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Mental chronometry encompasses all aspects 
of time processing in the nervous system and 
constitutes a standard tool in many disciplines 
including theoretical and experimental psychology 
and human neuroscience. Mental chronometry has 
represented a fundamental approach to elucidate 
the time course of many cognitive phenomena and 
their underlying neural circuits over more than a 
century. Nowadays, mental chronometry continues 
evolving and expanding our knowledge, and our 
understanding of the temporal organization of the 
brain in combination with different neuroscience 
techniques and advanced methods in mathematical 
analysis. In research on mental chronometry, 
human reaction/responses times play a central 
role. Together with reaction times, other topics in 
mental chronometry include vocal, manual and 
saccadic latencies, subjective time, psychological 
time, interval timing, time perception, internal 
clock, time production, time representation, time 

discrimination, time illusion, temporal summation, temporal integration, temporal judgment, 
redundant signals effect, perceptual, decision and motor time, etc.

The aim of this research topic is to provide an overview of the state of the art in this field—its 
relevance, recent findings, current challenges, perspectives and future directions. Thus, as 
a result, a collection of 14 original research and opinion papers from different experts have 
been gathered together in a single volume.

We hope this research topic will provide a useful framework and an up-to-date set of papers for 
further discussion on mental chronometry within the human brain. We are grateful to all the 
referees for their valuable support, effort, and time during the creation of the research topic.

Citation: Medina, J. M., Wong, W., Díaz, J. A., Colonius, H., eds. (2015). Advances in Modern 
Mental Chronometry. Lausanne: Frontiers Media. doi: 10.3389/978-2-88919-566-4

ADVANCES IN MODERN MENTAL 
CHRONOMETRY

Topic Editors:  
José M. Medina, Universidad de Granada, Spain
Willy Wong, University of Toronto, Canada
José A. Díaz, Universidad de Granada, Spain
Hans Colonius, Carl von Ossietzky Universität Oldenburg, Germany

Image courtesy of Dr. José M Medina and  
Dr. José A Díaz, University of Granada, 
Spain. Copyright José M Medina and José 
A Díaz. 

http://journal.frontiersin.org/researchtopic/advances-in-modern-mental-chronometry-2046
http://journal.frontiersin.org/journal/human-neuroscience


3 June 2015 | Advances in Modern Mental ChronometryFrontiers in Human Neuroscience

Table of Contents

05 Advances in modern mental chronometry
José M. Medina, Willy Wong, José A. Díaz and Hans Colonius

Power laws
08 Multifractal analyses of human response time: potential pitfalls in the 

interpretation of results
Espen A. F. Ihlen

12 A theory of power laws in human reaction times: insights from an information-
processing approach
José M. Medina, José A. Díaz and Kenneth H. Norwich

16 Spectral convergence in tapping and physiological fluctuations: coupling and 
independence of 1/f noise in the central and autonomic nervous systems
Lillian M. Rigoli, Daniel Holman, Michael J. Spivey and Christopher T. Kello

26 What does scalar timing tell us about neural dynamics?
Harel Z. Shouval, Marshall G. Hussain Shuler, Animesh Agarwal and  
Jeffrey P. Gavornik

Reaction time distributions
32 Sequential sampling model for multiattribute choice alternatives with random 

attention time and processing order
Adele Diederich and Peter Oswald

45 Manual choice reaction times in the rate-domain
Christopher M. Harris, Jonathan Waddington, Valerio Biscione and Sean Manzi

62 A new perspective on binaural integration using response time methodology: 
super capacity revealed in conditions of binaural masking release
Jennifer J. Lentz, Yuan He and James T. Townsend

78 Modeling violations of the race model inequality in bimodal paradigms:  
co-activation from decision and non-decision components
Michael Zehetleitner, Emil Ratko-Dehnert and Hermann J. Müller

Human vision system
93 Attentional spreading to task-irrelevant object features: experimental support 

and a 3-step model of attention for object-based selection and feature-based 
processing modulation
Detlef Wegener, Fingal Orlando Galashan, Maike Kathrin Aurich and  
Andreas Kurt Kreiter

http://journal.frontiersin.org/researchtopic/advances-in-modern-mental-chronometry-2046
http://journal.frontiersin.org/journal/human-neuroscience


4 June 2015 | Advances in Modern Mental ChronometryFrontiers in Human Neuroscience

107 Visual evoked potentials to change in coloration of a moving bar
Carolina Murd, Kairi Kreegipuu, Nele Kuldkepp, Aire Raidvee, Maria Tamm and  
Jüri Allik

Human auditory system and time perception
115 Overestimation of the second time interval replaces time-shrinking when the 

difference between two adjacent time intervals increases
Yoshitaka Nakajima, Emi Hasuo, Miki Yamashita and Yuki Haraguchi

127 Cortical activity associated with the detection of temporal gaps in tones:  
a magnetoencephalography study
Takako Mitsudo, Naruhito Hironaga and Shuji Mori

138 Temporal dysfunction in traumatic brain injury patients: primary or secondary 
impairment?
Giovanna Mioni, Simon Grondin and Franca Stablum

150 Does time ever fly or slow down? The difficult interpretation of psychophysical 
data on time perception
Miguel A. García-Pérez

http://journal.frontiersin.org/researchtopic/advances-in-modern-mental-chronometry-2046
http://journal.frontiersin.org/journal/human-neuroscience


EDITORIAL
published: 06 May 2015

doi: 10.3389/fnhum.2015.00256

Frontiers in Human Neuroscience | www.frontiersin.org May 2015 | Volume 9 | Article 256 |

Edited and reviewed by:

Hauke R. Heekeren,

Freie Universität Berlin, Germany

*Correspondence:

José M. Medina,

jmedinaru@cofis.es

Received: 26 February 2015

Accepted: 21 April 2015

Published: 06 May 2015

Citation:

Medina JM, Wong W, Díaz JA and

Colonius H (2015) Advances in

modern mental chronometry.

Front. Hum. Neurosci. 9:256.

doi: 10.3389/fnhum.2015.00256

Advances in modern mental
chronometry

José M. Medina 1*, Willy Wong 2, José A. Díaz 1 and Hans Colonius 3

1Departamento de Óptica, Facultad de Ciencias, Universidad de Granada, Granada, Spain, 2Department of Electrical and

Computer Engineering, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada,
3Department für Psychologie, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

Keywords: mental chronometry, reaction time, timing and time perception, sensory perception, cognition, human

performance, stochastic processes, decision making

Mental chronometry encompasses all aspects of time processing in the nervous system and
constitutes a standard tool in many disciplines including theoretical and experimental psychology
and human neuroscience. Mental chronometry has represented a fundamental approach to
elucidate the time course of many cognitive phenomena and their underlying neural circuits
over more than a century. Nowadays, mental chronometry continues evolving and expanding our
knowledge, and our understanding of the temporal organization of the brain in combination with
different neuroscience techniques and advanced methods in mathematical analysis. In research
on mental chronometry, human reaction/responses times (RT) play a central role. Together with
RTs, other topics in mental chronometry include vocal, manual and saccadic latencies, subjective
time, psychological time, interval timing, time perception, internal clock, time production, time
representation, time discrimination, time illusion, temporal summation, temporal integration,
temporal judgment, redundant signals effect, perceptual, decision and motor time, etc. It is worth
noting that there have been well over 37,000 full-length journal papers published in the last
decade on a variety of topics related to simple and choice RTs, etc. This amounts to approximately
3800 papers per year, or roughly 10 papers per day (source: PubMed, similarly Thomson Reuters
Web of Science). There are comprehensive reviews that deal extensively with the history of
mental chronometry, experimental methods and paradigms, stochastic models, etc. as well as
its relationship to other psychological and physiological variables, neuroscience methods and
clinical applications (Laming, 1968; Posner, 1978, 2005; Welford and Brebner, 1980; Townsend
and Ashby, 1983; Luce, 1986; Meyer et al., 1988; Robbins and Brown, 1990; Schall, 2001; Mauk and
Buonomano, 2004; Smith and Ratcliff, 2004; Jensen, 2006; Gold and Shadlen, 2007; Linden, 2007;
Grondin, 2010; Merchant et al., 2013; Allman et al., 2014).

The aim of this research topic is to provide an overview of the state of the art in this field—its
relevance, recent findings, current challenges, perspectives and future directions. Thus, as a result,
a collection of 14 original research and opinion papers from different experts have been gathered
together in a single volume. They outline a selection of unsolved problems and topics in mental
chronometry mainly within the context of the human visual system as well as the auditory system.
One of the unsolved problems is the functional role of power laws in RT variability and in the study
of timing. Power laws are ubiquitous in many complex systems, and their experimental validity and
theoretical support represent a fundamental aspect in many disciplines, such as in biology, physics,
finance, etc. In this theme issue, the papers of Ihlen (2014), Medina et al. (2014), Rigoli et al. (2014)
and Shouval et al. (2014) address different aspects of power laws, namely, multifractal analysis
on RT series; an information theoretic basis of RT power law scaling; Fourier-based power law
correlations (“1/f noise”) in a tapping task and its comparison with other physiological processes
(e.g., heartbeat intervals); and a log-power lawmodel of the firing rate of neurons in interval timing.

A second unsolved problem involves RT-based methods and research into RT distributions. RT
distributions are typically positively skewed and often exhibit long right-tails in the time-domain.
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A long-standing issue deals with the shape of RT distributions,
their intrinsic stochastic latency mechanisms and neural basis.
Sequential-sampling models are a common approach widely
used in human RTs and simple decision making (Smith and
Ratcliff, 2004). Diederich and Oswald present a RT sequential-
sampling model for multiple stimulus features based on an
Ornstein–Uhlenbeck diffusion process (Diederich and Oswald,
2014). In a different type of analysis, the work of Harris et al.
introduces an alternative approach to examine very long RTs
in the rate-domain (i.e., 1/RT). These authors investigate the
shape of choice RT distributions and sequential correlations
using autoregressive techniques (Harris et al., 2014). In general,
RT distributions exhibit faster RTs under summation/facilitation
tasks when two or more redundant signals are available as
compared with a single signal or sensory modality (e.g.,
binocular vs. monocular vision), usually called redundant signals
effect. The work of Lentz et al. examines binaural vs. monaural
hearing performance under noise masking tasks using modeling
techniques based on the concept of workload capacity and
different processing mechanisms (e.g., serial vs. parallel, etc.) and
stopping rules (Lentz et al., 2014). Within the same redundant
signals paradigm, Zehetleitner et al. study bimodal (audio-visual)
facilitation effects using sequential-sampling models
(Zehetleitner et al., 2015).

Regarding the human vision system, the work of Wegener
et al. examines the visual attention mechanisms using colored
stimuli (random dot patterns), and they have presented a novel

three-step model of attention to predict the corresponding RT
distributions (Wegener et al., 2014). The work of Murd et al.
exemplifies the used RTs in conjunction with visual evoked
potentials in the detection of visual colored stimuli (Murd
et al., 2014). There are also studies focusing on the auditory
system, including the work of Nakajima et al. that investigates
the foundations of time perception using a time illusion based
on an overestimation of a second time interval preceded by
a first time interval or time-shrinking effect (Nakajima et al.,
2014). Mitsudo et al. present recorded magnetoencephalogram
signals in tasks that require to judge temporal gaps in tones
and have discussed their implications in the organization of the
auditory cortex (Mitsudo et al., 2014). Within the same time
perception paradigm, Mioni et al. show a detailed review on
temporal dysfunctions in traumatic brain injury patients (Mioni
et al., 2014). The present theme issue also includes the work of
García-Pérez who introduces a unified model to analyze different
psychophysical tasks in time perception and estimation of the
psychometric function (García-Pérez, 2014).

We hope this research topic will provide a useful framework
and an up-to-date set of papers for further discussion on mental
chronometry within the human brain.
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INTRODUCTION
Analyses of response time series have
provided insight into mental organiza-
tion and cognitive processes used in a
wide variety of tasks such as simple reac-
tion time, word naming, choice decision,
visual search, memory search, and lexi-
cal decision (Gilden, 2001). One of the
new and frequently used sets of analy-
ses is the numerical definition of scale
invariant structure of response time series,
also called 1/f fluctuations. Component-
oriented theories suggest that this scale
invariant structure originated from an
idiosyncratic mechanism in the cognitive
system, whereas interaction-oriented the-
ories argue that scale invariant structure
in response time series arises from self-
organizing interaction between different
sources and mechanisms (cf. Diniz et al.,
2011). In this short commentary, new
analyses of human response time called
multifractal analyses will be introduced,
and potential pitfalls of interpreting the
results of these analyses will be discussed.

Multifractal analyses quantify the inter-
mittent structure of response time series
that are created by interactions between
temporal scales of response series (Ihlen
and Vereijken, 2010, 2013). Even though
these analyses have been recently intro-
duced in analysis of human behavior,
their mathematical fundament of these
analyses was introduced four decades
ago (Yaglom, 1966; Mandelbrot, 1974).
Typically, response time series with a large
number of trials will contain intermit-
tent periods with a higher number of
slow response latencies than the rest of
the response series (e.g., Holden et al.,

2009). These intermittent periods of slow
response latencies might indicate shifts
in the participant attention to the stim-
uli source or active periods of response
error corrections (Ihlen and Vereijken,
2010, 2013). In order to quantify the
intermittent structure of response time
series, multifractal analyses combine two
fundamental classes of analyses: (1) model
based analyses of the response time distri-
bution and (2) analyses of the dependency
of the time ordering of the responses.
Class 1 analyses have shown that the
response time distributions across cogni-
tive tasks is unimodal, positively skewed,
and with a heavy right tail containing
the slow response latencies (e.g., Luce,
1986; Holden et al., 2009). Class 2 anal-
yses have shown that the response times
have long-range dependency across hun-
dreds and even thousands of trials and,
consequently, that the response time series
cannot be considered to be independent
random variables assumed by class 1
analyses (Gilden, 2001). The long-range
dependency (i.e., monofractal structure)
of the response time series are numeri-
cal, defined as a single scaling exponent
by spectral analyses, autocorrelation anal-
yses, detrended fluctuation analysis, and
dispersion analysis, to mention but a few
(cf. Diniz et al., 2011). However, Class 2
analyses assume that the response time
is Gaussian distributed, whereas Class 1
analyses indicate that they have a non-
Gaussian heavy tail toward slow response
latencies. Multifractal analyses are able to
parameterize the non-Gaussian heavy tails
that are created using intermittent varia-
tion by assessing the complete spectrum

of scaling exponents. Thus, multifrac-
tal analyses are important extensions of
monofractal analyses of response time
series.

All multifractal analyses are based on a
decomposition of the response time series
into a scale-dependent measure that iden-
tifies the periods of intermittent varia-
tion (see upper panel of Figure 1). The
scale dependent measure is the basis for
computation of the multifractal spectra
along two formalisms (see arrows A and
B in Figure 1). In the Legendre formal-
ism, the scale-dependent measure μs,t is
used in the computation of the q-order
moment. μs,t is amplified by the positive
q-orders in the periods with large vari-
ation, whereas μs,t is amplified by the
negative q-orders in periods with small
variation. An exponent ζq is then esti-
mated from the scaling of each of the
q-order moments before the multifractal
spectra are computed from ζq (see Ihlen
and Vereijken, 2013 for further details).
In the large deviation formalism, local
exponents are computed from the scale-
dependent measure μs,t , and the mul-
tifractal spectrum is estimated from the
distribution of the local exponents. The
increased width of multifractal spectra will
reflect more distinct periods of intermit-
tent variation in response time series (see
example in Figure 2 in Ihlen and Vereijken,
2013). Additional surrogate tests also
detect the periods influenced by mul-
tiplicative interactions between temporal
scales (Ihlen and Vereijken, 2010). The
different multifractal analyses like struc-
ture function approach, entropy analyses,
wavelet transformation modulus maxima,
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FIGURE 1 | A flow chart of the estimation of the multifractal spectrum

Dh by analyses within the Legendre formalism (arrows A) and large

deviation formalism (arrows B). The basis for all multifractal analyses
within both formalisms is the scale-dependent measure (upper contour
plot) that decomposes the intermittent variation of response time series
into both the time and scale domain. The red contours indicate large
scale-dependent measures of the response time series that coincide with
the time periods of intermittent large variations. In contrast, the blue
contours indicate small scale-dependent measures that coincide with the
time periods of intermittent small variations. The panel below the top
arrow A indicates that the scale-dependent measure is summarized by its

q-order statistical moment. The statistical moments with positive q’s
amplify the large μs,t (i.e., red contours) whereas the statistical moments
with negative q’s amplify the small μs,t (i.e., blue contours). The scaling
exponent ζq numerically defines the power law relation of the intermittent
periods with large (i.e., positive q’s) and small variation (i.e., negative q’s).
The panel below the bottom arrow A illustrates a multifractal spectrum Dh

estimated from ζq . The panel below the top arrow B illustrates the direct
estimation of the local singularity exponent ht as the local slope of log(μs,t )
vs. log(s) for each time instant t. The panel below the bottom arrow B
illustrates the multifractal spectrum Dh estimated from the distribution of
local singularity exponent ht . Adapted from Ihlen and Vereijken (2013).

gradient modulus wavelet projection, and
multifractal detrended fluctuation analysis
are defined by the particular way the scale-
dependent measures are computed (Ihlen,
2013a; Ihlen and Vereijken, 2013). The
Legendre and large deviation formalisms
contain statistical assessments of multi-
fractality. Various geometrical assessments
have been suggested in the literature that

estimates the box counting dimension of
the time series (e.g., Russel et al., 1980;
Chaudhuri and Sarkar, 1995). However,
these methods are only numerically sta-
ble for positive q orders and, consequently,
only estimate the left tail of the mul-
tifractal spectrum. Technical details for
the computation of different multifrac-
tal analyses within the Legendre and large

deviation formalisms, their parameter set-
tings, Matlab codes, and comparison of
their performance can be found elsewhere
(Kantelhardt et al., 2002; Turiel et al.,
2006; Kantelhardt, 2011; Ihlen, 2013a).
Multifractal analyses have been applied to
several cognitive tasks like simple reac-
tion time, word naming, choice decision,
and feedback manipulation (Ihlen and
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Vereijken, 2010; Kuznetsov and Wallot,
2011). All results from these studies indi-
cate that response time series have mul-
tifractal properties that are not described
by conventional monofractal analyses and
that some of these properties might be task
dependent.

POTENTIAL PITFALLS IN THE
INTERPRETATION OF MULTIFRACTAL
ANALYSES
The interpretation of multifractal spectra
of response time series has potential pit-
falls. First, the multifractal spectra alone
do not indicate that intermittent response
time variation is generated by interac-
tion between temporal scales. Wide mul-
tifractal spectra of response time series
can reflect a power-law response time dis-
tribution and not intermittency gener-
ated by multiplicative interactions (Ihlen,
2013b). Surrogate tests have to be used
to properly identify multiplicative inter-
actions between temporal scales. In these
tests, surrogate versions of the response
time series are created that eliminate the
interaction between temporal scales but
preserve all other statistical properties.
Multiplicative interaction is present when
there is a significant difference between
response time series and its surrogate
series (e.g., Ihlen and Vereijken, 2010).

Second, response time series of 1000
trials might be too small to establish
the presence of multifractality. An ideal
monofractal signal will have an infinite
number of scales whereas the 1000 trials of
response series will only give three scales
of order (i.e., 10, 100, and 1000 trials).
However, in contrast to ideal monofrac-
tal signal, a multifractal signal has scale
invariant properties only up to a max-
imum scale (Bacry et al., 2001). The
q-order moments and scale-dependent
measure converge into a single point on
this maximum scale. Thus, in contrast to
monofractal analyses, it is sufficient for
multifractal analyses to include scales up
to the maximum order. Assuming that
the signal originates from a prototypical
multifractal process, called a multiplica-
tive cascade, the maximum scale could
be assessed by analysis of the autocor-
relation function (Bacry et al., 2001).
Nevertheless, the estimation error of the
multifractal spectra related to the num-
ber of trials in the response will also be

dependent on the chosen q-range for the
methods within the Legendre formalism
and the unknown degree of multifractality.
Large degree of multifractality will need
large number of trials for a robust assess-
ment of the tails of the multifractal spec-
tra. Consequently, multifractal analysis is
quite sensitive to differentiate between
monofractal and multifractal response
time series, but not between response
time series with large degree of multifrac-
tality. Furthermore, multifractal analysis
of moderately sized response time series
will both be more susceptible to noise
and non-stationarities compared to longer
time series (Ihlen, 2013a). A possible solu-
tion is to compare the results of two or
more multifractal analysis before inter-
preting the results. Large deviations in the
results of two multifractal analyses indi-
cate that response time series deviate from
multifractality and that the results from
these analyses must be interpreted with
caution.

Third, no single multifractal analy-
sis seems to have superior performance
assessing the multifractal spectra of
response time series. Previous studies
statistical methods based on wavelet
transformation, like wavelet transform
modulus maxima, has been shown to
superior to conventional methods based
on the structure function (Muzy et al.,
1993). Furthermore, both multifractal
detrended fluctuation analysis and gra-
dient modulus wavelet projection has
shown superior performance to wavelet
transform modulus maxima on moder-
ate sized time series (Kantelhardt et al.,
2002; Oświęcimka et al., 2006; Turiel et al.,
2006). Kelty-Stephen et al. (2013) have
suggested that an entropy based analysis
is the best method to assess the mul-
tifractal spectrum from response time
series and that other multifractal analy-
ses have inferior performance compared
to this method using their choice of a
scale-dependent measure. However, recent
systematic comparison of multifractal
analyses shows that all multifractal analy-
ses have different pros and cons and that
no single analyses seem to be superior to
others (Ihlen, 2013a).

Fourth, the origin of multifractal and
intermittent variation in response time
series is still debated. Intermittent varia-
tion in response time has been suggested to

be caused by changes in the participants’
attention to stimuli or intermittent error
corrections (Ihlen and Vereijken, 2010)
and linked to cognitive phenomena like
strong anticipation (Stephen and Dixon,
2011). Furthermore, multifractal spectra
have been suggested to reflect to a greater
extent the presence of self-organization
and interaction-dominant dynamics com-
pared to the outcomes of conventional
monofractal analyses (Ihlen and Vereijken,
2010; Kelty-Stephen et al., 2013). The
interaction-dominant view has been sug-
gested to contrast explicit models of an
idiosyncratic mechanism in the cogni-
tive system specific to cognitive tasks or
the dynamics of particular localized com-
ponents (e.g., Van Orden et al., 2003).
However, idiosyncratic mechanisms for
multifractal variations have been sug-
gested for human locomotion and cardiac
function, which indicates that intermit-
tent variations can be generated by task
specific components (Ivanov et al., 1998;
West and Scafetta, 2003). It is unlikely that
any analysis or model will provide conclu-
sive evidence on the generating processes
of multifractal variation in response time
series (Hasselman, 2013; cf. Kantz and
Schreiber, 2004). The generating processes
of multifractal and intermittent varia-
tion should be decided by experimenta-
tion under conditions of strong inference
(Hasselman, 2013). Consequently, exper-
imental design should be use to confirm
predicted changes in the multifractal spec-
tra. Predicted covariation between local
scaling exponents of the response time
series and other psychological measures
will indicate a common generating process
of the multifractality of these signals. As an
example, intermittent changes in attention
and error correction could be verified by
multifractal analyses of gaze fixation and
eye movements during the same cogni-
tive task (e.g., Kelty-Stephen and Mirman,
2013).

In summary, caution should be made
when inferring response time series as
multifractal in a strict mathematical sense.
Nevertheless, the width of the multi-
fractal spectra could still be a sensitive
index of the intermittency of the response
time series even though the intermit-
tency is not prototypical multifractal. The
main advantage of multifractal analyses
of response time series is their ability to
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assess the temporal changes in their scale
invariant structure. Further studies should
focus on the assessment of generating pro-
cesses of multifractal by experimentation
under strong inference. This might include
the assessment of temporal changes in
the local scaling exponent (i.e., the local
structure of response time variation) in
more heterogeneous and real-life experi-
ments where the task conditions and char-
acteristics of the stimuli involve change
across trials. Furthermore, the correla-
tion between the temporal changes in the
structure of the response time variation
and other neurophysiological and psy-
chological measurements can be assessed
through multifractal analyses by correlat-
ing the temporal change of the scaling
exponents (see example in Figure 7 in
Ihlen and Vereijken, 2013). Time series
from different levels of the cognitive and
neurophysiological system are more likely
to correlate in their scale independent
structure rather than their unit dependent
magnitude. Thus, multifractal analyses
might provide new insight into the inter-
action and coordination of multiple lev-
els of cognitive performance and human
behavior.
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Oświęcimka, P., Kwapien, J., and Drozdz, S. (2006).
Wavelet versus detrended fluctuation analysis of
multifractal structures. Phys. Rev. E 74:016103. doi:
10.1103/PhysRevE.74.016103

Russel, D., Hanson, J., and Ott, E. (1980). Dimension
of strange attractors. Phys. Rev. Lett. 45,
1175–1178. doi: 10.1103/PhysRevLett.45.1175

Stephen, D. G., and Dixon, J. A. (2011). Strong
anticipation: multifractal cascade dynamics
modulate scaling in synchronization behav-
iors. Chaos Solit. Fract. 44, 160–168. doi:
10.1016/j.chaos.2011.01.005

Turiel, A., Perez-Vicente, C. J., and Grazzini, J. (2006).
Numerical methods for the estimation of the
estimation of the multifractal singularity spec-
tra on sampled data: a comparative study. J.
Comp. Phys. 216, 362–390. doi: 10.1016/j.jcp.2005.
12.004

Van Orden, G. C., Holden, J. G., and Turvey, M.
T. (2003). Self-organization of cognitive perfor-
mance. J. Exp. Psychol. Gen. 132, 331–350. doi:
10.1037/0096-3445.132.3.331

West, B. J., and Scafetta, N. (2003). Nonlinear dynam-
ical model of human gait. Phys. Rev. E 67:051917.
doi: 10.1103/PhysRevE.67.051917

Yaglom, A. M. (1966). Effect of fluctuations in energy
dissipation rate on the form of turbulence charac-
teristics in the inertial subrange. Dokl. Akad. Nauk
SSSR 166, 49–52.

Conflict of Interest Statement: The author declares
that the research was conducted in the absence of any
commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 23 April 2014; accepted: 27 June 2014;
published online: 21 July 2014.
Citation: Ihlen EAF (2014) Multifractal analyses of
human response time: potential pitfalls in the inter-
pretation of results. Front. Hum. Neurosci. 8:523. doi:
10.3389/fnhum.2014.00523
This article was submitted to the journal Frontiers in
Human Neuroscience.
Copyright © 2014 Ihlen. This is an open-access article
distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the
original publication in this journal is cited, in accor-
dance with accepted academic practice. No use, distribu-
tion or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 523 | 11

http://dx.doi.org/10.3389/fnhum.2014.00523
http://dx.doi.org/10.3389/fnhum.2014.00523
http://dx.doi.org/10.3389/fnhum.2014.00523
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


OPINION ARTICLE
published: 12 August 2014

doi: 10.3389/fnhum.2014.00621

A theory of power laws in human reaction times: insights
from an information-processing approach
José M. Medina1*, José A. Díaz1 and Kenneth H. Norwich2

1 Departamento de Óptica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
2 Department of Physics, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
*Correspondence: jmedinaru@cofis.es

Edited by:

John J. Foxe, Albert Einstein College of Medicine, USA

Reviewed by:

Andreas Klaus, National Institute of Mental Health, USA

Keywords: human reaction time, intrinsic variability, power laws, information transfer, Piéron’s law

Human reaction time (RT) can be defined
as the time elapsed from stimulus pre-
sentation until a reaction/response occurs
(e.g., manual, verbal, saccadic, etc.). RT
has been a fundamental measure of the
sensory-motor latency at suprathreshold
conditions for more than a century and
is one of the hallmarks of human per-
formance in everyday tasks (Luce, 1986;
Meyer et al., 1988). Some examples are
the measurement of RTs in sports sci-
ence, driving safety or in aging. Under
repeated experimental conditions the RT is
not a constant value but fluctuates irreg-
ularly over time. Stochastic fluctuations
of RTs are considered a benchmark for
modeling neural latency mechanisms at
a macroscopic scale (Luce, 1986; Smith
and Ratcliff, 2004). Power-law behavior
has been reported in at least three major
types of experiments. (1) RT distributions
exhibit extreme values. The probability
density function (pdf) is often heavy-tailed
and can lead to an asymptotic power-
law distribution in the right tail (Holden
et al., 2009; Moscoso del Prado Martín,
2009; Sigman et al., 2010). (2) RT vari-
ability (e.g., variance) is not bounded and
usually shows a power relation with the
mean, with an exponent β close to unity
(Luce, 1986; Wagenmakers and Brown,
2007; Holden et al., 2009; Medina and
Díaz, 2011, 2012). This relationship is a
manifestation of Taylor’s law (also called
“fluctuation scaling”) (Taylor, 1961; Eisler
et al., 2008), although departures from
power law have been reported (Eisler et al.,
2008; Schmiedek et al., 2009). And (3), the
mean RTs decay as the stimulus strength
increases (Cattell, 1886), an issue that is

well-described by a truncated power func-
tion written in the form of Piéron’s law
(Piéron, 1914, 1920; Luce, 1986):

tn + 1 = tn + d

Sp
(1)

tn + 1 indicates the mean RT, S is the
stimulus strength (e.g., loudness intensity,
odor concentration, etc.), tn represents the
asymptotic component of the mean RT
reached at very high stimulus strength and
d and p are two parameters (Luce, 1986).
The sub-index n denotes the time step
or order and it indicates a causal pro-
cess: tn + 1 grows from the previous stage
tn by an additive factor that depends on
the stimulus strength S (Medina, 2009).
The previous stage tn contains those pro-
cesses at the threshold at an earlier time
and tn + 1 in Equation (1) describes those
processes at suprathreshold conditions at
a later time (Norwich et al., 1989; Medina,
2009). The origin of power-law behav-
ior in RTs has been a long-standing issue.
Considerable effort has been dedicated in
modeling each power relation separately.
While it might be plausible that power laws
in RTs could share a limited number of
mechanisms, a successful theory remains
unresolved. The ubiquity of power laws
in many biological and physical systems
has revealed the existence of multiple gen-
erative mechanisms (Mitzenmacher, 2004;
Newman, 2005; Sornette, 2007; Frank,
2009). Research on a unifying frame-
work that links power laws in RTs is an
important issue for better understanding
the emergent complex behavior of neural

activity in simple decisions and in dys-
functional states.

We propose that type (3) power laws
govern the threshold for RT; and it fol-
lows consequently that power laws gov-
ern suprathreshold fluctuations in RT.
Piéron’s law is valid for each sensory
modality (Chocholle, 1940; Banks, 1973;
Luce, 1986; Overbosch et al., 1989; Pins
and Bonnet, 1996; Bonnet et al., 1999),
and in both simple and choice reaction
times (Schweickert et al., 1988; Pins and
Bonnet, 1996). Instead of diffusion mod-
els (Luce, 1986; Smith and Ratcliff, 2004),
we use elements from information the-
ory and statistical physics as the principal
conceptual tools. We also discuss random
multiplicative processes as an important
approach to Piéron’s law and power laws
in RTs.

In our information-theoretic formal-
ism, the information entropy function
H always expresses a measure of uncer-
tainty within a sensory neural network.
High information entropy values indi-
cates high uncertainty and vice versa.
Information is related to the drop of
uncertainty (measured, e.g., in bits). It
is postulated that sensory perception is
not an instantaneous act but it always
takes time (Norwich, 1993). Initially, for
a given external input signal, the sensory
system encodes the stimulus efficiently
and then, it adapts and transfers informa-
tion over time. Therefore, the H-function
depends explicitly on the time to repre-
sent a continuous process of sensory adap-
tation (Norwich, 1993). The human RT
can be re-defined as the time needed to
accumulate �H bits of information after
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efficient encoding (Norwich et al., 1989;
Norwich, 1993):

�H = H

(
1

t0

)
− H

(
1

tn + 1

)
> 0 (2)

Figure 1A represents the entropy function
H in Equation (2). At least two stages can
be differentiated. The H-function evolves
from a previous state of maximum uncer-
tainty reached at the encoding time t0,
H (1/t0), to a final adapting stage with
a lower uncertainty H (1/tn + 1) where a
reaction occurs, (tn + 1 > t0). Maximum
production of entropy and then, a reduc-
tion of uncertainty in �H as a func-
tion of time are concepts introduced from
statistical physics, the latter as expressed
by Boltzmann (Norwich, 1993). Based on

FIGURE 1 | (A) Schematic representation of the information entropy function H (1/t) (in bits) as a
function of the time t (Norwich, 1993). The transfer of information �H is defined in Equation (2)
from the encoding time t0 until a reaction occurs at tn + 1. (a.u.) = arbitrary units. (B) Schematic
representation of a model of hyperbolic growth in reaction times based on Piéron’s law and
analogous to Michaelis-Menten kinetics in biochemistry (i.e., the Hill equation) (Pins and Bonnet,
1996). In Michaelis-Menten kinetics, an enzyme E is bounded to a substrate U to form a complex
EU that is converted into a product D and the enzyme E. In Piéron’s law, those neurons tuned at
the time tn are bounded to those neurons that perform the formation of an internal threshold S0 in
bn = (

S0/S
)p to form the term tnbn that is converted into the product tnbn plus the time tn. Red

double arrows indicate that the “reaction” is reversible whereas green single arrows indicate that
the “reaction” goes only in one way.

an analytical model of the H-function
(Norwich, 1993), the gain of informa-
tion �H is connected with the formation
of an internal threshold in Equation (1)
(Norwich et al., 1989; Medina, 2009):

d = tnS
p
0 (3)

Piéron’s law can be written as follows:

tn + 1 = (bn + 1) tn, (4)

where bn = (S0/S)p. The parameter S0

represents an estimation of the inter-
nal threshold that controls the RT: an
external incoming signal S exceeding S0

leads to a RT response (Norwich et al.,
1989). Furthermore, S0 varies based on
several factors and provides the sensitivity

(1/S0) of the sensory system (e.g., in
vision the human contrast sensitivity func-
tion) (Felipe et al., 1993; Murray and
Plainis, 2003). The model of Piéron’s law
in Equation (4) sets a number of impor-
tant properties. First property, Equation
(4) indicates the existence of multiplicative
interactions in a cascade between differ-
ent time scales: the mean RT is expressed
in terms of the asymptotic time, tn, and
Piéron’s law is written in multiples of
threshold S0. That is, we work with dimen-
sionless ratios of S0/S (Norwich, 1993).
Different interpretations of the exponent
p have been reported. S

p
0 could be inter-

preted as the transfer or transducer func-
tion between neurons (Copelli et al., 2002;
Billock and Tsou, 2011) at the threshold.
The exponent p usually takes non-integer
values and could indicate a signature of
self-organized criticality in a phase tran-
sition (Kinouchi and Copelli, 2006). Here
the concept of phase transition does not
deal with the classical view of different
states of matter in thermodynamics (e.g.,
liquid vs. gas), but with different states
of connectivity between neurons as mod-
eled by branching processes (Kinouchi and
Copelli, 2006). Alternatively, power func-
tions S

p
0 can be derived from Mackay trans-

forms (Mackay, 1963) and the exponent
p could represent oscillatory synchroniza-
tion states between neurons (Billock and
Tsou, 2005, 2011). The model of Piéron’s
law in Equation (4) is a useful alternative
approach and optimal information trans-
fer is related with the entropy function
H (Norwich, 1993). Low values of p will
promote a minimum in �H after efficient
encoding, i.e., an Infomin principle at the
macroscopic scale (Medina, 2011, 2012).

Second property, the threshold bar-
rier S0 is not a fixed static value but
unstable and fluctuates over time due to
the presence of endogenous or internal
noise (Faisal et al., 2008). Consequently,
RTs are influenced and modified by neu-
ral noise. Therefore, Equation (4) is not
deterministic and is included in a general
class of discrete-time stochastic equations
that has been used in many applications
such as in epidemics, finance, etc. (Levy
and Solomon, 1996; Sornette and Cont,
1997; Takayasu et al., 1997; Newman,
2005; Sornette, 2006). The term bn is a
random and positive multiplicative factor
that depends on the temporal fluctuations
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of S0 and thus, on �H. It has been
demonstrated that the model of Piéron’s
law in Equation (4) produce type (1)
power laws. RT pdfs obey a transition from
a log-normal distribution into a power law
in the right tail (Medina, 2012). If RTs are
longer than the asymptotic term, tn, the
RT pdf is distributed as a power law with
an exponent γ that depends on the expo-
nent p of Piéron’s law (Medina, 2012):γ =
1 + (

c/p
)
, c being a constant. Two differ-

ent regimes are observed: for those val-
ues p > 0.6 the central moments diverge
and if p ≤ 0.6 they are finite (Medina,
2012). Therefore, long RTs compared to
the asymptotic term tn are considered
intermittent events over time. Their dis-
tribution is characterized by power law
pdfs that might have finite or infinite
variance. A cautionary note should be
mentioned here. The magnitude of p could
also depend on the metric of the stimu-
lus strength S selected and values different
from the boundary p ∼= 0.6 might be pos-
sible. For instance, this is important when
testing power law RT pdfs in color vision
because an appropriate color contrast met-
ric has not been established (Medina and
Diaz, 2010).

Third property, the reciprocal of
Piéron’s law is invariant under rescal-
ing (Chater and Brown, 1999; Medina,
2009). Taking the reciprocal of the
mean RT, R = 1/tn + 1. and the recipro-
cal of the irreducible asymptotic term,
Rmax = 1/tn in Equation (4), then,
R = Rmax

[
1 + (S0/S)p

]
. Therefore, the

reciprocal of the Equation (4) defines
an affine transformation over multiple
time scales that can be mapped into
the Naka-Rushton equation at the cel-
lular level (Naka and Rushton, 1966)
and the Michaelis-Menten equation in
enzyme reactions at the sub-cellular level
(Michaelis and Menten, 1913; Pins and
Bonnet, 1996). This suggests that some
general properties of RT patterns gov-
erned by Piéron’s law could be mirrored
in part into the dynamics of the Naka-
Rushton equation and/or the Michealis
kinetics (Medina, 2009, 2012). The Naka-
Rushton equation represents a canonical
form of non-linear gain control in neural
responses before saturation (Albrecht and
Hamilton, 1982; Billock and Tsou, 2011;
Carandini and Heeger, 2012). Threshold
normalization in the Naka-Rushton

equation is often modeled as a pool of
many neurons tuned to different stimulus
properties (Heeger, 1992; Carandini and
Heeger, 2012). In the Michaelis-Menten
equation, the normalization factor is the
Michaelis constant and indicates the sub-
strate concentration at a reference value.
The Michaelis constant is related with the
substrate’s affinity for the enzyme and
depends on many factors (Murray, 2002).
Figure 1B represents a schematic model of
RT growth based on Piéron’s law and an
analogy with enzyme kinetics.

The exponent p of Piéron’s law could
be related to the scaling exponent β of
the variance-mean relationship in type
(2) power law. A power law relation-
ship between variance and mean of the
stimulus population has been proposed
in the H-function (Norwich, 1993) and
this relationship could be compatible
with the RT variance-mean relationship
in the regime around p > 0.6 (Medina,
2011, 2012). Alternative approaches have
explored α-stable processes to relate type
(1) power laws and long-range correla-
tions (Ihlen, 2013). Tweedie exponential
dispersion models are also able to describe
type (2) power laws in many biological
and physical processes (Eisler et al., 2008;
Kendal and Jørgensen, 2011; Moshitch
and Nelken, 2014). However, a connec-
tion between Piéron’s law and α-stable and
Tweedie models remains unknown.

In summary, maximum entropy H and
then, adaptation over time in Equation
(2) leads to a type (3) power law,
Piéron’s law Equation (1). The H-function
also explains many empirical relations of
sensory perception (Norwich, 1993). An
important message of the entropy func-
tion H is that the term d in Piéron’s law
depends explicitly on a sensory thresh-
old S0 by the power law Equation (3).
There is also experimental evidence that
RTs and threshold-based sensitivities are
mediated by common sensory processes
(Felipe et al., 1993; Murray and Plainis,
2003). Therefore, temporal fluctuations at
the sensory threshold S0 affect RT fluc-
tuations at suprathreshold conditions and
this can be described by means of a
simple random multiplicative process in
Equation (4). The same multiplicative pro-
cess produces non-Gaussian RT distribu-
tions and type (1) power law RT pdfs. The
model of Piéron’s law in Equation (4) also

generates fractal-like behavior that extends
to smaller time scales. The reciprocal of
Equation (4) provides a direct link with
neural gain control in single neurons as
exemplified by the Naka-Ruston equation
and a possible analogy with enzyme kinet-
ics within neurons as exemplified by the
Michaelis-Menten kinetics.
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When humans perform a response task or timing task repeatedly, fluctuations in measures
of timing from one action to the next exhibit long-range correlations known as 1/f
noise. The origins of 1/f noise in timing have been debated for over 20 years, with
one common explanation serving as a default: humans are composed of physiological
processes throughout the brain and body that operate over a wide range of timescales,
and these processes combine to be expressed as a general source of 1/f noise. To test
this explanation, the present study investigated the coupling vs. independence of 1/f noise
in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while
tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f
noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for
timing deviations were found to match those for key-press durations on an individual basis,
and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a
complex, multiscale relationship among 1/f noises arising from common sources, such
as those arising from timing functions vs. those arising from autonomic nervous system
(ANS) functions. Results also provide further evidence against the default hypothesis that
1/f noise in human timing is just the additive combination of processes throughout the
brain and body. Our findings are better accommodated by theories of complexity matching
that begin to formalize multiscale coordination as a foundation of human behavior.

Keywords: complexity matching, long-range correlations, interdependent coordination, tapping, spectral analysis

INTRODUCTION
All behaviors of biological organisms can be viewed as phe-
nomena of coordination, including human behaviors. Neurons
work together to create temporal patterns of neural activity, and
those patterns play important roles in motor activities leading to
overt human behaviors. Likewise, behaviors result in changes to
sensory and proprioceptive inputs that affect patterns of neural
activity. Thus coordination happens amongst the components of
brains and bodies, and also between brains, bodies, and their
environments.

Perhaps the most fundamental expression of coordination
in human behavior is found in the relative timing of events.
Movements of the eyes must be timed relative to those of the
hands to draw a picture (Huette et al., 2013); movements of hands
must be timed relative to those of the vocal tract to gesture during
speech (Kelly et al., 2010); and movements of the legs must be
timed with movement of the ball in soccer (Bartlett et al., 2007),
just to name a few examples. These are all exquisite phenomena
of timing and coordination, but it is often useful to study simpler
cases to formulate basic principles and theories.

From this perspective, one of the simplest cases of coordina-
tion occurs when brief, individual behaviors are timed in direct
relation to clearly delineated events in the environment—stepping

on the gas or brake pedal in response to a traffic light, for instance,
or working on an assembly line to perform the same action
repeatedly on each widget being transported along a conveyor
belt. The experimental analogs to these illustrative examples are
simple response times to individual stimuli, and tapping in time
with a metronome. These experimental paradigms have been
used in thousands of studies, with response times figuring most
prominently in experimental psychology (Holden et al., 2009),
and tapping in motor control (Rosenbaum, 2009).

Despite the intimate relationship between timing and coor-
dination, theoretical approaches to response times and tapping
times do not usually refer to coordination. Instead, response times
are usually studied in terms of information processing, where time
is theorized to reflect the number of processing steps needed to
identify each stimulus, and then choose and prepare a response
(Sternberg, 1998). Tapping times are usually studied in terms
of timing mechanisms (Georgopoulos, 2000), where questions
focus on the nature of internal clocks and their associated neural
machinery.

THE PUZZLE OF 1/f NOISE
Studies of information processing and clocks have led to many
advances in theories of cognitive and neural processes for decades,

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 713 | 16

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00713/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00713/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2014.00713/abstract
http://community.frontiersin.org/people/u/129939
http://community.frontiersin.org/people/u/182173
http://community.frontiersin.org/people/u/12011
http://community.frontiersin.org/people/u/10712
mailto:ckello@ucmerced.edu
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Rigoli et al. 1/f Complexity matching in metronome tapping

and this progress is likely to continue for some time. However, a
general property of response times and tapping times has been
established over the years, and it is not easily explained within
these paradigms. Responses and taps vary from one to the next,
even when there is no overt change in stimuli, the metronome,
or any other task conditions. This is not surprising in itself, given
that humans are not robots or machines in any traditional sense
of the words. One should expect a certain amount of imprecision
in human timing that could be described as “noise”.

The puzzling property concerns the kind of noise observed
in human timing, and many other fluctuations in biological and
complex systems. A default assumption of most statistical models
used in experimental psychology is that noise (i.e., error variance)
in repeated measures is Gaussian and uncorrelated. The term
“uncorrelated” means that current and previous measured values
of noise provide no information about future measurements. This
simplifying assumption is useful for statistical models, but we
know it is incorrect because memory is universal to all human
and biological systems—not memory as storage of information,
but the more general sense that system states are conditioned on
their past, and therefore carry some of their history forward in
time.

The memory inherent to human and biological systems sug-
gests that noise in human timing should be correlated in some
way. For instance, homeostatic systems are often expected to
exhibit negative correlations in their fluctuations, as a result of
negative feedback. When synchronizing to a metronome, if one
tap falls behind the beat, the next tap would be adjusted earlier
in time, and vice versa. One can measure such negative feedback
by taking a time series of tap intervals, and a copy of the same
time series where values are shifted backward in time, and then
correlating the time series with itself at different lags. Such auto-
correlation analyses show evidence to support the presence of
negative correlations in tapping data (Wing and Kristofferson,
1973), but negative correlations account for only a small amount
of the noise variance. Most of the noise in human response times
and tapping times exhibits positive auto-correlations (Pressing
and Jolley-Rogers, 1997).

In general, positive auto-correlations can be understood in
terms of hysteresis—simply put, systems are sluggish to change
their states. For instance, if a response is relatively fast on one
trial, then whatever system conditions caused the fast deviation
will still be in play on the next trial, at least to some degree.
This principle can explain positive auto-correlations in general,
but it is the specific pattern of auto-correlations that is puzzling.
In particular, they decay slowly as an inverse power law function
of increasing lag, C(k)∼1/kλ, where C() is the auto-correlation
function, k is the integer lag, and λ is the power law exponent.
This kind of positive auto-correlation is known as long-range
correlation because the power law indicates that all past states play
a role in determining any given current state. It is also known as
1/f noise because the auto-correlation function can be expressed
in the frequency domain as a relation between spectral power
and frequency, P(f )∼1/f α , where P() is the spectral function, f is
frequency, and α is the power law exponent. Exponents estimated
from timing data have varied across studies and conditions, but
most estimates have been near 1.

The presence of 1/f noise has been reported in many studies
of human response times (Van Orden et al., 2003) and tapping
times (Ding et al., 2002), as well as other repeated measures of
human behavior (Gilden, 2001) and neural systems (Allegrini
et al., 2009). These reports have stirred up much debate. Some of
this debate has concerned the veracity of findings (Farrell et al.,
2006), with opponents arguing that observed auto-correlations
actually may not be long-range but short-range instead (i.e., fall
off exponentially with lag, instead of an inverse power law func-
tion). However, recent studies have compared these two statistical
models and found 1/f noise to better account for the data (Gilden,
2009).

Accepting that the noise in human timing follows a 1/f scaling
relation, most of the debate has focused on theoretical explana-
tions. One reason for debating 1/f noise is that the theoretical
constructs of clocks and information processing yield no ready
insights in and of themselves. Certainly one can add mechanisms
to information processing models and clock models that exhibit
1/f noise, and this has been done (Torre and Wagenmakers, 2009).
Perhaps the most general mechanism thus far has been strategy
shifting (Diebold and Inoue, 2001), whereby a perturbation is
added to each response time or tapping time that reflects discrete
shifts among distinct plateaus in response strategies. The vary-
ing duration of these plateaus, and non-stationarity of shifting
among them, has been shown to yield 1/f noise under certain
parameterizations.

One problem with strategy shifting and similar accounts is
that they appear post hoc, in that they do not provide principled
answers as to why information processing and clock models
would include such processes. Another problem is that such
domain-specific processes are difficult to generalize to other
repeated measures of human activity that exhibit 1/f noise, such as
speech acoustics (Kello et al., 2008) and affect ratings (Delignières
et al., 2004), and repeated measures of human neural activity as
well (Linkenkaer-Hansen et al., 2001). We believe that progress
will continue to be made by improving and expanding domain-
specific accounts related to clocks and information processing,
but here we investigate two domain-general accounts aimed at the
broader range of 1/f phenomena in human and biological systems.

TWO DOMAIN-GENERAL ACCOUNTS OF 1/f NOISE
The generality and ubiquity of 1/f noise has led some researchers
to formulate two classes of domain-general explanations: a process
summation account and an interdependent coordination account.
The process summation account is based on sums of processes
across various timescales, and the interdependent coordination
account is based on the interdependence of processes necessary
for coordination. Here we describe each in turn, and then present
an experiment designed to test these alternative accounts of 1/f
noise in human timing and physiology.

Regarding the process summation account, a 1/f-like signal
can be created by sampling from three or more uncorrelated
noises generated over different timescales and amplitudes (with
timescale inversely related to amplitude), and summing the sam-
ples together (Wagenmakers et al., 2004). A 1/f signal can be
similarly created by summing independent processes whose expo-
nential decay rates span a range of timescales (Granger, 1980).
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In either case, the signal will be 1/f-like only within the range of
timescales sampled. Then again, 1/f noise in human behavior can
be observed only within a limited range of timescales due to limits
on measurement (Van Orden et al., 2005).

The human brain and body is composed of processes that
unfold over a wide range of timescales, from fast ion channel
dynamics to slower changes in neurotransmitters, cardiovascular,
and various homeostatic processes, and even slower changes in
hormones, circadian dynamics, and developmental processes in
general (Bassingthwaighte et al., 1994). A similar claim can be
made regarding cognitive processes, from the millisecond dynam-
ics of perception, to the waxing and waning of attention that
may span seconds to minutes, to processes of decision-making,
planning, and learning that may span anywhere from seconds to
years (Ward, 2002). It seems quite plausible that any measure-
ment of human behavior may be influenced by any combination
of these ongoing processes. If the magnitude of influence (i.e.,
amplitude) is generally inversely related to timescale, then one
would expect these processes to sum up to 1/f noise in repeated
measurements of response times, tapping times, and any other
measure of human behavior.

The interdependent coordination account is based on inter-
actions among system components, rather than summations of
independent processes. The coordination of behavioral activity
requires interactions among whatever components and events are
being coordinated. The same is true for neural and physiological
activities, the difference being that the components and events are
different and reside on shorter spatial and temporal scales. We
can say further that interdependencies among system components
must strike a balance between too much and too little coupling as
a result of interactions (Kello and Van Orden, 2009). Too much
coupling would result in interlocked patterns of activity that are
unable to differentiate or adapt to changes in conditions. Too little
coupling would fail to support the emergence of coordination
patterns that extend in space and time. Instead, adaptive systems
exhibiting coordination need loosely coupled components that
support the formation of many different potential patterns of
activity.

The balance of coupling and its relationship to pattern for-
mation has been formalized in statistical mechanics in terms
of metastability (Kelso, 1995), and the dynamics of interactions
that underlie metastability have been shown to produce 1/f noise
(Usher et al., 1995). Metastability appears to be a useful prop-
erty for biological and behavioral systems in general, because it
endows them with an ability to respond and adapt to their ever-
changing conditions (Sasaki et al., 2007; Pinder et al., 2012).
On this account, 1/f noise reflects fluctuations across multiple
timescales that result from patterns being organized and re-
organized across multiple timescales. Thus 1/f noise should be
a general property of any metastable system, including human
systems involved in response times and tapping times.

This approach to 1/f noise and other power laws in nature
was made famous by models of self-organized criticality (SOC;
Bak et al., 1987). The ubiquity of power laws in nature, like
1/f noise, led physicists to hypothesize that critical points may
be common attractors of complex systems in nature (Bak,
1996). Critical points are associated with (second-order) phase

transitions in systems of many interdependent elements, where
dynamics take on unique properties of memory and symmetry-
breaking (Stanley, 1987). Original models of SOC were criticized
as models of human behavior because they more closely resemble
models of avalanches, forest fires, and other physical complex
systems (Wagenmakers et al., 2005). However, a large body of
work has shown how SOC may be a functional principle of
neural networks and other physiological networks (see Kello,
2013).

The interdependent coordination account is similar to the pro-
cess summation account, in that both provide a rationale for the
ubiquity of 1/f noise. However, they make different predictions
when it comes to taking multiple repeated measurements of
human behavior. Kello et al. highlighted this distinction between
accounts by measuring two aspects of key-press dynamics (Kello
et al., 2007). Participants made repeated simple responses to series
of visual cues, and both response times and key-press durations
were recorded. A key-press duration is the very brief period of
time (∼100–150 ms ) that a key remains in contact with its sensor
for a normal, ballistic keystroke. Both domain-general accounts
predict 1/f noise in both time series of measurements.

The accounts differ in whether they predict the same 1/f signal
to appear in each time series, or whether distinct 1/f signals
may arise from simultaneous yet distinct measures of behavior.
The process summation account predicts the same 1/f signal
because key-press response times and durations should draw from
roughly the same set of summed processes, especially at the larger
timescales (e.g., waxing and waning of attention and circadian
rhythms). The reasons are that the two measurements are inex-
tricably paired for each keystroke, are produced by overlapping
sets of muscles, and effectively occur at the same time relative
to the timescales of 1/f noise spanning dozens and hundreds of
responses. It is difficult to hypothesize how these measurements
could tap into distinct sets of component processes spanning
the same timescales as 1/f noise. By contrast, interdependent
coordination holds that any given system or subsystem can exhibit
1/f noise on its own, or in coupling with other systems. The reason
is that interdependence can hold for components at all scales,
and criticality can create dynamics with long-range memory
(i.e., correlations) for any given subsystem. In other words, 1/f
noise is hypothesized to pervade the heterogeneous networks of
interacting processes in human systems.

Results from four experiments reported by Kello et al. (2007)
showed that key-press response times and durations were inde-
pendent of each other, in terms of exhibiting 1/f noises that were
uncorrelated with each other, and also in terms of independently
manipulating the 1/f noise in response times while leaving key-
press durations unaffected. The authors argued that the data
provided evidence against the process summation account, but
were consistent with the interdependent component account.
However, a subsequent reanalysis of these data indicated more
subtle, nonlinear relationships between the time series (Moscoso
del Prado Martín, 2011). Thus while the process summation
account is called into question, more experiments and analyses
are needed to investigate the nature of coupling and independence
among simultaneous measures of 1/f noises (e.g., Kello et al.,
2008).
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COMPLEXITY MATCHING AS MEASURED BY SPECTRAL CONVERGENCE
The present experiment and analyses were designed to further
investigate the nature of 1/f noise in human behavior by mea-
suring coupling based on a recently formulated theoretical prin-
ciple known as complexity matching (West et al., 2008; Aquino
et al., 2010, 2011). Theoretical analyses using statistical mechanics
have shown that, when two complex systems become coupled,
there is maximal rate of information exchange between them
when their power laws converge. This formalization of cou-
pling is different from more standard measures like synchro-
nization. Complexity matching between two signals does not
refer to phase relations—instead, it refers to convergence of
the two power spectra. Thus coupling in terms of complexity
matching means that each system retains its own distinct phase
dynamics, yet the systems affect the statistical character of each
other’s dynamics. This effect is equivalent to an exchange of
information between two given systems, in the sense of mutual
information.

Complexity matching is a theoretical construct general to all
complex systems, but it has already garnered some empirical
support in studies of dyadic coordination, which can be viewed
in terms of informational coupling between two human complex
systems. Marmelat and Delignières (2012) conducted an exper-
iment in which each participant in a dyad swung a hand-held
pendulum, with instructions to swing in synchrony. Synchroniza-
tion is a direct phase relation, but deviations from synchrony were
analyzed for 1/f noise. Results showed that the spectral shape
of 1/f noise for each member of a dyad converged to the extent
that coupling was facilitated by visual and physical contact. This
convergence could not be explained in terms of simple phase
relations because there were no reliable cross-correlations in the
time series of deviations from synchrony. Other more recent
experiments showed the same basic effect, but in the speech
signals of dyads engaged in conversation (Fusaroli et al., 2013;
Abney et al., 2014).

Dyadic coordination is one example of two interacting sys-
tems, but as we discussed at the outset, humans are composed
of many components across many scales that must coordinate in
order to function. Complexity matching suggests that the coordi-
nation of two subsystems in a single individual may manifest as
a convergence in their 1/f noise spectra when repeated measures
are taken. Evidence for spectral convergence in 1/f noise would
provide further evidence against the process summation account,
provided that this convergence was not simply a product of cor-
related time series. The present experiment tested this hypothesis
by measuring tapping deviations and key-press durations while
either synchronizing or syncopating with a metronome. Previous
studies have shown slightly stronger 1/f noise in timing deviations
during syncopation (Chen et al., 2001), so we varied tapping
between synchronization and syncopation to test whether an
effect on timing deviations would dissociate from an effect on key-
press durations.

To further investigate coupling in terms of complexity match-
ing, we wanted to compare 1/f noise in key-presses with other
fluctuations in physiological activity that either were or were not
responsive to the metronome. For the former, we presented a flash
of light with each auditory beat of the metronome, and measured

fluctuations in the pupil dilation response across audiovisual
beats of the metronome. In the synchronization condition, pupil
and key-press responses occurred to the same stimuli, and roughly
at the same time. If this co-occurrence leads to coordination
between the neural and physiological systems underlying key-
press and pupil responses, then we should observe coupling in
their 1/f noise signals. However, reflexive pupil dilation is coordi-
nated by the autonomic nervous system (ANS), whereas learned
motor responses are coordinated by the central nervous system
(CNS). These two physiological systems may not measurably be
coupled when the body is at rest, as it is while sitting quietly
during a tapping task.

For physiological fluctuations that were not responsive to the
metronome, we measured heartbeat intervals. Resting heart rate
should not be driven by the negligible effort required to execute
each key-press. Yet healthy heartbeat intervals are known to
exhibit 1/f noise (Peng et al., 1995), and both heart rate and pupil
dilation are known to be coordinated by the ANS. Therefore, if the
ANS is not driven by the tapping task, then we expect 1/f noise in
pupil responses and heartbeat intervals to be coupled with each
other, but independent of 1/f noise in key-press durations and
timing deviations in tapping. The latter should be coupled with
each other through the CNS and the tapping task.

EXPERIMENTAL METHODS
Participants
Thirteen female and 13 male UC Merced students 18–30 years
of age participated in the experiment for course credit or as
volunteers. All reported having normal hearing and either normal
or corrected vision. Four participants were left-handed. Data from
two participants were removed due to equipment malfunction.

Apparatus
Pupil dilations were recorded using an Eye-Link II head mounted
video-based eye-tracker (SR Research Ltd.) with a temporal reso-
lution of 500 Hz and a spatial resolution of 0.025◦. The eye-tracker
uses two infrared LEDs mounted on the headband to illuminate
each eye, and pupil dilations were recorded from whichever
eye had the more accurate track. ECG samples were recorded
at 250 Hz using a Zephyr™ Bioharness 3 (Zephyr Technology,
Auckland, New Zealand) fastened around each participant as a
chest belt. Taps were recorded using a keyboard and MAX 6
(Cycling 74) experiment software. The audiovisual metronome
was presented using a 22-inch ThinkVision LCD monitor with
1280 × 1024 resolution, and Koss over-the-ear headphones. The
metronome consisted of a 200 ms tone played at a loud but
comfortable volume, synchronized with the display of a white
circle for 200 ms with 25 cm diameter on a blank screen viewed
from a 60 cm distance. A moderate level of light in the room was
held constant across all participants.

Procedure
Participants were instructed to sit quietly for 10 min at the
beginning of the experiment to allow the heart to settle to
its resting rate. Participants were instructed how to fasten the
Bioharness 3 to themselves, and the eye-tracker was calibrated
using the standard nine-point calibration method. Participants
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were randomly assigned to either the synchronization condition
(i.e., tapping in-phase with the metronome beats) or syncopation
condition (i.e., tapping in between the metronome beats). Partic-
ipants were instructed that they would see and hear a metronome
beat presented at a constant, comfortable pace, and that they
should tap the spacebar either in time with the beat or in between
the beats. They were also instructed to keep their eyes fixated on
the screen for the duration of the experiment. Each participant
tapped to 1100 beats, which was set at a constant 800 ms inter-
beat interval. This interval was set to be within the range of the
healthy resting heart rate for young adults, and also to allow for
1100 beats to be administered in about 15 min.

Data pre-processing
The keyboard and heart rate apparatus directly produced time
series of key-press durations and heartbeat intervals. Timing devi-
ations were computed by subtracting each key-press time from
its corresponding metronome beat. The interval timing of beats
was known with high precision, but the phase of the metronome
relative to key-press times was estimated for each participant. Any
error in this estimate was constant across each time series of key-
presses, and therefore not a factor.

The eye-tracker produced a sampled time series of pupil
size that did not demarcate pupil responses to the flashes of
light. However, pupil dilation responses could be seen as a clear
waveform that rose and fell with roughly the same frequency as
the metronome. We wrote a simple signal processing algorithm
that found each peak value and trough value of the waveform.
The algorithm iterated through the sampled time series from
beginning to end, and determined “peak periods” and “trough
periods” relative to prior minima and maxima. Each peak period
started when the signal rose 100 units (approximately 5 µm
per unit) above the previous minimum, and ended when the
signal fell 100 units below its current peak value. Trough periods
were defined conversely, and minima below half the previous
maximum were discarded to remove eye blinks. The algorithm
produced one time series of peak values and a corresponding time
series of trough values for each participant. Analyses showed no
qualitative difference in results between peak and trough time
series, so here we report only analyses for peak dilation values.

The same trimming procedure was applied to all four time
series for each participant: values above and below 2.5 standard
deviations were removed. Then, if the remaining time series was
shorter than 1024 measurements, it was padded with mean values
to reach a length of 1024. If the remaining time series was longer
than 1024, an even amount of beginning and ending values were
trimmed to reach 1024 (with an extra value trimmed at the start
for odd numbers).

RESULTS
Each individual time series was submitted to spectral analysis,
and each resulting spectrum was logarithmically binned to create
nine estimates of spectral power in nine evenly spaced frequency
bins on a logarithmic scale (see also Thornton and Gilden, 2005).
Logarithmic binning ensures that the same amount of data goes
into each power estimate, and it also facilitates our spectral
matching analyses reported below.

Mean spectra are plotted in Figure 1 for each of the four
dependent measures, separated by synchronization vs. syncopa-
tion. The graphs show that fluctuations for all measures in both
conditions followed a clear 1/f scaling relation. 1/f exponents
were estimated by fitting regression lines (and reversing their
signs to account for the inverse relationship) to spectra for indi-
vidual participants: mean values combining the two metronome
conditions were 0.76 for timing deviations, 0.83 for key-press
durations, 0.90 for pupil dilations, and 0.81 for heartbeat inter-
vals, where 1.0 is ideal 1/f noise. Estimated exponents for the
synchronization condition were not reliably different from the
syncopation condition—all t-tests were within-subjects and had
12−1 = 11 degrees of freedom, and all yielded t-values less than 1,
t(11) < 1. Thus we did not replicate a previous study showing
larger 1/f exponents for timing deviations when syncopating vs.
synchronizing to a metronome (Chen et al., 2001). However, we
found a trend in this direction (0.72 vs. 0.80, respectively), and
we used an audiovisual metronome whereas the previous study
used an audio-only metronome. Timing with pulsed visual signals
is known to be less accurate than for audio signals (Chen et al.,
2002), which might explain the small difference between our
results and previous results (but see Hove et al., 2010). In any case,
because there were no reliable effects of metronome condition, we
combined them in subsequent analyses.

To test for coupling among 1/f noises, we used a measure of
spectral convergence as an expression of complexity matching. In
particular, log power estimates were subtracted per frequency bin
for two given signals a and b, and the sum of their absolute values
served as our measure of spectral convergence:

Ca,b =
∑

f

| log
(
Sf,a
)
− log

(
Sf,b
)
|.

Smaller values corresponded with more similar i.e., convergent
spectra. A measure of convergence was chosen over correlation of
estimated 1/f exponents because the former is sensitive to idiosyn-
crasies in the individual 1/f-like spectra that converge towards 1/f
in the average. Spectral Individual signals were compared because
convergence is hypothesized to occur for the motor processes and
ANS functions within individuals, as products of coordination,
rather than across individuals. We also compared spectral con-
vergence with cross-correlation to test whether coupling could
be explained in terms of linear phase relations. Figures 2, 3 each
show two example signals from one participant in the syncopation
condition, along with two of the corresponding cross-correlation
functions and two pairs of spectra to visualize their differences.

These measures of coupling cannot be interpreted without a
baseline for comparison. With regards to spectral convergence,
a spectral difference of zero is the absolute maximal similarity,
but this measure does not have an inherent value or formula
corresponding to chance similarity. We created baselines from
surrogate pairings between signals from different participants.
In particular, for each original comparison between time series
A and B, a corresponding mean surrogate coupling was created
by pairing each original time series with all other participants,
i.e., 23 surrogate comparisons with A and 23 with B. Spectral
convergence values were averaged for each set of 56 surrogate
pairings to create a single baseline control for each pairing.
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FIGURE 1 | Logarithmically binned spectra plotted for each of the four dependent measures, separated by synchronization vs. syncopation, and
averaged across participants.

Comparisons between original and surrogate coupling values
showed a clear and consistent pattern of results: there was reli-
able spectral coupling between key-press timing deviations and
key-press durations, and also between peak pupil dilations and
heartbeat intervals. However, there were no reliable couplings
across key-press and ANS measures. To examine the two observed
effects of spectral convergence, Figure 4 plots the absolute log
differences as a function of frequency, averaged for originals and
baseline controls. Differences are generally greater in the lower
frequencies, which appears to be attributable to more overall
variability in spectral power relative to higher frequencies. Aside
from this effect, original pairings are seen to be more similar
to each other (i.e., smaller differences) compared with controls
across the range of measured frequencies, indicative of coupling
across timescales.

Statistical reliability of coupling was assessed using paired-
samples t-tests with Ca,b values for original pairings vs. their
yoked controls. Spectra for timing deviations were reliably more
similar to those for key-press durations compared with baseline
controls, t(23) = 2.52, p < 0.01, and the same was true for
pupil dilations and heartbeat intervals, t(23) = 2.18, p < 0.05.
No other comparisons for spectral convergence approached sig-
nificance, all t(23) < 1. Mean Ca,b values (with standard errors)
for non-significant comparisons were the following for originals
and controls, respectively: 0.83 (0.06) and 0.81 (0.02) for timing

deviations X pupil dilations, 0.81 (0.05) and 0.81 (0.02) for timing
deviations X heartbeat intervals, 0.88 (0.07) and 0.87 (0.03) for
key-press durations X pupil dilations, and 0.87 (0.04) and 0.87
(0.02) for key-press durations X heartbeat intervals. Altogether,
these tests show clear evidence of spectral convergence for key-
press activity and for ANS activity, but not between the two.

Spectral convergence is not sensitive to the phase relation
between the signals because phase information is discarded by
spectral analysis. However, it is possible that phase relations
played a role in the observed effects because two highly correlated
signals (i.e., strong linear phase relation) will also have highly
similar spectra. Here we show that signals may appear to be
phase related, but that further analyses reveal these relations to be
purely spectral in nature. Linear cross-correlation is perhaps the
simplest and most common type of phase analysis, which tests
for phase relations across the range of available lags. Given that
we did not know a priori at what lag signals might be related, we
simply took the peak negative correlation as a measure of maximal
phase coupling. Preliminary analyses showed that peak negative
correlations were slightly stronger than peak positive correlations,
although both were weak: mean magnitudes varied within the
small range of 0.15–0.21 across pairwise comparisons, at mean
lags from about 140–340 beats apart. We report results with peak
negative correlations, but results were not qualitatively different
from peak positive correlations.
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FIGURE 2 | Time series of peak key-press response times and
durations for one participant (above), where the x-axis was the
sequence of over 1000 key-presses, and the y-axis is normalized
times and durations with 0 mean and showing +/−2.5 standard

deviations. Corresponding cross-correlation function and spectra are
shown below. The red dashed circle shows the peak negative
correlation, and the dashed lines between spectra show absolute log
differences.

FIGURE 3 | Time series of pupil dilation responses and heartbeat intervals for one participant, along with the corresponding cross-correlation
function and spectra. The red dashed circle shows the peak negative correlation, and the red dashed lines between spectra show absolute log differences.
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FIGURE 4 | Mean spectral differences |log(Sf,a)− log(Sf,b)| plotted as a function of frequency, for originals and surrogate controls, with standard
error bars.

We conducted the same baseline control analysis as for spec-
tral convergence, and we found the same pattern of effects as
for spectral convergence: peaks were significantly more negative
between timing deviations and key-press durations compared
with baseline controls, t(23) = 1.82, p < 0.05, and the same was
true for pupil dilations and heartbeat intervals, t(23) = 2.18, p <
0.05. And again, no other comparisons for spectral convergence
approached significance, all t(23) < 1.93, p < 0.05. A summary of
the correlational and spectral coupling results is shown in Table 1,
which contains mean differences between coupling measures for
original pairings minus baseline controls, for all pairwise com-
parisons. The table shows that, for the two reliable comparisons,
differences from baseline were proportionally greater for spectral
coupling than for correlational coupling.

These results suggest that simple linear phase relations may
have contributed to the observed effects of spectral convergence,
but it is curious that peak lags were so far apart. We do not know
what type of phase coupling would explain phase relations offset
by 2–4 min and well over 100 responses. An alternate possibility

Table 1 | Mean correlational (top) and spectral (bottom) coupling
effects for all pairwise comparisons between the four dependent
measures (TD = Timing Deviations, KD = Key-Press Durations, PD =
Pupil Dilations).

Peak CC−Control TD KD PD

Timing Deviations
Key-Press Durations 0.036
Pupil Dilations −0.001 0.017
Heartbeat Intervals 0.001 −0.010 0.032
Ca,b–Control

Timing Deviations
Key-Press Durations 0.829
Pupil Dilations −0.126 −0.094
Heartbeat Intervals 0.066 −0.025 0.821

Statistically reliable effects are in bold, and the signs are reversed for correlational

effects for consistent interpretation with spectral effects.

is that effects of spectral convergence can lead to spurious phase
coupling when measured using our surrogate baseline analysis.
We tested this alternative by using iterated amplitude adapted
Fourier transform (IAAFT; Theiler et al., 1992; Schreiber and
Schmitz, 1996), which scrambles phase relations in a given time
series while preserving its spectral properties. If there is truly
phase coupling, then cross-correlations for original comparisons
should be stronger than those for the corresponding scrambled
time series. Each surrogate pair had one original time series and
one scrambled time series, and each original time series was
paired with 100 scrambled series. We used paired-sampled t-tests
to compare each original peak cross-correlation with the mean of
its corresponding surrogate set.

Results from the IAAFT surrogate analysis revealed that there
was no reliable linear phase coupling among any of the four
dependent measures, as measured by peak cross-correlations. Sur-
rogates were no different from originals for timing deviations and
key-press durations, t(23) = 1.5, p > 0.14, nor for pupil dilations
and heartbeat intervals, t(23) = 1.4, p > 0.17. The remaining
comparisons were all near t(23) ∼ 1.4 or less. The IAAFT surrogate
analysis provides additional evidence that the observed couplings
in key-press responses and in measures of ANS functions (but
not between the two) were expressed in terms of their power law
spectral distributions, and not their phase relations (see also Kello
et al., 2007).

DISCUSSION
The aim of the present experiment was to add to the body
of evidence on the origins of 1/f noise in human timing, par-
ticularly with respect to two domain-general explanations. We
employed a standard tapping task with synchronization and syn-
copation conditions, and we measured deviations in timing from
a metronome. Our contribution was to record and analyze three
additional repeated measures that varied in their relationship to
timing deviations and the metronome. All four measures exhib-
ited clear 1/f noise, consistent with previous studies suggesting
that 1/f noise will manifest for any repeated measure of human
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behavior that is minimally perturbed and minimally constrained
from one measurement to the next (Kello et al., 2010).

Our goal in eliciting these 1/f signals was to examine the
relationships among them, as a way to test and elaborate upon
the process summation vs. interdependent coordination accounts.
The process summation account has served as a default explana-
tion for many researchers over the years, in part because repeated
measures of human timing and other behaviors might plausibly
“pick up” on fluctuations in physiological and cognitive processes
ranging across spatial and temporal scales of the brain and body.
However, the idea of process summation has been called into
question by a number of recent results. Our findings cast further
doubt on this account because all four dependent measures exhib-
ited distinct 1/f signals in terms of their phase relations—none
were reliably cross-correlated relative to IAAFT controls. These
findings are difficult to explain because at least some of these
measures should pick up on the same summation of processes,
which should result in reliable near-lag zero correlations. This is
not what we found.

One could argue that each of our dependent measures tapped
into a (mostly) distinct set of processes that each summed to pro-
duce distinct 1/f noises. However, while the 1/f signals had mostly
unique phase profiles, their spectra were not fully distinct. Instead
we found that spectra converged for timing deviations and key-
press durations, and separately for pupil dilations and heartbeat
intervals. These results indicate that 1/f fluctuations in different
aspects of key-presses were coordinated across timescales, and
likewise for ANS activity.

Interdependent coordination is in a better position to accom-
modate these results. We started with the basic premise that
human timing is part and parcel with coordination, and that coor-
dination requires a balanced, flexible coupling among whatever
components are being coordinated. Flexible coupling is hypothe-
sized to support the soft-assembly of sensorimotor function, and
other types of biological and cognitive functions (Kello and Van
Orden, 2009). A defining feature of highly adaptive systems is that
their components can play multiple functional roles depending on
context. In order to take on these different roles, components need
to fall into different interdependent relationships under different
conditions.

It is challenging to understand how biological and cognitive
systems are so flexible. One valid and necessary approach is
to study very particular examples and develop domain-specific
theories to explain them. For instance, there are specific mecha-
nisms of plasticity that re-organize sensorimotor maps in prism
adaptation studies (Redding et al., 2005) or amputation cases
(Sanes and Donoghue, 2000). However, it is equally valid and
necessary to study basic principles from which many or even
all mechanisms of sensorimotor function draw their flexibility.
Metastability is one such principle that explicitly predicts 1/f noise
to be a pervasive feature of systems of interdependent components
poised near critical points. Theories of SOC have been formulated
to explain why critical points appear to be so common to complex
systems.

Metastability can explain 1/f noise in all four dependent mea-
sures, and it is consistent with the finding that two and only
two pairs of these measures were coupled. However, the concept

of metastability alone does not explain how spectral coupling
can occur across timescales distinct from any phase coupling,
nor does it explain the particular couplings of dependent mea-
sures that were observed. To explain the particular couplings
observed, we will ultimately need domain-specific theories of
manual sensorimotor control, and ANS function. For now, we can
say that timing deviations and key-press durations measured two
aspects of key-press dynamics that were coupled by the tapping
task, and that coupling between pupil dilation and heartbeat
intervals is “hard-wired” into the ANS. Moreover, tapping to
a metronome while at rest did not enforce any physiological
or informational demands on coupling between key-presses and
the ANS. We conjecture that these systems would couple under
more strenuous conditions, such as a sport with intense hand-eye
coordination.

Finally, to explain spectral coupling across timescales, we refer
to formal analyses of complexity matching that show maximal
information exchange between complex systems with conver-
gent power laws, yet distinct phase portraits. It is reasonable
to assume that coordination is facilitated by maximal informa-
tion exchange, and that key-press responses require information
exchange among neural and motor processes involved in depress-
ing and releasing the key on each response. It is also reasonable to
assume that information must be exchanged among components
of the ANS. As mentioned in the Introduction section, we do not
mean information exchange in the sense of sending bits between
components and subsystems. Instead we mean that components
rely on each other to support sensorimotor and physiological
functions (Kello and Van Orden, 2009). These functions are
inherently multiscale, and hence the mutual interdependence that
underlies them must span a range of spatial and temporal scales.
Computational models based in metastability, such as critical
branching networks (Kello, 2013), are needed to express formal
theories of complexity matching in terms of neural, sensorimotor,
and cognitive functions.

ACKNOWLEDGMENTS
The experiment reported herein was approved by the UC Merced
Institutional Review Board, and conformed to the board’s regula-
tory standards. We thank the reviewers for their helpful comments
and suggestions for additional analyses.

REFERENCES
Abney, D. H., Paxton, A., Dale, R., and Kello, C. T. (2014). Complexity matching in

dyadic conversation. J. Exp. Psychol. General. Forthcoming.
Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P.,

et al. (2009). Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev.
E 80:061914. doi: 10.1103/physreve.80.061914

Aquino, G., Bologna, M., Grigolini, P., and West, B. J. (2010). Beyond the death
of linear response: optimal information transport. Phys. Rev. Lett. 105:040601.
doi: 10.1103/physrevlett.105.040601

Aquino, G., Bologna, M., West, B. J., and Grigolini, P. (2011). Transmission
of information between complex systems. Phys. Rev. E 83:051130. doi: 10.
1103/physreve.83.051130

Bak, P. (1996). How Nature Works. New York: Springer-Verlag.
Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: an explana-

tion of 1/ f noise. Phys. Rev. Lett. 59, 381–384. doi: 10.1103/physrevlett.59.381
Bartlett, R., Wheat, J., and Robins, M. (2007). Is movement variability

important for sports biomechanists? Sports Biomech. 6, 224–243. doi: 10.
1080/14763140701322994

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 713 | 24

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Rigoli et al. 1/f Complexity matching in metronome tapping

Bassingthwaighte, J. B., Liebovitch, L. S., and West, B. J. (1994). Fractal Physiology.
New York: Oxford University Press.

