled as
“disoriented.” Conversely, if neither a navigation error nor a
disoriented behavior was noted during the segment, the segment
was labeled “not disoriented.”

Statistical Analysis
Unless otherwise noted, all statistical analyses were performed
using R statistical software, version 4.1.2, accessed via R
Studio version 2021.09. Analyses were conducted in a Bayesian
framework to allow estimation of model plausibility and
determining effect sizes with credibility intervals. Demographic
characteristics were compared between experimental groups
using the Bayesian t-test or the Chi-square test as appropriate
using Jeffreys’s Amazing Statistics Program (JASP) 0.16
with default priors.

Subsequently, we conducted two groups of analyses:
The first group of analyses (A1) used the disorientation data

aggregated across the entire observation period per participant.
We selected two readouts for disorientation: the number of
disorientation per subject during the navigation experiment
(henceforth called disorientation counts) and the percentage
of the length of the disorientation episodes relative to the
overall length of the experiment per subject (henceforth called
disorientation percentage).

First, we determined the regression of aggregated
disorientation data on cognitive scores (only in old people)
and aggregated accelerometric and gait features (in young
and old people). We used generalized linear models with
disorientation counts and percentage, respectively, as dependent
variables, and cognitive scores and aggregated accelerometric and
gait features as independent variables, respectively, controlling
for age, gender, and experimental condition. The dependent
variable (count data) was not normally distributed, therefore we
fitted a Poisson regression model using the R library “brms.” We
compared the fit of the Poisson with the Gaussian regression
model using leave-one-out cross-validation for Bayesian models
with the R library “loo.”

The second group of analyses (A2) used the binary variable of
oriented (0) vs. disoriented (1) during each of the 10-s intervals
as the dependent variable in all individuals. To enrich for
disorientation episodes, we only considered time intervals during
decision points (see Supplementary Table 2 for the proportion of
disorientation events per decision point).

First (A2.1), we used the Bayesian mixed-effects logistic
regression models with accelerometric or gait features at each of
the 10-s intervals as independent variables, controlling for age,
gender, and experimental condition as fixed effects covariates,
and with a random intercept for patients as random effect
variable (observations nested within patients). These models were
calculated using the R library “brms.

Second (A2.2), we determined, whether single accelerometric
or gait features that had shown an effect in the previous analysis
had a relevant predictive accuracy for episodes of disorientation.
We used the area under the ROC curve to estimate a single
feature’s ability to predict disorientation at a time interval. ROC
analysis was done using the library “ROCnReg” in R allowing
for Bayesian estimates of credibility intervals for the areas
under the ROC curves.

Third (A2.3), we used a multivariate approach to find
a combination of accelerometric or gait features that may
contribute to relevant accuracy in the detection of disorientation
episodes. In this study, we used as the primary model a support
vector machine (SVM), implemented using the R library “e1071.”
Before SVM training, we used feature selection based on the
correlation coefficient of every single predictive feature with
the dependent binary variable “oriented” vs. “disoriented.” Only
features with an absolute value of the correlation coefficient
larger than 0.12 were entered into the SVM training. After visual
inspection of the data revealed no linear separation between
groups, we decided to use a radial kernel whose parameters cost
and gamma function were determined using a 10-fold cross-
validation using the function tune in library “e1071.” To account
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for the binding of the data within patients, we determined the
accuracy of the SVM models using patients as folds. Within each
patient, 80% of each patient’s data were used as training data
and the remaining 20% as test data. Accuracy was determined
as the percentage of correctly classified time intervals where the
predicted states of orientation or disorientation agreed with the
observed states of orientation or disorientation relative to all
observations per patient.

Finally (A2.4), we used a Gaussian Hidden Markov Model
(HMM) respecting the temporal nature of the data. Using the
HMM approach, we generated states (constraining the model to
two possible states only) from the observed response variables,
and subsequently compared the distribution of the generated
states with the distribution of the observed states. This analysis
was conducted using library “depmixS4” in R. Taking into
account the origin of the time-series data, we split the analysis
according to participants. We estimated transition matrices
and means and standard deviations of the response variables
from the data and used these estimates to fit the states’ model
per participant.

RESULTS

Demographic characteristics of our sample can be found in
Table 1. Bayes factor analysis suggested no evidence in favor
of a difference in sex distribution and education years across
the groups and was in favor of no difference in age between
experimental and control conditions within the young and
older groups, respectively. By design, young and older groups
differed in age. Participants in the experimental condition
were presented with altered landmarks to induce disorientation,
whereas participants in the control condition were not.

Aggregated Data
The average number of disorientation events, mean ankle-worn
accelerometric signal, and walking speed per age group and
the experimental condition is plotted in Figure 1. We found
extreme evidence in favor of a difference between older control
and experimental cases and between older experimental and
young control cases, and moderate evidence in favor of a
difference between older experimental and young experimental
cases. Evidence for differences within the young age group and
between the older control and the young control groups was
not conclusive. For ankle-worn accelerometry and walking speed,
there was mainly an age effect and a less-pronounced effect of
experimental condition (see Table 1 for details).

Leave-one-out-cross-validation of the Watanabe-Akaike
information criterion (WAIC) (Vehtari et al., 2017) confirmed
that the Poisson regression was superior to the Gaussian
regression model fit [WAIC difference in favor of Poisson = –21.6
(SE = 8.9)] when using condition, age, and gender as the only
predictors for the base model.

The number of disorientation events across the experiment
were associated with executive function (smaller number of
disorientation counts with higher executive function), but
not with visuospatial constructional ability, visual memory,

or perspective-taking/spatial orientation. Ankle-worn sensor
overall level of activity was associated with counts of
disorientation (more activity, less disorientation), but not wrist
or chest-worn sensors.

When considering gait features, slower walking speed and
lower step length were associated with a higher number of
disorientation events.

Across all models, experimental condition and higher age
were associated with a higher number of disorientation events,
whereas gender was unrelated to disorientation events.

Detailed results can be found in Table 2. When repeating
these analyses with the percentage of disorientation events per
patient’s time of experiment as an outcome, the results were
essentially unchanged (data not shown). The only difference was
that in addition to the previous effects, a higher wrist-worn
accelerometric signal was associated with a higher percentage of
disorientation events (main effect = 5.50, 95% credibility interval
2.25–8.67) as well.

Real-Time Data
For accelerometric features, we found the main effect of lower
ankle, wrist, and chest-worn sensors’ levels of activity with more
disorientation events. In addition, we found interactions of ankle-
and wrist-worn sensors’ levels of activity with the experimental
condition, showing more pronounced negative associations in
the control than in the experimental condition (see Figure 2
for an example of ankle-worn sensor activity). In addition,
experimental condition, but not age or gender, was associated
with more disorientation events. See Table 2 for details.

For gait features, all a priori selected gait features showed
a main effect on disorientation events. Lower walking speed
and step length and width as well as longer stride, swing, and
stance times were associated with more disorientation events. In
addition, we found interactions of walking speed, step length,
step width, and swing time with an experimental condition,
showing more pronounced negative associations in the control
than the experimental condition for walking speed, step length,
and step width, and a more positive association for swing time
(see Figure 3 for an example of walking speed). In addition,
experimental condition, but not age or gender, was associated
with more disorientation events. See Table 3 for details.

Accuracy of Disorientation Event
Detection
We used the Bayesian ROC curve analysis to estimate the
accuracy of single markers that had shown an association with
orientation in the previous mixed-effect models. For ankle-
worn accelerometric signal, the area under the ROC curve was
0.60 (95% credibility interval 0.588–0.615). For the remaining
accelerometric features and the gait features, AUC values were
below 0.60. These number indicate a detectable, but clinically
irrelevant effect of single markers on accuracy levels.

Subsequently, we implemented a multivariate cross-validated
support vector machine to determine the accuracy of a (non-
linear combination of markers). Feature selection was done
using absolute correlation coefficients > 0.12 between candidate
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TABLE 1 | Demographic, orientation, and gait characteristics.

Young controls Young experimental Older controls Older experimental

N (f/m)1 4/6 8/7 9/5 9/5

Age2 (years) (SD) 24.2 (2.7) 24.7 (4.3) 69.5 (4.0) 72.0 (5.3)

Education3 (years) (SD) 13.3 (0.9) 14.0 (1.5) 13.9 (2.9) 15.0 (2.5)

Mean number disorientation4 (SD) 0.30 (0.95) 2.20 (2.57) 0.57 (1.09) 5.79 (3.22)

Mean accelerometry5 ankle (SD) 1.49 (0.11) 1.37 (0.01) 1.34 (0.10) 1.28 (0.05)

Mean walking speed6 (SD) 1.44 (0.16) 1.23 (0.17) 1.06 (0.21) 0.93 (0.13)

1Bayes factor in favor of no difference between groups, BF10 = 0.157.
2Bayes factor in favor of no difference, BF10 = 0.736, between older experimental and control cases, and in favor of no difference, BF10 = 0.390, between young
experimental and control cases.
3Bayes factor in favor of no difference between groups, BF10 = 0.341.
4Bayes factor in favor of a difference between older controls and older experimentals, older experimentals and both young controls and young experimentals (BF10 > 14.7).
5Bayes factor in favor of a difference between older controls and young experimentals, older experimentals and young controls, and young experimentals and young
controls (BF10 > 9.0).
6Bayes factor in favor of a difference between older controls and young controls, older experimentals and young experimentals and young controls, and young
experimentals and young controls (BF10 > 9.0).

