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Editorial on the Research Topic

Artificial intelligence and the future of work: humans in control

Latest developments around artificial intelligence (AI) have triggered excitement about

the potential to replace and complement human activities while also raising concerns

about possible risks to society. Dramatic effects are specifically being felt in the world of

work, including jobs, wages and working conditions but also recruitment, performance

monitoring, and dismissal. So far, research in this area has focused predominantly on

the potential of AI for job gains and losses. Other aspects of its transformative dynamics

have received less attention, however. In particular, the impact of AI on job quality,

average hours worked, mobility, or labor relations between employers and workers are

often overlooked. Moreover, society-wide effects triggered by AI, including its rising

environmental burden, need to be reassessed. To address these issues, this Research Topic

includes nine exciting contributions that shed light on a broader range of issues that AI

technologies might bring to the world of work.

To set the stage for the overall effect of AI on employment in 23 OECD countries, in

our special edition, Georgieff and Hyee present research using an adapted AI occupational

impact measure. The authors do not find that AI exposure affects employment growth in

their sample. However, occupations where computer use is high see faster employment

growth when exposed to AI. In contrast, occupations with low computer use see a

decline in average hours work (yet not in employment) when exposed to AI, suggesting

a distributional impact of AI rather than one on the overall number of jobs.

Whether digital technological technologies improve or worsen wages for employees

remains a hotly debated topic. Fossen et al. argue that it depends on the specific application

considered. Whereas, software and industrial robots seem to be associated with wage

decreases, suggesting job displacement, innovations in AI are associated with wage

increases, pointing toward positive productivity effects, at least as far as the labor market

in the United States is concerned.

How can the income and wealth disparities that are brought about by AI be addressed?

Merola looks at the various proposals that have been brought forward in recent years

to address the differential effects of AI on labor markets. She discusses pros and cons

of various proposals, including a robot tax, digital taxation, share price taxation, or –

alternatively – wage subsidies for low-income earners and assesses their potential impact

on employment growth, inequality and innovation.
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Besides the impact of AI on the number of jobs or their

distribution, AI will also affect working conditions for those in

employment. Using a representative business survey for Germany,

Warning et al. demonstrate how occupations with a high share

of routine cognitive activities exposed to AI are associated with

higher demand for flexibility, including employee self-organization

and time management. Moreover, such worsening of working

conditions predominantly affects older workers and women in the

labor market.

Concerns about implications of AI for occupational health and

safety (OSH) abound. Niehaus et al. report results from a large-scale

study of German workers on the impact of AI on job autonomy and

psychological occupational stress. The authors highlight that AI is

often being used to increase autonomy of supervisory functions

while lowering control for job execution. This is likely to increase

work-related stress over and above possible concerns for job or

earnings loss.

AI is also a tool that can be used by HR managers to improve

functional mobility and ultimately employees’ job satisfaction,

given that internal mobility risks deteriorating job satisfaction

if it increases stress to the detriment of personal life. Bossi et

al. analyze various approaches using AI to help better manage

internal mobility schemes with a view to improving future job

satisfaction. The authors analyse alternative statistical models

and compare different methods in supporting predictive Human

Resources analytics.

AI has society-wide implications not only for employment and

wages but also on the use of energy and its potential for increasing

productivity. Ernst argues that taken together and considering

the current path of technological development, AI gives rise to

a trilemma, making it impossible to achieve high productivity

growth, low inequality, and reduced energy consumption

simultaneously. Instead, he argues, a new technological paradigm

is needed to orient AI applications toward those areas where

social returns are particularly high, such as in mobility and waste

management, clean energy, and natural capital solutions.

Beyond automating certain tasks at individual workplaces, AI is

also transforming managerial control. Woodcock analyses in detail

how AI affects the work of managers, based on a case study of

AI’s use in call centers. He shows how the introduction of new

surveillance tools based on AI are being contested by call center

employees and how this shapes the extent and incidence of such

tools for managerial purposes.

Society-wide implications of AI have often met with calls for

“ethical Artificial Intelligence.” Cole et al. conceptualize these calls

and question their efficacy in sufficiently addressing the resulting

societal challenges given their mostly narrow political framework

focused on privacy, transparency and non-discrimination. In

response, the authors identify a set of principles to facilitate

fairer working conditions with AI, focusing on operationalizable

processes that effectively help address the potential risks and harms

resulting from AI in the workplace.

The collection of papers brought together in this Research

Topic offer new insights into the multi-faceted and society-wide

implications that AI is likely to bring to the world of work. Our

ambition was to demonstrate how current technological changes

will cause a wide-ranging transformation that goes beyond headline

indicators such as the number of potential job losses. We hope

that these papers can contribute to a wider discussion both among

researchers and policy makers of the multi-faceted effects of AI on

the world of work, and thus for the need to better understand – and

find appropriate responses to – the multitude of ongoing changes

in the world of work.
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Estimating Successful Internal
Mobility: A Comparison Between
Structural Equation Models and
Machine Learning Algorithms

Francesco Bossi 1*, Francesco Di Gruttola 1, Antonio Mastrogiorgio 2, Sonia D’Arcangelo 3,

Nicola Lattanzi 2, Andrea P. Malizia 1 and Emiliano Ricciardi 1

1MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy, 2 Axes Research Unit, IMT School for

Advanced Studies Lucca, Lucca, Italy, 3Neuroscience Lab, Intesa Sanpaolo Innovation Center SpA, Turin, Italy

Internal mobility often depends on predicting future job satisfaction, for such employees

subject to internal mobility programs. In this study, we compared the predictive power

of different classes of models, i.e., (i) traditional Structural Equation Modeling (SEM),

with two families of Machine Learning algorithms: (ii) regressors, specifically least

absolute shrinkage and selection operator (Lasso) for feature selection and (iii) classifiers,

specifically Bagging meta-model with the k-nearest neighbors algorithm (k-NN) as a

base estimator. Our aim is to investigate which method better predicts job satisfaction

for 348 employees (with operational duties) and 35 supervisors in the training set, and

79 employees in the test set, all subject to internal mobility programs in a large Italian

banking group. Results showed average predictive power for SEM and Bagging k-NN

(accuracy between 61 and 66%; F1 scores between 0.51 and 0.73). Both SEM and

Lasso algorithms highlighted the predictive power of resistance to change and orientation

to relation in all models, together with other personality and motivation variables in

different models. Theoretical implications are discussed for using these variables in

predicting successful job relocation in internal mobility programs. Moreover, these results

showed how crucial it is to compare methods coming from different research traditions

in predictive Human Resources analytics.

Keywords: internal mobility, job relocation, job satisfaction, structural equation models, machine learning,

resistance to change, predictive HR analytics

INTRODUCTION

Job relocation is a traditional issue of organizational literature whose main paradigms refer to the
effect of job transfer on stress and family life (Burke, 1986; Munton, 1990), where job transfer
traditionally requires geographical mobility. Consolidate evidence shows that the preference for
a specific location is a major predictor of post-transfer satisfaction (Pinder, 1977). In general,
employees in the early career stage tend to be more willing to accept mobility opportunities as they
perceive more dissonance between their current job and ideal job (Noe et al., 1988). The willingness
to relocate enters the selection process in which attitudinal, biographical and social variables predict
how many potential employees are prone to international mobility (Andresen and Margenfeld,
2015).
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Nevertheless, post-transfer satisfaction is not simply a
matter of geographical opportunity. The rise of information
technologies in recent decades has made geographical relocations
less problematic, as they enable a flexible and geographically
independent job organization (i.e. remote working). Internal
migration rates are declining across most Western countries
(Haan and Cardoso, 2020), for several economic and social
reasons. In contemporary economies, post-transfer satisfaction is
mainly referred to the internal mobility where the changes—due
to promotions and/or lateral transfers—occur within the same
organization. Promoted workers, internal to an organization,
have significantly better performance and lower exit rates than
those externally hired into similar jobs (Bidwell, 2011). Indeed,
upward progressions are much more likely to happen through
internal than external mobility (Bidwell andMollick, 2015). High
performers are less likely to quit, and when they do quit the
reasons are typically not related to work (Benson and Rissing,
2020). Furthermore, there is evidence of a negative association
between performance and internal mobility for low performers as
they add value to the organization by developing complex social
networks through internal job transfers (Chen et al., 2020a).

Internal mobility is not just an opportunity for career
development. In many cases, internal mobility is not a
discretional choice but a strategic or a contingent organizational
need that could involve the forced relocation of hundreds of
employees. In such cases, predicting job satisfaction for such
employees involved in mobility programs is fundamental. The
literature on job satisfaction is abundant regarding the construct
and its antecedents (e.g., Judge et al., 2002; Aziri, 2011), but
its prediction is often problematic. In particular, job satisfaction
is not always an existent construct to be simply measured
in given settings. Human resources (HR) specialists are often
interested in predicting post-transfer job satisfaction in such
settings that include internal mobility, as organizational changes
are designed precisely depending on how employees will react
to the new arrangements. In short, internal mobility often
depends on the prediction of future job satisfaction. In such
situations, what HR practitioners have at disposal is many
individual-related variables, such as individual differences in
personality, motivation and emotion for workers, and leadership
style and empathy for leaders. Using such variables to predict
job satisfaction—where satisfaction is a general construct that
also includes communication- and inclusion-related aspects—
could be opportune. Machine learning comes in help as it allows
predicting job satisfaction, based on the available variables.

Job Satisfaction
Job satisfaction represents a complex research domain stratified
over decades, whose definition and research questions are
significantly dependent on the specific historical contingencies
(Latham and Budworth, 2007). Generally speaking, job
satisfaction is a construct whose investigation admits different
paradigms and approaches, each one with specific theoretical
nuances. Such approaches include Hertzberg’s motivator-hygiene
theory (Herzberg, 1964), job design frameworks (Hackman and
Oldham, 1976), dispositional (Staw et al., 1986) and equity
approaches (Huseman et al., 1987). Traditionally, job satisfaction

has been defined as “a pleasurable or positive emotional state
resulting from the appraisal of one’s job or job experiences”
(Locke, 1976, p. 1304). Job satisfaction presents a number
of facets as it can be defined with reference to specific job
aspects. Spector (1997) identifies fourteen aspects that include
appreciation, communication, coworkers, fringe benefits, job
conditions, nature of the work, organization, personal growth,
policies and procedures, promotion opportunities, recognition,
security, and supervision.

The assumption that happier workers are more productive
is the fundamental hypothesis of literature, showing that both
cognitive and affective factors can explain, to different degrees,
job satisfaction (Moorman, 1993). Managers usually look for
satisfied workers, assuming that they are more engaged and
performative, where job satisfaction and employee motivation,
though different constructs, are fundamental for organizational
performance (Vroom, 1964). The meta-analytical evidence
of satisfaction-performance relationship encompasses several
paradigms that flourished over the last century, whose theoretical
and practical implications would deserve dedicated discussions
(Schwab and Cummings, 1970; Iaffaldano and Muchinsky,
1985; Judge et al., 2001; Harter et al., 2002). Importantly, job
satisfaction traditionally also extends outside of the job domains
to include private life (Near et al., 1980; Rain et al., 1991).
The “happy-productive worker paradigm” has been unpacked
and evidence shows the role of general psychological well-being,
not just job satisfaction, in explaining performance (Wright
and Cropanzano, 2000). While such meta-analytical evidence
emphasizes a correlation between job satisfaction and individual
performance, the same cannot be maintained for organizational
performance, where the less consolidated literature shows
mixed evidence. Some studies show a positive relationship
(e.g., Huselid, 1995; Schneider et al., 2003), others show the
absence of any significant correlation (e.g., Mohr and Puck,
2007). Interestingly, the opposite relationship is also meaningful
considering that organizational success affects employees’
satisfaction (Ryan et al., 1996).

Predictive HR Analytics
Big data analytics represent a fundamental factor for companies
to mine information to achieve competitive advantages (for a
generalist literature review see Holsapple et al., 2014; Chong and
Shi, 2015). Within this broad domain, HR analytics occupies a
significant position as they help companies in managing human
resources by exploiting data about how employees work and their
individual differences. HR analytics refers to the use of statistical
tools and computational methods for making decisions involving
HR strategies and practices.

While HR analytics are traditionally reactive, predictive HR
analytics is proactive and represents a relatively novel domain
of investigation. Predictive HR analytics can be defined as “the
systematic application of predictive modeling using inferential
statistics to existingHR people-related data to inform judgements
about possible causal factors driving key HR-related performance
indicators” (Edwards and Edwards, 2019, p. 3). The increasing
application of artificial intelligence (i.e., machine learning), far
from being a passing fad, represents a significant trend in the last
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decade (Falletta, 2014). Predictive HR analytics serve the purpose
of identifying opportunities and risks in advance before they are
clear to managers. Finally, predictive HR analytics is not merely
devoted to improving efficiency but, more and more enables
strategic human capital decisions (Kapoor and Sherif, 2012; Zang
and Ye, 2015).

HR analytics is a still developing topic whose related
evidence is often based on anecdotal evidence and case histories
(e.g., Dow Chemical mined the employee data to predict the
success of promotions and internal transfers, Davenport et al.,
2010). Ben-Gal (2019), through an analytical review of the
literature, highlights that empirical and conceptual studies in
HR analytics are related to higher economic performances
compared to technical- and case-based studies. In particular, such
performances are related to the application of HR analytics to
workforce planning and recruitment/selection tasks.

While the general impact of artificial intelligence on HR
is a well-debated topic (Bassi, 2011; e.g., Rathi, 2018), the
study of specific machine learning methods for predictive
purposes in HR analytics represents a non-consolidated domain
of research, characterized by a high degree of technicalities
(Kakulapati et al., 2020). Such research domain includes the
turnover prediction through neural networks (Quinn et al.,
2002) or machine learning algorithms based on Extreme
Gradient Boosting (Punnoose and Ajit, 2016), data mining
for personnel selection (Chien and Chen, 2008), workforce
optimization through constraint programming (Naveh et al.,
2007). Nevertheless, in the past decades, the application of
automated machine learning algorithms or neural networks in
this field was mostly limited to the areas of intervention of
a company spread in a region (Kolesar and Walker, 1974) or
to the relocation of a whole company to a new geographical
location (Haddad and Sanders, 2020). However, no studies have
previously compared different statistical methods for predictive
HR analytics or, more specifically, for automated relocation.

A crucial problem of predictive HR analytics is related to
ethical issues arising from evidence-based decisions. Indeed, the
use of some specific predictive variables can be problematic: what
if HR specialists make human capital decisions based, e.g., on an
applicant’s hometown, car preference or sports habits, precisely
because these variables are predictive of job performance? Such
practices might be questionable and represent a matter on which
the HR community will be likely called into account in the years
to come (for a discussion see, Hamilton and Davison, 2021).
In particular, some of the main concerns include the violation
of national and international employment discrimination laws
or data protection regulations, as well as employees’ desires for
privacy and justice.

Aim of the Study
In this study, we compared the predictive power of three
classes of models. We compared (i) traditional Structural
Equation Modeling (SEM), with two families of Machine
Learning algorithms, i.e., (ii) regressors, specifically least absolute
shrinkage and selection operator (Lasso) for feature selection
and (iii) classifiers, specifically Bootstrap Aggregation meta-
model using as base estimator the k-nearest neighbors algorithm

(k-NN). Our aim is to validate which method better predicts
successful relocation (measured in terms of job satisfaction,
inclusion in the work team, and communication satisfaction)
for 348 employees (with operational duties) and 35 leaders
in the training set, and 79 employees in the test set, subject
to internal mobility programs in a large Italian banking
group. We considered an array of heterogeneous independent
variables (from personality and motivation literature) which
often constitute what HR directors have at disposal for making
predictions about their employees, and we compared the
alternative predictive methods.

MATERIALS AND METHODS

Participants
During the first part of the study (training set, February-March
2020), 503 employees and 40 supervisors in a large-scale Italian
banking group volunteered for the data collection. Out of this
sample, 380 employees and 37 supervisors opened the survey,
but only 348 employees (147 F, mean ± sd age: 49.4 ± 6.9) and
35 supervisors (7 F, mean ± sd age: 50.7 ± 7.5) completed the
survey. During the second data collection (test set, July 2020),
100 employees volunteered, 82 of them opened the survey and
79 (34 F, mean ± sd age: 48.3 ± 7.6) completed it. All employees
were relocated more than 6 months before the data collection
(mean training set: 15.9 months; mean test set: 14.1 months).
All participants had normal or a corrected-to-normal vision, no
history of auditory or psychiatric disorders.

Ethical Statement
All participants were provided with an exhaustive description
of all the experimental procedures and were required to sign a
written informed consent before taking part in the study. The
study was conducted in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki and under a protocol
approved by the Area Vasta Nord Ovest Ethics Committee
(protocol n. 24579/2018).

Procedure
All questionnaires were administered via an online survey
based on SurveyMonkey R©. Survey links were sent by email
to all volunteers by a collaborator bank employee. In this
way, researchers could never have direct access to participants’
names and they could participate anonymously. The first part
of data collection (348 employees and 35 supervisors), aimed to
collect the training set, was carried out between February 26th
and March 16th 2020. The second part of data collection (79
employees), aimed to collect the test set, was carried out between
July 6th and July 31st 2020.

Materials
Questionnaires administered to employees (in both training
and test sets) included a Personality questionnaire (Jackson
et al., 1996a,b; Hogan and Hogan, 1997, 2007), Motivational
Orientation Test (Alessandri and Russo, 2011), Resistance
to Change questionnaire (Oreg, 2003), Emotion Regulation
Questionnaire (Gross and John, 2003), Rational Experiential

Frontiers in Artificial Intelligence | www.frontiersin.org 3 March 2022 | Volume 5 | Article 8480158

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Bossi et al. Estimating Successful Internal Mobility

Inventory – Short Form (REI-S24, Pacini and Epstein, 1999),
Inclusion questionnaire (Jansen et al., 2014), Job Satisfaction
Index (Brayfield and Rothe, 1951), and Communication
Satisfaction Scale (Madlock, 2008). Questionnaires administered
to supervisors (only in the training set) included the Trait
Emotional Intelligence Questionnaire – Short Form (Petrides,
2009), Interpersonal Reactivity Instrument (Davis, 1983),
Prosocialness Scale for Adults (Caprara et al., 2005), Multifactor
Leadership Questionnaire – 6S Form (Avolio and Bass, 2004),
and REI-S24 (Pacini and Epstein, 1999).

Predictors
Questionnaires used to measure predictors (or independent
variables) administered to employees are:

Personality Questionnaire
We built a 40-items questionnaire (Malizia et al., 2021) to
measure four specific dimensions of personality of interest
in our study. In particular, we considered three dimensions
of the Six Factor Personality Questionnaire (Jackson et al.,
1996a,b). Such dimensions (and their facets) are Independence
(autonomy, individualism, self-reliance), Openness to
Experience (change, understanding, breadth of interest),
Industriousness (achievement, endurance, seriousness).
A further dimension, Dutifulness, was selected from the
Hogan Personality Inventory (Hogan and Hogan, 1997, 2007).

Motivational Orientation Test
The Motivational Orientation Test (Borgogni et al., 2004; Petitta
et al., 2005; Test di Orientamento Motivazionale, see Alessandri
and Russo, 2011) is based on 43 items and addressed to measure
four drivers—Objective, Innovation, Relation, Leadership—of
individual motivation.

Resistance to Change
The Resistance to Change Test (Oreg, 2003), based on 18 items,
was used to measure four dimensions related to change: Routine
Seeking, Emotional Reaction to Imposed Change, Cognitive
Rigidity, and Short-Term Focus. We used the total index in
our analyses as it showed higher reliability in the original
validation paper.

Emotion Regulation
Participants’ use of different emotion regulation strategies was
investigated with the Emotion Regulation Questionnaire (ERQ,
Balzarotti et al., 2010). This is a 10-item questionnaire, in which
each item is scored on a 7-point Likert scale (from 1 = “Strongly
disagree” to 7 = “Strongly agree”). Items are scored into two
separate subscales investigating expressive suppression (basic
emotion regulation strategy, i.e., suppressing the behavioral
expression of the emotion) and cognitive reappraisal (more
advanced cognitive emotion regulation strategy, aimed at
modifying the internal representation of an event to change one’s
own emotional experience) (Gross and John, 2003). Previous
literature (ibidem) showed that people who use cognitive
reappraisal more often tend to experience and express greater
positive emotion and lesser negative emotion, whereas people

who use expressive suppression experience and express lesser
positive emotion, yet experience greater negative emotion.

Questionnaires used to measure predictors (or independent
variables) administered to supervisors are:

Trait Emotional Intelligence Questionnaire—Short Form
The Trait Emotional Intelligence Questionnaire—Short Form
(Petrides, 2009), based on 30 items, was used to measure trait
emotional intelligence.

Interpersonal Reactivity Instrument
The Interpersonal Reactivity Instrument (Davis, 1983) based on
28 items, is aimed at measuring dispositional empathy on four
dimensions: Perspective Taking, Fantasy, Empathic Concern and
Personal Distress.

Prosocialness Scale for Adults
The Prosocialness Scale for Adults (Caprara et al., 2005), based
on 16 items, was used to measure individual differences in
adult prosocialness.

Multifactor Leadership Questionnaire
The shortened form of the Multifactor Leadership Questionnaire
(Avolio and Bass, 2004), based on 21 items, was used to measure
transformational and transactional leadership.

The only questionnaire used to measure predictors (or
independent variables) administered to both groups is:

Rational Experiential Inventory–Short Form (REI-S24)
We used the Rational Experiential Inventory (Pacini and Epstein,
1999), in the short version of 24 items, to measure to what
degree people engage in automatic-System 1 or deliberate-System
2 modes of thinking.

Outcomes
Questionnaires used to measure outcomes (or dependent
variables) administered to employees are:

Inclusion Questionnaire
The Perceived Group Inclusion Scale (Jansen et al., 2014),
composed of 16 items, was used in order to measure inclusion
in the workplace.

Job Satisfaction Index
We used the traditional index of job satisfaction (Brayfield and
Rothe, 1951), based on 18 items.

Communication Satisfaction Scale
The 19-items Communication Satisfaction Scale (adapted
from Madlock, 2008) was used to understand the
influence of supervisor communication competence on
employees satisfaction.

General Data Treatment
All questionnaires were scored according to official guidelines
from each validation paper (which typically consisted of
summing scores from all items in each factor). Since it was
impossible to trace back the exact correspondence between each
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colleague and individual supervisors for privacy reasons, average
scores were computed for supervisors in each of the six business
units involved in the project. These scores were then attributed to
each colleague according to their business unit when computing
models and algorithms.

In all approaches, the Inclusion questionnaire, Job Satisfaction
Index, and Communication Satisfaction Scale were considered
as three outcomes of success in job relocation (i.e., endogenous
variables in Structural Equation Models and target measures in
machine learning algorithms). Accordingly, all other variables
from employees (Independence, Openness, Industriousness,
Dutifulness, Orientation to Target, to Innovation, to Relation,
to Leadership, Resistance to Change, Cognitive Reappraisal,
Expressive Suppression, Rational Style, Experiential Style, Age,
Seniority) and supervisors (Emotional Intelligence, Empathy,
Prosociality, six Leadership Styles, Rational Style, Experiential
Style, Age, Seniority) were used as predictors (i.e., exogenous
variables in SEM and features in machine learning algorithms).

The Mean Absolute Error (MAE) was used in both SEM and
machine learning algorithms to compare the prediction accuracy
in the test set. The MAE is a common measure of prediction
accuracy in regression models and is computed according to
Formula 1:

MAE =

∑n
t=1 |Pt − Ot|

n
(1)

where Ot is the observed value and Pt is the predicted value. The
absolute value in their difference is summed for every predicted
point and divided by the number of fitted points n.

Data collected from participants involved in the first data
collection (i.e., 348 employees and 35 supervisors) were used
as a training set; data collected from participants involved in
the second data collection (i.e., 79 employees) were used as an
independent test set.

Structural Equation Models
When using the Structural EquationModels (SEM) approach, the
analyses were aimed to find themost efficient model in predicting

success in job relocation, i.e., predicting the highest variance
with the lower number of parameters. Given this aim, the most
suitable method to compare models is the Akaike Information
Criterion (AIC, Akaike, 1974). The AIC is a goodness of fit index
and therefore evaluates how well a model fits the data it was
generated from. Let k be the number of estimated parameters
in the model and let L̂ be the maximum value of the likelihood
function for the model: as shown in Formula 2, the AIC also
takes into account the model complexity, as it is penalized for
the number of parameters included in the model. This penalty is
aimed at reducing overfitting.When comparing different models,
the model with the lowest AIC is also the most efficient one (i.e.,
explaining more variance with fewer parameters).

AIC = 2k− ln
(

L̂
)

(2)

In the models comparison procedure, we started by testing
models with the highest number of exogenous variables
and then reducing the parameters estimated by the model
by removing parameters that did not show a statistically
significant effect on the endogenous variables. The whole
models comparison procedure is detailed in the results. In all
models, the estimator was Maximum Likelihood (ML) and the
optimizationmethod was NonlinearMinimization subject to Box
Constraints (NLMINB).

Fit measures (i.e., Comparative Fit Index (CFI), Tucker-
Lewis Index (TLI), Root Mean Square Error of Approximation
(RMSEA), Standardized Root Mean Square Residual (SRMR),
Akaike Information Criterion (AIC) and R2) from all models
are reported in Table 1. We indicate that R2 is a goodness of
fit measure, as it shows the explained variance of the outcome
variable predicted by the predictors (ranging from 0 to 1), but it
is not penalized for the number of parameters in the model as
the AIC.

Structural equation models were analyzed in RStudio software
(RStudio Inc., 2016) by using the lavaan package (Rosseel, 2012).

TABLE 1 | Structural Equation Models summary.

M1 M2 M3 M4

Number of free parameters 60 57 45 17

Comparative Fit Index (CFI) > 0.999 > 0.999 > 0.999 0.992

Tucker-Lewis Index (TLI) > 0.999 > 0.999 > 0.999 0.962

Root Mean Square Error of Approximation (RMSEA) < 0.001 < 0.001 < 0.001 0.049

Standardized Root Mean Square Residual (SRMR) < 0.001 < 0.001 < 0.001 0.027

Akaike Information Criterion (AIC) 8,123 8,130 8,113 8,083

R-Square:

INQ_Inclusion 0.173 0.169 0.159 0.138

JSI_JobSatisfaction 0.185 0.162 0.155 0.129

CSS_CommunicationSatisfaction 0.176 0.175 0.169 0.137

Acronyms for all tables: INQ, Inclusion Questionnaire; JSI, Job Satisfaction Index; CSS, Communication Satisfaction Scale; PQ, Personality Questionnaire; TOM, Motivational Orientation

Test (original name: Test di Orientamento Motivazionale); ERQ, Emotion Regulation Questionnaire; REIS24, Rational-Experiential Inventory—Short form 24 items; TEIQ, Trait Emotional

Intelligence Questionnaire; IRI, Interpersonal Reactivity Instrument; PSA, Prosocialness Scale for Adults.
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Machine Learning Algorithms
Through Machine Learning we aimed at selecting the best
features to predict the target variables with a certain degree
of accuracy. We opted for using a Least Absolute Shrinkage
and Selection Operator (Lasso) regression algorithm for feature
selection and a Bootstrap Aggregation of K-Nearest Neighbors
classifiers for final classification. Despite having continuous
target variables, the latter choice wasmade in order to reduce data
variability given the small sample size. We used Python’s Pandas
(Version 1.3.3), Numpy (1.21.2) and Scikit-Learn (1.0) toolboxes
for this analysis setting seed of 1.

Firstly, some further pre-processing steps were carried out on
the data before themodel validation process. For each feature, the
score of the training set was normalized to obtain a distribution
with mean 0 and standard deviation 1 (Z-scores transformation).
The mean and standard deviation of the training set distribution
were also used as a benchmark to normalize the data points of
the test set features. Regarding the target variables, to apply the
regression model, no further pre-processing steps were needed.
On the other hand, to use the classification algorithm, we
transformed each target variable of the training set into an ordinal
dichotomous output through a median split, assigning labels of
1 and 2 to the values below and above the median, respectively.
We used the same median value of the training set to split and
transform the test set target variables.

Then, three types of Machine Learning models were
used for the analysis: Lasso Regression, K-Nearest Neighbors
Classifier and Bootstrap Aggregation meta-model. The latter
is an ensemble learning model created with a bootstrapping
method and used to further enhance the performance of a
single K-Nearest Neighbors Classifier. For each target variable
(Inclusion, Job Satisfaction and Communication Satisfaction),
an independent model validation process was followed, thus
obtaining three Lasso, three K-Nearest Neighbors and three
Bootstrap Aggregation meta-models in total. We also evaluated
different classification methods to be used instead of K-
Nearest Neighbors; see Supplementary Material for a complete
description of the classification method choice.

Lasso Regression
We used Lasso regression to select the best features for each
model. This step can be useful when dealing with small datasets,
as in our case, in order to reduce overfitting and the curse of
dimensionality (Chen et al., 2020b). Lasso is a linear regression
model where the absolute value of each feature coefficient
is added to the loss function (Ordinary Least Square) and
multiplied to a constant parameter Alpha (Friedman et al., 2010).
This type of regularization (L1) allowed us to perform feature
selection, zeroing the coefficient of the less important features
in predicting the target variable and using only the remaining
ones in the model. This feature made the Lasso Regression one
of the three reference models in our research because has a
similar objective and output of SEMs and is useful in reducing
the numerous features we have in our small sample size dataset.

A Randomized Search Cross-Validation fitted on the
training set was used to find parameters that optimize the
Lasso regression model performance (hyperparameter tuning—
Bergstra and Bengio, 2012). Considering the trade-off between

search quality and computational efficiency, we set n= 100
randomized search iterations. For each loop, the algorithm
assesses a certain number of random combinations by picking
up from a starting grid an entry for each validation parameter.
In our case, we made the Lasso hyperparameter tuning only
on the Alpha parameter. Accordingly, to select the best Alpha
for each model we used a grid of values ranging from 0.1 to
20 in steps of 0.1 (n = 200 maximum Alpha values to select).
Then, for each iteration, the model performance is measured
using a K-Fold Cross-Validation score (Géron, 2019). This
technique avoids a fixed split of the data into a training and a
validation set. Accordingly, the algorithm divides the training set
into K parts, in our case K = 5 (as a trade-off between quality
and computation timing), computing 5 iterations. For each K,
one-fifth of the training set was in turn used as validation and
the other part as the training set computing a performance
score each time. The mean of the MAE for the 5-Fold iterations
was the final cross-validation score of each randomized search
iteration. Then, the Alpha value which led the model to the
lowest MAE was picked and the best model was used for feature
selection. For each feature, we obtained a regression coefficient
computed on the training set that reflects feature importance in
predicting the target variable. This coefficient could be positive
or negative and can be interpreted as the increase or decrease,
respectively, in the target variable score for one standard
deviation change of the feature. For each target variable, features
with a coefficient equal to zero have been discarded and not
included in the validation process as starting predictors of the
K-Nearest Neighbors Classifier.

K-Nearest Neighbors Classifier
The K-Nearest Neighbors was used as the base model for
the Bootstrap Aggregation meta-model in order to solve the
classification problem. This approach was chosen because it is
one of the simplest machine learning classification models. In
fact, for each data point, this model predicts the target label
by looking at the K closest data points (Géron, 2019). For the
Randomized Cross-Validation of the model, we tuned three
parameters: number of neighbors, weight and metric. For the
number of neighbors, thus the K closest point to consider for the
classification, a grid was used with odd values ranging from 1 to
85 for both the Inclusion and the Communication Satisfaction
target variables, while from 1 to 81 for the Job Satisfaction.
This range was chosen in order to avoid overfitting because the
maximum possible number of K was equal to half the data points
belonging to the least represented class of each target variable.
The weight parameter, that controls the importance assigned to
the K neighbors, had two entries: uniform,which assigns the same
weight to the neighbors, leading to choose the predicted label
according to the most frequent and closest K and distance that
gives proportionally high weight to the nearest points. Metric is
the formula used to calculate the distance between data points.
The entries are Manhattan and Euclidean that use an L1 and L2
norm formula, respectively. Themodel performance was assessed
by the accuracy score–i.e., the number of correct predictions out
of the total, the higher, the better. Finally, the optimized model
was used on the test set. This operation was carried out with
two purposes: to assess the goodness of the single K-Nearest
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Neighbors classifier, thus lower or better model performance for
the training set compared to the test set, respectively; and as a
control measure to understand whether the ensemble learning
technique would actually lead to improvements to the single base
model in terms of performance. This possibility was evaluated
using again the accuracy score. Moreover, given the small sample
size and the imbalance between classes, we also computed, for
each target class, the precision, that is the number of correctly
predicted samples of the class with respect to all the samples
predicted of that class by the classifier, recall,which is the number
of correctly classified samples of that class compared to the total
samples of the same class and F1 score, that is a weighted average
of precision and recall scores (Saito and Rehmsmeier, 2015).

Bagging Meta-Model
We used an ensemble meta-estimator called Bootstrap
Aggregation (Bagging–Breiman, 1996) with each single
validated K-Nearest Neighbors classification model. We chose
this approach in order to reduce the variance of the single model,
that is the error deriving from the noise present in the training
sample, whose consequence could be overfitting. The Bagging
allows us to train each validated model n times picking at
random and with replacement for each iteration 348 data points,
corresponding to the sample size of the training set. Thus, some
data points may be picked more than once in the same iteration,
while others may never be drawn (out of bagging). For each
iteration, the trained model makes a prediction. For the classifier
(Bagging Classifier) the final prediction of the target variable is
the most frequent predicted class.

In the validation process of each bagging meta-model, we
chose the best number of iterations with a for loop testing. We
set a range of n going from 10 to 100 with a step of 1 as a
trade-off between accuracy and computation power. For each
iteration, a 5-Fold Cross-Validation on the training set was done
by computing the mean and standard deviation of the accuracy
score as the performance metric. The iteration parameter that
reflected the model with the highest mean accuracy score was
considered to be the best one. Then, an optimized meta-model
was fitted on the training set and the model performance was
evaluated on the test set with accuracy, precision, recall and F1
scores. Specifically, the accuracy was used to assess the possible
presence of underfitting or overfitting. The latter conditions
were operationalized as a variation of more than one standard
deviation between the test set and the training set accuracy scores.

RESULTS

Structural Equation Models
All model summaries can be found in Table 1, while
statistically significant parameters are reported in Table 2.
A report of all parameters in all models can be found in the
Supplementary Material, in which statistically significant effects
are highlighted in bold.

The first model included all variables collected from both
employees and supervisors (excluding age and seniority).
Nevertheless, in thismodel, the sample covariancematrix was not
positive-definite. This result typically implies multicollinearity in

the model (i.e., means that at least one of the exogenous variables
can be expressed as a linear combination of the others) or the
number of observations is less than the number of variables. Best
practice, in this case, is to remove highly correlated variables
from the model (Field et al., 2012); in our case, the questionnaire
showing the highest number of highly correlated variables (i.e., |r|
> 0.5) was the Multifactor Leadership Questionnaire (MLQ-6S).
For this reason, this model was re-run without the 6 Leadership
Styles variables.

The following model (M1) included variables collected from
both employees and supervisors (excluding Leadership Styles,
age and seniority). Information and fit indices from this and the
following models are summarized in Table 1. Since no variables
collected from supervisors showed statistically significant effects
on any of the three endogenous variables, we removed these
exogenous variables and added age and seniority (from both
employees and supervisors) to the next model (M2). Also in this
case, age and seniority (from both employees and supervisors)
showed no statistically significant effects on any of the three
endogenous variables. Therefore, in M3 only variables collected
from employees were included. This model was further reduced
by including only parameters showing significant effects in
M3 (in a feature selection fashion), leading to an optimized
model (M4). As shown in Table 1, the AIC was lower in M4
(8083) than in M3 (8113), displaying thus increased efficiency in
explaining data in the optimized model (i.e., M4) compared to
M3. Nevertheless, a Likelihood Ratio Test (LRT) was performed
between the two best models (i.e., M3 and M4) to compare the
likelihood of the two models. This LRT showed that the models’
likelihood was not significantly different (1χ² (4) = 7.35, p =

0.119), despite the relevant change in the number of estimated
parameters (45 in M3 vs. 17 in M4).

Statistically significant effects are reported in Table 2.
Significant effects showed noteworthy consistency across
different models (only two effects were not significant in M4)
and are summarized in Figure 1. Orientation to relation showed
a significant positive effect toward all three outcome measures,
while resistance to change presented a significant negative
effect toward all outcome variables. Therefore, employees
higher in orientation to relation and lower in resistance to
change showed better success in relocation. Industriousness
showed significant negative effects toward inclusion and
communication satisfaction, while dutifulness displayed
significant positive effects toward the two same outcome
variables. Finally, orientation to objective showed a significant
positive effect toward communication satisfaction. This latter
effect and the effect of industriousness toward communication
satisfaction did not show to be statistically significant
in model M4.

Testing Sample
Predicted scores for the three outcome measures were computed
in the testing sample (n= 79) according to the parameters found
in models M3 and M4 (i.e., the two models with the lowest
AIC, representing the largest explained variance with the lowest
number of parameters). Predicted scores were then compared to
observed scores to test the predictive accuracy of the models by
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TABLE 2 | Summary of statistically significant parameters.

M1

Regressions

Estimate Std. Err z value P (>|z|) Std. lv Std. all

INQ_Inclusion ∼

PQ_Industriousness −0.422 0.182 −2.316 0.021 −0.422 −0.137

PQ_Dutifulness 0.439 0.173 2.534 0.011 0.439 0.149

TOM_Relation 0.577 0.176 3.271 0.001 0.577 0.220

Resistance to change −0.170 0.077 −2.192 0.028 −0.170 −0.147

JSI_JobSatisfaction ∼

TOM_Relation 0.560 0.191 2.929 0.003 0.560 0.196

Resistance to change −0.287 0.084 −3.420 0.001 −0.287 −0.227

CSS_CommunicationSatisfaction∼

PQ_Industriousness −0.410 0.194 −2.115 0.034 −0.410 −0.125

PQ_Dutifulness 0.429 0.184 2.327 0.020 0.429 0.137

TOM_Target 0.384 0.174 2.207 0.027 0.384 0.207

TOM_Relation 0.647 0.188 3.446 0.001 0.647 0.231

Resistance to change −0.214 0.082 −2.597 0.009 −0.214 −0.173

M2

Regressions

INQ_Inclusion ∼

PQ_Industriousness −0.418 0.182 −2.300 0.021 −0.418 −0.136

PQ_Dutifulness 0.444 0.174 2.555 0.011 0.444 0.151

TOM_Relation 0.615 0.179 3.438 0.001 0.615 0.234

Resistance to change −0.188 0.077 −2.448 0.014 −0.188 −0.162

JSI_JobSatisfaction ∼

TOM_Relation 0.593 0.196 3.028 0.002 0.593 0.207

Resistance to change −0.323 0.084 −3.846 <0.001 −0.323 −0.255

CSS_CommunicationSatisfaction∼

PQ_Industriousness −0.413 0.193 −2.137 0.033 −0.413 −0.126

PQ_Dutifulness 0.439 0.185 2.378 0.017 0.439 0.140

TOM_Target 0.379 0.175 2.169 0.030 0.379 0.204

TOM_Relation 0.664 0.190 3.493 <0.001 0.664 0.237

Resistance to change −0.212 0.081 −2.605 0.009 −0.212 −0.172

M3

Regressions

INQ_Inclusion ∼

PQ_Industriousness −0.368 0.180 −2.044 0.041 −0.368 −0.119

PQ_Dutifulness 0.421 0.174 2.422 0.015 0.421 0.143

TOM_Relation 0.598 0.177 3.369 0.001 0.598 0.228

Resistance to change −0.187 0.077 −2.433 0.015 −0.187 −0.161

JSI_JobSatisfaction ∼

TOM_Relation 0.606 0.194 3.120 0.002 0.606 0.211

Resistance to change −0.320 0.084 −3.804 <0.001 −0.320 −0.253

CSS_CommunicationSatisfaction∼

PQ_Industriousness −0.401 0.191 −2.099 0.036 −0.401 −0.122

PQ_Dutifulness 0.429 0.184 2.330 0.020 0.429 0.137

TOM_Target 0.384 0.174 2.202 0.028 0.384 0.206

TOM_Relation 0.652 0.188 3.466 0.001 0.652 0.233

Resistance to change −0.208 0.081 −2.558 0.011 −0.208 −0.169

(Continued)
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TABLE 2 | Continued

Estimate Std. Err z value P (>|z|) Std. lv Std. all

M4

Regressions

INQ_Inclusion ∼

PQ_Industriousness −0.299 0.141 −2.117 0.034 −0.299 −0.097

PQ_Dutifulness 0.292 0.133 2.193 0.028 0.292 0.099

TOM_Relation 0.793 0.136 5.827 <0.001 0.793 0.303

Resistance to change −0.215 0.058 −3.708 <0.001 −0.215 −0.186

JSI_JobSatisfaction ∼

TOM_Relation 0.755 0.143 5.269 <0.001 0.755 0.264

Resistance to change −0.298 0.063 −4.712 <0.001 −0.298 −0.236

CSS_CommunicationSatisfaction∼

PQ_Dutifulness 0.348 0.148 2.351 0.019 0.348 0.112

TOM_Relation 0.755 0.155 4.864 <0.001 0.755 0.271

Resistance to change −0.242 0.069 −3.493 <0.001 −0.242 −0.196

Std. lv, effects estimate standardized on the first manifest variable; in our models, this corresponds to the default estimate. Std. all, effects estimate standardized on all manifest variables.

using the Mean Absolute Error (MAE). MAE values for the two
models M3 and M4 are reported in Table 3. Higher MAE values
in M4 compared to M3 showed that prediction accuracy in the
testing phase was higher inM3 thanM4. This result indicates that
the higher number of parameters inM3 contributed to predicting
more accurately the outcome scores in the testing sample, thus
generalizing better the results to an external dataset.

Machine Learning Algorithms
Like SEMs, supervisor-related feature variables have been
dropped from Machine Learning models due to their
multicollinearity. The rest of the features have all been included
in the validation process of each model.

Feature Selection

Inclusion
For the inclusion target variable, the best Lasso Regression model
(Alpha = 0.6, MAE = 9.71) reported a major influence of
TOMRelation (2.9), Resistance to change (−1.7), PQDutifulness
(1.3), TOM Target (0.42), PQ Industriousness (−0.14), ERQ
Suppression (−0.06) and REI Rational (0.03—see Figure 2A).

Job Satisfaction
The best Lasso Regression model (Alpha = 0.6, MAE = 10.91)
for the Job Satisfaction target variable showed a notable influence
of TOM Relation (2.74), Resistance to change (−2.74), PQ
Dutifulness (1.08), TOM Target (0.46), PQ Industriousness
(0.14), and Seniority (0.05—see Figure 2B).

Communication Satisfaction
Considering as target variable the Communication Satisfaction,
the best Lasso Regression model (Alpha = 0.6, MAE = 10.45)
reported a major influence of TOM Relation (2.74), Resistance
to change (−1.99), PQ Dutifulness (1.46), ERQ Suppression
(−0.93), TOM Target (0.58), TOM Leadership (−0.24), PQ
Industriousness (−0.18—see Figure 2C).

Classification Models

Inclusion
The best K-Nearest Neighbor Classifier (weights = distance,
n neighbors = 31 and metric = euclidean) reported a cross-
validation accuracy score of the training set higher (0.66)
compared to the test set (0.61). The prediction of the low
inclusion class (1, N = 32) on the test set reached a precision
of 0.52 and a recall of 0.50 (F1 score = 0.51). This was lower
compared to the high inclusion class (2, N= 47) that scored 0.67
on precision and 0.68 on the recall (F1 score= 0.67).

The best Bagging Classifier (n estimators = 43—see
Figure 3A) did not show overfitting or underfitting. Indeed, the
cross-validation accuracy score of the training set was 0.65 ±

0.05 compared to 0.63 of the test set. Moreover, the Bagging
Classifier slightly enhanced the prediction performance of both
the low inclusion (precision = 0.55, recall = 0.53 and F1 score
= 0.54) and the high inclusion class (precision = 0.60, recall
= 0.70 and F1 score = 0.69) compared to the single K-Nearest
Neighbor Classifier.

Job Satisfaction
The best K-Nearest Neighbor Classifier (weights = distance, n
neighbors = 47 and metric =manhattan) reported a training set
cross-validation accuracy score of 0.65 compared to 0.63 of the
test set . Moreover, on the test set, the prediction performance of
the low job satisfaction class (N = 28) scored lower (precision =

0.48, recall= 0.54 and F1 score= 0.51) compared to the high job
satisfaction class (precision = 0.73, recall = 0.69 and F1 score =
0.71, N= 51).

The best Bagging Classifier (n estimators = 56—see
Figure 3B) did not show overfitting or underfitting and displayed
a slight increase in model performance. Accordingly, the cross-
validation accuracy score of the training set was 0.64 ± 0.03,
while of the test set was 0.66. Moreover, the Bagging Classifier
slightly increased the prediction performance of both the low
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FIGURE 1 | Summary of results from Structural Equation Models. This figure represents the statistically significant effects found across all Structural Equation Models

tested. Green boxes represent exogenous (independent) variables measured in employees, while blue boxes represent endogenous (dependent) variables from

employees. Green arrows represent statistically significant positive effects, red arrows represent statistically significant negative effects. Dashed lines represent two

effects found as statistically significant in all tested models except for the model with reduced parameters (M4).

TABLE 3 | Mean Absolute Error (MAE) in the testing sample in Structural Equation

Models.

MAE M3 M4

INQ_Inclusion 11.04 13.33

JSI_JobSatisfaction 10.54 16.97

CSS_CommunicationSatisfaction 10.00 13.46

job satisfaction (precision = 0.52, recall = 0.54 and F1 score =
0.53) and the high job satisfaction class (precision = 0.74, recall
= 0.73 and F1 score = 0.73) compared to the single K-Nearest
Neighbor Classifier.

Communication Satisfaction
Weobserved that the best K-Nearest Neighbor Classifier (weights
= uniform, n neighbors= 59 and metric= euclidean) reported a
higher cross-validation accuracy score of the training set (0.66)
compared to the test set (0.65). Again, on the test set, the
prediction performance of the low communication satisfaction
class (N = 32) scored lower (precision = 0.56, recall = 0.56
and F1 score = 0.56) compared to the high communication
satisfaction class (precision = 0.70, recall = 0.70 and F1 score
= 0.70, N= 47).

The best Bagging Classifier (n estimators = 38—see
Figure 3C) did not show overfitting or underfitting, but a small

increment in model performance. Indeed, the cross-validation
accuracy score of the training set reached 0.66 ± 0.04, while of
the test set was 0.66. Moreover, the Bagging Classifier increased
the prediction performance of both the low communication
satisfaction class (precision = 0.58, recall = 0.56 and F1 score
= 0.57) and the high communication satisfaction class (precision
= 0.71, recall= 0.72 and F1 score= 0.72) compared to the single
K-Nearest Neighbor Classifier.

DISCUSSION

Internal mobility has been previously investigated as a specific
form of job relocation. Nevertheless, no studies have identified
what characteristics (in both employees and supervisors) can
predict successful mobility in terms of job satisfaction. In this
study, we compared different classes of models to identify
the most efficient technique to predict successful mobility,
i.e., (i) traditional Structural Equation Modeling (SEM), with
two families of Machine Learning algorithms: (ii) regressors,
specifically least absolute shrinkage and selection operator
(Lasso) aimed at feature selection and (iii) classifiers, specifically
k-nearest neighbors algorithm (k-NN). Results showed different
performances for the three classes of models, ranging from low to
medium accuracy.

A crucial aspect in results is the consistency among statistically
significant effects. All SEMs replicated the statistical significance
of the effects involving five predictors: (i) orientation to relation
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FIGURE 2 | Feature coefficients in Lasso regressors. This figure represents the coefficients of features surviving the regularization in Lasso regressors. Models

predicting inclusion (A), job satisfaction (B), and communication satisfaction (C) are represented.

and resistance to change showed to influence all endogenous
variables with high effect sizes, (ii) dutifulness, industriousness
and orientation to objective displayed a relevant but less
consistent contribution, as they did not influence all endogenous
variables, and in the reduced model (M4) two of the parameters
appeared not to be statistically significant. A decisive result is a
consistency with the Lasso results, in particular for what concerns
orientation to relation and resistance to change. Minor results
also identified employees’ seniority, rational style, expressive
suppression and orientation to leadership as relevant in Lasso
models. Feature selection in Lasso models allows predicting the
target variable by zeroing the coefficient of the less important
features and using only the remaining ones in the model. The
fact that two models stemming from different approaches to data
analysis replicated comparable results is acceptable evidence for
results consistency.

Previous literature showed that personality dispositions,
resistance to change and social orientations are crucial for

mobility relocation (Otto and Dalbert, 2012), and managing
resistance to change in the workplace appears to be fundamental
to stimulate job satisfaction (Laframboise et al., 2003). Resistance
to change is defined as an individual’s dispositional inclination to
resist changes (declined in routine seeking, emotional reaction
to imposed change, cognitive rigidity, and short-term focus,
Oreg, 2003) and therefore the influence of this construct on
job relocation appears to be self-evident. Nevertheless, having
measured the influence of this variable on all three indices
of successful relocation with such consistency is meaningful
evidence for the robustness of this relation. At the same time,
the orientation to social relation was previously shown to be
fundamental in some careers with a great number of employee-
customer exchanges (Alessandri and Russo, 2011). According
to our data, orientation to relation appears to be crucial in
successful relocation for any employee, and not only for a specific
personality phenotype as previously found (Otto and Dalbert,
2012). This result shows that motivational orientation toward
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FIGURE 3 | Accuracy in Ensemble learning k-NN. This figure represents the accuracy variation (on the y-axis) based on the number of estimators (i.e., number of

classifiers included in the Bagging Classifier, on the x-axis) for inclusion (A), job satisfaction (B), and communication satisfaction (C) output variables.

social bonding is crucial when a change in the social group
(i.e., job relocation) is experienced. This motivational orientation
can stimulate a person to be accepted by the new social
group and, consequently, experience higher job satisfaction in
the workplace.

In some models we reported, industriousness predicted
negatively successful relocation. This result is related to the
fact that the industriousness facet captured several aspects
related to workaholism (e.g., being under constant pressure,
putting work before pleasure) (Jackson et al., 1996a), that
can be considered as the extreme opposite of job satisfaction
(Burke, 2001). Dutifulness appears to be relevant for a successful
relocation, as it explains aspects related to prudence and
compliance with rules, which are fundamental for inclusion in
a new social group. Finally, the suppression emotion regulation
strategy negatively predicts success in job relocation in some
Lasso models, as it represents a basic regulation strategy,

which is often not effective in intrapersonal and interpersonal
functioning (Gross and John, 2003).

In SEMs, M3 and M4 are the most efficient models,
considering only exogenous variables from employees. When
choosing the best model, on the one hand, the likelihood
ratio test (LRT) in the training set did not find a significant
difference in explained variance. This result favored M4, as it
explained a comparable level of variance with an extremely lower
number of parameters (as displayed by lower AIC). On the other
hand, validation on the test set appeared to favor M3, as it
showed lower MAE values than M4 across all three endogenous
variables. Therefore, the higher number of parameters in M3
occurred to describe better data in the test set. To sum up,
we cannot univocally prefer one of the two models, as M3
generalized better results on the test set, while M4 performed
more efficiently on the training set. On the contrary, models M1
and M2 (the least efficient ones, in terms of AIC) showed that
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supervisors’ data, as well as age and seniority, are not relevant
in predicting success in relocation. The interpretation of these
(null) results would imply low relevance of the supervisors’
role in relocation success; nevertheless, we cannot interpret this
result because multicollinearity generated by using aggregate
data for supervisors could invalidate them. Moreover, there is
a substantial overlap between the features surviving in Lasso
regressors and statistically significant exogenous variables in
SEMs. Since in Lasso models only the most relevant features
survive, the meaningful agreement between these two classes of
models shows the statistical relevance of these effects and the
reliability of the results.

When chunking the information with feature selection and
classifying high vs. low relocation success (i.e., job satisfaction,
inclusion and communication satisfaction) by means of k-NN
algorithms, it was possible to predict success with 64–66%
accuracy in the training set and 61–65% in the test set, which
represent medium performance. Overall, bagging meta-models
displayed slightly higher performances compared to the single k-
NNs and, despite the small dataset, they did not show underfitting
or overfitting. The ensemble meta-model reached a 64–66%
accuracy in the training set and a 63–66% on the test set, raising
also the F1 score of each predicted class. Indeed, bagging is based
on bootstrapping techniques, which is frequently used with small
datasets. This represents further evidence that results could be
improved by using larger datasets in both training and testing
phases (see next paragraph). These results also show that the
algorithms often generalized well on the test set. However, the
algorithms showed to predict high success in relocation (values
above themedian) with generally higher precision and recall than
low success (below the median). An explanation of this result
can be related to the relatively small sample size, which was
generally biased toward high scores (i.e., more participants with
high values in the three outcomes than with low values). Because
of this imbalance in classes, algorithms weremost probably better
trained on identifying participants with high relocation success
than low success.

In summary, our results suggest that SEMs (more broadly
used in HR literature, Borgogni et al., 2010) can estimate
successful relocation with average accuracy. Resistance to change
and orientation to relation were found to be the most relevant
predictors, as confirmed by Lasso regressors. Bagging Classifier
with k-NN as base estimator displayed good performance in
classifying data, showing potentiality in using machine learning
techniques in predictive HR analytics. The performance of
these algorithms could be increased in future research by
increasing sample size and including further predictors, as
specified hereafter.

Limitations
The main methodological limitation of this study is represented
by having used aggregate data for supervisors. Unfortunately,
for privacy reasons, this was our better option, since we could
trace supervisors back to Business Units, but not to individual
direct reports. These aggregate data generated multicollinearity
in both SEMs and machine learning algorithms using data from
supervisors, thus making null effects in these predictors hard to

interpret. The lack of influence from supervisors’ features on the
relocation success in employees would be an outstanding result
in terms of implications, but, unfortunately, this interpretation is
impractical for methodological limitations.

Despite a discretely large sample size in both training and
testing sets, this study could have benefitted from larger samples.
The main reason is the large number of predictors involved in
models, which would need an adequate number of participants
in order to fit the data (Sawyer, 1982; Fursov et al., 2018).

Another theoretical limitation of our study is the fact
that we considered only post-relocation data. Dependent and
independent variables have been measured only after the transfer
had occurred (more than 6 months before data collection).
Hence, we do not have information about such variables before
the transfer, that is, we do not know the level of job satisfaction,
inclusion, and communication satisfaction related to the old job
position. Hence, we cannot exclude that there are differences in
job satisfaction between old and new positions inherently related
to the specificities of the new job position. Actually, in our study,
we adopted the point of view of such practitioners, interested in
estimating future relocation success for normative purposes.

Different classification methods could have been chosen
instead of K-Nearest Neighbors. In our specific case, these
alternative methods would have yielded similar results
(Supplementary Material). This aspect may represent a
future development of this study, consisting in comparing
different algorithms in several fields of predictive HR analytics
according to different research or market questions.

Future directions for this study may also consider adding
predictors which are known to be predictive of satisfaction
in relocation. These predictors would include both stable
psychological traits (e.g., personality factors) and social-
environmental features (e.g., economic conditions, family
characteristics, differences among industries and occupations).

Conclusions
To sum up, we found that traditional SEMs predicted with
average accuracy successful relocation, thus identifying the
relevance of resistance to change and orientation to relation.
Lasso regressors confirmed the influence of these variables; while
k-NN classifiers displayed good performance in classifying data.

The practical application of these results is prominent in
the field of HR, as we have empirical evidence for pushing
for training employees who are going to be relocated in
reducing their resistance to change, thus promoting resilience,
and improving their social skills, aside from training in hard
skills. Moreover, we show that artificial intelligence algorithms
could help in selecting employees who are more prone to be
relocated to a new job position, with all due ethical reservations
and in conjunction with further methods such as interviews,
validated questionnaires, et cetera.

In the field of predictive HR analytics, this is a seminal result
comparingmethods stemming from different research traditions.
There is considerable room for improvement since the models’
efficiency was typically not high. Future research will have to
consider different variables and different approaches, but we
believe it is crucial to start comparing the performance from
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divergent methods. The aim of this comparison is not to find
that one method is better than others in the entire field of
HR analytics, but to make them all available and comparable
according to different research (and market) questions.
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Artificial intelligence (AI) has a high application potential in many areas of the economy,

and its use is expected to accelerate strongly in the coming years. This is linked with

changes in working conditions that may be substantial and entail serious health risks

for employees. With our paper we are the first to conduct an empirical analysis of

employers’ increasing flexibility requirements in the course of advancing digitalization,

based on a representative business survey, the IAB Job Vacancy Survey. We combine

establishment-level data from the survey and occupation-specific characteristics from

other sources and apply non-linear random effects estimations. According to employers’

assessments, office and secretarial occupations are undergoing the largest changes

in terms of flexibility requirements, followed by other occupations that are highly

relevant in the context of AI: occupations in company organization and strategy,

vehicle/aerospace/shipbuilding technicians and occupations in insurance and financial

services. The increasing requirements we observe most frequently are those concerning

demands on employees’ self-organization, although short-term working-time flexibility

and workplace flexibility also play an important role. The estimation results show that

the occupational characteristics, independently of the individual employer, play a major

role for increasing flexibility requirements. For example, occupations with a larger share

of routine cognitive activities (which in the literature are usually more closely associated

with artificial intelligence than others) reveal a significantly higher probability of increasing

flexibility demands, specifically with regard to the employees’ self-organization. This

supports the argument that AI changes above all work content and work processes. For

the average age of the workforce and the unemployment rate in an occupation we find

significantly negative effects. At the establishment level the share of female employees

plays a significant negative role. Our findings provide clear indications for targeted action

in labor market and education policy in order to minimize the risks and to strengthen the

chances of an increasing application of AI technologies.
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INTRODUCTION

Increasing digitalization, including the development and use of
artificial intelligence (AI), has substantially changed working
conditions in establishments and administrations. This is
one of the main results obtained in the empirical analyses
conducted by Warning and Weber (2018) and Warning et al.
(2020) on the basis of data from a representative German
employer survey. The analyses show, among other things,
that employers with digitalization activities—including the
application of artificial intelligence—specify higher flexibility
requirements with respect to place of work, working time,
and self-organization for their newly hired employees
significantly more frequently compared to employers without
digitalization activities.