Chen, Y., Ding, M., and Kelso, J. A. (2001). Origins of timing errors
in human sensorimotor coordination. J. Mot. Behav. 33, 3–8. doi: 10.
1080/00222890109601897

Chen, Y., Repp, B. H., and Patel, A. D. (2002). Spectral decomposition of variability
in synchronization and continuation tapping: comparisons between auditory
and visual pacing and feedback conditions. Hum. Mov. Sci. 21, 515–532. doi: 10.
1016/s0167-9457(02)00138-0

Delignières, D., Fortes, M., and Ninot, G. (2004). The fractal dynamics of self-
esteem and physical self. Nonlinear Dynamics Psychol. Life Sci. 8, 479–510.

Diebold, F. X., and Inoue, A. (2001). Long memory and regime switching.
J. Econom. 105, 131–159. doi: 10.1016/S0304-4076(01)00073-2

Ding, M., Chen, Y., and Kelso, J. A. (2002). Statistical analysis of timing errors. Brain
Cogn. 48, 98–106. doi: 10.1006/brcg.2001.1306

Farrell, S., Wagenmakers, E. J., and Ratcliff, R. (2006). 1/f noise in human cognition:
is it ubiquitous and what does it mean? Psychon. Bull. Rev. 13, 737–741. doi: 10.
3758/bf03193989

Fusaroli, R., Abney, D. H., Bahrami, B., Kello, C. T., and Tylén, K. (2013). “Con-
versation, coupling and complexity: matching scaling laws predict performance
in a joint decision task,” in Paper Presented at the 35th Annual Meeting of the
Cognitive Science Society (Berlin).

Georgopoulos, A. P. (2000). Neural aspects of cognitive motor control. Curr. Opin.
Neurobiol. 10, 238–241. doi: 10.1016/s0959-4388(00)00072-6

Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychol. Rev. 108, 33–56.
doi: 10.1037//0033-295x.108.1.33

Gilden, D. L. (2009). Global model analysis of cognitive variability. Cogn. Sci. 33,
1441–1467. doi: 10.1111/j.1551-6709.2009.01060.x

Granger, C. W. J. (1980). Long memory relationships and the aggregation
of dynamic models. J. Econom. 14, 227–238. doi: 10.1016/0304-4076(80)
90092-5

Holden, J. G., Van Orden, G. C., and Turvey, M. T. (2009). Dispersion of
response times reveals cognitive dynamics. Psychol. Rev. 116, 318–342. doi: 10.
1037/a0014849

Hove, M. J., Spivey, M. J., and Krumhansl, C. L. (2010). Compatibility of motion
facilitates visuomotor synchronization. J. Exp. Psychol. Hum. Percept. Perform.
36, 1525–1534. doi: 10.1037/a0019059

Huette, S., Kello, C. T., Rhodes, T., and Spivey, M. J. (2013). Drawing from
memory: hand-eye coordination at multiple scales. PLoS One 8:e58464. doi: 10.
1371/journal.pone.0058464

Kello, C. T. (2013). Critical branching neural networks. Psychol. Rev. 120, 230–254.
doi: 10.1037/a0030970

Kello, C. T., Anderson, G. G., Holden, J. G., and Van Orden, G. C. (2008). The
pervasiveness of 1/f scaling in speech reflects the metastable basis of cognition.
Cogn. Sci. 32, 1217–1231. doi: 10.1080/03640210801944898

Kello, C. T., Beltz, B. C., Holden, J. G., and Van Orden, G. C. (2007). The emergent
coordination of cognitive function. J. Exp. Psychol. Gen. 136, 551–568. doi: 10.
1037/0096-3445.136.4.551

Kello, C. T., Brown, G. D. A., Ferrer-i-Cancho, R., Holden, J. G., Linkenkaer-
Hansen, K., Rhodes, T., et al. (2010). Scaling laws in cognitive sciences. Trends
Cogn. Sci. 14, 223–232. doi: 10.1016/j.tics.2010.02.005

Kello, C. T., and Van Orden, G. C. (2009). Soft-assembly of sensorimotor function.
Nonlinear Dynamics Psychol. Life Sci. 13, 57–78.

Kelly, S. D., Özyürek, A., and Maris, E. (2010). Two sides of the same coin: speech
and gesture mutually interact to enhance comprehension. Psychol. Sci. 21, 260–
267. doi: 10.1177/0956797609357327

Kelso, J. A. S. (1995). Dynamic Patterns: The Self-Organization of Brain and
Behavior. Cambridge, MA: MIT Press.

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., and Ilmoniemi, R. J. (2001).
Long-range temporal correlations and scaling behavior in human brain oscilla-
tions. J. Neurosci. 21, 1370–1377.

Marmelat, V., and Delignières, D. (2012). Strong anticipation: complexity match-
ing in interpersonal coordination. Exp. Brain Res. 222, 137–148. doi: 10.
1007/s00221-012-3202-9

Moscoso del Prado Martín, F. (2011). Causality, criticality and reading words:
distinct sources of fractal scaling in behavioral sequences. Cogn. Sci. 35, 785–
837. doi: 10.1111/j.1551-6709.2011.01184.x

Peng, C. K., Havlin, S., Hausdorff, J. M., Mietus, J. E., Stanley, H. E., and
Goldberger, A. L. (1995). Fractal mechanisms and heart rate dynamics.

Long-range correlations and their breakdown with disease. J. Electrocardiol. 28,
59–65. doi: 10.1016/s0022-0736(95)80017-4

Pinder, R. A., Davids, K., and Renshaw, I. (2012). Metastability and emergent
performance of dynamic interceptive actions. J. Sci. Med. Sport 15, 437–443.
doi: 10.1016/j.jsams.2012.01.002

Pressing, J., and Jolley-Rogers, G. (1997). Spectral properties of human cognition
and skill. Biol. Cybern. 76, 339–347. doi: 10.1007/s004220050347

Redding, G. M., Rossetti, Y., and Wallace, B. (2005). Applications of prism adap-
tation: a tutorial in theory and method. Neurosci. Biobehav. Rev. 29, 431–444.
doi: 10.1016/j.neubiorev.2004.12.004

Rosenbaum, D. A. (2009). Human Motor Control. San Diego, CA: Academic Press.
Sanes, J. N., and Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annu.

Rev. Neurosci. 23, 393–415. doi: 10.1146/annurev.neuro.23.1.393
Sasaki, T., Matsuki, N., and Ikegaya, Y. (2007). Metastability of active CA3 networks.

J. Neurosci. 27, 517–528. doi: 10.1523/jneurosci.4514-06.2007
Schreiber, T., and Schmitz, A. (1996). Improved surrogate data for nonlinearity

tests. Phys. Rev. Lett. 77, 635–638. doi: 10.1103/physrevlett.77.635
Stanley, H. E. (1987). Introduction to Phase Transitions and Critical Phenomena.

New York: Oxford University Press.
Sternberg, S. (1998). “Discovering mental processing stages: the method of additive

factors,” in Methods, Models and Conceptual Issues: An Invitation to Cognitive
Science, eds D. Scarborough and S. Sternberg (Cambridge, MA: MIT Press),
703–863.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Doyne Farmer, J. (1992).
Testing for nonlinearity in time series: the method of surrogate data. Physica D
58, 77–94. doi: 10.1016/0167-2789(92)90102-s

Thornton, T. L., and Gilden, D. L. (2005). Provenance of correlations in psycholog-
ical data. Psychon. Bull. Rev. 12, 409–441. doi: 10.3758/bf03193785

Torre, K., and Wagenmakers, E.-J. (2009). Theories and models for 1/f[beta] noise
in human movement science. Hum. Mov. Sci. 28, 297–318. doi: 10.1016/j.
humov.2009.01.001

Usher, M., Stemmler, M., and Olami, Z. (1995). Dynamic pattern-formation
leads to 1/f noise in neural populations. Phys. Rev. Lett. 74, 326–329. doi: 10.
1103/physrevlett.74.326

Van Orden, G. C., Holden, J. G., and Turvey, M. T. (2003). Self-organization of
cognitive performance. J. Exp. Psychol. Gen. 132, 331–350. doi: 10.1037/0096-
3445.132.3.331

Van Orden, G. C., Holden, J. G., and Turvey, M. (2005). Human cognition and 1/f
scaling. J. Exp. Psychol. Gen. 134, 117–123. doi: 10.1037/0096-3445.134.1.117

Wagenmakers, E.-J., Farrell, S., and Ratcliff, R. (2004). Estimation and interpre-
tation of l/f alpha noise in human cognition. Psychon. Bull. Rev. 11, 579–615.
doi: 10.3758/bf03196615

Wagenmakers, E. J., Farrell, S., and Ratcliff, R. (2005). Human cognition and a pile
of sand: a discussion on serial correlations and self-organized criticality. J. Exp.
Psychol. Gen. 135, 108–116. doi: 10.1037/0096-3445.134.1.108

Ward, L. M. (2002). Dynamical Cognitive Science. Cambridge, MA: MIT Press.
West, B. J., Geneston, E. L., and Grigolini, P. (2008). Maximizing information

exchange between complex networks. Phys. Rep. 468, 1–99. doi: 10.1016/j.
physrep.2008.06.003

Wing, A. M., and Kristofferson, A. B. (1973). Response delays and the timing of dis-
crete motor responses. Percept. Psychophys. 14, 5–12. doi: 10.3758/bf03198607

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 05 May 2014; accepted: 26 August 2014; published online: 11 September
2014.
Citation: Rigoli LM, Holman D, Spivey MJ and Kello CT (2014) Spectral conver-
gence in tapping and physiological fluctuations: coupling and independence of 1/f
noise in the central and autonomic nervous systems. Front. Hum. Neurosci. 8:713.
doi: 10.3389/fnhum.2014.00713
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Rigoli, Holman, Spivey and Kello. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 713 | 25

http://dx.doi.org/10.3389/fnhum.2014.00713
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


HYPOTHESIS AND THEORY ARTICLE
published: 19 June 2014

doi: 10.3389/fnhum.2014.00438

What does scalar timing tell us about neural dynamics?
Harel Z. Shouval1*, Marshall G. Hussain Shuler2, Animesh Agarwal1,3 and Jeffrey P. Gavornik4

1 Deptartment of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA
2 Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
3 Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
4 Department of Brain and Cognitive Sciences, The Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA

Edited by:

Willy Wong, University of Toronto,
Canada

Reviewed by:

José M. Medina, Universidad de
Granada, Spain
Willy Wong, University of Toronto,
Canada
Marc Howard, Boston University,
USA

*Correspondence:

Harel Z. Shouval, Deptartment of
Neurobiology and Anatomy,
University of Texas Medical School
at Houston, 6431 Fannin St., - Suite
MSB 7.046, Houston, TX 77030,
USA
e-mail: harel.shouval@uth.tmc.edu

The “Scalar Timing Law,” which is a temporal domain generalization of the well known
Weber Law, states that the errors estimating temporal intervals scale linearly with the
durations of the intervals. Linear scaling has been studied extensively in human and animal
models and holds over several orders of magnitude, though to date there is no agreed
upon explanation for its physiological basis. Starting from the assumption that behavioral
variability stems from neural variability, this work shows how to derive firing rate functions
that are consistent with scalar timing. We show that firing rate functions with a log-power
form, and a set of parameters that depend on spike count statistics, can account for
scalar timing. Our derivation depends on a linear approximation, but we use simulations
to validate the theory and show that log-power firing rate functions result in scalar timing
over a large range of times and parameters. Simulation results match the predictions of
our model, though our initial formulation results in a slight bias toward overestimation that
can be corrected using a simple iterative approach to learn a decision threshold.

Keywords: scalar timing, Weber’s law, temporal intervals, temporal coding, neural dynamics

1. INTRODUCTION
Errors estimating the intensity of a stimulus commonly scale lin-
early with the magnitude of the stimulus. This relationship, called
Weber’s Law, has proven to be a surprisingly general property
of the brain that accurately describes perception across sensory
modalities (Weber, 1843; Coren et al., 1984). We have previously
used basic principles to argue that this scaling naturally emerges
if neural processes representing stimulus magnitudes have tuning
curves with a specific mathematical form and that the generality
of the law implies that this is a fundamental organizing principal
of neural computation (Shouval et al., 2013).

An analog of Weber’s law in the temporal domain, called lin-
ear scaling or scalar timing, states that errors estimating temporal
intervals scale linearly with the duration of the intervals (Gibbon,
1977; Church, 2003). Temporal perception has been extensively
studied by psychologists and neuroscientists for over 150 years,
starting in the 1860s with Fechner (Fechner, 1966), leading to
considerable knowledge about the behavioral aspects of temporal
perception. Much less is known, however, about the underly-
ing neural substrate responsible for engendering observed timing
behavior.

Over the years many theories have been proposed to account
for scalar timing. The scalar expectancy theory (Gibbon, 1977;
Church, 2003) is based on a counter and accumulator model, con-
ceptually similar to counting the ticks of a mechanical clock, and
variability arises from comparison errors with remembered ref-
erence values. Another class of models assumes an ensemble of
neurons oscillating at different frequencies, and timing is pro-
duced by decision neurons which become active only when a
precise set of the oscillating neurons are coactive (Matell and

Meck, 2000). These models are akin to a Fourier transform of
the desired temporal response profile. Variability stems from the
addition of stochastic noise to the ensemble dynamics, and it
has recently been shown analytically that general addition of
noise at various levels in the model can result in scalar tim-
ing (Oprisan and Buhusi, 2011, 2014). Note that these models
are currently derived based on continuous dynamical systems,
not spiking neural models. Drift diffusion models have also
been proposed to provide a mechanistic basis of interval timing,
though with spike-statistics that are inconsistent with scalar tim-
ing. Recent derivations of this model, with drift that is driven
by opponent inhibitory and excitatory processes, can account
for scalar timing (Rivest and Bengio, 2011; Simen et al., 2011).
A final class of models, including this work, assume that tim-
ing is derived from the state of dynamic neural responses. For
example, time can be estimated from the threshold crossing of
decaying neural response (Staddon et al., 1999), or from a pre-
cisely designed set of leaky integrators (Shankar and Howard,
2012).

Here, by extending our earlier analysis (Shouval et al., 2013) to
the temporal domain, we explore the relationship between neural
dynamics and temporal perception and propose a theory of scalar
timing based on experimentally verifiable physiological processes.
Our approach is based on the assumption that estimates of a tem-
poral interval vary on a trial-by-trial basis due to spike count
variability (Dean, 1981; Tolhurst et al., 1983; Churchland et al.,
2010). Although our analysis is mathematically homologous to
the intensity variable case, the physiological substrates of time and
intensity estimation are quite different. Here we show that neural
processes with with activity levels that dynamically progress with
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a log-power temporal profiles can account for scalar timing, in
much the same way that our previous work showed that Weber’s
law results from log-power tuning curves. Our analysis is based on
a linear approximation, with results that are less precise than we
found when analyzing intensity variables. Though the log-power
model does produces scalar timing, our initial formulation of the
model with the linear approximation results in a small bias toward
underestimation and slightly less variability than found in sim-
ulations. In this paper we also derive a discrete approximation,
which is applicable only in the temporal domain, that precisely
estimates simulated neural variability. We also demonstrate that
the bias is a consequence of our initial threshold selection cri-
teria that can be easily eliminated with a simple algorithm that
learns the correct threshold value to accurately decode desired
intervals.

2. METHODS AND RESULTS
We start with the assumption that the brain uses the tem-
poral evolution of neural activity, which progresses with pre-
dictable stochastic dynamics, to estimate intervals. Specifically,
we assume that some stimulus at time t = 0 initiates a neural
process (describing either a single neuron or, more likely, a neu-
ral ensemble) that is characterized by a spike rate function r(t)
(see Figures 1B,C), which either increases (Roitman and Shadlen,
2002) or decreases (Shuler and Bear, 2006) monotonically. The
average spike count within a window τ is:

R(t) =
∫ t + τ/2

t − τ/2
r(t + t′)dt′ (1)

which can be approximated as R(t) ≈ τ r(t) for small τ values.
As illustrated in Figure 2, the temporal interval described by
this process is defined as the time required for R(t) to reach
some threshold R0, which can be set as R0 = r(ttar) for a target
time ttar . Noise driven fluctuations of r(t) result in variability of
trial-by-trial estimates, test , of the encoded target time.

In this framework there is a direct relationship between
the magnitude of temporal estimate errors (which can be eas-
ily recorded using standard psychophysical methods) and spike
count statistics that can be used to infer a mathematical form of
r(t), and thus the underlying physiology, subject to the linear con-
straint on estimate errors as a function of ttar specified by the
scalar timing law. A simple linear approximation (illustrated in
Figure 1A) of this relationship between the interval estimate and
spike count has the form:

σt(test) ≈ σR(ttar)

|R′(ttar)| = σR(ttar)

|τ r′(ttar)| (2)

where σR(t) is the standard deviation of the average spike count
at time t, and R′(ttar) is derivative of the spike count curve with
respect to the time, estimated at the target time. Note that σt(test)
is the standard deviation of the estimation of the time t over many
trials.

The scalar law states that errors estimating t scale linearly with
t. Using standard deviation as the error measure:

σt(t) = α · t. (3)

where α specifies the slope of linear scaling, equivalent to the
“Weber fraction.”

Combining Equations 2 and 3:

τ
dr(t)

dt
= dR(t)

dt
= ±σR(t)

αt
(4)

where the + sign is valid when the slope of r(t) is positive and
the − sign when it is negative.

We assume that spike count variability can be characterized
using a power-law model with the form:

σR(t) = β (τ r(t))ρ (5)

where the parameters β and ρ specify the specific noise model.
This power-law model can account for many forms of spike-count
variability. For example, ρ = 1/2 and β = 1 result in Poisson
noise, and the ρ = 0 case is the constant noise case, which means
spike count variability does not depend on the spike count.
Experimentally spike count variability is found to be close to
Poisson and often with somewhat larger variability than Poisson
(ρ ≈> 1/2). Although the power-law noise is a relatively general
model, it obviously cannot account for all forms of noise.

Applying this form to Equation 4, we obtain a differential
equation relating the neural firing rate to specific noise and
estimate error models:

dr(t)

dt
= ±

(
βτρ−1

α

)
r(t)ρ

t
(6)

The solution of Equation 6 has a log-power form:

r(t) = K · (±log(t/t0)
)n

(7)

where K = 1
τ

(β(1 − ρ)/α)n, and n = 1
1−ρ

. This relationship
holds whether r(t) rises (t ≥ t0, “+”case) or falls (t < t0,“−”
case) monotonically. The integration constant t0 has a simple
interpretation: it is the minimal (or maximal) time that can
be estimated using this specific monotonically increasing (or
decreasing) firing rate function (as shown in Figures 1B,C) for
different values of t0. Note that all the parameters of the log-
power function are determined by measurable spike statistics and
behavioral performance; none of them are free parameters.

The specific shape of the general log-power form depends pri-
marily on the spike count statistics. In the constant noise case
(ρ = 0) this equation reduces to Fechner’s law (Fechner, 1966).
Hence, Fechner’s law can be seen as making an implicit constant
noise assumption. In the special and unrealistic case of propor-
tional noise (ρ = 1) a power-law solution is obtained (Stevens,
1961).

Experimental recordings are often characterized by a nearly-
linear relationship between mean spike count and variance(Dean,
1981; Tolhurst et al., 1983; Churchland et al., 2010). In the near-
Poisson case, (ρ = 1/2), the log-power form has an exponent
of n = 2 (note, the examples in Figures 1B,C assume Poisson
statistics). We have previously shown for the case of magnitude
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FIGURE 1 | Scalar timing and neural statistics. (A) A local linear
approximation (green line, Equation 2) of the the average firing rate R(t) (real
distribution shown schematically by the gradient as a function of t, mean and
standard deviations indicated by dashed-white and solid red lines) together
with the scalar timing law leads to Equation 4, the solution of which (Equation

7 for the case of Poisson noise) is the firing rate curve r (t). Note, R′ is the
slope of the linear approximation to R(t). (B,C) Example firing rate curves
with Poisson spike statistics for different values of the integration constant
t0. (B) Increasing solutions are defined above minimal values at t0. (C)

Decreasing solutions are defined below maximal values at t0.

FIGURE 2 | Temporal interval estimation. (A) A stimulus (at time t = 0)
initiates a neural process with a mean firing rate (black line, determined by
linear approximation theory) that decreases with time. In each trial the actual
number of spikes varies stochastically; three trial-by-trial examples of the
spike count variable are shown by the colored lines. The time estimate in
each trial is determined by the first threshold crossing (RT - horizontal dashed
line) of the spike count variable. The actual estimated time for one trial (test )
is shown in comparison to the target time (ttar ). (B) The mean time predicted

by the model (〈test 〉, averaged over 200 trials) as a function of the target time.
Blue circles based on simulations, red circles using discrete approximation.
(C) The standard deviation of the time estimate (σT ) as a function of the
mean predicted interval. (D) When rescaled by the mean estimated time
(values specified by the color-code shown in the legend), the cumulative
distributions of the actual response times overlap and are statistically
indistinguishable (KS-test). These distributions were generated using Poisson
statistics, a decreasing log-power function, t0 = 10 and τ = 0.1 sec.

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 438 | 28

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Shouval et al. Scalar timing and neural dynamics

estimation that Weber’s law can be based on the tuning curves of
either single neurons or neural ensembles (Shouval et al., 2013).
Similarly here, while scalar timing can result if a single neuron’s
time-varying activity follows a log-power function, it is more likely
to arise from the combined activity of a heterogenous population
of neurons whose collective activity has the appropriate form.

To test the validity of our theory, we simulated a stochastic
neural process with a monotonically falling spike rate in time
(the increasing case, not discussed, is similar). Specifically, as
per the derivations above, simulations were performed by gen-
erating spikes using a non-homogeneous Poisson process with
a firing-rate parameter that decreased as a log-power function
of time. Firing rates were determined by convolving the resul-
tant spikes trains with a square window of width τ = 100 ms.
The estimate of the temporal interval (test) was defined, on a
per-trial basis, as the time at which the firing rate first reached
threshold (R0 set to r(ttar)). The result of these simulations are
shown in Figures 2B,C. The mean value of test is close to, but
a bit shorter than that predicted by the linear approximation
theory (Figure 2B, blue circle) and the standard deviation is
a linear function of the mean estimated time (Figure 2C–blue
circle), although with a slope lower than that predicted by
the linear approximation. Nevertheless, the rescaled distribu-
tions are almost completely overlapping (Figure 2D) and paired
Kolmogorov-Smirnov tests find that the differences between these
distributions are not statistically significant (although small dif-
ferences may emerge with longer time spans, larger α values,
or more trials). This shows that the log-power firing rate func-
tion indeed produces scalar timing, but that the theory described
above results in an overestimate of error and a small bias of
the mean.

It is possible to obtain a discrete approximation that better cap-
tures the simulation results. This approximation is obtained by
dividing time into non-overlapping time bins of length τ , such the
average spike count within a time bin (designated by the integer i)
is Ri ≈ τ · r((i − 0.5) · τ ). Under the assumptions that the bins
are non-overlapping and have no significant temporal correla-
tions, the spike counts in each bin are conditionally independent.
Then, for a given spike generation model, the probability of a
threshold crossing within a time bin as time unfolds is:

Pc(i|R0) =
∑

n ≤ R0

Ps(n|Ri), (8)

where Ps(n|R) is the probability of emitting n spikes given the
mean spike count R (note that this formulation assumes a
decreasing function r(t), for the increasing function the sum is
over n ≥ R0). The probability that the first threshold crossing
occurs in time bin j is

PFC(j|R0) = Pc(j|R0)�
j − 1
i = 1(1 − Pc(i|R0)). (9)

This distribution can be used to calculate the mean, 〈test〉, and
standard deviation, σT , of elapsed time estimates. Results of these
calculations, (Figures 2B,C, red circles) agree closely with the
numerical simulation results. The small discrepancy between this
calculation and the actual simulations arises from partitioning

time into non-overlapping time bins. Coarse grained simulations
in which zero crossings are allowed only at these discrete points
agree perfectly with the results of this discrete approximation.

Despite the close agreement between theory and simulations,
the model as described consistently underestimates the mean tar-
get time. This bias, which results from the somewhat arbitrary
decision to select R0 = r(ttar), can be corrected if the thresh-
olds are learned rather than chosen directly from the spike count
function. To learn the threshold (R0) we used a simple iterative
learning rule:

dR0

dt
= ±η(ttar = test) (10)

where the + sign corresponds to the monotonically falling firing
rate case, and the − sign is used for the monotonically increas-
ing cases, and η << 1 is the learning rate. This procedure quickly
converges to provide an unbiased estimate of the target times
(Figure 3A); error still scales linearly with time (Figure 3B) and
the discrete approximation accounts well for the slope.

3. DISCUSSION
Relating behavior to its underlying physiological mechanism is a
fundamental aim of neuroscience. Here we have shown how, in
a class of models based on the idea that time is estimated based
on the dynamic state of neural processes, to relate scalar timing
to the time varying firing rate of neurons. We show that, given
firing rate statistics characterized by a power-law, scalar timing
arises from a log-power firing rate function with parameters that
depend on the spike statistics. Our derivation relies on a linear
approximation, but we have also shown that a log-power function
results in scalar timing irrespective of this approximation. The
initial method for setting the detection threshold using the mean
of the firing rate function causes a small estimate bias, but this
can be corrected using an iterative procedure to find an appro-
priate detection threshold. Further, we have shown how to use a
discrete approximation to calculate better estimates of encoded
time and variability given a log-power firing rate function. These
result depend on a mathematical analysis which is similar to the
one used in our previous analysis of Weber’s law for intensity vari-
ables (Shouval et al., 2013). Though it produces scalar timing,
the linear approximation is less precise in the temporal domain
than it was when we used it to analyze the coding of stimulus
intensity. Accordingly, it was necessary to introduced a discrete
approximation in order to accurately calculate simulated variabil-
ity. We also showed how the decision-selection threshold can bias
the encoded interval. Most models that account for Weber’s law
in the intensity domain are completely distinct from models that
account for scalar timing. Our results show that a single mathe-
matical approach can provide a unified explanation for these two
distinct observations.

Although we derived firing-rate functions for the case of
perfectly-linear scalar timing, the same procedure used to gener-
ate Equation 4 can also be used when if the relationship between
estimation error and time is non-linear (Grondin, 2012). Similar
derivations are possible for other functional forms of Equation 3.
Indeed there are experiments showing that scalar-timing is pre-
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FIGURE 3 | Unbiased estimates obtained using a learned threshold. (A) The mean estimated time (〈test 〉) as a function of the target time. (B) The standard
deviation of the estimate error (σT ) as a function of the mean estimate.

cisely linear only in a limited range (Getty, 1975; Bizo et al.,
2006; Grondin, 2012), and the exact forms of scaling observed
in these experiments could be used to replace the linear scaling
assumed here. There is no guarantee that an analytical result can
be derived in such cases, but numerical solutions are always pos-
sible. Similarly, the same type of approach can be used to obtain
a firing rate function, either analytically or numerically, assuming
non-power-law forms for neural spike statistics.

Our analytical derivation produces a monotonically falling
functions that are valid only below and upper threshold (t0)
and monotonically increasing functions valid only above a lower
threshold (t0). There is a lower threshold below which we can
not evaluate time intervals, which would indicate that the mono-
tonically increasing results are possibly more realistic. However,
experimental results showing different Weber fractions at differ-
ent temporal intervals could also be interpreted as indications that
different processes are used for different time scales (Getty, 1975).
One possibility is that falling functions could be used for very
short temporal durations, on the order of a second or less, and
increasing functions for longer durations.

As we outlined above, various models of interval timing
have been proposed over the years to account for scaler timing
(Gibbon, 1977; Matell and Meck, 2000; Church, 2003; Durstewitz,
2003; Oprisan and Buhusi, 2011, 2014; Rivest and Bengio, 2011;
Simen et al., 2011; Shankar and Howard, 2012) and some share
key properties of the model proposed here (Staddon et al., 1999;
Durstewitz, 2003). An entirely different class of models is based
on the idea that time can be read from the dynamic state of
circuits in the cortical network (Buonomano and Mauk, 1994;
Karmarkar and Buonomano, 2007), though the conditions for
scalar timing in these models have not been analyzed. Some of
the previously developed models of scalar timing are based on
abstract entities such as counters and accumulators (Gibbon,
1977; Church, 2003), and some are dependent on continuous
variables (Matell and Meck, 2000; Karmarkar and Buonomano,
2007; Oprisan and Buhusi, 2011), while others can be inter-
preted in terms of spiking inhibitory and excitatory neurons
(Rivest and Bengio, 2011; Simen et al., 2011) and require nearly-
perfect integration for the decision process. The model presented
here is formulated directly in terms populations of spiking neu-
rons with experimentally measurable variables. There are no free

parameters in our model, since all depend directly on neural and
behavioral statistics. Therefore, our theory has the advantage that
it can be tested experimentally at the physiological level.

Our analysis indicates a very precise log-power form for the
firing rate function. One might wonder, rightly, if it realistic to
expect a neural processes to have such a precise formulation. It is
important to realize that our analysis does not require or claim
that any single neuron should display precise log-power dynam-
ics, though to get true linear scaling the relevant population of
neurons must possess this form. The population can be com-
posed of individual neurons with diverse response dynamics, as
we demonstrated in the intensity domain (Shouval et al., 2013).
A question not answered here is how single neurons or a popu-
lation of neurons can develop firing rate functions with a desired
form. Possible answers are provided by previous work showing
how single neurons with active conductances (Durstewitz, 2004;
Shouval and Gavornik, 2011) or networks of interacting neu-
rons (Gavornik et al., 2009; Gavornik and Shouval, 2011) can
be tuned to, or even learn de-novo, specific temporal dynamics.
An additional possibility is that decision neurons can select (in
the Hebbian sense) a sub-population of existing neurons with a
combined spike rate that has a log-power form without requir-
ing that the dynamics of any of the individual neurons change
at all, though we can not here propose a biologically realistic
mechanism for making this choice.

Recent experiments (Leon and Shadlen, 2003; Shuler and Bear,
2006; Chubykin et al., 2013) have made physiological recordings
from cortical cells in animals as they learn temporal discrim-
ination tasks. These results show that the firing rate function
of cells change when animals learn different temporal intervals
and theoretical models have been devised to account for them
(Reutimann et al., 2004; Gavornik et al., 2009). Analyzing these
cases, and determining a single framework that leads to scalar
timing, is quite different in many respects from the analysis car-
ried out here. We are currently studying this issue. Experimentally
it requires many trials to change the firing rate function. One
possibility, as mentioned above, is that the model presented here
describes mechanisms used to discriminate times in a manner
that requires little or no learning, whereas other models would
be required to describe how representations of specific temporal
intervals are encoded over many trials. Regardless, the work here
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makes a strong prediction that any neural process used to encode
temporal intervals that display scalar timing, with our minimal
assumptions, will have firing rates that evolve as a log-power of
time.
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A sequential sampling model for multiattribute binary choice options, called multiattribute
attention switching (MAAS) model, assumes a separate sampling process for each attribute.
During the deliberation process attention switches from one attribute consideration to the
next. The order in which attributes are considered as well for how long each attribute is
considered—the attention time—influences the predicted choice probabilities and choice
response times. Several probability distributions for the attention time with different
variances are investigated. Depending on the time and order schedule the model predicts
a rich choice probability/choice response time pattern including preference reversals and
fast errors. Furthermore, the difference between finite and infinite decision horizons for
the attribute considered last is investigated. For the former case the model predicts a
probability p0 > 0 of not deciding within the available time. The underlying stochastic
process for each attribute is an Ornstein-Uhlenbeck process approximated by a discrete
birth-death process. All predictions are also true for the widely applied Wiener process.

Keywords: sequential sampling, multiattribute, attention time, time schedule, order schedule, finite time horizon,

Ornstein-Uhlenbeck, Wiener

1. INTRODUCTION
Sequential sampling models are powerful models to account
simultaneously for choice probabilities and choice response
times. They have become the dominant approach to modeling
decision processes in cognitive science. Their application includes
a variety of psychological tasks from basic perceptual decision
to complex preferential choice tasks. Early on they have been
applied to identification and discrimination tasks (e.g., Edwards,
1965; Laming, 1968; Pike, 1973; Link and Heath, 1975; Heath,
1981; Ashby, 1983); memory retrieval (e.g., Stone, 1960; Ratcliff,
1978; Van Zandt et al., 2000); and classification (e.g., general
recognition theory, Ashby, 2000; exemplar–based random walk
models of classification, Nosofsky and Palmeri, 1997) to account
for speed-accuracy data. They have also been used for preferen-
tial decision tasks (e.g., decision field theory (DFT), Busemeyer
and Townsend, 1993; multiattribute dynamic decision model,
Diederich, 1997; Diederich and Busemeyer, 1999) to account
for choice response times and choice probabilities interpreted as
preference strength; judgment and confidence ratings (Pleskac
and Busemeyer, 2010); to account for selling prices, certainty
equivalents, and preference reversal phenomena (Busemeyer and
Goldstein, 1992; Johnson and Busemeyer, 2005). More recently,
they have been applied to combining perceptional decision mak-
ing and payoffs (Diederich and Busemeyer, 2006; Diederich, 2008;
Rorie et al., 2010; Gao et al., 2011). Furthermore, these mod-
els have been closely linked to measures from neuroscience like
multi-cell electrode recordings (e.g., Ditterich, 2006; Gold and
Shadlen, 2007; Churchland et al., 2008).

Sequential sampling models assume that (1) stimulus and
choice alternative characteristics can be mapped onto a hypo-
thetical numerical value representing the instantaneous level of
evidence (activation, information, or preference—the wording
often depends on the context), (2) some random fluctuation of
this value over time occurs, (3) this evidence is accumulated
over time, and (4) a final choice is made as soon as the evi-
dence reaches a threshold. Therefore, sequential sampling can be
described as a stochastic process. Two quantities are of foremost
interest: (1) the probability that the process eventually reaches one
of the thresholds or boundaries for the first time (the criterion to
initiate a response), i.e., first passage probability; (2) the time it
takes for the process to reach one of the boundaries for the first
time, i.e., first passage time. The former quantity is related to the
observed relative frequencies, the latter usually to the observed
mean choice response times or the observed choice response time
distribution.

Two classes of sequential sampling models have been predom-
inantly used in psychology: Random walk/diffusion models and
accumulator/counter models. The former are typically applied
to a binary choice task, so that evidence for one choice alterna-
tive is at the same time evidence against the other. A decision
is made as soon as the process reaches one of two preset crite-
ria. In the latter, an accumulator/counter is established for each
choice alternative separately, and evidence is accumulated in par-
allel. A decision is made as soon as one counter wins the race
to reach one preset criterion. The accumulators/counters may or
may not be independent. In the following we focus on random
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walk/diffusion models. For a review of both diffusion models and
counter models see Ratcliff and Smith (2004).

To be more precise and to introduce notation, let X(t) denote
the accumulation process. For a binary choice, say between choice
options A and B (Figure 1), the models assume that the deci-
sion process begins with an initial state of evidence X(0). This
initial state may either favor option A (X(0) > 0) or option B
(X(0) < 0) or may be neutral with respect to A or B (X(0) = 0).
Upon presentation of the choice options, the decision maker
sequentially samples information from the stimulus display over
time, retrieves information from memory, or forms preferences,
depending on the context. The small increments of evidence sam-
pled at any moment in time are such that they either favor option
A (dX(t) > 0) or option B (dX(t) < 0). The evidence is accu-
mulated from one moment in time to the next by summing
the current state with the new increment: X(t + h) ≈ X(t) +
μ (X(t), t) h + σ (X(t), t) (W(t + h) − W(t)). Here, μ(x, t) is
called the drift rate and describes the expected value of incre-
ments per unit time. The factor σ (x, t) in front of the incre-
ments W(t + h) − W(t) of a standard Wiener process W(t)
is called the diffusion rate, and relates to the variance of the
increments. This process continues until the magnitude of the
cumulative evidence exceeds a threshold criterion, θ . The pro-
cess stops and option A is chosen as soon as the accumu-
lated evidence reaches a criterion value for choosing A (here,
X(t) = θA > 0) or it stops and chooses option B as soon as the
accumulated evidence reaches a criterion value for choosing B
(here X(t) = θB < 0). The probability of choosing A over B is
determined by the accumulation process reaching the thresh-
old for A before reaching the threshold for B. The criterion is
assumed to be set by the decision maker prior to the decision
task.

FIGURE 1 | The trajectories symbolize the accumulation process for

three different trials. In one trial (red) the process is absorbed at the
boundary for making an A response. In another trial (blue) the process is
absorbed at the boundary for making a B response. For the third trial (black)
the accumulation process still evolves and no response is yet initiated.

The Wiener process with drift, lately called drift-diffusion
model in the psychological literature (Bogacz et al., 2006), is the
most widely applied model. Different versions reflect additional
assumptions for specific psychological domains. Ratcliff (1978)
proposed a diffusion model for memory retrieval that is used for
various psychological decision tasks. It is based on the work by
Laming (1968) and Link and Heath (1975) and assumes variabil-
ity in the starting point (i.e., X(0) follows a uniform distribution),
and the drift rate μ = μ(t) of the Wiener process is normally
distributed (cf. Laming). The residual time, i.e., the time other
than the decision time, such as stimulus encoding and motor
response, is assumed to be uniformly distributed and added to
the decision time, i.e., response time equals the decision time
plus a residual (non-decision) time. For a recent overview with
applications see Voss et al. (2013). Other approaches include
the Ornstein-Uhlenbeck model that linearly accumulates evi-
dence with decay (Busemeyer and Townsend, 1993; Diederich,
1997), and the leaky competing accumulator model (Usher and
McClelland, 2001) that non-linearly accumulates evidence with
decay.

Common to almost all of these approaches is the assump-
tion that a single integrated source of evidence generates the
evidence during the deliberation process leading to a decision.
In particular, the integrated source may be based on multiple
features or attributes, but all of these features or attributes are
assumed to be combined and integrated into a single source of
evidence, and this single source is used throughout the deci-
sion process until a final decision is reached. Diederich (e.g.,
Diederich, 1995, 1997, 2003, 2008), however, assumed a separate
process for each attribute1. The decision maker switches atten-
tion from one attribute to the next during the time course of
one trial. For instance, in a crossmodal task (visual, auditory, tac-
tile), Diederich (1995) assumed a serial processing controlled by
stimulus input at given stimulus onset asynchronies (SOA). That
is, the order of attributes, here a light, followed by a tone, fol-
lowed by a tactile vibration, as well as the point in time when
a new attribute was added, here the tone presented at t1 (t1

ms after the light onset) and the tactile vibration at t2 (t2 ms
after the light onset) was determined externally by the experi-
mental setup. In the following we will call an attention switch
at predetermined, fixed times, and predefined order attributes,
a deterministic time and order schedule. Often, however, neither
the processing order of attributes nor the point in time when
the decision maker switches attention from one attribute to the
next are known or can be inferred from the experimental setup.
For those cases, Diederich (1997) proposed a specific model in
which attention switches from one attribute to the next with some
probability. This is an instance of a random time and order sched-
ule which will be investigated more systematically in the present
study.

1The notion of attributes is defined here in a broad sense. For exam-
ple, it includes dimensions such as color and size of visual target;
amplitude and frequency of a tone; different modalities in a crossmodal
task; payoff information and perceptual information; attitudinal evidence
and perceptual evidence; prize and quality of a consumer product and
more.
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The purpose of this paper is to present a unified treatment
of sequential sampling models for both deterministic and ran-
dom time and order schedules. To do so we start with deriving
expressions for mean choice response times and choice proba-
bilities for a deterministic time and order schedule before we
show how they extend to random time and order schedules,
including Poisson, binomial, geometric, and uniform distribu-
tions for the attention time devoted to each attribute in the
sequence before attention switches to the next randomly or deter-
ministically chosen attribute. We will provide first numerical
evidence on the influence of various properties of a schedule
on the predictions for mean choice response times and choice
probabilities.

2. PRELIMINARIES
The model applies to any finite number of attributes that the
decision maker may consider, i.e., k = 1, . . . , K. For convenience
we first describe the process for one attribute. As underlying
information process for each attribute we assume an Ornstein-
Uhlenbeck process X(t) defined by

dX(t) = (δk − γk X(t)) dt + σk dW(t), (1)

where W(t) is a standard Wiener process. The parameters δk,
γk, and σk are characteristics of the k-th attribute. The attribute
characteristics may affect the quality of the extracted evidence for
choosing A over B and this quality of evidence determines the
drift rate δk. That is, the better an attribute discriminates between
A and B, the larger is δk. The parameter γk which induces a change
of the drift rate depending on the current state in the state space is
often connected to memory processes (e.g., primacy and recency
effects), conflict situations (e.g., approach-avoidance), or similar-
ities between choice alternatives. Thus, together the effective drift
δk − γkX(t) determines the direction and the velocity of the pro-
cess when considering the k-th attribute at time t. Note that by
setting γk to 0 results in a Wiener process with drift. That is, all the
analysis we perform in the following is also valid for the Wiener
process with drift. The diffusion coefficient σk indicates the vari-
ance of the increments of the process, for simplicity, we will set
σk = σ for all k.

2.1. MATRIX APPROACH
Stochastic processes such as the above X(t) can be approximated
by a discrete time, finite state space Markov chain. We use the
matrix approach since it is simple to implement, sufficient in
determining the entities of interest, i.e., choice probabilities and
choice response times, and flexible to account for non-stationary
and non-linear properties one wishes to include for the decision
making process in the future. The continuous state space [θB, θA]
of the piecewise Ornstein-Uhlenbeck process X(t) is replaced by a
finite state space S = {−mB, . . . , mA} with m = mA + mB + 1
states. The diffusion process {X(t), t ≥ 0} is approximated by a
discrete random walk {X̃(n), n ≥ 0} with values in S such that
X(nτ ) ≈ � · X̃(n) and θA ≈ mA� and θB ≈ −mB�, where � is
the step size of change in evidence. To achieve convergence in the
limit, the discretization parameters (� for state space, and τ for
time) are tied to each other by the relation � = σ

√
τ .

The attribute-related matrices Pk, k = 1, . . . , K, are given in
their canonical form by

Pk =
[

I 0

Rk Qk

]

=

1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0

p(k)
21 0 p(k)

22 p(k)
23 · · · 0 0

0 0 p(k)
32 p(k)

33 · · · 0 0

0 0 0 p(k)
43 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · p(k)
m − 3,m − 2 0

0 0 0 0 · · · p(k)
m − 2,m − 2 p(k)

m − 2,m − 1

0 p(k)
m − 1,m 0 0 · · · p(k)

m − 1,m − 2 p(k)
m − 1,m − 1

(2)

where

p(k)
i, i − 1 = 1

2

(
1 − (δk − γki�)

√
τ

σ

)
,

p(k)
i, i + 1 = 1

2

(
1 + (δk − γki�)

√
τ

σ

)
,

for i = 2, . . . , m − 1 (here, the index i corresponds to the state
i − 1 − mB). As � → 0 (or, equivalently, τ → 0), the decision
probabilities and mean choice response times obtained from the
Markov chain model converge to the values obtained from the
underlying continuous process X(t). The identity matrix I cor-
responds to the two absorbing states (−mB and mA) associated
with the two decision thresholds, one for each choice alternative;
the matrix Qk contains the transient probabilities, corresponding
to the updating evidence process, and the matrix Rk contains the
one-step transition probabilities from the transient to the absorb-
ing states. In particular, the first column vector of the matrix Rk

(denoted by RB,k) contains the transient probabilities for reaching
alternative B, while the second RA,k contains the ones for alter-
native A. For details and derivations see Diederich (1997) and
Diederich and Busemeyer (2003).

2.2. TIME AND ORDER SCHEDULE
For K attributes, each one to be considered for some specific
time in some specific order it is convenient to introduce a formal
schedule of both time and order. A finite time and order schedule
consists of a set of L consecutive time intervals {[tl − 1, tl]}l=1,...,L

and the attribute sequence {kl ∈ {1, . . . , K}}l = 1,...,L which spec-
ifies that during the time interval [tl − 1, tl] the kl-th attribute
is considered. At switching time tl, l = 1, . . . , L − 1, attention
switches from attribute kl to attribute kl + 1. Depending on the
situation, the final time tL may be set finite (then the decision pro-
cess may also finish without deciding for one of the alternatives)
or infinite. Consequently, the process X(t) determined by such a
schedule is a piecewise Ornstein-Uhlenbeck process, defined over
a finite partition t0 = 0 < t1 < . . . < tL − 1 < tL ≤ +∞ of the
time interval [0, tL], where for t ∈ [tl − 1, tl] the process is deter-
mined by (1) with k = kl. Figure 2 shows an example with three
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FIGURE 2 | A piecewise Ornstein-Uhlenbeck process with three

different attributes. The attribute order is (1, 2, 1, 3), attribute 1 is
considered twice in the sequence of attribute consideration. Switching
attention from one attribute to the next occurs at fixed times t1, t2, and t3.
The trajectories reflect the accumulation process for two different trials.
The black solid lines indicate the effective drift of the process.

different attributes (K = 3) and a deterministic time and order
schedule of length L = 4 with switching times tl independent
of the trajectories, and attribute order (1, 2, 1, 3), i.e., k1 = 1,
k2 = 2, k3 = 1, k4 = 3 (note that the first attribute is reconsidered
once).

For fixed � resp. τ , the m × m transition proba-
bility matrix P̃n containing the transition probabilities
p̃ii′ := P(X̃n + 1 = i′|X̃n = i) for the n-th step of the discrete-
time random walk depends on the currently considered attribute
defined by the time and order schedule, i.e., we set P̃n = Pkl if
n = nl − 1, . . . , nl − 1, where n0 = 0, τnl ≈ tl for l = 1, . . . , L (if
tL = ∞, we formally set nL = ∞).

3. CHOICE PROBABILITIES AND MEAN CHOICE RESPONSE
TIMES

In this section we derive the choice probabilities and mean choice
response times for various time and order schedules. For sim-
plicity we assume an unbiased process, i.e., with X(0) = 0 and
symmetric decision thresholds , i.e., θA = −θB. Since the diffu-
sion coefficient is a scaling parameter it will be set to σ = 1 for all
attributes throughout. We start with the deterministic time and
order schedule.

3.1. DETERMINISTIC TIME AND ORDER SCHEDULE
The evidence accumulation process for attribute k1, which is con-
sidered first, evolves until time t1 when the second attribute k2
comes into consideration, triggering a change in the accumula-
tion process. This attribute in turn is considered until time t2
when a third attribute k3 is considered and so forth until a deci-
sion is initiated (or tL is reached). Let the random variables TA
and TB denote the finite time when the process reaches a deci-
sion threshold θA or −θB, stops, and a decision response for A

or B is initiated. With the switching times tl replaced by integers
nl ≈ tl/τ , the choice probability Pr[choose A] = Pr(TA < ∞) is
then approximated by the value pA obtained from the discrete
random walk model as

Pr(TA < ∞) ≈ pA := Z′
n1∑

i = 1

Qi − 1
k1

RA,k1

+ Z′Qn1
k1

n2∑
i = n1 + 1

Qi−(n1 + 1)
k2

RA,k2 + . . . . . .

+ Z′Qn1
k1

. . . Q
nL − 1−nL − 2
kL − 1

nL∑
i = nL − 1 + 1

Q
i−(nL − 1 + 1)
nL RA,kL ,

(3)

where Z is the probability distribution for the initial state X(0).
For instance, for an unbiased process, Z would be a coordinate
vector with probability 1 at state 0 halfway between the deci-
sion thresholds. The remaining vectors and matrices are those
defined in (2). The evidence accumulation process for a succes-
sive attribute starts with the final evidence state of the previous
attribute. Note that Z′Qn1

k1
to Z′Qn1

k1
. . . Q

nL − 1−nL − 2
kL − 1

are defec-
tive distributions, i.e., the entries of these vectors do not sum
up to 1, for the states of the random walk at discrete times
n1, . . . , nL − 1. Further note that the stochastic process is time
homogeneous within each time interval [0, t1) to [tL − 1, tL] but
non-homogeneous across [0, tL] (see Diederich, 1992, 1995).

Similarly, the mean response time for choosing alternative A is
approximated as

E[TA | choose A] ≈ ETA := τ

pA

[
Z′

n1∑
i = 1

iQi − 1
k1

RA,k1

+ Z′Qn1
k1

n2∑
i = n1 + 1

iQi − (n1 + 1)
k2

RA,k2 + . . . . . .

+ Z′Qn1
k1

. . . Q
nL − 1−nL − 2
kL − 1

nL∑
i = nL − 1 + 1

iQ
i − (nL − 1 + 1)
nL RA,kL

⎤
⎦ .

(4)

The probability and the mean response time for choosing alter-
native B can be determined similarly. Note that p0 := 1 − (pA +
pB), the probability of not making a decision until the final time
tL, is strictly positive if tL < ∞. As shown in Diederich (1997),
these formulas can be further compactified. We will do this below
for the general case of deterministic and random schedules by
deriving an efficient recursion for their evaluation.

3.2. RANDOM TIME AND ORDER SCHEDULE
The above derivation of formulas for choice probabilities and
mean response times for a deterministic time and order schedule
have counterparts for random schedules which we describe next
in three steps.

3.2.1. Random order schedule
For generating the attribute order {kl}l = 1,...,L, we consider

stochastic K × K matrices D(l) such that d(l)
k ′k ≥ 0 describes the
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probability with which attention switches from the k ′-th attribute
to the k-th attribute at switching time tl ≈ τnl, l = 1, . . . , L − 1.

Normally, d(l)
kk = 0 would be assumed, to avoid a no switching

situation. For two attributes K = 2, we must then have d(l)
11 =

d(l)
22 = 0, d(l)

12 = d(l)
21 = 1, and the attribute sequence is either

(1, 2, 1, 2, . . . ) or (2, 1, 2, 1, . . . ), depending on whether k1 = 1
or k1 = 2. For three attributes and L = 3, choosing

D(1) =
⎡
⎣ 0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤
⎦ , D(2) =

⎡
⎣ 0 1 0

1 0 0
3/4 1/4 0

⎤
⎦ ,

would for k1 = 1 result in order sequences (1, 2, 1), (1, 3, 1),
(1, 3, 2) with probability 1/2, 3/8, 1/8, respectively. The above
matrix D(1) models the situation when no preference or bias for
considering attributes can be asserted.

3.2.2. Random time schedule
We assume that the number of discrete time steps during which
attention is paid to the k-th attribute is a discrete random variable
denoted by Tat with given distribution. In principle, this distribu-
tion may change its type and may have different parameters, such
as expected value, depending on the attribute and the attribute
order {kl}l = 1,...,L. This can be used to model time pressure and
other temporal effects. However, often we assume one and the
same distribution type for attention times across all attributes,
and allow for different parameters only.

For instance, the geometric distribution (as implicitly consid-
ered in Diederich, 1997) is given by

Pr(Tat = n) = (1 − r)n − 1r, n = 1, 2, . . . ,

and characterized by a single parameter r > 0, with expecta-
tion 1/r and variance (1 − r)/r2, and the uniform distribution
is defined as

Pr(Tat = n) = 1

2M + 1
, n = N − M, . . . , N + M,

with parameters N and M = 0, 1, . . . , N − 1 and expectation N
and variance M(M + 1)/3. Details for other tested distributions
(Poisson with parameter λ > 0, and binomial distributions with
parameters n and p) are omitted. For comparable expectation val-
ues E(Tat) (i.e., for parameter choices 1/r ≈ N ≈ λ ≈ np), the
geometric distribution has much larger variance than the Poisson,
binomial and uniform distribution with M ≈ √

N (the latter are
very close to each other). Figure 3 shows the pdf and cdf for
different Tat distributions with fixed mean value E(Tat) = 300.
The two uniform distributions are with M = 150 = N/2 and
M = 299 = N − 1. Varying the parameter M of the uniform dis-
tribution allows us to produce intermediate results between the
deterministic and geometric distribution cases as shown in the
following.

3.2.3. Constructing random time and order schedules
We create a random time and order schedule of length L in two
steps: First, given an initial distribution of k1 ∈ {1, . . . , K}, we

create the attribute sequence {kl}l=2,...,L using a non-stationary
Markov chain model with transition probability matrices D(l), l =
1, . . . , L − 1. In a second step, for each l = 1, . . . , L, the attention

time T(l)
at = nl − nl − 1 is created by the discrete random vari-

able responsible for the attention time paid to the kl-th attribute,
choices are independent for the different l. Consequently, tl −
tl − 1 ≈ τT(l)

at is the real attention time paid to the kl-th attribute.
We note that semi-random schedules, where the sequence {kl} is

given deterministically, and only the T(l)
at are determined as in the

second step outlined above, are covered if we choose the D(l) such

that d(l)
kl,kl + 1

= 1.

To understand the recursive computation of choice probabil-
ities and mean response times in this more general case, we first
consider the special cases L = 1, 2, and illustrate the derivation
on some distribution types of the random variable Tat generating
attention times by providing concrete formulas. In general, the
distribution for Tat is given by its probability mass distribution
(pdf) and cumulative distribution function (cdf)

Pr(Tat = n) = pn,k, (5)

Pr(Tat ≤ n) = fn,k :=
n∑

i = 0

pi,k, n = 0, 1, . . . .

We start with L = 1, and will drop the index l from the notation
introduced in the previous subsection. Since the probability of
choosing alternative A at the i-th step is given by Z′Qi − 1

k RA,k,
i = 1, . . . , Tat , and Tat is a random variable distributed according
to (5) we get

pA,k =
∞∑

n = 1

pn,kZ′
(

n∑
i = 1

Qi − 1
k

)
RA,k

= Z′
[ ∞∑

i = 1

( ∞∑
n = i

pn,k

)
Qi − 1

k

]
RA,k

= Z′
[ ∞∑

i = 0

(1 − fi,k)Qi
k

]
RA,k.

A similar formula holds for pB,k. To avoid repetition, introduce
the row vector pAB,k := [pB,k, pA,k], then

pAB,k = Z′Vk, Vk :=
[ ∞∑

i = 0

(1 − fi,k)Qi
k

]
Rk. (6)

The 2 × (m − 2) matrix Vk depends on the attribute and its
parameters via Qk, Rk, and on the chosen attention time distribu-
tion and the cdf (fn,k). For the discussed concrete attention time
distributions these matrices may be precomputed, in some cases
closed-form expressions can be found, e.g., for the geometric
distribution with parameter r = rk we have
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FIGURE 3 | Probability mass distributions (A) and cumulative

distribution functions (B) for commonly used attention time

distributions. All distributions have expected value 300. The uniform

distributions with N = 300 and M = N/2 = 150 are labeled as Unif.1
and with N = 300 and M = N − 1 = 299 as Unif.2. Geom. represents
the geometric distribution.

Vk =
∞∑

i = 0

⎛
⎝ ∞∑

j = i + 1

rk(1 − rk)j − 1

⎞
⎠Qi

kRk

=
∞∑

i = 0

(1 − rk)
i Qi

kRk = (
I − (1 − rk)Qk

)−1
Rk.

Next we discuss choice probabilities for the case L = 2, assum-
ing for simplicity that the attention time distribution is the same
for all attributes. To save on indices, denote k1 ≡ k ′, k2 ≡ k, and
D(1) ≡ D (this matrix is responsible for the random choice of k
given any k ′). Then the decision probability vector pAB,k ′,k for
reaching alternatives B or A in with attribute order (k ′, k) has
two parts: the probabilities of having decided on while still con-
sidering the k ′-th attribute (i.e., TA/τ ≤ T′

at , where T′
at is the

randomly generated attention time for the first attribute k ′ ) plus
the probabilities that τT′

at < TA/τ ≤ T′
at + Tat , where Tat is the

randomly (and independently) generated attention time for the
second attribute k. On top of this, k itself is randomly chosen
according to the entries in the k ′-th row of D. Thus, for each fixed
k1 = k ′ and n1 = T′

at according to (6) probabilities for reaching
a decision after n1 are given by

[
Pr

(
T′

at <
TB

τ
< ∞

)
, Pr

(
T′

at <
TA

τ
< ∞

)]
n1 = T′

at ,k1 = k ′

≈
K∑

k = 1

dk ′kZ′Qn1
k ′ Vk = Z′QT′

at
k ′

(
K∑

k = 1

dk ′kVk

)
.

Thus, for L = 2, the choice probabilities (under the assumption
that k1 = k ′ is fixed) can be obtained as

[pB, pA]k1 = k ′ = Z′Vk ′ +
∑
n ≥ 0

pn,k ′ Z′Qn
k ′

(
K∑

k = 1

dk ′kVk

)

= Z′
⎡
⎣Vk ′ +

⎛
⎝∑

n ≥ 0

pn,k ′ Qn
k ′

⎞
⎠
(

M∑
m = 1

dk ′kVk

)⎤
⎦

= Z′
[

Vk ′ + Bk ′

(
K∑

k = 1

dk ′kVk

)]
, k ′ = 1, . . . , K,

where

Bk =
∑
n ≥ 0

pn,kQn
k , k = 1, . . . , K, (7)

are (m − 2) × (m − 2) matrices depending on the attribute and
attention time distribution type. For example, for the geomet-
ric distribution this simplifies to Bk = rkQk(I − (1 − rk)Qk)−1,
closed form expressions are available for Poisson, binomial, and
uniform distributions as well.

For arbitrary L, it is more convenient to write the result-
ing recursion in terms of block-matrix-vector operations.
Denote by
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Z the K × 1 array with each entry equal to the initial
distribution Z (and think of Z′ as its
transpose, a 1 × K array with entries Z′),

B the K × K diagonal array with the Bk on the
diagonal (similarly for C defined later),

I the K × K diagonal array, with identity matrices I of
the appropriate size on the diagonal,

V the K × 1 array with the Vk as entries (similarly for
W defined later), and

pAB the K × 2 matrix, whose rows are the choice
probabilities [pA, pB]|k1=k defined before
in the case L = 2.

Then the above result for L = 2 can be compactly written as

pAB = Z′ (I + BD) V. (8)

Note that the product BD of the array B with the matrix D is inter-
preted as the K × K array with dk ′kBk ′ as entry in row k ′ and
column k. Moreover, by iterating (8), one arrives at the formula
for arbitrary L:

pAB = Z′ (I + BD(1)
)

. . .
(

I + BD(l − 1)
)

V. (9)

Formulas for mean response times can be derived similarly.
Indeed, for L = 1, denote by ETA,k the mean response time
for reaching alternative A when considering the k-th attribute
for a random time Tat distributed according to (5). Then
ETA,k ≈ τ etA,k/pA,k, where

etA,k =
∞∑

n = 1

pn,k

(
n − 1∑
i = 0

(i + 1)Z′Qi
k

)
RA,k

= Z′
⎡
⎣ ∞∑

i = 0

⎛
⎝ ∞∑

n = i + 1

pn,k

⎞
⎠ (i + 1)Qi

k

⎤
⎦RA,k

= Z′
[ ∞∑

i = 0

(1 − fi,k)(i + 1)Qi
k

]
RA,k. (10)

Similarly for ETB,k and etB,k. Thus, similar to (6), we can write

etAB,k : = [etB,k, etA,k] = Z′Wk, (11)

Wk : =
[ ∞∑

i = 0

(1 − fi,k)(i + 1)Qi
k

]
Rk, k = 1, . . . , K.

The matrices Wk can be precomputed to any accuracy at essen-
tially the same cost as the Vk. For particular distributions, the
formulas can be turned into closed form expressions.

Next, let us look at L = 2. By using similar notation and argu-
ments as for choice probabilities, the quantities etA,k ′,k, etB,k ′,k
have a part before and after T′

at . This, together with (10), (11),
gives

etAB|k1 = k ′ = Z′Wk ′ +
∞∑

n = 0

pn,kZ′Qn
k ′

(
K∑

k = 1

dk ′k(nVk + Wk)

)

= Z′
[

Wk ′ +
( ∞∑

i = 0

pi,k ′ iQi
k ′

)(
K∑

k = 1

dk ′kVk

)

+
( ∞∑

i = 0

pi,k ′ Qi
k ′

)(
K∑

k = 1

dk ′kWk

)]

= Z′
[

Wk ′ + Ck ′

(
K∑

k = 1

dk ′kVk

)
+ Bk ′

(
K∑

k = 1

dk ′kWk

)]
,

where
Ck =

∑
n ≥ 0

pn,knQn
k , k = 1, . . . , K. (12)

Thus, the counterpart of (8) is

etAB = Z′((CD)V + (I + BD)W), (13)

From here, combining with (8), a joint recursion for computing
pAB and etAB results:

[pAB, etAB] = [Z′, Z′]
[

I + BD(1) 0
CD(1) I + BD(1)

]
. . .

[
I + BD(L − 1) 0

CD(L − 1) I + BD(L − 1)

] [
V
W

]
. (14)

We conclude this section with a few remarks. In Diederich (1997),
under the name MADD/pp, a slightly different presentation of
random schedules is given for the special case of geometrically
distributed attention times. It is not hard to see, that (with the
notation rij used in the K = 3 example presented in Section
4.2 Diederich, 1997) our model is equivalent to MADD/pp as
L → ∞, if we set rk = 1 − rkk for the parameters r of the
geometrically distributed Tat , k = 1, 2, 3, and dkk = 0, dkk ′ =
rkk ′/(1 − rkk), k ′ �= k, for the entries of the matrix D = D(l),
l ≥ 1. The advantage of the MADD/pp model is that it provides
closed form formulas for the case L = ∞, a possibility that we did
not pursue here for other types of attention time distributions.

In previous sequential decision models with finite L
(Diederich, 1997), the last attribute was always considered
infinitely long (infinite decision horizon) to avoid the situation
of no decision, i. e., p0 > 0. This can be incorporated into the
current model by modifying the definition of the matrices Vk, Wk

corresponding to the last interval [tL − 1,∞) to

Vk = (I − Qk)−1Rk, Wk = (I − Qk)−2Rk, k = 1, . . . , K,

and modifying the recursion (14) slightly. Alternatively, one can
artificially change the parameters of the attention time distribu-
tion for l = L such that its expected value is sufficiently large, and
make p0 practically negligible. Since infinite decision horizons do
not seem to adequately reflect the situation of a real decision pro-
cess or laboratory experiment, it might be interesting to work
under scenarios where tL is fixed and finite that we described in
this paper.
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4. SIMULATIONS
We present some simulations that demonstrate the predictive
power of the proposed model. We focus on features that have
not been considered in Diederich (1997) for the deterministic
case. Throughout this section we fix certain parameters, such as
σ = 1, θA = −θB = 10, � = 1

4 , τ = 1
16 (this implies a state space

size of m = 81), and always start at the neutral position X(0) = 0
between choice alternatives A and B.

4.1. IMPACT OF ATTENTION TIME DISTRIBUTIONS
First, we show how different assumptions on the random-
ness of the attention time Tat (i.e., the time spent on con-
sidering a certain attribute) influences choice probabilities and
mean response times. In the first example, we assume just two
attributes with parameters δ1 = 0.2, γ1 = 0.03, δ2 = 0.04, γ2 =
0.003, both attributes favor alternative A, the first one more
strongly than the second one2. The attributes are considered only
once (L = 2), with order k1 = 1, k2 = 2. The first attribute is
considered for time t1 = τn1, where n1 is a random variable
Tat described above with given expectation N. For the second

2Note that when looking only at the numerical values of the drift parameter
δ1 = 0.2 and the decision criterion θA = 10 and assuming that the attention
times t1 to the first attribute are large enough it would suggest mean response
times in the range TA ≈ 50 (and very small pB). However, since γ1 = 0.03 it
leads to a negative effective drift δ1 − γ1X(t) if X(t) comes close θA, and the
mean response times become much longer. This also demonstrates the effect
of the parameter γk, and a difference between Ornstein-Uhlenbeck process
and Wiener process based models.

attribute we compare two situations: (1) We assume an infinitely
long decision horizon t2 = ∞, and (2) we determine a finite
time horizon t2 = τn2 by choosing n2 = n1 + Tat which is also
Tat distributed with the same expected value N. These two sit-
uations are depicted in Figures 4, 5. The graphs show choice
probabilities and mean response times as functions of the expec-
tation τE(Tat) of the real attention times. Lines of different color
represent different distributions. Distributions with a small vari-
ance, such as the Poisson distribution, the binomial distribution,
and the uniform distribution with M ≈ √

N produce results
indistinguishable from the deterministic case. This holds for all
tested situations shown below. This means, small uncertainties
in attention time spans do not influence the observable choice
frequencies and mean response times. However, as the variance
of the attention times grows, we see quantitative and qualitative
changes. Compared to the deterministic attention time situation,
the geometric distribution differs most, and the uniform distri-
butions with M = N/2 = 150 (Unif.1) and M = N − 1 = 299
(Unif.2) are intermediate. Moreover, there is expectedly a big dif-
ference for small mean attention times between finite and infinite
decision horizons. Most importantly, for the former case it pre-
dicts a probability p0 > 0 of not deciding within the available time
t2. We claim that for many situations, where an infinite time hori-
zon does not represent reality well enough, our finite schedule
model might be more appealing. This aspect will be pursued in
further research.

Figures 6, 7 show similar simulation results for the situation
of considering first an attribute favoring B (δ1 = −0.1, γ1 = 0)

FIGURE 4 | Choice probabilities (A,C) and mean response times (B,D) as

functions of the expected attention time E (t1) = 10. . . 500 paid to the

first attribute for different distribution types. The attribute considered first
for a random time t1 strongly favors alternative A, followed by a second

attribute which only weakly favors A but is considered indefinitely. Note that
graphs for distribution types with small variance are almost indistinguishable
from the graph corresponding to deterministically fixed t1 (variance 0) and
therefore are omitted here.
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FIGURE 5 | Same as in Figure 4 but now the second attribute is

also considered for a random finite time t2 − t1 whose distribution

is the same as for t1 [in particular, E (t2 − t1) = E (t1)]. (A) and (B)

show the choice probabilities for choosing alternative A and B,
respectively. (C) shows the probability p0 of not reaching a decision

which naturally decays if the expected attribute attention time grows.
(D) and (E) show the expected mean response times for choosing
alternative A and B, respectively, as functions of the expected attention
time E(t1) = 10 . . . 500 paid to the first attribute for different distribution
types.

followed by an attribute more strongly favoring A (δ2 = 0.2, γ2 =
0.03). As expected, the results look now different, however, the
main conclusions from the previous example concerning the
influence of the randomness type for attention times and the dif-
ferences for finite vs. infinite time horizons remain the same. Most
importantly here, the model predicts a preference reversal (i.e.,
choice probabilities from below 0.5 to above 0.5) as a function of
attention time when one attribute is in favor of choosing alterna-
tive A and the other in favor of choosing alternative B. Parameter
studies, as in Diederich (1997), will be pursued further elsewhere.

To complete the picture, we show a three-attribute example
(K = 3) in Figure 8. The chosen attribute parameters are now
δ1 = 0.04, γ1 = 0.003, δ2 = −0.1, γ2 = 0, δ3 = 0.2, γ3 = 0.03,
i.e., a weakly in favor of A, in favor of B, and strongly in favor
of A sequence of attributes. Attention times for the first two
attributes are chosen independently from each other but with
the same distribution with fixed mean value; the last attribute is
considered indefinitely.

4.2. DEPENDENCE ON ATTRIBUTE ORDER
The proposed sequential decision model is sensitive to the order
in which the attributes are consider. If we consider in the afore-
mentioned second two-attribute example the attribute in favor of
A first, and then the attribute in favor of B we get very different
patterns as shown in Figure 9 compared to Figure 6. A similar
effect is true for the above K = 3 example. In Figure 10, the

attribute in favor of B is now the last one; the graphs need
to be compared with Figure 8. One interesting pattern can be
observed. If the evidence for choosing one alternative decreases
in the sequence of attribute consideration then the model pre-
dicts faster choice response times for the more frequently chosen
alternative—a typical pattern observed in response time analy-
sis. However, if the evidence increases in the sequence of attribute
consideration then the model predicts faster choice response
times for the less frequently chosen alternative which has been
called fast error, as shown in Figure 11 compared to Figure 4.
Simply by changing the order of attribute processing the model
predicts a complex pattern of choice response times and choice
probabilities.

So far, all examples shown are with a fixed, determinis-
tic attribute order with no repetitions (semi-random schedule,
L = K). The evaluation of fully random time and order schedules
requires larger L, and will be presented elsewhere.

5. CONCLUDING REMARKS
The proposed multiattribute attention switching (MAAS) model
can predict a very complex choice probability/(mean) choice
response time pattern. It may appear too flexible to be testable.
However, this is not the case. If two attributes both favor alter-
native, A say, and the first attribute that is considered provides
more evidence for choosing A than the second (δ1 > δ2), then
the model predicts always shorter response times for the more
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FIGURE 6 | Choice probabilities (A,C) and mean response times (B,D)

for a decision situation where an attribute favoring alternative B is

considered first for a random time t1, followed by a second attribute

strongly favoring A but considered indefinitely. We show graphs of

choice probabilities and mean response times as functions of the expected
attention time E(t1) = 10 . . . 500 paid to the first attribute for different
distribution types. Again, graphs for distribution types with small variance
are indistinguishable from each other.

FIGURE 7 | Same as in Figure 6 but now the second attribute is

also considered for a random finite time t2 − t1 whose distribution

is the same as for t1. (A), (B), and (C) show the choice probabilities

for choosing alternatives A, B and none, respectively. (D) and (E)

show the mean response times for choosing alternatives A and B,
respectively.
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FIGURE 8 | Choice probabilities (A,C) and mean response times (B,D) for

a decision model with three attributes. An attribute weakly favoring
alternative A is considered first for a random time t1, followed by a second
attribute favoring B considered for a random time t2 − t1, while the last
attribute (strongly favoring A) is considered indefinitely. The random attention

times t1 and t2 − t1 for the first two attributes are independently chosen from
the same distribution. We show graphs of choice probabilities and mean
response times as functions of the expected attention time
E(t1) = E(t2 − t1) = 10. . . 500 for different distribution types. Again, small
variance distributions yield almost identical results.

FIGURE 9 | Same as in Figure 6 but with a different attribute order: First

the attribute strongly in favor of A is considered for a finite random time

t1, then the attribute favoring B is considered indefinitely long. (A) and

(C) show the choice probabilities for choosing alternatives A and B
respectively. (B) and (D) show the mean response times for choosing
alternatives A and B, respectively.

frequently chosen alternative, here A, regardless of the assumed
underlying attention time distribution. If the order of processing
these attributes is reversed, i.e., the attribute that favors alternative
A less is considered first (δ2 > δ1), then the model always

predicts faster responses for the less frequently chosen alterna-
tive, here B, again regardless of the assumed underlying attention
time distribution. A single stage process can only account for
this pattern by assuming variability in starting positions and
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FIGURE 10 | Same as in Figure 8 but with a different attribute order: First

the two attributes in favor of A (strong followed by weak) are

considered for finite random periods of time, then the attribute favoring

B is considered indefinitely long. (A) and (C) show the choice probabilities
for choosing alternatives A and B, respectively. (B) and (D) show the mean
response times for choosing alternatives A and B, respectively.

FIGURE 11 | Same as in Figure 4 but with a different attribute order: The

attribute considered first for a random time t1 weakly favors alternative

A, followed by a second attribute which strongly favors A but is

considered indefinitely. (A) and (C) show the choice probabilities for
choosing alternatives A and B respectively. (B) and (D) show the mean
response times for choosing alternatives A and B, respectively.
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variability in drift rates, i.e., a statistical means where the drift
rate itself is a random variable. It is difficult experimentally to
disentangle the variability stemming from the stochastic process
itself and the variability from the distribution of different drift
rates. As Jones and Dzhafarov (2013) pointed out, the predictions
of various sequential sampling models rest upon the assump-
tions made about the assumed probability distributions. This is
not the case here. The model is falsifiable without assuming spe-
cific distributions. Rather than relying on statistical mechanisms
to ensure an observed response patterns we rely on assump-
tions about cognitive processes such as attention switching and
salience. The specific attention time distribution used for an
application may be related to the experimental paradigm. For
instance, when tracking eye movements, the sequence of attribute
consideration and the switching times are directly observable, and
a deterministic or a uniform distribution with a small variance
is advisable. When all attributes are shown simultaneously, like
in complex objects, and attention may shift at any moment in
time a geometric distribution or a uniform distribution with a
large variance may describe the situation better. Testing the model
rigorously will be pursued in the future.
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Over the last 150 years, human manual reaction times (RTs) have been recorded countless
times. Yet, our understanding of them remains remarkably poor. RTs are highly variable
with positively skewed frequency distributions, often modeled as an inverse Gaussian
distribution reflecting a stochastic rise to threshold (diffusion process). However, latency
distributions of saccades are very close to the reciprocal Normal, suggesting that
“rate” (reciprocal RT) may be the more fundamental variable. We explored whether this
phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs
from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs.
difficult discrimination) and two instruction sets (urgent vs. accurate). We found that rate
distributions were, indeed, very close to Normal, shifting to lower rates with increasing
difficulty and accuracy, and for some blocks they appeared to become left-truncated, but
still close to Normal. Using autoregressive techniques, we found temporal sequential
dependencies for lags of at least 3. We identified a transient and steady-state component
in each block. Because rates were Normal, we were able to estimate autoregressive
weights using the Box-Jenkins technique, and convert to a moving average model using
z-transforms to show explicit dependence on stimulus input. We also found a spatial
sequential dependence for the previous 3 lags depending on whether the laterality of
previous trials was repeated or alternated. This was partially dissociated from temporal
dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice
manual RT distributions are close to reciprocal Normal and not the inverse Gaussian.
This is not consistent with stochastic rise to threshold models, and we propose a simple
optimality model in which reward is maximized to yield to an optimal rate, and hence an
optimal time to respond. We discuss how it might be implemented.

Keywords: reaction times, latency, reciprocal Normal, autoregressive integrated moving average (ARIMA), speed-

accuracy trade-off, Pieron’s law, optimality

INTRODUCTION
Reaction times (response times, latency) (RTs) have been mea-
sured and discussed innumerable times since their first mea-
surements in the mid-19th century by von Helmholtz (1850)
and Donders (1969). RT experiments are so commonplace
that they have become a standard paradigm for measuring
behavioral responses, often with scant regard to any underly-
ing process. However, the mechanisms behind RTs are complex
and poorly understood. A common view is that RTs reflect
processing in the time-domain, where RTs are the sum of
independent sequential processes including conduction delays,
decision-making processes, and motor responses. We ques-
tion this very fundamental assumption and consider responses
in the rate-domain, where rate is defined as the reciprocal
of RT.

One of the most perplexing aspects of RTs is their extreme
variability from one trial to the next with some very long
RTs, even when the same stimulus is repeated and subjects are
instructed to respond as quickly as possible. As exemplified by
the saccadic system, why does it take hundreds of milliseconds

to decide to make a saccade, when the saccade itself only
takes a few tens of milliseconds to execute (Carpenter, 1981)?
Moreover, if we accept that point-to-point movements, such as
saccades and arm reaching are time-optimal (Harris and Wolpert,
1998), should we not expect the RT also to be optimized? One
is then led to wonder how such long response times could
be optimal.

DRIFT DIFFUSION MODELS (DDM)
The most popular explanation for the variability of RTs has
revolved around the putative mechanism of an accumulator or
“rise to threshold” model. A signal, ρ(t), increases (accumu-
lates) in time until it crosses a boundary (“trigger level” or
“decision threshold”), θ(t), whereupon the response is initi-
ated (first-passage time; Figure 1A). Typically, ρ(t) is assumed
to be a stochastic signal reflecting the accumulation of “infor-
mation” for or against an alternative until a predetermined level
of confidence is reached represented by a constant θ(t) (Ratcliff,
1978) (Figure 1B). A simple reaction time is modeled by a sin-
gle boundary, and a two-alternative choice task is modeled by
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FIGURE 1 | Illustration of accumulator models: (A) general

first-passage scheme where a triggered event occurs when a signal

ρ(t) first crosses the trigger level θ (t). Note that crossing is a solution to
the equation ρ(t) = θ (t); (B) in the diffusion model ρ(t) increases
stochastically and triggers a response when it reaches a constant θ (t), or
“threshold.” The signal is assumed to be a Wiener process, and the first
passage time is a within-trial random variable (shaded curve) with an
inverse Gaussian distribution. In the rate domain (right column) the rate
distribution remains positively skewed; (C) the diffusion model for two
boundaries, where boundary θ1(t) determines correct responses, and
boundary θ2(t) determines error responses. In the rate domain, rate of
correct responses remains positively skewed. (D) In the deterministic
model, ρ(t) increases linearly and deterministically until the threshold is
reached. It is assumed that the slope of rise is a between-trial Normal
random variable and gives rise to a reciprocal Normal distribution. In the
rate domain, rate is distributed with a truncated Normal distribution.

two boundaries. A RT is then first-passage time for one of the
alternatives plus any other “non-decision” time such as senso-
rimotor delays (e.g., Ratcliff and Rouder, 1998; Ratcliff et al.,
1999).