FIGURE 1 | Aggregated disorientation events, accelerometry, and walking speed by age group by condition. Disorientation events (upper row), ankle worn
accelerometric signal (middle row), and walking speed mean (lower row) according to age group and condition [control (C) vs. experimental (E)]. Bars show mean
and 95% credibility intervals.

features and orientation status across all data. We chose a radial
kernel as the plotting of data did not indicate a linear separation
(see Figure 4), with a cost parameter of 10 and a gamma
parameter of 1, based on the initial grid search using the whole
data set. Subsequently, we determined group discrimination
within each patient fold applied to a random selection of 80%
of the data as a training sample and the remaining 20% of
data as a test sample. The mean accuracy of correctly allocated

instances of orientation/disorientation was 72% (SD 11%) across
the cross-validated patient folds.

Using a generative Hidden Markov model implemented in
library “depmixS4” in R reached an average accuracy of correctly
allocated instances of orientation/disorientation of only 64% (SD
14%) when comparing the binary states of oriented/disoriented as
generated from the observed variables ankle-worn accelerometric
signal and walking speed mean and variance as compared with
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TABLE 2 | Number of disorientation events by cognitive, accelerometric, and gait features.

Cognitive scores

Independent variables Main effect cognitive score Condition Age (years) Gender

Visuospatial 0.01 (–0.25 to 0.29) 2.26 (1.56 to 3.05) 0.04 (0 to 0.08) –0.04 (–0.5 to 0.4)

Executive function –0.2 (–0.4 to 0.01) 2.2 (1.49 to 3.01) 0.06 (0.01 to 0.11) –0.09 (–0.53 to 0.34)

Visual memory –0.15 (–1.22 to 1) 2.29 (1.57 to 3.11) 0.04 (0 to 008) –0.03 (–0.47 to 0.37)

PTSOT –0.12 (–0.82 to 0.48) 2.26 (1.52 to 3.07) 0.02 (–0.03 to 0.07) 0.1 (–0.47 to 0.67)

Accelerometric features

Independent variables Main effect accelerometry Condition Age (years) Gender

Ankle mean (g) –4.62 (–7.66 to –1.73) 1.97 (1.34 to 2.63) 0.01 (0.01 to 0.02) 0.01 (–0.37 to 0.38

Wrist mean (g) 3.02 (–1.79 to 7.52) 2.25 (1.68 to 2.93) 0.02 (0.01 to 0.03) –0.22 (–0.64 to 0.2)

Chest mean (g) 1.01 (–11.18 to 13.17) 2.23 (1.63 to 2.92) 0.02 (0.01 to 0.03) –0.08 (–0.47 to 0.31)

Gait features

Independent variables Main effect gait Condition Age (years) Gender

Walking speed (m/s) –2.23 (–3.46 to –0.99) 1.97 (1.38 to 2.63) 0.01 (0 to 0.02) 0.08 (–0.3 to 0.44)

Step length (m) –2.85 (–5.45 to –0.31) 2.04 (1.44 to 2.75) 0.01 (0 to 0.02) 0 (–0.38 to 0.37)

Stride time (s) –0.06 (–1.08 to 0.87) 2.24 (1.61 to 2.96) 0.02 (0.01 to 0.03) –0.09 (–0.48 to 0.31)

Step width (m) 0.93 (–4.56 to 6.32) 2.22 (1.63 to 2.9) 0.02 (0.01 to 0.03) –0.12 (–0.56 to 0.3)

Stance time (s) 0.43 (–0.73 to 1.56) 2.33 (1.71 to 3.12) 0.02 (0.01 to 0.03) –0.04 (–0.43 to 0.33)

Swing time (s) –2.78 (–5.91 to 0.11) 2.11 (1.5 to 2.8) 0.02 (0.01 to 0.03) –0.15 (–0.52 to 0.22)

Gender = factor level effects for male vs. female sex.
Cognitive variables represent domain scores derived as the mean score of specific tests, after transformation to z-scores.
Values in bold indicate effects where the 95% credibility interval excludes 0.
g = acceleration constant g (1 g = 9.81 m/s2).
m = meter.
s = seconds.

the observed disorientation instances. As can be seen from
Figure 5, the Hidden Markov model produced substantially
fewer disorientation states than had been observed (Figure 5A),
and accuracy decreased with a higher number of observed
disorientation states per patient (Figure 5B), with a correlation
coefficient of –0.51.

DISCUSSION

Here, we studied the association of accelerometric and gait
features with episodes of disorientation in cognitively normal
young and older adults in a hybrid experiment. We found that
decreased accelerometric signal from ankle-worn sensors as well
as decrease in walking speed and step length were associated with
a higher number of aggregated disorientation events. Similarly,
decreases in accelerometric signal and changes in a range
of spatiotemporal gait features were associated with a higher
number of episodes of disorientation in real time. At the same
time, the prediction accuracy of single accelerometric and gait
features for episodes of disorientation in real time was below 60%.
However, even when combining the most strongly associated
features in a multivariate non-linear support vector machine,
reached only 72% accuracy for correctly allocated instances of
orientation/disorientation. This level of accuracy would not be
sufficient for individual detection of disorientation episodes and

situation-aware assistance. Thus, we were able to confirm the
expected association of accelerometric and gait characteristics
with disorientation in cognitively unimpaired individuals, but we
did not find sufficient accuracy for individual prediction.

Our study was able to replicate the age-related decline in
spatiotemporal gait features that has been reported in a large
number of studies, systematically reviewed in Herssens et al.
(2018) and Osoba et al. (2019). Spatial orientation requires
visuospatial abilities and higher-order cognitive processes, such
as egocentric and allocentric representations, cognitive mapping,
spatial strategies, encoding, and processing of spatial information
(Lithfous et al., 2013; Meneghetti et al., 2014; Muffato et al.,
2016). In our study, we focused on the domains of visual
memory, visuoconstructional ability, executive function, and
spatial orientation. Our results demonstrated a relationship
between executive function and aggregated orientation in older
adults; the number of disorientation events was lower in
individuals with higher executive function. In this study, we
had used the ratio of Trail Making Test B to A as a measure
of executive function, assessing motor speed and visual speed
(Arbuthnott and Frank, 2000; Sanchez-Cubillo et al., 2009). The
Trail Making Test ratio serves as an index of executive control
function because it can provide an independent measure of
cognitive flexibility (Bezdicek et al., 2017). Moreover, it has also
been associated with frontal executive function (Arbuthnott and
Frank, 2000). An association of executive functions and effective
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FIGURE 2 | Real-time data, ankle worn accelerometry. Bayesian mixed-effect logistic regression of disorientation events on ankle worn accelerometric signal (main
effect, upper left and interaction effect with condition, upper right), condition (experimental or control, middle left), age group (middle right), and gender (lower row).
The graphs feature mean effects and 95% credibility intervals.
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FIGURE 3 | Real-time data, walking speed. Bayesian mixed-effect logistic regression of disorientation events on mean walking speed (main effect, upper left and
interaction effect with condition, upper right), condition (experimental or control, middle left), age group (middle right), and gender (lower row). The graphs feature
mean effects and 95% credibility intervals.

Frontiers in Psychology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 882446122

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-882446 April 18, 2022 Time: 14:4 # 10

Teipel et al. Gait and Accelerometric Predictors of Navigation Performance

TABLE 3 | Incidence of disorientation events and accelerometric and gait features in real time.

Accelerometric features

Independent variables Main effect Accelerometry by Condition Condition Age group Gender

Ankle mean –0.48 (–0.64 to –0.32) 0.2 (0.02 to 0.38) 0.93 (0.44 to 1.39) 0.04 (–0.45 to 0.49) –0.19 (–0.65 to 0.26)

Wrist mean –0.67 (–0.91 to –0.43) 0.27 (0.01 to 0.54) 1.21 (0.78 to 1.65) –0.16 (–0.61 to 0.29) –0.03 (–0.47 to 0.4)

Chest mean –0.45 (–0.68 to –0.24) 0.18 (–0.08 to 0.43) 0.99 (0.53 to 1.46) –0.23 (–0.76 to 0.28) –0.21 (–0.66 to 0.24)

Gait features

Independent variables Main effect Gait by Condition Condition Age group Gender

Walking speed –0.47 (–0.62 to –0.32) 0.27 (0.1 to 0.44) 1 (0.56 to 1.44) 0.04 (–0.44 to 0.5) –0.2 (–0.64 to 0.22)

Step length –2.69 (–3.5 to –1.85) 2.08 (1.13 to 2.99) 1.07 (0.62 to 1.52) 0.07 (–0.35 to 0.52) –0.21 (–0.67 to 0.22)

Stride time 0.19 (0.11 to 0.29) –0.03 (–0.21 to 0.21) 1.17 (0.72 to 1.61) 0.27 (–0.16 to 0.7) –0.29 (–0.7 to 0.12)

Step width –0.71 (–0.95 to –0.5) 0.79 (0.55 to 1.04) 1.36 (0.92 to 1.84) 0.21 (–0.24 to 0.67) –0.32 (–0.78 to 0.14)

Stance time 0.14 (0.06 to 0.22) 0.05 (–0.14 to 0.28) 1.18 (0.73 to 1.61) 0.25 (–0.16 to 0.67) –0.32 (–0.73 to 0.12)

Swing time 0.34 (0.19 to 0.52) –0.27 (–0.5 to –0.04) 1.17 (0.74 to 1.61) 0.27 (–0.17 to 0.7) –0.3 (–0.74 to 0.14)

Age group = old vs. young.
Gender = factor level effects for male vs. female sex.
The accelerometric and gait variables were z-score transformed before being entered into the models.
Values in bold indicate effects where the 95% credibility interval excludes 0.

spatial navigation has been previously reported (Wei et al., 2020;
Laczo et al., 2021). Based on our results, we assume that higher
executive functions play an important role in tasks requiring
the use of effective wayfinding strategies. Effects on visuospatial
abilities were absent, whereas effects on visual memory were
not conclusive. We had expected an association between these
domains, since they have been implicated in navigation efficiency
and environment learning (Meneghetti et al., 2014; Wei et al.,
2020). Previous studies have demonstrated an age-related decline
in navigation skills, due to difficulties in environment route
learning and spatial recall of relationships between landmarks
and directions at decisions points (Zhong and Moffat, 2016;
Ramanoel et al., 2020). The absence of an effect, therefore, was
unexpected. A post hoc explanation would relate to previous
observations that paper–pencil testing of spatial abilities found
a poor correlation with real-world navigation performance
(Nadolne and Stringer, 2001; Taillade et al., 2015), which has been
used as an argument for the creation of novel ecologically valid
test instruments (Nadolne and Stringer, 2001).

