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Editorial on the Research Topic

Bioactive Natural Products from Microbes: Isolation, Characterization, Biosynthesis and
Structure Modification

Natural products have played an invaluable role in drug development, as about 24 percent of
approved drugs belong to natural products or their derivative (Newman and Cragg, 2020).
Compared with the limitation of medicinal resources such as plants and animals, microbes from
soil, air, ocean and even endophytes, have now become a potential source for drug lead discovery, due
to their abundant sources and characteristic biosynthetic pathways for novel bioactive compounds.
The ability of all living organisms to biosynthesize endogenous, specialized small molecules is
genetically encoded. The magnitude of biosynthetic gene clusters in microbial genome suggests that
the secondary metabolite wealth of microbe is largely untapped. Mining algorithms and scalable
expression platforms have greatly expanded access to the chemical repertoire of microbial secondary
metabolites. This current Research Topic aims to discover bioactive natural products from microbes
as drug leads, using new technologies such as metagenomics and gene mining to look for the
breakthrough of new drug research and development. Overall, fourteen contributions were collected
including one review and thirteen original articles, highlighting the importance of microbial natural
products discovery for drug leads.

A review article by Yu et al. summarized the biological and chemical aspects of Aspergillus niger
strains including their sources, BGCs, and secondary metabolites as well as biological properties and
biosynthetic pathways. A. niger has become promising application products which possess a large
number of cryptic biosynthetic gene clusters (BGCs) and produce various biomolecules as secondary
metabolites with a broad spectrum of application fields including agriculture, food industry, and
medicine. In the past 5 years, the number of new bioactive compounds from A. niger has been
decreasing so that more efforts should be made to explore more sources for isolation of new A. niger
strains and to awaken their silent BGCs to manufacture novel functional biomolecules using new
strategies.

As one of the diseases with high mortality, cancer is one of the focuses of new drug research and
development. Chen et al. discovered the fusarisetins E and F produced by a Mangrove endophytic
fungus Fusarium sp. 2ST2 from the healthy leaves of Kandelia candel which showed significant
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cytotoxicity against human A549 cell lines with IC50 values of 8.7
and 4.3 μM, respectively. At the same time, other new compounds
including one new chromone fusarimone A, two new
benzofurans fusarifurans A and B, three new isocoumarins
fusarimarins A–C were isolated, which expanded the microbial
secondary metabolite pool. Lu et al. also isolated novel secondary
metabolite foeniculin K with cytotoxic activity from endophytic
fungus Diaporthe foeniculina. Unfortunately, the other ten
isolated analogues foeniculins I-J did not show cytotoxic
activity. Their structures were established on the basis of 1H
and 13C NMR spectra together with COSY, HSQC, HMBC, and
NOESY experiments. Modern pharmacological research has
revealed that Dendrobium huoshanense has anti-inflammatory,
cytotoxic, hypoglycemic and antioxidant activity. Zhu et al.
studied on an endophytic Streptomyces sp. HS-3-L-1 isolated
from the leaves of Dendrobium huoshanense, and isolated three
unique polyketide dimers with the cytotoxicity against MV4-11
human leukemia cell. So far only two similar natural products,
strepolyketides B and C (Jiang et al., 2020) were recently reported
from a marine-derived Streptomyces. Kang et al. discovered one
new c-butyrolactone derivative, diaportone A, one
cyclopentenone derivative, diaportone B, and one
monoterpene derivative, diaportone C, along with six known
compounds from endophytic fungusDiaporthe foeniculina BZM-
15. Two of these compounds displayed significant
antiproliferative effects on three human cancer cell lines (SF-
268, MCF-7, and HepG2).

With the widespread use of antibiotics in clinic, bacteria
gradually developed drug resistance, and this is a serious
threat to the health and safety of the world. Therefore, it is of
great significance to discover novel antibiotics. An original article
by Ding et al. focused on the polycyclic tetramate macrolactams
(PTM), and revealed that biosynthetic gene clusters (BGCs) are
widespread in both Gram-positive and Gram-negative bacteria.
In this study, they investigated a sponge endosymbiont
Actinoalloteichus hymeniacidonis harboring a potential PTM-
BGC. Xanthobaccin A as well as two previously reported
tetramates, equisetin and ikarugamycin, exhibited antibacterial
activities against Bacillus subtilis. In addition, these three
tetramates were confirmed as metallophores for the first time.
They found that all three tetramates could reduce ferric into
ferrous iron, which triggers the Fenton chemistry reaction, and
their antimicrobial mechanism is possibly mediated through
Fenton chemistry.

Endophytic bacteria is a valuable resource pool of
microorganisms with wide distribution, diverse species and
diverse biological functions, and is an important source of
novel compounds. In this topic, Wang et al. reported that
three new humulane-type sesquiterpenoids, penirolide A,
penirolide B, and 10-acetyl-phomanoxide, together with three
known compounds aurasperone A, pughiinin A, and cyclo
(L-Leu-L-Phe) from the endophytic fungus Penicillium sp.
derived from the leaves of Carica papaya L. And four
compounds penirolide B, 10-acetyl-phomanoxide, pughiinin A,
and cyclo (L-Leu-L-Phe) can significantly inhibit glucagon-
induced hepatic glucose production, with EC50 values of 33.3,
36.1, 18.8, and 32.1 μM, respectively. In response to glucagon,

cAMP is a second messenger to initiate glucagon signaling
cascades in hepatic glucose production. The treatment of these
compounds suppressed cAMP accumulation indicated that they
inhibited hepatic glucose production by suppression glucagon-
induced cAMP accumulation. Liu et al. reported six new phthalan
derivatives cytorhizophins D-I as well as three known derivatives
cytorhizophin C, pestacin and rhizophol B from endophytic
fungus Cytospora rhizophorae. Among them, cytorhizophins
D-E and F-G were two pairs of diastereoisomers, all of them
featuring a 1-phenyl-1,3-dihydroisobenzofuran scaffold with a
highly oxygenated O-linked isopentenyl unit, and cytorhizophins
H-I represent the first examples of phthalide family with
fascinating 6/6/6/5 tetracyclic ring system fusing as
unprecedented furo [4,3,2-kl]xanthen-2 (10bH)-one skeleton.
Cytorhizophins D-E and F-G showed significant DPPH radical
scavenging activities with EC50 values ranging from 5.86 to 26.
80 μM, which are much better than that of the positive control
ascorbic acid, they may be the promising lead compounds for the
development of more effective antioxidants. Jia et al. focused on
the mangrove-derived endophytes which are rich in bioactive
secondary metabolites with a variety of biological activities. They
isolated a fungus Pseudofusicoccum sp. J003 from mangrove
species Sonneratia apetala Buch.-Ham. And then they
identified a new sesquiterpenoid named acorenone C, two
alkaloids, four phenolic compounds, and four steroid
derivatives from this endophytic strain. Among them,
acorenone C showed mild AChE inhibitory activity, with an
inhibition rate of 23.34% at the concentration of 50 μM.

Wang et al. work reported that two new alkaloids
tryptoquivaline Y and pseurotin I, together with eight known
compounds, were isolated from Aspergillus felis FM324, and the
fungus were purified fromHawaiian beach soil sample. One of the
compounds showed weak antibacterial activity against
Staphylococcus aureus, methicillin resistant Staphylococcus
aureus and Bacillus subtilis. Two compounds inhibited NF-κB
with IC50 values of 26.7 and 30.9 μM, respectively.

Wu et al. research selected the appropriate mutant Aspergillus
terreus ASM-1 through the chemical mutagenesis of A. terreus
ML-44 and resulted in the isolation of three new prenylated
aspulvinones V–X, together with analogs, aspulvinone H, J-CR,
and R. All the compounds were evaluated for α-glucosidase
inhibitory effects with acarbose as positive control. The results
showed that aspulvinones V and aspulvinone H exhibited potent
α-glucosidase inhibitory activities with IC50 values of 2.2 and 4.
6 µM in mixed-type manners and aspulvinone H significantly
suppressed the increases in postprandial blood glucose levels in
the C57BL/6J mice. The results suggested that aspulvinones could
be promising candidates for further pharmacologic research and
the mechanism of the mutagenesis of the strain ASM-1 from
strain ML-44 deserve further investigation which may make
contribution to understanding the metabolic regulation of
aspulvinones biosynthesis.

Tuberculosis (TB) is still a global disease threatening people’s
lives. Ilamycins are novel cyclopeptides with potent anti-TB
activities, Li et al. focused on the preparation of ilamycin F, a
major secondary metabolite isolated from the marine-derived
mutant strain Streptomyces atratus SCSIO ZH16 ΔilaR which

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8836522

Wang et al. Editorial: Bioactive Compounds from Microbes

6

https://www.frontiersin.org/articles/10.3389/fchem.2021.738307/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.807508/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.755351/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.772858/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.797858/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.826615/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.780304/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.724617/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.736070/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.774555/full
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


were used as a scaffold to semi-synthesize eighteen new ilamycin
derivatives (ilamycin NJL1–NJL18). Their study revealed that
four of ilamycin NJLs have slightly stronger anti-TB activities
against Mtb H37Rv (minimum inhibitory concentration, 1.6–1.
7 μM) compared with that of ilamycin F on day 14th, but
obviously display more potent activities than ilamycin F on
day third, which means that these derivatives have fast-onset
effect. In addition, most ilamycin NJLs had low cytotoxicity
except ilamycin NJL1. These findings will promote the further
exploration of structure-activity relationships for ilamycins and
the development of anti-TB drugs.

This special issue also covers some biosynthesis research. Deng
et al. discovered three sulfur-containing granaticin congeners,
mycothiogranaticins A, B and granaticin MA from a granaticin-
producing strain of Streptomyces vietnamensis GIMV4.0001.
Gene disruptions suggested that the biosynthesis of
mycothiogranaticins is mycothioldependent, providing
experimental evidence for the biological origin of sulfur in this
category of sulfurcontaining polyketides. And mycothiol was
found to be involved in positive regulation of the biosynthesis
of granaticins by maintaining the cellular redox balance. This is
the first report that mycothiol can not only be a building block of
polyketides but also play a regulatory role in the polyketide
biosynthesis. Based on previous research that P450 Astb can
dually oxidize two methyl groups (C-19 and C-21) of
preasperterpenoid A to asperterpenoid A with 3-carboxyl and
11-hydroxymethyl groups, Huang et al. confirmed the oxidation
order of C-19 and C-21 catalyzed by AstB, by using the
combination of the quantum chemistry calculations and the

experiments of obtaining the potential intermediates and the
HPLC-MS detection of the potential intermediates. In the end,
they revealed the catalyzed order of AstB in asperterpenoid A
biosynthesis and the relationship between the oxidation
stations of C-19 and C-21 in asperterpenoids and their
mPTPB inhibition.

In summary, the above works presented in this special
research topic illustrate the diversity of microbial natural
products and highlight the importance of developing new
methods to impulse the discovery of new compounds.
Microorganisms are still the treasure house of new drug
development in the future.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

The Editors would like to thank all authors that
participated in this Research Topic in “New frontiers in
the search of antimicrobials agents from natural products.”
Special acknowledgment is given to each reviewer (external
or editorial board member), who has contributed and
whose valuable support is fundamental to the success of
the journal.

REFERENCE

Newman, D. J., and Cragg, G.M. (2020). Natural Products as Sources of NewDrugs
over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 83,
770–803. doi:10.1021/acs.jnatprod.9b01285

Jiang, Y., Huang, Y., Chen, S., Ji, Y., Ding,W., andMa, Z. (2020). Strepolyketides A-
C, three novel SEK15-derived polyketides from Streptomyces sp. HN2A53.
Tetrahedron Lett. 61, 151996. doi:10.1016/j.tetlet.2020.151996

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wang, Lu, Shaaban, Wang, Xia and Zhu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8836523

Wang et al. Editorial: Bioactive Compounds from Microbes

7

https://www.frontiersin.org/articles/10.3389/fchem.2021.802279/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.802279/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.785431/full
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.1016/j.tetlet.2020.151996
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Aspergillus niger as a Secondary
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Aspergillus niger, one of the most common and important fungal species, is ubiquitous in
various environments. A. niger isolates possess a large number of cryptic biosynthetic
gene clusters (BGCs) and produce various biomolecules as secondary metabolites with a
broad spectrum of application fields covering agriculture, food, and pharmaceutical
industry. By extensive literature search, this review with a comprehensive summary on
biological and chemical aspects of A. niger strains including their sources, BGCs, and
secondary metabolites as well as biological properties and biosynthetic pathways is
presented. Future perspectives on the discovery of more A. niger-derived functional
biomolecules are also provided in this review.
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INTRODUCTION

Aspergillus, one sizeable genus belonging to Aspergillaceae family, comprises as many as 492 species
registered on the database of the National Center for Biotechnology Information (NCBI) to date. Its
section Nigri is an important group of species, and the A. niger aggregate represents its most
complicated taxonomic subgroup with eight morphologically indistinguishable taxa (Perrone et al.,
2011). Owing to superior adaptability and survivability, A. niger is ubiquitous in nature, including in
terrestrial soil (Xie et al., 2006), ocean (Li et al., 2016; Uchoa et al., 2017), the Arctic (Singh et al.,
2011), and space. It also occupies a wide spectrum of habitats in plants and animals such as herb
(Shreelalitha and Sridhar, 2015; Manganyi et al., 2018), shrub (Kaur et al., 2015; Liu et al., 2016), tree
(Soltani and Moghaddam, 2014; Wang et al., 2019), lichen (Elissawy et al., 2019), shrimp (Liu et al.,
2013; Fang et al., 2016), and marine sponge (Takano et al., 2001; Hiort et al., 2004). A. niger strain
grows well in various media with different carbon sources, including glucose, bran, maltose, xylan,
xylose, sorbitol, and lactose (Toghueo et al., 2018). However, its metabolism is remarkably affected by
culture conditions, such as medium composition and fermentation mode.

The genome features of strain L14 are summarized in a polycyclic graph (Figure 1), which
consists of in-paralog pair, GC skew, widely, SM biosynthetic gene cluster (BGC), ncRNA, repeat,
strand coding sequence (CDS) annotation, and scaffold. There are some in-paralog pairs between
different scaffolds, and SM BGCs and CDS distributed widely in genome. As shown in Table 1,
genome sizes ofWTA. niger strains range from 33.8 to 36.1 Mb. Their G + C% and gene numbers are
closely similar, while the numbers of scaffolds are different owing to various sequencing and
assembling manners. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) results
indicated that each WT A. niger strain harbors at least 20 cryptic SM BGCs, including PKS, NRPS,
NRPS-like, and their hybrids (Figure 2 and Supplementary Table S1) (Blin et al., 2019). These BGCs
involving in indole and terpene biosynthesis are ubiquitous and have great potential to synthesize
therapeutical agents and pesticides, such as AbT1, azanigerone A, fusarin, ferrichrome, nidulanin A,
melanin, TAN-1612, yanuthone D, and aflavarin (Supplementary Table S2).
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It is a matter of controversy that some A. niger isolates are
renowned for biosynthesis of valuable natural products of
nutritional, agrochemical, and pharmaceutical interest, while
others are reputed to cause the “black mold” disease (Hayden
et al., 1994; Ozer and Koycu, 2006) and produce a plethora of
mycotoxins (Sanchez et al., 2012). A. niger possesses a bulk

warehouse of prolific genes, which involve in regulation of
primary and secondary metabolisms (Pel et al., 2007). A
genome-scale metabolic network for A. niger has been
established on account of its high efficiency in rational
metabolic design and systems biology studies, such as strain
improvement and process optimization (Sun et al., 2007; Lu

FIGURE 1 |General genome features of marine strain Aspergillus niger L14 (From the inside out: In-paralog pairs; GC skew, the green part represent positive value
while the orange part represent negative value; G + C%; SMs gene clusters; ncRNA; repeat; minus strand coding sequence (CDS) annotation; plus strand CDS
annotation; scaffolds).
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et al., 2017). Numerous A. niger strains have been applied in many
fields for a long time. For instance, citric acid as one of incredible
organic acids in food industry had been produced on a large scale
by A. niger 100 years ago (Cairns et al., 2018; Li et al., 2020). It is
important thatA. niger is one of the excellent producers of valuable
proteases, which had been widely used as detergents and food
ingredients and additives, such as acetylesterase, amylase,
fucosidase, glucose oxidase, glucosidase, mannanase,
phospholipase, phytase, prolyl endopeptidase, triacylglycerol
lipase, trehalase, and xylanase. In addition, numerous chemical
studies have indicated that A. niger is one of the rich sources of
bioactive SMs, with great potential application in agriculture and
medicine. Moreover, endoxylanase isozymes of A. niger have great
potential transforming lignocellulose in pulp and paper industry as
industrial bleaching aids (Duarte and Costaferreira, 1994).
Furthermore, A. niger is also able to deal with the phenolic
contaminants in waste water of fermentation broth from
industry (Duarte and Costaferreira, 1994). Since genetic
engineering is inefficient for fully exploiting in the filamentous
fungi industry, a CRISPR (clustered regularly interspaced short
palindromic repeats)–Cas9 system had been developed (Nødvig
et al., 2015; Nødvig et al., 2018). Based on these genome-editing

toolbox, gene inactivation and knockout, gene insertion, base
editing, promoter replacement, and regulation of gene
expression in A. niger have come true. In the future, more
importance may be focused on traceless gene editing, multiple
gene editing and fine regulation of gene expression in A. niger.

SECONDARY METABOLITES FROM
ASPERGILLUS NIGER

By extensive search on the database of Dictionary of Natural
Products (DNP), as many as 166 A. niger–derived secondary
metabolites (1–166) were detected till 2020. On the basis of
chemical structures, these chemicals are grouped into five
types: pyranone, alkaloid, cyclopentapeptide, polyketide, and
sterol and, respectively, introduced as follows. (More detailed
information about these substances is provided in the
Supplementary Materials (Supplementary Table S3).)

Pyranones
c-Naphthylpyradone Monomers
Pyranone derivatives are the most isolated SMs from A. niger,
including γ-naphthylpyradones (1–31), α-pyranones (32–56),
and γ-pyranones (57–60). A. niger–derived naphthylpyradones
are sorted into two classifications: monomers and dimers, with
linear and angular naphtho-γ-pyrone. Fonsecin (1) is one of the
most frequently isolated γ-naphthylpyradone produced by
several A. niger strains from various sources, including
terrestrial soil (Sakurai et al., 2002), marine (Leutou et al.,
2016; Zhou et al., 2016), and plants (Bouras et al., 2005;
Fernand et al., 2017; Akinfala et al., 2020). Biological tests
suggested that compound 1 possesses dose-dependent
inhibitory effect on the interleukin-4 (IL-4) signal transduction
and stronger radical scavenging activity against 2,2-diphenyl-1-
picrylhydrazyl (DPPH) than ascorbic acid (Sakurai et al., 2002;
Leutou et al., 2016). Two analogs TMC-256A1 (3) and TMC-
256C1 (8) also effectively inhibited the IL-4 driven luciferase
(Sakurai et al., 2002). However, fonsecin B (2) and nigerasperone
A (4) exhibited weak bioactivity against luciferase and DPPH

TABLE 1 | General genomic features of 12 Aspergillus niger strains from NCBI database.

Strain Genome size (Mb) G +C% Scaffold Gene tRNA Protein-coding
genes

Isolation source Assembly ID

ATCC 1015 34.8 50.3 24 10947 – 10950 – GCA_000230395.2
CBS 513.88 34.0 50.4 20 10828 263 14165 – GCA_000002855.2
SH-2 34.6 50.3 349 – – – Soil GCA_000633045.1
ATCC 13496 35.7 49.5 133 12468 273 12194 – GCA_003344705.1
An76 34.9 49.4 669 10373 – 10373 Soil GCA_001515345.1
JSC-
093350089

36.1 49.5 223 – – – International space station environmental
surface

GCA_001931795.1

H915-1 36.0 49.2 30 – – – Soil GCA_001741905.1
L2 36.4 49.2 30 – – – Soil GCA_001741915.1
A1 34.6 50.1 319 – – – Soil GCA_001741885.1
MOD1-FUNGI2 33.8 50.4 3199 – – – Red seedless grapes GCA_004634315.1
RAF 106 35.1 49.1 10 – – – Pu-er tea GCA_011316255.1
L14 36.1 49.3 30 11524 296 – Marine sponge JADEYF000000000

FIGURE 2 |Biosynthetic gene clusters of secondarymetabolites of 12 A.
niger strains.
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(Sakurai et al., 2002; Zhang et al., 2007b). One new cytotoxic and
antimicrobial rubrofusarin B (5) was purified from strain IFB-
E003 endophytic on Cynodon dactylon Linn. (Song et al., 2004).
When cultivated in NaBr or CaBr2-containing medium, one
marine-derived strain MSA773 was found to secrete a new
brominated derivative 6,9-dibromoflavasperone (9) with potent
radical scavenging activity (Leutou et al., 2016).

c-Naphthylpyradone Dimers
A. niger–derived dimeric naphthylpyradones (10–31) consist of
two monomers with linear and/or angular structure(s). It is
interesting that most of these bis-naphtho-γ-pyrones were
produced by symbiotic A. niger strains. Chemical investigation
of eight A. niger strains led to isolation of the same SM
aurasperone A (10) (Tanaka et al., 1966; Tanaka et al., 1972;
Akiyama et al., 2003; Zhang et al., 2007b; Fang et al., 2016; Li et al.,
2016; Wang et al., 2018; Padhi et al., 2020), which possessed a
broad spectrum of bioactivities including moderate cytotoxicity
(Fang et al., 2016; Padhi et al., 2020), strong antimicrobial effect
(Lu et al., 2014; Padhi et al., 2020), and xanthine oxidase (XO)
inhibitory and anti-hyperuricosuric activity (Song et al., 2004).
Aurasperone B (15) had potent radical scavenging activity against
DPPH with an IC50 value of 0.01 μM (Leutou et al., 2016). Marine
strain SCSIO Jcsw6F30 was a prolific producer of asperpyrone-
type bis-naphtho-γ-pyrones (BNPs) 10, 13–16, 18, 20–22, 24,
and 27, among which compounds 13, 16, and 20 exhibited
remarkable inhibitory effects on COX-2 (Fang et al., 2016). In
addition to nigerasperone A (4), two dimeric naphthylpyradones
nigerasperones B (29) and C (19) were obtained from strain
EN-13 and shown to exhibit a moderate radical scavenging effect on
DPPH (Zhang et al., 2007b). Bioassay-guided fractionation of the
crude extract of strain AKRN associated with Entandrophragma
congoënse afforded a new antibacterial naphtho-γ-pyrone dimer 2-
hydroxydihydronigerone (30) (Happi et al., 2015).

One possible pathway for biosynthesis of γ-naphthylpyradone
derivatives had been first proposed by Obermaier and Muller
(2019). As shown in Figure 3, one acetyl-CoA and six malonyl-
CoA clusters were used as substrates for the biosynthesis of
compounds 1–3 and 8 by successive catalytic reactions in a
nonreducing PKS (nrPKS) system. Two of these monomers
further dimerized at various carbon positions (C-6, C-7, C-9,
or C-10) and resulted in the formation of dimers 16, 21, 27, and
28. Lately, one nrPKS gene D8.t287 responsible for the
biosynthesis of the initial precursor heptaketone was identified
and characterized by target gene knockout experiment and
UPLC-MS analysis (Hua et al., 2020). However, the role of the
gene AunB or BfoB is not confirmed so far.

α-Pyranones
A. niger–derived α-pyranones contain 14 monocyclic compounds
(32–40, 50), 7 dicyclics (41–47, 51), three tricyclics (48, 49, and
56), and four tetracyclics (52–55). Chemical analysis of an
endophytic A. niger strain colonizing in liverwort
Heteroscyphus tener (Steph.) Schiffn resulted in isolation of
three new amide campyrones A–C (38–40) together with
compounds 33 and 34 (Talontsi et al., 2013; Li et al., 2015).
One possible biosynthetic pathway proposed by Reber and
Burdge (2018) suggested that compounds 38–40 were,
respectively, formed by one malonyl-CoA and three N-acetyl
aliphatic amino acids including L-valine, L-leucine, and
L-isoleucine (Figure 4), along with two congeners
asnipyrones A (42) and B (46) and nigerapyrones A-H
(35–37, 43–45, 48–49) were first discovered from a
mangrove plant–derived strain MA-132 (Liu et al., 2011).

FIGURE 3 | Proposed biosynthetic pathway of γ-naphthylpyridones.
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Unfortunately, none of these compounds showed potent
cytotoxic or antimicrobial activities. Nafuredin (50) and
bicoumanigrin (52) were new α-pyranone analogs produced
by marine sponge-derived A. niger strains; the former
exhibited a powerful and selective inhibitory effect on
NFRD (NADH-fumarate reductase) (Takano et al., 2001; Ui
et al., 2001) and the latter 3,3′-bicoumarin had moderate
cytotoxicity against leukemia and carcinoma cell lines
(Hiort et al., 2004). Three 8,8′-bicoumarins, orlandin (53),
kotanin (54), and 7-desmethyl-kotanin (55) were produced by
a number of A. niger strains from various sources, and 53
showed potent inhibitory activity against wheat coleoptile
growth at 1 mM but not toxic to day-old cockerels (Cutler
et al., 1979; Ovenden et al., 2004; Sorensen et al., 2009; Jomori
et al., 2020). Biosynthetically, one acetyl-CoA and four
malonyl-CoAs comprised one coumarin through several
successive reactions catalyzed by PKSs, followed by
formation of compounds 52–55 through dimerization
(Figure 5) (Huttel et al., 2003; Huttel and Muller, 2007;
Girol et al., 2012). In this pathway, PKS gene ktnS was
responsible for origination of dimeric coumarins 52–55,
gene ktnB encode O-methyltransferase, and gene ktnC
encode CYP450 monooxygenase, manipulating the
dimerization of 52–55.

c-Pyranones
To the best of our knowledge, only four γ-pyranone derivatives
(57–60) had been detected in SM of A. niger. Among these
substances, kojic acid (57) is the most common product with
weak antimicrobial property (Liu et al., 2011; Happi et al., 2015;
Padhi et al., 2020). In addition to carbonarone A (59) and tensidol
B (60), one new benzyl γ-pyranone nigerpyrone (58) was
discovered from a mutant strain FGSC A1279 ΔgcnE and was
found to have potent and selective activity against Candida
parapsilosis (Wang et al., 2018; Padhi et al., 2020).

Alkaloids
Pyrroles
Pyranonigrin derivatives (61–69) are a family characterized by
pyrano [2,3-b] pyrrole skeleton, and their biosynthesis are

manipulated by the pyn gene cluster in A. niger (Riko et al.,
2014; Yamamoto et al., 2015). Chemical investigation of one
marine sponge–derived strain afforded four pyranonigrins
B-D (61, 62, 64) and Ab (63), which 63 showed a strong
inhibitory effect on the growth of neonate larvae of the
plant pest insect Spodoptera littoralis (Hiort et al., 2004).
Pyranonigrins A (65), S (66), and E (67) were important
agents with potent radical scavenging activity toward DPPH
and superoxide (Miyake et al., 2007; Riko et al., 2014). One
possible biosynthetic pathway of pyranonigrin E (67) had
been first proposed by Yamamoto et al. (2015) and coworker
in 2015, in which the start units contained one acetyl-CoA,
six malonyl-CoAs, and one L-Ser (Figure 6), under the
action of gene pynA (PKS-NRPS hybrid synthase), pynI
(encode thioesterase), pynC (encode methyltransferase),
pynG (encode flavin-dependent oxidase), pynD (encode
CYP450), and pynH (encode aspartyl protease). After
non-enzymatic reaction, two pyranonigrin E (67) units
could be dimerized to form pyranonigrin F (69). One soil-
derived A. niger strain was found to produce a new
dichlorinated pyrrole pyoluteorin (70), which obviously
induced cell cycle arrest and apoptosis in human triple-
negative breast cancer cells MDA-MB-231 (Ding et al., 2020).
Two benzyl furopyrrols tensidols A (71) and B (72) from strain

FIGURE 4 | Proposed biosynthetic pathway of campyrones.

FIGURE 5 | Proposed biosynthetic pathway of orlandin (53) and
kotanin (54).
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FKI-2342 were potentiators of antifungal miconazole activity
(Fukuda et al., 2006) and lately corrected as compounds 59 and
60 (Henrikson et al., 2011).

Pyridones
A. niger–derived pyridone derivatives (73–82) have one benzyl
group and possess antimicrobial and cytotoxic properties (chatr
4). Two new α-pyridones aspernigrins A (73) and Bb (74) were
isolated from one A. niger strain of marine sponge Axinella
damicornis and showed moderate cytotoxicity and a potent
neuroprotective effect, respectively, (Hiort et al., 2004). When
cultivated in fermentation medium containing suberoylanilide
hydroxamic acid (SAHA) and p-fluoro SAHA, strain ATCC 1015
was discovered to produce three antifungal c-pyridones,
nygerones A (78), B (75), and p-fluoro nygerone B (77)
(Henrikson et al., 2009; Henrikson et al., 2011). In addition to
three γ-naphthylpyradones (1, 3, and 5) and one cyclic peptide
(111), three 2-benzyl-γ-pyridones aspernigrins B-D (80–82) were
obtained from the marine strain SCSIO Jcsw6F30, and 81 was
found to have potent inhibitory activity toward HIV-1 SF162-
infected TZM-bl cells (Zhou et al., 2016).

Other Alkaloids
Three fatty amines fumonisins B2 (83), B1 (84), and B4 (85) from
stains FGSC A1279 and IBT 28144 were carcinogenic (Nielsen
et al., 2009; Sorensen et al., 2009; Li et al., 2019). The aza gene
cluster in strain ATC C1015 was found be responsible for
biosynthesis of azanigerone D (86) (Zabala et al., 2012). In
addition to pyoluteorin (70), phenazine-1-carboxylic acid (87)
was produced by the soil A. niger strain (Ding et al., 2020). Two
new piperazines nigragillin (88) and nigerazine B (89) were
purified from strain ATCC 11414, and their biosynthesis were
regulated by the naphthopyrone precursor BGC alb gene cluster
(Chiang et al., 2011). Endophytic strain IFB-E003–derived
aspernigerin (90) displayed a potent effect on the tumor cell
lines nasopharyngeal epidermoid KB, cervical carcinoma Hela,
and colorectal carcinoma SW1116 (Shen et al., 2006).

Amides
Till the end of 2020, only six amides (91–96) had been isolated
and characterized from A. niger strains. Fractionation of crude
extract of marine strain BRF-074A afforded one furan ester
derivative (91), one cerebroside chrysogeside D (93), and two
spiro amides pseurotins A (95) and D (96), among which 91
exerted a cytotoxic effect on HCT-116 cell line (Uchoa et al.,
2017). When cultivated on wheat bran, strains CFR-W-105 and
MTCC-5166 were discovered to produce nigerloxin (92) with free
radical DPPH scavenging activity and inhibitory effect on
lipoxygenase-I (LOX-1) and rat lens aldose reductase (RLAR)
(Rao et al., 2002; Chakradhar et al., 2009). Ergosterimide (94) was
a new natural Diels–Alder adduct of ergosteroid and maleimide
produced by the strain EN-13 from marine alga (Zhang et al.,
2007a).

Cyclopeptides
All peptides of A. niger are cyclic and consist of ten dipeptides
(97–106), eight pentapeptides (107–114), and three
bis(dipeptide)s (115–117). In addition to α-pyranones 32–34,
38, and 40, four diketopiperazines (97, 99, 115, and 116) were
isolated from an endophytic strain of liverwort Heteroscyphus
tener (Steph.). Schiffn, and compounds 115 and 116 showed
weak activity against the human ovarian carcinoma cancer cell
line A2780 (Li et al., 2015). However, 115 exhibited significant
selective cytotoxicity to human leukemia murine colon 38 and
human colon H116 and CX1 cell lines (Varoglu et al., 1997;
Varoglu and Crews, 2000). One strain BRF-074A from
Northeast Brazilian coast was a prolific producer of
cyclopeptides (101–107, 114) (Uchoa et al., 2017).
Phytochemcial analysis of an uncoded marine strain afforded
a new diketopiperazine dimer (117) and nine monomers
(98–106) (Ovenden et al., 2004; Zhang et al., 2010; Uchoa
et al., 2017). Compounds 98 and 99 had been reported to
regulate plant growth (Kimura et al., 1996; Kimura et al.,
2005), and 101 had selectively potential cytotoxicity (Graz
et al., 2000). Eight malformin analogs (107–114) were a
group of SMs containing structural skeleton of cyclo-D-
cysteinyl-D-cysteinyl-L-amino acid-D-amino acid-L-amino
acid (Kim et al., 1993). Malformin A (107) demonstrated
antibacterial (Suda and Curtis, 1966; Liu et al., 2013) and

FIGURE 6 | Proposed biosynthetic pathway of pyranonigrin E (67) and
pyranonigrin F (69).
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anticancer activities (Wang et al., 2015), while malformin C
(114) exhibited a broad spectrum of biological properties
including anti-HIV-1 (Zhou et al., 2016), cytotoxic (Jomori
et al., 2020), anticancer (Wang et al., 2015), and antibacterial
(Suda and Curtis, 1966; Liu et al., 2013).

Polyketides
Polyketides (118–155) are the largest group of SMs produced by
A. niger. Citric acid (118) and itaconic acid (119) have been
large-scale products in food and pharmaceutical industry for
decades (Andersen et al., 2011; Li et al., 2012). Some other
valuable chemicals with low molecular weight are also produced
by A. niger, such as 2-phenylethanol (128) (Etschmann et al.,
2015), p-hydroxyphenylacetic acid (129) (Happi et al., 2015),
gallic acid (130) (Saeed et al., 2020), benzoic acid derivative
(131) (Zabala et al., 2012), and asperyellone (147) (Jefferson,
1967; Chidananda et al., 2008). In comparison with 119, the
biological activity of hexylitaconic acid (120) dramatically
attenuated (Varoglu et al., 1997; Varoglu and Crews, 2000).
By overexpression of transcriptional regulator pBARAGA-CaaR
of BGC caa in glucose minimal medium, strain ATC C1015
successfully produced three acyltetronic acid derivatives carlosic
acid (123), carlosic acid methyl ester (124), and agglomerin F
(125) (Yang et al., 2014). Chemical analysis of two strains
KB1001 and F97S11 afforded fifteen meroterpenoid
derivatives (132–146), in which biosynthesis was deduced to
be manipulated by the yan gene cluster in strain KB1001
(Figure 7) (Bugni et al., 2000; Holm et al., 2014). Furthermore,
yan gene cluster consisted of gene yanA [encode 6-methylsalicylic
acid synthase (6-MSAS)] together with eight additional genes yanB
(encode decarboxylase), yanC (encode CYP450), yanD (encode
dehydrogenase), yanE (unknown), yanF (encode oxidase), yanI

(encode O-mevalon tiransferase), yanH (encode CYP450), and
yanG (encode prenyl transferase).

Asperyellone (147) was the common product of strains NRRL-
3 and CFTRI 1105 (Jefferson, 1967; Chidananda et al., 2008) and
exhibited inhibitory effect on lipoxygenase and human platelet
aggregation (Rao et al., 2002), UVB protection (Santhakumaran
et al., 2019), and antifungal activity (Ayer et al., 1996). In addition

FIGURE 7 | Proposed biosynthetic pathway of yanuthones.
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to γ-pyridone (86), five highly oxygenated pyranoquinones (86,
149, and 151–154) were detected in SMs of strain T1 by activation
of the aza gene cluster (Zabala et al., 2012) (Figure 8). In
biosynthesis of pyranoquinones, genes azaE (encode
ketoreductase), azaF (encode acyl:CoA ligase), azaG (encode
FAD-dependent oxygenase), azaH (encode salicylate
monooxygenase), azaI (encode CYP450), azaJ (encode
dehydrogenase), and azaL (encode FAD-dependent oxygenase)
play important roles. Funalenone (150), one phenalene derivative,
was obtained from strain ATCC 11414 whether the albA gene was
auxotrophic or not (Chiang et al., 2011). Meanwhile, funalenone
(150) was also found in A. nigermutant ΔgcnE (strain FGSC A1279
lacking epigenetic regulatorgcnE) (Wang et al., 2018). Two
tetracycline analogs BMS-192548 (157) and TAN-1612 (158)
were, respectively, obtained from strains WB2346 and ATC
C1015 and shown to be acyclic binding inhibitors of neuropeptide
Y receptors (Kodukula et al., 1995; Shu et al., 1995; Li et al., 2011).

Sterols
As the by-product of manufacture of citric acid, 14-
dehydroergosterol (159) and its benzoate (160) were the first
steroids isolated from A. niger (Barton and Bruun, 1951) and
possessed anti-inflammatory and cytotoxic properties (Ano et al.,
2017). Strain MA-132–derived nigerasterols A (161) and B (162)
had potent antiproliferative activity against human promyelocytic
leukemia (HL60) and human lung carcinoma (A549), with IC50

values of 0.11 and 0.43 μM, respectively, (Liu et al., 2013). In
addition to ergosterimide (94), four steroid derivatives (163–166)
were discovered from the endophytic strain EN-13 associated with
marine brown alga (Zhang et al., 2007a).

CONCLUSION AND FUTURE PROSPECTS

A. niger strains are ubiquitous in nature and occupy a wide
spectrum of habitats in animal and plant environments, and
they are economically important both as harmful or beneficial
microorganisms. Numerous chemical studies suggest that A.
niger is one of the prolific sources of functional biomolecules,
including organic acids, vitamins, pesticides, valuable
proteases, and therapeutic agents, which have potential

FIGURE 8 | Proposed biosynthetic pathway of pyranoquinones in strain
ATCC 1015.
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application in various fields including agriculture, food
industry, and medicine. However, the number of new
bioactive compounds from A. niger has been decreasing for
the past 5 years. This deteriorating trend will result in a
negative impact on discovery and development of new A.
niger–derived valuable substances, such as new drug leads.
Therefore, more efforts should be made to explore more
sources for isolation of new A. niger strains and to awaken
their silent BGCs to manufacture novel functional
biomolecules using new strategies, such as one strain
many compounds (OSMAC) approach (Hemphill et al.,
2017; Pan et al., 2019) and genetic mining combined with
metabolic engineering (Zhang et al., 2019; Li et al., 2020; Wei
et al., 2021). Moreover, functional genomics should allow for
an in-depth understanding of the underlying biosynthetic
logic of A. niger–derived SMs (He et al., 2018). In order to
accelerate development of valuable products from A. niger,
construction and breeding of robust strains as well as
optimization of their cultivation and fermentation
processes should be intensively conducted at various levels
(Zou et al., 2015; Xu et al., 2019).

AUTHOR CONTRIBUTIONS

RYmade a draft of this review; JL and YW searched and collected
all references; HW helped in critical assessing this manuscript;
and HZ conceived and revised this review.