As far as we know, that study was one of the first to deal
with changes in qualitative working conditions in the course of
digitalization. To date, most analyses from labor market research
focus on the quantitative effects, and the debate surrounding
whether digitalization and its components creates or suppresses
employment remains in the foreground (DeCanio, 2016; Arntz
et al., 2017, 2020; Acemoglu and Restrepo, 2020a).

Yet, serious research from both labor and health economics
and sociology point to the possible negative effects of precisely
that type of qualitative changes reported by Warning and Weber
(2018) and Warning et al. (2020). According to that research,
changing requirements of employers with regard to working
place, working time and work organization are not regarded as
positive by all employees, and digitalization causes a significant
proportion of individual psychological stress (Diebig et al., 2020;
Hartwig et al., 2020). In Germany almost half of all employees
(46%) associate digitalization with an increasing workload, while
only 9% experience a reduction of their workload (Institut DGB
Index Gute Arbeit, 2016).

Health insurance providers, in turn, report an increase in
illnesses related to such increasing workloads, deadlines and
time pressures, as well as changing working hours, and warn
of the negative health effects of digitalization, see for Germany
Marschall et al. (2017). The increase in stress-related illnesses is
not only associated with lost hours of work and a strain on health
and social security funds, employers must also expect significant
reductions in the performance of those who continue to work
despite illness (Diebig et al., 2020).

Sociological research intensively discusses the possible
effects of increasing flexibility in working-time. It can entail
considerable negative aspects for workers if they face the
challenge of reconciling changing working times with other
areas of their life, which is not always possible without conflict
and is not always cost neutral (Allen et al., 2000; Ford et al.,
2007; Dettmers et al., 2013; Brough et al., 2020). Of course,
other individuals benefit from more time flexibility in their
jobs in terms of work-life balance, particularly when increasing
flexibility goes hand in hand with a high level of individual
freedom, rather than increasing control over what employees do
minute by minute.

Potential negative effects have been documented in a large
number of studies and are likely to be relevant in most areas

of digitalization. Not least due to the challenges in the wake
of the COVID-19 pandemic, the dynamics of digitalization
processes have accelerated enormously and AI is gaining
importance in modern economies (Brynjolfsson et al., 2018;
Al Momani et al., 2021; Amankwah-Amoah et al., 2021). As
is discussed by Warning and Weber (2018), establishments
and administrations first develop their internal and external
digitalization technologies and networks, whereas artificial
intelligence is integrated at a later date, so far in only a
minority of establishments. However, its speed of dissemination
is strongly increasing and a broader discussion of the effects
on employees—besides the question of whether jobs are being
created or destroyed—is needed to counteract at an early
stage any negative developments that might burden not only
individuals, but also businesses and society. In doing so, we
consider it highly important to take account of the specificities
of occupations, since, as has already been discussed in the
literature, the applications of AI may differ considerably between
occupations and fields of activity (see section Available Research
on AI and the Labor Market), which in turn may have an impact
on the respective working conditions.

With our analyses we make a substantive empirical
contribution to the discussion surrounding qualitative changes
in working conditions in the course of digitalization and the
use of AI, with a special focus on the role of occupation-specific
characteristics. On the basis of data from a large, representative
German employer survey we shed light on employers’ changing
flexibility demands regarding their employees’ place of work,
short-term changes in their working time and requirements
regarding their self-organization. As far as we know, there is
no other representative study available in this context, based
on concrete assessments by a large number of employers in
all industries and establishment sizes. Germany is a country
with a strong digital development and high investments in the
development and application of AI (OECD, 2020). Therefore, the
results presented here are also highly relevant for other advanced
economies and contribute to discussions at the European level
dealing with changing working conditions.

Our article is structured as follows: Section Available Research
on AI and the Labor Market provides an overview of the
research conducted to date on labor market changes related to
artificial intelligence, which so far mainly comprises research
on potential quantitative effects. Section Method presents the
data that we use for our study, explains the transformation
of the data into a panel data set and justifies the selection of
a non-linear random effects estimator. This part is followed
by a description of some of the digital developments in
Germany and of the occupations that are relevant in the
context of AI applications in section Some Descriptive Results.
Section Estimation Results discusses the results of the random
effects estimations and the factors that emerge as relevant for
employers’ increasing requirements regarding their employees’
flexibility in terms of their place of work, their working
time and their self-organization. We summarize our results
in section Discussion and Outlook and provide an outlook
for future empirical research on the qualitative labor market
effects of AI.
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AVAILABLE RESEARCH ON AI AND THE
LABOR MARKET

As is the case for digitalization in general, there is no unique
definition of AI that expresses the diversity and breadth of both
the technology and its potential applications, although we do not
yet know all of the potential AI applications. Therefore, labor
market researchers currently address above all the possible labor
market effects of AI, while the actual labor market effects remain
largely unknown, with little empirical work conducted on the
topic so far.

Current research deals partly with conceptual boundaries and
the ways that AI can be operationalized for empirical research
(Ernst et al., 2019; Acemoglu and Restrepo, 2020b; Tolan et al.,
2021). Building on or parallel to this, empirical work has also
been conducted on the quantitative effects of AI on employment,
wages, hires, and fluctuation (Felten et al., 2019; Webb, 2020;
Georgieff and Hyee, 2021; Fossen and Sorgner, 2022). These
quantitative studies have to make assumptions about how certain
capabilities and tasks are changed by the application of AI
technologies, which have to be defined initially, for example
on the basis of interviews with experts from the AI field. The
aim is to assess how the characteristics of occupations change
with regard to the tasks to be performed and the skills required
and to estimate the quantitative effects resulting from these
changes. Research on changing tasks and the shifting importance
of specific task types (types of manual and cognitive tasks) is
usually a crucial element of these approaches.

For instance, in German labor market research, occupations
are distinguished according to five task types (Spitz-Oener,
2006), see Table 1 for a description and examples. Using this
concept Genz et al. (2021) discuss the idea of different stages of
digital development that include AI in the youngest stage. They
find that establishments that are active in this youngest stage
(“4.0 adopters”) have a comparatively larger share of employees
performing routine cognitive tasks in their job activities (36%),
followed by non-routine analytical tasks and non-routine manual
tasks. The degree of complexity involved in the job increases
with ongoing digitalization, as does demand for IT staff (AI
specialists, IT security consultants, cloud engineers) and staff in
business services.

From the available studies, it can be deduced that AI is
mainly used in occupational fields involving a high proportion
of cognitive and analytical tasks. In these fields, based on a large
amount of data, AI can strengthen the basis for decision-making
by making it possible to systematically monitor and evaluate
processes, thereby supporting people in their decision-making.
In some areas AI can also take over the control of processes
entirely. On the other hand, AI is used less in areas in which
people interact strongly, as not all elements of human behavior
can be replaced by technological systems.

The OECD recently published an article reviewing what is
known about the labormarket effects of AI, showing the potential
of AI on the one hand and our very limited knowledge about
the real labor market effects on the other hand (Lane and Saint-
Martin, 2021). This applies in particular to knowledge about
changing working conditions and employers’ changing demands

regarding flexibility, what might be even more important than
in previous stages of digitalization. The authors provide an
example of this for the case of AI-supported robots: Such robots
might take over activities that are dangerous or physically very
strenuous for humans, which has clear positive effects on the
tasks to be performed, as they become less dangerous and less
strenuous. However, if the humans have to adapt their work
intensity and rhythm to the robot in a close human-machine-
interaction, the work pressure might simultaneously increase and
the freedom of action may decrease, leading to increasing stress
and growing dissatisfaction, in turn causing (new) psychological
stress for the employee. Another open issue in the context of
AI is the availability of big data, which enables employers to
closely monitor employees’ activities and to steer these activities
automatically in the short term. This not only raises questions
concerning data protection and personal rights, but in practice
pressurizes employees to respond at short notice to adaptations
intended by the AI system and to avoid any mistakes and
misconduct while carrying out work.

METHOD

Establishment Data From the IAB Job
Vacancy Survey
In the study presented here, we examined the role of occupation-
and establishment-specific characteristics for increasing
flexibility requirements expressed by employers.

We took up some of the findings obtained by Warning and
Weber (2018) on significant changes in working conditions
and again use the IAB Job Vacancy Survey (JVS) for our
new approach. The JVS is a representative employer survey
conducted at regular intervals among employers in Germany.
Its overall aim is to determine the current demand for labor
and to observe staff-search and hiring processes in detail (Davis
et al., 2014; Bossler et al., 2020). Every year some 12,000
establishments and administrations of all sizes and from all
sectors of the economy complete the written questionnaire in
the fourth quarter of the year. (According to the sampling
method, the term “establishment” always refers to establishments
and public administrations with at least one employee covered
by social security contributions.) The information they report
on vacancies, employment, and the development of search and
hiring processes are extrapolated to all establishments and all new
hires in Germany, thereby providing a unique, representative
picture of the current labor market development in Germany (on
the extrapolation, see Brenzel et al., 2016). The JVS is quality
assured in accordance with the regulations laid down by the
European Commission concerning the collection, measurement
and calculation of job vacancy and employment data that are
gathered in this survey and are officially published by Eurostat
in the context of labor demand data for the European countries
(Eurostat, n. d).

In 2016 we integrated new detailed questions into a special
questionnaire section of the JVS. It focused on changing
flexibility requirements in occupations by those employers who
expect increasing digitalization in the subsequent 5 years, see
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TABLE 1 | Task types of occupations and examples.

Task-type Description Occupations with highest shares in the task-type

Non-routine analytical

activities

Doing research, analyze, evaluate, plan,

construct, design, develop rules/regulations,

apply and interpret rules

Members of Parliament, Ministers, Architects, Civil Engineers,

Veterinarians, Publicists

Interactive non-routine

activities

Negotiate, represent interests, coordinate,

organize, teach or train, sell, buy, advertise,

entertain, present, employ or manage clients

Interpreters, translators, sales representatives, employment and

professional advisers, consumer advisers

Cognitive routine activities Calculate, make bookkeeping, correct

text/data, measure length/height/temperature

Chemical laboratory technician, radio operator, data typist,

telecommunication assembler

Non-routine manual

activities

Repair or renovation of

houses/flats/machinery/vehicles, restoration of

art/monuments, service or accommodation of

guests

Paving, earthmoving machine drivers, machine cleaners, railway

drivers

Routine manual activities Operating or controlling machines, equipping

machines

Rubber converters, metal pullers, leather manufacturers, sheet

metal presses

Sources: Spitz-Oener (2006) p. 243, Dengler et al. (2014) p. 38.

Figure 1. In the first question (question 36 in the JVS) the
participating establishments, or their managers or personnel
managers, are asked whether their particular establishment is
expecting an increase in digital development over the following
5 years. As in the previous analysis of Warning and Weber,
digital development is defined as internal digital networking,
networking with customers/suppliers and the use of learning
systems. Learning systems as part of artificial intelligence systems
are thus included in our study.

All establishments that answer the first question with YES
(a total of 4,262 establishments) are then asked to report the
occupations for which they expect particularly strong changes
in employees’ qualitative working conditions as a result of
increasing digitalization. The questionnaire gives the possibility
to state a maximum of three occupations. The changes in
working conditions refer to flexibility in terms of workplace,
flexibility regarding working time on short notice and demands
regarding employees’ self-organization. The wording in the
special questionnaire section deliberately refers only to (great and
small) increasing or unchanging flexibility requirements, because
our research focuses only on increases, not decreases.

Restricting the number of occupations that establishments
could mention here to a maximum of three was a compromise:
On the one hand, we wanted to investigate positive changes
in flexibility requirements by individual occupations. On the
other hand, an already extensive written survey like the JSV
cannot be extended by too many additional questions, as this
may lead to a drop in establishments’ willingness to participate,
thereby endangering the success of the entire survey. However,
the restriction to three occupations proved in retrospect to be
very meaningful and does not lead to a distortion of the results:
The vast majority of those establishments expecting an increase
in digitalization provided detailed information on flexibility
requirements for one or two occupations. Only rarely did an
establishment report three occupations in the questionnaire.
Therefore the answers reflect employers’ assessments of the
occupations that they consider to be most strongly affected, this
has to be taken into account when interpreting the survey results.

For the subsequent estimations we calculated three new binary
variables from the JVS data. They are independent of each other
and are the dependent variables in our models:

1) increasing requirements regarding flexibility in terms of place
of work,

2) increasing requirements regarding short-term flexibility in
working time and

3) increasing demands regarding self-organization.

Each binary variable took the value 1 if the establishment
reported a small or large increase in the flexibility required in
the specific occupation. It took the value 0 if the establishment
indicated no change or no relevance of this requirement.

In addition to the data on changing requirements by
occupation we utilized standard establishment-specific structural
data from the JVS. They describe the establishment’s individual
employment and labor demand situation that might affect the
employer’s individual decisions regarding the flexibility required
of their employees. Specifically, we used information on region
and workforce size, the share of academics, the share of
employees with vocational qualifications and the share of women.
We included data on the establishment’s overall labor demand,
such as the expected employment development, the number
of new hires, job vacancies as a proportion of employment
and the fluctuation in the particular economic sector. We also
included data on the existence of a works council and collective
agreements, as this might hinder or delay the implementation
of new technologies and the associated changes in working
conditions (Warning and Weber, 2018). Table 2 provides a
descriptive overview of all establishment-specific variables used
in our models.

Data on Occupation-Specific
Characteristics
In order to be able to depict occupation-specific characteristics
in the best possible way, we added various occupation-specific
variables that are independent of the individual establishments.
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FIGURE 1 | IAB Job Vacancy Survey 2016, written questionnaire, p. 5.

TABLE 2 | Descriptives of the variables used in the estimation models.

Variables Mean Std. dev. Min Max

Dependent variables

Work place flexibility 0.0428 0.2023 0 1

Short-term flexibility in

working time

0.0632 0.2433 0 1

Demands on

self-organization

0.0775 0.2674 0 1

Independent variables

Occupation-specific:

Share of interactive

non-routine activities

10.8945 12.0753 0.214 39.199

Share of non-routine

analytical activities

19.6029 12.2761 4.098 51.101

Share of non-routine manual

activities

24.6106 20.4172 0.619 57.080

Share of routine cognitive

activities

28.7483 16.5478 8.978 59.502

Average age of employees 41.1220 1.6945 38.613 45.523

Employment growth rate

2013–2016

8.2091 3.8719 1.642 15.325

Fluctuation rate in 2016 2.0818 1.1458 0.403 3.927

Unemployment rate in 2016 7.2371 3.8274 2.447 15.985

Establishment-specific:

Region 0.5622 0.4961 0 1

Size class 1.9315 0.5377 1 3

Labor-turnover rate by

sector

65.3976 39.1471 27.3 152.1

Expected employment trend 1.7320 0.6170 1 3

New employees hired in the

previous year

0.7842 0.4114 0 1

Vacancies as a proportion of

total employment

5.2215 14.1550 0 200

Collective agreement in

place

0.4940 0.5000 0 1

Existence of works council 0.3071 0.4613 0 1

Share of skilled workers 65.0450 30.0866 0 100

Share of academics 17.9145 24.8894 0 100

Share of women 41.7667 27.3834 0 100

Source: IAB Job Vacancy Survey 2016, Data Warehouse of the Federal Employment

Agency 2019, own calculations.

First, we used information on the shares of five task types in
each occupational group (Spitz-Oener, 2006). Data for the year
2016 come from IAB task research, providing the shares of non-
routine analytical, non-routine interactive, routine cognitive,
non-routine manual, and routine manual activities in each
occupation (Dengler et al., 2014). Table 1 provides a description
of these types, as well as examples of occupations that have a
relatively large share of the respective task type.

Second, we used structural information from the Federal
Employment Agency related to the occupational group: the
average age of the workforce, the employment growth rate
between 2013 and 2016, the labor turnover rate in 2016 and
the unemployment rate in 2016. These data allow us to describe
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TABLE 3 | Sectors of the economy with the respective shares of companies that

expect increasing digitalization over the next 5 years.

Financial services, Insurance 63%

Liberal professions, scientific and technical

services

50%

Machines, electronics, vehicles 41%

Information and communication 41%

Public administration 39%

Health and social services 36%

Education, child care 34%

Trade, retail, repairs 33%

Other services 31%

Chemistry, plastics, glass, construction

materials

31%

Energy utilities 30%

Transport, warehouses 30%

Metals, metal production 29%

Nutrition, textiles, clothing, furniture, etc. 27%

Water, waste management 26%

Real estate 26%

Other commercial services 25%

Agriculture, forestry 24%

Wood, paper, printing 24%

Construction 18%

Hospitality 18%

Art, entertainment, recreation 15%

Mining, ores and earths 13%

Source: IAB Job Vacancy Survey 2016, own calculations, weighted results.

general differences between the occupational groups as precisely
as possible, thereby minimizing the risk of omitted variables in
our estimation models. Table 2 contains a descriptive overview
of the occupation-specific variables.

Creation of a Panel Dataset for Random
Effects Estimations
The reported occupations were originally coded according to
the German Classification of Occupations 2010 at the 4-digit
level (Statistical Offices of the Federation and the Länder, n. d).
To ensure that the number of cases per occupational unit was
sufficiently high for the analyses, we aggregated the original data
at the level of 14 occupational groups and finally obtained a
dataset containing information on changing requirements in 14
occupational groups from about 4,200 establishments.

In order to take into account heterogeneity effects and to
analyze increasing flexibility requirements in the context of
occupations, we transformed this original cross-sectional dataset
into a panel data structure. This allows the use of a panel
data model, we specifically chose the non-linear random effects
model (Cameron and Trivedi, 2010; Wooldridge, 2010). A fixed
effects model would not yield estimates for the occupation-
specific variables which are the focus of our interest (see next
paragraph on these variables). Besides that argument, fixed effects
models do not function in the specific case of our data structure.

This is characterized by the peculiarity that the three binary
dependent variables have a relatively high number of zeros and
a relatively low number of ones, meaning that there is relatively
little variation in the dependent variables by 14 occupational
groups and about 4,200 establishments. As a result, the estimation
coefficients (see section Estimation Results) are small, but as is
shown with the parameter rho in the estimations in Tables 5–
7, a standard pooled estimation would lead to inconsistent
parameter estimates and a panel data estimation is the preferred
approach here.

SOME DESCRIPTIVE RESULTS

Digital Development in German
Establishments
The following results are weighted with the standard weighting
factors calculated for the data of the IAB Job Vacancy Survey.
The figures in Tables 3, 4 thus represent the total numbers of the
respective establishments in the economy.

A total of 4,262 establishments in the survey expected
increasing digitalization in the following 5 years. Altogether,
they represent 700,000 establishments in the German economy,
which is equivalent to a share of about 32%. The highest
shares by economic sector are found in financial and 256
insurance services, at 63%, followed by liberal professions,
scientific and technical services at 257 50%, see Table 3. The
sectors with the lowest shares of establishments expecting an
increase in digitalization include for instance art, entertainment
and recreation, and hospitality.

Establishments with more than 250 employees are more likely
to expect increasing digitalization than medium-sized and small
ones. On the whole our results are similar to those obtained
in other studies on the spread of digitalization in Germany
(Reimann et al., 2020).

Occupations and Increasing Flexibility
Requirements
Table 4 shows a list of the most frequently mentioned
occupations and the number of establishments with positive
digitalization expectations and positive expectations regarding
increasing flexibility requirements in these occupations. Office
and secretarial occupations were mentioned most frequently,
by about 58,000 establishments and administrations, followed
by three occupations that are highly relevant in the context of
artificial intelligence: occupations in company organization
and strategy (34,000), vehicle/aerospace/shipbuilding
technicians (32,000) and occupations in insurance and financial
services (32,000).

The table reveals the high relevance of changes in employees’
self-organization during the course of digitalization: In all the
occupations listed there, this kind of flexibility requirement was
mentioned most often by the employers, followed by increasing
temporal flexibility and increasing workplace flexibility. As
we know, digitalization and in specific the introduction of
artificial intelligence systems are closely linked to changes in
working structures (Quelle). Our results on the special relevance
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TABLE 4 | Number of establishments with positive expectations of increasing flexibility requirements in the respective occupation.

Occupational field Number of establishments

expecting a change in working

conditions in the occupational field

Number of establishments in which changing working conditions

are accompanied by increasing demands of the following types:

Increasing

workplace flexibility

Increasing temporal

flexibility

Increasing

self-organization

Office and secretarial 57,738 19,401 41,721 53,081

Company organization and

strategy

34,467 21,207 27,654 32,328

Vehicle manufacture,

aerospace, shipbuilding

technicians

32,220 14,534 15,420 22,641

Insurance and financial

services

31,589 19,419 24,773 28,445

Tax consultancy 27,475 15,101 15,791 24,794

Purchasing and sales 27,232 19,839 23,203 24,051

Construction planning and

supervision, architecture

23,965 10,245 15,676 19,753

Accounting, controlling and

auditing

18,629 11,289 14,720 16,843

Public administration 17,499 8,745 11,276 15,247

Mechanical engineering and

operating technology

14,734 8,167 12,662 13,129

Source: IAB Job Vacancy Survey 2016, own calculations, weighted results.

of increasing demands regarding self-organization underline
this statement.

ESTIMATION RESULTS

Occupational Characteristics
Tables 5–10 show the coefficients and marginal effects calculated
from our three random effects estimations. In the following
we use the marginal effects as the basis for the discussion
of our findings, see Table 11 for a comparison between the
models. The effects are small in quantitative terms, which is
due to the characteristics of the data structure (see section
Method). Nevertheless, the effects are highly meaningful, as is
confirmed by both the error probabilities and the quality criteria
of our estimations.

For all three kinds of flexibility requirements the share of
routine cognitive activities is highly significant, with the highest
value for increasing demands regarding self-organization. A one-
percent increase in the share of routine cognitive activities raises
the probability of increasing demands on self-organization by
0.16% points, the probability of increasing short-term working-
time flexibility by 0.14% points and of increasing workplace
flexibility by about 0.09% points. According to the literature
occupations affected strongly by AI applications are often defined
by relatively high shares of routine cognitive tasks or non-
routine analytical tasks (Genz et al., 2021; Lane and Saint-Martin,
2021). Looking at the shares of routine cognitive activities in
the occupational groups in Table 12, our estimates suggest this
discussion with regard to occupations with a high share of
routine cognitive activities: For instance, in business services and

in business management and organization more than half of
all tasks are routine cognitive tasks (59 and 56%, respectively).
Here increasing digitalization, including the increasing use of
AI, is more likely to be associated with employers demanding
more flexibility, in particular with regard to self-organization and
short-term flexibility in working time.

As the marginal effects show, the share of non-routine
analytical tasks is negatively significant regarding increasing
short-term flexibility in working time, it is not relevant regarding
the other two types of flexibility. Looking at the examples of
occupations with large shares of such non-routine analytical
tasks in Table 12, this result is not surprising in the AI context.
If AI is usable at all, it is used more as a supplementary
technology. Human beings still have to make decisions and
need to understand the AI technology and its applications.
Specifically, the work involved in developing and implementing
new AI technologies in the establishments may initially be
very time-consuming and require a lot of attention from the
people involved. It is necessary to understand in detail the
interplay between technologies and humans, for which increasing
requirements on short-term flexibility in working time, which
workers often associate with increasing time pressure, is not a
good basis.

Non-routine manual activities show no significant effects
on the probability of increasing flexibility requirements. In the
context of AI, as a special form of digital development, this result
substantiates the discussions about the potential relevance of AI
for certain occupations, but not for others.

In all three models, the average age of the employees in the
occupational group is negatively and highly significantly related
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TABLE 5 | Estimation results: increasing requirements regarding workplace

flexibility.

Coefficient Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.01017 0.00856 −0.00662 0.02696

Share of non-routine

analytical activities

−0.01822 0.01046 −0.03871 0.00227

Share of non-routine

manual activities

0.00886 0.00779 −0.02413 0.00641

Share of routine

cognitive activities

0.03691 *** 0.00687 0.02344 0.05037

Average age of

employees

0.11902 ** 0.05593 −0.22864 −0.00940

Employment growth

rate 2013–2016

0.16675 *** 0.04629 −0.25747 −0.07603

Fluctuation rate in 2016 0.49464 *** 0.16873 0.16394 0.82533

Unemployment rate in

2016

0.07555 ** 0.03171 −0.13771 −0.01340

Establishment-specific:

Region (east) 0.08300 0.05018 −0.01536 0.18136

Establishment size

class (<10)

10–249 0.14026 0.07369 −0.28469 0.00418

>250 0.01945 0.11307 −0.20217 0.24106

Labor-turnover rate by

sector

0.00014 0.00066 −0.00115 0.00143

Expected employment

trend (constant)

Increasing 0.08414 0.05562 −0.02488 0.19315

Decreasing 0.25326 *** 0.08202 0.09251 0.41402

New employees hired

in the previous year

0.10874 0.06711 −0.02280 0.24028

Vacancies as a

proportion of total

employment

0.00281 0.00164 −0.00041 0.00603

Collective agreement in

place

0.06956 0.05580 −0.17893 0.03980

Existence of works

council

0.00414 0.06666 −0.12652 0.13480

Share of skilled workers 0.00181 0.00112 −0.00038 0.00401

Share of academics 0.00372 *** 0.00129 0.00119 0.00625

Share of women 0.00416 *** 0.00093 −0.00598 −0.00234

Constant 1.48933 2.22000 −2.86178 5.84044

Rho 0.01507 *** 0.00862 0.00488 0.04558

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,
* p < 0.1; **p < 0.05; ***p < 0.01.

to increasing requirements, with the highest value regarding
the demands for self-organization. This result is expectable and
reflects the relatively high level of regulation of the German
labor market, which protects older employees in many ways.
The question also arises of whether older employees who are
unwilling or unable to adapt to their employers’ changing
flexibility requirements are more likely to take up occupations
with a lower (or slower) level of digital development or whether

TABLE 6 | Estimation results: increasing requirements regarding short-term

flexibility in working time.

Coefficient Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.00593 0.00794 −0.00963 0.02149

Share of non-routine

analytical activities

0.02591 *** 0.00937 −0.04428 −0.00755

Share of non-routine

manual activities

0.01332 0.00716 −0.02735 0.00071

Share of routine

cognitive activities

0.03651 *** 0.00628 0.02421 0.04881

Average age of

employees

0.15857 *** 0.05051 −0.25757 −0.05956

Employment growth

rate 2013–2016

0.15568 *** 0.04296 −0.23988 −0.07149

Fluctuation rate in 2016 0.47546 *** 0.15443 0.17278 0.77814

Unemployment rate in

2016

0.07443 *** 0.02871 −0.13070 −0.01817

Establishment-specific:

Region (east) 0.04496 0.04179 −0.03696 0.12688

Establishment size

class (<10)

10–249 0.04996 0.06386 −0.07521 0.17512

>250 0.17310 0.09624 −0.01553 0.36173

Labor-turnover rate by

sector

0.00060 0.00056 −0.00170 0.00049

Expected employment trend (constant)

Increasing 0.11208 ** 0.04614 0.02164 0.20251

Decreasing 0.14334 * 0.07034 0.00547 0.28120

New employees hired

in the previous year

0.06931 0.05608 −0.04060 0.17923

Vacancies as a

proportion of total

employment

−0.00101 0.00163 −0.00420 0.00217

Collective agreement in

place

−0.07340 0.04648 −0.16450 0.01769

Existence of works

council

0.03594 0.05527 −0.14427 0.07240

Share of skilled workers 0.00070 0.00091 −0.00107 0.00248

Share of academics 0.00077 0.00108 −0.00134 0.00289

Share of women 0.00304 *** 0.00077 −0.00455 −0.00153

Constant 3.86104 2.01311 −0.08459 7.80667

Rho 0.01333 *** 0.00686 0.00483 0.03619

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,
* p<0.1; ** p<0.05; *** p<0.01.

they are more frequently forced by their employers to change to
other occupational fields or even to change the employer.

The occupation-related employment growth rate between
2013 and 2016, the period directly before the field period
of the survey, shows a negative and highly significant value
in all three models. An increase in the employment growth
rate by 1% reduces the probability of increasing demands
on self-organization by 0.7% points. Negative effects are also
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TABLE 7 | Estimation results: increasing requirements regarding self-organization.

Coefficient Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.01087 0.00968 −0.00811 0.02985

Share of non-routine

analytical activities

0.02112 0.01106 −0.04279 0.00055

Share of non-routine

manual activities

−0.00865 0.00861 −0.02553 0.00823

Share of routine

cognitive activities

0.03422 *** 0.00757 0.01938 0.04906

Average age of

employees

0.14493 ** 0.05673 −0.25613 −0.03374

Employment growth

rate 2013–2016

0.15120 *** 0.05115 −0.25145 −0.05096

Fluctuation rate in 2016 0.41074 ** 0.18199 0.05405 0.76742

Unemployment rate in

2016

0.08282 ** 0.03416 −0.14978 −0.01587

Establishment-specific:

Region (east) 0.03579 0.03818 −0.03905 0.11062

Establishment size

class (<10)

10–249 0.09868 0.05886 −0.01668 0.21405

>250 0.16452 0.08867 −0.00927 0.33832

Labor-turnover rate by

sector

0.00145 ** 0.00052 −0.00247 −0.00044

Expected employment

trend (constant)

Increasing 0.05175 0.04221 −0.03097 0.13447

Decreasing 0.02201 0.06596 −0.10728 0.15129

New employees hired

in the previous year

0.09557 0.05141 −0.00520 0.19634

Vacancies as a

proportion of total

employment

0.00064 0.00149 −0.00356 0.00228

Collective agreement in

place

0.04365 0.04249 −0.12693 0.03964

Existence of works

council

0.01638 0.05011 −0.11460 0.08183

Share of skilled workers 0.00089 0.00083 −0.00074 0.00252

Share of academics 0.00062 0.00099 −0.00132 0.00256

Share of women 0.00155 ** 0.00070 −0.00292 −0.00019

Constant 3.44720 2.25166 −0.96598 7.86038

Rho 0.02101 *** 0.00923 0.00883 0.04918

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,
* p < 0.1; **p < 0.05; ***p < 0.01.

estimated for the unemployment rate. The fields of the labor
market in which digital developments are particularly dynamic
and where working conditions may change as a result are more
likely to be those in which employers complain of worker and
skills shortages. The unemployment rate is correspondingly low
and workers’ demands for a good work-life balance are likely
to be correspondingly high. This is likely to limit employers’
possibilities to further increase their flexibility requirements and
may even force them to reduce their demands.

TABLE 8 | Marginal effects: increasing requirements regarding workplace flexibility.

Marginal effect Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.00026 0.00022 −0.00017 0.00069

Share of non-routine

analytical activities

−0.00047 0.00027 −0.00099 0.00006

Share of non-routine

manual activities

−0.00023 0.00020 −0.00062 0.00016

Share of routine

cognitive activities

0.00095 *** 0.00018 0.00059 0.00130

Average age of

employees

−0.00305 ** 0.00142 −0.00583 −0.00027

Employment growth

rate 2013–2016

−0.00427 *** 0.00118 −0.00659 −0.00195

Fluctuation rate in 2016 0.01267 *** 0.00430 0.00424 0.02109

Unemployment rate in

2016

−0.00193 ** 0.00082 −0.00354 −0.00033

Establishment-specific:

Region (east) 0.00213 0.00129 −0.00041 0.00466

Establishment size

class (<10)

10–249 −0.00370 0.00205 −0.00771 0.00031

>250 0.00055 0.00322 −0.00575 0.00686

Labor-turnover rate by

sector

0.00000 0.00002 −0.00003 0.00004

Expected employment

trend (constant)

Increasing 0.00213 0.00143 −0.00067 0.00492

Decreasing 0.00696 *** 0.00249 0.00208 0.01183

New employees hired

in the previous year

0.00278 0.00173 −0.00060 0.00617

Vacancies as a

proportion of total

employment

0.00007 0.00004 −0.00001 0.00015

Collective agreement in

place

−0.00178 0.00143 −0.00459 0.00103

Existence of works

council

0.00011 0.00171 −0.00324 0.00345

Share of skilled workers 0.00005 0.00003 −0.00001 0.00010

Share of academics 0.00010 *** 0.00003 0.00003 0.00016

Share of women −0.00011 *** 0.00002 −0.00015 −0.00006

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,

margins at means, *p < 0.1; ** p < 0.05; *** p < 0.01.

The fluctuation rate, i.e., the dynamics of entry and exit from
employment in the respective occupational group, exhibits a
significant positive effect in all models. High fluctuation means
that a relatively large proportion of new employees are recruited
relative to the existing workforce. Whereas in the case of the
existing workforce, employers are dependent on employees’
willingness to change and are not always able to implement
changes with the scope and speed desired, in the case of new
hires the employers can formulate the precise requirements and
conditions that they consider to be in line with the new challenges
and opportunities of digitalization. Effects on working conditions
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TABLE 9 | Marginal effects: increasing requirements regarding short term flexibility

in working time.

Marginal effect Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.00023 0.00030 −0.00037 0.00082

Share of non-routine

analytical activities

−0.00099 *** 0.00036 −0.00169 −0.00029

Share of non-routine

manual activities

−0.00051 0.00027 −0.00105 0.00003

Share of routine

cognitive activities

0.00140 *** 0.00025 0.00091 0.00189

Average age of

employees

−0.00607 *** 0.00191 −0.00981 −0.00232

Employment growth

rate 2013–2016

−0.00596 *** 0.00164 −0.00917 −0.00274

Fluctuation rate in 2016 0.01819 *** 0.00588 0.00666 0.02971

Unemployment rate in

2016

−0.00285 *** 0.00110 −0.00501 −0.00068

Establishment-specific:

Region (east) 0.00172 0.00160 −0.00142 0.00486

Establishment size

class (<10)

10–249 0.00186 0.00234 −0.00273 0.00645

>250 0.00682 0.00386 −0.00075 0.01439

Labor-turnover rate by

sector

−0.00002 0.00002 −0.00007 0.00002

Expected employment

trend (constant)

Increasing 0.00430 ** 0.00180 0.00076 0.00783

Decreasing 0.00558 0.00288 −0.00007 0.01122

New employees hired

in the previous year

0.00265 0.00215 −0.00156 0.00687

Vacancies as a

proportion of total

employment

−0.00004 0.00006 −0.00016 0.00008

Collective agreement in

place

−0.00281 0.00178 −0.00631 0.00069

Existence of works

council

−0.00137 0.00212 −0.00552 0.00277

Share of skilled workers 0.00003 0.00003 −0.00004 0.00009

Share of academics 0.00003 0.00004 −0.00005 0.00011

Share of women −0.00012 *** 0.00003 −0.00018 −0.00006

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,

margins at means, * p < 0.1; **p < 0.05; ***p < 0.01.

and flexibility requirements will therefore be more visible in the
more dynamic occupational fields.

Establishment Characteristics
In contrast to the occupational effects, the characteristics of
the individual establishments play a minor role in explaining
increasing flexibility requirements. The size of an establishment
and the region in which it is located are not explanatory. Those
operating in an industry with a high labor-turnover rate, and thus
having to recruit and train new staffmore often, aremore likely to

TABLE 10 | Marginal effects: increasing requirements regarding self-organization.

Marginal effect Std. err. 95% Confidence

interval

Occupation-specific:

Share of interactive

non-routine activities

0.00052 0.00046 −0.00039 0.00143

Share of non-routine

analytical activities

−0.00101 0.00053 −0.00204 0.00003

Share of non-routine

manual activities

−0.00041 0.00041 −0.00122 0.00039

Share of routine

cognitive activities

0.00163 *** 0.00038 0.00090 0.00237

Average age of

employees

−0.00691 ** 0.00271 −0.01222 −0.00161

Employment growth

rate 2013–2016

−0.00721 *** 0.00246 −0.01204 −0.00239

Fluctuation rate in 2016 0.01960 ** 0.00870 0.00254 0.03665

Unemployment rate in

2016

−0.00395 ** 0.00165 −0.00718 −0.00073

Establishment-specific:

Region (east) 0.00171 0.00182 −0.00187 0.00528

Establishment size class (<10)

10–249 0.00454 0.00264 −0.00064 0.00972

>250 0.00780 0.00429 −0.00061 0.01621

Labor-turnover rate by

sector

−0.00007 ** 0.00003 −0.00012 −0.00002

Expected employment trend (constant)

Increasing 0.00248 0.00204 −0.00152 0.00648

Decreasing 0.00104 0.00314 −0.00512 0.00720

New employees hired

in the previous year

0.00456 0.00247 −0.00028 0.00940

Vacancies as a

proportion of total

employment

−0.00003 0.00007 −0.00017 0.00011

Collective agreement in

place

−0.00208 0.00203 −0.00606 0.00190

Existence of works

council

−0.00078 0.00239 −0.00547 0.00391

Share of skilled workers 0.00004 0.00004 −0.00004 0.00012

Share of academics 0.00003 0.00005 −0.00006 0.00012

Share of women −0.00007 ** 0.00003 −0.00014 −0.00001

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,

margins at means, * p < 0.1; **p < 0.05; ***p < 0.01.

define increasing demands on employees’ self-organization. This
is not the case for the other two types of flexibility.

Positive employment expectations increase the probability of
increasing demands for short-term flexible working hours. This
is not true of the number of new hires in the previous year or
of current vacancies as a proportion of the total workforce, (It
should be taken into account that all the establishments in our
estimates assume increasing digitalization over the next 5 years,
see section Establishment Data From the IAB Job Vacancy Survey
of this article).

The skill structure in the establishment shows no significance,
except for the proportion of academics in model 1. Differences
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TABLE 11 | Comparison of the marginal effects of the three estimations.

Work place

flexibility

Short term

flexibility in

working time

Demands on

self-

organization

Occupation-specific:

Share of interactive

non-routine activities

0.00026 0.00023 0.00052

Share of non-routine

analytical activities

−0.00047 −0.00099 *** −0.00101

Share of non-routine

manual activities

−0.00023 −0.00051 −0.00041

Share of routine

cognitive activities

0.00095 *** 0.00140 *** 0.00163 ***

Average age of

employees

−0.00305 ** −0.00607 *** −0.00691 **

Employment growth

rate 2013–2016

−0.00427 *** −0.00596 *** −0.00721 ***

Fluctuation rate in 2016 0.01267 *** 0.01819 *** 0.01960 **

Unemployment rate in

2016

−0.00193 ** −0.00285 *** −0.00395 **

Establishment-specific:

Region (east) 0.00213 0.00172 0.00171

Establishment size

class (<10)

10–249 −0.00370 0.00186 0.00454

>250 0.00055 0.00682 0.00780

Labor-turnover rate by

sector

0.00000 −0.00002 −0.00007 **

Expected employment

trend (constant)

Increasing 0.00213 0.00430 ** 0.00248

Decreasing 0.00696 *** 0.00558 0.00104

New employees hired

in the previous year

0.00278 0.00265 0.00456

Vacancies as a

proportion of total

employment

0.00007 −0.00004 −0.00003

Collective agreement in

place

−0.00178 −0.00281 −0.00208

Existence of works

council

0.00011 −0.00137 −0.00078

Share of skilled workers 0.00005 0.00003 0.00004

Share of academics 0.00010 **** 0.00003 0.00003

Share of women −0.00011 *** −0.00012 *** −0.00007 **

Source: IAB Job Vacancy Survey 2016, own calculations with a random effects estimation,

margins at means, * p < 0.1; **p < 0.05; ***p < 0.01.

in skill levels are at least partly captured by the differences
in the occupations. In our analyses differences at the
occupational level are more relevant than differences at the
establishment level.

The proportion of women in the workforce exhibits a
significant negative marginal effect in all models. For instance,
a one-percent increase in the share of female employees reduces
the probability of increasing demands on short term flexibility in
working time by 0.012% points. The possibilities for negotiation T
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with female employees regarding increased workplace and short-
term working-time flexibility are likely to be fewer than is the
case with male employees, at least as far as employees with
children or other caring responsibilities are concerned. In many
families it is still the mothers who perform the majority of the
care work and who have to reconcile this with their employment
in terms of space and time. This means that they are tied to
existing and stable agreements with their employers to a greater
extent, which tends to oppose greater flexibility. The existence of
a works council or collective agreements shows no effects in the
three estimations.

DISCUSSION AND OUTLOOK

Our analyses contribute to the largely unexplored area of
research on the qualitative effects of digitalization and the
use of AI on working conditions, especially with regard to
the demand for increasing flexibility in work assignments.
We pay particular attention to the role played by differences
between occupations, because, as is discussed in the literature,
AI is affecting different occupational fields in different ways.
To our knowledge, our study is the first one to present
estimation results based on data from a large representative
employer survey.

First of all, our study confirms some findings from previous
literature on digitalization and AI: occupations for which
employers expect the most substantial changes in working
conditions as a result of digitalization include office and
secretarial occupations as well as occupations in business
organization. Occupations in vehicle, aerospace, space, and
shipping technology and occupations in tax consulting are also
frequently mentioned by the employers in the survey. According
to the descriptive results, increasing requirements regarding
workplace flexibility play a less significant role than short-
term working-time flexibility and specifically the demands on
employees’ self-organization. These findings indirectly support
the discussion surrounding the potential labor market effects of
AI, according to which AI primarily changes work content and
work processes, which is directly related to aspects of employees’
self-organization. According to our results, the flexibility
requirements are changing especially in those occupational fields
that are undergoing particular strong changes in the context
of AI, as discussed for instance by Lane and Saint-Martin
(2021).

Using random effects estimations and including numerous
establishment- and occupation-specific control variables,
we show that it is above all the occupational and less the
establishment-specific characteristics that determine the
probability of employers demanding increasing flexibility.
Increasing demands in terms of flexibility are particularly
prevalent in occupational groups that involve a large
proportion of routine cognitive activities. These are the
fields that are likely to change more strongly with increasing use
of AI.

The largest effect of the share of routine cognitive activities in
quantitative terms is measured for the probability of increasing

demands for employees’ self-organization, again supporting
arguments, that AI mainly changes work content and work
processes. This is particularly important for public employment
services: people seeking jobs in occupations with a large
proportion of routine cognitive activities can be supported in
a targeted manner with regard to their individual abilities and
opportunities for a more flexible work engagement than they
might be familiar with from previous jobs. This may concern
skills in self-organization at work or advice about the advantages
and disadvantages of more flexible working time. In fact, policy
can focus on very specific areas of the labor market, because
possible risks do not affect all occupational fields in which AI
is used or might be relevant in future. In our estimations the
proportion of manual tasks does not show any significant effect
on the flexibility requirements. And occupations involving a large
amount of interaction between employees are also less at risk
of negative effects. Here, AI is likely to be used somewhat less,
since interactions between people are more difficult to replace
by machines.

Besides labor market policy also education policy plays
a crucial role for the question of whether AI mainly has
a negative impact on working conditions or not. Decisive
possibilities for policy action are, for instance, the strategic
development of the education and vocational training systems
and the provision of a child care infrastructure that supports
the reconciliation of a more flexible working and private life.
For female employees in particular, the increasing use of AI
and the associated demand for greater working-time flexibility
is likely to be a major challenge and might even become an
employment risk if adequate and flexible childcare facilities are
not available.

Apart from the share of women, the establishment-specific
characteristics play a subordinate role compared to the
occupational characteristics. Employers see the challenge of
compensating for additional individual burdens on employees
in order to maintain the employees’ productivity and job
satisfaction, especially if the employers are to be increasingly
threatened by labor shortages.

Future empirical research on the qualitative labor market
effects of digitalization and AI should deal in depth with the
role of certain occupations, which requires a larger number of
cases in survey-based studies. How does AI change productivity
on the one hand and individual stress on the other hand for
different employee groups (female/male, young/old, employees
with families/without families, etc.) in different occupational
fields? Here the gender-related effects should be paid special
attention in order to be able to counteract possible replacement
effects at an early stage. What options exist for employers to
compensate their employees for additional burdens, for example
attractive holiday arrangements, further training opportunities,
setting up long-term working time accounts with attractive
conditions for the employee, through to financial compensation
for increasing flexibility in work assignments? What are
sustainable good and healthy working conditions that keep
the workforce productive and satisfied in times of accelerating
digitalization? The employer’s perspective is important here for
negotiating joint solutions, which makes a combination of both
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employer surveys and employee surveys highly attractive in this
research field. Finally, international comparative analyses could
take into account the specifics of different national labor market
policies in the context of ongoing digitalization, which in general
has been further accelerated by the current COVID-19 pandemic.
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Recent years have seen impressive advances in artificial intelligence (AI) and this has

stoked renewed concern about the impact of technological progress on the labor market,

including on worker displacement. This paper looks at the possible links between AI and

employment in a cross-country context. It adapts the AI occupational impact measure

developed by Felten, Raj and Seamans—an indicator measuring the degree to which

occupations rely on abilities in which AI has made the most progress—and extends

it to 23 OECD countries. Overall, there appears to be no clear relationship between

AI exposure and employment growth. However, in occupations where computer use

is high, greater exposure to AI is linked to higher employment growth. The paper also

finds suggestive evidence of a negative relationship between AI exposure and growth in

average hours worked among occupations where computer use is low. One possible

explanation is that partial automation by AI increases productivity directly as well as

by shifting the task composition of occupations toward higher value-added tasks. This

increase in labor productivity and output counteracts the direct displacement effect of

automation through AI for workers with good digital skills, who may find it easier to

use AI effectively and shift to non-automatable, higher-value added tasks within their

occupations. The opposite could be true for workers with poor digital skills, who may not

be able to interact efficiently with AI and thus reap all potential benefits of the technology1.

Keywords: J21, J23, J24, O33, artificial intelligence
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INTRODUCTION

Recent years have seen impressive advances in Artificial
Intelligence (AI), particularly in the areas of image and
speech recognition, natural language processing, translation,
reading comprehension, computer programming, and
predictive analytics.

This rapid progress has been accompanied by concern
about the possible effects of AI deployment on the labor
market, including on worker displacement. There are reasons
to believe that its impact on employment may be different
from previous waves of technological progress. Autor et al.
(2003) postulated that jobs consist of routine (and thus in
principle programmable) and non-routine tasks. Previous waves
of technological progress were primarily associated with the
automation of routine tasks. Computers, for example, are capable
of performing routine cognitive tasks including record-keeping,
calculation, and searching for information. Similarly, industrial
robots are programmable manipulators of physical objects and
therefore associated with the automation of routine manual tasks
such as welding, painting or packaging (Raj and Seamans, 2019)2.
These technologies therefore mainly substitute for workers in
low- and middle-skill occupations.

Tasks typically associated with high-skilled occupations, such
as non-routine manual tasks (requiring dexterity) and non-
routine cognitive tasks (requiring abstract reasoning, creativity,
and social intelligence) were previously thought to be outside the
scope of automation (Autor et al., 2003; Acemoglu and Restrepo,
2020).

However, recent advances in AI mean that non-routine
cognitive tasks can also increasingly be automated (Lane and
Saint-Martin, 2021). In most of its current applications,
AI refers to computer software that relies on highly
sophisticated algorithmic techniques to find patterns in
data and make predictions about the future. Analysis of
patent texts suggests AI is capable of formulating medical
prognosis and suggesting treatment, detecting cancer and
identifying fraud (Webb, 2020). Thus, in contrast to previous
waves of automation, AI might disproportionally affect
high-skilled workers.

Even if AI automates non-routine, cognitive tasks, this
does not necessarily mean that AI will displace workers.
In general, technological progress improves labor efficiency
by (partially) taking over/speeding up tasks performed by
workers. This leads to an increase in output per effective
labor input and a reduction in production costs. The
employment effects of this process are ex-ante ambiguous:
employment may fall as tasks are automated (substitution
effect). On the other hand, lower production costs may increase

2AImay however be used in robotics (“smart robots”), which blurs the line between

the two technologies (Raj and Seamans, 2019). For example, AI has improved the

vision of robots, enabling them to identify and sort unorganised objects such as

harvested fruit. AI can also be used to transfer knowledge between robots, such as

the layout of hospital rooms between cleaning robots (Nolan, 2021).

output if there is sufficient demand for the good/service
(productivity effect)3.

To harness this productivity effect, workers need to both learn
to work effectively with the new technology and to adapt to a
changing task composition that puts more emphasis on tasks that
AI cannot yet perform. Such adaptation is costly and the cost will
depend on worker characteristics.

The areas where AI is currently making the most progress
are associated with non-routine, cognitive tasks often performed
by medium- to high-skilled, white collar workers. However,
these workers also rely more than other workers on abilities
AI does not currently possess, such as inductive reasoning or
social intelligence. Moreover, highly educated workers often find
it easier to adapt to new technologies because they are more likely
to already work with digital technologies and participate more
in training, which puts them in a better position than lower-
skilled workers to reap the potential benefits of AI. That being
said, more educated workers also tend to have more task-specific
human capital4, which might make adaption more costly for
them (Fossen and Sorgner, 2019).

As AI is a relatively new technology, there is little empirical
evidence on its effect on the labor market to date. The
literature that does exist is mostly limited to the US and
finds little evidence for AI-driven worker displacement (Lane
and Saint-Martin, 2021). Felten et al. (2019) look at the
effect of exposure to AI5 on employment and wages in the
US at the occupational level. They do not find any link
between AI exposure and (aggregate) employment, but they
do find a positive effect of AI exposure on wage growth,
suggesting that the productivity effect of AI may outweigh the
substitution effect. This effect on wage growth is concentrated
in occupations that require software skills and in high-
wage occupations.

3This can only be the case if an occupation is only partially automated, but

depending on the price elasticity of demand for a given product or service, the

productivity effect can be strong. For example, during the nineteenth century, 98%

of the tasks required to weave fabric were automated, decreasing the price of fabric.

Because of highly price elastic demand for fabric, the demand for fabric increased

as did the number of weavers (Bessen, 2016).
4Education directly increases task-specific human capital as well as the rate of

learning-by-doing on the job, at least some of which is task-specific (Gibbons

and Waldman, 2004, 2006). This can be seen by looking at the likelihood of

lateral moves within the same firm: lateral moves have a direct productivity cost

to the firm as workers cannot utilise their entire task-specific human capital

stock in another area (e.g., when moving from marketing to logistics). However,

accumulating at least some task-specific human capital in a lateral position makes

sense if a worker is scheduled to be promoted to a position that oversees both

areas. If a worker’s task-specific human capital is sufficiently high, however, the

immediate productivity loss associated with a lateral move is higher than any

expected productivity gain from the lateral move following a promotion. For

example, in academic settings, Ph.D., economists are not typically moved to theHR

department prior to becoming the dean of a department. Using a large employer-

employee linked dataset on executives at US corporations, Jin andWaldman (2019)

show that workers with 17 years of education were twice as likely to be laterally

moved before promotion than workers with 19 years of education.
5An occupation is “exposed” to AI if it has a high intensity in skills that AI can

perform, see section What Do These Indicators Measure? for details.
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Again for the US, Fossen and Sorgner (2019) look at
the effect of exposure to AI6 on job stability and wage
growth at the individual level. They find that exposure
to AI leads to higher employment stability and higher
wages, and that this effect is stronger for higher educated
and more experienced workers, again indicating that the
productivity effect dominates and that it is stronger for high-
skilled workers.

Finally, Acemoglu et al. (2020) look at hiring in US firms
with task structures compatible with AI capabilities7. They
find that firms’ exposure to AI is linked to changes in the
structure of skills that firms demand. They find no evidence
of employment effects at the occupational level, but they do
find that firms that are exposed to AI restrict their hiring
in non-AI positions compared to other firms. They conclude
that the employment effect of AI might still be too small
to be detected in aggregate data (given also how recent a
phenomenon AI is), but that it might emerge in the future as AI
adoption spreads.

This paper adds to the literature by looking at the links
between AI and employment growth in a cross-country context.
It adapts the AI occupational impact measure proposed by
Felten et al. (2018, 2019)—an indicator measuring the degree
to which occupations rely on abilities in which AI has made
the most progress in recent years—and extends it to 23 OECD
countries by linking it to the Survey of Adult Skills, PIAAC.
This indicator, which allows for variations in AI exposure across
occupations, as well as within occupations and across countries, is
matched to Labor Force Surveys to analyse the relationship with
employment growth.

The paper finds that, over the period 2012–2019, there is
no clear relationship between AI exposure and employment
growth across all occupations. Moreover, in occupations where
computer use is high, AI appears to be positively associated with
employment growth. There is also some evidence of a negative
relationship between AI exposure and growth in average hours
worked among occupations where computer use is low. While
further research is needed to identify the exact mechanisms
driving these results, one possible explanation is that partial
automation by AI increases productivity directly as well as
by shifting the task composition of occupations toward higher
value-added tasks. This increase in labor productivity and output
counteracts the direct displacement effect of automation through
AI for workers with good digital skills, who may find it easier
to use AI effectively and shift to non-automatable, higher-
value tasks within their occupations. The opposite could be
true for workers with poor digital skills, who may be unable to
interact efficiently with AI and thus reap all potential benefits of
the technology.

6Fossen and Sorgner (2019) use the occupational impact measure developed by

Felten et al. (2018, 2019) and the Suitability for Machine Learning indicator

developed by Brynjolfsson and Mitchell (2017) and Brynjolfsson et al. (2018)

discussed in Section What Do These Indicators Measure?
7Acemoglu et al. (2020) use data from Brynjolfsson and Mitchell, 2017;

Brynjolfsson et al., 2018, Felten et al. (2018, 2019), and (Webb, 2020) to identify

tasks compatible with AI capabilities; and data from online job postings to identify

firms that use AI, see Section Indicators of Occupational Exposure to AI for details.

The paper starts out by presenting indicators of AI
deployment that have been proposed in the literature
and discussing their relative merits (Section Indicators of
Occupational Exposure to AI). It then goes on to present the
indicator developed in this paper and builds some intuition on
the channels through which occupations are potentially affected
by AI (Section Data). Section Results presents the main results.

INDICATORS OF OCCUPATIONAL
EXPOSURE TO AI

To analyse the links between AI and employment, it is necessary
to determine where in the economy AI is currently deployed.
In the absence of comprehensive data on the adoption of AI by
firms, several proxies for (potential) AI deployment have been
proposed in the literature. They can be grouped into two broad
categories. The first group of indicators uses information on
labor demand to infer AI activity across occupations, sectors and
locations. In practice, these indicators use online job postings that
provide information on skills requirements and they therefore
will only capture AI deployment if it requires workers to have
AI skills. The second group of indicators uses information on
AI capabilities—that is, information on what AI can currently
do—and links it to occupations. These indicators measure
potential exposure to AI and not actual AI adoption. This section
presents some of these indicators and discusses their advantages
and drawbacks.

Indicators Based on AI-Related Job
Posting Frequencies
The first set of indicators use data on AI-related skill
requirements in job postings as a proxy for AI deployment in
firms. The main data source for these indicators is Burning
Glass Technologies (BGT), which collects detailed information—
including job title, sector, required skills etc. —on online job
postings (see Box 1 for details). Because of the rich and up-
to-date information BGT data offers, these indicators allow
for a timely tracking of the demand for AI skills across the
labor market.

Squicciarini and Nachtigall (2021) identify AI-related
job postings by using keywords extracted from scientific
publications, augmented by text mining techniques and
expert validation [see Baruffaldi et al. (2020) for details].
These keywords belong to four broad groups: (i) generic AI
keywords, e.g., “artificial intelligence,” “machine learning;” (ii)
AI approaches or methods: e.g., “decision trees,” “deep learning;”
(iii) AI applications: e.g., “computer vision,” “image recognition;”
(iv) AI software and libraries: e.g., Python or TensorFlow. Since
some of these keywords may be used in job postings for non
AI-related jobs (e.g., “Python” or “Bayesian”), the authors only
tag a job as AI-related if the posting contains at least two AI
keywords from at least two distinct concepts. This indicator
is available on an annual basis for Canada, Singapore, the
United Kingdom and the United States, for 2012–20188.

8Sectors are available according to the North American Industry classification

system (NAICS) for the US and Canada and according to the UK Standard
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Acemoglu et al. (2020) take a simpler approach by defining
vacancies as AI-related if they contain any keyword belonging
to a simple list of skills related to AI9. As this indicator will
tag any job posting that contains one of the keywords, it is
less precise than the indicator proposed by Squicciarini and
Nachtigall (2021), but also easier to reproduce.

Dawson et al. (2021) develop the skills-space or skills-similarity
indicator. This approach defines two skills as similar if they often
occur together in BGT job postings and are both simultaneously
important for the job posting. A skill is assumed to be less
“important” for a particular job posting if it is common across
job postings. For example, “communication” and “team work”
occur in about a quarter of all job adds, and would therefore be
less important than “machine learning” in a job posting requiring
both “communication” and “team work10.” The idea behind this
approach is that, if two skills are often simultaneously required
for jobs, (i) they are complementary and (ii) mastery of one skill
means it is easier to acquire the other. In that way, similar skills
may act as “bridges” for workers wanting to change occupations.
It also means that workers who possess skills that are similar to
AI skills may find it easier to work with AI, even if they are not
capable of developing the technology themselves. For example,
the skill “copy writing” is similar to “journalism,” meaning that
a copy writer might transition to journalism at a lower cost
than, say, a social worker, and that a copy writer might find
it comparatively easier to use databases and other digital tools
created for journalists.

Skill similarity allows the identification and tracking of
emerging skills: using a short list of “seed skills11,” the indicator
can track similar skills as they appear in job ads over time,
keeping the indicator up to date. For example, TensorFlow is a
deep learning framework introduced in 2016. Many job postings
now list it as a requirement without additionally specifying “deep
learning” (Dawson et al., 2021).