Furthermore, we had expected an association of orientation
with the Perspective Taking/Spatial Orientation Test, since
previous work suggested alterations of egocentric topographic
orientation in older adults (Caffo et al., 2020). Two of
the 28 participants, however, were not able to perform the
task at all and several participants had difficulties when
performing the Perspective Taking/Spatial Orientation Test. As
we saw in practice, it was challenging for our participants
to understand the task instructions and they might have
felt overstrained. Difficulties regarding the understanding of
instructions on similar tasks have been previously reported
in young adults (Hegarty and Waller, 2004). Although the
Perspective Taking/Spatial Orientation Test by design seemed
well suited to test a trait of orientation ability and it has been
widely used in spatial cognition literature (Friedman et al., 2020),
it was not easy to use, at least in our hands, even for cognitively

normal older people. The test has only been used in a few
previous studies with older people (Zancada-Menendez et al.,
2016) who on average were 8–10 years younger than our older
group of participants.

A relationship between gait characteristics and disorientation
has already been demonstrated in conditions such as delirium
and dementia (Arjunan et al., 2019; Evensen et al., 2019; Oh,
2021; Weizman et al., 2021). In contrast, the detection of
disorientation events using gait and accelerometry features has

FIGURE 4 | Distribution of orientation status across features.
Three-dimensional representation of the distribution of orientation status
(oriented – black beads, disoriented – red beads) across ankle and
chest-worn accelerometric signal and walking speed mean.
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FIGURE 5 | Hidden Markov model generated states and observed orientation states. (A) Time series of states within 5,000 s. The upper row plots the orientation
states generated from the Hidden Markov model during the first 500 time segments (= 5,000 s, pooled across participants) with 1 = oriented, 2 = disoriented; the
lower row plots the observed orientation states from the same time segments. (B) Association between number of disorientation events and accuracy of HMM
generated states. This graph plots the accuracy of the HMM generated states relative to the observed states per participant (y-axis) vs. the number of disorientation
events per participant (x-axis).

been little explored. In a similar set-up to our study, one
previous study reported gait features for a group of 17 young
and 17 older participants navigating on a treadmill through a
virtual shopping mall (Kafri et al., 2021). However, detection
of disorientation was not an outcome parameter in this earlier
study. In the current study, we found that reduced ankle-worn

accelerometry signal was associated with more disorientation
events in both aggregated and real-time data. The reduction
of walking speed and step length and the increase in stance,
swing, and stride time was associated with more disorientation
events. This is consistent with the reduction in overall signal from
the ankle-worn sensors and suggests that the acceleration signal
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may be useful as a surrogate measure for less easily measured
gait characteristics, but with the caveat that none of the gait
characteristics examined achieved a useful level of predictive
accuracy for disorientation events.

Even when combining features in a non-linear support vector
machine, the accuracy level in our hybrid set-up was below
the accuracy level which we had achieved in a real-world
experiment with people with MCI or dementia. In this study, the
accelerometric features had achieved an AUC of 75% and 79% of
correctly allocated instances of orientation/disorientation (Schaat
et al., 2019). In the previous experiment, we struggled with the
low occurrence of disorientation episodes relative to the total
time of the experiment, which made training the models difficult
and led to unbalanced sensitivity and specificity estimates. In
this study, we wanted to improve this situation in a much more
controlled environment. Based on this setting, we were able to
focus on the time series at the decision points only and induce
disorientation even in young individuals. Indeed, this approach
was successful with a proportion of 41% of intervals being
annotated as disorientated in the total time series, and 49% at
the decision points compared with less than 10% in the previous
real-world setting (Schaat et al., 2019). Although we achieved a
higher proportion of disorientation events our models performed
less accurately. There are several post hoc explanations for this
unexpected result which also relate to the limitations of our study.

The limitations of our study include the following points: First,
the measurement of orientation states was based on offline video
annotation which carries some imprecision. However, inter-rater
reliability was very good (Cohen’s kappa > 0.8), and even using
lagged features, allowing sensor values of a time frame of 30 s
before the actual rating of disorientation to be included in the
prediction models, did not alter the results. Second, the difference
in set-up where walking on a treadmill and walking on a street
pose different requirements on cognitive and motion abilities so
that the resulting gait and movement features may not directly
be comparable. A previous study reported a slower gait with
shorter, less variable strides during treadmill walking compared
with walking outdoors on the sideway in young and older adults
(Schmitt et al., 2021). Thus, walking on a motorized treadmill
may reduce the variability of gait characteristics compared with
walking outdoors, thereby also reducing disorientation-induced
changes in gait characteristics. Third, in this study, we had
studied cognitively unimpaired individuals who may show less
pronounced changes in walking behavior during episodes of
disorientation than individuals with MCI or dementia who were
lost in a real-world setting (Schaat et al., 2019). Fourth, from
the Hidden Markov model, it became obvious that the model
produced less instances of disorientation than were observed,
that is, only approximately 64%. In comparison, the previous
model for the real-world data had produced a high number
of false alarms, that is, more instances of disorientation than
had been observed (Schaat et al., 2019). This may suggest that
grouping disorientation events into only two states (oriented
vs. not oriented) was too simplistic for the present data.
There may be different subtypes of disorientation states, each
associated with different behavioral characteristics. For example,
externally triggered disorientation events might represent a
different category of disorientation states than spontaneously

occurring disorientation events; however, the two states were
not distinguished in our models. Finally, the sample size was
relatively small in our study. Consequently, our study was only
powered to detect moderate-to-large effects. The effort required
to complete the experiment was high for each participant.
So we had even considered to use a cross-over design where
each participant would undergo both conditions, experimental
and control, in a randomized, balanced design. We decided
against this option because already the experiment with only one
condition was exhausting for some of the older participants.

In summary, in a prospective analysis of young and older
cognitively healthy adults in a hybrid environment featuring
a treadmill-based navigation through a virtual environment,
we found an association between executive function, ankle-
worn accelerometric signal, and spatiotemporal gait features
with an aggregated number of disorientation events across age
groups and experimental conditions. This was replicated by
an association of accelerometric signal and spatiotemporal gait
features with disorientation events in the real-time data analysis.
Despite these consistent associations, the predictive accuracy of
single or combined acceleration and gait features was insufficient
for individual detection of disorientation events in real time. The
lessons from this analysis are that age-related and experimentally
induced disorientation is reflected in spatiotemporal gait features
and also in the accelerometric signal as a potentially more
easily accessible surrogate for gait features. At the same time,
such measurements probably need to be enriched with other
parameters to be sufficiently accurate for individual prediction of
disorientation events. In future directions, further experiments
may test whether such predictions can be more accurate for
people with dementia. For this group of individuals, based on our
preliminary experience with a small number of patients, external
induction of disorientation events is not necessary, as they
already showed pronounced disorientation under undisturbed
control conditions. Finally, the set-up of our experiment may be
useful not only to monitor but even to train navigation abilities
under dual-task conditions with high transfer potential to real-
world environment.
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Frontal alpha asymmetry refers to the difference between the right and left alpha activity

over the frontal brain region. Increased activity in the left hemisphere has been linked

to approach motivation and increased activity in the right hemisphere has been linked

to avoidance or withdrawal. However, research on alpha asymmetry is diverse and has

shown mixed results, which may partly be explained by the potency of the used stimuli

to emotionally and motivationally engage participants. This review gives an overview of

the types of affective stimuli utilized with the aim to identify which stimuli elicit a strong

approach-avoidance effect in an affective context. We hope this contributes to better

understanding of what is reflected by alpha asymmetry, and in what circumstances it may

be an informative marker of emotional state. We systematically searched the literature

for studies exploring event-related frontal alpha asymmetry in affective contexts. The

search resulted in 61 papers, which were categorized in five stimulus categories that were

expected to differ in their potency to engage participants: images & sounds, videos, real

cues, games and other tasks. Studies were viewed with respect to the potency of the

stimuli to evoke significant approach-avoidance effects on their own and in interaction

with participant characteristics or condition. As expected, passively perceived stimuli that

are multimodal or realistic, seem more potent to elicit alpha asymmetry than unimodal

stimuli. Games, and other stimuli with a strong task-based component were expected to

be relatively engaging but approach-avoidance effects did not seem to be much clearer

than the studies using perception of videos and real cues. While multiple factors besides

stimulus characteristics determine alpha asymmetry, and we did not identify a type of

affective stimulus that induces alpha asymmetry highly consistently, our results indicate

that strongly engaging, salient and/or personally relevant stimuli are important to induce

an approach-avoidance effect.