FUNDING

Financial supports from the National Key R&D Program of
China (2018YFC0311004), the National Natural Science
Foundation of China (41776139) and the Fundamental
Research Fund for the Provincial Universities of Zhejiang (RF-
C2019002) were greatly appreciated.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.701022/
full#supplementary-material

REFERENCES

Akinfala, T. O., Houbraken, J., Sulyok, M., Adedeji, A. R., Odebode, A. C.,
Krska, R., et al. (2020). Moulds and Their Secondary Metabolites
Associated with the Fermentation and Storage of Two cocoa Bean
Hybrids in Nigeria. Int. J. Food Microbiol. 316, 108490. doi:10.1016/
j.ijfoodmicro.2019.108490

Akiyama, K., Teraguchi, S., Hamasaki, Y., Mori, M., Tatsumi, K., Ohnishi, K., et al.
(2003). New Dimeric Naphthopyrones from Aspergillus niger. J. Nat. Prod. 66
(1), 136–139. doi:10.1021/np020174p

Andersen, M. R., Salazar, M. P., Schaap, P. J., van de Vondervoort, P. J. I., Culley,
D., Thykaer, J., et al. (2011). Comparative Genomics of Citric-Acid-Producing
Aspergillus niger ATCC 1015 versus Enzyme-Producing CBS 513.88. Genome
Res. 21 (6), 885–897. doi:10.1101/gr.112169.110

Ano, Y., Ikado, K., Shindo, K., Koizumi, H., and Fujiwara, D. (2017).
Identification of 14-dehydroergosterol as a Novel Anti-inflammatory
Compound Inducing Tolerogenic Dendritic Cells. Sci. Rep. 7. doi:10.1038/
s41598-017-14446-1

Ayer, W. A., Muir, D. J., and Chakravarty, P. (1996). Phenolic and Other
Metabolites of Phellinus Pini, a Fungus Pathogenic to pine. Phytochemistry
42 (5), 1321–1324. doi:10.1016/0031-9422(96)00125-2

Barton, D. H. R., and Bruun, T. (1951). 607. A New Sterol from a Strain of
Aspergillus niger. J. Chem. Soc., 2728. doi:10.1039/jr9510002728

Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., et al. (2019).
antiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining
Pipeline. Nucleic Acids Res. 47 (W1), W81–W87. doi:10.1093/nar/gkz310

Bouras, N., Mathieu, F., Coppel, Y., and Lebrihi, A. (2005). Aurasperone F - a New
Member of the Naphtho-Gamma-Pyrone Class Isolated from a Cultured
Microfungus,Aspergillus nigerC-433. Nat. Product. Res. 19 (7), 653–659.
doi:10.1080/14786410412331286955

Bugni, T. S., Abbanat, D., Bernan, V. S., Maiese, W. M., Greenstein, M., Van
Wagoner, R. M., et al. (2000). Yanuthones: Novel Metabolites from a Marine
Isolate ofAspergillusniger. J. Org. Chem. 65 (21), 7195–7200. doi:10.1021/
jo0006831

Cairns, T. C., Nai, C., and Meyer, V. (2018). How a Fungus Shapes Biotechnology:
100 Years of Aspergillus niger Research. Fungal Biol. Biotechnol. 5, 13.
doi:10.1186/s40694-018-0054-5

Chakradhar, D., Javeed, S., and Sattur, A. P. (2009). Studies on the Production of
Nigerloxin Using Agro-Industrial Residues by Solid-State Fermentation. J. Ind.
Microbiol. Biotechnol. 36 (9), 1179–1187. doi:10.1007/s10295-009-0599-7

Chiang, Y.-M., Meyer, K. M., Praseuth, M., Baker, S. E., Bruno, K. S., and Wang, C.
C. C. (2011). Characterization of a Polyketide Synthase in Aspergillus niger
Whose Product Is a Precursor for Both Dihydroxynaphthalene (DHN)Melanin
and Naphtho-γ-Pyrone. Fungal Genet. Biol. 48 (4), 430–437. doi:10.1016/
j.fgb.2010.12.001

Chidananda, C., Kumar, C. M., and Sattur, A. P. (2008). Strain Improvement of
Aspergillus niger for the Enhanced Production of Asperenone. Indian
J. Microbiol. 48 (2), 274–278. doi:10.1007/s12088-008-0026-1

Cutler, H. G., Crumley, F. G., Cox, R. H., Hernandez, O., Cole, R. J., and Dorner, J.W.
(1979). Orlandin: a Nontoxic Fungal Metabolite with Plant Growth Inhibiting
Properties. J. Agric. Food Chem. 27 (3), 592–595. doi:10.1021/jf60223a043

Ding, T., Yang, L.-J., Zhang, W.-D., and Shen, Y.-H. (2020). Pyoluteorin Induces
Cell Cycle Arrest and Apoptosis in Human Triple-Negative Breast Cancer Cells
MDA-MB-231. J. Pharm. Pharmacol. 72 (7), 969–978. doi:10.1111/jphp.13262

Duarte, J. C., and Costaferreira, M. (1994). Aspergilli and Lignocellulosics -
Enzymology and Biotechnological Applications. FEMS Microbiol. Rev. 13
(2-3), 377–386. doi:10.1111/j.1574-6976.1994.tb00038.x

Elissawy, A. M., Ebada, S. S., Ashour, M. L., El-Neketi, M., Ebrahim, W., and
Singab, A. B. (2019). New Secondary Metabolites from the Mangrove-Derived
Fungus Aspergillus Sp. AV-2. Phytochemistry Lett. 29, 1–5. doi:10.1016/
j.phytol.2018.10.014

Etschmann, M. M. W., Huth, I., Walisko, R., Schuster, J., Krull, R., Holtmann, D.,
et al. (2014). Improving 2-phenylethanol and 6-Pentyl-α-Pyrone Production
with Fungi by Microparticle-Enhanced Cultivation (MPEC). Yeast 32 (1), a–n.
doi:10.1002/yea.3022

Fang, W., Lin, X., Wang, J., Liu, Y., Tao, H., and Zhou, X. (2016). Asperpyrone-
Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-
Derived Fungus Aspergillus niger. Molecules 21 (7), 941. doi:10.3390/
molecules21070941

Fernand, M. G., Roullier, C., Guitton, Y., Lalande, J., Lacoste, S., Dupont, J., et al.
(2017). Fungi Isolated from Madagascar Shrimps - Investigation of the
Aspergillus niger Metabolism by Combined LC-MS and NMR Metabolomics
Studies. Aquaculture 479, 750–758. doi:10.1016/j.aquaculture.2017.07.015

Fukuda, T., Hasegawa, Y., Hagimori, K., Yamaguchi, Y., Masuma, R., Tomoda, H.,
et al. (2006). Tensidols, New Potentiators of Antifungal Miconazole Activity,
Produced by Aspergillus niger FKI-2342. J. Antibiot. 59 (8), 480–485.
doi:10.1038/ja.2006.67

Girol, C. G., Fisch, K. M., Heinekamp, T., Guenther, S., Huettel, W., Piel, J., et al.
(2012). Regio- and Stereoselective Oxidative Phenol Coupling in Aspergillus
niger. Angew. Chemie-International Edition 51 (39), 9788–9791. doi:10.1002/
anie.201203603

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7010229

Yu et al. Secondary Metabolites From Aspergillus niger

16

https://www.frontiersin.org/articles/10.3389/fchem.2021.701022/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.701022/full#supplementary-material
https://doi.org/10.1016/j.ijfoodmicro.2019.108490
https://doi.org/10.1016/j.ijfoodmicro.2019.108490
https://doi.org/10.1021/np020174p
https://doi.org/10.1101/gr.112169.110
https://doi.org/10.1038/s41598-017-14446-1
https://doi.org/10.1038/s41598-017-14446-1
https://doi.org/10.1016/0031-9422(96)00125-2
https://doi.org/10.1039/jr9510002728
https://doi.org/10.1093/nar/gkz310
https://doi.org/10.1080/14786410412331286955
https://doi.org/10.1021/jo0006831
https://doi.org/10.1021/jo0006831
https://doi.org/10.1186/s40694-018-0054-5
https://doi.org/10.1007/s10295-009-0599-7
https://doi.org/10.1016/j.fgb.2010.12.001
https://doi.org/10.1016/j.fgb.2010.12.001
https://doi.org/10.1007/s12088-008-0026-1
https://doi.org/10.1021/jf60223a043
https://doi.org/10.1111/jphp.13262
https://doi.org/10.1111/j.1574-6976.1994.tb00038.x
https://doi.org/10.1016/j.phytol.2018.10.014
https://doi.org/10.1016/j.phytol.2018.10.014
https://doi.org/10.1002/yea.3022
https://doi.org/10.3390/molecules21070941
https://doi.org/10.3390/molecules21070941
https://doi.org/10.1016/j.aquaculture.2017.07.015
https://doi.org/10.1038/ja.2006.67
https://doi.org/10.1002/anie.201203603
https://doi.org/10.1002/anie.201203603
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Graz, C. J. M., Grant, G. D., Brauns, S. C., Hunt, A., Jamie, H., and Milne, P. J.
(2010). Cyclic Dipeptides in the Induction of Maturation for Cancer Therapy.
J. Pharm. Pharmacol. 52 (1), 75–82. doi:10.1211/0022357001773535

Happi, G. M., Kouam, S. F., Talontsi, F. M., Nkenfou, C. N., Longo, F., Zühlke, S.,
et al. (2015). A New Dimeric Naphtho-γ-Pyrone from an Endophytic Fungus
Aspergillus niger AKRN Associated with the Roots of Entandrophragma
Congoënse Collected in Cameroon. Z. Naturforschung Section B-a J. Chem.
Sci. 70 (9), 625–630. doi:10.1515/znb-2015-0036

Hayden, N. J., Maude, R. B., and Proctor, F. J. (1994). Studies on the Biology of
Black Mould (Aspergillus niger) on Temperate and Tropical Onions. 1. A
Comparison of Sources of the Disease in Temperate and Tropical Field Crops.
Plant Pathol. 43 (3), 562–569. doi:10.1111/j.1365-3059.1994.tb01591.x

He, Y., Wang, B., Chen, W., Cox, R. J., He, J., and Chen, F. (2018). Recent Advances
in Reconstructing Microbial Secondary Metabolites Biosynthesis in Aspergillus
Spp. Biotechnol. Adv. 36 (3), 739–783. doi:10.1016/j.biotechadv.2018.02.001

Hemphill, C. F. P., Sureechatchaiyan, P., Kassack, M. U., Orfali, R. S., Lin, W.,
Daletos, G., et al. (2017). OSMAC Approach Leads to New Fusarielin
Metabolites from Fusarium Tricinctum. J. Antibiot. 70 (6), 726–732.
doi:10.1038/ja.2017.21

Henrikson, J. C., Ellis, T. K., King, J. B., and Cichewicz, R. H. (2011). Reappraising
the Structures and Distribution of Metabolites from Black Aspergilli Containing
Uncommon 2-Benzyl-4h-Pyran-4-One and 2-Benzylpyridin-4(1h)-One
Systems. J. Nat. Prod. 74 (9), 1959–1964. doi:10.1021/np200454z

Henrikson, J. C., Hoover, A. R., Joyner, P. M., and Cichewicz, R. H. (2009). A
Chemical Epigenetics Approach for Engineering the in Situbiosynthesis of a
Cryptic Natural Product from Aspergillus niger. Org. Biomol. Chem. 7 (3),
435–438. doi:10.1039/b819208a

Hiort, J., Maksimenka, K., Reichert, M., Perović-Ottstadt, S., Lin, W. H., Wray, V.,
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New Alkaloids From a Hawaiian
Fungal Strain Aspergillus felis FM324
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China, 3Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química Rosario (CONICET), Universidad Nacional de
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Two new alkaloids tryptoquivaline Y (1) and pseurotin I (2), together with eight known
compounds (3–10), were purified from a fungal strain Aspergillus felis FM324, which was
isolated from a Hawaiian beach soil sample. The absolute configuration and
physicochemical data of tryptoquivaline Z (3) were reported for the first time here in
this paper. Compound 1 is an uncommon tryptoquivaline analog containing a 3-O-
isobutanoyl group. The structures of the new compounds 1–2 and known compound
3 were elucidated through HRESIMS, NMR spectroscopy and ECD analysis. All the
compounds were evaluated for their antiproliferative, antibacterial and NF-κB inhibitory
activities. Compound 4 showed weak antibacterial activity against Staphylococcus
aureus, methicillin resistant Staphylococcus aureus and Bacillus subtilis with the same
MIC value of 59.2 µM. Compounds 3 and 2 inhibited NF-κB with IC50 values of 26.7 and
30.9 μM, respectively.

Keywords: Aspergillus felis, trichocomaceae, alkaloids, antiproliferative, antibacterial, NF-κB inhibitory activities

INTRODUCTION

Marine fungi remain one of the few underexplored resources of natural products (Overy et al., 2019),
and they have become the main source of new compounds frommarine microorganisms due to their
complex genetic background (Zhao et al., 2016). Most of the reported marine fungal secondary
metabolites showed certain biological properties including antibacterial (Wang et al., 2021) and
anticancer (Deshmukh et al., 2017) activities. Aspergillus is a huge and diverse fungal genus (Ibrahim
and Asfour, 2018), ubiquitously found in soil, terrestrial plants, animals and marine. Totally, there
are about 380 species in the genus Aspergillus. As a dominant and the most studied fungal genus in
endophytes, more than 350 new fungal metabolites were isolated from Aspergillus during 2015–2019
(Vadlapudi et al., 2017). Marine Aspergillus sp. produced plenty of secondary metabolites including
polyketides, sterols, fatty acids, peptides, alkaloids, terpenoids and miscellaneous compounds, which
exhibited different pharmacological activities such as antimicrobial, cytotoxicity, anti-inflammatory
and antioxidant activity (Ibrahim et al., 2017a; Ibrahim et al., 2017b; Elkhayat, et al., 2016; Mohamed,
et al., 2020). In the past few years, our research group has studied the secondary metabolites of some
marine fungi including different Aspergillus species from Hawaii. These secondary metabolites had
different types of structures and exhibited various biological activities (Li et al., 2015; Fei-Zhang et al.,
2016; Li et al., 2016; Huang et al., 2017; Li et al., 2018; Li et al., 2019; Wang et al., 2019; Zaman et al.,
2020a; Wang et al., 2020; Zaman et al., 2021). In our continuing search for bioactive molecules from
Hawaiian fungi, we studied an extract of Aspergillus felis FM324, which led to the separation and
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identification of ten compounds (1–10). Here, we report two new
molecules (1–2) along with eight known secondary metabolites
(3–10). Compounds 1–10 were evaluated for their NF-κB
inhibitory property and anti-proliferative activity against
A2780 as well as their antibacterial potential against both
Gram-positive and Gram-negative bacteria.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations, CD, UV and FT-IR spectra were measured with
a Rudolph Research analytical AutoPol automatic polarimeter
(Rudolph Research Analytical, NJ, United States), JASCO J-815
CD (Jasco Corporation, Japan), Shimadzu UV
spectrophotometer UV-1800 and Thermo Scientific Nicolet
iS10 IR spectrometer (Thermo Fisher Scientific, WI,
United States), respectively. The structure characterizations of
all the compounds were based on 1D NMR (1H, 13C) and 2D
NMR (COSY, HSQC, HMBC, 1D-NOE and ROESY) data,
recorded on a Bruker AM-400 spectrometer (Bruker BioSpin
AG, Switzerland). An Agilent 6,530 Accurate-Mass Q-TOF LC-
MS spectrometer (Agilent Technologies, Germany) was used to
record high-resolution mass spectra. Preparative RP-HPLC was
carried out on an Ultimate 3000 chromatographic system
(Agilent Technologies, Germany) with a Phenomenex
preparative column (Phenyl-hexyl, 5 μ, 100 × 21.2 mm) and
semipreparative RP-HPLC on an Ultimate 3000
chromatographic system (Agilent Technologies, Germany)
with a Phenomenex semipreparative column (C18, 5 μ, 250 ×
10 mm), connected to a Dionex Ultimate 3000 DAD detector
(Agilent Technologies, Germany) (detected at 210, 254, 320, and
365 nm) and a Dionex Ultimate 3000 automated fraction
collector. All solvents were HPLC grade. Diaion HP-20 (Alfa
Aesar, Japan) was used to run the open-column chromatography.

Strain Isolation and Fermentation
The strain FM324 was isolated from a sample collected at a beach
at Kona, the Big Island, Hawaii. The strain was deposited in an
−80°C freezer at Daniel K. Inouye College of Pharmacy,
University of Hawaii at Hilo, HI, United States. The strain was
grown on PDA plates at 28°C for 3 days, then it was cut into small
pieces and inoculated into an autoclaved liquid PDB medium
(20 L) for fermentation at 24°C for 30 days.

Molecular Identification of the Fungal Strain
M324
DNA extraction: DNA was extracted according to the literature
(Liu et al., 2000), with slight modifications. Mycelium was added
to 500 µl of lysis buffer (400 mM Tris-HCl [pH 8.0], 60 mM
EDTA, 150 mMNaCl, 1% sodium dodecyl sulfate) and incubated
at 85°C for 20 min. After adding 150 µl of 3 M sodium acetate (pH
5.2), the tube was vortexed briefly and centrifuged (12,500rpm)
for 1 min. The supernatant was transferred to another tube and
centrifuged again. After transferring the supernatant to a new
tube, an equal volume of isopropanol was added and mixed by

inversion. The tube was centrifuged for 2 min and the
supernatant was discarded. The DNA pellet was washed twice
with 300 µl of 70% ethanol. The DNA was air dried at room
temperature for 45 min, then dissolved in 100 µL of 10 mM Tris-
HCl (pH 8.0). Sequencing of ITS region: The ITS region was
amplified with the ITS1 and ITS4 primers. The PCR reaction
included 1X High Fidelity PCR Buffer (Invitrogen), 2 mM
MgSO4, 0.2 mM dNTP mix, 4% DMSO, 0.2 µM of each
primer, 1 U Platinum Taq DNA Polymerase High Fidelity
(Invitrogen), and 10 ng of genomic DNA. The PCR cycling
conditions were 95°C for 3 min, followed by 35 cycles of 95°C
for 30 s, 50°C for 30 s and 72°C for 1 min, and a final extension of
72°C for 5 min. The PCR product was purified using Mag-Bind
Total Pure NGS beads (Omega Bio-tek), then sequenced using a
3730xl DNA Analyzer (Applied Biosystems). The sequence was
compared to the NCBI nucleotide collection (limited to sequences
from type material) using the Basic Local Alignment Search Tool
(BLAST), and was deposited in GenBank under the accession no.
MZ227547.

Extraction and Isolation
After filtration of the fermentation broth, the mycelia of FM324
were extracted three times with acetone. Acetone was removed by
evaporation in vacuum. After combining the aqueous mycelia
extraction and supernatant solution, it was subjected to HP-20
column eluted with MeOH-H2O into four fractions (30, 50, 90
and 100% MeOH). Fraction 3 (3.21 g) was separated by using
prep-HPLC (Phenyl-Hexyl, 100 × 21.20 mm, 5 μm; 8 ml/min)
eluted with 40–100% MeOH-H2O in 20 min to yield 26 sub-
fractions (SFr3–1∼26). SFr 3–11 (180 mg) was purified by semi-
preparative HPLC (38% MeCN/H2O, v/v, 1.0% formic acid,
3.0 ml/min) over a C18 column to afford compound 1 (1.6
mg, tR 32.2 min). SFr 3–14 (152.7 mg) was purified by semi-
preparative HPLC (20% MeCN/H2O, v/v, 1.0% formic acid,
3.0 ml/min) over a C18 column to afford compounds 2 (1.2
mg, tR 35.3 min) and 7 (2.2 mg, tR 21.4 min). SFr 3–9 (720 mg)
was purified by semi-preparative HP2LC (30% MeCN/H2O, v/v,
1.0% formic acid, 3.0 ml/min) over a C18 column to afford
compounds 3 (2.7 mg, tR 27.6 min) and 5 (1.6 mg, tR 8.3 min).
SFr 3–20 (100.1 mg) was purified by semi-preparative HPLC
(60% MeCN/H2O, v/v, 1.0% formic acid, 3.0 ml/min) over a C18
column to afford compound 4 (1.1 mg, tR 16.5 min). SFr 3–17
(6.3 mg) afford compound 6 (6.3 mg). SFr 3–12 (201.8 mg) was
purified by semi-preparative HPLC (30% MeCN/H2O, v/v, 1.0%
formic acid, 3.0 ml/min) over a C18 column to afford compounds
8 (12.6 mg, tR 19.8 min), 9 (5.2 mg, tR 23.9 min) and 10 (1.0 mg,
tR 26.3 min).

Tryptoquivaline Y (1): White amorphous powder; [α]25D +135
(c 0.10, MeOH); UV (MeOH) λmax (log ε) 212 (4.42), 302 (3.47)
nm; CD (0.10 mM, MeOH) λmax (Δε) 224 (−29.85), 250 (+21.67),
288 (+16.88) nm; IR (KBr) ]max 3,335, 2,921, 2,847, 1,651, 1,613,
1,519, 1,418, 1,375, 1,344, 1,271, 1,235, 1,083, 1,050, 1,033,
748.4 cm−1; 1H and 13C NMR data (see Table 1); HRESIMS
m/z521.2042 [M + H]+ (calcd for C27H29N4O7, 521.2031).

Pseurotin I (2): White amorphous powder; [α]25D −5.6 (c 0.50,
MeOH); UV (MeOH) λmax (log ε) 204 (4.03), 252 (3.81), 280
(3.57) nm; CD (0.11 mM, MeOH) λmax (Δε) 210 (+18.00), 232
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(−4.70), 250 (+5.58), 278 (−32.22), 314 (+8.18) nm; IR (KBr) ]max

3,370, 2,958, 2,929, 2,850, 1,723, 1,703, 1,627, 1,449, 1,263,
1,104 cm−1; 1H and 13C NMR data (see Table 1);HRESIMS m/z
468.1623 [M + Na]+ (calcd for C23H27NNaO8, 468.1629).

Tryptoquivaline Z (3): White amorphous powder; [α]25D +135
(c 0.10, MeOH); UV (MeOH) λmax (log ε) 208 (4.33), 296 (3.28)
nm; CD (0.11 mM, MeOH) λmax (Δε) 222 (−11.10), 244 (−2.27),
258 (−4.95), 302 (+1.30) nm; IR (KBr) ]max 3,359, 2,932, 1712,
1,661, 1,611, 1,483, 1,465, 1,403, 1,293, 1,271, 1,172, 1,122, 1,019,
904, 758, 701 cm−1; 1H and 13C NMR data (see Table 1);
HRESIMS m/z 451.1622 [M + H]+ (calcd for C23H23N4O6,
451.1612).

Computational Details
All the quantum mechanical calculations were performed using
Gaussian 09 (Frisch et al., 2009). Systematic conformational
searches were done for each compound in the gas phase using
the MMFF force field, implemented in Spartan 14 (Spartan’14),
and the results were validated using Macromodel (MacroModel,
2018) (MMFF force field, mixed torsional/low-mode sampling
protocol) using an energy cutoff of 10 kcal/mol. The choice for

the 10 kcal/mol of cutoff was set as a balance between reducing
the overall CPU calculation time and minimizing the possibility
of losing further contributing conformers. The numbers of
unique conformations found within these boundaries were 92
for 1, 73 for 11epi-1, and 290 for 2. All conformers were kept for
full geometry optimization at the RHF/3-21G level in gas phase.
All structures within 5 kcal/mol from the corresponding global
minima were reoptimized at the B3LYP/6-31G* level in gas
phase. Frequency calculations were done at the same level to
determine the nature of the stationary points found. The ECD
calculations were carried out using the B3LYP/6-31G*
optimized geometries. The excitation energies (nm) and
rotatory strength (R) in dipole velocity (Rvel) of the first forty
singlet excitations were calculated using TDDFT implemented
in Gaussian 09 at the PBE0/def2-SVP and B3LYP/6-31G* levels
from all significantly populated conformers, which were
averaged using Boltzmann weighting. The Boltzmann
amplitudes obtained by refining the Gibbs free energies of all
compounds at the SMD/M06-2X/6-31G* level using methanol
as solvent. The calculated rotatory strength were simulated into
the ECD curve as the sum of Gaussians with 0.3 eV width at

TABLE 1 | 1H (400 MHz) and 13C (100 MHz) NMR data of compounds 1–3 in DMSO-d6.

No 1 2 3

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

2 85.1, CH 5.08 (s) 187.0, C - 84.7, CH 4.88 (s)
3 84.1, C - 111.6, C - 77.3, C
4 139.8, C - 196.8, C - 138.2, C
5 123.8, CH 7.36 (d, 6.5) 92.5, C - 124.8, CH 7.38 (d, 7.8)
6 124.7, CH 7.09 (m) 166.6, C - 124.7, CH 7.11 (dd, 7.8, 6.6)
7 130.0, CH 7.35 (overlap) - - 129.5, CH 7.11 (dd, 7.8, 6.6)
7-NH - - - 9.95 (s) - -
8 114.9, CH 7.35 (overlap) 91.2, C - 114.7, CH 7.42 (d, 7.8)
9 133.6, C - 75.0, CH 4.40 (brs) 137.1, C -
10 170.1, C 71.9, CH 4.33 (d, 5.8) 170.7, C -
11 58.0, CH 5.29 (brs) 68.3, CH 4.45 (ddd, 5.8, 7.8, 11.0) 58.6, CH 5.22 (brs)
12 38.2, CH2 2.81 (d, 14.4) 129.9, CH 5.42 (overlap) 38.0, CH2 2.74 (d, 15.6)

3.15 (dd,14.4, 7.7) 2.81 (dd,15.6, 7.0)
13 173.1, C - 132.0, CH 5.44 (overlap) 172.3, C -
14 69.4, C - 29.3, CH2 2.02 (m); 1.97 (m) 69.6, C -
15 - 22.2, CH2 1.31 (m); 1.28 (m) - -
16 - 13.6, CH3 0.82 (t, 7.3) - -
17 160.2, C - 5.7, CH3 1.63 (s) 159.9, C -
18 121.6, C - 196.4, C - 121.8, C -
19 126.1, CH 8.19 (d, 7.0) 133.4, C - 126.1, CH 8.18 (d, 8.0)
20 127.1, CH 7.59 (t, 7.0) 130.3, CH 8.25 (overlap) 127.0, CH 7.59 (t, 8.0, 7.3)
21 134.6, CH 7.88 (t, 8.0) 128.4, CH 7.53 (t, 8.0) 134.5, CH 7.87 (d, 8.2, 7.3)
22 127.1, CH 7.75 (d, 8.0) 133.9, CH 7.67 (t, 7.4) 127.1, CH 7.73 (d, 8.2)
23 147.8, C - 128.4, CH 7.53 (t, 8.0) 147.9, C -
24 - - 130.3, CH 8.25 (overlap) - -
25 148.6, CH 8.57 (s) - - 149.2, CH 8.52 (s)
26 18.2, CH3 1.34 (s) - - 16.5, CH3 1.30 (s)
27 22.5, CH3 1.13 (s) - - 22.7, CH3 1.28 (s)
28 174.0, C - - - - -
29 33.0, CH 2.16 (s) - - - -
30 18.1, CH3 0.76 (d, 6.4) - - - -
31 18.6, CH3 0.52 (d, 7.0) - - - -
8-OMe - - 51.7, CH3 3.24 (s) - -
9-OH - - - 6.31 (s) - -
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half-heights (σ), which were UV-corrected and scaled (Pescitelli
and Bruhn., 2016).

Antibacterial Assays
Antibacterial assay was conducted by the previously described
method (Cheng et al., 2013). DMSO (5%) was used as negative
controls whereas chloramphenicol was used as a positive control,
which was active against S. aureus, methicillin resistant S. aureus,
Bacillus subtilis and E. coli with MIC values ranging from 2.5 μg/
ml to 12.5 μg/ml. The maximum concentration of the used
compounds was 160 μg/ml. All experiments were repeatedly
performed in triplicate.

Anti-Proliferative Assays
The viability of A2780 human ovarian cancer cells was
determined using the CyQuant assay according to the
manufacturer’s instructions (Life Technologies, CA,
United States). Briefly, cells were cultured in 96-well plates at
5 × 103 cells per well for 24 h and subsequently treated with
compounds (50 μM) for 72 h and analyzed. Relative viability of
the treated cells was normalized to the DMSO-treated control
cells (Cao et al., 2007; Cao et al., 2010; Hou et al., 2008. Cisplatin
was used as a positive control, which had an IC50 value of
0.36 μM. All experiments were performed in triplicate.

NF-κB Assay
We employed human embryonic kidney cells 293, Panomic for
monitoring changes occurring along the NF-κB pathway (Li et al.,
2017). Stable constructed cells were seeded into 96-well plates at
20 × 103 cells per well. Cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) (Invitrogen Co.),
supplemented with 10% FBS, 100 units/mL penicillin, 100 μg/
ml streptomycin, and 2 mM L-glutamine. After 48 h incubation,
the medium was replaced and the cells were treated with various
concentrations of test substances. TNF-α (human, recombinant,
E. coli, Calbiochem) was used as an activator at a concentration of
2 ng/ml (0.14 nM). The plate was incubated for 6 h. Spent
medium was discarded, and the cells were washed once with
PBS. Cells were lysed using 50 μL (for 96-well plate) of reporter
lysis buffer from Promega by incubating for 5 min on a shaker,
and stored at −80°C. The luciferase assay was performed using the
Luc assay system from Promega. The gene product, luciferase
enzyme, reacts with luciferase substrate, emitting light, which was
detected using a luminometer (LUMIstar Galaxy BMG). Data for

NF-κB inhibition are expressed as IC50 values (i.e., concentration
required to inhibit TNF-induced NF-κB activity by 50%). The
known NF-κB inhibitor TPCK was used as a positive control.

RESULTS AND DISCUSSION

Identification of Compounds
Compound 1 (Figure 1) was obtained as a white amorphous
powder and its molecular formula was determined as
C27H28N4O7 by HRESIMS, indicating sixteen degrees of
unsaturation. The 13C NMR and HSQC spectra of one
demonstrated the presence of nineteen carbons including four
methyl (4× CH3), nine sp2 methines (9× �CH), four sp2 non-
protonated carbons (4× � C), four carbonyls (4× -CO), and one
methylenes (1×-CH2), three sp3 methines (3× -CH), one
nitrogenated nonprotonated sp3 carbon (1× -C), and one
oxygenated nonprotonated sp3 carbon (1× -C) (Table 1). The
COSY spectrum of 1 indicated the presence of three spin systems
including one CH-CH2 and two CH � CH-CH � CH (Figure 2).
The HMBC spectrum of 1 showed long-range 1H−13C
correlations from H-5 (δH 7.36) to C-7 (δC 130.0) and C-9 (δC
133.6), from H-6 (δH 7.09) to C-4 (δC 139.8) and C-8 (δC 114.9),
from H-7 (δH 7.35) to C-5 (δC 123.8) and C-9, from H-27 (δH
1.13) to C-14 (δC 69.4) and C-26 (δC 18.2), fromH-26 (δH 1.34) to
C-13 (δC 173.1) and C-14, and from H-2 (δH 5.08) to C-3 (δC
84.1), C-4, C-13, and C-14 (Figure 2), which confirmed the

FIGURE 1 | Chemical structures of compounds 1–3.

FIGURE 2 | Key COSY (bolds, blue), HMBC (arrows, pink) and ROESY
(double arrows, pink) correlations of 1.
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presence of an indole imidazole moiety, 2,2-dimethyl-1,2,9,9a-
tetrahydro-3H-imidazo [1,2-a]indol-3-one. In the HMBC
spectrum of 1, H-22 (δH 7.75) correlated to C-20 (δC 127.1)
and C-18 (δC 121.6), H-21 (δH 7.88) to C-19 (δC 126.1) and C-23
(δC 147.8), H-19 (δH 8.19) to C-21 (δC 134.6) and C-17 (δC 160.2),
H-25 (δH 8.57) to C-17 and C-23, and H-25 to C-17 and C-22 (δC
127.1), which confirmed the presence of a quinazolin-4(3H)-one
moiety. The HMBC correlations fromH-12 (δH 2.81, 3.15) to C-2
(δC 85.1), C-3 and C-10 (δC 170.1), and H-25 and C-11 indicated
that the indole imidazole and quinazolin-4(3H)-one moieties
were connected through the 12CH2-

11CH spin system with a
carboxylic acid group at 11-position.The HMBC spectrum of 1
also showed long-range 1H−13C correlations fromH-31 (δH 0.52)
to C-29 (δC 33.0) and C-30 (δC 18.1), H-30 (δH 0.76) to C-28 (δC
174.0), C-29 and C-31 (δC 18.6), indicating the presence of an
isobutyric acid group in compound 1. On the basis of the NOESY
correlations from H-30 to H-25 (δH 8.57) and H-31 to H-5, the
isobutyric acid group must be located at 3-position (Figure 2).
Finally, the hydroxyl group was assigned at 15-position because
this was the only available position. Hence, the planar structure of
one was determined as shown, and it was named tryptoquivaline
Y. The ROESY spectrum of compound 1 exhibited correlations
between H-2 (δH 5.08) and H-12 (δH 2.81), indicating that H-2
and H-12 were on the same side of the molecule.

In order to determine the absolute configuration of 1, a CD
spectrum was collected, which was very similar to that of
tryptovaline K (Zhou et al., 2012), indicating that both
compounds should have the same absolute configuration. To
confirm the absolute configuration of 1, TDDFT ECD
calculations were carried out. The experimental ECD of 1
showed a strong negative Cotton effect (CE) at 224 nm, and
two positive CEs at 250 and 288 nm. TheMMFF conformational
analysis of 1 yielded 92 conformations within the 10 kcal/mol
window, which were further subsequently reoptimized at the
RHF/3-21G and B3LYP/6-31G* levels. The Gibbs free energies
of the most stable conformations found were further refined at

the SMD/M06-2X/6-31G* level of theory, using methanol as
solvent. The ECD calculations were performed at the PBE0/
def2SVP//B3LYP/6-31G* level, and were Boltzmann-averaged
using the Gibbs free energies calculated in the previous step. The
same computational work was carried out with 11epi-1 in order
to define the relative configuration at C-11 as well. As shown in
Figure 3, the calculated ECD of 1 showed an excellent
agreement with the experimental data, allowing to assign the
structure of 1 as shown. On the other hand, the calculated
spectrum of 11epi-1 did not reflect good match with the
experimental data (Supplementary Figures S22, 23), hence
reinforcing our relative and absolute configurational
assignment.

Pseurotin F (2) was obtained as white amorphous powder and
has a molecular formula of C23H27NO8 derived from the
HRESIMS peak at m/z 468.1623 [M + Na]+. The COSY
spectrum of 2 exhibited the presence of two spin system, CH3-
CH2-CH2-CH � CH-CH(OH)-CH(OH)- and a mono-
substituted benzene ring (Figure 4). HMBC correlations from
H-17 (δH 1.63) to C2 (δC 187.0), and C-4 (δC 196.8), H-9
(δH 4.40) to C-4 and C-5 (δC 92.5), 9-OH (δH 6.31) to C-9
(δC 75.0), 8-OMe (δH 3.24) to C-8 (δC 91.2), and NH-7 (δH 9.95)
to C-5, C-8, and C-9 indicated the presence of 1-oxa-7-azaspiro
[4.4]non-2-ene-4,6-dione core. An HMBC correlation fromH-10

FIGURE 3 | Experimental and calculated ECD spectra of 1.

FIGURE 4 | Key COSY (bolds, blue), HMBC (arrows, red) correlations
of 2.

FIGURE 5 | Experimental and calculated ECD spectra of 2.
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(δH 4.33) to C-2 confirmed the connectivity of the spin system
CH3-CH2-CH2-CH � CH-CH(OH)-CH(OH)- to the 1-oxa-7-
azaspiro [4.4]non-2-ene-4,6-dione core. The mono-substituted
benzene ring must be connected to the 1-oxa-7-azaspiro [4.4]
non-2-ene-4,6-dione core through a ketone (C�O). Moreover,
the NMR data of compound 2 (Table 1) were very similar to those
of compound 8. The main NMR difference between 2 and 8 was
attributable to one more methylene group in the chain of
compound 2. No ROESY correlation between H-9 (δH 4.40, s)
and 8-OMe (δH 3.24, s) was observed. In fact, no other ROESY
correlations were clear except for those in the two spin systems.
On the other hand, the 13C NMR data of compound 2 and
compound 8 were almost the same, indicating both 2 and
compound 8 should have the same configuration.
Interestingly, compounds 2 and 8 had completely the same
ECD pattern (Figure 5 and Supplementary Figure S14).
Hence, it was confirmed that both compounds 2 and 8 should
have the same configuration, and compound 2 was named
pseurotin I.

To confirm the absolute configuration of 2, we performed the
ECD calculations. Starting with the 290 conformations found at
the MMFF level, the geometries were subsequently reoptimized
at the RHF/3-21G and B3LYP/6-31G* levels. The TDDFT
calculations were carried at the B3LYP/6-31G* level (which
in this case yielded better performance than the PBE0/def2SVP
level) and were Boltzmann-averaged using the Gibbs free
energies refined at the SMD/M06-2X/6-31G* level with
methanol as solvent. The calculated ECD spectrum of two
was in good agreement with the experimental ECD curve,
which thus allowed an unambiguous configurational
assignment (Figure 5).

Tryptoquivaline Z (3) was obtained as white amorphous
powder and has a molecular formula of C23H22N4O6 derived
from the HRESIMS peak at m/z 451.1622 [M + H]+. The NMR
data of compound 3 (Table 1) were very similar to those of
compound 1. Themain NMR difference between 3 and 1was that
compound 1 had one extra isobutyric acid group (Figures 1, 6).
Compound 3 had a similar CD spectrum to that of 1, so it was
deducted that both should have the same configuration. The
planar structure of compound 3 was recorded in SciFinder with

an ACS registration number of 1214809–50-3 (Zheng et al.,
2018), but no physio-chemical properties including NMR data
were reported in the published patent (Zheng et al., 2018). The
ROESY spectrum of compound 3 showed correlations between
H-2 (δH 4.88, s) and H-26 (δH 1.30, s), H-12 (δH 2.74, d)
(Supplementary Figures S21), which were very similar to
those of compound 1. Further, compounds 3 and 1 had the
similar ECD patterns, indicating that both compounds 3 and 1
should have the same configuration. Hence, the structure
including the absolute configuration of compound 3 was
determined as shown, and it was given a trivial name
tryptoquivaline Z.

Seven other compounds, β-cyclopiazonic acid (4) (Wang et al.,
2016), cyclo-(L-Pro-L-Phe) (5) (Li et al., 2008), tryptoquivaline L
(6) (Buttachon et al., 2012), Bisdethiobis (methylthio) gliotoxin
(7) (Afiyatullov et al., 2005), pseurotin A (8), pseurotin A1 (9) and
pseurotin A2 (10) (Wang et al., 2011) were also isolated from
Aspergillus felis FM324. The structures of these known
compounds (4–10) were determined based on comparisons of
NMR and HRESIMS data with previously reported data.

Biological Activity
Except for compound 4, the other nine compounds belong to
three different classes of natural products, tryptoquivalines (1,
3, and 6), pseurotins (2 and 8–10) and diketopepirazines (5
and 7). These classes of compounds were reported to
demonstrate anti-proliferative and antibacterial activities.
Hence, we tested compounds 1–10 for their activities
against A2780 cancer cell line, S. aureus, methicillin
resistant S. aureus, Bacillus subtilis and E. coli. Besides,
their anti-inflammatory activity against NF-κB was also
evaluated. Compound 4 showed antibacterial activity
against S. aureus, methicillin resistant S. aureus and Bacillus
subtilis with the same MIC value of 59.2 µM. None of the
compounds (1–10) exhibited any anti-proliferative activity
against A2780, while compounds 3 and 2 inhibited NF-κB
with IC50 values of 26.7 and 30.9 μM, respectively. In the
absence of a cytotoxic response, inhibition of NF-κB activity
suggests the potential of cancer chemoprevention.

CONCLUSION

Aspergillus species are well known for producing
tryptoquivaline and pseurotin types of compounds. Our
research group previously reported two new tryptoquivaline
from Aspergillus terreus (Zaman K. A. U. et al., 2020).
Pseurotins, with 1-oxa-7-azaspiro [4.4]non-2-ene-4,6-dione
core, were also isolated from another Aspergillus species
(Wang et al., 2011). In our current research, one new
tryptoquivaline (1) and one new pseurotin (2) together with
eight known compounds (3–10) were isolated from a Hawaiian
fungal strain Aspergillus felis FM324. The absolute configuration
and physicochemical properties of compound 3 were also
described for the first time. Compound 4 showed weak
antibacterial activity against Gram-positive bacteria, and
compounds 2 and 3 mildly inhibited NF-κB.