The skill similarity approach is preferable to the simple job
posting frequency indicators mentioned above (Acemoglu et al.,
2020; Squicciarini and Nachtigall, 2021) as it does not only pick
up specific AI job postings, but also job postings with skills that
are similar (but not identical) to AI skills, and may thus enable
workers to work with AI technologies. Another advantage of this
indicator is its dynamic nature: as technologies develop and skill
requirements evolve, skill similarity can identify new skills that
appear in job postings together with familiar skills, and keep
the relative skill indicators up-to-date. This indicator is available

Industrial Classification (SIC) and Singapore Industrial Classification (SSIC) for

the UK and Singapore. Occupational codes are available according to the O∗NET

classification for Canada, SOC for the UK, and the US and SSOC for Singapore.

These codes can be converted to ISCO at the one-digit level.
9This paper uses the same list of skills to look at AI job-postings, see Footnote 44

for the complete list of skills.
10To measure importance of skills in job ads, the authors use the Revealed

Comparative Advantage (RCA) measure, loaned from trade economics, that

weighs the importance of a skill in a job posting up if the number of skills for this

specific posting is low, and weighs it down if the skill is ubiquitous in all job adds.

That is, the skill “team work” will be generally less important given its ubiquity in

all job ads, but its importance in an individual job posting would increase if only

few other skills were required for that job.
11“Artificial Intelligence,” “Machine Learning,” “Data Science,” “Data Mining,” and

“Big Data”.

at the annual level from 2012 to 2019 for Australia and New
Zealand12.

Task-Based Indicators
Task-based indicators for AI adoption are based on measures
of AI capabilities linked to tasks workers perform, often at the
occupational level. They identify occupations as exposed to AI if
they perform tasks that AI is increasingly capable of performing.

The AI occupational exposure measure developed by Felten
et al. (2018, 2019) is based on progress scores in nine
AI applications13 (such as reading comprehension or image
recognition) from the AI progress measurement dataset provided
by the Electronic Frontier Foundation (EFF). The EFF monitors
progress in AI applications using a mixture of academic
literature, blog posts and websites focused on AI. Each
application may have several progress scores. One example of
a progress score would be a recognition error rate for image
recognition. The authors rescale these scores to arrive at a
composite score that measures progress in each application
between 2010 and 2015.

Felten et al. (2018, 2019) then link these AI applications
to abilities in the US Department of Labor’s O∗NET database.
Abilities are defined as “enduring attributes of the individual
that influence performance,” e.g., “peripheral vision” or “oral
comprehension.” They enable workers to perform tasks in their
jobs (such as driving a car or answering a call), but are distinct
from skills in that they cannot typically be acquired or learned.
Thus, linking O∗NET abilities to AI applications means linking
human to AI abilities.

The link between O∗NET abilities and AI applications (a
correlation matrix) is made via an Amazon Mechanical Turk
survey of 200 gig workers per AI application, who are asked
whether a given AI application—e.g., image recognition—can
be used for a certain ability—e.g., peripheral vision14. The
correlation matrix between applications and abilities is then
calculated as the share of respondents who thought that a
given AI application could be used for a given ability. These
abilities are subsequently linked to occupations using the O∗NET
database. This indicator is available for the US for 2010–
201515.

Similarly, the Suitability for Machine Learning indicator
developed by Brynjolfsson andMitchell (2017), Brynjolfsson et al.
(2018) assigns a suitability for machine learning score to each
of the 2,069 narrowly defined work activities from the O∗NET

12The indicator is calculated at the division level (19 industries) according to the

Australian and New Zealand Standard Industrial Classification Level (ANZSIC).
13Abstract strategy games, real-time video games, image recognition, visual

question answering, image generation, reading comprehension, language

modelling, translation, and speech recognition. Abstract strategy games, for

example are defined as “the ability to play abstract games involving sometimes

complex strategy and reasoning ability, such as chess, go, or checkers, at a high

level.” While the EFF tracks progress on 16 applications, AI has not made any

progress on 7 of these over the relevant time period (Felten et al., 2021).
14The background of the gig workers is not known and so they may not necessarily

be AI experts. This could be a potential weakness of this indicator. In contrast

(Tolan et al., 2021) rely on expert assessments for the link between AI applications

and worker abilities (Tolan et al., 2021).
15At the six digit SOC 2010 occupational level, this can be aggregated across sectors

and geographical regions, see Felten et al. (2021).
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BOX 1 | Burning Glass Technologies (BGT) online job postings data

Burning Glass Technologies (BGT) collects data on online job postings by

web-scraping 40 000 online job boards and company websites. It claims to

cover the near-universe of online job postings. Data are currently available

for Australia, Canada, New Zealand, Singapore, the United Kingdom,

and the United States for the time period 2012–2020 (2014–2020 for

Germany and 2018–2020 for other European Union countries). BGT extracts

information such as location, sector, occupation, required skills, education,

and experience levels from the text of job postings (deleting duplicates) and

organizes it into up to 70 variables that can be linked to labor force surveys,

providing detailed, and timely information on labor demand.

Despite its strengths, BGT data has a number of limitations:

• It misses vacancies that are not posted online. Carnevale et al. (2014)

compare vacancies from survey data according to the Job Openings and

Labor Turnover Survey (JOLTS) from the US Bureau of Labor Statistics,

a representative survey of 16,000 US businesses, with BGT data for

2013. They find that roughly 70% of vacancies were posted online, with

vacancies requiring a college degree significantly more likely to be posted

online compared to jobs with lower education requirements.

• There is not necessarily a direct, one-to-one correspondence between

an online job ad and an actual vacancy: firms might post one job ad for

several vacancies, or post job ads without firm plans to hire, e.g., because

they want to learn about available talent for future hiring needs.

• BGT data might over-represent growing firms that cannot draw on internal

labor markets to the same extent as the average firm.

• Higher turnover in some occupations and industries can produce a

skewed image of actual labor demand since vacancies reflect a mixture

of replacement demand as well as expansion.

In addition, since BGT data draws on published job advertisements, it

is a proxy of current vacancies, and not of hiring or actual employment.

As a proxy for vacancies, BGT data performs reasonably well, although

some occupations and sectors are over-represented. Hershbein and Kahn

(2018) show for the US that, compared to vacancy data from the U.S.

Bureau of Labor Statistics’ Job Openings and Labor Turnover Survey

(JOLTS), BGT over-represents health care and social assistance, finance and

insurance, and education, while under-representing accommodation, food

services and construction (where informal hiring is more prevalent) as well as

public administration/government. These differences are stable across time,

however, such that changes in labor demand in BGT track well with JOLTS

data. Regarding hiring, they also compare BGT data with new jobs according

to the Current Population Survey (CPS). BGT data strongly over-represents

computer and mathematical occupations (by a factor of over four, which is a

concern when looking at growth in demand for AI skills as compared to other

skills), as well as occupations in management, healthcare, and business and

financial operations. It under-represents all remaining occupations, including

transportation, food preparation and serving, production, or construction.

Cammeraat and Squicciarini (2020) argue that, because of differences in

turnover across occupations, countries and time, as well as differences in

the collection of national vacancy statistics, the representativeness of BGT

data as an indicator for labor and skills demand should be measured against

employment growth. They compare growth rates in employment with growth

rates in BGT job postings on the occupational level in the six countries for

which a BGT timeline exists. They find that, across countries, the deviation

between BGT and employment growth rates by occupation is lower than 10

percentage points for 65% of the employed population. They observe the

biggest deviations for agricultural, forestry and fishery workers, as well as

community and personal service workers, again occupations where informal

hiring may be more prevalent.

database that are shared across occupations (e.g., “assisting and
caring for others,” “coaching others,” “coordinating the work of

others”). For these scores, they use aMachine Learning suitability
rubric consisting of 23 distinct statements describing a work
activity. For example, for the statement “Task is describable by
rules,” the highest score would be “Task can be fully described
by a detailed set of rules (e.g., following a recipe),” whereas the
lowest score would be “The task has no clear, well-known set
of rules on what is and is not effective (e.g., writing a book).”
They use the human intelligence task crowdsourcing platform
CrowdFlower to score each direct work activity by seven to ten
respondents. The direct work activities are then aggregated to
tasks (e.g., “assisting and caring for others,” “coaching others,”
“coordinating the work of others” aggregate to “interacting with
others”), and the tasks to occupations. This indicator is available
for the US for the year 2016/2017.

Tolan et al. (2021) introduce a layer of cognitive abilities
to connect AI applications (that they call benchmarks) to
tasks. The authors define 14 cognitive abilities (e.g., visual
processing, planning and sequential decision-making and acting,
communication, etc.) from the psychometrics, comparative
psychology, cognitive science, and AI literature16. They link
these abilities to 328 different AI benchmarks (or applications)
stemming from the authors’ own previous analysis and
annotation of AI papers as well as from open resources such as
Papers with Code17. These sources in turn draw on data from
multiple verified sources, including academic literature, review
articles etc. on machine learning and AI. They use the research
intensity in a specific benchmark (number of publications, news
stories, blog entries etc.) obtained from AI topics18. Tasks are
measured at the worker level using the European Working
Conditions Survey (EWCS), PIAAC and the O∗NET database.
Task intensity is derived as a measure of how much time an
individual worker spends on a task and how often the task
is performed.

The mapping between cognitive abilities and AI benchmarks,
as well as between cognitive abilities and tasks, relies on a
correspondence matrix that assigns a value of 1 if the ability
is absolutely required to solve a benchmark or complete a
task, and 0 if it is not necessary at all. This correspondence
matrix was populated by a group of multidisciplinary researchers
for the mapping between tasks and cognitive abilities, and
by a group of AI-specialized researchers for the mapping
between AI benchmarks and cognitive abilities. This indicator
is available from 2008 to 2018, at the ISCO-3 level, and

16The abilities are chosen from Hernández-Orallo (2017) to be at an intermediate

level of detail, excluding very general abilities that would influence all others, such

as general intelligence, and too specific abilities and skills, such as being able to

drive a car or music skills. They also exclude any personality traits that do not

apply tomachines. The abilities are:Memory processing, Sensorimotor interaction,

Visual processing, Auditory processing, Attention and search, Planning, sequential

decision-making and acting, Comprehension and expression, Communication,

Emotion and self-control, Navigation, Conceptualisation, learning and abstraction,

Quantitative and logical reasoning, Mind modelling and social interaction, and

Metacognition and confidence assessment.
17Free and open repository of machine learning code and results, which includes

data from several repositories (including EFF, NLPD progress etc.).
18An archive kept by the by the Association for the Advancement of Artificial

Intelligence (AAI).
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constructed to be country-invariant (as it combines data covering
different countries).

Webb (2020) constructs his exposure of occupations to any
technology indicator by directly comparing the text of patents
from Google patents public data to the texts of job descriptions
from the O∗NET database to quantify the overlap between patent
descriptions and job task descriptions. By limiting the patents
to AI patents (using a list of key-words), this indicator can
be narrowed to only apply to AI. Each particular task is then
assigned a score according to the prevalence of such patents that
mention this task; tasks are then aggregated to occupations.

What Do These Indicators Measure?
To gauge the link between AI and employment, the chosen
indicator for this study should proxy actual AI deployment
in the economy as closely as possible. Furthermore, it should
proxy AI deployment at the occupation level because switching
occupations is more costly for workers than switching firms
or sectors, making the occupation the relevant level for the
automation risk of individual workers.

Task-based approaches measure potential automatability of
tasks (and occupations), so they are measures of AI exposure,
not deployment. Because task-based measures look at potential
automatability, they cannot capture uneven adoption of AI
across occupations, sectors or countries. Thus, in a cross-
country analysis, the only source of variation in a task-based
indicator are differences in the occupational task composition
across countries, as well as cross-country differences in the
occupational distribution.

Indicators based on job posting data measure demand for AI
skills (albeit with some noise, see Box 1), as opposed to AI use.
Thus, they rely on the assumption that AI use in a firm, sector
or occupation will lead to employer demand for AI skills in that
particular firm, sector, or occupation. This is not necessarily the
case, however:

• Some firms will decide to train workers in AI rather than
recruit workers with AI skills; their propensity to do so may
vary across occupations.

• Many AI applications will not require AI skills to work
with them.

• Even where AI skills are needed, many firms, especially smaller
ones, are likely to outsource AI development and support
with its adoption to specialized AI development firms. In this
case, vacancies associated with AI adoption would emerge in
a different firm or sector to where the technology was actually
being deployed.

• The assumption that AI deployment requires hiring of staff
with AI skills is even more problematic when the indicator
is applied at the occupation level. Firms that adopt AI may
seek workers with AI skills in completely different occupations
than the workers whose tasks are being automated by AI.
For instance, an insurance company wanting to substitute or
enhance some of the tasks of insurance clerks with AI would
not necessarily hire insurance clerks with AI skills, but AI
professionals to develop or deploy the technology. Insurance
clerks may only have to interact with this technology, which

might not require AI development skills (but may well-
require other specialized skills). Thus, even with broad-based
deployment of AI in the financial industry, this indicator may
not show an increasing number of job postings for insurance
clerks with AI skills. This effect could also be heterogeneous
across countries and time. For example, Qian et al. (2020)
show that law firms in the UK tend to hire AI professionals
without legal knowledge, while law firms in Singapore and the
US do advertise jobs with hybrid legal-AI skillsets.

Thus, indicators based on labor demand data are a good proxy
for AI deployment at the firm and sector level as long as there is
no significant outsourcing of AI development and maintenance,
and the production process is such that using the technology
requires specialized AI skills. If these assumptions do not hold,
these indicators will be incomplete. Whether or not this is the
case is an empirical question that requires further research. To
date the only empirical reference on this question is Acemoglu
et al. (2020) who show for the US that the share of job postings
that require AI skills increases faster in firms that are heavily
exposed to AI (according to task-based indicators). For example,
a one standard deviation increase in the measure of AI exposure
according to Felten et al. (2018, 2019) leads to a 15% increase in
the number of published AI vacancies.

To shed further light on the relationship between the two
types of indicators, Figure 1 plots the 2012–2019 percentage
point change in the share of BGT job postings that require
AI skills19 across 36 sectors against a sector-level task-based
AI exposure score, similar to the occupational AI exposure
score developed in this paper (see Section Construction of
the AI Occupational Exposure Measure)20. This analysis only
covers the United Kingdom and the United States21 because
of data availability. For both countries, a positive relationship
is apparent, suggesting that, overall, (i) the two measures are
consistent and (ii) AI deployment does require some AI talent at
the sector level. Specifically, a one standard deviation increase in
AI exposure (approximately the difference in exposure between
finance and public administration) is associated with a 0.33
higher percentage point change in the share of job postings that
require AI skills in the United-Kingdom; a similar relationship
emerges in the United-States22.

While it is reassuring that, at the sector level, the twomeasures
appear consistent, it is also clear that job postings that require
AI skills fail to identify certain sectors that are, from a task

19AI-related technical skills are identified based on the list provided in Acemoglu

et al. (2020), and detailed in Footnote 44.
20As with occupations, the industry-level scores are derived using the average

frequency with which workers in each industry perform a set of 33 tasks, separately

for each country.
21The United Kingdom and the United States are the only countries in the sample

analysed (see Section Construction of the AI Occupational Exposure Measure)

with 2012 Burning Glass Technologies data available, thereby allowing for the

examination of trends over the past decade.
22The standard deviation of exposure to AI is 0.083 in the United-Kingdom and

0.075 in the United-States. These values are multiplied by the slopes of the linear

relationships displayed in Figure 1: 3.90 and 4.95, respectively. The average share

of job postings that require AI skills was 0.14% in the United-Kingdom and 0.26%

in the United-States in 2012, and this has increased to 0.67 and 0.94%, respectively,

in 2019.
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FIGURE 1 | Sectors with higher exposure to AI saw a higher increase in their share of job postings that require AI skills. Percentage point* change in the share of job

postings that require AI skills (2012–2019) vs. average exposure to AI (2012), by sector. The share of job postings that require AI skills in a sector is the number of job

postings requiring such skills in that sector divided by the total number of job postings in that same sector. Not all sectors have marker labels due to space

constraints. *Percentage point changes are preferred over percentage changes because the share of job postings that require AI skills is equal to zero in some sectors

in 2012. Source: Author’ calculations using data from Burning Glass Technologies, PIAAC and Felten et al. (2019). (A) United Kingdom and (B) United States.

perspective, highly exposed to AI, such as education, the energy
sector, the oil industry, public administration and real estate
activities. This suggests that AI development and support may
be outsourced and/or that the use of AI does not require AI skills
in these sectors.

In addition, and as stated above, there is a priori no reason
that demand-based indicators would pick up AI deployment
at the occupational level, as firms that adopt AI may seek
workers with AI skills in completely different occupations than
the workers whose tasks are being automated by AI. This is also
borne out in the analysis in this paper (see Section Exposure to
AI and Demand for AI-Related Technical Skills: A Weak but
Positive Relationship Among OccupationsWhere Computer Use
is High). Thus, labor demand-based indicators are unlikely to be

good proxies for AI deployment at the occupational level and, in
the analysis described in this paper, preference will be given to
task-based measures even though they, too, are only an imperfect
proxy for AI adoption.

Which Employment Effects Can These
Indicators Capture?
This paper analyses the relationship between AI adoption and
employment at the occupational level, since it is automation
risk at the occupational level that is most relevant for individual
workers. The analysis will therefore require a measure of AI
adoption at the occupational level and this section assesses which
type of indicator might be best suited to that purpose.
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It is useful to think of AI-driven automation as having two
possible, but opposed, employment effects. On the one hand, AI
may depress employment via automation/substitution. On the
other, it may increase it by raising worker productivity.

Focusing on the substitution effect first, task-based indicators
will pick up such effects since they measure what tasks could
potentially be automated by AI. By contrast, labor-demand
based indicators identify occupational AI exposure only if AI
skills are mentioned in online job postings for a particular
occupation. Thus, they will only pick up substitution effects
(that is, a subsequent decline in employment for a particular
occupation) if the production process is such that workers
whose tasks are being automated need AI skills to interact with
the technology.

Regarding the productivity effect, there are several ways in
which AI might increase employment. The most straightforward
way is that AI increases productivity in a given task, and thus
lowers production costs, which can lead to increased employment
if demand for a product or service is sufficiently price elastic. This
was the case, for example, for weavers in the industrial revolution
[see Footnote 4, Bessen (2016)].

In addition, technological progress may allow workers to
focus on higher value-added tasks within their occupation
that the technology cannot (yet) perform. For example, AI
is increasingly deployed in the financial services industry to
forecast stock performance. Grennan and Michaely (2017) show
that stock analysts have shifted their attention away from
stocks for which an abundance of data is available (which
lends itself to analysis by AI) toward stocks for which data is
scarce. To predict the performance of “low-AI” stocks, analysts
gather “soft” information directly from companies’ management,
suppliers and clients, thus concentrating on tasks requiring a
capacity for complex human interaction, of which AI is not
(yet) capable.

Task-based indicators will pick up these productivity effects
(as they identify exposed occupations directly via their task
structure), while labor-demand based indicators will only do so
if workers whose tasks are being automated need to interact
with the technology, and interacting with the technology requires
specialized AI skills.

AI can also be used to augment other technologies, that
subsequently automate certain tasks. For example, in robotics,
AI supports the efficient automation of physical tasks by
improving the vision of robots, or by enabling robots to “learn”
from the experience of other robots, e.g., by facilitating the
exchange of information on the layout of rooms between cleaning
robots (Nolan, 2021). While these improvements to robotics are
connected to AI applications (in this example: image recognition
and sensory perception of room layouts), the tasks that are being
automated (cleaning of rooms) mostly consist of the physical
manipulation of objects and thus pertain to the field of robotics.
Thus, AI improves the effectiveness of robots to perform tasks
associated with cleaners, without performing physical cleaning
tasks. As task-based indicators only identify tasks that AI itself
can perform (and not tasks that it merely facilitates), they
would not capture this effect. In robotics, this would mostly
affect physical tasks often performed by low and medium-skilled

TABLE 1 | Which potential employment effects of AI can task-based and

labor-demand based indicators capture?

Task-Based

indicators

Labor demand-based indicators

Substitution effect (–) Yes Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Productivity effect (+) Yes Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Augmentation of other

technologies (e.g.,

robotics) (–)

No Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Job creation through

new products and

services enabled by AI

(+)

No Only if these new jobs require AI skills

The table only refers to employment effects identified at the occupational level.+/– denote

the sign of the employment effect.

workers. Indicators based on online vacancies would also be
unlikely to capture AI augmenting other technologies at the
occupation level—unless cleaners require AI skills to work with
cleaning robots.

Finally, AI could enable the launch of completely new
products or services, that lead to job creation, e.g., in marketing
or sales of AI-based products and services (Acemoglu et al.,
2020). Both task- and labor-demand-based indicators cannot
generally measure this effect (unless marketing/selling of AI
products requires AI-skills).

To conclude, both types of indicators are likely to understate
actual AI deployment at the occupational level (see Table 1).
Labor-demand based indicators in particular will miss a
significant part of AI deployment if workers whose tasks are
being automated do not need to interact with AI or if the use
of AI does not require any AI skills. Task-based indicators, on the
other hand, are not capable of picking up differences in actual
AI deployment across time and space (this is because they only
measure exposure, not actual adoption). Finally, neither indicator
will capture AI augmenting other automating technologies, such
as robotics, which is likely to disproportionally affect low-skilled,
blue collar occupations.

On the whole, for assessing the links between AI and
employment at the occupational level, indicators based on labor
demand data are likely to be incomplete. Task-based indicators
are therefore more appropriate for the analysis carried out in this
paper. Keeping their limitations in mind, however, is crucial.

DATA

This paper extends the occupational exposure measure, proposed
by Felten et al. (2018, 2019) to 23 OECD countries23 to look

23The 23 countries are Austria, Belgium, the Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Mexico,
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at the links between AI and labor market outcomes for 36
occupations24,25 in recent years (2012–2019). The measure of
occupational exposure to AI proxies the degree to which tasks
in those occupations can be automated by AI. Thus, the analysis
compares occupations with a high degree of automatability by AI
to those with a low degree.

This section presents the data used for the analysis. It begins
by describing the construction of the measure of occupational
exposure to AI developed and used in this paper, and builds some
intuition as to why some occupations are exposed to a higher
degree of potential automation by AI than others. It then shows
some descriptive statistics for AI exposure and labor market
outcomes: employment, working hours, and job postings that
require AI skills. Finally, it describes different measures of the
task composition of occupations, whichwill help shed light on the
relationship between AI exposure and labor market outcomes.

Occupational Exposure to AI
Several indicators for (potential) AI deployment have been
proposed in the literature (see Section Indicators of Occupational
Exposure to AI), most of them geared to the US. Since this
paper looks at the links between AI and employment across
several countries, country coverage is a key criterion for the
choice of indicator. This excludes indicators based on AI-
related job-posting frequencies, as pre-2018 BGT data is only
available for English-speaking countries)26. In addition to data
availability issues, indicators based on labor demand data are
also likely to be less complete than task-based indicators (see
Section What Do These Indicators Measure?). Among the task-
based measures, the suitability for machine learning indicator
(Brynjolfsson and Mitchell, 2017; Brynjolfsson et al., 2018) was
not publicly accessible at the time of publication. Webb’s (2020)
indicator captures the stock of patents until 2020, and is therefore
too recent to look at the links between AI and the labor market
during the observation period (2012–2019), particularly given
that major advancements in AI occurred between 2015 and 2020,
and the slow pace of diffusion of technology in the economy. The
paper therefore uses the occupational exposure measure (Felten
et al., 2018, 2019), which has the advantage of capturing AI
developments until 2015, leaving some time for the technology to
be deployed in the economy. It is also based on actual scientific

the Netherlands, Norway, Poland, Slovenia, the Slovak Republic, Spain, Sweden,

United Kingdom, and the United States.
24This paper aims to explore the links between employment and AI deployment in

the economy, rather than the direct employment increase due to AI development.

Two occupations are particularly likely to be involved in AI development: IT

technology professionals and IT technicians. These two occupations both have

high levels of exposure to AI and some of the highest employment growth

over this paper’s observation period, which may be partly related to increased

activity in AI development. These occupations may bias the analysis and they are

therefore excluded from the sample. Nevertheless, the results are not sensitive to

the inclusion of IT technology professionals and IT technicians in the analysis.
25A few occupation/country cells are missing due to data unavailability for

the construction of the indicator of occupational exposure to AI: Skilled

forestry, fishery, hunting workers in Belgium and Germany; Assemblers in

Greece; Agricultural, forestry, fishery labourers in Austria and France, and Food

preparation assistants in the United Kingdom.
26This paper uses BGT data for additional results for the countries for which they

are available.

progress in AI, as opposed to research activity as the indicator
proposed by Tolan et al. (2021).

While the preferred measure for this analysis is the AI
occupational exposure measure proposed by Felten et al. (2018,
2019), the paper also presents additional results using Agrawal’s,
Gans and Goldfarb (2019) job-posting indicator (an indicator
based on job postings), as well as robustness checks using task-
based indicators by Webb (2020) and Tolan et al. (2021)27. This
section describes the construction of the main indicator, and
some descriptive statistics.

Construction of the AI Occupational Exposure

Measure
The AI occupational exposure measure links progress in nine
AI applications to 52 abilities in the US Department of
Labor’s O∗NET database (see Section What Do These Indicators
Measure? for more details). This paper extends it to 23 OECD
countries by mapping the O∗NET abilities to tasks from the
OECD’s Survey of Adult Skills (PIAAC), and then back to
occupations (see Figure 2 for an illustration of the link).
Specifically, instead of using the O∗NET US-specific measures
of an ability’s “prevalence” and “importance” in an occupation,
country-specific measures have been developed based on data
from PIAAC, which reports the frequency with which a number
of tasks are performed on the job by each surveyed individual.
This information was used to measure the average frequency
with which workers in each occupation (classified using two-digit
ISCO-08) perform 33 tasks, and this was done separately for each
country. Each O∗NET ability was then linked to each of these 33
tasks, based on the authors’ binary assessments of whether the
ability is needed to perform the task or not28.

This allows for task-content variations in AI exposure across
occupations, as well as within occupations and across countries
that may arise because of institutional or socio-economic
differences across countries. Thus, the indicator proposed in this
paper differs from that of Felten et al. (2019) only in that it relies
on PIAAC data to take into account occupational task-content
heterogeneity across countries. That is, the indicator adopted in
this paper is defined at the occupation-country cell level rather
than at the occupation level [as in Felten et al. (2019)]. It is scaled
such that the minimum is zero and the maximum is one over
the full sample of occupation-country cells. It indicates relative

27While the three task-based indicators point to the same relationships between

exposure to AI and employment, the results are less clearcut for the relationship

between exposure to AI and average working hours.
28The 33 tasks were then grouped into 12 broad categories to address differences

in data availability between types of task. For example, “read letters,” “read bills,”

and “write letters” were grouped into one category (“literacy–business”), so that

this type of task does not weight more in the final score than tasks types associated

with a single PIAAC task (e.g., “dexterity” or “management”). For each ability and

each occupation, 12 measures were constructed to reflect the frequency with which

workers use the ability in the occupation to perform tasks under the 12 broad task

categories. This was done by taking, within each category of tasks, the sum of the

frequencies of the tasks assigned to the ability divided by the total number of tasks

in the category. Finally, the frequency with which workers use the ability at the

two-digit ISCO-08 level and by country was obtained by taking the sum of these

12 measures. The methodology, including the definition of the broad categories of

tasks, is adapted from Fernández-Macías and Bisello (2020) and Tolan et al. (2021).
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FIGURE 2 | Construction of the measure of occupational exposure to AI. Adaptation from Felten et al. (2018) to 23 OECD countries. The authors link O*NET abilities

and PIAAC tasks manually by asking whether a given ability is indispensable for performing a given task. The link between O*NET abilities and AI applications (a

correlation matrix) is taken from Felten et al. (2019). The matrix was built by an Amazon Mechanical Turk survey of 200 gig workers per AI application, who were asked

whether a given AI application can be used for a certain ability. The correlation matrix between applications and abilities is then calculated as the share of respondents

who thought that a given AI application could be used for a given ability. This chart is for illustrative purposes and is not an exhaustive representation of the links

between the tasks, abilities and AI applications displayed.

exposure to AI, and no other meaningful interpretation can be
given to its actual values.

In this paper, the link between O∗NET abilities and PIAAC
tasks is performed manually by asking whether a given ability
is indispensable for performing a given task, e.g., is oral
comprehension absolutely necessary to teach people? A given
O∗NET ability can therefore be linked to several PIAAC tasks,
and conversely, a given PIAAC task can be linked to several
O∗NET abilities. This link was made by the authors of the paper
and, in case of diverging answers, agreement was reached through
an iterative discussion and consensus method, similar to the
Delphi method described in Tolan et al. (2021). Of the 52 O∗NET
abilities, 35 are related to at least one task in PIAAC. Thus, the
indicator loses 17 abilities compared to Felten’s et al. (2018, 2019)
measure. All the measures that are lost in this way are physical,
psychomotor or sensory, as there are no tasks requiring these
abilities in PIAAC29. As a result, the occupational intensity of
physical, psychomotor, or sensory abilities is poorly estimated
using PIAAC data. Therefore, whenever possible, robustness
checks use O∗NET scores of “prevalence” and “importance”
of abilities within occupations for the United States (as in
Felten et al., 2018) instead of PIAAC-based measures. These
robustness tests necessarily assume that the importance and

29The 17 lost abilities are: control prevision, multilimb coordination, response

orientation, reaction time, speed of limb movement, explosive strength, extent

flexibility, dynamic flexibility, gross body coordination, gross body equilibrium, far

vision, night vision, peripheral vision, glare sensitivity, hearing sensitivity, auditory

attention, and sound localization.

prevalence of abilities are the same in other countries as in
the United States. Another approach would have been to assign
the EFF applications directly to the PIAAC tasks. However, we
preferred to preserve the robustly established mapping of Felten
et al. (2018).

The level of exposure to AI in a particular occupation reflects:
(i) the progress made by AI in specific applications and (ii) the
extent to which those applications are related to abilities required
in that occupation. Like all task-based measures, it is at its core
a measure of potential automation of occupations by AI, as it
indicates which occupations relymost on abilities in which AI has
made progress in recent years. It should capture potential positive
productivity effects of AI, as well as negative substitution effects
caused by (partial) automation of tasks by AI. However, it cannot
capture any effects of AI progress on occupations when these
effects do not rely on worker abilities that are directly related
to the capabilities of AI, such as might be the case when AI
augments other technologies, which consequently make progress
in the abilities that a person needs in his/her job (see also Section
What Do These Indicators Measure?). Section Occupational
Exposure to AI shows AI exposure across occupations and builds
some intuition on why the indicator identifies some occupations
as more exposed to AI than others.

AI Progress and Abilities
Over the period 2010–2015, AI has made the most progress
in applications that affect abilities required to perform non-
routine cognitive tasks, in particular: information ordering,
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memorisation, perceptual speed, speed of closure, and flexibility
of closure (Figure 3)30. By contrast, AI has made the least
progress in applications that affect physical and psychomotor
abilities31. This is consistent with emerging evidence that AI is
capable of performing cognitive, non-routine tasks (Lane and
Saint-Martin, 2021).

Occupational Exposure to AI
The kind of abilities AI has made the most progress in
are disproportionately used in highly-educated, white-collar
occupations. As a result, white-collar occupations requiring high
levels of formal education are among the occupations with the
highest exposure to AI: Science and Engineering Professionals,
but also Business and Administration Professionals, Managers;
Chiefs Executives; and Legal, Social, and Cultural Professionals
(Figure 4). By contrast, occupations with the lowest exposure
include occupations with an emphasis on physical tasks: Cleaners
and Helpers; Agricultural Forestry, Fishery Laborers; Food
Preparation Assistants and Laborers32.

The occupational intensity of some abilities is poorly
estimated due to PIAAC data limitations. In particular, the 33
PIAAC tasks used in the analysis include only two non-cognitive
tasks, and some of the O∗NET abilities are not related to any
of these tasks. Therefore, as a robustness exercise, Figure A A.1

displays the level of exposure to AI obtained when using O∗NET
scores of “prevalence” and “importance” of abilities within
occupations for the United States (as in Felten et al., 2018)
instead of the PIAAC-based measures. That is, the robustness
test assumes that the importance and prevalence of abilities
is the same in other countries as in the United States. The
robustness test shows the same patterns in terms of AI exposure
by occupation, suggesting that it is fine to use the measure linked
to PIAAC abilities.

Cleaners and Helpers, the least exposed occupation according
to this measure, have a low score of occupational exposure to AI
because they rely less than other workers on cognitive abilities
(including those in which AI has made the most progress),
whereas they rely more on physical and psychomotor abilities
(in which AI has made little progress). Figure 5A illustrates this
by plotting the extent to which Cleaners and Helpers use any of
the 35 abilities (relative to the average use of that ability across
all occupations) against AI progress in that ability. Compared
to the average worker, Cleaners and Helpers rely heavily on
physical abilities such as dynamic / static/trunk strength and

30Perceptual speed is the ability to quickly and accurately compare similarities

and differences among sets of letters, numbers, objects, pictures, or patterns.

Speed of closure is the ability to quickly make sense of, combine, and organize

information into meaningful patterns. Flexibility of closure is the ability to identify

or detect a known pattern (a figure, object, word, or sound) that is hidden in other

distracting material.
31Only one psychomotor ability has an intermediate score: rate control, which is

the ability to time one’s movements or the movement of a piece of equipment in

anticipation of changes in the speed and/or direction of a moving object or scene.
32To get results at the ISCO-08 2-digit level, scores were mapped from the SOC

2010 6-digits classification to the ISCO-08 4-digit classification, and aggregated

at the 2-digit level by using average scores weighted by the number of full-time

equivalent employees in each occupation in the United States, as provided byWebb

(2020) and based on American Community Survey 2010 data.

dexterity, areas in which AI has made the least progress in
recent years. They rely less than other occupations on abilities
with the fastest AI progress, such as information ordering and
memorisation. Business Professionals, in contrast, are heavily
exposed to AI because they rely more than other workers on
cognitive abilities, and less on physical and psychomotor abilities
(Figure 5B).

As a robustness check, Figure A A.2 replicates this analysis
using O∗NET scores of “prevalence” and “importance” of abilities
within occupations instead of PIAAC-based measures, and it
shows the same patterns.

As abilities are the only link between occupations and progress
in AI, the occupational exposure measure cannot detect any
effects of AI that do not work directly through AI capabilities,
for example if AI is employed to make other technologies
more efficient. Consider the example of drivers, an occupation
often discussed as at-risk of being substituted by AI. Drivers
receive a below-average score in the AI occupational exposure
measure (see Figure 4). This is because the driving component
of autonomous vehicle technologies relies on the physical
manipulation of objects, which is in the realm of robotics, not on
AI. AI does touch upon some abilities needed to drive a car—such
as the ability to plan a route or perceive and distinguish objects
at a distance—but the majority of tasks performed when driving
a car are physical. AI might well be essential for driverless cars,
but mainly by enabling robotic technology, which possesses the
physical abilities necessary to drive a vehicle. Thus, this indicator
can be seen as isolating the “pure” effects of AI (Felten et al.,
2019).

Cross-Country Differences in Occupational Exposure

to AI
On average, an occupation’s exposure to AI varies little across
countries—differences across occupations tend to be greater.
The average score of AI exposure across occupations ranges
from 0.52 (Lithuania) to 0.72 (Finland, Figure 6) among the
23 countries analyzed33. By contrast, the average score across
countries for the 36 occupations ranges from 0.26 (cleaners and
helpers) to 0.87 (business professionals). Even the most exposed
cleaners and helpers (in Finland) are only about half as exposed
to AI as the least exposed business professionals (in Lithuania)
(Figure A A.3). That being said, occupations tend to be slightly
more exposed to AI in Northern European countries than in
Eastern European ones (Figure 6).

A different way of showing that AI exposure varies more
across occupations than across countries for a given occupation
is by contrasting the distribution of exposure to AI across
occupations in the most exposed country in the sample (Finland)
with that in the least exposed country (Lithuania, Figure 7). The
distributions are very similar. In both countries, highly educated

33Averages are unweighted averages across occupations, so that cross-

country differences only reflect differences in the ability requirements of

occupations between countries, not differences in the occupational composition

across countries.
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FIGURE 3 | AI has made the most progress in abilities that are required to perform non-routine, cognitive tasks. Progress made by AI in relation to each ability,

2010–2015. The link between O*NET abilities and AI applications (a correlation matrix) is taken from Felten et al. (2019). The matrix was built by an Amazon

Mechanical Turk survey of 200 gig workers per AI application, who were asked whether a given AI application—e.g., image recognition—can be used for a certain

ability—e.g., near vision. The correlation matrix between applications and abilities is then calculated as the share of respondents who thought that a given AI

application could be used for a given ability. To obtain the score of progress made by AI in relation to a given ability, the shares corresponding to that ability are first

multiplied by the Electronic Frontier Foundation (EFF) progress scores in the AI applications; these products are then summed over all nine AI applications. Authors’

calculations using data from Felten et al. (2019).

white-collar occupations have the highest exposure to AI and
non-office-based, physical occupations have the lowest exposure.

Differences in exposure to AI between Finland and Lithuania

are greater for occupations in the lower half of the distribution

of exposure to AI (Figure 7). For example, Food Preparation

Assistants in Finland are more than twice as exposed to AI

than food preparation assistants in Lithuania, while the score for

Business and Administration Professionals is only 12% higher in
Finland than in Lithuania.

This is because, while occupations across the entire spectrum
of exposure to AI rely more on physical than on cognitive abilities

in Lithuania than in Finland, this reliance is more pronounced

at the low end of the exposure spectrum. Figure 8 illustrates

this for the least (Cleaners and Helpers) and the most exposed
occupations (Business and Administration Professionals). The
top panel displays: (i) the difference in the intensity of use

of each ability by Cleaners and Helpers between Finland and
Lithuania; and (ii) the progress made by AI in relation to that
ability. The bottom panel shows the same for Business and
Administration Professionals.

For both occupations, workers in Lithuania tend to rely more
on physical and psychomotor abilities (which are little exposed
to AI), and less on cognitive abilities, including cognitive abilities

in which AI has made the most progress. The differences in the
intensity of use of cognitive, physical, and psychomotor abilities
between Finland and Lithuania are however greater for Cleaners
and Helpers than they are for Business and Administration
Professionals (Figure 8). As an example of how cleaners may be
more exposed to AI in Finland than in Lithuania, AI navigation
tools may help cleaning robots map out their route. They
could therefore substitute for cleaners in supervising cleaning
robots, especially in countries where cleaning robots are more
prevalent (e.g., probably in Finland34). More generally, it is
likely that cleaners in Finland use more sophisticated equipment
and protocols, resulting in a greater reliance on more exposed
cognitive abilities. That being said, even in Finland, the least
exposed occupation remains Cleaners and Helpers (Figure 7).

Workers in Lithuania may rely more on physical abilities than
in Finland because, in 2012, when these ability requirements
were measured, technology adoption was more advanced in
Finland than in Lithuania. That is, in 2012, technology may
have already automated some physical tasks (e.g., cleaning)
and created more cognitive tasks (e.g., reading instructions,

34Although specific data on cleaning robots are not available, data from the

International Federation of Robotics show that, in 2012, industrial robots were

more prevalent in Finland than in Lithuania in all areas for which data are available.
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FIGURE 4 | Highly educated white-collar occupations are among the occupations with the highest exposure to AI. Average exposure to AI across countries by

occupation, 2012. The averages presented are unweighted. Cross-country averages are taken over the 23 countries included in the analysis. Authors’ calculations

using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).

filling out documentation, supervising cleaning robots) in
Finland than in Lithuania, and this might have had a
bigger effect on occupations that rely more on physical tasks
(like cleaning).

Occupational Exposure to AI and Education
Section Occupational Exposure to AI showed that white-collar
occupations requiring high levels of formal education are the
most exposed to AI, while low-educated physical occupations are
the least exposed35. Figure 9 confirms this pattern. It shows a
clear positive relationship between the share of highly educated
workers within an occupation in 2012 and the AI exposure
score in that occupation in that year (red line). By contrast,
low-educated workers were less likely to work in occupations
with high exposure to AI (blue line). The relationship is
almost flat for middle-educated workers. In 2012, 82% of
highly educated workers were in the most exposed half of
occupations, compared to 37% of middle-educated and only 16%
of low-educated36.

35Again, as in the rest of the paper, exposure to AI specifically refers to

potential automation of tasks, as this is primarily what task-based measures of

exposure capture.
36On average across countries, there is no clear relationship between AI exposure

and gender and age, see Figures A A.4, A A.5 in the Annex.

Labor Market Outcomes
The analysis links occupational exposure to AI to a number of
labor market outcomes: employment37, average hours worked38,
the share of part-time workers, and the share of job postings that
require AI-related technical skills. This section presents some
descriptive statistics on labor market outcomes for the period
2012 and 2019. Two thousand twelve is chosen as the first year
for the period of analysis because it ensures consistency with
the measure of occupational exposure to AI, for two reasons.
First, the measure of exposure to AI is based on the task
composition of occupations in 2012 formost countries39. Second,

37Employment includes all people engaged in productive activities, whether

as employees or self-employed. Employment data is taken from the Mexican

National Survey of Occupation and Employment (ENOE), the European Union

Labour Force Survey (EU-LFS), and the US Current Population Survey (US-CPS).

The occupation classification was mapped to ISCO-08 where necessary. More

specifically, the ENOE SINCO occupation code was directly mapped to the ISCO-

08 classification. The US-CPS occupation census code variable was first mapped to

the SOC 2010 classification. Next, it was mapped to the ISCO-08 classification.
38Hours worked refer to the average of individuals’ usual weekly hours, which

include the number of hours worked during a normal week without any extra-

ordinary events (such as leave, public holidays, strikes, sickness, or extra-ordinary

overtime).
392012 is available in PIAAC for most countries except Hungary (2017), Lithuania

(2014), and Mexico (2017).
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FIGURE 5 | Cross-occupation differences in AI exposure are caused by differences in the intensity of use of abilities. Intensity of use of an ability relative to the average

across occupations, and progress made by AI in relation to that ability, 2012. Ability intensity represents the cross-country average frequency of the use of an ability

among Cleaner and helpers (top) or Business professionals (bottom) minus the cross-country average frequency of the use of that ability, averaged across the 36

occupations in the sample. Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al.

(2019). (A) Cleaners and helpers and (B) Business and administration professionals.
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FIGURE 6 | Cross-country differences in exposure to AI for a given occupation are small compared to cross-occupation differences. Average exposure to AI across

occupations by country, 2012. The averages presented are unweighted averages across the 36 occupations in the sample. Authors’ calculations using data from the

Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).

FIGURE 7 | The distribution of AI exposure across occupations is similar in Finland and Lithuania. Exposure to AI, 2012. Authors’ calculations using data from the

Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).
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FIGURE 8 | Cross-country differences in occupational AI exposure are caused by differences in the intensity of use of abilities. Intensity of use of an ability in Finland

relative to Lithuania and progress made by AI in relation to that ability, 2012. Ability intensity represents the difference in the frequency of the use of an ability among

Cleaner and helpers (top) or Business professionals (bottom) between Finland and Lithuania. Authors’ calculations using data from the Programme for the International

Assessment of Adult Competencies (PIAAC) and Felten et al. (2019). (A) Cleaners and helpers and (B) Business and administration professionals.
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FIGURE 9 | Highly educated workers are disproportionately exposed to AI. Average share of workers with low, medium or high education within occupations vs.

average exposure to AI, across countries (2012). For each education group, occupation shares represent the share of workers of that group in a particular occupation.

Each dot reports the unweighted average across the 23 countries analyzed of the share of workers with a particular education in an occupation. Authors’ calculations

using data from the European Union Labor Force Survey (EU-LFS), the Mexican National Survey of Occupation and Employment (ENOE), the US Current Population

Survey (US-CPS) PIAAC, and Felten et al. (2019).

progress in AI applications is measured over the period 2010–
2015. As a result, AI, as proxied by the occupational AI exposure
indicator, could affect the labor market starting from 2010 and
fully from 2015 onwards. Starting in 2012 provides a long enough
observation period, while closely tracking the measure of recent
developments in AI.

Employment and Working Hours
Overall, in most occupations and on average across the 23
countries, employment grew between 2012 and 2019, a period
that coincides with the economic recovery from the global
financial crisis. Employment grew by 10.8% on average across
all occupations and countries in the sample (Figure 10). Average
employment growth was negative for only four occupations:
Other Clerical Support Workers (−9.2%), Skilled Agricultural
Workers (−8.2%), Handicraft and Printing Workers (−7.9%),
and Metal and Machinery Workers (-1.7%).

By contrast, average usual weekly hours declined by 0.40%
(equivalent to 9min per week40 average over the same period
(Figure 11)41. On average across countries, working hours
declined in most occupations. Occupations with the largest

40Estimated at the average over the sample (37.7 average usual weekly hours).
41Mexico is excluded from the analysis of working time due to lack of data.

drops in working hours include (but are not limited to)
occupations that most often use part-time employment, such as
Sales Workers (−2.0%); Legal, Social, Cultural Related Associate
Professionals (−1.8%); and Agricultural, Forestry, Fishery
Laborers (−1.8%).

Job Postings That Require AI Skills
Beyond its effects on job quantity, AI may transform occupations
by changing their task composition, as certain tasks are
automated and workers are increasingly expected to focus on
other tasks. This may result in a higher demand for AI-related
technical skills as workers interact with these new technologies.
However, it is not necessarily the case that working with AI
requires technical AI skills. For example, a translator using an AI
translation tool does not necessarily need any AI technical skills.

This section looks at the share of job postings that require AI-
related technical skills (AI skills) by occupation using job postings
data from Burning Glass Technologies42 for the United Kingdom

42See Box 1 for more details on Burning Glass Technologies data. The Burning

Glass Occupation job classification (derived from SOC 2010) was directly mapped

to the ISCO-08 classification.
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FIGURE 10 | Employment has grown in most occupations between 2012 and 2019. Average percentage change in employment level across countries by

occupation, 2012–2019. Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 23 countries analyzed.

Source: ENOE, EU-LFS, and US-CPS.

and the United States43. AI-related technical skills are identified
based on the list provided in Acemoglu et al. (2020)44.

In the United States, the share of job postings requiring
AI skills has increased in almost all occupations between 2012
and 2019 (Figure 12). Science and Engineering Professionals
experienced the largest increase, but growth was also substantial
for Managers, Chief Executives, Business and Administration
Professionals, and Legal, Social, Cultural Professionals. That
being said, the share of job postings that require AI skills remains
very low overall, with an average across occupations of 0.24% in
2019 (against 0.10% in 2012). These orders of magnitude are in
line with Acemoglu et al. (2020) and Squicciarini and Nachtigall
(2021).

43United Kingdom and the United States are the only countries in the sample

with 2012 Burning Glass Technologies data available, thereby allowing for the

examination of trends over the past decade.
44Job postings that require AI-related technical skills are defined as those that

include at least one keyword from the following list: Machine Learning, Computer

Vision, Machine Vision, Deep Learning, Virtual Agents, Image Recognition,

Natural Language Processing, Speech Recognition, Pattern Recognition, Object

Recognition, Neural Networks, AI ChatBot, Supervised Learning, Text Mining,

Support Vector Machines, Unsupervised Learning, Image Processing, Mahout,

Recommender Systems, Support Vector Machines (SVM), Random Forests,

Latent Semantic Analysis, Sentiment Analysis/Opinion Mining, Latent Dirichlet

Allocation, Predictive Models, Kernel Methods, Keras, Gradient boosting,

OpenCV, Xgboost, Libsvm, Word2Vec, Chatbot, Machine Translation, and

Sentiment Classification.

RESULTS

This section looks at the link between an occupation’s exposure to
AI in 2012 and changes in employment, working hours, and the
demand for AI-related technical skills between 2012 and 2019.
Exposure to AI appears to be associated with greater employment
growth in occupations where computer use is high, and larger
reductions in hours worked in occupations where computer
use is low. So, even though AI may substitute for workers
in certain tasks, it also appears to create job opportunities in
occupations that require digital skills. In addition, there is some
evidence that greater exposure to AI is associated with greater
increase in demand for AI-related technical skills (such as natural
language processing, machine translation, or image recognition)
in occupations where computer use is high. However, as the share
of jobs requiring AI skills remains very small, this increase in jobs
requiring AI skills cannot account for the additional employment
growth observed in computer-intensive occupations that are
exposed to AI.

Empirical Strategy
The analysis links changes in employment levels within
occupations and across countries to AI exposure45. The

45The analysis is performed at the 2-digit level of the International Standard

Classification of Occupations 2008 (ISCO-08).
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FIGURE 11 | Average usual working hours have decreased in most occupations between 2012 and 2019. Average percentage change in average usual weekly hours

across countries by occupation, 2012–2019. Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 22

countries analyzed (Mexico is excluded from the analysis of working time due to data availability). Usual weekly working hours by country-occupation cell are

calculated by taking the average across individuals within that cell. Source: ENOE, EU-LFS, and US-CPS.

regression equation is the following:

Yij = αj + β AIij + γ Xij + uij (1)

where Yij is the percentage change in the number of workers
(both dependent employees and self-employed) in occupation
i in country j over the period 2012–201946; AIij is the index
of exposure to AI for occupation i in country j as measured
in 2012; Xij is a vector of controls including exposure to
other technological advances (software and industrial robots),
offshorability, exposure to international trade, and 1-digit
occupational ISCO dummies; αj are country fixed effects; and
uij is the error term. The coefficient of interest β captures the
link between exposure to AI and changes in employment. The
inclusion of country fixed effects means that the analysis only
exploits within-country variation in AI exposure to estimate
the parameter of interest. The specifications that include 1-
digit occupational dummies only exploit variation within broad
occupational groups, thereby controlling for any factors that are
constant across these groups.

To control for the effect of non-AI technologies, the analysis
includes measures of exposure to software and industrial robots
developed by Webb (2020) based on the overlap between the

46In a second step, Yij will stand for the percentage change in average weekly

working hours and the percentage change in the share of part-time workers.

text of job descriptions provided in the O∗NET database and
the text of patents in the fields corresponding to each of these
technologies47. Offshoring is proxied by an index of offshorability
developed by Firpo et al. (2011) and made available by Autor
and Dorn (2013), which measures the potential offshoring of
job tasks using the average between the two variables “Face-to-
Face Contact” and “On-Site Job” that Firpo et al. (2011) derive
from the O∗NET database48. This measure captures the extent to
which an occupation requires direct interpersonal interaction or
proximity to a specific work location49.

47To select software patents, Webb uses an algorithm developed by Bessen and

Hunt (2007) which requires one of the keywords “software,” “computer,” or

“programme” to be present, but none of the keywords “chip,” “semiconductor,”

“bus,” “circuity,” or “circuitry.” To select patents in the field of industrial robots,

Webb develops an algorithm that results in the following search criteria: the title

and abstract should include “robot” or “manipulate,” and the patent should not

fall within the categories: “medical or veterinary science; hygiene” or “physical or

chemical processes or apparatus in general”.
48They reverse the sign to measure offshorability instead of non-offshorability.
49Firpo et al. (2011) define “face-to-face contact” as the average value between

the O∗NET variables “face-to-face discussions,” “establishing and maintaining

interpersonal relationships,” “assisting and caring for others,” “performing for or

working directly with the public”, and “coaching and developing others.” They

define “on-site job” as the average between the O∗NET variables “inspecting

equipment, structures, or material,” “handling and moving objects,” “operating

vehicles, mechanized devices, or equipment,” and the mean of “repairing
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FIGURE 12 | Nearly all occupations have increasingly demanded AI skills between 2012 and 2019 in the United States. Percentage point* change in the share of job

postings that require AI skills, 2012–2019, USA. The share of job postings that require AI skills in an occupation is the number of job postings requiring such skills in

that occupation divided by the total number of job postings in that same occupation. *Percentage point changes are preferred over percentage changes because the

share of job postings that require AI skills is equal to zero in some occupations in 2012. Source: Burning Glass Technologies.

The three above indices are occupation-level task-
based measures derived from the O∗NET database for the
United States; this analysis uses those measures for all 23
countries, assuming that the cross-occupation distribution
of these indicators is similar across countries50. Exposure to
international trade is proxied by the share of employment within
occupations that is in tradable sectors51. These shares are derived
from the European Union Labor Force Survey (EU-LFS), the
Mexican National Survey of Occupation and Employment
(ENOE), the US Current Population Survey (US-CPS).

Exposure to AI and Employment: A Positive
Relationship in Occupations Where
Computer Use Is High
As discussed in Section Introduction, the effect of exposure
to AI on employment is theoretically ambiguous. On the one

and maintaining mechanical equipment” and “repairing and maintaining

electronic equipment”.
50All three indices are available by occupation based on U.S. Census occupation

codes. They were first mapped to the SOC 2010 6-digits classification and then to

the ISCO-08 4-digit classification. They were finally aggregated at the 2-digit level

using average scores weighted by the number of full-time equivalent employees in

each occupation in the United-States, as provided by Webb (2020) and based on

American Community Survey 2010 data.
51The tradable sectors considered are agriculture, industry, and financial and

insurance activities.

hand, employment may fall as tasks are automated (substitution
effect). On the other hand, productivity gains may increase
labor demand (productivity effect) (Acemoglu and Restrepo,
2019a,b; Bessen, 2019; Lane and Saint-Martin, 2021)52. The
labor market impact of AI on a given occupation is likely
to depend on the task composition of that occupation—
the prevalence of high-value added tasks that AI cannot
automate (e.g., tasks that require creativity or social intelligence)
or the extent to which the occupation already uses other
digital technologies [since AI applications are often similar
to software in their use, workers with digital skills may
find it easier to use AI effectively (Felten et al., 2019)].
Therefore, the following analysis will not only look at the
entire sample of occupation-country cells, but will also split
the sample according to what people do in these occupations
and countries.

In particular, the level of computer use within an occupation
is proxied by the share of workers reporting the use of a

52Partial worker substitution in an occupation may increase worker productivity

and employment in the same occupation, but also in other occupations and sectors

(Autor and Salomons, 2018). These AI-induced productivity effects are relevant to

the present cross-occupation analysis to the extent that they predominantly affect

the same occupation where AI substitutes for workers. For example, although AI

translation algorithms may substitute for part of the work of translators, they may

increase the demand for translators by significantly reducing translation costs.
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computer at work in that occupation, calculated for each of the
23 countries in the sample. It is based on individuals’ answers
to the question “Do you use a computer in your job?,” taken
from the Survey of Adult Skills (PIAAC). Occupation-country
cells are then classified into three categories of computer use (low,
medium, and high), where the terciles are calculated based on the
full sample of occupation-country cells53. Another classification
used is the country-invariant classification developed by Goos
et al. (2014), which classifies occupations based on their average
wage relying on European Community Household Panel (ECHP)
data. For example, occupations with an average wage in the
middle of the occupation-wage distribution would be classified
in the middle with respect to this classification54. Finally, the
prevalence of creative and social tasks is derived from PIAAC
data. PIAAC data include the frequency with which a number
of tasks are performed at the individual level. Respondents’ self-
assessment are based on a 5-point scale ranging from “Never”
to “Every day.” This information is used to measure the average
frequency with which workers in each occupation perform
creative or social tasks, and this is done separately for each
country55.

While employment grew faster in occupations more exposed
to AI, this relationship is not robust. There is stronger
evidence that AI exposure is positively related to employment
growth in occupations where computer use is high. Table 2
displays the results of regression equation (1) without controls.
When looking at the entire sample, the coefficient on AI
exposure is both positive and statistically significant (Column
1), but the coefficient is no longer statistically significant as
soon as any of the controls described in Section Empirical
Strategy are included (with the exception of offshorability)56.
When the sample is split by level of computer use (low,
medium, high), the coefficient on AI exposure remains
positive and statistically significant only for the subsample
where computer use is high (Columns 2–4). It remains so
after successive inclusion of controls for international trade
(i.e., shares of workers in tradable sectors), offshorability,
exposure to other technological advances (software and industrial
robots) and 1-digit occupational dummies (Table 3)57. In

53Data are from 2012, with the exception of Hungary (2017), Lithuania (2014), and

Mexico (2017).
54Low-skill occupations include the ISCO-08 1-digit occupation groups: Services

and SalesWorkers; and Elementary Occupations. Middle-skill occupations include

the groups: Clerical Support Workers; Skilled Agricultural, Forestry, and Fishery

Workers; Craft and Related Trades Workers; and Plant and Machine Operators

and Assemblers. High-skill occupations include: Managers; Professionals, and

Technicians; and Associate Professionals.
55In line with Nedelkoska and Quintini (2018), creative tasks include: problem

solving—simple problems, and problem solving—complex problems; and social

tasks include: teaching, advising, planning for others, communicating, negotiating,

influencing, and selling. For each measure, occupation-country cells are then

classified into three categories depending on the average frequency with which

these tasks are performed (low, medium, and high). These three categories are

calculated by applying terciles across the full sample of occupation-country cells.

Data are from 2012, with the exception of Hungary (2017), Lithuania (2014), and

Mexico (2017).
56These results are not displayed but are available on request.
57Tables 2, 3 correspond to unweighted regressions, but the results hold when each

observation is weighted by the inverse of the number of country observations in the

TABLE 2 | Exposure to AI is positively associated with employment growth in

occupations where computer use is high.

(1)

All

occupations

(2)

Low

computer use

(3)

Medium

computer use

(4)

High

computer use

Exposure to AI 13.3** −3.7 8.3 85.7**

(6.4) (13.2) (18.4) (36.5)

Country FEs Yes Yes Yes Yes

Observations 822 274 274 274

R-squared 0.058 0.127 0.172 0.098

Dependent variable: 2012–2019% change in employment level.

Robust standard errors in parentheses. ***p< 0.01, **p< 0.05, *p< 0.1. Each observation

is a country-occupation cell. Each column shows the results of regression equation (1)

applied to one of the subsamples obtained by splitting the overall sample by level of

computer use. Occupation-country cells are classified into low, medium or high computer

use by tercile of computer use applied across the full sample of occupation-country cells.

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC, and

Felten et al. (2019).

occupations where computer use is high, a one standard
deviation increase in AI exposure is associated with 5.7
percentage points higher employment growth (Table 2, Column
4)58.