Keywords: alpha asymmetry, EEG, approach-avoidance, emotion, motivation, computational psychophysiology,

affective computing, mental state monitoring

INTRODUCTION

When examining the emotional experience of individuals with a certain product, task or situation,
they are commonly asked about it. For instance, in food research, usage of explicit, verbal
questionnaires is by far the most common way to assess consumers’ emotional experience (Lagast
et al., 2017; Kaneko et al., 2018). However, explicit, verbal measures have their shortcomings.

128

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.869123
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.869123&domain=pdf&date_stamp=2022-07-01
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anne-marie.brouwer@tno.nl
https://doi.org/10.3389/fcomp.2022.869123
https://www.frontiersin.org/articles/10.3389/fcomp.2022.869123/full


Sabu et al. Review Event-Related Frontal Alpha Asymmetry

Firstly, social desirability and self-presentational concerns can
influence self-reported measures (Gawronski and de Houwer,
2014). Dell et al. (2012) found that respondents were about
2.5 times more likely to favor a technology believed to be
developed by the interviewer than an exactly identical alternative.
Furthermore, questionnaires usually reflect summative emotions
post-interaction (Lottridge et al., 2012). Explicit measures
are not well-suited for continuous monitoring to understand
how emotional experience changes over time, such as during
the interaction with a product. Continuous self-reporting is
demanding and adds another task, and affects the emotional
experience itself. To overcome such limitations, researchers have
been arguing for the use of implicit measures (Gawronski and
de Houwer, 2014), such as those inferred from spontaneous
behavior or physiological signals. These allow for more objective
measures that are not affected by response biases and continuous
observation of the individual’s emotional or affective state
(Reuderink et al., 2013).

The circumplex model of affect characterizes emotions
by valence and arousal (Russell, 1980). Valence refers to
pleasantness, i.e., the degree of positive or negative affect,
whereas arousal refers to the energetic component of the emotion
(alertness). Research has consistently linked skin conductance
to arousal (Christopoulos et al., 2019; Bartolomé-Tomás et al.,
2020). Also, other types of physiological responses have been
found to generally map better on arousal rather than valence
(Mauss and Robinson, 2009). Valence has been found to be
more difficult to assess using physiological measures. In this
regard, asymmetric frontal cortical activation is of particular
interest for implicitly measuring emotional processes (Coan and
Allen, 2004; Harmon-Jones et al., 2010; Diaz and Bell, 2012).
Early research has reported high incidence of negative affect
in individuals with unilateral left hemispheric brain damage
(Alford, 1933; Goldstein, 2004). These patients showed increased
negative responses, fear and pessimism about the future. On the
other hand, patients with unilateral right hemisphere damage
displayed euphoric reactions (Denny-brown et al., 1952), such
as inappropriate presentation of positive affect and laughing
(Scherer and Ekman, 1984). In the late 70s, patterns of emotion
processing have been associated with differences in the EEG alpha
band (8–12Hz) between the left and right frontal cortex, and was
termed frontal alpha asymmetry (Tucker et al., 1981; Ahern and
Schwartz, 1985; Davidson et al., 1985). Note that alpha power is
inversely related to brain activity, such that low alpha activity is
taken as an indication of high regional brain activation (Cook
et al., 1998; Allen et al., 2004a).

Initial research focused on an affective explanation of
frontal alpha asymmetry responses to stimuli. Larger relative
left hemispheric activation was argued to be associated with
positively valenced stimuli and increased right hemispheric
activation with negatively valenced stimuli (Briesemeister et al.,
2013). Next to this valence model, the approach-avoidance,
or approach-withdrawal, model was explored. In this model,
activity in the right frontal cortex has been related to avoidance
motivation, a tendency to withdraw from a certain stimulus,
and activity in the left frontal cortex with approach motivation
toward a stimulus (Davidson et al., 1990; Davidson and Irwin,

1999; Coan and Allen, 2003; Davidson, 2004; Alves et al.,
2008; Harmon-Jones et al., 2010; Diaz and Bell, 2012). Since
approachmotivation is often associated with positive valence and
avoidance with negative valence, the expected cortical activity
patterns of these two theories overlap in many cases (Reuderink
et al., 2013). Studies that specifically disentangled valence and
approach-avoidance motivation were in line with the approach-
avoidance model (Carver and Harmon-Jones, 2009; Berkman
and Lieberman, 2010). The defining difference was found in the
hemispheric activation pattern in response to anger (Reuderink
et al., 2013). Anger as a negatively valenced emotion was found
to be lateralized in the left hemisphere just like happiness instead
of the right hemisphere as would be expected based on valence
motivation (Davidson, 1984). Further support for the approach-
avoidance model was found in transcranial magnetic stimulation
experiments (Rutherford and Lindell, 2011).

Frontal alpha asymmetry as a tool to monitor motivational
processes related to emotion would be desirable in a variety of
application fields, such as marketing (including evaluating public
service announcements, e.g., Inguscio et al., 2021), product
design (e.g., cosmetics—Gabriel et al., 2021), human-computer
interfaces, gaming and the diagnosis of affective disorders
(Briesemeister et al., 2013). Another upcoming application and
research area where frontal alpha asymmetry is highly relevant,
is neuroesthetics (Babiloni et al., 2015; Cartocci et al., 2018, 2021;
Daly et al., 2019). However, it is important to realize that frontal
alpha asymmetry is not specific for motivational processes, but
is also moderated by e.g., unilateral hand contractions (Harmon-
Jones et al., 2010) and seating position (Baldwin and Penaranda,
2012). Variations in such factors between studies may underlie
diverse results in recent literature, together with differences in
data recording (e.g., noise, number of participants, recording
length), processing and analysis methods (Smith et al., 2017).
Additionally, researchers have used a wide variety of stimuli
that were hypothesized to induce frontal alpha asymmetry and
found mixed results. This review focuses on the factor of affective
stimuli potentially affecting the approach-avoidance effect as
measured by alpha asymmetry in the context of emotion. We
expect that stimuli may crucially affect frontal alpha asymmetry
through their potential to emotionally and motivationally
engage the recorded individuals. Since frontal alpha asymmetry
describes an approach- avoidance effect, affective stimuli that are
strongly motivating in either of the directions are expected to
produce clear results. Although it is extremely difficult to quantify
this a priori (Brouwer et al., 2015b), we think some general
expectations can be formulated for stimulus categories that are
prevalent in alpha asymmetry emotional research.

We expect affective stimuli to induce strong approach-
avoidance effects when they are engaging and realistic. In that
sense, real stimuli that are part of an engaging task would be
most effective. We expect that stimuli that are only perceived are
less potent than active tasks. Within the “perception” category,
we expect images and sounds (i.e., sensory unimodal stimuli
that represent a certain object or situation) to be less potent
than videos (bi-modal), followed by real cues (multimodal and
realistic; the actual object or situation itself). Within the “action”
category, we expect that games may be particularly engaging
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FIGURE 1 | Flow chart of inclusion process for the review.

tasks and therefore elicit strong approach-avoidance effects.
Finally, clearer effects of affective stimuli on alpha asymmetry
are expected if the stimuli are particularly relevant for the
participants under study (e.g., food is likely to produce stronger
approach motivation for individuals who have not eaten for a
long time compared to individuals who have).

To date there is no review focused on the stimuli that
can evoke an approach-avoidance effect measured by frontal
alpha asymmetry. Hence, as of yet it is unclear which types
of affective stimuli elicit a strong approach or avoidance effect.
Exploring this will help to understand better what is reflected
by frontal alpha asymmetry, under which circumstances frontal
alpha asymmetry can be expected to be an informative marker
of emotion and what causes the diversity in literature in order to
unify conflicting results.

METHODS

Literature was searched on Scopus using the keywords “alpha
AND asymmetry” AND (“approach” OR “avoidance” OR
“withdrawal”) AND (“affect” OR “emotion”) and yielded 144
documents. Additionally, given our special interest in this
measure from the perspective of studying food related emotion
(Kaneko et al., 2018; Modica et al., 2018; Songsamoe et al., 2019),
a search on Scopus using the terms (“alpha” AND “asymmetry”)
AND “food” was conducted as well, resulting in 28 more papers.
Out of the resulting 172 documents only those that hadmeasured
frontal alpha asymmetry related to an event or a stimulus (i.e.,
not resting alpha asymmetry only) were included. Furthermore,

studies using a machine learning approach without separately
reporting on the exact alpha asymmetry results were excluded.
This resulted in the inclusion of 61 papers. Figure 1 visualizes the
search and selection procedure.

The 61 selected studies were divided into five stimulus
categories that were expected to systematically differ in their
effectiveness to engage the subjects: 1. Images & sounds, 2.
Videos, 3. Real cues, 4. Games, 5. Other tasks (Imagery;
Modifying facial expression; Speech, reading and writing). While
most studies involve some task, studies in the category “Games”
and “Other tasks” specifically designed tasks to elicit a certain
emotional state: performing the task serves as the main stimulus,
and in case of games, the resulting or expected outcome in
addition to performing the task.