FIGURE 6 | Key COSY (bolds, blue), HMBC (arrows, pink) correlations
of 3.
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Aspulvinones Suppress Postprandial
Hyperglycemia as Potent
α-Glucosidase Inhibitors From
Aspergillus terreus ASM-1
Changjing Wu1,2,3†, Xiang Cui1†, Luzhen Sun1, Jiajia Lu1, Feng Li1, Minghui Song1,
Yunxia Zhang1, Xinqi Hao2, Congkui Tian3*, Maoping Song2* and Xiaomeng Liu1,4*

1College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, China, 2College of Chemistry and Molecular
Engineering, Zhengzhou University, Zhengzhou, China, 3Wuling Mountain Institute of Natural Medicine, Hubei Minzu University,
Enshi, China, 4College of Public Health, Xinxiang Medical University, Xinxiang, China

Chemical investigation of Aspergillus terreus ASM-1 fermentation resulted in the isolation
of three new prenylated aspulvinones V–X (1–3), together with the previously reported
analogs, aspulvinone H (4), J-CR (5), and R (6). Their structures were elucidated by various
spectroscopic methods including HRESIMS and NMR, and the absolute configurations of
2 and 3 were determined by ECD comparison. Compounds 1–6 were evaluated for
α-glucosidase inhibitory effects with acarbose as positive control. As a result, compounds
1 and 4 exhibited potent α-glucosidase inhibitory activities with IC50 values of 2.2 and
4.6 µM in mixed-type manners. The thermodynamic constants recognized the interaction
between inhibitors and α-glucosidase was hydrophobic force-driven spontaneous
exothermic reaction. The CD spectra also indicate that the compounds 1 and 4
changed the enzyme conformation. Furthermore, compound 4 significantly suppressed
the increases in postprandial blood glucose levels in the C57BL/6J mice.

Keywords: Aspergillus terreus, secondary metabolites, aspulvinone, structure elucidation, α-glucosidase inhibitory
effect

INTRODUCTION

Diabetes mellitus is chronic metabolic disease with worldwide concerns, which causes a major
challenge for the health system (Kharroubi and Darwish, 2015). The high prevalence of diabetes has
focalized much efforts for novel therapeutic alternatives (Ghosh et al., 2016). Nowadays, alleviating
postprandial hyperglycemia is one of the first-line therapeutical strategies for the treatment of
diabetes and its complications (Taylor et al., 2021). α-Glucosidase inhibitors (AGIs), such as
acarbose, miglitol, and voglibose, are usually employed for controlling postprandial blood
glucose levels by delaying the intestinal digestion of carbohydrates (Hossain et al., 2020).
However, utilization of clinical AGIs often have some shortcomings such as side-effects
including abdominal discomfort and flatulence, limited efficacy, failure in metabolism
adjustment (Calcutt et al., 2009). Therefore, much effort has been focused on searching for
natural AGIs with better safety and efficacy from natural sources in the past decade (Deng
et al., 2015; Zhang et al., 2020).

Aspergillus terreusML-44 is marine-derived fungi previously isolated from the fresh gut of pacific
oyster. Our former study reported five terretonins isolated from ML-44 fermentation, including a
new one, which showed weak anti-inflammatory activity (Wu et al., 2019). In order to exploit the
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potential of strain ML-44 in the medical field, the diethyl sulfate
(DES) mutagenesis strategy (Fang et al., 2014) was applied to
strain ML-44 in this study, mutant strain ASM-1 was screened
out with different phenotypic morphology of colonies. HPLC-
DAD-UV analysis of the mutant fermentations comparing to
parent strain exhibited a series of metabolites with unique ultra-
violet absorption were observed in the mutant ASM-1.
Subsequent HPLC-guided chemical investigation of ASM-1
fermentation resulted in the isolation of six aspulvinone
derivatives (1–6), including three new ones (1–3) (Figure 1).
Aspulvinones and the analogs have been reported with various
biological activities, such as inhibiting antibacterial (Machado
et al., 2021), luciferase (Cruz et al., 2011), anti-influenza A viral
(Gao et al., 2013), anticancer (Sun et al., 2019), anti-DPPH
radicals (Zhang et al., 2015), as well as α-glucosidase
inhibitory activity (Dewi et al., 2014; Wang et al., 2016; Zhang
et al., 2016). However, there has been no systematic report on the
mechanism for inhibition of α-glucosidase, structure–activity
relationships, and hpyerglycemic effect in vivo by natural
aspulvinones. In this study, the α-glucosidase inhibitory
activities of compounds 1–6 were evaluated in vitro, in silico,
and in vivo. Herein, we report the isolation, structure elucidation,
and the α-glucosidase inhibitory activities of the isolated
aspulvinones.

MATERIAL AND METHODS

General Experimental Procedures
Sephadex™ LH-20 (GE Healthcare, Uppsala, Sweden), and
YMC*GEL® ODS-A-HG (12 nm S-50 μm, YMC Co., Ltd.,
Kyoto, Japan) were used for column chromatography. The
MPLC was performed on a QuikSep chromatographic system
(H&E, Beijing, China), and a Gemini C18 column (21.2 ×
250 mm, column temperature: 26°C) was used for separation
and purification. Optical rotations were measured on a JASCO P-

2000 digital polarimeter (JASCO, Tokyo, Japan). UV spectra were
recorded on a PerkinElmer Lambda 25 spectrophotometer.
Electronic Circular Dichroism (ECD) data were taken on a
Chirascan circular dichroism spectrometer (Applied
Photophysics, Surrey, United Kingdom). HR-ESI-MS was
measured on Agilent 6520 Q-TOP mass spectrometer (Agilent,
CA, United States), and all 1D and 2D NMR spectra were
obtained on a Bruker-500 (500 MHz 1H and 125 MHz 13C-
NMR) NMR spectrometer. A SynergyHTX micro plate reader
(BioTek, VT, United States) was used to read optical density
(OD). The intrinsic fluorescence spectra (280–500 nm) were
measured using Perkin Elmer LS55 fluorescence
spectrophotometer (United Kingdom).

Chemical Mutagenesis of A. terreus ML-44
and Mutant Selection
The DES mutagenesis procedure was referred to the method that
we previously reported (Fang et al., 2014), and with proper
modifications: DES was dissolved in DMSO to obtain a 20%
(v/v) solution, which was further mixed with spore suspension of
A. terreus ML-44 in a ratio of 1:9 (v/v). The mixture was treated
with assistance of ultrasonic wave (40 KHz) at room temperature.
Each 80 μl portion of the treated spore suspensions was sampled
and spread on PDA plates at 1 and 2 h of treatment followed by
incubation at 28°C for 5–7 days. Mutants from the test groups
were obtained by selection of colonies with different colonial
morphology, and the genetic stability were verified by passing
three generations.

The initial ML-44 strain and mutants were activated by
incubation at 28°C for 3–5 days, and further inoculated into
100 ml of liquid medium (glucose 2%, maltose 1%, mannitol
2%, glutamic acid 1%, peptone 0.5%, and yeast extract 0.3% in
distilled water) in an Erlenmeyer (250 ml) and fermented at 28°C
on a rotary shaker at 200 rpm for 12 days. Each 100 ml of the
fermentation broth was extracted with equal volumes of EtOAc

FIGURE 1 | Chemical structures of Compounds 1–6.
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with assistance of ultrasonic wave (40 KHz) for 30 min. The
EtOAc extractions were concentrated in vacuo at 37°C,
followed by re-dissolved in 1.0 ml methanol which were used
for further chemical analysis. HPLC-PDAD-UV analysis was
performed using an analytical Kromasil C18 column (5 μm,
100 Å, 4.6 × 250 mm; Akzo Nobel) on an Agilent 1100 HPLC
system equipped with photo-diode array detector (G1316A).
After filtered with 0.45 μm membrane, the extraction solution
in methanol (1.0 ml) was injected (10 μl) into the column and
eluted with a MeOH-H2O linear gradient (20%→100%MeOH in
30 min followed by 5 min with isocratic 100% MeOH) mobile
phase (flow rate 1 ml/min). The acquired PDAD data were
processed with Agilent OpenLAB software.

Chemical Investigation to Mutant ASM-1
The mutant ASM-1 was inoculated into ten Erlenmeyer (500 ml)
each containing 200 ml of sterile liquid medium and cultured at
28°C for 48 h on a rotary shaker at 200 rpm providing a seed
culture (2 L). The seed culture was inoculated into a fermentation
cylinder containing the same sterile liquid medium (70 L), and
was cultured at 28°C for 12 days, with sterile compressed air
passes from the bottom of the cylinder keeping a positive pressure
of 0.15 MPa. The whole broth (65 L) was filtered to separate into
the filtrate and the mycelial cake. The filtrate (60 L) was subjected
to an AB-8 macroporous resin column (column volume, CV
2.4 L), eluted by water and 95% ethanol successively. The water
elute (3 CVs) was discarded, and the 95% ethanol elute (3 CVs)
was gathered. The mycelial cake was extracted two times with
95% ethanol (5 L) assisted by ultra-sonication for 2 h, followed by
filtration giving the ethanol extract. All the ethanol solutions were
combined and concentrated to a water suspension, which was
further extracted with EtOAc to afford a total of 60.5 g of EtOAc
extract.

The EtOAc extract (60.5 g) of the mutant ASM-1 was
subjected to silica gel column chromatography by stepwise
elution with b. p. 60–90°C petroleum ether (P)- dichloro-
methane (D)-methanol (M) to obtain 9 fractions. HPLC
analysis showed that the newly produced metabolites were
contained in Fr-4 (1.9 g, eluted by D), Fr-5 (5 g, eluted by DM
98:2), and Fr-7 (2.3 g, eluted by DM 90:10) (Supplementary
Figure S3). Subsequent repeated preparative reverse phase HPLC
separation led to the purification of compounds. Fr-4 was
subjected to reduced pressure ODS column chromatography
(cc) to give subfraction Fr-4–8 (0.3 g, eluted by 90%M), which
was further separated by HPLC (Methanol-H2O (0.1%HCl) 90:
10, 10 ml/min) to afford 1 (25 mg, tR � 36.0 min) and 6 (2.1 mg, tR
� 24.5 min); Fr-5–4 (1.6 g, eluted by 80%M), the subfraction of
Fr-5 by ODS cc, afforded 3 (12 mg, tR � 64.0 min) and 4 (218 mg,
tR � 67.5 min) with preparative HPLC separation (Methanol-
H2O (0.1%HCl) 65:35, 10 ml/min); Fr-7 was separated by ODS cc
to give subfraction Fr-7–9 (0.6 g, eluted by 80%M), which
provided 2 (28 mg, tR � 28.4 min) and 5 (16 mg, tR �
18.6 min) after preparative HPLC separation (Methanol-H2O
(0.1%HCl) 77:23, 10 ml/min).

Aspulvinone V (1): yellow solid (MeOH), UV (MeOH) λmax
(log ε): 203 (4.36), 239 (4.11), 380 (4.23). Positive HR-ESI-MS:m/

z measured 499.2480 [M + H]+, calcd for C32H35O5 [M + H]+

499.2484. 1H NMR and 13C NMR spectroscopic data, see Table 1.
Aspulvinone W (2): yellow solid (MeOH) [α]24D ‒32.8 (c 0.23,

MeOH). UV (MeOH) λmax (log ε): 203 (4.35), 243 (3.98), 374
(4.15). Positive HR-ESI-MS: m/z measured 449.1963 [M + H]+,
calcd for C27H29O6 [M + H]+ 449.1964. 1H NMR and 13C NMR
spectroscopic data, see Table 1.

Aspulvinone X (3): yellow solid (MeOH) [α]24D ‒27.9 (c 0.26,
MeOH). UV (MeOH) λmax (log ε): 203 (4.35), 242 (3.98), 376
(4.16). Positive HR-ESI-MS: m/z measured 449.1958 [M + H]+,
calcd for C27H29O6 [M + H]+ 449.1964. 1H NMR and 13C NMR
spectroscopic data, see Table 1.

α-Glucosidase Inhibitory Assay
α-Glucosidase (EC:3.2.1.20, MAL12) from Saccharomyces
cerevisiae was dissolved in 0.1 mol/L PBS solutions with a
pH of 6.8, and diluted to be a 1.0 U/ml solution. The
substrate p-nitrophenyl-β-D-glucopyranoside (pNPG) was
dissolved in PBS to be a 1 mM solution. Acarbose and the
compounds were dissolved in mehanol and further diluted to a
series of concentrations from 0.1 μmol/L to 10 mmol/L. In vitro
α-glucosidase inhibitory assay was performed according to a
method described previously with some modification (Dan
et al., 2019). Briefly, 20 μl of 1.0 U/ml enzyme solution and
10 μl of acarbose or compound solution, was mixed with 50 μl
PBS solution in 96-well plate, and the mixed solution was
incubated at 37°C for 10 min 20 μl of 1 mmol/L pNPG was
subsequently added and further incubated at 37°C for 15 min,
after which 100 μl of 1 M Na2CO3 solution was added to
terminate the reaction. The absorbance of p-nitrophenol was
monitored at 405 nm. All samples were analysed in triplicate,
and acarbose was used as positive control. The negative control
was performed by adding PBS instead of α-glucosidase, the
blank was prepared by adding solvent without tested
compounds. The inhibition rate was calculated as Eq. 1:

IR% � [(Ac − As)/Ac] × 100% (1)

where Ac represents the absorbance of control without sample
solution, and As denotes the absorbance of sample.

Enzymatic Kinetics of α-Glucosidase
pNPG with a concentration range of 100–4,000 μM and
α-glucosidase were incubated with different concentrations of
inhibitor for 10 min, respectively. 20 μl of 1.0 U/ml enzyme
solutions were first mixed with 10 μl of different
concentrations of inhibitors, then 50 μl PBS solutions were
added, and the mixed solutions were incubated at 37°C for
10 min. Subsequently, 20 μl of pNPG solutions (1.25, 2.5, 5, 10
and 20 mM) were added, and the mixed solutions were further
incubated at 37°C for 25 min, the absorbance of reaction solution
was measured at 405 nm every 3 min. The kinetic parameters,
Michaelis–Menten (Km) and maximum velocity (Vmax), were
found using Lineweaver–Burk plots to check the mode of
α-glucosidase inhibition for compounds 1 and 4. The
dissociation constants between inhibitor and enzyme (Ki) were
calculated from Dixon plots. Two inhibition constants, KI or KIS,
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for inhibitor binding with either free or enzyme-substrate
complex, were calculated from secondary plots of the slopes of
the straight lines (Vmax/Km) or vertical intercept (1/Vmax) verse
the concentration of inhibitors, respectively (Jenis et al., 2019).

Fluorescence Quenching Analysis
α-Glucosidase (1 μM) was mixed with different concentrations of
inhibitors (0–15 μM) at 20, 31, and 37°C, respectively, and the
fluorescence spectra of mixed solutions were determined after
equilibration for 5 min at an excitation wavelength of 250 nm.
Both the excitation and emission slits were set at 10 nm. The
quenching rate constant (Kq), binding constant (Ka), the number
of the binding sites (n), and thermodynamic parameters enthalpy
change (ΔH) and entropy change (ΔS) were calculated according
to the Stern-Volmer Eq. 2 and the van’t Hoff Eqs 3–5, which were
listed as follows (Xu et al., 2019):

F0/F � 1 + Ksv[Q] � 1 + Kqτ0[Q] (2)

log((F0 − F)/F) � logKa + nlogQ (3)

lnKa � ( − 1/T(ΔH/R)) + ΔS/R (4)

ΔG � ΔH − TΔS (5)

Where F0 and F represent the fluorescence intensities in the
absence or presence of inhibitor, [Q] denote the concentration of
inhibitor, τ0 is the constant of the lifetime of fluorophore (10–8 s)
and R is the gas constant of 8.31 J/(mol × K).

Circular Dichroism Spectroscopy
The CD measurements were performed in a wavelength range of
190–250 nm at a speed of 60 nm/min. All measurements were
carried out at 20°C using 1.0 mm path length quartz cuvette and
sodium phosphate buffer (pH 6.8) was considered as a blank. The
concentration of α-glucosidase was 1.25 μM, whereas the molar
ratios of inhibitors (25 and 50 μM) to α-glucosidase were 20:1 and
40:1. All the results were expressed as ellipticity in mill degrees.

Molecular Docking
Autodock Vina software was used in docking calculations to
investigate the modes of glucosidase inhibition for individual
aspulvinones. The 3D structures of aspulvinones were generated
and then energetically minimized with MM2 force field to a
minimum Root Mean Square (RMS) gradient of 0.005 using
Chem3DUltra 2017 (Version 17.0.0.206). The crystal structure of
Saccharomyces cerevisiae isomaltase (PDB ID: 3A4A; Resolution

TABLE 1 | 500 MHz 1H and 125 MHz13C NMR data of compounds 1–3, 5 in CD3OD.
a

No 1 2 3 5

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 171.2 s — 171.3 s — 171.2 s — 171.1 s —

2 102.2 s — 102.7 s — 102.4 s — 102.6 s —

3 163.5 s — 163.1 s — 163.3 s — 163.3 s —

4 141.5 s — 141.8 s — 141.8 s — 141.8 s —

5 109.5 d 6.37, s 108.9 d 6.36, s 109.1 d 6.38, s 109.1 d 6.39, s
6 125.8 s — 127.1 s — 127.0 s — 127.1 s —

7 133.4 d 7.50, brs 128.0 d 7.67, brs 128.1 d 7.68, brs 128.0 d 7.70, brs
8 129.8 s — 129.7 s — 129.7 s — 129.8 s —

9 157.6 s — 162.2 s — 162.2 s — 162.2 s —

10 116.1 d 6.79, d (8.6) 110.3 d 6.75, d (8.3) 110.3 d 6.76, d (8.4) 110.3 d 6.77, d (8.4)
11 130.8 d 7.49, brd (8.6) 132.5 d 7.46, brd (8.3) 132.5 d 7.46, brd (8.4) 132.5 d 7.47, brd (8.4)
12 123.2 s — 122.2 s — 122.0 s — 123.2 s —

13 124.8 d 7.41, d (2.1) 124.8 d 7.65, d (2.3) 130.1 d 7.61, d (2.1) 125.5 d 7.72, brs
14 122.2 s — 129.1 s — 122.5 s — 128.6 s —

15 151.1 s — 155.7 s — 154.7 s — 160.7 s —

16 130.0 s — 115.5 d 6.78, d (8.3) 117.9 d 6.72, d (8.4) 109.7 d 6.77, d (8.4)
17 130.2 d 7.55, d (2.1) 127.6 d 7.56, dd (8.3, 2.3) 128.0 d 7.59, dd (8.4, 2.1) 129.0 d 7.64, brd (8.4)
18 123.7 d 6.36, d (9.7) 29.3 t 3.31, overlapped 23.4 t 2.81, t (6.8) 31.5 t 3.16–3.28, m
19 131.8 d 5.68, d (9.7) 123.9 d 5.35, brt (7.3) 33.8 t 1.82, t (6.8) 90.7 s 4.65, t-like (8.8)
20 77.4 s — 133.0 s — 75.5 s — 72.5 s —

21 28.2 q 1.40, s 26.0 q 1.75, brs 27.13 q 1.32, s 25.4 q 1.22, s
22 28.2 q 1.40, s 17.9 q 1.74, brs 27.11 q 1.32, s 25.18 q 1.26, s
1′ 29.2 t 3.30, d (7.4) 31.2 t 3.20, dd (16.0, 8.5) 31.2 t 3.21, dd (16.0, 8.4) 31.2 t 3.16–3.28, m

3.15, dd (16.0, 9.6) 3.16, dd (16.0, 9.4)
2′ 123.6 d 5.33, brt (7.4) 91.1 d 4.59, dd (9.6, 8.5) 91.1 d 4.61, dd (9.4, 8.4) 91.2 d 4.63, t-like (8.8)
3′ 133.5 s — 72.4 s — 72.4 s — 72.4 s —

4′ 26.0 q 1.76, brs 25.4 q 1.21, s 25.4 q 1.22, s 25.4 q 1.22, s
5′ 17.9 q 1.74, brs 25.2 q 1.26, s 25.2 q 1.26, s 25.20 q 1.26, s
1″ 29.3 t 3.26, d (7.4) — — — —

2″ 124.0 d 5.28, brt (7.4) — — — — — —

3″ 132.7 s — — — — — — —

4″ 26.0 q 1.72, brs — — — — — —

5″ 18.0 q 1.75, brs — — — — — —

aChemical shift values were recorded using the solvent signal (CD3OD: δH 3.31, δC 49.00) as references.
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1.6 Å) was retrieved from protein Data Bank (www.rcsb.org/pdb/),
and was prepared by removing the water molecules and original
inhibitors. The ligand and protein pdb files were prepared and
grid box formation was accomplished using AutoDock Tools.
AutoGrid was used in order to prepare the grid map using a grid
box. The dimension of the grid size was set to 50 × 50 × 50, and
the grid box center was designated in coordinates x � 21.285, y �
−0.64, and z � 18.475. Nine output poses were generated and
evaluated by their calculated free energy of binding. The best pose
of each ligand was determined by its Affinity score (kcal/mol),
which was visualized by Discovery Studio Visualizer v21.1.0.
20298 (Accelrys, San Diego, United States) to analyze the
interactions between the target enzyme and the inhibitor.

Oral Disaccharide Tolerance Test
Female C57BL/6J mice, 6 weeks old, weighting 16–20 g, were
obtained from the Skbex Biotechenology Company Limited
(Henan, China). The animals were housed in Experimental
Animal Center of Zhoukou Normal University under 12 h
light-dark cycle at controlled temperature (22 ± 1°C), and
provided with a standard pellet diet and water ad libitum. The
mice were adapted to diet and general conditions of vivarium for
1 week before the experiment. After an 16 h fasting, the mice were
divided into three groups randomly (eight mice each group).
Sucrose or maltose, as well as the inhibitors (compound 4 and
acarbose), was dissolved in 0.5% sodium carboxymethyl cellulose
(CMC–Na) solution. Compound 4 was tested at dose of
25 mg/kg, whereas acarbose was evaluated at dose of 50 mg/kg
of body weight (BW). Mice were fasted 16 h and then
intragastrically (i.g.) administrated the inhibitors, 15 min later,
2 g/kg BW of sucrose or 2 g/kg BW of maltose solution was given
i.g. to the animals. Blood samples were taken from the tail vein at
0, 30, 60, and 120 min after sucrose or maltose loading, and blood
glucose was measured with Accu-Chek Active glucometer
(Roche, Germany). Area under the curve (AUC) over
0–120 min was calculated by the trapezoidal method. All
animals were cared under the frame of the China Council on
Animal Care and all procedures were approved by the Health
Sciences Animal Welfare Committee of Zhoukou Normal
University.

RESULTS AND DISCUSSION

Isolation and Structure Determination of
Aspulvinones
The mutant ASM-1 was obtained with different colonial
morphologies with the parent strain ML-44 (Supplementary
Figure S1), through treatment of ML-44 spores with 2% (v/v)
DES under ultrasonic assistance for 1 h, and its EtOAc extract
HPLC profile showed a series of chromatographic peaks of newly
produced secondary metabolites with unique UV absorption
spectra comparing to the wild strain ML-44 (Supplementary
Figure S2). This mutant was deposited at the China General
Microbiological Culture Collection Center under the accession
number CGMCC No. 22417. In order to clarify the newly
produced secondary metabolites, large scale fermentation of

mutant ASM-1 and HPLC-guided separation were performed
(Supplementary Figure S3). The EtOAc extract of the mutant
ASM-1 was separated by silica gel column chromatography and
repeated preparative reverse phase HPLC separation under
HPLC-PDAD-UV monitoring, resulted in the isolation of
aspulvinones 1–6. Compound 4 was determined to be
aspulvinone H by comparison its MS and NMR data with that
of literature (Nagia et al., 2012). Compound 6 was identified as
aspulvinone R, which was recently isolated from a marine
sponge-associated fungus A. flavipes KUFA1152 as the first
example of triprenylated aspulvinones (Machado et al., 2021).

Compound 1 was obtained as yellow solid. The molecular
formula was determined to be C32H34O5 on the basis of a
HRESIMS peak at m/z 499.2480 [M + H]+ (calcd. 499.2484),
indicating 16 degrees of unsaturation. The illustration of 13C
NMR, DEPT, and HSQC spectra came up with 32 resonances,
which were indicative of one ketone carbonyl, twelve sp2 and one
sp3 quaternary carbons, ten sp2 methine, two sp3 methylene, six
methyl groups in 1. The remaining unsaturation was thus
attributed to four rings. The 1H NMR spectroscopic data of 1
(Table 1) showed a series of protons signals, and were affiliated to
relevant carbons via HSQC analysis. The detailed 1D (Table 1)
and 2D (Figure 2) NMR analyses of 1 indicated the same
pulvinone nucleus as 4 and 6. The 1H NMR signals δ6.36 (d, J
� 9.7 Hz, H-18) and δ5.68 (d, J � 9.7 Hz, H-19) indicated that one
of the prenyl occurred cyclization, which was verified by the
HMBC correlations between the above two protons with related
carbons (Figure 2). In addition, there were two linear prenyl
groups (C-1′ to C-5′, and C-1″ to C-5″) in the molecular of 1
according the NMR data analysis. Thus, compound 1 should also
be a triprenylated pulvinone. Subsequently, the HMBC
correlations between H-18 to C-13 and C-15, H-1″ to C-17
and H-2″ to C-16, H-19 to C-14, H-13 and H-17 to C-2,
indicated that a 1,3,4,5-tetrasubstituted benzene ring bound to
the γ-butenolide core directly at C-2. Thus, the another one
prenylated benzene ring linked to the core via C-5, which was also
confirmed by relative HMBC signals. At this stage, the planar
structure has been constructed as 1. The relatively small chemical
shifts of C-2 (δC 102.2) and C-5 (δC 109.5) established the Z
geometry of the Δ4,5-double bond (Campbell et al., 1985), which
was the same as that of compound 6. Since 1 has never been
reported previously, it was named as aspulvinone V in the order
of the names for this series of prenylated pulvinones from A.
terreus.

Compound 2 was obtained as yellow solid. Its molecular
formula was established as C27H28O6 on the basis of a
HRESIMS peak at m/z 449.1963 [M + H]+ (calcd. 449.1964),
which indicated 14 degrees of unsaturation and 16 amu more
than compound 4 (C27H28O5). The

1H and 13C NMR data
(Table 1) indicated that the structure of 2 is very similar to
compound 4. The most significant differences in the NMR data
exist in the high-field shift effect of the signal at C-1′ (δH 3.20,
3.15, δC 31.2), and the presence of a O-substituted sp3 methine
instead of a sp2methine at C-2′ (δH 4.59, δC 91.1), a O-substituted
sp3 quaternary carbon instead of a sp2 one at C-3′ (δC 72.4). These
data indicated that compound 2 bears a dihydrofuran ring fused
to the benzene ring, as opposed to the linear prenyl present in
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compound 4. This structure was further supported by COSY,
HSQC, and HMBC spectra. COSY correlations between H2-1′
andH-2′, as well supported the presence of one dihydrofuran ring
systems. HMBC correlation from H2-1′ to C-8 and C-9, H-10 to
C-8, H-7, and H-11 to C-9 confirmed the presence of a
dihydrofuran fused to one of the benzene rings. Furthermore,
HMBC signals of H-5 to C-7 and C-11 indicated the
dihydrofuran fused benzene ring was linked to C-5.

Compound 3 was isolated as yellow solid with the same
molecular formula as 2 base on HRESIMS peak at m/z
449.1958 [M + H]+ (calcd. 449.1964). The 1H and 13C NMR
data of 3 (Table 1) were similar to those of 2 except for the high-
field shift effect of the signal at C-18 (δH 2.81, δC 23.4), the
presence of a sp3 methylene instead of a sp2 methine at C-19 (δH
1.82, δC 33.8), and a O-substituted sp3 quaternary carbon instead
of a sp2 one at C-20 (δC 75.5). These data indicated that
compound 3 bears a tetrahydropyran ring fused to the
benzene ring, instead of the linear prenyl present in
compound 2. The location of furan ring and pyran ring were
confirmed through HMBC analysis (Figure 2). In addition, both
2 and 3 have the Z geometry for the Δ4,5-double bond according
to 13C NMR data. The transisomer of compound 3 (trans-3) has
been reported previously, which was determined the absolute
configuration as R by the ECD calculations (Sun et al., 2018). The
CD spectra of 2 and 3 was tested, and the negative cotton effect at
350 nm and general spectrum shapes were both consistent with
trans-3 (Figure 2), indicating the R configuration at C-2′ for
compounds 2 and 3.

By illustration of 1D and 2D NMR data, compound 5 was
deduced to have the same structure with aspulvinone J-CR,
whereas there exists considerable discrepancy between our 13C
NMR data and that of the literature (Cruz et al., 2011), especially
for C2–C5 and C12. Taking consideration of the relatively strong

acidity of 4-OH (predicted pKa value of 4.50 ± 1.00 calculated by
Advanced Chemistry Development (ACD/Labs) Software
V11.02), it is presumed that pulvinone derivatives may be
dissociative in relative high pH solutions, which would cause
changes in NMR and UV spectral characteristics. Based on this
assumption, 5 sodium was prepared by adding NaHCO3 aqueous
solution to 5methanol solution in molar ratio 1:1. The 13C NMR
data of 5 sodium exhibited significant difference with 5
(Figure 3A), while it is identical with the literature data.
Therefore, the NMR data for aspulvinone J-CR and other
analogs in the literature should be for their sodium. In
addition, the UV spectra of the 5 and its sodium represented
different maximum absorption peaks both in number and
intensity (Figure 3B), 5 has one absorption peak at 376 nm,
while 5 sodium exhibited two absorption peaks at 327 and
376 nm, and the latter with a relatively low absorbance exists
as a shoulder peak of the former.

α-Glucosidase Inhibitory Activities
All compounds 1–6 showed potent inhibitions towards
α-glucosidase with IC50s ranging from 2.2 to 44.3 μM
(Table 2). It was reported that the transisomer of compound 3
inhibited α-glucosidase with IC50 of 24.8 μM (Sun et al., 2018).
The inhibitory potencies varied with the modification of benzene
rings. In term of diprenylated aspulvinones, compound 4 (IC50

4.6 μM) is appropriate ten times more potent than 2, 3 and its
transisomer, and 5, indicating that the linear prenyl is significant
to the α-glucosidase inhibitory activity, while the configuration of
Δ4,5-double bond has little influence. However, Aspulvinone E
(IC50 2.70 μM) was reported with higher inhibitory activity than
its transisomer, isoaspulvinone E (IC50 8.92 μM), and the Δ4,5-
double bond stereochemistry significantly affected the inhibition
activity to α-glucosidase for non-prenylated pulvinones (Dewi

FIGURE 2 | Key COSY and HMBC correlations of compounds 1–3, and CD spectra of compound 2, 3, and 5.
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et al., 2014). Therefore, we presumed that non-prenylated and
prenylated pulvinones had different binding modes with
α-glucosidase. On the other hand, both of compound 1 (IC50

2.2 μM) and 4 were more potent than 6 (IC50 10.8 μM). It was
speculated that the fork-like structure of two linear prenyl groups
has steric hindrance effect hampering the binding of 6 with
enzyme.

Compounds 1 and 4, the most potent inhibitors, were selected
for enzyme kinetic studies to elucidate the inhibition mode. In the
Lineweaver–Burk double-reciprocal plots, as shown in Figure 4,
the plots of 1/V versus 1/[S] give a group of straight lines with
different slopes that intersect at the second quadrant for both of 1
and 4, suggesting that both of them are mixed-type inhibitors
(Dan et al., 2019). Therefore, both compounds could bind to free
enzyme (EI), and interfere with the formation of the
α-glucosidase-pNPG (ES) intermediate through forming an
α-glucosidase-pNPG-inhibitor (ESI) complex (Wikul et al.,

2012; Wu et al., 2014). The inhibition constant for the
inhibitor binding with free enzyme (KI) was determined by a
plot of the slope (Km/Vm) versus the inhibitor concentration, and
the inhibition constant for the inhibitor binding with
enzyme–substrate complex (KIS) was obtained from the
vertical intercept (1/Vm) versus the inhibitor concentration
(Supplementary Figure S5) (Sheng et al., 2018). The results
are shown in Table 2: the KI values of both 1 and 4 are smaller
than their KIS values, which suggest that them have higher affinity
with the free enzyme than with the enzyme-substrate complex.

Fluorescence Quenching Mechanism and
Binding Characterizations
Subsequently, the interaction between the inhibitors and
α-glucosidase was investigated by fluorescence spectroscopy
and circular dichroism (CD) spectroscopy. As shown in

FIGURE 3 | Spectral comparisons between 5 and 5 sodium. (A) 13C-NMR data differences; (B) UV spectra of 5 and 5 sodium.

TABLE 2 | α-Glucosidase inhibitory activity of aspulvinones 1–6.

Compounds IC50 (µM)a Ki (µM)b KI (µM) KIS (µM) Inhibition mode

1 2.2 ± 0.4 6.60 3.15 8.23 mixed-type
2 32.0 ± 5.8 NTc NT NT NT
3 38.6 ± 5.2 NT NT NT NT
4 4.6 ± 1.3 6.58 4.70 6.62 mixed-type
5 44.3 ± 8.9 NT NT NT NT
6 10.8 ± 2.3 NT NT NT NT
Acarbosed 17.2 ± 1.8 NT NT NT NT

aSample concentration which led to 50% enzyme activity loss.
bKi is the inhibition constant.
cNT is not tested.
dAcarbose is used as a positive control.
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Figure 4, with the increased concentrations of 1 and 4, the
intrinsic fluorescence intensity of α-glucosidase decreased
gradually, indicating that the inhibitors interacted with
α-glucosidase and then quenched its intrinsic fluorescence.
Comparing to the maximum scattering collision quenching
constant of the biomacromolecule (2 × 1010 L/mol/s), the
quenching rate constants (Kq) were much larger,
demonstrating that the fluorescence quenching process was
static quenching predominantly (Table 3). The number of
binding sites (n) were all close to one at the three
incubation temperatures, indicating that both 1 and 4
interact with α-glucosidase at only one binding site. The
binding constants (Ka) at the three temperatures were in the
order of 105 and 104 L/mol for 1 and 4, respectively, indicating
that there were high binding affinities existed in the complex of
α-glucosidase with the both compounds, especially as for 1. In
addition, the thermodynamic parameters (ΔS, ΔH and ΔG)
were calculated, showing that ΔH and ΔS were positive, while
ΔG was negative (Table 3). The binding process could be
defined to be thermodynamically favorable and spontaneous,
which was driven mainly by a hydrophobic force (Ross and
Subramanian, 1981). In the CD spectroscopy analysis, after the

addition of 25 and 50 mM of 1 or 4, the absorption of the two
negative peaks at 209 and 222 nm decreased, which
demonstrated a loss of the α-helix structure (Figure 4) (Xu
et al., 2019). In addition, with an increase in molar ratios of
inhibitors to α-glucosidase (from 20:1 to 40:1), the loss of the
α-helix structure increased, associating with the decreased
α-glucosidase activity. The transformation from the α-helix
to other conformations in the presence of inhibitors indicated a
partial unfolding of the α-glucosidase structure, causing
alterations of the secondary structure of α-glucosidase, and
thereby some hydrogen bonding networks might be destroyed.
These alterations may prevent the binding of the substrate to
α-glucosidase or hamper the formation of an active center,
eventually resulted in the dysfunction of the enzyme (Xu et al.,
2019).

Molecular Docking
Since there is no crystal structure for the commercially available
Saccharomyces cerevisiae α-glucosidase for preparing the
protein for docking, the constructed homology models based
on the isomaltases or itself were often used to perform the
molecular docking (Xu et al., 2019; Khosravi et al., 2020). In this

FIGURE 4 | Inhibition mechanism of 1 and 4 against α-glucosidase. Lineweaver–Burk plot of 1 (A) and 4 (D). Fluorescence spectra of α-glucosidase with 1 (B) and
4 (E). CD spectra of α-glucosidase with 1 (C) and 4 (F).

TABLE 3 | Quenching constants (Ksv), binding constants (Ka), number of binding sites (n), and thermodynamic parameters for the α-glucosidase-inhibitor system.

Inhibitor T (oC) Ksv (× 104 L/mol)/Kq

(× 1012 L/mol/s)
Ka (× 104 L/mol) n ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J/mol/K)

1 20 5.35 11.0 1.04 −14.8 31.2 148.2
31 7.87 30.6 1.12 −13.9
37 5.81 56.0 1.23 −12.3

4 20 5.69 2.9 0.92 −14.0 60.4 240.1
31 5.53 7.9 1.04 −12.5
37 6.02 23.2 1.13 −9.9
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study, the crystal structure of isomaltase from Saccharomyces
cerevisiae (PDB ID: 3A4A; Resolution 1.6 Å) was adopted for
silico docking of to confirm the interaction. Compounds 1 and 4
exhibits a strong binding affinity with the protein by the low
binding energy of −10.9 and −9.6 kcal/mol, respectively. As
shown in Figure 5, both compounds could bond at the gate
of the hydrophobic pocket, and partially inserted into the
binding pocket. In this bonding mode, the ligands could
hamper the substrate loading into the catalytic pocket in EI
complex formation, or cause structural modification of
α-glucosidase leading to the dysfunction in ESI complex
formation (Kim et al., 2005). According to the molecular
docking results, the binding pocket involves the amino acid
residues Asp307, Pro312, Tyr158, Thr310, Arg315, and Lys156
for the both inhibitors, and additional Phe303, Phe314 and
Val319 for 1, whereas additional Val308, Ser311, and His280 for
4. There were the hydrogen bond interactions between the
carbonyl group of 1 with Thr310 and Arg315 (the distance:
2.26 and 2.62 Å), and the rest interactions were all hydrophobic
effect including alkyl, Pi-alkyl and Pi-anion (Figure 5C). In
comparison, there are relatively more hydrogen bonds and less
hydrophobic interaction for 4 (Figure 5D), indicating the
different binding force compositions between the two
inhibitors.

Effect of Compound 4 on Postprandial
Hyperglycemia in vivo
The intestinal α-glucosidase inhibitory activity in vivo was
evaluated by oral sucrose and oral maltose tolerance tests in
female C57BL/6J mice. Acarbose (50 mg/kg BW) was used as a
positive control, and compound 4 was chosen for its potent
inhibitory activity and high yield. In the oral sucrose tolerance
test (Figure 6A), after oral administration of sucrose (2 g/kg of
BW), the blood glucose level rapidly increased from 5.00 ±
0.07 mM to a maximum of 14.24 ± 0.45 mM in 30 min, and
then recovered to the pretreatment level at 120 min. In the
treatment group, 4 significantly suppressed the blood glucose
rise at 30 and 60 min comparing to that of the negative control
group, and led to 13.2% decrease of the AUC at a dose of
25 mg/kg BW comparable to that of acarbose (11.8% decrease)
at dose of 50 mg/kg BW (Figure 6B). Similarly, in the sucrose
tolerance test, compound 4 treatment resulted in a significant
decrease in the postprandial blood glucose peak versus the
negative control group (Figure 6C) and he AUC for
postprandial plasma glucose was reduced by 19.7% in 2 h
after 4 administration, which was more potent than acarbose
(16.2%) (Figure 6D). These results strongly confirmed that 4
could alleviate the postprandial hyperglycemia through
inhibiting intestinal α-glucosidase. Therefore, natural

FIGURE 5 | Docking binding model of inhibitors with Saccharomyces cerevisiae isomaltase (3A4A). Predicted dock conformation of the isomaltase to inhibitors 1
(A) and 4 (C); 2D interaction diagrams between 3A4A and inhibitors 1 (B) and 4 (D).
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aspulvinones can be regarded as potential candidate for
hpyerglycemic agents.

CONCLUSION

In summary, we conducted the DES mutagenesis on the
marine-derived A. terreus ML-44, and a mutant strain
ASM-1 was obtained by morphological and HPLC
analyses. Six aspulvinone secondary metabolites were
isolated from the ASM-1 culture, including three new
ones. Their structures including the absolute
configurations were elucidated by various spectroscopic
methods and ECD comparison. All compounds were
evaluated for α-glucosidase inhibitory activity with
acarbose as positive control. Among them, compounds 1
and 4 exhibited potent α-glucosidase inhibitory activities
with IC50 values of 2.2 and 4.6 µM in mixed-type manners.
The thermodynamic and molecular docking studies
recognized the interaction between inhibitors and
α-glucosidase was spontaneous exothermic reaction driven
mainly by hydrophobic forces. Furthermore, 4 significantly
suppressed the increases in postprandial blood glucose levels
in the C57BL/6J mice more potently than acarbose at a
smaller dosage. The results suggested that aspulvinones
could be promising candidates for further pharmacologic
research. In addition, the mechanism of the mutagenesis of
the strain ASM-1 from strain ML-44 deserve further
investigation through genome and transcriptome analyses,
which may make contribution to understanding the
metabolic regulation of aspulvinones biosynthesis.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by theHealth Sciences
Animal Welfare Committee of Zhoukou Normal University.