Typically, ρ(t) is assumed to drift with a constant mean
rate but is instantaneously perturbed by a stationary Normal
white noise process (Wiener process), so that within a given

trial and with one boundary, the time of crossing the thresh-
old is a random variable with an inverse Gaussian distribution
(Schrodinger, 1915; Wald, 1945). With two boundaries, the first
passage time for one boundary indicates the decision time for
a correct response, and an error response for the other bound-
ary; their probability density functions (pdf ’s) are computed
numerically (Ratcliff, 1978; Ratcliff and Tuerlinckx, 2002) (see
Table 1 for pdf ’s). For an easy choice task (i.e., high drift rate
toward the “correct” boundary), the pdf will approach the inverse
Gaussian distribution as error rate become negligible. Although,
there are numerous variations on this theme (e.g., Ratcliff and
Rouder, 1998, 2000; Smith and Ratcliff, 2004; Bogacz et al., 2006;
Ratcliff and Starns, 2013), they share the same basic stochastic
rise to threshold decision-making process in the time-domain.
It has been recently shown how the pure diffusion process
(without variability across trials) has an exact equivalent in
terms of Bayesian inference (Bitzer et al., 2014). As shown by
Bogacz et al. (2006), the DDM is optimal in the sense that for
a given boundary (decision accuracy) the decision is made in
minimal time.

Ratcliff (1978) also allowed the mean drift rate to fluc-
tuate between trials with a Normal distribution to reflect
“stimulus encoding” variability. This version has often been
called the extended DDM, which also includes variability in
the starting point of drift, and variability in the non-decision
component (Ratcliff and Tuerlinckx, 2002). The extended
DDM has been used to describe simple RT experiment
(Ratcliff and van Dongen, 2011) and choice RT (Ratcliff, 1978;
Hanes and Schall, 1996; Ratcliff and Rouder, 1998; Schall, 2001;
Shadlen and Newsome, 2001; Ratcliff et al., 2003, 2004; Smith and
Ratcliff, 2004; Wagenmakers et al., 2004; Ratcliff and McKoon,
2008; Roxin and Ledberg, 2008).

Although the multi-parameter extended DDM is claimed to
fit observations, a serious problem has emerged from the eye
movement literature, when we consider the distribution of the
reciprocal of RTs, which we call “rate.”

THE RECIPROCAL NORMAL DISTRIBUTION
Investigations into the timing of saccades for supra-threshold
stimuli have shown that the frequency distribution of simple RTs
(latency) is close to the reciprocal Normal distribution; that is,
rate has a near-Normal distribution. Small deviations from true
Normal are observed in the tails, but probit plots are typically lin-
ear between at least the 5th and 95th centiles (Carpenter, 1981).
The reciprocal Normal is not known to be a first-passage dis-
tribution for a constant threshold, and is easily distinguished
from the inverse Gaussian or the two-boundary pdf. Carpenter
has proposed the LATER model in which the rise to threshold
is linear and deterministic, but the slope of rise varies from trial
to trial with a Normal distribution (Carpenter, 1981; Carpenter
and Williams, 1995; Reddi and Carpenter, 2000) (Figure 1D).
If Carpenter’s findings can be generalized beyond saccades, they
are equivalent to the extended DDM without fluctuation in the
rise of ρ(t) (i.e., no diffusion) and with only one threshold.
There is an obvious difficulty in how to explain a determinis-
tic rise to threshold based on a Bayesian update rule, which is
inherently stochastic. Moreover, if the rise is deterministic then
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Table 1 | Left column: mathematical expressions of the probability density functions (pdf’s) for RTs for a single boundary diffusion model, two

boundary diffusion model, and the reciprocal Normal.

Time-domain Rate-domain

Inverse Gaussian

IG(μ, σ 2) =
(

μ3

2πσ 2χ3

) 1
2

exp

[
−μ(χ − μ)2

2σ 2χ

] Reciprocal inverse Gaussian

recIG(μ, σ 2) =
(

μ3

2πσ 2χ

) 1
2

exp

[
2μ2 − μ/χ − χμ3

2σ 2

]

First passage time distribution for the boundary of the two
boundaries a and b for the pure DDM with diffusion constant, s

B(ξ, a, b, z) = πs2

(a − b)2
exp

[
ξ (a − z)

s2 − ξ2t
2s2

]

∞∑
k = 1

k exp

[
− k2π2s2t

2(a − b)2

]
sin

[
kπ (a − z)

a − b

]

Reciprocal first passage time distribution boundary a of the two boundaries a
DDM

recB(ξ, a, b, z) = πs2

t2(a − b)2
exp

[
ξ (a − z)

s2 − ξ2

2ts2

]

∞∑
k = 1

k exp

[
− k2π2s2

2t(a − b)2

]
sin

[
kπ (a − z)

a − b

]

see Ratcliff and Smith (2004)

Reciprocal truncated Normal

rectrN(μ, σ ) =
exp

[
− (1/t−μ)2

2σ2

]
√

2π
(
1 − φ

(− μ
σ

))
σ t2

Truncated Normal

trN(μ, σ ) =
exp

[
− (t−μ)2

2σ2

]
√

2π
(
1 − ϕ

(− μ
σ

))
σ


 = Normal cdf; ξ = drift rate; a = upper boundary; b = lower boundary; z = starting point. Right column: equivalent pdf’s in the rate (reciprocal RT) domain. See

Harris and Waddington (2012) for the mathematical relationship between the two domains.

the time to reach threshold is known at the outset, and any
competition among alternatives can be resolved very quickly—so
why wait?

The reciprocal Normal is a bimodal distribution with positive
and negative modes. In the time-domain this would imply very
large negative RTs, which would require the response to occur
long before the stimulus onset and violate causality. Therefore,
we need to consider the reciprocal truncated Normal distribution
(rectrN), (where the Normal rate distribution is left truncated at
or near zero; see Harris and Waddington, 2012). The question is
what happens at or near zero rate? For easy tasks where RTs are
low, the probability of rate reaching zero (i.e., RT approaching
infinity) is negligible and the problem might be dismissed as a
mathematical nuance. However, for difficult tasks, the probability
becomes significant, as we have shown (Harris and Waddington,
2012). A departure from the reciprocal Normal has been reported
for saccade latency to very dim targets, but this has been mod-
eled instead as an inverse Gaussian based on a diffusion process
(Carpenter et al., 2009). Clarification is needed on what happens
when rates are low.

It has long been known that sequential effects occur in man-
ual choice RTs (Hyman, 1953). In sequences of 2-alternative
choice RT experiments, RTs may be correlated with the previous
trial (first-order) and also earlier trials (high-order). Moreover,
this sequential dependency seems to be a function of whether
a stimulus is repeated or alternated (Kirby, 1976; Jentzsch and
Sommer, 2002). Sequential dependencies cannot be explained
by within-trial noise processes, such as the DDM, unless there
are between-trial parameter changes (changes in drift rate or
threshold values). If we assume a linear dependence on history
(autoregressive model) in the rate-domain, then it could in prin-
ciple lead to convergence onto the Normal distribution via the
central limit theorem.

THE RATE-DOMAIN
It is important, therefore, to identify RT distributions, but this
is a non-trivial problem. It is difficult to distinguish among
highly skewed distributions in the time-domain. The method
of moments is infeasible due to poor convergence (the recip-
rocal Normal has no finite moments; Harris and Waddington,
2012). Maximum likelihood estimation of parameters requires
vast amounts of data to distinguish between models (Waddington
and Harris, 2012). There is also the problem of under-sampling
at extreme values (Harris and Waddington, 2012) which is fur-
ther exacerbated by the tendency of many investigators to discard
“outliers.” It is easier in the rate-domain, although large data sets
are still needed. Distributions that are less skewed than the recip-
rocal Normal (such as the inverse Gaussian) remain positively
skewed in the rate-domain, whereas the reciprocal Normal does
not. Surprisingly, there have only been a few published examples
of manual reaction times in the rate-domain (Carpenter, 1999;
Harris and Waddington, 2012), and it is conceivable that sac-
cades are somehow “special.” For example, express saccades do
not appear to have an equivalent in manual tasks. Another impor-
tant issue is lack of stationarity, where the mean and variance
(and higher moments for non-Normal distributions) change over
time. Non-stationarity of the mean is particularly troublesome
because it smears out the observed distribution making the RT
distribution more platykurtic and heavy-tailed. Non-stationarity
is more likely in long recording sessions, as subjects become
fatigued and bored by the repetitive nature of RT experiments.
Using large sample sizes from prolonged recording sessions may
be counterproductive.

When a probability density function (pdf) is known in one
domain, the pdf in the reciprocal domain can easily be found.
However, it is important to recognize this is not true for
moments. For example, the mean of the rate distribution is not
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the reciprocal of the mean of the RT distribution (Harris and
Waddington, 2012). Thus, it is not possible to infer paramet-
ric statistics of rate from RT statistics. Raw data are needed.
Therefore, our goal in this study was to explore rate-domain anal-
ysis in a typical two-choice manual RT experiment. We imposed
two tasks (instruction set) and two levels of stimulus difficulty
(brightness difference) in order to explore the effects of trunca-
tion, and we used autoregression analysis and z-transforms to
examine sequential dependency. To minimize problems of non-
stationarity, we recorded only modest block sizes (200) from
many subjects (24) and collapsed after standardization. We show
that rate is indeed near-Normal and not the reciprocal of the
inverse Gaussian. Sequential dependency is evident, but not the
cause of the near-Normality. In the discussion we propose a rate
model as an alternative to first-passage time models.

METHODS
REACTION TIME RECORDING
Subjects were 24 adults aged between 18 and 45 years old selected
through the Plymouth University paid participant pool as an
opportunity sample. Subjects were naïve to the experimental pro-
cedure. Based on self-report, all participants were required to have
normal or corrected-to-normal vision with no known neurologi-
cal conditions. This study received ethical approval from the local
ethics committee.

Stimuli consisted of two solid colored rectangles of different
luminances arranged horizontally and displayed on a computer
monitor (Hanns-G HA191, 1280 × 1024, at 60 Hz). Both rect-
angles were displayed in the same green color in Red-Green-
Blue (RGB) coordinates against a gray background of luminance
37.1 cd/m2. Each rectangle subtended a visual angle of 5.5 hor-
izontal and 6.6◦ vertically, and the inner edges were separated
horizontally by 9.6◦. Viewing distance was 0.5 m. Subjects were
instructed to respond to the side with brighter stimulus by press-
ing the “z” or “2” key. In the easy task (E), rectangle luminances
were 37.6 and 131.6 cd/m2, and in the difficult task (D), they were
37.6 and 37.8 cd/m2. Calibration was made with a Konica Minolta
LS-100 luminance meter. All luminances and ambient room light-
ing were held constant for all subjects. The luminances in the (E)
and (D) tasks were chosen to yield low and high error rates of 1%
and 24% for these tasks respectively based on a pilot study. Two
task instructions were used and displayed at the beginning of a
block. In the “Urgent” (U) task, the instruction was to “respond
as fast as possible,” and in the “Accurate” (A) task, to “respond as
accurately as possible.” Each subject was presented with 4 blocks
of 200 trials each. Within a block each trial consisted of the same
combination of stimulus and task, either AE, AD, UE, or UD.
There were 24 different permutations of blocks, and the order was
balanced such that each of the 24 subjects had a unique order. We
refer to the “easy” tasks as AE and UE, and the “difficult” tasks as
AD and UD.

On each trial the subject was prompted to press the space
key to commence the trial and a cross appeared in the cen-
ter of the screen for 500 ms. Subsequently, the two rectangles
appeared after a constant foreperiod of 500 ms. For choice reac-
tion time experiments (unlike simple reaction time experiments),
constant and variable foreperiods have similar effects (Bertelson

and Tisseyre, 1968). We chose constant to avoid introducing
additional variability into the decision process (see Discussion).
Stimulus onset was also highly salient, even in the difficult tasks,
due to the highly visible colored rectangles. The stimuli remained
on screen until a response was made or until a time-out of 60 s
occurred (see Harris and Waddington, 2012 for a discussion on
the importance of a long time-out). For incorrect responses, feed-
back was provided in the form of a black cross, which remained
on screen for 500 ms. A rest break occurred between blocks.

Reaction times (RTs) were measured from the onset of the
stimulus presentation and recorded to the nearest millisecond.
Rates were computed by taking the reciprocal RT. Taking recip-
rocals of integer RTs magnifies the effect of the quantization and
can lead to artifactual “clumping” and “gaps” in the rate fre-
quency histograms at high values of rate. We eliminated this by
using a dithering technique, where we added a uniform float-
ing point random number between −0.5 and +0.5 ms to each
RT before taking the reciprocal (see Schuchman, 1964). This has
no statistical effect in the time-domain. RTs less than 0.15 s (i.e.,
rate >6.67 s−1) were considered anticipatory and not analyzed.

MOMENTS
Sample central moments (mean, standard deviation, skewness,
and excess kurtosis) and medians were estimated for each block
for RT and rate. Note that moments of RT and rate are not recip-
rocally related, but depend on the underlying parent distribution.
However, median rate is the reciprocal of median RT (see Harris
and Waddington, 2012).

We also estimated the mean and standard deviation in the rate-
domain assuming the underlying distribution was Normal. The
underlying mean and standard deviation of the Normal distri-
bution will differ from the sample mean and standard deviation
depending on how much of the underlying Normal distribution
is truncated. We therefore obtained maximum likelihood esti-
mates (MLEs) of the underlying Normal parameters from each
dataset using the mle.m function. This function applied a simplex
search algorithm to find the parameters that maximized the log
likelihood of the probability density function:

f (x; μ, σ, a) =
∣∣∣∣∣∣

ϕ [(x − μ) /σ ]

1 − 
 [(a − μ) /σ ]
a ≤ x < ∞

0 x < a

where x is the observed rate, μ is the mean of the underlying (un-
truncated) Normal distribution, σ is the standard deviation of the
underlying distribution, a = 1/60 = 0.0167 s−1, ϕ is the standard
Normal probability density function (pdf), and 
 is the standard
Normal cumulative distribution function (cdf).

SEQUENTIAL ANALYSIS
The partial autocorrelation function (PACF) was computed using
the parcorr.m Matlab function. The first 10 trials on each block
were omitted to avoid contamination from initial transients. The
coefficients for the first m = 20 lags were computed for each block
and averaged across blocks. An autoregressive model (AR) was
assumed to be of the form:

rn = a1rn − 1 + a2rn − 2 + · · · + amrn − m + un (1.1)
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where ri is the response on the ith trial, aj, 1 < j < m are con-
stant weights, and ui is a stochastic input on the ith trial (negative
indices were assumed to have zero weights). The autoregres-
sive weights, aj and input ui are unknown and were estimated
using the Box-Jenkins maximum likelihood procedure. We used
the estimate.m function and an autoregressive integrated moving
average (ARIMA) model with only an autoregressive polynomial
(i.e., no non-seasonal differencing or moving average polynomi-
als). We assumed the distributional form of ui to be Normal with
constant mean and variance.

An AR model can be converted to the equivalent moving aver-
age (MA) series using the standard z-transform method. The
z-transforms Z(.)of (1.1) is

R(z) = a1z−1R(z) + a2z−2R(z) + · · · + amz−mR(z) + U(z)

where R(z) = Z(r), U(z) = Z(s). This can be viewed as a discrete
time MA system with

R(z) = B(z)U(z)where the system response of order m is

B(z) = 1

1 − a1z−1 − a2z−2 − · · · − amz−m

To find B(z) we took a partial fraction expansion:

B(z) = ∑m
i = k

ρk

1 − λkz−1

where λi are the roots and ρi the residues Taking the inverse z-
transform, we then have:

rn = b0un + b1un − 1 + b2un − 2 + · · · (1.2)

where uk is the stochastic input on trial k and independent of
other trial inputs, b0 = 1, and bi = ∑m

i = 1 ρkλ
i
k, 1 ≤ i < ∞, and

was computed in Matlab using the roots.m and residue.m func-
tions. Note that (1.1) and (1.2) describe the same system, but
(1.1) is a feedback description, and (1.2) is the feed-forward
description. We chose 6 roots, as this encompassed the obviously
larger PACF coefficients. The roots were all within the unit circle
indicating stability and the existence of a steady-state.

STEADY-STATE TRANSFER
From (1.2) we can relate the pdf of rate (output), pr(r) to the
pdf of the input where ui are identical independent random
variables with pdf pu(u), u ≥ 0. From basic probability theory,
(Papoullis and Pillai, 2002) the steady-state output pdf is given by
the convolution sequence:

pr(r)=
[

1

|b0|pu

(
u

b0

)]
⊗
[

1

|b1|pu

(
u

b1

)]
⊗
[

1

|b2|pu

(
u

b2

)]
⊗· · ·
(1.3)

where ⊗ is the convolution operator. If pu(u) is Normally dis-
tributed then so is pr(r). If pu(u) is not Normal then pr(r) may
or may not converge to Normal depending on pu(u) and the
coefficients bi. We computed (1.3) numerically for the truncated
Normal (see Results).

Consider the case where pu(0) = c where c > 0 which
corresponds to the case of truncation and when the
RT distribution has no finite moments (see Harris and
Waddington, 2012). For one term, we have pr,1(0) = c/ |b0|.
However, with two terms (one convolution) we have

pr,2(r) = 1
|b0||b1|

∫∞
0 pu

(
r − x

|b0|
)

pu

(
x

|b1|
)

dx. For r = 0

and c < ∞, pr,2(r) = 0. Similarly, for all terms we must have
pr(r) = 0, so that truncation is lost and the RT distribution will
have a finite mean (but not necessarily higher moments).

RESULTS
Subjects’ RTs were clearly sensitive to the task and stimulus
manipulations, as shown by the example in Figure 2A (left col-
umn). When stimulus discriminability was easy, RT distributions
were brief with low dispersion (AE and UE), but when difficult,
they became longer and much more dispersive (AD and UD).
In the rate-domain (reciprocal RT) difficulty resulted in a shift
toward zero, but the dispersion remained similar (Figure 2A right
column). For the difficult tasks, the rate distributions appear to
approach zero and possibly became truncated. The difficulty was
also evident by the number of errors (∼25% in this example).

Similar patterns were seen in all subjects, as can be seen
from the plot of medians of RT for all subjects in Figure 2B.
Again there was much more inter-subject variability for the dif-
ficult tasks, but in the rate-domain the variability was more even
(Figure 2C). Non-parametric testing (Wilcoxon test) showed that
the medians differed significantly between the difficult and easy
discriminability (AD∪UD vs. AE∪UE: p < 0.001), and between
task instructions (AD∪AE vs. UD∪UE: p < 0.001).

We computed the sample central moments (mean, stan-
dard deviation, skewness, excess kurtosis) in the time- and
rate-domains (Figure 3) for each task for each subject. In the
time-domain (left column), the moments were strongly interde-
pendent, as expected from skewed distributions. Standard devi-
ation increased and skewness and excess kurtosis decreased with
the mean (note that skewness and kurtosis are normalized with
respect to standard deviation). In the rate-domain (right col-
umn), however, the interdependence was much weaker (note the
difference in ordinate scales).

Because of possible left truncation, we estimated the mean and
standard deviation of the putative underlying Normal rate distri-
bution using MLE (see Methods). We set the left truncation to
0.0167 s−1 corresponding to a time-out of 60 s (Figure 4). When
the sample coefficient of variation (CV) was less than 0.4 (z-
score = 2.5; line in Figure 4) the MLE estimates (circles) were
seen to agree closely with sample moments (crosses). For higher
CVs the MLE moments estimates were shifted from the conven-
tional estimates (shown by up-left lines). These shifts in MLE
moments are expected from left truncation, and are consistent
with, but not definitive of an underlying truncated Normal dis-
tribution. Therefore, we next grouped blocks according whether
their truncation was severe, “truncated” blocks (CV > 0.4), or
negligible, “untruncated” blocks (CV < 0.4).

GROUP DISTRIBUTION
In the untruncated blocks, we standardized the rate for each trial
into a z-score based on the ML mean and standard deviation of
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FIGURE 2 | (A) An example of an individual subject’s frequency
distributions of RT (left column) and rate (right column) for the 4 different
blocks (AD, accurate and difficult; AE, accurate and easy; UD, urgent and
difficult; UE, urgent and easy; see Methods). In the easy tasks, RTs are
brief with few errors (block size was 200 trials). For the difficult tasks RTs
are much more variable with about 25% error rate. In the rate-domain,
dispersion is similar for all blocks with a shift to lower rates for the difficult
tasks. Note that the shift approaches zero (arrows) suggesting possible
truncation. (B) Median RTs for all subjects showing longer RTs for difficult
blocks and more inter-subject variability. (C) Same as (B) but for median
rates showing similar inter-subject variability for all blocks.

its block, and then collapsed all trials into one group. The dis-
tribution of the untruncated group was very close to Normal
between the 5th and 95th percentile, as seen from the probit plot
(Figure 5A). There was a slight deviation in the tails. As a check

on this method, we created simulated data sets using the true
reciprocal Normal distribution with the same ML moments and
sample sizes as the empirical data. Carrying out exactly the same
analysis, the rate distribution was a perfect Normal—as expected
(Figure 5B). As a further check, we also simulated the inverse
Gaussian. Here there is no truncation issue, so we used sample
moments and sample sizes to generate the simulated data. As seen
in Figure 5C, the reciprocal distribution of the inverse Gaussian
is skewed and does not fit the Normal—as expected (Harris and
Waddington, 2012). Thus, we are confident that near Normality
is not an artifact, but reflects the underlying distribution of the
empirical rate distributions.

For the truncated blocks, we standardized as above using the
ML mean and standard deviation and collapsed into one group.
However, we only considered positive z-scores because any puta-
tive truncation would lead to under representation for negative
z-scores (we included the one block that had a slightly negative
ML mean, see Figure 3, but had no discernable effect on the plots
when excluded). As shown in Figure 6A, the collapsed distribu-
tion was close to Normal with a slight deviation above the 95th
percentile. Simulation with a true reciprocal Normal showed half
a Normal distribution, as expected (Figure 6B), and the inverse
Gaussian was not close to the truncated Normal (Figure 6C).
Thus, we conclude that at least the right half of the truncated
group are close to Normal, but not the inverse Gaussian. However,
this does not address necessarily what happens near zero rate for
each block (infra vide).

SEQUENTIAL DEPENDENCY
Temporal effects
The sequence of RTs during a block was clearly not statistically
stationary as RTs were typically longer in the first few trials than
later. This transient lasted less than 10 trials, after which a steady-
state seemed to prevail, best seen by averaging across blocks in the
time- or rate-domain (Figure 7). The transient was clearly more
pronounced for the easy than difficult tasks.

We excluded the first 10 trials of each block in order to examine
the steady-state component. The Pearson correlation coefficient
between consecutive RTs was 0.20 with 63% of these being signif-
icant at p < 0.05. In the rate-domain this increased to 0.25 with
76% being significant.

A 1-lag correlation would be expected to lead to autocorre-
lations with a geometric fall-off at higher lags. Therefore, we
examined the partial autocorrelation function (PACF) to explore
explicit dependencies up to lags of 20 (see Methods). The PACF
of rate was positive and a smoothly decreasing function of lag
with no obvious cut-off (Figure 8A filled circles). As a check, we
shuffled trials randomly within each block and found no signifi-
cant dependencies (Figure 8A open circles). When plotted against
reciprocal lag, the PACF coefficients plot was approximately linear
(Figure 8B; solid circles).

We next considered a stationary autoregressive (AR) relation-
ship of the form: rn = a1rn − 1 + a2rn − 2 + · · · + amrn − m + un

(see Equation 1.1 in Methods), where ai (1 ≤ i ≤ m) are con-
stant coefficients, un is a stochastic input on trial n, which we
assumed stationary and Normal, and m is the order of the process
(see Methods). We used the Box-Jenkins maximum likelihood
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FIGURE 3 | Sample moments for RTs (left column) and rate (right

column) plotted against mean for standard deviation (top row),

skewness (middle row), and excess kurtosis (bottom row). Each symbol

represents the moment for each block for each subject: AD- open circles; AE-
crosses; UD- open squares; UE- asterisks). Note different in ordinate scales
for RTs and rate moments.

estimation procedure (see Methods) to estimate the ai for the
first 6 lags. We only included “untruncated” blocks (CV < 0.4).
Combining all such blocks revealed that only the first 3 weights
were significantly different from zero and decreased roughly lin-
early with reciprocal lag a1, 2, 3 = {0.222, 0.104, 0.076}. The 4th
weight a4 = 0.016 was borderline (Figure 8C). We also exam-
ined the difficult and easy tasks separately, but found negligible
difference [AD∪UD: a1, 2, 3, 4 = {0.212, 0.100, 0.078, 0.016};
AE∪UE: a1, 2, 3, 4 = {0.227, 0.105, 0.076, 0.037}]. Henceforth,
we used the first 3 weights of the combined tasks.

It is possible to invert the AR process to find the input,
since from (1.1) we have un = rn − a1rn − 1 + a2rn − 2 + · · · +
amrn − m, and the resulting un should have no sequential depen-
dency. To test this, we estimated the un sequence from each block
and re-computed the mean PACF (Figure 8B open symbols).
Clearly, sequential dependency was eliminated on average with a
mean lag 1 correlation of 0.032. However, the number of blocks
that had a significant lag 1 correlation also dropped from 61 to
10%—which is close to that expected by chance. This implies that
most blocks were driven by a similar AR process.

The AR model in (1.1) has a step response which reflects the
underlying dynamics behind the steady-state response. It is easily
computed (curve in Figure 8D) and clearly similar to the empir-
ical average transient response at the beginning of each block
(grand average from Figure 7B). Thus, the transient response is
consistent with the steady-state dynamics.

Using the single-sided z-transform, we converted (1.1) to a
moving average (MA) formulation in terms of a discrete series
of independent stochastic inputs uj 1 ≤ j ≤ n (see Equation 1.2
in Methods): rn = b0un + b1un − 1 + b2un − 2 + · · · . The weights
are the feed-forward impulse response function and are plotted
against lag in Figure 9A. As can be seen, there is modest but pro-
longed dependence on input value history implying considerable
“memory.”

Assuming stationarity, one effect of the sequential dependency
is to scale the moments of the input (see Methods). Based on the
AR weights, the mean of rate was r̄ = 1.67ū. The effect on stan-
dard deviation was small σr = 1.05(σu), and on higher moments
it was negligible. For an untruncated rate distribution, the effect
of sequential dependency was to shift the rate distribution to
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FIGURE 4 | Plot of standard deviation vs. mean of all blocks in the

rate-domain. Crosses indicate conventional sample moments (same as
top-right panel in Figure 3). Circles indicate maximum likelihood estimates
(MLE) of same blocks assuming a left truncated Normal. Line is SD =
Mean/2.5. To the right of line sample moments coincide with rectrN MLE
moments; to the left MLE moments shift to higher standard deviations and
lower means (connecting lines).

the right with minimal changes to the shape of the distribution.
Thus, we conclude the observed near-Normality of untruncated
rate distributions is not a manifestation of the central limit the-
orem arising from the sequential dependency, but must reflect
the near-Normality of the input distribution itself. Therefore,
assuming the pdf of the input pu(r) to be Normal, the output
pdf pr(r) can be computed numerically from the convolution
sequence in (Equation 1.3) (see Methods). For an “untrun-
cated” Normal input there is a shift to higher rate with neg-
ligible change in variance, as illustrated in Figure 9B. For an
input truncated at zero, there is not only a shift in the mean,
but the sharp truncation at zero is smoothed and eliminated
(which can also be demonstrated analytically; see Methods).
Remarkably, this smooth shape can also be fit very well by a recip-
rocal inverse Gaussian (dotted curve) when the tail is excluded
(see Discussion).

Spatial effects
Previous studies have shown that mean RT can depend on the
sequence of the laterality of previous trials (see Introduction),
in particular whether laterality was repeated (R) or alter-
nated (A). Thus, the sequence RRRR indicates that the stim-
ulus and the previous four stimuli were all on the same
side (i.e., all left LLLLL or all right RRRRR), whereas the
sequence AAAA means that each stimulus alternated sides
from the previous (RLRLR or LRLRL) (note the last symbol
is the current trial). Jentzsch and Sommer (2002) examined
sequences with 4 lags and showed a significant dependence of
RT on a binary weighting of the AR sequence, where R was
binary “0” and A binary “1” (e.g., RRRR = 0, RRAR = 2,
AARA = 13, AAAA = 16). We used the same scheme for
comparison.

For the easy tasks (AE and UE), averaging across all blocks
showed a significant dependence on the AR sequence [F(15, 645) =
4.58; p < 0.001] when all trials in a block were considered. In par-
ticular the sequences AARR, RRRA, RRRA, were associated with
high RTs (arrow in Figure 8), and remarkably similar to Jentzsch
and Sommer’s results. The inverse pattern was more clearly seen
in the rate-domain, with smaller and more even standard errors.
For the difficult tasks (AD and UD), there was no significant
pattern in the time- or rate-domain.

DISCUSSION
These data clearly show that when the task is easy (AE and UE
blocks), RT distributions are close to reciprocal Normal, and
not close to the inverse Gaussian distribution. Moreover, we
have demonstrated this using practical block sizes (n = 200) col-
lapsed across 24 subjects after standardization, unlike previous
studies which used very large data sets recorded from only a
few subjects. We emphasize that this near-Normality of rate was
not an artifact from collapsing across subjects, as this does not
invoke the central limit theorem, but simply combines the under-
lying distributions—as confirmed by Monte-Carlo simulations
(Figure 5B). We conclude that 2-alternative choice manual RT
distributions are very close to the rectrN distribution, similar to
the simple reaction experiments with saccades (Carpenter, 1981;
Carpenter and Williams, 1995; Reddi and Carpenter, 2000) and
the few studies of simple manual reaction times (Carpenter, 1999;
Harris and Waddington, 2012). In simple RT studies it is neces-
sary to introduce a variable foreperiod to prevent anticipation for
the stimulus onset. In choice RT study, a foreperiod may increase
“preparedness,” but randomization is not essential, as a choice
cannot be made with confidence until the discriminative stimu-
lus appears, and Bertelson and Tisseyre (1968) have shown similar
effects for constant or random foreperiods in choice experiments.
We chose a constant foreperiod to reduce the amount of extrin-
sic variability introduced into the decision process (see Methods).
We can conclude that near-Normality in the rate domain is not
a consequence of foreperiod randomization, and by implication
presumably neither in simple RT experiments. However, this does
not eliminate a possible role of a subject’s intrinsic variability in
judging foreperiod durations (i.e., Weber’s law), and whether or
how this affects the rate distribution remains to be explored.

It is difficult to reconcile the rectrN with a pure Wiener diffu-
sion process, where within trial drift noise is Normal (Figure 1B),
as this would yield an inverse Gaussian distribution in the time-
domain, or a reciprocal inverse Gaussian in the rate-domain.
Monte Carlo simulation using the reciprocal inverse Gaussian
with moments from our subjects did not yield near Normal rates
(Figure 5C). Ratcliff (1978) considered the compound inverse
Gaussian where drift rate fluctuated between trials with another
Normal distribution. This would fit the reciprocal Normal if there
were no drift noise, which is consistent with Carpenter’s LATER
model. This strongly suggests that the underlying RT process
operates in the rate-domain, rather than in the more intuitive
time-domain. It also explains why RTs are so variable—modest
symmetric fluctuations in rate can lead to asymmetric and very
high changes in RT, especially when rate becomes small as occurs
in difficult tasks.
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FIGURE 5 | Untruncated group rate histograms (left column) and

rate probit plots (right column). (A) Empirical rate from
“untruncated” blocks (c.v. < 0.4) showing near Normal distribution
over 5–95% interval with slight deviation in the tails (B) Simulated

data using reciprocal Normal for RT distribution (see text) showing
almost perfect Normal rate distribution. (C) Simulated data using
inverse Gaussian for RT distributions showing obvious deviations from
Normal rate.

Temporal sequential dependency among trials has frequently
been observed in choice reaction experiments (Laming, 1979).
Clearly, any inter-trial correlations affect between-trial fluctu-
ations, but they have been ignored in recent models of RT
distributions. Using autoregressive techniques, we have shown
explicit dependency of rate output for at least the 3 previous tri-
als, very similar to Laming’s original finding in the time-domain.
Converting to a MA representation, this “memory” extends even
further in terms of stimulus inputs (Figure 9A). We also found a
transient response at the beginning of each block lasting less than
10 trials, which was similar to the predicted step response of the

steady-state dynamics (Figure 8D). The simplest explanation is
that the rest time between blocks allowed the memory “trace” to
decay. However, this needs further exploration since we did not
manipulate block intervals, and it was not possible to distinguish
between sequential dependencies that are based on absolute time
or based on trial number.

Based on moments, the main effect of this temporal depen-
dency was to scale the mean response rate to higher values (i.e.,
shorten RTs) with little change in variance or higher moments
(Figure 9B). One could view this as improving signal-noise ratio,
or that previous trials/stimuli provide some information about
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FIGURE 6 | Truncated group rate histograms (left column) and

rate probit plots (right column), shown only for positive

z-scores (see text). (A) Empirical rate from “truncated” blocks
(c.v. > 0.4) showing near Normal distribution over 50–95%

percentiles; (B) simulated data using reciprocal Normal RTs
showing near perfect Normal distributions (as expected). (C)

Simulated data using inverse Gaussian RTs showing obvious
deviations from Normal rate.

the upcoming stimulus (prediction), hence allowing a faster
response. Because higher moments are negligibly affected by the
MA process, we can also conclude that the temporal sequential
dependency does not cause rate to be Normal via the central
limit theorem, and we deduce that the input must already be
near-Normal.

We also found a sequential dependency that was related to the
sequence of stimulus laterality for the easy tasks. Using Jentsch
and Sommer’s binary weighting system, we found a remarkably
similar result to theirs for the easy tasks with RRRR and AAAA
having the highest rates (shortest RTs) and AAAR, RRRA, ARRA

having the lowest rates (longest RTs) (Figure 10). The weight-
ing scheme of Jentsch and Sommer’s extends backward for 4
lags and assumes binary (power function) weighting. From the
temporal viewpoint, our results suggest that the 4th lag is ques-
tionable and that weightings should follow an approximately
hyperbolic decrease. Using this scheme, the dependency becomes
even more pronounced (not shown). It is tempting to argue that
the temporal and spatial dependencies are manifestations of the
same process. Jentsch and Sommer have assumed the depen-
dency reflects a decaying memory trace, as this would explain why
higher-order dependencies tend to be weaker when the trials are
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FIGURE 7 | Non-stationarity of responses in (A) the time-domain and

(B) the rate-domain. Means are computed across all subjects for the first
20 responses in each block; grand mean across conditions shown by thick
line. Note initial transient lasting less than 10 trials, which is more
pronounced for the AE and UE blocks.

longer in absolute time. Indeed, we found that the spatial depen-
dency was absent in the difficult tasks (Figure 10). Surprisingly,
the temporal dependency was still present and virtually identi-
cal to the easy task AR process. The reason for this is unclear at
present, but suggests that temporal and spatial dependencies can
be dissociated.

We emphasize that we have examined sequential dependency
in the rate-domain. In the rate domain, a sequence of responses is
a well-behaved stochastic process because of its near-Normality,
and this permits the wide range of standard analysis techniques
(moments, autocorrelations, spectral analyses, etc). In the time-
domain this is not necessarily the case because taking the recipro-
cal of rate is a non-linear operation. Trials with low rates become
disproportionately magnified in the time domain, which can lead
to “spikes” with very long RTs. In particular, there is the possibility
that artefacts may arise in power spectra as these spikes have high
spectral energy, and we advocate caution interpreting power spec-
tra based only on time-domain analyses (e.g., 1/f noise: Thornton
and Gilden, 2005) subject to further exploration.

TRUNCATION
Strictly, the Normal distribution has infinite extent and includes
zero and negative rates, but this is not possible in RT experiments,
so we need to consider the left-truncated Normal and the corre-
sponding reciprocal truncated Normal (Harris and Waddington,
2012). We observed that when the task became more difficult
(AD and UD), there was a leftward shift of the rate distribu-
tion (i.e., longer RTs) (Figure 2A) suggesting that left-truncation

FIGURE 8 | Sequential dependency based on blocks without transients

(first 10 trials omitted). (A) Mean partial autocorrelation function (PACF) of
all blocks (filled symbols) showing smooth decay. Lines are ± 1 standard
error. Open symbols show PACF for the same data after random shuffling
leaving no sequential dependency. (B) PACF is plotted against reciprocal of
lag showing a roughly linear increase (filled symbols). After de-correlation
(see text) PACF coefficients become negligible (open symbols). (C)

Maximum likelihood estimation of autoregressive coefficients (Equation 1.1)
using the Box-Jenkins methods (see Methods) showing linear increase with
reciprocal lag. (D) Comparison of step response function of autorgressive
model (solid curve) with observed initial transient from grand mean in
Figure 7B.
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FIGURE 9 | Moving average (MA) model (Equation 1.2) computed from

autoregressive coefficients using z-transform method (see Methods).

(A) MA coefficients show extended dependency on lag indicating memory
of input. (B) Effect of MA on a Normal input distribution with minimal
truncation. Input (μ = 2, σ = 0.3) (dashed curve) is shifted to higher rate
(solid curve) with little change in shape; (C) Input is Normal (μ = 0, σ = 0.3)
truncated at 0. Note truncation is eliminated by smoothing. Resulting pdf
could be mistaken for a reciprocal inverse Gaussian distribution (dotted
curve).

may have occurred. Because moments are sensitive to trunca-
tion, we used MLE to find the underlying Normal that fitted
each block the best, and this showed that truncation was occur-
ring (Figure 4). Collapsing across these subjects showed that the
untruncated right half of the distribution was also very close to
Normal (Figure 6A). This is a novel finding, and is evidence that
task difficulty can lead to truncated Normal rate distributions.

This has not been considered in previous models but has some
far-reaching implications.

Truncation leads to very long RTs, which could theoreti-
cally approach infinity. Such responses would not usually be
observed because either the experimenter imposes a maximum
trial duration (time-out), or because the experiment is of finite
duration in time or in number of trials. Thus, practically,
rate will appear bound at some non-zero minimum, depend-
ing of the experimental design (see Harris and Waddington,
2012 for further discussion). For easy tasks, this will have min-
imal effect since long RTs are rare, but as the task becomes
more difficult, the effect of truncation becomes increasingly
important.

Interestingly, it has been proposed that the latency distribu-
tion of saccades departs from reciprocal normal for low stim-
ulus contrasts, and that the inverse Gaussian is a better model
(Carpenter et al., 2009). However, could this instead be due
to truncation of the reciprocal Normal? Consider the theoreti-
cal example in Figure 9C, where we have set the rate standard
deviation to 0.3 s−1 with left truncation set by a mean of 0.
The effect of temporal sequential dependency is to smooth out
the truncation, which reduces the probability of very long RTs.
The resulting pdf could easily be mistaken for the reciprocal
inverse Gaussian (Figure 9C dotted curve). Thus, in the time-
domain, it is plausible that studies using the inverse Gaussian
may have overlooked the reciprocal truncated Normal with
sequential dependency as a more parsimonious and unifying
explanation.

NON-HOMOGENEITY
In this experiment we have used homogenous and stationary
blocks, where the same stimuli were used in each trial of a
block, and the laterality was random. However, many RT experi-
ments are not homogenous, and the stimulus value changes on
trials within a block. Generally, we expect that rate would no
longer be reciprocal Normal. We distinguish between discrete and
continuous non-homogeneity.

In the discrete case, a block contains a small number of
different but known stimuli that are typically randomized or
counterbalanced within the block. Assuming independent tri-
als, the observed rate on each trial would then be a single
sample from the Normal distribution associated with that stim-
ulus. The overall rate distribution would then be a mixture of
Normal distributions depending on the value and relative fre-
quency of each stimulus. Since the stimulus is known on each
trial, responses could be segregated and the rate distributions
computed. Clearly, any sequential dependency should be reduced
before segregation.

The continuous case is more problematic. It typically occurs
when task difficulty and/or stimulus value vary on every trial in
an unknown way. The rate on each trial can still be considered
as a single sample from a Normal distribution, but the mean
of the rate distribution (and possibly the standard deviation)
are continuously variable leading overall to a compound Normal
distribution, which can take on a wide range of positively or neg-
atively skewed shapes. Whether de-convolving a putative Normal
distribution is useful remains to be explored on real data.
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FIGURE 10 | Mean response time and rate plotted against the laterality

sequence of previous 4 trials: R, laterality repeated; A, laterality

alternated (after Jentzsch and Sommer, 2002). Means were computed

across all AE and UE blocks; error bars are ± 1 within standard error. Filled
symbols show means for all trials in each block; note the significant increase
in RT for RRRA sequence (row). A similar picture is seen in the rate-domain.

RATE AND OPTIMALITY
As posed in the introduction, why RTs are so variable and
whether, or under what circumstances, they could be optimal
are longstanding questions that have been asked or assumed to
be answerable by time-domain analysis (e.g., Luce, 1986; Bogacz
et al., 2006). However, our and Carpenter’s data are highly

suggestive that there exists a preferred rate, r∗, for a given set
of experimental conditions, and that rate fluctuates according to
a Normal random process from trial to trial around r∗. Clearly,
modest symmetrical variations in rate can lead to very large and
highly asymmetric fluctuations in the time domain, especially
when r∗ is small—as occurs in difficult discriminative tasks. Also
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r∗ is easily recognizable as the modal rate, but there is no obvious
landmark in the time domain: t∗ = 1/r∗ does not correspond to
the mode in the time-domain. Moreover, the rectrN is a strange
distribution without finite moments (Harris and Waddington,
2012), whereas the Normal distribution is a common basic dis-
tribution. This strongly suggests that we should be considering
rate as the more fundamental variable than RT, even if it seems
counter-intuitive.

It seems that if we accept a rise to threshold model, then we
require a deterministic drift rate that fluctuates between trials
with a truncated Normal distribution, as originally proposed by
Carpenter (1981). It is conceivable that there is still a stochas-
tic rise to threshold, but it would need to be almost completely
masked by the inter-trial variability (this needs future modeling),
and rate is still the dominant variable. However, it is impor-
tant not to conflate proximal with ultimate explanations. At the
proximal level, there must be some physiological mechanism for
triggering an all-or-none response, and an accumulator process
seems physiologically plausible. However, even if true, it only
explains how rate could be represented mechanistically, and there
is a myriad of ways in which an accumulator could be con-
structed/evolved as a trigger (e.g., linear vs. curvilinear signal rise,
deterministic vs. stochastic signal, fixed vs. variable trigger level;
Figure 1A). It does not explain why rate is important.

Rate of response may be fundamental for an organism. For
example, in the study of natural foraging, it is widely assumed
that animals seek to maximize the rate of nutrient intake, rather
than quantity per se. This has led to the marginal value theo-
rem (Charnov, 1976) which predicts the time spent by animals
on patches of food. In the study of animal learning, Skinner
introduced his famous cumulative plots as a way of visualiz-
ing the stationarity of an animal’s rate of response (Skinner,
1938; Ferster and Skinner, 1957). There is an obvious paral-
lel between RT and operant behavior. When a subject presses a
button (“operant”), she presumably derives a reward if the but-
ton press is a “correct” response, and a loss if “incorrect.” The
onset of lights acts as a “discriminant” or “conditioned” stim-
ulus that provides information about the probability of reward
(Skinner, 1938). It is well known that response times decrease
with increasing reward but also increasing intensity of the condi-
tioned stimulus (Mackintosh, 1974). Similarly, numerous studies
have shown RTs decrease with increasing reward (Takikawa et al.,
2002; Lauwereyns and Wisnewski, 2006; Spreckelmeyer et al.,
2009; Milstein and Dorris, 2011; Delmonte et al., 2012; van Hell
et al., 2012; Gopin et al., 2013) or increasing stimulus intensity
(Cattell, 1886; Piéron, 1914). This leads us to consider the pos-
sibility of maximizing expected rate of reward or utility as an
explanation for our observations (also considered by Gold and
Shadlen, 2002).

For each trial, we define the gain in subjective utility for a cor-
rect response by U+ > 0, and the loss by U− > 0. Objectively,
utility would be maximized by responding to the correct stimulus
any time after the stimulus onset. The stimulus value depends on
the temporal response of the visual system, and will also increase
in time due to any temporal integration and/or Bayesian update
of priors. We therefore denote p(t) as the subjective probability
of making a correct response given that a response occurs at t

(measured relative to some origin; see below). We assume that
p(t) is a concave function (Figure 11A), where for two alternatives
with no prior information, p(0) = 0.5.

The expected gain in utility Ĝ(t) for a response at time t is
(curve in Figure 11B):

Ĝ(t) = U+p(t) − U− (1 − p(t)
) = (

U+ + U−) p(t) − U−
(1.4)

It can be seen that expected gain will be negative when t < tmin,
where p(tmin) = 1/

(
U+/U− + 1

)
. In this case, it does not pay to

respond at all, but there will always be a positive gain as p(t) → 1
and maximized by responding as late as possible. Expected rate of
gain is R̂(t) = Ĝ(t)/t. When rate of gain is positive, there may be
an optimal time to respond given by t∗ = argmax

t
R̂(t), which is

the solution to:

t∗ = Ĝ(t∗)

Ĝ′(t∗)
(1.5)

where the dash refers to the derivative with respect to t
(Figure 11C). The conditions for a positive maximum are com-
plicated, but it occurs under quite broad conditions and is easily
visualized geometrically in Figure 11B, since from (1.4) the opti-
mum is given by the tangent of Ĝ(t) that intercepts the origin.
Thus, depending on the utility payoff ratio U+/U−, and p(t),
there is an optimal time to respond. Responding as quickly as pos-
sible is generally suboptimal—it pays to wait for a specific time to
respond.

We can make some general deductions. First, any
increase/decrease in the utility payoff ratio, U+/U−, will
reduce/increase t∗ for a concave p(t). Thus, increasing reward
will reduce t∗, as empirically observed (vide supra). In our
experiment, asking subjects to respond accurately as opposed to
quickly required “caution” by reducing the ratio and increasing
t∗ (Figure 2).

Faster/slower rise in p(t) will also reduce/increase t∗ similar
to, but not in precisely the same manner as manipulating pay-
off. For example, increasing the number of alternatives, n, will
reduce p(t) since p(0) = 1/n (given no other prior information)
and hence increase t∗. Whether there is a logarithmic relationship
between n and E[t∗] (Hick’s law) depends on the precise form of
p(t) and remains to be explored. On the other hand, any prior
information will decrease the rise-time of p(t) and reduce t∗, as
has been reported in some experiments with random foreperiods
(see Niemi and Näätänen, 1981).

Stimulus intensity has a strong inverse relationship on t∗, but
this depends on p(t). The simplest way to parameterize p(t), is to
assume that p(t) depends on a single parameter, ε, that accelerates
time so that pε(t) = p(εt). We assume that ε̂ is an unbiased esti-
mate of ε and distributed Normally across trials. It follows that
Ĝε̂(t) = Ĝ(ε̂t) and Ĝ′

ε̂
(t) = ε̂Ĝ(ε̂t). Then (1.5) becomes

Ĝ′(ε̂t∗) = Ĝ(ε̂t∗)

ε̂t∗
(1.6)

so it follows that the optimal solution t∗ is given by:

t∗ = t1

ε̂
(1.7)
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FIGURE 11 | Rate model. (A) p(t) is subjective probability of being correct
given a response is made at time t, and is assumed to be concave. Initial
value of p(t) assumes guessing with no prior information, and final value is
assumes that response will be correct given infinite time. (B) Ĝ(t) is the
expected gain in utility (Equation 1.4) for a response made at time t. Note
that gain may be negative (i.e., loss) for t < tmin (dashed curve) and no
response is optimal. (C) R̂(t) is the expected rate of gain in utility (Equation
1.5) which has a maximum at t∗, and can be visualized geometrically as the
point where the tangent touches Ĝ(t) in (B,D) shifting the time origin back
by γ increases t∗ by γ ′ (see text).

where t1 is the solution to (1.6) evaluated at ε̂ = 1. Thus, if
each trial is optimized based on the estimate ε̂, then the optimal
time to respond is distributed with the reciprocal of the distri-
bution of ε̂ and hence has a reciprocal Normal distribution, as
observed.

Since only one reward can occur per trial, we would expect trial
duration to be the more relevant epoch for response rate, rather
than decision time per se. Including an additional non-decision
time TND (foreperiod, sensorimotor delays, etc.) in the compu-
tation of estimated rate: R̂(t) = Ĝ(t)/(t + TND) yields the more
general equation for t∗

t∗ + TND = Ĝ(t∗)

Ĝ′(t∗)
(1.8)

As shown in Figure 11D, including TND increases optimal
response time (relative to stimulus onset). In other words,
decision time depends on the amount of non-decision time.

FIGURE 12 | (A) Effect of scaling factor ε̂ on optimal decision time t∗ for
different non-decision time TND = {0, 10, 100, 1000} (see text). Note that t∗
and hence RT increases with TND , although asymptote is zero (not shown);
(B) same as (A) but on log-log axes (base 10) showing near power function
t∗ ≈ aε−k with k = {0, 0.82, 0.83, 0.87} and a = {25.1, 25.1, 39.8, 63.1}
from linear regressions; (C) linear plot of optimal rate r∗ vs. ε̂. Although
strictly a power function, relationship is locally quasi-linear.

Returning to the parametric model: Ĝε̂(t) = Ĝ(ε̂t), we note that

ε̂
(
t∗ + TND

) = Ĝ(ε̂t∗)

Ĝ′(ε̂t∗)
(1.9)

The solution is not the same as for (1.6), and requires an explicit
form for p(t). For the purposes of illustration, we assumed a sim-
ple exponential form of p(t) = 1/2 + (

1 − exp ( − ε̂t)
)
/2 and

plotted t∗ against ε̂ with U+ = 1, U− = 5 and parametric in
TND (Figure 12A). As can be seen, t∗ decays with increasing ε̂ but
also increases with TND. Although we did not manipulate “non-
decision” time here, others have shown that increasing foreperiod
increases RT in both simple (Niemi and Näätänen, 1981) and
choice RT (Green et al., 1983).
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For TND > 0, the relationship is still very close to a power law
with t∗ ≈ aε−k where k ≈ 0.8 (Figure 12B). In terms of rate, we
can see that as TND increases, r∗ decreases but the relationship to ε̂

is still locally close to linear even for very large TND (Figure 12C).
Thus, if ε̂ is Normally distributed r∗ will also be very near Normal.

If we add sensorimotor delays γ to decision time, then we
have RT = aε̂−k + γ which is clearly similar to Pieron’s law:
E [RT] = αI−β + γ , where α,β and γ are constants for a given
experiment and I is objective stimulus intensity. Piéron’s law was
originally found for simple RT experiments, but also holds for
choice RTs (van Maanen et al., 2012). If we assume that ε̂ is
subjective estimated stimulus intensity, then we require ε̂ ∝ Iβ/k

which is plausible from Steven’s power law (Chater and Brown,
1999).

MECHANISM
How optimal rate could be controlled is open to speculation. We
can see that the mechanism in Figure 1A could act as an equa-
tion solver since the time of crossing is the solution of ρ(t) = θ(t)
[more formally: the lowest real positive root of ρ(t) − θ(t)], and
when equality is reached, the behavior is triggered in real-time.
This can be mapped onto (1.5) in an infinity of ways. A simple
possibility is that a deterministic linear rise to threshold behaves
as rate-to-time converter (Figure 1C). The input R̂(t) is inte-
grated in time to yield a rising deterministic ρ(t) which triggers
the response when then a threshold is reached. Gold and Shadlen
(2002) proposed that an optimal decision time could be found
by an adaptive process (trial-and-error) that varies the threshold.
In this case, the distribution of decision times would be given by
the distribution of thresholds (for a fixed ρ(t)), but this hardly
explains why RTs have a near-rectrN distribution. A more par-
simonious model would be that the optimal ρ(t) is found for a
fixed threshold (i.e., Carpenter’s original model). Normally dis-
tributed estimates of ρ(t) would then yield RTs with the observed
rectrN distribution. It is possible that both threshold and ρ(t)
are variable leading to a ratio of distributions for decision time
(Waddington and Harris, 2013), although we have no evidence
for this in this experiment.

Taking a different perspective, we can draw a correspondence
between rate (responses per second) and frequency (cycles per
second), and consider control by underlying banks of oscillators
in the Fourier domain. It is conceivable that repetitive nature
of RT experiments entrain oscillator frequencies, possibly with
phase resets from the stimulus onset to allow some degree of
prediction. Our observed temporal and spatial sequential depen-
dencies could reflect this entrainment (phase-locking), and the
Normal distribution of rate could reflect sampling of subpopula-
tions of oscillators. This is speculative, but not discordant with the
known correlation between RTs and alpha brain waves (Drewes
and van Rullen, 2011; Diederich et al., 2012; Hamm et al., 2012).

SUMMARY
For 2-alternative manual choice RTs, distributions are close to
the reciprocal Normal but not close to the inverse Gaussian
distribution. This is not consistent with stochastic rise to thresh-
old models, and implies that between-trial rate (reciprocal RT)
is a fundamental variable. There are significant between-trial

temporal and spatial sequential dependencies extending back
about 3 lags. When tasks become difficult, the rate distributions
shift to the left and becomes truncated near zero. We deduced
true truncation could not occur due the sequential dependency,
but rate distributions are still close to the truncated Normal.
Responding to back-to-back sequences of hundreds of almost
identical RT trials is not a natural behavior. Nevertheless, it does
reflect decision-making when there is time pressure. We propose
that when gain in utility is an increasing concave function of
time (speed-accuracy trade-off) there emerges an optimal time
of response when time is a penalty. We propose that response
rate reflects such a process and argue against the longstanding
assumption of rise-to-threshold.
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This study applied reaction-time based methods to assess the workload capacity of
binaural integration by comparing reaction time (RT) distributions for monaural and binaural
tone-in-noise detection tasks. In the diotic contexts, an identical tone + noise stimulus
was presented to each ear. In the dichotic contexts, an identical noise was presented
to each ear, but the tone was presented to one of the ears 180◦ out of phase with
respect to the other ear. Accuracy-based measurements have demonstrated a much lower
signal detection threshold for the dichotic vs. the diotic conditions, but accuracy-based
techniques do not allow for assessment of system dynamics or resource allocation
across time. Further, RTs allow comparisons between these conditions at the same
signal-to-noise ratio. Here, we apply a reaction-time based capacity coefficient, which
provides an index of workload efficiency and quantifies the resource allocations for single
ear vs. two ear presentations. We demonstrate that the release from masking generated
by the addition of an identical stimulus to one ear is limited-to-unlimited capacity (efficiency
typically less than 1), consistent with less gain than would be expected by probability
summation. However, the dichotic presentation leads to a significant increase in workload
capacity (increased efficiency)—most specifically at lower signal-to-noise ratios. These
experimental results provide further evidence that configural processing plays a critical
role in binaural masking release, and that these mechanisms may operate more strongly
when the signal stimulus is difficult to detect, albeit still with nearly 100% accuracy.

Keywords: reaction time, binaural hearing, masking release, systems factorial technology, workload capacity

INTRODUCTION
An integral question in psychoacoustics is that of binaural inte-
gration: how information presented to the two ears is combined
in order to form a unified percept. In natural environments, the
sounds received by the two ears are typically different from one
another, but experiments using headphones allow identical stim-
uli to be presented to both ears. It is well-known that identical
auditory stimuli presented to each ear are perceived as a single
sound (e.g., Leakey et al., 1958), but there are also many instances
in which unified percepts are elicited when different signals are
presented to the two ears (e.g., if a sound source is presented
to one side of a listener). In his seminal work on the “cock-
tail party effect,” Cherry (1953) demonstrated that the auditory
system generates fused percepts of auditory sources in sophis-
ticated listening situations. Although multiple cues are used by
the auditory system to accomplish this goal, the binaural system
is a critical component of this process (see Bregman, 1994 for a
review).

One notable aspect of many studies is that they evalu-
ate the mechanisms responsible for detection using threshold-
and accuracy-based techniques. Accuracy based methods can
answer many important questions pertaining to various aspects

of perception and cognition. Yet, they are inherently limited when
issues pertaining to dynamic mechanisms are raised, since by def-
inition they ignore temporal features of the system and correlate
data (e.g., see Van Zandt and Townsend, 2013).

We can apply a separate strain of research in perceptual and
cognitive psychology which focuses on multiple signals vs. a sin-
gle signal (or more specifically, two ears vs. one ear) and primarily
uses reaction time (RT) for its dependent variable. We will refer to
that approach as the “redundant signals approach” (cf. Bernstein,
1970; Grice et al., 1984). Its terminology is, of course, rather dif-
ferent than that typically employed in the hearing domain but we
will strive to provide sufficient bridges across the divide.

Within that general domain, strong tools have been developed
that can assist the investigator in unveiling the dynamics of the
underlying perceptual system. We suggest that the two basic mea-
sures, accuracy, and RT, can together go a long way in answering
fundamental questions within binaural hearing. In fact, statistics
derived within a theoretical, information processing framework
have led to theory-driven methodologies within which various
aspects of cognitive sensory processing can be evaluated.

The fundamental goal of this study is to apply the redun-
dant signals techniques to further our understanding of the
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mechanisms responsible for integrating information across the
ears. However, we need to first review some of the germane,
basic findings in the binaural literature. Almost all of these were
accuracy based but a few measured RTs.

Several psychophysical approaches have been taken to address
the fundamental question of binaural integration with a substan-
tial proportion of experiments using a basic task—detecting a
tone added to a band of noise. In these experiments, the detec-
tion threshold level of the tone is typically measured (cf. Fletcher,
1940). The tone + noise stimulus can be presented to a single ear,
commonly referred to as monaural presentation, denoted NmSm,
where N refers to the noise, S refers to the tonal signal, and m
denotes the monaural presentation. The tone + noise stimulus
can also be presented to both ears. If both ears receive identical
signals, we refer to this as a diotic, homophasic presentation, N0S0,
where 0 represents identical noise (N0) and identical tone (S0)
presented to each ear. A number of psychophysical studies have
demonstrated that presenting a tone-in-noise diotically yields, at
most, a marginal improvement in the detection threshold of the
pure tone compared to a monaural presentation (e.g., Hirsh and
Burgeat, 1958; Egan et al., 1969; Davidson et al., 2006).

In fact, to date, thresholds for N0S0 and NmSm are generally
treated as being the same (cf. Durlach and Colburn, 1978). For
threshold-based tests, then, there appears to be little or no ben-
efit to having the redundant tone-in-noise presented to a second
ear, although a small benefit has been reported for detecting pure
tones in quiet (cf. Moore, 2013). Consequently, performance in
the diotic conditions (for tones alone or tones in noise) is worse
than a probability summation model would predict with accuracy
being, at best, slightly better for two ears compared to one.

Of course, natural conditions typically allow the two ears to
receive different signals. Such a situation would occur when a
sound source is not directly in front of the listener. Any instance
in which the ears receive different signals is referred to as dichotic
listening. In a very special case, when presenting sounds over
headphones, one can present a noise source identical (correlated)
between ears (N0) with a signal source uncorrelated between the
ears. If the signal stimulus is presented π radians out of phase
across the ears, we refer to this as an antiphasic presentation,
N0Sπ. Here, the signal level at threshold is much lower than in
the N0S0 condition, with the difference in threshold commonly
referred to as the binaural masking level difference (BMLD; e.g.,
Hirsh, 1948; Jeffress et al., 1952; Egan, 1965; Henning, 1965;
Henning et al., 2005; Davidson et al., 2009). The dichotic stim-
ulation thus leads to superior accuracy over either monaural or
diotic performance. Models of these types of psychophysical data
include processes of interaural cross-correlation, equalization and
cancelation, and across-ear inhibition (e.g., Bernstein et al., 1999;
Breebaart et al., 2001; Davidson et al., 2009).

To summarize, first the performance in the diotic conditions
is worse than a probability summation model would predict but
with a slightly better relative accuracy in the binaural vs. monau-
ral conditions. Secondly, dichotic stimulation with inverted tones
leads to superior performance. An ideal detector which could
cancel the noise would allow for this superior result, but would
predict signal detection thresholds in N0Sπ to be the same as in
quiet (Durlach and Colburn, 1978). Because masking still does

occur (that is, thresholds in N0Sπ are not equivalent to unmasked
thresholds), the noise cancelation process, though robust, is
imperfect.

Both these findings indicate the absence of independent detec-
tion with each detector being the same (i.e., just as good but
no better) with both ears functioning as with only one. The
substandard performance in the diotic conditions could presum-
ably be due to limitations in capacity (i.e., caused by inadequate
resources available to both ears simultaneously or perhaps to
mutual channel inhibition). However, the superior performance
found with the dichotic conditions suggests, as noted, some type
of either energy or activation summation or, contrarily, a type
of information interaction as intimated by the cross-correlation
interpretation.

Moving on to consider what has been accomplished in the
binaural detection domain with RT as the dependent variable,
in 1944, Chocholle was the first to measure RTs for binaural vs.
monaural stimulation, demonstrating that binaural detection of
pure tones (in quiet) was faster than monaural detection. Simon
(1967) showed that the difference in mean RT between binau-
ral and monaural stimulation was very small (about 4 ms for
an average 200 ms RT) but statistically significant. More recently,
Schlittenlacher et al. (2014) also demonstrated a 5–10 ms binaural
advantage in RT. These studies reported only mean RTs and with-
out a deeper quantitative analysis, one is challenged to establish
how activation of the two ears relates to resource allocation.

A seminal RT based study within the domain of redundant
signals literature, was undertaken by Schröter et al. (2007) who
reported RT distributions for detection of a 300-ms, 60 dB SPL
pure tone presented to the left ear, the right ear, or both ears.
Whether the two tones had identical or different frequencies,
there was little evidence for a redundant-signal benefit. That is,
although RTs were slightly faster for detecting two tones vs. one
tone, the increase in RT was less than would be expected under
probability summation. However, in a second experiment, one of
the tones was replaced by a noise, and here they found faster RTs
than would be predicted by a probability summation model. We
will discuss the Schröter et al. (2007) results alongside our own.

Our approach here will be to implement a suite of tools from
the theory-driven RT methodology, “systems factorial technol-
ogy” (subsequently SFT) originated by Townsend and colleagues
(e.g., Townsend and Nozawa, 1995; Townsend and Wenger,
2004a). This methodology permits the simultaneous assessment
of a number of critical information processing mechanisms
within the same experimental paradigm. These tools will allow an
analysis of resource allocation and interaction between the two
ears and also provides for psychophysical assessment under very
different conditions than accuracy- or threshold-based measures.

First, RTs can be measured under conditions of very high
accuracy, tapping into different locations on the psychometric
function. With respect to BMLD studies, the psychometric func-
tions for detecting a tone added to noise in the N0S0 and N0Sπ

contexts are parallel but they do not overlap when the masking
release is large (Egan et al., 1969). Because the psychometric func-
tions do not overlap, auditory mechanisms are evaluated for these
two contexts at largely different SNRs. Given the nonlinear nature
of the ear, it is indeed possible that different auditory mechanisms
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may be invoked at the two different SNRs estimated at threshold.
Second, accuracy-based techniques do not allow easy assessment
of the dynamics of the system without clever stimulus manipula-
tions that can be difficult to implement acoustically. Finally, RT
measures can provide a complement to accuracy-based measures
in our attempt at converging on a unified understanding of the
mechanisms responsible for perception. Since the broad suite of
tools available in SFT has not heretofore been implemented in
binaural perception and not at all to the release from masking
phenomenon, the following section provides a brief tutorial.

ARCHITECTURE: THE SERIAL vs. PARALLEL ISSUE
One of the first issues to address is the form, or the architecture,
used by a system. We define serial processing as processing things
one at a time or sequentially, with no overlap among the succes-
sive processing times. Processing might mean search for a target
among a set of distractors in memory or in a display, solving
facets of a problem, deciding among a set of objects, and so on.
Parallel processing means processing all things simultaneously,
although it is allowed that each process may finish at different
times (Townsend et al., 2011).

Although the term architecture might seem to imply rigid
structure, we may also employ it to refer to more flexible arrange-
ments. Thus, it might be asserted that certain neural systems are,
at least by adulthood, fairly wired in and that they act in parallel
(or in some cases, in serial). On the other hand, a person might
scan the newspaper for, say, two terms, one at a time, that, is
serially or, by dint of will, might try to scan for them in parallel.
Although parallel vs. serial processing is in some sense the most
elemental pair of architectures, much more complexity can be
imagined and, indeed, investigated theoretically and empirically
(e.g., Schweickert, 1978; Schweickert and Townsend, 1989).
Figure 1 illustrates the architecture associated with serial and
parallel processing.

If we are dealing with only one or two channels or items, we
shall often just refer to these as a or b, but if we must consider
the general case of arbitrary n items or channels, we list them
as 1, 2, . . . , n − 1, n. In a serial system, then, if n = 2, and
channels a and b are stochastically independent (see subsequent
material for more on this issue), then the density of the sum of
the two serial times is the convolution of the separate densities
(Townsend and Ashby, 1983, p. 30).

This new density is designated as fa(t)∗fb(t), where the asterisk
denotes convolution and a and b are processed serially. The mean
or expectation of the sum E[Ta + Tb] = E[Ta] + E[Tb] indicates
that the overall completion time for serial processes is the sum of

FIGURE 1 | Depiction of two systems: (A) serial and (B) parallel.

all the individual means. The standard serial model requires that
fa(t) = fb(t), which in turn implies that E[Ta] = E[Tb] = E[T],
and E[Ta + Tb] = 2E[T].

In parallel processing, assuming again stochastic independence
across the items or channels, the overall completion time for
both items has to be the last, or maximum finishing time for
either item. Thus, the density that measures the last finishing
time is fmax(t) = fa(t)Fb(t) + fb(t)Fa(t). While f (t) represents
the density function, F(t) represents the cumulative distribution
function. The interpretation of this formula is that a is either the
last to finish by time t (b is already done by then), or b finishes last
at time t and a is already done by then. In this case, we can write
the mean in terms of the survivor function: E[T] = ∫

S(t)dt, inte-
grating t from 0 to infinity. The survivor function in the present
situation is S(t) = 1 − Fa(t)Fb(t) and the mean can be calculated
using the already given integral.

STANDARD SERIAL MODELS
This type of model is what most people mean when they only say
“serial unadorned.” Thus, it is the model advocated by Sternberg
in many of his early papers (e.g., Sternberg, 1966). To reach
it in the case that n = 2, let fa(t) = fb(t) = f (t). That is, the
probability densities are the same across items or positions and
even n. The latter indicates that f (t) defines the length of time
taken on an item or channel no matter how the size of the set
of operating items or channels. Furthermore, it is assumed in
the standard serial model that each successive processing time is
independent of all others. So, if a is second, say, its time does not
depend on how long the preceding item (e.g., b) took to complete
its processing.

Note, however, that we allow that different paths through
the items might be followed from trial to trial. We also do not
confine the stopping rule to a single variety. Now, Sternberg’s pre-
ferred model assumed that exhaustive processing (all items were
required to finish to stop) was used even in target-present tri-
als. But we allow the standard model to follow other, sometimes
more optimal, rules of cessation. Because all the n densities are
now the same we can simply write the nth order convolution for
exhaustive processing in symbolic form as fmax(t) = f ∗(n) (t). The
exhaustive mean processing time is then Emax[T1 + T2 + . . . +
Tn] = nE[T].

Next consider the situation where exactly one target is present
among n − 1 distractors and the system is self-terminating (ST;
only one item is required to stop the process). Again, it is assumed
that the target is placed with probability 1/n in any of the n loca-
tions. Then it follows that fst(t) = 1/n

∑
f ∗(i). The mean process-

ing time in this case is the well-known Est[T] = (n + 1)E[T]/2.
This formula can be interpreted that on average, it takes the
searcher approximately one-half of the set of items to find the tar-
get and cease processing. Finally, when processing stops as soon
as the first item is finished, then we have the result fmin(t) = f (t)
and that Emin[T] = E[T].

STANDARD PARALLEL MODELS
The standard parallel model also assumes independence among
the processing items, but this time in a simultaneous sense.
Thus, the processing time on any individual channel is
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stochastically independent of that of any other channel. The
standard parallel model further assumes unlimited capacity. The
notion of capacity will be developed in detail below but suf-
fice to mention for the moment that it means that, overall, the
speed of each channel does not vary as the number of other
channels in operation is varied. However, we do not assume
that the various channel distributions are identical, unlike the
standard serial model. Here, mean exhaustive processing time
is just E[MAX(T1, T2, . . . , Tn−1, Tn)] and the mean time in the
event of single target self-termination and the target is in chan-
nel i, is simply E[Ti]. That for the minimum time (i.e., race) is
E[MIN(T1, T2, . . . , Tn−1, Tn)].
SELECTIVE INFLUENCE
For decades, a popular way to attempt to test serial vs. parallel
processing has been to vary the processing load (i.e., number of
items, n), and then to plot the slopes of the mean response times
as a function. If the slope of such a graph differs significantly from
0, then processing is declared to be serial. If it does not differ sig-
nificantly from 0, parallel processing is inferred. This reasoning
is fallacious on several grounds but the major infirmity is that
such “tests” are primarily assessing capacity as workload changes,
not architecture. Thus, what is commonly determined to be evi-
dence for serial processing can be perfectly and mathematically
mimicked by a limited capacity parallel model (Townsend, 1990;
Townsend et al., 2011).

Sternberg’s celebrated additive factors (Sternberg, 1969)
method offered a technique which avoided the fragile capacity
logic, which could affirm or deny serial processing. The method
was based on the notion of “selective influence” of mean process-
ing times, which stipulated that each experimental factor affect
one and only one psychological subprocess at the level of means.
The challenge there was that the method did not directly test other
important architectures such as parallel systems. Also, there was a
lack of mathematical proof for the association of “factors that are
additive” even with serial processing if the successive times were
not stochastically independent and again, no clear way to include
other architectures.

Townsend and Schweickert (1989) proved that if selective
influence acted at a stronger level, then many architectures,
including parallel and serial ones, could be discriminated at the
level of mean response times. Subsequent work, and that which
we attempted to implement here, extended such theorems to
the more powerful level of entire response time distributions
(Townsend and Nozawa, 1995; Townsend and Wenger, 2004b).

We have discovered many tasks where stern tests of selective
influence are passed. When they do not pass the tests it can
itself often help to determine certain aspects of a processing sys-
tem (see, e.g., Eidels et al., 2011). However, the strict use of the
methodology to assess architecture cannot be applied. As we will
learn below, the tests were not successfully passed, and this feature
does play an important role in our discussion.

INDEPENDENCE vs. DEPENDENCE OF CHANNEL OR ITEM
PROCESSING TIMES
We also must discuss independence vs. dependence of channels,
stages, or subsystems (these terms can be used interchangeably
although the term stages is sometimes restricted to serial systems

and channels to parallel systems). In this introduction, we have
been explicitly assuming stochastic independence of processing
times, whether the architecture is serial or parallel.

In serial processing, if the successive items are dependent, then
what happens on a, say, can affect the processing time for b.
Although it is still true that the overall mean exhaustive time will
be the sum of the two means, the second, say b, will depend on
a’s processing time. Speeding up a could either speed up or slow
down b because they are being processed simultaneously; ongoing
inhibition or facilitation (or both) can take place during a sin-
gle trial and while processing is ongoing. Townsend and Wenger
(2004b) discuss this topic in detail.

It is interesting to note that the earlier prediction of inde-
pendent parallel processing in self-terminating situations will no
longer strictly hold. However, it will still be true even if processing
is dependent that the predicted ST density will be the average or
expected value of the density in the channel where the sought-for
target is located, E[Ta]. Only in the non-independent situation,
this expectation has to be taken over all the potential influences
from the surrounding channels.

STOPPING OR DECISION RULE: WHEN DOES PROCESSING
CEASE?
No predictions can be made about processing times until the
model designer has a rule for when processing stops. In some
high-accuracy situations, such as search tasks, it is usually pos-
sible to define a set of events, any one of which will allow the
processor to stop without error. In search for a set of targets then,
the detection of any one of them can serve as a signal to cease
processing. A special case ensues when exactly one sought- for
target is present. In any task where a subset of the display or
memory items is sufficient to stop without error, and the system
processor is capable of stopping (not all may be), the processor
is said to be capacity of self-termination. Because many earlier
(e.g., Sternberg, 1966) investigations studied exhaustive vs. single-
target search, self-termination was often employed to refer to the
latter, although it can also have generic meaning and convey, say,
first-termination when the completion of any of the present items
suffices to stop processing. The latter case is often called an OR
design because completion of any of a set of presented items is
sufficient to stop processing and ensure a correct response (e.g.,
Egeth, 1966; Townsend and Nozawa, 1995).

If all items or channels must be processed to ensure a cor-
rect response then exhaustive processing is entailed. For instance,
on no-target (i.e., nothing present but distractors or noise) trials,
every item must be examined to guarantee no targets are present.
In an experiment where, say, all n items in the search set must be
a certain kind of target, called an AND design, exhaustive pro-
cessing is forced on the observer (e.g., Sternberg, 1966; Townsend
and Nozawa, 1995). Nevertheless, as intimated earlier, some sys-
tems may by their very design have to process everything in the
search set, so the question is of interest even when, in principle,
self-termination is a possibility.

Hence, in summary, there are three cases of especial interest:(a)
minimum time, OR, or first-self-termination, where there is one
target among n − 1 other items and processing can cease when
it is found; (b) single-target self-termination, where there is one
target among n − 1 other items and processing can cease when it
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FIGURE 2 | Depiction of stopping rules in a serial system: (A) AND, (B)

OR.

FIGURE 3 | Depiction of stopping rules in a parallel system: (A) AND,

(B) OR.

is found, and (c) exhaustive or AND processing, where all items
or channels are processed. Figure 2 depicts AND (exhaustive)
and OR (first-terminating) processing in a serial system, whereas
Figure 3 does the same for a parallel system. Suppose again there
are just two items or channels to process, a and b, and serial pro-
cessing is being deployed. Assume that a is processed first. Then
the minimum time processing density is simply fmin(t) = fa(t),
naturally just the density of a itself. Assume now there is a sin-
gle target present in channel a and one distractor is in channel b,
and self-terminating serial processing is in force. Then the pre-
dicted density is fst(t) = pfa(t) + (1 − p)fb(t)∗fa(t). That is, if a
happens to be checked first, which occurs with probability p, then
the processing stops. On the other hand, if b is processed first and
a distractor is found then a has to be processed also so the sec-
ond term is the convolution of the a and b densities. In the event
that both items must be processed, then the prediction is just that
given earlier: fmax(t) = fa(t)∗fb(t).

When processing is independent parallel, the minimum time
rule delivers a horse race to the finish, with the winning chan-
nel determining the processing time (Figure 3B). The density is
just fmin(t) = fa(t)Sb(t) + fb(t)Sa(t). This formula possesses the
nice interpretation that a can finish at time t but b is not yet
done (indicated by b’s survivor function), or the reverse can hap-
pen. If processing is single-target self-terminating with the target
in channel a, parallel independence predicts that the density is
the simple fst(t) = fa(t). Finally, if processing is exhaustive (max-
imum time) and independent, then processing is the same as
shown before: fmax(t) = fa(t)Fb(t) + fb(t)Fa(t) (Figure 3A).

The stopping rule in our experiments is always OR, that is,
the observers were required to respond with the “yes” button if

a signal tone appeared either in the left ear, the right ear, or both
ears. Otherwise, they were instructed to respond with the “no”
button.

CAPACITY AND WORKLOAD CAPACITY: VARIOUS SPEEDS
ON A SPEED CONTINUUM
Capacity generally refers to the relationships between the speeds
of processing in response-time tasks. Workload capacity will refer
to the effects on efficiency as the workload is increased. For greater
mathematical detail and in-depth discussion, see Townsend and
Ashby (1978), Townsend and Nozawa (1995), and Townsend
and Wenger (2004b). Wenger and Townsend (2000) offer an
explicit tutorial and instructions on how to carry out a capacity
analysis.

Informally, the notion of unlimited capacity refers to the situa-
tion when the finishing time of a subsystem (item, channel, etc.) is
identical to that of a standard parallel system (described in more
detail later); that is, the finishing times of the distinct subsystems
are parallel, and the average finishing times of each do not depend
on how many others are engaged [e.g., in a search task the fin-
ishing time marginal density function for an item, channel etc.,
f (t) is invariant over the total number of items being searched].
Limited capacity refers to the situation when item or channel fin-
ishing times are less than what would be expected in a standard
parallel system. Super capacity indicates that individual channels
are processing at a rate even faster than standard parallel pro-
cessing. Figure 4 illustrates the general intuitions accorded these
concepts, again in an informal manner. The size of the cylinders
provides a description of the amount of resources available.

The stopping rule obviously affects overall processing times
(see Figure 5 for a depiction of how RTs change with increas-
ing workload for the different models). Figure 5 indicates mean
response times as a function of workload. Workload refers to the
quantity of labor required in a task. Most often, workload is given
by the number of items that must be operated on. For instance,
workload could refer to the number of items in a visual display
that must be compared with a target or memory item.

However, we assess capacity (i.e., efficiency of processing
speed) in comparison with standard parallel processing with
specification of a particular stopping rule. Thus, although the
minimum time (first-terminating or OR processing) decreases
as a function of the number of items undergoing processing
(because all items are targets), the system is merely unlimited, not
super, because the actual predictions are from a standard parallel
model (i.e., unlimited capacity with independent channels). But
observe that each of the serial predictions would be measured as
limited capacity because for each stopping rule, they are slower
than the predictions from standard parallel processing.