Papers are summarized and evaluated per stimulus type.
A summarized description of all 61 studies can be found in
Table 1. Studies were rated based on whether the stimulus alone
induced an alpha asymmetry approach-avoidance effect (one
before last column in Table 1) and if applicable, whether alpha
asymmetry approach-avoidance effects were found for, or in
interaction with certain conditions or participant subgroups
(last column in Table 1). Effects are indicated by “++” for a
significant effect, “+” in case of a trend and “0” for no effect.
Supplementary Table 1 contains information on the context or
goal of the 61 studies and more details about the stimuli and
results. Furthermore, since cortical hemispheric specialization of
emotion may differ between left- and right-handed individuals
(Harmon-Jones et al., 2008; Walsh et al., 2017), handedness is
indicated in the “Participants” column of Supplementary Table 1
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TABLE 1 | Overview of studies arranged by stimulus types with (the hypothesized) approach-avoidance effect indicated by ++ (significant), + (trend) and 0 (none) of the

stimulus alone, and/or other effects involving the stimulus. Note that many studies were set up for studying the ‘other’ effect (e.g. interaction with person characteristics or

interaction between stimuli and other condition).

Study Stimuli Participants Stimulus

effect

Other

effect

Images & sounds (n = 18): images (n = 16), sounds (n = 2)

Deng et al. (2021) Viewing pictures (neutral, positive, negative and

drug-related contents) before and after drug abstaining

training.

40 male drug abstainers: training group

(n=20) and control group (n = 20)

0 ++

Grassini et al. (2020) Images depicting snakes, spiders, butterflies, and birds. 34 students (28 female) 0

Gayathiri et al. (2020) Neutral and high valence - high arousal pictures from the

International Affective Picture System (IAPS).

15 adults suffering from major depressive

disorder (7 male)

0 +

Adolph et al. (2017) Negative, neutral, and positive emotional pictures. 43 students (28 female) 0 +

Schöne et al. (2016) Erotic pictures, pictures of dressed attractive women and

control pictures (and pictures of extreme sport and daily

activities).

17 male students ++

Gable and Poole (2014) Anger pictures and neutral pictures. 32 students (15 female) 0 +

Uusberg et al. (2014) Affective pictures ranging from very pleasant to

unpleasant.

70 students (28 male) 0

Ischebeck et al. (2014) Neutral, aversive, and pictures related to OCD

(obsessive-compulsive disorder).

20 patients (9 male) with (OCD) and 20

matched healthy controls (8 male)

0 +

Poole and Gable (2014) Approach-positive, approach-negative, and withdrawal-

negative pictures from the internet and IAPS.

48 students (36 female) 0

Huster et al. (2009) 36 pictures from the IAPS in restricted randomized

order- three pictures of the same affective category

presented successively.

28 students (13 female) ++

Rabe et al. (2008) Four pictures (from IAPS) for 1min each of category

neutral, positive, negative, and trauma-related.

Participants with (subsyndromal)

posttraumatic stress disorder receiving

cognitive behavioral therapy (n = 17, 15

females) before and after therapy, wait-list

controls (n = 18, 10 females)

0 ++

Wiedemann et al. (1999) Neutral, panic-relevant, anxiety-relevant but

panic-irrelevant, or anxiety-irrelevant but emotionally

relevant pictures, and performance of a motor task.

Patients with panic disorder (n = 23, 3

male) and controls (n = 25, 6 male)

0 ++

Gable and Harmon-Jones

(2008)

Pictures of dessert or neutral pictures of objects. 26 female students 0 ++

Winter et al. (2016) Food images. 58 female participants recorded twice:

once fed, once fasted

0 +

Crabbe et al. (2007) Unpleasant, neutral and pleasant IAPS pictures, before

and after rest and exercise conditions.

34 young, fit and active volunteers (13

female)

0 0

Cartocci et al. (2018) Six neutral images from IAPS, followed by ten ineffective,

effective, and awarded anti-smoking Public Service

Announcements.

3 heavy smokers, 11 light smokers, 15

non-smokers

0 ++

Chen et al. (2015) Scary and soothing sound stimuli. 18 students (16 male) 0 ++

Papousek et al. (2018) Three sound recordings: anger/aggression,

sadness/desperation, neutral.

62 students (30 male) 0 ++

Videos (n = 15)

Olszewska-Guizzo et al.

(2021)

Nine fixed-frame videos, filmed before the pandemic:

busy downtown and residential green.

25 adult Singaporeans (14 female) 0 +

Joaquim et al. (2020) Emotion-eliciting commercials: neutral, tenderness,

amusement, sadness, disgust, anger and fear.

25 male and female subjects +

Zhao et al. (2018) Emotion-eliciting film excerpts: tenderness, anger, and

neutral.

37 students (17 males) ++

Cartocci et al. (2017) Spots and images of awarded, effective and ineffective

antismoking public service announcements.

7 non-smokers, 9 light-smokers, 6 heavy-

smokers

++

Papousek et al. (2014) Film comprising scenes of real injury and death. 148 female university students ++

Prause et al. (2014) Neutral and a sexually motivating film. 65 participants (22 females) ++

Vecchiato et al. (2014) TV commercials. 24 subjects (12 female) who liked or

disliked the commercials

0 ++

(Continued)
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TABLE 1 | Continued

Study Stimuli Participants Stimulus

effect

Other

effect

Hosseini et al. (2007) Movie clips to induce relaxation, happiness, anxiety and

sadness.

40 female students (extroverts, introverts,

neurotics and emotionally stables)

0 ++

Aftanas and Varlamov

(2004)

Emotional film clips (neutral, relaxation, joy, anger, sexual

arousal, disgust, fear, sadness, stress stimulation).

Non-alexithymic (n =27, 7 male) and

alexithymic (n = 17, 14 male) participants

0 ++

Hakim et al. (2021) Video commercials of six food products. 33 (13 male) subjects 0

Walsh et al. (2017) Videos of food concerns (safety, hygiene and spoilage)

and matched control videos.

40 students (31 female) ++

Hajal et al. (2017) Videos of own infants expressing distress. 26 mothers of 5- to 8-month-olds ++ +

McGeown and Davis (2018) Chips to eat and video of confederate eating. 93 female students ++

Missana and Grossmann

(2015)

Dynamic happy and fearful body expressions in two

second clips.

20 4-month-old (10 female) and 20

8-month-old (10 female) infants

0 ++

Lee et al. (2017) Visual music as an emotional stimulus. 16 participants ++

Real cues (n = 11)

Kline et al. (2000) Pleasant (vanilla), unpleasant (valerian), and neutral

(water) odors.

58 women, aged between 58 and 70 ++

Kaneko et al. (2019) Tasting different types of normal drinks, and diluted

vinegar.

70 healthy participants (19 men) 0

Lagast et al. (2020) Tasting universally accepted (sucrose) and non-accepted

(caffeine) solution, a personally selected accepted and

non- accepted drink, and water.

32 participants 0

Sargent et al. (2020) Two machines to prepare hot beverage. 26 participants (14 females) ++

Brouwer et al. (2017) Cooking and tasting chicken or mealworms stir-fry

dishes.

41 participants (19 female) ++ +

Olszewska-Guizzo et al.

(2020)

Six landscape scenes (urban green and urban

downtown).

22 adults (13 female) +

Knott et al. (2008) Induction of neutral mood (holding a pen) or depressive

mood (holding lighted cigarette over an ashtray without

bringing to mouth).

11 (5 male) regular and 11 (6 male) light

smokers

++ +

Modica et al. (2018) Visual, visuo-tactile and exploration of food (daily food

and comfort food; major and private label; foreign and

local product).

Experiment 1: n = 19; experiment 2: n =

13 (5 males)

++

Bolinger et al. (2020) Positive prompts: express love, play peek-a-boo, sing;

negative prompts: pretend infant has a rash, crawled to

an electrical outlet.

25 infant (-parent dyads), 12 females +

Uusberg et al. (2015) Degrees of social contact, varied by different gaze

directions of a “live” model.

40 students (13 male) 0 ++

Pönkänen and Hietanen

(2012)

Neutral and smiling young females with a direct and an

averted gaze, presented “live” through a liquid crystal

shutter.

22 female undergraduates 0 0

Games (n = 5)

Rodrigues et al. (2018) Move around in a virtual T maze via joystick, with

monster trial (negative event) and sheep trial (positive

event).

30 participants (12 male) ++ ++

Shankman et al. (2007) Bogus computerized slot machine paradigm with three

reels of numbers and fruit and two different payoff

situations: reward and no incentive.

70 individuals with current MDD (29%

male), 37 control participants (34% male)

0 +

Harmon-Jones et al. (2008) Cues indicating that an easy, medium, or hard anagram

would be presented and whether correct solution would

result in receiving money or avoiding losing money.

Individuals with bipolar spectrum

diagnosis (n = 41, 61% female) and

individuals with no major affective

psychopathology (n = 53, 49% female)

0 ++

Miller and Tomarken (2001) Delayed reaction time task including manipulations of

incentive, expectancy, and response.

60 students (30 male) ++

Sobotka et al. (1992) Reward and punishment to responses to up or

downward pointing arrows using finger press or finger lift

response.

15 students (7 male) ++

(Continued)
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TABLE 1 | Continued

Study Stimuli Participants Stimulus

effect

Other

effect

Other tasks (n = 12): Imagery (n = 4), modifying facial expression (n = 2), speech, reading and writing (n = 6)

Mennella et al. (2015) Imagery task including pleasant, neutral, and unpleasant

narratives.

Dysphoric (n = 23) and non-dysphoric (n

= 24) individuals

0 ++

Wacker et al. (2008) Emotional imagery of three scenarios of

approach-avoidance conflict.

93 young men either high or low in trait

behavioral inhibition system (BIS)

0 ++

Wacker et al. (2003) Emotional imagery. 109 male soccer players ++

Papousek et al. (2017) Reappraisal Inventiveness Test with anger-eliciting

vignettes.