AUTHOR CONTRIBUTIONS

CW and XC performed isolation, structure determination and
bioassays of the compounds and wrote the manuscript. LS and JL
performed the mutation and fermentation of the fungus,
extraction of the culture broths and isolation of the
compounds. FL, MS, and YZ. performed the bioassays. XH
carried out spectroscopic tests. CT illustrated the inhibitory
activity data and revised the manuscript. MS and XL designed
the study and revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

FUNDING

This research was funded by the National Natural Science
Foundation of China (No. 81803425), China Postdoctoral
Science Foundation (No. 2019M662552).

FIGURE 6 | Effects of acarbose and 4 on postprandial blood glucose levels in female C57BL/6J mice. (A) Blood glucose concentrations after oral administration of
4 and sucrose. (B) Area under the curve (AUC) after oral administration of 4 and sucrose for 2 h. (C) Blood glucose concentrations after an oral administration of 4 and
maltose. (D) Area under the curve (AUC) after oral administration of 4 and maltose for 2 h. Each value represents the mean standard deviation (n � 8). Asterisks indicate a
significant difference (*p < 0.05, **p < 0.01, and ***p < 0.001) compared with the control group.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 73607010

Wu et al. Aspulvinones Suppress Postprandial Hyperglycemia

37

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


ACKNOWLEDGMENTS

We thank Jinwei Ren from Institute of Microbiology, Chinese
Academy of Sciences, for his professional technological support
on NMR and HRESIMS tests.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.736070/
full#supplementary-material

REFERENCES

Calcutt, N. A., Cooper, M. E., Kern, T. S., and Schmidt, A. M. (2009). Therapies for
Hyperglycaemia-Induced Diabetic Complications: from Animal Models to
Clinical Trials. Nat. Rev. Drug Discov. 8, 417–430. doi:10.1038/nrd2476

Campbell, A. C., Maidment, M. S., Pick, J. H., and Stevenson, D. F. M. (1985).
Synthesis of (E)- and (Z)-pulvinones. J. Chem. Soc. Perkin Trans. 1 1,
1567–1576. doi:10.1039/P19850001567

Cruz, P. G., Auld, D. S., Schultz, P. J., Lovell, S., Battaile, K. P., MacArthur, R., et al.
(2011). Titration-based Screening for Evaluation of Natural Product Extracts:
Identification of an Aspulvinone Family of Luciferase Inhibitors. Chem. Biol. 18,
1442–1452. doi:10.1016/j.chembiol.2011.08.011

Dan, W.-J., Zhang, Q., Zhang, F., Wang, W.-W., and Gao, J.-M. (2019). Benzonate
Derivatives of Acetophenone as Potent α-glucosidase Inhibitors: Synthesis,
Structure-Activity Relationship and Mechanism. J. Enzyme Inhib. Med. Chem.
34, 937–945. doi:10.1080/14756366.2019.1604519

Deng, Y.-T., Lin-Shiau, S.-Y., Shyur, L.-F., and Lin, J.-K. (2015). Pu-erh tea
Polysaccharides Decrease Blood Sugar by Inhibition of α-glucosidase Activity
In Vitro and in Mice. Food Funct. 6, 1539–1546. doi:10.1039/c4fo01025f

Dewi, R. T., Tachibana, S., Fajriah, S., and Hanafi, M. (2014). α-Glucosidase
Inhibitor Compounds from Aspergillus terreus RCC1 and Their Antioxidant
Activity. Med. Chem. Res. 24, 737–743. doi:10.1007/s00044-014-1164-0

Fang, S.-M., Wu, C.-J., Li, C.-W., and Cui, C.-B. (2014). A Practical Strategy to
Discover New Antitumor Compounds by Activating Silent Metabolite
Production in Fungi by Diethyl Sulphate Mutagenesis. Mar. Drugs 12,
1788–1814. doi:10.3390/md12041788

Gao, H., Guo, W., Wang, Q., Zhang, L., Zhu, M., Zhu, T., et al. (2013).
Aspulvinones from a Mangrove Rhizosphere Soil-Derived Fungus
Aspergillus terreus Gwq-48 with Anti-influenza A Viral (H1N1) Activity.
Bioorg. Med. Chem. Lett. 23, 1776–1778. doi:10.1016/j.bmcl.2013.01.051

Ghosh, A. K., Reddy, B. S., Yen, Y.-C., Cárdenas, E. L., Rao, K. V., Downs, D., et al. (2016).
Design of Potent andHighly Selective Inhibitors forHuman β-secretase 2 (Memapsin
1), a Target for Type 2 Diabetes. Chem. Sci. 7, 3117–3122. doi:10.1039/c5sc03718b

Hossain, U., Das, A. K., Ghosh, S., and Sil, P. C. (2020). An Overview on the Role of
Bioactive α-glucosidase Inhibitors in Ameliorating Diabetic Complications.
Food Chem. Toxicol. 145, 111738. doi:10.1016/j.fct.2020.111738

Jenis, J., Baiseitova, A., Yoon, S. H., Park, C., Kim, J. Y., Li, Z. P., et al. (2019).
Competitive α-glucosidase Inhibitors, Dihydrobenzoxanthones, from the Barks
of Artocarpus Elasticus. J. Enzyme Inhib. Med. Chem. 34, 1623–1632.
doi:10.1080/14756366.2019.1660653

Kharroubi, A. T., and Darwish, H. M. (2015). Diabetes Mellitus: the Epidemic of
the century. Wjd 6, 850–867. doi:10.4239/wjd.v6.i6.850

Khosravi, A., Vaezi, G., Hojati, V., and Abdi, K. (2020). Study on the Interaction of
Triaryl-Dihydro-1,2,4-Oxadiazoles with α-glucosidase. DARU J. Pharm. Sci. 28,
109–117. doi:10.1007/s40199-019-00322-y

Kim, Y.-M., Jeong, Y.-K., Wang, M.-H., Lee, W.-Y., and Rhee, H.-I. (2005).
Inhibitory Effect of pine Extract on α-glucosidase Activity and Postprandial
Hyperglycemia. Nutrition 21, 756–761. doi:10.1016/j.nut.2004.10.014

Machado, F. P., Kumla, D., PereiraSousa, J. A. E., Sousa, E., Dethoup, T., Freitas-
Silva, J., et al. (2021). Prenylated Phenylbutyrolactones from Cultures of a
marine Sponge-Associated Fungus Aspergillus flavipes KUFA1152.
Phytochemistry 185, 112709. doi:10.1016/j.phytochem.2021.112709

Nagia, M. M., El-Metwally, M., Shaaban, M., El-Zalabani, S. M., and Hanna, A. G.
(2012). Four Butyrolactones and Diverse Bioactive Secondary Metabolites from
Terrestrial Aspergillus flavipes MM2: Isolation and Structure Determination.
Org. Med. Chem. Lett. 2, 9. doi:10.1186/2191-2858-2-9

Ross, P. D., and Subramanian, S. (1981). Thermodynamics of Protein Association
Reactions: Forces Contributing to Stability. Biochemistry 20, 3096–3102.
doi:10.1021/bi00514a017

Sheng, Z., Ge, S., Xu, X., Zhang, Y., Wu, P., Zhang, K., et al. (2018). Correction:
Design, Synthesis and Evaluation of Cinnamic Acid Ester Derivatives as
Mushroom Tyrosinase Inhibitors. Med. Chem. Commun. 9, 897.
doi:10.1039/C8MD00099A10.1039/c8md90024h

Sun, K., Zhu, G., Hao, J., Wang, Y., and Zhu,W. (2018). Chemical-epigeneticMethod
to Enhance the Chemodiversity of the marine Algicolous Fungus, Aspergillus
terreus OUCMDZ-2739. Tetrahedron 74, 83–87. doi:10.1016/j.tet.2017.11.039

Sun, W., Luan, S., Qi, C., Tong, Q., Yan, S., Li, H., et al. (2019). Aspulvinone O, a
Natural Inhibitor of GOT1 Suppresses Pancreatic Ductal Adenocarcinoma
Cells Growth by Interfering Glutamine Metabolism. Cell Commun Signal 17,
111. doi:10.1186/s12964-019-0425-4

Taylor, S. I., Yazdi, Z. S., and Beitelshees, A. L. (2021). Pharmacological Treatment
of Hyperglycemia in Type 2 Diabetes. J. Clin. Invest. 131, e142243. doi:10.1172/
JCI142243

Wang, C., Guo, L., Hao, J., Wang, L., and Zhu, W. (2016). α-Glucosidase Inhibitors
from the Marine-Derived Fungus Aspergillus flavipes HN4-13. J. Nat. Prod. 79,
2977–2981. doi:10.1021/acs.jnatprod.6b00766

Wikul, A., Damsud, T., Kataoka, K., and Phuwapraisirisan, P. (2012).
(+)-Pinoresinol Is a Putative Hypoglycemic Agent in Defatted Sesame
(Sesamum indicum) Seeds Though Inhibiting α-glucosidase. Bioorg. Med.
Chem. Lett. 22, 5215–5217. doi:10.1016/j.bmcl.2012.06.068

Wu, C.-J., Cui, X., Xiong, B., Yang, M.-S., Zhang, Y.-X., and Liu, X.-M. (2019).
Terretonin D1, a New Meroterpenoid from marine-derived Aspergillus
terreus ML-44. Nat. Product. Res. 33, 2262–2265. doi:10.1080/
14786419.2018.1493583

Wu, P.-P., Zhang, K., Lu, Y.-J., He, P., and Zhao, S.-Q. (2014). In Vitro and In Vivo
Evaluation of the Antidiabetic Activity of Ursolic Acid Derivatives. Eur. J. Med.
Chem. 80, 502–508. doi:10.1016/j.ejmech.2014.04.073

Xu, Y., Xie, L., Xie, J., Liu, Y., and Chen, W. (2019). Pelargonidin-3-O-rutinoside as
a Novel α-glucosidase Inhibitor for Improving Postprandial Hyperglycemia.
Chem. Commun. 55, 39–42. doi:10.1039/c8cc07985d

Zhang, L.-H., Feng, B.-M., Zhao, Y.-Q., Sun, Y., Liu, B., Liu, F., et al. (2016).
Polyketide Butenolide, Diphenyl Ether, and Benzophenone Derivatives from
the Fungus Aspergillus flavipes PJ03-11. Bioorg. Med. Chem. Lett. 26, 346–350.
doi:10.1016/j.bmcl.2015.12.009

Zhang, P., Li, X.-M., Wang, J.-N., Li, X., and Wang, B.-G. (2015). New Butenolide
Derivatives from the marine-derived Fungus Paecilomyces variotii with DPPH
Radical Scavenging Activity. Phytochemistry Lett. 11, 85–88. doi:10.1016/
j.phytol.2014.11.014

Zhang, X., Li, G., Wu, D., Yu, Y., Hu, N., Wang, H., et al. (2020). Emerging
Strategies for the Activity Assay and Inhibitor Screening of Alpha-Glucosidase.
Food Funct. 11, 66–82. doi:10.1039/c9fo01590f

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wu, Cui, Sun, Lu, Li, Song, Zhang, Hao, Tian, Song and Liu. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 73607011

Wu et al. Aspulvinones Suppress Postprandial Hyperglycemia

38

https://www.frontiersin.org/articles/10.3389/fchem.2021.736070/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.736070/full#supplementary-material
https://doi.org/10.1038/nrd2476
https://doi.org/10.1039/P19850001567
https://doi.org/10.1016/j.chembiol.2011.08.011
https://doi.org/10.1080/14756366.2019.1604519
https://doi.org/10.1039/c4fo01025f
https://doi.org/10.1007/s00044-014-1164-0
https://doi.org/10.3390/md12041788
https://doi.org/10.1016/j.bmcl.2013.01.051
https://doi.org/10.1039/c5sc03718b
https://doi.org/10.1016/j.fct.2020.111738
https://doi.org/10.1080/14756366.2019.1660653
https://doi.org/10.4239/wjd.v6.i6.850
https://doi.org/10.1007/s40199-019-00322-y
https://doi.org/10.1016/j.nut.2004.10.014
https://doi.org/10.1016/j.phytochem.2021.112709
https://doi.org/10.1186/2191-2858-2-9
https://doi.org/10.1021/bi00514a017
https://doi.org/10.1039/C8MD00099A10.1039/c8md90024h
https://doi.org/10.1016/j.tet.2017.11.039
https://doi.org/10.1186/s12964-019-0425-4
https://doi.org/10.1172/JCI142243
https://doi.org/10.1172/JCI142243
https://doi.org/10.1021/acs.jnatprod.6b00766
https://doi.org/10.1016/j.bmcl.2012.06.068
https://doi.org/10.1080/14786419.2018.1493583
https://doi.org/10.1080/14786419.2018.1493583
https://doi.org/10.1016/j.ejmech.2014.04.073
https://doi.org/10.1039/c8cc07985d
https://doi.org/10.1016/j.bmcl.2015.12.009
https://doi.org/10.1016/j.phytol.2014.11.014
https://doi.org/10.1016/j.phytol.2014.11.014
https://doi.org/10.1039/c9fo01590f
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cyclohexanone and Phenolic Acid
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Chemical investigation of an endophytic fungus Diaporthe foeniculina SCBG-15, led to the
isolation of eight new cyclohexanone derivatives, foeniculins A–H (1–8) and three new
phenolic acid derivatives, foeniculins I–K (9–11). Their structures were extensively
established on the basis of 1H and 13C NMR spectra together with COSY, HSQC,
HMBC, and NOESY experiments. The absolute configurations were confirmed by
quantum chemical ECD calculations and single-crystal X-ray diffractions. Moreover, the
in vitro cytotoxic and antibacterial activities of isolated compounds 1–11 were also
evaluated.

Keywords: Diaporthe foeniculina, Leptospermum brachyandrum, foeniculins A-K, cytotoxic activity, antibacterial
activity

INTRODUCTION

Leptospermum brachyandrum belongs to the genus Leptospermum, it is an important member in the
plant family Myrtaceae (Beardsell et al., 1993; Brophy et al., 1999). It mainly occurred in Australia
and had been introduced into China a few decades ago. Nowadays, this plant is widely planted in the
southern of China due to its ornamental and medicinal properties. Our previous phytochemical
works proved that the chemical constitutes of L. brachyandrum were ploymethylated meroterpenoid
and phloroglucinol derivatives (Zou et al., 2018). In recent years, our group focused on bioactive
meaningful natural products from the plants and endophytic fungi towards the pharmaceutical drug
discovery (Liu et al., 2016a; Liu et al., 2016b; Liu et al., 2016c; Xiang et al., 2017; Liu et al., 2018). As a
part of our ongoing research effort to discover biologically active and structurally unique natural
products (Liu et al., 2016d; Liu et al., 2016e; Li et al., 2017), theDiaporthe foeniculinaan SCBG-15, an
endophytic strain derived from L. brachyandrum, which displayed a variety of secondary
metabolisms with potentially structural diversity during the HPLC and TLC analyses, was
selected as the target for the further chemical investigation.

In the latest years, plenty of new privileged natural compounds with highly structural diversities
were isolated from the genus Diaporthe, and which exhibited significant biological activities (Zhu
et al., 2010; Zang et al., 2012; Li et al., 2015; Mandavid et al., 2015; Cui et al., 2017; Cui et al., 2018; Luo
et al., 2018; Gao et al., 2020). In this study, an extensively chemical constituent research on EtOAc
extract of the fungus SCBG-15 using sequential column chromatography over silica gel, RP-C18

silica, and Sephadex LH-20 along with preparative and semipreparative HPLC resulted in the
discovery of eight new cyclohexanone derivatives, foeniculins A–H (1–8), and three phenolic acid
derivatives, foeniculins I–K (9–11). All of the novel compounds 1–11 possessed polymethylated
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skeleton (Figure 1). Herein, the details of isolation, structural
elucidation by NMR spectral interpretation, single-crystal X-ray
diffraction, and biological evaluation of these isolates are
described.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were recorded using an Anton Paar MCP-500
spectropolarimeter (Anton Paar, Graz, Austria). UV spectra were
obtained by a Shimadzu UV-2600 spectrophotometer (Shimadzu,
Kyoto, Japan). ECD spectra were measured with an Applied
Photophysis Chirascan. IR data were measured on a Shimadzu
IR Affinity-1 spectrometer (Shimadzu, Kyoto, Japan). 1D and 2D
NMR spectra were collected on a Bruker Avance-500
spectrometer with TMS as an internal standard (Bruker,
Fällanden, Switzerland). HRESIMS spectra were acquired with
a Thermo MAT95XP high resolution mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). Silica gel
(200–300 mesh, Qingdao Marine Chemical Inc. Qingdao,
China) was used for column chromatography. TLC analysis
was carried out on silica gel plate (Merck KGaA, Darmstadt,
Germany). A Hitachi Primaide [Hitachi Instruments (Dalian)
Co., Ltd.] equipped with a diode array detector (DAD) using a
semi-preparative YMC ODS C18 column (20 × 250 mm, 5 μm)
was used for semi-preparative HPLC separation. All solvents were
analytical grade (Guangzhou Chemical Regents Company, Ltd.
Guangzhou, China).

Fungal Material
The endophytic fungal strain D. foeniculina SCBG-15 was
isolated from the plant of L. brachyandrum, which was
collected at South China Botanical Garden (SCBG), Chinese
Academy of Sciences, China, in September 2016. The strain
was identified by sequence analysis of rDNA ITS (internal
transcribed spacer) region. The sequence of the ITS region of
theD. foeniculina has been submitted to GenBank (Accession No.
MN788609). The strain is preserved at the Laboratory of Natural
Product Medicinal Chemistry, SCBG.

Extraction and Isolation
The fungus D. foeniculina was fermented on an autoclaved rice
solid medium (15 × 3 L Erlenmeyer flasks, each containing 300 g
of grains and 360 ml of distilled water) for 30 days at 28°C. After
cultivation, the mycelia and rice solid medium were extracted
with EtOAc for three times, and the crude extract (50 g) was
obtained. The crude extract was subjected to silica gel using
gradient elution with petroleum ether-EtOAc as eluent (v/v, 100:
1→50:50) and CH2Cl2-MeOH (v/v, 5:1→2:1). Then, they were
combined by TLC analysis to afford six main fractions (Fr.1-Fr.6).

Fr.5 (7.22 g) was applied to column chromatography over RP-
C18 silica gel, eluting with MeOH-H2O (v/v, 2:5→1:0) to give six
subfractions (Fr.5-1 to Fr.5-6). Fr.5-2 (1.94 g) was separated by
Sephadex LH-20 column chromatography and eluted with
CHCl3-MeOH (v/v, 1:1) to afford six subfractions (Fr.5-2-1 to
Fr.5-2-6). Fr.5-2-2 (1.23 g) was isolated by column
chromatography on silica gel and eluted with n-hexane-EtOAc
gradient (v/v, 4:1→1:5) to obtain six subfractions (Fr.5-2-2-1 to

FIGURE1 | Structures of compounds 1–11.
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Fr.5-2-2-6). Fr.5-2-2-5 (127.4 mg) was further purified by the
semi-preparative HPLC system with CH3CN-H2O (10:90) as
eluent to afford compounds 1 (3.0 mg, tR � 35.0 min), 2
(4.4 mg, tR � 15.7 min), and 3 (2.0 mg, tR � 21.6 min). Fr.5-2-1
(311.4 mg) was isolated by column chromatography on silica gel
and eluted with n-hexane-EtOAc gradient (v/v, 5:1→1:5) to get
three subfractions (Fr.5-2-1-1 to Fr.5-2-1-3). Fr.5-2-1-1
(208.8 mg) was subjected to semi-preparative HPLC with
CH3CN-H2O (v/v, 50:50) to give seven subfractions (Fr.5-2-1-
1-1 to Fr.5-2-1-1-7). Fr.5-2-1-1-6 (28.3 mg) was purified by semi-
preparative HPLC and washed with CH3CN-H2O (v/v, 35:65) to
afford compound 4 (3.0 mg, tR � 20.5 min). Fr.5-2-1-1-1
(23.1 mg) was purified by semi-preparative HPLC equipped
with a chiral column and washed with isopropanol-hexane
(30:70) to afford compounds 5 (1.0 mg, tR � 19.8 min), 6
(1.0 mg, tR � 18.5 min), 7 (0.8 mg, tR � 22.8 min), and 8
(1.3 mg, tR � 28.0 min). Fr.5-2-1-1-2 (40.2 mg) was purified by
semi-preparative HPLC and washed with MeOH-H2O (v/v, 75:
25) to afford compound 10 (3.0 mg, tR � 20.5 min).

Fr.4 (2.26 g) was isolated by column chromatography on silica
gel and eluted with n-hexane-EtOAc gradient (v/v, 30:1→1:1) to
get four subfractions (Fr.4-1 to Fr.4-4). Fr.4-2 (197.1 mg) was
separated by Sephadex LH-20 column chromatography and
eluted with CHCl3-MeOH (v/v, 1:1) to afford four
subfractions (Fr.4-2-1 to Fr.4-2-4). Fr.4-2-4 (13.8 mg) was
further purified by the semi-preparative HPLC system and
eluted with MeOH-H2O (70:30) to give compound 9 (3.2 mg,
tR � 19.4 min).

Fr.6 (19.0 g) was separated into four subfractions (Fr.6-1 to Fr.6-4)
on ODS column chromatography with MeOH-H2O (v/v, 3:10→4:1).
Fr.6-1 (2.79 g) was loaded onto Sephadex LH-20 column
chromatography and eluted with CHCl3-MeOH (v/v, 1:1) to give
four subfractions (Fr.6-1-1 to Fr.6-1-4). Fr.6-1-2 (643.0mg) was
isolated by column chromatography on silica gel and eluted with
CH2Cl2-MeOH (v/v, 50:1→1:5) to get seven subfractions (Fr.6-1-2-1
to Fr.6-1-2-7). Fr.6-1-2-4 (311.0mg) was separated by semi-
preparative HPLC with CH3CN-H2O (v/v, 10:90) and then
repeatedly purified by semi-preparative HPLC with CH3CN-H2O
(v/v, 2: 98) to afford compound 11 (5.4mg, tR � 8.7min).

Foeniculin A (1): colorless needle crystals (α)20D –12.4 (c 0.1,
MeOH); UV (MeOH): λmax (log ε): 259 (2.77), 202 (2.41) nm; IR
(KBr): 3,381, 2,996, 2,905, 2,837, 1,616, 1,559, 1,456, 1,385, 1,308,
1,229, 1,206, 1,098, 1,024, 695, 758, 733, 667, 596, 556 cm−1;
HRESIMS: m/z 227.1274 (M + H)+ (calcd for C12H19O4,
227.1278). 1H (500 MHz) and 13C (125 MHz) NMR data, see
Tables 1 and 2.

Foeniculin B (2): colorless needle crystals; m. p. 120–121°C (α)
20
D + 8.2 (c 0.1, MeOH); UV (MeOH): λmax (log ε): 267 (3.28) nm;

IR (KBr): 3,370, 2,976, 2,932, 2,884, 1,717, 1,614, 1,381, 1,337,
1,242, 1,217, 1,146, 1,105, 1,026, 978, 874, 773, 739, 689, 667,
596 cm−1; HRESIMS: m/z 227.1275 (M + H)+ (calcd for
C12H19O4, 227.1278).

1H (500 MHz) and 13C (125 MHz) NMR
data, see Tables 1 and 2.

Foeniculin C (3): white solid (α)20D –33.4 (c 0.1, MeOH);
UV (MeOH): λmax (log ε): 263 (3.10) nm; IR (KBr): 3,377,
2,974, 2,926, 1,616, 1,456, 1,386, 1,333, 1,289, 1,252, 1,209,
1,141, 1,103, 1,068, 1,011, 976, 914, 883, 760, 692 cm−1;
HRESIMS: m/z 227.1276 (M + H)+ (calcd for C12H19O4,

TABLE 1 | 1H (500 MHz) NMR data for compounds 1–4 (δ in ppm, J in Hz).

No 1a 2a 3a 4b

2 3.73, m 4.62, m 4.42, ddd (2.8, 6.3, 12.4) 4.60, qd (6.3, 11.6)
3α 3.29, m 1.60, dd (2.9, 14.3) 1.77, dd (6.3, 14.0) 1.65, m
3β 2.54, ddd (5.5, 7.5, 14.3) 2.34, ddd (2.2, 12.4, 14.0) 2.48, ddd, (5.2, 7.5, 14.3)
4 3.26, m 3.78, dd (2.9, 7.5) 3.66, dd (2.2, 3.5) 4.07, dd (2.8, 7.5)

2.55, m
5α 2.44, m 1.78, dd (4.6, 13.6) 1.72, dd (4.8, 13.0) 2.19, m
5β 1.34, m 2.25, dd (6.8, 13.6) 2.21, t 13.0
6 2.27, m 2.79, ddd (4.6, 6.8, 13.6) 2.75, ddd (4.8, 6.8, 13.0) 2.61, m
9 1.48, d (6.2) 1.38, d (6.3) 1.38, d (6.3) 1.35, d (6.3)
10 1.68, s 1.65, s 1.66, s 1.65, s
11 1.16, d (6.2) 1.12, d (6.3) 1.13, d (6.3) 1.09, d (6.3)
1′ 3.60, m
2′ 1.16, t (7.0)

aRecorded in CD3OD.
bRecorded in CD3COCD3.

TABLE 2 | 13C (125 MHz) NMR data for compounds 1–4 (δC in ppm).

No 1a 2a 3a 4b

1
2 79.1, CH 71.1, CH 71.9, CH 69.8, CH
3 76.3, CH 39.0, CH2 35.5, CH2 38.2, CH
4 76.0, CH 70.6, CH 71.0, CH 66.9, CH
4a 43.8, C 70.5, C 69.0, C 75.1, C
5 33.1, CH2 40.9, CH2 40.3, CH2 34.4, CH2

6 41.5, CH 36.2, CH 37.6, CH 35.9, CH
7 204.1, C 203.6, C 204.0, C 198.9, C
8 115.9, C 115.2, C 118.0, C 115.2, C
8a 171.0, C 170.1, C 170.8, C 165.5, C
9 18.8, CH3 22.6, CH3 22.8, CH3 21.9, CH3

10 8.2, CH3 7.9, CH3 8.2, CH3 7.3, CH3

11 15.8, CH3 15.7, CH3 15.6, CH3 15.1, CH3

1′ 59.3, CH2

2′ 15.4, CH3

aRecorded in CD3OD.
bRecorded in CD3COCD3.
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227.1278). 1H (500 MHz) and 13C (125 MHz) NMR data, see
Tables 1 and 2.

Foeniculin D (4): white solid (α)20D + 11.6 (c 0.05, MeOH); UV
(MeOH): λmax (log ε): 269 (2.54) nm; IR (KBr): 3,329, 2,947,
2,835, 1,651, 1,456, 1,410, 1,115, 1,017, 667, 608, 546 cm−1;
HRESIMS: m/z 255.1598 (M + H)+ (calcd for C14H23O4,
255.1591). 1H (500 MHz) and 13C (125 MHz) NMR data, see
Tables 1 and 2.

Foeniculin E (5): colorless needle crystals (α)20D –11.6 (c 0.03,
MeOH); UV (MeOH): λmax (log ε): 275 (2.98) nm; IR (KBr):
3,356, 1,653, 1,616, 667, 600, 552 cm−1; HRESIMS: m/z 211.1329
(M + H)+ (calcd for C12H19O3, 211.1329).

1H (500 MHz) and 13C
(125 MHz) NMR data, see Tables 3 and 4.

Foeniculin F (6): white solid (α)20D + 12.0 (c 0.05, MeOH); UV
(MeOH); λmax (log ε): 268 (3.34), 202 (2.23) nm; HRESIMS: m/z
233.1146 (M + Na)+ (calcd for C12H18NaO3, 233.1148). 1H
(500 MHz) and 13C (125 MHz) NMR data, see Tables 3 and 4.

Foeniculin G (7): white solid (α)20D –13.7 (c 0.05, MeOH); UV
(MeOH): λmax (log ε): 275 (3.08) nm; IR (KBr): 3,337, 1,636, 669,
600, 554 cm−1; HRESIMS: m/z 211.1339 (M + H)+ (calcd for
C12H19O3, 211.1329).

1H (500 MHz) and 13C (125 MHz) NMR
data, see Tables 3 and 4.

Foeniculin H (8): white solid (α)20D + 10.8 (c 0.1, MeOH); UV
(MeOH): λmax (log ε): 274 (3.23) nm; IR (KBr): 3,360, 1,636, 667,
600, 557 cm−1; HRESIMS: m/z 211.1339 (M + H)+ (calcd for
C12H19O3, 211.1329).

1H (500 MHz) and 13C (125 MHz) NMR
data, see Tables 3 and 4.

Foeniculin I (9): colorless needle crystals; m. p. 108–109°C; UV
(MeOH): λmax (log ε): 328 (3.02), 279 (3.33), 217 (3.47) nm; IR
(KBr): 3,379, 2,976, 2,922, 2,851, 1,676, 1,608, 1,458, 1,329, 1,292,
1,220, 1,151, 1,092, 1,024, 947, 768 cm−1; HRESIMS: m/z
207.1013 (M + H)+ (calcd for C12H15O3, 207.1016). 1H
(500 MHz) and 13C (125 MHz) NMR data, see Table 5.

Foeniculin J (10): colorless oil (α)20D –11.4 (c 0.05, MeOH); UV
(MeOH): λmax (log ε): 270 (2.80) nm; IR (KBr): 3,312, 2,976,
2,930, 2,899, 1,717, 1,668, 1,607, 1,456, 1,400, 1,344, 1,271, 1,246,
1,180, 1,130, 1,032, 945, 856, 764, 669 cm−1; HRESIMS: m/z
211.1333 (M + H)+ (calcd for C12H19O3, 211.1329). 1H
(500 MHz) and 13C (125 MHz) NMR data, see Table 5.

Foeniculin K (11): green needle crystals; UV (MeOH): λmax

(log ε): 305 (3.00) nm; IR (KBr): 3,358, 2,974, 2,920, 1,649, 1,626,
1,560, 1,479, 1,445, 1,362, 1,305, 1,290, 1,169, 1,113, 1,028, 953,
829 cm−1; HRESIMS: m/z 207.1025 (M + H)+ (calcd for
C12H15O3, 207.1016).

1H (500 MHz) and 13C (125 MHz) NMR
data, see Table 5.

X-Ray Crystallographic Analysis
The single-crystal X-ray diffraction data were collected at 100 K
for 1, 2, 5, and 9 on Agilent Xcalibur Nova single-crystal
diffractometer using CuKα radiation. Crystallographic data for
1, 2, 5, and 9 reported in this paper have been deposited in the
Cambridge Crystallographic Data Centre. (Deposition number:
CCDC 2008519 for 1, 2008520 for 2, 2047671 for 5, and 2047672
for 9). Copies of these data can be obtained free of charge via
www.ccdc.cam.au.ck/conts/retrieving.html.)

Cytotoxicity Assay
The in vitro cytotoxic activities of compounds 1–11 were assayed
against three human tumor cell lines SF-268, MCF-7, HePG-2,
and normal cell line LX-2 with adriamycin as positive control.
Assays were performed by the SRB method (Mosmann, 1983).

Antimicrobial Assay
Compounds 1–11 were evaluated the antimicrobial activity
against Staphylococcus aureus (CMCC 26003) and Escherichia
coli (ATCC 8739). Assays were performed by the published
microdilution method for the estimation of minimum
inhibitory concentration (MIC) values (Li et al., 2017).
Vancomycin was used as positive control.

TABLE 3 | 1H NMR (500 MHz) data for compounds 5–8 in CD3OD (δ in ppm, J in Hz).a

No 5 6 7 8

2 4.48, m 4.45, m 4.50, m 4.43, m
3 2.44, ddd (4.9, 8.4, 9.3) 2.43, m 2.43, m 2.41, m
5α 2.55, dd (4.9, 15.9) 2.43, m 2.49, dd (5.1, 15.7) 2.26, m
5β 1.65, dd (2.5, 11.4, 15.9) 1.73, m 1.80, m 1.95, m
6 1.52, ddd (6.1, 11.1, 17.2) 1.81, m 1.86, m 1.86, m
7 2.98, dd (8.9, 10.2) 3.48, dd (5.5, 9.7) 3.55, dd (5.1, 8.5) 3.57, m
8 2.33, ddd (4.9, 8.4, 9.3) 2.60, m 2.57, m 2.41, m
9 1.42, d (6.3) 1.42, d (6.3) 1.41, d (6.3) 1.42, d (6.3)
10 1.26, d (7.0) 1.17, d (7.2) 1.18, d (7.2) 1.19, d (7.4)
11 1.08, d (6.4) 1.03, d (6.4) 1.01, d (6.5) 1.05, d (6.8)

TABLE 4 | 13C (125 MHz) NMR data for compounds 5–8 in CD3OD (δ in ppm).

No 5 6 7 8

1
2 75.2, CH 75.1, CH 74.8, CH 76.5, CH
3 42.2, CH2 41.9, CH2 42.1, CH2 43.7, CH2

4 194.0, C 193.4, C 193.8, C 195.4, C
4a 109.2, C 109.8, C 108.7, C 111.1, C
5 27.4, CH2 27.0, CH2 26.2, CH2 25.3, CH2

6 29.3, CH 35.2, CH 30.0, CH 29.6, CH
7 73.1, CH 78.0, CH 73.0, CH 75.6, CH
8 38.4, CH 42.2, CH 37.7, CH 42.7, CH
8a 174.2, C 173.0, C 173.9, C 175.2, C
9 19.3, CH3 19.0, CH3 19.1, CH3 20.8, CH3

10 16.5, CH3 13.7, CH3 11.3, CH3 17.2, CH3

11 11.2, CH3 16.6, CH3 16.3, CH3 17.4, CH3
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RESULTS AND DISCUSSION

Compound 1 was isolated as needle crystals. Its molecular
formula of C12H18O4 was established on the basis of
(+)-HRESIMS m/z 227.1274 (M + H)+ (calcd for C12H19O4,
227.1278), implying four degrees of hydrogen deficiency. The
IR spectrum of 1 logically revealed the presence of carbonyl and
free hydroxyl functional groups through the characteristic
resonance absorptions at 1,616 and 3,381 cm−1, respectively.

The 1H NMR data (Table 1) of 1 exhibited a series of typical
proton signals, which were responsive for three oxygenated
methines [δH 3.73 (1H, m, H-2), 3.29 (1H, m, H-3), 3.26 (1H,
m, H-4)] and three methyl moieties [δH 1.48 (3H, d, J � 6.2 Hz, H-
9), 1.68 (3H, s, H-11), 1.16 (3H, d, J � 6.3 Hz, H-10)]. The 13C
NMR data (Table 2) combined with HSQC spectrum of 1
resolved 12 carbon resonances attributable to three methyls,
one methylene, four methines, and four quaternary carbons
including one carbonyl functionality (δC 204.1).

TABLE 5 | 1H (500 MHz) and13C (125 MHz) NMR data (δ in ppm, J in Hz) of 9–11.

No 9c 10a 11a

δH (J
in Hz)

δC δH (J
in Hz)

δC δH (J
in Hz)

δC

1 172.0, C 189.4, C 164.0, C
2 106.8, C 2.70, m 38.6, CH 112.4, C
3 160.5, C 3.73, br s 76.0, CH 162.5, C
4 118.7, C 2.02, m 29.9, CH 117.5, C
5 7.29, s 122.4, CH 2.28, m; 2.02, m 21.6, CH2 7.53, s 130.6, CH
6 113.7, C 111.1, C 113.7, C
7 200.6, C 203.1, C 194.1, C
8 4.50, dd (4.5, 7.1) 87.0, CH 4.42, dd (4.5, 6.8) 86.9, CH 7.14, d (15.6) 127.4, CH
9 2.05, m; 1.80, m 24.8, CH2 2.02, m; 1.75, m 24.4, CH2 7.08, dq (15.6, 5.5) 145.1, CH
10 1.00, t (7.4) 8.9, CH3 0.96, t (7.4) 8.5, CH3 2.00, d (5.5) 18.8, CH3

11 2.19, s 7.3, CH3 1.30, d (7.3) 15.8, CH3 1.07, s 8.3, CH3

12 2.23, s 15.8, CH3 1.10, d (6.7) 16.2, CH3 2.18, s 16.6, CH3

aRecorded in CD3OD.
bRecorded in CD3COCD3.
cRecorded in CDCl3.

FIGURE 2 | Key 1H-1H COSY and HMBC correlations of compounds 1–11.
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In the 1H-1H COSY spectrum (Figure 2), the cross peaks of
H3-11/H-6/H2-5 suggested the presence of fragment a (C-11/C-6/
C-5). The HMBC correlations from H3-10 to C-5 (δC 33.1), C-6
(δC 41.5), and C-7 (δC 204.1), H-11 to C-7, C-8 (δC 115.9), and C-
8a (δC 171.0), H2-5 to C-7 and C-8a coupled with the fragment a
were significantly suggested the existence of a cyclohexanone ring
(ring A) with a carbonyl group located at C-7 position as well as
two methyls attached at C-6 and C-8 positions, respectively. In
addition, the obvious HMBC correlations from H-2 to C-4 (δC
76.0) and C-8a, H-9 to C-2 (δC 79.1) and C-3 (δC 76.3) together
with the 1H-1H COSY spin system b (C-4a/C-4/C-3/C-2/C-9)
confirmed the presence of the pyran ring B. Therefore, the planar
structure of 1 was established as shown in Figure 1.

As shown in Figure 3, key NOE correlations of H-2/H-4, H-4/
H-4a, H-4a/H3-11 confirmed these protons were co-facial, and
assigned as α-oriented. Then, the NOE correlation between H-5

and H3-9 indicated that the methyl group at C-9 was β-oriented
(Figure 3). Therefore, the relative configuration of 1 was
established. The absolute configuration of 1 was finally
determined by the single-crystal X-ray diffraction experiment
(Figure 4), and it provided the perfect evidence for the absolute
configuration of 1 with a Flack parameter of 0.02 (5). Moreover,
this conclusion was also verified by the ECD calculations
(Figure 5). Therefore, the structure elucidation of compound
1 was completely finished, and its absolute structure was deduced
to be 2S,3R,4S,4aS,6S and trivially named as foeniculin A.

Compound 2 was obtained as needle crystals. Its molecular
formula was established as C12H18O4 on the basis of the
protonated molecule peak at m/z 227.1275 (M + H)+ in its
HRESIMS spectrum, requiring four degrees of unsaturation. The
1D NMR data (Tables 1 and 2) of 2 were almost in accordance with
those of 1, except for the lack of a hydroxyl group at C-3 position in 2,

FIGURE 3 | Key NOESY correlations of compounds 1 and 2.

FIGURE 4 | ORTEP drawings of the X-ray structures for compounds 1 and 2.
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which could be further strengthened by the 1H-1H COSY cross peaks
of H-2/H-3/H-4 as well as the predominant HMBC correlations from
H3-9 to C-2 and C-3 as well as carbon shit of C-3 (δC 39.0).

The relative configuration of 2 was established by the NOESY
experiment. The obvious NOESY cross-peak of H3-11 with H-5α
indicated that these protons should be co-facial, and they were
tentatively assigned as α-oriented. Moreover, H-5β exhibited a
conclusive NOESY correlation with H-4, which further correlated with
H-2, thus strongly suggesting that they should be located as β-oriented
(Figure 3). Notably, the relative configuration of the hydroxyl group atC-
4 was not determined because of the lack of critical hydroxyl proton
signal. Fortunately, the absolute configuration of 2 was successfully
determined to be 2R,4S,4aR,6S by the analysis of X-ray diffraction
data using CuKα radiation (Figure 4) and ECD calculation
(Figure 5). Therefore, the configuration of 2 was conclusively assigned
as shown in Figure 1 and given the trivial name foeniculin B.