Although Figure 5 indicates speed of processing through the
mean response times, there are various ways of measuring this
speed. The mean (E[T]) is a rather coarse level of capacity mea-
surement. A stronger gauge is found in the cumulative distribu-
tion function F(t), and the hazard function [h(t), to be discussed
momentarily] is an even more powerful and fine grained mea-
sure. This kind of ordering is a special case of a hierarchy on the
strengths of a vital set of statistics (Townsend and Ashby, 1978;
Townsend, 1990).
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FIGURE 4 | Graphical intuition of a system’s behavior under different capacity bounds: unlimited capacity, limited capacity, and supercapacity.

FIGURE 5 | Expected processing time as a function of load-set size for different stopping rules (exhaustive, self-terminating, and minimum) for (A)

the standard serial modal, and (B) the parallel unlimited capacity processing model.

The ordering establishes a hierarchy of power because, say,
if Fa(t) > Fb(t) then the mean of a is less than the mean of b.
However, the reverse implication does not hold (the means being
ordered do not imply an order of the cumulative distribution
functions). Similarly if ha(t) > hb(t) then Fa(t) > Fb(t), but not
vice versa, and so on. Obviously, if the cumulative distribution
functions are ordered then so are the survivor functions. That is,
Fa(t) > Fb(t) implies Sa(t) < Sb(t).

There is a useful measure that is at the same strength level as F
or S. This measure is defined as—ln S(t). Wenger and Townsend
(2000) illustrate that this is actually the integral of the hazard
function h(t′) from 0 to t (e.g., Wenger and Townsend, 2000;
see also Neufeld et al., 2007). We thus write the integrated haz-
ard function as H(t) = − log[S(t)]. Although H(t) is of the same
level of strength as S(t), it has some very helpful properties not
directly shared by S(t).

Now it has been demonstrated that when processing is of this
form, the sum of the integrated hazard functions for each item

presented alone is precisely the value, for all times t, of the inte-
grated hazard function when both items are presented together
(Townsend and Nozawa, 1995). That is, Ha(t) + Hb(t) = Hab(t).
This intriguing fact suggests the formulation of a new capacity
measure, which the Townsend and Nozawa called the workload
capacity coefficient C(t) = Hab(t)/[Ha(t) + Hb(t)], that is, the
ratio of the double item condition over the sum of the single
item conditions. If this ratio is identical to 1 for all t, then the
processing is considered unlimited, as it is identical to that of an
unlimited capacity independent parallel model. If C(t) is less than
1 for some value of t, then we call processing limited. For instance,
either serial processing of the ordinary kind or a fixed-capacity
parallel model that spreads the capacity equally across a and b
predicts C(t) = 1/2 for all times t > 0. If C(t) > 1 at any time (or
range of times) t, then we call the system super capacity for those
times. A tutorial on capacity and how to assess it in experimental
data is offered in Wenger and Townsend (2000). In a recent exten-
sion of these notions, we have shown that if configural parallel
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processing is interpreted as positively interactive parallel channels
(thus being dependent or positively correlated rather than inde-
pendent), then configural processing can produce striking super
capacity (Townsend and Wenger, 2004b).

Subsequently, a general theory of capacity was formulated
that permitted the measurement of processing efficiency for all
times during a trial (Townsend and Nozawa, 1995). Employing
standard parallel processing as a cornerstone, the theory defined
unlimited capacity as efficiency identical to that of standard
parallel processing in which case the measure is C(t) = 1. It
defined limited capacity as efficiency slower than standard paral-
lel processing. For instance, standard serial processing produces a
measure of capacity of C(t) = 1/2. And finally, the theory defined
super capacity as processing with greater efficiency than standard
parallel models could produce, that is, C(t) > 1.

In sum, our measuring instrument is that of the set of pre-
dictions by unlimited-capacity independent parallel processing
(UCIP). As mentioned above, unlimited capacity means here that
each parallel channel processes its input (item, etc.) just as fast
when there are other surrounding channels working (i.e., with
greater n) as when it is the only channel being forced to process
information. The purpose of this paper is to apply these tech-
niques, with a focus on comparing binaural detection capacity
measures in diotic and dichotic contexts.

METHODS
STIMULI
Stimuli were 440-Hz pure tones added to wide bands of noise.
The target signal was a 250-ms pure tone with 25-ms cosine-
squared onset and offset ramps. For each trial, the signal was
generated with a random phase, selected according to a uniform
distribution. The 500-ms noise was generated using a Gaussian
distribution in the time domain at a sampling rate of 48828 Hz. A
new random sample of noise was generated for each trial. The
noise was always presented at a sound pressure level of 57 dB
SPL and also had 25-ms rise/fall times. The target tone was pre-
sented at signal-to-noise ratios (SNR) of either +6 (the High
SNR) and −6 dB (the Low SNR). These SNRs would be expected
to yield accuracy measures near 100% for all detection conditions.
Accuracy was indeed very high for all conditions and subjects:
ranging from 97.5 to 99% percent correct.

PROCEDURES
On each trial, there were four possible events: a tone + noise pre-
sented to both ears (binaural trials), a tone + noise presented to
the left ear, a tone + noise presented to the right ear, or noise
alone. These four events were equally probable and are described
below and are also illustrated in Table 1.

In the tone + noise trials (“Yes” trials), the SNR was manipu-
lated such that the low and the high SNRs were presented equally
often. The binaural trials (referred to as dual-target trials) yield
four possible events (see Table 1, top four rows): Left ear-High +
Right ear-High (denoted HH throughout), Left ear-High + Right
ear-Low (HL), and Left ear-Low + Right ear-High (LH), Left ear-
Low + Right ear-Low (LL). The monaural trials (referred to as
single-target trials) yielded two SNRs (High and Low) for each
ear. These are depicted in the middle eight rows of Table 1.

Table 1 | Illustration of stimulus conditions.

Left ear Right ear

Yes trials: dual targets (binaural) S + N (High) S + N (High) HH

S + N (High) S + N (Low) HL

S + N (Low) S + N (High) LH

S + N (Low) S + N (Low) LL

Yes trials: single targets (monaural) S + N (High)

S + N (High)

S + N (Low)

S + N (Low)

S + N (High)

S + N (High)

S + N (Low)

S + N (Low)

No trials (noise alone) N N

N N

N

N

Each row represents an occurrence with frequency of 1/16th. S + N refers to sig-

nal + noise, N refers to noise, and a blank space indicates no stimulus presented.

H and L refer to High and Low signal-to-noise ratios, respectively. Seventy-five

percent of the trials are “Yes” (signal-present trials) whereas 25% of the trials

are “No” (signal-absent trials).

Of the noise (or “No”) trials, 1/2 of the trials presented the
noise in both ears, 1/4 of trials had noise in the left ear, and 1/4
of trials had noise in the right ear1. Trials were presented in ran-
dom order throughout the experiment in blocks of 128 trials. Ten
blocks were collected for each context, yielding a total of 80 tri-
als in each dual-target condition (HH, LL, LH, HL) and 160 trials
in each single-target condition (Left-High, Left-Low, Right-High,
Right-Low).

Trials were run in two separate contexts, defined by the char-
acteristics of the dual-target trials: N0S0 and N0Sπ. In the N0S0

context (diotic), identical noises and signals were presented to the
two ears. In the N0Sπ context (dichotic), the noises were identical
across the ears but the signal was phase shifted by π radians to
one of the ears. Note that the single-target stimuli were the same
regardless of whether they were presented in the N0S0 or N0Sπ

context. In this way, a single block in either context consisted of
50% single-target trials (½ to left ear and ½ to right ear), 25%
dual-target trials, and 25% noise-alone trials.

Observers participated in experimental sessions lasting 1 h.
A single session consisted of 6–8 blocks of 128 trials. Each trial
began with a visual warning of “listen” appearing on a computer
monitor for 500 ms. A silent period of 500 ms followed removal
of the warning, when the noise stimulus began. When the 250-ms
target tone was present, it occurred at a random interval from 50
to 250 ms after the onset of the 500-ms noise.

1Note that 1/2 of the no trials were binaural trials whereas only 1/3 of the
yes trials were binaural. In this case, then there could be a bias toward a “no”
response when a binaural noise is heard. Additional data collection suggests
that this bias did not lead to a difference in the results presented here.

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 641 | 68

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lentz et al. Binaural auditory reaction time

Stimuli were presented to the observers at a 24414 kHz sam-
pling rate using a 24-bit Tucker Davis Technologies (TDT) RP2.1
real-time processor. Target and masker were summed digitally
prior to being played though a single channel of the RP2.1 (for the
monaural stimuli) or both channels of the RP2.1 (for the binau-
ral stimuli). Each channel was calibrated via a PA5 programmable
attenuator, passed through an HB6 headphone buffer, and pre-
sented to observers through a Sennheiser HD280 Pro headphone
set. Reaction times were measured using a button box interfaced
to the computer through the TDT hardware.

OBSERVERS
Four listeners, ranging in age from 20 to 43 participated in the
experiment. All subjects had hearing thresholds of 15 dB HL or
better in both ears at all audiometric frequencies. Obs. 4 is the first
author. Obs 1–3 competed trials in the N0S0 context first whereas
Obs. 4 completed trials in the N0Sπ context first. Subjects pro-
vided written informed consent prior to participation and Obs.
1–3 were paid per session. Testing procedures were overseen by
Indiana University’s Institutional Review Board.

Observers were instructed to respond as quickly to the signal
tone as possible while attempting to provide correct responses.
Using an “OR” design, observers were required to respond with
the “yes” button if a tone was present. Otherwise, they were
instructed to respond with the “no” button. The RT was measured
from the onset of the tone stimulus within the noise. Percent cor-
rect was recorded in order to ensure that subjects achieved high
levels of performance for both SNRs.

RESULTS
MEAN REACTION TIMES
Table 2 shows mean RTs in milliseconds for single targets for the
two contexts (N0S0 and N0Sπ). Reaction times below 100 ms or
greater than 3 standard deviations from the mean were excluded
from the data set. A repeated-measures ANOVA revealed a signif-
icant effect of SNR [F(1, 3) = 586.6, p < 0.0001] in which faster
RTs were associated with the higher SNR (254 vs. 209 ms). No
other significant main effects or interactions were revealed by the
ANOVA, although the main effect of context approached signifi-
cance [F(1, 3) = 10.0; p = 0.051]. The slightly faster RTs in N0Sπ

Table 2 | Mean reaction times in ms for the single-target conditions

for each subject in the two contexts.

N0S0 N0Sπ

Left ear Right ear Left ear Right ear

Low High Low High Low High Low High

Obs 1 289 232 291 228 278 226 276 225

Obs 2 310 272 318 266 305 252 304 254

Obs 3 316 259 313 254 281 228 290 230

Obs 4 371 295 350 317 332 262 320 265

Average 321 (17) 265 (13) 318 (12) 266 (19) 299 (13) 242 (9) 297 (9) 243 (10)

RTs for both ears and both SNRs are shown. Standard errors of the mean are

indicated for the averages.

(293 vs. 270 ms) may be due to three of the observers complet-
ing N0Sπ after N0S0 and consequently could be attributable to
practice effects. However, even Obs. 4 was faster in N0Sπ and she
completed these conditions first. Recall that for these contexts, the
same stimuli were used for the single-target conditions, and so no
difference in context was expected.

These results are consistent with previous studies demon-
strating a robust negative relationship between the RT and the
intensity of the stimulus being detected in quiet (e.g., Chocholle,
1944; Kohfeld, 1971; Grice et al., 1974; Santee and Kohfeld, 1977;
Schlittenlacher et al., 2014) as well as the signal-to-noise ratio
(and signal levels) for a signal detected in noise (e.g., Green
and Luce, 1971; Kemp, 1984). Accuracy was very high, with
the miss rate averaging 0.5% for the high SNR and 2.6% for
the low, also implicating a small difference in accuracy for the
two SNRs. Consequently, we, like others, have observed strong
selective influence effects for single-target stimuli.

Table 3 shows the mean RTs in milliseconds for the dual tar-
get conditions for N0S0 and N0Sπ contexts. A repeated-measures
ANOVA revealed a significant effect of SNR [F(3, 9) = 95.8, p <

0.0001] and an interaction between context and SNR [F(3, 9) =
18.7; p < 0.001]. Post-hoc t-tests with a Bonferroni correction
indicated that RTs in LL were slower than all other conditions,
but only for N0S0.

For the N0S0 context, a general failure of selective influence is
evident, as only LL was associated with RTs slower than the other
conditions. Recall that for accuracy data, N0S0 detection thresh-
olds are similar to monaural (NmSm) detection thresholds. Thus,
these RT results essentially mirror the threshold data: HH, LH,
and HL RTs are effectively determined by the faster of the two
detections. For LH and HL, this is the stimulus with the higher
SNR. Note, however, there is a slight (albeit not statistically signif-
icant) trend for the HH trials to have faster RTs than the HL and
LH trials. On average, the HH trials are about 5 ms faster than the
HL and LH trials. If we consider that HL and LH trials are similar
to monaural presentation, we see that this result is similar to the
size of the effect observed for monaural vs. binaural stimulation
for pure tones (e.g., Chocholle, 1944; Simon, 1967; Schröter et al.,
2007 Exp. 1; Schlittenlacher et al., 2014). Although the effect size,
as measured by Cohen’s d, is less than 0.2 we believe that with
more samples we would see a consistent advantage of two ears
over one in mean RT.

Further, there is some evidence that RTs are faster in for the
dual targets than for the single targets. In the N0S0 context, RTs

Table 3 | Mean reaction times in ms for the dual-target conditions.

N0S0 N0Sπ

HH LL LH HL HH LL LH HL

Obs 1 225 266 229 228 222 244 218 225

Obs 2 255 306 262 259 252 273 253 263

Obs 3 247 312 257 257 213 243 223 226

Obs 4 299 344 300 306 260 280 273 266

Average 257 (15) 307 (16) 262 (15) 263 (16) 234 (12) 260 (10) 242 (13) 245 (11)

Standard errors of the mean are indicated in parentheses for the averages.
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for the high SNR were 257 ms for the HH dual targets and 265 ms
for the High single targets. For the low SNR, RTs were 307 ms for
the LL dual targets and 320 ms for the Low single targets. These
results again imply a small but consistent binaural advantage for
detecting tones embedded in noise. Miss rates also followed this
trend, averaging 0.5% for dual targets and 1.6% for single targets.

In the N0Sπ context, we see failure of selective influence, with
no statistically significant difference between any of the dual-
target conditions. These results do not simply suggest that the RT
is primarily driven by the stimulus yielding the faster RT because
RTs in LL are similar to those in HH. Here, mean RTs for the
LL conditions are significantly faster for the dual target than the
single-target conditions. RTs for LL were 260 ms but were 298 ms
for the low-SNR single targets. The implications of these results
will be discussed subsequently, as we address the RT distributions
and in the section describing capacity. Miss rates were 0% for all
subjects and conditions within N0Sπ.

SURVIVOR FUNCTIONS
Although of primary interest to this paper are the RT data for
the dual target conditions, it is worth presenting the RT distri-
butions for the single-target data, to familiarize the reader to the
data format and to present the robust reaction-time distributional
data. Figure 6 plots derived survivor functions for the high and
low SNRs presented to the left and right ears in the two contexts:
N0S0 (left panels) and N0Sπ (right panels). Recall that the sur-
vivor function, S(t) is simply 1 − F(t), where F(t) represents the
cumulative distribution function of RTs. Data from a representa-
tive single subject (Obs. 2) are presented because of overwhelming
similarity in the pattern of results across the subjects.

Because a powerful ordering of faster RTs associated with the
high SNR ratio, the same symbols are used to display data from

the left ear (unfilled circles) and data from the right ear (solid
lines). All subjects demonstrated significantly faster RTs for the
high SNRs vs. the low SNR. For all statistical tests, non-parametric
Kolmogorov-Smirnov (KS) tests of survivor function orderings at
the p < 0.0001 level were taken to establish statistical significance.
The lower-than-typically used p-value is used due to the presence
of multiple comparisons. The only parameter associated with sur-
vivor function ordering was SNR. Table 4 presents the p-values to
illustrate the pattern of results across subjects. There also was no
difference in RTs measured for the single targets dependent on
context. That is, the RT distributions for single targets were not
statistically different whether RTs were measured in the N0S0 or
the N0Sπ context.

The data present a compelling case that selective influence is
present for tone-in-noise detection and that increases in SNR

Table 4 | p-values for Kolmogorov–Smirnov (KS) test for single

targets.

Left Right High Low

Low vs. High Low vs. High Left vs. Right Left vs. Right

N0S0 Obs 1 <0.0001** <0.0001** 0.47 0.65

Obs 2 <0.0001** <0.0001** 0.12 0.20

Obs 3 <0.0001** <0.0001** 0.47 0.65

Obs 4 <0.0001** <0.0001** 0.02 0.32

N0Sπ Obs 1 <0.0001** <0.0001** 0.56 0.91

Obs 2 <0.0001** <0.0001** 0.91 0.56

Obs 3 <0.0001** <0.0001** 0.65 0.25

Obs 4 <0.0001** <0.0001** 0.47 0.75

**Indicates statistical significance at the p < 0.0001 level.

FIGURE 6 | Derived survivor functions for the single-target conditions at the two SNRs for the left and right ears in the two contexts: N0S0 (left

panels) and N0Sπ (right panels) for a single representative subject.
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facilitate a faster RT. Further, the context in which the RTs were
measured (in the presence of N0S0 or N0Sπ stimuli) has little
effect on the distribution of RTs. We also see no evidence that
the right ear is faster than the left ear for tone-in-noise detection,
at least in a task where listeners must divide their attention across
ears (see also Schlittenlacher et al., 2014).

Figure 7 plots the derived survivor functions for the dual tar-
get data in the N0S0 contexts (left panels) and the N0Sπ contexts
(right panels). For all observers, a failure of selective influence is
obvious, with HH, HL, LH being not statistically different from

each other. This overlap is present for both the N0S0 contexts and
the N0Sπ contexts.

The N0Sπ contexts reveal a slightly different pattern although
the failure of selective influence is still obvious. The only con-
sistent pattern across all subjects is LL < HH. Obs. 1, 3, and 4
show a pattern similar to N0S0 with LL < LH = LH. Obs. 4 also
demonstrates HH < LH.

Although the N0Sπ context indicates survivor function order-
ings that are a little more diverse across observers than the N0S0

context, the glaring failure in both immediately renders untenable

FIGURE 7 | Derived survivor functions for the dual-target conditions in the two contexts: N0S0 (left panels) and N0Sπ (right panels).
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any analysis of architecture. We shall discuss potential reasons for
this failure in the General Discussion. In any case, the statisti-
cal function, C(t) = workload capacity, turns out to be highly
informative all by itself.

CAPACITY
Capacity functions for the two contexts are plotted in
Figures 8, 9 for the four subjects and summarized in Table 5
using Houpt and Townsend’s (2012) statistical analysis. Because
the HH and LL conditions showed the starkest contrast
from one another, those are shown in Figure 8. Capacity

functions for the LH and HL conditions are then shown in
Figure 9.

Miller (1982) suggested an inequality, or upper bound on
RTs for channels involved in a race within a redundant-target
paradigm. Consider the OR paradigm, where any target item can
lead to a correct response, and suppose that the stimulus presen-
tation initiates a race in a parallel system. The logic behind the
Miller inequality states that if the marginal finishing time dis-
tributions from the single target conditions stay unchanged in
the redundant target condition (implying unlimited capacity),
then the cumulative distribution function for the double-targets

FIGURE 8 | Capacity functions for the two contexts are shown for HH and LL conditions.
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FIGURE 9 | Capacity functions for the two contexts are shown for LH and HL conditions.

display cannot exceed the sum of the single-target cumulative
distribution functions (see, e.g., Townsend and Wenger, 2004b).

In our current language, violation of the Miller bound (i.e.,
the inequality), would imply super capacity. Next, it is possible,
using a formula introduced by Townsend and Eidels (2011), to
allow the investigator to plot this upper bound (referred to as the
“Miller bound”) in the capacity space of Figures 8, 9. This tactic
permits us to provide a direct comparison between the race model
prediction and our data all within the same graph.

Grice and colleagues proposed a lower bound on performance
parallel systems (e.g., Grice et al., 1984) that plays a role analogous

to the Miller bound, but for limited as opposed to super capacity.
If the Grice inequality is violated, the system is limited capacity
in a very strong sense (Townsend and Wenger, 2004b). In this
case, performance on double-target trials is slower than on those
single-target trials that contain the faster of the two targets. When
performance on the two channels is equal, the Grice bound indi-
cates efficiency at the level of fixed capacity in a parallel system.
A fixed capacity system can be viewed as sharing a fixed amount of
capacity between the two channels. Alternatively, a serial system
can make exactly this prediction as well (Townsend and Wenger,
2004b). This Grice boundary is also plotted on Figures 8, 9.
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Table 5 | Statistical inferences for the capacity functions.

N0S0 N0Sπ

HH LL LH HL HH LL LH HL

Obs. 1 Limited** Limited** Super* Super

Obs. 2 Limited** Limited** Super Limited** Super Limited**

Obs. 3 Limited** Limited** Limited** Limited* Super** Super

Obs. 4 Limited** Limited** Limited** Limited** Super

Cases where the null hypothesis (the Unlimited Capacity Independent Parallel model) can be rejected using the Houpt and Townsend (2012) statistical tests are

displayed in the table with asterisks. Other cases trending toward limited (C consistently less than 0.8) and trending toward super capacity (C consistently greater

than 1.25) are also indicated but without the asterisks indicating statistical significance.
*P < 0.01; **P < 0.001.

Across both figures and panels, the results for N0S0 con-
sistently demonstrate C(t) ≤ 1, and the Miller bound is rarely
exceeded by any of the capacity functions in the N0S0 context.
Further, capacity tends to be at or slightly better than the Grice
bound. Table 5 also shows that for all N0S0 conditions, at least
two observers show statistically significant limited capacity [i.e.,
C(t) is significantly below 1].

Conversely, N0Sπ data illustrate C(t) ≥ 1 over most of the
RT range, and many C(t) values exceed the Miller bound in the
N0Sπ context, for LL particularly, implicating super capacity at
the level where C(t) is much larger than 1 for longer RTs (see
Townsend and Wenger, 2004b). Only the HH condition demon-
strates significant limited capacity consistent across subjects. In
the LL conditions, all observers reveal higher workload capacity
in the N0Sπ condition than in the N0S0 condition and in fact, the
N0Sπ C(t)s are higher than any of the other C(t) data, disclosing
super capacity in all cases. Super capacity is statistically signifi-
cant for two subjects in the N0Sπ conditions, but only for LL. We
believe that the other two subjects (Obs. 2 and 4) demonstrate
evidence leaning toward super capacity but that there are limita-
tions due to the sample size. Here, approximately 80 trials were
used in each double-target condition. An examination of Houpt
and Townsend (2012)’s Figure 4 suggests that more trials may be
needed to establish significance of capacity in the 2.0 range. At a
minimum, visual inspection indicates a difference among capac-
ity functions, with the LL functions being above 1 and two of the
four subjects demonstrating statistically significant super capac-
ity. These two subjects also had data exceeding the Miller bound
for many RTs, implicating capacity values that exceed race-model
predictions.

THE HIGH-LOW AND LOW-HIGH CONDITIONS
We lump these two conditions together since their results are
very similar, though not identical. Interestingly, several observers
appear to exhibit some super capacity, especially in the N0Sπ con-
ditions. By and large, N0S0 C(t) functions fall in the moderately
limited capacity range, although there are spots of extremely lim-
ited capacity, for instance, Obs. 1 in both conditions, Obs. 2 in
HL for slower times, Obs. 3 and 4 in LH early on. Although these
tend to be concentrated in N0S0 trials, some pop up in N0Sπ

data.
In sum, all our statistics confirm that performance in N0S0 is

very poor in comparison to N0Sπ and in fact is close to being as

poor as ordinary serial processing would predict. N0Sπ, on the
other hand, regularly produces super capacity with the strongest
and most consistent power in the slowest combination of factors
(i.e., LL).

GENERAL DISCUSSION
Up to this point, only para-threshold, accuracy experiments have
investigated the binaural release from masking using pure tone
detection in anti-phase. In fact, as mentioned in the introduc-
tion, only a handful of experiments have even employed RT at all
when comparing binaural to monaural performance. This study
presents analogs to the traditional accuracy statistics RTs for bin-
aural auditory perception and in particular, for the first time, to
the masking release effect.

Traditionally, detection thresholds have been the psychophysi-
cal tool in this domain. More generally, the psychometric func-
tions can be analyzed from the point of view of probability
summation (with appropriate corrections for guessing). We sug-
gest that the appropriate RT analog to probability summation
is what is termed the standard parallel model. This model, like
probability summation, assumes that each channel acts the same
way with one signal as it does with other channels operating
at the same time (this is the unlimited capacity assumption).
The standard parallel model also stipulates stochastic indepen-
dence among the channels. It makes the probability summation
prediction when only accuracy is measured.

First, although our experiment factor, SNR, was effectual in
properly ordering the single-target survivor functions, it failed
massively on the double signal trials: While HL, LH, and HH were
all stochastically faster than LL (their survivor functions were all
greater than that for LL for all times t), the former were very sim-
ilar for almost all of our data and observers. The consequence
is that we may not legitimately attempt to uncover the opera-
tional architecture in this experiment. However, the way in which
selective influence fails plays a strategic role in our conclusions
about the binaural processing system. From here on out, we will
concentrate on other issues and especially that of capacity.

Next, recall that the single signal RT data are employed to
assess the binaural data relative to predictions from the stan-
dard parallel model. If C(t) = 1, then performance is identical
to that from the parallel model for that particular t, or range
of t. If C(t) < 1, then limited capacity is concluded. If C(t) >

1, performance is super capacity relative to the standard parallel
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expectations. A somewhat more demanding upper bound is
found in the Miller inequality, which nevertheless must be vio-
lated if C(t) exceeds 1 for intervals of the faster time responses
(see Townsend and Nozawa, 1995). If the lower bound put forth
by Grice and colleagues is violated, then capacity is very limited
indeed. When performance on the two ears is equal, then the
Grice bound is equivalent to C(t) = ½. On the other hand, if
C(t) is even a little larger than the Grice bound, performance is
said to show a redundancy gain. Finally, limited capacity could be
associated with inadequate processing (e.g., attentional) resources
or interfering channel crosstalk in a parallel system. If capac-
ity is severely limited [e.g., C(t) < ½] it might be caused by
serial processing, extreme resource deficits or even across-channel
inhibition.

INTERPRETATION OF N0S0 RESULTS
The results indicated that capacity typically was unlimited to
severely limited in N0S0 conditions. At least two observers
demonstrated limited capacity for each of the SNR combina-
tions with all observers demonstrating limited capacity for HH.
Potentially, there is more evidence for limited capacity in the HH
conditions relative to the other conditions, though there is con-
siderable variability across individuals in the value of the C(t)
function and with respect to the C(t) functions proximity to the
Grice bound.

The only other research of which we are aware, that has applied
concepts from the redundant signals RT approach to binaural per-
ception is a seminal study by Schröter et al. (2007) and extended
in Schröter et al. (2009) and Fiedler et al. (2011). Schröter et al.
(2007) employed the Miller (1982) inequality to assess binau-
ral vs. monaural performance but did not assess performance
in terms of the standard parallel model or the Grice bound for
extreme limited capacity. They also did not address the antiphasic
release-from-masking effect. Thus, we will be able to compare our
N0S0 results to some extent with their results but not our N0Sπ

findings.
First, although we observed considerable individual differ-

ences in the capacity functions across listeners, a common trend
was that in the N0S0 conditions, C(t) never exceeded 1. In
many cases, C(t) was found to be significantly less than 1. In
no instances was the Miller bound surmounted. Many of the
capacity functions are also very similar to the Grice bound and
display capacity values around 0.5, or fixed capacity. These results
suggest that a negligible gain is provided by the addition of a
second ear. These capacity values are also consistent with previ-
ous work demonstrating a very small two-ear advantage in mean
RT (Chocholle, 1944; Simon, 1967; Schlittenlacher et al., 2014).
Schröter et al. (2007) also demonstrated an almost complete lack
of redundancy gain when identical pure tones were presented to
each ear. Our data take their results a step further and report
capacity values at two different SNRs. Although this conclusion
is a tempered one, it is possible that the easiest to detect stimuli
(High SNRs) yield the greatest degree of limited capacity.

This interpretation is closely associated with the trends present
in the N0S0 survivor functions: the dual-target HH, HL, and
LH survivor functions were virtually identical, even though SNR
ordered the RT distributions for the single-target conditions

(faster RTs for the High conditions). Thus, capacity should be
more limited for HH than for HL or LH. It seems likely that the
auditory system cannot take advantage of the addition of redun-
dant well-defined signals, and may respond most prevalently to
the “loud” or better-defined stimulus in these cases. These results
very closely mirror those found in the threshold data, where only
a negligible advantage is provided when a second ear is added to
tone-in-noise detection tasks.

At this point, we cannot establish whether the lack of redun-
dancy gain is due to interactions between the ears or true limi-
tations in resource capacity. The presence of interactions in the
auditory binaural pathway at every level in the auditory path-
way central to the cochlear nucleus, indicates that interactions
between the ears are prevalent. These interactions include both
excitatory and inhibitory pathways, and are responsible for a com-
plex and highly successful noise-reduction system. It appears,
from detection and now RT data, the noise-cancelation proper-
ties of the auditory system are not activated when the ear receive
the same signal and noise.

INTERPRETATION OF N0Sπ RESULTS
The N0Sπ data reflect a different pattern of results than observed
in the N0S0 contexts. First, two of the four subjects showed statis-
tically significant levels of super capacity, with all four subjects
leaning in that direction. This result occurred only in the LL
conditions, but capacity was still higher for N0Sπ than N0S0 for
LH and HL. The intermediate conditions (HL and LH) tended
toward unlimited capacity. Although one interpretation might be
to treat the unlimited capacity functions as support for an inde-
pendent, parallel model, it seems unlikely that such a model can
also account for the limited capacity data observed for HH and
the super capacity data observed for LL. Further it is commonly
accepted that the BMLD occurs due to interactions between the
two ears, and cross-correlation and equalization-cancelation are
commonly employed tools implemented into binaural models
(e.g., Bernstein et al., 1999; Davidson et al., 2009).

Our data reveal something that would not have been observed
by using data obtained at threshold levels: an SNR-dependent
effect at high accuracies. Traditionally, psychometric functions for
N0S0 and N0Sπ are treated as being parallel (e.g., Egan et al., 1969;
Yasin and Henning, 2012). That is, the size of the BMLD does not
depend on the accuracy. The implication, then, is that because
the psychometric functions have the same shape and only shifted
means, there are no SNR-dependent processes at play, although
a few studies have demonstrated that the MLD decreases at very
high signal sensation levels (e.g., Townsend and Goldstein, 1972;
Verhey and Heise, 2012). By testing the binaural system at SNRs
occurring well into the tip of the psychometric function (>95%
accuracy), the super capacity finding in LL but not HH supports
the idea that the auditory noise reduction process more effectively
cancels the noise at the lower (but high-accuracy) SNRs than at
the higher SNRs via a super capacity result.

Because it seems highly likely that our antiphasic effects will
appear at other SNRs than those used here (i.e., ours are not
“privileged” in any way), these “ceiling-like” SNR effects may
be considered as evidence for some type of gain control. That
is, it appears that the auditory system uses the differences in
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signal temporal characteristics to facilitate detection in an SNR-
dependent manner. These advantageous interactive mechanisms
are not deployed at high SNRs but are only implemented for low
SNRs. Although the RTs presented here are on the order of those
measured previously (e.g., Kemp, 1984), we must eventually rule
out the possibility that the ceiling effects in the HH conditions are
not due to a lower limit on the RT.

Future studies will need to be conducted to establish whether
the parallel psychometric functions would also be observed in
the RT data when using stimuli that do not yield 100% accuracy.
Townsend and Altieri (2012) have developed a new capacity met-
ric A(t) which takes into account correct and incorrect trials. This
capacity measure will be extremely valuable to determine if these
results generalize to SNRs more commonly used in the binaural
masking literature, where psychometric functions are measured
between chance detection and near-perfect accuracy (Egan et al.,
1969; Yasin and Henning, 2012).

Finally, Schröter et al. (2007) argued that super capacity results
imply that the two ears are not integrated into a single percept
(see also Schröter et al., 2009) and that the redundant signal effect
would only occur when the stimuli presented to the two ears do
not fuse into a single percept. The results in the N0S0 conditions
would support this interpretation as we found severely limited
capacity when identical stimuli were presented to the two ears.
However, the SNR-dependent results in the N0Sπ conditions do
not support such an interpretation in a straightforward way. It
seems unlikely that the two ears would be fused into a single
percept for the HH, HL, and LH trials but not the LL trials. If
anything, one might expect the opposite, as the pure tone would
be perceived to “pop out” against the noise background more in
the HH conditions (due to the high SNR) than in the LL condi-
tions. However, if the SNR-dependent mechanisms elicit a larger
perceptual distinction between the tone and noise at the lower
SNRs, it remains possible that tone and noise are perceptually seg-
regated in an SNR-dependent manner. One might speculate that
these advantageous mechanisms are employed only when listen-
ing is more difficult—there may be no need to implement them
in high-SNR situations where detection is essentially trivial.

We conclude by advocating an approach that synthesizes accu-
racy psychophysics together with response time based informa-
tion processing methodology. We have demonstrated that RT can
be a useful tool for assessment of the binaural system. These
results support the idea that a combination of both accuracy and
RT methods could be enhance our understanding of perceptual
mechanisms in many different modalities.

ACKNOWLEDGMENTS
We would like to thank Amanda Hornbach for assistance with
data collection and analysis and Joseph Houpt for making avail-
able the software package used for statistical analysis.

REFERENCES
Bernstein, I. H. (1970). “Can we see and hear at the same time? Some recent stud-

ies of intersensory facilitation of reaction time.” Acta Psychol. 33, 21–35. doi:
10.1016/0001-6918(70)90119-8

Bernstein, L. R., van de Par, S., and Trahiotis, C. (1999). The normalized interaural
correlation: accounting for NoSπ thresholds obtained with Gaussian and “low-
noise” masking noise. J. Acoust. Soc. Am. 106, 870–876. doi: 10.1121/1.428051

Breebaart, J., van de Par, S., and Kohlrausch, A. (2001). Binaural processing model
based on contralateral inhibition. I. Model structure. J. Acoust. Soc. Am. 110,
1074–1088. doi: 10.1121/1.1383297

Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organization of
Sound. Cambridge, MA: The MIT Press.

Cherry, E. C. (1953). “Some experiments on the recognition of speech, with one
and with two ears.” J. Acoust. Soc. Am. 25, 975–979. doi: 10.1121/1.1907229

Chocholle, R. (1944). Etude de la psychophysiology de l’audition par la method des
temps de reaction. L’année Psychol. 45, 90–131. doi: 10.3406/psy.1944.8157

Davidson, S. A., Gilkey, R. H., Colburn, H. S., and Carney, L. H. (2006). Binaural
detection with narrowband and wideband reproducible noise maskers. III.
Monaural and diotic detection and model results. J. Acoust. Soc. Am. 119,
2258–2275. doi: 10.1121/1.2177583

Davidson, S. A., Gilkey, R. H., Colburn, H. S., and Carney, L. H. (2009). An evalua-
tion of models for diotic and dichotic detection in reproducible noises. J. Acoust.
Soc. Am. 126, 1906–1925. doi: 10.1121/1.3206583

Durlach, N. I., and Colburn, H. S. (1978). “Binaural phenomena,” in Hearing
(Handbook of perception, Vol 4) eds E. C. Carterette and M. P. Friedman (New
York, NY: Academic Press), 365–466.

Egan, J. P. (1965). Masking-Level differences as a function of interaural dispari-
ties in intensity of signal and of noise. J. Acoust. Soc. Am. 38, 1043–1049. doi:
10.1121/1.1909836

Egan, J. P., Lindner, W. A., and McFadden, D. (1969). Masking-level differences
and the form of the psychometric function. Percept. Psychophys. 6, 209–215. doi:
10.3758/BF03207019

Egeth, H. E. (1966). Parallel versus serial processes in multidimensional stimulus
discrimination. Percept. Psychophys. 1, 245–252 doi: 10.3758/BF03207389

Eidels, A., Houpt, J. W., Altieri, N., Pei, L., and Townsend, J. T. (2011). Nice guys fin-
ish fast and bad guys finish last: facilitatory vs. inhibitory interaction in parallel
systems. J. Math. Psychol. 55, 176–190. doi: 10.1016/j.jmp.2010.11.003

Fiedler, A., Schröter, H., Seibold, V. C., and Ulrich, R. (2011). The influence of
dichotical fusion on the redundant signals effect, localization performance,
and the mismatch negativity. Cogn. Affect. Behav. Neurosci. 11, 68–84. doi:
10.3758/s13415-010-0013-y

Fletcher, H. (1940). Auditory patterns. Rev. Mod. Phys. 12, 47–65. doi:
10.1103/RevModPhys.12.47

Green, D. M., and Luce, R. D. (1971). Detection of auditory signals presented at
random times: III. Percept. Psychophys. 9, 257–268. doi: 10.3758/BF03212645

Grice, G. R., Brunt, R. L., Kushner, B. A., and Morrow, C. (1974). Stimulus
intensity, catch trial effects, and the speed-accuracy tradeoff in reaction time:
a variable criterion theory interpretation. Mem. Cognit. 2, 758–770. doi:
10.3758/BF03198152

Grice, G. R., Canham, L., and Gwynne, J. W. (1984). Absence of a redundant-signals
effect in a reaction time task with divided attention. Percept. Psychophys. 36,
565–570. doi: 10.3758/BF03207517

Henning, G. B. (1965). Binaural masking-level difference and frequency discrimi-
nation. J. Acoust. Soc. Am. 38, 929–930. doi: 10.1121/1.1939744

Henning, G. B., Richards, V. M., and Lentz, J. J. (2005). The effect of diotic and
dichotic level-randomization on the binaural masking-level difference. J. Acoust.
Soc. Am. 118, 3229–3240. doi: 10.1121/1.2047167

Hirsh, I. J. (1948). The influence of interaural phase on interaural summation and
inhibition. J. Acoust. Soc. Am. 20, 536–544. doi: 10.1121/1.1906407

Hirsh, I. J., and Burgeat, M. (1958). Binaural effects in remote masking. J. Acoust.
Soc. Am. 30, 827–832. doi: 10.1121/1.1909781

Houpt, J. W., and Townsend, J. T. (2012). Statistical measures for workload capacity
analysis. J. Math. Psychol. 56, 341–355. doi: 10.1016/j.jmp.2012.05.004

Jeffress, L. A., Blodgett, H. C., and Deatherage, B. (1952). The masking of tones by
white noise as a function of the interaural phases of both components. J. Acoust.
Soc. Am. 24, 113–114. doi: 10.1121/1.1917414

Kemp, S. (1984). Reaction time to a tone in noise as a function of the signal-to-noise
ratio and tone level. Percept. Psychophys. 36, 473–476. doi: 10.3758/BF03207501

Kohfeld, D. L. (1971). Simple reaction time as a function of stimulus intensity in
decibels of light and sound. J. Exp. Psychol. 88, 251–257. doi: 10.1037/h0030891

Leakey, D. M., Sayers, B. M., and Cherry, C. (1958). Binaural fusion of low-and
high-frequency sounds. J. Acoust. Soc. Am. 30, 222–223. doi: 10.1121/1.1909549

Miller, J. (1982). Divided attention: evidence for coactivation with redundant
signals. Cogn. Psychol. 14, 247–279. doi: 10.1016/0010-0285(82)90010-X

Moore, B. (2013). An Introduction to the Psychology of Hearing, 6th Edn. Leiden:
BRILL.

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 641 | 76

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lentz et al. Binaural auditory reaction time

Neufeld, R. W. J., Townsend, J. T., and Jette, J. (2007). “Quantitative response
time technology for measuring cognitive-processing capacity in clinical stud-
ies,” in Advances in Clinical Cognitive Science: Formal Modeling and Assessment
of Processes and Symptoms, ed R. W. J. Neufeld (Washington, DC: American
Psychological Association), 207–238.

Santee, J. L., and Kohfeld, D. L. (1977). Auditory reaction time as a function of
stimulus intensity, frequency, and rise time. Bull. Psychon. Soc. 10, 393–396. doi:
10.3758/BF03329370

Schlittenlacher, J., Ellermeier, W., and Arseneau, J. (2014). Binaural loudness gain
measured by simple reaction time. Atten. Percept. Psychophys. 76, 1465–1472.
doi: 10.3758/s13414-014-0651-1

Schröter, H., Frei, L. S., Ulrich, R., and Miller, J. (2009). The auditory redundant
signals effect: an influence of number of stimuli or number of percepts? Atten.
Percept. Psychophys. 71, 1375–1384. doi: 10.3758/APP.71.6.1375

Schröter, H., Ulrich, R., and Miller, J. (2007). Effects of redundant auditory stimuli
on reaction time. Psychon. Bull. Rev. 14, 39–44. doi: 10.3758/BF03194025

Schweickert, R. (1978). A critical path generalization of the additive factor method:
analysis of a stroop task. J. Math. Psychol. 18, 105–139. doi: 10.1016/0022-
2496(78)90059-7

Schweickert, R., and Townsend, J. T. (1989). A trichotomy: interactions of factors
prolonging sequential and concurrent mental processes in stochastic discrete
mental (PERT) networks. J. Math. Psychol. 33, 328–347. doi: 10.1016/0022-
2496(89)90013-8

Simon, J. R. (1967). Ear preference in a simple reaction-time task. J. Exp. Psychol.
75, 49–55. doi: 10.1037/h0021281

Sternberg, S. (1966). High-speed scanning in human memory. Science 153,
652–654. doi: 10.1126/science.153.3736.652

Sternberg, S. (1969). “The discovery of processing stages: extensions of Donder’s
method,” in Attention and Performance, Vol. 2. ed W. G. Koster (Amsterdam:
North Holland), 276–315.

Townsend, J. T. (1990). Truth and consequences of ordinal differences in statisti-
cal distributions: toward a theory of hierarchical inference. Psychol. Bull. 108,
551–567. doi: 10.1037/0033-2909.108.3.551

Townsend, J. T., and Altieri, N. (2012). An accuracy-response time capacity assess-
ment function that measures performance against standard parallel predictions.
Psychol. Rev. 199, 500–516. doi: 10.1037/a0028448

Townsend, J. T., and Ashby, F. G. (1978). “Methods of modeling capacity in simple
processing systems,” in Cognitive theory, Vol. III, eds J. Castellan and F. Restle
(Hillsdale, NJ: Erlbaum), 200–239.

Townsend, J. T., and Ashby, F. G. (1983). The Stochastic Modeling of Elementary
Psychological Processes. Cambridge, UK: Cambridge University Press.

Townsend, J. T., and Eidels, A. (2011). Workload capacity spaces: a unified method-
ology for response time measures of efficiency as workload is varied. Psychon.
Bull. Rev. 18, 659–681. doi: 10.3758/s13423-011-0106-9

Townsend, J. T., and Nozawa, G. (1995). Spatio-temporal properties of elementary
perception: an investigation of parallel, serial, and coactive Theories. J. Math.
Psychol. 39, 321–359. doi: 10.1006/jmps.1995.1033

Townsend, J. T., and Schweickert, R. (1989). Toward the trichotomy method: laying
the foundation of stochastic mental networks. J. Math. Psychol. 33, 309–327. doi:
10.1016/0022-2496(89)90012-6

Townsend, J. T., and Wenger, M. J. (2004a). A theory of interactive parallel pro-
cessing: new capacity measures and predictions for a response time inequality
series. Psychol. Rev. 111, 1003–1035. doi: 10.1037/0033-295X.111.4.1003

Townsend, J. T., and Wenger, M. J. (2004b). The serial-parallel dilemma: a case
study in a linkage of theory and method. Psychon. Bull. Rev. 11, 391–418. doi:
10.3758/BF03196588

Townsend, J. T., Yang, H., and Burns, D. M. (2011). “Experimental discrimination
of the world’s simplest and most antipodal models: the parallel-serial issue,” in
Descriptive and Normative Approaches to Human Behavior in the Advanced Series
on Mathematical Psychology, eds H. Colonius and E. Dzhafarov (Singapore:
World Scientific), 271–302. doi: 10.1142/9789814368018_0011

Townsend, T. H., and Goldstein, D. P. (1972). Suprathreshold binaural unmasking.
J. Acoust. Soc. Am. 51, 621–624. doi: 10.1121/1.1912884

Van Zandt, T., and Townsend, J. T. (2013). “Designs for and analyses of response
time experiments,” in The Oxford Handbook of Quantitative Methods, Vol. 1
Foundations. ed T. D. Little (New York, NY: Oxford University Press), 260. doi:
10.1093/oxfordhb/9780199934874.013.0014

Verhey, J. L., and Heise, S. J. (2012). Suprathreshold perception of tonal com-
ponents in noise under conditions of masking release. Acta Acustica United
Acustica 98, 451–460. doi: 10.3813/AAA.918529

Wenger, M. J., and Townsend, J. T. (2000). Spatial frequencies in short-term mem-
ory for faces: a test of three frequency-dependent hypotheses. Mem. Cognit. 28,
125–142. doi: 10.3758/BF03211581

Yasin, I., and Henning, G. B. (2012). The effects of noise-bandwidth,
noise-fringe duration, and temporal signal location on the binaural
masking-level difference. J. Acoust. Soc. Am. 132, 327–338. doi: 10.1121/1.47
18454

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 May 2014; accepted: 01 August 2014; published online: 22 August 2014.
Citation: Lentz JJ, He Y and Townsend JT (2014) A new perspective on binaural
integration using response time methodology: super capacity revealed in conditions
of binaural masking release. Front. Hum. Neurosci. 8:641. doi: 10.3389/fnhum.
2014.00641
This article was submitted to the journal Frontiers in Human Neuroscience.
Copyright © 2014 Lentz, He and Townsend. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 641 | 77

http://dx.doi.org/10.3389/fnhum.2014.00641
http://dx.doi.org/10.3389/fnhum.2014.00641
http://dx.doi.org/10.3389/fnhum.2014.00641
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 09 March 2015

doi: 10.3389/fnhum.2015.00119

Frontiers in Human Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 119 |

Edited by:

Hans Colonius,

Carl von Ossietzky Universität

Oldenburg, Germany

Reviewed by:

J. Toby Mordkoff, University of Iowa,

USA

Jeff Miller, University of Otago,

New Zealand

*Correspondence:

Michael Zehetleitner,

Department Psychologie,

Ludwig-Maximilians-Universität

München, Leopoldstraße 13,

D-80802 Munich, Germany

mzehetleitner@psy.lmu.de

Received: 04 April 2014

Accepted: 17 February 2015

Published: 09 March 2015

Citation:

Zehetleitner M, Ratko-Dehnert E and

Müller HJ (2015) Modeling violations

of the race model inequality in bimodal

paradigms: co-activation from

decision and non-decision

components.

Front. Hum. Neurosci. 9:119.

doi: 10.3389/fnhum.2015.00119

Modeling violations of the race model
inequality in bimodal paradigms:
co-activation from decision and
non-decision components
Michael Zehetleitner 1*, Emil Ratko-Dehnert 1 and Hermann J. Müller 1, 2

1Department Psychologie, Institut für Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München,

Munich, Germany, 2Department of Psychological Sciences, Birkbeck College, University of London, London, UK

The redundant-signals paradigm (RSP) is designed to investigate response behavior

in perceptual tasks in which response-relevant targets are defined by either one or

two features, or modalities. The common finding is that responses are speeded for

redundantly compared to singly defined targets. This redundant-signals effect (RSE)

can be accounted for by race models if the response times do not violate the race

model inequality (RMI). When there are violations of the RMI, race models are effectively

excluded as a viable account of the RSE. The common alternative is provided by

co-activation accounts, which assume that redundant target signals are integrated at

some processing stage. However, “co-activation” has mostly been only indirectly inferred

and the accounts have only rarely been explicitly modeled; if they were modeled, the RSE

has typically been assumed to have a decisional locus. Yet, there are also indications

in the literature that the RSE might originate, at least in part, at a non-decisional or

motor stage. In the present study, using a distribution analysis of sequential-sampling

models (ex-Wald and Ratcliff Diffusion model), the locus of the RSE was investigated

for two bimodal (audio-visual) detection tasks that strongly violated the RMI, indicative

of substantial co-activation. Three model variants assuming different loci of the RSE

were fitted to the quantile reaction time proportions: a decision, a non-decision, and

a combined variant both to vincentized group as well as individual data. The results

suggest that for the two bimodal detection tasks, co-activation has a shared decisional

and non-decisional locus. These findings point to the possibility that the mechanisms

underlying the RSE depend on the specifics (task, stimulus, conditions, etc.) of the

experimental paradigm.

Keywords: redundant signals effect, locus, co-activation, modeling, sequential sampling models, SRT,

two-choice RT

Introduction

The human perceptual system consists of highly specialized sensory subsystems (for vision, audi-
tion, olfaction, etc.) which themselves are organized in a modular fashion. In order to adequately
respond to the demands of a dynamically changing environment, the organism has to make
countless decisions, which typically require the integration of signals from different modules—be
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it across modalities (multi-modal), within modalities (multi-
feature), across different spatial locations (multi-location), or
across different points in time.

Signal integration is frequently investigated using the so-
called “redundant-signals paradigm” (RSP). For this paradigm,
several statistical tools have been developed, which allow infer-
ences to be drawn about the cognitive architecture and decisional
mechanisms responsible for signal integration. In the RSP, par-
ticipants are presented either with one of two possible single
targets (e.g., a single auditory tone or a single visual flash) or
with both targets redundantly (a tone and a flash). In general,
the response times are, on average, faster for redundant-signal
trials (RSTs) compared to single-signal trials (SSTs). This speed-
up of response times, first reported by Todd (1912), is termed
“redundant-signals effect” (RSE). It has since been replicated for a
great variety of sensory modalities, tasks, and response categories
as well as populations (see e.g., Grice et al., 1984; Diederich and
Colonius, 1987;Mordkoff and Yantis, 1991; Krummenacher et al.,
2002; Iacoboni and Zaidel, 2003;Miller and Reynolds, 2003; Gon-
dan et al., 2004; Koene and Zhaoping, 2007; Schröter et al., 2007;
Zehetleitner et al., 2009; Töllner et al., 2011; Krummenacher and
Müller, 2014).

What type of processing architecture is underlying the RSE?
The first architecture introduced to explain the RSE was the
separate-activations or race model. Race models assume that the
two stimulus properties of redundant targets are processed in
parallel, in separate channels. According to this model, the short-
ening of response times for redundant relative to single targets
derives from the fact that either target channel alone can trig-
ger a response. As one of the two racers is stochastically faster
than the other, the minimum time of both is, on average, shorter
than that required by any racer alone. More formally, if one con-
ceives of the triggering times of each channel as random variables,
X1 and X2, on RSTs, the race can be expressed as the mini-
mum of both variables. The expected value of this minimum is
smaller than (or equal to) the expected values of each element:
E[min(X1,X2)] ≤ min[E(X1),E(X2)]; see Jensen’s inequality (as
e.g., described in Rudin, 2006). Owing to this statistical fact, race
models are also referred to as “statistical-facilitation” accounts
(Raab, 1962). Importantly, on RSTs, no integration or cross-talk
is assumed to take place across the two target channels.

Do race models provide a universal account of all RSEs
observed empirically? To answer this question, Miller (1982)
introduced a bound that formalizes themaximum amount of RSE
that a race model can explain: the so-called “race model inequal-
ity” (RMI). The RMI relates the distribution function of the
redundant-signal reaction times F12 to the distribution functions
of the single-signal reaction times F1, F2 (where the indices 1, 2,
and 12, denote, e.g., single auditory, single visual, and redundant
audio-visual reaction times) given a race model:

F12 (t) ≤ F1 (t) + F2 (t), for all t (1)

Thus, the fastest response times for RSTs can, at the most, be
equal to the fastest response time for SSTs. If there are redundant-
signal response times that are even shorter, the architecture of
race models is not fit to explain the RSE. Thus, the RMI marks

a critical test for all race models: any data violating this inequal-
ity (at any time point t) by definition falsifies of the whole class
of race models. Ever since its conception, the RMI was found to
be violated in many empirical situations (e.g., Miller, 1982; Grice
et al., 1984; Egeth and Mordkoff, 1991; Diederich, 1992; Mord-
koff et al., 1996; Krummenacher et al., 2001, 2002; Feintuch and
Cohen, 2002; Mordkoff and Danek, 2011; Krummenacher and
Müller, 2014).

If the RMI is found to be violated, what architecture then
would be responsible for the RSE? Several cognitive architec-
tures have been proposed that can in principle produce RSEs
and violations of the RMI: interactive-racemodels (Mordkoff and
Yantis, 1991), serial exhaustive models (Townsend and Nozawa,
1995), correlated-noise models (Otto and Mamassian, 2012),
and co-activation models. Of these, co-activation models have
mostly been defended successfully against potential alternatives
(e.g., Mordkoff and Miller, 1993; Patching and Quinlan, 2002;
Zehetleitner et al., 2009).

One possibility, which has only rarely been discussed as a
potential cause of RMI violations, is a speed-up of the non-
decision components of task performance—rather than of the
decision component, as standardly assumed by the accounts
mentioned above.

Observed response times may be conceived of as consisting
of two components: a decision and a non-decision component
(Sanders, 1980; Luce, 1991); in terms of processing stages: per-
ceptual latency, then decision latency, then motor latency, where
both the perceptual and motor latencies are combined into a sin-
gle non-decision component. Consequently, processes respon-
sible for RMI violations can logically stem from either or both
of these components. The decision stage is defined as the time
needed for a decision variable (e.g., sensory evidence) to trigger a
decision required by the experimental paradigm, such as whether
a target is present or absent, whether a target is located on the left
or the right side of perceptual space, etc. The non-decision time is
the sum of sub-processes including stimulus encoding, response
selection, and response execution. That is, the non-decision com-
ponent actually comprises two processing stages: one pre- and
one post-decisional. For the sake of brevity, we henceforth use
the term non-decision processing stage to summarize both pre-
and post-decisional processing. Thus, RMI violations could also
be produced by a shortening of the non-decision component on
RSTs, compared to SSTs. Such a shortening would result in a shift
of the reaction time distribution to the left on the time axis (if
the variance of the motor component were left unchanged), thus
producing RMI violations. There would be, in principle, other
ways of generating RMI violations by the non-decision time alone
(though explicated models are lacking in the literature). And,
in fact, several scientists have advocated a non-decision locus of
RMI violations (see, e.g., Corballis, 1998; Feintuch and Cohen,
2002; Iacoboni and Zaidel, 2003; Miller, 2007; Miller et al., 2009;
for a review, see Reynolds and Miller, 2009).

Can one distinguish decisional from non-decisional origins of
RMI violations? In order to do so, we used sequential-sampling
decision models to account for reaction time distributions in
two bimodal RSPs. Sequential-sampling models are based on
the assumption that the neuronal states engendered by external
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stimuli are intrinsically noisy. Such noisy states are sequentially
sampled and integrated into sensory evidence until a decision
criterion is reached. In the models used here, sensory evidence
consists of the accumulated information from sequential sam-
ples. The higher the quality of the presented stimulus, the faster
this accumulation process reaches the decision criterion (i.e., its
drift rate is higher), thus producing faster and more narrowly
distributed reaction times, coupled with lower error rates. Addi-
tionally, the decision criterion can be low (corresponding to a
liberal response criterion), which would give rise to faster and
less accurate responses compared to those based on a high cri-
terion. Finally, perceptual and motor latencies are combined into
a non-decision time, which has its own distribution (see Section
Validity of Model Parameters for empirical evidence that a cog-
nitive interpretation of the model parameters is justified). The
observed reaction time distribution is then the convolution of the
decision and non-decision time distributions.

In this framework, co-activation models assume that the drift
rate on RSTs is higher than the highest drift rate on SSTs. By
contrast, a non-decisional origin of the RSE would be reflected
in a faster non-decision time parameter for redundant-signals
compared to SSTs.—Alterative architectures are considered in the
General Discussion.

To date, to our knowledge, only decisional variants of co-
activation accounts have been implemented in the form of
sequential-samplingmodels, with themodels of Diederich (1995)
and Schwarz (2001) both assuming a summation in the rate of
evidence accumulation for RSTs over SSTs (see also Blurton et al.,
2014). However, there are no studies that attempted to fit non-
decisional or combined co-activation accounts (where both deci-
sion and non-decision parameters may vary) in a comparative
fashion. It is, thus, unclear whether a combined (decision and
non-decision) model could outperform a purely decision-based
model and how substantial the contribution of a non-decision
time shortening might be.

Accordingly, the present study was meant to contribute to the
debate on the source of RMI violations, both conceptually and
methodologically. In detail, a sequential-sampling model anal-
ysis was performed to fit quantile proportions of the response
time distributions observed in two bimodal—audio-visual—RSP
experiments to threemodel variants that assume different sources
of co-activation: (a) a decisional model (where drift rates may
vary), (b) a non-decisional model (where non-decision timesmay
vary), and (c) a combined model (where both drift rates and non-
decision times may vary). This way, the question of the origin
(s) of RMI violations (and of the RSE in consequence) can be
addressed: does co-activation occur at a decisional stage, a non-
decisional, or at both stages and, if the latter, to what comparative
degree?

On a methodological level, the present study was intended
to highlight the applicability of sequential-sampling models to
account for reaction time distributions (rather than solely for
mean reaction times and their variance) in the RSP, to reveal
latent psychological variables and so shed light on the nature of
the RSE.

The General Discussion will address aspects of the general-
izability of both the general modeling approach and the specific

modeling results of the present study, alternative architectures, as
well as the notion of the RSE as a theoretical “umbrella term.”

Materials and Methods1

In Experiment 1, participants performed a simple reaction time
(SRT) task, in which they had to make the same response—
simultaneously pressing the two buttons of a standard Microsoft
mouse—to the onset of a visual target alone (SST 1), an auditory
target alone (SST 2), or an audio-visual target pair (RST). A vari-
able inter-trial interval (ITI) was used to prevent anticipatory or
rhythmic responses. In Experiment 2, a two-choice reaction time
task was introduced, in which participants were presented with
the same stimuli as Experiment 1, which could however appear
on the left or the right of perceptual space (i.e., to the left or
the right of the fixation cross). Participants’ task was to make
a speeded two-alternative choice response—by pressing one or
the other mouse button—to the side of the target (pair) on a
given trial. In all other respects, Experiment 2 was identical to
Experiment 1.

Participants
In Experiment 1, 15 participants (11 of them female) performed
a single, 45-min session in return for e6.00 or a course credit.
Their average age was 25.7 (range: 20–34) years, and they were all
right-handed and had normal or corrected-to-normal vision. In
Experiment 2, 21 new participants (14 of them female) completed
a single, 60-min session in return for e8.00 or a course credit.
Their average age was 27.2 (range: 18–46) years; one partici-
pant was left-handed, and all had normal or corrected-to-normal
vision.

Apparatus and Stimuli
The experiments were conducted in a sound-insulated booth, and
were controlled by programs using MATLAB (R2009bSP1, Nat-
ick, Massachusetts: The MathWorks Inc., 2010) and the Psych-
Toolbox (Brainard, 1997; Pelli, 1997), running on an Apple Mac
mini (Cupertino, California: Apple Inc.) computer (with Mac
OS X).

The visual stimuli—gray discs (CIE Yxy 10.9, 0.286, 0.333), 1◦

of visual angle in diameter—were presented on a 20′′ Mitsubishi
Diamond Pro 2070SB monitor set at a resolution of 1280× 1024
pixels and a refresh rate of 100Hz, with a viewing distance of
approximately 75 cm. The auditory stimuli were 400-Hz beeps (of
a duration of 150ms) delivered via headphones and redundant
stimuli were the combined visual and auditory stimuli, presented
simultaneously (i.e., with an onset asynchrony of 0ms). In Exper-
iment 1, the visual stimuli were presented centrally and the audi-
tory stimuli binaurally, and participants responded to the onset
of the respective target stimulus, or pair of stimuli, by simultane-
ously pressing both (i.e., the left and the right) mouse buttons
using their left- and right-hand index fingers (simple reaction

1The raw data, the analysis codes, all model codes, and the reported results are

publically available at the Open Science Framework (osf.io/7hbj6), to facilitate

reproduction of the present study and replication of its results (for the open-data

and open-code idea, see, e.g., Ince et al., 2012; Morin et al., 2012; Wicherts and

Bakker, 2012; Simonsohn, 2013; Wicherts, 2013).
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time task). In Experiment 2, the stimuli were presented later-
alized, and participants responded with the right button to any
stimulus, or pair of stimuli, on the right, and with the left button
to any stimulus, or pair of stimuli, on the left (left-right forced-
choice discrimination task). On RSTs in Experiment 2, the visual
and auditory stimuli were always presented on the same side (i.e.,
either both on the left or both on the right), so that there was
never any spatial conflict between the redundant-target signals.

All analyses and the numerical parameter fitting were carried
out using GNU R (version 2.14.0). For the fitting procedures, the
“optim” package was used.

Procedure
Each trial was structured in the following way: First, a white fix-
ation cross (0.5◦ × 0.5◦ of visual angle) was presented centrally
on a black screen for 800ms. Then, after an inter-trial interval
(ITI) that varied uniformly between 500 and 1500ms, the target
stimulus or pair of stimuli appeared. The auditory stimulus was
terminated after 150ms, while the visual stimulus remained on
the screen until the observer initiated a response. The response
was followed by a 750-ms waiting period, after which the next
trial started with the fixation cross (see Figure 1 for the sequence
of displays on a trial).

Experiment 1 was divided into 17 blocks of 45 trials, with
unimodal trials (SSTs) and bimodal trials (RSTs) interchanging
randomly. Overall, this amounted to 765 trials (255 trials for each
condition, i.e., SST visual, SST auditory, and RST audio-visual).
Experiment 2 was divided into 20 blocks of 45 trials, yielding
900 trials in total (150 trials for each condition and screen side,
i.e., SST visual left, SST visual right, SST auditory left, SST audi-
tory right, RST audio-visual left, and RST audio-visual right).

FIGURE 1 | Example display sequence on a trial in the simple RT

Experiment 1. A trial started with a fixation cross presented centrally for

800ms. Following a variable inter-trial interval, the response-relevant target—a

single auditory (SST auditory), a single visual (SST visual), or a redundant

audio-visual stimulus (RST audio-visual) appeared. The auditory stimulus was

terminated after 150ms, while the visual stimulus remained on the screen until

the observer responded bimanually. A blank screen followed for 750ms before

the next trial began.

Participants could take a break in between blocks, and they were
provided with feedback about their block mean reaction time and
error rate. They were instructed to respond as fast as possible
while keeping their error rate below 5%.

As pointed out by Mordkoff and Yantis (1991), violations of
the RMI are difficult to attribute to a co-activation model if the
experimental design involves contingencies that could benefit
redundant-signals over SSTs. Specifically, there are two types of
contingencies, inter-stimulus and non-target response benefits.
The inter-stimulus response benefit is calculated as Pr(TA|TV) -
Pr(TA|NV), that is, it indicates by how much the conditional
probability of an auditory target given that the visual channel
detected a visual target exceeds the conditional probability of
an auditory target given that the visual channel determined the
absence of a visual target. The non-target response bias for redun-
dant targets is calculated as Pr(+) − Pr(+|NA/V), that is, it indi-
cates by how much the probability of a target (denoted as “+”)
exceeds the conditional probability of a target given that no target
has been detected in one (the auditory or the visual) channel.

In Experiment 1, the inter-stimulus response benefit was−0.5,
Pr(TA|TV) − Pr(TA|NV) = 0.5–1, and thus, although present,
it worked against redundant-target and in favor of single-target
trials. Further, the non-target response benefit was 0, Pr(+) −
Pr(+|NA/V) = 1–1. However, given that a SRT paradigm was
used in Experiment 1, the target could appear in the time inter-
val between 1300 and 2300ms after the onset of the fixation cross
(at the start of the trial). If one divides this 1000ms interval into
two time windows of 500ms each, both types of contingencies
would be benefitting redundant-signals trials, to the numerical
value of 0.25 each. In Experiment 2, the two types of contin-
gency benefit were Pr(leftA|leftV) - Pr(leftA|rightV) = 0.5 and
Pr(“left”)− Pr(“left”|rightA/V)= 0.5, respectively.

Models and Fitting
Single-Boundary Accumulation and Ratcliff Diffusion

Models
The three co-activation models (the decisional, the non-
decisional, and the combined model) were each implemented
assuming a noisy accumulation of evidence against one boundary
for the SRT experiment, and the Ratcliff Diffusion Model (Rat-
cliff, 1978) for the two-choice RT experiment. The accumulation
of a stochastic source of evidence against one boundary produces
a distribution of response times captured by the ex-Wald distri-
bution (Schwarz, 2001). Here, the Wald component is respon-
sible for the distribution of decision times, and an exponential
distribution accounts for the non-decision times, which summa-
rize all processes following (and possibly preceding) the decision
stage. The parameters of the ex-Wald model are the mean drift
rate of accumulation v, the decision criterion a, and the exponen-
tial rate parameter γ = 1/t. While single-boundary accumulation
models can account for SRT performance, two-alternative choice
performance is more appropriately captured by a diffusion pro-
cess against two decision boundaries reflecting the two response
alternatives, such as the Ratcliff Diffusion Model (RDM). The
RDM involves seven parameters, the four most important being
the drift rate v, the criterion a, the starting point z, and the
non-decision time Ter. The RDM parameter z, controlling the
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starting point of the evidence accumulation process, was set here
to a/2 for each model (for purposes of simplification), resulting
in unbiased evidence accumulation. The variability of the non-
decision time Ter, st , controls the amount of variance of the non-
decision component. The parameters η and sz , the variability of
the drift rate and starting point, respectively, were both set to zero
(the EZ-diffusion model of Wagenmakers et al., 2007, makes the
same simplifying assumptions).

For the decisional model, the respective drift rate parameter ν

was free to vary between the two SSTs and RSTs as they control
the rate of evidence accumulation over time and thus represent
the clarity or “ease of processing” of the signals. For the non-
decisional model, the parameters (t and Ter) were free to vary,
as they quantify the mean non-decision time for each accumu-
lation process. The combined model allowed both the drift rate
and the non-decision time to vary across conditions. Addition-
ally, a free model was implemented that allowed every ex-Wald
and RDM parameter to vary for each condition. This completely
unconstrained model, albeit theoretically implausible, was used
to assess the general ability of each model to fit the conditions.
Table 1 gives an overview of the free and constrained parameters
for each co-activation model variant.

Quantile Distribution Functions
In order to find the model (and the respective parameters) that
can best explain the data, fitting of quantile proportions was
performed. These were computed by use of quantile probabil-
ity functions. Quantile probability functions plot response prob-
abilities against quantile response times. The probability of a
response for a particular stimulus type determines the position
of a point on the X-axis, and the quantile RTs for that stim-
ulus type determine the position on the Y-axis (Ratcliff et al.,
2004). Quantile functions give a fuller description of the reaction
time data than mean and standard deviation values alone, as the
proportion in each quantile bin is visible as well as the spread
of the entire distribution. Figure 3 displays the empirical quan-
tile proportions of Experiments 1 and 2. Vincentizing was used
to combine the data of all participants for each condition (Rat-
cliff, 1979). For estimating, quantile definition 7 of Hyndman’s
sample quantiles was used (Hyndman and Fan, 1996). Consistent

TABLE 1 | Co-activation models with free and constrained parameters,

and degrees of freedom.

Model Free parameters Constrained parameters Degrees of

freedom

SIMPLE RT (EX-WALD)

Decision ν a, t 5

Non-decision t ν, a 5

Combined ν, t A 7

Free ν a, t (none) 9

TWO-CHOICE RT (RDM)

Decision N a, Ter, st 6

Non-decision Ter ν, a, st 6

Combined ν, Ter a, st 8

Free ν, a, Ter, st (none) 12

with the mean-variance relation, the fastest condition (here, the
bimodal, redundant-target trials) also displayed the narrowest
response time range (Wagenmakers et al., 2005).

Fitting Procedure
The generic fitting procedure for each model involved four com-
putational steps. First, a vector of starting parameters was gen-
erated randomly. By design, it consisted of the parameters for
each of the three target types (i.e., auditory, visual, and audio-
visual). The exact composition of this vector varied depending
on the model that was being tested. For example, the decisional
model only allowed the drift rates to vary; all other parameters
were fixed across the three target types.

Second, for that parameter vector, the model cumulative dis-
tribution function was calculated, using an R implementation of
the ex-Wald densitiy (Heathcote, 2004) and the “fastdm” code
for the density of Ratcliff ’s diffusion model (Voss and Voss, 2007,
2008) to extract the model quantiles, 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0.

Third, the quantile response times of the experimental and
model data were used to generate the predicted cumulative prob-
ability of a response by that quantile response time. Subtracting
the cumulative probabilities for each successive quantile from the
next higher quantile gives the proportion of responses between
each quantile (ideally this yields 0.1, 0.2, 0.2, 0.2, 0.2, 0.1). The
observed and expected proportions were multiplied by the num-
ber of observations to produce the expected frequencies (see
Quantile Maximal Probability, Heathcote et al., 2002).

Fourth, the model fit quality was quantified and minimized,
using a general SIMPLEX minimization routine (Nelder and
Mead, 1965, implemented in the “optim” package for R), which
adjusts the parameters to find those that yield the minimum
score for each model (i.e., iterating through steps 2 and 3). As a
cost function, the BIC statistic was used (Schwarz, 1978; Raftery,
1986), which penalizes for the complexity (i.e., the degrees of
freedom) of the models:

BIC = −2
[∑

Nipi ln (πi)

]
+Mln (N) (2)

Here, pi and π i are the proportion of observations in the i-th
bin for the empirical data and the model prediction, respectively,
and M ln(N) is the penalizing term related to the number of
free parameters M and the sample size N, that is, the number of
observations (see Gomez et al., 2007). Ni denotes the number of
observations per bin, with N =

∑
Ni, which was calculated by

averaging the number of observations over all participants and
conditions. The last bin contains the proportion of errors. Bins
1-6 are the inter-quantile proportions for correct responses (i.e.,
0.1, 0.2, 0.2, 0.2, 0.2, 0.1 for the quantiles 0.1, 0.3, 0.5, 0.7, 0.9)
multiplied by the proportion of correct responses. Thus, the sum
of all bin proportions is 1.

The model with the lowest BIC can be considered that which
concurrently maximizes descriptive accuracy (goodness of fit)
and parsimony (smallest complexity of description, i.e., fewest
necessary parameters). The BIC rests on the assumption that
the correct model is among the candidate models tested. For
advantages and disadvantages of BIC and alternatives (such as
the Akaike Information Criterion, AIC; Akaike, 1978, see for
instance Burnham and Anderson (2002) and Kass and Raftery
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(2012) (cf. Wagenmakers and Farrell, 2004). In order to identify
the best out of the set of tested model, the raw BIC values were
transformed to BIC weights (Wagenmakers and Farrell, 2004;
Jepma et al., 2009). The transformation of BIC values involved
three steps: First, for each model i, the difference in BIC with
respect to the model with the lowest BIC value was computed
[i.e., 1i(BIC)]. Second, the relative likelihood L of each model i
was estimated by means of the following transformation:

L
(
Mi|data

)
∝ exp

[
−0.5 · △i(BIC)

]
(3)

where ∝ stands for “is proportional to.” Third, the model prob-
abilities were computed by normalizing the relative model like-
lihoods, by dividing each model likelihood by the sum of the
likelihoods of all models. The values thus derived for each model
are referred to as BIC weights, wi(BIC) for each model Mi and
wi(BIC) can be interpreted as the probability that model Mi is
correct, given the data, the set of models, and equal priors on the
models (Wagenmakers and Farrell, 2004).

Model Selection
The fitting procedure was performed by randomly sampling ini-
tial parameter values (1000 times) and performing the four com-
putational steps described above. This procedure was followed to
assure that local minima were avoided in the optimization algo-
rithm. The minimum cost value for each condition was used to
assess which model was in best agreement with the data and with
which specific parameter vector.

RMI Analysis
For the analysis of violations of the RMI, we used Ulrich et al.
(2007) algorithm for calculating the empirical cumulative density
functions. First, for each participant, we calculated themagnitude
of RMI violations

d(t)= GAV (t)−min[GA(t)+GV (t), 1], (4)

where GAV , GA, and GV stand for the estimates of the empirical
cumulative density functions for the redundant, single audio, and
single visual trials, respectively (using Ulrich et al.’s, 2007 algo-
rithm; Equation 3). Then, d(t) was evaluated at the 0.05, 0.1, . . . ,
0.95 quantile RTs of the redundant trials. For each percentile, d(t)
was tested against zero, d(t) > 0, using using a two-tailed t-test,
with the alpha level Bonferroni-corrected to 0.0026 (= 0.05/19
probability points).

Results

Errors
Errors were defined as anticipatory responses (RT ≤ 150ms)
or misses (RT > 1600ms). Participants committed 2.00% errors
(1.34% anticipations and 0.66%misses) in Experiment 1 and 3.4%
in Experiment 2. For each experiment, the data of one participant
had to be discarded due to error rates greater than 10 and 20%,
respectively.

Mean Reaction Times and RSEs
The mean RTs for both experiments are listed in Table 2.
Although numerically different, both unimodal conditions in

TABLE 2 | Mean Response Times and RSEs (standard deviations in

parentheses) for unimodal (auditory, visual) and bimodal (audio-visual)

stimulus conditions in the simple RT Experiment 1 and the two-choice RT

Experiment 2.

Condition Simple RT Two-choice RT

Auditory 352 (84) 406 (65)

Visual 383 (74) 409 (63)

Audio-visual 294 (58) 345 (53)

RSE 58 61

Experiment 1 were statistically the same. There were pronounced
RSEs of 55 and 50ms for Experiments 1 and 2, respectively.
The mean RSEs and their standard deviations were computed
by calculating the difference of the mean in the RST condition
from that of the faster one of the two SST conditions, for each
participant.

RMI Violations
Significant violations (p < 0.0026) were found across 10 and
nine probabilities (0.05 to 0.50 and to 0.45) for Experiments 1
and 2, respectively. Figure 2 presents the individual and mean
RMI test function d(t) curves for Experiment 1 and 2 (Colonius
and Diederich, 2006). The RMI test function plots the differ-
ence between the single-signal distribution and the redundant-
signals distribution. Any area above the X-axis signifies viola-
tions of the RMI; areas below are in accordance with the RMI
bound.

Fitting Results
On the level of mean RTs, all implementedmodel variants (except
the simple-RT decision model) were able to reproduce the reac-
tion time patterns for both experiments. None of the models
could generate the standard deviation for every experimental
condition; rather, they tended to overestimate the standard devia-
tions. In the simple-RT fitting, the decision model proved unable
to produce the empirical RSE; and in the two-alternative choice
RT fitting, the non-decision model was unable to fit the RSE. See
Table 3 for a list of mean reaction times, standard deviations, and
RSEs.

The outcome of the fitting procedure for Experiments 1 and 2,
however, produced a clear separation among the models. Table 4
lists theminimumBIC values for all models, separately for Exper-
iments 1 and 2. For both experiments, the combined model
turned out to be best-fitting model. The combined model of the
two-choice RT data exhibited an even better fit than the fully
unconstrained model, though only because the latter suffered a
larger BIC penalty for its extra free parameters. Interestingly,
the composition of the RSEs differed between the best-fitting
simple-RT and two-alternative choice RT models. In the com-
bined model for the simple-RT data, the non-decision compo-
nent contributed to 78% of the RSE; in the combined model of
the two-alternative choice RT data, by contrast, 58%.

Figure 3 presents the quantile function plots of the combined
model for Experiments 1 and 2, respectively.
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FIGURE 2 | Violations of the RMI. The race model test function

d(t) (please refer Equation 4) aggregated across individual observers

(blue line) and for each individual observer (gray lines) for

Experiments 1 (left) and 2 (right). Values that are significantly above

zero constitute violations of the RMI. Violations were obtained for

the probability points 0.05–0.50 using multiple t-tests with a

Bonferroni-corrected significance level of 0.0026. This region is

highlighted in light green.

TABLE 3 | Mean response times (and standard deviations in parentheses) of the empirical and model data for Experiment 1 (simple RT) and Experiment 2

(two-choice RT).

Condition Model

Empirical Decision Non-decision Combined Free

SIMPLE RT

Auditory 352 (84) 333 (90) 347 (88) 346 (109) 348 (112)

Visual 383 (74) 369 (92) 373 (110) 376 (102) 375 (104)

Audiovisual 294 (58) 303 (89) 281 (51) 285 (62) 283 (61)

RSE 58 30 66 62 61

TWO-CHOICE RT

Auditory 406 (65) 406 (118) 395 (100) 406 (114) 407 (112)

Visual 409 (63) 410 (122) 406 (100) 410 (106) 413 (110)

Audiovisual 345 (53) 346 (68) 360 (100) 345 (80) 343 (79)

RSE 61 61 35 61 64

TABLE 4 | Minimum BIC values (and degrees of freedom in parentheses)

and BIC weights for each model, separately for the simple RT data

(Experiment 1) and the two-alternative choice RT data (Experiment 2).