78 female university students 0 ++

Stewart et al. (2014) Producing approach (angry and happy) and withdrawal

(afraid and sad) facial expressions.

Individuals with (n = 143) and without (n =

163) lifetime major depressive disorder

0 ++

Coan et al. (2001) Producing facial configurations denoting anger, disgust,

fear, joy, and sadness.

36 students (10 male) 0 ++

Pérez-Edgar et al. (2013) Dot-probe paradigm with face pairs depicting angry,

happy and neutral expressions, and stressful speech

condition.

45 students (23 male) 0 ++

Wang et al. (2015) Public speech combined with reappraisal writing,

irrelevant writing, or non-writing.

92 students 0 ++

Li et al. (2016) Writing task describing an anger-eliciting event, where

participants were irritated by people with higher or lower

social power.

29 students (13 male) ++

Rejer and Jankowski (2017) Internet advertisements during a text-reading task. 6 subjects (5 male) +

Brouwer et al. (2015a) Reading a novel with emotional and non- emotional

sections.

71 participants (35 female) ++

Brooker et al. (2016) Three emotion-eliciting episodes (conversation with

experimenter, with stranger, stranger reading a script).

89 longitudinal twin sample (54% male) ++

for all studies that report it. Most studies use right-handed
participants and those that reported to have included left-handed
persons stated that the results did not change by doing so.

RESULTS

Figure 2 presents the percentage of studies showing a significant
effect of stimuli alone and in interaction with other conditions
or participant subgroups, separately for each of the five stimulus
categories. In the next sections, studies are discussed per stimulus
category.

Images and Sounds (n = 18)
Most studies using sensory unimodal stimuli used visual (n
= 16) rather than auditory (n = 2) stimuli. Studies utilizing
unimodal stimuli appeared to show a significant effect only
when the stimulus was particularly relevant for the participant
group. This pattern can be seen in several clinical and substance-
related studies.

Rabe et al. (2008) described that patients with posttraumatic
stress disorder from motor vehicle accidents had increased
right-sided activation during exposure to trauma-related pictures
compared to neutral pictures. Cognitive behavioral therapy
led to a significant reduction of right anterior activation for
the group receiving therapy (n = 17) compared to wait-
list controls (n = 18) in response to the trauma stimulus.

Likewise, Wiedemann et al. (1999) conducted a study where
patients with panic disorder (n = 23) compared to healthy
controls (n = 25) were confronted with neutral (mushroom),
panic-relevant (emergency situation), anxiety-relevant but panic-

irrelevant (spider), or anxiety-irrelevant but emotionally relevant
pictures (erotic image). They found a significant decrease of

right compared to left frontal alpha power in response to the
emergency picture category for the group with panic disorder but

not for the healthy control group. Gayathiri et al. (2020) reported

elevated right hemispheric activity, indicating avoidance, when
individuals with major depressive disorder (n = 15) viewed

images of high valence and arousal relative to neutral ones.
Contrary to these studies, Ischebeck et al. (2014) did not find

differences between twenty patients with obsessive compulsive

disorder and twenty matched controls during viewing neutral,
aversive and OCD-related images.

In Deng et al. (2021), drug abstainers’ (n = 40) responses

to drug-related images were compared to positive, negative,
and neutral pictures in the context of evaluating the effect of
a training on emotion regulation. While there was no main
effect of picture type, improved alpha asymmetry scores for
negative and drug-related pictures were found for the training
group pre-and post-training. Cartocci et al. (2018) found higher
frontal alpha asymmetry for heavy smokers compared to light
smokers and non-smokers when viewing effective public service
announcement (PSA) pictures. In their earlier study frontal alpha
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FIGURE 2 | Percentage of studies showing a significant effect of stimuli alone

and in interaction with other conditions or participant subgroups, separately

for each stimulus category.

asymmetry for different PSA images did not differ (Cartocci et al.,
2017), which might be attributed to several differences between
the studies, such as a lower number of participants in the earlier
study (n= 22 vs. n= 39).

The previously described pattern of responses only in groups
for whom the stimuli are relevant is likely also important
for non-clinical samples. Schöne et al. (2016) asked seventeen
male students to view erotic pictures of high salience as
well as depictions of dressed attractive women and found
significant results of picture category. Winter et al. (2016)
used food images to assess the effect of hedonic hunger
and restrained eating on frontal alpha asymmetry with 58
female participants. They found that higher restraint scores
were associated with increased right frontal asymmetry and
higher hedonic hunger was associated with increased left frontal
asymmetry. Additionally, they found that overweight compared
to normal weight individuals displayed greater left asymmetry.
However, for the condition of fasted and fed state no differences
emerged. Gable and Harmon-Jones (2008) did report for 26
female students that while dessert pictures alone did not evoke
significant asymmetric activation, more time since eaten and
dessert liking related to increased left frontal asymmetry for
dessert pictures.

Our search resulted in two studies using auditory stimuli only.
Papousek et al. (2018) (n= 62 students) explored inter-individual
differences in frontal alpha asymmetry to other people’s affect
using sound recordings of three categories: anger (shouting),

sadness (crying) and neutral (trivial everyday sounds) as a
reference condition. Results show that individuals with higher
compared to lower level of antagonism (assessed by a Personality
Inventory) had less relative right frontal activation (approach)
in response to the anger stimulus, whereas subjects with higher
levels of detachment displayed greater relative right hemisphere
activation (withdrawal) to the crying stimulus. Similarly, in Chen
et al. (2015) a sample of 18 students listened to scary and
soothing sounds. Subjects who showed a greater withdrawal
response to scary sounds displayed a decreased pleasant state,
and participants with higher approach motivation showed an
increased pleasant state.

Videos (n = 14)
As expected, studies using video stimuli showed more often
strong approach-avoidance effects than studies using unimodal
stimuli (images & sounds), both as effect of the stimuli alone and
in interaction with participant characteristics and conditions.

Unlike the anti-smoking image stimuli as described above in
section Images and Sounds (Cartocci et al., 2017), anti-smoking
video announcements induced effects in alpha asymmetry.
Video announcements that had independently been classified
as “awarded” induced an increased approach-avoidance effect
compared to independently classified “ineffective” and “effective”
ones. Another study on this topic (Cartocci et al., 2019) found
that smokers showed stronger alpha-asymmetry avoidance than
non-smokers in response to anti-smoking videos, highlighting
again the importance of the interaction between stimuli and
participant characteristics in approach-avoidance effects.

Not all studies using advertising videos have shown positive
results. Joaquim et al. (2020) have reported only a trend in
correlation between the asymmetry index for low alpha frequency
band and negative emotions elicited by commercials viewed by 25
subjects. In a study by Hakim et al. (2021) 33 subjects watched
skits from a comedy series followed by commercials of food
products and later completed a choice task consisting of six
products altogether. Results show that frontal alpha asymmetry
as recorded during commercial viewing did not significantly
differ for neither closely nor distantly ranked products. Vecchiato
et al. (2014) showed six TV commercials (duration around
30 s) to 15 volunteers. Participants were divided into “LIKE”
and “DISLIKE” group according to their pleasantness response
rating. As expected, the “LIKE” group displayed increased left
hemisphere activity compared to the “DISLIKE” group.

Walsh et al. (2017) recruited 40 students and showed them
breakfast meal videos of 40 s in duration. The clips contained
emotion-eliciting events with hygiene, safety, and spoilage
concerns and almost identical controls without such concerns.
For the spoilage videos they found greater right hemisphere
activation indicating avoidance response when compared to its
matched control. For the hygiene and safety videos they did
not find significant differences. In another food related study,
McGeown and Davis (2018) recorded the brain activity of 93
female students while watching a confederate consuming potato
chips, followed by conducting a visual-probe task with non-food
and food items of high craving ratings. Overweight participants
(based on BMI) compared to leaner counterparts showed
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increased left frontal alpha asymmetry during the confederate
video and greater attentional bias toward food pictures.

Most video studies used videos to induce basic types of
emotion. Zhao et al. (2018) presented three film clips (duration
of around 80 s each) to 37 students to elicit tenderness, anger
and neutrality. They found greater left frontal activation during
the tenderness film clip. The anger eliciting film clip led to
expected greater right frontal activation. Papousek et al. (2014)
displayed a film with a duration of ∼10min consisting of scenes
of severely injured, mourning and dying people, to 148 female
students. The expected effect of a right-sided shift of dorsolateral
prefrontal asymmetry was found. In Prause et al. (2014) 65
students viewed a neutral film (10min duration) followed by a
sexual film (3min duration). Increased alpha power was found
in the left hemisphere (i.e., approach) during sexual compared to
neutral films. Furthermore, self-reported mental sexual arousal
and alpha asymmetry were positively correlated. In a study by
Hajal et al. (2017) 26mothers of 5- to 8-month-olds watched a 15-
min video composed of 10 s clips of their own infants expressing
distress. They found an association between greater right frontal
asymmetry shift (from baseline to infant distress video) and
higher self-reported sadness.