Compound 3 was also obtained as a white amorphous powder
with the samemolecular formula C12H18O4 as that of 2. The

1HNMR
data of 3 (Table 1) were closely related to those of 2, only slight
differences could be distinguished between the chemical shifts of H-2
(δH 4.62 for 2; δH 4.42 for 3), H-3 (δH 2.54 and 1.60 for 2; δH 2.34 and
1.77 for 3), and H-4 (δH 3.78 for 2; δH 3.66 for 3). Comparing the 13C
NMR spectra of 2 and 3, the signals attributed to the methylene C-3
(δC 39.0 for 2, δC 35.5 for 3) and quaternary carbon C-8 (δC 115.2 for
2, δC 118.0 for 3) indicated that they should be a pair of
diastereoisomers, which showed a little structural difference on the

ring B. Interestingly, the partial relative configuration of 3 was
determined by NOESY experiment (Figure 6). The NOESY
correlations from H-3β to H-2 and H-4 assigned these protons as
cofacial, thus, the related methyl and hydroxyl functionalities were
suggestively established to be α-oriented on the ring B. However, the
relative configuration of 4a-OH was failed to be determined for the
lack of any valuable correlation in the NOESY spectrum. Then, the
ECD calculations were employed to establish the absolute
configurations of the two diastereoisomers. By fitting the
experimental and calculated ECD curves, the
2S,4R,4aR,6S-configuration was elucidated for 3 (Figure 5).

Compound 4 was isolated as white solid. Its molecular formula
of C14H22O4 was established on the basis of HRESIMS m/z
255.1598 (M + H)+ (calcd for C14H23O4, 255.1591), implying
four degrees of hydrogen deficiency. After a careful inspection of
the NMR spectra of 4 with those of 2, it could be readily disclosed
that they showed very close similarity in most NMR profiles. The
major difference between them was the hydroxyl group at C-4a in
2 replaced by a hydroxyethyl one in 4, which could be
substantiated by its chemical shifts [δH 3.60 (2H, m), δC
(59.3); δH 1.16 (3H, t, J � 7.0 Hz), δC (15.4)] in conjunct with
the HMBC correlation from H2-1′ to C-4a and the 1H-1H COSY
fragment H2-1’/H3-2’. Interestingly, compound 4 showed an
ECD spectrum almost consistent with that of 2 (see
Supplementary Material), which strongly illustrated that 4
should also share the similar absolute configuration by the

FIGURE 5 | Experimental and calculated ECD spectra of 1–3, 5.
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consideration of the same biogenesis. Therefore, the structure of 4
was elucidated as shown in Figure 1 and named as foeniculin D.

Compound 5 was obtained as colorless needle-like crystals. The
HRESIMS of compound 5 showed a positivemolecular ion peak atm/
z 211.1329, corresponding to a molecular formula of C12H18O3. The
1HNMR (Table 3) data of 5 exhibited a series of characteristic proton
signals, which were responsive for two oxygenated methines [δH 4.48
(1H, m, H-2), 2.98 (1H, m, H-7)] and three methyl groups [δH 1.42
(3H, d, J� 6.3Hz, H-9), 1.26 (3H, d, J� 7.0Hz,H-10), 1.08 (3H, d, J�
6.4Hz,H-11)]. The 13CNMR spectrumcombinedwithHSQCdata of
5 resolved 12 carbon resonances, and they were attributable to three
methyls, two methylenes, four methines, and three quaternary
carbons including a carbonyl group (δC 193.4).

In the 1H-1HCOSY spectrum (Figure 2), the cross peaks of H3-10/
H-8/H-7/H-6/H3-11 and H2-3/H-2/H3-9 suggested the presence of
two independent fragments, a (C-11/C-6/C-7/C-8/C-10) and b (C-2/
C-3/C-9). Based on the fragment a, the HMBC correlations from H-8
to C-6, C-7, and C-4a, H3-11 to C-5, C-6, and C-7, H3-10 to C-7, C-8,
and C-8a suggested the existence of a cyclohexene ring A, which
possessed a hydroxyl group located at C-7 and twomethyls attached at
C-6 and C-8, respectively. Furthermore, the obvious HMBC
correlations from H-2 to C-4, H-9 to C-2 and C-3, H-3 to C-4a as
well as the 1H-1H COSY fragment b confirmed the presence of the
pyran ring B. The NOESY correlations fromH-7 to H-5α, H3-10, and
H3-11 assigned these protons as β-orientation (Figure 7). A single
crystal of 5 was obtained in MeOH for X-ray diffraction analysis with
Flack parameter of 0.04 (9), which suggested the absolute configuration
of 5 to be 2S,6S,7R,8S shown in Figure 8. Thus, compound 5 was
defined as (2S,6S,7R,8S)-7-hydroxy-2,6,8-trimethyl-2,3,5,6,7,8-
hexahydro-4H-chromen-4-one and given the trivial name foeniculin E.

The HRESIMS data m/z 233.1146 [(M + Na)+, calcd
C12H18NaO3 233.1148] of 6, 211.1339 (M + H)+ (calcd for
C12H19O3, 211.1334) of 7, and m/z 211.1339 (M + H)+ (calcd
for C12H19O3, 211.1334) of 8 indicated that compounds 7 and 8
should share the same molecular formula with C12H18O3 as that

of 6. Careful comparison of the 1H and 13C NMR spectra of 6–8
(Tables 3 and 4) with those of foeniculin E (5) revealed that they
shared the same planar structure. Moreover, the 2D NMR
correlations of them (Figure 2) further strengthened this
conclusion. Therefore, the aforementioned information
suggested that the novel compounds 6–8 should be a series of
closely related diastereoisomers of 5.

The relative configuration of 6 was determined by NOESY
experiments. In the NOESY spectrum, the obvious NOESY
correlations of H-2/H3-10, H-6/H3-10, and H-7/H3-11 indicated
the α-orientation of H3-11 as well as β-orientation of H-2, H-6,
H3-10 and 7-OH. Furthermore, the ECD calculation results showed
that the absolute configuration of 6 was 2R,6S,7R,8R (Figure 9).
Therefore, the structure of 6 was established as shown in Figure 1 and
given the trivial name foeniculin F.

Compound 7 shared the same planar structure as those of 5
and 6. In its NOESY spectrum, the key NOESY correlations
between H-6/H3-10 and H-7/H3-11 were readily discovered,
which thus successfully established the relative configuration
of B ring. However, the lack of the critical NOESY
correlations from the protons of A ring to those of B ring
made the determination of the absolute configuration of 7
bleak. In order to solve this intractable problem, the ECD
calculation method was then performed. Finally, the close
comparison of the experimental and calculated ECD curves
(Figure 9) revealed the absolute configuration of 7 as
2S,6S,7R,8R. Collectively, compound 7 was finally permitted to
assign as (2S,6S,7R,8R)-7-hydroxy-2,6,8-trimethyl-2,3,5,6,7,8-
hexahydro-4H-chromen-4-one and given the trivial name
foeniculin G.

Compound 8 also shared very close similarity in the NMR data
to those of 6. These subtle differences indicated that the methyl
group at C-6 adopted an α-orientation and the hydroxyl group at
C-7 should be β-orientation. This deduction was consistent with
the analysis of the ECD calculations (Figure 9). Thus, the

FIGURE 6 | Key NOESY correlations of compounds 3 and 4.
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absolute structure of compound 8 was determined to be
(2R,6S,7R,8S)-7-hydroxy-2,6,8-trimethyl-2,3,5,6,7,8-hexahydro-
4H-chromen-4-one and given the trivial name foeniculin H.

Compound 9 was isolated as colorless needle crystals, and the
molecular formula of C12H14O3 was deduced from the HRESIMS
peak at m/z 207.1013 (M + H)+ (calcd for C12H15O3, 207.1021),
which clearly suggested the presence of six indices of
unsaturation. 1H NMR data of 9 (Table 5) revealed three
methyl groups including two benzyl protons (δH 2.19 and
2.23, each s), an oxymethine (δH 4.50, dd, J � 4.5, 7.1 Hz), a
methylene (δH 1.80, m), and an olefinic methine (δH 7.29, s). The
13C NMR data (Table 5) and the HSQC spectra revealed the
presence of 12 carbons, which included six olefinic carbons (δC
106.8, 113.7, 118.7, 122.4, 160.5, and 172.0), a ketocarbonyl (δC
200.6), three methyls (δC 7.3, 8.9, 15.8), and one oxymethine (δC
87.0). The 1H-1H COSY revealed one spin-spin system (C-8/C-9/
C-10). The HMBC correlations of H-5 to C-1, C-3, C-7, and C-12,
H3-12 to C-3, C-4, and C-5, as well as H3-11 to C-1, C-2, and C-3
established a 3-hydroxy-2,4-dimethylph-2-en-1-one core scaffold
for ring A (Figure 1). The HMBC correlations of H-8 to C-1 and
C-7 together with H-5 to C-7 established the 5-membered ring B,
which fused with ring A at C-1 and C-6 with an ethyl group at C-

8. Thus, the planar structure of 9 was successfully established. The
8S absolute configuration of 9 was assigned by the X-ray
diffraction (Figure 8). Finally, the absolute structure of
compound 9 was determined to be (S)-8-ethyl-3-hydroxy-2,4-
dimethylbenzofuran-3(2H)-one and given the trivial name
foeniculin I.

Compound 10 was isolated as a white oil. The molecular
formula was established as C12H18O3 from the (M +H)+ ion atm/
z 211.1333 in HRESIMS data (calcd for C12H19O3, 211.1329). The
molecular unsaturation together with the 1H and 13C NMR data
(Table 5) suggested that 10 was a hydrogenated derivative of 9
with the aid of the HSQC spectrum. The planar structure of 10
was determined unambiguously by 2D NMR analyses (1H-1H
COSY, HSQC, and HMBC). The partially relative configuration
of 10 was established by analyses of NOESY correlations. The key
NOESY correlations between H-3/H3-11 and H-3/H3-12 strongly
suggested that these twomethys should be in the same orientation
(Figure 7). With its potential biogenesis from the biosynthetic
precursor 9, the absolute configuration of C-8 in 10 was rationally
deduced to be S configuration, which thus resulted the structure
of 10 to be 2R,3S,4S,8S or 2S,3R,4R,8S. Therefore, the calculated
ECD methodology was conducted to reveal the possible structure

FIGURE 7 | Key NOESY correlations of compounds 5 and 10.

FIGURE 8 | ORTEP drawings of the X-ray structures for compounds 5 and 9.
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of 10. Fortunately, the calculated ECD spectrum of (2S,3R,4S,8S)-
10 showed a negative Cotton effect at 270 nm, which well
matched with that of the experimental result (Figure 9),
allowing the absolute configuration of 10 as 2S,3R,4S,8S. Thus,
the structure of compound 10 was finally determined and given
the trivial name foeniculin J.

According to HRESIMS data, foeniculin K (11) was found to
have a molecular formula of C12H14O3, which was the same as
that of 9. Analyses of the 1D and 2D NMR of 9 and 11 revealed
that compound 11 also possessed a penta-substituted benzene
ring A, which was similar to that in compound 9. The main
difference between them located in the ring B. In which,
compound 11 shared an α,β-unsaturated crotonoyl moiety
substituted at the C-6 position. This conclusion could be
further verified by the 1H-1H COSY fragment C-8/C-9/C-10
and HMBC correlations from H-5 to C-7. At last, the
structure of 11 was determined as shown in Figure 1.

The isolated compounds 1–11 were tested in vitro cytotoxic
activity against the tumor cell lines SF-268, MCF-7, HePG-2, and
normal cell line LX-2. As a result, compound 11 exhibited mild
cytotoxicity against the tumor cell line with IC50 values of 27.73,
42.54, and 25.12 µM. Compounds 1–10 were inactive to the tested
tumor cell lines even at a concentration of 100 µM. The
antimicrobial activity of compounds 1–11 was also evaluated
against the bacteria Escherichia coli and S. aureus. However, all of
them were found to be devoid of significant activity.

CONCLUSION

A phytochemical investigation on theDiaporthe foeniculina SCBG-15
resulted in the isolation and structural elucidation of eleven new
compounds foeniculins. The structures including absolute
configurations were determined by extensive physicochemical and
spectroscopic analysis, as well as ECD calculation and X-ray
diffraction crystallography. All the novel compounds 1–11
possessed polymethylated skeleton. Compound 11 exhibited
cytotoxic activity against the tumor cell lines SF-268, MCF-7,
HePG-2 with IC50 values of 27.73, 42.54, 25.12 µM, which might
serve as a promising antitumor lead compound for the drug discovery.
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Tuberculosis (TB) is still a global disease threatening people’s lives. With the emergence of
multi-drug-resistant Mycobacterium tuberculosis the prevention and control of
tuberculosis faces new challenges, and the burden of tuberculosis treatment is
increasing among the world. Ilamycins are novel cyclopeptides with potent anti-TB
activities, which have a unique target protein against M. tuberculosis and drug-
resistant strains. Herein, ilamycin F, a major secondary metabolite isolated from the
marine-derived mutant strain Streptomyces atratus SCSIO ZH16 ΔilaR, is used as a
scaffold to semi-synthesize eighteen new ilamycin derivatives (ilamycin NJL1–NJL18,
1–18). Our study reveals that four of ilamycin NJLs (1, 6, 8, and 10) have slightly stronger
anti-TB activities against Mtb H37Rv (minimum inhibitory concentration, 1.6–1.7 μM)
compared with that of ilamycin F on day 14th, but obviously display more potent
activities than ilamycin F on day 3rd, indicating anti-TB activities of these derivatives
with fast-onset effect. In addition, cytotoxic assays show most ilamycin NJLs with low
cytotoxicity except ilamycin NJL1 (1). These findings will promote the further exploration of
structure-activity relationships for ilamycins and the development of anti-TB drugs.

Keywords: streptomycetes, cyclopeptide, antitubercular activity, ilamycin, semi-synthesis, derivatization

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by the pathogenMycobacterium tuberculosis (Mtb),
which is the leading cause of death from a single infectious agent. Globally, it is estimated that 10
million new cases and 1.2 million deaths occurred in 2019 due to TB infections (World Health
Organization, 2020). With the appearance of drug-resistant strains, multidrug resistance (MRD) TB
and extensive drug resistance (XDR) TB have resulted in a major challenge to the prevention and
treatment of TB in the world, especially in developing countries (Saravanan et al., 2018). Standard
treatment of TB is a long course, including a 2-months induction phase and a 4-months
consolidation phase, thus it is important that drugs with fast-onset action can contribute to
shorten treatment in clinical trials (Horsburgh et al., 2015). Hence, there is an urgent demand
for development of novel anti-TB drugs with unique targets and fast-onset action.
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With the development of drug-resistant tuberculosis, the
discovery of new drugs or the drug-repurposed for
tuberculosis is increasing recently (Furin et al., 2019).
Ilamycins, also named rufomycins, comprise a representative
of cycloheptapeptides with strong anti-TB activity, which were
isolated from Streptomyces atratus and S. islandicus (Takita
et al., 1962; Cary et al., 1971; Ma et al., 2017; Sun et al., 2020;
Zhou et al., 2020). Previous studies identified the target of
rufomycins, caseinolytic protein C1 (ClpC1), which was
different from that of the current therapeutic drugs (Sassetti
et al., 2003; Lee et al., 2016; Choules et al., 2018; Choules et al.,
2019; Wolf et al., 2019). Therefore, compounds of this family are
a promising drug-lead for the treatment of MRD- and XRD-TB.
Moreover, for the structure-activity relationship (SAR) studies,
Eli Lilly and Company firstly synthesized a series of ilamycin
derivatives in 2000 (Lambooy, 2000). Anti-TB assays showed
that 6 of the derivatives exhibited strong inhibitory activities
against Mtb H37Ra (Figure 1A).

In recent years, our group has been focusing on the discovery
and the biosynthesis of anti-infective antibiotics. Ilamycin F,
isolated from a genetic engineered mutant of the deep South
China Sea-derived strain Streptomyces atratus SCSIO ZH16, had
a strong anti-TB activity against M. tuberculosis H37Rv with
minimum inhibitory concentration (MIC) value of 1.2 μM (Ma
et al., 2017). As the main metabolite of the mutant strain S.
atratus SCSIO ZH16 ΔilaR, the yield of ilamycin F is about
400–500 mg/L in its mutant. In this regard, ilamycin F is ideally
utilized as a starting material for preparing new ilamycin
derivatives, which will facilitate to further investigate their
SAR and discover more efficient anti-TB drug leads. Herein,
we report the preparation and characterization of eighteen new
ilamycin F derivatives (ilamycin NJL1–NJL18) on C-33 and C-44
of ilamycin F (Figure 1B). Several semi-synthesized derivatives

display potent anti-TB activity against M. tuberculosis H37Rv
with fast-onset effect and low cytotoxicity.

RESULTS AND DISCUSSION

Semi-Synthesis of Ilamycin NJLs
Ilamycin F has two types of functional groups for modification,
C-33 carboxyl group and C-44 hydroxyl group. With the aim of
synthesizing new derivatives, several modifications in ilamycin F
were introduced by acylation and esterification (Scheme 1).
Ilamycin NJL1–NJL12 (1–12) were concisely synthesized by 1-
(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
(EDC)/1-hydroxybenzotriazole (HOBt) assisted amidation at
C-33 carboxyl group using L-amino acid methyl esters and
benzylamine derivatives (Figure 2). The yields ranged from 74
to 83%. Moreover, according to the twin drug strategy (Contreras
et al., 2008; Ibacache et al., 2018), isoniazid and N-deacetyl-
linezolid, two anti-TB substrates, were respectively coupled with
ilamycin F to generate ilamycin NJL13–NJL14 (13–14) using the
aforementioned amidation method in 76–77% yield (Figure 2).
The strategy was proposed to produce synergic effect by binding
two targets.

The C-44 hydroxyl group of ilamycin F is another position for
derivatization. Although various ether and aliphatic sidechains at
C-44 were created through etherification or esterification by Eli
Lilly and Company, all derivatives displayed low anti-TB
activities (Lambooy, 2000). To further study SAR of ilamycin
F, heteroaromatic rings, p-fluorophenylacetic acid and 3-
(methylthio) propionic acid were introduced at the C-44
hydroxyl group (Scheme 1). Ilamycin NJL15–NJL18 (15–18)
could be successfully obtained in the presence of EDC and 4-
dimethylaminopyridine (DMAP) (Figure 3), but owing to low

FIGURE 1 | Semi-synthesis of rufomycin active derivatives from Eli Lilly and Company (A) Modified position from this work (B).
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nucleophilicity of the C-44 hydroxyl group, the yields of the
reaction were only given to 32–40%.

Bioactivities of Ilamycin NJLs
The anti-TB activities of ilamycin NJL1–NJL18 (1–18) were
evaluated against M. tuberculosis H37Rv, which has
pathogenic and still popularly used in virulent laboratory
(Camus et al., 2002; Målen et al., 2011). As depicted in
Table 1, although basic amino acid derivatives (compounds
4–5) at the C-33 had weak activities, the modification of
neutral amino acid derivatives, in comparison with ilamycin

F, displayed potent anti-TB activities with fast-onset effect.
Compounds 1–3, 6, and 8, showed efficient activities on day
3rd, which was higher than that of ilamycin F with 4–19 folds.
Importantly, compounds 1, 6, and 8 had slightly stronger
activities than that of ilamycin F on day 14th (MIC,
1.6–1.7 μM), speculating that their modification did not
change the interaction with targets, but would obviously
facilitate to promoting penetration of membranes in Mtb.
Moreover, benzylamine derivatives of ilamycin F,
compounds 9–11, were also exhibited the fast-onset effect
on day 3rd except compound 12. This finding indicated

SCHEME 1 | Synthetic routes of ilamycin NJLs (compounds 1–18).
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that benzylamine modified with a larger substituent
significantly affected anti-TB activity of ilamycin
derivatives. Although showed a similar activity with that of
ilamycin F on day 14th, compound 10 was 2-fold more potent
MIC value than that of 9 and 11, which might result from the
promotion of its lipophilicity by fluorine substituent and

improved the penetration to cell membranes (Smart, 2001;
Purser et al., 2008). However, the activities of compounds
13–14 were significantly decreased under the twin drug
strategy, when a carboxyl group at the C-33 was replaced
by isoniazid or N-deacetyl-linezolid. This result indicated that
the construction of compounds 13–14 affected the binding to

FIGURE 3 | Structures of ilamycin NJLs modified at C-44 (compounds 15–18).

FIGURE 2 | Structures of ilamycin NJLs modified at C-33 (compounds 1–14).
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their targets, and exhibited no synergistic effect on anti-TB
activity. Additionally, compounds 15–18 modified at the C-44
also showed lower activities. The similar groups coupling at the
C-33 with beneficial effects could not produce the same
promotion at the C-44 hydroxyl group of ilamycin F. The
results suggested that the hydroxyl group at C-44 might serve
as a pharmacophore, which was critical in achieving anti-TB
activity and also consistence with our previous discoveries
(Sun et al., 2020).

To evaluate the application potential of these compounds, the
cytotoxicity of ilamycin NJLs (1–18) was evaluated in vitro using
five human cancer cell lines, including breast adenocarcinoma
(MCF-7), cervical carcinoma (HeLa), hepatocellular carcinoma
(HepG2), lung cancer (A549), colon cancer (HCT116); two
normal cell lines including human hepatic cell line (L02) and
human umbilical vein endothelial cell line (Huvec-12). Although
most compounds (2–18) showed no or weak cytotoxicity,
compound 1 exhibited a moderate IC50 value (5.7–9.0 μM)
against MCF-7, A549, HCT116, and L02, which had a 3–8-fold
promotion compared with that of ilamyicn F (Table 2). The result

indicated that threonine methyl ester modified in C-33 carboxyl
group of ilamycin F was favorable for the cytotoxic activity.

CONCLUSION

In this study, ilamycin F, a starting material isolated from
marine-derived mutant S. atratus ZH16 ΔilaR, was employed
to semi-synthesize eighteen ilamycin F derivatives (ilamcyin
NJL1–NJL18). Their inhibitory effects onM. tuberculosisH37Rv
were tested in vitro. Our study revealed that compounds 1, 6, 8,
and 10 exhibited slightly stronger anti-TB activity (1.6–1.7 μM)
with that of ilamycin F on day 14th, but displayed a 9–19-fold
increased anti-TB activities compared with that of ilamycin F on
day 3rd (MICs 1.6–3.5 μM), which indicated their rapid
suppression effect on M. tuberculosis. In addition, most
ilamycin NJLs had low cytotoxicity except compound 1
displayed a moderate cytotoxic activity (IC50, 5.7–11.3 μM)
against five human cancer cell lines and two normal cell
lines. Our results will be beneficial to further exploration for

TABLE 2 | IC50 value (μM) of ilamycin NJLs (1–18) against five human cancer cell lines and two normal cell lines.

Compounds MCF-7 HeLa HepG2 A549 HCT116 L02 Huvec-12

1 9.0 11.3 17.7 5.7 7.2 6.5 10.3
2 >50 >50 >50 >50 >50 >50 >50
3 >50 14.5 >50 >50 >50 12.0 >50
4 >50 26.0 >50 23.0 30.6 25.9 35.2
5 >50 >50 >50 >50 >50 >50 >50
6 >50 >50 >50 >50 >50 >50 >50
7 >50 >50 >50 >50 >50 >50 >50
8 >50 >50 >50 >50 >50 >50 >50
9 >50 >50 >50 >50 >50 >50 >50
10 >50 >50 >50 >50 >50 >50 >50
11 >50 >50 >50 >50 >50 >50 >50
12 >50 >50 >50 >50 >50 >50 >50
13 >50 >50 >50 >50 >50 >50 >50
14 >50 >50 >50 >50 >50 >50 >50
15 >50 >50 >50 >50 >50 >50 >50
16 >50 >50 >50 >50 >50 >50 >50
17 >50 >50 >50 >50 >50 >50 >50
18 >50 >50 >50 >50 >50 >50 >50
ilamycin F 32.2 31.0 >50 47.0 44.8 43.9 46.1
doxorubicin 4.0 0.7 0.6 1.5 4.0 7.7 12.0

TABLE 1 | Anti-tubercular activity of ilamycin NJLs (1–18) against M. tuberculosis H37Rv.

Compounds MICs (μM)against H37Rv Compounds MICs (μM)against H37Rv

Day 3rd Day 7th Day 14th Day 3rd Day 7th Day 14th

1 3.5 1.7 1.7 11 3.4 3.4 3.4
2 6.7 6.7 3.4 12 >100 >100 >100
3 6.8 6.8 6.8 13 27.6 27.6 27.6
4 26.4 26.4 26.4 14 48.5 48.5 48.5
5 26.8 26.8 26.8 15 27.9 27.9 27.9
6 1.7 1.7 1.7 16 26.4 26.4 26.4
7 26.6 13.3 6.6 17 27.2 27.2 27.2
8 1.6 1.6 1.6 18 28.0 28.0 28.0
9 3.5 3.5 3.5 ilamycin F 30.7 15.4 1.9
10 1.7 1.7 1.7 —
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SAR of ilamycins and promote the development of anti-
TB drugs.
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Polycyclic Tetramate
Macrolactams—A Group of Natural
Bioactive Metallophores
Ling Ding*, Sheng-Da Zhang, Ahmad Kasem Haidar, Manila Bajimaya, Yaojie Guo,
Thomas Ostenfeld Larsen and Lone Gram

Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark

New infectious diseases and increase in drug-resistant microbial pathogens emphasize
the need for antibiotics with novel mode-of-action. Tetramates represented by fungi-
derived tenuazonic acid and bacterial polycyclic tetramate macrolactams (PTMs) are an
important family of natural products with a broad spectrum of antimicrobial activities.
Despite their potential application as new antibiotics, it remains unknown how PTMs
function. In this study, genomic mining revealed that PTM biosynthetic gene clusters
(BGCs) are widespread in both Gram-positive and Gram-negative bacteria, and we
investigated a sponge endosymbiont Actinoalloteichus hymeniacidonis harboring a
potential PTM-BGC. Xanthobaccin A that previously has only been isolated from a
Gram-negative bacterium was obtained after a scale-up fermentation, isolation, and
structure elucidation through mass spectrometry and nuclear magnetic resonance
(NMR) spectroscopy. Xanthobaccin A as well as two previously reported tetramates,
equisetin and ikarugamycin, exhibited antibacterial activities against Bacillus subtilis. In
addition, these three tetramates were for the first time to be confirmed as metallophores
and the stoichiometry of the complexes were shown to be Fe(III)(equisetin)3/
Fe(III)(equisetin)2 and Fe(III)(ikarugamycin)2, respectively. Meanwhile, we found that all
three tetramates could reduce ferric into ferrous iron, which triggers the Fenton
chemistry reaction. Their antibacterial activity was reduced by adding the radical
scavenger, vitamin C. Altogether, our work demonstrates that equisetin and PTMs can
act as metallophores and their antimicrobial mechanism is possibly mediated through
Fenton chemistry.

Keywords: tetramate, Fenton chemistry, metallophore, PTM, antibiotics

INTRODUCTION

The increase in drug-resistant pathogenic microorganisms is a major societal challenge (Cooper
and Shlaes, 2011) and the development of antibiotics with novel mode-of-action is urgently
needed. Natural products represent an important source of drugs, and more than 50% of
approved new antibiotics are either natural products or natural products-derived (Newman and
Cragg, 2020). Therefore, one promising drug discovery strategy is to further explore microbial
natural products.

Natural products with metal-chelating properties have a great potential for the development of
new antibiotics. Polyphenols, quinones, 3-acyltetramic, and tetronic acids are among those natural
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products with metal-chelating properties, and some derivatives
exhibit profound activities against multidrug-resistant bacteria
(Dandawate et al., 2019). For example, natural products
containing a tetramate-moiety (Figure 1) represent an
important class of bioactive compounds with a broad
spectrum of antimicrobial activities. There are two well-known
examples, namely the fungal natural products equisetin
(Vesonder et al., 1979) and tenuazonic acid (Stickings 1959).
Tenuazonic acid is a toxic constituent from Alternaria tenuis
Auct, Phoma sorghina, and other phytopathogenic fungi (Laatsch
2012). Tenuazonic acid can complex with copper, iron, nickel,
and magnesium ions (Lebrun et al., 1985) and it has been
suggested that the biological activity of tetramates is related to
their metal-complexing ability (Steyn and Rabie 1976). The
crystal structure of copper bis (tenuazonate) monohydrate has
been determined by X-ray crystallography (Dippenaar et al.,
1977). Although enolic tautomers of tenuazonic acids exist,
their crystal structure has revealed a square-planar Cu(II)
complex with a Z-enol form in which the amide and acetyl
oxygen atoms are bound to the metal (Dippenaar et al., 1977).
The complexation of tenuazonic acid with iron(III), nickel(II),
and magnesium(II) was further investigated in 1985. Mass
spectroscopy and IR spectra provided evidence of
stoichiometry of Fe (III)(TA)3, Ni(II)(TA)2, and Mg(III)(TA)2
(Lebrun et al., 1985). The addition of FeCl3 and MgCl2 did not
reverse the toxicity to bacteria or rice cells indicating that the
activity is not due to deprivation of these essential metals (Lebrun
et al., 1985). Herein the mode-of-action remains unknown.

In comparison to the fungal tetramates, bacteria tend to
produce polycyclic tetramate macrolactams (PTM), which are
an emerging class of natural products, that includes the
antifungal HSAF produced by a Proteobacterium (Yu et al.,
2007), the antinematode geodin A from a sponge (Capon
et al., 1999), the antiprotozoal ikarugamycin from a
Streptomyces sp. (Jomon et al., 2012), and the anticancer
compounds ikarugamycins and clifednamide A from a

sponge-associated Streptomyces sp. (Dhaneesha et al.,
2019). Intriguingly, many bacterial PTM producers are
involved in a beneficial association with higher organisms.
Due to their biological activities, several of these
microorganisms have been developed as biocontrol agents
in agriculture, e.g. the HSAF-producer Lysobacter
enzymogenes (Yu et al., 2007) and Stenotrophomonas sp.,
the latter of which lives in the sugar beet rhizosphere and
produces the antifungal agent xanthobaccin A active against
the host-pathogen Pythium ultimum (Hashidoko et al., 1999).
Despite their important biological activities, the mode of
action of PTMs and other tetramates remains elusive.
PTMs harboring a tetramate moiety could potentially act as
metal chelators, however, this has, to our knowledge, not been
investigated. Hence, we aim to provide new evidence on how
the larger tetramates complex with ions and how tetramates
broadly function.

The starting point for the investigations was a genome-
mining survey on numerous bacterial genomes, which
revealed that PTMs are widespread in both Gram-positive
and Gram-negative bacteria (Supplementary Figure S1).
Among those bacteria, Actinoalloteichus hymeniacidonis, an
endosymbiont from the sponge Hymeniacidon perlevis
(Zhang et al., 2006) was found to harbor a potential PTM
biosynthetic gene cluster (Figure 2). Analysis of the gene
cluster showed the presence of putative genes coding for
siderophore interacting proteins downstream of the key
PKS-NRPS gene. This indicated that the product could be a
metallophore. We, therefore cultivated the bacterium under
iron-deficient conditions which led to the production of
putative PTMs. From the 6 L fermentation broth, we
isolated and characterized the antimicrobial component as
xanthobaccin A. Further analysis revealed that xanthobaccin
A, together with two other microbial tetramates,
ikarugamycin and equisetin, can chelate ferric iron and
reduce it to ferrous iron triggering the cascade of Fenton

FIGURE 1 | Chemical structure of tetramic acid and selected examples of natural products containing a tetramic acid unit.
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chemistry. In this paper, we describe the antimicrobial, iron-
chelating, and antimicrobial mechanisms of xanthobaccin A
together with equisetin and ikarugamycin.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Actinoalloteichus hymeniacidonisHPA 177T was purchased from
DSMZ, Germany. Bacillus subtilis ATCC6051 was obtained from
the research group of Professor Ákos T. Kovács, Department of
Biotechnology and Biomedicine, Technical University of
Denmark.

Genome Mining
To identify, annotate and analyze the secondary metabolite
biosynthetic gene clusters, NCBI BLAST (Boratyn et al., 2013)
and AntiSMASH 5.0 (Blin et al., 2019) were used in the
genome mining process of A. hymeniacidonis
(CP014859.1) and other PTM producers (Supplementary
Table S2).

Accession Numbers of Source Files Used to
Compare Unknown ftd-Like Gene Clusters
in Bacterial Genomes
The following GenBank releases are sources of ftd-like gene
clusters used in comparative analyses: Streptomyces sp.
SPB78, GenBank accession NZ_ACEU01000453; S. griseus
subsp. griseus NBRC 13350, GenBank access AP009493.1;
Lysobacter enzymogenes, GenBank access EF028635.2.

General Chemical Experimental Procedures
NMR spectra were recorded on a Bruker Advance III 800 MHz
spectrometer. Silica gel chromatography was performed on
silica gel 60 (Merck, 0.04–0.063 mm, 230–400 mesh ASTM)
and Sephadex LH20 (Pharmacia). Ikarugamycin and equisetin

were ordered from Sigma-Aldrich. Solvents of analytical
grades were ordered from VWR.

Fermentation and Isolation
To obtain sufficient amounts of metabolites for chemical
characterization, A. hymeniacidonis was cultured in a 6 L
liquid fermentation at 28°C, 200 rpm for 7 days. Slant of
spores of A. hymeniacidonis was inoculated in a 500 ml flask
containing 150 ml medium soluble starch 4 g/L, KNO3 2 g/L,
NaCl 1 g/L, MgSO4·7H2O 0.5 g/L, CaCO3 0.02 g/L, yeast extract
1 g/L. The culture broth was separated into supernatant and
mycelia parts, respectively. Both were extracted by ethyl
acetate and the organic phases were combined. Evaporation of
the organic solvent yielded 1.8 g of crude extract that was partially
purified in flash chromatography by silica gel chromatography
using gradient solutions of dichloromethane and methanol into
10 fractions F1-10. The F7 fraction containing PTMs was further
purified by semi-preparative HPLC using an XBridge RP18 HPLC
Column 10 × 250 mm, 5 μm, a flow rate of 4 ml/min, 40.0°C.
Using a 28 min multi-step method and acetonitrile and water as
mobile phases the following method was applied in semi-
preparative HPLC: at 0–5 min 10–50% acetonitrile, at 5–7 min
50–60% acetonitrile, at 7–15 min 60–80% acetonitrile, at
15–18 min 80–100% acetonitrile, and acetonitrile was
maintained at 100% for another 5 min and followed by re-
equilibration to 10% acetonitrile until 28 min. Pure compound
1 (0.8 mg) was obtained and analyzed by NMR spectroscopy.

HPLC-MS Analysis
A UHPLC–DAD–QTOF method was set up for the screening,
with an injection volume of 1 μl extract. The separation was
performed on a Dionex Ultimate 3000 UHPLC system (Thermo
Scientific, Dionex, Sunnyvale, CA, United States) equipped with a
100 × 2.1 mm, 2.6 μm, Kinetex C18 column, held at a temperature
of 40°C, and using a linear gradient system composed of A: water,
and B: acetonitrile. The flow rate was 0.4 ml min−1.

Time-of-flight detection was performed using a maXis 3G
QTOF orthogonal mass spectrometer (Bruker Daltonics, Bremen,
Germany) operated at a resolving power of ∼50,000 full width at

FIGURE 2 |Open reading frame (ORF) map of the possible xanthobaccin biosynthetic locus from A. hymeniacidonis compared to other characterized PTM clusters
in Streptomyces sp. SPB78 (frontalamides, Blodgett et al., 2010), S. griseus subsp. griseus NBRC 13350 (frontalamide-like compounds, Luo et al., 2013) and
Lysobacter enzymogenes (HSAF, Yu et al., 2007). Each ORF is color-coded to designate ftd orthologs. Those shown in purple encode for sterol desturase, red for hybrid
PKS-NRPS, orange for oxidoreductase and green for transporters. For A. hymeniacidonis (Supplementary Table S1), there are siderophore interaction-related
proteins F (siderophore-interacting protein) and G (iron-siderophore-interacting ABC transporter substrate-binding protein); H–J: proteins with unknown functions.
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half maximum FWHM. The instrument was equipped with an
orthogonal electrospray ionization source, and mass spectra were
recorded in the range m/z 100–1,000 as centroid spectra, with five
scans per second. For calibration, 1 μl of 10 mmol sodium formate
was injected at the beginning of each chromatographic run, using
the divert valve 0.3–0.4 min. Data files were calibrated post-run on
the average spectrum from this time segment, using the Bruker
HPC high-precision calibration algorithm.

For ESI+ the capillary voltage was maintained at 4,200 V, in the
spray chamber, the gas flow to the nebulizer was set to 2.4 bar, the
drying temperature was 220°C, and the drying gas flow was
12.0 L min−1. Transfer optics ion-funnel energies, quadrupole
energy were tuned on HT-2 toxin to minimize fragmentation.
For ESI− the settings were the same, except that the capillary
voltage was maintained at −2,500 V. Ion-cooler settings were:
transfer time 50 µs, radiofrequency RF 55 V peak-to-peak Vpp,
and pre-pulse storage time 5 µs.

Iron-Reducing Assay
The iron II detecting agent ferrozine was used to test the iron-
reducing activity of three tetramates, xanthobaccin A, equisetin,
and ikarugamycin. A reaction solution comprised of 10 µl test
tetramate (1 mg/ml), 10 µl ammonium iron III citrate
C6H8FeNO7 (5 mg/ml), and 20 µl aqueous ferrozine (1% wt/
vol). FeSO4 mixed with aqueous ferrozine (1% wt/vol) was
used as a positive control. Tetramate mixed with ammonium
iron III citrate was used as a negative control. All components
were dissolved in ammonium chloride buffer 1 M, pH 4.5. After
5 min reaction under darkness, the reaction mixtures were
analyzed by HPLC-HRMS.

Antimicrobial Assay
An agar diffusion assay was carried out to test the antimicrobial
activity of tetramates against Bacillus subtilis ATCC 6051.
Whatman Antibiotic assay discs of 6 mm were loaded with
20 µg pure tetramates with/without vitamin C (10 µg). The
growth medium for B. subtilis was 3 g meat extract, 5 g
(Bacto)-peptone, 5 g glucose, 1 L tap water, pH 7.3–7.5, 18 g
agar. The test plates were prepared by pouring 14 ml of L-agar as a
base layer; after solidifying, this was overlaid with 4 ml of the
inoculated seed layer. Roximycin was used as a positive antibiotic
control. Pure methanol and vitamin C were used as negative
controls. The plates were incubated at 37°C for 24 h, and
antimicrobial activity was recorded as clear zones (in mm) of
inhibition surrounding the disk. The test sample was considered
active when the zone of inhibition was greater than 6 mm. The
MIC assay was done by the broth dilution method according to
the NCCLS (National Committee for Clinical Laboratory
Standards, 1997).

RESULTS

Sponge Bacterial Endosymbiont Harbors a
Tetramate Biosynthetic Gene Cluster
Actinoalloteichus hymeniacidonis HPA 177T is a Gram-positive,
rare actinomycete isolated from the marine sponge

Hymeniacidon perlevis (Zhang et al., 2006). Our genome
mining revealed that it harbored a putative PTM BGC
(Figure 2), and the core biosynthetic PKS-NRPS protein,
which exhibited 67 and 61% similarity to HSAF and
frontalamide synthetase proteins, respectively. The individual
genes from the PTM gene cluster are listed in Supplementary
Table S1 and the proposed biosynthetic pathway is shown in
Supplementary Figure S2. The biosynthesis was proposed to be
carried out by a hybrid iterative PKS-NRPS, and a single set of the
functional domains KS-AT-DH-KR-ACP that iteratively
incorporate six malonyl-CoA to form two polyene chains,
which were further condensed with the two free amine groups
of L-ornithine via the NRPS activity. This resulted in a tetramate-
polyene intermediate, which was then cyclized via reduction by
the tailoring oxidative enzymes to form the PTM skeleton. The
potential biosynthetic gene cluster and the homologs of the A.
hymeniacidonis core PKS-NRPS protein (TL08_RS13440)
identified in the NCBI database and their phylogenetic
relationships are depicted in Supplementary Figure S1 and
Supplementary Table S2, respectively.

Fermentation, Isolation, and
Characterization of Bioactive Tetramates
From Actinoalloteichus hymeniacidonis
To test whether the tetramate gene cluster identified through
genome mining is functional in A. hymeniacidonis, we conducted
a small-scale fermentation (10 ml) and confirmed the production
of possible PTMs supported by LC-MS analyses (Supplementary
Figure S3). To characterize the active compounds, A.
hymeniacidonis was cultivated in a 6 L scale to yield a crude
extract subjected to separation by chromatography on silica gel
and Sephadex LH-20 columns, yielding pure compound 1
(0.8 mg).