Model Simple RT Two-choice RT

BIC (DoF) w(BIC) BIC (DoF) w(BIC)

Decision 2692 (5) 0.0003 3182 (6) <0.0001

Non-decision 2713 (5) <0.0001 3163 (6) 0.1439

Combined 2675 (7) 0.9926 3160 (8) 0.8561

Free 2685 (9) 0.0071 3180 (12) <0.0001

Parameter Analysis
From a qualitative view, arguably, the free, motor, and com-
bined models agree well with regard to the range of the drift
rates, criteria, and non-decision times for the three conditions.
All models yielded the highest drift rate parameter and the lowest

non-decision time for the redundant condition (where these
parameters are allowed to vary). Table 5 gives an overview of the
best fitting parameters per model.

Discussion

Observers’ Performance
The low error rates across the two experiments indicate the
general simplicity of the tasks and attest to our observers’ abil-
ity to follow the instructions. On a mean level analysis, the
experiment demonstrated pronounced RSEs of 55 and 50ms
(in Experiments 1 and 2), respectively. Comparing the two
single target conditions in Experiment 1, auditory-signal tri-
als were processed faster than visual-signal trials. Albeit not
statistically significant, this is in accordance with basic find-
ings (Todd, 1912) of faster response times to auditory than to
visual stimuli (for medium intensity levels). In Experiment 2,
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FIGURE 3 | Quantile reaction times. Quantile reaction times for the combined model and empirical data from Experiment 1 (left panel) and Experiment 2 (right

panel). Continuous lines and filled pyramids denote the empirical data, dashed lines and empty pyramids the model data.

TABLE 5 | Parameter values of the fitted models, separately for Experiments 1 (simple RT) and 2 (two-coice RT).

Model Parameter

va vv vav aa av aav ta tv tav sta stv stav

SIMPLE RT

Combined 21.53 18.59 22.8 5.16 5.16 5.16 0.11 0.10 0.06

Decision 19.94 17.4 22.64 4.91 4.91 4.91 0.09 0.09 0.09

Non-decision 10.46 10.46 10.46 2.88 2.88 2.88 0.07 0.1 0.01

Full 18.17 25.17 21.27 4.37 6.86 4.8 0.11 0.10 0.06

TWO-CHOICE RT

Combined 3.41 3.62 4.49 1.23 1.23 1.23 0.023 0.025 0.021 0.02 0.02 0.02

Decision 3.42 3.34 5.27 1.26 1.26 1.26 0.23 0.23 0.23 0.02 0.02 0.02

Non-decision 3.79 3.79 3.70 1.23 1.23 1.23 0.24 0.25 0.20 0.02 0.02 0.02

Full 3.59 3.58 4.29 1.28 1.24 1.1 0.23 0.24 0.22 0.07 0.02 0.02

the two unimodal conditions differed neither numerically nor
statistically.

The many RMI violations—obtained for ten quantiles in
Experiment 1 and nine in Experiment 2—effectively rule out the
class of race models as explanatory accounts for the simple RT
and the two-alternative choice RT data. This conclusion is under-
scored by the facts that both a conservative α-correction was used
and response contingencies were avoided (Mordkoff and Miller,
1993). The RMI violations occurred in the lower range of proba-
bility points, which is of course plausible given the “make-up” of
the RMI. Overall, these results indicate that the empirical RT data
cannot be accounted for by a race model architecture.

Validity of Model Parameters
In general, the model parameters used here are mathematical
constructs that, by mathematical transformations, yield distribu-
tions which can be compared to empirical reaction time distri-
butions. The conclusions of the present study are based on the
assumption that the different parameters of the decision mod-
els indeed map onto cognitive processes—specifically that the

drift parameter v maps to stimulus quality and the parameters
Ter and t to non-decision times; and that parameter a maps to
response caution. Here, we review four studies which argue that
this mapping is indeed justified.

In all of these studies, experimental manipulations were used
to manipulate those cognitive aspects of processing that deci-
sion models’ parameters are supposed to map onto. Specifically,
manipulations comprised stimulus difficulty (Schwarz, 2001;
Voss et al., 2004; Philiastides et al., 2014; van Vugt et al., 2014),
response caution (Schwarz, 2001; Voss et al., 2004), and duration
of response execution (Voss et al., 2004).

Voss et al. (2004) investigated four experimental conditions
in a two-alternative color discrimination task, a baseline con-
dition, and three variations. In the first variation, stimulus
discriminability was manipulated by making the two possible
colors more similar to each other. In the second variation,
observers were instructed to perform the task carefully and avoid
making mistakes. In the third variation, the response scheme
was manipulated: instead of using two different fingers for the
two responses, participants were allowed to use only one, single

Frontiers in Human Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 119 |   85

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zehetleitner et al. Modeling co-activation SRT two-choice

finger to submit one of the two responses. In accordance with
the psychological interpretation of model parameters, drift rates
were lower for the manipulation of stimulus discriminability,
the two response boundaries were separated more widely when
observers followed a conservative (error-avoiding) strategy, and
the non-decision parameter increased substantially when the
motor response required a more time-consuming movement.

For the ex-Wald model, in a “go/no-go” task, Schwarz (2001)
used a digit comparison paradigm: observers, on each trial, were
presented with one digit; they had to press a button if the number
was greater than five, but withhold a response if the digit was less
than five. Schwarz manipulated decision difficulty of discrimina-
tion and proportion of “go” responses in a crossed design. Sup-
porting the usual psychological interpretation of decision model
parameters, difficulty affected the drift parameter and proportion
of “go” responses the threshold parameter. Importantly, neither
of the two manipulations affected the non-decision parameter.

Recently, diffusion model parameters have been related to
electrophysiological markers of the lateralized readiness potential
(LRP), a difference wave between centrally located scalp poten-
tials that usually are evoked by manual responses. van Vugt
et al. (2014) found a consistent relation between diffusion model
parameters with the temporal dynamics and shape of averaged
LRPs. Taken together, they found that the ramping up of activity
in the LRP is related to the accumulation of evidence toward a
threshold. Importantly for the present context, van Vugt et al.
used the LRP wave to estimate perceptual and motor latency.
They calculated, for each observer, perceptual latency as the time
at which the stimulus-locked LRP deviated from baseline activity,
and motor latency as the time from the peak of the response-
locked LRP to the manual response. The sum of these two laten-
cies thus provided an estimator of non-decision time based on
EEG data. This electrophysiologically derived estimator was sig-
nificantly correlated with the non-decision time parameters indi-
vidually recovered from a diffusion model fit to the behavioral
data.

Finally, Philiastides et al. (2014) also investigated the relation
between the parameters of a diffusionmodel fit to two-alternative
choice behavioral data and single-trial EEG traces. First, they
found that the model that best captured the behavioral changes
induced by a manipulation of stimulus quality only had drift rate
as a free parameter. Additionally freeing non-decision time to
vary between stimulus conditions did not improve the fit any
further. Moreover, of importance in the present context, they
extracted, from single-trial EEG, a signal that best differentiated
between the low- and high-quality stimulus conditions. The onset
time of this extracted signal, that is, the time from stimulus onset
until stimulus quality has differential effects on the EEG signal,
can be considered as a marker of non-decision processing time.
This onset time was found to correlate strongly with individually
fitted non-decision time parameters of the diffusion model.

In sum, these studies strongly indicate that the parameters
of decision models, especially non-decision time parameters, are
indeed related to the corresponding cognitive processes. Thus,
arguably, it is justified to interpret our finding of redundant sig-
nals to affect non-decision time parameters as reflecting cognitive
non-decision processing.

Decision and Non-Decision Processes
Contribute to RMI Violations
The fitting results indicate that the best-fitting account for both
the simple RT and the two-alternative choice RT data is pro-
vided by the combined model, in which the drift rates and non-
decision times are allowed to vary across all conditions. This
model is clearly set apart from the next best-fitting model, as
the cost function is defined on a logarithmic scale. Inspection of
the parameters (of the combined models) revealed that all mod-
els yielded a comparable parameter value range, which points
to the reliability of the fits. Also, all models shared a pattern
across both experiments: for all models, redundant-signals tri-
als exhibited the highest drift rates and the shortest non-decision
times. Together with the BIC scores, this can be taken as evi-
dence for a combined drift rate and non-decision component
account for the data of the present, bimodal RSP experiments.
However, the models were fitted to the average (vincentized) dis-
tribution of the whole sample of participants. Thus, it remains
possible that some participants actually exhibited purely deci-
sional and others purely non-decisional origins of the RSE and
that their mixture is responsible for the best-fitting model being
the combined one. To examine this, we also fitted the models
to each, single participant’s data. In Experiment 1, the decision
model, the non-decision model, the combined model, and the
full model provided the best fit for 2, 0, 10, and three partic-
ipants, respectively. For Experiment 2, the best fitting models
were one times the decision model, three times the non-decision
time model, 16 times the combined model, and one times the
full model. That is, even for model fits on the level of single
participants, the combined model provided the best fit for the
large majority of the participants (see Figures 4, 5 for individual
results).

Given that the fitting results do indeed reveal the generating
mechanisms for the data obtained in the two experiments, the
decisional and non-decisional components would appear to be
contributing differentially to the total, observed RSEs. In Exper-
iment 1, of a total RSE of 56, 43ms are attributable to the
non-decision time difference between the faster of the two uni-
modal conditions and the bimodal condition alone. In contrast,
in Experiment 2, just half the RSE—26ms of a total 51ms—
can be attributed to this non-decision time difference. This out-
come would be consistent with Miller (1982), who hinted at the
possibility of the RSE being a mixture of both decisional and
non-decisional processes.

Studies that have tried to fit data to explicit co-activation
models are rare. One of the explicit models, which assumes co-
activation at the decisional stage, is Schwarz’s (2001) superposi-
tion model. The basic assumption of Schwarz’s model is that, on
redundant-target trials, the separate activations of the two stim-
ulated channels superpose to form the overall-diffusion process,
where sensory evidence on RSTs is the sum of sensory evidence
from the two single channels: X12(t) = X1(t) + X2(t). Activity in
both channels can be adequately described by independent dif-
fusion processes of the Wiener type and can have variable chan-
nel dependency. Applying Schwarz’s superposition model to data
from Miller (1986) achieved a good prediction on the level of
mean reaction times.
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FIGURE 4 | Quantile reaction times. Quantile reaction times for single subjects in Experiment 1. The type of best fitting model is indicated in the each figure heading.
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FIGURE 5 | Quantile reaction times. Quantile reaction times for single subjects in Experiment 2. The type of best fitting model is indicated in the each figure heading.
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Diederich (1995) conducted a trimodal simple-RT study with
visual, auditory, and tactile stimuli, with varying inter-stimulus
intervals, and fitted a race model and two co-activation models to
empirically observed RTmeans and variances. Although both co-
activation models outperformed the separate-activations model
and yielded excellent fits of the mean reaction time, Diederich
notes that they failed to adequately capture the spread of the
response times.

In line with the present diffusion model analysis, Diederich
and Colonius’s (1987) study also yielded positive evidence for
co-activation occurring at the non-decision stage: examining
the distributions of RT differences between left- and right-hand
responses revealed a U-shaped dependence of the amount of
facilitation in the motor component on the inter-stimulus inter-
val. Note though that this analysis based on RT differences rests
upon the (disputable) assumption that the motor delay consti-
tutes an additive component of the entire observable RT (see, e.g.,
McClelland, 1979).

However, a comparison with the studies of Diederich (1995)
and Diederich and Colonius (1987) remains problematic. Both
studies examined the goodness-of-fit only for decisional models
and only at the level of reaction time means and variances—
rather than the complete reaction time distribution (see also Blur-
ton et al., 2014). In the present study, relying on the fit to the
means alone would not have helped distinguish between the deci-
sional and combined models in Experiment 1. And for Experi-
ment 2, such an analysis would not have allowed us to rule out
any of the models. As the decisional model involved the low-
est number of parameters (namely, six) compared to the other
models, the principle of parsimony would imply a preference for
decisional models—though even for Experiment 2, the decisional
model exhibited the poorest fit. On a methodological level, these
differential outcomes provide a strong argument in favor of the
use of distributional analyses of sequential-sampling models and
against fitting decision models only to reaction time means and
variances.

However, it must be acknowledged that the data from these
two tasks were analyzed using different models (ex-Wald vs.
RDM), so that the difference in RSE sources observed might
be attributable, at least in part, to the difference in the mod-
els, rather than the tasks, employed. Specifically, in the RDM,
the non-decision component has a uniform distribution, whereas
in the ex-Wald model, the non-decision time has an exponen-
tial distribution. Perhaps the exponential rather than uniform
non-decision component is responsible for non-decision time to
exhibit a larger contribution to the RSE than the decision compo-
nent2. In order to examine this possibility, we fit a RDM model
to the SRT data from Experiment 1, and an ex-Wald model to
the 2AFC data from Experiment 2. To do so, in the RDM, we set
the separation from the starting point to the negative response
boundary at a very high value, so as not to produce decision
errors. Apart from that, the fitting routines and data were the
same as above. Both for the data of Experiment 1 and for the
data from Experiment 2, the best fitting model with the lowest
BIC was the combined model, where target redundancy affected

2We are grateful to one of the reviewers for pointing out this possibility.

both the drift rate and the non-decision time (as compared to
the pure drift and the pure non-decision time component), thus
replicating the model ordering of the original fitting. Further-
more, for the data of Experiment 1 fit with a RDM, and for the
data from Experiment 2 fit with the ex-Wald model, 4% (Exper-
iment 1) and, respectively, 57% (Experiment 2) of the RSE was
attributable to non-decision time—which compares with 78%
(Experiment 1) and 58% (Experiment 2) in our original fit. It
has to be noted, though, that the RDM model fit to the data of
Experiment 1 yielded near-zero variance (ca. 4ms) of the non-
decision component, which is likely indicative of an overestima-
tion of the variance of the decision component. Given that the
ex-Wald model explicitly describes the decision mechanism of a
go/no-go task and the RMD model that of a 2AFC task, these
“cross-task fitting” results must be viewed with caution. For the
data of Experiment 2, the proportion of the RSE attributable to
the non-decision component was equivalent whether it was fit
with a RDM or an ex-Wald model; by contrast, this proportion
changed for the data of Experiment 2. Nevertheless, for the cross-
fitting too, the best model out of the set of candidates was the
combined model. Whether and to what degree the contributions
of the decision and non-decision components to the RSE dif-
fer between tasks cannot be decided on the basis of the present
results.

Generalizability
We showed that both our experiments yielded RSEs that cannot
be accounted for by race model architectures. There are, how-
ever, other accounts that can, in principle, produce the critical
RMI violations. However, the question of whether these alter-
natives would involve a non-decision component is fundamen-
tal and pertinent to all of these models. Interactive-race models
(Mordkoff and Yantis, 1991) are similar to race models but allow
for cross-talk between the two single-signal channels: when one
channel registers activity, this can lead to a reduction of the drift
rate in the other channel. Another model that could account for
RMI violations is the serial exhaustive model (Townsend and
Nozawa, 1997), according to which, as the name implies, both
feature channels (e.g., visual, auditory) are processed in series and
exhaustively. This model can generate RMI violations provided
that the non-target channel accumulates evidence at a slower rate
than the target channel. Another, conceptually different cause of
RMI violations would be the presence of response contingen-
cies (Mordkoff and Yantis, 1991; Mordkoff and Miller, 1993). As
our study design included such contingencies (see Section Pro-
cedure above), we cannot firmly rule out response contingencies
as an additional source of the RMI violations. However, as there
are currently no explicit generative formulations of these alter-
native accounts, they cannot, at present, be assessed against the
empirical data. Note, though, that the framework of our fitting
procedure allows for extensions and adaptations that wouldmake
such a model comparison feasible in principle.

In order to corroborate our fitting results and validate the
identification of decision and non-decision components in the
reaction time data, we additionally performed a validation fit-
ting with synthetically produced RSEs. To this end, we generated
three sets of reaction time data (using the ex-Wald and RDM
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models). One set featured a purely decision-based RSE, gener-
ated by models in which only the decision parameter differed
between SSTs and RSTs. Another set of data featured a purely
non-decision based RSE, generated by analogously changing only
the non-decision time parameter across SSTs and RSTs. Lastly, a
combined decision/non-decision-based RSE was built into a data
set. These three sets of data were then subjected to fitting to all
three model types examined (see Section Single-boundary Accu-
mulation and Ratcliff Diffusion Models and Table 1 above). The
fitting results showed that all built-in RSEs could be recovered
and correctly identified by the fitting procedure, that is: the deci-
sion based RSE was best fitted by the decision-only model, and so
on. Although the parameter values were not recovered numeri-
cally, the qualitative pattern was the same, in terms of the order of
the fits and parameter relations. This validation fitting strength-
ens the results of the fitting of the empirical reaction time data
and serves as a proof of concept: it is possible and meaningful
to investigate the decision and non-decision components of the
RSE employing (generative) reaction time models and fittings on
the distributional level. Note that this validation procedure was
based on the assumption that the data were indeed generated by
the exact model that was used to fit the data. To our knowledge,
it is an open question what the implications would be with regard
to the validity of a model fit if the empirical data were generated
by a mechanism that is different to that assumed by the model
used to fit the data.

The Redundant Signals Effect—an Umbrella
Term?
Other studies that used different experimental paradigms (stim-
uli, tasks, modalities) have focused solely on a decisional origin
of the RSE. The present results however raise the fundamental
question whether “RSE” is, in fact, an umbrella term for different
phenomena which share the general property of “multiple evi-
dence sources” for performing a perceptual-motor task. Similar
notions have already been put forward by Reynolds and Miller
(2009) as well as (Schulte et al., 2006). It is, thus, likely that for
specific stimulus properties (luminance, spatial frequency, orien-
tation, etc.), tasks of differential complexity (detection, go/no-go,
discrimination, etc.), uni- vs. multi-modal paradigms, the RSE is

in fact generated by a combination of different mechanisms—and
thus to be appropriately accounted for by different types of mod-
els. Similarly, Corballis (2002) showed that the RSE is subject to
a substantial amount of inter-individual variability. Accordingly,
inferences and generalizations across the many variations of
the RSE paradigm, and perhaps even across participants, would
appear problematic if the data basis is heterogeneous, gathered
under very different experimental conditions. In this situation, a
sequential-sampling model analysis can help systematize poten-
tial sources of the RSE across different paradigm variations and
settings.

In summary, the present study examined the locus or loci
of the RSE by applying a sequential-sampling model analysis to
two bimodal, target detection and left-right localization, tasks.
The fitting results challenge the view that co-activation in the
RSP is a purely decisional effect. This pattern was even more
pronounced in the data of Experiment 2, where the decisional

model fared worst and the purely non-decisional model turned
out second best in goodness-of-fit terms. Although two exper-
iments are clearly insufficient to definitely rule out a decision-
only model, their results emphasize the role of the non-decision
stage as a potential source of co-activation effects. Moreover,
the results illustrate the usefulness of a systematic sequential-
sampling model analysis for situations where the RMI is violated.

Thus, in conclusion, in order to achieve a realistic picture of
what the sources of the RSE actually are and how the RSE is com-
posed, a comprehensive series of experiments would be required
that elaborate exactly what roles, in the RSP, are played by the
stimuli, sensory modalities, response effectors, and experimen-
tal tasks in producing co-activation effects and exactly what the
generating mechanisms are.

Acknowledgments

This research was supported by grants from DFG Excellence
Cluster EC 142 “CoTeSys” (HM and MZ), the DFG research
group FOR480 (HM), DFG grant ZE 887/3-1 (MZ and HM), and
German-Israeli Foundation for Scientific Research and Develop-
ment grant 1130-158.4 (MZ and HM). The R interface for the
“fastdm” C code was written by Scott Brown.

References

Akaike, H. (1978). On the likelihood of a time series model. Statistician 27, 217.

doi: 10.2307/2988185

Blurton, S. P., Greenlee, M. W., and Gondan, M. (2014). Multisensory pro-

cessing of redundant information in go/no-go and choice responses.

Atten. Percept. Psychophys. 76, 1212–1233. doi: 10.3758/s13414-014-

0644-0

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:

10.1163/156856897X00357

Burnham, K. P., and Anderson, D. R. (2002). Model Selection and Multimodel

Inference. New York, NY: Springer-Verlag.

Colonius, H., and Diederich, A. (2006). The race model inequality: interpreting

a geometric measure of the amount of violation. Psychol. Rev. 113:148. doi:

10.1037/0033-295X.113.1.148

Corballis, M. C. (1998). Interhemispheric neural summation in the absence of the

corpus callosum. Brain 121, 1795–1807. doi: 10.1093/brain/121.9.1795

Corballis, M. C. (2002). Hemispheric interactions in simple reaction time. Neu-

ropsychologia 40, 423–434. doi: 10.1016/S0028-3932(01)00097-5

Diederich, A. (1992). Intersensory Facilitation: Race, Superposition, and Diffusion

Models for Reaction Time to Multiple stimuli. Frankfurt am Main; New York:

Peter Lang.

Diederich, A. (1995). Intersensory facilitation of reaction time: evaluation of

counter and diffusion coactivation models. J. Math. Psychol. 39, 197–215. doi:

10.1006/jmps.1995.1020

Diederich, A., and Colonius, H. (1987). Intersensory facilitation in the motor

component? Psychol. Res. 49, 23–29. doi: 10.1007/BF00309199

Egeth, H. E., and Mordkoff, J. T. (1991). “Redundancy gain revisited: Evidence for

parallel processing of separable dimensions,” in The perception of structure, eds

G. R. Lockhead and J. R. Pomerantz (Washington, DC: American Psychological

Association), 131–143. doi: 10.1037/10101-007

Feintuch, U., and Cohen, A. (2002). Visual attention and coactivation of response

decisions for features from different dimensions. Psychol. Sci. 13, 361–369. doi:

10.1111/j.0956-7976.2002.00465.x

Frontiers in Human Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 119 |   90

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zehetleitner et al. Modeling co-activation SRT two-choice

Gomez, P., Ratcliff, R., and Perea, M. (2007). A model of the go/no-go task. J. Exp.

Psychol. 136, 389–413. doi: 10.1037/0096-3445.136.3.389

Gondan, M., Lange, K., Rösler, F., and Röder, B. (2004). The redundant target

effect is affected by modality switch costs. Psychon. Bull. Rev. 11, 307–313. doi:

10.3758/BF03196575

Grice, G. R., Canham, L., and Boroughs, J. M. (1984). Combination rule for

redundant information in reaction time tasks with divided attention. Percept.

Psychophys. 35, 451–463. doi: 10.3758/BF03203922

Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time

data: an example using functions for the S-PLUS package. Behav. Res. Methods

Instrum. Comput. 36, 678–694. doi: 10.3758/BF03206550

Heathcote, A., Brown, S., and Mewhort, D. J. K. (2002). Quantile maximum likeli-

hood estimation of response time distributions. Psychon. Bull. Rev. 9, 394–401.

doi: 10.3758/BF03196299

Hyndman, R. J., and Fan, Y. (1996). Sample quantiles in statistical packages. Am.

Stat. 50, 361–365.

Iacoboni, M., and Zaidel, E. (2003). Interhemispheric visuo-motor integration in

humans: the effect of redundant targets. Eur. J. Neurosci. 17, 1981–1986. doi:

10.1046/j.1460-9568.2003.02602.x

Ince, D. C., Hatton, L., and Graham-Cumming, J. (2012). The case for open

computer programs. Nature 482, 485–488. doi: 10.1038/nature10836

Jepma, M., Wagenmakers, E. J., Band, G. P. H., and Nieuwenhuis, S. (2009). The

effects of accessory stimuli on information processing: evidence from electro-

physiology and a diffusion model analysis. J. Cogn. Neurosci. 21, 847–864. doi:

10.1162/jocn.2009.21063

Kass, R. E., and Raftery, A. E. (2012). Bayes factors. J. Am. Stat. Assoc. 90, 773–795.

doi: 10.1080/01621459.1995.10476572

Koene, A. R., and Zhaoping, L. (2007). Feature-specific interactions in salience

from combined feature contrasts: evidence for a bottom–up saliency map in

V1. J. Vis. 7, 1–14. doi: 10.1167/7.7.6

Krummenacher, J., and Müller, H. J. (2014). Visual search for singleton targets

redundantly defined in two feature dimensions: coactive processing of color-

motion targets? J. Exp. Psychol. Hum. Percept. Perform. 40, 1926–1939. doi:

10.1037/a0037560

Krummenacher, J., Müller, H. J., and Heller, D. (2001). Visual search for dimen-

sionally redundant pop-out targets: evidence for parallel-coactive processing of

dimensions. Atten. Percept. Psychophys. 63, 901–917. doi: 10.3758/BF03194446

Krummenacher, J., Müller, H. J., and Heller, D. (2002). Visual search for dimen-

sionally redundant pop-out targets: parallel-coactive processing of dimen-

sions is location specific. J. Exp. Psychol. Hum. Percept. Perform. 28:1303. doi:

10.1037/0096-1523.28.6.1303

Luce, R. D. (1991). Response Times: Their Role in Inferring Elemen-

tary Mental Organization. Oxford: Oxford University Press. doi:

10.1093/acprof:oso/9780195070019.001.0001

McClelland, J. L. (1979). On the time relations of mental processes: an exam-

ination of systems of processes in cascade. Psychol. Rev. 86, 287–330. doi:

10.1037/0033-295X.86.4.287

Miller, J. O. (1982). Divided attention: evidence for coactivation with redundant

signals. Cogn. Psychol. 14, 247–279. doi: 10.1016/0010-0285(82)90010-X

Miller, J. O. (1986). Timecourse of coactivation in bimodal divided attention.

Percept. Psychophys. 40, 331–343. doi: 10.3758/BF03203025

Miller, J. O. (2007). Contralateral and ipsilateral motor activation in visual simple

reaction time: a test of the hemispheric coactivation model. Exp. Brain Res. 176,

539–558. doi: 10.1007/s00221-006-0641-1

Miller, J. O., Beutinger, D., and Ulrich, R. (2009). Visuospatial attention and

redundancy gain. Psychol. Res. 73, 254–262. doi: 10.1007/s00426-008-0212-0

Miller, J. O., and Reynolds, A. (2003). The locus of redundant-targets and nontar-

gets effects: evidence from the psychological refractory period paradigm. J. Exp.

Psychol. Hum. Percept. Perform. 29:1126. doi: 10.1037/0096-1523.29.6.1126

Mordkoff, J. T., and Danek, R. H. (2011). Dividing attention between color and

shape revisited: redundant targets coactivate only when parts of the same per-

ceptual object. Atten. Percept. Psychophys. 73, 103–112. doi: 10.3758/s13414-

010-0025-2

Mordkoff, J. T., and Miller, J. O. (1993). Redundancy gains and coactivation with

two different targets: the problem of target preferences and the effects of display

frequency. Percept. Psychophys. 53, 527–535. doi: 10.3758/BF03205201

Mordkoff, J. T., Miller, J. O., and Roch, A. C. (1996). Absence of coactivation in

the motor component: evidence from psychophysiological measures of target

detection. J. Exp. Psychol. Hum. Percept. Perform. 22:25. doi: 10.1037/0096-

1523.22.1.25

Mordkoff, J. T., and Yantis, S. (1991). An interactive race model of divided

attention. J. Exp. Psychol. Hum. Percept. Perform. 17:520. doi: 10.1037/0096-

1523.17.2.520

Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., et al. (2012).

Research priorities. Shining light into black boxes. Science 336, 159–160. doi:

10.1126/science.1218263

Nelder, J. A., and Mead, R. (1965). A simplex method for function minimization.

Comput. J. 7, 308–313. doi: 10.1093/comjnl/7.4.308

Otto, T. U., andMamassian, P. (2012). Noise and correlations in parallel perceptual

decision making. Curr. Biol. 22, 1391–1396. doi: 10.1016/j.cub.2012.05.031

Patching, G. R., and Quinlan, P. T. (2002). Garner and congruence effects in

the speeded classification of bimodal signals. J. Exp. Psychol. Hum. Percept.

Perform. 28:755. doi: 10.1037/0096-1523.28.4.755

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:

transforming numbers into movies. Spat. Vis. 10, 437–442. doi:

10.1163/156856897X00366

Philiastides, M. G., Heekeren, H. R., and Sajda, P. (2014). Human Scalp Poten-

tials Reflect a Mixture of Decision-Related Signals during Perceptual Choices.

J. Neurosci. 34, 16877–16889. doi: 10.1523/JNEUROSCI.3012-14.2014

Raab, D. H. (1962). Statistical facilitation of simple reaction times. Trans. N. Y.

Acad. Sci. 24, 574–590. doi: 10.1111/j.2164-0947.1962.tb01433.x

Raftery, A. E. (1986). Choosing models for cross-classifications. Am. Sociol. Rev.

51, 145–146. doi: 10.2307/2095483

Ratcliff, R. (1978). A theory of memory retrieval. Psychol. Rev. 85, 59–108. doi:

10.1037/0033-295X.85.2.59

Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution

statistics. Psychol. Bull. 86:446. doi: 10.1037/0033-2909.86.3.446

Ratcliff, R., Thapar, A., Gomez, P., andMcKoon, G. (2004). A diffusionmodel anal-

ysis of the effects of aging in the lexical-decision task. Psychol. Aging 19:278. doi:

10.1037/0882-7974.19.2.278

Reynolds, A., and Miller, J. O. (2009). Display size effects in visual search: analyses

of reaction time distributions as mixtures. Q. J. Exp. Psychol. A. 62, 988–1009.

doi: 10.1080/17470210802373027

Rudin, W. (2006). Real and Complex Analysis. Ann Arbor: Tata McGraw-Hill

Education.

Sanders, A. F. (1980). 20 Stage analysis of reaction processes. Adv. Psychol. 1,

331–354. doi: 10.1016/S0166-4115(08)61955-X

Schröter, H., Ulrich, R., and Miller, J. O. (2007). Effects of redundant auditory

stimuli on reaction time. Psychon. Bull. Rev. 14, 39–44. doi: 10.3758/BF031

94025

Schulte, T., Chen, S. H. A., Müller-Oehring, E. M., Adalsteinsson, E., Pfeffer-

baum, A., and Sullivan, E. V. (2006). fMRI evidence for individual differ-

ences in premotor modulation of extrastriatal visual–perceptual processing of

redundant targets. NeuroImage 30, 973–982. doi: 10.1016/j.neuroimage.2005.

10.023

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.

doi: 10.1214/aos/1176344136

Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response

times. Behav. Res. Methods 33, 457–469. doi: 10.3758/BF03195403

Simonsohn, U. (2013). Just post it the lesson from two cases of fabricated data

detected by statistics alone. Psychol. Sci. 24, 1875–1888. doi: 10.1177/095679

7613480366

Todd, J. W. (1912). Reaction to Multiple Stimuli. New York, NY: The Science Press.

doi: 10.1037/13053-000

Töllner, T., Zehetleitner, M., Krummenacher, J., and Müller, H. J. (2011). Percep-

tual basis of redundancy gains in visual pop-out search. J. Cogn. Neurosci. 23,

137–150. doi: 10.1162/jocn.2010.21422

Townsend, J. T., and Nozawa, G. (1995). Spatio-temporal properties of elementary

perception: an investigation of parallel, serial, and coactive theories. J. Math.

Psychol. 39, 321–359. doi: 10.1006/jmps.1995.1033

Townsend, J. T., and Nozawa, G. (1997). Serial exhaustive models can violate the

race model inequality: implications for architecture and capacity. Psychol. Rev.

104:595. doi: 10.1037/0033-295X.104.3.595

Ulrich, R., Miller, J. O., and Schröter, H. (2007). Testing the race model inequality:

an algorithm and computer programs. Behav. Res. Methods 39, 291–302. doi:

10.3758/BF03193160

Frontiers in Human Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 119 |  91

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zehetleitner et al. Modeling co-activation SRT two-choice

van Vugt, M. K., Simen, P., Nystrom, L., Holmes, P., and Cohen, J. D. (2014).

Lateralized readiness potentials reveal properties of a neural mechanism for

implementing a decision threshold. PLoS ONE 9:e90943. doi: 10.1371/journal.

pone.0090943

Voss, A., Rothermund, K., and Voss, J. (2004). Interpreting the parameters of

the diffusion model: an empirical validation.Mem. Cognit. 32, 1206–1220. doi:

10.3758/BF03196893

Voss, A., and Voss, J. (2007). Fast-dm: a free program for efficient diffusion model

analysis. Behav. Res. Methods 39, 767–775. doi: 10.3758/BF03192967

Voss, A., and Voss, J. (2008). A fast numerical algorithm for the esti-

mation of diffusion-model parameters. J. Math. Psychol. 52, 1–9. doi:

10.1016/j.jmp.2007.09.005

Wagenmakers, E. J., and Farrell, S. (2004). AIC model selection using Akaike

weights. Psychon. Bull. Rev. 11, 192–196. doi: 10.3758/BF03206482

Wagenmakers, E. J., Grasman, R. P. P. P., and Molenaar, P. (2005). On the rela-

tion between the mean and the variance of a diffusion model response time

distribution. J. Math. Psychol. 49, 195–204. doi: 10.1016/j.jmp.2005.02.003

Wagenmakers, E. J., VanDerMaas, H. L. J., andGrasman, R. P. P. P. (2007). An EZ-

diffusion model for response time and accuracy. Psychon. Bull. Rev. 14, 3–22.

doi: 10.3758/BF03194023

Wicherts, J. M. (2013). Science revolves around the data. J. Open Psychol. Data 1,

1–4. doi: 10.5334/jopd.e1

Wicherts, J. M., and Bakker, M. (2012). Publish (your data) or (let the

data) perish! Why not publish your data too? Intelligence 40, 73–76. doi:

10.1016/j.intell.2012.01.004

Zehetleitner, M., Krummenacher, J., and Müller, H. J. (2009). The detection of

feature singletons defined in two dimensions is based on salience summation,

rather than on serial exhaustive or interactive race architectures. Atten. Percept.

Psychophys. 71, 1739–1759. doi: 10.3758/APP.71.8.1739

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Zehetleitner, Ratko-Dehnert and Müller. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 119 |   92

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


HUMAN NEUROSCIENCE
HYPOTHESIS AND THEORY ARTICLE

published: 10 June 2014
doi: 10.3389/fnhum.2014.00414

Attentional spreading to task-irrelevant object features:
experimental support and a 3-step model of attention for
object-based selection and feature-based processing
modulation
Detlef Wegener *, Fingal Orlando Galashan , Maike Kathrin Aurich † and Andreas Kurt Kreiter

Center for Cognitive Science, Brain Research Institute, University of Bremen, Bremen, Germany

Edited by:
Hans Colonius, Carl von Ossietzky
Universität Oldenburg, Germany

Reviewed by:
Zhe Chen, University of Canterbury,
New Zealand
Søren K. Andersen, University of
Aberdeen, UK

*Correspondence:
Detlef Wegener, Center for
Cognitive Science, Brain Research
Institute, University of Bremen, P.O.
Box 33 04 40, 28334 Bremen,
Germany
e-mail: wegener@
brain.uni-bremen.de
†Present address:
Maike Kathrin Aurich, Luxembourg
Centre for Systems Biomedicine,
University of Luxembourg, Belval,
Luxembourg

Directing attention to a specific feature of an object has been linked to different forms
of attentional modulation. Object-based attention theory founds on the finding that even
task-irrelevant features at the selected object are subject to attentional modulation, while
feature-based attention theory proposes a global processing benefit for the selected
feature even at other objects. Most studies investigated either the one or the other form
of attention, leaving open the possibility that both object- and feature-specific attentional
effects do occur at the same time and may just represent two sides of a single attention
system. We here investigate this issue by testing attentional spreading within and across
objects, using reaction time (RT) measurements to changes of attended and unattended
features on both attended and unattended objects. We asked subjects to report color
and speed changes occurring on one of two overlapping random dot patterns (RDPs),
presented at the center of gaze. The key property of the stimulation was that only one
of the features (e.g., motion direction) was unique for each object, whereas the other
feature (e.g., color) was shared by both. The results of two experiments show that
co-selection of unattended features even occurs when those features have no means for
selecting the object. At the same time, they demonstrate that this processing benefit is not
restricted to the selected object but spreads to the task-irrelevant one. We conceptualize
these findings by a 3-step model of attention that assumes a task-dependent top-down
gain, object-specific feature selection based on task- and binding characteristics, and
a global feature-specific processing enhancement. The model allows for the unification
of a vast amount of experimental results into a single model, and makes various
experimentally testable predictions for the interaction of object- and feature-specific
processes.

Keywords: reaction times, object-based attention, feature-based attention, attention model, task difficulty

INTRODUCTION
The term attention is widely used to paraphrase specific mod-
ulations in the representation of task-relevant sensory informa-
tion. While it suggests the assumption of a homogenous process,
attention research has revealed many different aspects of atten-
tional modulation, both in terms of neuronal mechanisms and
behavior, and not all of these results turned out to be easily
compatible.

Most confidence has been obtained for processing the attended
information. Studies investigating the influence of attention on
neuronal responses revealed a multitude of effects. For instance,
directing attention to the motion of a stimulus, in terms of
direction and speed, locally increases the firing rate (Treue and
Maunsell, 1996) and the gamma power of the local field potential
(Khayat et al., 2010) of neurons in motion-sensitive mediotem-
poral (MT) area, causes shrinkage of receptive fields around

the attended stimulus (Womelsdorf et al., 2006a), and increases
stimulus selectivity of single neurons (Wegener et al., 2004). As
a consequence of attentional modulation, task-relevant motion
changes are represented with shorter latency, and reaction times
(RTs) become faster (Galashan et al., 2013). Corresponding find-
ings have been obtained in other visual areas for features like color
and form (McAdams and Maunsell, 1999; Reynolds et al., 1999;
Fries et al., 2001; Taylor et al., 2005; Sundberg et al., 2012).

Less clear than the enhanced processing of the selected infor-
mation is the processing fate of currently task-irrelevant, unat-
tended information. For instance, if attention is directed to the
motion of a colored object, what about processing of the target
object’s color, or motion information at other objects? In the
framework of object-based attention theory, objects are consid-
ered the natural “units of attention”, and attending a certain
object feature has been shown to cause spreading of attention
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to other features of that object, thus promoting selection of the
entire object (Duncan, 1984; O’Craven et al., 1999; Blaser et al.,
2000; Scholl, 2001; Rodríguez et al., 2002; Schoenfeld et al., 2003;
Wannig et al., 2007; Ernst et al., 2013). If taken literally, object-
based attention requires restriction of any response modulation
to features at the attended object by definition, without spreading
to features at other objects. However, psychophysical, imaging,
and electrophysiological studies showed that attending towards
a certain object feature is associated with enhanced processing
of that feature throughout the visual field (Rossi and Paradiso,
1995; Treue and Martínez Trujillo, 1999; McAdams and Maunsell,
2000; Saenz et al., 2002; Arman et al., 2006; Müller et al., 2006;
Serences and Boynton, 2007). In addition, various recent studies
indicated that selection of a single target-object feature may result
in suppression of other, task-irrelevant features of that object
(Fanini et al., 2006; Nobre et al., 2006; Cant et al., 2008; Polk et al.,
2008; Wegener et al., 2008; Serences et al., 2009; Taya et al., 2009;
Xu, 2010; Freeman et al., 2014).

These results might be perceived as conceptually contradictory
in some cases, and apparently conflicting in others. Understand-
ing the underlying attentional mechanisms will critically depend
on investigating the interaction of different forms of attention.
This issue has been addressed by a surprisingly small number
of studies (Boehler et al., 2011; Kravitz and Behrmann, 2011;
Lustig and Beck, 2012). Since many of the above cited studies
used the basically same behavioral requirement of object-feature
directed attention, we performed two psychophysical experiments
to further investigate the interaction and potential co-existence of
feature- and object-based attention. To this end, we used stim-
ulus and task conditions similar to those previously utilized for
demonstrating object- and feature-based attention (Schoenfeld
et al., 2003, 2014; Müller et al., 2006). We used RT as a mea-
sure for attention-dependent processing, and studied attentional
spreading along both the object and feature domain in parallel.
We presented two superimposed random dot arrays at fixation,
having either motion in opposite direction but the same color, or
having different colors but the same motion direction. Subjects
were asked to make speeded responses to changes of either speed
or color at one of the two objects, and attention was directed using
cues indicating the object and the feature for which the change
was to occur, with 75% validity. Figure 1 shows two hypothetical
patterns of cumulative RT distributions. In Figure 1A, fastest
responses occur if both the feature and the object-cue dimension
are correct, and slowest responses occur if both are incorrect. RTs
are in-between if only one of the two cue dimensions is correct.
Since responses to the unattended feature are faster if they occur
at the attended object (straight blue line shifted to the left as
compared to the dashed blue line) this result pattern suggests
an object-based benefit for the unattended feature. In Figure 1B,
only the feature dimension of the cue is effective, but the object
dimension has no impact. Such an RT pattern is in favor of a pure
feature-based attentional modulation, since RTs solely depend
on attention directed to the feature, with no differences between
attended and unattended object.

Our findings suggest that both feature- and object-specific
attentional effects are evident at the same time. The results con-
firm that attending a single target-object feature is accompanied

FIGURE 1 | Hypothetical RT distributions. (A) Cumulative RT distribution
compatible with an object-based attention approach. Task-irrelevant features
are associated with faster RTs if they belong to the attended object, as
indicated by a leftward shift of the RT distributions for invalidly cued
features. (B) Cumulative RT distribution incompatible with a strict
object-based attention approach. Here, object cueing is ineffective (i.e., a
valid object cue has no influence or has an equal influence at both objects)
and RTs are influenced solely by the feature cue, as indicated by overlaying
RT distributions for corresponding feature cue conditions.

by co-selection of other, task-irrelevant features of the same
object. However, they also show that this modulation is not
restricted to the selected object but instead, spreads towards the
unattended object. We suggest a simple, physiologically plausible
3-step model of attention to unify findings from object-based and
feature-based attention theory in a single framework. Preliminary
results have previously been published in abstract form (Wegener
et al., 2009, 2010).

MATERIAL AND METHODS
SUBJECTS
The study was conducted with eight naïve female participants
(mean age: 25.8 years). All subjects had normal or corrected-to-
normal vision, as approved by the Freiburg Visual Acuity Test
(Bach, 1996), and gave their written informed consent. The study
conformed to the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and was approved by the University’s
ethics committee.

VISUAL STIMULATION AND TASK
The behavioral task consisted of a feature-change detection
paradigm, as outlined in Figure 2. Stimuli consisted of two
superimposed, doughnut-shaped random dot patterns (RDPs)
presented at the center of the screen with the fixation point
and the cue being located in the inner notch of the stimulus.
Stimuli had a diameter of 6.34◦ with the notch being 1.9◦ in
diameter. Each RDP consisted of 50 dots with a maximal lifetime
of 200 ms. Dot positions within the RDP were calculated as to
never overlap each other, thus resulting in an individual dot’s
lifetime of mostly less than 200 ms. In Experiment 1 (Figure 2A),
RDPs possessed coherent motion in opposite directions along the
vertical meridian, at a constant speed of 2.54◦/s. Color was the
same for both RDPs. In case of a speed change, speed increased
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by 50%, in case of a color change, color switched from white to
pale yellow. Speed and color change trials were cued by an arrow
that was either gray (in case of a presumed speed change) or
pale yellow (in case of a presumed color change). The orientation
of the arrow indicated the direction of motion of the RDP on
which the change was to occur. Cues had a validity of 75%. In
case of an incorrect cue, the cue either (i) indicated the correct
object, but the wrong feature to be changed; or (ii) the correct
feature, but the wrong object; or (iii) was wrong in both respects
(Figure 2B). In Experiment 2, RDPs consisted of isoluminant
yellow and green dots but had coherent motion in the same
direction (Figure 2C). In case of a speed change, the target object’s
speed again increased by 50%, in case of a color change dot color
was getting slightly more intense. Color changes were matched
to be as equally difficult to detect as those in Experiment 1, as
confirmed in independent test trials with other subjects. Cues of
Experiment 2 consisted of arrows (in case of a presumed speed
change) or bars (in case of a presumed color change). Cue color
(yellow or green) indicated the object on which the change was to
occur (Figure 2D).

Subjects sat 45 cm in front of a 22 inch monitor (NEC Multi-
sync FB2111 SB, NEC Display Solutions, Munich, Germany), with
their head stabilized by a head-chin rest. Stimuli were generated

on a Pentium computer with an NVidia Quadro NVS graphics
card and were displayed on a dark background with a resolution of
1280 × 1024 pixels, at 100 Hz horizontal refresh rate. Eye position
was monitored using a CCIR Monochrome Camera (DMK 83
Micro/C, The Imaging Source, Bremen, Germany) and a custom-
made remote videooculography system.

Each trial started with the appearance of a red fixation point
in the center of the screen. Subjects initiated the trial by pressing
a handheld button and keeping it pressed until a response was
required. Following trial initiation, the cue appeared in the center
of the screen with the fixation point superimposed on it, and
remained visible throughout the trial. After a delay period of
1300 ms the two RDPs were displayed. Following RDP onset,
one of the patterns changed either speed or color at one of nine
possible points in time, separated by 320 ms between 640 ms
and 3200 ms. Subjects were required to respond to any change
as quick as possible, but in any case within a response interval
of maximally 1000 ms, by releasing the button. Note that they
were only required to detect but not to discriminate the change.
Subjects were given immediate auditory feedback about their RTs
by using sinus tones of different pitch. Very fast RTs were indicated
by a different, especially pleasant tone. Divergence of the eye
position by more than 1◦ from the fixation point, release of the

FIGURE 2 | Behavioral task and visual stimulation. (A, C) In both
experiments, stimuli consisted of two superimposed, doughnut-shaped
random-dot patterns (RDPs), placed at the center of the screen. Motion
coherence was 100% in both of the patterns. In Experiment 1, motion
was the object-defining feature and color was the shared feature (i.e.,
motion was in opposite direction and color was the same), whereas the
opposite was true for Experiment 2 (i.e., motion direction was the same
but color differed). (B, D) Cue assignments in experiment 1 and 2. Long,

lateral arrows represent the features of the RDPs: arrow direction
indicate RDP motion direction, dotted lines indicate normal speed,
straight lines indicate increased speed, and arrow color indicates RDP
color. These arrows are shown for illustration purposes only and were
not part of the display. Note that stimulus colors were chosen for
illustration purposes only. Actual colors used in the experiment were
slightly different and color changes were less obvious as compared to
the figure.
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button prior to any change (false alarm), or absence of a response
1 s after the change (miss) caused immediate termination of
the trial.

Per experiment, data were obtained within nine consecutive
blocks, with no more than two blocks per day. Each block con-
sisted of 96 trials, i.e., 48 trials per feature change condition. Speed
and color change as well as correctly and incorrectly cued trials
were fully interleaved with the order randomly chosen by the
stimulation program. Prior to both experiments, subjects were
given one block to familiarize them with the task and stimuli.

DATA ANALYSIS
Data were analyzed with custom-written scripts and the Statistics
Toolbox in Matlab 7.13 (The MathWorks, Natick, MA). Trials in
which the button was released at or before 200 ms after a feature
change were counted as false alarms. Performance was calculated
as the percentage of correct responses from the sum of correct
responses, false alarms, and misses. RT analysis was performed
separately for speed and color change trials. To avoid influences
of day-by-day variations in RT and to allow for comparing RTs
across experiments, each speed and color change RT was nor-
malized by dividing through the mean RT of all speed and color
change trials, respectively, of the corresponding block. Group RTs
were calculated as the average of the median normalized RTs
per subject and cue condition. Feature- and object-cue effects
were analyzed by 2-way ANOVA using the factors feature cue
(valid, invalid) and object cue (valid, invalid). Post-hoc tests were
conducted with two-tailed paired t-tests. All tests were performed
on a 95% significance level.

RESULTS
BEHAVIORAL DATA
Subjects performed a total of 864 trials in each of the exper-
iments, registered within nine consecutive blocks distributed
over usually 5 days. Eye movements exceeding 1◦ from central
fixation or eye blinks resulted in termination of 2.5% of all
trials. Excluding these fixation errors, mean performance was
92.8 ± 1.5% in Experiment 1 and 92.9 ± 1.3% in Experiment
2, and was very similar between speed and color change trials
(range: 92.1–93.6%). Regarding practicing effects over blocks,
mean performance in Experiment 1 increased slightly during the
course of the experiment but did not show significant variations,
whereas in Experiment 2, performance in the first session was
worse than in some subsequent sessions, as revealed by block-
wise comparison of the percentage of successful trials by means
of 1-way ANOVA and Bonferroni’s Multiple Comparison Test
(Experiment 1: F(8,63) = 1.8, p = 0.094; Experiment 2: F(8,63) =
4.2, p = 0.0005). Considering the relevant behavioral measure
of this study, we found very similar RTs across blocks for both
correctly cued speed and color changes in both experiments,
with no significant difference between blocks (Experiment 1:
speed: F(8,63) = 0.24, p = 0.981, color: F(8,63) = 0.85, p = 0.563;
Experiment 2: speed: F(8,63) = 1.1, p = 0.378, color: F(8,63) = 0.8,
p =0.609). For optimal comparability between speed-change and
color-change trials and between experiments, we normalized all
speed-change RTs of a subject to the mean speed-change RT of
the respective experimental block, and proceeded accordingly for

color-change trials. All results reported in this paper also hold true
for absolute RTs.

EXPERIMENT 1—OBJECTS DEFINED BY MOTION DIRECTION
Figure 3 shows the RT results for Experiment 1, when objects were
defined by motion direction and color was the shared feature.
For speed changes, mean normalized RTs were fastest when both
the feature and the object cue were correct (0.932 ± 0.022), and
slowest when both were incorrect (1.281 ± 0.088). When either
the feature or the object cue dimension was correct and the other
cue dimension was incorrect, RTs were in-between (1.112 ± 0.087
and 1.083 ± 0.09, respectively; Figure 3A). For comparison with
the literature, Table 1 lists absolute RTs. A 2-way ANOVA with the
factors feature cue (valid, invalid) and object cue (valid, invalid)
revealed highly significant effects of both factors (feature cue:
F(1,7) = 34.3, p < 0.0001; object cue: (F(1,7) = 47.8, p < 0.0001),
and no interaction (F(1,7) = 0.121, p = 0.73; Figure 3C, left). Post-
hoc two-tailed t-tests confirmed these results by showing highly
significant effects of the feature cue at both the correctly (p =
0.0023) and incorrectly cued object (p = 0.0036), as well as highly
significant effects of the object cue for both correctly (p = 0.0015)
and incorrectly cued features (p = 0.0025). Both cue dimensions
were about equally effective as revealed by no differences between
the two conditions if only one of the two cue dimensions was
correct and the other incorrect (p = 0.6367). The corresponding
cumulative distributions of RTs are shown in Figure 3D, revealing
a close similarity with the hypothetical pattern of distributions
to illustrate an object-cue benefit, as shown in Figure 1A. The
critical comparison here is the distribution of RTs for the two
conditions using invalid feature cues, showing a clear leftward
shift of the RT distribution if the unattended speed change
occurred at the attended object as compared to the unattended
object.

We next investigated whether this pattern of results also holds
true for the detection of color changes. As for speed changes, we
found fastest RTs for fully correctly cued trials (0.967 ± 0.016),
and slowest RTs for fully incorrectly cued trials (1.124 ± 0.05).
Yet, for the two conditions having one incorrect cue dimension,
RTs were almost exclusively determined by the validity of the
feature cue: if the feature cue was correct, RTs at the uncued object
(0.979 ± 0.039) were close to those at the cued object, and if the
feature cue was incorrect, RTs at the cued object were close to
those at the uncued object (1.099 ± 0.041; Figure 3B). A 2-way
ANOVA revealed a highly significant effect of the factor feature
cue (F(1,7) = 102.9, p < 0.0001), but no effect of the factor object
cue (F(1,7) = 1.8, p = 0.185), and no interaction (F(1,7) = 0.195,
p = 0.662; Figure 3C, right). Post-hoc two-tailed t-tests showed
a significant difference between the two conditions having only
one correctly cued dimension (p = 0.0002), but no differences
between the conditions having a correct or an incorrect feature
cue at either the cued (p = 0.473) or the uncued (p = 0.111)
object. Thus, for color changes in Experiment 1 the results were
different from those of speed changes, as reflected by a pattern of
cumulative RT distributions (Figure 3E) similar to those shown
in Figure 1B, illustrating a strict feature-based modulation of
RTs. Moreover, comparing RTs in response to color changes
with those in response to speed changes revealed very similar
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FIGURE 3 | Results of Experiment 1. (A) RT results for speed-change and
(B) color-change detection as a function of validity of the two cue dimensions.
Per cueing condition, bars represent the mean over the median normalized
RTs of all subjects. (C) Mean normalized RTs for the factors feature cue (black
circles) and object cue (open circles) as a function of cue validity. For the

feature cue, plotted values represent the row mean of the data shown in A, B
and for the object cue they represent the column mean. (D, E) Cumulative
distributions of normalized RTs. Line colors correspond to cue conditions as
in (A, B). (F) Speed- and color-change difference of mean normalized RTs for
corresponding cue conditions. Error bars indicate SD throughout the figure.

Table 1 | Absolute mean RTs ± SD [ms] for the four different cueing
conditions of Exp. 1 and Exp. 2.

Object cue Exp. 1 Object cue Exp. 2

valid invalid valid invalid

Feature cue: valid 385 ± 43 458 ± 50 366 ± 49 377 ± 56
Speed Change invalid 447 ± 65 533 ± 52 438 ± 64 454 ± 67

Feature cue: valid 343 ± 39 352 ± 60 345 ± 35 389 ± 45
Color Change invalid 384 ± 53 404 ± 58 406 ± 54 455 ± 78

RTs if the object cue was correct, but also significantly shorter
color-change RTs if it was incorrect (correctly cued features:
p = 0.0045; incorrectly cued features: p = 0.0026; Figure 3F).
Hence, while results for speed changes confirmed predictions of
object-based attention theory regarding a same-object benefit,
those for color changes were more in line with feature-based
modulation.

EXPERIMENT 2—OBJECTS DEFINED BY COLOR
The failure to find a same-object benefit for color-change detec-
tion in Experiment 1 could be due to either absent attentional
co-selection of the task-irrelevant feature at the cued object,
or alternatively, to a spreading of feature-dependent attention
towards the uncued object. Both possibilities potentially result in
RTs being not different at the cued or uncued object. As a third
alternative, the dichotomy in speed- and color-change detection
may represent a general difference in attention-dependent pro-
cessing of the two features. We tested between these alternatives
by performing another experiment using objects differing in
color but not motion direction. We hypothesized that a general
difference in speed- and color-change detection should preserve

the pattern of RT distributions found in Experiment 1, whereas
these should be inverted (i.e., a same-object benefit now for color
but not motion) if one of the former alternatives was true.

Figure 4 illustrates that the results of Experiment 2 were
exactly opposite to those of Experiment 1. For speed changes,
we now obtained a pattern of RT distributions similar to those
for color changes in Experiment 1, with no same-object benefit:
RTs were similarly fast at both the correctly and incorrectly cued
object (0.951 ± 0.016 and 0.975 ± 0.022, respectively) when
the feature cue was correct, and similarly slow when the feature
cue was incorrect (1.14 ± 0.087 and 0.172 ± 0.072, respectively)
(Figures 4A,D). A 2-way ANOVA revealed a significant influence
of the factor feature cue (F(1,7) = 88.8, p < 0.0001), but not of
the factor object cue (F(1,7) = 2.0, p = 0.168), and no interaction
(F(1,7) = 0.051, p = 0.823; Figure 4C, left). Post-hoc analysis
confirmed the feature cue effect at both the cued and the uncued
object (p = 0.001 and p < 0.001, respectively).

In contrast, for color-change detection we now found a clear
same-object benefit, thus resembling the results for speed changes
in Experiment 1: RTs were again fastest when both cue dimension
were correct (0.94 ± 0.017), and slowest when both were incorrect
(1.23 ± 0.087). If only one feature dimension was correct and the
other incorrect, RTs were in-between (correct feature cue: 1.061 ±

0.034; correct object cue: 1.1 ± 0.04), indicating an influence
of both cue dimensions (Figures 4B,E, cf. Table 1 for absolute
RT values). Accordingly, performing a 2-way ANOVA revealed
a significant influence of both factors (feature cue: F(1,7) = 80.6,
p < 0.0001 ; object cue: F(1,7) = 46.8, p < 0.0001), and no
interaction (F(1,7) = 0.017, p = 0.897; Figure 4C, right). Post-hoc t-
tests confirmed this by showing significantly shorter RTs between
correctly and incorrectly cued features at both the correctly and
incorrectly cued object (p < 0.0001 and p = 0.0031, respectively),

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 414 | 97

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Wegener et al. Attentional spreading to task-irrelevant features

FIGURE 4 | Results of Experiment 2. (A, D) RT results for speed-change and
(B, E) color-change detection as a function of validity of the two cue
dimensions. (C) Mean normalized RTs for speed- and color-change detection

as a function of object-cue validity. (F) Speed- and color-change difference of
mean normalized RTs for corresponding cue conditions. Conventions as in
Figure 3.

and significantly shorter RTs depending on the validity of the
object cue for both correctly and incorrectly cued features (both
p < 0.0001). Different to Experiment 1, however, comparing
the two conditions having only one correctly cued dimension
revealed a slightly, but significantly higher influence of the fea-
ture cue (p = 0.021). Comparing the cue effects for speed and
color changes again revealed very similar RTs at the cued object,
but slightly faster RTs for speed changes at the uncued object,
which were significant for correctly cued features (p = 0.0004)
(Figure 4F).

COMPARISON OF SPEED- AND COLOR-CHANGE DETECTION ACROSS
EXPERIMENTS
Experiment 2 showed that the existence or absence of a same-
object benefit is not due to a general difference between speed-
and color-change detection. Thus, we next investigated whether
it is caused by either absent attentional co-selection of the task-
irrelevant feature at the attended object, or alternatively by
attentional spreading of feature-dependent attention towards the
unattended object. To this end, we analyzed speed- and color-
change detection across experiments, i.e., we compared RTs in
response to a feature change when it was the unique, object-
defining feature vs. when it was the shared one. We found that
speed and color changes provided an essentially identical pattern
of results (Figures 5A,B). At the cued object, RT distributions
were basically indistinguishable between Experiments 1 and 2, i.e.,
they were about the same independent of whether the feature was
object-defining or shared. In contrast, at the uncued object we
observed a prominent leftward shift of the RT distribution when
subjects responded to a change of the shared feature, regardless of
whether this was speed or color, or whether the feature was cor-
rectly or incorrectly cued. These findings allow for two important
conclusions regarding attentional spreading: First, since RTs at the
cued object where equal for shared and object-defining features,

the task-irrelevant shared feature received the same attentional
modulation as the object-defining feature (for which a same-
object benefit was evident for both speed and color changes),
thus indicating attentional co-selection of the task-irrelevant
target-object feature independent of its relevance for defining or
selecting the object. Second, since RT distributions for shared
features were consistently shifted to the left at the uncued object,
attentional modulation of shared features was not restricted to the
target but spread towards the task-irrelevant object, resulting in
a failure to find a same-object benefit for shared features in the
previous analyses. Hence, attending towards a single feature of a
target object resulted in co-selection of another, task-irrelevant
feature of that object. Yet, the underlying attentional process
was not restricted to the selected object, but included enhanced
processing of that irrelevant feature at another, irrelevant object.

This conclusion is supported by a balanced one-way ANOVA
using data for shared and object-defining features at both the
cued and the uncued object, pooled over speed- and color-change
trials from both experiments (Figure 5C). For both validly and
invalidly cued features, ANOVAS indicated significant differences
between the four cue conditions (uncued features: F(3,60) = 15,
p < 0.0001; cued features: F(3,60) = 44.67, p < 0.0001). For testing
individual conditions, we applied a Bonferroni correction for
multiple comparisons and regarded conditions as being signifi-
cantly different if the confidence interval did not include 0 for
alpha errors of 0.05. Mean differences and corresponding lower
and upper bounds of confidence intervals are summarized in
Table 2. For uncued changes of the object-defining feature, we
found significantly faster RTs at the cued object, confirming the
same-object benefit as described previously by analyzing speed-
and color change trials individually. However, changes of the
shared feature were statistically not different from those of the
object-defining feature at the cued object, independent of the
object on which they occurred. Even more, they were consistently
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FIGURE 5 | Comparison of feature-change detection across Experiments
1 and 2. (A) RT distributions for speed-change and (B) color-change detection
under the four different cue conditions, depending on whether the feature
was object-defining (straight line) or shared (dashed line). Scaling of axes is
identical for all subplots, as indicated in the right bottom panel of (A). (C)
Mean normalized RTs for shared and object-defining features, separately for

invalidly (top) and validly (bottom) cued features. RTs are pooled across both
speed and color-change trials. Error bars indicate 95% confidence intervals for
each mean, and the horizontal lines plot the 95% CI estimated for changes of
the shared feature at the cued object, as a reference. Numbers on top of
upper x-axis indicate stimulus and cue condition for reference to statistical
comparisons summarized in Table 2.

Table 2 | Statistical results for comparing change detection at the cued and uncued object, separately for object-defining and shared features,
and depending on the feature cue being either validly (upper half) or invalidly (lower half) cued.

Stimulus conditions Confidence interval Mean difference Significantly different

Lower bound Upper bound

Feature cue valid 1 vs. 2 −0.0570 0.0201 −0.0185 no
1 vs. 3 −0.0159 0.0612 0.0226 no
1 vs. 4 −0.1663 −0.0892 −0.1277 yes
2 vs. 3 0.0026 −0.0796 0.0411 no
2 vs. 4 −0.1478 −0.0708 −0.1093 yes
3 vs. 4 −0.1889 −0.1119 −0.1504 yes

Feature cue invalid 1 vs. 2 −0.0998 0.0415 −0.0291 yes
1 vs. 3 −0.0428 0.0985 0.0279 no
1 vs. 4 −0.2050 −0.0637 −0.1344 yes
2 vs. 3 −0.0137 0.1276 0.0570 no
2 vs. 4 −0.1759 −0.0346 −0.1053 yes
3 vs. 4 −0.2329 −0.0916 −0.1622 yes

Stimulus condition numbers correspond to those introduced in Figure 5C.

faster than RTs to changes of the object-defining feature at the
uncued object. Thus, a feature that was fully irrelevant to select
the object received the same attentional modulation than another
one that was obligatorily required for object selection, and this
attentional modulation spread towards the task-irrelevant object.
A similar pattern of results was found for correctly cued feature
changes. Again, changes of the object-defining feature were not
only significantly slower at the uncued object as compared to
the cued one, but also as compared to changes of the shared
feature, regardless of whether these occurred at the cued or
the uncued object. The only difference to the former analy-
sis for invalidly cued feature changes was that changes of the
shared feature at the uncued object were slightly but signifi-
cantly slower than those of the object-defining feature at the
cued object. Thus, statistically testing confirmed our previous
conclusion that the absence of a same-object benefit for shared
features was not due to absent attentional modulation of that

feature but caused by spreading of attention from the co-selected
irrelevant object feature to the same feature at the unattended
object.

DISCUSSION
Object feature-directed attention (OFDA) has been associated
with co-selection as well as suppression of task-irrelevant target-
object features, and with a global spreading of attention towards
distant objects sharing the attended feature (for review: Olson,
2001; Scholl, 2001; Maunsell and Treue, 2006; Carrasco, 2011;
Chen, 2012; Lee and Choo, 2013). Several factors influenc-
ing whether features are processed independently or integrated
over objects were postulated, including stimulus characteristics
(Vecera and Farah, 1994), the spatial extent of attention (Lavie
and Driver, 1996), the need of attentional shifts (Lamy and Egeth,
2002), and task demands (Mayer and Vuong, 2012). Co-selection
of task-irrelevant object features has been taken as evidence for
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object-based attention (Duncan, 1984; O’Craven et al., 1999;
Blaser et al., 2000; Rodríguez et al., 2002; Schoenfeld et al.,
2003; Wannig et al., 2007), while suppression of task-irrelevant
features and global enhancement of the attended feature has
been attributed to feature-based attention (Rossi and Paradiso,
1995; Treue and Martínez Trujillo, 1999; Saenz et al., 2002, 2003;
Martínez Trujillo and Treue, 2004; Fanini et al., 2006; Nobre et al.,
2006; Polk et al., 2008; Wegener et al., 2008; Gál et al., 2009;
Serences et al., 2009). Yet, it is an open question whether the
different effects observed with OFDA represent different attention
mechanisms of which one dominates the other depending on
task and stimulus constraints, or whether they represent distinct,
potentially co-existing states of a single attention mechanism.
The current study provides evidence for the latter possibility by
demonstrating that object- and feature-specific effects of atten-
tion are not mutually exclusive but co-exist, as expressed by
effective attentional modulation of task-irrelevant, co-selected
target-object features at non-target objects. To conceptualize
our findings, we propose a 3-step model of attention consist-
ing of object-specific selection of features due to binding and
grouping dynamics and a subsequent global, object- and space-
independent modulation of those selected features. Upstream
to this, a task-dependent, weighted gain to each of the feature
channels potentially constraints the level of object-specific fea-
ture binding. The following sub-chapters first describe the basic
architecture of the model and then discuss characteristics and
predictions of the model based on recent literature and the
experimental findings of the current study.

3-STEP MODEL OF ATTENTION
Several computational models of attention have been suggested
previously, including Guided Search, Neural Theory of Visual
Attention (NTVA), Selective Attention Model (SLAM), and others
(for review: Itti and Koch, 2001; Wolfe and Horowitz, 2004;
Bundesen and Habekost, 2005; Rothenstein and Tsotsos, 2008).
The 3-step model of attention presented in the following is
conceptual rather than computational, and represents a unified
framework for feature- and object-specific effects of attention
and their dependency on task requirements. The model con-
sists of distinct feature channels (A to C in Figure 6A), each
being represented by multiple modules to account for different
locations in space (1 to 4 in Figure 6A), and a channel- and
location-specific top-down input to these modules, specified by
task requirements. The model assumes two forms of interaction,
horizontally and vertically. Horizontal interactions are taking
place between modules of the same feature channel and sup-
port enhanced processing of a selected feature at unattended
locations. Vertical interactions are taking place between modules
of different channels and essentially represent binding dynamics
through which different features of an object are integrated. We
propose that the actual strength of these vertical interactions
determines the degree to which task-irrelevant features are subject
to co-selection, depending on both the task-dependent, weighted
top-down input to each of the feature channels and stimulus-
specific characteristics. Attenuation or even suppression of these
binding dynamics takes place if the top-down gain provides
sufficient suppressive drive to those feature channels that process

task-irrelevant information. Following feature selection (selected
either directly as a consequence of task requirements or indirectly
by object-specific binding processes), the strength of horizontal
interactions then determines the degree to which these selected
features are processed globally. In a nutshell, the model assumes
task- and object-specific feature selection and object-independent
global processing modulation of the selected features.

Consider an object at location 1, consisting of features A
and B (blue square in Figure 6A), and a relatively undemand-
ing task requiring attention to feature A. Step 1 of the model
sets the top-down signal, which consists of a spatial, feature-
unspecific selection of the task-relevant object location and a
feature-specific selection of the task-relevant object feature A1.
With low task demands, non-relevant feature channels will not
be particularly suppressed, symbolized by open circles as inputs
to channels B and C. Step 2 of the model consists of vertical
interactions between different feature modules at the attended
location, depending on two factors: 1) the top-down input to
each of the feature channels as set in step 1; and 2) stimulus-
dependent binding or grouping characteristics. In the example,
binding is assumed to support object-specific feature integra-
tion, resulting in co-selection and enhanced processing of task-
irrelevant object-feature B1 (blue arrow), but omitting feature C1.
In the third step, the selected features receive a globally enhanced
processing benefit, implemented by the horizontal interactions
between modules of the same feature channels (red arrows).
Hence, due to task requirements, feature A receives a global,
strong processing enhancement and feature B receives a somewhat
weaker (due to the absent top-down boost, cf. also Lu and Itti,
2005) but globally effective processing enhancement, too. Taken
together, the model proposes a task- and object-specific selec-
tion of features (supported by binding dynamics and potentially
constrained by top-down mediated suppression of task-irrelevant
feature channels), and a global processing modulation of the
selected features, i.e., not restricted to the initially attended object
or location.

The model fully accounts for the experimental findings
obtained in the current study and it makes numerous exper-
imentally testable predictions, two of which are illustrated in
Figures 6C,D and will be discussed below. First, for the results
reported in this paper, Figure 6B illustrates our experimental
situation by considering two objects, each consisting of one
unique feature and another feature that is shared among both
objects (illustrated by the partially overlapping blue and orange
rectangles). The prediction from the model is that fastest RTs are
to be expected for the unique, task-relevant feature A of the target
object (blue), which receives a direct attention-dependent top-
down boost, and slowest RTs for the unattended, unique feature
C of the distractor object (orange). Yet, under low task demands
(simple change detection under conditions of overt attention) the
model predicts that the shared feature B will be subject to co-
selection due to object-specific binding dynamics during step 2,
but will be processed in a global, object-independent manner due
to step 3, resulting in RTs that are to be the same regardless of
whether this feature is tested at the blue or the orange object.
Likewise, if attention is directed to the shared feature, RTs should
be fastest for this feature, again independent of the object on
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FIGURE 6 | 3-step model of attention. (A) Basic concept of the model,
based on a task-dependent feature- and location-specific gain,
object-specific feature selection by binding, and global, feature-specific
processing modulation. The model builds on different feature channels
(A–C), with each channel consisting of numerous modules to account for
different locations (1–4). The blue rectangle represents an object at
location 1, consisting of features A and B. A task-dependent top-down
gain to each of the channels (symbolized by plus and open circle symbols
to indicate modulation strength) sets the overall balance between the
selected feature and other task-irrelevant features. Depending on this
balance and on stimulus characteristics, vertical interactions between
feature channels (blue arrow) represent object-specific binding dynamics

(that may be attenuated if task-dependent top-down gain is set to induce
suppression of task-irrelevant channels, cf. Figure 6C). Subsequently,
features that are selected due to either task instructions (feature A) or
binding dynamics (feature B) receive a global processing enhancement,
mediated by horizontal interactions within feature channels (red arrows).
(B) Predictions of RT distributions for two spatially overlapping objects at
the spatial focus of attention, consisting of one feature that is unique to
each of the objects and another that is shared by both objects, under low
and (C) high task demands. (D) Predictions of RT distributions for three
distant objects, consisting of either feature A, B, or C under stimulation
conditions as those shown in Figure 6B. See main text for further
explanation.

which it is tested, and slowest for the other two features. The
results of Experiments 1 and 2 for object-defining and shared
features exactly confirm these predictions.

The basic characteristics of the model also predict results
of previous studies that have been attributed to support either
object- or feature-based attention. For example, O’Craven et al.
(1999) reported that attending the motion of a face stimulus
elicited higher activity not only in human motion-sensitive region
MT+ but also in the fusiform face area (FFA), whereas activity
in the parahippocampal place area in response to a spatially
overlapping house stimulus was not affected. Considering low or
moderate task demands and strong binding dynamics between
motion and the high-level feature “face”, the 3-step model of
attention predicts co-selection of the task-irrelevant feature “face”

and enhanced processing in FFA, but no such effect for the
feature “house”. Importantly, the model also predicts enhanced
FFA activity in response to distant, task-irrelevant face stimuli,
and to motion bound to the house stimulus. However, these
conditions have not been tested in the study of O’Craven et al.
(1999).

The results of O’Craven et al. (1999) were taken as evi-
dence for object-based attention. Using essentially the same
type of OFDA-paradigm, Treue and Martínez-Trujillo found evi-
dence for feature-based attention by demonstrating that attend-
ing a specific feature of an object at a target location causes
enhanced processing of that feature also at distant objects
(Treue and Martínez Trujillo, 1999; Martínez Trujillo and Treue,
2004). This result is explained by the horizontal interactions
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of the model within feature channels. Importantly, as noted
before, the model also predicts that under appropriate task
and stimulus conditions another feature of the attended object
may become subject to co-selection and enhanced processing.
This condition was tested in a follow-up study by requir-
ing attention to either the color or the motion of a moving
object (Katzner et al., 2009). The authors found that attention-
dependent effects of MT neurons were independent from the
task at hand, supporting the assumption of co-selection of
the task-irrelevant feature under experimental conditions for
which results were otherwise consistent with feature-based atten-
tion.

Another line of evidence suggests that attention can also be
directed away from known non-target features (Woodman and
Luck, 2007; Arita et al., 2012). In the model, this can be achieved
by setting a low weight or even a negative gain for task-irrelevant
features, resulting in an advantage of other, not explicitly sup-
pressed features. This effect would be in accordance with the
finding that negative cues are effective, although not as powerful
as positive ones (Arita et al., 2012).

INFLUENCE OF TASK DEMANDS AND STIMULUS CHARACTERISTICS
A key-assumption of the model is that the strength of vertical
interactions varies as a function of task difficulty, resulting from
the weighted top-down input to the various feature channels.
Thus, with higher task demands feature channels processing task-
irrelevant information may become subject to active suppression
(Figure 6C, symbolized by minus symbols as input for channels
B and C), resulting in attenuation of binding these features with
the selected feature, and thereby reducing or preventing their
co-selection. For the example of RTs as a measure of attention-
dependent processing modulation, higher task demands (as e.g.,
detecting a hardly visible feature change) will result in stronger
suppression of task-irrelevant information and thus, in a right-
ward shift of the RT distributions for the task-irrelevant target-
object feature B. In the most extreme case, RTs may be as slow
as those for the unattended feature C of the unattended object. In
any case, RTs in response to the unattended feature B are predicted
to still be independent from the object on which they are tested.

Experimental data from neurophysiological and neuroimaging
studies support the assumption of a close relation between task
demands and the specific form of attentional modulation. In
monkey area V4, Spitzer et al. (1988) reported that neurons
were more strongly modulated if monkeys had to detect an
orientation difference of only 22.5◦ between sample and test
stimuli as compared to a difference of 90◦, and also found a cor-
responding behavioral improvement in discriminative abilities.
Likewise, color-selective neurons in inferotemporal cortex were
shown to be strongly modulated depending upon whether the
task implied simple color categorization or a more demanding
color discrimination (Koida and Komatsu, 2007). Notably, such
task-related modulation of neuronal activity may be found as
early as V1 (Chen et al., 2008), and has been reported for many
areas throughout visual cortex in humans, including MT+ (Huk
and Heeger, 2000).

Task demands may even cause a complete perceptual sup-
pression of otherwise highly salient stimuli, as demonstrated by

studies on inattentional blindness. A well-known example is the
finding of overlooking the “gorilla-in-the-midst” (Simons and
Chabris, 1999), but other studies showed that this complete
recognition failure may also occur for less complex scenes and
artificial stimuli, even if these were presented for prolonged times
and moved through the center of gaze (Most et al., 2001). Active
attention-dependent inhibition was demonstrated by Slotnick
et al. (2003), reporting significant suppression of activity at loca-
tions distant to the attended object, in both striate and extrastriate
visual areas. Other studies investigated the processing fate of
different object features and found evidence for both, co-selection
and suppression, suggesting that feature-directed attention may
act through a combination of facilitatory and inhibitory mech-
anisms (Fanini et al., 2006; Xu, 2010). Importantly, whether an
irrelevant object feature was selected or blocked depended upon
task requirements or attentional load. Active inhibition was evi-
dent only if the task induced a strong response conflict, whereas
it was absent otherwise (Fanini et al., 2006), or as a function of
the target-feature encoding load (Xu, 2010). In addition, effective
filtering of a task-irrelevant feature has been shown to increase
with learning (Gál et al., 2009), underlining the dynamic nature
of feature selection and feature suppression.

Task demands may also vary with stimulus characteristics.
Mayer and Vuong (2012) recently showed that changes to unat-
tended motion or color of a stimulus did not affect a subject’s
performance, but changes to unattended shape did. These results
provide direct evidence for stimulus-inherent properties influenc-
ing the degree to which irrelevant object features of the attended
object can be effectively suppressed. In turn, they also suggest
that stimulus properties influence the degree to which irrelevant
information is bound to the relevant information. Such spreading
of attention was shown by previous behavioral (Egly et al., 1994;
Richard et al., 2008) and single-cell studies (Roelfsema et al., 1998,
2004), demonstrating that unattended locations receive a process-
ing enhancement when these were located on the same coherent
object than the attended location, as compared to equally distant
but unbound locations. Gestalt cues like collinearity, color sim-
ilarity, and common fate similarly influence attentional spread-
ing towards irrelevant locations (Wannig et al., 2011). These
authors demonstrated increased V1 firing rates in response to
a spatially unattended stimulus depending on its Gestalt simi-
larity to a stimulus at the attended location. The results were
taken as support for the concept of incremental grouping, which
builds on labelling of feature-selective neurons, e.g., by enhanced
activity (Roelfsema et al., 2000; Roelfsema, 2006). Accordingly,
if applied to the framework presented here, task- and binding-
mediated enhancement or suppression of feature-selective neu-
rons would determine the degree to which these are labelled and
thus directly influences potential co-selection of task-irrelevant
object features.

PARALLEL, FEATURE-SPECIFIC PROCESSING ENHANCEMENT
Due to step 3 of the model, another key-assumption is that all
selected features gain a global, i.e., spatially independent process-
ing enhancement, no matter whether they were selected by task
instructions or as a result of object-specific binding dynamics.
Thus, when tested on a distant object, the model not only predicts
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a processing benefit for the attentionally selected object-feature,
but for co-selected features as well. In Figure 6D, each of the
features A to C is tested on a different object at the unattended
location 2. The model predicts that basic relations between RT
distributions as observed at the attended object (cf. Figure 6B)
should be preserved in the periphery, even though shifted to the
right due to absent spatial attention (indicated by an open circle
for location 2). Thus, the attended feature A receives fastest RTs
and the co-selected feature B receives somewhat slower RTs, but
still faster than those of the unselected feature C.