By contrast, the average wage level of the occupation or the
prevalence of creative or social tasks matter little in the link
between exposure to AI and employment growth. Table A A.1

in Appendix shows the results obtained when replicating the
analysis on the subsamples obtained by splitting the overall
sample by average wage level, prevalence of creative tasks, or
prevalence of social tasks. All coefficients on exposure to AI
remain positive, but are weakly statistically significant and of
lower magnitude than those obtained on the subsample of
occupations where computer use is high (Table 3).

As a robustness check, Table A A.2 in the Appendix replicates
the analysis in Table 2 using the score of exposure to AI obtained
when using O∗NET scores of “prevalence” and “importance” of
abilities within occupations instead of PIAAC-based measures.
The results remain unchanged. Table A A.3 replicates the
analysis using the alternative indicators of exposure to AI
constructed by Webb (2020) and Tolan et al. (2021), described
in Section What Do These Indicators Measure?59 While
the Webb (2020) indicator confirms the positive relationship
between employment growth and exposure to AI in occupations
where computer use is high, the coefficient obtained with the

subsample considered, so that each country has the same weight. These results are

not displayed but are available on request.
58The standard deviation of exposure to AI is 0.067 among high computer use

occupations. Multiplying this by the coefficient in Column 4 gives 0.067∗85.73

= 5.74.
59The Webb (2020) indicator is available by occupation based on U.S. Census

occupation codes. It was first mapped to the SOC 2010 6-digits classification

and then to the ISCO-08 4-digit classification. It was finally aggregated at the 2-

digit level by using average scores weighted by the number of full-time equivalent

employees in each occupation in the United States, as provided by Webb (2020)

and based on American Community Survey 2010 data. The Tolan et al. (2021)

indicator is available at the ISCO-08 3-digit level and was aggregated at the 2-digit

level by taking average scores.
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FIGURE 13 | Exposure to AI is associated with higher employment growth in occupations where computer use is high. Percentage change in employment level

(2012–2019) and exposure to AI (2012). Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due to space constraints. Skilled

forestry, fishery, hunting workers excluded from (A) for readability reasons. Occupation-country cells are classified into low, medium or high computer use by tercile of

computer use applied across the full sample of occupation-country cells. Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, and Felten et al.

(2019). (A) United Kingdom and (B) United States.

Tolan et al. (2021) indicator is positive but not statistically
significant. This could be due to the fact that the Tolan
et al. (2021) indicator reflects different aspects of AI advances,

as it focuses more on cognitive abilities and is based on
research intensity rather than on measures of progress in
AI applications.
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TABLE 3 | The relationship between exposure to AI and employment growth is

robust to the inclusion of a number of controls.

(1) (2) (3) (4) (5)

High computer use occupations

Exposure to AI 85.7** 94.4*** 137.7*** 135.4*** 144.6**

(36.5) (34.7) (36.5) (40.6) (62.6)

Share of tradable

sectors

−0.143 −0.0120 −0.00931 0.157

(0.151) (0.145) (0.166) (0.256)

Offshorability −7.4** −7.4*** −9.7**

(2.9) (2.8) (4.6)

Exposure to

softwares

0.0103 0.00429

(0.190) (0.253)

Exposure to

robots

−0.0241 0.258

(0.280) (0.341)

1-digit occupation

FEs

No No No No Yes

Country FEs Yes Yes Yes Yes Yes

Observations 274 274 274 274 274

R-squared 0.098 0.101 0.127 0.127 0.173

Dependent variable: 2012–2019% change in employment level. Robust standard errors in

parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation

cell. The sample is restricted to occupations with high computer use. Occupation-country

cells are classified into low, medium or high computer use by tercile of computer use

applied across the full sample of occupation-country cells. Offshorability is an occupation-

level measure from Autor and Dorn (2013) based on data from the United States. Exposure

to software and exposure to robots are occupation-level measures developed by Webb

(2020) based on data from the United States. The share of tradable sector represents the

2012 share of workers in the country-occupation cell working in agriculture, industry, and

financial and insurance activities. Source: Authors’ calculations using data from ENOE,

EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013), Felten et al. (2019), and Webb (2020).

The examples of the United Kingdom and the United States
illustrate these findings clearly60. Figure 13 shows the percentage
change in employment from 2012 to 2019 for each occupation
against that occupation’s exposure to AI in 2012, both in
the United Kingdom (Figure 13A) and the United States
(Figure 13B). Occupations are classified according to their level
of computer use. The relationship between exposure to AI and
employment growth within computer use groups is generally
positive, but the correlation is stronger in occupations where
computer use is high. For occupations with high computer
use, the most exposed occupations tend to have experienced
higher employment growth between 2012 and 2019: Business
Professionals; Legal, Social and Cultural Professionals; Managers;
and Science & Engineering Professionals. AI applications
relevant to these occupations include: identifying investment
opportunities, optimizing production in manufacturing plants,
identifying problems on assembly lines, analyzing and filtering
recorded job interviews, and translation. In contrast, high
computer-use occupations with low or negative employment
growth were occupations with relatively low exposure to AI, such
as clerical workers and teaching professionals.

While further research is needed to test the causal nature
of these patterns and to identify the exact mechanism behind

60Although statistically significant on aggregate, the relationships between

employment growth and exposure to AI suggested by Table 2 are not visible for

some countries.

them, it is possible that a high level of digital skills (as proxied
by computer use) indicates a greater ability of workers to
adapt to and use new technologies at work and, hence, to reap
the benefits that these technologies bring. If AI allows these
workers to interact with AI and to substantially increase their
productivity and/or the quality of their output, this may, under
certain conditions, lead to an increase in demand for their
labor61.

Exposure to AI and Working Time: A
Negative Relationship Among Occupations
Where Computer Use Is Low
This subsection extends the analysis by shifting the focus
from the number of working individuals (extensive margin
of employment) to how much these individuals work
(intensive margin).

In general, the higher the level of exposure to AI in an
occupation, the greater the drop in average hours worked
over the period 2012–2019; and this relationship is particularly
marked in occupations where computer use is low. Column
(1) of Table 4 presents the results of regression equation (1)
using the percentage change in average usual weekly working
hours as the variable of interest. The statistically significant
and negative coefficient on exposure to AI highlights a negative
relationship across the entire sample. Splitting the sample by
computer use category shows that this relationship is stronger
among occupations with lower computer use (Column 2–
4). The size of the coefficients in Column 2 indicates that,
within countries and across occupations with low computer
use, a one standard deviation increase in exposure to AI
is associated with a 0.60 percentage point greater drop in
usual weekly working hours62 (equivalent to 13min per
week)63. Columns 1–4 of Table 5 show that the result is
robust to the successive inclusion of controls for international
trade, offshorability, and exposure to other technologies.
However, the coefficient on exposure to AI loses statistical
significance when controlling for 1 digit occupational dummies
(Table 5, Column 5), which could stem from attenuation bias,
as measurement errors may be significant relative to the
variation in actual exposure within the 1 digit occupation
groups64.

The relationship between exposure to AI and the drop in
average hours worked was driven by part-time employment65.

61For productivity-enhancing technologies to have a positive effect on product and

labour demand, product demand needs to be price elastic (Bessen, 2019).
62The standard deviation of exposure to AI is 0.125 among low computer use

occupations. Multiplying this by the coefficient in Column 2 gives 0.125∗(−4.823)

=−0.60.
63Estimated at the average working hours among low computer use occupations

(37.2 h).
64Tables 4, 5 correspond to unweighted regressions, but most of the results hold

when each observation is weighted by the inverse of the number of country

observations in the subsample considered, so that each country has the same

weight. These results are not displayed but are available on request.
65Part-time workers are defined as workers usually working 30 hours or less per

week in their main job.
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TABLE 4 | Exposure to AI is negatively associated with the growth in average working hours in occupations where computer use is low.

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: 2012–2019% change in

working hours

Dependent variable: 2012–2019% change in

part-time employment

All

occupations

Low

computer

use

Medium

computer

use

High

computer

use

All

occupations

Low

computer

use

Medium

computer

use

High

computer

use

Exposure to AI −2.7*** −4.8** −4.1 −3.2 14.9 56.6** −37.6 2.4

(0.9) (2.3) (3.1) (3.1) (10.0) (24.7) (94.1) (53.7)

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes

Observations 781 252 261 268 781 252 261 268

R-squared 0.143 0.133 0.209 0.304 0.143 0.206 0.193 0.211

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation cell. Each column shows the results of regression equation (1)

applied to one of the subsamples obtained by splitting the overall sample by level of computer use. Occupation-country cells are classified into low, medium or high computer use by

tercile of computer use applied across the full sample of occupation-country cells. In columns 1–4, the dependent variable is the percentage change in average usual weekly working

hours. In columns 5–8, the dependent variable is the percentage change in the share of part-time workers. Mexico is excluded from the analysis of working time due to data availability.

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, and Felten et al. (2019).

TABLE 5 | The relationship between exposure to AI and growth in average working hours is robust to the inclusion of a number of controls.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: 2012–2019% change in

working hours

Dependent variable: 2012–2019% change in

part-time employment

Low computer use occupations Low computer use occupations

Exposure to AI −4.8** −4.9** −9.2*** −9.2** −7.2 56.6** 56.6** 49.4** 53.0 23.5

(2.3) (2.3) (3.2) (4.0) (4.6) (24.7) (24.7) (24.5) (35.3) (41.7)

Share of tradable sectors −0.0148 −0.0194* −0.0267** −0.0222 0.0135 0.00582 −0.00142 −0.0721

(0.0111) (0.0116) (0.0133) (0.0176) (0.113) (0.124) (0.139) (0.167)

Offshorability −1.4** −0.970 −0.887 −2.4 −1.6 −2.9

(0.7) (0.8) (0.9) (8.4) (11.9) (12.8)

Exposure to softwares 0.0289 0.0350 0.0358 −0.0567

(0.0263) (0.0300) (0.314) (0.376)

Exposure to robots −0.0270 −0.0364 0.0151 0.00943

(0.0385) (0.0619) (0.447) (0.744)

1-digit occupation FEs No No No No Yes No No No No Yes

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 252 252 252 252 252 252 252 252 252 252

R-squared 0.133 0.141 0.157 0.161 0.166 0.206 0.206 0.207 0.207 0.214

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation cell. The sample is restricted to occupations with low computer use.

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of occupation-country cells. In columns 1–4, the

dependent variable is the percentage change in average usual weekly working hours. In columns 5–8, the dependent variable is the percentage change in the share of part-time workers.

Offshorability is an occupation-level measure from Autor and Dorn (2013) based on data from the United States. Exposure to software and exposure to robots are occupation-level

measures developed by Webb (2020) based on data from the United States. The share of tradable sector represents the 2012 share of workers in the country-occupation cell working

in: agriculture, industry, and financial and insurance activities. Mexico is excluded from the analysis of working time due to data availability. Source: Authors’ calculations using data from

EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013), Felten et al. (2019), and Webb (2020).
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Columns 5–8 of Table 4 replicate the analysis in Columns 1–
4 using the change in the occupation-level share of part-time
workers as the variable of interest. The results are consistent with
those in columns 2–4: the coefficient on exposure to AI is positive
and statistically significant only for the subsample of occupations
where computer use is low (Columns 6–8). The coefficient
remains statistically significant and positive when controlling
for international trade and offshorability, but loses statistical
significance when controlling for exposure to other technological
advances and 1-digit occupational dummies (Table 5, columns
6–10)66. The results hold when replacing the share of part-
time workers with the share of involuntary part-time workers67

(Table A A.7), suggesting that the additional decline in working
hours among low computer use occupations that are exposed to
AI is not a voluntary choice by workers.

The examples of Germany and Spain provide a good
illustration of these results68. Figure 14 shows the percentage
change in average usual weekly working hours from 2012 to
2019 for each occupation against that occupation’s exposure to
AI, both in Germany (Figure 14A) and in Spain (Figure 14B).
As before, occupations are classified according to their degree
of computer use (low, medium, high). In both countries,
there is a clear negative relationship between exposure to
AI and the change in working hours among occupations
where computer use is low. In particular, within the low
computer use category, most occupations with negative growth
in working hours are relatively exposed to AI. These occupations
include: Drivers and Mobile Plant Operators, Personal Service
Workers, and Skilled Agricultural Workers. AI applications
relevant to these occupations include route optimisation for
drivers, personalized chatbots and demand forecasting in the
tourism industry69, or the use of computer vision in the
agricultural sector to identify plants that need special attention.
By contrast, low computer use occupations with the strongest
growth in working hours are generally less exposed to AI.
This is for example the case for Laborers (which includes

66As an additional robustness exercise, Table A A.4 in the Appendix replicates the

analysis using the score of exposure to AI obtained when using O∗NET scores of

“prevalence” and “importance” of abilities within occupations instead of PIAAC-

based measures. The results remain qualitatively unchanged, but the coefficients

on exposure to AI are no longer statistically significant on the subsample of

occupations where computer use is low, when using working hours as the variable

of interest. Tables A A.5, A.6 replicate the analysis using the alternative indicators

of exposure to AI constructed byWebb (2020) and Tolan et al. (2021). When using

the Webb (2020) indicator, the results hold on the entire sample but are not robust

on the subsample of occupations where computer use is low. Using the Tolan et al.

(2021) indicator, the results by subgroups hold qualitatively but the coefficients are

not statistically significant.
67Involuntary part-time workers are defined as part-time workers (i.e., workers

working 30 h or less per week) who report either that they could not find a full-time

job or that they would like to work more hours.
68Although statistically significant on aggregate, the relationships between the

percentage change in average usual weekly working hours and exposure to AI

suggested by Table 4 are not visible for some countries.
69For example, personalised chatbots can partially substitute for travel attendants.

Demand forecasting algorithms may facilitate the operation of hotels, including

the work of housekeeping supervisors. Travel Attendants and Housekeeping

Supervisors both fall into the Personal Service Workers category.

laborers in transport and storage, manufacturing, or mining
and construction).

Again, while further research is required, a lack of digital skills
may mean that workers are not able to interact efficiently with
AI and thus cannot reap all potential benefits of the technology.
The substitution effect of AI in those occupations therefore
appears to outweigh the productivity effect, resulting in reduced
working hours, possibly as a result of more involuntary part-
time employment. However, these results remain suggestive,
as they are not robust to the inclusion of the full set of
controls and the use of alternative indicators of exposure
to AI.

Exposure to AI and Demand for AI-Related
Technical Skills: A Weak but Positive
Relationship Among Occupations Where
Computer Use Is High
Beyond its effects on employment, AI may also transform
occupations as workers are increasingly expected to interact with
the technology. This may result in a higher demand for AI-
related technical skills in affected occupations, although it is
not necessarily the case that working with AI requires technical
AI skills.

Indeed, exposure to AI is positively associated with the growth
in the demand for AI technical skills, especially in occupations
where computer use is high. Figure 15 shows the correlation
between the growth in the share of job postings that require AI
skills from 2012 to 2019 within occupations and occupation-
level exposure to AI for the United Kingdom (Figure 15A) and
the United States (Figure 15B), the only countries in the sample
with BGT time series available. Occupations are again classified
according to their computer use. There is a positive correlation
between the growth in the share of job postings requiring
AI skills and the AI exposure measure, particularly among
occupations where computer use is high. The most exposed
of these occupations (Science and Engineering Professionals;
Managers; Chief Executives; Business and Administration
Professionals; Legal, Social, Cultural professionals) are also
experiencing the largest increases in job postings requiring
AI skills.

However, the increase in jobs requiring AI skills cannot
account for the additional employment growth observed in
computer-intensive occupations that are exposed to AI (despite
the similarities between the patterns displayed in Figures 13,
15). As highlighted by the different scales in those two charts,
the order of magnitude of the correlation between exposure to
AI and the percentage change in employment (Figure 13) is
more than ten times that of the correlation between exposure
to AI and the percentage point change in the share of job
postings requiring AI skills (Figure 15)70. This is because job

70The results of the regression equation (1) on the subsample (of only 26

observations) of high computer use occupations in the United Kingdom and the

United States give a coefficient on exposure to AI equal to 151.4 when using

percentage employment growth as the variable of interest, which is about forty

times greater than the 4.1 obtained when using percentage point change in the

share of job postings that require AI skills as the variable of interest.
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FIGURE 14 | In occupations where computer use is low, exposure to AI is negatively associated with the growth in average working hours. Percentage change in

average usual working hour (2012–2019) and exposure to AI (2012). Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due

to space constraints. Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of

occupation-country cells. Source: Author’ calculations using data from EU-LFS, PIAAC, and Felten et al. (2019). (A) Germany and (B) Spain.

postings requiring AI skills remain a very small share of overall
job postings. In 2019, on average across the 36 occupations
analyzed, job postings that require AI skills accounted for
only 0.14% of overall postings in the United Kingdom and

0.24% in the United States. By contrast, across the same 36
occupations, employment grew by 8.82% on average in the
United States and 11.15% in the United Kingdom between 2012
and 2019.
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FIGURE 15 | High computer use occupations with higher exposure to AI saw a higher increase in their share of job postings that require AI skills. Percentage point

change in the share of job postings that require AI skills (2012–2019) and exposure to AI (2012). The share of job postings that require AI skills in an occupation is

taken as a share of the total number of job postings in that occupation. Occupation-country cells are classified into low, medium or high computer use by tercile of

computer use applied across the full sample of occupation-country cells. Source: Author’ calculations using data from Burning Glass Technologies, PIAAC, and Felten

et al. (2019). (A) United Kingdom and (B) United States.
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CONCLUSION

Recent years have seen impressive advances in artificial
intelligence (AI) and this has stoked renewed concern about the
impact of technological progress on the labor market, including
on worker displacement.

This paper looks at the possible links between AI and
employment in a cross-country context. It adapts the AI
occupational impact measure developed by Felten et al. (2018,
2019)—an indicator measuring the degree to which occupations
rely on abilities in which AI has made the most progress—and
extends it to 23 OECD countries. The indicator, which allows for
variations in AI exposure across occupations, as well as within
occupations and across countries, is then matched to Labor Force
Surveys, to analyse the relationship with employment.

Over the period 2012–2019, employment grew in nearly all
occupations analyzed. Overall, there appears to be no clear
relationship between AI exposure and employment growth.
However, in occupations where computer use is high, greater
exposure to AI is linked to higher employment growth. The
paper also finds suggestive evidence of a negative relationship
between AI exposure and growth in average hours worked among
occupations where computer use is low.

While further research is needed to identify the exact
mechanisms driving these results, one possible explanation is
that partial automation by AI increases productivity directly
as well as by shifting the task composition of occupations
toward higher value-added tasks. This increase in labor
productivity and output counteracts the direct displacement
effect of automation through AI for workers with good
digital skills, who may find it easier to use AI effectively
and shift to non-automatable, higher-value added tasks within
their occupations. The opposite could be true for workers
with poor digital skills, who may not be able to interact

efficiently with AI and thus reap all potential benefits of
the technology.
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In the last decades, the world economy is facing a massive rise in automation, robotics

and Artificial Intelligence (AI) which, according to some analysts, could lead to significant

job losses or job polarization and hence widen income and wealth disparities. This

scenario may impede the achievement of the Sustainable Development Goal 8 (SDG 8).

In this context, the role of government and regulation becomes crucial in order to prevent

an undesirable scenario, where technological change, namely automation and AI, comes

at the cost of mass unemployment and growing inequality. This paper focuses on the role

of taxation as a possible tool for sharing the gains from automation and AI. Nowadays,

advances in technology may have a direct impact on tax systems, which should be re-

adapted to take into account new forms of jobs and new business models. The paper

discusses pros and cons of several possible solutions and then compares progresses

achieved in different countries. Concerning robot tax and digital taxes there are already

some concrete steps undertaken both at national and international level, while other

proposals remain still nebulous. Of course, taxation per se, and any single policy in

general, is not sufficient to achieve a more inclusive and equal growth. It is instead

crucial to create synergies across policies and a strong link between employment creation

strategies, redistributive policies, skill development and social protection systems.

Keywords: robot tax, digital tax, automation, artificial intelligence, tax policy, inequality, technological

unemployment

INTRODUCTION

In the last decades, the world economy has witnessed a massive process of automation, robotization
and artificial intelligence (AI), which can already replace humans in a range of activities. Advanced
robotics, machine learning andAI already find diverse applications, including digital assistants such
as the Google Assistant or Siri, speech and image recognition, text translation and automatic text
generation. More sophisticated applications include medical systems for diagnosis of pathologies
(medtech), automated review of legal contracts (lawtech), self-driving cars, the detection of patterns
in stock markets for successful trading (algorithmic trading) and the estimation of building’s
interior temperature (Villa and Sassanelli, 2020).

Many analysts are rising concerns about the risk that advances in robotization and AI may lead
to significant job losses or job polarization and ultimately result in widening income and wealth
disparities (Méda, 2016; Korinek and Stiglitz, 2017). Among these, Frey and Osborne (2017) find
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that over the next 20 years technology may displace a large share
of human workers, precisely 35% in the United Kingdom and
47% in the United States. In a report published in 2018,1 the
World Economic Forum warned that by 2025 more than 50%
of current jobs will be automated. Jobs in Eastern and Southern
Europe, Germany, Chili and Japan are more automatable than
those in Anglo-Saxon and Nordic countries (Nedelkoska and
Quintini, 2018). While some studies cast doubts on the job
loss effect of technology in advanced economies, there is
consensus on the effects in emerging economies which rely
more on manufactory and are facing robot-driven reshoring (see
Carbonero et al., 2018; De Backer et al., 2018). According to the
World Bank (2016), the risk of job loss in developing countries
is even higher than in advanced economies: 69% in India, 72% in
Thailand, 77% in China, and a massive 85% in Ethiopia.2

Job losses due to automation are likely to widen inequality.
According to the common view, automation is likely to
penalize medium-skilled workers more than low- and high-
skilled workers, as their tasks can be more easily replaced
by AI and robots. Many commenters have hence argued that
technological progress should not come at the expense of more
vulnerable people and that solving inequity should be a priority
for governments. However, decreasing labor income could create
limitations for governments in the use of labor taxation as a tool
for redistributing wealth, which further exacerbates inequality.

This scenario threatens the achievement of Sustainable
Development Goal 8 (SDG 8) in the United Nations 2030 Agenda
for Sustainable Development. SDG 8 exhorts the international
community to “promote sustained, inclusive and sustainable
economic growth, full and productive employment and decent
work for all”.

It is evident that while technological progress certainly
improves life quality, it may nevertheless produce serious
social, economic and political harms if it remains unregulated
(Acemoglu, 2021). In light of this context, the role of
governments and regulation becomes crucial in order to prevent
an undesirable scenario, where technological change comes at the
cost of mass unemployment and growing inequality. Therefore,
governments and enterprises should take steps to preserve
competition and avoid monopolistic power, updating skills and
redistribute profits.

This paper focuses only on the role of taxation as a possible
tool for sharing the gains from automation and AI. The aim is to
shed light on possible solutions, being aware that each of them
presents strengths and weaknesses. Nowadays, technological
progress is radically changing the society and may have a direct
impact on tax systems, which should be re-adapted to take into
account new forms of jobs and new business models. Section
Challenges Arising From Robots and Artificial Intelligence
summarizes the discussion in the policy debate on the possible
effects of robots and AI on employment and inequality. The
lack of agreement makes policy interventions even more relevant
in order to minimize possible negative effects of technological

1The Future of Jobs Report 2018 (World Economic Forum, 2018).
2For a wider discussion of the literature on job implications of AI, we refer to Ernst

et al. (2019).

change and to make sure that gains from robotization and
AI are equally shared. Section Tax Solutions presents several
tax policy solutions, discusses pros and cons of each of them
and then compares progresses achieved in different countries
and at international level. Concerning the robot tax and the
digital tax, there are already some concrete steps undertaken by
some governments in advanced economies, while other proposals
remain more nebulous. Finally, Section Conclusions concludes.

Of course, taxation per se, and any single policy in general, is
not sufficient to achieve a more inclusive and equal growth. It is
instead crucial to create synergies across policies and a strong link
between employment creation strategies, redistributive policies,
skill development and social protection systems.

CHALLENGES ARISING FROM ROBOTS
AND ARTIFICIAL INTELLIGENCE

The widespread adoption of AI poses several challenges, related
to modalities of consumers’ data collection which are often
intrusive and not transparent, privacy protection and cyber-
security in e-commerce (D’Adamo et al., 2021; Puntoni et al.,
2021).

This section focuses on challenges for labor market and
equity. Despite some afore-mentioned studies are warning that
technological progress may cause job losses and widening
inequality, so far there is no agreement in the literature on the
effects of robotization and AI on employment and inequality.

According to some studies, employment effects specifically
from adopting robots remain rather limited or are even positive
at aggregate level. Among these, Dixon et al. (2021) compare
employment and performance outcome between robot-adopting
and non-adopting firms in Canada. They find that employment
increases in robot-adopting firms, especially for low-skilled
workers. Similar results are found by Acemoglu et al. (2020) for
Frenchmanufacturing firms and by Koch et al. (2019) for Spanish
firms. These studies also find an increase in performance (i.e.,
TFP or total revenues) in those firms adopting robots. Using data
on US textile, steel and auto industries, Bessen (2017) argues
that technological progress may at the same time be beneficial
for some industries and hit some others. Ryan Avent, an editor
and columnist for The Economist, points out that employment
remains very high in many advanced countries, such as Germany
and Japan, although they make an intense use of robots.

Looking more specifically at AI, the final effect on
employment will be determined by the coexistence of three
effects: task-substitution, task-complementarity and creation of
new jobs. In the case of matching applications (e.g., Linkedin,
Amazon), algorithms are already used to match supply and
demand and hence easily replace human workers. In the case of
classification/screening tasks, AI can assist workers but without
substituting them. An example might be computer-assisted
surgery which allows surgeons to perform surgical intervention
remotely. In this case, there is no substitution, but a kind
of “cobotisation”, that is a co-working between humans and
artificial intelligence, which can ultimately increase overall
productivity. Finally, concerning process-management tasks,
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AI can perform tasks that human workers are not capable to
perform. Moreover, the digital economy has created new types
of jobs (e.g., AI-programmers, e-commerce specialists, apps
and software developers, crowd-workers, influencers and those
working on social media).

Keeping this in mind and considering the scarcity of data
and difficulties in measuring the exposure to AI, it is difficult
nowadays to predict the overall effect of AI and automation on
jobs. The final effect will depend on which effect will dominate.
Georgieff and Hyee (2021) find that task substitution dominates
only for workers with low digital skills, while productivity effects
dominate for workers with good digital skills. In addition, the
final effect also depends on the adaptability of jobs in the digital
transformation (Arntz et al., 2017). In this light, some studies
share an optimistic view. Brynjolfsson et al. (2018) state that
digitalization could also lead to reorganization of occupations
rather than replacement. In a similar vein, Bessen (2017) argue
that “automation might not cause mass unemployment, but it
may well require workers to make disruptive transitions to new
industries, requiring new skills and occupations”.

Concerning the effects on inequality, new technologies in the
last years have been associated to greater inequality and job
polarization. Automation due to AI, robots and computers is
likely to affect mostly middle-class jobs. Humans are already
being replaced, partially or fully, in some tasks as legal services,
accounting, logistics and retail. Displaced workers are likely to
compete downwards, rather than falling into unemployment.
This scenario suggests further job polarization in the next years.
However, according to a recent study by Michael Webb, while
robots and software may take over middle-skilled tasks, AI may
perform high-skilled tasks and hence is expected to have the
reverse effect on inequality, since better-educated and better-
paid workers will be the most affected by the new AI-based
technologies. Still, this study warned that while AI will reduce
90:10 wage inequality, it will not have an impact on the top
1% earners.

Inequality has increased not only across workers undertaking
different tasks in the same firm, but also across firms. According
to recent research conducted at the World Bank by Kelly et al.
(2017), at least in Europe, themain driver of wage inequality is the
wage gap across firms, which is determined by differences in the
rate of adoption of digital technologies. As pointed out by Ernst
(2019), in this era of AI, we are witnessing the emergence of a new
business model, called “surveillance capitalism”, which is based
on collecting data without barriers to access and exploited with
proprietary algorithms. While the data come free—and users are
often all too willing to give up their privacy—data collection is
not since it is protected by intellectual property rights. While on
the one side the rise of new “big data” platforms, able to collect
huge information on consumer behaviors and preferences, can
certainly improve the efficiency in the economy, on the other
side “big data” have encouraged the emergence of “superstar”
firms which are outperforming compared to the other firms in the
economy. These “superstars”, mostly digital companies such as
Facebook, Google, Amazon and Netflix, collect huge amounts of
data which allow them to individualize prices and product offers
and cumulate profits and wealth. “Superstar” firms are then able

to gain market power and not surprisingly, concentrated winner-
take-all markets are associated with the fall in the labor share (see
Autor et al., 2017; Barkai, 2020).

These different forms of inequalities require different forms of
tax interventions.Wewill discuss different alternative tax policies
in the following sections. One of the main arguments in favor of
a tax on robots is that it preserves low-skill jobs which are more
likely to be automated. In this regard, a robot tax can address
inequality caused by skill-biased technological change. Another
option could be wage subsidies for low-skilled workers. However,
inequalitymay also arise because the emergence of a new business
model, called “surveillance capitalism”, concentrates profits and
wealth in the hands of few “superstars” firms, mostly digital
companies. In this case, other types of taxes would be preferable,
such as digital taxation, new tax on corporations’ stock shares
or the creation of sovereign funds. In particular, the latter two
solution are deemed to be progressive since stock ownership is
highly concentrated among the richest.

To achieve more inclusive and equal growth, taxation should
go hand in hand with other type of policies. Digital businesses
can easily collect a huge amount of data from their users.
Governments and private businesses should acknowledge that
users’ data represent an incredibly valuable source of profits
and take steps to ensure that markets remain contestable and
competitive. On the one side, there are proposals to tax the
income or rents generated by the exploitation of users’ data.3

On the other side, there are proposals to share data for free
in order to guarantee market competition. In a recent article,
Ekkehard Ernst discussed several solutions to address potential
rise in inequality in the era of “surveillance capitalism”.4

Considering data as a common good which allows the extraction
of rents would help restore the balance between individual
data suppliers and corporate platform providers. Treating data
ownership as a collective-action problem can limit the increases
in concentration and market power and will ultimately help to
address the continuous rise in inequality. Moreover, it is crucial
that both governments and enterprises support the existing
workforces through reskilling and upskilling. Governments
should implement effective policies to facilitate the transition
to the new world of work where humans will co-work with
artificial intelligence, without leaving anybody behind. In this
light, a necessary step is readapting the current education
system to support the transit to new tasks required by AI-
based technologies.

TAX SOLUTIONS

This section discusses different tax solutions which can ensure
that gains from AI and technological changes are equally shared.
Some proposals are already on track, while others remain more
nebulous and/or limited to a few countries. Each proposal
presents both strengths and weakness.

3For a discussion on alternative options for taxing profits and rents generated by

the collection and the process of users’ data, see Aslam and Shah (2020).
4I refer the reader to “Big Data and its enclosure of the commons”, published in

Social Europe on June 12, 2019.
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Robot Tax
Themost immediate solution, which has been strongly supported
among others by Bill Gates, Elon Musk and Nobel Laureate in
Economics Robert Shiller, is taxing robots. A robot tax stems
from the idea that robot-adopting firms should pay a tax since
they replace human workers with robots. There are several
arguments in favor of robot tax. The first one is preserving
human employment by introducing disincentives for firms from
replacing humans with robots. Second, even though firms prefer
replacing humans with robots, a robot tax would generate
revenues for the government to cover the loss of revenues from
payroll taxes and income tax.5 A third argument in favor of the
robot tax is allocation efficiency: robots do not pay neither payroll
taxes, nor income taxes. Taxing robots improves the efficiency
in the economy, because governments already tax labor, so they
should also tax robots at the same rate to avoid distortion in
the resource allocation. In most of advanced economies, and in
particular in the United States, taxation favors AI and automation
over human employment.6 This may distort investment toward
automation simply because companies benefit from tax windfalls
and not because automation may increase profitability.7 Finally,
not taxing robots will increase income inequality, because of the
decreasing share of national income going to labor.

Revenues from the robot tax can be redistributed as universal
basic income or as transfers to workers displaced in their jobs
by robotic systems and AI and not able to be relocated in new
jobs. New York Mayor, Bill de Blasio, proposed to use revenues
from the robot tax to create new jobs in green energy, health care
and education.

There are also arguments against the robot tax. First of all,
as discussed in Section Challenges Arising From Robots and
Artificial Intelligence, according to some studies employment
effects from adopting robots remain rather limited or even
positive at aggregate level (Acemoglu and Restrepo, 2017; Bessen,
2017; Graetz and Michaels, 2018; Koch et al., 2019; Acemoglu
et al., 2020; Dixon et al., 2021).

The main argument against taxing robots, however, is that
it might impede innovation in an era of productivity slump.
Over the last decades, advanced economies have experienced
stagnating productivity. Taxing new technologies could make
that slowdown worse, while according to some studies investing
in robots enhances growth and productivity. A CEBR (2017)
study finds that investment in robots contributed to 10 percent
of GDP growth per capita in OECD countries from 1993 to
2016. Graetz and Michaels (2018) find that a unit increase in
robotics density (defined as the number of robots per million

5On this argument, Acemoglu and Restrepo (2018) wrote, “The vast majority of tax

revenues are now derived from labour income, so firms avoid taxes by eliminating

employees.” New York Times journalist Eduardo Porter wrote, “Machines don’t

incur payroll taxes, which are used to fund Social Security andMedicare. For every

worker replaced by a robot, the employer saves on payroll taxes.”
6In OECD countries, in 2015 individual income taxes and social insurance taxes

represented approximately 50% of all tax revenues. In the United States, the

reliance on labor taxation is even more pronounced, with more than 60% of all

tax revenue coming from individual income taxes or payroll taxes (see https://

taxfoundation.org/publications/sources-of-government-revenue-in-the-oecd/).
7See Eduardo Porter, “Don’t Fight the Robots, Tax Them”, N.Y. TIMES (Februaty

23, 2019).

of hours worked) is associated with a 0.04 percent increase
in labor productivity. An analysis carried out by the Institute
for Employment Research and the Düsseldorf Institute for
Competition Economics finds that from 2004 to 2014 GDP has
increased by 0.5% per person per robot as result of robotization
(CEBR, 2017).

Finally, another argument against the robot tax is that
it would reduce the incentive for companies to invest in
innovation and will make low wage traps more persistent, as
argued by Robert D. Atkinson, president of the Information
Technology and Innovation Foundation (ITIF). According to
Atkinson, the main reason behind wage and GDP growth
stagnation in advanced economies is the productivity slow-down.
As mentioned above, there is empirical evidence that robots
are driving labor productivity and GDP growth (CEBR, 2017;
Graetz and Michaels, 2018). Therefore, creating disincentives
to robotization may further impede labor productivity and
perpetuate wage stagnation.

Provided that automation increases overall productivity and
efficiency and hence is beneficial to the society, hence the robot
tax should be designed so to avoid discouraging the use of robots
and automation. Some research shows that it is optimal to tax
robots only for a limited time span. In this view, Guerreiro et al.
(2020) propose to tax robots for three decades.

Beside the opinion in favor or against the robot tax, there is
however still discussion on how companies should pay the robot
tax. A first proposal could be to tax robots themselves, in the
amount of the salary paid to the hypothetical displaced human
worker. This solution is however extremely complicated to be put
in practice, since robots are unlikely to replace human workers in
the entire set of their tasks. It is more common that robots take
over only some tasks previously performed by humans and hence
it is quite difficult to find a one-to-one link between the robot and
the displaced worker difficult.

Alternatively, another option could be to levy a tax on the
use of robots, that is imposing a higher rate of corporate tax for
using robots, since companies make higher profits due to the
powerful efficiency of robots. This proposal is also complicated
to be implemented, because what we see nowadays is a form
of “cobotization”, which is a collaboration between robots and
human workers to complete a task and jointly contribute to make
profits. Therefore, it is not so straightforward to disentangle the
profits or value created by the robot from that one created by the
human worker.

Another proposal is subjecting robots to VAT, since robots
can replace humans in the supply of goods or services which
are subject to the VAT. To avoid obstacles to the adoption
of new technologies and innovation, a simpler approach could
be levying a lump-sum tax, payable at the same level by
everyone, which would not create distortions in the economy.
However, lump-sum taxes present trade-off in terms of equity
and distributional effects to be considered. A lump-sum tax
would be regressive and bear more on small businesses. Since
every business will pay the same amount of robot tax no matter
the profits it runs, absorbing the fixed cost of a robot tax
would be more arduous for small family businesses than for
large companies.
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Overall, these proposals require international coordination to
avoid that income could be taxed twice, at the robot level, in the
amount of the imputed salary or higher profits associated to the
use of robots, and at the corporation level (Oberson, 2017).

Another problem with the robot tax is the definition of
robot itself. Some institutions (e.g., the EU Parliament, the
International Federation of Robotics) have proposed criteria to
define robots.8 All definitions include two main criteria: the level
of autonomy and the capacity to learn. However, there is still
a lack of consensus on the definition of robots. The distinction
between a machine and a robot or between a computer program
and AI is still not clear. For example, a ticket-vending machine
replaces a human but could not be considered a robot.

Moving to more “philosophical” issues, some thorny
questions deserve more consideration. First, governments may
choose whether to tax robots themselves as they were persons
or whether to levy a tax on the use of robots. If they opt for the
first solution, then governments should give legal-person status
to robots in order to make them taxable, as Professor Xavier
Oberson points out. The status of legal person implies that robots
would have rights and obligations, so they could collect social
security and retire or go to jail if they do not pay taxes.

At this stage, proposals on how to implement a robot tax in
practice remain very nebulous. South Korea is the only country to
have introduced a kind of robot tax. An extensive talk about the
need of a robot tax is starting to emerge in the United Kingdom,
the United States, Japan and Canada. We discuss below some
country cases in this respect.

South Korea has been the first country to have levied a
robot tax on August 6, 2017. Korea is one of the countries
with the highest share of robots in the workplace, particularly
in the manufacturing industry. However, South Korea has not
exactly introduced a tax on individual robots or on the use
of robots, rather a reduction in the deductions for increasing
automation. Under previous governments, Article 24 of the
Restriction of Special Taxation Act established that companies
could have between 3 and 7% of their corporate tax deducted,
depending on the size of the business. Since August 2017, the
new administration of President Moon Jae-in has lowered the tax
deduction rate by up to 2% points.

In the United States, New York’s Mayor and 2020 presidential
candidate, Bill de Blasio, has pointed out the need of to adopt
a kind of robot tax to protect those jobs at risk of obsolescence.
Revenues from the robot tax might be used to create new jobs
in green energy, health care and education. Another example
of possible proposal of a robot tax has been put forward by a
political candidate in Chicago, Ameya Pawar, who has suggested
a two-fold approach: on the one side redeeming subsidies given
to companies who do not create the promised number of jobs,
and on the other side taxing companies who adopt robots to
displace humanworkers.While calls for a robot tax have emerged
in the political debate in the United States, the only concrete
example attempting to deal with automation, although a very
specific type of automation, is the Autonomous Vehicles Tax
Legislation. However, there is not agreement on the definition

8I refer to Oberson (2017) for more details.

of “fully autonomous vehicle”. In 2017, the Nevada legislature
imposed an excise tax on transportation network companies
using fully autonomous vehicles. Similarly, in 2018 the California
legislature authorized San Francisco to impose a local tax on
transportation network companies using autonomous vehicles.
Calls for a similar legislation have emerged in two other states,
Massachusetts and Tennessee, but not concrete steps have been
taken so far.

In Italy a law proposal in August 2017 suggested to
increase the corporate income tax rate by 1% for companies
“if the production activity of the company is implemented
and managed predominantly from artificial intelligence systems
and robotics”. However, no further action has been taken. The
proposal presented some pitfalls, in particular the legislation
provided neither a definition of “artificial intelligence systems” or
“robotics”, nor clear criteria to determine whether a company’s
activity may be considered “predominantly” implemented and
managed by AI or robotics.

In 2017, Ms Mady Delvaux, a member of the European
Parliament, tried to introduce a recommendation of a robot tax
in a Committee on Legal Affairs Report. However, ultimately the
resolution adopted by the European Parliament did not include a
robot tax. Although the majority of European leaders agreed on
the urgence to control the possible side effects of automation on
human employment, the EU was concerned about the risk that
a robot tax may impede innovation. In particular Andrus Ansip,
the former European Commissioner for Digital Single Market,
opposed the robot tax.

There is no large empirical evidence on the effects of the
robot tax. In South Korea the introduction of the robot tax is
associated with a slow-down in investment in robotics. Koracev
(2020) reports that in 2017 the new industrial robot installations
in South Korea decreased for the first time since 2012. However,
it is difficult to establish with certainty the causality between
the reduction in the automation tax credit and the slowdown
in robotization.

Conversely, Bogenschneider (2021) reports empirical
evidence suggesting that higher taxation does not seem to
discourage robotization. The empirical evidence shows that
“robot density is positively associated with high corporate tax
rates, such as in Germany, Japan, South Korea and the Nordic
countries, with little or no automation occurring in tax havens
where the value of tax deductions for capital investment is zero”.

Digital Taxes
Another solution is digital taxation. The debate on digital
taxation focuses on two main aspects. First, how to ensure that
tax policy remains neutral in targeting traditional and digital
businesses? Digital businesses have benefitted from preferential
tax regimes, e.g., tax advantage for income earned from
intellectual property, shorter amortization for intangibles, R&D
tax relief. The risk is that preferences for digitalized businesses
may create tax windfalls that can be used in ways that distort
investment, rather than focusing on innovation.

Second, digital companies may operate without having
physical presence in countries where digital enterprises have
customers, since they can reach customers through remote
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sales and service platforms. The ability of digitalized firms
to make profits though cross-border sales without a physical
presence poses challenges on the traditional corporate income
tax rule. Up to now, digital businesses have paid corporate
taxes on profits only in those countries where they had a
permanent establishment, so either the headquarter or factory or
storefront. This means that the countries where sales are made
or where online users are located have no taxing rights over the
firm’s income.

To tax digital profits, several tools have been considered. A
first option consists in extending existing rules. For instance,
a country may extend its Value-Added Tax (VAT) and Goods
and Services Tax (GST) to include digital services or extend the
tax base so to include revenues generated from the provision of
digital goods and services. A second option is to levy a Digital
Service Tax (DST).

Over the past years, many countries have introduced DST
and VAT on digital goods and services at unilateral level, which
has highlighted how lack of coordination and alignment of
standards may be harmful for the global economy and can
potentially lead to economically harmful trade wars. The lack of
international coordination over the last years has shed lights on
some crucial steps which need to be urgently taken. First of all,
the VAT and GST rules need to be revised to ensure that foreign
suppliers are accountable for the collection and remittance of
these taxes in countries where they sell their goods and services,
even without having a physical presence. Lack of coordination
may also lead to confusion and impede economic activity, since
digital business who sells in different countries where they do
not have a permanent establishment need to conform to a large
diversity of requirements in each of the countries where they have
customers. Moreover, lack of coordination can also facilitate tax
avoidance, since multinational enterprises can exploit differences
in corporate tax rates. Finally, the risk of double taxation can
easily arise, since digital businesses may be taxed twice in the
hosting country under the national CIT regime and in the
countries where they have customers under the DST.

Countries and international organizations are undertaking
various initiatives at national level and more recently also at
international level.

Regarding VAT and GST, in most of the OECD countries VAT
or GST are levied on a large set of goods and services.9

Regarding DST, the situation is more complex. Up to now,
digital enterprises have paid corporate income tax in the country
where they had a permanent establishment, rather than where
consumers or users are located. In practice, a digital enterprise
may provide services abroad through digital means without
having physical presence abroad and make profits without being
subject to corporate income tax in foreign countries. Several
countries over the past years have decided to tax digital goods
and services and they have unilaterally introduced a DST, which
rate was varying across countries.

As of May 2020, Austria, France, Hungary, Italy, Turkey and
the United Kingdom have introduced a DST, while a proposal

9In some countries, some categories of goods or services are not subject to VAT

(e.g. e-books, online courses), See Bunn et al. (2020), in particular Table 4.

for a DST has been put forward in Spain, the Czech Republic,
Slovakia and Poland. Some more timid steps in this direction
have been taken in Latvia, Norway and Slovenia. Some cases are
discussed more in detail below.10

In France in July 2019 a 3% DST has been levied on revenues
from digital interface services and sale of data for advertising
purposes. The United States Trade Representative considered
this policy to be discriminatory against US companies and
proposed retaliatory tariffs. Following the US reaction, France
postponed the collection of the DST.

In the United Kingdom in April 2020, a 2% DST has been
levied on revenues from social media platforms, internet search
engines and online marketplaces.

In Austria in January 2020 a 5% DST has been levied on
revenues from online advertising. This measure applied only to
companies whose revenues exceed e750 millions worldwide and
exceeding e25 millions in Austria.

Outside Europe, other countries have also adopted DST (e.g.,
India, Indonesia and Tunisia) or announced or show intention to
adopt DST (e.g., Brazil, Kenya, Canada, Israel and New Zealand).
On the contrary, Chili has rejected the proposal of a DST.

This experience has created potential rooms for retaliation,
trade wars, tax avoidance and hence has highlighted the need of
international coordination.

Over the last years the OECD and the European Commission
have put forth proposals and started negotiations. An agreement
was reached only in the second half of 2021.

Over the last years, the OECD has hosted negotiations with
139 countries to revise the international tax system and require
that profits run by multinational enterprises are subject to
taxation also in those countries where enterprises sell their
products and services even without having a physical presence.

On 1 July 2021, the OECD Inclusive Framework issued the
key principles defining the new taxation system for multinational
companies.11 The agreement has been signed on 8 October 2021.
The new agreement establishes two pillars. Pillar 1 states that
business with an annual turnover exceeding EUR 20 billions
and a margin of profit above 10% will be subject to taxation in
those countries where customers are located. Pillar 2 establishes
a minimum tax rate of 15% for multinational companies with an
annual turnover exceeding EUR 750 millions.

New taxing rights for market countries at the expense of
residence countries, along the lines of proposals discussed
under Pillar 1 of the OECD-Inclusive Framework (IF) will
change the geographic distribution of tax revenues paid by
digital enterprises. Countries imposing low corporate tax and
with investment hubs are likely to lose revenues as less
profits will be shifted toward them. Conversely, those countries

10For further information, I refer the reader to Bunn et al. (2020).
11For more details we refer the reader to OECD/G20 Base Erosion Profit Shifting

Project (2021). https://www.oecd.org/tax/beps/statement-on-a-two-pillar-

solution-to-address-the-tax-challenges-arising-from-the-digitalisation-of-the-

economy-july-2021.pdf and https://www.oecd.org/tax/beps/brochure-two-pillar-

solution-to-address-the-tax-challenges-arising-from-the-digitalisation-of-the-

economy-october-2021.pdf.
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where multinational enterprises are not headquartered but have
customers are likely to gain revenues from the reallocation.12

Other Proposals
Some other alternatives to the robot tax are imposing a higher
VAT tax on buying robot systems, or government’s purchase of
shares in companies and participation in dividends that can be
redistributed to the population.

Recently, Saez and Zucman (2021) have proposed to introduce
a new tax on corporations’ stock shares for all companies with
headquarter in G20 countries. This proposal stems from the
idea that in the globalized world some companies may establish
market power and raise enormous profits and wealth. Since
stock ownership is highly concentrated in the hands of the
richest, this tax on corporation stock shares would be progressive.
To avoid liquidity issues, the tax could be paid by issuing
new stock.

In a similar vein, Miles Kimball and Bloomberg writer
Noah Smith suggest the creation a sovereign-wealth fund, split
into many smaller funds, to avoid ownership concentration.
Government could buy stocks and real estate using tax revenues
and then distribute the profits to the society. In this way,
governments would redistribute some of the profits arising
from robotization.

Finally, another solution could be a wage subsidy for low-
income workers. The most direct way is to cut payroll taxes,
which overly burden low-paid workers. To fund social security,
governments can use other sources, for instance increasing
income taxes on the richest or a value-added tax. This is
basically a shortcut to make human workers cheaper. However,
while this solution reduces inequality in the short run, it may
slow down productivity in the long run since it preserves
unskilled labor employment which is less productive than
robots. Therefore, in adopting this policy governments should
balance trade-off effects in the short and long run (Berg et al.,
2021).

CONCLUSIONS

While there are several proposals on the table, the only concrete
steps, although very timid, undertaken so far concern the robot
tax and the digital tax. There are a few ideas defined as
“robot tax”, but they vary significantly in design and magnitude.
For example, the so-called robot tax in South Korea is a
measure to reduce tax incentives for investment in automation
rather than a tax on robots as proposed by Bill Gates. The
idea of a robot tax as a way to levy companies directly
on their use of robots and to apply those revenues toward
a universal basic income is indeed philosophically appealing.
However, it is overly unrealistic to expect that companies
will pay for it through an income tax on their robots and
AI networks.

Finally, possible widening inequalities caused by technological
change may require different tax policies, depending on whether
inequality is arising from skill-biased technological change or

12For a discussion on Asia, see IMF (2021).

from the emergence of “superstar” firms in the digital economy.
In the first case, to preserve employment and especially low-
skilled workers, the robot tax could be a valid solution. However,
it is also true that, as side effect, the robot tax can impede
innovation. To avoid this side effect, the “design” of the robot
tax is crucial. A solution could be to levy the robot tax just for
a limited time, to preserve employment and have the necessary
time to re-skill workers and provide them with the new skills and
competencies requested on the market. The alternative, levying
the robot tax as a lump-sum tax, may be not distorsive, but
it will bear more on small businesses with high costs in terms
of inequality. To preserve low-skill and low-paid employment,
an alternative to the robot tax could be to provide wage
subsidies for low-income workers. However, in choosing tax
instruments governments should find the right balance between
reducing inequality and preserving long-term productivity and
growth. Wage subsidies for low-paid workers may be successful
in preserving low-skill employment and reduce inequality in
the short-run, but at cost of lower productivity in the long-
run.

In the second case, when the main driver of inequality
is the dichotomy between digital “superstar” firms and
traditional business, the digital tax is a valid tool. There
are no side effects arising from a digital tax per se.
However, due the cross-border nature of digital businesses,
digital taxation requires international coordination and
multilateral action to avoid harmful retaliation and trade
wars. Other solutions consist in redistributing profits from
“superstars” to the society though the creation of a sovereign
wealth fund or the introduction of a tax on corporation
stock shares.

Not necessarily a tax option is preferable compared to the
others and the discussed proposals are not mutually exclusive.
Of course, policy-makers always have to keep in mind synergies
between policy instruments.

To reduce inequality and achieve a more inclusive growth,
tax policies should go hand in hand with other types of
policies, such as education and training to guarantee that
workers gain competencies demanded by the new digital
economies, as well as competition policies to avoid concentration
of market power in the hands of a limited number of
“superstar” firms.

Within this debate, new points of discussion are emerging.
Data are necessary for machine learning projects and predictive
models which allow companies to provide better customer
service, refine and personalize marketing and ultimately increase
their profits. Users often disclose their personal data without
being aware of how much information they are providing and
how much digital firms monetize it. An interesting point of
discussion which is recently arising is the opportunity to tax
digital companies for profiting from users’ personal data. In
2018 the European Commission has proposed to adopt tax
measures on revenues created from activities where users play
a major role in value creation. However, no further measures
have been adopted at European level. Alternatively, if data
can be treated as labor, users should be compensated for
providing data. Since consumers have no bargaining power
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vis-à-vis digital firms, it is quite unrealistic that consumers
can be compensated if they sell data individually. A solution
could be the creation of “mediators of individual data” that
would collect users’ data and negotiate agreements with firms
according to a transparent setting price mechanism (Lanier
and Weyl, 2018). This field certainly deserves more analysis
and research.
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We analyze the relationships of three different types of patented technologies, namely

artificial intelligence, software and industrial robots, with individual-level wage changes in

the United States from 2011 to 2021. The aim of the study is to investigate if the availability

of AI technologies is associated with increases or decreases in individual workers’ wages

and how this association compares to previous innovations related to software and

industrial robots. Our analysis is based on available indicators extracted from the text

of patents to measure the exposure of occupations to these three types of technologies.

We combine data on individual wages for the United States with the new technology

measures and regress individual annual wage changes on these measures controlling for

a variety of other factors. Our results indicate that innovations in software and industrial

robots are associated with wage decreases, possibly indicating a large displacement

effect of these technologies on human labor. On the contrary, for innovations in AI, we

find wage increases, which may indicate that productivity effects and effects coming

from the creation of new human tasks are larger than displacement effects of AI. AI

exposure is associated with positive wage changes in services, whereas exposure to

robots is associated with negative wage changes in manufacturing. The relationship of

the AI exposure measure with wage increases has become stronger in 2016–2021 in

comparison to the 5 years before.

JEL Classification: J24, J31, O33.

Keywords: artificial intelligence, software, robots, wage dynamics, labor market

INTRODUCTION

Recent literature on technological change and its consequences for labor markets has raised
concerns that advances in artificial intelligence (AI) may result in a massive replacement
of human labor with capital (e.g., Autor, 2015; Acemoglu and Restrepo, 2018a,b, 2019;
Bessen, 2019; Acemoglu et al., 2020). Frey and Osborne (2017) influenced this discussion
significantly by predicting that technological possibilities of digital technologies allow for
the displacement of a large share of U.S occupations in the near future. This debate can
be placed in the larger historical context of how technological change alters the demand
for human labor. Profit-maximizing entrepreneurs would utilize a new technology if it
is economically viable and choose a new capital-labor ratio in their production decision.
This may be associated with an adjustment of labor demand and with an increase or
decrease of the wage. Whether this has been the case for AI technologies is an empirical
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question that we attempt to address in this paper. We are using
a recent dataset on individual wages for the United States and
combine it with a new measure for patented AI, software, and
robot technologies as provided by Webb (2020).

As some economists have argued, AI is a general-purpose
technology, which is neither linked to a certain type of physical
device, nor to a specific application in a specific economic sector
(e.g., Brynjolfsson and McAfee, 2014). Empirical measurement
of the employability of AI throughout the economy, and of its
current and future capabilities, is therefore not trivial. Presently,
the most common approach in the literature is to directly
compare currently existing human tasks carried out by labor with
current or expected future capabilities of any AI-driven machine
(see, e.g., Frey and Osborne, 2017; Brynjolfsson et al., 2018). Out
of these considerations, a new important strand in the literature
has arisen that aims at developing precise quantitative measures
of different types of technologies’ impacts on individual worker’s
tasks and occupations. This literature also aims at assessing the
change in demand for certain types of work as evidenced by
changes in employment and wages. In general, there seems to be
agreement among researchers that an empirical estimation of the
impact of AI on labor requires a metric that links the exposure of
certain labor market variables such as human tasks, occupations
or human skills to AI or other types of technologies.

As of today, there exist a variety of AI scores that all
measure somewhat different aspects of “AI exposure” and
therefore offer different economic interpretations. The four
widely discussed measures of impacts of digital technologies
are the occupational computerization probabilities by Frey and
Osborne (2017), suitability of workers’ tasks for machine learning
(SML) by Brynjolfsson et al. (2018) as well as the within-
occupation standard deviation of these SML scores, and AI
Occupational Impact scores (AIOI) presented by Felten et al.
(2019). Fossen and Sorgner (2022) use the four above measures
to analyze heterogeneous effects of new digital technologies
on individual-level wage and employment dynamics in the
United States for 2011–2018. The authors employ data from
the Current Population Survey (CPS) and its Annual Social and
Economic Supplement (ASEC) to construct a panel. The results
indicate that labor-displacing digital technologies (as captured
by the computerization probabilities and the SML scores) are
associated with slower wage growth and higher probabilities
of switching one’s occupation and becoming non-employed. In
contrast, labor-reinstating digital technologies (as measured by
the standard deviation of SML scores and AI occupational impact
scores) improve individual labor market outcomes.1 Workers
with high levels of formal education are most affected by the new
generation of digital technologies. Thus, it has been shown that
existing measures of AI exposure capture different effects of AI
on occupations. It is therefore crucial to understand how various
existing and new measures of digital technologies are associated

1Classification of these AI impact measures in terms of labor-displacing vs. labor-

reinstating effects is based on empirical associations between these measures with

individual labor market outcomes, as discussed in Fossen and Sorgner (2022). The

authors of the measures themselves do not provide such a qualitative assessment

for their impact scores.

with individual labor market outcomes, as this will shed light on
the following two important questions: First, does the technology
already have observable associations with changes in individual
workers’ wages or other labor market outcomes? And second,
what is the direction of these relationships?

The aim of this paper is to investigate—closely following the
methodology of Fossen and Sorgner (2022)—the associations
between new measures of patented technologies proposed by
Webb (2020) and individual wage dynamics in the United States.
Webb (2020) constructs three different metrics from patent
data to measure the occupational exposure to three types
of technologies: AI, software, and industrial robots. While
we are particularly interested in the metric related to AI
exposure, we include all three metrics in our empirical analysis
to allow for a comparison between three different types of
patented technologies.

Our results show that occupational exposure to AI is
associated with increasing wages, whereas exposure to software
and robots is associated with decreasing wages. They further
indicate that the positive relationship of AI exposure with
wage growth became stronger in 2016–2021 than in 2011–2015
and that it is stronger in services than in manufacturing. In
contrast, exposure to robots is associated with wage decreases
in manufacturing and became somewhat weaker over time.
The results are robust to excluding the years of the Covid-
19 pandemic. Fossen and Sorgner (2019) distinguish between
“destructive” digitalization, when digital technology is used or
can be used to replace labor, and “transformative” digitalization,
when digital devices bring about changes in the way human
work is performed, potentially an augmentation of work, without
leading to a replacement of the activity. As we discuss in more
detail below, our findings suggest that AI exposure can be
cautiously interpreted as transformative digitalization, whereas
exposure to non-AI software and robots can be interpreted as
destructive digitalization in the sense that these technologies
decrease labor demand.