Compound 1 was isolated as a major component. HRESIMS
data of 1 ([M +H]+ 511.2788, calculated for 511.2803, Δ 2.7 ppm)
suggested a molecular formula of C29H38N2O6 and implied that it
might be xanthobaccin A through AntiBase search (Laatsch,
2012). Four olefinic protons (H-8, δ 5.93; H-9, δ 5.74; H-23, δ
6.63; H-24, δ 6.97) corresponding to two double bonds were
observed. A trans and a cis configuration for the two double
bonds was deduced by the coupling constants (16.0 and 10.8 Hz
between H23/H24 and H8/H9, respectively). In the HMBC
spectrum, NH (δ 7.87, t, 5.6 Hz), H-8, and H-9 showed
correlations to C-7 (δ 166.1). The 13C NMR spectrum
indicated the presence of a tetramate unit by the presence of
signals for C-1 (δ 196.2), C-27 (δ 178.5), C-2 (δ 61.4), and C-26 (δ
99.4). The location of a carbonyl group at C-20 (δ 207.9) was
established by HMBC correlations between H-12, H-21 and H-22
and C-20. The aliphatic parts of the molecule were confirmed by
both COSY and HMBC correlations. The selected HMBC
correlations can be seen in Supplementary Figure S4. Both
1H NMR and 13C NMR spectra were identical to xanthobaccin
A reported in the literature (Hashidoko et al., 1999).
Xanthobaccin A was firstly reported from the Gram-negative
bacterium Stenotrophomonas sp. SB-K88 living in the
rhizosphere, which exhibited high activity against the plant
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fungal pathogen Pythium ultimum (Hashidoko et al., 1999). Here,
for the first time, we demonstrated that xanthobaccin A is also
produced by a Gram-positive bacterium associated with a sponge.
Together with the discovery of the cytotoxic ikarugamycins and
clifednamide A from a sponge-associated Streptomyces sp.
(Dhaneesha et al., 2019), it indicates that sponge
endosymbionts might be the true producers for those PTMs
reported from sponges, such as the antinematode geodin A
(Capon et al., 1999).

Antimicrobial Mechanisms of Tetramates
Xanthobaccin A was reported to be the principal active
metabolite of A. hymeniacidonis. The compound exhibited a
minimum inhibitory concentration (MIC) of 1 μg/ml against
Pythium ultimum (Hashidoko et al., 1999). To compare the
antibacterial activity of xanthobaccin A to other related
tetramates, equesetin and ikarugamycin, were tested against
Bacillus subtilis. All three tetramates had antimicrobial activity
against B. subtilis with MIC values of 10, 0.62, 2.5 μg/ml for
xanthobaccin A, equestin and ikarugamycin, respectively.

Next, we tested the ion-chelating activity of all three tetramates
by adding ferric citrate to the solutions of tetramates, followed by
HPLC analyses. However, it was hard to observe the
corresponding stoichiometry under acidic conditions. Thus,
commercially available tetramates equisetin and ikarugamycin
were further analyzed for their iron complex under a neutral
HPLC condition.

Through extracted ion chromatography, both
Fe(III)(equisetin)3 (m/z 1,171.5973 [M + H]+, calc. 1,171.5993
for C66H90N3O12Fe, Δ 1.7 ppm) and Fe(III)(equisetin)2 (m/z
798.3720 [M + H]+, calc. C44H59N2O8Fe 798.374, Δ 2.6 ppm)
could be observed (Figure 3). It is not surprising since there are
two different enolic tautomers of equisetin which lead to two or
three complex structures. A higher electron density on the amide
carbonyl compared to the carbonyl on the C-4 position could lead
to the observation of a dominant stoichiometry under a neutral
pH condition.

Different from equisetin, the relative larger tetramate
ikarugamycin could form Fe(III)(ikarugamycin)2 (m/z
1,008.4909 [M + H]+, calc. C58H73FeN4O8 1,008.4897, Δ
1.2 ppm) as the dominant iron complex (Figure 3).
During the submission of the manuscript, another study
(Yu et al., 2021) reported that HSAF could act as an iron-
chelator with a similar chelating pattern. Also, the HSAF-
mutant was less susceptible to oxidative stress (Yu et al.,
2021).

We hypothesized that there is a similar scenario compared
to the copper bis(tenuzonate) structure. Revisiting the former
investigation of tenuazonic acid-Fe (III) complex revealed a
similar observation, where ions derived from a loss of
fragment radicals were detected (Lebrun et al., 1985). In
the same investigation, a reduction process of Fe(III)(TA)3
to Fe(II)(TA)3 was proposed in the report (Lebrun et al.,
1985). This led us to our hypothesis that the

FIGURE 3 | ESIMS for the two different stoichiometries of equisetin-Fe(III) complexes and one ikarugamycin-Fe(III) complex. (A) [M + H]+, m/z 1,171.5993,
Fe(III)(equisetin)3; (B) [M + H]+, m/z 798.3747, Fe(III)(equisetin)2. (C) [M + H]+, m/z 1,008.4909, Fe(III)(ikarugamycin)2.
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Fenton chemistry follows the complexation of Fe(III) with
tetramates.

To further address the function of tetramates, we studied the
previous evidence fromHSAF inCandida albicans IBT656, where
a transcriptomics analysis was carried out. RNA-seq of PTM-
treated Candida albicans revealed that HSAF triggered apoptosis
via ROS-dependent pathway (Ding et al., 2016). However, the
exact mechanism remains unknown.

Nevertheless, this evidence and the iron-chelating activity
pointed to a possible link to Fenton chemistry, which
describes the oxidative degradation of organic matter by
hydrogen peroxide (H2O2) in the role of Fe2+ under acidic
conditions, first discovered by H. J. Fenton in 1894. H2O2 is
naturally produced by living organisms, from bacteria, algae
to human phagocytic cells. Although H2O2 has limited
reactivity, in the presence of Fe2+, it can initiate
a very strong reaction to produce high active hydroxyl
radicals.

To clarify the iron-reducing activities, we carried out an
iron-reducing experiment with ferrozine. As ferrozine forms a
pink complex with iron II, which can be analyzed by a UV
spectrometer, we determined the iron III reducing activity of
the three tetramates using the ferrozine method. All
tetramates showed positive results in the ferrozine test.
Upon incubation of xanthobaccin A with ammonium iron
III citrate and ferrozine, a ferrozine-iron II complex was
detected by HPLC-HRMS, which showed a characteristic
UV maximum absorption at 562 nm and formula of
C40H28FeN8O12S4 ([M + H]+ m/z 995.0203, Δ-2.5ppm)
(Supplementary Figure S5). This suggested the reduction
of iron III to iron II by xanthobaccin A. It is likely that the
complexation of xanthobaccin with iron II triggers Fenton
chemistry (Figure 4) and produces reactive hydroxyl radicals

as depicted in Figure 4. As expected, adding the radical
scavenger vitamin C reduced the antibacterial effects of
tetramates. After adding vitamin C, the inhibition zones
were reduced from 23 to 18 mm for equisetin, and 7 to
6 mm for xanthobaccin A, respectively.

DISCUSSION

Many natural metallophores play important roles as virulence
factors, signaling molecules, and regulators of oxidative stress
(Johnstone and Nolan 2015). Among those metallophores
with potent antimicrobial activities, tetramates could be
novel potential antibiotics. Tetramic acids possessing a 3-
acyl group are supposed to chelate trivalent metal ions
(Markopoulos et al., 2010; Zaghouani and Nay 2016). A
previous report demonstrated that anti-HIV (Miller et al.,
1963), antibacterial, and antitumoral agent tenuazonic acid
(Gitterman 1965) isolated from Alternaria tenuis could form
copper salts (Rosett et al., 2015). Similarly, the antibacterial
agent magnesidin from Pseudomonas magnesiorubra nov sp.
could form metal complexes with Mg, Cu, Ni, and Fe (Kohl
et al., 1974).

PTMs are an important emerging family of bioactive
compounds described solely in bacteria. Their potential as an
iron-chelator has, to our knowledge, not been investigated before,
and we here, for the first time, demonstrated that PTMs are a
group of bacterial metallophores. By an iron-reducing
experiment with ferrozine, the data support that xanthobaccin
A, equisestin, and ikarugamycin can induce Fenton chemistry,
which could be alleviated by adding the radical scavenger vitamin
C. The Fenton reaction in vivo appears to occur in the presence of
catalytic ferrous iron, leading to the production of the most

FIGURE 4 | Proposed mode-of-action of PTMs asmetallophores and antibiotics. Bacteria secrete PTMs into extracellular environment. As the diffusion occurs and
the pH lowers, PTMs start to reduce Fe3+ and initiate a Fenton’s reaction. An oxidative attack could occur, where PTMs function as antibiotics.
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reactive hydroxyl radicals in the biological system (Dizdaroglu
1991). The hydroxyl radical has a very short in vivo half-life of
approximately 10–9 s and high reactivity (Sies 1993). It can
damage virtually all types of macromolecules including
carbohydrates, nucleic acids, lipids, and amino acids (Reiter
et al., 1995). This makes it the most harmful free radical for
the organism (Reiter et al., 1997).

Interestingly, microorganisms also use Fenton chemistry for
defense, and besides tetramates, there are other examples. Co-
cultivation of the model saprotrophic basidiomycete Serpula
lacrymans with a ubiquitous terrestrial bacterium, either
Bacillus subtilis, Pseudomonas putida, or Streptomyces iranensis
could induce the production of the antibacterial compound
atromentin (Tauber et al., 2016), a group of pigments that
could trigger Fenton chemistry (Shah et al., 2015).

Since PTMs can be detected in both sugar beet rhizosphere soil
and sponges (Nakayama, 1996; Capon et al., 1999), we
hypothesize that higher organisms, can recruit bacterial PTM
producers for a chemo-defense against other organisms. Given
the metallophore and antibiotics activity, we propose that one
potential ecological role of PTMs in the natural ecosystem is to
chelate Fe3+ in the vicinity of hyphae at low pH, which restrains
the reduction of Fe3+ and initiation of Fenton chemistry on-site
(Figure 4). The piracy of neighboring Fe3+ causes the limitation
of competing organisms. A decreasing gradient of tetramates
concentration by diffusion away from the hyphae with
subsequent increase in pH will result in the dissociation of
Fe3+-tetramate chelates, thus initiating a Fenton reaction for
an oxidative attack. Given the wide existence and effective
functions of Fenton chemistry in the ecosystem, tetramates
producers might be developed as solutions for biocontrol
against crop infections.

CONCLUSION

We isolated an antimicrobial agent xanthobaccin A from a
sponge endosymbiont. For the first time, we demonstrated
that bacterial PTMs can function as metallophores.
Xanthobaccin A, equestin, and ikarugamycin exhibited
antibacterial activity against B. subtilis and the effects could be
alleviated by adding radical scavenger vitamin C. We
demonstrated that all three tetramates could trigger Fenton
chemistry, and this potentially explains why tetramates display

broad biological activity. The isolation of PTMs from a sponge
bacterial endophyte provides indirect evidence that the sponge-
associated bacteria could be the true producers of sponge-derived
PTMs. We propose that tetramates may function as a natural
defense of niches by growth inhibition of other microbes via
Fenton Chemistry. They could be potentially developed as
effective antibiotics against drug-resistant pathogens (Samuni
et al., 1983).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LD designed the experiments, S-DZ, AH, MB, and YG carried out
lab experiment, TO commented on the manuscript, LD, S-DZ,
and LG wrote the manuscript.

FUNDING

This work was supported by the Danish National Research
Foundation DNRF137 for the Center for Microbial Secondary
Metabolites CeMiSt.

ACKNOWLEDGMENTS

We thank Kasper Enemark-Rasmussen and Charlotte Held
Gotfredsen for NMR measurements and Aaron John Christian
Andersen for MS measurements.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fchem.2021.772858/
full#supplementary-material

REFERENCES

Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., et al. (2019).
AntiSMASH 5.0: Updates to the Secondary Metabolite Genome Mining
Pipeline. Nucleic Acids Res. 47, W81–W87. doi:10.1093/nar/gkz310

Blodgett, J. A. V., Oh, D.-C., Cao, S., Currie, C. R., Kolter, R., and Clardy, J. (2010).
Common Biosynthetic Origins for Polycyclic Tetramate Macrolactams from
Phylogenetically Diverse Bacteria. Proc. Natl. Acad. Sci. 107, 11692–11697.
doi:10.1073/pnas.1001513107

Boratyn, G. M., Camacho, C., Cooper, P. S., Coulouris, G., Fong, A., Ma, N., et al.
(2013). BLAST: a More Efficient Report with Usability Improvements. Nucleic
Acids Res. 41, W29–W33. doi:10.1093/nar/gkt282

Capon, R, J., Skene, C., Lacey, E., Gill, J. H., Wadsworth, D., and Friedel, T. (1999).
Geodin A Magnesium Salt: A Novel Nematocide from a Southern Australian
marine Sponge. Geodia. J. Nat. Prod. 62, 1256–1259. doi:10.1021/np990144v

Cooper, M. A., and Shlaes, D. (2011). Fix the Antibiotics Pipeline. Nature 472, 32.
doi:10.1038/472032a

Dandawate, P., Padhye, S., Schobert, R., and Biersack, B. (2019). Discovery of
Natural Products with Metal-Binding Properties as Promising Antibacterial
Agents. Expert Opin. Drug Discov. 14, 563–576. doi:10.1080/
17460441.2019.1593367

Dhaneesha, M., Hasin, O., Sivakumar, K. C., Ravinesh, R., Naman, C. B.,
Carmeli, S., et al. (2019). DNA Binding and Molecular Dynamic Studies
of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer
Activity Isolated from a Sponge-Associated Streptomyces Zhaozhouensis

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7728587

Ding et al. PTMs are Bioactive Metallophores

62

https://www.frontiersin.org/articles/10.3389/fchem.2021.772858/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2021.772858/full#supplementary-material
https://doi.org/10.1093/nar/gkz310
https://doi.org/10.1073/pnas.1001513107
https://doi.org/10.1093/nar/gkt282
https://doi.org/10.1021/np990144v
https://doi.org/10.1038/472032a
https://doi.org/10.1080/17460441.2019.1593367
https://doi.org/10.1080/17460441.2019.1593367
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Subsp. Mycale Subsp. Nov. Mar. Biotechnol. 21, 124–137. doi:10.1007/
s10126-018-9866-9

Ding, Y., Li, Z., Li, Y., Lu, C., Wang, H., Shen, Y., et al. (2016). HSAF-induced
Antifungal Effects in Candida Albicans through ROS-Mediated Apoptosis. RSC
Adv. 6, 30895–30904. doi:10.1039/C5RA26092B

Dippenaar, A., Holzapfel, C. W., and Boeyens, J. C. A. (1977). Crystal Structure of
Copper Bis(tenuazonate) Monohydrate. J. Cryst. Mol. Struct. 7, 189–197.
doi:10.1007/BF01371471

Dizdaroglu, M. (1991). Chemical Determination of Free Radical-Induced Damage
to DNA. Free Radic. Biol. Med. 10, 225–242. doi:10.1016/0891-5849(91)
90080-M

Gitterman, C. O. (1965). Antitumor, Cytotoxic, and Antibacterial Activities of
Tenuazonic Acid and Congeneric Tetramic Acids. J. Med. Chem. 8, 483–486.
doi:10.1021/jm00328a015

Hashidoko, Y., Nakayama, T., Homma, Y., and Tahara, S. (1999). Structure
Elucidation of Xanthobaccin A, a New Antibiotic Produced from
Stenotrophomonas Sp. Strain SB-K88. Tetrahedron Lett. 40, 2957–2960.
doi:10.1016/S0040-4039(99)00336-6

Johnstone, T. C., and Nolan, E. M. (2015). Beyond Iron: Non-classical Biological
Functions of Bacterial Siderophores. Dalt Trans. 44, 6320–6339. doi:10.1039/
c4dt03559c

Jomon, K., Kuroda, Y., Ajisaka, M., and Sakai, H. (2012). A New Antibiotic,
Ikarugamycin. J. Antibiot. 25, 271–280. doi:10.7164/antibiotics.25.271

Kohl, H., Bhat, S. V., Patell, J. R., Gandhi, N. M., Nazareth, J., Divekar, P. V., et al.
(1974). Structure of Magnisidin, a New Magnesium-Containing Antibiotic
from PseudomonasMagnesiorubra. Tetrahedron Lett. 15, 983–986. doi:10.1016/
S0040-4039(01)82385-6

Laatsch, H. (2012). Antibase Version 4.0 - the Natural Compound Identifier. KGaA,
Weinheim: Wiley VCH.

Lebrun, M. H., Duvert, P., Gaudemer, F., Gaudemer, A., Deballon, C., and Boucly,
P. (1985). Complexation of the Fungal Metabolite Tenuazonic Acid with
Copper (II), Iron (III), Nickel (II), and Magnesium (II) Ions. J. Inorg.
Biochem. 24, 167–181. doi:10.1016/0162-0134(85)85001-7

Luo, Y., Huang, H., Liang, J., Wang, M., Lu, L., Shao, Z., et al. (2013).
Activation and Characterization of a Cryptic Polycyclic Tetramate
Macrolactam Biosynthetic Gene Cluster. Nat. Commun. 4, 2894.
doi:10.1038/ncomms3894

Markopoulos, J., Athanasellis, G., and Igglessi-Markopoulou, O. (2010). Tetramic
and Tetronic Acids as Scaffolds in Bioinorganic and Bioorganic Chemistry.
Bioinorg Chem. Appl., 2010, 315056. doi:10.1155/2010/315056

Miller, F. A., Rightsel, W. A., Sloan, B. J., Ehrlich, J., French, J. C., Bartz, Q. R., et al.
(1963). Antiviral Activity of Tenuazonic Acid. Nature 200, 1338–1339.
doi:10.1038/2001338a0

Nakayama, T. (1996). Chemical Study on Biological Control of Sugar Beet
Damping-Off Disease (Jpn). Hokkaido: Hokkaido University.

National Committee for Clinical Laboratory Standards (1997). Methods for
Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow
Aerobically, Approved Standard. NCCLS Document M7-A4. 4th ed.
(Villanova, PA: Clinical and Laboratory Standards Institute, National
Committee for Clinical Laboratory Standards), 26.

Newman, D. J., and Cragg, G.M. (2020). Natural Products as Sources of NewDrugs
over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 83,
770–803. doi:10.1021/acs.jnatprod.9b01285

Reiter, R. J., Carneiro, R. C., and Oh, C. S. (1997). Melatonin in Relation to Cellular
Antioxidative Defense Mechanisms. Horm. Metab. Res. 29, 363–372.
doi:10.1055/s-2007-979057

Reiter, R. J., Melchiorri, D., Sewerynek, E., Poeggeler, B., Barlow-Walden, L.,
Chuang, J., et al. (1995). A Review of the Evidence Supporting Melatonin’s Role
as an Antioxidant. J. Pineal Res. 18 (1), 1–11. doi:10.1111/j.1600-
079X.1995.tb00133.x

Rosett, T., Sankhala, R. H., Stickings, C. E., Taylor, M. E. U., and Thomas, R. (2015).
Studies in the Biochemistry of Micro-organisms. 103. Metabolites of Alternaria
Tenuis Auct.: Culture Filtrate Products. Biochem. J. 67 (3), 390–400.
doi:10.1042/bj0670390

Samuni, A., Aronovitch, J., Godinger, D., Chevion, M., and Czapski, G. (1983). On
the Cytotoxicity of Vitamin C and Metal Ions: A Site-specific Fenton
Mechanism. Eur. J. Biochem. 137, 119–124. doi:10.1111/j.1432-
1033.1983.tb07804.x

Shah, F., Schwenk, D., Nicolás, C., Persson, P., Hoffmeister, D., and Tunlid, A.
(2015). Involutin Is an Fe3+ Reductant Secreted by the Ectomycorrhizal Fungus
Paxillus Involutus during Fenton-based Decomposition of Organic Matter.
Appl. Environ. Microbiol. 81, 8427–8433. doi:10.1128/aem.02312-15

Sies, H. (1993). Strategies of Antioxidant Defense. Eur. J. Biochem. 215, 213–219.
doi:10.1111/j.1432-1033.1993.tb18025.x

Steyn, P. S., and Rabie, C. J. (1976). Characterization of Magnesium and Calcium
Tenuazonate from Phoma Sorghina. Phytochemistry 15, 1977–1979.
doi:10.1016/S0031-9422(00)88860-3

Stickings, C. E. (1959). Studies in the Biochemistry of Micro-organisms. 106.
Metabolites of Alternaria Tenuis auct.: the Structure of Tenuazonic Acid.
Biochem. J. 72, 332–340. doi:10.1042/bj0720332

Tauber, J. P., Schroeckh, V., Shelest, E., Brakhage, A. A., and Hoffmeister, D.
(2016). Bacteria Induce Pigment Formation in the Basidiomycete Serpula
lacrymans. Environ. Microbiol. 18, 5218–5227. doi:10.1111/1462-2920.13558

Vesonder, R. F., Tjarks, L. W., Rohwedder, W. K., Burmeister, H. R., and Laugal,
J. A. (1979). Equisetin, an Antibiotic from Fusarium Equiseti NRRL 5537,
Identified as a Derivative ofN-Methyl-2,4-Pyrollidone. J. Antibiot. 32, 759–761.
doi:10.7164/antibiotics.32.759

Yu, F., Zaleta-Rivera, K., Zhu, X., Huffman, J., Millet, J. C., Harris, S. D., et al.
(2007). Structure and Biosynthesis of Heat-Stable Antifungal Factor (HSAF), a
Broad-Spectrum Antimycotic with a Novel Mode of Action.Antimicrob. Agents
Chemother. 51, 64–72. doi:10.1128/AAC.00931-06

Yu, L., Li, H., Zhou, Z., Liu, F., and Du, L. (2021). An Antifungal Polycyclic
Tetramate Macrolactam, Heat-Stable Antifungal Factor (HSAF), Is a Novel
Oxidative Stress Modulator in Lysobacter Enzymogenes. Appl. Environ.
Microbiol. 87, e03105. doi:10.1128/AEM.03105-20

Zaghouani, M., and Nay, B. (2016). 3-Acylated Tetramic and Tetronic Acids as
Natural Metal Binders: Myth or Reality? Nat. Prod. Rep. 33, 540–548.
doi:10.1039/c5np00144g

Zhang, H., Zheng, W., Huang, J., Luo, H., Jin, Y., Zhang, W., et al. (2006).
Actinoalloteichus Hymeniacidonis Sp. nov., an Actinomycete Isolated from the
marine Sponge Hymeniacidon Perleve. Int. J. Syst. Evol. Microbiol. 56,
2309–2312. doi:10.1099/ijs.0.64217-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article or claim that may be made by its manufacturer is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ding, Zhang, Haidar, Bajimaya, Guo, Larsen and Gram. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7728588

Ding et al. PTMs are Bioactive Metallophores

63

https://doi.org/10.1007/s10126-018-9866-9
https://doi.org/10.1007/s10126-018-9866-9
https://doi.org/10.1039/C5RA26092B
https://doi.org/10.1007/BF01371471
https://doi.org/10.1016/0891-5849(91)90080-M
https://doi.org/10.1016/0891-5849(91)90080-M
https://doi.org/10.1021/jm00328a015
https://doi.org/10.1016/S0040-4039(99)00336-6
https://doi.org/10.1039/c4dt03559c
https://doi.org/10.1039/c4dt03559c
https://doi.org/10.7164/antibiotics.25.271
https://doi.org/10.1016/S0040-4039(01)82385-6
https://doi.org/10.1016/S0040-4039(01)82385-6
https://doi.org/10.1016/0162-0134(85)85001-7
https://doi.org/10.1038/ncomms3894
https://doi.org/10.1155/2010/315056
https://doi.org/10.1038/2001338a0
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.1055/s-2007-979057
https://doi.org/10.1111/j.1600-079X.1995.tb00133.x
https://doi.org/10.1111/j.1600-079X.1995.tb00133.x
https://doi.org/10.1042/bj0670390
https://doi.org/10.1111/j.1432-1033.1983.tb07804.x
https://doi.org/10.1111/j.1432-1033.1983.tb07804.x
https://doi.org/10.1128/aem.02312-15
https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
https://doi.org/10.1016/S0031-9422(00)88860-3
https://doi.org/10.1042/bj0720332
https://doi.org/10.1111/1462-2920.13558
https://doi.org/10.7164/antibiotics.32.759
https://doi.org/10.1128/AAC.00931-06
https://doi.org/10.1128/AEM.03105-20
https://doi.org/10.1039/c5np00144g
https://doi.org/10.1099/ijs.0.64217-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Diaportones A–C: Three New
Metabolites From Endophytic Fungus
Diaporthe foeniculina BZM-15
Fenghua Kang1,2†, Xiuxiang Lu3†, Sha Zhang1,2, Dekun Chen1,2, Min Kuang1,2,
Weiwei Peng1,2, Jianbing Tan1,2, Kangping Xu1,2, Zhenxing Zou1,2* and Haibo Tan1,2,3*

1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China, 2Hunan Key Laboratory of Diagnostic
and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, China, 3South China Botanical
Garden, Chinese Academy of Sciences, Guangzhou, China

Phytochemical investigation of Diaporthe foeniculina BZM-15 led to one new
c-butyrolactone derivative, diaportone A (1), one cyclopentenone derivative, diaportone
B (3), and onemonoterpene derivative, diaportone C (5), along with six known compounds
(2, 4, and 6–9). Their structures as well as the absolute configurations were characterized
by means of NMR, HRESIMS, and ECD spectroscopy and quantum chemistry calculation,
respectively. Furthermore, all compounds were evaluated for their cytotoxic activity and
antibacterial activity, and compounds 7 and 8 displayed significant antiproliferative effects
on three human cancer cell lines (SF-268, MCF-7, and HepG2) with IC50 values ranging
from 3.6 to 15.8 μM.

Keywords: endophytic fungus, Diaporthe foeniculina, Leptospermum brachyandrum, diaportone, structure
elucidation, cytotoxicity

INTRODUCTION

Fungi are prolific producers of bioactive secondary metabolites and have contributed to
improvements in human and animal health in spectacular and indispensable ways (Bills and
Gloer, 2016; El-Elimat et al., 2021). They are ubiquitous in nature and often provide nutrients or
protection for the host (Wani et al., 2015). Many endophytic fungi produce compounds with a novel
structure and specific bioactivity for their long period of living in host tissues, which have been
potential resources for novel compounds and new drugs (Jia et al., 2016; Kaul et al., 2012).
Leptospermum brachyandrum is a famous ornamental and medicinal plant that belongs to the
Myrtaceae family. In our previous research, three endophytes were isolated from this plant, such as
Diaporthe foeniculina, Eutypella scoparia, and Rhytidhysteron sp., and a number of novel natural
products with antibacterial or cytotoxic activity have been discovered from these endophytes (Zhang
et al., 2021a; Zhang et al., 2021b; Zhang et al., 2020; Zhang et al., 2021). Simultaneously, five new 2-
pyrones were isolated from D. foeniculina (Yu et al., 2021). With the aim of seeking new bioactive
natural products from medicinal plant endophytes, chemical investigation of strain D. foeniculina
BZM-15 was further researched and afforded to find three new metabolites, including one
c-butyrolactone derivative, diaportone A (1), one cyclopentenone derivative, diaportone B (3),
and one monoterpene, diaportone C (5), along with six known compounds, colletolides A (2) (Li
et al., 2019), phomotenone (4) (Ahmed et al., 2011), altiloxin B (6) (Hemberger et al., 2013),
dankasterone A (7) (Jiao et al., 2015), 14α-hydroxyergosta-4,7,22-triene-3,6-dione (8) (Liu et al.,
2018), and fortisterol (9) (Kitchawalitet al., 2014) (Figure 1). Herein, this report describes the
isolation, structural elucidation, and biological activity of compounds 1–9.
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MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured using an Anton Paar MCP-500
spectropolarimeter (Anton Paar, Graz, Austria). The NMR
spectra were recorded on a Bruker Avance-500 spectrometer
(Bruker Corporation, Fällanden, Switzerland) with TMS as an
internal reference. Experimental ECD spectra in MeOH were
acquired in a quartz cuvette of 1 mm optical path length on an
Applied Photophysics Chirascan spectrometer. HRESIMS
spectra were obtained in a Thermo MAT95XP high-
resolution mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany). Preparative HPLC was performed on an
Agilent 1260 Infinity system equipped with a DAD detector
using a preparative YMC ODS C18 column (20 × 250 mm,
5 μm). Column chromatography was performed using silica
gel (200–300 mesh, Qingdao Marine Chemical Inc., Qingdao,
China) and Sephadex LH-20 gel (Pharmacia Fine Chemical Co.
Ltd., Sweden). Thin-layer chromatography (TLC) was carried
out on silica gel plates (Merck KGaA, Darmstadt, Germany)
using various solvent systems. All solvents were purchased from
Guangzhou Chemical Reagent Company, Ltd. (Guangzhou,
China).

Cultivation and Culture Extraction
The fungus D. foeniculina BZM-15 was isolated from the plant
Leptospermum brachyandrum, which was collected from South
China Botanical Garden (SCBG), Chinese Academy of Sciences,
China, in September 2016. The strain was identified as D.
foeniculina according to the sequence analysis of rDNA ITS
(internal transcribed spacer) region, which has been submitted
to GenBank with the accession number of MN788609. The strain

was deposited in the Laboratory of Natural Product Medicinal
Chemistry, SCBG.

The fungus D. foeniculina BZM-15 was incubated in 200 ml of
potato dextrose broth at 30°C on a rotary shaker (120 rpm) for
7 days to acquire the seed broth. Large-scale fermentation was
carried out in Erlenmeyer flasks (16 × 3 L); each contained rice
(200 g) and distilled water (300 ml), which were autoclaved at
121 °C for 25 min. After cooling at room temperature, seed broth
was added to those Erlenmeyer flasks, which were fermented for
30 days at 28°C. After cultivation, the obtained mycelial solid
medium was extracted with EtOAc (three times, 24 h for every
time) at room temperature, and the extract solution was
concentrated in vacuo to receive a crude extract (50 g).

Isolation of Compounds 1–9
The crude extract was fractionated by silica gel column
chromatography ((CC) (PE-EtOAc v/v, 100:1-0:100)) to afford six
main fractions (Fr.1–Fr.6). Fr.5 (7.22 g) was divided into ODS CC
and eluted with MeOH-H2O (v/v, 40–100%) to give six subfractions
(Fr.5-1 to Fr.5-6). Fr.5-2 (1.94 g) was separated by Sephadex LH-20
CC, eluting with CHCl3-MeOH (v/v, 1:1) to provide five subfractions
(Fr.5-2-1 to Fr.5-2-5). Fr.5-2-2 (1.23 g) was chromatographed using
CC on silica gel, eluted with CHCl3-MeOH (v/v, 100:0-0:100), and
then further purified by semipreparative HPLC with CH3CN-H2O
(40: 60) to give compound 5 (4.0 mg). Compound 6 (5.3 mg) was
obtained from Fr.5-2-3 on a semipreparative HPLC with CH3CN-
H2O (35:65). Fr.5-3 (405.0 mg) was separated by Sephadex LH-20
CC, eluting with CHCl3-MeOH (v/v, 1:1) to provide five subfractions
(Fr.5-3-1 to Fr.5-3-5). Fr.5-3-1 (211.4 mg) was isolated by column
chromatography on silica gel and eluted with CHCl3-MeOH (v/v, 10:
1-0:1) to get three fractions (Fr.5-3-1-1 to Fr.5-3-1-3). Fr.5-3-1-2
(11.4 mg) was then subjected to semipreparative HPLC with

FIGURE 1 | Chemical structures of compounds 1–9.
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CH3CN-H2O (v/v, 50:50) to afford compounds 1 (8.0 mg) and 2
(6.1 mg). Fr.5-3-2 (80.3 mg) was separated by semipreparative HPLC
withCH3CN-H2O (v/v, 50:50) to afford compounds 3 (3.9 mg) and 4
(4.3 mg).

Fr.3 (3.2 g) was subjected to CC on silica gel eluted with a
gradient system of PE-EtOAc (v/v, 20:0–0:100) to afford five
fractions (Fr.3-1 to Fr.3-5). Fr.3-2 (890 mg) was separated on a
Sephadex LH-20 column with MeOH and then separated by
preparative HPLC using CH3CN-H2O (80:20) to provide
compounds 7 (5.8 mg) and 9 (4.4 mg). Fr.3-3 (635 mg) was
purified by silica gel CC and eluted with a gradient system of
CH2Cl2-MeOH (v/v, 100:0–0:100) to provide compound 8
(10.3 mg).

Diaportone A (1): colorless oil; [α]25D – 3.7 (c 1.0, MeOH); UV
(MeOH): λmax (log ε): 238 (3.27) nm; IR ]max: 3,325 and 1,635,
667 cm−1; HRESIMS: m/z 305.1361 [M + Na] + (calcd for
C15H22NaO5, 305.1359). 1H (500 MHz); and 13C (125 MHz)
NMR data, see Table 1.

Diaportone B (3): yellow oil; [α]25D + 14.5 (c 0.8, MeOH); UV
(MeOH): λmax (log ε): 236 (3.07) nm; IR ]max: 3,415, 2,960, 2,931,
2,872, 1,681, 1,639, 1,456, 1,381, 1,336, 1,172, and 1,026 cm−1;
HRESIMS: m/z 205.1206 [M + Na] + (calcd for C11H18NaO2,
205.1199). 1H (500 MHz); and 13C (125 MHz) NMR data, see
Table 2.

Diaportone C (5): white solid; [α]25D + 10.3 (c 0.5, MeOH); UV
(MeOH): λmax (log ε): 200 (2.59) nm, 273 (1.39) nm; IR ]max:
3,431, 1962, 2,873, 1708, 1,458, 1,375, 1,259, 1,182, 1,130,
1032,999,945, 758, and 682 cm−1; HRESIMS: m/z 191.1051 [M
+ Na] + (calcd for C10H16NaO2, 191.1043).

1H (500 MHz); and
13C (125 MHz) NMR data, see Table 2.

ECD Calculation Methods
The ECD spectra of compounds 1, 3, and 5 were calculated by
using the Gaussian09 package (Frisch et al., 2016). Each of
their configuration was optimized at the B3LYP-D3(BJ)/
TZVP (IEFPCM) level of theory. The theoretic ECD
spectra were calculated on the mPW1PW91/6-311G*
(IEFPCM) level of theory and Boltzmann average was
calculated for the spectra according to Gibbs free energy.
SpecDis v1.71 was used to simulate an ECD curve with a
sigma/gamma value of 0.3 eV2 (Bruhn et al., 2013). The
calculated ECD curves of compounds 1 and 3 were red
shifted and blue shifted by 5 nm, respectively.

Antibacterial Assay
Antibacterial activity of all compounds against MRSA (JCSC
3063) and E. coli (ATCC 8739) was tested by the broth
macrodilution method on 96-well plates according to the CLSI
recommendation (Li et al., 2014). Vancomycin (MIC � 1.25 µg/
ml) was used as a positive control.

Cytotoxicity Assay
The cytotoxicity of all compounds against three human tumor
cell lines, SF-268 (CNS cancer), MCF-7 (breast cancer), and
HepG2 (hepatoma cancer), and normal cell line LX-2 was
tested using the MTT assay. Adriamycin was used as a
positive control. All cells were seeded into 96-well plates at
5 × 104 cells/ml and incubated at 37°C under a 5% CO2

atmosphere for 24 h. Then, the tested compounds were added.
After 72 h, MTT solution was added into each well, which was
further incubated. The cell-free supernatant was removed and
formazan crystals were subsequently dissolved in DMSO. Optical
density (OD) was recorded at 490 nm on a microplate reader to
calculate the IC50 values.

RESULTS AND DISCUSSION

Compound 1 was isolated as colorless oil and assigned the
molecular formula C15H22O5 as inferred from its HRESIMS
ion peak at m/z 305.1361 [M + Na] + (calcd 305.1359 for
C15H22NaO5). The 1H NMR spectral data (Table 1), in
combination with the HSQC spectrum, displayed two ester
carbonyl groups [δC 178.5 (C-2) and 172.2 (C-1′)], one
conjugated diene [δH 5.92 (H-6), 6.48 (H-7), and 6.10 (H-8);
δC 133.3 (C-6), 126.4 (C-7), 126.1 (C-8), and 139.2 (C-9)], two
oxygenated methines [δH 5.25 (H-10) and 3.80 (H-4); δC 76.4 (C-
10) and 82.5 (C-4)], one methine [δH 2.48 (H-3); δC 42.6 (C-3)],
one oxygen quaternary carbon [δC 86.6 (C-5)], and five methyl
groups [δH 1.22 (H-11), 1.51 (H-12), 1.76 (H-13), 1.31 (H-14),

TABLE 1 | 1H (500 MHz) and 13C (125 MHz) NMR spectral data of compound 1 in
CD3OD.

No δH (J
in Hz)

δC, type No δH (J
in Hz)

δC, type

2 — 178.5, C 10 5.25, q (7.0) 76.4, CH
3 2.48, s 42.6, CH 11 1.22, d (7.0) 12.4, CH3

4 3.80, d (10.5) 82.5, CH 12 1.51, s 25.2, CH3

5 — 86.6, C 13 1.76, s 12.7, CH3

6 5.92, d (15.5) 133.3, CH 14 1.34, d (6.5) 19.4, CH3

7 6.48, dd (15.5, 10.5) 126.4, CH 1′ — 172.2, C
8 6.10, d (10.5) 126.1, CH 2′ 2.03, s 21.1, CH3

9 — 139.2, C — — —

TABLE 2 | 1H (500 MHz) and 13C (125 MHz) NMR spectral data of compounds 3
and 5 in acetone-d6.

No 3 5

δH (J in Hz) δC, type δH (J in Hz) δC, type

1 — 212.2, C — 210.6, C
2 — 134.4, C 1.88, d (17.0) 49.1, CH2

2.36, m
3 — 173.7, C — 71.7, C
4 2.08, m 34.8, CH2 1.97, dd (7.5, 4.0) 38.4, CH

2.98, m
5 2.25, m 39.9, CH — 46.1, C
6 4.75, dd (8.0, 5.5) 69.5, CH 1.88, m 27.2, CH
7 1.53, m 38.7 CH2 0.95, d (7.0) 20.0, CH3

1.69, m
8 1.35, m 19.6, CH2 0.91, d (7.0) 19.6, CH3

1.45, m
9 0.93, t (7.0) 14.6, CH3 1.37, s 29.9, CH3

10 1.65, s 8.7, CH3 1.10, ddd (7.5, 5.0, 1.5) 16.6, CH2

1.36, dd (5.0, 4.5)
11 1.08, d (7.5) 17.2, CH3 — —
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and δH 2.03 (H-2′); δC 12.4 (C-11), 25.2 (C-12), 12.7 (C-13), 19.4
(C-14), and 21.1 (C-2′)].

Compared to the NMR spectra of compound 2 (Table 1), they
shared a typical c-butyrolactone ring bearing two methyl groups
at C-3 and C-5 and a hydroxyl group at C-4. However, the spectra
of compound 1 exhibited additional signals for the acetyl group,
which was connected with 10-OH to form an ester. This
conclusion can be proved by the correlations of H-10 with C-
1′ in the HMBC spectrum. Thus, the planar structure of
compound 1 was elucidated, as shown in Figure 1.

The relative configuration was determined by NOESY
spectrum and coupling constants. The NOE correlations of
H-11/H-4/H-12 indicated that 11-H3, 4-H, and 12-H3 were
on the same side of the lactone ring. A conjugated diene moiety
was determined by the large coupling constant J � 15.5 Hz

between H-6 and H-7 that was trans-oriented and J � 10.5 Hz
between H-7 and H-8 that was cis-oriented. In addition, the E
confirmation of 8,9-diene was deduced from the NOE cross
peaks of H-6/H-8/H-10 and H3-13/H-7 (Figure 2). The chiral
HPLC analysis of compound 1 revealed that it should be
optically pure. The calculated ECD spectrum was consistent
with its experimental ECD spectrum, suggesting the absolute
configuration of compound 1 as 3R,4R,5R,10S (Figure 3). Thus,
the structure of compound 1 was determined as a new
c-butyrolactone derivative with 6,8-hexadien-1-ol,1-acetate
side chain and was named diaportone A. Notably, diaportone
A possess conjugated double bond, which might be light
sensitive. Moreover, it might be an artificial compound
generated from the known compound 2 through acylation,
although much more evidence was needed.