By predicting global processing enhancement of all selected
features, the model necessarily implies that attention can be
divided to multiple features at the same time, as also suggested
by the results of the current study showing reduced RTs not
only for the cued feature but also in response to the uncued,
co-selected feature. This finding is in accordance with previ-
ous research indicating that parallel processing of two attended
features may occur without costs in accuracy as compared to
processing only one (Bonnel and Prinzmetal, 1998; Tsujimoto
and Tayama, 2004). Interestingly, dual-task performance involv-
ing feature values defined in the same dimension (form, color,
motion) was reported to be indistinguishable from dual-task per-
formance involving features from different dimensions (Lee et al.,
1999). The most direct proof of divided feature-directed attention
has been provided by recent EEG studies using frequency-tagged,
steady-state visual evoked potentials (Andersen et al., 2008, 2013).
It was not not only shown that attention can indeed be directed
to two different features at the same time, but furthermore that
facilitation of these features can be observed throughout the
visual field even if task demands would favor a spatially restricted
processing enhancement (Andersen et al., 2013).

Consistent with this and our own findings, another EEG study
recently showed that also the neuronal representation of task-
irrelevant features may be globally enhanced (Boehler et al.,
2011). The authors investigated the ERP response to a distractor
object, located in the hemi-field opposite to the target. Even
though the object was irrelevant to the task and located out-
side the spatial focus of attention, its neuronal representation
was modulated depending on the similarity of distinct features
between distractor and target. Specifically, if the distractor con-
tained a color that was also present in the target, the ERP response
showed a characteristic modulation as compared to the situation
when both objects were made of different colors. Interestingly,
this irrelevant-feature effect arose about 80 ms later in time than
the attentional effect at the target object, a modulation of the
N2pc component (being associated with the allocation of atten-
tion and also linked to feature selection (Luck and Hillyard, 1994;
Eimer, 1996; Hopf et al., 2004)). The authors interpreted this
result as to indicate spreading of attention towards other objects
outside the spatial focus of attention, as previously been also
suggested by studies showing object-based response compatibility
effects at distractor items (Chen and Cave, 2006), and an influence
of categorical similarity (Kravitz and Behrmann, 2011). In the
context of our model, this feature-depending modulation of the
distractor is in accordance with representing step 3 of the model—
a global, feature-based enhancement of those features that were
selected during step 1 and 2. Further experimental results in

accordance with this notion come from a recent fMRI study
demonstrating global enhancement of co-selected, task-irrelevant
features bound to the target feature of the attended object (Lustig
and Beck, 2012). Notably, this spreading of attention from the
target to the distractor object not only occurs under conditions
of covert attention, as shown by Boehler et al. (2011) and Lustig
and Beck (2012), but even when objects are presented at the
spatial focus of attention, as indicated by the results of the current
study.

TOP-DOWN ADJUSTMENT
The primary purpose of the model is to suggest a simple, unique
framework to account for (1) the experimental results obtained
in our experiments; and (2) experimental findings from previ-
ous studies that have been attributed to either feature-based or
object-based attention. In its current version, the model does
not distinguish between features of the same (red, green) or
different dimensions (color, motion). There is good evidence that
attending a specific feature dimension may affect processing of
all features in that dimension (Found and Müller, 1996; Weidner
et al., 2002; Gramann et al., 2007; Schubö and Müller, 2009;
Gramann et al., 2010), thus posing the constraint that processing
of task-irrelevant features may be different depending on whether
these are defined in the same or a different dimension. However,
such a distinction can easily be incorporated into the model by
splitting the top-down gain into two factors, one concerning the
feature dimension and the other concerning the specific feature
attribute. If all other characteristics of task and stimuli are kept
constant, the model allows for predicting the relative size of
attentional effects as a function of the dimension to which the
task-irrelevant object features belong.

A possible candidate structure as the source of this task-
dependent top-down signal is the prefrontal cortex (PFC), a
region involved in the executive control of behavior and the cur-
rent task set (Sakai, 2008). Many neurons in PFC exhibit a strong
rule-dependency regarding spatial and featural decisions, and the
acquisition and implementation of the current task context has
been suggested to constitute a main function of PFC (Sakagami
and Niki, 1994; White and Wise, 1999; Assad et al., 2000).
Interestingly, in the context of the current study, the activity of
a significant fraction of neurons in PFC has been demonstrated
to exhibit task-dependent selectivity for both the behaviorally
relevant features motion and color (Lauwereyns et al., 2001).

CONCLUDING REMARKS AND SUMMARY
The current study utilized 2-dimensional cues indicating the
prospective target object and target feature, and RT as a mea-
sure for behavioral performance. The significant dependencies
between the information provided by the cue and the respective
RT distributions were interpreted as representing feature- and
object-based attentional selection, and were integrated into a
3-step model of attention acting on the early processing of visual
stimuli. Yet, opposed to this assumption, differences in RT do
not necessarily indicate an influence on visual processing, but
potentially might also be due to other factors, as e.g., a task-
specific response set (cf. for discussion: Taya et al., 2009). How-
ever, the strong evidence provided by several neurophysiological
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studies revealing the influence of both object- and feature-based
attention on neuronal responses in early visual cortex (Roelfsema
et al., 1998; Treue and Martínez Trujillo, 1999; McAdams and
Maunsell, 2000; Wannig et al., 2007; David et al., 2008; Katzner
et al., 2009; Zhou and Desimone, 2009; Wannig et al., 2011; Chen
et al., 2012), and the correlation between attention-dependent
modulation of neuronal activity in early visual cortex and behav-
ioral RT of the animal (Cook and Maunsell, 2002; Womelsdorf
et al., 2006b; Herrington and Assad, 2009; Galashan et al., 2013)
provides strong support for relating the RT effects observed in our
psychophysical experiments to modulations during early visual
processing. The RT measurements and their strong dependence
on the feature- and object-specific cueing condition suggest the
co-existence of attention-dependent effects commonly attributed
to different frameworks of attention. Our model provides a new
conceptual framework into which existing theories of neuronal
implementations of attention may be incorporated, as e.g., the
feature-similarity gain model (Treue and Martínez Trujillo, 1999;
Martínez Trujillo and Treue, 2004), or the incremental grouping
hypothesis (Roelfsema et al., 2000; Roelfsema, 2006). By assuming
a top-down gain adjustment, task- and object-specific binding
dynamics, and a global feature-specific response modulation, the
model not only explains our own experimental results within a
single, coherent framework, but also allows for the unification
of a vast amount of experimental data that were usually taken
as support for either object- or feature-based attention. Future
research for testing predictions of the model regarding the influ-
ence of task demands and object-specific binding dynamics on
the proposed global nature of processing modulation will reveal
benefits and limits of the model, and new insights in the com-
plex interdependencies of various attention- and task dependent
mechanisms.
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In our previous study we found that it takes less time to detect coloration change in a moving
object compared to coloration change in a stationary one (Kreegipuu et al., 2006). Here,
we replicated the experiment, but in addition to reaction times (RTs) we measured visual
evoked potentials (VEPs), to see whether this effect of motion is revealed at the cortical
level of information processing. We asked our subjects to detect changes in coloration
of stationary (0◦/s) and moving bars (4.4 and 17.6◦/s). Psychophysical results replicate
the findings from the previous study showing decreased RTs to coloration changes with
increase of velocity of the color changing stimulus. The effect of velocity on VEPs was
opposite to the one found on RTs. Except for component N1, the amplitudes of VEPs
elicited by the coloration change of faster moving objects were reduced than those elicited
by the coloration change of slower moving or stationary objects. The only significant effect
of velocity on latency of peaks was found for P2 in frontal region.The results are discussed
in the light of change-to-change interval and the two methods reflecting different processing
mechanisms.

Keywords: motion, velocity, color change, reaction time, visual evoked potentials

INTRODUCTION
The perception of motion is one of evolutionary oldest abilities
of the visual system. As it enables us to cope with a dynamic
environment, it seems reasonable to assume that the presence of
motion information is not easily ignored even when attending to
another quality of an object, like its form or color.

Researchers have identified at least two distinct functional sub-
systems, one of which processes color (parvocellular pathway) and
the other motion (magnocellular pathway). The subpopulations
of these pathways are evident in retina, projecting through LGN
to V1 (Hubel and Wiesel, 1972; Livingstone and Hubel, 1988).
From V1 the information is transmitted through ventral and dor-
sal streams (Goodale and Milner, 1992). The dorsal stream (also
referred to as “where”/”how” pathway) gets its input mostly from
the magnocellular pathway and projects to posterior parietal lobe.
The dorsal stream has been most commonly associated with aware-
ness of object location and guidance of action. The ventral stream
(the “what” pathway) gets both magno- and parvocellular input
and projects to temporal lobe. This stream has been associated
with attention, object recognition and identification. The dorsal
stream has been considered to be relatively faster than the ven-
tral stream (Norman, 2002), but it has also been suggested that
these two streams are highly interactive (Dobkins and Albright,
1993; Cicerone et al., 1995). These two distinct subsystems are
additional evidence of the evolutionary pressure for development
of a system specialized for early detection of motion.

The aforementioned visual streams involve specialized areas in
the cortex that are activated when processing color (“globs” in V4
and adjacent areas, see Conway et al., 2007) and motion (MT/V5,

Zeki, 1974). V5 has been shown to react to luminance changes of
an object, but it is not activated by isoluminant, heterochromatic
stimuli (Conway et al., 2007). Differently from luminance contrast
sensitivity, the magnocellular layers in LGN have not been demon-
strated to be color selective. The processing of motion information
has been believed to be rather unaffected by color (in some stages
of the processing), however, it has been suggested that some
magnocellular neurons respond to chromatic contrast, but with-
out concrete information about its sign (Dobkins and Albright,
1993). The color processing mechanisms on different stages get
their input from both magno- and parvocellular pathways (e.g.,
double-opponent cells and thin stripes in V2; Gegenfurtner, 2003;
Shapley and Hawken, 2011). Taken together, it is clear that parvo-
and magnocellular subsystems interact with each other (Dobkins
and Albright, 1993; Cicerone et al., 1995; for a review see Skot-
tun, 2013), and therefore the characteristics of one quality can
influence the perception of the other (Moller and Hurlbert, 1997;
Kreegipuu et al., 2006; Werner, 2007).

It has been suggested by the different latencies theory that stim-
ulus qualities (like color, luminance, shape, motion) have different
processing latencies, and the processing latency for color precedes
processing of motion by 70–80 ms (Moutoussis and Zeki, 1997).
However, by now many studies have indicated that the visual delays
for different visual attributes are neither fixed nor identical, but
rather depend on different stimulus characteristics, as well as on
the experimental set up (Allik and Kreegipuu, 1998; Gauch and
Kerzel, 2008).

Kreegipuu et al. (2006) conducted a simple reaction time (RT)
study where subjects were asked to detect the color or luminance
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change of moving or stationary stimuli. The results showed shorter
RTs to color or luminance change for faster moving stimuli com-
pared to more slowly moving or stationary stimuli. However, this
unexpected discovery that it takes more time to notice change in
color of a stationary object rather than of the same object put in
motion – was not generalizable to all types of motion. We observed
shorter detection times only with a single moving object, not with
moving gratings covering an extended portion of the visual field
(Murd et al., 2009). It seems that an identifiable object traveling
along a solitary trajectory is critical for improved ability to detect
change in coloration.

There is an agreement between researchers that Reichardt-
type motion energy detectors are the main building blocks of
many motion analysing mechanisms (Reichardt, 1961; Poggio
and Reichardt, 1973; Van Santen and Sperling, 1985). How-
ever, beside motion energy, motion can be recovered based on
some higher-order perceptual attributes. For example, accord-
ing to one conceptualization it is possible to distinguish three
motion detection systems at least: a first-order system that uses
a primitive motion energy computation to extract motion from
moving luminance modulations; a second-order system that uses
motion energy to extract motion from moving texture-contrast
modulations; and a third-order system that tracks features (Van
Santen and Sperling, 1985). It seems that the observed pat-
tern – the effect of velocity appearing only with single moving
objects (Kreegipuu et al., 2006) but not with large moving grat-
ings (Murd et al., 2009) – fits nicely to this theoretical scheme.
The question remains whether this advantage of a single mov-
ing stimulus, when compared to a stationary coloration-changing
stimulus, appears already on the cortical level of informa-
tion processing. One approach to address this question is to
measure the brain’s electrical activity by electroencephalogra-
phy (EEG) and compare the transient visual evoked potentials
(VEPs) of the coloration change between different stimulus con-
ditions (stationary, slow, and fast moving stimuli). This would
enable us to see whether the stimulus condition effects the
evoked potentials of coloration change causing amplitude and/or
latency differences in some components, such as N1, P2, N2,
and P3.

Based on the literature on event-related potentials (ERPs;
Fonaryova Key et al., 2005; Luck, 2005; McKeefry, 2001), there
are some results indicating we might find a difference in VEPs
between color-change events in stationary versus moving stimuli.
For example, McKeefry (2001) found that amplitudes of posi-
tive components P1 and P2 and negative component N2 for the
motion onset of chromatic stimuli were reduced for slow mov-
ing stimuli than for fast moving stimuli. Since this tendency
was not present when motion onset of luminance stimuli for
two velocities was compared, it was concluded that this effect of
velocity found for the onset of chromatic stimuli might indicate
shifting between two separate mechanisms – parvocellular and
magnocellular. According to this theory, parvocellular mechanism
is active with slow moving chromatic stimuli and magnocellu-
lar mechanism with fast moving chromatic stimuli. Therefore,
when comparing VEPs of color change in fast and slow mov-
ing stimuli, we might find reduced amplitudes in slower moving
stimulus.

It has also been suggested that the visual N1 reflects the dis-
crimination process within the focus of attention (Vogel and Luck,
2000). Some studies of selective attention and cueing have shown
that N1 amplitude to attended (and validly cued) stimuli is larger
(more negative; Luck et al., 1994). Beer and Röder (2004) have
suggested that attention to motion enhances processing of visual
stimuli, since N1 amplitudes for stimuli moving in the attended
direction were more negative compared to stimuli moving in the
unattended direction.

As the task in our previous study (Kreegipuu et al., 2006)
required a quick response, it presumed directing attention to the
stimulus. Since the characteristics of a moving stimulus enable
both spatial and temporal predictions about the event, there might
be somewhat different expectations about the coloration-change
of a moving stimulus compared to the stationary stimulus. Taken
into account the previous findings, there seems to be enough rea-
son to consider that this advantage of a moving stimulus will be
seen on the cortical level of information processing.

MATERIALS AND METHODS
PARTICIPANTS
Seven participants (six females and one male, aged 20–25) took
part in this experiment. One of the subjects was well-trained;
other six were naïve concerning the specific purposes of this
study. Participants were informed about the general purpose
of the experiment (comparison of the data gathered by using
psychophysical and electrophysiological methods) and given an
overiew of the equipment used in the experiment. Participants
were also informed about their right to quit the experiment any
time they wished, and gave their informed consent. All partici-
pants self-reported to have normal or corrected-to-normal vision
and reported no deficits in color perception.

STIMULI
A rectangular bar with luminosity profile corresponding to the
positive half-cycle of a sine wave (1.2 × 2.3◦ at 90 cm viewing dis-
tance) was presented as a stimulus on the screen of a Mitshubishi
Diamond Pro 2070SB monitor (frame rate 140 Hz; 752 × 564 pxl;
27.6 × 20.5◦ at 90 cm viewing distance). The bar was either red
(CIE chromaticity coordinates: 0.636; 0.335) or green (CIE chro-
maticity coordinates: 0.289; 0.607) with luminance of 13.85 cd/m2,
luminance was measured at the peak of the positive phase of the
sinusoidal luminance profile. The neutral uniform background of
the screen had a luminance of 0.3 cd/m2. A white fixation point
(8 × 8 minof arc) was present on the screen for the entire trial.
Stimulus was rendered with Cambridge ViSaGe visual stimulus
generator (Cambridge Research Systems Ltd., Rochester, UK). As
the red and green color were photometrically isoluminant and we
did not measure subjective isoluminance (and the colors were not
therefore corrected on these basis), we use the term “coloration
change” – as an arrangement of color and tones – to be more pre-
cise as the color change might have been subjectively accompanied
by small luminance artifacts.

PROCEDURE
Each trial started with the appearance of a moving or stationary
test stimulus. The moving stimulus appeared at the left or right
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edge of the screen and started to move horizontally across the
screen with a velocity of 4.4◦ or 17.6◦/s.

Figure 1 demonstrates the experimental setup. In each trial,
coloration change (from red to green or vice versa) took place
in one of ten possible switch points in the middle third of the
screen (equally spaced positions: 9.2◦; 10.22◦; 11.24◦; 12.26◦;
13.28◦; 14.3◦; 15.32◦; 16.34◦; 17.36◦; 18.38◦ from the starting
edge). The stationary stimulus (from here on also referred to as
velocity 0◦/s) appeared randomly in one of these ten positions and
changed its coloration unpredictably in a time window of 476–
3547 ms after its appearance (which in average corresponds to the
coloration change of a stimulus moving with velocity of 10◦/s).
Time windows for the coloration change of moving stimuli were:
480–885 ms after its appearance for a faster moving stimulus and
1929–3547 ms for a slower moving stimulus.

Subjects were instructed to press a response button as quickly
as possible after the detection of a change in coloration. RTs were
saved for offline analyses. Each observer performed two blocks of
150 trials, in total 300 trials – 100 per velocity condition (0◦, 4.4,
17.6◦/s). The order of trials with different velocities was pseudo-
randomized within the experimental block and there was a pause
of 3 s (inter-stimulus interval) before the beginning of each trial.
When a response was not given, the missed trial was repeated on
random position in the experimental block.

ELECTROENCEPHALOGRAPHY
The electroencephalogram (EEG) was registered with BioSemi’s
system Active One (BioSemi, Amsterdam, The Netherlands), and
Vision Analyzer 1.05 (Brain Products, GmbH, Munich, Germany)
was used for offline data analysis. 14 active electrodes (Fz, Fpz,
F3, F4, P3, P4, C3, C4, Cz, Pz, T5, T6, O1, O2) were used
according to the international 10/20 system electrode placement
(Jasper, 1958), off-line referenced to ears. Additionally, the Com-
mon Mode Sense (CMS) active electrode was placed between Fz
and Cz and the Driven Right Leg (DRL) passive electrode on the
observer’s neck. Vertical and horizontal eye movements were reg-
istered with two bipolar electrodes for both. The DC mode and
sample rate of 1024 Hz was applied for online recording. Data

FIGURE 1 | Experimental setup. The dots indicate the 10 possible color
switch-points in the middle 1/3 of the screen (not shown on the actual
screen).

were offline filtered (0.3 Hz low cut-off and 35 Hz high cut-off
filters, both 24 dB/oct) and epoched around the coloration change
event (−100 to +500 ms). Ocular artefacts were removed with the
built-in Gratton and Coles algorithm (Gratton et al., 1983) used
by Vision Analyzer that corrects ocular artefacts by subtracting the
voltages of the eye channels, multiplied by a channel-dependent
correction factor, from respective EEG channels.

A 100 ms interval before the coloration-change was selected for
baseline correction and segments were tested for several known
artefacts (50 μV allowed voltage step per sampling point, maximal
allowed difference within the segment 100 μV, maximal abso-
lute amplitude ± 70 μV and lowest activity criterion of 0.5 μV
per 100 ms). Segments were averaged for different velocities and
observers. Automatic peak detection (separate search for every
channel) for local maximum/minimum was used to find ERP
component peaks for N1 (50–130 ms), P2 (130–170 ms), N2 (150–
270 ms) and P3 (230–500 ms). Time intervals for peak detection
were set based on the grand average data and visually inspected to
be suitable for all subjects. Since the visual inspection did not reveal
any overlapping contrapolar peaks, the electrodes were pooled as
follows: frontal (Fz, Fpz, F3, F4), parietal (P3, P4, Pz), central (C3,
C4, Cz), temporal (T5, T6), occipital (O1, O2).

Repeated measures analysis of variance (ANOVA; Statistica
10.0, StatSoft Inc., Tulsa, OK, USA) was used for analysis of both
RTs and VEPs.

RESULTS
REACTION TIMES
Figure 2 shows the averaged RTs in each 10 possible coloration-
switch points for three velocities of the moving bar: 0 (stationary),
4.4, and 17.6◦/s. RTs over 1000 ms and below 100 ms were
excluded from the analysis. Over all subjects, there were 16 misses
(RT > 1000 ms) and 146 anticipated responses (RT < 100 ms) out
of 2100 responses.

Since there was no effect of direction (stimulus moving from
right to left or vice versa) detected on the RTs [F(1,3) = 3.141,
p < 0.1745] we omitted this parameter from the further analysis.

FIGURE 2 | Mean RTs as a function of spatial position of the color

change along the movement trajectory. Vertical bars denote ± standard
error.
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Figure 2 reveals two conspicuous properties. First, it seems to
take less time to notice the coloration change which happens dur-
ing the later portion of the movement trajectory [F(9,54) = 3.39,
p < 0.002]. As can be seen from Figure 2, mean RTs were shorter
for coloration changes occurring in the last positions (correlation
between RT and switch-point r = −0.056 p < 0.01). Second,
it took considerably less time to notice the coloration change
of a fast moving (17.6/s) bar than the coloration change of the
same bar moving slowly (4.4◦/s) or standing in the same position
[F(2,12) = 71.52, p < 0.00001]. Thus, it seems to be confirmed
that mean RTs to the coloration change of the faster moving
stimulus were shorter than in case of the slower moving or station-
ary stimulus. There was also an interaction between velocity and
switch-point position [F(18,108) = 1.7, p < 0.051] which indicates
that the order of RTs at different positions is not identical.

VISUAL EVOKED POTENTIALS
Figure 3 demonstrates the grand average potentials in parietal
region where the components were most pronounced. The figure
presents data pooled together over the data of seven participants
for the three velocities. Like manual RTs, VEPs elicited by the col-
oration change of the fast moving stimulus (17.6◦/s) are different
by both amplitude and delay compared to those elicited by the
coloration change of the slow moving and stationary stimulus.
Repeated measures ANOVA was conducted on mean peak ampli-
tudes of pooled regions of interest (listed at the end of Method
section). The significant effect of velocity on N1 amplitude was
found in frontal [F(2,12) = 4.464, p < 0.036] and in central
region [F(1,12) = 4.501, p < 0.035]. This effect demonstrates
a difference between N1 amplitudes for the coloration change of
slower and faster moving stimuli, showing larger amplitudes in
case of faster moving stimuli. Although five out of seven partici-
pant also showed similar tendency in parietal region, the overall
effect remained insignificant [F(2,12) = 2.382, p < 0.135]. Sig-
nificant effect of velocity on P2 amplitude was found in frontal
[F(2,12) = 8.41, p < 0.0053], central [F(2,12) = 12.92, p < 0.0011]
and parietal region [F(2,12) = 19.775, p < 0.0002], show-
ing less pronounced amplitudes for faster versus slowly moving
stimuli.

Significant effect of velocity on N2 amplitude was found
in frontal [F(2,12) = 8.41, p < 0.0052] and central region
[F(2,12) = 12.92, p < 0.0011], showing larger N2 with slower
moving stimuli. Significant effect of velocity was also found on P3
amplitude in central [F(2,12) = 5.068, p < 0.0254] and parietal
region [F(2,12) = 10.814, p < 0.0021], showing stronger P3 ampli-
tudes for the coloration-change of slower moving and stationary
stimuli.

The only significant effect of velocity on latency of peaks was
found for P2 in frontal region [F(2,12) = 6.359, p < 0.014], so that
the peak was earliest for the coloration change of the stationary
stimulus.

Surprisingly, as is shown in Figure 3 and by the statistics
presented, the amplitudes of P2, N2, and P3 components were
reduced for the coloration change of the faster moving stimu-
lus. In frontal and central regions, we did find the amplitude of
component N1 to be significantly larger (i.e. more negative) for
the coloration change of the faster moving stimulus, but the N1

FIGURE 3 | Average VEPs for the color change in the parietal region by

three velocities (0, 4.4, and 17.6◦/s).

amplitudes for slower moving and stationary stimulus did not
differ significantly.

However, the amplitudes of P2 and P3 seem to be lined
up according to the average of the time windows of coloration
change – as we described in the Method section, the stationary
stimulus changed its coloration 476–3547 ms (corresponding in
average to coloration change of a bar moving with velocity of
10◦/s), the faster moving stimulus 480–885 ms and the slower
moving stimulus 1929–3547 ms after the beginning of the trial.

We also analyzed the VEPs by the switch-points of coloration
change (see Figure 4), and noticed that with faster moving stimu-
lus the amplitude of P3 increased with later switch-points, but this
trend was not present with slower moving stimuli. In Figure 5, P3
amplitude by the merged coloration-change switch-points (two
earliest versus two latest on the motion trajectory) are presented.

FIGURE 4 | Average VEPs for the color change in the parietal region by

faster and slower moving stimuli (4.4 and 17.6◦/s) for pooled

switch-points of the color change (first two switch-points sp1–2, two

middle switch-points sp5–6 and last two switch-points sp9–10).
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FIGURE 5 | P3 amplitudes (over F, C,T, P, and O regions) for the color

change of slower and faster moving stimuli by two earliest (sp1–2) and

latest switch-points (sp9–10). Vertical bars denote ± standard error.

CHANGE-TO-CHANGE INTERVAL ANALYSIS
There are some previous studies (Gonsalvez et al., 2007; Gonsalvez
and Polich, 2002) that have found previous-target-to-next-target
interval (TTI) to have an effect on P3 amplitude: the amplitude is
larger when the TTI is longer. In our experiment, conditions were
presented in random order (not in blocks of velocity) and the time
between coloration change in one trial and the next trial varied.
Therefore, it was interesting to test whether or not our results of P3
amplitude in parietal electrodes (where P3 was most pronounced)
demonstrate TTI – in our case coloration-change-to-coloration-
change – effect. This interval is a sum of (a) the time from one
coloration change until the end of the present trial, (b) the time
between trials (which was 3 s in our experiment) and (c) the time
from the beginning of the next trial until the coloration change
of this trial. For analysis we divided change-to-change intervals
into two: change-to-change intervals longer than the median and
change-to-change intervals shorter than the median. The individ-
ual medians of change-to-change interval varied between 6.7 and
7.1 seconds (as a result of the randomly varied time window of the
coloration change of the stationary stimulus). The comparison
was made between these two groups for P3 amplitude in pooled
parietal region. The results were as follows: dependent samples
t-test t = 3.63 (df = 6; p = 0.011), Cohen’s d = 1.37, showing
that longer than median change-to-change interval trials had con-
siderably larger P3 amplitude compared to shorter than median
change-to-change interval trials (see Figure 6). It looks like the
next VEP elicited by the change of coloration was of higher ampli-
tude when more time had passed from the coloration-change in
the previous trial. These results confirm Gonsalvez and Polich
(2002) observation that TTI is a critical variable in P3 response.

Mean RTs, divided into two groups by the same principle as for
VEPs, did not show statistically significant effect of TTI: dependent
samples t-test t = 2.405 (df = 6; p = 0.053).

RT and TTI were correlated by velocity condition (0◦/s, 4.4◦/s,
17.6◦/s), the correlations were insignificant for the stationary stim-
ulus (0◦/s) r = −0.04, p = 0.344 and faster moving stimulus

FIGURE 6 | P3 amplitudes (parietal region) by longer and shorter than

median change-to-change intervals (TTI). Vertical bars denote ± standard
error.

(17.6◦/s) r = −0.075, p = 0.061, but significant for slower moving
stimulus (4.4◦/s) r = −0.13, p = 0.001. Again, the response was
attenuated for a faster moving stimulus.

When analysing only the trials with change-to-change interval
covered by all velocities – interval from 5488 to 7617 ms –, the
effect of velocity on mean RTs was still significant [F(2,12) = 58.68,
p < 0.00001], which means that the main effect of velocity on RTs
is independent of change-to-change interval.

DISCUSSION
The behavioral results of our experiment were in a good agreement
with our previous study (see Figure 2 in Kreegipuu et al., 2006)
showing that the faster the speed of the moving stimulus is, the
shorter is the time that is required to detect an instant change in its
coloration. For some reason, it takes less time to notice the change
in coloration of a relatively fast moving object than the coloration
change that happens to the same object if it moves more slowly
or stays at the same place. Like RTs, VEPs elicited by coloration-
change seem to be able to distinguish between objects that remain
stationary or move with different velocities. However, on average
evoked potentials to coloration-change of the fast moving object
were smaller and their maximal amplitude was reached with a
longer delay when compared to evoked potentials to coloration-
change of slow moving or stationary objects. Thus, RTs and VEP
amplitudes were negatively correlated. For example, VEPs elicited
by the coloration-change of the fast moving (17.6◦/s) bar had
smaller amplitude of P2 and N2 peaks and longer latency of the
P2 peak than the peaks elicited by the coloration-change of slowly
moving (4.4◦/s) or stationary (0◦/s) bars.

There are many studies showing reasonable agreement between
psychophysical and electrophysiological results (Wolf et al., 1988;
Donchin and Lindsley, 1966; Kreegipuu and Allik, 2007). For
example, there was a considerable homology between the tem-
poral structure of RTs and VEP intervals when the task was to
detect onset or offset of motion (Kreegipuu and Allik, 2007). Both
manual reactions and VEPs increase in latency as the velocity of
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the onset or offset motion decreases and are well approximated by
the same negative power function with the exponent close to −2/3
(Dzhafarov et al., 1993; Kreegipuu and Allik, 2007). It is important
to remember that in our current study velocity was not a critical
attribute to attend. Participants were instructed to ignore motion
and react, as fast as possible, to the first noticeable change in col-
oration of a uniformly moving or stationary bar. In principle, it
was expected that the velocity of the test object has only minor
effect on the ability to notice a sudden change in coloration. Nev-
ertheless, we observed that the velocity of the test object exerted
a considerable effect on both, RTs and VEPs. According to man-
ual RTs, it took less time to notice the coloration-change of a
fast moving object but according to VEPs, this change elicited
smaller deflections from the base level which were also delayed
in time.

One mechanism that could cause the reduction of VEP ampli-
tude at relatively high velocities is lateral or temporal masking
(Sperling, 1965). When an object moves rapidly, a place where
coloration-change happened will be flanked by a nearby place to
which the moving object has reached a few moments later. The
VEP signal generated by the stimulus activity in this new place
may interfere with the signal elicited by the stimulus in the previ-
ous position. Since these two similar signals are out of phase, their
summary activity is expected to be reduced in amplitude com-
pared to their amplitudes in isolation. Unfortunately, our data are
fragmented to tell exactly from which velocity this potential mech-
anism could become efficient. At the current moment we can only
guess that this critical velocity must be somewhere between 5 and
17◦/s.

Whatever the cause of the VEP amplitude suppression at higher
velocities is, the discrepancy between manual RT and evoked
potentials is puzzling. There is nothing new in the finding that
RT data sometimes disagree with VEP results. Although many
studies have shown good agreement between evoked potentials
and psychophysical data, there are quite a few studies showing
discrepancy between these two measures (Crognale et al., 1997;
McKerral et al., 2001; Chakor et al., 2005). Some of these disagree-
ments could be caused by the magno- and parvocellular pathways’
specialized input to ventral and dorsal streams. The fact that the
dorsal stream – that is presumably specialized for action – receives
mostly magnocellular input.

One of the reviewers guided our attention to the circumstance
that as subjective isoluminance of colors may not be in accor-
dance with photometric isoluminance and may vary depending
on the retinal eccentricity. It is possible that the chromatic change
was accompanied by small luminance artifacts (as mentioned in
the Method section). We have also shown in our previous study
(Kreegipuu et al., 2006) that identical effect of velocity on RTs we
have repeatedly found for color changes was also found for lumi-
nance changes. However, in this achromatic change condition the
luminance changed from 5.09 to 20.2 cd/m2 (or vice versa). This
is considerable luminance change and it is unlikely that the pos-
sible luminance artifacts accompanying chromatic change would
solely be responsible for identical results. It has also been shown
that even in presence of low values of luminance contrast, the
chromatic information is highly relevant for detecting a stimulus
(O’Donell et al., 2010).

Several studies have demonstrated that the color aberration and
isoluminance value related to retinal eccentricity vary depending
on the target extent and spatial frequency (Bilodeau and Faubert,
1997; Barboni et al., 2013). However, Bilodeau and Faubert (1997)
have shown that while they manipulated with spatial frequency
and size of the target, the isoluminance values within central
20 degrees did not change. Psychophysical data [which has been
considered to be more sensitive to luminance changes than elec-
trophysiological measurements (e.g. Rabin et al., 1994)] from our
previous study (Murd et al., 2009) indicates that the chromatic
aberration and/or luminance modulations related to retinal eccen-
tricity do not explain the effect of velocity found on RTs when
changes in coloration were detected. We found no difference in
the effect of velocity on response times whether subjects were
asked to keep central fixation or to follow the stimulus with a
gaze (i.e. the location of the target on the retina did not change).
Both conditions showed a similar significant effect of velocity
on response times and this effect was present for all subjects
(Murd et al., 2009).

It has been suggested that some magnocellular neurons signal
temporal alternation between light of equal luminance, without
signaling the sign of the chromatic contrast (Dobkins and Albright,
1993; Baker et al., 1998). In our display, motion was both chro-
matically and achromatically (as there was luminance difference
between background and the stimulus) defined, and as the colors
(red and green) were not presented simultaneously, it is hard to
tell whether the transient color change could have been mediated
by this unsigned chromatic contrast detecting mechanism or not.
But if considering it as a possibility and taking into account the
finding that the sensitivity of VEPs to parvo- and magnocellular
input are different (Tobimatsu et al., 1995; Foxe et al., 2008), – so
that VEPs are more pronounced for parvocellular input and might
not always adequately reflect magnocellular inputs (see Foxe et al.,
2008) – this would explain why simple RTs to the color change are
more influenced by object’s velocity than VEPs.

Also, Di Russo and Spinelli (1999) showed in their study on
the effect of spatial attention in chromatic and luminance stimuli,
that VEPs did not reveal any latency differences between attended
and unattended conditions when chromatic stimuli were used.
They suggested that spatial attention is mainly controlled by visual
areas considered to be part of the dorsal stream. Therefore, in the
light of the abovementioned studies, the discrepancy between RT
and VEP results might be explained by findings that these two
measures reflect information processing in different streams (for
similar results see also Highsmith and Crognale, 2010).

However, there is a considerable amount of critique regarding
the extent of the independence of dorsal (action) and ventral (per-
ception) systems and whether the specialization is relative rather
than absolute (see the discussion paper by Schenk and McIntosh,
2010; also Himmelback et al., 2012). Sperandio and colleagues
(Sperandio et al., 2010) demonstrated in visual illusion experi-
ments that simple RTs – differently from other types of motor
behavior (grasping) – are affected by the illusion, although it has
been presumed that the dorsal stream is not sensitive to illusions.
Their results showed that RT varied as a function of perceived
(rather than physical) stimulus properties. Therefore, simple RT is
likely to be an outcome of interconnection with the ventral stream.
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In general, this may mean that recorded VEP signatures are reflect-
ing some neurophysiological mechanisms that are not identical to
mechanisms which form the basis for manual RTs. Thus, manual
reaction is elicited in this particular case by an internal repre-
sentation which is not explicitly manifested in the recorded VEP
signatures.

It is very unlikely that change-to-change interval has anything
to do with the suppression of the VEP amplitude at higher veloc-
ities. However, the influence of target-to-target interval on the
amplitude of P3 has been demonstrated in some previous stud-
ies with both auditory and visual stimuli (Gonsalvez et al., 1999,
2007; Gonsalvez and Polich, 2002). Gonsalvez and Polich (2002)
tested TTIs up to 16 seconds and found that when the TTI was
relatively long, the P3 amplitudes remained constant, indicat-
ing that the increase of P3 amplitude with shorter TTIs might
be explained by resource limitation or limitations on memory-
updating operations. Since we conducted a simple single-task
experiment (requiring no comparisons between targets and non-
targets), the more probable explanation is that our results refer to
the capacity of the visual system to “recover” from one event and
to be ready for processing the next one. Therefore, it seems that for
simple tasks that require a quick response, it is not crucial to have
the total amount of resources available for the cortical processing.

To conclude, our results fall in line with the view that although
human visual system may have functionally distinct information
processing streams that receive their input from brain areas and
pathways specialized on different stimulus characteristics, they are
highly interactive in several levels. The question of where the
results of psychophysical and EEG measurements meet and to
what extent can they explain each other still needs some further
investigation.
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When the onsets of three successive sound bursts mark two adjacent time intervals, the
second time interval can be underestimated when it is physically longer than the first time
interval by up to 100 ms. This illusion, time-shrinking, is very stable when the first time
interval is 200 ms or shorter (Nakajima et al., 2004, Perception, 33). Time-shrinking had
been considered a kind of perceptual assimilation to make the first and the second time
interval more similar to each other. Here we investigated whether the underestimation
of the second time interval was replaced by an overestimation if the physical difference
between the neighboring time intervals was too large for the assimilation to take place; this
was a typical situation in which a perceptual contrast could be expected.Three experiments
to measure the overestimation/underestimation of the second time interval by the method
of adjustment were conducted. The first time interval was varied from 40 to 280 ms, and
such overestimations indeed took place when the first time interval was 80–280 ms. The
overestimations were robust when the second time interval was longer than the first time
interval by 240 ms or more, and the magnitude of the overestimation was larger than 100 ms
in some conditions. Thus, a perceptual contrast to replace time-shrinking was established.
An additional experiment indicated that this contrast did not affect the perception of the
first time interval substantially: The contrast in the present conditions seemed unilateral.

Keywords: time perception, assimilation, contrast, audition, time-shrinking, empty interval

INTRODUCTION
When the onsets of three successive sound bursts mark two
neighboring time intervals, the second time interval can be under-
estimated when it is longer than the first time interval by up to
100 ms. This underestimation, i.e., time-shrinking, is very sta-
ble when the first time interval is 200 ms or shorter (Nakajima
et al., 1991, 2004), and has been considered a kind of perceptual
assimilation. Assimilation and contrast in perceptual paradigms
often replace each other when the relationship and configuration
of stimuli are changed systematically (e.g., Helson, 1963; Morinaga
and Noguchi, 1966).

Assimilation and contrast may not necessarily be governed
by a single perceptual mechanism, but they are likely to work
under one perceptual principle for humans and animals to pro-
cess information from the environment efficiently and quickly.
For example, a figure in which luminance is sufficiently higher
than in the background can be distinguished clearly from the
background in the visual modality. This process is enhanced by
contrast, which enlarges the perceptual difference in terms of light-
ness or color between the figure and the background, as well as by
assimilation, which homogenizes the lightness or color within the
figure and within the background (Koffka, 1935; Shapley and Reid,
1985). It is also argued that, when two potential objects are sep-
arated enough spatially from each other (but within a distance

to keep a mutual interaction), they are likely to be organized as
two separate wholes which are then contrasted (King, 1988). It
is widely observed that perceptual assimilation between objects
gives way to contrast when the difference between these objects is
increased, and that assimilation can be blocked if the area or the
group to be assimilated is broken by a boundary (or boundaries;
e.g., Koffka, 1935; Hamburger, 2005), or by a temporal distance
(Ikeda and Obonai, 1955). In Ikeda and Obonai’s (1955) exper-
iment, concentric circles with different diameters I and T were
presented simultaneously for 500 ms using a tachistoscope. The
diameter of T, whose size was to be judged, was fixed at 30 mm.
When the physical size of I was similar to that of T, assimila-
tion took place, but contrast took over when the physical size
difference was larger (Table 1). The fact that assimilation and
contrast can both take place in the same experimental context is
described systematically by Helson (1964). One should note that
temporal configurations of stimuli can also lead to an assimila-
tion or contrast of the stimuli (Shigeno, 1991; see also McKenna,
1984). In our study, assimilation and contrast were manipu-
lated through modifying the temporal configuration of the sound
bursts.

When the difference between close but distinguishable objects
or events is small, the objects will be seen as part of a homogeneous
group. If the difference cannot be neglected, the objects or events
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Table 1 | Underestimation and overestimation of the size of a circle,

T = 30 mm, caused by another concentric circle, I, as observed by

Ikeda and Obonai (1955).

Diameter of T 30

Diameter of I 10 15 20 40 60 80

Overestimation of T +1.2 −0.7 −1.4 +0.6 +0.3 −0.5

C A A A A C

The values are in millimeters. A, assimilation; C, contrast.

will instead be perceived in different categories. This is the case
particularly for the human auditory modality, which is responsible
for quick and complicated communication sometimes in noisy
environments without favorable acoustics.

Linguistic communication depends on the human capacity to
process strings of categorized elements in time. This requires that
any pair of sounds or sound patterns should be clearly either the
same or different (de Saussure, 1966); assimilation and contrast
must work for the listener to decode speech signals properly (e.g.,
Shigeno, 1991). Temporal aspects of auditory perception are also
very likely to work in the same manner. Relative lengths of syl-
lables are categorized in many languages; it is often important
for the listener to judge, without hesitation, whether or not one
of two neighboring syllables is longer or shorter than the other.
When time intervals are presented in concatenation, listeners often
simplify the patterns reducing small differences, and exaggerat-
ing larger differences (e.g., Fraisse, 1978, 1982; Povel, 1981). A
ratio 1:2 or 2:1 seems stable perceptually, which means that the
second time interval is likely to be overestimated if the neighbor-
ing time intervals are to be perceived as in a ratio 1:1.7 or 1:1.8
otherwise. We were interested in whether the extremely stable illu-
sion of time-shrinking, a unilateral assimilation of a time interval
to a preceding time interval or preceding time intervals, could
be grasped in relation to such opposite perceptual processes. We
thus examined whether a time interval was contrasted, instead
of assimilated, to a preceding time interval at a certain point
when the difference between these adjacent time intervals was
increased step by step. When two adjacent empty time intervals
tP and tS were presented in this order in our previous research,
the same tP may have caused both underestimation and overes-
timation of tS depending on the physical difference between tP

and tS. Nakajima et al.’s (2004) experiments suggested that this
possibility is systematic. Table 2 indicates the cases in which both
underestimation and overestimation reached 20 ms for a fixed tP

value.
The present paradigm thus became clear. Time-shrinking typ-

ically takes place when two time intervals, tP and tS in this order,
marked by the onsets of three successive sound bursts meet the
following conditions: 0 < tS − tP ≤ 80 ms, and tP ≤ 200 ms. It had
been indicated already that overestimation of tS to exaggerate the
difference between tP and tS could take place when the physical dif-
ference between the neighboring time intervals, tS − tP, exceeded
the above range (Nakajima et al., 2004). This problem had never
been taken up systematically. In order to reveal the mechanism

Table 2 |Temporal patterns in which time shrinking was replaced by

overestimation in Nakajima et al. (2004).

Experiment 1

UE OE

|160|200| |160|240| |160|320| |160|480|

Experiment 2

UE OE

|160|220| |160|240| |160|260| |160|280| |160|320|

Experiment 3

UE OE

|160|200| |160|240| |160|320|

|200|240| |200|280| |200|320| |200|360|

|240|280| |240|360| |240|400|

Experiment 4

UE OE

|280|360| |280|440|

|320|400| |320|480|

Both the underestimation of a standard time interval, i.e., time shrinking, and
the overestimation of a longer standard appeared for the same preceding time
interval in the stimulus conditions indicated in each line.The physical durations of
two adjacent time intervals tP and tS are indicated as |tP |tS | in milliseconds. The
conditions in which the underestimation/overestimation was equal to or above
20 ms were taken up to specify these temporal patterns. UE, underestimation;
OE, overestimation.

of rhythmic organization, however, it seemed of crucial impor-
tance to examine whether a systematic overestimation of tS would
replace the underestimation, which we call time-shrinking, if we
increased the difference tS − tP.

GENERAL METHODS
The general framework common to the present experiments is
described in Figure 1. In the first three experiments, we basically
followed the paradigm employed in previous studies on time-
shrinking (e.g., Nakajima et al., 2004), except that we increased
the range of the standard duration to be judged. In the control
condition, a time interval, tS, marked by the onsets of two succes-
sive tone bursts was the standard to be judged. An additional tone
burst preceded tS in the experimental condition; the effect of the
preceding time interval, tP, marked by the onsets of this additional
tone burst and the first marker of tS was studied. The difference in
subjective duration of tS between the control and the experimental
condition was measured.

In the last experiment, Experiment 4, a tone burst did not
precede but succeeded tS, and the effect of the succeeding time
interval, tSUC, marked by the onsets of the second marker of tS and
this additional tone burst was examined in order to interpret the
results of the first three experiments. This was the experimental
condition, and no control condition was employed because the
data of the control condition in Experiment 3 could be reused.
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FIGURE 1 |Time charts of stimulus patterns. The rectangles represent
sounds. In the experiments, participants adjusted tC to make its subjective
duration equal to that of tS. In the experimental conditions of Experiments

1–3, tP was added before tS. In the experimental condition of Experiment
4, tSUC was added after tS. Note that all time intervals (tS, tP, tSUC, and
tC) refer to the duration between the onsets of successive sounds.

The method of adjustment was employed. The participant
initiated each presentation by clicking a pane on the computer
screen. A few seconds – the interval was chosen randomly within
a range – after the clicking, the first tone burst of the standard
pattern tS, tP|tS, or tS|tSUC was presented. After that, there was
a period of a few seconds – the interval was again chosen ran-
domly, and then, another time interval, the comparison, tC, was
presented with the onsets of two successive tone bursts. The task
of the participant was to adjust tC to make it equal to tS in
subjective duration. The participant could change tC by oper-
ating a screen interface, designed in a way not to give a visual
hint about the present duration, and the minimum step of the
adjustment was 1 ms. The participant was allowed to listen to
the whole sequence as many times as he/she needed until tS and
tC were perceived as equal, and finished the trial when satisfied.
The last tC value was recorded as the point of subjective equality,
PSE.

EXPERIMENT 1
This experiment was conducted in 1996. Because we did not have
an institutional ethical committee for psychological experiments at
that time, an internal ethical review was impossible, but the exper-
iment was a part of a research project reviewed by a governmental
committee to select projects to be funded (as in the acknowl-
edgments). This experiment is included in the present report
because this was the first case in which the perceptual phenomenon
we are going to describe appeared systematically. Our original

purpose had been to determine the stimulus conditions to inves-
tigate the effect of sound marker duration on the occurrence of
time-shrinking (underestimation), for there was a possibility that
the amount of time-shrinking may be reduced, or the time condi-
tion for maximum time-shrinking could be shifted, by lengthening
the markers (see Hasuo et al., 2011). From the present viewpoint,
however, the experimental data gave us insight into the possibil-
ity of systematic overestimation of the second of two adjacent
time intervals. The same tS values were employed with a tP in the
experimental condition and in isolation in the control condition.
The PSEs in these conditions were compared to see the amount
of perceptual overestimation or underestimation of tS caused
by tP.

METHODS
Participants
The participants were five students, i.e., three males and two
females, of the Kyushu Institute of Design (the predecessor of
the Faculty of Design, Kyushu University). They had received
education for acoustic design, including basic training in music
performance. They were 20–24 years old, and had normal
hearing.

Materials
Duration markers were pure tone bursts of 1000 Hz and 12, 63,
or 123 ms with a rise and a fall time of ∼2 ms each. These val-
ues were inexact due to our use of an analog filter to shape the
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waveform; the inexactness was sufficiently small relative to the
effect we were measuring. The tone bursts of different durations
were approximately equal in loudness when presented separately.
This was realized by conducting preliminary measurements in
which the participant could listen to any of the three sounds
by clicking corresponding buttons on the computer screen. The
stimulus sound was presented always 200 ms after the button
was clicked. The level of the 12-ms burst, which was very short,
was fixed at 97 dBA as defined as the level of a continuous tone
of the same amplitude measured with an artificial ear (Brüel
and Kjær 4153), a microphone (Brüel and Kjær 4134), and a
sound level meter (Brüel and Kjær 2209). The levels of the other
sounds were adjustable, and the participant was instructed to
equalize the three sounds in terms of loudness. In each trial,
the adjusted levels of the 63 and 123 ms bursts were recorded.
The participant performed eight trials, and the median value
for each sound was employed as the presentation level in the
main part of the experiment. The presentation levels were 87–
94 dBA for the 63-ms burst, and 85–93 dBA for the 123-ms
burst.

The pure tones were first generated as rectangular pulse series
before being band-pass filtered between 850 and 1250 Hz (NF
DV-6BW). This resulted in tone bursts with rise and fall times
of ∼2 ms. The tone bursts were presented to the left ear of the
participant through an amplifier (JVC AX-Z511) and headphones
(AKG K141) in a soundproof room. The experimental procedure
including stimulus generation was controlled by a quiet computer
without a hard disk drive or a fan (Commodore Amiga 500).

In the main part of the experiment, the marker duration was
fixed in each standard pattern, which was marked by two or
three successive tone bursts, and the comparison time interval was
always marked by two 12-ms tone bursts. In the standard patterns
of the experimental condition, tP|tS, the preceding time interval,
tP, was fixed at 160 ms. Both in the control and in the experi-
mental condition, the standard time interval, tS, was varied from
120 to 440 ms in steps of 40 ms. The tS duration of 120 ms was
not possible when the marker duration was longer, i.e., 123 ms;
this condition was omitted. Thus, there were 58 stimulus patterns:
[2 (control/experimental) × 2 (marker durations ≤ 63 ms) × 10
(tS durations) + 1 (marker duration = 123 ms) × 9 (tS dura-
tions)]. The standard pattern was presented 2300–2500 ms after
the participant clicked a button on the screen. There was a silence
of 2700–3300 ms between the offset of the last sound marker of
tS, and the onset of the first sound marker of tC.

Procedure
The participant performed four adjustment trials, two in ascend-
ing series and two in descending series, for each stimulus pattern:
two replications for both series were performed. One replication
comprised the first half, and the other the second half of the whole
measurement. Each replication (= half) consisted of 116 trials, 58
(stimulus patterns) × 2 (series) in random order, and was divided
into 9 blocks of 12 or 13 measurement trials, which were pre-
ceded by two warm-up trials. Preceding the measurement, the
participant performed 58 training trials, divided into four blocks;
each stimulus pattern appeared once. Thus, the whole experiment
consisted of 22 blocks: 4 (training blocks) + 2 (replications) x 9

(measurement blocks). Each block took around 15–20 min, and
the whole experiment was carried out over a period of 8 days for
each participant.

RESULTS AND DISCUSSION
We performed a three-way [marker duration × condition (exper-
imental/control) × tS duration] ANOVA utilizing the PSEs for
tS = 160–480 ms. Since it is commonplace that PSEs change as
tS changes, we will not detail the main effect of this factor nei-
ther here nor in the following experiments; its main effect was
always significant (p < 0.001). The main effect of marker duration
was significant, F(2,8) = 21.902, p < 0.01, η2

p = 0.846. Ryan’s
post hoc test showed that the difference between all combinations
of marker duration, i.e., 12 and 123; 63 and 123; and 12 and
63 ms; was significant (p < 0.05). The interaction between condi-
tion (experimental/control) and tS duration was also significant,
F(8,32) = 4.614, p < 0.01, η2

p = 0.536. This interaction should be
related to the assimilation and contrast of tS to tP. The main effect
of condition (experimental/control) and the other interactions
were not significant (p > 0.05).

The PSEs in the control condition were very close to the physical
values of tS (Figure 2). Slight deviations appeared systematically,
however: PSEs of shorter duration tended to be longer than the
physical values of tS. This kind of time errors sometimes appear
in the literature of time perception (Woodrow, 1951; Eisler et al.,
2008). The PSEs tended to be slightly longer when the marker
duration was longer, but the present data do not offer much infor-
mation on this issue. This issue should be investigated intensively
in the future in order to understand rhythm perception in speech
or music. Hasuo et al. (2011, 2012) reported that inter-onset time
intervals up to 360 ms tended to be perceived as longer when the
duration of the sound markers to terminate the time intervals were
longer. This was the case whether the time interval to be judged
was isolated or neighboring another time interval. The duration
of the sound markers to initiate the time intervals showed similar
effects, but in a more unstable manner.

The PSEs in the control and in the experimental condition
differed systematically. The experimental PSEs were smaller than
the corresponding control PSEs when tS = 200 or 240 ms, i.e.,
when tS − tP = 40 or 80 ms: tS was underestimated showing time-
shrinking in a typical manner. However, the difference between
the control and the experimental condition was reversed when
tS was longer: the experimental PSEs were systematically greater
than the control PSEs when tS ≥ 320 ms. Thus, time-shrinking as
assimilation of tS to tP appeared when the difference between these
neighboring time intervals was small, and gave way to contrast of
tS to tP when the difference was large.

The above tendency appeared in similar ways in all the marker
conditions between the control and the experimental PSEs despite
the fact that the control PSEs increased slightly, but clearly, if
the sound marker duration was increased. The contrast appeared
as overestimation of tS in the experimental condition against the
control condition. The PSEs were already lengthened in the control
condition if the sound markers were longer, and they became
even longer – were overestimated further – in the experimental
condition. Furthermore, the amount of overestimation was larger
when the duration markers were longer. This is in contrast with
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FIGURE 2 | Mean PSEs obtained from five participants in Experiment 1.

PSE corresponds to the duration of tC that was perceived to be equal to the
duration of tS. The results for marker durations 63 and 123 ms were raised by

300 and 600 ms, respectively, in this graph for clarity. The physical values of
tS (the points of objective equality) are indicated by dotted lines. Error bars
represent standard deviations between participants.

the fact that the magnitude of time-shrinking – underestimation –
is often smaller when longer markers are used (Yamashita and
Nakajima, 1999; Hasuo et al., 2011), as was the case also in the
present experiment.

The overestimation, as represented by the difference in the PSEs
between the control and the experimental condition, seemed to
have a local peak when tS = 320 ms for all the marker durations.
This tendency was peculiar and robust, but we leave this issue for
future research.

To test whether the common tendency in overestimation pat-
tern (i.e., the difference between the control and the experimental
PSEs over the tS duration range) across different marker dura-
tions was statistically significant, we conducted a Friedman test
(e.g., Siegel and Castellan, 1988) utilizing the mean overestima-
tion values for each marker duration. There was a statistically
significant tendency in overestimation, χ2(8) = 23.644, p = 0.003.
To examine whether the overestimation patterns had a common
tendency even when the influence of time-shrinking (the nega-
tive overestimation at tS − tP = 40 or 80 ms ) was cancelled, we
also performed the same Friedman test without the conditions in
which tS − tP = 40 or 80 ms. The tendency in overestimation
pattern was significant again, χ2(6) = 17.714, p = 0.007. The sta-
tistical significance in this additional Friedman test confirmed that
the overestimation patterns had a common tendency even without
the influence of time-shrinking.

EXPERIMENT 2
Experiments 2–4 were part of a research project approved by
the research ethics committee of the Faculty of Design, Kyushu
University, in 2010. Experiment 1 and our previous data on
time-shrinking (e.g., Nakajima et al., 2004) revealed that the

underestimation of a time interval that appeared as assimilation of
tS to tP often gave way to contrast when tS − tP > 120 ms. Because
we did not have systematic data indicating this effect except in
Experiment 1, we decided to conduct an experiment in which tS

was varied in a larger range (up to 640 ms). For tP, we chose
three values: 80, 120, and 160 ms. Time-shrinking appears most
stably in this range of tP (Nakajima et al., 2004; Miyauchi and
Nakajima, 2005), and we first needed experimental data under
such conditions. One of the things we were interested in was
whether any overestimation would appear for tP = 120 ms; there
had been occasional cases in previous data in which tS had been
overestimated for tP = 80 or 160 ms, but no such cases ever for
tP = 120 ms. Most importantly, we wanted to see whether the
typical time-shrinking, which was expected reliably if tS − tP = 40
or 80 ms, would give way to contrast, i.e., overestimation
of tS.

METHODS
Participants
Five students of Kyushu University, three males and two females,
participated. One of them had been educated to become a high-
school music teacher, and three of them had received education for
acoustic design, including basic training in music performance.
The fifth one was an amateur musician who had been playing
percussions for 8 years. They were 21–46 years old.

Materials
Duration markers were pure tone bursts of 1000 Hz and 10 ms with
cosine-shaped rise and fall times of 5 ms each, with no steady-state
part. Their level was 80 dBA as defined as the level of a contin-
uous tone of the same amplitude measured with an artificial ear
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(Brüel and Kjær 4153), and a sound level meter (Node 2072 or
2075). The tone bursts were presented diotically to the partic-
ipant through an amplifier (Stax SRM-323A) and headphones
(Stax SR-303) in a soundproof room. The experimental proce-
dure including stimulus generation was controlled by a computer
(Frontier KZFM71/N) with an audio processor (Onkyo Wavio
SE-U55GX). Stimulus patterns were generated digitally (16 bits;
a sampling frequency of 44 100 Hz), and went through a 16-kHz
low-pass filter (NF DV-8FL) to avoid aliasing.

In the standard patterns of the experimental condition, tP|tS,
the preceding time interval, tP, was 80, 120, or 160 ms, for which
time-shrinking had occurred typically in previous studies (e.g.,
Nakajima et al., 2004). Overestimation of tS had been recorded
for tP = 80 and 160 ms, but only in a few stimulus patterns for
each tP value, and only up to 30 ms, except for Experiment 1 of
the present article. For tP = 120 ms, no related measurements
had been done before. The standard time interval, tS, was varied
from 40 to 640 ms in steps of 40 ms both in the experimental
and in the control condition. There were 64 stimulus patterns:
4 (1 control + 3 tP durations) × 16 (tS durations). The standard
pattern was presented 1500–2500 ms after the participant initiated
a presentation. There was an interval of 3000–4000 ms between
the onsets of tS and tC.

Procedure
The participant performed two adjustment trials, one in ascending
series and one in descending series, for each stimulus pattern,
and thus 128 trials in total: 64 (stimulus patterns) × 2 (series),
which were arranged in random order and divided into 11 blocks
of 11 or 12 measurement trials preceded by two warm-up trials.
Before the measurement, the participant performed one training
session of 16 trials, for which representative stimulus patterns were

employed. Thus, the whole experiment consisted of 12 blocks: 1
(training block) + 11 (measurement blocks). Each block took
around 15–30 min, and the whole experiment was carried out
over a period of 2–3 days for each participant.

RESULTS AND DISCUSSION
We performed a two-way [condition (1 control + 3 tP dura-
tions) × tS duration] ANOVA utilizing the PSE values. The main
effect of condition (1 control + 3 tP durations) was significant,
F(3,12) = 8.624, p < 0.01, η2

p = 0.683, and so was the interaction
between condition (1 control + 3 tP durations) and tS duration,
F(45,180) = 3.344, p < 0.01, η2

p = 0.455.
The PSEs in the control condition were close to the physical val-

ues of tS, but slight deviations appeared systematically (Figure 3).
PSEs of longer duration tended to be longer than the physical val-
ues of tS, and this was not consistent with the tendency observed
in Experiment 1. In both cases, however, the observed devia-
tions were extremely small, and can be neglected for our present
purpose.

The PSEs in the control and in the experimental condition
differed systematically. The experimental PSEs were smaller when
tS = tP + 40 or tP + 80 ms, indicating a robust occurrence of time-
shrinking. This underestimation of tS, however, was replaced by
overestimation, whose highest magnitude reached above 50 ms,
when tS ≥ tP + 240 ms for all the tP values. Thus, as in Experiment
1, time-shrinking appeared when the difference between tS and tP

was 40 or 80 ms, and contrast of tS to tP took over when tS was
lengthened.

When tP = 160 ms as in Experiment 1, the overestimation again
seemed to have a local peak when tS = 320 ms. This tendency
indeed seems interesting, but is an issue to be investigated in the
future.

FIGURE 3 | Mean PSEs obtained from five participants in

Experiment 2. PSE corresponds to the duration of tC that was
perceived to be equal to the duration of tS. The results for tP = 120
and 160 ms were raised by 300 and 600 ms, respectively, in this

graph for clarity. The physical values of tS (the points of objective
equality) are indicated by dotted lines, on which tP values are
indicated by arrows. Error bars represent standard deviations between
participants.
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To test whether the common tendency in overestimation pat-
tern across different tP values (i.e., the underestimation of tS

when tS = tP + 40 or tP + 80 ms and the overestimation when
tS ≥ tP + 240 ms, observed for all tP values) was statistically
significant, we conducted a Friedman test utilizing the mean over-
estimation values for each tP duration (= 80, 120, or 160 ms).
There was a statistically significant tendency in overestimation
depending on the difference between the two neighboring inter-
vals (tS − tP = −40 to 480 ms), χ2(13) = 34.505, p = 0.001.
As in Experiment 1, we also performed the same Friedman test
without the conditions in which tS − tP = 40 or 80 ms, where time-
shrinking should have taken place. The tendency in overestimation
pattern was significant again, χ2(11) = 27.410, p = 0.004.

EXPERIMENT 3
Time-shrinking almost disappeared, although not completely,
when tP was above 300 ms (Nakajima et al., 2004, Figure 11). Our
next step was to examine whether the tendency for tS to be under-
estimated when tS = tP + 40 or tP + 80 ms and overestimated
when tS was further lengthened, as observed in Experiments 1 and
2, would appear entirely in the tP range in which we could expect
time-shrinking. Because the overestimation of tS appeared in a
very wide range of tS in Experiment 2, we made the range of tS in
the present experiment even wider.

METHODS
Participants
Six students of Kyushu University, three males and three females,
participated. Four of them had taken part in Experiment 2, but
there had been an interval of at least 3 months. One of the partic-
ipants had been educated to become a high-school music teacher,
and four of them had received education for acoustic design,
including basic training in music performance. The sixth one was
an amateur musician who had been playing percussions for 8 years.
They were 20–46 years old.

Materials
Duration markers and the way of presentation were the same as
in Experiment 2. In the standard patterns of the experimental
condition, tP|tS, tP = 40, 120, 200, or 280 ms, where time-shrinking
had occurred clearly (Nakajima et al., 2004). Overestimation of tS

had been recorded for these tP values, but only in a handful of
stimulus patterns, and only up to 30 ms, except for Experiment 2
of the present article. The standard time interval, tS, was varied
from 40 to 1000 ms in steps of 80 ms both in the control and
in the experimental condition. There were 65 stimulus patterns:
5 (1 control + 4 tP durations) × 13 (tS durations). The standard
pattern was presented 1500–2500 ms after the participant initiated
a presentation. There was an interval of 4000–5000 ms between
the onsets of tS and tC .

Procedure
The participant performed two adjustment trials, one in ascending
series and one in descending series, for each stimulus pattern, and
thus 130 trials in total: 65 (stimulus patterns) × 2 (series), which
were arranged in random order and divided into 10 blocks of 13
measurement trials preceded by two warm-up trials. Before the
measurement, the participant performed 15 training trials, for

which representative stimulus patterns were employed. Thus, the
whole experiment consisted of 14 blocks: 1 (training block) + 13
(measurement blocks). Each block took around 15–30 min, and
the whole experiment was carried out over a period of 2–3 days
for each participant.

RESULTS AND DISCUSSION
We performed a two-way [condition (1 control + 4 tP dura-
tions) × tS duration] ANOVA utilizing the PSE values. The main
effect of condition (1 control + 4 tP durations) was significant,
F(4,20) = 6.450, p < 0.01, η2

p = 0.563, and so was the interaction
between condition (1 control + 4 tP durations) and tS duration,
F(48,240) = 2.539, p < 0.01, η2

p = 0.337.
The PSEs in the control condition were very close to the physical

values of tS (Figure 4). Although slight deviations appeared again
systematically, they were almost unrecognizable in the graphs
except for the longest tS values, for which PSEs tended to be slightly
shorter than the corresponding points of objective equality.

The PSEs in the control and in the experimental condition dif-
fered systematically. The experimental PSEs were conspicuously
smaller when tS = tP + 80 ms, again showing the robustness of
time-shrinking. For tP = 120, 200, and 280 ms, the underestima-
tion of tS was replaced by overestimation when tS was longer. When
tS > tP + 240 ms, the PSEs in the experimental condition were
never smaller than those in the control condition. For tP = 200
and 280 ms, the overestimation reached above 100 ms, which
is comparable to the temporal illusions Israeli (1930) reported
in the visual modality. For tP = 40 ms, no clear overestima-
tion appeared. When the same preceding interval duration was
employed in Nakajima et al.’s (2004) Experiment 1, however, some
overestimation appeared stably, although the amount was only
about 10 ms, and it would be safer to reserve any clear conclu-
sion for this tP value. In the present experiment, time-shrinking

FIGURE 4 | Mean PSEs obtained from six participants in Experiment 3.

PSE corresponds to the duration of tC that was perceived to be equal to
the duration of tS. The results for tP = 120, 200, and 280 ms were raised by
300, 600, and 900 ms, respectively, in this graph for clarity. The physical
values of tS (the points of objective equality) are indicated by dotted lines,
on which tP values are indicated by arrows. Error bars represent standard
deviations between participants.
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appeared when the difference between tS and tP was 80 ms, and
contrast of tS to tP took over when tS was lengthened except when
tP = 40 ms.

As in Experiment 2, we conducted a Friedman test utilizing
the mean overestimation values for each tP duration to exam-
ine whether the common tendency in the overestimation pattern
across different tP values 40, 120, 200, and 280 ms was statis-
tically significant. There was a statistically significant tendency
in overestimation depending on the difference between the two
neighboring intervals (tS − tP = 0–720 ms), χ2(9) = 25.855,
p = 0.002. We also performed the same Friedman test, but
without the (negative) overestimations in conditions in which
tS − tP = 80 ms, where time-shrinking should have taken
place. The tendency in overestimation pattern was significant
again, χ2(8) = 19.600, p = 0.012, confirming that the over-
estimation patterns had a common tendency even when the
influence of time-shrinking (the dip at tS − tP = 80 ms) was
cancelled.

EXPERIMENT 4
The overestimation of tS took place to a remarkable degree in
Experiments 1–3. It seemed necessary to have some idea on
whether this strong contrast, which was observed between the
two neighboring time intervals, t1 and t2 in this order, for the
perception of t2, also affected the perception of t1. Because time-
shrinking was a unilateral illusion affecting mainly the perception
of t2, we first examined whether, and if so how, the under-
estimation of t2 gave way to overestimation, and this indeed
happened to a remarkable degree. Now it seemed important to
check whether this contrast was unilateral or bilateral. In the
present study, we just conducted an experiment to be appended
to Experiment 3, but this would help us to interpret the present
results. We picked up six temporal patterns of two neighbor-
ing time intervals in which contrast between them had caused
overestimation of t2 (tS in Experiment 3). Then PSEs of t1 were
measured for these patterns. For example, we took up a pattern
of t1 = 200 ms and t2 = 680 ms, in which t2 had been over-
estimated by more than 100 ms in Experiment 3. In the present
experiment, we were interested in whether or not the same mech-
anism of contrast (bilaterally) led to the underestimation of t1

making its PSE shorter than the control value. Because t1 was
the standard time interval, it is called tS, and the succeeding time
interval t2 is called tSUC in the present report. In other words, we
used the same temporal patterns of two neighboring time inter-
vals marked by three successive sounds as in Experiment 3, and
the key difference was that tC was adjusted to match the per-
ceived duration of the first interval instead of that of the second
interval.

Due to the unavailability of a certain potential participant, we
decided to employ five of the six participants from Experiment 3,
making it still possible to reuse the data in the control condition
of Experiment 3.

METHODS
Participants
Five students, three males and two females, participated in this
experiment after participating in Experiment 3. There had been an

interval of at least 1 month between these experiments. They were
21–25 years old. Four of them had taken part in Experiment 2, but
there had been an interval of at least 3 months. Four of them had
received education for acoustic design, including basic training in
music performance. The fifth one was an amateur musician who
had been playing percussions for 8 years.

Materials
Six stimulus patterns were chosen from the stimulus patterns in
Experiment 3. In the standard patterns of the experimental con-
dition, tS|tSUC, the standard time interval, tS, was 120, 200, or
280 ms; these values had been chosen for tP in Experiment 3. The
control patterns of these tS values in Experiment 3 were regarded
as the virtual control patterns of the present experiment, and
thus the control data of the present participants were reused. The
succeeding time interval, tSUC, was 440 or 680 ms; tSUC in any
stimulus pattern would have been overestimated stably if it had
been the standard time interval. There were six stimulus patterns
not including the virtual control patterns. The standard pattern
was presented 1500–2500 ms after the participant initiated a pre-
sentation. There was a silence of 4000–5000 ms between the onsets
of tS and tC .

Procedure
The participant performed two adjustment trials, one in ascend-
ing series and one in descending series, for each stimulus pattern,
and thus 12 trials in total arranged in random order. Four trials
were conducted first for training and a warm-up, and the mea-
surement trials followed without a break. The experiment took
around 20 min.

RESULTS AND DISCUSSION
We performed a two-way [condition (1 control + 2 tSUC dura-
tions) × tS duration] ANOVA utilizing the PSE values. Neither the
main effect of condition (1 control + 2 tSUC durations) nor the
interaction between condition (1 control + 2 tSUC durations) and
tS duration was significant, F(2,8) = 0.222, p > 0.05, η2

p = 0.052;

F(4,16) = 2.740, p > 0.05, η2
p = 0.407, respectively.

The PSEs in the control condition were almost equal to the
physical values of tS (Figure 5). The PSEs in the control and in the
experimental condition were very close to each other. Underesti-
mation of tS that should have occurred if the systematic contrast
in Experiment 3 were bilateral did not take place to any observable
degree. Although we do not have sufficient data to conclude that
the systematic contrast observed in Experiments 1, 2, and 3 was
unilateral, the underestimation of tS was almost negligible even in
conditions in which the mechanism of contrast must have worked
clearly. The observed contrast was at least very close to unilateral.

GENERAL DISCUSSION
The purpose of the present study was to observe the overesti-
mation of an empty time interval caused by a preceding time
interval. The conditions in the present study were comparable
to the conditions in which time-shrinking had been reported to
take place. We had assumed that time-shrinking was a unilateral
perceptual assimilation of an empty time interval to a shorter
preceding time interval. One may wonder whether the poten-
tial rhythmic regularity of presented patterns may be playing a
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FIGURE 5 | Mean PSEs obtained from five participants in

Experiment 4. PSE corresponds to the duration of tC that was perceived to
be equal to the duration of tS. Some dots are deviated slightly from the
scale marks on the horizontal axis to avoid being invisible in the graph. The
physical values of tS (the points of objective equality) are indicated by a
dotted line. Error bars represent standard deviations between participants.

crucial role, but this idea is not supported by the fact that time-
shrinking took place even when the preceding time interval and
the time interval to be judged were separated in time (Sasaki et al.,
2002). The assumption of “assimilation” itself is not related to

any particular perceptual mechanism directly, but it can give us
a wider view of the observed facts. Because perceptual assimila-
tion and contrast often appear in the same context, we examined
whether a change from the unilateral assimilation, time-shrinking,
could give way to contrast when the difference between the neigh-
boring time intervals was increased. The range of the first time
interval that can cause time-shrinking has been determined sys-
tematically in previous studies, and it has been established that the
illusion takes place only when the difference between the neigh-
boring time intervals was smaller than ∼100 ms. This knowledge
made it possible for us to focus onto the stimulus conditions in
which contrast was likely to take place. As a result, overestima-
tion of the second of the neighboring time intervals appeared
systematically.

When tP precedes and neighbors tS causing time-shrinking (i.e.,
the systematic underestimation of tS), an overestimation of tS was
observed when tS was lengthened. The only exception was when tP

was set to be extremely short, i.e., tP = 40 ms. The overestimation
of tS never disappeared when tS − tP > 240 ms for the other
tP values. The overestimation as a function of tS − tP showed a
common tendency across the different tP values (Figure 6), which
was confirmed by the Friedman tests.

What we had not expected was that the contrast appeared in
such a wide range and to such a large degree. About the range of
the second time interval, we have already reached 1 s as the longest
duration. It will be very important in the future to determine
the upper limit of the range in which the overestimation takes

FIGURE 6 | Overestimations of tS as functions of tS − tP in Experiments 1, 2, and 3. The overestimations were calculated as the increases of PSEs due to
the presence of tP.
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place, but this would require a new experimental paradigm because
we can easily reach the perceptual limit; when a time interval is
equal to or above 1.5–2 s, it is often difficult to grasp the whole
interval perceptually, or to perceive it as a part of a single rhythm
pattern (Fraisse, 1978; Nakajima et al., 1980; Warren, 2008; see also
Grondin, 2012 for a perceptual limit at around 1.5 s).

The amount of the overestimation sometimes surpassed
100 ms. Although similar overestimation had appeared occa-
sionally in previous studies on unilateral or bilateral assimilation
between neighboring time intervals, the positive overestimation
had never reached 40 ms except in the present Experiment 1.
It turned out now that the overestimation can be larger than
time-shrinking in terms of deviation from the control PSEs in
milliseconds. Although we had (re)started this study as some-
thing to be added to the studies of perceptual assimilation between
time intervals, the overestimation of the second time interval now
appeared as a phenomenon worth investigating more systemati-
cally in different series of studies. It is particularly necessary to
examine whether the present results can be related to the fact that
a successive presentation of two objects (as would be inevitable
for time intervals) could facilitate the perceptual contrast between
them (Ikeda and Obonai, 1955).

Fraisse (1978, 1982) argued that rhythm patterns were often
based on two dominant duration values, and that they were mostly
in a ratio 1:2, and occasionally in 1:3; in Western music, the shorter
durations were typically 150–290 ms, and the longer durations
300–900 ms. This could explain the overestimation in the present
study in some cases. Perceptual contrast can often take place as,
or as a result of, categorical perception, although it is often diffi-
cult to relate results in different paradigms (Repp and Liberman,
1987). If a shorter duration and a longer duration neighboring
each other are to be perceived as in different perceptual categories,
i.e., in the short-duration category and in the long-duration cat-
egory, this can be an aspect, or a cause, of perceptual contrast. In
the present experiments, the first time interval was always below
290 ms, and the second time interval was mostly above 300 ms
when it was overestimated. Most cases in which tP caused the over-
estimation of tS can be interpreted by the fact that tP < 300 < tS ms,
which should have caused the time intervals to be relocated in dif-
ferent perceptual categories, which then should have led to the
overestimation of tS. This interpretation describes the general ten-
dency of the present data rather well, and is worth investigating
further. However, the categorical boundary at about 300 ms is
hardly a part of common knowledge, and a systematic investiga-
tion on this issue should be the first thing necessary to pursue this
path.

Another possible explanation related to a categorical aspect
of temporal perception is related to the studies of Miyauchi and
Nakajima (2005) and ten Hoopen et al. (2006; see also Sasaki et al.,
1998; and Miyauchi and Nakajima,2007). They presented auditory
temporal patterns as used in the present experiments to partici-
pants, and established a 1:1 category, i.e., a perceptual category
in which the neighboring time intervals are perceived as equal
to each other even when the physical difference between them
is greater than the differential limen. One of the boundaries of
this category was very close to the point at which time-shrinking
reaches its maximum, i.e., the point at which tS − tP � 80 ms;

the overestimation of tS typically appeared when the difference
between tP and tS doubled this value. This is an idea to be kept
for future research, but some difficulty arises if we are to explain
why the contrast appeared not immediately when the 1:1 cate-
gory gave way but when the difference between tP and tS increased
further.

Although human listeners are able to discriminate temporal
patterns more precisely than specified by musical notations, they
tend to establish perceptual categories represented by simple ratios
between neighboring durations as in musical notations (Honing,
2013; see also Povel, 1981). It is understandable that humans have
to categorize temporal patterns in order to memorize, imitate, or
respond quickly to them. This might lead to the human listen-
ers’ tendency to make the subjective ratios between neighboring
durations closer to those in the prototypical patterns, which are
made of simple ratios. As Fraisse (1978, 1982) indicated, the per-
ceptual system tends to make the perceived ratio closer to a simple
integral ratio as 1:1 or 1:2 (see also Honing, 2013). Supporting
this observation, Nakajima (1979) reported that a pattern of two
neighboring time intervals of 80 and 160 ms was perceived in
ratios close to 1:1 or 1:2 avoiding intermediate cases, and Povel
(1981) systematically showed the stability of the ratio 1:2 in a task
to reproduce repeated temporal patterns. It is very likely that a
temporal pattern to be perceived as in a ratio 1:1.7, for example,
is perceptually distorted to be closer to 1:2, causing the overes-
timation of the second time interval. However, this alone cannot
account for the overestimation observed in the present study. Sup-
pose that tP = 200 ms in the paradigm of Experiments 1, 2, and
3. Nakajima et al. (1988, Table 1) showed that the temporal pat-
tern 200|400 ms was perceived in a ratio 1:1.78, i.e., closer to 1:1
than the physical ratio 1:2, and this tendency was in line with their
psychophysical hypothesis. If the perceptual system tries to shift
toward a simpler ratio 1:2, then the second time interval may be
overestimated. Although this hypothesis seemed attractive, a fur-
ther examination of our own data was not very promising. For
example, in the pattern 200|520 ms in Experiment 3, which would
correspond to a subjective ratio 1:2.14 according to Nakajima
et al.’s (1988) psychophysical hypothesis, the second time interval
should be underestimated to make the subjective ratio closer to 1:2.
In reality, this pattern still caused the overestimation of tS. As in
this example, the overestimation took place more widely than was
predicted from the perceptual system’s tendency toward simpler
ratios. No literature or experimental data are within the present
authors’ knowledge about the mechanism to show such perceptual
tendencies, and the present experimental paradigm will be useful
to solve this problem in the future. It should also be interesting for
future research to examine the assimilation and contrast in a more
complex context (e.g., Jones and McAuley, 2005).