The remainder of the paper proceeds as follows. Section
Conceptual Background provides the theoretical background
and highlights the need for developing new measures of
workers’ exposure to various types of technology. Section
Data describes the measures of exposure to AI, software, and
industrial robots proposed in Webb (2020). Our empirical
strategy and results are presented in sections Methods and
Empirical results. Section Discussion discusses the results and
provides concluding remarks.

CONCEPTUAL BACKGROUND

Acemoglu and Restrepo (2018a) propose a task-based framework
(the “AR model”) in which new automation technologies
lead to capital taking over tasks previously performed by
human labor—if economically feasible. This displacement effect
then results in a decrease in labor demand. The AR model
implies several effects of automation that might countervail the
displacement effect. These include, for instance, productivity
effects that can increase the demand for tasks that cannot be
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automated (Autor and Dorn, 2013; Goos et al., 2014; Autor, 2015;
Bessen, 2019); creation of new tasks for human workers; and an
increase in the overall demand for human labor due to increases
in capital accumulation.

Based on the AR model, we can distinguish a scale effect,
triggered through higher productivity and the accumulation
of capital, and a structural effect. The scale effect raises
labor demand as such and can therefore lead to increases
in employment or wages. The structural effect causes a re-
allocation of tasks between humans and machines, whereby
this re-allocation can result in a reduction of tasks for humans
(displacement effect) or in an increase through new or altered
tasks. Since occupations can be interpreted as bundles of tasks,
the structural effect on occupations can be interpreted as being
partly “transformative,” that is, an occupation is altered but
does not necessarily become obsolete, and as “destructive,” i.e.,
an occupation is being partially destroyed by making some of
the human tasks it consists of obsolete. Accordingly, Fossen
and Sorgner (2019) distinguish transformative digitalization
from destructive digitalization and categorize U.S. occupations
along these lines. The resulting policy implications can be
very different. A permanent or long-lasting destruction of a
large number of occupations may justify entirely new economic
policies, for example the institution of a universal basic income
(UBI). If, instead, most occupations are transformed, then a
strong focus needs to be put on training and re-skilling of
the workforce.

An important implication from the AR model is that the
labor market effects of technologies strongly depend on the
type of technology and the purpose it was designed for. This
makes it clear that there is a pronounced need for developing
more precise measures of occupational exposure to different
types of technologies and understanding how they are related
to individual labor market outcomes. For instance, Fossen
and Sorgner (2019) interpret the occupational computerization
probabilities developed by Frey and Osborne (2017) as a measure
of destructive digitalization and the AI occupational impact score
introduced by Felten et al. (2019) as measure of transformative
digitalization.2 Since most existing measures are only available
for U.S. occupations, Carbonero et al. (2021) propose a novel
approach that allows to translate existing technology exposure
scores that were developed for U.S. occupations into scores for
occupations in other countries, including developing countries,
and illustrate the method for the cases of Lao PDR and Viet Nam.
In Carbonero et al. (2021), the authors use the SML (“suitability
for machine learning”) score developed by Brynjolfsson and
Mitchell (2017) and Brynjolfsson et al. (2018) as a measure for
destructive digitalization. The SML score is determined for work
activities linked to U.S. occupations as reported in the O∗NET
database. The work activities, and hence the SML scores, can
be aggregated on the occupational level. Carbonero et al. (2021)
use the variance of the SML scores within an occupation as an
indicator of transformative digitalization.

2Please note that this classification is based on empirical insights and is not defined

ex ante by the authors who developed them.

In sum, it is not trivial to measure the exposure of
different occupations to new AI-based technologies empirically.
Therefore, it is important to develop new measures of
occupational AI exposure that can grasp various aspects of AI
capabilities, and then to empirically relate them with individual
labor market outcomes. This will help better understand the size
and the direction of technology impacts on workers’ jobs.

DATA

Measures of Occupational Exposure to AI,
Software, and Robots
Webb (2020) proposes a new approach to measure impacts
of different types of digital technologies on occupations. In a
nutshell, his method is based on the fact that patent data contain
descriptions of the capabilities of the patented technologies.
He links textual patent descriptions pertaining to a certain
type of technology, such as AI, with the descriptions of tasks
used in U.S. occupations from the O∗NET database sponsored
by the U.S. Department of Labor. O∗NET provides for each
existing occupation a list of tasks that are typically carried out
by workers in this occupation, and it ranks the importance of
each task. For example, “Document and maintain records of
precision agriculture information” is one of the tasks that O∗NET
identifies for the occupation of agriculture technicians. To link
the textual descriptions from O∗NET with the description of an
AI patent Webb extracts verb-noun pairs by means of a natural
language processing algorithm and uses these verb-noun pairs to
quantify the overlap between patents and tasks. In the previous
example, such a pair would be “(maintain, records).” Basically,
the algorithm would look for AI patents that are described by
the same verb-noun pair. Each task is then assigned an exposure
score that is based on the relative prevalence of the verb-noun
pair in the total set of analyzed patents. Thus, the higher the task
exposure score, the more patents were identified that describe a
technology related to this task. To aggregate the task-level scores
to the level of occupations, weights are used that are constructed
as an average of the frequency, importance, and relevance of each
task to the occupation, as specified in O∗NET. The weights are
scaled to sum to one. As source for patent information, Webb
(2020) employs the Google Patents Public Data database. He does
not impose a time restriction, but due to a strong increase in
patents over time, few patents were filed before the 1990s. Most
patents were filed in the 21st century, in particular in software
and even more so in AI (Webb et al., 2018).

Webb (2020) constructs the exposure measure for three types
of technologies: AI, software, and industrial robots. Hence, a
distinction of AI from other digital technologies is possible
through his method. Potentially, one can then disentangle
heterogeneous effects of these technologies on wages. To restrict
the set of patents to these three specific types of technologies, they
had to be precisely defined. For example, only industrial robots
that are used in the manufacturing sector are considered “robots”
(according to the standardized definition, ISO 8373). Software are
programs for which every action it performs has been specified
in advance by a human, as opposed to AI, which is defined as all
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forms of machine learning algorithms, supervised learning and
reinforcement learning algorithms.

According to Webb (2020), labor market effects of robots
and software are very different from those of AI since the
occupational exposure to AI concerns different socioeconomic
groups. Using census samples for the United States for the years
1980–2010, he finds that a change from the 25th to the 75th
percentile of exposure to robots is associated with a decline
in within-industry employment shares of between 9 and 18%
and a decline in wages of between 8 and 14%. Male workers
with lower education and lower wages are more exposed to
robots than others. The results for software indicate that middle-
wage occupations are most exposed to software. The exposure
to software is also less sharply decreasing with education in
comparison with robots. The direction of the effects of software
on aggregated employment and wages is similar to that of
robots, but the effects are smaller in size. For example, moving
from the 25th to the 75th percentile of exposure to software is
associated with a decline in within-industry employment shares
of between 7 and 11% and a decline in wages of between 2 and
6%. Hence, Webb’s (2020) finding for robots and software point
toward what we coined “destructive effects” of digitalization for
the United States. Overall, the replacement effect appears to
dominate over labor-reinstating effects when robots and software
are employed.

One limitation of Webb’s analysis is that the effects of AI
cannot be determined with the dataset 1980–2010 because
many of the significant technological advances in AI occurred
more recently. Webb analyzes the tasks that are related to
the capabilities of AI and the corresponding occupations and
shows that low-wage occupations are potentially among the
least, and high-wage occupations are among the most exposed
occupations. Highly educated individuals are more likely to be
exposed to AI. Interestingly, the opposite pattern is observed for
the occupational exposure to robots and software.

Based on his findings, Webb (2020) makes the assumption
that the relationship between AI exposure and changes in wages
has the same negative, approximately linear relationship as the
relationship that existed between exposure to software and robots
and changes in wages. To determine the likely impact of AI
on the wage distribution, Webb (2020) runs a simulation and
finds that AI could possibly compress wages in the middle of the
distribution but expand inequality at the top. In the following
section, we introduce a different dataset with very recent data on
wages and individual worker characteristics to empirically test
the associations of the technologies with wage changes. While
we are primarily interested in estimating the relationship of AI
technology with individual wage changes, we also use the other
two metrics for occupational exposure to software and industrial
robots to allow for comparison between these different types
of technology.

Individual-Level Panel Data
To estimate associations of technology exposure with individual-
level wage changes we use the Annual Social and Economic
Supplement (ASEC) of the Current Population Survey (CPS), a
representative survey of households in the United States provided

by the Census Bureau. Given that most recent advances and the
diffusion of AI technologies only occurred over the last few years,
we concentrate in the main estimations on the period 2016–2021.
In supplemental estimations we use the longer period 2011–2021
and subperiods. The ASEC is always conducted in March and
contains information on labor income. We use the IPUMS-CPS
database provided by Flood et al. (2017), who match consecutive
individual-level observations to construct rotating panel data,
allowing us to link the March ASEC of two subsequent years for
most respondents. We calculate hourly wage changes between t-1
and t for each respondent using information about the income
and hours worked in the previous calendar year.

We merge Webb’s three measures of technology exposure
of occupations (exposure to AI, exposure to software, and
exposure to robots) with the individual’s occupation in the
initial year, t-1, using a crosswalk of occupational codes.
Some of the occupations coded in the ASEC combine more
than one occupation in the more detailed SOC codes used
by Webb (2020). In these cases, we aggregate the exposure
scores by using their mean values weighted by the number of
employees in the respective occupations in the United States
as provided by the Bureau of Labor Statistics (2018). We can
merge the exposure scores to 435 occupations in the ASEC. We
standardize the exposure scores to facilitate interpretation of the
regression coefficients.

METHODS

In our econometric analysis we follow closely the approach
proposed by Fossen and Sorgner (2022). We regress wage growth
on the three Webb measures and control variables based on the
sample of working individuals:

ln
(

wagei,t
)

− ln
(

wagei,t−1

)

= δ
′
1techexpj(i,t−1) + δ2switchi,t

+ δ
′
3techexpj(i,t−1) × switchi,t

+ η
′
vi,t−1 + ξ

′
wi,t + ω

′

k zj(i,t−1)

+ θ
w
year(t) + ϑ

w
ind(i,t−1)

+ µ
w
j(i,t−1) + ǫit . (1)

The dependent variable is the relative change in hourly labor
income of individual i between calendar years t-1 and t (log
approximation). In year t-1 the individual worked in occupation
j(i,t-1). The three key explanatory variables summarized in
the vector techexpj(i,t−1) are the exposures of occupation j to
patented AI, software, and robot technology using the measures
developed by Webb (2020). We include the three exposure
measures simultaneously in the regression such that the partial
effect of each technology type is identified keeping the others
constant. We also include a wide set of control variables that
might affect individual wage growth.

The vector of coefficients δ1 captures the effects of different
types of technologies (robots, software, AI) on wage growth
for individuals who do not switch their occupation. switchi,t is
a dummy variable indicating whether a respondent i switched
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TABLE 1 | Descriptive statistics.

Means Std. dev. Correlation coefficients

Exposure to AI Exposure to software Exposure to robots

Technology exposure measures

Exposure to AI 0.379 0.217 1.000

Exposure to software 0.421 0.245 0.532 1.000

Exposure to robots 0.498 0.629 0.026 0.503 1.000

Individual-level characteristics

Annual wage growth 0.028 0.891 −0.011 0.018 0.022

Occupation switch 0.583 0.008 0.020 −0.027

Less than high school 0.063 −0.036 0.099 0.230

High school degree 0.271 −0.047 0.134 0.222

Some college 0.291 −0.030 0.022 −0.005

College degree 0.374 0.089 −0.193 −0.315

Male 0.514 0.169 0.134 0.187

Age 43.84 11.90 0.004 −0.038 −0.003

Metropolitan area 0.823 0.010 −0.047 −0.080

Married 0.620 0.045 −0.046 −0.067

Number of children in household 0.919 0.016 −0.011 0.005

White 0.824 0.022 −0.009 −0.027

Black 0.089 −0.026 0.021 0.052

Asian 0.058 0.007 −0.019 −0.037

Other race 0.029 −0.015 0.009 0.024

Self–employed (incorporated) 0.044 0.007 −0.059 −0.067

Self–employed (unincorporated) 0.057 −0.009 −0.018 0.012

Occupation–level characteristics

Mean hourly wage in occupation 29.72 18.68 0.177 −0.224 −0.382

Share of women in occupation 0.486 0.295 −0.287 −0.227 −0.316

Self-employment rate in occ. 0.102 0.150 0.010 −0.119 −0.129

Offshorability score in occ. 1.810 1.317 0.271 0.071 −0.218

Routine cognitive task intensity in occ. 0.034 0.973 −0.034 −0.199 −0.414

Routine manual task intensity in occ. −0.206 0.817 −0.005 0.369 0.503

High school diploma needed 0.358 0.032 0.013 −0.121

Postsecondary non-degree needed 0.077 −0.106 0.027 0.106

Some college needed 0.020 −0.037 0.019 −0.050

Associate’s degree needed 0.027 0.071 0.006 −0.049

Bachelor’s degree needed 0.260 0.253 −0.131 −0.317

Master’s degree needed 0.023 0.017 −0.061 −0.089

Doctoral or prof. degree needed 0.043 −0.072 −0.140 −0.133

The table shows mean values, standard deviations for non-binary variables, and correlation coefficients. The exposure scores to AI, software and robots are not standardized here.

Number of person-month observations: 58,394.

Source: Own calculations based on the ASEC 2016-21.

the main occupation between the years t-1 and t, identified
by a change in the occupational code. The idea is that some

individuals whose jobs are heavily affected by technologies could
be able to switch to a different occupation, thereby preventing

a possible wage decline. Interaction terms between this dummy
variable and the three exposure measures (with coefficients δ3)

capture howmuch the impacts of the technologies in the previous

occupation on the individual’s wage growth change in case of an

occupational switch.
vi,t−1 is a vector of 10 splines of the initial individual wage

(wagei,t−1) controlling for a potential general change in the

income distribution. The vector also includes dummy variables
indicating incorporated or unincorporated self-employment in
t-1. The vector wi,t contains further individual-level controls at
time t: gender, age, age square, marital status, number of children
in the household, ethnicity, highest educational attainment,
residence in a metropolitan area, 8 dummies for the US Census
regions, and a constant. We also include year dummies, θw

year(t)
,

and 52 major industry dummies, ϑ
w
ind(i,t−1)

, to control for

industry exposure to international trade in t-1. The occupational
dummies µ

w
j(i,t−1)

capture the 2-digit level of the occupation

codes provided in t-1.
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TABLE 2 | Relationship of technology exposure with annual wage growth (2016–2021).

(1) (2) (3) (4)

Occupation switch −0.0393*** −0.0431*** −0.0459*** −0.0408***

(0.0112) (0.00966) (0.0112) (0.0144)

Exposure to AI 0.0268** 0.0501*** 0.0595*** 0.0796***

(0.0115) (0.0132) (0.0136) (0.0167)

Exposure to AI x occupation switch −0.0371*** −0.0402*** −0.0353*** −0.0419***

(0.0117) (0.0116) (0.0122) (0.0138)

Exposure to software −0.0326** −0.0508** −0.0531*** −0.0508**

(0.0162) (0.0201) (0.0177) (0.0230)

Exposure to software x occupation switch 0.0404** 0.0388** 0.0408** 0.0438**

(0.0162) (0.0167) (0.0170) (0.0193)

Exposure to robots −0.0246** −0.0307** −0.0493*** −0.0542***

(0.0115) (0.0143) (0.0125) (0.0142)

Exposure to robots x occupation switch 0.0299** 0.0249** 0.0246* 0.0250*

(0.0132) (0.0122) (0.0131) (0.0134)

High school degree 0.0804*** 0.0934*** 0.102*** 0.113***

(0.0141) (0.0141) (0.0138) (0.0150)

Some college 0.139*** 0.156*** 0.173*** 0.181***

(0.0153) (0.0152) (0.0156) (0.0178)

College degree 0.296*** 0.327*** 0.373*** 0.375***

(0.0177) (0.0173) (0.0181) (0.0215)

Male 0.146*** 0.146*** 0.154*** 0.168***

(0.00716) (0.00720) (0.00751) (0.0101)

Age 0.0283*** 0.0308*** 0.0311*** 0.0345***

(0.00257) (0.00233) (0.00234) (0.00300)

Age squared −0.000295*** −0.000323*** −0.000328*** −0.000366***

(0.0000298) (0.0000271) (0.0000271) (0.0000356)

Marital status 0.0768*** 0.0728*** 0.0778*** 0.0832***

(0.00940) (0.00870) (0.00869) (0.00881)

Number of children in household 0.00276 0.00106 −0.000225 −0.00269

(0.00296) (0.00286) (0.00284) (0.00303)

Metropolitan area 0.0740*** 0.0753*** 0.0754*** 0.0745***

(0.00882) (0.00786) (0.00809) (0.00845)

Black −0.0689*** −0.0744*** −0.0816*** −0.0759***

(0.0131) (0.0118) (0.0117) (0.0116)

Asian −0.0254* −0.0242* −0.0235 −0.0190

(0.0149) (0.0142) (0.0154) (0.0171)

Other race −0.0536** −0.0371* −0.0367* −0.0423**

(0.0208) (0.0205) (0.0206) (0.0205)

Self-employed (unincorporated) −0.157*** −0.168*** −0.171*** −0.172***

(0.0275) (0.0243) (0.0227) (0.0255)

Self-employed (incorporated) −0.0418** −0.0484** −0.0326* −0.0448**

(0.0210) (0.0189) (0.0176) (0.0203)

Hourly wage in occupation 0.00276***

(0.000778)

Share of women in occupation −0.0702**

(0.0330)

Self–employment rate in occupation −0.109**

(0.0503)

High school needed 0.0935***

(0.0214)

Post–secondary degree needed 0.0455

(0.0279)

(Continued)
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TABLE 2 | Continued

(1) (2) (3) (4)

Some college needed 0.0488

(0.0349)

Associated degree needed 0.0413

(0.0425)

Bachelor degree needed 0.104***

(0.0325)

Master degree needed 0.179***

(0.0453)

Doc. or professional degree needed 0.214***

(0.0470)

Offshoreability score in occupation −0.00197

(0.00669)

Routine cognitive task intensity 0.0266***

(0.00732)

Routine manual task intensity −0.0252**

(0.0101)

Constant 1.305***

(0.0918)

Further individual controls, income splines Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Industry dummies Yes Yes Yes –

Occupation dummies (2 digits) Yes Yes – –

Occupation–level controls Yes – – –

Number of observations 58,394 69,434 69,434 70,650

R2 0.304 0.297 0.288 0.274

OLS regressions. The dependent variable is the growth rate in the hourly wage between two adjacent years in real US$ (logarithmic approximation). The exposure measures pertain

to the first year of a 2-year pair. The switch dummy variable indicates that an individual switched to a new occupation between the 2 years. We interact this dummy variable with the

exposure measures. The standard errors are clustered at the level of occupations. Stars (***/**/*) indicate significance at the 1/5/10% level.

Source: Own calculations based on the ASEC 2016-21.

Additional occupation-level variables zj(i,t−1) account for
remaining variation within these 2-digit groups of occupations:
the mean hourly wage rate, the self-employment rate, and
the required degree of formal education at the entry level
obtained from the Bureau of Labor Statistics (2018); the share
of female workers in each occupation computed directly from
our microdata; the measure of susceptibility of occupations
for offshoring provided by Blinder and Krueger (2013); and
the occupations’ routine manual and routine cognitive task
intensities that we create from O∗NET following Acemoglu
and Autor (2011). We cluster standard errors at the level
of occupations.

EMPIRICAL RESULTS

All Workers
Table 1 shows samplemeans, standard deviations and correlation
coefficients for the variables used in this analysis. Exposure to AI
is positively correlated with software but less so with industrial
robots. The correlations highlight the importance of including
these technologies jointly in the regressions to estimate partial
effects of each technology keeping the others constant. The raw
correlation of wage growth with the AI exposure score is weakly

negative and those with software and robot exposure are weakly
positive (significant at the 5% level). As we will see below,
these signs change in the multivariate regressions controlling
for essential factors influencing wages at the individual and
occupation levels. Exposure to robots is positively correlated with
routine manual task intensity, confirming our expectations.

We present the main estimations (Equation 1) of the
controlled associations of Webb’s three different technology
exposure measures with wage growth in Table 2 based on the
period 2016–2021. The four models include different sets of
control variables whereby the preferred model (1) contains
all variables discussed in the previous section with industry
group, occupation group and time dummies, as well as all
occupation-level controls. In models (2) – (4), the occupational
variables and the occupation- and industry fixed effects are
successively excluded from the estimation as robustness checks.
These estimations are based on larger samples because they
include observations with missing values in the occupation-level
or industry variables.

We are mainly interested in the coefficients of the three

technology exposure measures, i.e., exposure to AI, exposure to
software, and exposure to industrial robots. We can see that the
estimates of the coefficients are consistent in terms of signs and
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TABLE 3 | Technology exposure and annual wage growth in different periods.

2011–2021 2011–2015 2016–2019

Occupation switch −0.0396*** −0.0387*** −0.0366***

(0.00955) (0.0101) (0.0116)

Exposure to AI 0.0214** 0.0166** 0.0271**

(0.00866) (0.00835) (0.0123)

Exposure to AI x occupation switch −0.0331*** −0.0292*** −0.0332***

(0.00905) (0.00915) (0.0125)

Exposure to software −0.0331*** −0.0324*** −0.0376**

(0.0119) (0.0100) (0.0179)

Exposure to software x occupation switch 0.0346*** 0.0300*** 0.0421**

(0.0117) (0.0108) (0.0186)

Exposure to robots −0.0278*** −0.0289*** −0.0259**

(0.00983) (0.0105) (0.0115)

Exposure to robots x occupation switch 0.0312*** 0.0311*** 0.0339***

(0.0111) (0.0113) (0.0128)

Further individual controls, income splines Yes Yes Yes

Year dummies Yes Yes Yes

Industry dummies Yes Yes Yes

Occupation dummies (2 digits) Yes Yes Yes

Occupation–level controls Yes Yes Yes

Number of observations 131,539 73,145 50,385

R2 0.306 0.320 0.307

OLS regressions for different periods. The dependent variable is the growth rate in the hourly wage between two adjacent years in real US$ (logarithmic approximation). The exposure

measures pertain to the first year of a two–year pair. The switch dummy variable indicates that an individual switched to a new occupation between the 2 years. We interact this dummy

variable with the exposure measures. All control variables listed in model (1) of Table 2 are included in the regressions but not shown. The standard errors are clustered at the level of

occupations. Stars (***/**/*) indicate significance at the 1/5/10% level.

Source: Own calculations based on the ASEC 2011-21.

are significant at the 1 or 5 percent levels in all four models,
indicating robustness of our estimation.

Exposure to software and robots is associated with a decrease
in the growth rate of individual hourly labor income. In model
(1) with full controls, a one standard deviation higher exposure to
software is associated with a 3.26 percentage points lower annual
wage growth, and a one standard deviation higher exposure
to robots is related to a 2.46 percentage points lower annual
wage growth. On the contrary, we find a positive association of
wage growth with exposure to AI. We find a 2.68 percentage
points higher wage growth for a one standard deviation increase
in exposure to AI. The coefficients of the interaction terms
with occupation switch are significantly different from zero
for the three technologies and always have the opposite sign
from the coefficient of technology exposure. Thus, by switching
occupation, an individual mitigates or even overcompensates the
effect the technology exposure in the original occupation has on
the wage.

Did the strengths of the associations change over time?
In Table 3, we repeat the estimation of the full model but
using different time periods3. The first column shows the
estimates for the prolonged period of 2011–2021 and the
second for the first 5 years (2011–2015); these results can

3The full set of control variables is included in all regressions but the estimates are

not shown in the table.

be compared to the main estimation using the last 5 years
(2016–2021) in model (1) in Table 2. We can see that the
positive association of AI exposure with wage changes is
stronger in 2016–2021 than in the 5 years before. This
observation might reflect that the diffusion of AI technologies
has accelerated in the last 5 years. The relationship of exposure
to software with wage dynamics remained unchanged over
these 10 years while that of exposure to robots became
somewhat weaker.

One might wonder if the results are driven by the Covid-
19 pandemic, which changed work in dramatic ways including
widespread shifts to remote work from home. To assess the
sensitivity of our results, in the rightmost column of Table 3 we
exclude the years of the pandemic, 2020 and 2021, from our main
sample, thus leaving the period 2016–20194. The results are very
similar to those in model (1) in Table 2, so we conclude that our
findings are not driven by the COVID-19 pandemic.

4On March 11, 2020, the World Health Organization declared COVID-19 a

pandemic. On March 16, the San Francisco Bay Area imposed the first shelter-in-

place restrictions in the United States followed by the State of California on March

19 and New York State the next day. Thus, the March 2020 ASEC collection is

likely to reflect the early impacts of the pandemic, and the March 2021 ASEC was

collected in the middle of the pandemic; on March 19, 2021, the first 100 million

Covid vaccine doses were administered in the United States.
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TABLE 4 | Technology exposure and annual wage growth by sector and employment status.

Services Manufacturing Employees Entrepreneurs

Occupation switch −0.0312** −0.0796*** −0.0449*** 0.0893**

(0.0126) (0.0212) (0.0108) (0.0413)

Exposure to AI 0.0234* 0.0214 0.0247** 0.0626

(0.0133) (0.0172) (0.0105) (0.0467)

Exposure to AI x occupation switch −0.0372*** −0.0274 −0.0417*** −0.0308

(0.0140) (0.0209) (0.0113) (0.0523)

Exposure to software −0.0336** −0.0266 −0.0296* −0.171***

(0.0167) (0.0238) (0.0156) (0.0636)

Exposure to software x occupation switch 0.0387** 0.0427 0.0413*** 0.138*

(0.0180) (0.0291) (0.0154) (0.0772)

Exposure to robots −0.0174 −0.0601*** −0.0235** 0.000745

(0.0122) (0.0163) (0.0117) (0.0484)

Exposure to robots x occupation switch 0.0280* 0.0323 0.0221* 0.0884

(0.0158) (0.0200) (0.0120) (0.0601)

Further individual controls, income splines Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Industry dummies Yes Yes Yes Yes

Occupation dummies (2 digits) Yes Yes Yes Yes

Occupation–level controls Yes Yes Yes Yes

Number of observations 46,265 11,425 52,494 5,900

R2 0.307 0.332 0.319 0.350

OLS regressions for different sectors and by employment status. The dependent variable is the growth rate in the hourly wage between two adjacent years in real US$ (logarithmic

approximation). The exposure measures pertain to the first year of a two-year pair. The switch dummy variable indicates that an individual switched to a new occupation between the

2 years. We interact this dummy variable with the exposure measures. All control variables listed in model (1) of Table 2 are included in the regressions but not shown. The standard

errors are clustered at the level of occupations. Stars (***/**/*) indicate significance at the 1/5/10% level.

Source: Own calculations based on the ASEC 2016-21.

Different Groups of Workers
Are occupational exposures to the technologies associated with
stronger wage changes for certain groups of workers? In this
section we split the sample by worker characteristics and run
our preferred regression with the full set of controls, similar to
model (1) in Table 2. We use the sector and type of worker
in the initial year, t-1, to split the samples. Results in Table 4

show that the relationships of exposure to AI and software with
wage changes are strongest in the services sector, while the
point estimates are insignificant in the manufacturing sector5.
In contrast, exposure to robots is more strongly related to
decreasing wages inmanufacturing and unrelated to wage change
in services. These links between the different technologies and
sectors are consistent with expectations given the nature and use
of the technologies, for example, the deployment of industrial
robots in manufacturing, and underline the plausibility of our
results. Moreover, employee’s wage dynamics are mostly related
to AI technologies and robots, while earnings of entrepreneurs
are significantly associated only with software exposure. A
possible explanation for this latter result could be that software
may perform tasks that firms have previously subcontracted
to entrepreneurs.

5In the column labeled “Manufacturing” we combine the primary and secondary

sectors, but the agricultural sector accounts for only a very small employment share

in Germany.

In Table 5 we split the sample by demographic characteristics.
Occupational exposure to robots is negatively related with
wage growth of both male and female workers, although it is
only statistically significant for males. The effects of AI and
software exposure are comparable for both genders. Moreover,
the associations of technology exposure with wage changes are
statistically significant only for workers residing outside the core
cities in the United States. The point estimates have the same
signs within core cities, however, and the statistical insignificance
there may be due to the smaller sample size of core city residents.

DISCUSSION

The aim of this paper is to investigate the relationships of three
types of patented technologies, AI, software and industrial robots,
with individual wage dynamics in the United States. To this end,
we employ three measures of occupational exposure to these
technologies developed by Webb (2020) that he constructs based
on the textual descriptions of patents and of tasks that workers
perform in their occupations. While Webb (2020) provides
empirical evidence for how his measures of exposure to software
and robots are associated with employment and wage dynamics
at the level of occupations and industries during 1980–2010, we
add to this evidence by focusing on the micro-level of individual
workers in a more recent period from 2016 to 2021. Importantly,
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TABLE 5 | Technology exposure and annual wage growth by demographics.

Female Male Core city Other areas

Occupation switch −0.0414*** −0.0361** −0.0566*** −0.0372***

(0.0151) (0.0143) (0.0154) (0.0126)

Exposure to AI 0.0283** 0.0319*** 0.0130 0.0293**

(0.0143) (0.0121) (0.0150) (0.0133)

Exposure to AI x occupation switch −0.0407*** −0.0375*** −0.0312* −0.0366***

(0.0157) (0.0131) (0.0163) (0.0132)

Exposure to software −0.0345* −0.0277* −0.0281 −0.0322*

(0.0178) (0.0161) (0.0180) (0.0187)

Exposure to software x occupation switch 0.0419** 0.0412*** 0.0277 0.0443**

(0.0199) (0.0157) (0.0201) (0.0179)

Exposure to robots −0.0231 −0.0341*** −0.0313 −0.0229*

(0.0161) (0.0128) (0.0211) (0.0131)

Exposure to robots x occupation switch 0.0351* 0.0267** 0.0228 0.0354***

(0.0180) (0.0133) (0.0240) (0.0116)

Further individual controls, income splines Yes Yes Yes Yes

Year dummies Yes Yes Yes Yes

Industry dummies Yes Yes Yes Yes

Occupation dummies (2 digits) Yes Yes Yes Yes

Occupation–level controls Yes Yes Yes Yes

Number of observations 28,358 30,036 14,530 34,353

R2 0.334 0.293 0.310 0.303

OLS regressions by gender and in core cities vs. other areas. The dependent variable is the growth rate in the hourly wage between two adjacent years in real US$ (logarithmic

approximation). The exposure measures pertain to the first year of a two–year pair. The switch dummy variable indicates that an individual switched to a new occupation between the

2 years. We interact this dummy variable with the exposure measures. All control variables listed in model (1) of Table 2 are included in the regressions but not shown. The standard

errors are clustered at the level of occupations. Stars (***/**/*) indicate significance at the 1/5/10% level.

Source: Own calculations based on the ASEC 2016-21.

using these recent data allows us to also estimate associations
between wage changes and exposure of occupations to AI since
the dissemination and implementation of AI technologies has
accelerated considerably.

In a nutshell, we find, consistently with the AR model and
previous empirical literature, that different types of technology
are related to labor markets in different ways. Industrial robots
and software are associated with decreasing individual wages,
although the relationship has become weaker for robots in
more recent years. In contrast, occupational exposure to AI
technologies, which are defined as machine learning algorithms,
supervised learning and reinforcement learning algorithms, is
associated with a positive individual wage growth, controlling
for other relevant factors. Remarkably, the strength of the
relationship of AI exposure with wage growth has increased
over the last decade, which may indicate that firms have
started to implement these technologies at a larger scale.
AI exposure is associated with wage dynamics in services
and robots exposure with wage dynamics in manufacturing.
Wages of individuals who switch their occupations are
not affected by the exposure of their initial occupation to
these technologies.

The opposite signs of the relationships with wage growth show
that exposure to AI is very different from exposure to software
and robots. Our results are consistent with the interpretation that
software and robots entail a much stronger displacement effect

on workers and hence exhibit destructive forms of digitalization,
whereas AI rather transforms occupations and may make human
workers more productive.

Our estimation results for 2016–2021 contrast with the
simulation results by Webb (2020). By assuming that the
relationship of wage changes with AI exposure will be the same
negative relationship as it was with exposure to robots and
software in the past, he predicts that AI exposure will decrease
wages at the 90th percentile relative to the 10th percentile in
the future. However, our estimation results suggest that this
assumption is questionable because we find that, contrary to
robots and software, the association between wage changes and
AI exposure is positive.

When comparing Webb’s AI exposure measure to other
available measures of AI, the positive relationship with wage
changes in recent US data is similar to results reported by Fossen
and Sorgner (2022) for Felten et al.’s (2019) AI Occupational
Impact scores, which reflect past progress in AI fields and
therefore are likely to capture the transformative effects of AI on
work. However, the positive relationship of Webb’s AI measure
contrasts with Brynjolfsson et al.’s (2018) measure of suitability
of tasks for machine learning that was found to be negatively
associated with individual wage growth in the US (Fossen and
Sorgner, 2022), thus, indicating a destructive nature of this
particular subfield of AI technologies. While Webb’s measure
includes machine learning technologies, it remains unclear why
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the effect of this measure is contrary to the one by Brynjolfsson
et al. (2018). A possible explanation could be that other subfields
of AI that lead to productivity effects or create new tasks for
human workers may overweigh the negative effect coming from
ML technologies. If so, this calls for the development of new,
more fine-grained measures of occupational exposure to various
subfields of AI.

Our study is not without limitations. For instance, it is unclear
to what extent the AI technologies reflected in the patents were
already implemented in occupations in our estimation period
2016–2021. When these AI technologies will be more fully
implemented in the future, the relationship with wage changes
may change its direction, even though our findings for this
rather early stage in this technology’s lifecycle suggest otherwise.
Moreover, we were not able to establish a causal relationship
between the technology exposure scores and wage dynamics.
Future research should try to find ways to estimate the causal
impact of AI technologies on workers’ economic outcomes.
Another interesting question for future research would be to
investigate how individuals use various risk mitigation strategies
to deal with negative impacts of technologies on their jobs. Our
study indicates that occupational switching is a potential route
to minimize such risks, but it is certainly costly and not equally
available to all affected workers. Last but not least, the Covid-19
pandemic has accelerated digital transformation processes, which
might soon become observable in changing individual economic
outcomes. Thus, future research could investigate the impact

of the surge in digitalization of work processes on individual
workers when these data become available.

In conclusion, exposure of occupations to patented AI
technologies is positively associated with individual wage growth,
as opposed to patented software and robot technologies. More
research is needed on developing precise measures of specific AI
technology impacts on workers’ jobs and on assessing the labor
market consequences.
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The continuous and rapid development of AI-based systems comes along with an

increase in automation of tasks and, therewith, a qualitative shift in opportunities and

challenges for occupational safety and health. A fundamental aspect of humane working

conditions is the ability to exert influence over different aspects of one’s own work.

Consequently, stakeholders contribute to the prospect of maintaining the workers’

autonomy albeit increasing automation and summarize this aspiration with the human

in control principle. Job control has been part of multiple theories and models within the

field of occupational psychology. However, most of the models do not include specific

technical considerations nor focus on task but rather on job level. That is, they are

possibly not able to fully explain specific changes regarding the digitalization of tasks.

According to the results of a large-scale study on German workers (DiWaBe), this

seems to be the case to some extend: the influence of varying degrees of automation,

moderated by perceived autonomy, on workers’ wellbeing was not consistent. However,

automation is a double-edged sword: on a high level, it can be reversely related to

the workers’ job control while highly autonomous and reliable systems can also create

opportunities for more flexible, impactful and diverse working tasks. Consequently,

automation can foster and decrease the factor of job control. Models about the optimal

level of automation aim to give guidelines on how the former can be achieved. The results

of the DiWaBe study indicate that automation in occupational practice does not always

happen in line with these models. Instead, a substantial part of automation happens

at the decision-making level, while executive actions remain with the human. From an

occupational safety and health perspective, it is therefore crucial to closely monitor and

anticipate the implementation of AI in working systems. Constellations where employees

are too controlled by technology and are left with a high degree of demands and very

limited resources should be avoided. Instead, it would be favorable to use AI as an

assistance tool for the employees, helping them to gather and process information and

assisting them in decision-making.

Keywords: human in control, AI-based systems, occupational safety and health (OSH), human factors, robotic

systems, ICT
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INTRODUCTION

Due to digitalization, jobs and working tasks are continuously
changing. The development of recent technologies, such as
artificial intelligence (AI) or advanced robotics has established
new possibilities for task automation and revived the debate
on work-related psychosocial and organizational aspects and
on workers’ safety and health. Amongst other things, these
new technologies have the capability to fundamentally change
the workers’ perceived level of autonomy (Arntz et al., 2020;
Wang et al., 2020; Fréour et al., 2021). The reason lies within
a key feature of modern AI, its ability to operate and adapt
without human intervention, in other words, autonomously
while the human is left with supervisory or ancillary activities. It
should be noted that automation is not equivalent to functioning
autonomously. AI is used to automate functions to a certain
degree, often following pre-programmed rules which makes it
necessary for an operator to be present and to perform certain
tasks before or after. Only if the human is not required for input
or guidance, the system is seen as autonomous. In most cases,
a high level of automation is reversely related to the workers’
freedom in how to perform a certain task and how or what
to use while completely autonomous and reliable systems can
create opportunities for more flexible, impactful and diverse
working tasks (Parasuraman et al., 2000; Moore, 2019; Rosen
et al., 2022). Therewith, AI-based systems hold the potential to a
qualitative shift in opportunities and challenges for occupational
safety and health (OSH). AI-based systems are not entirely new,
however their availability, complexity, performance and scope
of capabilities have been extremely enlarged by the increase in
computational power within the last years (Hämäläinen et al.,
2018). Definitions of AI have therefore been constantly changing
as they are adapting to technological advances. The term has
been defined in numerous ways and a universal definition of an
AI-based system is not agreed upon. However, it can be helpful
to look at the definitions of major stakeholders like the OECD
(2019) and the European Commission (2021).

The OECD (2019) defines AI-based systems as follows:

[. . . ]a machine-based system that is capable of influencing

the environment by making recommendations, predictions or

decisions for a given set of objectives. It uses machine and/or

human-based inputs/data to: (i) perceive environments; (ii)

abstract these perceptions into models; and (iii) interpret the

models to formulate options for outcomes. AI systems are

designed to operate with varying levels of autonomy. (OECD,

2019)

An expert group on artificial intelligence set up by the
European Commission, presents the following definition:

“Artificial intelligence (AI) refers to systems that display

intelligent behaviour by analysing their environment and taking

actions—with some degree of autonomy—to achieve specific

goals. AI-based systems can be purely software-based, acting in

the virtual world (e. g., voice assistants, image analysis software,

search engines, speech and face recognition systems) or AI

can be embedded in hardware devices (e. g. advanced robots,

autonomous cars, drones or Internet of Things applications).”

(EU, 2019)

Both concepts have in common that they include the
varying degrees of autonomy in AI-based systems as well
as their ability to perceive their environments in some
way, analyze the information and act in response with
different degrees of autonomy. It is therefore known that
interacting with these systems often includes humans to rely
on the machine’s complex information-processing functions like
sensory processing, information storage and analysis capabilities
for, amongst others, decision-making (McCormick and Sanders,
1982; Kaber and Endsley, 1997; Parasuraman et al., 2000). With
this, the implementation of AI can not only shift tasks from
manual to more cognitive tasks, it also creates the risk of
removing “operators from direct process control” and imposing
high monitoring workload (Kaber et al., 2009). Moreover, highly
automated systems have implemented algorithms that enable
them to adapt, learn and function autonomously. This might
curtail the workers’ freedom as these systems have a low level of
transparency that lowers the understandability and predictability
of their actions. Therefore, it is difficult, if not impossible for
the worker to understand how decisions are made or how to
resist them (Ajunwa, 2020). Different stakeholders named both
the principle of transparency and the principle of the human

being in control or preserving workers’ autonomy as the most
important aspects when designing AI-based systems. The latter
(human in control/preserving autonomy) is addressed within the
principles presented by the EU Commission, ETUC, ETUI as
well as in the European Social Partners Framework Agreement
on Digitalization. This agreement is a shared commitment of
the contributing partners “to optimize the benefits and deal
with the challenges of digitalization in the world of work”
(ETUC, 2020). It includes a chapter especially dedicated to
“Artificial Intelligence (AI) and guaranteeing the human in
control principle.” The principle is related to OSH, especially
to psychosocial risks, as a low level of autonomy can have
negative effects on motivation, job satisfaction as well as on the
employees’ health and performance (Dwyer and Ganster, 1991;
Melamed et al., 1995; Spector, 1998; Inoue et al., 2010; Rosen and
Wischniewski, 2019; Arntz et al., 2020). The agreement demands
the guaranteed control of humans over machines and AI in
the workplace.

Our research questions in this study are twofold:

1. What Models Are Currently Employed to Estimate the
Possible Role and Impact of Automation of Decisions on a
Human-Centred Design Work?

2. What Is the Link Between Automation of Decisions at
Work on Psychosocial Working Conditions of Employees?
Two Answer These Research Questions, Theories and
Models on Human in Control Are Presented Together With
Recent Scientific Literature That Depicts Possible Effects
of Digitalization and Automation on Workers’ Wellbeing.
Furthermore, the Results of the German Survey “Digitalization
and Change in Employment (DiWaBe)” Will be Presented.
The Study Intended Among Other Aspects to Investigate how
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Workers Are Impacted by Automation Technologies Like ICT
or Production Machines That Give Instructions to theWorker
and With This, Possibly Decrease Worker Control. These
Systems per se Are not Purely AI-Based, However the Ability
to Give Instructions Is Already an Advanced Function Which
can be Even Extended by the use of AI. This Section Will be
Followed by a Discussion About the Applicability of Presented
Theories and Models on AI-Based Systems and Concluding
Remarks on the Design of These Systems From a Human
Factors Perspective.

THEORIES AND MODELS ON HUMAN IN
CONTROL

The term “human in control” can be viewed as a certain level
of autonomy that a worker has, for example, about decision-
making, timing control and used methods during a working
task. Therefore, it is closely linked to the psychosocial working
condition of job control that comprises different aspects like
timing or method control or decision latitude that consists of
decision authority and skill discretion. Another term that closely
relates to the same concept is referred to as job autonomy
or task autonomy. Within scientific literature, these terms are
often used interchangeably albeit one might argue that there
are slightly different nuances to them. However, the combining
element is to exert influence over different aspects of one’s
own work (Semmer, 1990). The idea of this fundamental
workplace resource can also be found in the human in control
principle. The human in control principle, as was recently
argued by the European Trade Union Confederation (ETUC),
is one of the most important measures when designing artificial
intelligence (AI) or machine learning systems in order to create
the opportunity for good working conditions despite increasing
levels of automation (ETUC, 2020). Research in the field of
occupational psychology shows that in particular low levels of
job control and a small extent of task variability can have
negative effects on motivation, job satisfaction as well as on the
employees’ health and performance (Dwyer and Ganster, 1991;
Melamed et al., 1995; Spector, 1998; Rosen and Wischniewski,
2019; Arntz et al., 2020). Job control or autonomy is therefore
known as a fundamental task characteristic and has the potential
to enhance job performance and increase motivation (Gagné
et al., 1997; Morgeson et al., 2005; Ter Hoeven et al., 2016).
However, technological developments and innovations, such
as artificial intelligence, give rise to new possibilities for task
automation that have the capability to fundamentally change
the workers’ perceived level of autonomy (Arntz et al., 2020;
Wang et al., 2020; Fréour et al., 2021). Overall, it has been
shown that automation can either benefit or decrement workers’
performance and wellbeing, depending on the task itself, the
organizational structure/environment, design implementation
and the machine’s level of autonomy (Wiener and Curry, 1980;
Kaber and Endsley, 1997, 2004; Parasuraman et al., 2000; Arntz
et al., 2020). Negative influences occur when automated systems
have a low level of transparency and make humans rely on

AI-based algorithms as they perform all complex information-
processing functions. This can lead to out-of-the-loop (OOTL)
performances that have been proven to be accompanied by
negative effects such as vigilance decrements, complacency, loss
of situation awareness and skill decay (Wiener and Curry,
1980; Kaber and Endsley, 1997, 2004; Endsley and Kaber, 1999;
Gouraud et al., 2017). Nevertheless, the automation of routine
tasks and the implementation of artificial intelligence can also
decrease redundancy, improve safety conditions and create
opportunities for more stimulating, challenging, and impactful
working tasks (Moore, 2019; Rosen et al., 2022). In order
to find modes in which the distributions of functions to a
human or machine will increase performance while preventing
the mentioned negative consequences, research has focused on
presenting theories on levels of automation (LOAs) and degrees
of automation (DOAs) (Kaber and Endsley, 1997; Parasuraman
et al., 2000; Kaber et al., 2009; Wickens et al., 2010). Accordingly,
the goal when designing AI is to develop methods for a human-
machine interaction in which humans are not only in the loop
but are enabled to be in control when making decision while
aided by technology which goes in line with the human in
control principle.

The following paragraphs will describe established models
and theories that focus on the psychosocial working condition
of job control as well as on degrees and levels of automation
(DOAs; LOAs). Depending, selected scientific literature will be
presented that depict the effects of automation and digitalization
on workers’ health, performance and sense of control over the
working situation.

The Scope of Activity by Ulich
Ulich (2005) presents a theory on the effect of working
conditions on people and focusses on job autonomy or
job control. His theory is based on the assumption that
job autonomy is a multidimensional construct and is
comprised of three components that are equally important
for human-centered and health-maintaining design of
work: scope of action (“Handlungsspielraum”), the scope
of variability/creativity (“Gestaltungsspielraum”) and decision
latitude (“Entscheidungsspielraum”). Ulich describes the
scope of action as the degrees of freedom in the execution
and temporal organization of work actions (flexibility). He
further differentiates between the objective and subjective job
autonomy. The former is described as the actual available choices
while Ulich understands the latter as the perceived options
of action. The scope of variability/creativity is described by
Ulich as the extent to which the worker has the opportunity
to independently design their work and procedures. The
amount of variability of partial actions and partial activities thus
creates differences in the present scope of creativity. Decision

latitude is the third component in Ulich’s theoretical framework
and describes the extent of an employee’s decision-making
authority and autonomy to independently determine and
delimit working tasks. According to Ulich, a higher occurrence
of each of these components has a positive impact on the
workers’ health.
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Job Characteristic Model
While Ulich structured and systematized a multidimensional
construct to make general assumptions on the effect of job
control or autonomy on employees health, the job characteristics
model byHackman andOldham (1975) focusses on determinants
of intrinsic job motivation. Hackman and Oldham provide a
theoretical explanation for the level of intrinsic motivation,
depending on work characteristics and workers’ mental states.
The core work characteristics in their model include skill variety,
task variety, task significance, autonomy and feedback. These lead
to the experience of meaningfulness at work, of responsibility
for work outcomes and the knowledge of work results. They
particularly emphasize the concept of autonomy and postulate
that the possibility to influence the course of the work activity or
of decision-making is a key factor for intrinsic work motivation.
Moreover, their equation (see Figure 1) presupposes the presence
of autonomy for any amount of work motivation, measured by
the motivation potential score (MPS). Similar to the theory by
Ulich (2005), Hackman and Oldham (1975) postulate a positive
linear relationship between all five core characteristics and the
outcome variables. In their model, skill variety is described
as the extent to which a job requires different activities to
carry out the work involving a number of different skills and
talents of the person. Task identity is defined as to what extent
a job is holistic and produces identifiable work results. Task
significance represents the degree to which the activity that
is carried out has a substantial impact on the life or work
of other people. The core characteristic autonomy is specified
as the scope of freedom, independence and discretion the
human has regarding scheduling and procedures. The model
supposes a linear relationship between autonomy andmotivation
as the authors claim that the more freedom, the stronger
the employee’s motivation will be. The last factor to influence
work motivation and satisfaction in the equation by Hackman
and Oldham is feedback, which is described as the extent
to which an employee will get clear and direct information
about their task performance. Besides autonomy, feedback is the
only other factor that must be present in order to yield any
motivation (see Figure 1).

Job-Demand-Control Model (JDC)
The Job-Demand-Control (JDC) model by Karasek (1979) and
Karasek and Theorell (1990) focusses on the stress potential
of different jobs. According to Karasek (1979), the perception
of acute strain and stress in working situations depends on
two dimensions, namely job demands and decision latitude.
Hereby, the work-specific requirements account for the extent
of perceived job demands while decision latitude is explained
as the degree of task variety and decision autonomy. Karasek
and Theorell (1990) understand control, that is, a high level of
decision autonomy and task variety, as a requirement for good
working conditions, which is in line with the before mentioned
models. However, to characterize types of jobs with different
stress potential, they also rely on the existing job demands. As a
result, four possible types are postulated: the quiet job (low work
requirements and large scope of decision latitude), the passive
jobs (both dimensions are low), the stressful job (high work

requirements with low levels of task variety or decision latitude)
and the active job (both dimensions are high). The latter is seen
as the job with optimal stress and as overall health promoting
while the stressful and passive job causes health risks, over- or
underload as well as a decline in abilities and activities (Karasek,
1979). Although the quiet job is not believed to be detrimental
to the person’s stress level, Karasek (1979) assumes that people
will not add to their competency on the job and generally in life
if the job demands are not matched with the skill or control they
experience. Therefore, he supposes that more demanding jobs,
which are accompanied by a high level of decision latitude or job
control are the most desirable. An overview of the relationships
postulated by the JDC model are shown in Figure 2.

Job-Demand-Resources Model
A broader scope of work-related stressors and resources
compared to the Job-Demand-Control model is incorporated by
the Job-Demand-Resources model by Demerouti et al. (2001).
It does not only focus on job control, but includes a number
of work-related demands and resources that can influence the
development of motivation and occupational stress. Demerouti
et al. (2001) include a wide range of working conditions that they
classify as either resources that help achieving work goals, reduce
job stressors and stimulate personal development, or as demands,
which are factors that require sustained effort. The former
category includes, for example, job control, social support,
and task variety. The latter contains factors that increase the
possibility for disengagement and exhaustion such as emotional
pressure, workload, and time constraints. The Job-Demand-
Resources model assumes that an accumulation of demands,
without the worker having enough personal or environmental
resources, leads to a health impairment process. However, this
entails that strengthening the workers’ resources can alleviate
perceived stressors and both sides are always interacting with
each other. Demerouti (2020) proposes that it is possible to turn
automation into a resource rather than a stressor for workers
when technology is designed to support decision autonomy and
helping the worker with highly complex decisions while taking
over redundant and heavy tasks. Moreover, Demerouti (2020)
points out the importance of supporting employees through
the implementation of new technological systems to diminish
newly occurring demands such as changes in work routine or the
acquirement of new knowledge. With this, Demerouti’s model is
highly applicable in today’s digitalized world of work.

Vitamin-Model
In contrast to the other presented theories, the vitamin model
by Warr (1987) differentiates between constant and decrement
factors. That is, for some factors, Warr assumes not a linear but
an inverted u-shaped or a saturation curve-relationship between
their extent and mental health. Warr counts physical security,
the availability of financial resources and a social position that
favors self-esteem and recognition by others as constant effect
factors. These can have a negative influence on workers’ health
if their occurrence is low but do not impact the worker positively
if they exceed a sufficient level. That is, they hit a plateau (Warr,
1987). To the decrement factors, Warr denotes job control, the
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FIGURE 1 | Equation on Job Motivation.

FIGURE 2 | Job-Demand-Control Model by Karasek (1979).

possibility of social contacts, the opportunity to develop and
apply one’s own skills, task variety (chance for new experiences)
and the predictability and transparency of events. According
to Warr, these follow an inverted u-shape. That is, the model
predicts a negative impact on the worker’s health if, for example,
the level of job control is too low or too high (see Figure 3).
However, themodel lacks the specification of an optimal extent of
autonomy. This uncertainty about the optimal level of autonomy
is also present in theoretical considerations on LOAs as well.
Nevertheless, most often a medium LOA is assumed to be
beneficial which is more congruent with the assumption of a
u-shaped relationship than a linear one.

From Psychological Models to Theories
About Optimal Automation
As described before, automation refers to a set of functions
that are performed automatically by technology. With a low
degree of automation, the worker has overall control of the
technology while transferring some of it, over a specific function,
to the machine. However, automation can, in its varying degrees,
lead to less interaction of the worker with the working task,
leaving her with ancillary activities or supervisory control.
With this, automation can have positive and negative effects
on the workers’ performance and wellbeing. According to the
aforementioned models, the perceived level of control or job
autonomy takes over a mediating role in this interplay. As
stated, the continuous automation of tasks has the power to
change the employees’ level of job control, that is, possibilities to
decide upon task variety, used methods and timing (Arntz et al.,
2020; Wang et al., 2020; Fréour et al., 2021). Researchers have
therefore tried to give guidelines on how automation can increase
job performances and satisfaction instead of fostering skill
decay, complacency, workload or OOTL performances. In the

following, two fundamental models on LOAs will be described
that have been the basis for most of the current research.

Ten-Level Model by Kaber and Endsley
The first model concerned with the optimal level of automation
that will be described here, was put forth by Kaber and Endsley
(1997). They developed a ten-level model of automation, ranging
from manual control (Level 1) to full automation (Level 10)
which gives a detailed description of who should be in charge
of what function during the interaction. They present 10 levels
of automation (LOAs) as well as ways in which the human and
the machine could operate on different intermediate levels of
automation that included shared control over the situation in
order to identify scenarios beneficial for the human’s situation
awareness and for reducing workload (Kaber et al., 2009). They
found that performance was best under low-intermediate levels
of automation while higher levels of automation decreased the
ability to recover from, and perform during, automation failures
while manual control had a negative impact on performance
and workload. One of the optimal scenarios included shared
monitoring, planning and option selection with the final power
of decision resting with the human. That is, Kaber and Endsley
propose a medium LOA for positive effects on performance,
situational awareness, operational safety and workload.

Theoretical Guideline on Automation by
Parasuraman et al.
The model by Parasuraman et al. (2000) about types and levels
of automation gives a detailed theoretical guideline to what
kind of task should be automated in order to decrease mental
workload and skill decay while not encouraging loss of vigilance,
situation awareness or complacency. He supposes that the effect
that automation has on workers depends on the kind of task that
is automated as well as on the level of automation. Therefore,
he established a model that systematically shows which tasks
should be automated, and to what extent. With this, it is intended
to assign the control between a human operator and machine
in an optimal way. Parasuraman et al. differentiate four types
of automation (acquisition, analysis, decision, and action) and
a continuum of automation from high to low. The level of
automation is then evaluated by the degree to which it influences
certain human performance areas such as mental workload,
complacency, reduced situation awareness and skill degradation
which he describes as “potential costs” (Parasuraman et al.,
2000). According to Parasuraman et al., OOTL performance
problems arise if these costs are too high. The level can be
adjusted in an iterative manner before secondary evaluative
criteria are applied. These include automation reliability and
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FIGURE 3 | Vitamin-Model. Positive effect of increasing autonomy (A), plateau (B) and additional decrement (C).

costs of decision or action outcomes. This process is repeated for
all four types of automation. Parasuraman et al. also address the
question, under which circumstances decision-making should
be automated and in what scenarios it would not be suitable.
As mentioned in previous paragraphs, a low decision latitude
influences job satisfaction, motivation and, therewith, mental
health, negatively. According to Parasuraman et al., this only
occurs if the wrong tasks are automatized or if the level of
automation is picked too high. Nevertheless, he notes that high-
level automation and even full automation can be considered
for decision-making if human operators are not required to
intervene or take control under system failure as well as if they
have time to respond (Parasuraman et al., 2000). Otherwise, high
levels of automation would not be suitable since it would have
a negative impact on mental workload, situation awareness and
human performance.

Both theories on LOAs propose that assisting technologies
that leave the action selection and the protocol development
to humans and thus give workers control over the execution
of tasks are more appropriate for tasks of great expertise
while simple and redundant tasks can be performed by
completely autonomous systems without negatively affecting the
workers’ autonomy.

Exemplary Studies on Automation and
Human in Control
The described models show the importance of the level
of autonomy, job control and decision-making for workers.
Consequently, theories on LOA try to provide a framework
to include an optimal level of these parameters within the
changing nature of work. However, there is no consensus on
the effects of automation on workers as the automation of
tasks can be either perceived as a stressor (e.g., restriction of
autonomy/control) or as a resource (e.g., ability expansion),
depending on the task itself, the environment and the level
of automation (Parasuraman et al., 2000; Robelski, 2016;
Demerouti, 2020; Wang et al., 2020). Demerouti (2020), for
example, proposes that automation can be a resource if
heavy and redundant tasks are taken over by the technology

while employees are assisted in dealing with their changing
work environment. A changing work environment could
for example refer to the implementation of new AI-based
technologies and the increase of information processing, while
being supported in decision-making, learning and personal
development. Following this section, a large-scale study about
the effects of automation on German workers will be described
in detail.