A large proportion of studies specifically examined the
interaction between stimulus and groups of participants with
certain characteristics. Hosseini et al. (2007) showed four video
clips (duration of 3min each) to induce relaxation, happiness,
anxiety and sadness. Their sample consisted of 40 female students
equally divided into four groups: extroverted, introverted,
neurotic and emotionally stable. They found that right frontal
asymmetry was associated with negative affect for the introvert
and emotionally stable groups. Aftanas and Varlamov (2004)
showed 10 film neutral and emotional clips each of 1.5–4.5min
duration to individuals with alexithymia (n = 17), a personality
trait characterized by difficulties in emotional self-regulation, and
non-alexithymic (n = 27) participants. In all cases subjects with
alexithymia showed greater reactivity of the right hemisphere to
the emotional clips relative to neutral, suggestive of increased
avoidance motivation. Olszewska-Guizzo et al. (2021) found no
significant effect for frontal alpha asymmetry for video type
(nature exposure and busy public spaces), but a significant
decrease of frontal alpha asymmetry as recorded following
a national lockdown with a Stay-at-Home order compared
to before the pandemic (n = 22). Missana and Grossmann
(2015) studied a sample of 20 4-month-old and 20 8-month-
old infants, and found that only the older infant group showed
increased left-sided frontal alpha asymmetry in response to
point-lighted display of happy body expressions and higher right-
sided activation in response to fearful body expressions.

Real Cues (n = 11)
We expected that in general, real cues should produce stronger
approach-avoidance effects than videos. However, the proportion
of studies finding significant effects is similar.

Kaneko et al. (2019) and Lagast et al. (2020), who explored
the effect of different types of drinks on frontal alpha asymmetry
in, respectively, 70 and 32 participants, observed no significant
effects. However, odors as researched by Kline et al. (2000)

recording EEG in 58 women have led to increased relative
left frontal activation for the pleasant stimulus (vanilla) when
compared to unpleasant (valerian) and neutral (water).

Two neuromarketing studies utilizing real cues reported
significant results for frontal alpha asymmetry. Modica et al.
(2018) compared different categories of food items: daily and
comfort food, major and private brands, and foreign and local
products in two experiments (n = 19 and n = 13). They found
increased tendency for approaching comfort compared to daily
food, and foreign compared to local products during visual
exploration and visual and tactile exploration phases. In addition,
the private label compared to major brand also showed higher
approach in the visual and tactile exploration phases. Similarly,
Sargent et al. (2020) compared two machines to prepare hot
beverages, one from a market leader and the other from a
follower machine in an office setting (n = 26). It was shown
that the market leader machine’s user interface was preferred,
indicated by self-reports and supported by significant valence
measured by frontal alpha asymmetry and arousal extracted from
electrodermal activity measures. Another study using a real food-
related stimulus, was conducted by Brouwer et al. (2017), where
41 participants cooked and tasted two stir fry dishes. For one the
main ingredient was chicken (hypothesized to induce approach)
and for the other mealworms (hypothesized to evoke avoidance).
The expected effect of food condition was found in frontal alpha
asymmetry throughout the entire cooking and tasting session,
significantly during the frying interval.

In a substance study, Knott et al. (2008), exposed 11 regular
and 11 light smokers to a neutral and a cigarette-cue (holding a
pen and holding a lighted cigarette above an ashtray respectively),
while EEG was recorded. Results show that particularly regular
female smokers exhibited withdrawal-related negative affect to
holding the cigarette compared to holding the pen.

Three studies in our selection used real social interaction cues.
In a study with 25 infant-parent dyades, Bolinger et al. (2020)
used positive (e.g., parent played peek-a-boo with the infant) and
negative prompts (e.g., parent pretended that the infant has rash
on his/her face) and found significantly increased right-sided
frontal alpha asymmetry (reflecting avoidance or withdrawal)
for the negative prompts. No effects were observed for positive
and neutral stimuli. Uusberg et al. (2015) and Pönkänen and
Hietanen (2012) explored how eye-contact is related to frontal
alpha asymmetry. In Uusberg et al. (2015) (n = 40) the degree
of social contact was varied by gaze direction and as expected,
neuroticism was related to stronger right-sided activation in
response to direct gaze. In Pönkänen and Hietanen (2012) (n =

22) the expected left-sided asymmetry in response to direct gaze
was not observed.

Finally, Olszewska-Guizzo et al. (2020) passively exposed 22
adults to pre-selected real landscape scenes, consisting of six park
scenes and three busy urban spaces. They found a non-significant
trend in the expected direction with higher approach motivation
for park compared to urban spaces.

Games (n = 5)
Games were expected to be the most potent inducers of
approach-avoidance effects. Indeed, this category seems to result
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the in the largest proportion of significant results for main
stimulus effects, but we should note themodest number of studies
in this category (n= 5).

Rodrigues et al. (2018) asked 30 participants to move freely
around in a virtual T-maze using a joystick. The maze contained
monsters and sheep (emotionally negative and positive trials,
respectively). The results aligned with the approach-avoidance
model, with more left frontal alpha activation during the positive
event condition and increased right frontal alpha activation
in the negative condition. In Miller and Tomarken (2001),
60 participants underwent a delayed reaction time task with
manipulations of the incentive, expectancy, and response. They
found that variations in monetary incentives led to the expected
changes in alpha asymmetry, i.e., more relative left frontal
activation during reward conditions, and shifts to right frontal
activation during punishment conditions. Similarly, Sobotka
et al. (1992) manipulated reward and punishment in a sample of
15 students. Reward trials were associated with higher activation
in the left frontal hemisphere and during punishment trials
higher right-sided activation was found.

Two studies in the games category recorded from clinical
samples. Shankman et al. (2007) used a slot machine game with
reward and no incentive outcomes. Participants included 70
individuals withmajor depression and 37 controls. No differences
in hemispheric asymmetry for the two outcome conditions were
observed, and no overall difference between the depressed and
non-depressed group. However, they found a trend between age
of depression onset and hypothesized approach during reward
trials. Participants with early depression onset seemed to exhibit
less left frontal activity (less approach) during reward conditions
compared to participants with late-onset depression and the
control group. Harmon-Jones et al. (2008) explored frontal
cortical responses of 41 individuals with bipolar disorders and 53
controls. For this they used anagrams of different difficulty levels
(easy, medium and hard) and valence (win money or avoid losing
money). They found that as expected, individuals with bipolar
disorder showed greater left frontal activation in preparation
for the hard-win task compared to controls. Furthermore, while
non-bipolar subjects showed a decrease in left frontal activation
from medium to hard win trials, those on the bipolar disorder
spectrum did not.

Other Tasks (n = 12)
Tasks in this category entailed imagery (n = 4), modifying facial
expression (n = 2) and speech, reading and writing tasks (n =

6). Overall, “other tasks” stimuli seemed quite potent in eliciting
effects in interaction with participant group or condition, but
relatively few main effects were reported.

Four studies used a variety of emotional imagery tasks, and
all reported significant results. Mennella et al. (2015) measured
EEG of a clinical sample of 23 dysphoric and 24 non-dysphoric
individuals during pleasant, neutral and unpleasant narratives.
They found reduced left relative to right activity irrespective of
emotional condition in the dysphoric group compared to the
control group, but no main effect of the different emotional tasks.
Wacker et al. (2008) found significant approach-avoidance effects
using emotional imagery scripts of three approach-avoidance

conflict scenarios and a sample of 93 men with either high or
low behavioral inhibition system (BIS) sensitivity. Their results
showed that only the group high in trait BIS sensitivity had a
significant change toward right-sided activation for the imagery
compared to the pre-stimulus phase. In addition, Wacker et al.
(2003) induced vivid imagery with relevant soccer scripts in a
sample of 109 active, male soccer players. They found significant
changes in the alpha band toward left frontal activation for
the group with anger-inducing scripts and toward right frontal
activation for the control and fear-withdrawal stimuli. Papousek
et al. (2017) used a type of imagery task, where female
university students (n = 78) looked at anger-eliciting vignettes
supplemented by matching photographs and were instructed to
imagine the depicted situation happening to them. Subsequently,
they wrote down possible ways to appraise the situation to
diminish anger. In a comparison task, they were asked to generate
novel ideas to use a conventional, emotionally neutral object.
Participants with greater capacity to generate reappraisal showed
greater left-sided activity in the pre-frontal cortex. No difference
was found between the two types of emotional task.

Two studies aimed to induce different emotions using facial
expression tasks. Both reported significant effects. In Coan
et al. (2001) students’ (n = 36) facial configurations of anger,
disgust, fear, joy and sadness matched the expected frontal
activation patterns, i.e., less left frontal activity in withdrawal
states compared to approach and control states. In Stewart et al.
(2014) a participant group with major depressive disorder (n
= 143) showed less left frontal activity during approach and
withdrawal conditions than a control group (n= 163).

Six studies used speech, reading and writing tasks. Pérez-
Edgar et al. (2013) presented face pairs depicting angry, happy
and neutral expressions in a dot-probe paradigm, followed by
speech preparation to 45 students. Relative EEG asymmetry
was calculated between the speech preparation and baseline.
Increased right frontal alpha activation was associated with
avoidance of happy, and attentional bias toward angry faces in
the dot-probe task. Brooker et al. (2016) conducted a longitudinal
twin study (n = 89) with three emotion eliciting episodes:
conversation with the experimenter, with a stranger and listening
to a stranger reading a script. They found that children showed
increased asymmetry scores, consistent with approach, during
conversing with a stranger and experimenter compared to the
stranger script episodes.

In Wang et al. (2015) 92 students were informed that they
had to give a speech to elicit anxiety, and they were asked to
imagine the speech scenario or think of previous embarrassing
experiences. This was followed by a possible writing task
depending on the group: reappraisal writing, irrelevant writing
and no writing. Afterwards they were asked to re-imagine
embarrassing speech scenarios. Compared to the irrelevant
writing group, the reappraisal writing group had lower frontal
alpha asymmetry scores during the writing manipulation period
and higher “approach” frontal alpha asymmetry scores following
re-exposure to stress. Li et al. (2016) also used a writing task.
Participants (n = 29 students) were instructed to think of a
situation when they were irritated by people with higher or lower
social power. As expected, they found a significant association
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between high social power and increased left frontal alpha
asymmetry compared to the low social power condition.