One may wonder whether the overestimation of tS in the
present results can be explained by time-order error (TOE), which
is a phenomenon observed in psychophysics in general. Previous
studies reported that TOE is expected to be positive for short dura-
tions of a few hundred milliseconds, as the durations utilized as tP

in the present experiment (although it should be noted that in TOE
studies two successive and distinct intervals are used instead of two
intervals sharing a common marker; Woodrow, 1951; Eisler et al.,
2008). This means that the duration of tP should be overestimated
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relative to tS.. In the present experiments, tS was overestimated
(Experiments 1–3) but tP was not (Experiment 4). It seems diffi-
cult to explain the tendencies of the present results with TOEs as
reported in classical literature (e.g., Hellström, 1985).

We began the present study in order to observe what would hap-
pen if the temporal patterns causing time-shrinking were modified
by lengthening the second of the two neighboring time intervals.
This tactic worked well to find clear cases in which assimilation
gave way to contrast. As the overestimation was so systematic,
however, it will be necessary in the future to investigate this issue
in a broader paradigm apart from time-shrinking. First, it is of
some interest whether the first of the neighboring time intervals is
also affected when the second time interval is overestimated. The
results of Experiment 4 were negative, suggesting that the con-
trast was unilateral, but we need further studies on this point. It
attracts our interest as well whether any perceptual contrast would
take place if the temporal order between the longer and the shorter
time interval is reversed. Although there are some previous data
for some speculation, we basically need a new set of experiments.

Arao et al. (2000) showed that time-shrinking occurred also
in the visual modality, and it took place when the neighboring
time intervals tP and tS, in this order, had the relationship tP < tS

< ∼1.8 × tP. If we see their data from the present viewpoint,
it is suggested that overestimation of tS is likely to replace time-
shrinking if tS is far above this range, and this is worth investigating
immediately. The same argument may hold also for the tactile
modality (Hasuo et al., 2014).

One big problem for our future research is that the experimental
data are not always very stable in the present paradigm, and this can
be the case in other related paradigms. The individual differences
were sometimes as big as the effects to be investigated. Fortunately,
our present purpose was simple, i.e., to examine whether system-
atic overestimation of the second time interval would or would not
appear; we somehow reached tentative conclusions. If the many
issues suggested here are to be investigated in the future, however,
we will need more sophisticated methods. One possible solution
is to design experiments that enable us to perform some multi-
variate analyses. Another possibility is to obtain a lot of data from
a few participants, and to compare results in different conditions
for each individual participant.

We investigated the perception of empty time intervals marked
by tone bursts, and employed temporal patterns of two neigh-
boring time intervals. Our research question was whether the
overestimation of the second time interval would replace the
underestimation (time-shrinking) if the difference between the
neighboring time intervals was increased. The overestimation
took place very systematically when the first time interval was
80–280 ms, and its amount sometimes exceeded 100 ms, indicat-
ing that this was an important phenomenon related to rhythm
perception. It is very likely that similar temporal patterns appear
often in music. Assimilation and contrast, which Fraisse (1978)
considered to be two important principles to construct rhythm,
were manifested in an in vitro situation.
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We used magnetoencephalogram (MEG) in two experiments to investigate spatio-temporal
profiles of brain responses to gaps in tones. Stimuli consisted of leading and trailing markers
with gaps between the two markers of 0, 30, or 80 ms. Leading and trailing markers were
300 ms pure tones at 800 or 3200 Hz.Two conditions were examined: the within-frequency
(WF) condition in which the leading and trailing markers had identical frequencies, and the
between-frequency (BF) condition in which they had different frequencies. Using minimum
norm estimates (MNE), we localized the source activations at the time of the peak response
to the trailing markers. Results showed that MEG signals in response to 800 and 3200 Hz
tones were localized in different regions within the auditory cortex, indicating that the
frequency pathways activated by the two markers were spatially represented. The time
course of regional activity (RA) was extracted from each localized region for each condition.
In Experiment 1, which used a continuous tone for the WF 0-ms stimulus, the N1m
amplitude for the trailing marker in the WF condition differed depending on gap duration
but not tonal frequency. In contrast, N1m amplitude in BF conditions differed depending
on the frequency of the trailing marker. In Experiment 2, in which the 0-ms gap stimulus
in the WF condition was made from two markers and included an amplitude reduction in
the middle, the amplitude in WF and BF conditions changed depending on frequency, but
not gap duration.The difference in temporal characteristics between WF and BF conditions
could be observed in the RA.

Keywords: gap detection, within-frequency (WF), between-frequency (BF), regional activity (RA), cortical tonotopy

INTRODUCTION
The human auditory system is sensitive to temporal changes in
sounds. Gap detection is a frequently used task that measures audi-
tory temporal resolution by requiring a listener to judge whether
a stimulus contains a brief silent interval (gap). When leading and
trailing markers share the same frequency, this task is referred to
as a within-frequency (WF) detection task (Formby and Forrest,
1991; Formby et al., 1998; Phillips, 1999), and the gap-detection
threshold (i.e., the minimally detectable gap duration) is usually
found to be around 2–3 ms (Plomp, 1964; Penner, 1977). When the
leading and trailing markers differ in frequency, the task is referred
to as a between-frequency (BF) detection task. Psychophysical evi-
dence has shown that gap detection becomes more difficult as
the frequency difference between the leading and trailing mark-
ers increases; the gap-detection threshold can be as high as 50 ms
when the frequencies are separated by two octaves (Formby and
Forrest, 1991; Phillips et al., 1997; Formby et al., 1998; Phillips,
1999).

In contrast to the many psychophysical studies concerning WF-
gap detection and differences between WF and BF gap-detection
thresholds (Moore et al., 1989; Phillips et al., 1997; Phillips, 1999;
Heinrich and Schneider, 2006), physiological studies regarding BF
conditions are relatively few and the underlying neural mecha-
nisms are not yet well understood. Electrophysiological studies
that have investigated cortical responses to BF- and WF-gap

detection have highlighted the importance of trailing-marker
onset in relation to leading marker offset (Eggermont, 2000; Lister
et al., 2007; Ross et al., 2010). Lister et al. (2007) recorded elec-
troencephalograms (EEG) containing P1-N1-P2 auditory evoked
responses to leading and training markers in WF and BF condi-
tions. In the BF condition, trailing-marker onset elicited P1-N1-P2
responses for all gap durations, while in the WF condition they did
so only when gaps were at least as long as the gap-detection thresh-
old. Heinrich et al. (2004) focused on central processing in BF-gap
detection by recording mismatch negativity (MMN) waves in an
odd-ball paradigm. The results showed no significant effect of gap
duration on MMN amplitude and suggested that primary audi-
tory cortex plays a central role in the computation required for
WF- and BF-gap detection.

To further investigate activity in the auditory cortex in response
to silent gaps under BF conditions, we recorded magnetoen-
cephalograms (MEG), a technique not yet used in studies of
BF-gap detection. Specifically, we measured auditory evoked fields
(AEFs) to reveal the spatio-temporal characteristics of cortical
activity that may underlie psychophysical performance in WF-
and BF-gap detection. MEG was conducted with minimum norm
estimate (MNE), a visualization method that uses distributed
source modeling with additional a priori constraints and can rep-
resent a number of local or distributed sources (Hamalainen and
Ilmoniemi, 1994). Owing to high temporal and spatial resolution,
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MEG-source analysis can extract fine temporal information from
localized regions. As in EEG studies that showed clear differences
between WF and BF conditions in response to the trailing marker
(Lister et al., 2007), here we observed the response to trailing-
marker onsets in concentrated regions and looked in the auditory
cortex for activity related to the gaps.

We examined spatial characteristics of cortical activity in terms
of the frequency pathways for leading and trailing markers that
were represented by tonotopic organization of auditory cortex.
Neurons responding best to tones at specific frequencies are known
to form tonotopic maps in auditory cortex (Woolsey, 1960). Stud-
ies using functional magnetic resonance imaging (fMRI) and MEG
have shown that tonotopic organization exists not only in non-
human primates but also in the human auditory cortex (e.g.,
Pantev et al., 1988, 1995; Formisano et al., 2003). In the present
study, we used MNE and the marked inspection region of inter-
est (iROI) to localize source activations at the time of the peak
response to the trailing markers. We then analyzed the regional
activities (RAs) in the iROI to compare the time courses across
conditions. By visualizing activity in the auditory cortex during
both BF and WF conditions, we were able to observe how the lead-
ing and trailing markers of different frequencies activated distinct
areas in the auditory cortex.

The present study consisted of two experiments which differed
primarily in the construction of the 0-ms-gap stimulus in the WF
condition. In Experiment 1, it was a pure tone lasting 600-ms,
which matched the total length of leading and trailing markers
used in other conditions. In Experiment 2, it was constructed
from two pure tones, each lasting 300 ms. While amplitude was
not reduced in the middle of the 0-ms-gap stimulus in Experi-
ment 1, it was reduced between the two markers in Experiment 2.
Thus, in Experiment 2, the 0-ms-gap stimulus was qualitatively
similar to the other stimuli, while in Experiment 1 it was slightly
different.

MATERIALS AND METHODS
PARTICIPANTS
Ten (five females, aged 23–53 years) and six (four females, aged
23–37 years) healthy volunteers participated in Experiment 1
and 2, respectively. No participants reported a hearing deficit
or had difficulty hearing any of the stimuli used in the exper-
iment. Informed consent was obtained from each participant
after receiving an explanation of the purpose and procedures of
the experiment. The study was approved by the Kyushu Univer-
sity Ethics Committee of the Faculty of Information Science and
Electrical Engineering.

STIMULI AND PROCEDURE
Stimuli were synthesized on a personal computer (Dimension
4500C, DELL Inc., Round Rock, TX, USA) with a sampling
frequency of 44.1 kHz. Stimuli were presented by a personal com-
puter using STIM2 software (Neuroscan Co. Ltd., Charlotte, NC,
USA), were amplified (PS3001, DMglobal Co. Ltd., Mahwah, NJ,
USA), and presented monaurally to the participants’ right ears
via a pair of inserted earphones (ER-3A, Etymotic Research Inc.,
Elk Grove Village, IL, USA). All stimuli were presented at 82 dB
SPL measured by a sound-level meter with a 1/2-inch condenser

microphone (Brüel and Kjær, models 2250 and 4192). Participants
were instructed to listen passively to the stimuli, stay alert, and
keep their eyes open throughout each experimental block. Each
participant’s behavior during MEG measurement was monitored
using a TV-monitor system, and auditory responses were checked
using online averaging.

Experiment 1
Except for the WF 0-ms-gap stimulus, all stimuli consisted of lead-
ing and trailing markers, which were pure tones lasting 300 ms
each. The 300-ms leading marker included 20-ms rise and 3-
ms fall times, and the trailing marker contained 3-ms rise and
3-ms fall times (Figure 1A). For the WF condition, the frequen-
cies of the two markers were identical to each other, being either
800/800 or 3200/3200 Hz. For the BF condition, the frequen-
cies of the two markers were different, being either 800/3200 or
3200/800 Hz. The gap duration was either 0 (no gap), 30, or
80 ms. The 30- and 80-ms-gap durations were used to match
those found in the gap-detection literature (Phillips et al., 1997;
Elangovan and Stuart, 2008), which show that while both dura-
tions are clearly detectable in WF conditions, in BF conditions,
the 30-ms gap is close to gap-detection threshold while the 80-ms
gap is well beyond threshold. In the WF condition, the 0-ms-
gap stimulus was a pure tone lasting 600 ms, with no amplitude
reduction in the middle (Figure 1A, left). In the BF condition,
it was a concatenation of leading and trailing markers (both
300 ms). This resulted in amplitude reduction in the middle
owing to their 3-ms rise and fall times (Figure 1A, right). For
each frequency combination (FC), each gap-duration stimulus
was presented 80 times in pseudo-random order. These 960 tri-
als (4 FCs × 3 gap durations × 80 trials) were divided into
four blocks of 240 trials. Inter-trial intervals randomly varied
from 1.5 to 1.8 s. Condition order was counterbalanced across
participants.

Experiment 2
The stimuli were identical to those of Experiment 1, except in two
respects. First, both the leading and the trailing markers contained
3-ms rise/fall times. Second, the 0-ms-gap stimuli for both condi-
tions consisted of leading and trailing markers, with the fall time
of the leading markers and the rise time of the trailing markers
overlapping each other (Figure 1B). Thus the 0-ms-gap stim-
uli contained small amplitude reductions in both the WF and
BF conditions. For each FC, the stimulus presentation and other
parameters were the same as in Experiment 1.

DATA ACQUISITION
MEG measurement was conducted in the Brain Center in Kyushu
University Hospital. AEFs were measured using a whole-head 306-
channel biomagnetometer system (Elekta, Neuromag, Helsinki,
Finland) in a quiet, magnetically shielded room. The detector
array comprised 102 identical triple-sensor elements, with each
sensor element comprising two orthogonally oriented planar-type
gradiometers and one magnetometer. Before recording, four head-
position indicator (HPI) coils were attached to the scalp, and
a 3D digitizer was used to measure head shapes with respect
to the HPI coils. Magnetic responses were digitally sampled at
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FIGURE 1 | Stimulus constructions of Experiment 1 (A) and Experiment 2

(B). For both Experiments 1 and 2, upper figures represent the gap 30-ms
stimuli, while lower figures represent the gap 0-ms stimuli. Figures on the left
represent WF conditions of 800/800 Hz, and figures on the right represent BF
conditions of 800/3200 Hz. In Experiment 1, leading marker includes 20-ms
rise times and 3-ms fall times, while the trailing marker contains a 3-ms
rise/fall time. In Experiment 2, leading and the trailing markers both contain a

rise/fall time of 3-ms. For 30-ms gap stimulus, 300-ms markers are separated
by a 30-ms gap in both Experiments 1 and 2. In Experiment 2, for 0-ms gap
stimulus, two markers were overlapped to such an extent that the starting
point of the rise time of the trailing marker and the starting point of the fall
time of the leading marker were temporally aligned at the same position. The
ranges ∼10 ms before and after the gaps were enlarged and displayed in
flames.

1000 Hz, and online filtered with a bandpass of 0.1–330 Hz. MRI
data were acquired using a 3.0-T high resolution MRI scanner
(Achieve, Philips N.V. Eindhoven, The Netherlands) for analysis
(TE, 60 ms; TR, 100 ms; voxel size, 1.5 mm × 1.5 mm × 1.5 mm)
and interpretation of MEG data.

SIGNAL PROCESSING AND SOURCE RECONSTRUCTION
After recording, Maxfilter (Taulu et al., 2005) was used to reduce
artifact signals arising from outside the sensor array. A 1–100 Hz
off-line bandpass filter and a 60 Hz notch filter were applied to
highlight the AEFs. AEFs measured from ∼80 responses for each
FC were averaged for each gap duration. Using the averaged data,
we focused on the contralateral hemisphere because AEFs are usu-
ally larger there than they are ipsilaterally (Pantev et al., 1986). The
peak latencies and amplitudes of the AEFs were picked up from the
gradiometer that showed the most salient activation in the AEFs
for each FC.

Following off-line signal processing, we performed an MEG
source reconstruction. A distributed source model of the
MEG signals (recorded from the entire head surface) was esti-
mated using MNE to obtain the current strength of cortical
sources. This method offers high spatial resolution for detect-
ing simultaneous magnetic sources distributed across the entire

cortical surface. The precise procedure for performing MNE
has been described elsewhere (Hamalainen and Ilmoniemi,
1994; Molins et al., 2008). Each participant’s cortical surface
was reconstructed from high-resolution T1-weighted MR images
using FreeSurfer software (Fischl et al., 1999). An anatomi-
cal MRI image was co-registered with the MEG head coor-
dinate system using head-shape points obtained by Polhemus
measurement.

An inverse solution was calculated based on the forward solu-
tion that models the signal pattern generated by a unit dipole at
each location on the cortical surface using a single homogeneous
realistic head model and a boundary element method (BEM). The
activation at each cortical location was estimated at each time
point of the activity, and was simultaneously estimated using a
noise-normalized linear estimation approach [dynamic statistical
parametric maps (dSPM); Dale et al., 2000]. A noise covariance
matrix was created using pre-trigger periods from −100 to 0 ms
via trigger onset. The activation patterns derived from the analysis
were mapped onto the cortical surface images of each participant
to make visualization clear. Each participant’s data were trans-
formed into a standard brain (MNI305; Collins et al., 1994) to
estimate the source activations across subjects on the same scale
(Fischl et al., 1999).
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GROUP ANALYSIS
To confirm the primary activated areas in each of the four fre-
quency conditions (800/800, 3200/3200, 3200/800, and 800/3200),
activation maps at the peak latencies (N1m) of the trailing mark-
ers were estimated using dSPM and averaged with standardization
(divided by max value) after transforming them into the stan-
dard brain. We estimated the target areas in each of the four
frequency conditions in two steps. First, we averaged the acti-
vation map using a set ROI that covered the transverse temporal
gyrus and its immediate vicinity (i.e., the auditory cortex; Pantev
et al., 1988) to obtain a common activated area across all par-
ticipants (Figure 2). Second, referencing the common activated
area marked by the first step and the strongest activation in the
auditory cortex from each individual, we marked the iROIs on
the auditory cortex in the left hemisphere of each participant’s
cortex for all four conditions. Then, activity of each marked
iROI was re-transformed into the standard brain and averaged
again (Figures 3 and 4). After obtaining the iROIs corresponding
to the 800- and 3200-Hz trailing markers, each activity pattern
and tendency was examined individually. To statistically evaluate
the accuracy of source localization, the center locations of N1m
responses to the trailing markers were estimated for all four FCs
in each participant. The center locations for the marked 800-
and 3200-Hz iROIs were calculated and transformed into the
standard brain so that location estimates would be on the same
scale. Finally, a center location on the standard brain was esti-
mated for each FC using weighted averaging that followed our
established methods (Hironaga et al., 2014). The coordinate sys-
tem used to express the location is based on the MNI Talairach.
The x-axis indicates the medial/lateral direction, y-axis indicates
the anterior/posterior direction, and z-axis indicates the infe-
rior/superior direction. The RA in each iROI for each stimulus
was extracted from each individual, and the activities were also
averaged with standardization. The N1m peak latencies for both
the leading and trailing markers were extracted from RAs for
all conditions and corresponding amplitudes were evaluated. We
defined the peak latencies of the 0-ms gap in the WF condition
in Experiment 2 as a peak that occurred within the 100–200-
ms time window after the onset of the trailing marker (i.e., gap
offset).

RESULTS
SOURCE ACTIVATION GROUP ANALYSIS
Experiment 1
Figure 3 shows the averaged AEF responses of 10 participants to
the trailing marker after converting the activity in marked individ-
ual iROIs to the standard brain. The areas showing responses to the
800-Hz tone were located in anterior Heschl’s gyrus (HG), while
those to the 3200-Hz tone were located in posterior HG. Responses
to the 800-Hz tone appeared concentrated in a single area regard-
less of condition (Figures 3A,B), while those to the 3200-Hz tone
were dispersed across the auditory cortex (Figures 3C,D). This was
especially true for the 800/3200 condition (Figure 3D). Table 1
gives the mean estimated centers of N1m responses to the lead-
ing marker for both frequencies, and Table 2 shows those to the
trailing marker for all four conditions.

An ANOVA was performed using IBM SPSS statistics 21 (IBM
Co. Ltd., Armonk, NY, USA) to assess the center locations of N1m
iROI, as well as the amplitudes and the latencies of RA patterns
for each condition. To check whether the N1m sources for the
leading and trailing markers were localized, we chose “frequency”
as a factor for both leading and trailing marker. For the frequency
factor of the leading marker, we averaged the coordinates of the
800/800 and 800/3200 conditions and those of the 3200/3200 and
3200/800 conditions. In contrast, for the frequency factor of the
trailing marker, we averaged the coordinates of the 800/800 and
3200/800 conditions and those of the 3200/3200 and 800/3200
conditions. One-way (Frequency: 800, 3200) ANOVAs were per-
formed separately on the center coordinate values of the three axes
(x, y, and z) obtained for the leading and the trailing markers. The
Greenhouse–Geisser correction was applied when the assumption
of sphericity was violated in the dependent measures. Post hoc
Bonferroni corrections multiple comparisons were applied when
required. The η2

p (partial eta-squares) were calculated for the quan-
titative comparison of effect sizes. For the leading marker, the main
effect of frequency was significant in the y-axis [F(1,9) = 7.02,
p < 0.05, η2

p = 0.48], but not in the x-axis [F(1,9) = 3.16, p = n.s.,

η2
p = 0.26] or the z-axis [F(1,9) = 0.12, p = n.s., η2

p = 0.01]. The
center location of the 800-Hz N1m (y = −24.99) was more ante-
rior than that of the 3200-Hz N1m (y = −30.62). For the trailing
marker, the main effect of trailing frequency was significant in the

FIGURE 2 | Dynamic statistical parametric maps (dSPM) results of mean

activations to the trailing marker on the standard brain for 800-Hz (A)

and 3200-Hz (B) within-frequency (WF) trailing markers. Source activation
of AEF responses in auditory cortex ROI of the left hemisphere (C) to the
trailing marker both for 30- and 80-ms gap durations were transformed from
individual brains into the standard brain (MNI305) and averaged across 10

participants with standardization. The coloring threshold levels were set at
fthres (low threshold) = 10, fmid (middle) = 12.5, and fmax (maximum) = 15
for all figures. (C) A lateral view of the left hemisphere of the standard brain
showing the region of interest (left Heschl’s gyrus). (A) and (B) represent
enlargements of the area surrounded by the yellow square. dSPM, dynamic
statistics parameter mapping. MNI, Montreal Neurological Institute.
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FIGURE 3 | Mean activations in response to the trailing marker

depicted on the standard brain for each condition: (A) 800/800,

(B) 3200/800, (C) 3200/3200, and (D) 800/3200 in Experiment 1. Source
activation results of the averaged AEF responses to the trailing marker were
obtained after transferring data from marked individual ROIs to the standard
brain (MNI305). The threshold levels were set at fthres = 5, fmid = 9, and
fmax = 15 for all figures. MNI, Montreal Neurological Institute.

FIGURE 4 | Mean activations in response to the trailing marker

depicted on the standard brain for each condition: (A) 800/800,

(B) 3200/800, (C) 3200/3200, and (D) 800/3200 in Experiment 2. Source
activation results of the averaged AEF responses to the trailing marker were
obtained after transferring data from marked individual ROIs to the standard
brain (MNI305). The threshold levels were set at fthres = 1.2, fmid = 1.6,
and fmax = 2.0 for all figures. MNI, Montreal Neurological Institute.

y-axis [F(1,19) = 8.89, p < 0.01, η2
p = 0.32], but not in the x-axis

[F(1,19) = 1.46, p = n.s., η2
p = 0.07] or the z-axis [F(1,19) = 0.17,

p = n.s., η2
p = 0.01]. The center of the 800-Hz N1m (y = −23.96)

was more anterior than that of the 3200-Hz N1m (y = −28.63).

Experiment 2
Figure 4 shows the averaged AEF responses of 6 participants to
the trailing marker in Experiment 2. Core activations appeared
in almost identical locations to those obtained in Experiment 1
(Figure 3), but dispersion of the individual iROIs was much less
in the 3200-Hz condition (Figures 4C,D). The mean estimated
centers of N1m responses to the leading and trailing markers are
given in Tables 1 and 2. As in Experiment 1, one-way (Frequency:
800, 3200) ANOVAs were performed separately for the leading and

Table 1 |The center location of leading markers’ N1m on the standard

brain in Experiments 1 and 2.

MNI

coordinates*

800 Hz 3200 Hz

Experiment 1 x −43.5 (±2.4) −47.3 (±6.2)

y −25.0 (±2.3) −30.6 (±6.5)

z 8.0 (±1.3) 8.5 (±4.2)

Experiment 2 x −43.7 (±3.3) −47.0 (±5.3)

y −25.6 (±2.5) −30.8 (±3.0)

z 7.6 (±1.9) 4.9 (±2.7)

Coordinates are given as mean (±SD).
*Montreal Neurological Institute (MNI) coordinates [Right Anterior Superior (RAS)
coordinate in the standard brain].

trailing markers on each coordinate axis. For the leading marker,
the main effect of frequency was significant in all axes [x-axis:
F(1,5) = 9.38, p < 0.05, η2

p = 0.65; y-axis: F(1,5) = 16.31, p < 0.01,

η2
p = 0.77; z-axis: F(1,5) = 8.87, p < 0.05, η2

p = 0.64]. The cen-
ter of the 800-Hz N1m was more lateral (x = −46.42), anterior
(y = −25.64), and superior (z = 8.01) than that of the 3200-Hz
N1m (x = −47.00, y = −30.80, z = 5.95). For the trailing marker,
the main effect of frequency was also significant for all axes [x-
axis: F(1,11) = 6.11, p < 0.05, η2

p = 0.36; y-axis: F(1,11) = 24.20,

p < 0.001, η2
p = 0.69; z-axis: F(1,11) = 17.91, p < 0.091, η2

p = 0.62].
The center of the 800-Hz N1m for the trailing marker was more lat-
eral (x = −43.68), anterior (y = −25.46), and superior (z = 7.64)
than that of the 3200-Hz N1m (x = −47.00, y = −29.60,
z = 4.94).

ANALYSIS OF REGIONAL ACTIVITY
Experiment 1
Figure 5 presents the averaged RAs for the trailing mark-
ers from 10 participants that were extracted from individually
marked iROIs. While onset responses for the trailing marker
were not observed for the 0-ms gap in the WF condition
(Figure 5A, green line), they were clearly evident in the BF con-
dition (Figure 5B, green line). We also compared the RAs from
Figure 5 with sensor-level average waveforms (data not shown)
and confirmed that the N1m in our study was equivalent to
a P1-N1-P2 response pattern (e.g., Ross et al., 2010). For RA
amplitudes, we used the relative amplitudes (peak value of the
trailing marker divided by that of the leading marker) as an
independent variable of interest (Table 3). The values for indi-
vidual participants were subjected to a 2 [Frequency (Fr): 800
vs. 3200 Hz] × 2 [Gap duration (GD): 30 vs. 80 ms] ANOVA
for the WF condition and a 2 (Fr: 800 vs. 3200 Hz) × 3 (GD:
0, 30, 80 ms) ANOVA for the BF condition. For the WF condi-
tion, we observed a significant main effect of GD [F(1,9) = 5.82,
p < 0.05, η2

p = 0.39], but no significant main effect of Fr

[F(1,9) = 0.02, n.s., η2
p = 0.002]. The peak amplitudes for

30-ms trailing marker were larger than those for the 80-ms trail-
ing marker. In the BF condition, ANOVA revealed a significant
main effect of Fr [F(1,9) = 27.02, p < 0.001, η2

p = 0.75]. The
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Table 2 |The center location of trailing markers’ N1m on the standard brain for each frequency combination in Experiments 1 and 2.

MNI

coordinates*

800/800 3200/3200 800/3200 3200/800

Experiment 1 x −44.6 (±3.1) −47.9 (±6.4) −44.7 (±5.6) −44.4 (±2.4)

y −24.1 (±3.0) −30.0 (±6.2) −27.2 (±7.0) −23.9 (±2.5)

z 7.4 (±1.5) 6.7 (±4.0) 7.1 (±4.4) 7.3 (±1.5)

Experiment 2 x −43.0 (±3.9) −48.4 (±6.7) −45.6 (±3.0) −44.4 (±2.5)

y −26.0 (±3.8) −28.8 (±3.8) −30.5 (±1.9) −24.9 (±3.6)

z 8.0 (±2.2) 4.7 (±3.1) 5.2 (±2.3) 7.3 (±1.5)

Coordinates are given as mean (±SD).
*Montreal Neurological Institute (MNI) coordinates [Right Anterior Superior brain (RAS) coordinate in the standard brain].

Table 3 | Relative amplitudes of the regional activities in the iROI in Experiments 1 and 2.

Gap Trailing/Leading markers

800/800 3200/3200 800/3200 3200/800

Experiment 1 0 ms – – 0.71 (±0.27) 1.22 (±0.27)

30 ms 0.93 (±0.52) 0.80 (±0.29) 0.58 (±0.24) 1.41 (±0.49)

80 ms 0.66 (±0.26) 0.78 (±0.31) 0.54 (±0.19) 1.16 (±0.32)

Experiment 2 0 ms 0.43 (±0.22) 0.48 (±0.27) 0.57 (±0.21) 1.11 (±0.56)

30 ms 0.68 (±0.28) 0.60 (±0.40) 0.45 (±0.12) 0.91 (±0.26)

80 ms 0.59 (±0.21) 0.63 (±0.35) 0.47 (±0.16) 0.86 (±0.18)

Amplitudes are given as mean (±SD).

peak amplitudes for the 800-Hz trailing marker were larger than
those for the 3200-Hz trailing marker. There was no signifi-
cant main effect of GD [F(2,18) = 2.17, n.s., η2

p = 0.19]. For
both WF and BF conditions, the interaction between Fr and GD
was not significant [WF: F(1,9) = 3.39, n.s., BF: F(2,8) = 2.56,
n.s.].

Table 4 shows the peak latencies of the RAs from the iROI
obtained in Experiment 1. For the leading marker, we performed
a 4 (FC: 800/800, 800/3200, 3200/800, 3200/3200) × 3 (GD: 0,
30, 80 ms) ANOVA. For the trailing marker, we performed a 2
(Fr: 800 vs. 3200 Hz) × 2 (GD: 30 vs. 80 ms) ANOVA for the
WF condition and a 2 (Fr: 800 vs. 3200 Hz) × 3 (GD: 0, 30,
80 ms) ANOVA for the BF condition. For the leading marker,
ANOVA showed no significant main effect of FC [F(3,27) = 0.99,
n.s., η2

p = 0.10] or GD [F(2,18) = 0.54, n.s., η2
p = 0.06]. Peak RA

latencies in response to the leading marker appeared to be around
110 ms after stimulus onset for all FCs, which corresponded to
the N1m in the sensor-level AEF. For the trailing marker, there
was a significant main effect of GD in both conditions [WF:
F(1,9) = 406.44, p < 0.001, η2

p = 0.98; BF: F(2,18) = 344.55,

p < 0.001, η2
p = 0.98], but no significant main effect of Fr in either

condition [WF: F(1,9) = 0.00, n.s., η2
p = 0.00; BF: F(1,9) = 1.25,

n.s., η2
p = 0.12]. Similar to the leading marker, peak RA latencies in

response to the trailing marker appeared to be around 110 ms after
stimulus onset. For example, in the 800/3200-BF case, the aver-
age onset latencies for trailing markers were 108, 138, and 194 ms

for the 0-, 30-, and 80-ms gaps, respectively. The differences of
these latencies (30 ms between 0- and 30-ms gaps and 55 ms
between 30- and 80-ms gaps) corresponded to the differences in
gap durations.

Experiment 2
We calculated the averaged RAs for the trailing markers (Figure 6)
and the relative amplitudes of the RAs in the iROI (Table 3). In
the WF condition, onset responses for the trailing marker were
observed for the 0-ms gap condition (Figure 6A, green line), but
amplitudes were smaller than those of the 30-ms and 80-ms gap
conditions (Figure 6A, red and blue lines). In the BF condition,
the onset responses for the trailing marker were observed for the
0-ms gap condition (Figure 6B, green line). This tendency is con-
sistent with the results in Experiment 1. We performed a 4 (FC:
800/800, 800/3200, 3200/800, 3200/3200) × 3 (GD: 0, 30, 80 ms)
ANOVA on the peak amplitude for the trailing marker. The result
showed a significant main effect of FC [F(3,15) = 9.93, p < 0.01,
η2

p = 0.67] but not for GD [F(2,10) = 0.63, n.s.]. The peak ampli-
tudes for the 3200/800 trailing marker were larger than those for
the 800/3200 trailing marker (t = 0.57, p < 0.05). The interac-
tion between FC and GD was not significant [F(1.32,6.60) = 0.20,
n.s.].

Table 4 shows the peak RA latencies in the iROI from Exper-
iment 2. A 4 (FC: 800/800, 800/3200, 3200/800, 3200/3200) × 3
(GD: 0, 30, 80 ms) ANOVA was performed on the peak RA latencies
of the leading marker as well as the trailing marker to observe the
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FIGURE 5 | Averaged regional activities (RAs) in the left auditory

inspection region of interest from 10 participants in Experiment 1. (A)

RAs for the WF conditions. (B) RAs for the BF conditions.Thick lines under the

horizontal axis of each RA represent the time range of stimulus presentation
for the 0-ms (green), 30-ms (red ), and 80-ms (blue) gaps. Filled lines denote
the 800-Hz markers, while open lines denote the 3200-Hz markers.

Table 4 | Latencies (ms) of the regional activities in the iROI in Experiments 1 and 2.

Frequency combination

800/800 3200/3200 800/3200 3200/800

Gap Leading

marker

Trailing

marker

Leading

marker

Trailing

marker

Leading

marker

Trailing

marker

Leading

marker

Trailing

marker

Experiment 1 0 ms 115.5 (±12.9) – 111.7 (±11.3) – 112.8 (±10.5) 107.8 (±14.3) 116.7 (±13.5) 106.7 (±6.8)

30 ms 110.7 (±7.2) 142.9 (±13.3) 115.8 (±13.8) 144.7 (±11.3) 115.1 (±12.1) 138.0 (±16.6) 117.0 (±14.7) 132.3 (±2.8)

80 ms 109.9 (±6.7) 189.8 (±9.9) 110.9 (±9.8) 188.1 (±19.0) 113.2 (±11.1) 194.4 (±11.0) 117.1 (±17.1) 194.4 (±11.0)

Experiment 2 0 ms 101.5 (±3.6) 137.3 (±16.4) 103.8 (±6.2) 149.8 (±19.7) 104. 0 (±9.9) 103.8 (±6.5) 102. 3 (±4.2) 106.2 (±11.3)

30 ms 102.2 (±4.4) 133.5 (±5.5) 106.3 (±5.0) 137.0 (±9.6) 107.0 (±8.9) 138.7 (±7.8) 101.2 (±6.0) 139.0 (±5.4)

80 ms 104.2 (±4.7) 186.0 (±9.5) 103.3 (±2.9) 178.3 (±14.1) 103.0 (±8.2) 192.0 (±11.9) 105.8 (±6.7) 192.0 (±12.1)

Latencies are given as mean (±SD).

timing of the onset responses for both markers. For the leading
marker, no significant main effect of FC [F(3,15) = 0.356, n.s.,
η2

p = 0.67] or GD [F(2,10) = 1.57, n.s., η2
p = 0.24] were found.

Peak RA latencies in response to the leading marker appeared
to be around 100 ms after stimulus onset for all FCs. For the
trailing marker, ANOVA revealed a significant main effect of
GD [F(2,10) = 204.50, p < 0.001, η2

p = 0.98], but not for FC

[F(3,15) = 2.17, n.s., η2
p = 0.35]. The interaction between FC and

GD was significant [F(2.74,13.68) = 16.86, p < 0.01, η2
p = 0.76].

In WF conditions, there was no difference in latency between 0-
and 30-ms gaps (800/800: 0 vs. 30 ms: t = 3.83; 3200/3200: 0 vs.
30 ms: t = 12.83). The N1m peak latency for the 0-ms gap in
WF conditions appeared to be around 30 ms after the onset of the
trailing marker.
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FIGURE 6 | Averaged regional activities (RAs) in the left auditory

inspection region of interest from 6 participants in Experiment 2. (A) RAs
for the WF conditions. (B) RAs for the BF conditions. Thick lines under the

horizontal axis of each RA represent the time range of stimulus presentation
for the 0-ms (green), 30-ms (red ), and 80-ms (blue) gaps. Filled lines denote
the 800-Hz markers, while open lines denote the 3200-Hz markers.

DISCUSSION
This study investigated spatio-temporal characteristics of cortical
responses corresponding to WF and BF gap detection in human
auditory cortex using MEG. In terms of their temporal charac-
teristics, in Experiment 1 we found that N1m amplitude for the
trailing marker in WF condition was larger for 30-ms gaps than for
80-ms ones, while in BF condition, it was larger when the training
marker was 800 Hz than when it was 3200 Hz. In Experiment 2,
N1m amplitude was larger for 800-Hz markers than for 3200-Hz
markers, regardless of the type of condition. Spatially, Experiment
1 showed that 800 and 3200 Hz markers generated activation that
differed in the anterior-posterior direction, while in Experiment
2 activity differed in all directions. These results indicate differ-
ent activation patterns for WF and BF conditions in spatial and
temporal dimensions.

AEF SOURCE LOCALIZATION DURING WF AND BF CONDITIONS
The MNE results from the group analysis, which focused on
an onset response to the trailing marker, were in line with pre-
vious MEG and fMRI studies. Our current results show that
activations were estimated to be in the auditory cortex in both
Experiments 1 and 2: 800-Hz responses are located more ante-
riorly than 3200-Hz ones (Figures 3 and 4). Other MEG studies

have shown that when stimulus frequencies are increased, the N1m
shifts to lateral to medial direction along the surface of the audi-
tory cortex (Romani et al., 1982; Pantev et al., 1988, 1995). Several
fMRI studies have reported that areas most responsive to high
frequency tones are located in the posterior and medial regions,
while those selective for low frequency tones are located at the
anterior and lateral regions (Talavage et al., 2000; Formisano et al.,
2003).

The source locations activated by the 3200-Hz tone were less
concentrated, while those activated by the 800-Hz tone were
reproducible and stable (especially in Experiment 1), as indi-
cated by the relatively larger standard deviations in the y-axis
for 3200-Hz tones compared with 800-Hz tones (Figure 3 and
Table 2). Additionally, the statistical significance of differences
along the x- and z-directions differed between the two experi-
ments. Because the participants of Experiments 1 and 2 were not
identical, differences in the estimated center locations between the
two experiments might in part be owing to differences in audi-
tory cortex anatomy across individuals. Indeed, inter-participant
variability in the location of the recorded cortical activity has
often been reported in MEG and fMRI studies (e.g., Formisano
et al., 2003; Lütkenhöner et al., 2003; Zatorre and Schönwiesner,
2011).
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REGIONAL ACTIVITY FOR THE WF AND BF CONDITIONS
In both Experiments 1 and 2, in the WF condition, stable activation
patterns of the N1m-peak amplitude were observed for both FCs
(800/800 and 3200/3200) across 30- and 80-ms gap durations.
In contrast, in the BF condition, the RA pattern for the trailing
marker was different depending on the trailing markers’ frequency
(3200/800 or 800/3200; Figures 5B and 6B). In both Experiments
1 and 2, amplitudes were significantly higher for 800-Hz tones
than for 3200-Hz ones.

The results of Experiment 2 showed onset responses to the trail-
ing marker in all conditions including WF with a 0-ms gap. Two
of the six participants exhibited onset responses to the trailing
marker with a 0-ms gap. When re-analyzing the N1m response
in the WF condition after excluding these two participants, the
N1m amplitudes to the 0-ms gap condition (0.29 for 800 Hz and
0.31 for 3200 Hz) were as small as waveform baseline (about 0.2,
as indicated in Figures 5 and 6), although there were no signifi-
cant differences among the three gap durations [F(2,6) = 3.34, n.s.,
η2

p = 0.53]. In the WF condition, neurophysiological sensory sensi-
tivity to the gap might be highly correlated with its psychophysical
threshold. Indeed, amplitude of gap-evoked responses has been
shown to increase as a function of gap duration, and be corre-
lated with the psychological threshold of each participant (Witton
et al., 2012). Therefore, we assume that differences in N1m ampli-
tude for the 0-ms gap in the WF condition might be related to
individual differences in the sensitivity to gaps. For the BF con-
dition, onset responses clearly appeared for all trailing markers,
even when the gap was lacking. The response to the 0-ms gap
in the BF condition was close in amplitude to those in which
the gap lasted 30 or 80 ms, making comparisons between the
gap and no-gap responses difficult for the BF condition. These
complexities of response patterns in the BF condition might be
connected to the large individual differences that are seen in gap-
detection thresholds during the BF condition (Formby and Forrest,
1991).

The difference between WF and BF conditions in onset response
to trailing marker when no gap was present might indicate a dif-
ference in the underlying neural processing for WF- and BF-gap
detection. For the WF condition, responses to the onset of the
leading and trailing markers occurred for a single frequency in
temporally close timing. In this case, a neuronal population in a
single area should activate to respond to the leading and the trail-
ing marker. As there was no additional cue indicating frequency
change after the gap, the response to the trailing marker was not
robust, especially when the amplitude difference between the two
markers was absent or very small (i.e., a 0-ms gap). For the BF
condition, the different responses to the onset of the leading and
trailing markers occurred for different frequencies. Because the
response to the trailing marker occurred in neural populations
in different areas than the leading marker, the onset response to
the trailing markers should be salient even when a gap is absent
(Phillips, 1999; Eggermont, 2000; Heinrich et al., 2004; Lister et al.,
2007).

FUNCTIONAL CHANNELS AND TONOTOPIC ORGANIZATION
In WF-gap detection, both leading and trailing markers are con-
sidered to be processed in a frequency-selective auditory pathway

(i.e., channel) in the auditory stream for detecting temporal dis-
continuity, and WF-gap detection can be achieved peripherally
with relative ease, with a gap-detection threshold around 2–3 ms
(Plomp, 1964; Penner, 1977). Such small gap-detection thresh-
olds have been explained in terms of the properties of the auditory
periphery (Shailer and Moore, 1983). Conversely, in BF-gap detec-
tion, the leading and trailing markers are processed through
separate frequency pathways because both markers usually have
different or non-overlapping spectral content. BF-gap detection
is presumably performed centrally (Phillips et al., 1997; Phillips,
1999; Eggermont, 2000). Multi-unit recordings in cat primary
auditory cortex showed that the firing patterns of neurons in
auditory cortex reflect minimum detectable gap thresholds that
are similar to thresholds measured psychophysically in humans
(Phillips et al., 1997; Eggermont, 2000). Eggermont (2000) sug-
gested that the secondary auditory cortex and anterior auditory
field are also involved in gap detection. Because the N1m response
to the sound marker was suggested to be related to the psychophys-
ical threshold in humans (Witton et al., 2012), the N1m sources,
such as the supra temporal plane, could be involved in gap detec-
tion as well. In humans, tonotopic organization in auditory cortex
has been verified with MEG (Romani et al., 1982; Pantev et al.,
1988), EEG (Bertrand et al., 1988), and fMRI (Talavage et al., 2000;
Formisano et al., 2003). Tonotopic organization has been observed
in the superior temporal plane, including HG, Heschl’s sulcus, and
the superior temporal gyrus (e.g., Talavage et al., 2000). Examining
the frequency channel from the perspective of tonotopic align-
ment in human auditory cortex could yield new and interesting
findings.

So far, studies have reported modulation of EEG compo-
nents related to the processing of the leading and the trailing
markers via a sensor-level approach (Heinrich et al., 2004; Lis-
ter et al., 2007). Compared with EEG, MEG measurement allows
for more advanced analyses, especially in respect to the spa-
tial resolution. By employing MEG, we showed the spatial
separation between the frequency channels corresponding to
the leading and trailing markers in terms of tonotopic orga-
nization in the auditory cortex. We assumed that frequency
channels can be represented by iROI and RAs in iROI (i.e.,
RAs; Figures 2–6). The investigation of iROI and RA in the
auditory cortex is the first step to delineate cortical activation
related to the processing of gap detection. Our approach using
iROI and RA will be useful for investigating the gap-detection
mechanism.

LIMITATIONS AND FUTURE RESEARCH
Using MEG/EEG for source localization of auditory responses
to high frequency ranges can be difficult because of their lim-
ited spatial resolution. Studies that record auditory evoked brain
responses often adopt 500–2000 Hz tones because the sources for
these frequency tones have been consistently estimated to be in
the auditory cortex (e.g., Stapells et al., 1994). Because we used a
higher frequency tone (i.e., 3200 Hz) than usually examined fre-
quency ranges, the results of iROI did not exhibit concentrated
locations. Therefore, we were unable to make systematic analyses
across the participants, i.e., we were not able to mark ROI on the
standard brain first and then project it onto the individual’s brain.
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We need to accumulate more evidence regarding the tonotopic
organization of wider frequency ranges to confirm the reliability
of our results. In addition, the gap duration adopted in our current
study was determined somewhat arbitrarily and we did not mea-
sure gap-detection thresholds to WF and BF stimuli individually
for each participant. Therefore, whether the durations used in our
experiments really reflect the gap thresholds of the participants is
unclear. Moreover, we did not measure the hearing levels for each
participant, and we are unable to say whether auditory sensitivity
to the tones might contribute to the amplitude differences found
in the current data. A more detailed analysis will require several
patterns of FCs for BF stimuli and individual gap-detection thresh-
olds for each participant under appropriate stimulus settings. Our
RA analysis that was based on tonotopic organization has provided
a clue that helps us understand how gap detection in the auditory
cortex is accomplished.

CONCLUSION
Auditory gap detection is one of the most popular issues with
respect to human mental chronometry. Here, we used MEG and
focused on how the auditory cortex responds to gaps bounded
by tones of either the same or different frequencies. The source-
activation maps and regional time-course waveforms indicated
distinct patterns between the WF and BF conditions at the cortical
level. One clear difference in temporal patterns between the two
conditions was in the sensitivity to trailing marker onsets when
no gap was present: the onset responses to the trailing marker
depended on length of the gap in the WF condition, whereas it
depended mainly on the differences in tonal frequency in the BF
condition. Further, we showed frequency sensitive brain activity
in the human auditory cortex that was related to gap detection
and based on tonotopic organization. Frequency channels can
be represented by iROI and RAs in iROI (i.e., RA). Although
future studies are required, our findings open a new door to better
understanding of gap-detection processing.
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Adequate temporal abilities are required for most daily activities. Traumatic brain injury
(TBI) patients often present with cognitive dysfunctions, but few studies have investigated
temporal impairments associated with TBI. The aim of the present work is to review the
existing literature on temporal abilities in TBI patients. Particular attention is given to the
involvement of higher cognitive processes in temporal processing in order to determine if
any temporal dysfunction observed in TBI patients is due to the disruption of an internal
clock or to the dysfunction of general cognitive processes. The results showed that
temporal dysfunctions in TBI patients are related to the deficits in cognitive functions
involved in temporal processing rather than to a specific impairment of the internal clock.
In fact, temporal dysfunctions are observed when the length of temporal intervals exceeds
the working memory span or when the temporal tasks require high cognitive functions to
be performed. The consistent higher temporal variability observed in TBI patients is a sign
of impaired frontally mediated cognitive functions involved in time perception.

Keywords: traumatic brain injury, time perception, time reproduction, time production, time discrimination,

executive functions

Adequate temporal abilities are important to perform most
of everyday activities and understanding how human perceive
time is always an engaging question. Good temporal skills
are essential for normal social functioning, such as crossing
a busy street, preparing a meal or organizing the daily activ-
ities. Indeed, humans have to process time across a wide
range of intervals, from milliseconds up to the hour range
(Fraisse, 1984; Pöppel, 2004; Buhusi and Meck, 2005; Grondin,
2010).

One of the most influential models of time processing, the
Scalar Expectancy Theory (SET; Gibbon et al., 1984) assumes
that temporal judgments are based on three processing stages: the
clock, memory, and decision stages. According to the SET model,
the first stage consists of a pacemaker emitting pulses; these pulses
pass through a switch and are stored into an accumulator. The
content of the accumulator provides the raw material for esti-
mating time (clock stage). The outcome from the accumulator
is stored in the working memory system for comparison with
the content in the reference memory, which contains a long-term
memory representation of the number of pulses accumulated on
past trials (memory stage). Finally, a decision process compares
the current duration values with those in working and reference
memory to decide on the adequate temporal response (decision
stage).

Errors in temporal processing may depend on different fac-
tors and occur at each stage of the SET model. Variations in
the rate of pulses’ emission by the pacemaker are often reported
to be an important cause of temporal errors. These variations
have several causes like changes in body temperature (Hancock,
1993; Aschoff, 1998), experiencing emotions (Angrilli et al., 1997;

Droit-Volet et al., 2013; Grondin et al., in press) and using phar-
macological substances (Meck, 1996; Rammsayer, 2008). The
switch is the part of the clock process that is directly associated
with the mechanisms of attention. When the switch is closed,
the pulses that are emitted by the pacemaker are accumulated
in the counter. Indeed, it is the amount of attention paid to
time that determines the accumulation of pulses in the counter.
The demonstration of the role of attention in temporal process-
ing is often based on the dual-task paradigm, in which attention
has to be divided between temporal and non-temporal tasks.
Results showed that when more attention is dedicated to time,
more pulses are accumulated in the counter and less temporal
errors are produced (Zakay and Block, 1996, 2004; Block and
Zakay, 2006). When subjects are asked to estimate time and
execute other cognitive tasks, the accuracy of time estimation
is reduced because time estimation shares attentional resources
with the non-temporal tasks and the amount of the shared
resources depends on the nature of the second task (Brown,
1997). Finally, a part of the variance in the processing of time
depends on memory and decisional processes (Penney et al., 2000;
Pouthas and Perbal, 2004; Wittmann and Paulus, 2008). In fact,
the quality of the interval’s representation in reference memory
is a source of variability in temporal processing (Pouthas and
Perbal, 2004; Grondin, 2005). When the content of the accu-
mulator is transferred to working memory for the comparison
with the content stored in reference memory, the temporal repre-
sentation retrieved from the reference memory might have been
modified according to the characteristics of the memory system
(Harrington and Haaland, 1999; Penney et al., 2000; Ogden et al.,
2008).
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DIFFERENT TEMPORAL RANGES AND DIFFERENT METHODS
FOR INVESTIGATING TIME PERCEPTION
For investigating time perception, two factors are critical, namely
the temporal range (Grondin, 2001, 2012) and the method
employed (Zakay, 1990, 1993; Grondin, 2008; Tobin et al., 2010).
Regarding the temporal range, very brief intervals have received
special attention because they are directly involved in motor coor-
dination and in the processing of speech and music (Pöppel, 2004;
Grondin, 2010). There are reasons to believe that distinct tem-
poral processes are involved with intervals above vs. below 1 s
(Penney and Vaitilingam, 2008; Rammsayer, 2008). While the
basal ganglia and the cerebellum are involved in the processing of
both the short and the long intervals, the contribution of the pre-
frontal regions seems limited to the processing of long intervals
(Meck, 2005; Rubia, 2006). Indeed, the cerebellum and basal gan-
glia would be related to the internal clock mechanism, cognitive
functions necessary to complete a temporal task being assumed
by the prefrontal areas.

Traditionally, authors distinguish four methods for investigat-
ing time perception: time production, verbal estimation, time
reproduction and time discrimination (Allan, 1979; Block, 1989;
Zakay, 1993; Mangels and Ivry, 2000; Gil and Droit-Volet, 2011a).
There are many other methods described in the timing and time
perception literature (Grondin, 2008, 2010), but for the sake of
the present review, it is relevant to focus on classical ones. Time
production and verbal estimation tasks may be considered the two
sides of the same coin and reflect the same underlying tempo-
ral processes and mechanisms (Allan, 1979; Block, 1990). In time
production tasks a participant has to produce an interval equal to
an interval previously reported (i.e., “Produce 2 s”). In the verbal
estimation tasks, after experiencing target duration, a participant
has to translate this subjective duration into clock units. Time
production and verbal estimation are appropriate ways for inves-
tigating individual differences related to the internal clock (its
speed rate or the variables influencing it). Because humans have a
tendency to round off the time estimates with chronometric units,
verbal estimations produce more variability and is less accurate
than time production method. In time reproduction tasks, after
first experiencing target duration, a participant is asked to delimit
a time period, usually with finger taps, equivalent the target dura-
tion (Mioni et al., 2014). Compared to time production or verbal
estimation tasks, a time reproduction task is less used to investi-
gate individual differences at the internal clock level. In fact, the
speed rate of the internal clock is the same when experiencing the
target duration and when reproducing it. Finally, in time discrim-
ination tasks, a participant has to compare the relative duration
of two successive intervals (standard—comparison) by indicat-
ing which one was longer or shorter. Note that a time-order error
(TOE) is often observed when performing a time discrimination
task with the presentation of two successive stimuli. The TOE is
defined as positive if the first stimulus is over-estimated or as neg-
ative if the first stimulus is under-estimated relative to the second
stimulus (Hellström, 1985; Eisler et al., 2008). Just like with the
time reproduction method, any clock rate variation would not be
detected with a time discrimination task because the processing of
both the standard and the comparison intervals would be affected
(Zakay, 1990; Rammsayer, 2001; Mioni et al., 2013a).

Researchers are using the entire repertory of methods but in
most cases they give no explanation for the selection of a specific
one. It is obvious that each method activates different time-
related processes and presents some specific perceptual errors. For
example, participants tested with the verbal estimation methods
are prone to respond to the estimated duration in round num-
ber and produced a great amount of variability compared to the
other methods (Zakay, 1990; Grondin, 2010). Time reproduc-
tion is considered to be more accurate and reliable than time
production and verbal estimation; however, it is less useful for
investigating variations in the pacemaker rate. Block (1989) noted
that time production and verbal estimation show more inter-
subject variability than time reproduction or time discrimination,
but can be successfully used in studies where the rate of the
internal pacemaker is manipulated. Others have pointed out that
time discrimination is the purest measure of time perception
because briefer intervals can be used, limiting the involvement of
additional cognitive processes caused by the processing of long
temporal intervals (Rubia et al., 1999; Block and Zakay, 2006;
Mioni et al., 2013b). However, the time discrimination task is
prone to TOE (Eisler et al., 2008).

Taken into consideration that each method activates different
time-related processes, one way to select the appropriate method
is to take the temporal interval under investigation into account
(Gil and Droit-Volet, 2011a). Time discrimination tasks are often
chosen for very brief intervals (from 50 ms up to a few seconds)
while verbal estimation, time production, and time reproduction
tasks are often used with longer intervals (Grondin, 2008, 2010).

Data collected from time reproduction, time production and
verbal estimation tasks may be scored in term of absolute score,
relative error and/or coefficient of variation. Briefly, the abso-
lute score reflects the errors’ magnitude, regardless its direction
(Brown, 1985; see also Glicksohn and Hadad, 2012). The relative
error reflects the direction of the timing error. It is measured by
dividing the estimated duration (Ed) of the participant by the tar-
get duration (Td) (RATIO = Ed/Td). A score of 1 means that the
estimation is perfect; a score above 1 reflects an overestimation;
and a score below 1 means that the interval was underestimated.
Finally, the coefficient of variance (CV) is an index of timing
variability over a series of trials. The CV is the variability (for
instance, one standard deviation) divided by the mean judgments.
In the case of time discrimination tasks, performance is ana-
lyzed in terms of sensitivity and perceived duration (Grondin,
2008, 2010). Depending on the exact method used for discrim-
inating intervals, different dependent variables can be used. For
instance, for sensitivity, it could be the proportion of correct
responses, d′, difference threshold or a coefficient of variation
(difference threshold divided by the bisection point); and, for per-
ceived duration, it could be the proportion of “long” responses, c,
or a bisection point on a psychometric function.

CEREBRAL BASES OF TEMPORAL PROCESSING
Different brain areas have been identified to play a critical role
in temporal processing. By identifying the brain areas and net-
works responsible for governing temporal processing, researchers
can now study the reasons of temporal impairment. Studies have
shown that patients with focal lesions to frontal brain regions
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(both right and left frontal areas) are impaired in their ability
to estimate temporal intervals (Nichelli et al., 1995; Rubia et al.,
1997; Harrington et al., 1998; Mangels et al., 1998; Casini and
Ivry, 1999). In particular, the integrity of the right dorso-lateral
prefrontal cortex and right inferior parietal lobe has been shown
to be necessary for the discrimination and estimation of inter-
vals of several seconds (Rubia et al., 1997; Harrington et al., 1998;
Mangels et al., 1998; Kagerer et al., 2002). The importance of the
cerebellum in timing processes is also well-established. Patients
with cerebellar lesions showed poor performances on both motor
tapping and time estimation tasks, both in the range of hundreds
of milliseconds and of a few seconds (Ivry and Keele, 1989; Ivry
and Diener, 1991; Harrington et al., 2004; Gooch et al., 2010).
The role of the basal ganglia in time estimation and motor tim-
ing functions is confirmed by studies with Parkinson’s disease
patients showing deficits in motor timing and time perception
that can be improved with dopaminergic treatments (Jones et al.,
2008; Merchant et al., 2008). Finally, the parietal cortex is also
emerging as an important locus of multimodal integration of
time, space and numbers and the right inferior parietal cortex
seems to be necessary for rapid discrimination of temporal inter-
vals (Walsh, 2003a,b; Alexander et al., 2005; Bueti and Walsh,
2009; Hayashi et al., 2013).

However, most of the brain areas and networks involved in
temporal processing are also involved in other cognitive func-
tions (Kane and Engle, 2002; Busch et al., 2005; Aharon Peretz
and Tomer, 2007). While frontally mediated cognitive processes
(i.e., attention, working memory, executive functions, etc.) play
an important role in temporal processing (Rao et al., 2001; Perbal
et al., 2002; Baudouin et al., 2006a,b; Mioni et al., 2013a,b),
frontally mediated cognitive deficits are well-documented in trau-
matic brain injury (TBI) patients (Azouvi, 2000; Leclercq et al.,
2000; Boelen et al., 2009; Stuss, 2011).

TIME PERCEPTION IN TRAUMATIC BRAIN INJURY PATIENTS
Temporal impairments in patients with TBI are expected consid-
ering the disruption of cognitive functions involved in temporal
processing. However, what is less clear is whether TBI patients
present a “pure” temporal impairment due to disruption of some
brain areas and of the network specifically involved in temporal
processing, or present a temporal dysfunction mainly because of
an impairment of the cognitive functions involved in temporal
processing.

MAIN CHARACTERISTICS OF TBI PATIENTS
TBI presents unique problems to its survivors, their relatives and
others involved in their rehabilitation. It occurs predominantly
in young adults, most commonly males. Neuropathological evi-
dences suggest a marked heterogeneity of injuries across indi-
viduals and the delineation of the precise nature and extent of
an injury in an individual might be very difficult. However, it is
apparent that diffuse axonal injury is common, and that damage
occurs most frequently in the frontal and temporal lobes. TBI
usually results in immediate loss or impairment of conscious-
ness, followed by a period of confusion. Following the return
of orientation, TBI patients exhibit sensorimotor, cognitive and
behavioral sequels, which vary widely in their severity. In the

majority of cases, it is the cognitive changes which are most dis-
ruptive and disabling in the long term. These may include deficits
of attention, speed of processing, memory, planning and problem
solving, and lack of self-awareness (Ponsford et al., 1995; Lezak,
2004).

Although investigating time perception in TBI patients is of
particular interest from both a clinical and experimental point
of view, there is not much empirical work on the temporal dys-
functions of these patients. Indeed, TBI patients often report such
dysfunctions. Considering that an impaired sense of time could
affect the daily adaptive functioning of patients recovering from
TBI, understanding fully the causes of the temporal impairments
observed in TBI patients is crucial. In addition to contribute to the
understanding of the brain areas and networks involved in tem-
poral processing, studying temporal dysfunctions in TBI patients
should conduct to the elaboration of appropriate rehabilitation
programs.

METHODOLOGICAL ISSUES
A computer-based search involving PsycInfo, PubMed and Web
of Science was conducted using the terms: TBI, closed head
injury, temporal perception, time estimation, time reproduction,
time production, time discrimination, duration reproduction and
duration production. In addition, reference lists from published
reviews, books, and chapters were checked to identify studies
that may not have been found when searching on databases. The
research was conducted independently by the first author and by
the library assistance at Padova University, and covered a period
from 1950 to February 2014. These search methods resulted in
a combined total of 88 published articles. Only studies involv-
ing specifically TBI patients and matched controls that performed
temporal tasks (i.e., time reproduction, time production, ver-
bal estimation, and time discrimination tasks) were included in
the present review. Out of the 88 papers identified, 27 articles
were found in more than one computer-based source. Out of
the 61 different articles, were excluded from the review five arti-
cles reporting animal data, two dissertation abstracts, 18 papers
reporting data with other patients (cerebellar patients, autistic
patients, etc.), and 27 articles in which it was not a timing or
time perception task that was used, but tasks related for instance
to processing speed deficits, time recover after TBI, or temporal
context memory. Finally, two articles were also excluded because
they did not report new data, but data that have been published
earlier in other articles.

In the end, in spite of the importance of adequate tempo-
ral abilities in everyday activities, only seven studies investigat-
ing time perception following TBI were identified and included
in the present work (Meyers and Levin, 1992; Perbal et al.,
2003; Schmitter-Edgecombe and Rueda, 2008; Anderson and
Schmitter-Edgecombe, 2011; Mioni et al., 2012, 2013a,b). Table 1
provides a summary of the findings reported in these articles.

APPROACHING THE LITERATURE FROM A METHOD PERSPECTIVE
Among the study selected, 4 included the performances on
a time reproduction task (Meyers and Levin, 1992; Perbal
et al., 2003; Mioni et al., 2012, 2013b), 3 on a verbal esti-
mation task (Meyers and Levin, 1992; Schmitter-Edgecombe
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and Rueda, 2008; Anderson and Schmitter-Edgecombe, 2011),
2 on a time production task (Perbal et al., 2003; Mioni et al.,
2013b), and 2 on time discrimination task (Mioni et al., 2013a,b).

The studies conducted with the time reproduction task showed
that TBI patients were as accurate as controls (RATIO) and
showed higher variability (CV), indicating dysfunction in main-
taining a stable representation of the temporal intervals. In the
study conducted by Perbal et al. (2003), participants were also
asked to perform a secondary task (non-temporal task) together
with the time reproduction task to investigate the effect of
reduced attentional resources on time perception. Similar RATIO
was observed in TBI patients and controls in both simple (time
reproduction only) and concurrent (time reproduction + non-
temporal task) conditions. Both TBI patients and controls under-
reproduced temporal intervals, in particular when the secondary
non-temporal task was performed together with the time repro-
duction task. When the CVs were taken into consideration, TBI
patients were more variable than controls when the secondary
task was included.

The studies conducted with a time production task confirmed
the results obtained with the time reproduction task. TBI patients
were as accurate as controls (RATIO) but showed higher tem-
poral variability (CV) (Perbal et al., 2003; Mioni et al., 2013b).
Regarding the impact of a concurrent non-temporal task, no
effect was found (time production only vs. time production +
non-temporal task) and this finding applies to both groups. TBIs
and controls showed the same performances (RATIO and CV) in
both simple and concurrent conditions (Perbal et al., 2003).

Three studies were conducted with a verbal estimation task
but performance was analyzed only in two of them. Indeed, in
Meyers and Levin’s (1992) study, performance at verbal estima-
tion task was not analyzed due to the extreme variability noted in
the TBI sample. Schmitter-Edgecombe and Rueda (2008), as well
as Anderson and Schmitter-Edgecombe (2011), reported lower
accuracy (absolute score), higher under-estimation (RATIO) and
more variability (CV) in TBI patients than controls.

Finally, two studies were conducted with a time discrimina-
tion task. TBI patients were less accurate (proportion of correct
responses) and more variable (CV) than controls (Mioni et al.,
2013a,b). Moreover, Mioni et al. (2013a) examined the TOE in
the time discrimination task. TBI showed a greater TOE than con-
trols, indicating a bias in responding “short” when the standard
was 500 ms (positive TOE) and responding “long” when the stan-
dard was 1300 ms (negative TOE). It is worth mentioning that a
TOE is always observed in a time discrimination task (Hellström,
1985), but that the magnitude is greater in TBI patients.

In brief, TBI patients and controls have similar performances
(absolute score or RATIO) when time reproduction and time pro-
duction tasks are employed. However, TBI patients performed less
accurately than controls when verbal estimation and time dis-
crimination tasks were used. Moreover, in all studies, variability
is higher with TBI patients than with controls.

APPROACHING THE LITERATURE FROM A TEMPORAL RANGE
PERSPECTIVE
A review as a function of the length of the intervals under inves-
tigation first reveals that most studies (5 out of 7) are concerned
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with long intervals (between 4 and 60 s). Lower performances are
observed only when temporal intervals are longer than 45 s, prob-
ably because the temporal intervals exceed the working memory
span (Mimura et al., 2000). In the range between 4 and 38 s, TBI
patients seem to be as accurate as controls in terms of absolute
score and RATIO. Only two studies have investigated tempo-
ral abilities in TBI patients with short durations (in the range
of milliseconds to a few seconds), which might be particularly
interesting considering that some of everyday activities are exe-
cuted within this time range (Block, 1990; Block et al., 1998;
Pöppel, 2004). Moreover, by employing short durations, there
is a reduced load of higher cognitive processes because the pro-
cessing of temporal intervals below 1 s is expected to be more
automatic (Lewis and Miall, 2003). Nevertheless, it cannot be
excluded that the involvement of higher cognitive functions are
deployed when short intervals are processed. This involvement is
expected to be task-related rather than time-related. In fact, the
involvement of higher cognitive processes is expected in task that
requires more cognitive control (e.g., time reproduction and time
discrimination). The two studies that used short temporal inter-
vals (between 500 and 1500 ms) reported that TBI patients were
less accurate (absolute score and proportion of correct responses)
than controls in particular when the standard duration was
500 ms; when relative errors were analyzed, both TBI and con-
trols over-estimated 500 ms duration and under-estimated longer
durations (1000 and 1500 ms). Consistent with previous find-
ing obtained with longer temporal intervals, TBI patients showed
higher temporal variability (Mioni et al., 2013a,b).

LINKING TIME PERCEPTION AND NEUROPSYCHOLOGICAL TASKS
As we mentioned before, frontally mediated cognitive processes
(i.e., attention, working memory, executive functions, etc.) play
an important role in temporal processing (Rao et al., 2001; Perbal
et al., 2002; Baudouin et al., 2006a,b). Moreover, considering that
TBI patients often present frontally mediated cognitive dysfunc-
tions, it is of interest to determine what the impact of frontally
mediated cognitive impairment on time perception is. Table 2
provides a summary of correlation analyses conducted between
time perception and neuropsychological tasks.

Despite the fact that, different duration ranges are employed
in different studies, and considering the fact that differ-
ent studies consistently showed that different systems are
involved in the processing of short (hundreds of millisec-
onds) and long (few seconds) temporal intervals, only three
studies (Schmitter-Edgecombe and Rueda, 2008; Anderson and
Schmitter-Edgecombe, 2011; Mioni et al., 2013a) reported corre-
lation analyses between cognitive functions and different range
of temporal intervals. In Mioni et al. (2013a), results showed
that attention, working memory and speed of processing func-
tions were involved when the temporal interval was 1300 ms
(long standard interval) in both TBI and controls; but only in
TBI patients working memory and speed of processing were
involved when the standard interval was 500 ms. In the other
two studies (Schmitter-Edgecombe and Rueda, 2008; Anderson
and Schmitter-Edgecombe, 2011) the results showed significant
correlations between longer temporal intervals (45 and 60 s) and
spatial and verbal memory.

Overall, when the correlations analyses were reported, a rep-
resentative index for the temporal tasks was calculated and cor-
related with the performance at the neuropsychological tests.
Regarding the time reproduction task, significant correlations
were found with the working memory index (Perbal et al., 2003;
Mioni et al., 2012, 2013b1). Moreover, in Mioni et al. (2013b),
significant correlations were also found between time reproduc-
tion index (absolute score) and attention and executive functions
indices, suggesting a high involvement of cognitive resources for
executing accurately the time reproduction task.

In Perbal et al. (2003), the time production index of tem-
poral accuracy (RATIO) correlated significantly with indices of
free tapping and 1-s finger tapping2. Moreover, the time produc-
tion index of temporal variability (CV) correlated with speed of
processing. In Mioni et al. (2013b), there was minimal involve-
ment of higher order cognitive functions (attention, working
memory and speed of processing) in the time production task.
In both Schmitter-Edgecombe and Rueda (2008) and Anderson
and Schmitter-Edgecombe (2011), significant correlations were
found between verbal estimation task and indices of visuo-spatial
and verbal memory tests. Finally, regarding time discrimination
task, both Mioni et al. (2013a,b) reported significant correla-
tions between time discrimination index and all measures of
high cognitive functions included (attention, working memory,
speed of processing, and executive functions), indicating a high
involvement of cognitive resources in the time discrimination
task.

LINKING TIME PERCEPTION AND CLINICAL CHARACTERISTICS
Overall, the studies reported the temporal performance of 151
TBI patients (male = 86) and 129 controls (male = 79) matched
by age (TBI = 35.48 years; controls = 34.10 years) and level
of education (TBI = 12.01 years; controls = 12.75 years). The
Glasgow Coma Scale (GCS; Teasdale and Jennett, 1974) was often
used to define the severity of trauma. A score of 8 or less defines
a severe TBI, a score between 9 and 12 defines moderate TBI and
a score above 12 defines a mild TBI. The majority of TBI patients
(115 out of 151) were scored as severe TBI, 25 were moderate TBI
and 11 were mild TBI. The mean time of post-traumatic amne-
sia (PTA) (when available) was 33.54 days. The time between the
injury and the testing varied consistently across studies from 37
days to 31.40 months. The majority of patients included where
tested long time after trauma. In Meyers and Levin (1992) patients
were evaluated with the Galveston Orientation and Amnesia Test
(GOAT; Levin et al., 1979) and they were divided into two groups
according to their orientation level. The disoriented TBI patients
showed a greater under-reproduction (RATIO) of long tempo-
ral intervals (15 s) compared to controls and, in the combined
TBI group, the GOAT score correlated with long interval (15 s).
Schmitter-Edgecombe and Rueda (2008) and Anderson and
Schmitter-Edgecombe (2011) reported the results of correlations

1Meyers and Levin (1992) is the fourth study that used a time reproduction
task but no correlations with neuropsychological tasks are included.
2In the finger-tapping task, participants were required to tap with their index
finger, as regularly as possible at the pace they preferred (free tempo) or at a
1 s pace (1 s tempo) (Perbal et al., 2003).
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Table 2 | Summary table of studies that have investigated the correlation between time perception and neuropsychological tasks.

References TBI patients Controls Overall

Time reproduction Time production

Simple Concurrent Simple Concurrent

Perbal et al., 2003 RATIO

Free tempo NA NA ns ns 0.46 0.41
1 s tempo ns ns 0.36 0.64
Speed of processing ns ns ns ns
Working memory −0.42 ns ns ns
Episodic memory ns ns ns ns
CV

Free tempo ns ns ns ns
1 s tempo 0.53 ns ns ns
Speed of processing −0.68 ns 0.46 ns
Working memory −0.50 −0.45 ns ns
Episodic memory −0.50 ns ns ns

Schmitter-Edgecombe
and Rueda, 2008

Verbal estimation Verbal estimation

No significant
correlations when
analyses were conducted
separately between TBI
patients and controls
rs = −0.38 to 0.29

Visuo-spatial memory
and (a) 60 s ratio score:
r = 0.35; (b) 25-s
absolute score: r = −37;
and (c) 45-s absolute
score r = −0.37

Anderson and
Schmitter-Edgecombe,
2011

Verbal estimation

NA Rey Auditory Verbal
Learning Test with 45 s
ratio r = 0.60; 7/24 with
45 s ratio r = 0.58

NA

Mioni et al., 2012 Time

reproduction

Time

reproduction

Working memory 0.53 0.44 NA
Attention ns ns

Mioni et al., 2013a Time

Discrimination

Time

Discrimination

500 ms 1300 ms 500 ms 1300 ms NA

Working memory −0.49 −0.62 ns −0.52
Attention ns −0.55 ns −0.36
Speed of processing −0.38 −0.41 ns −0.39

Mioni et al., 2013b Time Time Time

reproduction production discrimination

Attention

Divided attention 0.46 ns 0.43
Go-Nogo 0.48 ns ns
Working Memory

N-Back NA NA 0.40 ns ns
Digit span backward −0.41 ns −0.43
Executive Functions

Verbal fluency −0.51 ns ns
WCST 0.60 ns −0.54

RATIO, relative error; CV, coefficient of variation; Simple, temporal task alone; Concurrent, temporal task + non-temporal task; NA, not available; ns, not significant.

Frontiers in Human Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 269 | 144

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mioni et al. Temporal dysfunction in TBI patients

analyses conducted between performance at the temporal tasks
and injury characteristics. Surprisingly, no significant correlations
were found between the verbal estimation score (RATIO) and
GCS, PTA or time since injury.

DISCUSSION
The present work was conducted for reviewing the literature
on the temporal dysfunctions of TBI patients, and for eval-
uating whether the temporal impairment observed is due to
a disruption at the clock stage, or to the dysfunctions of
the high cognitive functions involved in temporal process-
ing. Taken together, the studies reported poorer temporal per-
formances for TBI patients than for controls. This finding
applies when investigations involve durations exceeding work-
ing memory span (Schmitter-Edgecombe and Rueda, 2008;
Anderson and Schmitter-Edgecombe, 2011) or when temporal
tasks require a high involvement of cognitive functions as is the
case with time reproduction and time discrimination (Mioni
et al., 2013a,b).

Verbal estimation and time production tasks are suitable
methods to highlight variations in the internal clock rate (Block,
1990; Block et al., 1998). Lower temporal performances were
observed in TBI patients when verbal estimation task was used,
but only when long temporal intervals were employed (above
45 s) (Schmitter-Edgecombe and Rueda, 2008). In the case of time
production, TBI were as accurate as controls both with long (4,
14, and 38 s: Perbal et al., 2003) and with short (500, 1000, and
1500 ms: Mioni et al., 2013b) intervals. The results suggest that
TBI patients’ temporal impairment is not due to a dysfunction
at the internal clock level but to a dysfunction of high cogni-
tive functions involved in temporal processing. This hypothesis
is confirmed by the correlational analyses between time produc-
tion and indices of spontaneous tempo. The positive correlation
between duration production and spontaneous tempo indicated
that the participants with accelerated time pacing (shorter inter-
tap interval) were those who produced shorter durations, and the
participants with the slower time pacing (longer inter-tap inter-
val) were those who produced the longer durations (Perbal et al.,
2003). These results are consistent with the accumulation pro-
cess postulated by Church’s model (1984) in which changes in
the internal clock rate lead to differences in the production of the
same objective target duration.

In the case of time discrimination, short temporal intervals
were used to reduce the cognitive load required due to process
long temporal intervals (Block et al., 2010). Significant differences
were found between TBI and controls indicating that TBI were
less accurate (proportion of correct responses) and more vari-
able (CV) than controls. However, the high correlations observed
between time discrimination index and high cognitive functions
(i.e., attention, working memory and executive functions) suggest
that lower performances observed in TBI patients are mainly due
to reductions at the level of cognitive functions involved in tem-
poral processing rather than a dysfunction at the interval clock
rate (Mioni et al., 2013a,b).

More complicated are the results observed with the time repro-
duction task. In both Mioni et al. (2012) and Perbal et al. (2003),
participants performed a time reproduction task together with

a concurrent non-temporal task with durations ranging from 4
to 38 s. The authors employed a concurrent non-temporal task
to prevent participants from using counting strategies (Grondin
et al., 2004; Hemmes et al., 2004) and to investigate the effect of
reduced attentional resources on time perception. The authors
expected lower temporal performance in the concurrent (time
reproduction + non-temporal task) compared to the simple
(time reproduction only) condition and expected a higher effect
of the non-temporal task on TBI patients due to the atten-
tional dysfunction often observed in TBI patients (Busch et al.,
2005; Boelen et al., 2009; Stuss, 2011). Both TBI and controls
were less accurate in the concurrent-task condition compared
to the single-task condition, confirming that time perception is
influenced by attention. When attention is divided between the
temporal task and the non-temporal task, less attention is ded-
icated to time, less pulses are accumulated and, consequently,
there are under-reproductions of temporal intervals (Zakay and
Block, 1996, 2004). However, the effect of non-temporal task was
similar on TBI patients and controls and both groups under-
reproduced temporal intervals. Different results were observed
when short intervals were used (500, 1000, and 1500 ms; Mioni
et al., 2013b). TBI patients were less accurate (absolute score) and
more variable (CV) than controls but showed a similar pattern of
under-reproduction (RATIO). It is important to note that using
the time reproduction task with short intervals is highly prob-
lematic due to the motor component required to perform the
task (Droit-Volet, 2010; Mioni et al., 2014). In time reproduction
tasks, participants need to integrate their motor action in order to
produce a precise button press to reproduce the temporal inter-
val. Preparing and executing a motor action requires planning
and execution of motor movements that might result in addi-
tional variance (Bloxham et al., 1987; Stuss et al., 1989; Caldara
et al., 2004). Therefore, it is possible that the lower performances
(higher absolute score and higher variability) observed were
mainly due to motor dysfunctions rather than temporal impair-
ment. In fact, neuromotor impairment is a common symptom in
TBI patients, and reaction time (RT) tests with this population
have consistently revealed slowness of information processing
and a deficit in divided attention (Stuss et al., 1989; Walker and
Pickett, 2007). Overall, the performance at time reproduction
tasks is highly correlated with working memory index and with
other measures of cognitive functions (i.e., attention, executive
functions).