Fréour et al. (2021) interviewed 3 types of employees (i.e.,
experts, managers, users) from an organization which has started
a digitalization process and conducted a study on changing
work characteristics. They assumed that the more instructions
humans get from machines, the more their perceived level of
autonomy diminishes. As shown in the review by Wang et al.
(2020) a number of studies conducted in laboratory setting
indicate a negative effect of ICT use on time pressure and
workload. However, Fréour et al. (2021) showed that the workers’
autonomy was not reduced when digital technologies executed
repetitive tasks (Fréour et al., 2021). Moreover, their results
indicated that technology that takes over action selection on
tasks that require low human control and expertise enhances
the workers’ perceived level of autonomy by accomplishing
less interesting tasks and giving the workers more time on
tasks with added value. This is in line with the model by
Parasuraman et al. who suppose that different situations can
be more or less suitable for automation. Human autonomy
should be favored if a large extent of expertise or variability
is needed whereas automation is recommended for repetitive
and predictable tasks or situations in which a quick reaction
time is crucial. Wickens et al. (2010) conducted a meta-
analysis of 18 experiments on the effect of varying LOA and
included performance and workload as an outcome parameter.
Again, automating redundant work had positive effects such as
performance and decreased workload (if the system functioned
properly). The ameliorating effects of both studies on working
conditions find a theoretical basis in the models of Ulich (2005),
Hackman and Oldham (1975) as well as Karasek (1979) and
Demerouti et al. (2001) since task variability, significance, and
(decision) autonomy were increased through the higher LOA,
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resulting in an overall better condition. However, there are
scenarios in which the automation of tasks increases mental
workload and has a detrimental effect on situational awareness,
the feeling of control as well as task variability (Kaber and
Endsley, 1997; Endsley and Kaber, 1999; Weyer et al., 2015).
This is often the case when a high LOA is implemented and
the human is left with supervisory control over the system and
only is expected to take control if the system fails (Wiener
and Curry, 1980; Kaber and Endsley, 1997; Weyer et al., 2015;
Gouraud et al., 2017). Parasuraman et al. (2000) mentioned
that the reliability of the system is a key factor when it comes
to lower the stress for the worker and impede overreliance on
technology. A study about smart cars showed correspondingly
that a higher level of automation increases satisfaction, but
only if the malfunctions were low (Weyer et al., 2015). Other
areas in which taking away human control can have positive
effects are controlling the workers through occupational accident
analysis, decision support systems or video surveillance for
anomaly detection to prevent the occurrence of accidents and
increase the workers’ safety. Nevertheless, a study by Bader
and Kaiser (2017) showed that ICT can foster the workers’
feeling of being under control/surveillance and therewith curtail
their freedom on working methods, scheduling of tasks and
overall decision-making. Another negative consequence of these
highly automated environments is the workers’ loss of manual
skills and the feeling to not be in control anymore (Berberian
et al., 2012). The results by Berberian et al. (2012) suggest
that the feeling of control is enlarged when action alternatives
can be generated and selected as well as through greater
involvement preceding an automated function. These conflicting
arguments show the importance of a human-centered perspective
when implementing AI or automating functions as well as the
employees’ opportunity to feel in control.

Overall, the studies suggest that the implementation of
different LOAs can influence the employees’ job autonomy and
their sense of control. Although there are no clear results on
the effect of specific LOAs on mental health, they do affect
task variety and decision latitude as well as method and timing
control, which in turn have been shown to influence the worker’s
perceived stress-level and overall health. Most findings suggest
that automation is beneficial for redundant tasks that do not
require the human to intervene in cases of system failure or if
the takeover of manual control is easy. Negative effects occur
if humans are left with supervisory control and redundant
or ancillary activities. The “Ten-Level-Model” and the “Model
for Types and Levels of Human Interaction with Automation”
propose a medium level of automation for most tasks but clarify
that multiple factors play into the decision on which tasks
should be automated in order to influence performance and the
worker’s wellbeing positively. A key aspect of automation is the
level of transparency that humans are able to experience when
working with automated systems. Moreover, a high reliability
should be given, as well as the possibility for the worker to
take back control. In order to follow the human in control
principle, it is necessary to take a human-centered approach and
balance the degree of the system’s autonomy with the level of
desired control.

RESULTS OF DIGITALIZATION AND
CHANGE IN EMPLOYMENT (DIWABE)
SURVEY

The described models gave theoretical considerations on how
much autonomy and job control are beneficial for the workers’
wellbeing while the theories on LOAs and presented laboratory
studies indicate that automation in itself influences the perceived
level of human control and autonomy. However, until this
day, studies on the actual situation in workplaces regarding
the increasing automation and subsequent effects on task
characteristics and the employees’ wellbeing are rare. To fill this
gap, the next paragraphs will describe in detail specific results of
the German survey “Digitalization and Change in Employment
(DiWaBe).” In this survey more than 8,000 employees answered
questions on their working environment and conditions in order
to find out howworkers are impacted by automation technologies
like ICT or machines. Of special interest are systems that give
instructions to the workers and possibly reduce perceived job
control.Moreover, the study assesses the current relation between
decisions made by technologies, working conditions and mental
health. The following paragraphs will include a short description
of the survey and the results regarding the impact of technology
in control.

The DiWaBe survey was jointly designed by the Federal
Institute for Occupational Safety and Health (BAuA), the Federal
Institute for Vocational Education and Training (BIBB), the
Institute for Employment Research (IAB) and the Leibniz
Centre for European Economic Research (ZEW) in 2019. The
survey was conducted via telephone and included more than
8,000 employees from about 2,000 different German companies.
These companies had already participated in a representative
company survey (IAB-ZEW-Working World 4.0) in 2016 as a
random sample stratified by region, company size and sector.
Based on the population of all employees in these companies,
participants in the DiWaBe study were also selected as a
random sample stratified by age, gender and education level (for
details, see Arntz et al., 2020). The questionnaire was specifically
designed for the survey, including a differentiated assessment of
working technologies, split up in the categories information and
communication technologies (ICT) and machines/tools, which
creates a unique data set. It also includes a wide array of questions
regarding physical and psychological working conditions in form
of stressors and resources, some of them oriented toward items
in the Copenhagen psychosocial questionnaire (COPSOQ, see
Kristensen et al., 2005) for comparability.

Sampling and Data Preparation
The overall response rate is 16.43%, and the distribution of the
interviews deviates relatively clearly from the distribution of the
gross sample. It is particularly noticeable that the utilization
rates of the education group high are (as expected) significantly
higher than those of the other two education groups (low and
med), which was later corrected via weighting of the data. For a
detailed description of sampling and composition, see also Arntz
et al. (2020). The gathered data was subsequently compared with
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administrative data and weighted by the variables mentioned
above in order to be as representative as possible of the private
sector in Germany. The individual weights were trimmed at the
95th percentile so that possible outliers would not have too much
influence, possibly distorting the data. For the present analysis,
the sample was restricted to currently employed individuals up
to the age of 65 years (current age of retirement in Germany)
with valid information on themain variables included. Moreover,
persons with 200 or more days absent from work due to illness
within the last 12 month were excluded because of potentially
distorted answers after the prolonged absence. Table 1 shows the
resulting sample.

After assessing the technology use, the participants answered
questions on how often technology makes decisions about their
work process and gives instructions to the participant, addressing
the automation of decision aspect of the Parasuraman model.
The item wording was: “How often does it happen that the
technology gives you instructions, e.g., about the next work step?”
(1 = never, 5 = always). As work with ICT and machines differ
substantially, the analysis was carried out separately for both
technology classes.

Table 2 gives an overview on themean of working instructions
by technology for different sociodemographic groups. Regarding
ICT, male participants report slightly more instructions by ICT
than women. Among all groups, people aged 50 and over
report a slightly higher level of instructions than the other
age groups. Between the different qualification levels, there is
a slight but continuous decrease in instructions through ICT
as the qualification level increases. Employees in occupations
with higher qualification requirements report, on average, fewer
instructions than those with low qualification levels. Throughout
the different occupational sectors, the most instructions through
ICT are reported in the production manufacturing jobs. People
in other economic service occupations report the second
highest value.

In case of instructions given by machines, women report a
slightly higher level on average than men. Among the different
age groups, the lowest level of control by machines is seen in
the group under 35 years of age. The other two groups report an

TABLE 1 | Sample description.

Sample % n

Total 6,153

Female 46.5 2,861

Age: 18–34 16.0 982

Age: 35–49 38.6 2,378

Age: ≥50 45.4 2,794

Qualification: No degree 6.5 399

Qualification: Apprenticeship/vocational 48.3 2,972

Qualification: Meister/Technician 14.3 881

Qualification: University degree 30.7 1,894

Working with ICT (at least rarely) 90.8 5,590

Working with machines (at least rarely) 49.2 3,026

almost identical mean. Surprisingly, a different picture emerges
regarding the skill requirements for machines compared to ICT.
The highest mean level of instructions by machines is reported
by master craftsmen and technicians, the group with a rather
higher level of qualification and typically associated with less
standardized tasks. In terms of occupational sectors, people in
other business services report the highest level of instruction by
machines, while the other sectors are at a similar level.

To explore the potential impact of technology in control,
linear regression in separate models was used to predict the
impact of reported instruction by technology on several aspects of
work intensity, job control and burnout indicators. These items
are based on the Job-Demand-Resources model as key factors of
potential stressors and beneficial resources at work. According
to the Job-Demand-Control model by Karasek (1979) as well as
the Job-Demand-Resources model by Demerouti et al. (2001),
an unfavorable constellation of demands and low resources,
especially in the long run, leads to a decrease in health associated
variables. Methodologically, the use of parametric tests has
advantages and disadvantages over non-parametric tests for likert
scale-data, depending on the sample, the items and the research
question. After weighing these factors, especially the sample size
and the item design which does not include verbal gradations of
the items, in this study we follow the argumentation of Norman
(2010) and use linear regression as a robust parametric test
method for calculation. Table 3 shows the regression coefficients,
standard error and standardized regression coefficients beta for
instructions by ICT (left) and instructions by machines (right).

More Physical Stress With Instructions by
ICT
The statistical models prove that instructions by ICT are a
significant predictor for multiple aspects of work intensity as
well as all facets of job control. More specifically, regarding
work intensity, a higher degree of instructions by ICT is
associated with more physical stress (Figure 4). Surprisingly,
higher levels of instructions by ICT are also connected with
mildly less multitasking, which might indicate that work is more
standardized and closely supervised with less parallel subtasks
when automated. This would indicate that a high LOA regarding
decision-making is implemented which leaves the human with
more focus on (physical) action. This interpretation would be
in line with the results regarding job control. Here, instructions
by ICT predict all facets and high levels are associated with less
freedom in organizing one’s work, influencing the working speed,
the possibility of choosing between different task approaches and
influencing the amount of work. The strongest relation exists for
repetition of working steps, where higher levels of instructions
by ICT predict a substantial higher level of repetition of working
steps (Figure 5). Regarding mental health, however, no relation
is found between the instructions by ICT and indicators of
burnout. This goes against the assumptions of Ulich (2005),
Karasek (1979), Hackman and Oldham (1975) or Warr (1987)
since they all propose a negative influence of low levels of job
control on mental health. However, the model by Demerouti
et al. (2001) could provide an explanation for the missing link
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TABLE 2 | Sociodemographics.

Instructions by ICT Instructions by machines

Mean SD n Mean SD n

Total 2.28 1.25 5,446 2.24 1.29 2,315

Gender: male 2.30 1.26 3,038 2.18 1.27 1,638

Gender: female 2.25 1.26 2,551 2.42 1.32 723

Age: 18–34 2.25 1.24 891 2.09 1.21 485

Age: 35–49 2.22 1.25 2,186 2.29 1.33 947

Age: 50–65 2.34 1.27 2,511 2.30 1.29 929

Qualification: no qualification 2.57 1.61 179 2.24 1.45 123

Qualification: apprenticeship/Vocational 2.37 1.33 2,608 2.23 1.32 1,205

Qualification: master craftsmen/technician 2.23 1.16 1,308 2.35 1.31 513

Qualification: university degree 2.11 1.11 1,350 2.15 1.14 473

Branch: manufacturing jobs 2.41 1.27 1,433 2.20 1.29 1,163

Branch: personal services 2.21 1.33 1,193 2.24 1.28 508

Branch: commercial company-related services 2.22 1.13 1,927 2.29 1.30 282

Branch: IT and scientific service professions 2.22 1.20 376 2.29 1.19 199

Branch: other economic services 2.30 1.50 515 2.40 1.38 161

TABLE 3 | Linear regressions.

Independent variable Instructions by ICT Instructions by machines

Regr. coeff Std. error Beta Regr. coeff Std. error Beta

Dependent variable

Work intensity

Physical stress 0.109 0.014 0.101*** 0.027 0.020 0.027

Multitasking −0.030 0.010 −0.039** 0.016 0.016 0.021

Interruptions −0.008 0.011 −0.010 0.035 0.016 0.045***

Information overload −0.003 0.010 −0.004 0.094 0.015 0.131***

Job control

Organizing work −0.133 0.012 −0.147*** −0.054 0.020 −0.055**

Working speed −0.094 0.012 −0.101*** −0.090 0.021 −0.090***

Task approach −0.118 0.013 −0.125*** −0.064 0.020 −0.068**

Amount of work −0.057 0.013 −0.058*** −0.058 0.020 −0.058**

Repetition of working steps 0.138 0.010 0.179*** 0.139 0.015 0.187***

Burnout indicators

Physical exhaustion 0.022 0.012 0.025 0.090 0.018 0.101***

Emotional exhaustion −0.015 0.012 −0.017 −0.031 0.018 −0.036

Feeling drained 0.016 0.012 0.017 0.064 0.019 0.071**

2,341 < n < 5,592.

*p < 0.05, **p < 0.01, ***p < 0.001.

as it suggest that existing resources can alleviate the negative
effects of stressors, such as low job control. Possibly, employees
that work with ICT have more personal resources or better
social or management support. The models show no significant
predictions for interruptions and information overload.

The presented models on LOAs can only be applied partly to
these results, as they focus on the technical implementation and
are task specific. They assume that an increase in workload after
task automation is an indicator for an incorrect choice of task or
for a level of automation that is picked too high.

More Information Overload With
Instructions by Machines
When predicting work intensity regarding varying amounts
of instructions by machines, a different pattern emerges.
Higher levels of instructions by machines are associated
with significantly more interruptions and more information
overload (Figure 6). There was no significant prediction
for physical stress or multitasking, however. Again,
theories on LOAs would argue that these results are an
indicator for a wrongly chosen task to be automatized
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FIGURE 4 | Mean and standard deviation of the item “physical stress” among the different “Instructions by ICT” groups. n = 5.586, linear regression coefficient

beta = 0.101, p < 0.001.

FIGURE 5 | Mean and standard deviation of the item “repetition” among the different “instructions by ICT” groups. n = 5,587, linear regression coefficient

beta = 0.179, p < 0.001.

FIGURE 6 | Mean and standard deviation of the item “information overload” among the different “instructions by machines” groups. n = 2,355, linear regression

coefficient beta = 0.129, p < 0.001.

or a higher level of automation than would be necessary
or beneficial.

Regarding decision latitude and overall job control, results
show an identical pattern between instructions by ICT and
machines. Participants reporting more instructions by
machines also report significantly less job control among
all facets, although some predictions are weaker than those
of instructions by ICT. The strongest relation is again found

between instructions by machines and repetition, where
more instructions are significantly associated with more
repetition of working steps (Figure 7). Participants, who
reported that they always receive instructions by machines,
also reported usually executing the same subtask over
and over again. It again highlights the assumptions in the
Parasuraman model that while automation of already redundant
tasks is beneficial for decision latitude and performance,
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FIGURE 7 | Mean and standard deviation of the item “repetition” among the different “instructions by machines.” n = 2,361, linear regression coefficient

beta = 0.184, p < 0.001.

automation of decision-making often does not lead to better
working conditions.

Instructions by machines proved also to predict two out of
three burnout screening items. High level of instructions by
machines were associated with more feeling of being drained
and more physical exhaustion (Figure 8). As a higher level of
instructions is correlated with job control, the shown negative
impact on mental health is according to the presented models
by Ulich (2005), Karasek (1979), Demerouti et al. (2001) and
Hackman and Oldham (1975). The vitamin model by Warr
(1987) predicts that too much control also can have negative
effects, which can be partly seen in the present data. Furthermore,
the authors of theories on LOAs founded their models on the fact
that redundant working conditions and less decision autonomy
has detrimental effects on workers. Therefore, the present results
go in line with these theoretical considerations as well as with
other studies in laboratory settings (Kaber and Endsley, 1997;
Endsley and Kaber, 1999; Parasuraman et al., 2000; Weyer et al.,
2015). However, according to Parasuraman et al. (2000) as well
as Kaber and Endsley (1997), these negative effects occur only in
case of weak technical reliability, wrong task selection or overly
high level of automation.

In sum, the analysis provides a broad, explorative overview
of the extent to which technologies currently exert control over
employees’ work activities and what working conditions go
hand in hand with this. Overall, it shows that partial control
of employees by automation technologies is already part of
everyday working life. On average, the participants state that
they receive “rarely” to “sometimes” instructions by technology
about their next work steps. Older and lower-skilled employees
are on average affected by instructions through technology
slightly more often than other workers. With regard to the
correlations of control through technology with relevant working
conditions and indicators of mental health, a distinction must
be made between the basic types of automation technologies.
Different patterns can be found for ICT used for the automation
of information-related tasks compared to technologies like
production machines used for processing physical objects. While
control by ICT systems is associated with a higher degree of

physical stress and less multitasking, higher control by machines
predicts more interruptions and an increase in information
overload. In contrast, the correlations with job control such
as facets freedom of action and degree of repetition in the
activity as a whole, are similar. Here, more control by technology
in both classes is associated with a decrease in job control.
The results imply that control by technology does not only
substitute control that was previously exercised by humans.
Instead, control by technology seems either adding to existing
control by superiors, or it seems to be associated with tighter
instructions. It is striking that some facets of job design are
already rated in the lower (autonomy and decision latitude) or
upper (degree of repetition) range of the scale, and are rated
even more extremely by participants that report more intensive
decisions through technology.

These results are important, as a minimum level of autonomy
is a relevant factor for the mental health of employees and
represents a long-term risk for mental illness. Regarding control
by machines, results indeed indicate a connection between the
degree of control and screening facets of burnout symptoms,
where more instructions by machines are associated with more
physical exhaustion and more feelings of being drained. Overall,
the results therefore point to a worsening of working conditions
rather than an improvement, if more decisions are made
by technology.

Limitations and Evaluations of the Results
Regarding limitations of the study, several should be noted.
Firstly, all empirical results are based on subjective data and are
therefore prone to specificmeasurement error, for example due to
biased personal perception of the situation.Within large samples,
one can assume that random measurement error is somewhat
nullified by large numbers. However, there is always a risk for
a systematic error to distort the results, as employees are not
randomly assigned to workplaces. Therefore, certain groups of
employees might answer the questions systematically different
than other subgroups due to confounding variables beyond the
ones that were included as control variables, for example personal
work motivation. There are approaches to handle this possible
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FIGURE 8 | Mean and standard deviation of the item “physical exhaustion” among the different “instructions by machines.” n = 2,356, linear regression coefficient

beta = 0.101, p < 0.001.

error by including employees wages and personal work histories
(for example Böckerman et al., 2012). However, as the data set
include thousands of employees, we did not use indirect methods
to control for variables that were not directly in the data.

Additionally, the results cannot make a clear statement
about the extent to which the correlations are due to decision-
making by machines per se, or due to the specific design and
implementation of technologies. Also, due to the exploratory
nature of the analysis, a more in-depth investigation of individual
subgroups of employees effects was not yet undertaken and will
be subject of future research. For example, correlations might
be substantially different for different subgroups regarding age,
health, qualifications level, company, personality traits and so on.
Due to these aspects, we rate the external validity of the data
as medium. The big sample, careful sampling and weighting of
the data leads to generally high global validity, limited by a non-
randomized setup and subjective data. In addition, due to the
high abstraction level and the therefore very heterogenic sample,
individual results in a specific setting might differ substantially.

DISCUSSION

The digital transformation of work is apparent across all sectors
and therewith, entails fundamental changes for the world of
work and society. Multiple aspects of today’s work, including
task characteristics, work environment, health and safety can
profit from digitalization and automation in terms of increased
productivity, more creative freedom in organizing work and
new job opportunities. However, this shift in digitalization can
also pose risks and challenges for workers when they are not
included in the process and changes are not anticipated correctly.
Due to the extraordinary increase in computational power, AI-
based systems get more available, complex and capable day by
day and therefore hold the potential to qualitatively impact
occupational safety and health. AI-based systems are built to
automate certain tasks and are even able to work autonomously
with little human control, which can be a threat to job autonomy.
Theories and models from the field of occupational psychology
have argued that a decrease in the factor of job control which

involves the possibility to choose tasks, working methods and
procedure as well as decision autonomy has detrimental effects
on workers’ wellbeing. Consequently, stakeholders contribute
to the prospect of maintaining the workers’ autonomy albeit
increasing automation and summarize this aspiration with the
human in control principle. The mentioned models agree on
the fact that autonomy is a fundamental aspect of good working
conditions and is crucial to ensure motivation, job satisfaction
and mental health. However, the models are not AI-specific and
do not include any specific technical considerations nor focus on
task but rather on job level. That is, they are possibly not able
to fully explain the changes in the world of work regarding the
digitalization of tasks. As automation can foster and decrease
the factor of job control, the influence of varying degrees of
automation, moderated by perceived autonomy, and on workers’
wellbeing and mental health might not be directly visible. As
seen in the large-scale study on German workers (DiWaBe),
this seems to be the case. More instructions by ICT were
correlated with lower levels of perceived job control but did not
influence mental health factors. Interestingly, more instructions
by machines affected the feeling of control negatively and as
predicted by the mentioned models, mental health. Therefore,
models on the factor of job control can only partly explain the
influence of AI on employees in actual working situations in the
present survey. There are other factors such as task significance,
feedback or social support that contribute to the overall working
conditions and have not been included in the survey which
could explain the missing link to mental health factors. The
Job-Demand-Resources model by Demerouti et al., 2001 would
support this assumption as it proposes that other interacting
work conditions can function as resources, which have the ability
to balance out demands, such as the decrease on job control.
However, this would not account for the differences between
instruction by ICT or machines. When looking at the models on
LOAs that focus on the technical implementation of automation,
a clear focus on task specific automation becomes apparent. They
do not differentiate between different types of AI-based systems
or sectors but rather dedicate attention to the specific human
ability that is automated. According to these models, it is highly
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important which subtasks are automated in order to foresee the
impact on workers. Both models assume that the automation of
redundant tasks influences working conditions positively when
the technology is reliable while taking away control from the
human in tasks of expertise, has negative impacts. Overall, they
only take away the decisional power from the human on the
highest level, that is, under full automation. For all other levels,
the human remains with a certain degree of decisional power.
These models portray the optimal way of using automation in
order to foster human performance while decreasing the negative
effects it can have, such as a lower perceived level of job autonomy
and control.

Results indicate that automation in occupational practice does
not happen fully in line with this postulatedmodel of automation.
Instead, a substantial part of automation happens at the decision-
making level, while executive actions remain with the human.
The question remains why this process has led to significant
effects on mental health factors when instructions came from
machines, compared to instructions by ICT. According to all
mentioned models, the reduction of perceived job control should
have influenced mental health factors in both cases negatively
if there are no other positive factors for workers that got
instructions by ICTwhich would alleviate the impact of a reduced
feeling of control. A possible explanationmight be that work with
ICT is accompanied with higher average levels of job control,
so that a reduction by more instructions by technology does not
lead to a critical level. This also emphasizes the application of the
presented theories and models not on a broad overall level, but
when considering the specific working task.

CONCLUSION

Models and theories on human in control draw on well-
established research in occupational psychology. In sum,
literature has proven that less control and autonomy has negative
effects on workers’ job satisfaction, performance and mental
health. These models clearly show the importance of the factor
job control, as well as other factors, such as task significance,
feedback and task variety. Due to more automation in the world
of work and overall higher degrees of digitalization, automation
technologies often take over different subtasks from humans.
This happens on varying levels, sometimes leaving the human
with supervisory tasks or simply following instructions. This
transformation has led to the justified fear of loss of control in
workers. Indeed, recent studies showed that a higher degree of
automation can have detrimental effects such as loss of control,
complacency, reduced situational awareness and task variety.
Models on LOAs have therefore taken on the challenge to
create an optimal pattern for task automation in which humans
can remain in control while aided by technology to increase
performance and optimize workload and the mentioned effects.
However, they are very task specific and entail multiple loops to
evaluate the degree to which the automation influences human
performance. Unfortunately, they do not give specific guidelines
for different tasks or sectors so that each task with a change
in the degree of automation has to pass through the complete

theoretical framework in order to have positive implications.
The results of the DiWaBe study on German workers shows
the large scope of digitalization as more than 90% of people are
already working with ICT and nearly 50% with machines. These
changes have made it important for stakeholders to highlight the
principle of the human being in control or preserving workers’
autonomywhen designing AI-based systems (Rosen et al., 2022).

Although the assumed influence of a decrease in job control
on mental health factors seen in the models by Ulich (2005),
Karasek (1979) and Demerouti et al., 2001 as well as Hackman
and Oldham (1975) cannot be seen consistently in the DiWaBe
results, they are visible for workers who get more instructions
by machines. This might be due to a higher average level of
job control among (knowledge based) ICT-Work than machine
work, preventing the demand-resources balance to reach critical
levels. As literature emphasizes automation is a double-edged
sword, it is crucial to closely monitor changes in automation
from an objective point of view, taking productivity, reliability
and profitability into account while also looking at automation
from a worker’s perspective in detail to face challenges for
occupational health and safety. Furthermore, fostering positive
work conditions such as good social support, feedback as well
as opportunities for learning and personal development could
provide a higher chance to turn automation into a resource
(Demerouti et al., 2001; Demerouti, 2020). The technical models
by Parasuraman et al. (2000) and Kaber and Endsley (1997)
describe optimal ways when implementing automation, leaving
control and supervisory subtasks with human while automating
physical subtasks and information gathering.

Unfortunately, results indicate that automation in
occupational practice does not happen in line with the
models of optimal automation. Instead, there is a substantial
level of decision-making by technology, which then exercises
control on human employees. In addition, results show that
this development is accompanied by a more unfavorable change
in terms of demands and resources. Regarding the current
rapid development of artificial intelligence, the possibilities
to further automate decision-making within work processes
will be increased massively, with the risk of more unfavorable
working conditions. Therefore, it is of utmost importance
from an occupational safety and health perspective to closely
monitor and anticipate the implementation of AI in working
systems. These results should then be considered continuously
by policy making for workplace design, for example regarding
in standardization procedures. The goal here is to avoid
constellations where employees are too controlled by technology
and are left with a high degree of demands and very limited
resources. Instead, it would be favorable to use AI as an
assistance tool for the employees, helping them to gather and
process information and assisting them in decision-making.
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Calls for “ethical Artificial Intelligence” are legion, with a recent proliferation of government

and industry guidelines attempting to establish ethical rules and boundaries for this

new technology. With few exceptions, they interpret Artificial Intelligence (AI) ethics

narrowly in a liberal political framework of privacy concerns, transparency, governance

and non-discrimination. One of the main hurdles to establishing “ethical AI” remains

how to operationalize high-level principles such that they translate to technology design,

development and use in the labor process. This is because organizations can end up

interpreting ethics in an ad-hoc way with no oversight, treating ethics as simply another

technological problem with technological solutions, and regulations have been largely

detached from the issues AI presents for workers. There is a distinct lack of supra-national

standards for fair, decent, or just AI in contexts where people depend on and work in

tandem with it. Topics such as discrimination and bias in job allocation, surveillance and

control in the labor process, and quantification of work have received significant attention,

yet questions around AI and job quality and working conditions have not. This has left

workers exposed to potential risks and harms of AI. In this paper, we provide a critique

of relevant academic literature and policies related to AI ethics. We then identify a set

of principles that could facilitate fairer working conditions with AI. As part of a broader

research initiative with the Global Partnership on Artificial Intelligence, we propose a set of

accountability mechanisms to ensure AI systems foster fairer working conditions. Such

processes are aimed at reshaping the social impact of technology from the point of

inception to set a research agenda for the future. As such, the key contribution of the

paper is how to bridge from abstract ethical principles to operationalizable processes in

the vast field of AI and new technology at work.

Keywords: artificial intelligence, labor, work, ethics, technological change, collective bargaining, industrial

relations, job quality

INTRODUCTION

The advent of a new era of innovation in machine learning AI and its diffusion has prompted
much speculation about how it is reshaping society (Gentili et al., 2020). As well as seeing
it as an opportunity to advance common social goals, many have also identified how such
developments may pose significant risks, particularly to actors who are already disempowered and
discriminated against. Consequently, much thought has gone into the risks and opportunities of AI,
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and the creation of principles for its ethical development and
deployment. However, this thought tends to be at the intersection
of the instrumental-economic and abstract ethics (Algorithm
Watch, 2020), with operationalization generally restricted to the
domain of privacy concerns, transparency and discrimination.
Questions around workers’ fundamental rights, job quality (see
Cazes et al., 2015) and working conditions more generally have
not received as much attention.

Given that technologies tend to be path-dependent
(MacKenzie and Wajcman, 1999), embedding a set of concrete
principles and benchmarks from the outset of technological
diffusion is an important way to control their social effects as
it supports regulation. There is an urgent need to create a set
of evaluation mechanisms that directly address the impact of
AI on working conditions, and that can feed into regulation of
these technologies. However, research on this topic is limited.
A Scopus query for the term “AI ethics” retrieves 2,922 results.
When “work” is added to the search string, this number drops
by more than half, to 1,321 results. Of these, 309 are publications
in the social sciences, indicating limited engagement of our field
with the topic. When analyzed in detail, we see that only 58 of
them discuss AI ethics pertaining to work and employment.
Most of these focus on digital wellbeing (Burr et al., 2020) or
worker wellbeing (Nazareno and Schiff, 2021), the impact of
algorithms on decision-making in government, employment
agencies (Kuziemski and Misuraca, 2020), predictive policing
(Asaro, 2019; Yen and Hung, 2021) and bias in algorithmic
decision-making (Hong et al., 2020; Metaxa et al., 2021). The
studies that are specifically on work and employment target
recruitment (Yam and Skorburg, 2021), human resources
management (Bankins, 2021) or workplace management (Jarrahi
et al., 2021). There is, thus, a clear gap in the literature concerning
how AI ethics relates to fairness, justice and equity in the context
of work and employment.

Against this background, this paper sets out a critique
and a research agenda to address this gap. However, the
pathway from high-level principles to enforceable regulation
on working conditions has yet to be clearly defined. As noted
by Wagner (2018, 2019), the current focus on AI ethics is
simply a watered-down version of regulation—especially when
technology companies opt for voluntary codes of practice that
they’ve shaped themselves. As Algorithm Watch (Thiel, 2019)
notes, most existing AI ethics guidelines are non-binding, and
they operate on an opt-in basis. AI ethics can therefore be
something companies congratulate themselves on for their good
intentions, without the need to turn these so-called ethics into
actual practice. Hence, there is an urgent need to move from
abstract principles to concrete processes that ensure compliance.
This is a necessary step, irrespective of emerging regulations on
the issue.

In this article, we provide a critique of how AI systems are
shaping working conditions before identifying ways in which
it can foster fairer work (see Section Proliferating Principles).
We first review a selection of AI guidelines, ethics and meta-
analyses using Boolean search, and outline four critiques that
cut across the recent proliferation of ethical guidelines. These
are summarized by the four headings: (1) Not everything is a

trolley problem (ethical critique); (2) AI is not that special (socio-
technical critique); (3) The problem with automatic politics
(ethico-political critique); (4) Big Tech Ethics is Unilateral (a
socio-political critique). These critiques set up methodological
basis for the University of Oxford’s AI for Fairwork project
(supported by the Global Partnership on AI), which aims to
produce a set of AI guidelines that avoid these pitfalls and
contribute to fairer uses of AI at work. These guidelines, a draft
of which are presented in Section Proposed AI for Fairwork
Standards below, are not exclusively intended to assist in either
risk mitigation or opportunity maximization. Instead, we view
those two goals as inseparably linked. By shifting our attention
from mere negative outcomes of technological development to
the processes of technological innovation and design, we aim to
embed fairness into the very technologies that get built, instead
of attempting to fix problems once and as they arise.

We position our understanding of fairness as both as an ethical
absolute that should be strived for, but also as a virtue that is
context dependent to time, space and conditions. As such, we
treat fairness not as a static and unchanging category or end
point in itself, but rather as a process that involves continual
revision relative tomaterial circumstances. To use the language of
Silicon Valley: making things fairer is an iterative process. Agents
are required to constantly attempt to move toward a horizon of
fairness that they can’t quite reach. This will likely be the case for
a long time to come, as we can foresee no final point at which any
work environment could be declared completely fair—at least,
not under this economic and political system.

FROM ETHICS TO FAIRNESS

Proliferating Principles
The proliferation of real (or speculative) AI use-cases and
corresponding national industrial strategies (HM Government,
2021), has provoked a swath of voluntarist ethical guidelines
from an array of actors, from the OECD to the European
Parliament, Microsoft, and even the Pope. Governments, supra-
national institutions and non-governmental organizations have
all shown an interest in understanding and regulating AI systems.
In this section, we review a selection of such principles that
are most relevant to our research and the development of
Fairwork principles for AI. By investigating a selection of these
principles more closely, we can lay the groundwork for our
subsequent critique.

The OECD (2019) Principles on Artificial Intelligence were
the first AI ethics guidelines signed up to by governments.
They complement existing OECD standards in areas such
as privacy, digital security risk management, and responsible
business conduct (see Table 1). The G20 also adopted “human-
centered AI principles” that drew on these principles. In a
similar vein, the European Parliament (European Parliament,
2019) has drawn up a code of voluntary ethics guidelines for
AI and robotics engineers involving seven key requirements
(see Table 1). Such requirements informed the 33 policy
and investment recommendations that guide the proposal for
“Trustworthy AI” put forward by the EU High-Level Expert
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TABLE 1 | Summary of four illustrative AI principles.

Principle author Stated values Specific discussion of work

OECD (1) Regular engagement of multiple external and internal stakeholders; (2)

mechanisms for independent oversight; (3) transparency around

decision-making procedures; (4) justifiable standards based on evidence; (5)

clear, enforceable legal frameworks and regulations.

Affirms the importance of international labor rights. Suggests

that workers should be aware of their interactions with AI

systems. Encourages governments to prepare for “labor

market transition” through skill development social dialogue,

and promoting increases in safety and job quality.

UNESCO (1) Proportionality and “do no harm”; (2) safety and security, fairness and

non-discrimination; (3) sustainability, right to privacy and data protection; (4)

human oversight and determination; (5) transparency and explainability; (6)

responsibility and accountability, awareness and literacy; (7) multistakeholder and

adaptive governance and collaboration.

Encourages governments to implement impact assessments

that monitor, amongst other things, the effect of AI on labor

rights, Strongly emphasizes the need for skill development,

retraining and “fair transition” for at-risk employees. States the

need for ongoing research on the impact of AI systems on

work.

European

Parliament

(1) Human agency and oversight; (2) robustness and safety; (3) privacy and data

governance; (4) transparency; (5) diversity, non-discrimination and fairness; (6)

societal and environmental well-being; (7) accountability

Notes concern about impact on labor market and describes

workers as one of nine relevant stakeholder groups.

President of the

United States

(1) Lawful and respectful of our Nation’s values; (2) purposeful and

performance-driven; (3) accurate, reliable, and effective; (4) safe, secure, and

resilient; (5) understandable; (6) responsible and traceable; (7) regularly

monitored; transparent; (8) accountable.

None.

Group on Artificial Intelligence (AI HLEG) and their self-
assessment checklist (High-Level Expert Group onAI, 2020). The
European Commission wants “Trustworthy AI” that puts “people
first” (European Commission, 2020). However, the EU’s overall
approach emphasizes the commercial and geopolitical imperative
to lead the “AI revolution”, rather than considering in detail the
technological impact on workers and work. It has been noted that
members of the AI HLEG have already condemned the results as
an exercise in ethics washing (Metzinger, 2019).

Following this trend, UNESCO’s 2021 Recommendation on
the Ethics of Artificial Intelligence’ also emphasize the production
of “human-centered AI” around 10 principles. UNESCO also
proposes a set of 11 policy areas aligned with these fundamental
principles for member states to consider. The President of
the United States issued an “Executive Order on Promoting
the Use of Trustworthy Artificial Intelligence in the Federal
Government”, that provided “Principles for the use of AI in
Government” (White House, 2020).

The US executive order was likely in response to the
Algorithmic Accountability Act proposed on April 10, 2019
in the United States Congress, which aimed to legislate rules
for evaluating highly sensitive automated systems. The Act was
never taken to a vote, but a new version has recently been
introduced on March 1, 2022 that aims “To direct the Federal
Trade Commission to require impact assessments of automated
decision systems and augmented critical decision processes,
and for other purposes” (United States Congress, 2022). This
legislation aims to increase certain kinds of transparency with
regard to automated decisions affecting US citizens from the use
to algorithms. It requires both the firm that builds the technology
enabling the automation as well as the company using it to make
the decision to conduct impact assessments for a range of factors
including bias, effectiveness, and security. Furthermore, the bill
aims to provide a benchmark requirement which stipulates
that companies assess the impacts not only of new automated

decision-making processes, but also already-existing ones. It
mandates that the Federal Trade Commission (FTC) creates
regulations that standardizes assessment and reporting, requires
auditing of impact-assessment and the FTC to publish an annual
anonymized report on trends and provide a public dataset of
automation decision technologies.

Ethical principles have proliferated to such a degree that
there are now multiple databases cataloging them online. One
such inventory of AI Ethics Guidelines is crowd sourced
and maintained by the NGO Algorithm Watch. The database
currently identifies 173 sets of principles “of how systems
for automated decision-making (ADM) can be developed and
implemented ethically”. These fall into three broad categories:
binding agreements (8), voluntary commitments (44), and
recommendations (115). Similarly, the OECD maintains a live
database showing over 700 initiatives related to AI policy
from 60 countries, territories and the EU.1 In a recent study,
Jobin et al. (2019) identified 84 different ethical AI standards,
produced by a range of private companies, government
agencies, research institutions, and other organizations. They
identified 11 overarching principles, namely (in order of
popularity): transparency, justice and fairness, non-maleficence,
responsibility, privacy, beneficence, freedom and autonomy,
trust, dignity, sustainability, and solidarity. Only transparency,
justice and fairness, non-maleficence, responsibility, and privacy
appeared in most of the standards.

These various efforts to track the ongoing proliferation of
guidelines is a useful starting point for thinking about how
effective they might be in practice. Mittelstadt et al. (2016)
identified six key issues raised by the use of algorithms (which
they define in such a way as to include much of what we
might call AI): inconclusive evidence, inscrutable evidence,
misguided evidence, unfair outcomes, transformative effects, and

1https://oecd.ai/en/dashboards.
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traceability. These concerns appear to have stayed relatively
consistent over time (Roberts et al., 2021), which is somewhat
problematic given the limited set of stakeholder perspectives
contained in the field of principles (Hickok, 2021). We could
summarize that the last 5 years have seen the same people raising
the same issues, with limited evidence of progress or widening
participation in the discussion.

To these concerns about perspectival limitations, we would
also add concerns about the ideological limitations of these
principles. The current debate on AI ethics in the literature
tends to be limited by ontological, epistemological and political
assumptions drawn from classical liberal thought—namely
around rights and privacy. The horizon of these principles
takes certain conditions as given: private ownership of means
of production, capitalist social relations, the institutional
reproduction of such relations, the individualist perspective on
decision-making and responsibility and the embeddedness of
technologies within this context. As a result, many participants in
the debate have only been able to consider courses of actionwhich
fall within these limitations. An example of how this limited
frame raises problems is Oren Etzoni’s (2018) “Hippocratic oath
for artificial intelligence practitioners”. The oath—an attempt to
model a framework for AI ethics analogous to that underpinning
the medical profession— reads:

I will consider the impact of my work on fairness both in

perpetuating historical biases, which is caused by the blind

extrapolation from past data to future predictions, and in creating

new conditions that increase economic or other inequality.

But as Mittelstadt (2019) argues: the lack of an analogous
institutional context to medicine means that the Hippocratic
principle-based model of ethical regulation doesn’t map well to
AI. Indeed, AI development lacks “common aims and fiduciary
duties, professional history and norms, proven methods to
translate principles into practice, robust legal and professional
accountability mechanisms” (Mittelstadt, 2019, p. 1). This
problem with simply mapping one domain onto another—and
assuming it will work in that new context—points to a broader
concern with the impact of guidelines, particularly in the context
of working life.

The central question here is how to translate ethical principles
into ethical practice (Hagendorff, 2020, 2021). The difficulty
of providing a robust answer has been repeatedly identified.
Hagendorff (2020) examines whether certain principles have
a real-world impact on the ethics of process and outcomes
in AI-mediated work and concluded “No, most often not”
(Hagendorff, 2020, p. 99). Floridi (2019) identifies risks in
the transition from what to how that include: digital ethics
shopping, “bluewashing” (i.e., digital greenwashing), lobbying,
ethics dumping (outsourcing to other actors), and shirking.
Morley et al. (2021) argue that, while principles are important in
defining the normative values against which AI is evaluated, the
translation of broad principles into concrete action is difficult.
Following the metaphor of cloud computing, they envision
a hybrid institutional arrangement that can offer “ethics as
a service”.

Despite the breadth and depth of work on AI ethics, there
remains a profound blind spot in terms of implementation,
since organizations are left largely to interpret and enact ethical
guidelines themselves and then assess if they are abiding by
them. This exposes workers to potential abuse of AI technologies
not only in terms of digital Taylorism, but also the degradation
of work by reproducing biases and inequalities, intensifying
work and denying collective control. Mitchell (2019), (p. 152)
highlights the diversity of ethical issues vying for the attention
of regulators:

Should the immediate focus be on algorithms that can explain

their reasoning? On data privacy? On robustness of AI systems

to malicious attacks? On bias in AI systems? On the potential

“existential risk” from superintelligent AI?

Yet questions of work and employment are conspicuously
absent from both this set of questions and the ethics guidelines
mentioned above. Indeed workers and employees are rarely cited
when lists of relevant AI stakeholders are listed.

While some legislation relating to AI transparency in the
workplace has been passed in certain countries such as Spain
and France, further steps are needed to ensure that laws
and requirements of this type are enforceable and effective
(Algorithm Watch, 2020). Marx [1887] (1976) referred to the
sphere of production as “the hidden abode” in order to point
out how the purported values of liberalism were restricted to
operating only in the market. So far, the field of AI ethics has,
by and large, also refused to venture into this black box. Rather
than deal with the contentious social relations which structure
production and the workplace, the current debate so far has
focused its attention on how AI impacts its users in their roles
as citizens and consumers, but not as workers.

What Is “Fair” Anyway?
From Aristotle to Rawls, from Fraser to Nussbaum and Sen,
fairness and its broader counterpart, justice, have acquired
multiple meanings when seen from different philosophical
standpoints and in different practical contexts. In all these
different interpretations, however, issues of justice emerge in
circumstances of scarcity, when there are then potentially
conflicting claims to what each person is entitled to, or how
institutions can administer fair allocation of resources (Miller,
2021). Thus, fairness for whom, and fair according to what/whose
criteria remain as two key questions. In other words, we would
not need fairness or justice, if we had unlimited resources and
as individuals we had unlimited skills and capabilities. We need
fairness and justice because there are limited resources and as
humans we have limited capacities (individually). Following from
this, in answering how to be a virtuous person for instance,
Aristotle counts justice as one of the four seminal virtues a person
should have, and notes that it is thought to be “another’s good”
because it is defined always in relation to another individual,
another status and positionality, and as such he conceptualizes
justice as proportionality (Aristotle, 2000, p. 73).

Rawls’ theory of justice, which remains by far the most
referenced theory on the topic, aims to solve the dilemma of
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establishing justice in a society where different individuals are all
seeking to advance their own interests (e.g., utilitarian, modern,
capitalist, and so on). While ultimately Rawls tries to reconcile
the freedom of choice for individuals with fair outcome for all
(as in a world of scarce resources, the choices of individuals
may not always be guaranteed), Rawls presents two informational
constraints for individuals in making that choice. He imagines
individuals behind a “veil of ignorance” that deprives them of
any knowledge of personal characteristics which might make
some of the choices more available, more favorable or more
easily attainable for some individuals. This ignorance of personal
characteristics, skills and capabilities ultimately serves to make
individuals base their choices on an impartial principle of what
would be fair for everyone. Here, Rawls also suggests that this
impartiality can be benchmarked by assuming one must make a
choice for the worst off in society. This person, in a hypothetical
context, can be the individual making the choice for others
(Rawls, 1993).

For Rawls, then fairness implies some level of equal
distribution in society of opportunities and resources. Scanlon
(1998) argues that individuals will never realistically be able to
perform a veil of ignorance because we are all aware of our own
relative positions, wants and needs. Instead, he argues for a theory
of justice which no one could reasonably reject, even when they
are given a right to veto, should they see it as unfair. Philosophers
have rightly commented that giving everyone a right to veto will
ultimately create a deadlock as anyone can reject a principle
which does not treat them favorably (Miller, 2021). However,
Scanlon emphasizes that this will not be the case, if the principle
of reasonable rejection applies, as individuals will be able to weigh
if the current principle seems unfair, if an alternative would
involve someone else fairing worse still (Miller, 2021). Scanlon
also notes that the right to veto is significant for individuals
because if a principle treats them unfairly, such as faring well for
some but not others and for arbitrary reasons; individuals should
be in a position to reject this (Miller, 2021), unlike in Rawls’
theory, whereby individuals would not be in a position to judge
whether arbitrariness played any role in individuals’ decisions.

In contrast to Rawls and Scanlon, who both argue for
a contractual theory of justice, Sen, for instance proposes a
more distributive form of justice with the capability approach,
explaining that what we need is not a theory that describes a
utopian ideal of justice, but one that helps us make comparisons
of injustice, and guide us toward a less unjust society (Robeyns
and Byskov, 2021). In this regard, Sen (and also to an extent
Nussbaum) proposes that the intention of a theory of justice
is not necessarily to identify and only aim for the ideal of
fairness, but rather identifying and then equipping individuals
with the capabilities they would need to strive for lesser injustice,
and less unfair societies. Some philosophers have argued that
the capability approach overcomes some of the inflexibilities
inherent to Rawlsian (or indeed Aristotelean) theories of justice,
because it takes into account the different needs, circumstances
and priorities of different individuals (Robeyns and Byskov,
2021).

In this paper, we define fairness not by its unchanging
absoluteness, but conditionality, contextuality and

proportionality based on the circumstances of individual
and institutional decision-makers. In this regard, fairness
influences the whole decision-making process from ideation to
development and execution of AI-based systems, rather than one
final goal that can be achieved once and for all. Hence, we focus
more on increasing individual and organizational capabilities to
guide us toward a less unfair society.

Generally, individuals will bring their own expectations to
bear on the meaning of fairness, such that two people may
consider the same set of working conditions fair or unfair.
In order to overcome such confusion, we use “fair” in the
sense of the capability approach outlined above. At the abstract
level, we define fairness as direction of travel toward a more
just society. When power asymmetries are being undermined
through democratization, when opportunities and outcomes are
being equalized, when access to self-determination and positive
freedom are being opened to a wider range of people, then we
consider work to be getting fairer.

Concretely, standards and benchmarks of fairness have a
significant role to play as waypoints along this journey. While
what qualifies as decent or good quality work can vary between
and among different workers, stakeholders and policy-makers,
most standards (from the ILO to OECD and Eurofound) involve
six key dimensions of job quality: pay and other rewards;
intrinsic characteristics of work; terms of employment; health
and safety; work–life balance; and representation and voice
(Warhurst et al., 2017). In this regard, we begin from the baseline
standards of decent work developed by the Fairwork Project,
which include fair wages, conditions, contracts, management and
representation (Heeks et al., 2021). These principles have evolved
over years of action-research and broadly align with the wide-
range of job-quality metrics in contemporary academic research.

FOUR CRITIQUES OF ARTIFICIAL
INTELLIGENCE ETHICS

Not Everything Is a Trolley Problem (Ethical
Critique)
Current AI ethics approaches present a mix of various schools
of thoughts in ethics. Sometimes we find schools that have
long been in conflict with one another combined to suit the
needs of the particular parties who are building the principles.
The two most common schools are consequentialist ethics (a
version of which is utilitarian ethics) and deontological ethics.
Consequentialist ethics examines the consequences of ethical
decisions and asks the ethical agent to make an ethical judgment
based on the consequences that are important to her (Sen and
Williams, 1982). Utilitarianism (following Bentham) suggests
that the most ethical decision would be the one that provides
the greatest utility for the greatest number of people. Of course,
defining both “utility” and a “number of people affected” are both
complex questions. In contrast, deontological ethics disregards
the consequences of any ethical decision or the intentions
that lead to it, but focuses entirely on the principles instead
(Anscombe, 1958). Principles such as “Thou shall not kill” hold
irrespective of individual circumstances and particular intentions

Frontiers in Artificial Intelligence | www.frontiersin.org 5 July 2022 | Volume 5 | Article 869114105

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cole et al. Politics by Automatic Means?

of the ethical agent. Finally, virtue ethics (stemming from
Aristotle’s Nichomachean Ethics) argues that the only road to
eudaimonia (or personal happiness, flourishing) is through living
in accordance to fulfilling one’s virtues (Annas, 2006).

Much of the current ethical thinking with respect to AI
ignores the important differences between consequentialist,
deontological and virtue ethics, and instead follows a mix and
match approach, as it fits the questions and desired outcomes.
Most commonly, consequentialism mixed with a touch of
deontological ethics based on the assumption of a virtuous
actor (e.g., developer, entrepreneur, and investor) in the field
of AI is imagined and proposed. In this imaginary, the ethical
proposition is done in a way that it does not conflict with or
hinder the intention to “move fast and break things” (Ustek-
Spilda, 2018).

Consequentialism dominates the discussions also because,
in comparison to de-ontological ethics or virtue ethics, it
can be seemingly easily translated to decisions that are taken
in technology development. This suggests that when the
consequences of a decision cannot be predicted fully, then the
best option is to hope that the principles that guide that process
will avoid the worst possible outcomes. We might very well ask:
“worst for whom” and “worst in accordance to what criteria”?
Note that this is not a call for subjectivism—that is, the ethical
position that all values change from person. To person and
there are no objective or absolute values, but simply to note the
serious need for identifying how principles can facilitate ethical
decision-making, amidst this uncertainty.

For example, the “trolley problem” is used to unpack
particular issues identified in AI ethics. This thought experiment
concerns a runaway trolley that will kill someone—but where a
person can choose between alternative outcomes. In the version
developed by MIT Media Lab, the person thinking through the
problem is asked to choose between killing young children or the
elderly, a small number of disabled people or a higher number
of able-bodied people, an overweight person or a fit person.2

The problem is that by adapting this thought experiment to
the AI development context, it simplifies complex decisions into
either/or questions. It doesn’t allow any room for the possibility
of no one (for example) being killed. So, there is no room to
discuss one of the central questions with AI—whether or not it
should actually be built in the first place. Or should a problem
which can be fixed with AI, actually be fixed with AI, or should it
perhaps not be fixed at all (Penn, 2021).

There are many examples of AI reproducing and/or
amplifying patterns of social discrimination, and the thinking
used in the trolley problem being extended to solving these
problems too. In 2018, for instance, Reuters published a story
revealing that Amazon had been forced to scrap an AI recruiting
tool that was intended to analyze CVs and score applicants
from one to five. Since the tool was trained using training
data taken from the hiring process at Amazon over the last 10
years, it faithfully reproduced the bias against women it found
therein (Dastin, 2018). Other famous cases of discriminatory
AI such as the ProPublica investigation into racial bias and

2See https://www.moralmachine.net/.

the COMPAS risk assessment software used in bail, probation
and sentencing decisions across the US (Angwin et al., 2016)
have demonstrated the potential of serious social harms from
automated discrimination. However, what is notable in many
discussions of these cases is that they focus on how to design
better hiring and risk assessment software—rather than asking
if decisions of this kind should be automated at all. In the
workplace context, the failure to ask serious questions about
the ethical integrity of decisions to deploy AI can lead to very
significant negative consequences for workers. The complexity
of questions regarding issues like hiring demands more from us
than a mishandled application of the Trolley Problem, or ethical
theories being thrown in together just to fit in with the desired
framework and outcome of a particular AI ethics project.

AI Is Not That Special (Socio-Technical
Critique)
Since its inception by John McCarthy in 1956, the academic field
of Artificial Intelligence has been premised on the creation of
a software program that can solve not just one narrow kind of
problem, but that can apply its capacity for calculation to any
kind of problem (Wooldridge, 2021). Such a truly general AI
does not currently exist. While the most advanced forms of AI
created to date, such as GPT-3 and AlphaGo, can outperform
humans in some very limited tasks, they still have near-zero
general applicability, and lack the ability to think in a manner
which at all reflects the human brain (Chui et al., 2018).

Despite this, AI is often treated as an exceptional technology
with a universalist or unbounded horizon. Indeed, despite not yet
having achieved real AI, the assumption among many is that that
is the direction of travel. So, rather than treating AI as a technical
field concerned with advanced, non-symbolic, statistical methods
to solve specific, bounded problems (facial recognition, natural
language processing, etc.), AI positivists identify the field as
something unprecedented. AI ethics therefore begins to become
orientated toward a hypothetical future scenario, rather than the
reality of our present moment.

2012 marked the start of a sea change in how AI practitioners
go about their work, and it was enabled by increases in the volume
of data, dataset-creating labor and computing power available for
the development of AI (Cole et al., 2021). From natural language
to game playing and visual object recognition, the turn to deep
convolutional neural network and machine learning has allowed
for significant progress across the various subfields that make up
AI and is the basis for the latest surge in funding and media
attention. Justified celebration of these developments has gone
hand-in-hand with unjustified hyperbole about the future. In
2017, Ray Kurzweil, Google’s Director of Engineering, famously
claimed that the “technological singularity” would be achieved
by 2045, as we “multiply our effective intelligence a billion-fold
by merging with the intelligence we have created” (Reedy, 2017).
Such predictions are characteristic of the past decade of AI hype.

A significant number of recent studies have countered this
AI hype in fields such as translational medicine (Toh et al.,
2019), multidisciplinary medical teams (Di Ieva, 2019), radiology
(Rockall, 2020), COVID-19 (Abdulkareem and Petersen, 2021),
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machine vision (Marquardt, 2020), management (Holmström
and Hällgren, 2021), and interaction design (Liikkanen, 2019).
The advances of the last decade have indeed been significant,
but AI is only capable of performing well on narrow tasks
for which they can be trained over an extended period with a
significant amount of relevant data (and significant number of
humans working on labeling this data). The disconnect between
the specialist capabilities of a neural network which has learned a
specific task and the general capabilities of AI to perform a range
of tasks remains significant.

Maclure (2020) has described the tendency to make
unsupported claims about the speed of technological progress
as “AI inflationism”. He argues that inflationism focuses our
collective ethical energies on the wrong problems. The close
attention required to apply a set of abstract ideas to a concrete
situation necessarily results in a selective approach. Even an
ethics based on the broadest deontological principles becomes
selective when those principles must be applied to a particular
dilemma: the deontologist answering the trolley problem must
necessarily be thinking about the trolley’s direction of travel. AI
inflationism risks concentrating our ethical energies on issues
which are not yet relevant, at the expense of those which are.
Inflationist approaches which center ethicists’ attention on topics
such as the best response to the singularity indirectly prevent
us from paying attention to the issues that impinge upon the
wellbeing of people who interact with significantly less advanced
AI right now.

We draw two lessons from this critique. First, we should avoid
expending our finite ethical energy on speculative digressions and
ensure that our focus is on applying ethics to the most salient
issues. Second we should conduct research into AI on the basis
of a fundamental continuity with wider studies of technology
in the capitalist workplace. As such, we advocate a deflationary
approach which, in line with Maclure (2020), attempts to look
past the AI hype to identify the risks and opportunities raised by
the current deployment of AI in the workplace.

AI inflationism leads to a perception of technological
exceptionalism. Because AI is unlike any previous technology, the
thinking goes, all historical ways of thinking about technology
are irrelevant. Such exceptionalist narratives can contribute to
the degradation of ethical standards in academic AI research. For
example, as Metcalf and Crawford (2016) have argued, research
that uses large quantities of data in higher education contexts
in the US have often lacked the kind of ethical control in place
in other disciplines. Despite using datasets generated by human
subjects, they are not classified as human subject research—often
because the data contained within is publicly available. Whereas,
an equivalent study in the social sciences would be required to
pass ethical review, no such requirement applies in AI research—
partly because of its evolution out of disciplines without such
institutions in place (computer science, statistics, etc.). One study
claimed to use a neural network to identify gang-related crimes
with only four data points (Seo et al., 2018). This neural net was
trained on Los Angeles Police Department data, which is heavily
influenced by a CalGang database that has since been shown to be
both inaccurate and deliberately manipulated by LAPD officers
(Davis, 2020). Despite the potential harm caused by a neural

network reproducing failures of the database and intensifying the
patterns of systematic discrimination present in LAPD policing
practices, there was no ethical review of the research. Issues
such as bias and racism went completely uncommented upon
in the paper itself. As Crawford (2021, p. 116–117) argues,
“the responsibility for harm is either not recognized or seen as
beyond the scope of the research.” The exceptional framing of AI
contributes to the absence of ethical standards.

We have already noted the lack of attention to labor in
the literature; AI exceptionalism risks exacerbating this further.
Instead, we argue, the long history of thinking about technology
in the workplace—from Smith’s (1776) Wealth of Nations and
Ure’s (1835) Philosophy of Manufactures to Marx [1887] (1976)
Capital and beyond—has much to tell us about the way in which
AI operates in our context today. For example, by emphasizing a
continuity-based analysis of technology, Steinberg’s (2021) work
on the automotive lineage of the platform economy presents an
analysis of a supposedly novel technology (labor platforms) that
is situated in the historical tendency to outsource labor costs
and mine data from labor processes. AI is best understood in
context and as a distinct development in a lineage of technology.
Rather than being generated ex nihilo, AI is a product the same
mode of production that gave us the spinning jenny. The social
relations that shape AI are familiar to us and existing theories of
work technology have much to teach us about AI’s development.
Analysis must strike a balance between what is old and what is
new so that it can accurately represent the degree of continuity
and discontinuity in technological change. Ethical approaches
which fail to understand this basic point and buy into AI
inflationism and exceptionalism tend toward making three kinds
of errors: (A) focusing on potential ethical challenges that may
arise in the future rather than existing problems of the present,
or postponing dealing with the ethical challenges until they
become a major problem that cannot be ignored (Ustek-Spilda,
2019); (B) abdicating or deferring responsibility for creating
robust ethical standards and regulations due to the perceived
speed of AI’s development, and the curious assumption of ethics
potentially being in conflict with technology development; and
(C) failing to see the fundamental continuity of AI with a longer
lineage of technological development (Law, 2004) which can
help contextualize our current ways of thinking and acting.
Hence we argue that a deflationary approach to AI must insist
it is not exceptional to similar historical waves of technological
change, and the continuities between past and present are more
important to explore than the unique aspects of AI for developing
ethical principles and practices.