In Rejer and Jankowski (2017) six subjects performed a
reading task, which was interrupted by internet advertisements.
This caused changes in frontal alpha asymmetry though the
direction of change differed between subjects. In Brouwer et al.
(2015a) 71 participants performed a reading task of a novel where
emotional and non-emotional sections were pre-defined. Higher
frontal alpha asymmetry was found for high compared to low
emotional sections.

DISCUSSION

The aim of this review was to investigate what types of affective
stimuli are effective in inducing an approach-avoidance response
in frontal alpha asymmetry, in the hope that this will contribute
to better understanding and application of alpha asymmetry.
We reviewed findings in the affective alpha asymmetry literature
following five types of commonly used stimuli that were expected
to differ in their effectiveness to engage the subjects: (1)
Images & sounds, (2) Videos, (3) Real cues, (4) Games and
(5) Other tasks. The first three of these categories represent
studies where participants’ task mostly consisted of passively
perceiving the stimuli, going from unimodal and less realistic,
to multimodal and more realistic, where we expected this to be
associated with an increasing level of affective engagement and
therewith, potency to induce approach-avoidance effects. Tasks
were expected to be more motivationally engaging overall, in
particular games.

As expected, unimodal images and sounds appeared to be
the least potent to induce clear effects—significant effects were
almost only reported when the stimulus was particularly relevant
for the participant group. Also as expected, studies using video
stimuli showed strong approach-avoidance effects more often
than studies using images and sounds, both as effect of the
stimuli alone and in interaction with participant characteristics
and conditions. The proportion of studies finding significant
effects using real cues did not seem larger, but was approximately
similar, to studies using videos. As expected, the proportion of
significant results for main stimulus effects was largest for games,
but we should note themodest number of studies in this category,
and we conclude they are in the same order as videos and
real cues. “Other tasks” stimuli seemed quite potent in eliciting
effects in interaction with participant group or condition, but
relatively few main effects were reported. Many studies that
did not report an effect of stimulus alone reported stimulus
effects in association with participant characteristics or other
conditions. This makes sense in that the motivational aspect
of stimuli is never completely determined by a stimulus itself,
but affective approach-avoidance responses arise as an interplay
between stimuli and an individual who has certain characteristics
and finds him/herself in a certain situation. This aligns with ideas
of Coan and colleagues and the capability model, stating that
motivational tendency in an individual should be studied within
a clear motivational context (Coan et al., 2006). Below, we discuss
our results in more detail.

In general, viewing static images may be expected to
be not very emotionally and motivationally engaging. The
findings of this review revealed that picture presentation
could induce approach-avoidance effects if the images were
particularly emotionally relevant for the sample group, for
instance anxiety-relevant pictures shown to patients with
panic disorder (Wiedemann et al., 1999). Thus, for a general
sample group, affective images alone might be insufficient to
create motivational engagement while stimulus-relevant personal
characteristics can potentiate frontal alpha asymmetry (Harmon-
Jones et al., 2006; Gable and Harmon-Jones, 2008; Uusberg
et al., 2014; Rejer and Jankowski, 2017). Consistent with
this, significant correlations have been found between frontal
alpha asymmetry and differences in emotive tendencies (e.g.,
dessert liking) or personality traits (Wacker et al., 2008; for
examples see Gable and Harmon-Jones, 2008; Uusberg et al.,
2015; Winter et al., 2016). As one of the exceptions, Schöne
et al. (2016) showed that presentation of erotic pictures to
male students lead to clear alpha asymmetry results, even in
a brief (3 s) picture presentation task. They argue that in this
case, pictures are the actual desired object themselves, and
therefore create a relatively strong approach motivation in
contrast to pictures that are a depiction of something that is
desirable, such as food. Huster et al. (2009) aimed to improve
motivational engagement for pictures by successively displaying
three pictures of the same affective category, and found a main
effect. Showing pictures of the same category successively also
allowed for computation of frontal alpha asymmetry over a
longer time period, which may have increased the robustness
of the measure (Huster et al., 2009). Note that this points to
another overall difference between studies that use images and
other stimuli besides expected engagement—the generally short
interval per stimulus that used to determine alpha asymmetry
may be another factor explaining weak alpha asymmetry results
for images.

From the engagement perspective, and consistent with the
reasoning by Schöne et al. (2016) as mentioned above, we
expected real cues to be particularly effective as they are not just a
depiction of something creating a tendency to approach or avoid,
but can be the genuine objects to approach or avoid. Indeed,
experiments using food, odors and cigarettes found significant
effects for frontal alpha asymmetry. However, those employing
landscapes and tasting drinks did not. In these studies, noise
caused by movement could have prevented clear results. Because
body movement causes noise in EEG signals, stimuli employing
movement can be expected to be less effective in producing
an alpha asymmetry approach-avoidance effect. In Olszewska-
Guizzo et al. (2020) participants went from one scene to the
other, leading to long time intervals between recordings and
hence noisy comparisons between conditions. Furthermore, in
Kaneko et al. (2019) participants took sips from cups themselves,
which led to noise through movement. On the other hand, Lagast
et al. (2020) minimized such movements by using plastic tubes
but were still not able to find a significant approach-avoidance
effect. Also, results of studies in other stimulus categories did not
suggest that in general, modest amounts of movement prohibit
finding alpha asymmetry effects.
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Out of scope for the current review that focussed on the
role of affective stimuli, but also relevant for the approach-
avoidance alpha asymmetry effect are data recording, processing,
and analysis (for an extensive review, see Smith et al., 2017). A few
essential points of consideration are the EEG recording length
(Towers and Allen, 2009), selection of the electrode reference
(Hagemann and Naumann, 2001; Hagemann, 2004; Stewart et al.,
2010) and the reliability of the EEG measurement (Hagemann
et al., 2002; Allen et al., 2004a,b). With novel wearable EEG
monitoring devices and processing techniques, recordings in less
controlled environments are becoming more reliable (e.g., see
Aricò et al., 2018; Pion-Tonachini et al., 2019), but controlled
experiments and lab-grade equipment will have some advantage
on signal quality. Furthermore, aspects of the design besides
choice of stimulus such as the number and duration of trials and
baselines, analysis (e.g., exact definition of the alpha band and
methods for artifact removal) are not standardized and can lead
to big differences.

This brings us to the limitations of this literature review. One
is that experiments are very diverse and thus difficult to compare.
We focused on the overall effect of affective stimulus category.
For almost every stimulus category, studies were identified that
reported no effect of stimuli on alpha asymmetry at all; but
glancing through these studies did not bring to light one obvious
factor underlying these null results.

Second, even though keywords were clear, it was noted that
not all relevant papers were captured through the search. We
do not claim that we here provide an exhaustive overview, and
our results should be taken as indicative. Still, we believe that
the inclusion of 61 papers results in a representative review of
the literature.

Thirdly, we should note that while our choice of stimulus
categories was not arbitrary, other choices and definitions of
stimulus categories would have been possible as well and could
have influenced the conclusions. Also, our categories were not
exactly exclusive and sometimes overlapping, e.g., the cooking
and tasting experiment by Brouwer et al. (2017) could be arguably
belonging to tasks rather than real cues. In such cases, the
stimulus’ affective content led to the final categorization decision.
We hope that our summarizing Supplementary Table facilitates
potential follow-up research, viewing the results from possible
other perspectives.

Furthermore, most of the papers reviewed here reported
significant alpha asymmetry approach-avoidance results, or
trends in that direction. Papers that reported null findings
possibly did not include the keywords used in our search. An
example is Walden et al. (2015), where frontal theta activity
was studied as a function of approach-avoidance affective
autobiographical memory recall. They mention in a footnote that
no effect on alpha-asymmetry was observed. In addition, many
of such findings were probably withheld from publication in the
first place, commonly known as publication bias. Not reporting
null-findings is a general problem that could lead to another
research group investigating the same line of thought, leading
to null findings again, ultimately wasting resources, distorting
literature and damaging the integrity of knowledge (Joober et al.,
2012). Furthermore, negative outcomes are valuable for science

since they force critical reflection, validation of current thinking
and direct new approaches (Matosin et al., 2014). Therefore,
researchers should be more encouraged and journals more open
to publish manuscripts reporting negative results. Taking into
account the likely underreporting of null findings, and the finding
that roughly 50% of studies reporting a solid effect of stimulus
only for four of the five categories, where this percentage was
even considerably lower for the images & sounds category, we
can conclude that alpha asymmetry approach-avoidance is not an
easy to find phenomenon, especially not when tested in general
populations without further manipulation of context to increase
stimulus relevance.

Despite of the aforementioned limitations, the exploration of
frontal alpha asymmetry as an indicator of affective approach-
avoidance can benefit marketing, human-computer interfaces
and the diagnosis of affective disorders. Frontal alpha asymmetry
may provide a more objective and continuous measure of
mental state than traditional methods that are influenced by
social factors and may affect the mental state itself. This
review confirmed that overall, strongly engaging, salient and/or
personally relevant stimuli are important to induce an approach-
avoidance effect and that the selection of stimuli accounts
for part of the diversity in alpha asymmetry research. More
work is required to gain a better understanding of other
factors influencing frontal alpha asymmetry as a marker
of emotion.
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