FIGURE 2 | 1H-1H COSY, Key HMBC, and NOESY correlations of compounds 1, 3, and 5.

FIGURE 3 | Experimental and calculated ECD spectra of compound 1. FIGURE 4 | Experimental and calculated ECD spectra of compound 3.
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Compound 3 was isolated as yellow oil. It was determined to
have a molecular formula of C11H18O2 by a combination of its
HRESIMS ion peak atm/z 183.1388 [M +H] + (calcd 182.1307 for
C11H19O2). The

1H and 13C NMR spectroscopic data (Table 2) of
compound 3 exhibited characteristic signals assignable to a
conjugated ketone carbonyl, a tetrasubstituted olefin, two
methines (one oxygenated), three methylene groups, and three
methyl groups. A detailed analysis of the NMR data exhibited that
compound 3 was similar to the known compound 4 (Ahmed
et al., 2011) (Table 2) with the only difference in compound 3
being the substitution position of CH3-11, which was deduced
based on the HMBC cross peaks of H3-11 (δH 1.08)/C-1 (δC
212.2), C-5 (δC 39.9), and C-4 (δC 34.8) (Figure 2). The absolute
configuration of compound 3 was confirmed by the similarity
between the calculated ECD curve of 5S,6S and its experimental
ECD spectrum (Figure 4). Therefore, the structure of compound
3, diaportone B, was defined as shown.

Compound 5 was isolated as a white solid. The molecular
formula C10H16O2 was determined by the HRESIMS ion peak at
m/z 169.1224 [M + H] + (calcd 169.1229 for C10H17O2). The 1D
NMR data (Table 2) of compound 5 exhibited three methyl
groups, two methylene groups, two methines, two sp3

nonprotonated carbons (one oxygenated), and one ketone
carbonyl. Comparison of NMR data with those of
dihydroxysabinane (Lin et al., 2009) revealed a high degree of
similarity skeleton, where the only obvious difference is in the
presence of a carbonyl group at C-1 in compound 5 instead of a
hydroxyl group in dihydroxysabinane. This deduction was
confirmed by the HMBC correlations of C-1 with H-2 (δH
1.88 and 2.36), H-6 (δH 1.88), and H-10 (δH 1.36 and 1.10)
and obvious low-field chemical shift of C-1 (δC 210.9) (Figure 2).

The relative configuration of compound 5 was determined by
the analysis of ROESY spectral data (Figure 2). The methylene
(CH2-10) and the hydroxyl groups at the chiral carbons (C-3)
were assigned as β-oriented and the methyl groups (CH3-9) and
the methine (CH-6) should be α-oriented due to the presence of
the ROESY correlation of H-4 with H3-9. The above data

supported the presence of two possible enantiomers
(3S,4R,5R)-5 and (3R,4S,5S)-5. To determine the absolute
configuration of compound 5, the ECD calculation was
performed. Its experimental ECD spectrum of compound 5
was in good agreement with the calculated ECD spectrum for
3S,4R,5R (Figure 5). Therefore, the structure of compound 5 was
determined and given the trivial name diaportone C.

Finally, the cytotoxic activities of all compounds inhibited
three human cancer cell lines (SF-268, MCF-7, and HepG2), and
antibacterial activities against MRSA and E. coli were evaluated.
As show inTable 3, compounds 7 and 8 showed different potency
of cytotoxicity against the three cell lines, with IC50 values ranging
from 3.6 to 15.8 μM, whereas they were not active on the normal
cell line LX-2. Unfortunately, none of the compounds showed any
antibacterial activities against MRSA and E. coli at a
concentration of 100 µg/ml.

CONCLUSION

A phytochemical investigation into D. foeniculina BZM-15
resulted in the isolation and structural elucidation of three
undescribed and six known compounds. Their structures
including absolute configurations were determined by
extensive physicochemical and spectroscopic analysis, as well
as by ECD calculation. Cytotoxicity assays found that
compounds 7 and 8 showed good cell inhibition against three
human cancer cell lines (SF-268, MCF-7, and HepG2). This result
enriched the study on the chemical constituents of D. foeniculina
and validated that endophytic fungi remained a rich source of
structurally/biologically new compounds.
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Acorenone C: A New
Spiro-Sesquiterpene from a
Mangrove-Associated Fungus,
Pseudofusicoccum sp. J003
Shujie Jia, Xiangdong Su, Wensi Yan, Meifang Wu, Yichuang Wu, Jielang Lu, Xin He, Xin Ding
and Yongbo Xue*

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China

Mangrove-derived endophytes are rich in bioactive secondary metabolites with a variety of
biological activities. Recently, a fungus Pseudofusicoccum sp. J003 was first isolated by
our research group from mangrove species Sonneratia apetala Buch.-Ham. The
subsequent chemical investigation of the methanol extract of the culture broth of this
strain has led to the isolation of a new sesquiterpenoid named acorenone C (1), two
alkaloids (2–3), four phenolic compounds (4–7), and four steroid derivatives (8–11). The
new structure of 1 was established by extensive spectroscopic analysis, including 1D, 2D
NMR spectroscopy, and HRESIMS. Its absolute configuration was elucidated by
experimental ECD and ECD calculation. The in vitro AChE inhibitory, anti-inflammatory,
and cytotoxic activities of the selected compounds were evaluated. The results showed
that compound 1 showed mild AChE inhibitory activity, with an inhibition rate of 23.34% at
the concentration of 50 μM. Compound 9 exerted a significant inhibitory effect against
nitric oxide (NO) production in LPS-stimulated RAW 264.7 mouse macrophages, with an
inhibition rate of 72.89% at the concentration of 25 μM, better than that of positive control
L-NMMA. Compound 9 also displayed obvious inhibition effects on the growth of two
human tumor cell lines, HL-60 and SW480 (inhibition rates 98.68 ± 0.97% and 60.40 ±
4.51%, respectively). The antimicrobial activities of the compounds (1–11) against
Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas
aeruginosa were also tested; however, none of them showed antimicrobial activities.

Keywords: Pseudofusicoccum sp., Sonneratia apetala Buch.-Ham., sesquiterpenoid, anti-inflammation,
acetylcholinesterase

INTRODUCTION

The great diversity of creatures in the ocean was found to be a rich reservoir of candidates for drug
development (Sigwart et al., 2021). To date, more than 35,000 marine natural products have already
been discovered, which have a higher rate of successful drug discovery than other naturally occurring
compounds (Lyu et al., 2021; Sigwart et al., 2021). Mangroves are an intertidal wetland ecosystem
spreading across low-latitude tropical and subtropical regions, which are found to have potential to
control coastal erosion and protect coastal land. The ingredients produced bymangrove plant species
may play a role in helping them survive from universally unfavorable factors (Bandaranayake, 2002).
Many types of natural products have been identified from mangroves and their endophytes,
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including heterocyclic compounds, benzofurans, alkaloids, lignin,
polysaccharides, fatty acids, lipids, anthocyanins, flavonoids,
phenols and quinones, tannins, limonin, terpenoids, steroids,
and saponins (Carroll et al., 2020).

Recently, our research group aimed at structurally diverse
natural products from the mangroves and their endophytes for
pharmaceutical drug discovery. As a small- to medium-sized
columnar true mangrove, the plant species Sonneratia apetala
Buch.-Ham. is native to South Asia and Southeast Asia and has
been cultivated in Guangdong and Hainan provinces, China
(Hossain et al., 2016). S. apetala has versatile pharmacological
effects, for example, the extracts of barks and leaves of S. apetala
exhibited antibacterial, antioxidant, anti-diabetic, and anti-cancer
activities (Patra et al., 2015). However, the endophytes of S.
apetala were scarcely investigated.

In this work, a fungus Pseudofusicoccum sp. J003 was isolated
from the fruit of S. apetala for the first time. Previous studies on
the secondary metabolites obtained from the genus
Pseudofusicoccum by other research groups revealed the
presence of phenolic compounds (Abba et al., 2018),
cyclopeptides, and rotenoids (Sobreira et al., 2018). In our
study, the chemical investigation into the methanol extract of
this strain by repeated column chromatography over silica gel,
Sephadex LH-20, RP-C18 silica, and semi-preparative HPLC
resulted in the isolation of a new sesquiterpenoid (1)
(Figure 1), two alkaloids (2–3), four phenolic compounds
(4–7), and four steroid derivatives (8–11). Herein, the
isolation, structure determination of isolated compounds, and
evaluation of their in vitro anti-inflammatory, antimicrobial,
cytotoxic, and AChE inhibitory activities were described.

MATERIALS AND METHODS

General Experimental Procedures
The optical rotations, CD, and FT-IR spectra were measured with
a Perkin-Elmer 341 polarimeter (PerkinElmer, Waltham, MA,
USA), JASCO J-810 spectrometer (Jasco Corporation, Japan),
Bruker Vertex 70 FT-IR spectrophotometer (Bruker, Karlsruhe,
Germany), respectively. The UV spectrum was recorded using a
Waters e2695 spectrophotometer (Waters, Massachusetts, USA)

equipped with a DAD and a 1-cm-path length cell. Samples in
methanol solution were scanned from 190 to 400 nm in 1-nm
steps. The structure characterization of the obtained compound
was based on 1D NMR (1H, 13C) and 2D NMR (COSY, HSQC,
HMBC, and NOESY) data, recorded on the Bruker AM-400, AM-
500, and AM-700 NMR spectrometers (Bruker, Karlsruhe,
Germany) with TMS as internal standard, respectively. The
detailed parameters for the NMR data of all isolates are
provided (see Supporting Information, Supplementary Figures
S3–S9; Supplementary Figures S11–S30). Chemical shifts (δ)
were expressed in ppm with reference to the solvent signals.
HRESIMS data were acquired on a Thermo Fisher LTQ XL LC/
MS (Thermo Fisher, Palo Alto, CA, USA). Semi-preparative
HPLC was performed on an Agilent 1220 apparatus equipped
with a UV detector with a semi-preparative column (RP-C18,
5 μm, 250 × 10 mm, Welch Materials, Inc.). Column
chromatography was performed using silica gel (200–300
mesh and 80–120 mesh, Qingdao Marine Chemical Co., Ltd.,
Qingdao, China) and SephadexTM LH-20 gel (40–70 μm; Merck,
Darmstadt, Germany). Fractions were monitored by TLC
(GF254, Qingdao Marine Chemical Co., Ltd., Qingdao), and
spots were visualized by heating silica gel plates sprayed with
10% H2SO4 in EtOH. All solvents were of analytical grade
(Guangzhou Chemical Regents Company, Ltd., Guangzhou,
China).

Fungal Isolation and Fermentation
The fungal strain Pseudofusicoccum sp. J003 was isolated from the
fruit of Sonneratia apetala Buch.-Ham., which was collected at a
wetland of Nansha district, Guangzhou, China, in September
2020. The sequence data for this strain have been submitted to the
GenBank under accession no. MZ854244. The fungal strain was
deposited on 20% aqueous glycerol stock in a −80°C freezer at the
School of Pharmaceutical Sciences (Shenzhen), Shenzhen
Campus of Sun Yat-sen University, Shenzhen, China. The
strain was cultured on potato dextrose agar for 5 days at 28°C.
Agar plates, including the strain, were cut into small pieces, and
then these pieces were inoculated in a tissue culture bottle (150 ×
350 ml) on a solid rice medium (40 g of rice and 35 ml of distilled
water) and cultured at room temperature for 30 days.

Extraction and Isolation of Secondary
Metabolites
Cultural media were extracted with methanol three times.
Methanol was removed by reduced pressure evaporation at
45°C, and the remaining aqueous phase was extracted 4 times
with ethyl acetate. The ethyl acetate layer was concentrated under
reduced pressure to yield a brown extract (60.0 g). The crude
extract was introduced to a silica gel chromatography column
(CC) and eluted with petroleum ether/ethyl acetate (35:1→0:1) to
obtain seven fractions (Fr. 1–Fr. 7). Fr. 2 (7.3 g) was separated
into 7 subfractions (Fr. 2.1–Fr. 2.7) using silica gel CC and eluted
with n-hexane/2-propanol. Fr. 2.2 (102.3 mg) was purified by
semi-preparative HPLC (100% MeOH, 3.0 ml/min) to yield 4
(21.6 mg, tR 24.5 min). Fr. 2.6 (800.5 mg) was purified by semi-
preparative HPLC (45% MeOH/H2O, v/v, 3.0 ml/min) to yield 5

FIGURE 1 | Structure of compound 1.
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(1.3 mg, tR 8.5 min). Fr. 2.4 (113.0 mg) and Fr. 2.7 (220.7 mg)
were separated by repeated CC over silica gel to yield 10 (3.4 mg)
and 9 (6.7 mg). Fr. 4 (500.5 mg) was separated with repeated silica
gel CC to yield six fractions (Fr. 4.1–Fr. 4.6) and then subjected
subfraction Fr. 4.3 (268.3 mg) to a Sephadex LH-20 CC
(CHCl2–MeOH, 1:1) to afford three parts (Fr. 4.4a–Fr. 4.4c).
Fr. 4.4b (43.2 mg) was purified by semi-preparative HPLC (100%
MeOH/H2O, v/v, 3.0 ml/min) to yield 8 (14.0 mg, tR 14.5 min).
Fr. 4.4c (55.8 mg) was purified by semi-preparative HPLC (70%
MeOH/H2O, v/v, 3.0 ml/min) to yield 1 (2.0 mg, tR 23.1 min). Fr.
5 (18.9 g) was separated with repeated Sephadex LH-20 CC
(MeOH) to yield 6 (7.1 mg) and 7 (90.0 mg). Fr. 7 (7.7 g) was
separated with repeated silica gel CC and eluted with CH2Cl2/
MeOH and n-hexane/2-propanol to yield 2 (22.0 mg), 3
(20.0 mg), and 11 (10.0 mg).

Acorenone C 1) Colorless oil; [α]29D –34.6 (c 0.1, MeOH); UV
(MeOH) λmax (log ε) 233 (1.2) nm; CD (0.10 mM, MeOH) λmax

(Δε) 213 (−1.72), 244 (+9.25) nm; IR vmax 3,429, 2,951, 2,922,
2,872, 1,663, 1,456, 1,381, 1,369, 1,248, 1,034 cm−1; 1H NMR and
13C NMR data (see Table 1); HRESIMS [M + Na]+ m/z 259.1679
(calcd. for C15H24O2Na, 259.1669).

Anti-AChE Assay
Acetylcholinesterase (AChE) inhibitory activity of the
compounds isolated was assayed by the spectrophotometric
method with slight modification (Ellman et al., 1961).
S-Acetylthiocholine iodide, S-butyrylthiocholine iodide, 5,5′-
dithio-bis-(2-nitrobenzoic) acid (DTNB, Ellman’s reagent), and
acetylcholinesterase derived from human erythrocytes were
purchased from Sigma Chemical. The compounds were
dissolved in DMSO. The reaction mixture (totally 200 μL)
containing phosphate buffer (pH 8.0), a test compound
(50 μM), and acetyl cholinesterase (0.02 U/mL) was incubated
for 20 min (37°C). Then the reaction was initiated by the addition
of 40 μL of a solution containing DTNB (0.625 mM) and

acetylthiocholine iodide (0.625 mM) for AChE inhibitory
activity assay, respectively. The hydrolysis of acetylthiocholine
was monitored at 405 nm every 30 s for 1 h. Tacrine was used as a
positive control with a final concentration of 0.333 μM. All the
reactions were performed in triplicate. The percentage inhibition
was calculated as follows: % inhibition � (E–S)/E × 100 (E is the
activity of the enzyme without the test compound and S is the
activity of the enzyme with the test compound).

Anti-Inflammatory Assay
The RAW 264.7 cells (2 × 105 cells/well) were incubated in 96-
well culture plates with or without 1 μg/ml LPS (Sigma Chemical
Co., USA) for 24 h in the presence or absence of the test
compounds. Aliquots of supernatants (50 µL) were then
reacted with 100 µL Griess reagent (Sigma Chemical Co.,
USA). The absorbance was measured at 570 nm by using the
Synergy TMHT Microplate Reader (BioTek Instruments Inc.,
USA). In the study, L-NMMA (Sigma Chemical Co., USA) was
used as a positive control. In the remaining medium, an MTT
assay was carried out to determine whether the suppressive effect
was related to cell viability. The inhibitory rate of NO production
� (NO level of blank control –NO level of test samples)/NO level
of blank control. The percentage of NO production was evaluated
by measuring the amount of nitrate concentration in the
supernatants with Griess reagent, as described previously (Wu
et al., 2017).

Cytotoxicity Assay
Five human cancer cell lines, including the A549 lung cancer cell
line, the HL-60 human myeloid leukemia cell line, the MCF-7
breast cancer cell line, the SMMC-7721 human hepatocarcinoma
cell line, and the SW-480 human pancreatic carcinoma were used.
Cells were cultured in RPMI-1640 or DMEM medium,
supplemented with 10% fetal bovine serum and 5% CO2 at
37°C. The cytotoxicity assay was performed using an MTTS
3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-
sulfopheny)-2H-tetrazolium) method in 96-well microplates, as
reported previously (Liu et al., 2012), with slight modification. In
brief, 100 μL of adherent cells were seeded into each well of the
96-well culture plates and allowed to adhere for 12 h before
adding the test compounds, while suspended cells were seeded
into wells at a density of 1 × 105 cells/mL just prior to the
addition of the test compounds. Each tumor cell line was
exposed to the test compound at concentrations of 40 μM in
triplicates for 48 h. Wells with DMSO were used as negative
controls, and Taxol and DDP were used as positive controls.
After treatment of the compounds, cell viability was detected by
a microplate reader at λ � 492 nm.

Antimicrobial Assay
Compounds 1–11 were evaluated for their antimicrobial activities
against Escherichia coli, Bacillus subtilis, Staphylococcus aureus,
and Pseudomonas aeruginosa. The antimicrobial assay was
conducted by the previously described method (Zhang et al.,
2019). The sample to be tested was added into a 96-well culture
plate, and the maximum concentration of the used compounds
was 250 μg/ml. Bacteria liquid was added to each well until the

TABLE 1 | 1H and 13C NMR data for 1 (Record in CD3OD, J in Hz).

No. δH δC

1 1.66 m 52.2
2a 1.54 m 23.6
2b 1.65 m
3a 1.32 m 30.8
3b 1.83 m
4 1.67 m 46.6
5 50.0
6a 2.63 d (16.5) 49.8
6b 2.24 d (16.5)
7 203.2
8 136.1
9 6.82 t like (3.9) 147.1
10a 2.36 dm (19.4) 27.4
10b 2.22 dm (19.4)
11 1.76 m 36.3
12a 3.36 m 68.5
12b 3.38 m
13 0.91 d (6.7) 14.7
14 0.84 d (6.8) 17.4
15 1.75 s 15.4
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final concentration is 5 × 105 CFU/ml. It was then incubated at
37°C for 24 h, and the OD value at 595 nm was measured by the
microplate reader, and the medium blank control was used in the
experiment.

RESULTS AND DISCUSSION

Identification of Compounds
Compound 1 was obtained as colorless oil. Its molecular formula
was determined to be C15H24O2 based on the deprotonated ion
peak [M + Na]+ at m/z 259.1679 [M + Na]+ (calcd for 259.1669)
in the (+)-HRESIMS, indicating 4 degrees of unsaturation. The IR
spectrum showed characteristic absorption bands of hydroxyl
(3,429 cm−1) and the carbonyl groups (1,662 cm−1). The 13C
NMR and DEPT spectra of 1 (Table 1) showed 15 carbon
signals, including three methyls, five methylenes (including
oxygenated methylene at δc 68.5), three methine groups, two
olefinic carbon signals (δc 147.1 and 136.1), an aliphatic
quaternary carbon, and a carbonyl carbon (δC 203.2). The 1H
NMR spectrum of 1 (Table 1) displayed the presence of an
olefinic proton resonated at δH 6.82 (t like, J � 3.9 Hz), twomethyl
group doublets at 0.91 (d, J � 6.7 Hz) and 0.84 (d, J � 6.8 Hz), and
two oxygenated methine protons at δH 3.36 and 3.38. Apart from
the two degrees of unsaturation occupied by the carbonyl group
and a double bond, the remaining degrees of unsaturation
suggested that compound 1 should be a dicyclic
sesquiterpenoid (Amandine et al., 2017).

The 1H-1H COSY spectrum of 1 indicated the presence of spin
systems of (HO)CH2(12)-CH(11)-CH3(13) and CH(1)-CH2(2)-
CH2(3)-CH(4)-CH3(14) (Figure 2). In the HMBC spectrum, the
HMBC interactions from H-13 (δH 0.91) and H-12 (δH 3.36 and
3.38) to C-11 (δC 36.3) and C-1 (δC 52.2) revealed the direct C–C
linkage from C-11 to C-1 (Figure 2). Subsequently, the HMBC
correlations of H-2 and H-11 with C-5 (δC 50.0) and of H-14 with
C-3, C-4, and C-5 indicated the presence of a methyl
cyclopentane substructure with a 1-propanol substituted at C-

1. The spin system of � CH(9)–CH2(10) observed from the
1H–1H COSY spectrum of 1, together with the key HMBC
correlations from H3-15 (δH 1.75) to C-7 (δC 203.2)/C-8 (δC
136.1)/C-9 (δC 147.1), from H-6 (δH 2.24 and 2.63) to C-5/C-8/
C-10, collaborated with the methyl cyclohexane substructure
decorated by an α,β-unsaturated ketone functionality. Based on
the aforementioned pieces of evidence, the crucial HMBC
correlations from H-6 and H-10 to C-1, C-4, and C-5 and
from H-1 and H-4 to C-5, C-6, and C-10 constructed the gross
structure of 1, featuring a spiro[4,5]decane scaffold. The planar
structure of 1 was thus deduced as shown (Figure 2), resembling
the (3S)-1,4-epi-3-hydroxyacorenone (Calva et al., 2017).

The relative configurations of 1 were elucidated by the
observation of its NOESY spectrum. The NOESY correlations
of H-10a with H3-13 and H3-14, and Me-13/H-2a revealed that
H-10a, H3-13, and H3-14 were co-facial and provisionally
assigned to be α-oriented. Accordingly, the NOESY cross-
peaks of H-11/H-10b, H-1/H-6b, H-6a/H-4, and H-1/H-12a
indicated the β-orientation of H-1, H-4, and H-11. The
relative stereochemistries at C-1, C-4, C-5, and C-11 of 1 were
thus determined (Figure 3). Therefore, as for the absolute
configuration of 1, two possible enantiomers (Figures 4A,B)
were presented (Figure 4).

To further determine the absolute stereochemistry of 1, the
electronic circular dichroism (ECD) (for detailed procedures,
see SI) calculation of the two possible enantiomers (Figures
5A,B; Figures 4, 5) was performed using Gaussian 09 and
figured using GaussView 5.0 (Dennington et al., 2009; Frisch
et al., 2009). Conformation search via molecular mechanics
calculations was conducted in Discovery Studio 3.5 Client,
with an MMFF force field with a 20 kcal/mol upper energy
limit (Smith and Goodman, 2010). The optimized
conformation geometries and thermodynamic parameters of
the selected conformations were provided. The predominant
conformers were subsequently optimized at the B3LYP/6-
31G(d,p) level. The theoretical calculation of ECD was
performed using a time-dependent density functional
theory (TDDFT) at the B3LYP/6-31G(d,p) level in MeOH
with the PCM model. The calculated spectrum of 1b
(1S,4S,5R,11S) agreed with the experimental data, showing

FIGURE 2 | Key COSY (bolds, blue) and HMBC (arrows, pink)
correlations of 1.

FIGURE 3 | Key NOESY correlations of compounds 1.
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a negative Cotton effect (CE) at 213 nm and a strong positive
CE at 244 nm (Figure 5). Consequently, the structure of 1 was
determined to be (1S,4S,5R)-1-((S)-1-hydroxypropan-2-yl)-
4,8-dimethylspiro [4.5]dec-8-en-7-one, and a trivial
acorenone C was given.

Ten known compounds, uracil (2) (Xing et al., 2020), cyclo-
(L-Pro-L-Tyr) (3) (Jayatilake et al., 1996), bis-(2-ethylhexyl)
terephthalate (4) (Firdovsi et al., 2007), 4-
hydroxybenzaldehyde (5) (Shataer et al., 2020), 2-
phenylethanol (6) (Guerrini et al., 2011), 4-hydroxyphenethyl-
alcohol (7) (Wei et al., 2013), estigmast-4-en-6β-ol-3-ona (8)
(Correia et al., 2003), ergosterol (9) (Zhang et al., 2002),

ergosterol peroxide (10) (Hybelbauerová et al., 2008), and
cerevisterol (11) (Kang et al., 2017) were also isolated from
Pseudofusicoccum sp. J003. The structures of these compounds
(2–11) were elucidated by comparing the spectral data to those
reported in the references.

FIGURE 4 | Two possible enantiomers of compound 1 [(A) (1R,4R,5S,11R) and (B) (1S,4S,5R,11S)].

FIGURE 5 | Experimental and calculated ECD spectra of (A) (1R,4R,5S,11R) and (B) (1S,4S,5R,11S) (red, calculated at the B3LYP-PCM/6-31G(d,p)//B3LYP/6-
31G (d,p) level in CH3OH; blue, experimental in CH3OH).

TABLE 2 | AChE inhibitory activity of compound 1.

Compound Concentration (μM) Inhibition (%)a

1 50 23.34 ± 3.53
Tacrineb 0.333 58.99 ± 1.67

aAll compounds examined in a set of triplicated experiment.
bPositive control.

TABLE 3 | Inhibitory activities of compounds 1–4, 6–9, and 11 on LPS-stimulated
NO production.

Compound Concentration (μM) NO production inhibition (%)a

1 50 −1.05 ± 1.24
2 50 −3.51 ± 1.67
3 50 −0.18 ± 2.74
4 50 −9.74 ± 2.67
6 50 6.14 ± 0.66
7 50 −3.33 ± 2.19
8 50 −1.58 ± 0.79
9 25 72.89 ± 0.71
11 50 3.16 ± 1.58
L-NMMAb 50 52.59 ± 0.99

aAll compounds examined in a set of triplicated experiment.
bPositive control.
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Biological Activity
According to the literature, acorenone analogs usually have AChE
inhibitory activity (Calva et al., 2017). The AChE inhibition effect
of new compound 1 was tested. It exhibited mild inhibitory
activity against AChE with an inhibition rate of 23.34% ± 3.53
at the concentration of 50 μM (Table 2). To further test in vitro
anti-inflammatory activity, compounds 1–4, 6–9, and 11 were
evaluated for their inhibitory activities against LPS-induced nitric
oxide (NO) production in RAW 264.7 mouse macrophages, of
which compound 9 showed obvious inhibitory activity, with an
inhibition rate of 72.89% ± 0.71 at the concentration of 25 μM
(Table 3). Since steroid derivatives were reported to have
cytotoxic properties against tumor cells (Bok et al., 1999),
compounds 8, 9, and 11 were selected to test their cytotoxic
activities against five human cancer cell lines, including HL-60,
A549, MCF-7, SMMC-7721, and SW480, of which compound 9
inhibited the proliferation of tumor cells HL-60, with an
inhibition rate of 98.68% ± 0.97 and SW480 with an
inhibition rate of 60.40% ± 4.51 at a concentration of 40 μM,
respectively (Table 4). The antimicrobial activity of compounds
1–11 was also evaluated against the bacteria S. aureus, B. subtilis,
P. aeruginosa, and E. coli. However, all of them were found to be
devoid of significant activity (MIC >250 μg/ml).

CONCLUSION

Mangroves with significant ecological significance and biodiversity
have attracted broad interest from scientific communities. In this
research, a new sesquiterpenoid called acorenone C (1), along with
ten known compounds (2–11), was identified from the culture
medium of an endophyte Pseudofusicoccum sp. J003, a fungus
isolated from a mangrove species S. apetala. In addition,
compounds 1–6 and 8–11 were identified from the genus
Pseudofusicoccum for the first time. Their structures were
established by extensive spectroscopic analyses, including 1D,
2D NMR spectroscopy, and HRESIMS, as well as ECD
calculation. In the vitro bioassays, compound 1 showed mild
AChE inhibitory activity, with an inhibition rate of 23.34% at
the concentration of 50 μM. Compound 9 exerted a significant
inhibitory effect against nitric oxide (NO) production in LPS-
stimulated RAW 264.7 mouse macrophages, with an inhibition
rate of 72.89% at the concentration of 25 μM, better than that of
positive control L-NMMA. Compound 9 also displayed obvious
inhibition effects on the growth of two human tumor cell lines HL-
60 and SW480 (inhibition rates of 98.68 ± 0.97% and 60.40 ±

4.51%, respectively). The antimicrobial activities of the
compounds (1–11) against Escherichia coli, Bacillus subtilis,
Staphylococcus aureus, and Pseudomonas aeruginosa were also
tested; however, none of them showed antimicrobial activities.
This work will add new bioactive marine natural products from
microbes of mangrove plants.
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TABLE 4 | In vitro cytotoxic activity (cell inhibition (%)) of compounds 8, 9, and 11 against five human tumor cell linesa

Compound Concentration (μM) HL-60 A-549 SMMC-7721 MCF-7 SW480

8 40 27.90 ± 3.58 49.58 ± 0.49 35.73 ± 1.37 9.26 ± 1.67 15.06 ± 1.99
9 40 98.68 ± 0.97 48.25 ± 1.14 46.26 ± 1.63 21.92 ± 1.61 60.40 ± 4.51
11 40 20.22 ± 3.11 7.00 ± 2.01 27.91 ± 1.05 21.17 ± 3.50 10.87 ± 0.36
DDPb 40 79.06 ± 0.38 84.65 ± 1.00 82.78 ± 0.73 63.55 ± 2.90 78.73 ± 0.62
Taxolb 5 54.62 ± 0.46 53.00 ± 0.50 74.50 ± 0.43 58.63 ± 0.58 61.72 ± 2.15

aAll compounds examined in a set of triplicated experiment.
bPositive control.
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The Oxidation Cascade of a Rare
Multifunctional P450 Enzyme Involved
in Asperterpenoid A Biosynthesis
Hui-Yun Huang1, Jia-Hua Huang2, Yong-Heng Wang1, Dan Hu1, Yong-Jun Lu3,
Zhi-Gang She4, Guo-Dong Chen1*, Xin-Sheng Yao1,2 and Hao Gao1*

1Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of
Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China, 2School of Traditional
Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China, 3School of Life Sciences, Sun Yat-sen
University, Guangzhou, China, 4School of Chemistry, Sun Yat-sen University, Guangzhou, China

The cytochrome P450 enzymes (P450s or CYPs) are heme-containing enzymes which
catalyze a wide range of oxidation reactions in nature. In our previous study, a rare
multifunctional P450 AstB was found, which can dually oxidize two methyl groups (C-19
and C-21) of preasperterpenoid A to asperterpenoid A with 3-carboxyl and 11-
hydroxymethyl groups. However, the oxidation order of C-19 and C-21 catalyzed by
AstB is unclear. In order to reveal this oxidation order, probable pathways catalyzed by
AstB were proposed, and the oxidation order of C-19 and C-21 was obtained by quantum
chemistry calculations. The potential intermediates (three new asperterpenoids D–F, 1–3)
were obtained through the chemical investigation on the extract of the transformant strain
and chemical conversions, which were used as the standards to detect their existences in
the extract of the transformant strain with HPLC-MS. Combined with the quantum
chemistry calculation and the HPLC-MS analysis, the catalyzed order of AstB in
asperterpenoid A biosynthesis was revealed. Furthermore, the mPTPB inhibition of
obtained asperterpenoids was evaluated, and the results showed that 3-carboxyl and
the oxidation station of C-21 would be the key factors for mPTPB inhibition of
asperterpenoids.

Keywords: multifunctional P450s, methyl oxidation, asperterpenoids, mPTPB inhibition, oxidation cascade

INTRODUCTION

Cytochrome P450 enzymes (P450s or CYPs) are a kind of enzyme catalyzing a wide range of
oxidation reactions at the specific site of molecules, which play an important role in the
metabolism of organisms (Sheng et al., 2009) and the biosynthesis of natural products with
potent bioactivity (Jiang et al., 2021; Lin et al., 2019). For examples, human P450c11 catalyzes the
generation of cortisol (one of glucocorticoids in human organisms) from 11-deoxycortisol
(Bertram et al., 2012). P450 2D6 is in charge for the transformation of codeine to morphine
(one of the famous analgesics) (Kramlinger et al., 2015). TwCYP712K1 performs the three-step
oxidation of fridelin to polpunonic acid in celastrol (a potent anticancer and anti-obesity natural
product from Tripterygium wilfordii Hook. f) (Zhou et al., 2021). More and more research studies
have found that some P450s can be involved in the oxidation reactions with multiple sites of
molecules (Bai et al., 2020; Child et al., 2019; Erickson et al., 2007; Yanni et al., 2008; Zeng et al.,
2019) and catalyze non-oxidation reactions (Bai et al., 2020; Keyler et al., 2003; Long and Dolan,

Edited by:
Xiachang Wang,

Nanjing University of Chinese
Medicine, China

Reviewed by:
Giovanna Di Nardo,

University of Turin, Italy
Ahmed M. Sayed,

AlMaaqal University, Iraq

*Correspondence:
Guo-Dong Chen

chgdtong@163.com
Hao Gao

tghao@jnu.deu.cn

Specialty section:
This article was submitted to
Medicinal and Pharmaceutical

Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 29 September 2021
Accepted: 15 November 2021
Published: 16 December 2021

Citation:
Huang H-Y, Huang J-H, Wang Y-H,
Hu D, Lu Y-J, She Z-G, Chen G-D,

Yao X-S and Gao H (2021) The
Oxidation Cascade of a Rare

Multifunctional P450 Enzyme Involved
in Asperterpenoid A Biosynthesis.

Front. Chem. 9:785431.
doi: 10.3389/fchem.2021.785431

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 7854311

ORIGINAL RESEARCH
published: 16 December 2021

doi: 10.3389/fchem.2021.785431

77

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.785431&domain=pdf&date_stamp=2021-12-16
https://www.frontiersin.org/articles/10.3389/fchem.2021.785431/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.785431/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.785431/full
http://creativecommons.org/licenses/by/4.0/
mailto:chgdtong@163.com
mailto:tghao@jnu.deu.cn
https://doi.org/10.3389/fchem.2021.785431
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.785431


2001; Peyronneau et al., 2012), which are classified as
multifunctional P450s. In reported multifunctional P450
family, only few oxidation cascades have been demonstrated
(Cochrane and Vederas, 2014; Erickson et al., 2007; Mendez
et al., 2014; Moses et al., 2015; Narita et al., 2016; Zeng et al.,
2019).

In our search of bioactive compounds from fungi through
genome mining (Huang et al., 2019; Zhang et al., 2020), a rare
oxidation multifunctional P450 AstB was found, which was
solely responsible for the transformation of preasperterpenoid
A to asperterpenoid A (the molecule with 3-carboxyl and 11-
hydroxymethyl groups) via C-19 and C-21 oxidations of
preasperterpenoid A (Figure 1). Furthermore,
asperterpenoids A (IC50 � 2.16 μM) and B (the molecule
with 3,11-dicarboxyl, IC50 � 2.50 μM) presented the potent
inhibition against Mycobacterium tuberculosis protein
tyrosine phosphatase B (mPTPB, a virulence factor secreted
by M. tuberculosis and can facilitate the establishment of
tuberculosis infection and pathogenesis) (Huang et al.,
2013; Huang et al., 2019). However, the oxidation order of
C-19 and C-21 catalyzed by AstB remained obscure because no
intermediate in the generation of asperterpenoid A was
obtained from the heterologously expressed astBC-
harboring transformant strain (Aspergillus oryzae) with the
previous fermentation condition (Huang et al., 2019).
Therefore, the quantum chemistry calculations of the
oxidation order of C-19 and C-21, the acquirements of the
potential intermediates, and the HPLC-MS detection of the
potential intermediates in the transformant strain were carried
out. In addition, the mPTPB inhibition of obtained
asperterpenoids was also evaluated.

MATERIALS AND METHODS

General Experimental Procedures
Methanol (MeOH) was purchased from Yuwang Industrial Co.
Ltd. (Yucheng, China). Acetonitrile (MeCN) and acetone were
obtained from Oceanpak Alexative Chemical Co. Ltd.
(Gothenburg, Sweden). Cyclohexane and ethyl acetate (EtOAc)
were analytical grade from Fine Chemical Co. Ltd. (Tianjin,
China). The biochemical reagents and kits used in this study
were purchased from TaKaRa Bio Inc. (Dalian, China), Thermo
Fisher Scientific Inc. (Shenzhen, China), and Sangon Biotech Co.
Ltd. (Shanghai, China), unless noted otherwise.

UV data, IR data, and optical rotations were, respectively,
measured on the JASCO V-550 UV/vis spectrometer, JASCO FT/
IR-4600 plus spectrometer, and JASCO P2000 digital polarimeter
from JASCO International Co. Ltd. (Tokyo, Japan). ECD spectra
were recorded in MeOH using a JASCO J-810 spectrophotometer
(Jasco International Co. Ltd., Tokyo, Japan) at room temperature.
The HRESIMS data were obtained on a Waters Micromass
Q-TOF mass spectrometer from Waters Corporation (Milford,
United States). 1D and 2D NMR spectra were recorded with the
Bruker AV 600 spectrometer from Bruker BioSpin Group
(Faellanden, Switzerland) using the solvent signals (CDCl3: δH
7.26/δC 77.0) as the reference. Analytical HPLC was performed
on a Thermo Fisher HPLC system equipped with an Ultimate
3000 pump, an Ultimate 3000 diode array detector, an Ultimate
3000 column compartment, an Ultimate 3000 autosampler
(Thermo Fisher, United States), and an Alltech (Grace)
2000ES evaporative light scattering detector (Alltech,
United States) using a COSMOSIL 3C18-EB column (4.6 mm
i.d. × 150 mm, 3 μm) with a linear gradient of 50–100% H2O
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(0.1% formic acid)-MeCN (0.1% formic acid) in 25 min followed
by 100%MeCN (0.1% formic acid) for 35 min at 1 ml min−1. The
semi-preparative HPLC was performed on an Ultimate 3000
HPLC system (Thermo Fisher) with a YMC-Pack ODS-A
column (10.0 mm i.d. × 250 mm, 5 μm). Column
chromatography (CC) was carried out on silica gels
(200–300 mesh) (Qingdao Haiyang Chemical Group
Corporation, Qingdao, China).

Density Functional Theory Calculation of
Hydrogen Abstraction Catalyzed by AstB
The computational reaction model (105 atoms) consisted of the
two parts: 1) preasperterpenoid A and 2) Cpd Ι [see Figure 3, a
brief P450 enzyme including a truncated heme and a thiolate axial
ligand (SH-)]. Geometries for all the stationary points, including
the reactant complex (RC), product complex (PC), and transition
state (TS), were fully optimized in the gas phase using the M06
method in conjugation of the SDD(Fe)/6-31G*(C, H, O, N, and S)
basis set (Fukui, 1981; Hratchian and Schlegel, 2004). (For details,
see Supplementary Information S1.)