The Problem With Automatic Politics
(Ethico-Political Critique)
The drive for accumulation is inherent to capitalism and
with it “an autonomous tendency for the productive forces
to develop” (Cohen and Kymlicka, 1988, p. 177). How these
forces develop in relation to capital’s imperative to control
them, however, is socially shaped by the regulation of markets,
finance, state power, geopolitics and the power of organized labor.
As Noble (1984) noted, technologies alone do not determine
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changes in social relations but rather tend to reflect such
changes. There is a dominant view among AI positivists that
technological innovation always constitutes social progress. Yet
this view ignores the politics of design and production. Sabel
and Zeitlin (1985) argue that politics determines technology
design and implementation at work, rather than an inherent
capitalist drive toward efficiency. At the same time, technology
design also tends to require or strongly encourage particular
forms of social organization (for a discussion of the machine-
determined “intelligence” in AI see Moore, 2020). This tension
forms a dialectic that shapes the boundaries of control. The
accountability mechanisms (or lack thereof) that stem from
a particular politics—whether at the level of the state or the
workplace—will ultimately determine the impact of technology
design on workers.

This dialectic is observable in the recent emergence of
information and communications technologies (ICT). In her
example of the introduction of mobile phones for managers,
Orlikowski (2007) takes up a soft version of Winner’s (1980)
thesis that artifacts have politics. Mobile phones did not simply
make communication more convenient—they changed that
nature of communication itself. Similarly, cloud technologies
have not simply enabled greater connectivity, they have changed
what connectivity means. Recent legislation such as the “right to
disconnect” was introduced in France to limit the political impact
of mobile and cloud connectivity on workers, and the push
toward always being available for work, blurring the distinction
between work and home, private and public sphere and online
and offline hours.

The tension between technology development and the politics
of the labor process is further illustrated by the “labor extraction
problem”, i.e., the broad range of factors employers use to
minimize unit labor costs (Edwards and Ramirez, 2016). There
is always a trade-off between positive rewards for performance
and negative punishments for failing to meet standards—all
of which depends on work culture, supervision costs, social
protections for workers, and the power of organized labor.
Technology doesn’t sit independently of these factors; it is
always already socially embedded. The ways technologies like
AI are developed is inextricably bound with the ways in which
companies’ direct innovation, diffusion and application to the
tasks most attuned to the profitable extraction of surplus-labor.
The degree of labor effort is integral to this extraction and
requires the development of different organizational strategies.
From tightly controlled and fragmented tasks performed on
a continuous, mechanized production line to complex, team-
driven and capital-intensive production systems—extraction
requires different levels of discipline (Edwards and Ramirez,
2016). In complex production systems, the absence of just one
worker could disrupt the entire network of labor, thus increasing
workers’ bargaining power vis-à-vis capital. However, this degree
of power may induce management to reduce the complexity of
tasks and substitute machinery for labor, depending on the costs
and benefits of control. Another factor concerns the costs of
work performance monitoring. If it is expensive due to the need
for human supervisors and workers are in a strong bargaining
position due to labor protection, unions and/or high technical

knowledge; employers will tend to use positive incentives to elicit
greater labor effort. If, on the contrary, worker performance
monitoring is cheap and workers can be disciplined, dismissed
and replaced easily (though using self-employment or temporary
contracts, for example), then negative incentives will tend to be
used (Edwards and Ramirez, 2016).

Digital labor platforms (a prevalent use-case of AI) are
illustrative of how this labor extraction takes place. As
Stanford (2017) points out, technological changes that do not
require large amounts of direct capital investment (such as
cloud-based AI-powered platforms), enable the decentralization
of production through mobile tracking, surveillance and
algorithmic management without necessarily sacrificing the
element of direct employer control. For example, platforms such
as Uber use facial-recognition AI to verify user identity and
rely on customer ratings and real-time movement tracking in
their app to manage a global workforce of drivers. Ratings
and automated tracking essentially outsource performance
monitoring and keep management costs low—yet this has real
costs for workers (Moore, 2018). For example, racial bias in
facial-recognition AI has led to the deactivation of many non-
white Uber drivers, because the technology would not recognize
their face (Kersley, 2021). This caused considerable disruption
to workers’ livelihoods. Similarly, unfair or inaccurate customer
reviews can reduce drivers’ earning capacity, and in the worst
cases lead to deactivation with no opportunity for formal
mediation by a trade union (Temperton, 2018). If it is legal to
terminate workers’ contracts based on an algorithmic decision
without any transparency or formal process of contestation,
managers can simply defer to the “black box” of the AI system
rather than being held to account for the design of such
systems themselves.

As noted above, whilst both employers and trade unionsmight
agree on the need for fairness in applications of workplace AI,
the question of what each party considers “fair” is likely to differ
significantly. Rather than building agreement, such statements
of principle simply identify the values over which conflict will
take place between actors with opposing interests. One potential
solution to this conflict would be for individual stakeholders to
produce documents determining the meaning of ethical practice
in isolation. IBM’s Everyday Ethics for Artificial Intelligence
(2019), for example, achieves a higher level of concrete detail
than we might otherwise expect by using a hypothetical example
of a hotel implementing an AI virtual assistant service into its
rooms to demonstrate how five particular areas of ethical focus
(accountability, value alignment, explainability, fairness and user
data rights) might be applied in practice. That said, when it
comes to defining what it means by “fairness”, the document only
identifies the need to guard against algorithmic bias, ignoring
other potential negative impacts such as undermining workers’
decision-making capacity, deskilling, or even jobs destruction.
Furthermore, broader issues in the sector such as low wages,
insecure employment and lack of collective bargaining are not
considered, implying that such concerns somehow lie outside the
realm of technology ethics.

In this context, we might detour Crawford (2021) notion
that “AI is politics by other means” and posit that AI is
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politics by automatic means. Multi-stakeholder agreements
involving high-level principles can hide profound differences
in political assumptions and the divergent interests of labor
and capital. Without independent accountability mechanisms
aimed at more equitable social outcomes, AI will simply deepen
existing inequities.

Big Tech Ethics Is Unilateral
One of the principal issues with AI ethics frameworks is that
the development of self-assessment and voluntary guidelines
involves a conflict of interest. As Bietti (2019) notes, tech
companies tend to deploy ethics frameworks to avoid statutory
regulation and serve as a defense mechanism for criticism from
wider society. Lack of disclosure, regulation and protection
increases the autonomy of capital and increases a range of
public threats from automated hacking (Veiga, 2018) to political
disinformation and deep fakes (Westerlund, 2019). In this
context, self-regulation is a direct attempt to avoid any real
accountability to the public and inevitably serves the interests
and objectives of capital and companies themselves. External
mechanisms are the only way that the public can exercise power
over AI companies and hold them to account.

The case of Google is instructive on how ethics unilateralism
fails. Since 2017 Google has attempted to implement an AI ethics
strategy through top-down internal policies, in response to a
backlash of criticism by both Google employees and the public.
The backlash was first provoked by the revelation that Google had
partnered with the US Department of Defense who were using
their TensorFlowAI system inmilitary drone programs known as
Project Maven. Numerous other internal strategies were pursued
by Google, such as setting up an Advanced Technology External
Advisory Council (ATEAC), whose mission was to consider the
“most complex changes that arise under (Google’s) AI principles”
(Google, 2019). It was quickly disbanded a week later as members
resigned over the failure of the company to live up to its political
principles (Phan et al., 2021). Google persisted in other attempts
to facilitate more ethical AI by consulting with academics and
community-based, non-profit leaders, and recruiting ethicists as
part of the Google Research Ethical AI team (Google, 2020).
Yet regardless of how refined and well-considered any resulting
principles might be, there is virtually no enforcement, and no
consequences for breaching them by any statutory body. Google
employees continue to be fired for speaking out against the
company (Ghaffary, 2021).

Other voluntarist initiatives aimed at Fairness, Accountability,
and Transparency (FAccT) in AI and ML such as AI Fairness
360 by IBM, Google Inclusive ML, and Microsoft FairLearn3

have been developed in collaboration with universities (Phan
et al., 2021). The development of these products allows firms
to claim they have solved the problem of bias and revised
their customer-facing brand identity along ethical lines. Yet
the development of ethics frameworks through tech-company
funded University research projects largely serves the interests

3See IBM https://aif360.mybluemix.net/, Google https://cloud.google.com/inclu

sive-ml and Microsoft https://www.microsoft.com/en-us/research/uploads/prod/

2020/05/Fairlearn_whitepaper.pdf respectively.

of the private sector, and therefore capital. The individualized,
privatized, and voluntarist nature of these initiatives also poses a
fundamental limit to the scale and scope of enforcement.

Indeed, efforts to debias AI never seem to consider the
bias of capital, i.e., the interests of shareholders over workers,
accumulation over distribution, and private exchange-value over
social use-value. The prevailing restriction of the AI ethics
discussion to the classical liberal principles of property and
privacy also takes effect in discussions of bias. The issue has
primarily been framed as one of poorly trained algorithms
acting in a way which illegitimately penalizes individuals or
groups. But bias in the form of specific inaccuracies is less
concerning than the broader reproduction of existing patterns
of social inequality via AI (Eidelson, 2021). The majority of AI
developed in the private sector has, for instance, systematically
biased the interests of shareholders and managers over the
interests of workers, and placed the private accumulation of
capital over the public accumulation of social goods (Crawford,
2021). Such considerations are (unsurprisingly) not within the
remit of Microsoft, IBM, or Google’s FAccT programs. This
glaring omission highlights how inadequate the self-regulation
of such biases will likely prove in the long term. In proposing
technological solutions to social problems, these initiatives mask
the wider social and economic context in which they are
operating. Unilateral ethical commitments tend to avoid the
difficult areas where the interests of the party writing that
commitment contrast with ethical practice—and therefore fail to
address the areas of greatest risk.

The obvious solution is to develop and apply ethical principles
through collaborative multilateral processes which involve a
variety of stakeholders. Many sets of ethical principles have
embedded a commitment to social dialogue, but often this
commitment remains largely non-binding and non-specific, and
it rarely goes beyond the immediate discursive bubbles of those
setting up the dialogue. What is needed, if a set of principles are
to actively foster the kind of multistakeholder engagement that
can turn ideas in to practice, is a concrete set of accountability
and enforcement mechanisms that can allow for negotiated
agreement over areas of conflicting interest.

ETHICS VS. ACCOUNTABILITY

Statutory vs. Non-statutory Accountability
Mechanisms
It is to this question of accountability mechanisms which we
will now turn. Hagendorff (2020) has demonstrated that most
of the 100+ ethical AI statements of principle generated in the
last decade have had minimal practical impact. Stakeholders
who want to support the development of ethical AI therefore
face an uphill battle. Our argument is that if the jump from
ethical theory to practice is to be successfully made, then the
field of AI ethics must progressively replace the dominant
pattern of seeking consensus through increased abstraction with
negotiating multistakeholder agreements through progressively
greater levels of detail.
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Regulators and the public are entitled to clear explanations
of the rules and choice criteria of AI technologies, despite
their proprietary nature, and voluntarist ethical guidelines
will be useless if the algorithm remains a black box (Karen
and Lodge, 2019). Some claim that the complexity of the
technology presents serious barriers to explaining how a
particular function was carried out and why a specific result
was achieved (Holm, 2019). However, there already exists a
mechanism enshrined in workers’ statutory rights through which
accountability (if not explainability per se) can be carried out
through multi-stakeholder negotiation—collective bargaining.
At both the sector and enterprise level, collective bargaining
offers stakeholders a way to agree the concrete details of ethical
AI implementation in the workplace, with the introduction of
new AI ideally being negotiated beforehand, not retrospectively,
if optimal translation of principles to practices is to be achieved
(De Stefano and Taes, 2021).

Early case studies of how collective bargaining operates to
produce ethical outcomes are beginning to emerge. Workers
represented by the German union ver.di expressed concerns
over the use of RFID technology and algorithmic management
by multinational retail corporation H&M. The risk of negative
impacts such as deskilling, work intensification, unwarranted
increases in managerial control, workforce segmentation, and
increases in precarity were significant for them. Using their
works council, retail workers were able to delay the introduction
of the new technology pending further negotiations over risk
mitigation measures (López et al., 2021). Here, the unilateral
implementation of new forms of AI in the face of ethical concerns
was avoided because collective worker power was exercised to
assert co-determination rights.

It is indicative of the managerial bias of the AI ethics literature
so far that collective bargaining has rarely been mentioned
as an essential part of the translation between theory and
practice. But it is by no means inevitable that the representatives
of capital should rigidly oppose collective bargaining. Indeed,
robust collective bargaining has historically facilitated forms of
partnership between labor and capital in Northern European
economies. At the level of the firm, it has tended to reduce
industrial conflict and employee turnover and increase trust
and cooperation. On the national level, it has frequently been
one factor in reducing strike rates, increasing productivity, and
controlling the pace of wage growth (Doellgast and Benassi,
2014). The desirability of these outcomes for workers themselves
is debatable, yet opposition to collective bargaining is by no
means a necessary position for the representatives of capital.
Any employer seriously interested in the ethical application of
AI in the workplace should proactively respect workers’ rights to
organize and ensure workers’ perspectives are represented as far
as possible pre-union.

Statutory regulations around the use of technology, including
AI, in the labor process have been developed, introduced and
enforced in many countries, and this process will gradually
see broad theoretical principles about AI ethics translated
into legislation. This is to be welcomed, but the ability to
introduce and shape legislation tends to be restricted to a
small range of actors, locking out many interested parties

from direct mechanisms through which they can support that
translation process. As a result, there remains a significant need
for forms of non-statutory regulation which can be designed
and implemented by civil society actors acting outside of
(and often in opposition to) governments. For example, the
Living Wage Foundation’s non-statutory identity was used by
the UK Government to market their statutory changes to the
minimum wage.

Positive examples of non-statutory regulation are already
abundant in the world of work. As shown by the Fairwork
project,4 objective monitoring of labor standards in the platform
economy by researchers can contribute to raising standards
across 27 different countries. For example, following low scores
for fairness in Ecuador and Ghana, food delivery platform Glovo
consulted Fairwork on the creation of a “Courier Pledge” that
aimed to introduce a set of basic standards.5 Not all of Fairwork’s
suggestions were implemented, but Glovo did introduce a living
wage guarantee for all the hours couriers were logged into the
app; the provision of health and safety equipment for couriers;
the creation of a formalized appeal process for disciplinary action
with access to a human representative and a mediator system;
a commitment to introduce channels of the improvement of
collective workers’ voice; and the institutionalization of anti-
discrimination policies.

This crisis of ethical impact that Hagendorff (2020) identified
is not an inherent feature of AI as a technology. While statutory
solutions offer the best accountability mechanisms, there remains
a place for non-statutory mechanisms. With the right models
for translating principles into practices, there are ways for non-
statutory regulation based on statements of ethical principle to
shape the way in which AI is implemented in the workplace.
In line with our critique above, however, this approach to AI
ethics should not just look like a repetition of what has come
before. As well as changes to the content of principles, AI ethics
should be open to new modes of translation. The example of
Fairwork demonstrates that non-statutory regulation will have to
be both willing to take a potentially adversarial stance toward AI
developers and employers who use their products, while also be
willing to prioritize collective worker voice and participation if it
is to start forcing profit-motivated private companies to act more
in the interests of society at large.

Proposed AI for Fairwork Standards
We identified the important gap of omitting workplace,
employment and labor concerns from AI ethics. We also noted
that in order for ethical principles to be implemented into
practices, we need the organizations to be not merely committing
to them voluntarily, but actually be held accountable to them.
Working in partnership with the Global Partnership on AI
(GPAI), the authors are involved in an ongoing “AI for Fair
Work” project to create a set of principles and an associated non-
statutory implementation scheme which can deliver on this goal.

4https://fair.work.
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TABLE 2 | Nine draft principles for the GPAI’s “Fair Work for AI” project.

1 Guarantee decent work The right to decent work has been extensively established. The introduction of AI to a labor process is no excuse for

undermining basic labor standards. We also cannot assume that decent work conditions are going to be provided de facto

in new working arrangements and can be taken for granted. Regardless of changes in workplace technology, this right

must be upheld.

2 Build fair supply chains AI development is not conducted in isolation. The requirement to pursue fair conditions must apply across the supply chain,

and organizations have a responsibility to use their procurement power toward that end and should be held accountable of

the practices of the parties they subcontract parts of their work.

3 Promote explainability Workers have a right to understand how the use of AI impacts their work. Organizations must respect this right and provide

detailed, understandable resources to allow workers to exercise it.

4 Strive for equity The way AI is produced means that it is never purely objective. So, the values used to design AI need to be open for

discussion and evaluation with the goal of minimizing both algorithmic bias and patterned inequality.

5 Make fair decisions The automation of decision making can lead to a loss of accountability, but mere human oversight over decision making

doesn’t guarantee fair decisions either. By combining a strong right of appeal with a process to implement lessons learned,

organizations can create a robust system which harnesses the power of AI whilst delivering fairer decisions that take into

account limitations to resources and socio-economic opportunities, but aims to reduce injustices in their allocation as much

as possible

6 Use data fairly The concentration of data can create risk both for individual persons and groups, so limits must be put on collection (i.e.,

data minimization) and processes created for subjects to access their personal data in a comprehensive and explainable

format. There should be opportunities for individuals to learn and increase their understanding about potential data risks, so

that they are able to question and when necessary, reject, decisions made about them.

7 Enhance safety The right to healthy, safe working environments must be protected. Advances in algorithmic management have increased

the risks of work intensification and surveillance. Organizations should seek to actively improve health and safety through

their technology.

8 Create future-proof

jobs

The introduction of workplace AI can cause specific risks such as job destruction and deskilling. These risks can be avoided

by treating the introduction of AI as an opportunity to engage in a participatory and evolutionary redesign of work. This

approach should mitigate the risks above and look to use the advantages conferred by the use of AI to increase job quality.

9 Advance collective

worker voice

By facilitating collective bargaining, stakeholders can create the conditions for productive negotiation to determine how to

turn ethical principles into ethical practice. This also guarantees the principles to be embraced by a larger group of the

society, and the developers and users of AI to be held accountable.

The 10 initial principles developed in the project which aim to
address the gaps identified in the earlier sections of this paper are
summarized in Table 2.

The full detail of these principles and their associated
measurable benchmarks will be available in a report in 2023,
following the conclusion of the consultation process. However,
we believe it will be of value to discuss how our critique of
the existing AI ethics literature has informed the drafting of
these principles, even in advance of the full results of the project
being available.

These principles refuse the narrow liberalism inherent to
much of current AI ethics debate, which tends to remain in
the classical frame of property and privacy. Instead, this project
accepts the need to deal directly with the often-suppressed issues
of power and control in the workplace. The values encoded in
the social relations of production are not an epiphenomenon of
ethical discussion that is more properly conducted in the purely
conceptual terrain: instead, these values are often determined
by the balance of forces between groups of agents and their
ability to advance their respective interests.Where the interests of
labor and capital do come into conflict, two choices are available:
either a retreat toward unilateral principle statements made by
individual stakeholders in isolation, or a mechanism to negotiate
that conflict in order to achieve improvements in ethical practice.

Collective bargaining is a crucial a mechanism to negotiate
the conflict between capital and labor, though it varies hugely
across different global contexts. Not only does the absolute

number of workers covered by an agreement differ from
country to country, so too does the dominant kind of
agreement: whilst some cover entire sectors, some are only
relevant for specific employers or sites of employment. This
diversity necessitates a certain degree of adaptability in how
the principles can be applied. As a result, the principles
also contain a draft provision for an anonymous consultation
process which can be applied in workplaces where there is
no trade union presence—whilst emphasizing the need for
organizations to respect the right to organize of all workers
and not in any way seeking to circumvent union organization.
Taken together, these principles attempt to avoid the pitfalls
identified in the discussion above and identify a route through
which stakeholders can work toward the implementation of
fairer workplace AI that mitigates the risks and maximizes
the opportunities associated with this ongoing process of
technological development.

CONCLUSION

To paraphrase James Ferguson in his critique of “development”,
what do existing ethical AI principles do besides fail to make
AI ethical? It’s not just that they are ineffective, it’s that they
can provide a screen to all manner of unethical behavior and
practice. We have argued in this paper that ethics must be
focused on the concrete to make them useful. The principles we
have presented hone in on the immediate challenge presented
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by AI in the workplace. In part, the draft of the principles
has drawn on pre-existing standards and understandings of
rights in the workplace, but it also goes beyond them. The
work-centered critique of existing principles and the proposed
new standards set outs a research agenda and is the primary
contribution of this article to the burgeoning literature on AI
and work.

Worker voice has been significantly neglected in debates
around AI, and so we have paid particular attention to those
critiques leveled from the perspective of workers on hegemonic
ethical values as they apply to the workplace. As part of
adopting a deflationist attitude to AI, this has often meant
looking back at historic theories of technological change. For
example, Braverman’s analysis of the deskilling tendencies of
Taylorism is the major theoretical background to principle nine:
increase job quality. This historical perspective also emphasizes
the need for stakeholders to begun to formulate rules that
govern the operation of technologies before path dependencies
can block off potentially emancipatory or liberatory routes
for development.

As a result, the principles emphasize the need for external
normative values to be imposed on field of possibilities created
by tech. This inevitably means that we don’t just need workers
as stakeholders—we also need governments. The regulatory turn
is now well underway with respect to AI, and the end goal of
any discussion of normative values must be to feed into that
process of development. By involving representatives from global
governments in the consultations conduct over the principles, we
aim to link these discussions into concrete programs of action at
the legislative level.
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The problem of managerial
control from call centers to
transport platforms

Jamie Woodcock*
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There has been much recent research on the topic of artificial intelligence at

work, which is increasingly featuring in more types of work and across the

labor process. Much research takes the application of artificial intelligence, in

its various forms, as a break from the previous methods of organizing work.

Less is known about how these applications of artificial intelligence build upon

previous forms of managerial control or are adapted in practice. This paper

aims to situate the use of artificial intelligence by management within a longer

history of control at work. In doing so, it seeks to draw out the novelty of the

technology, while also critically appraising the impact of artificial intelligence

as a managerial tool. The aim is to understand the contest at work over

the introduction of these tools, taking call centers and transport platforms

as case studies. Call centers are important because they have been a site

of struggle over previous forms of electronic surveillance and computation

control, providing important lessons for how artificial intelligence is, or may,

be used in practice. In particular, this paper will draw out moments and tactics

in algorithmic management has been challenged at work, using this as a

discussion point for considering the possible future of artificial intelligence

at work.

KEYWORDS

artificial intelligence, algorithmic management, labor process, call centers, platform

work, gig economy

Introduction

Artificial intelligence is a broad category of digital technologies that involve

intelligence demonstrated by computers and machines. The definition of intelligence

used here is broad, covering examples of search engines, recommendations of what to

watch next on streaming services, all the way up to the artificial general intelligence of

science fiction. As Cook (2018) has argued, “many people are misrepresenting AI in

order to make it appear more intelligent than it is.” In part, this is due to the aggressive

marketing of new technology to both investors and consumers. Similarly, Taylor (2018)

has coined the term “fauxtomation”, explaining how “automated processes are often

far less impressive than the puffery and propaganda surrounding them imply—and

sometimes they are nowhere to be seen.”
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There has been much discussion in the context of platform

work on the role of artificial intelligence and algorithms

(Srnicek, 2017). More widely, there has been research interest in

artificial intelligence, robotics, and other advanced technologies

for use in the workplace, with one paper finding 13,136

potentially relevant studies (Vrontis et al., 2022). Following

the increasing popularity of research on the topic in general

(Pasquale, 2015; Kitchin, 2017; O’Neil, 2017; Turow, 2017;

Eubanks, 2019), research on Uber has often focused on

algorithm management (Lee et al., 2015; Rosenblat and Stark,

2016; Scholz, 2017; Rosenblat, 2018). For some in the literature,

this is seen as a new attempt bymanagement to overcomeworker

resistance (Veen et al., 2019; Mahnkopf, 2020), while others have

drawn attention to the experience of workers struggling against

these new techniques (Waters and Woodcock, 2017; Fear, 2018;

Briziarelli, 2019; Cant, 2019; Gent, 2019; Leonardi et al., 2019;

Cant and Mogno, 2020; Tassinari and Maccarrone, 2020).

The aim of this article is to engage with the topic of artificial

intelligence at work over a longer history of supervision and

control at work, drawing on empirical and conceptual research.

It starts by considering this history and the lessons that can be

taken from call center work. The article thenmoves on to discuss

labor process theory and systems of control in factories, call

centers, and transport platforms. This provides the theoretical

framing for the argument that is explored through the case

studies and the exploration of algorithmic management in

practice. The article ends by considering how this can shape our

understanding of the strengths and limits of artificial intelligence

in general, and specifically algorithmic management, at work.

The intention is to develop an argument about the significance of

artificial intelligence, not as a general technology, but as a form

of surveillance and control in the workplace. This is important

for both its implementation, but also for understanding struggles

against its use.

Approach

This is a conceptual paper that draws on existing research

on call centers and platforms. The author has conducted

substantial ethnographic fieldwork in call centers (Woodcock,

2017) as well as with the transport platforms (Woodcock and

Graham, 2019; Woodcock, 2021) that contribute empirical

data toward the argument in this article. The approach taken

here is an attempt to draw these findings, as well as those

from other research in the field, into a conceptual argument

about the role of artificial intelligence at work. This involved

the synthesizing of findings from traditional factory settings,

call centers, and transport platforms, to conceptualize the

role of systems of control within the labor process. This

draws primarily from the literature in labor process theory,

combined with critical research on algorithms and power

more widely.

Call centers, surveillance, and
control

There is a long history of control at work. From the moment

that bosses started buying workers’ labor-power, there have been

successive attempts to watch and control what workers are doing

at work. Taylor (1967) identified this as the fear of “soldiering”

in his theory of scientific management, the belief that workers

would deliberately work slower than they could. This managerial

fear was not limited to Taylor or Taylorism and is present

throughout many kinds of work.

Before the emergence of platform work, call centers

were a focus for debates on technological surveillance and

control. These debates are useful to revisit in the context

of artificial intelligence, particularly as many of the forms

of electronic surveillance and outsourcing developed in call

centers laid the basis for the technical organization of platform

work. Call centers were an important focus of debates on

technology, control, and resistance (Woodcock, 2017). The

technical arrangements of the labor process made call center

work particularly susceptible to early attempts at electronic

surveillance and control. As the phone systems were integrated

with computers, this provided the possibility to use new

technologies in a way that would have been harder to achieve

in other forms of low paid work.

Call centers provide an important early example of work that

could be digitally legible (seeWoodcock and Graham, 2019) that

allows it to be measured through discrete data points. Through

the integration of telephones and computers, facilitated by the

development of automatic call distributors, the modern call

center was established. This took away the control from call

center workers, automating the process of dialing and speeding

up the work. It created the experience of an “assembly line in

the head” for call center workers (Taylor and Bain, 1999, p.

103). The new technology also provides a way to electronically

supervise the labor process. The computerisation of the process

involved developing the capacity to measure each part of the

labor process: how many calls made, successful sales, length of

calls, time between calls, breaks, and other metrics. Given work

in a call center requires a range of clear quantitative indicators,

these could now be collected automatically. As I found in a

call center in the UK, these “quantitative variables are context

free; not something that can be debated, considered instead

as the evidence base for rewards or discipline” (Woodcock,

2017). The scale of this data collection is impressive: it “allows

an unprecedented level of surveillance; every call encounter is

permanent, every mistake could be punishable in the future.

It operates like the ability to recall every commodity produced

on an assembly line and to be able to retrospectively judge the

quality of its production” (Woodcock, 2017).

There are many studies of call centers that have

confirmed similar findings (Taylor and Bain, 1999; Bain

et al., 2002; Kolinko, 2002; Mulholland, 2002). However,
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there is also evidence that call centers had aggressive

management techniques that preceded the development

of these new technological methods. For example, as an

interviewee explained:

There were all sorts of rules right. I mean for instances

hanging coats on the back of your chair was banned,

little things like that. Constantly listing things that people

couldn’t do. I’ve seen people being chased into toilets

because they have their phones on them and stuff like that!

All these things you can do with or without the computers

(quoted in Woodcock, 2017).

It is therefore important to remember that new technological

forms of surveillance and control are developed and

implemented within the existing social relations of the

workplace—even if they then go on to transform them further.

There is a broad existing literature on call centers that

has produced detailed understandings of “work organization,

surveillance, managerial control strategies and other central

concerns of labor process analysis” (Ellis and Taylor, 2006,

p. 2). The key debates within the literature centers around

the extent and implications of new technological forms of

control. On one side of the debate were academics who argued

that call centers were becoming organized like an “electronic

panopticon.” For example, Fernie and Metcalf (1997, p. 3)

claims that the “possibilities for monitoring behavior and

measuring output are amazing to behold—the ‘tyranny of

the assembly line’ is but a Sunday school picnic compared

with the control that management can exercise in computer

telephony.” This notion of an electronic panopticon—which

draws heavily on both Foucault (1991) and Bentham (1995)

and the architectural model of a prison—has similarities with

some of the contemporary debates on algorithmic management.

However, on the other side of the debates, McKinlay and Taylor

(1998, p. 75) argued that the comparison fails to take into

account that “the factory and the office are neither prison

nor asylum, their social architectures never those of the total

institution.” Indeed, as Taylor and Bain (1999, p. 103) argue, the

“dynamic process of capital accumulation” that takes place in the

workplace means that Foucauldian approaches drawing on the

panopticon analogy “understates both the voluntary dimension

of labor and the managerial need to elicit commitment from

workers.” This has important implications for theorizing work,

particularly that it can “disavow the possibilities for collective

organization and resistance” (Taylor and Bain, 1999, p. 103).

These debates can be revisited in a more productive

way today, particularly tracing the development from factory

supervision, call centers, and then to contemporary platforms

(Woodcock, 2020). The claims about the novelty or scope of

technological changes today can be reinterpreted through these

older debates, providing important theoretical grounding, as

well as reminder about the continuing dynamics of work. For

example, Taylor and Bain (1999) argument reminds us that

technological methods of control cannot solve the problems

of management. In the call center, vast quantities of data are

collected, but human supervisors are still required to interpret

the data and act upon any insights. There are 1-2-1 meetings,

coaching, training, and “buzz sessions” that attempt to elicit

motivation from workers on the call center floor (Woodcock,

2017). In the context of call center work, there is “no electronic

system can summon an agent to a coaching session, nor

highlight the deficiencies of their dialogue with the customer.”

Instead, as Taylor and Bain (1999, p. 108-109) continue,

call centers “rely on a combination of technologically driven

measurements and human supervisors”, which nevertheless

“represents an unprecedented level of attempted control which

must be considered a novel departure.”

From call centers to platforms

In order to apply these lessons to our understanding of

artificial intelligence at work, it is therefore necessary to return

to the concerns of labor process theory (both in the call center

and more widely) to understand the implications of these new

management techniques. A “common feature of all digital labor

platforms is that they offer tools to bring together the supply

of, and demand for, labor” (Graham and Woodcock, 2018).

Regardless of whether the legal categorization is employment or

self-employment (De Stefano and Aloisi, 2019), these platforms

involve work. The labor process is coordinated via a digital

platform and in the case of transport platforms, often involves

a smartphone and GPS. The rapid growth of food delivery and

private hire driving platforms has been facilitated by the digital

legibility of the labor process, involving discrete data points of

start and end journeys.

The concerns of labor process theory involve understanding

what happens in the workplaces after the purchase of workers

labor-power by capital. This involves the “indeterminacy of the

labor process” that requires managing in practice. For example,

Edwards (1979, p. 12) argues that:

conflict exists because the interests of worker and those

of employers collide. . . control is rendered problematic

because unlike the other commodities involved in

production, labor power is always embodied in people,

who have their own interests and needs and who retain their

power to resist being treated like a commodity.

The act of mediating these relationships on a platform

does not remove the different interests or make the distributed

workplace any less of a “contested terrain.” Edwards (1979, p. 18)

provides a three-part framework for understanding the “system

of control” in the workplace. The first is “direction”, or the

ways in which the tasks that workers have to do are specified.
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The second is “evaluation”, or how the employer supervises

and assesses the workers performance. The third is “discipline”,

or what methods are used “to elicit cooperation and enforce

compliance with the capitalist’s direction of the labor process.”

As Table 1 illustrates, systems of control can be broken down

into the three aspects to develop a more specific understanding

of how control is operating in practice. The first thing to

note is that elements of automation are present throughout

each example. Automation is not the preserve of algorithms,

nor is it a simple binary. From the moment that workers

started to use tools and machines at work, parts of the labor

process began to become automated. It is rare that tasks are

ever completely automated, instead the element of human

labor becomes decreased—sometimes drastically. For example,

as factories have developed since the industrial revolution,

the individual productivity of workers has increased by huge

amounts. Yet there are still workers in factories. Even in so-

called “lights out” factories, workers are required for setting up

manufacturing tombstones, quality assurance checks, and the

repair and maintenance of machinery.

Table 1 shows how the traditional operation of factories

involves aspects of automation, but relies upon a layer of

supervisors who monitor, assess, and intervene in the labor

process. It builds on the classical Taylorist division of labor and

the separation of the conception of tasks from their execution.

This involves management attempting to take control away

from the workplace, directing workers to complete tasks in

specific ways and within set times. It is also worth noting that

before the theory was applied to call centers, Foucault (1991,

p. 174) wrote about supervision in a factory context. He argued

that it involved:

an intense, continuous supervision; it ran right through

the labor process; it did not bear – or not only—on

production. . . It became a special function, which had

nevertheless to form an integral part of the production

process, to run parallel to it throughout its entire length.

A specialized personnel became indispensable, constantly

present and distinct from workers.

The obsession with measurement and supervision that

begins in the factory becomes applied to an increasing range

of work.

Call centers represent a significant development from this

model of control. The separation of conception and execution

is developed through a form of computational Taylorism and

scripting of the phone calls that workers made (Woodcock,

2017). The integration of computers and telephones the

collection and digital storage of a range of quantitative metrics,

as well as recordings of calls. However, this data requires

supervisors to interpret and intervene in order for it to be

productive in the workplace. This is not a straightforward

process in call centers, with many having high levels of turnover.

Instead, disciplinary actions are combined with attempts to

motivate workers and the use of monetary bonuses. The role

of supervisors develops from the factory floor, particularly in

relation to handling abstract data on the labor process, but

remains a key interface between workers and capital.

The shift to transport platforms involves the development

of control across each of the three component parts. However,

one of the key differences is that there is no longer a formal

employment arrangement. This means that many of the tools

that are available in other kinds of work cannot be used,

less the platform risks workers being reclassified away from

self-employment (Woodcock and Cant, 2021). With transport

platforms there are clear start and end points, with points of

contact with either other workers or customers. The work is

suitable for metrics in a way that would be harder for other

forms of low paid work like cleaning or care. The majority of the

metrics are quantitative (how long did the task take) rather than

qualitative (how well was the task completed). Similarly, this

form of work organization has developed alongside a specific

TABLE 1 Systems of control.

Factory Call center Transport platform

Direction Taylorist separation of conception and

execution of work, workers given

specific instructions. Assembly line

automatically sets central pace

Separation of conception and execution

of work with scripting. Automatic

dialing of calls increases pace

Separation of conception and execution of

overall work on platform. Workers receive

direction through smartphone, but can have

discretion with route choices

Evaluation Supervisors assess the labor process on

the factory floor, quality assurance of

outputs

Quantitative metrics from electronic

supervision, qualitative evaluation by

supervisors

Automated evaluation of the labor process

with quantitative metrics. Customer

evaluation in some cases

Discipline Supervisors encourage performance,

bonuses can be used to increase output.

Sanctions for poor performance

Supervisors encourage performance,

bonuses used to increase output.

Sanctions for missing targets

Use of bonuses to encourage engagement at

peak times. Automated interventions based

on automated evaluation (“deactivations”)
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form of contractual relationship: independent contractor or

self-employment status.

However, across each case, the aim of the process is to elicit

motivation for workers to complete tasks in the labor process. In

the factory and the call center, this means trying to overcome

the indeterminacy of the labor process, ensuring that capital

gets the full value (or, at least, as much as it can) from the

purchase of workers labor-power. The problem with this, as

Thompson (1983, p. 123) reminds us, is that “complications

arise when attempts are made to specify how control is acquired

and maintained.” Workers want to have energy left after a shift

ends—and often there is no benefit to working harder. The

widespread use of bonuses can be seen as one solution to this

problem, as well as the development of increasing complex

methods of supervision and surveillance. Control can mean, in

“an absolute sense, to identify those ‘in control’, and in a relative

sense, to signify the degree of power people have to direct work”

(Thompson, 1983, p. 124). That degree of power can shift with

the use of new techniques and technologies. Indeed as Goodrich

(1975) notes, there is always a dynamic “frontier of control” in

the workplace that pushes back and forth between the different

interests of workers and capital.

Artificial intelligence as technology
of workplace control

To talk about artificial intelligence in general terms in the

workplace is not meaningful. It involves, as noted early, many

forms of simple and more complex artificial intelligence that are

proliferating throughout work. At the core, algorithms involve

“sets of defined steps structured to process instructions/data to

produce an output” (Kitchin, 2017, p. 14). In more complex

iterations, this can involves very large or rapid processes,

meaning the operation can be obscured as if they operate like

a “black box” (Pasquale, 2015). In many cases, algorithms do

not shift the frontier of control between capital and labor in any

substantial way. For example, autocomplete options in emails

are not likely to effect widespread changes in the balance of

power in the workplace. However, automated decision making

over shift bookings can have a tangible impact on the experience

of work.

The development of platform work has provided an

important “laboratory for capital” (Cant, 2019), experimenting

with new uses for artificial intelligence and automation in

the organization of delivery work. However, it has also

involved the specific contractual relationships noted above.

Instead of entering into formal employment contracts with

workers, platforms instead seek to engage workers as self-

employed contractors. This misclassification of workers means

that platforms can evade the protections and liabilities they

would other have to take on with conventional employment

models. This model has facilitated the rapid expansion of

platforms, particularly in transportation, but it also prevents

platforms from acting like employers in some instances. Given

the challenges to employment status in many jurisdictions,

some platforms have responded by limiting training and

communication to ensure they will not fail employment status

tests (see, with Deliveroo, Woodcock and Cant, 2021).

Without the traditional forms of workplace control,

platforms rely upon algorithmic management to manage a

dispersed workforce. Due to the employment status issues,

physical supervision is no longer an option, removing

interventions like calling workers in for disciplinary meetings

or performance improvement meetings, while limiting

communication across the platform. One of the basic functions

of supervision—telling workers to work harder—is therefore

more complicated to achieve in practice. Instead, platforms

can use Service Level Agreements and other contractual tools,

setting targets in the hope that workers will try to meet them.

Instead of direction supervision, this involves a wider set of

practices that seek to “seduce, coerce, discipline, regulate and

control: to guide and reshape how people. . . interact with

and pass through various systems” (Kitchin, 2017, p. 19). One

example of this is the bonus structure, including “boosts” for

deliveries during busy periods or adverse weather conditions.

This incentivizes workers to log onto the platform, rather

than requiring it through strict scheduling. Other strategies

are more direct. For example, the use of “deactivation” or

firing workers who do not meet performance targets—or some

other algorithmically determined reason. The strengths and

weaknesses of this approach are considered in Table 2.

As can be seen in Table 2, algorithmic systems of control at

work have both strengths and weaknesses. In the case of food

delivery platforms, this has involved the removal of a supervisors

or managerial layer from the work, instead relying upon

automated decision-making processes. This has proven to be a

successful model for organizing work—at least for the majority

of the time. However, this “platform management model” is

contested by workers in practice (Moore and Joyce, 2019). The

weaknesses of the approach can be seen when workers actively

resist platform control, particularly during strike action. It is

during these moments that the lack of managerial intervention

(disciplinary or otherwise) shows that there are two kinds of

precariousness at Deliveroo, both for the workers involved, but

also for the management of the platform (Woodcock, 2020).

Building from the arguments about the “electronic

panopticon” (Fernie and Metcalf, 1997), the metaphor can also

be used to make sense of algorithmic management (Woodcock,

2020). Unlike the physical architecture of the prison, it is

possible to see how the dynamics of the panopticon operate

on a platform like Deliveroo. The work involves discrete tasks

that increase in frequency during peak times, particularly lunch

and dinner. The role of supervision, algorithmic or otherwise,

involves trying to ensure that the purchased labor-power is

used most effectively. As Foucault (1991, p. 150) noted in
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TABLE 2 Algorithmic systems of control.

Transport platform Strengths Weaknesses

Direction Separation of conception and execution

of overall work on platform. Workers

receive direction through smartphone,

but can have discretion with route

choices

In a straightforward task with clear start

and finish this is an effective way of

distributing instructions

If there are problems during the labor process, there are few

options available to workers to negotiate the process. It is not

effective with complex tasks or those without clear start or

end points

Evaluation Automated evaluation of the labor

process with quantitative metrics.

Customer evaluation in some cases

The labor process creates data on

locations and timings that is

straightforward to track. Customer

feedback can be quickly collected

It is difficult to accurately evaluate qualitative aspects of the

labor process

Discipline Use of bonuses to encourage

engagement at peak times. Automated

interventions based on automated

evaluation (“deactivations”)

Bonuses can encourage workers to work.

Threat of “deactivations” can play a

disciplinary function

Bonuses increase the cost of labor-power and may not

achieve aim of the labor process. Workers can find ways to

game the system.

There are no intermediate disciplinary actions before

“deactivation”

the context of the factory: “to assure the quality of the time

used: constant supervision, the pressure of supervisors, the

elimination of anything that might disturb or distract; it is a

question of constituting a totally useful time.” While this has

developed significantly from hiring human supervisors to prowl

the workplace, it still involves finding ways to discipline time, as

“time measured and paid must also be a time without impurities

or defects; a time of good quality, throughout which the body is

constantly applied to its exercise” (Foucault, 1991, p. 150).

This point about time is important, as it underlined the

original arguments for the panopticon. Bentham (1995, p. 80)

argued that the panopticon could find uses beyond the prison:

“whatever be the manufacture, the utility of the principle is

obvious and incontestable, in all cases where the workmen are

paid according to their time.” The panopticon was therefore

also considered as a potential solution to the problem of the

indeterminacy of labor power. Bentham continued to argue that

the panopticon could be combined with a piece rate payment

scheme, as “there the interest which the workman has in the

value of his work supersedes the use of coercion, and of every

expedient calculated to give force to it” (Bentham, 1995, p.

80). Foucault, of course, took this further, arguing that the

panopticon as an “architectural apparatus should be a machine

for creating and sustaining a power relation independent of the

person who exercises it; in short, that the inmates should be

caught up in a power situation of which they are themselves the

bearers” (Foucault, 1991, p. 201).

In the context of the call center, this meant the constant

threat of supervisors listening in to calls—as well as being able

to recall recordings of all previous calls that had been made.

Clearly, no supervisor could be listening to all calls taking place

at one time in the call center, but it created the sense that

they could be. This experience led to Fernie and Metcalf (1997,

p. 3) applying the metaphor of the “electronic panopticon”,

as discussed above. In many call centers, this is combined

with bonus structures, but rarely with payment that is entirely

piece rate.

With platform work, the attention is usually on the

technology, software, or algorithmic management. These are

the “new” features of the work that have gathered substantial

attention. Indeed, Foucault (1991, p. 173) discusses how:

the perfect disciplinary apparatus would make it

possible for a single gaze to see everything constantly. A

central point would be both the source of light illuminating

everything, and a locus of convergence for everything that

must be known: a perfect eye that nothing would escape and

a center toward which all gazes would be turned.

Given the claims made about the potential of algorithmic

management, it is easy to see how the automation of

these processes looks increasingly like the metaphor of the

panopticon. Recent research has used more general terms for

the role of algorithms at platforms like Deliveroo. For example,

Muldoon and Raekstad (2022) use the concept of “algorithmic

domination” to refer to the “dominating effects of algorithms

used as tools of worker control.” They argue that “bosses can

employ systems of algorithmic domination to control a more

flexible labor force.”

There is a risk of considering algorithmic management as a

general solution to the problem of controlling the labor process.

Much less attention is paid to the fact that much of this work

is organized around piece rate payment. The first struggle at

Deliveroo in London was organized in response to the platform

moving away from payment per hour to only payment by

drop (Waters and Woodcock, 2017). Muldoon and Raekstad
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(2022) consider this in terms of “dynamic pricing”, but the

focus quickly returns to the role of algorithms. There is a long

history of piece rates being used in many industries, which can

provide a challenge, but have definitely not prevented workers

collectively organizing.

The while there are a range of practices that algorithmic

control can entail, as noted earlier by Kitchin (2017, p. 19), it

is also worth considering the role of “seduction” in more detail.

Foucault identified the “form of power which makes individual

subjects”, both “a form of power which subjugates and makes

subject to” (Foucault, 1982, p. 781). This implies a level of

consent, albeit produce through the seduction of algorithmic

practices, in the labor process. There are similarities here with

the argument of “manufacturing consent” (Burawoy, 1979).

While this is secondary to the processes unfolding, it remains

a consistently present feature of platform work, often seen in

the subjectivity that develops around freedom and flexibility.

Algorithmic control, therefore, builds on a relation of power

developed between platform andworker. In a Foucauldian sense:

it incites, it seduces, it makes easier or more difficult,

in the extreme it constrains or forbids absolutely. it is

nevertheless always a way of acting upon an acting subject

or acting subjects by virtue of their acting or being capable of

action. A set of actions upon other actions (Foucault, 1982,

p. 789).

This can be seen across Tables 1, 2 with the use of different

actions, from the direction, evaluation, and discipline, now

transformed away from the direct managerial prerogative of a

conventional workplaces through platform technology.

The general surveillance of algorithmic management

represents something new, but it does not necessarily mean

that workers are now dominated by algorithms. Platforms use

technologies that subject workers to new forms of surveillance

and attempted control. However, the Foucauldian argument

sees workers “become the principle of” their “own subjection”

(Foucault, 1991, p. 203). This is the risk of talking about

control—or indeed domination—in general terms. Foucault

(1991, p. 174) recognized that “the disciplinary gaze did, in

fact, need relays. . . it had to be broken down into smaller

elements, but in order to increase its productive function:

specify the surveillance and make it functional.” In the call

center I studied, workers found ways to oppose surveillance

and make it less functional. Mulholland (2004, p. 711) notes

that general accounts claim that “management is triumphant,

and it is suggested that discipline has replaced conflict, when

seductive discoursesmake workers the captives of organizational

values.” The workplace is not a prison and involves different

social relations (McKinlay and Taylor, 1998). This is what

makes call centers an interesting example, that the innovations

of capital at the time represented “an unprecedented level of

attempted control” (Taylor and Bain, 1999, p. 109). Due to

the different interests in the labor process, management cannot

achieve totalising aims, because “control mechanisms embodied

significant levels of managerial coercion and therefore attracted

varying levels of resistance” (van den Broek, 2004).

Algorithmic management takes this at least one step further

than the call center. Instead of the physical supervision at the

center of the prison, instead there is an automated collection of

data that runs throughout the entire labor process. As I found

in my research with Deliveroo riders, the algorithmic process

goes beyond measurement, but rely upon illusions of control

and freedom. The threat of algorithmic management is not

total and has many gaps and issues in practice. Workers find

these through their day-to-day engagement with the platform.

The illusion of control can operate relatively effectively in the

regular operation of the platform, but suffers when workers

struggle against control (Woodcock, 2020). For example, during

wildcat strikes which have become a frequent form of protest

on platforms (Joyce et al., 2020), there a few options left to the

platform, other than introducing boosts to the piece rate.

Struggles over technology

One of the important things that is missing from the

panopticon metaphor, either in the call center or with platforms,

is that it tends to hide the planner of the system. Artificial

intelligence is not neutral and is instead designed for particular

purposes. As with the automation of factories, the choices

made about the kinds of technologies used and how they are

implemented is about more than just efficiencies at work (Noble,

1978).

There are many examples of ways in which workers have

circumvented algorithmic control in practice in platform work

(Woodcock, 2021), but we know less about the choices that

happen inside these companies to implement the technology.

However, as Braverman (1998, p. 137) reminds us, capital

became built into the machinery of factories:

Thus, as the process takes shape in the minds of

engineers, the labor configuration to operate it takes shape

simultaneously in the minds of its designers, and in part

shapes the design itself. The equipment is made to be

operated; operating costs involve, apart from the cost of

the machine itself, the hourly costs of labor, and this is

part of the calculation involved in machine design. The

design which will enable the operation to be broken down

among cheaper operators is the design which is sought be

management and engineers who have so internalized this

value that it appears to them to have the force of natural law

or scientific necessity.

Historically, the introduction of machines has been part

of a concerted attempt to undermine workers power in the
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workplace. For example, “machinery offers to management

the opportunity to do by wholly mechanical means that

which it had previously attempted to do by organizational

and disciplinary means” (Braverman, 1998, p. 134). Machines

provided the opportunity to set and control the pace of work

centrally, shifting the balance of power away from workers. The

application of technology is not only about efficiency, but also as

an attempt at control.

In order to understand the implications of artificial

intelligence at work, any analysis needs to consider how this new

application of technology builds upon previous interventions

in the labor process over a long history of struggles at work.

First, artificial intelligence needs to be interrogated, rather than

taken for granted. Research needs to critically unpack the

relationships involved in the development, use, and resistance

to new applications. Second, there are a wide range of forms

that artificial intelligence can take. If they are involved in

controlling—or attempting to control—work, these can be

unpacked further by considering what role they play within

the control of the labor process: direction, evaluation, and/or

discipline. No system of control at work can operate without

bringing these components together and they often rely on

human manager/supervision intervention at some point within

or across these. This involves understanding how data collection,

no matter how complex the data are or how rapidly it can be

achieved, is only one part of the process. Data needs to be acted

on to become and attempt at control. Third, arguments about

artificial intelligence at work need to be put into conversation

with the theoretically and empirically rich traditions of labor

process theory.

Future research is needed on how specific applications of

artificial intelligence are operating in practice in different kinds

of work. As the examples of the call center and transport

platforms show, the reality of using technology within the

labor process is far from straightforward. Empirical studies

provide an important way to move our understanding of

the implications of different kinds of artificial intelligence

at work forward, particularly moving beyond the claims or

marketing that are associated with them. Rather than general

research, what is needed is critical research that searches for

the contradictions, conflicts, and struggles along the supply

chains of artificial intelligence. This is part of situating

artificial intelligence as a technology that emerges from, and

is used within, the existing social relations at work and

in society.

Future research can also benefit from analyzing the different

types of struggles against power. For example, Foucault notes

that there can be struggles “either against forms of domination;

against forms of exploitation which separate individuals from

what they produce; or against that which ties the individual to

himself and submits him to others in this way” (Foucault, 1982,

p. 781). Understanding struggles against artificial intelligence

at work can be understood through these different types. Is a

struggle aimed at domination, exploitation, or against forms of

subjectivity and submission more widely? For example, Moore

(2022) recent research on data subjects points toward this with

emerging struggles for subjectivity. While some may herald

artificial intelligence as driving change within the contemporary

world, attention needs to be drawn to the interests it serves and

the relationships of power, as well as how other interests can

struggle against this too.
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Digitalization and artificial intelligence increasingly a�ect the world of work.

Rising risk of massive job losses have sparked technological fears. Limited

income and productivity gains concentrated among a few tech companies

are fueling inequalities. In addition, the increasing ecological footprint of

digital technologies has become the focus of much discussion. This creates

a trilemma of rising inequality, low productivity growth and high ecological

costs brought by technological progress. How can this trilemma be resolved?

Which digital applications should be promoted specifically? And what should

policymakers do to address this trilemma? This contribution shows that

policymakers should create suitable conditions to fully exploit the potential

in the area of network applications (transport, information exchange, supply,

provisioning) in order to reap maximum societal benefits that can be widely

shared. This requires shifting incentives away from current uses toward

those that can, at least partially, address the trilemma. The contribution

analyses the scope and limits of current policy instruments in this regard and

discusses alternative approaches that are more aligned with the properties

of the emerging technological paradigm underlying the digital economy.

In particular, it discusses the possibility of institutional innovations required

to address the socio-economic challenges resulting from the technological

innovations brought about by artificial intelligence.

KEYWORDS

sustainability, artificial intelligence, inequality, productivity, jobs

1. Introduction

The past decade has seen an explosion of applications powered by artificial

intelligence (AI). With the ubiquity of large, unstructured databases (“Big data”) and a

rapid fall in computing costs over the past four decades, AI applications using non-linear

statistical and machine learning methods have gained renewed prominence after falling

out of favor for long periods since the inception of the field of AI properly speaking. This

has triggered both fears about a robo-apocalypse with machines dominating the world

as well as enthusiastic techno-scenarios where humanity can solve most of its current

global challenges, be they related to climate change, poverty or diseases (Brynjolfsson

and McAfee, 2014; Frey and Osborne, 2017; Frey, 2019; Ford, 2021). Yet, none of

these scenarios seem to materialize right now. Rather, we see specific challenges arising

from the wide-spread use of AI, in particular when it comes to the use of social

media. Also, the rising ecological footprint of digital tools—and specifically AI-powered
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applications—notably as regards cryptocurrencies1 and

foundation models2, has raised concerns about the sustainability

of these developments (Robbins and van Wynsberghe, 2022).

At the same time, enhancements to our way of life have been

equally limited, mostly concentrated around improvements

in digital navigation or the rapid rise in online shopping and

delivery. At the back of these rather limited effects looms a

more concerning trend: the rise in economic power of a few

dominant technological companies that increasingly seems to

add to inequalities already prevalent before the rise in AI.

By now, all three challenges resulting from the rise of AI

are well documented, whether they concern limited productivity

gains (Gordon, 2021), worsening inequalities (Bessen, 2020)

or rising ecological costs (van Wynsberghe, 2021). This paper

argues that these three challenges are interrelated and need to

be understood as resulting from an “AI trilemma:” Following

its current path the technological paradigm taken by AI will

worsen its ecological footprint and deepen economic inequalities

without delivering better living standards for all. Using the

concept of a technological paradigm as developed by Dosi

(1982) and Nightingale et al. (2008), I will argue that at

the heart of this trilemma lies a particular way of how this

technology develops, related to both technical and economic

aspects of its current paradigm. I will also argue that these

developments are not inevitable as specific policy interventions

and institutional changes can modify this paradigm in such

a way as to deliver positive contributions to our way of life

without worsening or even with improving on its ecological and

social costs to become a truly sustainable paradigm. This point

is similar to the one raised by Acemoglu (2022) in as much

as the unfettered technological development under the current

paradigm is unlikely to deliver the benefits expected from AI;

in contrast, I argue that identifying a direction of technological

change that delivers these benefits requires to understand the

1 Cryptocurrencies and blockchain applications more broadly are

not strictly relying on artificial intelligence. However, many of their

applications do, including latest developments around Decentralized

Autonomous Organization applications (DAO) that execute certain

functions autonomously ormarket trading applications to anticipate price

movements in these currencies. Many of the ecological implications

discussed in this article relative to AI applications do carry over to other

digital tools such as the use of blockchains.

2 Foundation models, a term first coined by the Stanford Institute for

Human-Centered Artificial Intelligence, are generic models trained on a

large set of unlabeled data that can be re-purposed for a specific set

of tasks. For example in natural language processing, the Bidirectional

Encoder Representations from Transformers (BERT) model has been

trained on a large corpus of the English language; the model can then

be refined for specific tasks to recognize English sentences in technical

applications, such as to identify the similarity in the description of skills in

di�erent classification systems (see, for instance, Fossen et al., 2022).

inherent trade-offs between inequality, ecological costs and

productivity growth that comes with the current paradigm.

Many researchers and observers focus their analyses of

AI on its applications in the world of work, which initially

rose fears of wide-spread technological unemployment (Frey

and Osborne, 2017; Balliester and Elsheikhi, 2018; Frey, 2019).

Whether autonomous taxis, fully automated logistics centers,

the Robo-Hotel concierge Pepper or the Bar Tender Tipsy

Robot; in more and more areas machines seem to be able

to replace us. This is especially true in those areas where we

ourselves have been convinced of being irreplaceable: In artistic

or intellectual activities (Muro et al., 2019). Calls for a universal

basic income or some other unconditional forms of government

transfers abound in order to secure all thosemasses of employees

falling out of work and providing them some minimum way

of life. In the meantime, however, it seems that (technological)

unemployment should be the least of our concerns with

these new digital technologies, at least in advanced economies

(Carbonero et al., 2018). Indeed, if anything, unemployment has

declined in OECD countries during the past decade up until the

outbreak of the Covid-19 pandemic (see Figure 1).

Part of the reason why AI-powered applications have so

far not led to a job-less future relates to the vary narrow

range of applications that are currently being developed by

industry (Ernst and Mishra, 2021), affecting only a small

percentage of the workforce. Indeed, over the past decade

most applications have been centered around business process

robotisation, autonomous driving, e-commerce and digital

platforms, which together accounted for more than 40 per

cent of all applications developed between 2010 and 2020

(see Figure 2). In particular, business process robotisation—

such as applications in accounting and compliance—seem to

have been developed partly as a reaction to rising compliance

cost and regulatory overhead, rather than to substitute

employment. Some researchers have even highlighted that many

of these applications are likely to prove labor augmenting

rather than replacing, possibly leading to job enrichment,

which, in principle, should allow workers to command

higher incomes and firms to enjoy higher productivity

(Fossen and Sorgner, 2019).

Yet, these more positive conclusions also do not seem to

have materialized. Productivity growth has continued its secular

decline over the 2010s (Ernst et al., 2019) and does not seem

to have accelerated with the onset of the recovery as we are

gradually moving out of the pandemic. Despite much touted

benefits from working-from-home and the further growth in

e-commerce, apparent hourly labor productivity growth in

the OECD has not increased (see Figure 3), with the possible

exception of the United States that saw a gradual increase since

the mid-1990s, albeit well below levels achieved in decades prior

to the second oil shock in the early 1980s.