A consistent result across all studies is the higher variability
observed in TBI patients compared to controls. The difficulty
of maintaining a stable representation of duration might be
accentuated in patients with TBI because of problems in work-
ing memory, but also in other high cognitive functions such as
sustained attention or speed of processing (Brouwer et al., 1989).

Surprisingly, no strong correlations were observed between
temporal performance and clinical measures. The only significant
correlation was observed between the GOAT and time reproduc-
tion task at 15 s (Meyers and Levin, 1992). The GOAT includes
questions about both the past and the present events and is used
to help caregivers to learn when the person no longer has PTA.
The significant correlation observed might explain the higher
temporal variability observed in TBI patients. It is important to
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note that the lack of significant correlations can also be caused
by the weakness of statistical power due, in most studies, to small
sample sizes.

In sum, the revision of the existing literature investigating
time perception in TBI patients showed that temporal dysfunc-
tions in TBI patients were related to deficits in cognitive func-
tions involved in temporal processing such as working memory,
attention and executive functions rather than an impairment
in time estimation per se. In fact, temporal dysfunctions were
observed when the temporal intervals exceeded the working
memory span (Schmitter-Edgecombe and Rueda, 2008; Anderson
and Schmitter-Edgecombe, 2011) or when the tasks employed
required high cognitive functions to be performed (Mioni et al.,
2013a,b). The consistent higher temporal variability observed is
a sign of impaired frontally mediated cognitive functions that
affect temporal representation. The involvement of high cognitive
functions in temporal processing is confirmed by the correlations
observed between temporal tasks and working memory, attention
and speed of processing in both short and long temporal inter-
vals (Perbal et al., 2003; Schmitter-Edgecombe and Rueda, 2008;
Mioni et al., 2013a,b).

FUTURE STUDIES AND DIRECTIONS
The revision of the literature investigating time perception in TBI
patients showed that authors have used, over a wide range of tem-
poral intervals (from 500 ms to 60 s) and the classical time percep-
tion methods (Grondin, 2008, 2010). Despite the limited number
of studies, the results point in the same direction and show
that temporal dysfunction in TBI patients is mainly a secondary
impairment due to deficits in the cognitive functions involved in
temporal processing rather than to an impairment in time esti-
mation per se. However, more studies should be conducted for
drawing a more complete picture of the temporal dysfunctions in
TBI patients, or of the source of these dysfunctions.

Future studies should assess the temporal performances in
tasks where time is marked by stimuli delivered from different
modalities. All the studies conducted used visual stimuli, and it
is well-known that the nature of the stimuli (i.e., visual, audi-
tory, tactile) influences temporal performance (Grondin, 2010).
In particular, temporal sensitivity is higher when the stimuli
are presented in the auditory modality rather than in the visual
modality (Grondin, 1993; Grondin et al., 1998). By reducing
the noise produced by the presentation of visual stimuli mark-
ing time, chances are probably increased to access the sources of
temporal variability in TBI performances and to disentangle the
variability produced by clinical characteristics and the variability
due to some methodological characteristics.

Moreover, future studies should investigate the effects of emo-
tion on time perception in TBI patients. The literature reveals that
marking time with images of faces expressing different emotions
can affect time perception. Facial expressions of anger, fear, hap-
piness, and sadness generate an overestimation of time, but the
facial expression of shame generates an underestimation of time
(Gil and Droit-Volet, 2011a,b). Some studies also have shown that
the ability to read emotion in other people’s faces can be selec-
tively impaired as a result of the head injury (Jackson and Moffat,
1987; Bornstein et al., 1989; Fleming et al., 1996; Green et al.,

2004; Martins et al., 2011). Investigating the effect of emotion
on time perception in TBI patients can provide important infor-
mation regarding the degree of emotional impairment in TBI
patients.

Finally, some studies have shown that time perception (as
measured in time estimation and time production tasks) may
be related to impulsiveness (Barratt and Patton, 1983; Stanford
and Barratt, 1996). In particular, the internal clocks of impulsive
individuals may run faster than those of non-impulsive individu-
als (Barratt and Patton, 1983); therefore, an impulsive individual
would likely experience some temporal distortions (Van den-
Broek et al., 1992). TBI patients often demonstrate impulsive
behavior, in particular after damage to the orbitofrontal cortex
(Berlin et al., 2004). Although, there is no clear evidence of a spe-
cific contribution of orbitofrontal cortex on time perception vs.
other parts of frontal cortex, it is of interest to further investigate
the different contribution of frontal areas on time perception and
distinguish how impulsivity, personality, and cognitive dysfunc-
tions are involved in the temporal dysfunctions.
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Time perception is studied with subjective or semi-objective psychophysical methods.
With subjective methods, observers provide quantitative estimates of duration and data
depict the psychophysical function relating subjective duration to objective duration.
With semi-objective methods, observers provide categorical or comparative judgments
of duration and data depict the psychometric function relating the probability of a
certain judgment to objective duration. Both approaches are used to study whether
subjective and objective time run at the same pace or whether time flies or slows
down under certain conditions. We analyze theoretical aspects affecting the interpretation
of data gathered with the most widely used semi-objective methods, including
single-presentation and paired-comparison methods. For this purpose, a formal model
of psychophysical performance is used in which subjective duration is represented via
a psychophysical function and the scalar property. This provides the timing component
of the model, which is invariant across methods. A decisional component that varies
across methods reflects how observers use subjective durations to make judgments
and give the responses requested under each method. Application of the model shows
that psychometric functions in single-presentation methods are uninterpretable because
the various influences on observed performance are inextricably confounded in the
data. In contrast, data gathered with paired-comparison methods permit separating out
those influences. Prevalent approaches to fitting psychometric functions to data are
also discussed and shown to be inconsistent with widely accepted principles of time
perception, implicitly assuming instead that subjective time equals objective time and that
observed differences across conditions do not reflect differences in perceived duration
but criterion shifts. These analyses prompt evidence-based recommendations for best
methodological practice in studies on time perception.

Keywords: perception of duration, psychophysical methods, psychophysical function, psychometric function,

probabilistic models

“There is nothing so practical as a good theory”
Lewin (1951, p. 169)

“There is nothing so theoretical as a good method”
Greenwald (2012)

INTRODUCTION
Time is crucial in our lives. We do not have a sense organ for
time, but even infants 3–4 months old show some ability to dis-
criminate short durations of different lengths (Provasi et al., 2011;
Gava et al., 2012). During childhood and adolescence we develop
a fine-grained perception of time surely based on our daily expe-
rience with objective time. Finely-tuned time perception seems to
arise after higher-level cognitive processes are sufficiently devel-
oped (Block et al., 1999; Droit-Volet, 2013) and given explicit
experience with objective time. It is nevertheless unclear whether
our ability to represent and quantify time stems from a timing
mechanism (an “internal clock”) that keeps track of time and
can be read like a watch or, rather, only reflects our learning to
translate experienced intervals into magnitudes expressed in the

physical units of time that we got accustomed to. In the former
case, empirical differences between subjective and objective time
would be caused by an acceleration or deceleration of the inter-
nal clock, which thus gives an inexact reading (i.e., the internal
clock is fast or slow); in the latter, they would reflect a subjec-
tive lengthening or shortening of duration, which nevertheless
gets properly quantified afterwards. Figuring out which of these
processes is taking place seems impossible because the process
is unobservable and any observable outcome is compatible with
these two and maybe also other accounts (Block, 1990; Grondin,
2010). Mechanistic accounts of timing processes have the sta-
tus of metaphors (Wackermann, 2011), but difficulties to unravel
those processes does not reduce our interest in investigating the
phenomenon of time perception and the factors that affect it.

Time perception studies range from descriptions of the limits
of our ability to judge and discriminate elapsed time or time dif-
ferences, through the study of subject variables or stimulus condi-
tions that affect such judgments, to assessments of distorted time
perception in patients with psychiatric or neurological disorders.
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Detailed reviews have been published that describe the state and
outcomes of this research in several areas (e.g., Grondin, 2010;
Spence and Parise, 2010; Vroomen and Keetels, 2010; Allman
and Meck, 2012; Chen and Vroomen, 2013; Allman et al., 2014)
and this paper will not provide yet another review of this type.
Our focus is instead on the methods used to gather data on
the relation between subjective and objective time and on the
conflicting or puzzling results that use of alternative (and presum-
ably interchangeable) methods sometimes provides. Our main
goal is to analyze the assumptions underlying these methods
and to derive implications on the interpretation of data gath-
ered with them. For this purpose, widely accepted principles
of time perception will be built into a model of performance
in psychophysical tasks in order to analyze the underpinnings,
implications, and shortcomings of the various methods. To define
our context, section Experimental Methods Used in Studies on
Time Perception gives a brief overview of the classes of subjective
and semi-objective methods used in studies on time perception.
Section A Unified Model of Performance across Semi-Objective
Psychophysical Tasks presents a model of performance in semi-
objective psychophysical tasks that includes widely accepted com-
ponents. Application of the model to different tasks in sections
Single-Presentation Methods and Paired-Comparison Methods
reveals how they can render conflicting results when time per-
ception as implemented in the model is invariant across tasks.
These results and their implications for best research practices
are discussed in section General Discussion and Evidence-Based
Recommendations.

EXPERIMENTAL METHODS USED IN STUDIES ON TIME
PERCEPTION
Research on time perception comprises two major types of study
(Grondin, 2010): retrospective and prospective. Retrospective
studies assess remembered time by asking observers to quantify
the time elapsed while they had been engaged in a task performed
without knowledge that their time estimates would be eventually
assessed (e.g., Kellaris and Kent, 1992; Friedman and Kemp, 1998;
Campbell and Bryant, 2007; Arstila, 2012; Misuraca and Teuscher,
2013; Dong and Wyer, 2014). In contrast, prospective studies assess
immediately experienced time through psychophysical tasks that
can be categorized as subjective or semi-objective. In subjective
methods, observers report the perceived duration of the stimu-
lus presented in each trial, whether through the verbal estimation
task (requesting a numerical estimate of presentation duration),
the temporal reproduction task (asking observers to reproduce a
duration of the same length), or the temporal production task (ask-
ing observers to produce a duration lasting the amount of time
indicated verbally). The ultimate goal of subjective methods is
to estimate the psychophysical function expressing the functional
relation of subjective to objective time (see Figure 1), a historical
endeavor of classical psychophysics (Eisler, 1976; Allan, 1983).

Semi-objective methods also involve the display of stimuli
whose presentation duration varies across trials but observers
are not requested to produce quantitative estimates. Instead,
they are asked for categorical or comparative judgments. Semi-
objective tasks include single-presentation methods and paired-
comparison methods. In the former, each trial presents a single

FIGURE 1 | Sample psychophysical functions described by Equation

(1). The psychophysical function describes the mapping of objective time
(in physical units, e.g., ms) onto subjective time (in arbitrary units). (A) With
α = 1, β = 1, and τ = 0, μ is the identity function by which subjective
duration equals objective duration. (B) With α = 5, β = 0.75, and τ = −10,
μ is a concave function by which durations shorter than t = 654 ms are
subjectively perceived longer than they are whereas increasingly longer
durations are progressively compressed. Solid black lines illustrate the
mapping for sample durations t = 200 ms, t = 1200 ms, and their midpoint
at t = 700 ms. Dashed lines in the bottom panel illustrate that, due to the
non-linear μ, the midpoint between μ(200) and μ(1200) on the vertical axis
does not correspond to the midpoint between t = 200 ms and t = 1200 ms
on the horizontal axis.

stimulus and a categorical response is requested; in the latter, two
stimuli are presented in each trial and a comparison is requested.
(Multiple-comparison methods involving three or more stimuli
per trial will not be discussed here.) Single-presentation methods
include the bisection task (asking observers to report whether the
currently displayed duration is closer to a short or to a long exem-
plar repeatedly displayed in a preceding training phase) and the
temporal generalization task (asking observers to report whether
or not the currently displayed duration is the same as an exemplar
duration also repeatedly displayed in a preceding training phase).
Paired-comparison methods include the two-alternative forced-
choice (2AFC) or comparative task (asking observers to indicate
which of the two stimuli in each trial had, say, a longer dura-
tion) and the equality or same–different task (asking observers
to indicate whether or not the two stimuli had the same dura-
tion), although many other variants exist. Almost invariably,
semi-objective methods are used to estimate the psychometric
function describing how the probability of some response varies
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with duration (see Figure 2). Landmark points on the psychome-
tric function are subsequently extracted to characterize aspects of
time perception, including the bisection point (BP, the 50% point
on the psychometric function in a bisection task), the point of
subjective equality (PSE, the location of the peak of the psycho-
metric function in the temporal generalization task or the 50%
point on the psychometric function in the 2AFC task), or the
difference limen (DL, a measure of the spread of a psychometric
function). Also often computed is the Weber ratio (WR) defined
as either DL/BP or DL/PSE. Superficially, psychometric functions
estimated with semi-objective methods offer an account that dif-
fers from that provided by psychophysical functions estimated
with subjective methods. Yet, the psychometric function embeds
the psychophysical function, as will be seen later.

Prospective studies typically include several conditions to
investigate differences in subjective time across experimental

FIGURE 2 | Sample psychometric functions in the temporal

generalization task (A) and the temporal bisection task (B). Each function
in each panel results from the psychophysical function plotted with the same
color in Figure 1, with additional assumptions coming from the models
described in sections A Unified Model of Performance across Semi-Objective
Psychophysical Tasks and Single-Presentation Methods. Specifically, in the
top panel, δ = 150 whereas in the bottom panel, δ = 70 and ξ = 0.5. In both
cases γ = 0.15. The red curve in (A) is the same psychometric function
plotted in Figure 4A; the red curve in (B) is the same psychometric function
plotted with continuous black trace in Figure 5A.

manipulations (Ulbrich et al., 2007; Wearden et al., 2010; Ogden,
2013) or subject variables (Carlson and Feinberg, 1970; Eisler and
Eisler, 1994; Glicksohn and Hadad, 2012). Differences in time
perception could naturally be expected to occur as a result of these
factors. Our theoretical analyses will assess how the use of alterna-
tive semi-objective tasks and the way in which data are analyzed
can speak about these differences.

A UNIFIED MODEL OF PERFORMANCE ACROSS
SEMI-OBJECTIVE PSYCHOPHYSICAL TASKS
This section presents a unified model of performance in all the
semi-objective psychophysical tasks used to investigate time per-
ception. Specific models have been proposed for individual tasks,
but they are not always applicable to other tasks and, thus,
they offer a fragmentary view of time perception. The model
used for our purpose here extends the signal detection theory
(SDT) model of Gibbon (1981), which was indeed the basis for
most models of performance in semi-objective tasks. The model
includes a timing component and a decisional component deter-
mining how observers use the outcome of the timing component
to make a judgment and give a response.

For the timing component, the model assumes that objective
time is internally represented as described by the psychophysical
function μ, irrespective of the mechanism by which this repre-
sentation is obtained. The psychophysical function μ reflects a
mapping of objective onto subjective time that can be measured
with subjective methods. This does not imply that the psy-
chophysical function estimated with those methods for some par-
ticular stimulus should exactly govern the judgments expressed
by observers in semi-objective tasks with the same stimulus.
Psychophysical functions vary with the subjective method used
to estimate them (Carlson and Feinberg, 1970; Angrilli et al.,
1997; Gil and Droit-Volet, 2011), but also with instructions
(Rattat and Droit-Volet, 2012) or with the interface used to col-
lect responses (Mioni et al., 2014). Yet, judgments reported in
semi-objective tasks must arise from a representation of time
analogous to that subserving performance in subjective tasks.
Extensive research has shown that the psychophysical function
for duration is well-approximated by the three-parameter power
function

μ(t) = α(t − τ)β , (1)

with an exponent β close to unity and a shift τ close to zero.
Parameter values vary across stimulus types and experimental
conditions (Marks and Stevens, 1968; Fagot, 1975; Eisler, 1976;
Dawson and Miller, 1978; Allan, 1983) and one must consider a
family μi, in which the subscript (also in the parameters) denotes
condition. Within a condition, subjective duration exceeds objec-
tive duration within the range of t for which μi(t) > t whereas
subjective duration is shorter than objective duration wher-
ever μi(t) < t. Figure 1 showed two psychophysical functions
described by Equation (1). If μ(t) = t (Figure 1A), subjective and
objective time run identically; if β �= 1 (Figure 1B), subjective
time runs faster or slower than real time (see Gibbon, 1986, his
Figure 1). Across conditions, μi(t) �= μj(t) implies that time runs
(relatively) faster in one condition than in the other.
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The parameters of μ are estimated from the durations reported
by observers across repeated presentations of a set of objective
durations. The fitted function thus reflects the average subjective
duration of a stimulus of duration t. Scalar expectancy the-
ory derived from studies with non-human animals (Church and
Deluty, 1977; Gibbon, 1977; Church and Gibbon, 1982) posits
that the standard deviation of subjective duration is proportional
to the average subjective duration at t, namely,

σ(t) = γμ(t). (2)

This is known as the scalar variance assumption or the scalar
property. A family of functions σi must also be considered across
conditions. With scalar variance, the coefficient of variation
σi(t)/μi(t) of the distribution of subjective durations equals γi

at all t. Scalar variance holds only approximately in human tim-
ing although the standard deviation certainly increases with t
(Wearden, 1991b; Lewis and Miall, 2009). In any case, the sub-
jective duration S of a stimulus of duration t under condition i
can be regarded as a random variable with mean μi(t) and stan-
dard deviation σi(t) and, without loss of generality, S is assumed
to be normally distributed (Figure 3). This provides the output of
the timing component in the model.

This characterization implies that the subjective duration
elicited by presentation of a stimulus of duration t is a random
value sampled from the applicable distribution, regardless of the
psychophysical task or the occasion that motivated the presen-
tation of such stimulus. In semi-objective psychophysical tasks,
observers are assumed to make a decision and respond accord-
ing to the values drawn for each of the stimuli presented in each
trial. Modeling performance on these tasks thus calls for a deci-
sion rule specifying how observers use the current sample (or
samples) of subjective duration to make a judgment and give a
response. This decisional component must vary across tasks but
its elements must be consistent in the sense that the decision rule
for some task cannot imply aspects or processes that are explic-
itly regarded as inexistent or impossible under alternative tasks.

FIGURE 3 | Distributions of subjective duration at selected values of

objective duration. The mean of each distribution is given by Equation (1)
with the same parameter values used in the bottom panel of Figure 1 (the
partly-occluded thick curve on the plane surface shows this psychophysical
function). The distributions obey the scalar property in Equation (2) with
γ = 0.15.

This is a reasonable demand on consideration that trials from
different tasks can be interwoven in a session, with the response
requested on each trial withheld until after stimulus presentation.
In such conditions, duration(s) must be internally represented
before observers know which decision rule must be used to give
a response. Empirical evidence shows that the operation of the
stimulus-dependent component precedes and is unaffected by the
task-dependent decisional component (Schneider and Komlos,
2008; García-Pérez and Alcalá-Quintana, 2012; García-Pérez and
Peli, 2014). On the same grounds, one must assume that μi

and σi do not vary across tasks when stimuli and conditions are
invariant.

Sections Single-Presentation Methods and Paired-
Comparison Methods describe the model (timing output
and decision rule) describing performance on the most com-
mon semi-objective psychophysical tasks, also discussing other
assumptions needed to interpret the data.

SINGLE-PRESENTATION METHODS
In single-presentation methods, observers are shown a sin-
gle stimulus on each trial for them to report a categorical
judgment. Making this judgment nevertheless requires that the
internal representation of the current stimulus is judged rela-
tive to what has sometimes been called an internal standard.
The two methods described next differ as to how the internal
standard is instated and what type of categorical judgment is
requested.

THE TEMPORAL GENERALIZATION TASK
The temporal generalization task consists of a training phase and
a test phase. In the training phase, observers are repeatedly shown
instances of an exemplar duration tst designated as the standard.
The test phase comprises a series of trials each of which displays a
duration t around tst and asks observers to indicate whether that
duration was the same as tst. A plot of the proportion of “same”
responses as a function of test duration describes the empirical
psychometric function.

When both phases use the same stimulus and conditions are
identical, subjective duration must be governed by the same
μ and σ in both phases. Hence, the data are expected to
reveal that the test duration at which “same” responses are
maximally prevalent is t = tst. But stimuli or conditions may
differ across phases: The training phase may use a neutral
stimulus such as an oval while the test phase uses emotional
stimuli such as angry faces or taboo words. In such case, μ

and σ will differ across phases if subjective time runs differ-
ently in each condition. Let subscripts “s” and “t” respectively
denote the functions that apply to the standard and to the test.
Then, one would expect the data to disclose the test duration
whose subjective duration equals the subjective duration of the
standard. Formally, this is the value tPSE at which μt(tPSE) =
μs(tst).

Fitting model-based psychometric functions to the data is use-
ful for these purposes. Formal models from which theoretical
psychometric functions for the temporal generalization task can
be derived were first proposed by Church and Gibbon (1982)
and Wearden (1992). The model described next differs from these

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 415 | 153

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


García-Pérez Does time ever fly?

in minor respects discussed in section Differences with Previous
Models.

Model and assumptions
The training phase helps observers to set an anchor point (inter-
nal standard) from the sample of subjective durations elicited
by repeated presentation of the standard. The anchor is presum-
ably placed at Sst = μs(tst) and kept invariant. In the test phase,
observers compare the random subjective duration S elicited by
the current test with Sst and respond according to the magnitude
of |S − Sst|. Observers are assumed to have a limited resolu-
tion to tell small differences from zero, for otherwise they would
always respond “different.” Under these assumptions, the deci-
sion rule states that observers respond “same” when |S − Sst| ≤
δ and “different” when |S − Sst| > δ, where δ is the resolution
limit and the interval from Sst − δ to Sst + δ is the indifference
region.

The mathematical form of the psychometric function for
“same” responses is easily derived from these assumptions. Given
that Sst = μ(tst) is assumed constant and that S in the test phase
is normally distributed with mean μt(t) and standard deviation

σt(t), the probability �same of a “same” response varies with test
duration t as

�same(t) = Prob (|S − Sst| ≤ δ)

= Prob (Sst − δ ≤ S ≤ Sst + δ)

= �

(
Sst + δ − μt(t)

σt(t)

)
− �

(
Sst − δ − μt(t)

σt(t)

)
, (3)

where � is the unit-normal cumulative distribution function. The
psychophysical function μ is thus embedded in the psychometric
function, as is the scalar property. Figure 4A shows the psychome-
tric function when μs = μt ≡ μ and σs = σt ≡ σ (see the legend
for parameter values) so that Equation (3) becomes

�same(t) = �

(
Sst + δ − μ(t)

σ(t)

)
− �

(
Sst − δ − μ(t)

σ(t)

)
. (4)

Even in these conditions, �same does not peak at the standard
duration because t = tst maximizes Equation (4) only when σ(t)
is a constant function independent of t. When σ(t) obeys the

FIGURE 4 | Model-based psychometric functions for the temporal

generalization task. In (A), perception of duration is governed by the same
psychophysical function for training and test stimuli; in (B), they are governed by
different psychophysical functions. The top panel shows a continuous version
of the surface for which cross-sectional plots at selected t were shown in
Figure 3. The surface in (A) has the same parameters as in Figure 3 and
governs perception of duration for the training stimulus in both columns and
also for the test stimulus in (A); the surface in (B) only differs in that α = 5.4

instead and is assumed to govern perception of duration of the test stimulus in
(B). The middle panel shows the partition of decision space into a central gray
region of subjective durations that result in “same” responses and two outer
white regions of subjective durations that result in “different” responses. The
central gray region spans δ = 150 units on either side of the anchor point. The
bottom panel shows the resultant psychometric function in Equation (3). The
ordinate at each value of t equals the area under the cross-section at t of the
surface in the top panel within the region that results in “same” responses.
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scalar property, Equation (4) peaks at t =
√

1 + 4γ2 − 1
2γ2 Sst. The

right-hand side of this expression evaluates to 0.99Sst when γ =
0.1 and to 0.92Sst when γ = 0.3, but the spacing used in empiri-
cal studies (typically 100–200 ms) is too coarse to reveal this shift.
If differences in stimuli or conditions across training and test
phases affect subjective time, �same is further shifted because the
peak of Equation (3) is further away from t = tst when μs �= μt

(see Figure 4B). Note also that differences between σs and σt are
inconsequential, as σs plays no role in �same. The gradients on
either side of �same are determined by how σt varies with t. With
scalar variance, �same is positively skewed. The skew is further
emphasized when μt is a concave function (βt < 1 in Equation 1)
and reduced or even reversed when μt is convex (compare the two
curves in Figure 2A).

Because �same does not peak at t = tst even when μs = μt,
observed shifts of �same away from tst cannot be interpreted as
evidence that μs �= μt and, thus, of differences in subjective time
in the conditions of the test phase relative to the training phase.
Other difficulties in the interpretation of data from the tempo-
ral generalization task will be discussed in section Summary and
Discussion of Single-Presentation Methods.

Differences with previous models
Wearden (1992) proposed three variants of the model of Church
and Gibbon (1982), which are discussed next in our notation.
All variants share two characteristics: (1) subjective duration is
assumed accurate on average so that the psychophysical func-
tion is μ(t) = t in all cases and (2) the internal standard is not
regarded as a fixed value but as a random variable with mean tst.
Also, the resolution parameter (called threshold by Wearden) is
fixed at δ in some variants but regarded as random with mean δ

in others. All three variants use a decision rule analogous to that in
section Model and Assumptions and they differ as to the assumed
variances of subjective duration, internal standard, and threshold
(when random).

The modified-Church-and-Gibbon (MCG) model assumes
σ(t) = 0. Thus, subjective duration is not a random variable and,
given μ(t) = t, it is identical to objective duration. This model
places the scalar property at the internal standard (drawn in each
trial from the memory representation of the standard) whereas
the threshold is regarded as a random variable with fixed vari-
ance. The MCG model is structurally equivalent to our model
because the distribution of |X − Y | is the same regardless of which
of X or Y is the random variable and which is the constant and
also because the variability of δ can be formally transferred to the
internal standard. But this model presents an empirical difficulty:
If subjective duration equals objective duration (a consequence
of assuming μ(t) = t and σ(t) = 0), observers would be perfectly
accurate in paired-comparison tasks asking them to judge the rel-
ative durations of two stimuli displayed in each trial (see section
Paired-Comparison Methods).

The fixed-threshold model removes the variability of δ while
leaving other assumptions of the MCG model intact. This model
is also formally equivalent to our model and to the MCG model,
and results reported by Wearden (1992; see his Table 1) reveal that
the estimated variability of the internal standard increases under
this model to capture the variability attributed to threshold under

the MCG model. Finally, the timing-variability model assumes
scalar variance for subjective duration in place of σ(t) = 0, also
assuming scalar variance with the same γ for the internal standard
and a threshold randomly drawn in each trial from a distribu-
tion with fixed variance. Structurally, this model is not equivalent
to the others because it involves a ratio of independent nor-
mal random variables, whose distribution is not normal (Simon,
2002, formula 7.7). The model nevertheless produces nearly iden-
tical psychometric functions and is also functionally equivalent
to the previous two and to our model, although scalar variance
affects two random variables here and must result in smaller
estimates of γ to account for the same data (see Table 1 in
Wearden, 1992).

Because all the models of Wearden (1992) use μ(t) = t, they
explicitly assume that subjective and objective time run identi-
cally and, hence, the models are incompatible with the notion
that subjective time may run at a different pace, or with an inter-
est in assessing what that pace may be and how it varies across
conditions. Fitting these models to empirical data enforces the
assumption of veridical time perception and succeeding at that
shows that temporal generalization data are compatible with the
notion that subjective time is equivalent to objective time. This
outcome is not to be taken as a proof that time perception is
never distorted relative to objective time but as a manifestation
of non-identifiability issues hampering the interpretation of data,
whose discussion is deferred to section Summary and Discussion
of Single-Presentation Methods.

THE TEMPORAL BISECTION TASK
The temporal bisection task also consists of a training phase and
a test phase. In the training phase, observers are shown repeated
instances of exemplar durations tshort and tlong designated short
and long, respectively. The test phase comprises trials displaying
a test duration t typically between tshort and tlong. Observers are
asked to judge whether the current test duration is closer to the
short or to the long exemplars. A plot of the proportion of “long”
responses at each test duration describes the empirical psycho-
metric function and the 50% point on this function is taken to be
the BP.

Performance is governed by common μ and σ if stimuli and
conditions do not differ across phases. The BP might then be
expected to lie at the midpoint between tshort and tlong only if
μ is linear (Figure 1A and the blue curve in Figure 2B). With
non-linear μ, the objective midpoint does not map onto the sub-
jective midpoint (Figure 1B) and the BP would be expected to lie
at the test duration associated with the subjective midpoint (red
curve in Figure 2B). Note that the two cases in Figure 2B reflect
an exquisite ability to bisect the subjective continuum; the differ-
ent BPs simply reflect the form of μ. Bisection tasks are also used
with different stimuli or conditions in the training and test phases
so that μt may differ from μs and σt may differ from σs (using the
same notation as before). In such cases, one expects the BP to
identify the test duration that is subjectively midway between the
subjective durations of the short and long standards.

Quite often, cumulative Gaussian or logistic functions are fit-
ted to data to estimate the BP and the DL from location and slope
parameters. Formal models from which suitable psychometric
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functions can be derived were first proposed by Gibbon (1981)
and Wearden (1991a; see also Wearden and Ferrara, 1995). The
model described next differs from these in some respects dis-
cussed in section Differences with Previous Models.

Model and assumptions
The training phase helps observers to set anchor points from the
sample of subjective durations elicited by repeated presentation
of short and long exemplars. In principle, the anchor points are
assumed to be placed at Ss = μs(tshort) and Sl = μs(tlong) and
also to be invariant. In the test phase, observers compare the
subjective duration S of the current stimulus with Ss and Sl and
respond according to which of |S − Ss| or | S − Sl| is the small-
est. In principle, “long” responses are in order when |S − Sl| <

|S − Ss|, which simplifies to S > (Ss + Sl)/2. For all purposes, this
is as if observers set a single anchor at the subjective midpoint
Smp = (Ss + Sl)/2. Assuming that observers use a point criterion
and always classify S as closer to the short or the long exemplars
is incompatible with assumptions in the model for temporal gen-
eralization: If observers can use a point criterion in the bisection
task to decide whether S is above or below Smp, they should show
the same capability in the temporal generalization task for decid-
ing whether S is above or below Sst, and thus they would always
respond “different.” Observers surely have limited resolution also
in the bisection task so that they respond “short” when S < Smp

− δ, respond “long” when S > Smp + δ, and cannot tell when
Smp − δ ≤ S ≤ Smp + δ, also involving a resolution limit and an
indifference region. But, because observers are forced to respond
“short” or “long,” they must use an extra criterion when they

cannot tell. The model assumes that they respond “long” with
probability ξ, reflecting their response bias and regardless of the
criteria that render such outcome.

The psychometric function �long for “long” responses is easily
derived from these assumptions. Since Smp is assumed constant
and S in the test phase is normally distributed with mean μt(t)
and standard deviation σt(t), the probability of a “long” response
varies with test duration t as

�long(t) = Prob
(
S > Smp + δ

)+ ξProb
(
Smp − δ ≤ S ≤ Smp + δ

)

=
[

1 − �

(
Smp + δ − μt(t)

σt(t)

)]
+ ξ

[
�

(
Smp + δ − μt(t)

σt(t)

)

−�

(
Smp − δ − μt(t)

σt(t)

)]

= 1 − ξ �

(
Smp − δ − μt(t)

σt(t)

)
− (1 − ξ)�

(
Smp + δ − μt(t)

σt(t)

)
. (5)

Figure 5A shows sample psychometric functions when μs =
μt = μ and σs = σt = σ for several values of the response bias
parameter ξ. It is noteworthy that the location of the 50% point
on �long varies greatly with ξ. In principle, only when μs and
μt are linear does tmp map onto Smp (Figure 1). But, even when
they are linear, �long has its 50% point at tmp only when ξ =
0.5 (blue curve in Figure 2B). It is also noteworthy that the
location and slope of �long are greatly affected by the irrele-
vant response bias and resolution parameters ξ and δ (compare

FIGURE 5 | Model-based psychometric functions for the temporal

bisection task. Panels (A,B) reflect the same scenarios as in Figure 4

regarding psychophysical functions (identified in the top panels here as
dashed and solid curves instead of red and blue curves). The top panel
shows a decision space analogously partitioned (now using δ = 70) but the
regions now result in “short,” “I can’t tell,” and “long” judgments although
“I can’t tell” judgments must still be reported as “short” or “long”
responses. The bottom panel shows the psychometric functions (from
Equation 5) that may result according to how observers respond when

undecided. The blue curve arises when “I can’t tell” judgments are always
reported as “long” responses (blue arrow in the top panel; ξ = 1 in
Equation 5); the red curve arises when “I can’t tell” judgments are always
reported as “short” responses (red arrow in the top panel; ξ = 0 in
Equation 5); the black curve arises when “I can’t tell” judgments are
reported as “short” or “long” responses with equiprobability
(double-headed black arrow in the top panel; ξ = 0.5 in Equation 5); the
dashed curve arises if δ = 0 so that observers use a point criterion at the
subjective midpoint and are never undecided.
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with the dashed black curve for δ = 0 in the bottom panel of
Figure 5A), undermining interpretation of the BP and the DL.

If differences in stimuli or conditions across training and test
phases affect subjective time, �long is further shifted (Figure 5B)
although given the influence of response bias, the 50% on �long

carries no information that can be readily interpreted in terms of
the pace of subjective time. As in temporal generalization, differ-
ences between σs and σt are inconsequential as σs plays no role in
�long. As resolution decreases (i.e., δ increases) with fixed ξ, �long

becomes shallower (compare the dashed and solid black curves in
the bottom panels of Figure 5). Finally, �long is not symmetric
about its 50% point: Its left side rises more sharply than its right
side levels off. This is due to the scalar property (for a discussion
of this issue, see Killeen et al., 1997).

It is worth mentioning a mixed task in which a standard is
used in the training phase (as in temporal generalization) and
observers report whether the current test duration is longer or
shorter than the standard (as in temporal bisection). In such case
(Grondin and Rammsayer, 2003), observers do not need to build
Smp from Ss and Sl in the training phase but build Sst directly
and use it in the test phase. The model psychometric function is
still given by Equation (5) with Sst in place of Smp. Another vari-
ant of the bisection task is the “partition bisection” of Wearden
and Ferrara (1995), in which the training phase is omitted and
observers are simply asked to classify test stimuli as “short” or
“long” using whichever criterion they wish. The psychometric
function is again given by Equation (5), except that Smp is a free
parameter that captures the arbitrary criterion used by observers.
In yet a further variant, observers receive feedback relative to the
objective midpoint of the range of test durations (Grondin, 1998),
which should help them to set a stable criterion.

Differences with previous models
The seminal model of Gibbon (1981) is analogous to the model
just described except that he omitted the indifference region. His
model thus arises by setting δ = 0 to revert to a point criterion.
Gibbon analyzed versions of the model in which μ is non-linear
and σ obeys the scalar property so that estimated model parame-
ters speak of the pace at which subjective time runs. In addition,
he considered the implications of decision rules involving point
criteria other than Smp = (Ss + Sl)/2.

Wearden (1991a) adapted his fixed-threshold model of tempo-
ral generalization for application to bisection tasks, thus including
the indifference region missing in Gibbon’s (1981) model. In
this model, observers draw random memories of the long and
the short durations (both of which are accurate on average and
have scalar variance) to compare them with the exactly perceived
test duration (i.e., μ(t) = t and σ(t) = 0), responding “long” or
“short” according to which distance is the smallest but provided
that the difference of distances is beyond a fixed threshold (res-
olution limit). On trials in which the threshold is not exceeded,
observers are undecided and always respond “long.” This model
is formally equivalent to our model in Equation (5) with ξ = 1,
μt(t) = t, and σt(t) reflecting instead the variability of the mem-
ory representations. Wearden and Ferrara (1995) later made two
amendments to this model: Undecided observers respond “short”
or “long” with equiprobability (ξ = 0.5) and the anchor Smp is

randomly drawn in each trial from a distribution whose mean
equals the average of the set of test durations. This is the only
random variable in the model but Wearden and Ferrara’s (1995)
writing is unclear about whether its standard deviation was fixed
or increased with t so as to incorporate the scalar property.

By embedding the assumption that μ(t) = t, these models are
unsuitable for assessing how subjective time runs compared to
objective time. A 50% point found to be away from tmp is implic-
itly attributed to response bias or to a criterion Smp placed away
from μs(tmp) = tmp (for an amendment of the model in this
respect, see Wearden, 2004). Such decisional or response aspects
are unrelated to time perception, which is regarded as accurate
under these models. The same holds for the model of Killeen et al.
(1997), which also assumes μ(t) = t and the scalar property but
uses a logistic function as an approximation to �.

Kopec and Brody (2010) presented a model of an entirely
different nature for the bisection task. This model is not consid-
ered here because it involves assumptions, processes, and decision
rules that are specific to bisection tasks and cannot describe
performance in any other task. For instance, applied to a tempo-
ral generalization task, the model posits that �same should have
a symmetric Gaussian shape peaking at t = tst and such that
�same(tst) = 1.

SUMMARY AND DISCUSSION OF SINGLE-PRESENTATION METHODS
Psychometric functions describing performance in single-
presentation methods embed a representation of subjective dura-
tion (the functions μ and σ) and decisional aspects pertaining
to how judgments are made and reported (the anchor points Sst

or Smp, the observers’ resolution δ and, where applicable, their
response bias ξ). All of these components affect the psychome-
tric function, including its location and slope. With reasonable
assumptions about these components, Figures 4, 5 showed that
neither the empirical location of the peak of �same and its gradi-
ent on either side nor the empirical location of the 50% point on
�long and its slope can be interpreted as pure indices of timing
processes. But the interpretation of data is further complicated if
three other implicit assumptions of single-presentation methods
are violated.

The first assumption is that the indifference region is sym-
metric about the anchor point. In general, boundaries might be
placed at Sst − δ1 and Sst + δ2 in the temporal generalization
task (or at Smp − δ1 and Smp + δ2 in the bisection task), with
symmetry occurring when δ1 = δ2 = δ. The effects of an asym-
metric region are illustrated in Figure 6: Psychometric functions
shift as a result of this decisional bias. Obtaining direct evidence
of the symmetry of the indifference region is impossible with
single-presentation data, but methods allowing this determina-
tion exist and their use has revealed that the indifference region is
generally asymmetric (García-Pérez and Alcalá-Quintana, 2013;
García-Pérez and Peli, 2014).

The second assumption is that the anchor points Sst and Smp

are respectively placed at μs(tst) and at (μs(tshort) + μs(tlong))/2
during the training phase, as if observers used the arithmetic
mean of a large sample of subjective durations elicited by repeated
presentation of the standard (or the short and long exemplars). If
the anchor were placed elsewhere during the training phase, the
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FIGURE 6 | Effects of decisional bias in the temporal generalization (A)

and temporal bisection (B) tasks. Graphical conventions as in
Figures 4, 5. Decisional bias shows in that the central region for “same”

or “I can’t tell” judgments is displaced upwards by 30 units relative to its
location in Figure 4 or 5. Psychometric functions are accordingly shifted
laterally to the right.

decision criterion during the test phase would not be at its pre-
sumed location and �same (or �long) would shift accordingly. In
these conditions, shifts of the psychometric function do not nec-
essarily reflect differences in subjective time across training and
test phases even if μs(t) �= μt(t) �= t. Obtaining evidence as to
where the anchor point was placed seems impossible.

The third assumption is that anchors presumably placed
at Sst = μs(tst) or Smp = (μs(tshort) + μs(tlong))/2 are stable. If
they drifted systematically during the test phase, aggregating
data across the session would shift the psychometric function.
Concerns that anchor drift may occur come from adaptation level
theory (Helson, 1948), which posits that the set of durations used
during the test phase defines a context that relocates the inter-
nal standard. Stimulus range effects on temporal generalization
do not seem to have been studied in a way that allows determin-
ing observable consequences on the location of �same, but these
effects have been reported for the bisection task (Wearden and
Ferrara, 1995, 1996; Penney et al., 2014). The model of Wearden
and Ferrara (1995) assumes that, as a result of this, the anchor
is placed at the arithmetic mean of the set of test durations (or
at 95% of this value; see Wearden, 2004). But the dynamics of
the underlying processes are unknown, which precludes devising
ways to eliminate or compensate for their effects so that bisection
data are not contaminated by criterion placement.

These difficulties undermine the interpretation of temporal
generalization and bisection data even under identical condi-
tions in the training and test phases. Consider the bisection
results reported by Gil et al. (2009). The training phase used
a picture of an oval with tshort = 400 ms and tlong = 1600 ms
so that tmp = 1000 ms. Among conditions involving pictures of
liked and disliked foods, the test phase also included a condi-
tion with the oval picture. Averaged across observers, results with
the oval showed a remarkable shift: �long had its 50% point

at t ≈ 800 ms, with �long(tmp) ≈ 0.8. Assuming μs = μt =
μ, σs = σt = σ, incorporating the scalar property, and remov-
ing the indifference region (i.e., δ = 0), Equation (5) reduces to
�long(t) = �(γ − Smp/σ(t)). If Smp = μ(tmp) and τ in Equation

(1) is removed, �long(t) = �(γ − tβmp/γtβ) obtains. Reproducing
the shape described by data from the oval condition in Gil et al.’s
Figure 2 with this function requires β ≈ 2.39 and γ ≈ 1.46, unrea-
sonable values compared to common estimates of β in μ and γ

in the scalar property. Data are nonetheless unquestionable and
a 50% point at t ≈ 800 ms with �long(tmp) ≈ 0.8 are empirical
facts. What is less clear is what the data say about the relation
of subjective to objective time, or whether time is under- or
over-estimated as opposed to veridically perceived. The same data
could have arisen if β = 1 (i.e., μ(t) = t) and the assumption that
Smp = μ(tmp) is removed, implying that observers perceive dura-
tion veridically but for some reason they do not set the anchor
at μ(tmp) during the training phase (Raslear, 1985; Allan and
Gerhardt, 2001; Allan, 2002a,b). And the same shift could have
been caused also with μ(t) = t and by reinstating the assump-
tion that Smp = μ(tmp) if observers had a non-null indifference
region (i.e., δ �= 0) and responded with bias when undecided
(Figure 5). Which scenario is responsible for the observed results
is indiscernible because all account for the data equally well.

It is remarkable that virtually all analyses of bisection data
have explicitly or implicitly assumed μt(t) = t and, hence, that
duration is accurately perceived. Yet, what should have thus been
regarded as criterion shifts or response bias has been inconsis-
tently interpreted as evidence of differences in perceived duration.
To see that the assumption of veridical time perception is implicit
when two-parameter psychometric functions are fitted to bisec-
tion data, make δ = 0 (i.e., a point criterion), μt(t) = t (i.e.,
veridical time perception), and σt(t) = k (i.e., remove the scalar
property). In these conditions, Equation (5) becomes �long(t) =
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�((t − Smp)/k), which is the widespread cumulative Gaussian fit-
ted to bisection data and sometimes replaced for convenience
with a logistic function. On fitting this psychometric function to
data, Smp is regarded as a free parameter to account for observed
shifts with respect to tmp, but this is synonymous with observers
using an arbitrary criterion that varies across conditions (i.e., they
do not set Smp at tmp in all conditions) and perceived duration
being veridical and invariant across conditions (since μt(t) = t in
all cases).

Interpretation of bisection data is more difficult when the test
phase does not include a condition with the training stimulus.
Consider the results reported by Tipples (2010). Stimuli in the
training phase were eight-consonant strings with tshort = 400 ms
and tlong = 1600 ms so that tmp = 1000 ms. The test phase used
words of six different types: high arousal negative or positive, low
arousal negative or positive, neutral, and sexual taboo. Since the
50% point on �long was 30–40 ms higher for taboo words than
for the other types of word, Tipples concluded that time flies
when one reads taboo words. Yet, and leaving other issues aside,
without a reference provided by the 50% point on the psychome-
tric function for eight-consonant strings, the 50% point on �long

for test words is uninterpretable: The conclusion would have dif-
fered if the 50% point on �long for eight-consonant strings were
above that for taboo words or below that for the other types of
word. Tipple’s conclusion is even more puzzling on consideration
that, on average across observers, the 50% point lay between 955
and 970 ms for non-taboo words and nearly at 1000 ms for taboo
words (see his Figure 2). Since tmp = 1000 ms, the conventional
(though unwarranted) conclusion should have been that time is
perceived accurately only with taboo words.

These considerations apply also to the temporal generalization
task, although studies assessing if time flies or slows down under
certain conditions have almost exclusively used the bisection task.
Measuring the psychometric function (be it �long or �same) for
training stimuli sets a reference for comparison with the psycho-
metric function for other types of stimuli, but this does not solve
the problems of single-presentation methods. The multiplicity of
factors that can shift the psychometric function away from tmp

(or tst) preclude the interpretation of observed shifts as evidence
of differences in subjective time across conditions. Bisection tasks
are more seriously affected by this problem because response bias
further alters the slope of the psychometric function (Figure 5)
and contaminates DL estimates.

One might think that these problems would be solved by fit-
ting psychometric functions such as those in Equations (3) or
(5) to the data. Replacing the assumption of symmetry built into
them (i.e., using δ1 and δ2 as needed instead of the single δ in
them) puts into the fitted function all the factors that contribute
to observed performance. Estimated parameter values would thus
provide all the information needed for a proper interpretation
of the data. With a psychophysical function given by Equation
(1), estimates of the exponent β would directly indicate how
time runs in each experimental condition provided the condi-
tion used to set the anchors is also tested. Unfortunately, models
for single-presentation tasks are non-identifiable: There are infi-
nite sets of parameter values that produce the same psychometric
function (Yarrow et al., 2011; García-Pérez and Alcalá-Quintana,

2013; García-Pérez and Peli, 2014). This is not a problem of the
models, but an indication that the intervening factors are inextri-
cably confounded in single-presentation data. Data gathered with
single-presentation methods are simply uninterpretable. Luckily,
paired-comparison methods offer a suitable and dependable
alternative with which these influences can be separated out.

PAIRED-COMPARISON METHODS
Trials in paired-comparison methods display two stimuli (a stan-
dard and a test, both of which may vary across trials) for observers
to make a comparative judgment. Single-presentation methods
imply a comparison too, but with respect to an internal stan-
dard. In paired-comparison tasks, the standard is explicit and
subject to the same type of processing as is the test. A train-
ing phase is not needed to instate an internal standard, nor are
assumptions about its placement and stability. Some modifica-
tions of the temporal generalization and bisection tasks turn them
into paired-comparison methods, and the models discussed here
apply to them too. For instance, the roving standard task of Allan
and Gerhardt (2001) or Rodríguez-Gironés and Kacelnik (2001)
presents in each trial a short and a long exemplar (which vary
across trials) so that observers compare the test duration with
the current exemplars. Similarly, the episodic temporal generaliza-
tion task of Wearden and Bray (2001) presents a variable standard
in each trial which is the reference for the observers’ current
judgment.

In paired-comparison trials, standard and test elicit subjective
durations from the applicable distributions and observers judge
by comparing the values drawn in the current trial. Observers can
be asked to report whether both stimuli have the same subjec-
tive duration (the equality task), whether the first or the second
appeared to have a longer duration (the comparative task), or
whether the first, the second, or neither was subjectively longer
than the other (the ternary task, which blends the two other tasks).
[Incidentally, the bisection task can also be administered in a
ternary format (Droit-Volet and Izaute, 2009) and its application
reveals an indifference region whose width and symmetry differs
across observers (García-Pérez and Peli, 2014).] The outcome of
the timing component of a psychophysical model of performance
in paired-comparison tasks cannot vary with the question asked
at the end of the trial, as discussed in section A Unified Model
of Performance across Semi-Objective Psychophysical Tasks. The
next section describes the model for paired-comparison tasks,
including a common timing outcome and a decision rule that
varies with the task.

THE MODEL FOR PAIRED-COMPARISON JUDGMENTS
The model is analogous to an indecision model derived from
SDT for use in other psychophysical tasks (García-Pérez and
Alcalá-Quintana, 2010a,b, 2011a,b, 2013; Alcalá-Quintana and
García-Pérez, 2011; García-Pérez and Peli, 2014). Its relation
to other models will be discussed in section Differences with
Previous Models. In the general case when standard and test dif-
fer qualitatively (as might be when test and standard are, e.g.,
eight-consonant strings vs. taboo words, or pictures of an oval
vs. pictures of liked foods), the subjective duration Sst of a stan-
dard duration tst is normally distributed with mean μs(tst) and
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standard deviation σs(tst) whereas the subjective duration St of a
test duration t is normally distributed with mean μt(t) and stan-
dard deviation σt(t). Sample psychophysical functions that differ
across test and standard stimuli are shown in the two right pan-
els of Figure 7A. When standard and test stimuli are the same or
when their differences do not affect subjective duration, μs = μt

and σs = σt (two left panels of Figure 7A). Our goal here is to
derive the psychometric function relative to a standard of fixed

duration tst across trials, whether or not such trials are interwo-
ven with trials for other standards (which will define separate
psychometric functions).

The model assumes that Sst and St are independent from
one another and that observers’ judgments are based on the
magnitude of a decision variable D = S2 − S1 computed from
the subjective durations of the second and first stimuli in the
current trial. (The direction in which the difference is computed is

FIGURE 7 | Model-based psychometric functions for paired-comparison

tasks in four different scenarios. (A) Psychophysical functions μs (light green)
and μt (dark green). In the two columns on the left, μs = μt with αs = αt = 5,
βs = βt = 0.75, and τs = τt = −10 in Equation (1); in the two columns on the
right μs is as before but parameters of μt are αt = 5.4, βt = 0.75, and τt = −10.
Scalar variance is assumed with γs = 0.15 in all cases and γt = 0.15 also in the
two left columns but γt = 0.10 in the two right columns. Light and dark green
lines show in each scenario the mapping of the standard at tst = 700 ms and a
sample test at t = 600 ms. (B) Distribution of the decision variable for the
standard-test pair just mentioned in a trial in which the test is presented first.
The distribution is narrower in the two columns on the right due to the smaller
variance. The decision space is partitioned into three regions by vertical lines at
D = δ1 and D = δ2, with δ1 = −150 and δ2 = 150 in the first and third columns
(i.e., no decisional bias) but δ1 = −70 and δ2 = 230 in the second and fourth

columns (i.e., decisional bias). Each region is associated with the judgment
indicated at the top, and the probability of the corresponding judgment equals
the area under the distribution in that region. (C) Distributions in a trial involving
the same pair but with the test presented in the second interval. (D)

Psychometric functions in the ternary task for each presentation order. Color
codes relate to (B,C) (e.g., dark blue denotes “interval 1” responses when the
test was presented first; pale blue denotes “interval 2” responses when the test
was presented second). A thin vertical line indicates the true location of the PSE
defined as tPSE = μ−1

t (μs(tst)). With parameters given above, tPSE = 700 ms in
the two columns on the left whereas tPSE = 630.8 ms in the two columns on
the right. (E) Psychometric functions for “test longer” responses in the
comparative task for each presentation order and with response bias ranging
from ξ = 0.5 (paler curves) through ξ = 0.75, to ξ = 1 (darker curves). The
location of the true PSE is also indicated in each panel by a thin vertical line.
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immaterial, as will become evident below.) Because test and stan-
dard can (and should) be presented in either order with equal
frequency across trials, each presentation order must be consid-
ered separately. Thus, on trials in which the test is presented first,
D = Sst − St is normally distributed with mean μs(tst) − μt(t);
on trials in which the test is presented second, D = St − Sst is
also normally distributed but with mean μt(t) − μs(tst). In both
cases the variance of D is the sum of the variances of Sst and St.
Figures 7B,C show the distributions of D for each presentation
order on a trial with t = 600 ms when tst = 700 ms, given the
psychophysical functions in Figure 7A. Limited resolution also
prevents observers from using a point criterion and the decision
space is partitioned into three regions separated by boundaries
δ1 and δ2, which are symmetric about D = 0 when δ1 = −δ2

(first and third panels in Figures 7B,C) and otherwise reflect
a decisional bias (second and fourth panels in Figures 7B,C).
Judgments turn into responses in a way that varies with the
task.

Consider first a ternary task in which observers report whether
duration was subjectively longer in the first interval, in the sec-
ond, or in neither. Observers respond “interval 2” when D > δ2,
“interval 1” when D < δ1, and “I can’t tell” when δ1 ≤ D ≤ δ2

(see labels in the top part of Figures 7B,C). Response probabil-
ities vary with presentation order due to the different mean of
D in each case. Specifically, the probability �i of an “interval i”
response when the test is presented in interval i, with i ∈ {1, 2},
varies with t as

�1(t) = Prob (Sst − St < δ1) = �

⎛
⎝ δ1 − μs (tst) + μt(t)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ (6a)

�2(t) = Prob (St − Sst > δ2) = 1 − �

⎛
⎝ δ2 − μt(t) + μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠, (6b)

the probability ϒi of an “I can’t tell” response when the test is
presented in interval i varies with t as

ϒ1(t) = Prob (δ1 ≤ Sst − St ≤ δ2) = �

⎛
⎝ δ2 − μs (tst) + μt(t)√

σ2
s (tst) + σ2

t (t)

⎞
⎠

−�

⎛
⎝ δ1 − μs (tst) + μt(t)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ (7a)

ϒ2(t) = Prob (δ1 ≤ St − Sst ≤ δ2) = �

⎛
⎝ δ2 − μt(t) + μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠

−�

⎛
⎝ δ1 − μt(t) + μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ , (7b)

and the probability of responding as the interval in which
the standard was presented is 1 − �i − ϒi. Figure 7D plots

psychometric functions in each scenario and their features are
discussed next.

The most conspicuous aspect is that psychometric functions
do not differ across presentation orders in the absence of deci-
sional bias (first and third columns in Figure 7) and they differ
otherwise (second and fourth columns in Figure 7). Differences
(or lack thereof) in the psychophysical functions for standard and
test also have observable effects. Consider the PSE as a proxy to
these differences. By definition, the PSE is the duration t that
the test must have for its subjective duration to equal the sub-
jective duration of the standard. Thus, the PSE is the duration
tPSE = μ−1

t (μs(tst)) and its location is readily identifiable in the
psychometric functions. Consider the left column of Figure 7,
where δ1 = −δ2 and tPSE = tst because μs = μt. Here, �1 (blue
curve) crosses 1 − �2 − ϒ2 (pale red curve) at t = tst and
�2 (red curve) also crosses 1 − �1 − ϒ1 (pale blue curve) at
that point. It can be easily seen from Equations (6) to (7) that
these crossings occur under any conditions at the duration t sat-
isfying μt(t) = μs(tst). In contrast, ϒ1 and ϒ2 (black and gray
curves) peak below t = tst due to the scalar property. Hence, “I
can’t tell” responses are not maximally prevalent at the PSE and,
thus, it is not the location of the peak of ϒ1 or ϒ2 that signals
the PSE.

With decisional bias under the same conditions (second col-
umn in Figure 7), psychometric functions differ across presenta-
tion orders but the PSE is identically encoded because the crossing
property holds always. In contrast to the preceding case, where ϒ1

and ϒ2 superimpose, their crossing here also occurs at the PSE. It
can again be easily seen from Equations (7) that ϒ1(t) = ϒ2(t)
at all t when δ1 = −δ2 (the conditions in the first column of
Figure 7) and that they cross at the duration t satisfying μt(t) =
μs(tst) when δ1 �= −δ2 (the conditions in the second column of
Figure 7). The third and fourth columns in Figure 7 show that
identification of the PSE is also not hampered when μs �= μt and
σs �= σt, as would occur when subjective time runs differently for
test and standard. In the absence of decisional bias (third col-
umn), the crossing occurs at t = μ−1

t (μs(tst)) = 630.8 ms (thin
vertical line); with decisional bias (fourth column), the crossings
still occur at the same location. In sum, in the ternary paired-
comparison task, the effects of decisional bias are not confounded
with those of psychophysical functions that differ for standard
and test. In this task, the “I can’t tell” option also eliminates
the contaminating influence of response bias because observers
are not forced to give uninformative “interval 1” or “interval 2”
responses when undecided.

The equality task, where observers report whether or not
the two durations are subjectively equal, renders analogous
outcomes. Observers respond “same” when they would have
responded “I can’t tell” in the ternary task whereas they respond
“different” when they would have responded “interval 1” or
“interval 2.” The psychometric functions in Equations (7) hold
for the equality task, and the preceding discussion applies also to
this task. It should be noted that the PSE is not identifiable by
eye in ϒ1 and ϒ2 in the absence of decisional bias (i.e., when
δ1 = −δ2 and the functions superimpose). This is not a prob-
lem, as will be discussed in section Summary and Discussion of
Paired-Comparison Methods.
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In contrast, the comparative task in which observers are
forced to respond “interval 1” or “interval 2” calls again for a
response bias parameter ξ describing how observers give arbitrary
responses when they cannot tell which duration was longer. It
should be clear by now that this can only bring complications.
Assume that, as a result of response bias, observers respond
“interval 2” with probability ξ when they cannot tell. In this task,
“interval i” responses are translated as “test longer” when the
test had been presented in interval i. The probability �i of “test
longer” responses when the test was presented in interval i varies
with t as

�1(t) = Prob(Sst − St < δ1) + (1 − ξ) Prob(δ1 ≤ Sst − St ≤ δ2)

= ξ�

⎛
⎝δ1 − μs (tst) + μt(t)√

σ2
s (tst) + σ2

t (t)

⎞
⎠

+ (1 − ξ)�

⎛
⎝δ2 − μs (tst) + μt(t)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ (8a)

�2(t) = Prob(St − Sst > δ2) + ξProb(δ1 ≤ St − Sst ≤ δ2)

= 1 − ξ�

⎛
⎝δ1 − μt(t) + μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠

−(1 − ξ) �

⎛
⎝δ2 − μt(t) + μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ . (8b)

These psychometric functions are plotted in Figure 7E for sam-
ple values of ξ in each of the same four scenarios. The PSE is still
defined with respect to the underlying psychophysical functions,
but Figure 7D shows that the 50% point on the psychometric
function does not relate to this definition. Consider again the
first column of Figure 7, in which psychophysical functions are
identical for test and standard and there is no decisional bias. The
psychometric functions are identical for both presentation orders
only when ξ = 0.5 (dashed curves) and their 50% point lies at
the true PSE in such case; as ξ increasingly exceeds 0.5, �1 (blue
curves) shifts progressively to the right whereas �2 (red curves)
shifts progressively to the left, with their 50% points symmet-
rically placed with respect to the PSE. Both functions also turn
progressively steeper in this transition and it is also clear that �1

and �2 have different shapes (i.e., they do not differ by translation
only), which is another consequence of the scalar property. In the
third column of Figure 7, still without decisional bias but when
psychophysical functions differ for test and standard, the psy-
chometric functions are displaced laterally toward the true PSE,
maintaining the properties described above. Yet, with decisional
bias (second and fourth columns), lack of response bias (ξ = 0.5)
produces psychometric functions that also differ across presen-
tation orders, although �1 and �2 still have their 50% points
symmetrically placed around the true PSE.

Data from the comparative task are usually aggregated across
presentation orders, although this practice is unadvisable (Ulrich

and Vorberg, 2009). The resultant psychometric function is
then �2AFC(t) = (�1(t) + �2(t))/2 and it is easy to see from
Equations (8) that the 50% point on �2AFC occurs at t =
μ−1

t (μs(tst)). Thus, the average of the psychometric functions for
each presentation order has its 50% point at the PSE, a result
derived by Ulrich and Vorberg for the case in which μs = μt and
generalized by García-Pérez and Alcalá-Quintana (2010a, 2011b)
for the case in which μs �= μt and tPSE �= tst. Although data from
the comparative task are still useful for estimating the PSE, esti-
mation of the true DL from percent points on the psychometric
function is impossible due to the strong influence of response bias
on its slope.

DIFFERENCES WITH PREVIOUS MODELS
Models for paired-comparison tasks are used in many areas of
psychophysics. Almost all of them derive from SDT principles
and share structural characteristics with our model, except that
they do not include an indifference region (i.e., they assume
δ1 = δ2), nor are they adapted to ternary tasks. With δ1 = δ2 = 0,
Equations (8) become

�1(t) = �2(t) = �

⎛
⎝ μt(t) − μs (tst)√

σ2
s (tst) + σ2

t (t)

⎞
⎠ . (9)

Such model does not seem to have been used in time perception.
Conventional practice fits instead cumulative Gaussian or logis-
tic functions to the data or, equivalently, fits straight lines to the
z-scores of observed proportions. This entails a model analogous
to (and with the same problems as) the model discussed in sec-
tion Summary and Discussion of Single-Presentation Methods
for bisection data. In the comparative task, the argument of the
sigmoidal function is also of the form (t − a)/b and the con-
sequences are identical: The free location parameter a replaces
μs(tst) in Equation (9) and allows the 50% point to be placed
as needed without connection to the subjective duration of the
standard; the free spread parameter b replaces the entire denom-
inator of the argument of � in Equation (9), thus removing
the scalar property; and replacement of μt(t) with t amounts
to assuming that subjective and objective time run identically.
Succeeding in fitting such sigmoidal function and observing dif-
ferences in estimated location parameters across conditions can
only be justifiably interpreted as criterion shifts.

In contrast, a model proposed by Rammsayer and Ulrich
(2001) does justice to the assumptions and goals of studies on
time perception. In their model, consideration of the statistics of
counting processes yielded a non-identity psychophysical func-
tion and subjective durations whose standard deviation increases
with t. The model was also developed for application to the
ternary task used to gather their empirical data. With appropriate
replacements for μ and σ, their model and the resultant psy-
chometric functions for the ternary task are identical to those in
Equations (7) and (8) above except that Rammsayer and Ulrich
set δ1 = −δ2 (i.e., no decisional bias). For unknown reasons, this
model was subsequently abandoned by their proponents, as was
the ternary task.
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Another model for the comparative task was proposed by
Dyjas et al. (2012). Again in comparison with our model, they
assumed no indifference region (i.e., δ1 = δ2 = 0), undistorted
time perception (i.e., μt(t) = μs(t) = t), non-scalar timing (i.e.,
σt(t) = σs(t) = σ, a constant), and a history component that
alters an “internal standard” in line with adaptation level the-
ory. The internal standard is updated on every trial as the convex
sum of its value on the previous trial and the subjective duration
of the first interval in the current trial. Such internal standards
can be described as normally distributed with mean μs(tst) = tst

and a standard deviation that varies with presentation order (see
expressions for their variances in Equations 12–13 and 15–16 of
Dyjas et al.). For simplicity, let σ1 and σ2 represent the equiva-
lent standard deviation of the internal standard when the test is
presented first or second. All of this turns Equations (8) into

�i(t) = �

⎛
⎝ t − tst√

σ2
i + σ2

⎞
⎠, i ∈ {1, 2}. (10)

We use the term “equivalent” because substituting the expression
for σ1 coming from Dyjas et al.’s (2012) Equation (16) into our
Equation (10) does not render the psychometric function in their
Equation (26). This is due to an additional term in the numera-
tor of the argument in the first line of their Equation (26), which
they transferred to the denominator in the second line. Also, the
standard deviation of the internal standard varies according to
whether the two presentation orders are blocked or randomly
interwoven (see also Dyjas and Ulrich, 2014). The use of “equiv-
alent” standard deviations permits our Equation (10) to cover
all applicable cases while facilitating verbal descriptions of their
model.

Participation of such internal standard was invoked to produce
different slopes for �1 and �2, something that is accomplished
by the different σi in Equation (10). The scalar property excluded
from Dyjas et al.’s model would have produced the same effect
(Figure 7E). Since �i in Equation (10) has its 50% point at t = tst

for all i while empirical data contradict this property, Dyjas et al.
fitted their model using a logistic version of Equation (10) with ai

(in place of tst) and bi (in place of
√

σ2
i + σ2) as free parameters

subject to Ulrich and Vorberg’s (2009) constraint. Since μt(t) =
μs(t) = t is assumed, this implies that shifts of the psychometric
function away from tst are caused by criterion setting, not by dif-
ferences in perceived duration. In a variant of this model, Dyjas
and Ulrich (2014) displaced the point criterion to some arbitrary
δ (i.e., δ1 = δ2 = δ), which turns Equation (10) into

�i(t) = �

⎛
⎝ t − tst − ( − 1)iδ√

σ2
i + σ2

⎞
⎠ , i ∈ {1, 2}. (11)

The success of Equation (11) at fitting the empirical data of
Dyjas and Ulrich provides further support to the notion that
shifts of �1 and �2 can be attributed to criteria, not necessarily
reflecting differences in perceived duration (which are explicitly
excluded by their assumptions). Dyjas and Ulrich also presented

a version of their model for the equality task, for which they intro-
duced a potentially asymmetric indifference region. This renders
psychometric functions identical to our Equations (7) with the
amendments discussed above to include the participation of an
internal standard. Their model for the equality task is thus incom-
patible with their model for the comparative task, as the latter
assumes that observers never judge stimuli to have the same sub-
jective duration. Interestingly, Dyjas et al. (2012) had allowed
observers to hit a separate response key when they judged the two
presentations in a trial to have the same duration, but they did
not describe how those responses were treated and they presented
and analyzed data as if such responses had never been given. Dyjas
and Ulrich did not include this extra response option.

Dyjas and Ulrich also described a model including sensa-
tion weighting as implemented in the model of García-Pérez
and Alcalá-Quintana (2011a), but this model is not discussed
here because it is empirically indistinguishable from the internal
standard model.

SUMMARY AND DISCUSSION OF PAIRED-COMPARISON METHODS
The shape of psychometric functions for paired-comparison tasks
is determined by an embedded representation of subjective dura-
tion (μ and σ) and by aspects of the decision process. In contrast
to single-presentation methods, paired-comparison methods are
free of complications arising from untestable assumptions regard-
ing the placement and stability of anchors. An added value of
paired-comparison methods is that they lend themselves to a sep-
arate analysis of data for each presentation order (Figure 7), by
which the influence of criteria and decisional bias on observed
performance is separated from that of true differences in subjec-
tive duration (different μ for test and standard) or in its variance
(different σ for test and standard).

But these are only potential benefits. If data are analyzed by
fitting psychometric functions implying μ(t) = t in all cases, the
potential of paired-comparison methods is wasted: Differences in
observed performance across conditions can only be justifiably
attributed to different criterion settings. To harvest the bene-
fits, fitted psychometric functions must include a non-identity μ

whose parameters capture the relation of subjective to objective
time that best accounts for the data in each condition. The uni-
versally accepted scalar property should also be included in place
of the fixed-variance assumption of typical analyses. Using sub-
scripts for the parameters of μ and σ in Equations (1)–(2) (and
setting τ = 0 for simplicity), Equations (6) and (7) for the ternary
task become on substitution

�1(t) = �

⎛
⎝ δ1 − αst

βs
st + αttβt√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠ (12a)

�2(t) = 1 − �

⎛
⎝ δ2 − αttβt + αst

βs
st√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠ (12b)

ϒ1(t) = �

⎛
⎝ δ2 − αst

βs
st + αttβt√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠
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−�
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⎝ δ1 − αst

βs
st + αttβt√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠ (12c)

ϒ2(t) = �

⎛
⎝ δ2 − αttβt + αst

βs
st√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠

−�

⎛
⎝ δ1 − αttβt + αst

βs
st√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t2βt

⎞
⎠ . (12d)

Equations (12c)–(12d) apply also to the equality task, and a sim-
ilar substitution in Equations (8) renders explicit functions for
the comparative task. It should be noted from Figure 7E that
response bias combined with a non-identity μ and the scalar
property act together to produce the Type A and Type B order
effects discussed by Ulrich and Vorberg (2009), which can thus
be accounted for without ad hoc assumptions involving internal
standards or sensation weighting.

Parameter estimates for these model-based psychometric
functions can be easily obtained with maximum-likelihood meth-
ods. Technicalities are omitted here but empirical examples
involving other classes of psychophysical functions are available
(García-Pérez and Alcalá-Quintana, 2013; García-Pérez and Peli,
2014). Simulation studies have also shown that parameters can be
recovered from data collected with the usual numbers of trials in
empirical studies, but these results are too lengthy to be reported
here.

It is also worth noting that performance measures such as PSEs
or DLs can be computed from parameter estimates without ref-
erence to percent points on the psychometric functions. Indeed,
since model parameters refer to underlying processes common to
all tasks and not to aspects of the shape of the psychometric func-
tion for some task, PSEs and DLs can be computed according to
their theoretical definition. As shown earlier, the PSE defined as
tPSE = μ−1

t (μs(tst)) can be obtained given the functional forms
of μs and μt and estimates of their parameters. The DL, on the
other hand, is usually computed as the distance between some
percent points on the psychometric function for the comparative
task. As seen in Figure 7E, the location of these points is greatly
affected by the width and location of the indifference region and
also by response bias. Ulrich and Vorberg (2009) proposed com-
puting a separate DL from the psychometric function for each
presentation order, but this practice also results in a description
of time perception that is contaminated by all the non-timing
processes that affect observed performance. Ultimately, compu-
tation of the DL seeks the durations satisfying, say, Prob(St >

Sst) = 0.25 and Prob(St > Sst) = 0.75. Since parameter estimates
give a full description of μ and σ for test and standard stim-
uli, uncontaminated estimates of the latent DL (García-Pérez and
Alcalá-Quintana, 2012, 2013) can easily be obtained by noting
that the latent point at which Prob(St > Sst) = p is the duration
tp satisfying

�

⎛
⎝ αtt

βt
p + αst

βs
st√

γ2
s α

2
s t

2βs
st + γ2

t α
2
t t

2βt
p

⎞
⎠ = p, (13)

an equation that can be directly solved from parameter estimates.
DLs and WRs thus computed are free of the contaminants that
affect the probability of observed responses, and they are also
independent of the task with which the data were collected.

GENERAL DISCUSSION AND EVIDENCE-BASED
RECOMMENDATIONS
The pace of subjective time surely differs from that of objective
time, and different stimulus types or conditions surely alter the
pace of subjective time further. This means that the psychophys-
ical function μ describing the relation of subjective to objective
time cannot be the identity function and that its parameters
must vary across conditions. Yet, studies in which semi-objective
tasks have been used to assess differences in time perception
routinely fit psychometric functions implying μ(t) = t in all con-
ditions, also including a location parameter allowed to vary across
conditions. If someone wanted to make the case that time per-
ception is always accurate and different conditions only make
observers set different response criteria, fitting such psychome-
tric functions would be the way to gather supporting evidence.
The success with which empirical data are accounted for with
that type of psychometric function has nevertheless been taken
as evidence of differences in perceived duration across con-
ditions. Although the theoretical underpinnings of the fitted
psychometric functions do not permit such interpretation, the
overwhelming success with which data have historically been
accounted for as if only criterion differences were involved can-
not be taken as ruling out differences in subjective time across
conditions. For a proper assessment of the various determinants
of observed performance, model-based psychometric functions
should be fitted to data to interpret the parameters describing
each of the influences that affect performance. But data should
also be collected using psychophysical tasks that allow separat-
ing out those influences. The following sections discuss what
the theoretical analyses presented in this paper say about these
issues.

PSYCHOPHYSICAL TASKS
The model presented in this paper renders psychometric func-
tions tailored to the characteristics of each semi-objective psy-
chophysical task. The functions μ and σ describing subjective
duration are always included in the psychometric functions and,
in principle, the parameters of μ and σ could be estimated
from data gathered with any task. But observed performance
is also affected by decisional and response processes that lend
additional parameters to the psychometric function, and not all
psychophysical tasks provide informative data for an estimation
of the parameters describing all of these influences. We showed
that all determinants of performance are inextricably confounded
in data gathered with single-presentation methods, which are thus
unsuitable for assessing time perception (or any other perceptual
process; see García-Pérez and Alcalá-Quintana, 2013). The use of
single-presentation methods should be discontinued.

Paired-comparison methods, on the other hand, provide data
from which these influences can be separated out, allowing
a proper assessment of each of the determinants of perfor-
mance. Of the various formats that paired-comparison methods
may take, the ternary task is best suited for these purposes.
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It should be noted that any study conducted with a single-
presentation method can also be conducted with the ternary
paired-comparison task. Consider the studies of Gil et al. (2009)
or Tipples (2010) discussed in section Summary and Discussion
of Single-Presentation Methods, which used a bisection task to
investigate whether subjective time runs differently for different
types of stimuli. In a ternary paired-comparison task, each trial
would present the standard (a picture of an oval or an eight-
consonant string) with some fixed duration (say, tst = 1000 ms)
along with the test stimulus for a duration that varies across tri-
als. Trials with different types of test stimuli (or different standard
durations) could be randomly interwoven in a session and the
order of presentation of test and standard in each trial would also
be randomly determined. Fitting the psychometric functions in

Equations (12) to the resultant data would thus provide estimates
of the parameters of μ and σ that describe observed performance,
permitting a proper assessment of how subjective time varies
across conditions besides providing parameters describing deci-
sional determinants. García-Pérez and Peli (2014) illustrated this
approach in a study of spatial bisection that used the conventional
single-presentation format and its conversion into the ternary
paired-comparison format.

FITTING PSYCHOMETRIC FUNCTIONS
Current practice fits two-parameter (location and slope) psycho-
metric functions separately to data from each of the conditions
included in a study. Yet, when the same standard is used for all
conditions, model parameters describing the perceived duration

FIGURE 8 | The PSE at the standard duration is not a sufficient

condition for equality of time perception for test and standard

stimuli. Graphical conventions and indifference regions for absence or
presence of decisional bias as in Figure 7. (A) Different psychophysical
functions for test and standard may cross at or very near t = tst. In
this illustration, μs is the identity function whereas μt is given by
Equation (1) with αt = 3.01, βt = 0.83, and τt = −10. As regards the

scalar property in Equation (2), γs = 0.15 and γt = 0.10. (B)

Psychometric functions in the ternary task, showing the signature of
the PSE at t = tst = 700 ms regardless of the presence (left column) or
absence (right column) of decisional bias and despite the different
psychophysical functions for test and standard. (C) Psychometric
functions for “test longer” responses in the comparative task, again
showing the effects of decisional and response bias.
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of the standard should not vary across them. Psychometric func-
tions are thus expected to differ only in the parameters describing
subjective duration for test conditions. This implies that psycho-
metric functions ought to be fitted jointly across conditions with
some of their parameters constrained to have common values
across them. This strategy reduces the number of free parame-
ters needed to describe the data but it also entails a coherent use
of models and provides the means to test hypotheses concern-
ing the effect of manipulations. There are several other situations
in which some parameters must be regarded as common across
conditions, but these are determined by the experimental design.
For illustrative examples, see García-Pérez and Alcalá-Quintana
(2007a; 2009a; 2012; under review), Magnotti et al. (2013), or
García-Pérez and Peli (2014).

ADAPTIVE METHODS
Studies on time perception often use the comparative task to
estimate PSEs or DLs via adaptive methods that bypass estimat-
ing the psychometric function, directly targeting specific percent
points on it. This practice is unadvisable for several reasons.
Firstly, and least importantly, μt may differ from μs in a way
that they cross near t = tst. Thus, finding the PSE at or near tst

does not allow concluding that subjective duration is identical
for test and standard stimuli (see Figure 8). Secondly, due to the
effects of decisional and response bias on the slope and location
of the psychometric function in comparative tasks, PSEs or DLs
estimated from percent points are contaminated by these influ-
ences and do not portray time perception. Finally, and even in
the absence of the previous two problems, the most widespread
adaptive methods have been shown to provide percent-point esti-
mates that are biased in magnitudes which cannot be assessed
without knowledge of the shape of the psychometric function
(García-Pérez, 1998, 2000, 2001, 2002, 2011; Alcalá-Quintana
and García-Pérez, 2004, 2007; Faes et al., 2007; García-Pérez and
Alcalá-Quintana, 2007b, 2009b; Hsu and Chin, 2014).

The foregoing discussion does not mean that adaptive meth-
ods should be entirely abandoned. On the contrary, some up–
down methods provide dependable and efficient strategies for
data collection and, thus, they gather maximally informative data
for fitting psychometric functions. Adaptive methods tailored to
the peculiarities of equality and ternary tasks have recently been
developed (García-Pérez, 2014). For an illustration of their use,
see García-Pérez and Peli (2014). What should be avoided by all
means is the practice of estimating percent points by averaging
reversal levels.

PENDING ISSUES
It is unclear at this point whether the mathematical form of μ and
σ in Equations (1)–(2) describe adequately the mean and stan-
dard deviation of subjective duration across the continuum from
a few milliseconds to several seconds. Empirical studies suggest
that a power function is adequate for μ within narrow time ranges
but its parameters vary across ranges (Eisler, 1976), suggesting
that a power function is only piecewise approximate. Although
a yet unknown mathematical form might be more appropriate,
the narrow range of durations used in any given study supports
the use of Equation (1) on fitting psychometric functions. On

the other hand, the scalar property in Equation (2) is known
to be inaccurate in human timing but alternative mathematical
forms have been proposed (Killeen et al., 1997; Rammsayer and
Ulrich, 2001) that may prove more useful in practice. Also in this
respect, it is unclear whether the referent for the scalar property is
subjective time (as in Equation 2) or objective time.

Consideration of errors made by observers upon report-
ing judgments via the response interface has been intention-
ally excluded in this description. Extensions incorporating error
parameters for more accurate parameter estimation have been
discussed for analogous models elsewhere (García-Pérez and
Alcalá-Quintana, 2012; García-Pérez and Peli, 2014) and their
inclusion in the models presented here is straightforward.
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