Meanwhile the rising ecological cost of developing and using

AI has become an important concern. This has become most
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FIGURE 1

Evolution of unemployment: OECD and selected G20 countries (2010 vs. 2019; in per cent of total labor force). Source: OECD, Stats Portal.

visible in the area of cryptocurrencies where the particular

security concept behind Bitcoin, for instance, has led to an

explosion in the use of electricity, up to the point that

several countries have restricted or outright banned its use

(e.g., China, Kosovo). Other areas of the digital economy

have also experienced increasing constraints. Some large

digital companies have started experimenting placing its cloud

computing servers in deep sea water for cooling. Large-

scale neural networks such as the natural language processing

network GPT-3, currently one of the largest and most powerful

tools in this area, is reported to cost US$ 12 million on a single

training run, making it very costly to correct training errors

(for instance due to biased data) and effectively preclude a

more wide-spread application of this tool, especially by smaller

companies (OECD, 2021). What is more, as these tools become

more complex and presumably more precise, their economic

and energetic costs explode and do not scale up linearly

(Thompson et al., 2020). In the meantime, a call for “Green

AI” or sustainable AI has emerged, focusing on how to lower

the carbon-footprint of these tools and ensure their (low-cost)

accessibility of a large range of researchers and users (Robbins

and van Wynsberghe, 2022). Various possible technological

improvements have been suggested but, so far, none of them

seems promising enough to contribute significantly to a solution

as we will discuss in more detail below. Presumably, the rise

in renewables in the energy mix would bring down the carbon

footprint of AI but only to the extent that its use does not

continue the exponential rise observed over the past decade,

which seems unlikely.

Interestingly, those areas where AI neither replaces nor

(directly) complements work have not received much attention.

In economic terms, new technologies can affect productivity

at three levels: labor, capital or total factor productivity. The

latter typically refers to technologies that help combine both

production factors in more efficient ways, for instance through

re-organization of work processes. More broadly, technologies

to manage networks more efficiently, for example in transport

and logistics, in electricity and waste management or in

information exchange, are prime candidates for improvements

in total factor productivity (UN DESA, 2018). Modern urban

traffic control systems can use flexible traffic management to

direct individual and public transport in such a way that the

traffic volume is managed optimally and efficiently. AI will

also become increasingly important in the area of electricity

network control, especially where more and different energy

sources (e.g., renewables) have to be connected as economies

are transiting toward sustainable energy supply. Similarly, as

economies are trying to reduce their overall ecological burden,

waste management will become more important together with

an increasing role played by the circular economy. Such

(complex) supply chains remain beyond the purview of human

intervention and require high-speed control by machines.

So far, however, none of these applications seem to play an

important role in the discussion among economists and social

scientists about how transformative this technology potentially

can be. As I will argue below, this has to do with the particular

way the technology business operates and requires a conscious

effort to redirect (partly) our efforts in developing innovations

Frontiers in Artificial Intelligence 03 frontiersin.org

126

https://doi.org/10.3389/frai.2022.886561
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ernst 10.3389/frai.2022.886561

FIGURE 2

Main areas of AI development (2010–2020, cumulative investment in US$, global; Robotic Process Automation = 100). The chart depicts the

cumulative, global investment in US$ over the period 2010 to 2020 in various AI-applications. Investments have been scaled such that total

investment in Robotic Process Automation = 100. Source: Ernst and Mishra (2021) based on the Stanford AI Vibrancy index.

in this area. I will start with somemethodological considerations

before presenting the AI trilemma in a nutshell, highlighting the

key mechanisms underlying it. I will then delve into its three

main components: lack of productivity growth, rising inequality

and market concentration, and a worsening ecological footprint.

In Section 4, I demonstrate several areas in which technological

progress in the digital work can indeed contribute to address

the AI trilemma and present some policy proposals on how to

instigate such a change. A final section concludes.

2. The AI trilemma in a nutshell: A
technological paradigm

2.1. Technological paradigms

Underlying the understanding of the AI trilemma is the

concept of a technological paradigm as a socio-technological

interaction between technological capabilities, economic

conditions and social structures that determine the future

development of the productive forces of an economy (Dosi,

1982; Nightingale et al., 2008). A technology here refers to

a set of combinations between labor, capital and ideas to

produce a certain economic output. At its most basic level,

technological development then can be either autonomously

driven by scientific progress (“ideas”)—the scientific supply

push paradigm—or determined by economic conditions under

which firms operate on both labor and capital markets—the

demand pull paradigm. As such, the concept of a technological

paradigm expands on Kuhn’s scientific paradigms as one that

applies more broadly even outside academic communities.

As highlighted by Dosi (1982), the two ideal forms do

not uniquely reflect the dynamics of technological progress,

which will inevitably navigate between the available scientific

knowledge of any particular era and the specific socio-economic

conditions under which firms operate. One shall add to this that

either of the two forces will be influenced by institutional and

regulatory conditions, such as laws and regulations governing
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FIGURE 3

Hourly labor productivity growth (in %, decade averages,

1980-2020, G7 countries). The chart depicts the average hourly

labor productivity growth between 1980 and 2020 for G7

countries. Decade averages only available for 1980–1989;

1990–1999; 2000–2009; 2010–2019. Last observation is for

2020 and might be biased due to the e�ect of the COVID-19

pandemic on national statistics. Source: OECD, Statistics Portal,

available at: https://stats.oecd.org/.

intellectual property rights, tax regimes or government subsidies

for R&D, among others.

It is against this concept of technological paradigms

that the AI trilemma will be developed in this paper: I

will explore how the current scientific and technological

development of digital tools in general and AI in particular

interacts with the institutional and regulatory regime on labor

and capital markets. I will then analyse the specific socio-

economic outcomes this interaction produces to show that

certain undesirable properties cannot be overcome within this

prevailing technological paradigm. As such the AI trilemma is

not a logical impossibility to achieve more desirable outcomes

with the currently available technologies but rather a contextual

trilemma that can be overcome with the right institutional and

regulatory adjustments.

To develop my argument, I start by reviewing the

technological characteristics of what is typically dubbed

“machine intelligence” and compare it with our current

understanding of human cognitive processes. Specifically, I will

show how the current wave of machine intelligence is correlated

with significant scale effects that make economic concentration

a prerequisite for further technological development. Through

an overview of empirical studies I will demonstrate the

extent to which such concentration effects can already be

observed and discuss the specific underlying mechanisms.

Based on this analysis, I will argue that this tendency

for economic concentration has some other, undesirable

consequences from a macro-economic standpoint, including

a slowdown in technological diffusion and a deceleration

of productivity growth. My argument, therefore, consists in

FIGURE 4

The AI sustainability trilemma in a nutshell.

considering the current technological paradigm around AI as

one of “supply push,” driven predominantly by technological

considerations, rather than one of “demand pull,” oriented by

policy goals regarding the development of productive forces and

sustainable societies.

The way the AI trilemma is being developed in the following

relies on an extensive review of the available evidence as it

is being brought together by computer scientists, economists

and policy experts to form a new, coherent understanding of

the current difficulties that help understanding the apparent

contradiction of a seemingly accelerating technological progress

and a manifest difficulty to detect this progress in improvements

in economic and social indicators.

2.2. The AI trilemma as a supply push
paradigm

Figure 4 summarizes the key message of the AI sustainability

trilemma: We cannot have low inequality, high productivity

and ecological sustainability simultaneously, at least not

when pursuing the current technological paradigm underlying

the development of AI-powered automated decision making

systems. As such, the AI trilemma is composed of three,

interrelated dilemmata of which only two can be solved

simultaneously at the expense of the third one.

Specifically, the AI trilemma consists of the following three

interrelated dilemmata:
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• The productivity-energy dilemma (Figure 4, upper-right

leg): Rising (labor) productivity can only be achieved

through the replacement of human labor by machines at

the expense of higher use of energy (electricity). This is

not specific to the AI revolution. In the case of the digital

economy, it implies that human cognitive work is being

substituted by machine intelligence. In the next section we

will see more closely that this often means that the energy

efficiency of decision-making processes actually declines

rather than improves. From the storage of data in cloud

computing centers, to data analysis by high-performance

computers, to the power consumption of even the smallest

mobile digital devices needed to stay connected, the digital

economy is already using upmore than 6 percent of average

electricity consumption. And the trend is accelerating.

Without major efficiency gains, electricity consumption is

expected to rise to over 20 percent in 2030 (Jones, 2018).

This dilemma could only be overcome if productivity were

to rise beyond what humans could achieve with the same

amount of energy expended. As we argue, this is currently

not the case.

• The energy-economic concentration dilemma (Figure 4,

upper-left leg): For energy efficiency to increase rather

than to fall, data concentration needs to grow further

in order to exploit the variation of information in

large samples. This is the logic currently underlying the

development of approaches such as Large LanguageModels

that exploit almost the entire (English-speaking) library.

Given the network externalities involved in data collection

(which we will discuss in more detail below), market

concentration is bound to worsen, at least within the small

segment of data collection and algorithm training. Such

concentration of data collection can indeed enhance energy

efficiency and hence yield productivity gains but only at

the level of individual companies. At the aggregate level,

this concentration worsens economic inequalities. This

dilemma could only be overcome if access to data were

regulated as a public good that allows strong competition

among data users. In Section 4, we will discuss different

options how this could be achieved.

• The concentration-productivity dilemma (Figure 4, bottom

leg): Higher income inequality, especially in mature

economies, is associated with lower productivity gains. As

incomes are gettingmore concentrated at the top, aggregate

demand grows more sluggishly, slowing down embodied

technological change, i.e., that part of technological

progress that requires investment in new machines.

Whether higher productivity growth increases or declines

inequality, on the other hand, depends on whether and

how quickly new technologies diffuse throughout the

economy. Highly specialized technologies that benefit only

few sectors might permanently lift inequality when other

sectors of the economy cannot from its advantages. In

contrast, General Purpose Technologies are thought to “lift

all boats,” albeit sometimes with a long delay, creating a

J-curve effect (Brynjolfsson et al., 2021) with increases in

unemployment in the short run and faster job growth in

the long run (Chen and Semmler, 2018). In Section 4, we

discuss possible ways of addressing the growth-depressing

consequences of higher economic concentration.

There is indeed some debate regarding whether a J-curve

effect is relevant in understanding why major economies have

not yet seen productivity improvements commensurate of

what has been expected from the latest wave of technological

advancements. Depending on how flat the “J” is, the effect can

take several decades, related to major sectoral restructuring and

work-process re-organization. Ernst (2022) argues that because

of the rise in inequality triggered by the specific conditions

under which digital technologies evolve, it is rather unlikely

to see a fast diffusion of these new applications spreading

through the economy. In the worst case, these benefits might

never materialize broadly. In other words, it is increasing

market concentration of digital companies andwidening income

differentials that prevent stronger growth for all. Digital growth

is not inclusive and—depending on the application—it is not

resource efficient.

What explains this AI sustainability trilemma? This paper

argues that the trilemma—low growth, greater inequality and

high energy consumption despite rapid technological progress—

is mainly due to the specific technological regime in which the

digital economy currently operates: Under the current regime

of intellectual property rights, energy efficiency of silicon-based

information processing tools can only be achieved through

high degrees of data concentration, preventing economy-wide

productivity spillovers while generating significant economic

inequalities. In other words, it is a supply-push technological

paradigm driven by the specific conditions under which

technological companies develop their applications. This

"weightless economy" now occupies the largest place and leads

to market distortions that have so far received insufficient

attention (Haskel and Westlake, 2017). Moreover, AI-powered

tools trigger various forms of inequality beyond the failure

to diffuse its benefits more widely. Indeed, at the micro

level, too, problems are emerging that perpetuate existing

inequalities. The use of historical data, for instance, necessary

to train AI routines, often reflects discrimination, specifically

of women or ethnic minorities in the labor market. If an AI-

routine is fed with such data without a corresponding filter,

the disadvantages will be perpetuated, for instance through

continued discrimination in hiring processes. Several major tech

companies have already experienced this to their disadvantage.

Taken together, the specific institutional and technological

characteristics of artificial intelligence and AI-based innovations

cause and perpetuate the AI sustainability trilemma. In order

to offer possible ways out, however, we first need to better
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understand what is driving these three different elements of the

trilemma in the next section.

3. Understanding the mechanisms of
the trilemma

3.1. Why are brains so much more
e�cient than computers?

A core assertion of the AI trilemma is that computers are

highly energy intensive. Therefore, their massive use in the

current digital transformation of our economies comes at a

significant cost for the environment, specifically in form of the

use of electricity and its related carbon footprint. Looking at it

from a total factor productivity perspective—i.e., considering all

input factors, labor, capital and energy—we start by exploring

the first axis of the AI trilemma: the trade-off between using

computing power vs. brain power in the drive toward higher

levels of productivity. This first section starts by looking into the

reasons why digital tools in general—and machine learning in

particular, at least as it is currently being conceived—are high

consumers of energy. I discuss key differences between brains

and computers, arguing that despite many broad similarities,

their underlying architecture and information processes show

remarkable differences that explain much of why brains are

much more efficient than computers. I also discuss how recent

changes in the way computer algorithms have evolved have

integrated ideas inspired by neurological research, producing

remarkable improvements in computing performance. My core

argument in this section is that the way computers are currently

being used is unsustainable from an ecological point of view.

That is not to say that a different kind of use could not prove

beneficial for society, but it would require reorienting our

current technological paradigm away from trying to substitute

for human cognition toward a paradigm where computers and

brains are complements3.

Key for the argument in this section will be to understand

the trade-offs involved between the functioning of a computer

in comparison to the brain. This might come as a surprise for

some as computers are often being seen and modeled following

the architecture of the brain. Indeed, seeing the computer as

the (better) version of the brain has a long history, going back

to the early beginnings of the computer age (Cobb, 2020, ch.

12). Yet, there are fundamental differences in the working of

a computer and a brain, beyond the physical characteristics of

both (inorganic vs organic matter).

3 My argument is di�erent from a general backlash against

technological progress and rather stresses the comparative advantages

each cognitive technology brings, see, for instance, the criticism

expressed here: https://datainnovation.org/2022/01/innovation-wars-

episode-ai-the-techlash-strikes-back/.

What adds to confounding both—computers and brains—is

the fact that key components with similar function are present in

both: Memory and circuits, i.e., structured connections between

elementary units that can recall previously stored information—

using transistors in the case of computers and neurons in

the case of brains. Both elements have been shown to be

essential for information processing. Indeed at a fundamental

level, all mathematical functions can be represented by a

suitable connection of basic logical gates, represented as neural

networks, which makes the comparison of computers and

brains particularly appealing (Hornik et al., 1989). Moreover,

progress in computing performance over the past decades

has been driven to a non-negligible part by improvements in

algorithm design, often inspired by a better understanding of

some of the key principles behind the workings of the brain.

The exponential development and use of neural networks, for

instance, was responsible for vast improvements over and above

what simple hardware developments would have made possible

(Sherry and Thompson, 2021).

As a consequence, many researchers consider that a

convergence of computers toward brains is underway.

Moreover, the rapid growth in applications around artificial

intelligence suggests that computers would eventually not only

work in a fashion similar to brains, they would even follow the

same information process, making predictions based on limited

information inputs (Friston, 2010; Agrawal et al., 2018). And

yet, a direct comparison reveals significant differences in terms

of performance and efficiency (see Table 1). In particular, a

trade-off becomes apparent regarding the energy consumption

and the precision/speed at which calculations are being carried

out: individual human neurons are rather slow and imprecise

when it comes to processing information. At the same time,

they turn out to be much more powerful than transistors in

computers, displaying much more complex patterns of activity

than a simple binary activation potential (Gidon et al., 2020).

On the other hand, computers can calculate at a significantly

higher speed and precision, even though most of them dispose

of less transistors and connections with much simpler activation

patterns4. Moreover, this higher precision and speed comes at a

significant price tag in the form of higher energy consumption.

Similarly, computers are significantly better at long-

term storage of information (memory), which can span

several decades, depending on the physical characteristics, the

rate of technological obsolescence and processes to transfer

information from one (digital) medium to another. In contrast,

humans have difficulties in recollecting precisely even personal

information, can easily be manipulated in what they remember

4 The hardware evolution continues to add significant amounts of

transistors every year. At the time of writing, the largest computer,

the Chinese-built supercomputer Sunway TaihuLight counted around

400 trillion transistors across all its CPUs. https://en.wikipedia.org/wiki/

Transistor_count.
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TABLE 1 Comparing (traditional) computers and brains.

Properties Computer Human brain

Number of basic units Up to 114 billion

transistors

∼100 billion neurons;

∼100 trillion synapses

Speed of basic operation 20 teraflops/s. <1,000/s

Precision 1 in 18.4 quintillion (for

a 64-bit processor)

∼1 in 100

Power consumption up to 215 watt ∼10 watt

Information processing

mode

mostly serial with 20

cores

serial and massively

parallel

Input/output for each

unit

1–3 ∼1,000

Signaling mode digital digital and analog

Note: Based on an Apple M1 Ultra chip in 2022. Flops, floating-point operations

per second.

Source: https://support.apple.com/en-am/HT213100 Herculano-Houzel

(2009), Luo (2015).

(Shaw, 2016) and “suffer” systematically from forgetting due

to the plasticity of the brain that adjusts to external input,

something a computer cannot do (Ryan and Frankland, 2022).

Several architectural differences between computers and

brains seem to explain a large part of the observed differences

in performance, albeit computer scientists are keen in trying

to close the gap regarding some of them. The question then

becomes: if the architectural differences can be closed, would

computers still perform better than brains where they currently

have their comparative advantages? In other words: would it not

be preferable to improve computers along the dimension where

they currently have an advantage rather than trying to emulate

the brain? At least from an economic point of view, such a trade-

off would call for a more careful assessment of the use of digital

tools depending on where their comparative advantages lie. In

the following, I focus on four differences that are relevant from

an efficiency point of view5.

A first difference, as noted in Table 1, stems from the

parallel structure of the brain in comparison to the mostly

serial way a computer functions. The massive expansion of

machine learning approaches in computer science demonstrates

that enormous efficiency gains can be achieved by parallelizing

calculations in the computer. Essentially, neural networks that

lie at the heart of recent progress in artificial intelligence use

layers of parallel nodes stacked one upon each other, similar

to the structure found in the brain, at least to a first order.

Researchers increasingly recognize, however, that it is not only

5 There are further di�erences that are less relevant for our

argument, such as embodiment. A good overview of the di�erences

between the brain and how artificial intelligence is being set up,

see https://www.technologyreview.com/2021/03/03/1020247/artificial-

intelligence-brain-neuroscience-je�-hawkins/.

the parallel structure but also the specific way in which neurons

are connected that explains performance differences (Luo, 2021).

Indeed, the importance of a particular network topology in

explaining this network’s function is currently an active area of

research and some of the insights are already being reflected in

the way neural networks are being set up in order to further

enhance their performance (Zambra et al., 2020). Related,

the brain seems to be hardwired for particular tasks that are

important for our social experience. For instance, our capacity

to recognize faces (Alais et al., 2021) or letters (Turoman and

Styles, 2017) seem to be hard-wired in our brains, whereas

computers need to learn this. Similarly, we all seem to benefit

from a universal grammar that allows us to learn language even

without ever being exposed to the full richness of a language, a

point made long ago by Noam Chomsky6. Such “pre-training,”

although increasingly used in ML-applications makes our brain

particularly energy-efficient if only less flexible.

A second difference lies with the particular way memory is

structured in the brain. For one, memory loss as discussed before

seems to play a significant role in enhancing a brain’s energy

efficiency by gradually removing information no longer needed

(Li and van Rossum, 2020). Moreover, rather than having a

fixed-size memory chip that stores all our information, memory

is distributed and stored dynamically. Information, therefore,

does not need to be shifted around and read out but is accessible

exactly where it is needed. This has inspired recent research

to develop integrated memory-computing circuits that allow

information being stored where calculations are taken place,

so called “mem-resistors” (Zahedinejad et al., 2022). So far,

this remains experimental and has not yet been successfully

implemented in large-scale computing but shows that significant

efficiency gains even in hardware design are still available.

A third, and for our argument most decisive difference

lies in the way information is being recorded in neurons

in comparison to computer bytes. Indeed, computers process

information in the form of small, fixed-sized chunks, so called

bytes, in binary format. Regardless of the specific computer

type, at any point in time during the operation, a significant

number of the individual bits that compose each byte are

active. In other words, computers use “dense representation”

of information. More importantly, every time such a bit loses

its action potential through a computing operation, energy is

being released. In contrast, neurons have been shown to operate

with sparse representations, where individual dendrites of a

neuron are being activated when a certain (small) percentage

of a large set of potential links is active, often less than

5 per cent (Ahmad and Scheinkman, 2016; Hawkins and

Ahmad, 2016; Hole and Ahmad, 2021). Not only do operations

on sparse representations use much less energy than those

6 https://thebrain.mcgill.ca/flash/capsules/outil_rouge06.html,

https://theconversation.com/our-ability-to-recognise-letters-could-

be-hard-wired-into-our-brains-83991
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of dense ones—most operations involve zeros—they are also

particularly robust against errors: Calculations by Hawkins and

Ahmad (2016) demonstrate that for typical synapses error rates

can reach 50 per cent without neurons losing their capacity

to properly identifying underlying patterns. Such robustness

against errors is an additional contributor for energy efficiency

as it avoids costly error correction of calculations that need

to be done on standard computing devices, in particular for

critical hardware.

Finally, while these architectural differences primarily point

to differences in the hardware, sparsity is also an important

issue regarding algorithmic differences between computers and

brains. As highlighted by Kahneman (2011), humans dispose

of two main modes of decision making: slow, optimizing and

calculating decision processes and fast, heuristic routines. The

latter might come with cognitive biases but allow for quick

decisions, in particular relevant in periods of stress and high

threats. Heuristics are typically domain-specific, which is why

their application to other domains induce cognitive biases by not

considering all relevant options (Gigerenzer et al., 2011). At the

same time, they are fast and energy-efficient. A role performed

by the brain in this regard is to identify the specific situation and

to mobilize the relevant resources for each decision problem.

In contrast, algorithms currently employed in computers will

systematically mobilize all available resources for any problem.

Integrating these considerations there are shifts toward the

use of more specialized CPUs that focus on particular tasks

with more efficiency. So far, however, this more modular and

specialized set-up has not reached the level of sophistication of

the brain.

Taken together, the specific advantage of computers lies with

fast, high precision calculations, such as those needed to design

high-tech devices or to search quickly through the available

library of human knowledge (or protein folding for that matter).

In contrast, human brains have evolved to respond to particular

challenges posed by our social environment in which empathy

and understanding social settings play a fundamental role. Here,

coordination, collaboration and adaptability to changing (social)

circumstances are key for (collective) success, a task that is

difficult for a computer to achieve as it is programmed for

a (fixed) number of tasks. A first result of this comparison

of the relative performance of computers vs brains, therefore,

is the complementarity rather than substitutability of brain

vs. computing power. This ties nicely with other research

indicating the importance of AI as a transformative force rather

than a disruptive one (Fossen and Sorgner, 2019; Carbonero

et al., 2021). It also implies that current attempts to generate

productivity gains by massively substituting labor for computers

will not lead to the expected outcomes. Rather it will lead to

a worsening of the energy bill of those companies that rely on

such technologies.

As a consequence, technological developments of digital

devices in general and AI-powered tools in particular suggest

an exponential rise in the ecological footprint under the current

technology paradigm (Jones, 2018; Thompson et al., 2020). A

simple projection of the growth in model size that are driven

by rising demands for precision shows that both the economic

and ecological costs would quickly become unsustainable (see

Table 2). As noted by the authors, this projection is a simple

illustration and the trajectory unlikely to be followed literally

as economic, financial and ecological constraints would prevent

it from happen. One area, where this can already be observed

regards applications around cryptocurrencies where several

jurisdictions have issued restrictions or outright bans for so-

called “mining” of currencies on their territory, mostly for

reasons related to the rising energy costs (with knock-on effects

on other activities in these countries).

Regardless of the limits to growth for specific applications,

a key challenge in promoting more efficient computing

procedures and in assessing which tasks can better be carried out

by humans rather than machines remains the proper assessment

of the energy consumption involved over the entire computing

value chain, from data collection, storage to machine learning

and data use (García-Martín et al., 2019; Henderson et al., 2020).

3.2. Information rules: Consequences for
market structure

A direct consequence of this high energy consumption is

a rising market concentration among AI producing companies

and a concentration of AI applications around the most

promising—i.e., most profitable—applications as shown in

Figure 2. One of the direct consequences of the rising economic

costs implied by the exponential increase in energy consumption

is a “narrowing of AI research” (Klinger et al., 2022). As

highlighted by the authors, this narrowing of AI research

is linked to a focus on data- and computational-intensive

approaches around deep learning at the expense of other

approaches in artificial intelligence that might be more easily

accessible by smaller research outlets and academic researchers.

Indeed, the ubiquitous availability of large, unstructured

databases and the exponential fall in computing costs since

the 1980s have contributed researchers to focus on a particular

branch of AI development, namely statistical and machine

learning at the expense of earlier attempts using symbolic AI

to program expert systems which are potentially more easily

accessible by a wider group of developers.

Related, narrowing AI research and rising ecological and

economic cost lead to market concentration, both in the

development and training of new (large) models (Bender

et al., 2021) and in related digital applications such as

blockchain applications in cryptocurrency markets, where

similar tendencies to oligopolistic concentration can be observed

(Arnosti and Weinberg, 2022). This should not come as a

Frontiers in Artificial Intelligence 09 frontiersin.org

132

https://doi.org/10.3389/frai.2022.886561
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ernst 10.3389/frai.2022.886561

TABLE 2 Computational costs of deep learning.

Benchmark Error rate Polynomial Exponential

Computations

required

Environmental

cost (CO2)

Economic cost

($)

Computations

required

Environmental

cost (CO2)

Economic cost

($)

ImageNet

Today: 11.5% 1014 106 108 1014 106 106

Target 1: 5% 1019 1010 1011 1027 1019 1019

Target 2: 1% 1028 1020 1020 10120 10112 10112

MS COCO

Today: 46.7% 1014 106 106 1015 107 107

Target 1: 30% 1023 1014 1015 1029 1021 1021

Target 2: 10% 1044 1036 1036 10107 1099 1099

SQuAD 1.1

Today: 4.621% 1013 104 105 1013 105 105

Target 1: 2% 1015 107 107 1023 1015 1015

Target 2: 1% 1018 1010 1010 1040 1032 1032

CoLLN 2003

Today: 6.5% 1013 105 105 1013 105 105

Target 1: 2% 1043 1035 1035 1082 1073 1074

Target 2: 1% 1061 1053 1053 10181 10173 10173

WMT 2014

(EN-FR)

Today: 54.4% 1012 104 104 1012 104 104

Target 1: 30% 1023 1015 1015 1030 1022 1022

Target 2: 10% 1043 1035 1035 10107 1099 10100

Computations required in Gflops.

Source: Thompson et al. (2020), p. 14.

surprise as any market that requires large fixed investment

to enter will show signs of concentration. This does not

need to be a problem if alternative products and services are

available that are (close) substitutes, a situation of monopolistic

competition, which is at the heart of many models of economic

growth (Aghion and Howitt, 1992). However, the narrowing

of AI research suggests that the offer of such potential

close substitutes is also declining, which would indeed lead

to a concentration of the market as a whole. Indeed, the

tendency of digital technologies to lead to superstar firms that

dominate their market with knock-on effects on both down-

and upstream market power is increasingly well documented

(Coveri et al., 2021; Rikap, 2021).

But there is another force that pushes the data economy

toward concentration: the network externalities of data

collection (Jones and Tonetti, 2020). Indeed, individual data

has three characteristics that distinguish it from standard

goods and services: (1) its provision is (almost) costless

and often done as a byproduct of other activities (such as

purchasing a good online; Arrieta-Ibarra et al., 2018); (2) once

provided it can be shared and re-used without costs; and (3)

finally, its individual value is almost negligible other than

in some extreme cases (e.g., rare diseases). Only as part of a

larger database will individual data generate some economic

value, for instance in order to determine customer profiles

or applicants’ characteristics (Varian, 2018). Such network

externalities are known to lead to concentration effects as

has become obvious with the rising share of only a small

number of platform and social media providers on global

stock exchanges.

In principle, concentration due to network externalities

can be productivity enhancing, provided that the productivity

gains generated from data concentration are being shared

with platform users. This can happen, for instance when

platforms are price-regulated, a principle that has been applied

with previous network monopolies in telecommunication or

electricity distribution. In the case of data monopolies, this is

almost never possible as the use of many of these digital tools

is not priced and users pay these services through alternative

means, more difficult to regulate (e.g., exposure to commercials).

Alternatively, stiff competition by alternative platform providers

could help share these productivity gains more widely, but many

of the incumbent platforms have grown so big that they either

pre-emptively purchase potential competitors (e.g., Instagram in

the case of Facebook) or use predatory pricing strategies against

possible newcomers in order to limit their growth or reduce

entry altogether (as in the case of Amazon, see Khan, 2017). As

a consequence, productivity gains remain highly concentrated

among a few, ever larger firms that see their evaluations sky-

rocket. In contrast, the average company in OECD countries
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has barely experienced any (productivity) growth despite an ever

larger investment in digital assets (Andrews et al., 2015; Haskel

and Westlake, 2017). Indeed, a simple calculation can show

that these gains represented in the form of rising stockmarket

evaluations have macro-economic proportions: If the entire

stockmarket value of the five largest digital companies were to

be paid out as an indefinite annuity, US GDP would grow by

almost 1.1 per cent, a significant improvement7.

Distributional aspects of the rising use of AI do not only

appear at the macro-economic level, they also arise at the

micro- and the meso-economic level. A direct consequence of

the increased capacity of algorithms to treat large databases

is the possibility for much refined pricing strategies, so-called

individual pricing (or price discrimination). Such approaches

redistribute welfare gains from consumers to producers, which

can, under certain circumstances, be welfare-enhancing to

the extent that they allow to increase the overall volume of

production. Indeed, it can be shown that these circumstances

arise fairly easily, which would argue for a more relaxed stance

on such price discriminating strategies (Varian, 1985, 2010). On

the other hand, research increasingly demonstrates that with

the scaling of AI, these welfare-enhancing output expansion is

exactly what is lacking: Instead, customer discrimination is being

used to exclude certain socio-demographic categories from

being served. This is particularly problematic in applications for

human resources management, for instance, where automated

hiring tools often seem to apply overly strict criteria for selection,

thereby excluding large parts of the applicant pool (“hidden

workers,” Fuller et al., 2021). Often, this is being discussed

as algorithmic discrimination due to biases in historical

databases upon which these algorithms are being trained. More

profoundly, however, the reason for these welfare-reducing

effects of AI in such cases lies in the legal prerogatives to

prevent open discrimination, thereby setting incentives for firms

to restrict services to certain groups only.

Recently the debate has started to focus on the distributional

impact of algorithms at the meso-economic level, specifically

on issues arising from algorithmic collusion (OECD, 2017;

Calvano et al., 2020). In a traditional setting, pre-agreement

is often necessary in a market with only few players in

7 At the end of 2021, the fifth largest digital companies were

(by stockmarket valuation): Apple ($2.91 T), Microsoft ($2.53 T),

Alphabet/Google ($1.92 T), Amazon ($1.69 T), and Tesla ($1.06 T).

Assuming an annuity with an infinite time horizon paid out at the

historical average real return for US treasury bonds (around 2.47 per

cent p.a.), this would lead to a total annual pay-out of around $250 B or

slightly less than 1.1 per cent of US GDP in 2021 ($23 T). Stockmarket

valuations are taken from https://companiesmarketcap.com/, US GDP

comes from the Bureau of Economic Analysis: https://www.bea.gov/

news/2022/gross-domestic-product-fourth-quarter-and-year-2021-

second-estimate and historical (real) treasury bond rates have been

calculated on the basis of Jordà et al. (2019).

order to move from the welfare maximizing price level (the

“Bertrand oligopoly”) to a profit-maximizing but welfare-

reducing higher price level with lower output (the “Cournot

oligopoly”). Anti-trust regulators, therefore, spend significant

effort in documenting such written or oral commitments to

compete on quantities rather than on prices. In a world where

prices can be adjusted almost instantaneously and through

algorithms, such agreements are no longer necessary: algorithms

would learn from each others behavior and tacitly agree on

profit-maximizing pricing strategies (Ezrachi and Stucke, 2020).

There is substantial disagreement, however, as to whether

such tacit collusion has already been observed or could even

become a serious threat not only to income distribution but

to efficiency-gains to be obtained from AI (Dorner, 2021)8.

Evidence is available primarily from online platforms, such

as online drug sellers or airline ticket pricing (Brown and

McKay, forthcoming) but also retail gasoline market where

prices adjust frequently and increasingly through the use of

algorithms (Assad et al., 2020). Whether markets are prone

to algorithmic collusion might depend on the characteristics

of the product or service sold, including the frequency of

trades, the degree of transparency and the homogeneity of

products, besides the availability of algorithms that could

exploit such opportunities (Bernhardt and Dewenter, 2020).

Regardless of how widespread the phenomenon is today,

however, traditional anti-trust regulation will have difficulties to

identify such cases, precisely because of their tacit nature. There

is, therefore, a risk that scaling up the use of AI in determining

prices (and wages) will not only lead to further concentration

and rent seeking behavior, it will also significantly reduce

efficiency regardless of any labor displacement effects these

technologies might have. Some options exist to regulate firm

behavior through appropriate setting of fines and divestitures

but current examples involving social media platforms suggest

that such regulatory activism is likely met with strong resistance

(Beneke and Mackenrodt, 2021).

3.3. Why do we not see more productivity
growth?

The last aspect of our AI trilemma looks at the low

and declining productivity growth observed in most

advanced countries and major emerging economies. As

noted above, economists have long noted a productivity

puzzle between the apparent acceleration in technological

progress, specifically around digital technologies, and the

lack of observed productivity gains, at least at the national

level (Brynjolfsson et al., 2019). To understand this puzzle,

national productivity growth needs to be broken down into its

8 See also https://www.autoritedelaconcurrence.fr/sites/default/files/

algorithms-and-competition.pdf.
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components: Indeed, aggregate increases in productivity are the

product of productivity improvements at the firm or factory

level and the spread of these gains across the economy. Simply

put, productivity = innovation times diffusion. The question

therefore becomes twofold: Is the lack of observed productivity

gains due to a failure of the digital economy and AI to push

productivity at the individual firm level or is it related to a

failure of such gains to diffuse through the economy more

broadly. The answer researchers have given so far is: problems

reside at both ends and are possibly linked.

At the firm level, the introduction of new technologies in

general and AI in particular has always been confronted with

a necessary re-organization of work processes (Dhondt et al.,

2021). As such re-organization takes time and energy, a J-curve

effect arises: Each new technology requires upfront costs in the

form of restructuring that might actually depress productivity

and firm profitability. Once these adjustments have successfully

taken place, however, productivity will rise above the level at the

start of the adjustment process (Brynjolfsson et al., 2021). At the

firm level, evidence is indeed emerging that the recent surge in

patenting around artificial intelligence and robotisation has led

to a global increase in firm level productivity, especially among

SMEs and in services (Damioli et al., 2021). Research specifically

for the United States seems to suggest, however, that effects of

AI are particularly strong in large firms that patent significantly

(Alderucci et al., 2020). Looking at productivity spillovers, on

the other hand, Venturini (2022) suggests that at least during

the early periods of the transition toward automation based on

AI and robotics, significant spillovers might have contributed

to the observed productivity increases. In other words, despite

increases in productivity at both the firm and the sectoral level

that were driven by AI and robotization, aggregate apparent

labor productivity growth decelerated, suggesting that other

factors must have been holding back the possible positive

contribution of AI on growth.

One possible factor might lie in the restructuring of

production chains. Indeed, as highlighted by McNerney et al.

(2022), as economies mature, production chains normally

become longer, which increases their capacity to generate

aggregate productivity growth from individual, firm-level or

sectoral improvements in productivity. However, over the last

15 years, global trade growth has stalled, suggesting at least a

stagnation if not shrinking of the length of production chains,

which would suggest a loss in the capacity of AI to generate

productivity growth at the aggregate level. Unfortunately, the

evidence in McNerney et al. (2022) stops in 2009 but suggests

that some of these dampening effects of slow global trade growth

might indeed have started to appear toward the end of their

observation period.

Closer to the argument developed here, the narrowing

of AI research suggests another possibility, following Zuboff

(2019): Indeed, the rapid increase in AI applications might be

concentrated around surveillance software and human resources

management tools that impact workplace organization more

than it contributes to overall productivity increases. Part of the

restructuring induced by such software impacts not so much

the overall innovative capacity of firms but rather the type of

innovation carried out, with little impact on firm profitability

and employee output. In other words, rising investment in this

type of AI focused on HR management helps more with overall

information processing and incentive provisions than it does for

value creation, which is why firm level studies suggests that only

some firms seem to benefit from these tools.

At the macro level, another factor limiting aggregate

productivity gains from AI is explored by Gries and Naudé

(2020) expanding on Acemoglu and Restrepo (2019) and

analyzing an endogenous growth model. The authors analyse

the impact of AI-induced automation of tasks rather than

entire jobs, demonstrating that regardless of the elasticity

of substitution between AI and human labor, the aggregate

labor income share falls, with adverse consequences for

aggregate demand and productivity growth. When the

elasticity of substitution is high, the displacement effect is

always greater than the reinstatement effect of new tasks

(Acemoglu and Restrepo, 2019). However, Gries and Naudé

(2020) show that even in the case when the elasticity of

substitution is low, the reinstatement effect fails to compensate

for labor displacement in an endogenous growth setting

provided that the benefits from AI are heavily concentrated

among capital owners, a direct consequence from the

distributional aspects of AI discussed in the previous section.

In contrast to previous waves of automation, therefore, the data

economy generates highly concentrated benefits that do not

generate enough demand spillovers to push up growth on a

broad basis.

A last factor, intimately related to the distributional

consequences of the data economy concerns its impact

on the degree of market competition, a point stressed by

Aghion et al. (2021). Indeed, Schumpeterian rents arising

from innovation such as AI need to be gradually eroded

through the entry of new producers of highly substitutable

goods and services in order to allow for a wide diffusion

of productivity gains. This is the essence of Aghion and

Howitt (1992)’s original work on creative destruction and

subsequent empirical evidence. As demonstrated by Hidalgo

and Hausmann (2009) and Pinheiro et al. (2021) when such

growth models are prevalent in a large range of unrelated sectors

they lead countries on a path of high and persistent economic

development. In this case, monopolistic competition coupled

with creative destruction ensures the continued upgrading

of productivity across a broad range of sectors, a model

that was followed broadly during the first two waves of

industrial revolutions. However, with the arrival of digital

capitalism and data markets, the data rents generated by

platform providers and AI innovators only partly diffuse

through the economy, thereby lowering labor income shares
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and aggregate demand, a trend observed since the arrival

of the computing revolution in the 1980s that continues

until today.

This ties well with another observation that has puzzled

economists for some time: The decline in business creation

and start-up activity over the past two decades (Bessen, 2022).

Indeed, the trend toward rising market power across the

globe is well documented, following directly from a lack of

market contestability by smaller, younger firms (Eeckhout,

2021). As Bessen (2020) demonstrates, this trend toward

industry concentration can be directly linked to the rise in

the data economy and the related growth in proprietary

information technology. Such industry concentration, even

if driven by innovative products and services, are not

without adverse consequences for aggregate productivity growth

(De Loecker et al., 2020).

This then closes the loop of the AI trilemma. Despite the

potential of creating substantial productivity gains at the firm

level and some evidence for productivity spillovers, the potential

for a broad-based increase in aggregate productivity is limited

by the adverse distributional consequences of the way the data

economy functions. Empirically, this shows up in a widening

productivity gap between frontier firms and the rest (Andrews

et al., 2015). At the same time, the high energy consumption

not only limits the societal benefits of this technology; it

is itself partly responsible for the high concentration of AI

providers and a narrowing of AI applications. In this regard,

the suggestions put forward by some observers to alter the

regulatory environment of the data economy, for instance by

modifying current regulation on intellectual property rights

might not be sufficient to address the trilemma as presented here

(e.g., Karakilic, 2019). We will see in the next section that solving

the AI trilemma requires a more encompassing approach that

targets the specific benefits that a widespread adoption of AI can

have by mitigating its adverse ecological and social costs.

4. Solving the AI trilemma

Dissecting the underpinnings of the AI trilemma allows

an understanding of how to address it. Key to any policy

or regulatory intervention is that the trilemma is specific to

the current technological paradigm under which the digital

economy develops, not an inherent characteristic of the

technology. Such paradigms are subject not only to the

physical characteristics of a specific technology but also to the

institutional framework under which the technology is being

developed (Dosi, 1982; Bassanini and Ernst, 2002; Nightingale

et al., 2008). Specifically, as argued in the previous section,

the current technological paradigm is one of a supply-push,

where technology develops mostly through individual company

strategies. In this section, I argue that to overcome the AI

trilemma a switch to a demand-pull technological regime

is necessary where technology develops through a deliberate

shift in the institutional framework geared toward applications

beneficial from a societal perspective.

In the following, I offer three approaches to address the AI

trilemma, each one targeting one specific axis of the trilemma

as highlighted by Figure 4. What follows from the discussion

in the previous section is that breaking the trilemma requires

one of three things: an orientation of technological development

toward complementary, efficiency enhancing innovations; a

more equitable distribution of innovation rents; or a more

widespread diffusion of productivity gains through restoration

of competitive markets.

A first approach uses standard public economics: If the

current technological regime under which AI development

operates produces externalities (environmental, social, etc.),

these need to be internalized through regulatory or institutional

changes, for instance through changes in the corporate tax

code or by strengthening labor market institutions. A second

approach considers direct interventions to orient technological

development through policy action into applications with high

societal value that can lift productivity growth sufficiently to

justify the additional energy consumption, i.e., an approach that

will lead to an overall reduction in total resource consumption.

A final approach focuses on the concentration dilemma,

addressing the public goods problem of the current regime

of digital technologies. The following Figure 5 summarizes the

solutions for solving the AI trilemma that are being discussed in

the following.

4.1. Solving the energy-concentration
dilemma: Shifting the energy-labor
balance

Addressing the AI trilemma faces two interconnected

challenges: (i) steering technological progress into a direction

that is at least neutral and ideally complementary to jobs

(Mazzucato, 2021) so that the introduction of new machines

strengthens the demand for labor; and (ii) ensuring that

technological progress in general—and the increasing use of

AI in particular—reduces its ecological footprint rather than to

increase it (Acemoglu et al., 2012). However, as discussed in

much of the literature on environmental transition, these two

objectives often conflict, not least because the investment in new,

environmental technologies requires time to allow for resources

to be fully re-allocated. Moreover, many jobs in industries that

have a heavy ecological footprint are often well-paying jobs for

workers with less than graduate degrees (Montt et al., 2018). In

other words, our AI trilemma induces a policy trade-off between

better jobs and more energy efficiency, with both transitions

possibly coming at the cost of a—at least—temporary slow-down

or even reduction in productivity growth.
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FIGURE 5

Solving the AI trilemma.

Here we want to suggest an alternative adjustment path

that can tackle these problems directly and still solve the AI

trilemma. This is made possible by the particular characteristics

of AI, which did not exist to the same extent with previous

forms of technological change, including technologies such as

robots. For this, we need to extend our view on aggregate

production to not only include energy but also organizational

capital broadly understood:

Y = A (K, L,E,O)

where input factors are noted as K for capital, L for labor, E

for energy, and O for organizational capital. Such extensions

have a long history in economics, especially in firm-level

empirical analysis (see, for instance, Atkeson and Kehoe,

2005). At the macro-economic level, however, improvements

in organizational capital, O, are typically subsumed under the

heading of “total factor productivity,” without clarifying whether

these occur at the micro-, meso- or macro-economic level.

Current conceptualisations focus on AI as a technology that

either replaces or complements jobs similar to previous waves

of automation (Fossen and Sorgner, 2019). Notwithstanding

the fact that economic analysis has increasingly focused on

the impact of technology not on the individual job but on

the underlying tasks that are being performed by a job (Autor

et al., 2003, 2006; Autor, 2013; Acemoglu and Restrepo, 2019),

AI is not considered to be distinct from previous forms of

technological progress in this respect. However, as discussed

in the opening part of the previous section, one specificity

of AI is its capacity to process information in order to make

predictions, for instance regarding the dynamics of a particular

system. At the micro-economic level, such predictions can help

an individual worker, for instance, in respecting a certain order

in which to process the workflow by giving recommendations

about the next step. Similarly, in a research environment, AI

has been used to facilitate the discovery process of new drugs,

thereby improving the productivity of the innovation process. At

the sectoral level, AI can and has been used for dynamic pricing

purposes (Calvano et al., 2020). Both can be thought of being

complementary to labor, in the sense of a traditional production

function. At the macro-economic level, these considerations add

a new dimension. Here, applications exist that are not readily

interpretable as either complements or substitutes for labor.

For instance, AI tools are increasingly being used to improve

the management of waste and electricity networks or help with

improving the use and utilization of transport systems, including

through inter-modal connectivity (see also the discussion in the

next sub-section). None of these activities are directly linked to

human labor (unless, for instance, one considers the commute

to and from work as part of the aggregate production function,

which typically it is not). Most of these applications of AI would,

therefore fall into the category of innovations to improve total

factor productivity.

Such innovations focused at improving resource efficiency

are unlikely to have any direct employment effects but might

impact comparative advantages of different sectors as they
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impact the way capital and labor is being used. Applications

to improve waste management (e.g., in Barcelona), to help

municipal officials to identify more rapidly infrastructure

shortcomings (e.g., Amsterdam) or to improve the management

of traffic systems (e.g., Delhi, Kuala Lumpur) reduces overhead

costs. As such, they do not substitute for any current or

future jobs (other than the engineers developing the software).

However, to the extent that applications help to improve

resources efficiency in particular industries or sectors, with

effects on the comparative advantages of this industry both

domestically and internationally, resources will be reallocated

across sectors with implications for jobs and growth (Rentsch

and Brinksmeier, 2015). Similarly, to the extent that cities benefit

from AI differently, more advanced municipalities are likely

to attract new businesses and jobs, leading to a geographical

reallocation of resources. For themoment and to our knowledge,

however, there is no good empirical understanding of the extent

to which AI can help in improving resource efficiency in the

aggregate, at the sectoral level or spatially, which precludes a

proper quantitative assessment of this particular dimension of

improvements in AI.

Such indirect effects of efficiency improvements on labor

markets can be complemented by specific interventions that

help strengthening labor to be complementary rather than

a substitute. In particular, there are three areas where

policy makers and social partners alike can help to steer

technological change to become complementary to workers

rather than substitutes:

• A first and most direct way of intervening to prevent

excessive automation is via R&D incentives and tax

credits: As highlighted in Figure 2, investment in AI is

highly concentrated among a few areas, mostly associated

with excessive automation (Acemoglu and Restrepo, 2019,

2020). Such interventions are always possible and might

bring about a more balanced developed as regards the

evolution of AI and its social impact. However, from the

discussion of the AI trilemma, it follows that a broad-

based support of advances in AI that are complementary

to labor might not necessarily solve the energy problem

at the same time. Rather, as with previous waves of

technological progress, automation can come at the cost of

excessive use of energy. In other words, direct interventions

for AI development need to focus simultaneously on

their resource-efficiency and labor-complementarity aspect

in order to be effective when trying to address the

AI trilemma.

• A second intervention works through reducing the tax

burden on labor that has specifically in the US led to strong

incentives for automation (Acemoglu et al., 2020). Instead,

a shift of the tax burden away from labor toward energy

consumption can address both the adverse resource and

labor impact of AI. Indeed, as discussed by Ciminelli et al.

(2019) an often overlooked channel of a revenue-neutral

tax reform toward consumption taxes is that it strengthen

labor supply incentives at the lower end of the income

distribution, thereby partly correcting for its regressive

income effect.

• Finally, the most indirect and challenging way to steer the

degree to which a resource-efficient evolution of AI can

produce positive outcomes on jobs and working conditions

is by strengthening labor market institutions, such as

work’s councils that influence technological choices at the

firm level (El-Ganainy et al., 2021). Such institutional

arrangements have been shown to affect the way in

which technologies are being applied and implemented

at the workplace level. In the scenario envisaged here,

activities would develop in sectors and occupations that

would benefit from both AI-triggered resource efficiency

improvements and institutional comparative advantages in

favor of cooperative labor relations (Ernst, 2005).

A first approach to address the AI trilemma, therefore, lies

with the necessity to steer AI developments in the direction

of improving total factor productivity as an aspect for which

AI is particularly suited and where its potential to substitute

for labor is minimized, simply because so far none of these

network functions are fulfilled by human labor. Complementary

interventions are needed, however, to address possible adverse

effects of resource-efficiency enhancing AI applications in labor-

intensive occupations and sectors. In the following, we discuss

how the particular network complementarities implied by AI

might challenge such an approach.

4.2. Solving the productivity-energy
dilemma: Incentivize the use of network
applications

Not all AI applications are affected to the same extent

by the AI-trilemma. Especially the already mentioned network

applications have the potential to perform particularly well

when it comes to lower resource consumption and improve

inclusivity. Well-trained AI routines, for example regarding

electricity management or water consumption in agriculture

already reduce the burden on the environment today and

offer possibilities to address climate change effectively (see,

for instance, Rolnick et al., 2023). Digital technologies are

likely to play a key role in helping our societies to adapt

to rising climate risks by making critical infrastructure more

resilient (Argyroudis et al., 2022). Furthermore, such solutions

also offer opportunities for cost-effective knowledge transfer to

developing countries, where there is still a great need to catch up

onmodern technologies adapted to local conditions. Companies

such as Google and Microsoft have already discovered this
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need and have begun to establish their own research centers

in some developing countries. And local solutions, especially

in agriculture, also show potential productivity gains in these

countries (Ernst et al., 2019). In the following, we briefly discuss

three areas where the networkmanagement of AI tools can prove

of particular support: energy management, traffic management

and remote work.

Energy management is particularly high on the agenda

for AI applications. Managing complex electricity grids across

different jurisdictions (particularly acute in Europe) and diverse

energy sources as energy production is increasingly ensured

by renewables pose formidable challenges to grid management.

Failure for proper management and anticipation of external

(weather) events can lead to grid outage, as experienced in

Texas during the winter of 2020/21, for instance. Combining

Internet of Things devices and smart meters into smart grids

has been a focus of development in the energy industry (Ahmad

et al., 2022). Beyond grid management, preventive maintenance

and smart consumption are also major areas of research and

development that can help both in reducing risks of outage

and overall consumption9. Power consumption management,

in particular, has become an active area of research for tech

companies in their attempt to reduce their own carbon footprint

and is likely to contribute to a substantial reduction of the

energy-intensity of AI models10.

Mobility management as part of a smart city policy is

another area of high potential for digital tools to address

the AI trilemma. Logistics management is an area where

modern communication networks and complex supply chain

management is already making use of AI-powered tools11.

Similarly, applications regarding modal interconnectivity for

individual transportation receive increasing attention, especially

in areas where transport supply elasticity is limited. These

applications are meant to facilitate personal traffic in dense

urban settings that provide alternative modes of transportation

for the same route. Managing such traffic networks through AI-

powered tools will allow to improve traffic fluidity and manage

limited infrastructure capacity more effectively (Nepelski, 2021).

A final area to be considered here is the role AI can

play in our current transition to a higher share of remote

work. Advanced economies, in particular, have demonstrated

surprising resilience with respect to requirements to work from

home that came with the pandemic-induced lockdowns in

2020/21. Dubbed “potential capital,” the large share of digital

9 https://www.xcubelabs.com/blog/applications-of-ai-in-the-

energy-sector/

10 https://ai.googleblog.com/2022/02/good-news-about-carbon-

footprint-of.html

11 https://www.technologyreview.com/2021/10/20/1037636/

decarbonizing-industries-with-connectivity-and-5g/?mc_cid=

98f3a8206d&mc_eid=59ed455432

infrastructure and personal computing devices allowed a large

part of the workforce to continue their economic activities and

limit the economic outfall of the health crisis (Eberly et al.,

2021). As economies are recovering from this shock, remote

work will remain a reality at least for part of the workforce,

creating challenges in terms of scheduling, information sharing

and networking (Kahn, 2022). In particular the development and

maintenance of personal and professional ties that are important

for economic advancement have been shown to be critically

affected by remote work (Yang et al., 2022). So far, gains from

going remote have been meager. Both business leaders and

employees are still trying to figure out how best to make use

of the new flexibility that working from home offers (Cappelli,

2021). Here again, AI tools can prove an important answer

to solve this challenge at least partially, developing complex

scheduling software and helping to maintain information

integrity across highly distributed networks of employees.

Taken together such applications make use of the potential

of AI tools to directly address questions of aggregate resource

efficiency rather than substituting capital for labor, thereby

bringing us closer to resolving the AI-trilemma.

4.3. Solving the
concentration-productivity dilemma:
Redistribute rents

As the previous discussion makes clear, these changes

require adjustments not only in the way technology is being

developed but also in the institutional and policy settings under

which innovators and businesses operate. In concluding this

section, three approaches are being discussed that have the

potential to address both the technological and the distributional

aspects of the AI trilemma:

A first, traditional answer is to try to use taxes to better

capture capital gains, while at the same time shifting the tax

pressure from labor back toward capital. This has often been

discussed in connection with a robot tax (Merola, 2022). On

the one hand, it would allow the enormous profits of digital

companies to be captured. On the other hand, tax fairness would

be restored, which could relieve the factor labor and ease the

pressure toward rationalization and job losses. However, in a

global economy, governments have tight limits on how much

they can tax internationally operating companies. Attempts to

extend taxation to the consumption of digital services instead

of profits are being resisted by those countries that are home to

a myriad of large, digital companies. Moreover, as mentionned

before, the tax burden needs to shift away from labor and toward

energy consumption if the trilemma is to be properly addressed.

A second, more innovative approach is to ensure greater

competition between digital enterprises, for instance by making

it easy to transfer data between platforms using uniform
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standards and protocols. Some solutions also propose data

ownership in order to provide a monetary incentive for those

who make their data available by using the platforms. So

far, however, none of these solutions are fully developed and

practicable yet. Moreover, only very few users can derive

relatively large profits from such approaches, while the vast

majority of them would have little to expect. The incentive to

switch platforms or to reap monetary rewards would be too low

to solve the AI trilemma.

A final, little debated solution is to set up a sovereign digital

wealth fund that participates widely in the digital economy.

Currently, sovereign wealth funds (SWF) have been set up in

relation with tangible public goods such as natural resources.

Leaving the exploitation of such resources to private companies,

sovereign wealth funds invest in these activities to the benefits

of a public shareholder, such as the government. This allows the

benefits of such public goods to be passed on to a broad group

of people. However, instead of feeding off oil wells (as in the

case of Saudi Arabia, Norway) or fish stocks (as in Alaska), a

Sovereign Digital Wealth Fund would be financed by taxes and

new debt, in order to generate returns by investing in a broad

fund of innovative digital companies. At the same time, such

a fund, provided it invests deeply enough, would also be able

to directly influence the operative business in market-dominant

companies in order to prevent the exploitation of such positions.

Similarly, the fund could also aim at exerting influence at the

micro level to ensure that ethical and ecological standards are

met when using AI. Existing SWFs have increasingly invested in

technology sectors, without, however, taking an active stance as

regards the technological development nor the economic impact

of the companies they have invested in Engel et al. (2020).

None of the solutions outlined here will be sufficient in

themselves to resolve the AI trilemma. National solutions often

do not provide sufficient guarantee that all market participants

will actually be offered the same conditions. International

approaches, especially in the area of taxation, are slowly gaining

acceptance, but often only at the lowest common denominator.

Innovative solutions such as data ownership require institutional

changes, which will most likely take some time to be established

and enforced. However, an approach that addresses all three

proposed solutions should make it possible to find initial

answers to the AI trilemma while at the same time offering

new, individualized proposals that optimize the potential that

AI holds for jobs, income and inclusiveness. The future of work

demands not only technological innovations, but also political

and institutional ones.

5. Conclusion

The article introduces and discusses the AI sustainability

trilemma, the impossibility to achieve ecological sustainability,

(income) equality and productivity growth under the current

technological paradigm. It presents arguments as to why

the energy-intensive nature of current computing capabilities

combined with strong network externalities leads to market

concentration, narrow AI research and weak (aggregate)

productivity gains. The paper also discusses possible answers

to this trilemma, demonstrating the potential for directed

technological change toward network applications, for instance

in electricity and mobility management, as a way to improve

total factor productivity that will lead to a lower overall

ecological footprint and higher aggregate productivity without

worsening inequality. Such directed technological change

requires, however, both technological and institutional changes

to take place in order to reduce the tendancy of the digital

economy toward market concentration.

Much of the potential to overcome the AI trilemma

remains speculative at this stage, simply because the overall

impact of directed technological change has not been tested or

implemented at scale. Some of the institutional shifts required

are likely to be resisted by strong incumbents that might

lose their market dominant positions. At the technological

level, individual applications show the potential to address the

shortcomings of the current direction of technological change

but real-world examples are lacking at the time of writing

of this article. As new applications are being developed and

implemented at scale, careful empirical research is necessary

to assess the extent to which they can truly address the AI

trilemma and possible additional policy changes required to

fully benefit from the technological evolution around digital

tools and artificial intelligence. Policy shifts that encourage less

resource use and reduces (tax) penalties on hiring labor can

help induce the development of more socially beneficial digital

tools. A more active stance, for instance, via the establishment

of Sovereign Digital Wealth Funds similar to existing models on

natural resources management should be used to accelerate the

transition toward a new technological paradigm that overcomes

the AI trilemma. The switch from a supply-push to a demand-

pull technological regime as argued for in this paper requires

further analysis regarding the specific applications that can help

overcome the trilemma. In particular, beyond the technological

feasibility of these changes, the specific political and institutional

roadblocks need to be carefully identified and addressed,

opening yet another interesting research avenue.
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