Fungal Source, Fermentation Condition
Investigation, Extraction, and Isolation of
Asperterpenoid D (1)
The strain of the A. oryzae transformant harboring astBC was
obtained in previous study (Huang et al., 2019). The fungal strain
was inoculated into 10 ml DPY medium (2% dextrin, 1%
polypeptone, 0.5% yeast extract, 0.05% MgSO4·7H2O, 0.5%
KH2PO4, and 0.01% adenine) and was cultured at 28°C and
200 rpm for 2 days as the seed broth. Then the broth was
transferred into 15 Erlenmeyer flasks (500 ml), each containing
100 ml of fermentation medium and grown at 28°C and 200 rpm.
The screening of the fermentation conditions was carried out
through bifactor analysis with culture media (rice, ME, PDB,
GPY, and maltose media) and fermentation days (3, 5, and 7 days
for liquid media and 10, 20, and 45 days for the rice medium,

respectively) as variable factors. The rice medium contained 70 g
of rice and 105 ml distilled H2O on each flask; ME medium
contained 2% malt extract, 1% polypeptone, and 2% starch; PDB
medium contained 20% potato and 2% dextrose; GPY medium
contained 2% starch, 0.5% peptone, and 0.2% yeast extract;
maltose medium contained 3% starch, 0.15% yeast extract,
0.1% MgSO4, 0.25% malt extract, 0.2% KH2PO4, and 0.4%
CaCO3 (Supplementary Figures S6–S10). Through the
screening of fermented conditions, the intermediate II
(asperterpenoid D, 1) was found in rice, GPY, PDB, ME, and
maltose media, respectively (Supplementary Figures S6–S11,
Figure 4). Then fermentation was carried out in 30 Erlenmeyer
flasks (500 ml), each containing 100 ml of ME medium. After
autoclaving at 121°C for 30 min, each flask was inoculated with
10 ml of the seed broth and cultured at 28°C and 200 rpm for
3 days.

Mycelia were harvested by filtration and extracted with
acetone (2 L). The extraction was repeated for three times, and
the extract was dried under reduced pressure to obtain a crude
extract (4.7 g). Then the crude extract was fractionated in a dried
column vacuum chromatography system filled with silica gel,
using cyclohexane (100%), cyclohexane-AcOEt (98:2),
cyclohexane-AcOEt (90:10), AcOEt (100%), and MeOH
(100%) to obtain fractions of 126.8, 20.5, 676.3, 544.1, and
700.6 mg, respectively. The fraction eluted with cyclohexane-
AcOEt (98:2) was subjected to semi-preparative HPLC, using
MeCN-H2O (90:10, v/v) containing 0.1% formic acid at a flow
rate of 3 ml min−1 to yield asperterpenoid D (1) (tR: 13.8 min,
7.9 mg).

The Preparations of Asperterpenoids E (2)
and F (3)
Asperterpenoid E (IM-I, 2) preparation: a magnetically stirred
mixture of asperterpenoid D (1) (20 mg, 0.05 mmol) in dry
THF (tetrahydrofuran) (10 ml) was treated with LiAlH4

(18.89 mg, 0.50 mmol), and the ensuing gray suspension
was stirred at 85°C under a balloon of nitrogen for 48 h

FIGURE 1 | Biosynthesis and IC50 value (mPTPB inhibitions) of the reported asperterpenoids.
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then extracted with water/ethyl acetate. The organic layer was
concentrated under reduced pressure, and the residue was
isolated by semi-preparative HPLC (YMC-Pack ODS-A
column, 3 ml min−1) with isocratic elution of 85% MeCN-
H2O containing 0.1% formic acid to yield 2 (tR: 62.0 min,
5.0 mg).

Asperterpenoid F (IM-IV, 3) preparation: A magnetically
stirred mixture of asperterpenoid A (40 mg, 0.10 mmol) in dry
THF (10 ml) was treated with LiAlH4 (36.22 mg, 0.96 mmol), and
the ensuing gray suspension was stirred at 85°C under a balloon of
nitrogen for 48 h then extracted with water/ethyl acetate. The
organic layer was concentrated under reduced pressure, and the
residue was isolated by semi-preparative HPLC (YMC-Pack
ODS-A column, 3 ml min−1) with isocratic elution of 85%
MeCN-H2O containing 0.1% formic acid to yield 3 (tR:
27.0 min, 17.7 mg).

Structural Characterizations of 1–3
Asperterpenoid D (1): amorphous white powder; 1H and 13C
NMR (see Table 1); [α]24D +85.5 (c 0.20, MeOH); UV (MeOH)
λmax (log ε) 203 (3.79) and 235 (3.96); ECD λnm (Δε) (MeOH) 211

(+1.46) and 243 (−2.84) nm; IR (KBr) ]max 3,278, 3,049, 2,956,
2,927, 2,870, 2,837, 1,740, 1,679, 1,629, 1,458, 1,383, 1,287, 1,267,
948, and 936 cm−1; HRESIMS (positive) m/z 371.2934 [M + H]+

(calcd. for C25H39O2, 371.2950) (Supplementary Table S2,
Supplementary Figures S14–S23).

Asperterpenoid E (2): amorphous white powder; 1H and
13C NMR (see Table 1); [α]24D +64.0 (c 0.20, MeOH); UV
(MeOH) λmax (log ε) 203 (4.03) and 252 (4.27); ECD λnm (Δε)
(MeOH) 208 (+2.19), 236 (−0.35), 263 (+4.08), and 330
(−1.60) nm; IR (KBr) ]max 3,411, 2,955, 2,927, 2,871, 2,855,
1,704, 1,602, 1,460, and 1,384 cm−1; HRESIMS (positive) m/z
339.3036 [M + H−H2O]+ (calcd. for C25H39, 339.3046).
(Supplementary Table S4, Supplementary Figures S26–S35).

Asperterpenoid F (3): amorphous white powder; 1H and 13C
NMR (see Table 1); [α]24D +36.5 (c 0.23, MeOH); UV (MeOH)
λmax (log ε) 208 (3.17) and 257 (3.59); ECD λnm (Δε) (MeOH) 207
(+2.76), 233 (−0.03), 261 (+0.96), and 338 (−0.43) nm; IR (KBr)
]max 3,316, 2,953, 2,930, 2,890, 1,672, 1,461, 1,379, and
1,023 cm−1; HRESIMS (positive) m/z 395.2917 [M + Na]+

(calcd. for C25H40O2Na, 395.2921) (Supplementary Table S5,
Supplementary Figures S36–S45).

TABLE 1 | 1H (600 MHz) and 13C NMR (150 MHz) data of compounds 1–3 in CDCl3.

1 2 3

Position δC, type δH, (J in Hz)a δC, type δH, (J in Hz)a δC, type δH, (J in Hz)a

1 47.9, CH2 a: 3.57, d (13.4) 47.0, CH2 a: 2.44, d (13.9) 41.6, CH2 a: 2.94, d (13.7)
— b: 1.79, d (13.4) — b: 1.71, d (13.9) — b: 1.45, d (13.7)

2 162.1, C — 134.7, C — 135.6, C —

3 126.4, C — 140.6, C — 140.7, C —

4 33.1, CH2 a: 2.63 33.7, CH2 a: 2.48 35.5, CH2 a: 2.63
— b: 2.55, br dd (16.0, 9.8) — b: 2.33 — b: 2.13, ddd (15.8, 9.6, 2.6)

5 26.0, CH2 a: 1.98, br dd (13.0, 7.5) 26.2, CH2 a: 1.97, br dd (13.1, 7.4) 26.6, CH2 a: 1.98. br dd (13.1, 7.2)
— b: 1.90, dq (13.0, 9.4) — b: 1.85, dq (13.0, 9.4) — b: 1.86, dq (13.1, 9.4)

6 56.8, CH 2.30, br d (8.7) 54.6, CH 2.17, br d (9.0) 55.4, CH 2.18, br d (8.8)
7 21.5, C — 22.1, C — 22.6, C —

8 25.5, CH2 a: 0.61, dd (8.4, 4.2) 25.1, CH2 a: 0.55, dd (8.3, 4.2) 25.8, CH2 a: 0.60, dd (8.4, 4.3)
— b: 0.37, br t (4.7) — b: 0.33, dd (5.2, 4.2) — b: 0.33, br t (4.9)

9 29.8, CH 0.22 29.4, CH 0.10 29.1, CH 0.06, ddd (10.5, 8.4, 5.6)
10 47.7, CH 1.21 47.2, CH 1.19 47.7, CH 1.34, t (11.1)
11 40.4, C — 39.2, C — 43.9, C —

12 39.3, CH2 a: 1.61 39.3, CH2 a: 1.60 30.0, CH2 a: 1.91
— b: 1.39 — b: 1.33 — b: 1.24

13 35.9, CH2 a: 1.40 35.9, CH2 a: 1.45 35.7, CH2 a: 1.47
— b: 1.31 — b: 1.31 — b: 1.27

14 43.0, C — 42.9, C — 42.8, C —

15 50.9, CH 1.21 51.0, CH 1.19 51.4, CH 1.16, t (11.0)
16 45.4, CH 1.77 45.3, CH 1.76 45.6, CH 1.73, tdd (10.5, 4.3, 3.1)
17 22.4, CH2 a: 1.60 22.2, CH2 a: 1.61 22.2, CH2 a: 1.60

— b: 1.45 — b: 1.45 — b: 1.44
18 40.1, CH2 a: 1.37 40.0, CH2 a: 1.35 39.9, CH2 a: 1.37

— b: 1.00 — b: 0.99 — b: 1.00
19 171.6, C — 59.0, CH2 a: 4.25, d (11.1) 59.2, CH2 a: 4.40, d (12.5)

— — — b: 4.17, d (11.1) — b: 3.98, d (12.5)
20 20.8, CH3 0.93, s 20.7, CH3 0.85, s 21.0, CH3 0.95, s
21 20.1, CH3 0.94, s 20.4, CH3 0.90, s 61.3, CH2 a: 3.69, d (10.9)

— — — — — b: 3.62, d (10.9)
22 17.8, CH3 0.74, s 17.6, CH3 0.73, s 17.7, CH3 0.76, s
23 28.5, CH 2.30 28.4, CH 2.33 28.3, CH 2.27
24 23.3, CH3 0.86, d (6.6) 23.2, CH3 0.86, d (6.6) 23.1, CH3 0.85, d (6.9)
25 15.3, CH3 0.78, d (6.6) 15.1, CH3 0.76, d (6.6) 15.0, CH3 0.74, d (6.9)

aIndiscernible signals from overlap or the complex multiplicity are reported without designating multiplicity.
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FIGURE 2 | Three possible routes for AstB enzyme catalyzing oxidations.

FIGURE 3 | Dehydrogenation energy calculations of C-19 dehydrogenation (first step of route A and B) and C-21 dehydrogenation (first step of route C).
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RESULTS AND DISCUSSION

It is known that hydroxymethyl is a common intermediate in
oxidation of a methyl group to carboxyl, such as 12-OH-(-)-JAMe
(the intermediate derived from (-)-JAMe) as the key intermediate
in the generation of 12-COOH-(-)-JAMe (Kombrink, 2012).
Because the oxidation orders of 3- and 11-methyls to
hydroxymethyls and 3-hydroxymethyl to 3-carboxyl are
unclear, there would be four potential intermediates, leading
to three possible oxidation routes (A, B, and C) for the
generation of asperterpenoid A from preasperterpenoid A
catalyzed by AstB (Figure 2).

To the best of our knowledge, the hydrogen atoms of allyl
carbons are generally more active and easier to leave than those
of other kinds of carbons (Zerth et al., 2003). Based on this, it is
proposed that the route A would exist in the transformation of
preasperterpenoid A to asperterpenoid A catalyzed by AstB
because C-19 (allyl carbon) oxidation is theoretically prior to
C-21 oxidation in the route A. In order to confirm this
inference, the DFT calculations were carried out
(Denningtonll TK et al., 2003; Frisch GWT et al., 2013;
Fukui, 1981; Hratchian and Schlegel, 2004; Sansen et al.,
2007; Tao et al., 2015).

The oxidation first occurring at C-19 or C-21 is decided by the
Gibbs free energy barriers of C-19 and C-21 dehydrogenations.
Based on the DFT calculations (Figure 3), the free energy barriers
of C-19 (transition state 2, TS-2) and C-21 (transition state 1, TS-

1) dehydrogenations were predicted to be 8.0 and 13.5 kcal/mol,
respectively. Therefore, the energy gap of two dehydrogenations
was 5.5 kcal/mol (the probability of the occurrence of C-19
dehydrogenation was 99.99%), which indicated that C-19
oxidation would be the first step in the oxidations catalyzed by
AstB. The calculation results also confirmed that the hydrogen
atoms of allyl carbons are easier to leave than those of other kinds
of carbons. In addition, H-19 in IM I would be easier to leave
rather thanH-21 because of the inductive effect from 19-hydroxyl
group. Therefore, the 3-hydroxymethyl group of IM I would be
subsequently oxidized to form IM II, rather than to form IM IV.
These results were consistent with our inference that the route A
would exist in the oxidations of AstB. (For details, see
Supplementary Information S1).

In order to confirm the results from the DFT calculations,
the acquirement of the key intermediates was necessary. In our
previous study, no intermediate was observed in the extract of
the heterologous expressed astBC-harboring transformant
strain (A. oryzae), which would be resulted from the
fermentation without an appropriate condition or the trace
amount of the intermediates (Huang et al., 2019). According to
this, the screening of the fermentation conditions was carried
out using a bifactor analysis with a culture medium (rice, GPY,
PDB, ME, and maltose media) and fermentation days (3, 5, and
7 days for liquid media and 10, 20, and 45 days for rice
medium) as variable factors. (For details, see
Supplementary Information S2, Supplementary Figures

FIGURE 4 |HPLC analysis of metabolites from A. oryzae transformants harboring astBC. (I) The strain was cultured in the GPYmedium for 3 days, (II) the strain was
cultured in the PDB medium for 3 days, (III) the strain was cultured in the rice medium for 10 days, (IV) the strain was cultured in the maltose medium for 3 days, and (V)
the strain was cultured in the ME medium for 3 days.
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S6–S10.) An additional chromatographic peak was observed
when the strain was fermented with rice, GPY, PDB, maltose,
and ME media, respectively. Among them, the peak in the
extract of the fermentation using ME medium with 3 days was
the most obvious (Figure 4). The HPLC-MS analysis showed
that the peak would be a new asperterpenoid (the positive ion
peak at m/z 353.39 [M + H − H2O]+) (Supplementary Figure
S11). After the isolation of this additional chromatographic
peak through the large-scale fermentation with the ME
medium for 3 days, the peak compound (1) was obtained.

Based on the detailed NMR analysis (Supplementary Table
S2, Supplementary Figures S18–S23) combined with ECD
calculation (Supplementary Information S4.2,
Supplementary Figures S24, S25), the structure of 1 was
determined as a new asperterpenoid with 3-methyl oxidized
to 3-carboxyl, which was IM II in route A and named as
asperterpenoid D. The result confirmed the existence of route
A in the oxidations catalyzed by AstB.

Furthermore, the potential intermediates IM I and IM IV
were prepared with the artificial reduction from

FIGURE 5 | HPLC analysis of metabolites. (I) HPLC chromatogram of the extract of the A. oryzae transformants harboring astBC cultured in the ME medium for
3 days, (II–V) HPLC chromatograms of asperterpenoid D (1), asperterpenoid E (2), asperterpenoid F (3), and asperterpenoid A.

FIGURE 6 | Main pathway for AstB enzyme catalyzing oxidations.
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asperterpenoid D and asperterpenoid A because the
potential intermediates IM I and IM IV were the
biosynthetic precursors of asperterpenoid D and
asperterpenoid A in the relevant proposed route. After
reduction from asperterpenoid D with LiAlH4, the
potential intermediate IM I (2, named asperterpenoid E)
was obtained, and its structure was confirmed as a new
asperterpenoid with 3-methyl oxidized to 3-methylol
based the detailed analyses of NMR data (Supplementary
Table S4, Supplementary Figures S26–S35). By the same
way, the potential intermediate IM IV (3, named
asperterpenoid F) was also obtained, and its structure was
identified by the detailed analyses of NMR (Supplementary
Table S5, Supplementary Figures S36–S45). Through
HPLC-MS analysis with compounds 1–3 and
asperterpenoid A as standards (HPLC analysis see
Figure 5, HPLC-MS analysis see Supplementary Figures
S12, S13), a tiny chromatographic peak (tR � 29.6 min) was
identified as asperterpenoid E (2) in the HPLC
chromatogram of the astBC-harboring transformant strain
(A. oryzae) in the ME medium cultured for 3 days (see
Figure 5I, Supplementary Information S3,
Supplementary Figure S12). In the HPLC-MS analysis,
however, there was no peak with the same retention time
and ion peak as asperterpenoid F (3) in the extract of the
astBC-harboring transformant strain (A. oryzae) (see
Supplementary Figure S13), indicating that 3 would not
exist. These experiment data supported that the route A was
the oxidization cascade of AstB (Figure 6).

In the previous study, it was found that asperterpenoids A and B
showed potent inhibition against mPTPB and 18-hydroxyl would
weaken the inhibition (Huang et al., 2019). For the abstention of
asperterpenoids with 3-hydroxymethyl, the relationship between
the oxidation stations of C-19 and C-21 in asperterpenoids and
theirmPTPB inhibitionwas unknown. In this research, themPTPB
inhibition of three new asperterpenoids (1–3, asperterpenoids
D–F) and five known asperterpenoids (preasperterpenoid A and
asperterpenoids A–C) was evaluated (Figure 7, detail see
Supplementary Information S7, Supplementary Table S6).
Among these new asperterpenoids, only asperterpenoid D (2)
presented the mPTPB inhibition (IC50 � 50.34 μM), which was
weaker than those of asperterpenoids A and B. The data clearly
showed that 3-carboxyl and the oxidation station of C-21 were
essential for mPTPB inhibition of asperterpenoids.

In conclusion, the oxidation cascade of a rare multifunctional
P450 enzyme (AstB) was cleared based on the combination of the
quantum chemistry calculations and the experiments of
obtaining the potential intermediates and the HPLC-MS
detection of the potential intermediates. Furthermore, the
relationship between the oxidation stations of C-19 and C-21
in asperterpenoids and theirmPTPB inhibition was also revealed.
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Humulane-Type Macrocyclic
Sesquiterpenoids From the
Endophytic Fungus Penicillium sp. of
Carica papaya
Fu-Run Wang1,2†, Li Yang1†, Fan-Dong Kong4†, Qing-Yun Ma1, Qing-Yi Xie1, You-Gen Wu2,
Hao-Fu Dai5, Ping Chen2*, Na Xiao3* and You-Xing Zhao1*

1Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology,
CATAS, Haikou, China, 2Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of
Horticulture, Hainan University, Haikou, China, 3State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agriculture
University, Tai’an, Shandong, China, 4Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs
Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for
Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities,
Nanning, China, 5Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, China

Three new humulane-type sesquiterpenoids, penirolide A (1), penirolide B (2), and 10-
acetyl-phomanoxide (3), together with three known compounds aurasperone A (4),
pughiinin A (5), and cyclo(L-Leu-L-Phe) (6) were isolated from the endophytic fungus
Penicillium sp. derived from the leaves of Carica papaya L. Their structures including their
absolute configurations were determined based on the analysis of NMR and HRESIMS
spectra, NMR chemical shifts, and ECD calculations. Compounds 2, 3, 5, and 6
significantly inhibited glucagon-induced hepatic glucose production, with EC50 values
of 33.3, 36.1, 18.8, and 32.1 μM, respectively. Further study revealed that compounds 2,
3, 5, and 6 inhibited hepatic glucose production by suppression of glucagon-induced
cAMP accumulation.

Keywords: endophytic fungus, Penicillium sp., humulane-type sesquiterpenoid, anti-diabetic activity, cAMP
accumulation

INTRODUCTION

Endophytic fungi, living in plants but non-pathogenic, have been proven to be promising sources of
secondary metabolites with unusual structures as well as intriguing pharmacology activities, and
become interesting and important resources for drug discovery (Strobel, 2003; Uzma et al., 2018;
Gupta et al., 2020; Zhang et al., 2006). In recent years, increasing attention has been attracted to
metabolite profiles of endophytic fungi from medicinal plants (Kaul et al., 2012). Papaya, Carica
papaya L. (papaya), an edible and medicinal plant cultivated in tropical and subtropical regions, has
been used as topical dressings for ulcer and dermatitis treatment, has gastrointestinal uses such as
anti-helminthic and antibacterial activity treatments, has been used as anti-arthritis treatment, and
has traditional uses for fertility control (Krishna et al., 2008; Pinnamaneni, 2017).

In our continuing search for structurally novel and biologically active secondary metabolites from
endophytic fungi, three new humulane-type sesquiterpenoids, penirolides A (1) and B (2), and 10-
acetyl-phomanoxide (3), were isolated from the endophytic fungus Penicillium sp. derived from the
leaves of papaya. Humulane-type sesquiterpenoids, an uncommon type of compounds featuring an
11-membered macrocycle, were found in plants, liverworts, and fungi, and exhibited various
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bioactivities including antibacterial, antifungal, cytotoxic, and
immunosuppressive activities (Liao et al., 2013; Luo et al.,
2006; Toyota et al., 2004). Due to the flexible 11-membered
macrocycle in the molecule, elucidation of the stereochemistry
of humulane-type sesquiterpenoids is very challenging. Chiral
derivatization and chemical conversions were successfully
applied to clarify their configurations (Liao et al., 2013).
However, limited amounts of sample available hampers broad
use of these methods in the structural elucidation of natural
products. Quantum calculations of NMR shifts represents a
simple, useful, and fast alternative in address complex
stereochemical problems by comparing experimental and
computed values using parameters (Lodewyk et al., 2012;
Grimblat and Sarotti, 2016), such as correlation coefficient,
mean absolute error (MAE), corrected mean absolute error
(CMAE), CP3 parameter (Smith and Goodman, 2009), DP4
probability (Smith and Goodman, 2010), or its improved
version, DP4+ probability (Grimblat et al., 2015), avoiding
chemical derivatization. In our effort to determine the
configurations of the new humulane-type sesquiterpenoids
(1–3), extensive spectroscopic analysis including 1D and 2D
NMR spectra, NMR chemical shift calculations coupled with
DP4+ probability analysis, and ECD calculations were utilized. In
addition, all the isolates were evaluated for their anti-diabetic
activity on a glucagon-induced glucose production model in
mouse hepatocytes. Herein, the isolation, structural
elucidation, and biological activities of compounds 1–6
Figure 1 were reported.

RESULTS AND DISCUSSION

Compound 1was isolated as yellow oil. Its molecular formula was
determined as C15H26O4 from the positive ion peak at m/z
293.1723 [M + Na]+ (calcd for C15H26NaO4, 293.1723),
requiring three indices of hydrogen deficiency. The 1H NMR
spectrum (Table 1) showed signals for two olefinic protons (δH
5.47 and 5.43), three methylenes (δH 1.27–2.28), three oxygenated
methines (δH 2.93, 3.43, and 3.44), and four methyls (δH 1.06,
1.08, 1.11, and 1.24). The 13C NMR spectrum revealed the
presence of 15 carbons, which were classified by HSQC
spectrum as one double bond (δC 122.8 and 144.7), three
methylenes (δC 38.1, 45.1, and 45.6), three oxygenated
methines (δC 75.6, 80.3, and 63.7), three quaternary carbons
(δC 36.1, 67.1, and 75.6) including two oxygenated, and four
methyls (δC 16.5, 22.3, 26.7, and 28.5). The 1H−1H COSY
spectrum of 1 presented three coupling spin systems, H-7α/H-
7β−H-8, H-3α/H-3β−H-4−H-5, and H-10−H-11α/H-11β−H-1
(Figure 2). The HMBC correlations (Figure 2) from CH3-13
(δH 1.06, s)/CH3-14 (1.11, s) to C-5 (δC 144.7), C-6 (δC 36.1), and
C-7 (δC 45.1), from H-7α (δH 1.91, s)/H-7β (δH 1.27, s) to C-5,
from CH3-12 (1.08, s) to C-1 (δC 80.3), C-2 (δC 75.6), and C-3 (δC
45.6), from H-3α (δH 2.20, s)/H-3β (δH 2.28, s) to C-1, and from
CH3-15 (1.24, s) to C-8 (δC 63.7), C-9 (δC 67.1), and C-10 (δC
75.6) connected the three coupling spin systems and formed the
Humulane-type sesquiterpenoid skeleton. The olefinic bond and
the macrocycle accounted for two indices of hydrogen deficiency.

The remaining one degree of unsaturation together with the
analysis of the chemical shift of C-8 and C-9 suggested the
existence of oxirane ring at positions 8 and 9.

The vicinal coupling constant (J � 15.8 Hz) between H-4 and
H-5 assigned the E configured Δ4 double bond. In the ROESY
spectrum, the key correlation of CH3-15 with H-8 (δH 2.93)
indicated that CH3-15 and H-8 were cofacial (Figure 3).
However, due to the flexibility of the 11-membered ring and
the signals overlap (e.g., H-1 and H-10), the relative configuration
of other stereocenters (C-1, C-2, and C-10) on the ring could not
be fully determined by ROESY spectrum. Thus, we performed
theoretical NMR chemical shifts calculations of eight
diastereomers (Figure 4) of 1 at mPW1PW91-SCRF/6-
311G(d,p)//B3LYP-D3BJ/6-31G(d) theoretical level in
methanol with the GIAO method (Wolinski et al., 1990). The
calculated 13C and 1H NMR chemical shifts of
(1S*,2S*,8R*,9S*,10R*)-1 showed the best agreement with the
experimental values. Furthermore, DP4+ analysis (Grimblat
et al., 2015) predicted that (1S*,2S*,8R*,9S*,10R*)-1 was the
most likely candidates with 100% probability. The absolute
configuration of 1 was assigned by the ECD calculation
(Figure 5). The calculated ECD curve of (1S,2S,8R,9S,10R)-1
matched well with the experimental curve, establishing the
absolute configuration of 1 as 1S,2S,8R,9S,10R. Collectively,
compound 1 was identified as shown in Figure 1 and named
penirolide A.

Compound 2 was isolated as yellow oil. Its molecular
formula was determined as C17H28O4 from the positive ion
at m/z 319.1882 [M + Na]+ (calcd for C17H28NaO4, 319.1880)
in the HRESIMS, corresponding to four degrees of
unsaturation. The 1H NMR spectrum (Table 1) showed
resonances for one olefinic proton (δH 5.61), three sp3

methines (δH 1.01, 2.93, and 3.04), five methyls (δH 0.87,
0.98, 1.15, 1.81, and 2.01), and three methylenes in which
one methylene has exceptionally upfield chemical shifts (δH
0.53 and 0.38), suggesting the existence of a cyclopropane unit.
The 13C NMR spectrum (Table 1) revealed the presence of 17
carbons comprising five methyls, three methylenes, five
methines (including one olefinic and three oxygenated), and
four non-protonated carbons (including one olefinic and one
carbonyl). Three coupling spin systems, H-1−H-11α/H-11β, H-
3α/H-3β−H-4−H-5, and H-7α/H-7β−H-8, could be deduced
from the 1H-1H COSY correlations (Figure 2). In the HMBC
spectrum, correlations of CH3-12 (δH 0.87, s) with C-2 (δC
25.8), C-3 (δC 14.6), and C-4 (δC 24.5) indicated the presence of
C-2−C-3−C-4 cyclopropane moiety, which connected with C-1
as established by the correlations fromH-1 (δH 3.04) to C-2 and
C-3. The HMBC correlations (Figure 2) from two methyls,
CH3-13 (δH 1.15) and CH3-14 (δH 0.98), to C-5 (δC 72.7), C-6
(δC 39.4), and C-7 (δC 38.9), from H-5 (δH 2.93) to C-7 (δC
38.9), and from CH3-15 (δH 1.81) to C-8 (δC 126.8), C-9 (δC
132.2), and C-10 (δC 68.6) constructed a 10-membered ring
with two geminal methyls at C-6 and one methyl at C-9, which
fused with the above noted cyclopropane ring through C-2/C-3.
Additional HMBC correlations from CH3-17 (δH 2.01) and H-
10 (δH 5.61) to carbonyl C-16 (δC 170.3) enable attachment of
an acetyl group to the C-10.
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The relative configuration of 2 was initially assigned by
ROESY correlations. The ROESY correlations (Figure 3) of
CH3-15 with H-8 (δH 5.46) and H-10 with H-7α (δH 1.76)/H-
7β (δH 2.58) indicated Z geometry for the Δ8 double bond. The
sequential ROESY correlations of H-10/H-4/H-1/H-3β placed

these protons on the same face the ring. The CH3-12 showed
ROESY correlations with H-3α and H-5, suggesting that they
were located on the face opposite to H-4. However, relative
configuration assignment only based on ROESY correlations is
usually not reliable enough in conformationally flexible molecules

TABLE 1 | 1H (500 MHz) and 13C NMR (125 MHz) data for compounds 1–3 (δ in ppm, J in Hz).

No 1a 2b 3b

δH δC δH δC δH δC

1 3.43, t (7.7) 80.3, CH 3.04, dd (11.1, 4.5) 78.9, CH 2.71, dd (13.3, 3.0) 59.7, CH
2 75.6, C 25.8, C 59.6, C
3α 2.20, dd (14.0, 9.5) 45.6, CH2 0.53, dd (9.9, 4.4) 14.6, CH2 2.66, dd, (12.3,3.2) 42.9, CH2

3β 2.28, dd (14.0, 4.4) 0.38, dd (5.7, 4.4) 0.63, dd (12.3, 10.5)
4 5.47, ddd (15.8, 9.6, 4.3) 122.8, CH 1.01, dt (10.0, 5.7) 24.5, CH 2.76, ddd (10.2, 3.6, 2.4) 52.6, CH
5 5.43, dd (15.8, 1.1) 144.7, CH 2.93, d (6.1) 72.7, CH 2.33, d (2.4) 65.9, CH
6 36.1, C 39.4, C 34.4, C
7α 1.91, dd (13.7, 3.0) 45.1, CH2 1.76, ddd (14.6, 4.4, 2.3) 38.9, CH2 1.92, ddd (14.8, 4.3, 2.2) 38.7, CH2

7β 1.27, dd (13.7, 11.4) 2.58, t (13.6) 2.62, m
8 2.93 dd (11.4, 3.0) 63.7, CH 5.46, dd (12.6, 3.3) 126.8, CH 5.44, dd (12.5, 3.3) 127.7, CH
9 67.1, C 132.2, C 132.6, C
10 3.44, t (5.6) 75.6, CH 5.61, d (10.4) 68.6, CH 5.86, dd (12.0, 3.0) 68.7, CH
11α 2.01, dt (15.6, 1.6) 38.1, CH2 2.25, dt (14.0, 10.8) 36.4, CH2 1.78, m 31.1, CH2

11β 1.22, ddd (15.6, 8.2, 5.9) 1.83, dd (14.0, 4.5) 2.26, dt (14.0, 3.0)
12 1.08, s 22.3, CH3 0.87, s 12.6, CH3 1.27, s 18.2, CH3

13 1.06, s 28.5, CH3 0.98, s 21.9, CH3 1.12, s 29.7, CH3

14 1.11, s 26.7, CH3 1.15, s 25.9, CH3 0.77, s 17.9, CH3

15 1.24, s 16.5, CH3 1.81, brs 18.4, CH3 1.71, brs 18.7, CH3

16 170.3, C 170.1, C
17 2.01, s 21.5, CH3 2.05, s 21.3, CH3

aIn MeOD.
bIn CDCl3.

FIGURE 1 | The structures of compounds 1–6.
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such as macrocycles. In order to irrefutably determine the relative
configuration of the chiral centers (C-1, C-5, and C-10) on the
macrocycle of 2, eight possible diastereomers of 2 were applied to
theoretical calculations of NMR chemical shifts followed by
DP4+ analysis (Figure 6). The calculated chemical shifts of
(1R*,2R*,4R*,5S*,10S*)-2 showed best agreement with the
experimental values among the possible diastereomers and
(1R*,2R*,4R*,5S*,10S*)-2 possessed 100% DP4+ probability
(Grimblat et al., 2015), indicating that (1R*,2R*,4R*,5S*,10S*)-
2 was the most likely candidate structure. The ECD calculation
was further employed to clarify the absolute configuration of 2.
The calculated ECD curve of (1R,2R,4R,5S,10S)-2 well fitted with
the experimental one (Figure 7), defining the stereochemistry of
2 as 1R,2R,4R,5S,10S. Accordingly, compound 2was elucidated as
shown in Figure 1 and named penirolide B.

Compound 3 was obtained as yellow oil and its molecular
formula of C17H26O4 was assigned by HRESIMS positive ion
peak at 317.1723 [M + Na]+ (calcd for C17H26NaO4,
317.1723), indicating five degrees of unsaturation. The 1H
NMR spectrum (Table 1) displayed signals for one olefinic
proton (δH 5.44), four sp3 methines (δH 2.71, 2.76, 2.33, and
5.86), five methyls (δH 0.77, 1.12, 1.27, 1.71, and 2.05), and
three methylenes. The 13C NMR spectrum (Table 1) showed
resonances for 17 carbons ascribed by HSQC spectrum as five
methyls, three methylenes, five methines (including one
olefinic and three oxygenated), and four non-protonated
carbons (including one olefinic and one carbonyl). These
NMR data were very similar to that of phomanoxide
(Zhang et al., 2015) whose structure was confirmed by

x-ray crystallography, with the only difference being the
presence of an additional acetyl group [δH 2.05 (s, 3H), δC
21.3, CH3-17; δC 170.1, C-16] in 3. The deshielded shift of C-
10 (δC 68.7; ΔδC 2.1) in 3 relative to that of phomanoxide
indicated that the acetyl attached at C-10, which was
supported by the HMBC correlations from CH3-17 and H-
10 (δH 5.86) to carbonyl C-16 (Figure 2).

In the ROESY spectrum of 3, the correlations of CH3-12 with
H-3α, H-4, and H-11α suggested that these protons resided on
the same face of the molecule. Cross peak of H-3β/H-5 indicated
that the two protons were cofacial (Figure 3). The large coupling
constant JH-10−H-11α � 12.0 Hz demonstrated that H-10 and H-
11α were trans oriented. Therefore, the relative configuration was
proposed as 1R*,2R*,4S*,5S*,10S*, which was further confirmed
by the NMR chemical shift calculation (Figure 8) and its similar
NMR data to that of phomanoxide. The 1R,2R,4S,5S,10S
configuration for 3 was established based on its well-matched
experimental and calculated ECD curves (Figure 9). Thus, the
structure of 3 was elucidated as depicted in Figure 1 and named
10-acetyl-phomanoxide.

In addition, three known compounds, aurasperone A (4)
(Campos et al., 2005), pughiinin A (5) (Pittayakhajonwut
et al., 2002), and cyclo(L-Leu-L-Phe) (6) (Stark and Hofmann,
2005), were identified by comparison of their NMR data with
literature data.

The liver plays a major role in whole body glucose metabolism
by maintaining a balance between glucose production and glucose
storage. Excessive hepatic glucose production contributes
substantially to diabetes, and it is proposed that suppression of

FIGURE 2 | Key 1H-1H COSY (blue bold lines) and HMBC (red arrows) correlations of compounds 1–3.

FIGURE 3 | Key ROESY correlations of compounds 1–3.
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hepatic glucose productionmay provide therapeutic advantages for
the control of diabetes (Xiao et al., 2017; Liao et al., 2021). To
investigate the anti-diabetic effect of the six compounds, we
examined the glucose production in hepatocytes. Compounds 2,
3, 5, and 6 significantly inhibited glucagon-induced hepatic glucose
production, with EC50 values of 33.3, 36.1, 18.8, and 32.1 μM,
respectively, while it was >200 µM for Compounds 1 and 4, and
2.3 μM for the positive control metformin (Figure 10A). In
response to glucagon, cAMP is a second messenger to initiate
glucagon signaling cascades in hepatic glucose production.
Compounds 2, 3, 5, and 6 treatment suppressed cAMP
accumulation (Figure 10B). These results indicated that

compounds 2, 3, 5, and 6 inhibited hepatic glucose production
by suppression glucagon-induced cAMP accumulation.

MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured with a JASCO P-1020 digital
polarimeter. The infrared spectra were recorded on a Shimadzu
UV2550 spectrophotometer (Shimadzu, Kyoto, Japan). The mass
spectrometric (HRESIMS) data were acquired using an API
QSTAR Pulsar mass spectrometer (Bruker, Bremen, Germany).

FIGURE 4 | Linear regression analysis between experimental and calculated 13C and 1H NMR chemical shifts of isomers of 1.
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Semipreparative high-performance liquid chromatography
(HPLC) equipped with octadecyl silane (ODS) column
(Cosmosil ODS-A, 10 × 250 nm, 5 μm, 4 ml/min) was used to
isolate compounds. The solvents used to the preparative HPLC,
such as methanol, acetonitrile, hexane, and ethanol were of
chromatographic grade (Concord Technology Co. Ltd., Tianjin,
China). The solvents used to the extraction or isolation of the
columns, such as ethyl acetate, methanol, chloroform, and
methanol, were of analytical pure (Concord Technology Co.
Ltd., Tianjin, China). The NMR spectra were recorded with a
Bruker AV-500 spectrometer (Bruker, Bremen, Germany) using
TMS as an internal standard. Silica gel (60–80 and 200–300 mesh;
QingdaoHaiyangChemical Co. Ltd., Qingdao, China) and Rp-C18
(20–45 μm; Fuji Silysia Chemical Ltd., Durham, NC, United States)
were used for column chromatography.

Fungal Material
The fungus Penicillium sp. was isolated from healthy papaya leaves
collected in Haikou, Hainan Province, People’s Republic of China,
and identified by sequence analysis of the ITS region of rDNA
(GenBank No. MT729953). A voucher strain was deposited in the
Institute of Tropical Bioscience and Biotechnology.

Fermentation and Isolation
Plugs of agar with mycelium were cut from solid medium and
transferred aseptically to a 1,000-ml Erlenmeyer flask,
containing 300 ml of liquid medium (glucose 10 g/L,
maltose 20 g/L, monosodium glutamate 10 g/L, yeast extract
3 g/L, corn starch 1 g/L, mannitol 20 g/L, MgSO4 0.3 g/L, and
KH2PO4 0.5 g/L). The whole culture broth (45 L) was
harvested and filtered to yield the mycelium cake and liquid
broth. The mycelium cake and liquid broth were extracted by
EtOAc three times. The two EtOAc extracts were evaporated
under reduced pressure and combined based on their similar
metabolite profiles provided by HPLC analysis, affording a
total of 12 g of EtOAc extract. The extract was separated by
silica gel column eluted with different ratios of Petroleum
ether-EtOAc (8:1, 6:1, 4:1, 2:1, 1:1, and 0:1) to afford six
fractions (Fr.1–6). Fr.4 (0.52 g) was purified by a Rp-C18 silica
gel column (MeOH-H2O, 70%–30%), followed by semi-
preparative HPLC (MeCN-H2O, containing 0.1% Formic acid,
50:50, v/v, 4.0 ml min−1) to obtain compounds 1 (7.0 mg, tR

� 9.5 min) and 2 (4.6 mg, tR � 6.5 min). Fr.3 (1.03 g) was
applied to a Rp-C18 silica gel column chromatography
(MeOH-H2O, 50%–50%) and semi-preparative HPLC (MeCN-
H2O, containing 0.1% Formic acid, 20:80, v/v, 4.0 ml min−1) to
obtain compound 3 (4.8 mg, tR � 9.6 min). Fr.6 (1.01 g) was
subjected to a Rp-C18 silica gel column chromatography (MeOH-
H2O, 80‒20%) to obtain three subfractions (Fr.6.1–Fr.6.3),
Compounds 4 (18.3 mg, tR � 8.3 min) and 5 (18.2 mg, tR
� 7.5 min) were obtained from Fr.6.1 by semi-preparative
HPLC (MeCN-H2O, containing 0.1% formic acid, 75:25, v/v,
4.0 ml min−1). Fr.6.3 (0.33 g) was subjected to semi-preparative
HPLC (MeCN-H2O, containing 0.1% formic acid, 15:85, v/v,
4.0 ml min−1) to afford 6 (3.2 mg, tR � 10.5 min).

Penirolide A (1)
Yellow oily; [ɑ]25D −9.0 (c 0.1, MeOH); UV (CH3OH) λmax

(logε): 206 (2.52) nm; ECD (CH3OH) λmax (Δε): 203 (7.25) nm;
IR(KBr) ]max: 3,414, 2,962, 2,872, 1,727, 1,668, 1,453,1,384, 1,285,
1,200, 1,091, 1,065, 990 cm−1; 1H and 13C NMR spectral data,
Table 1; HRESIMS m/z 293.1723 ([M + Na]+ (calcd for
C15H26NaO4, 293.1723).

Penirolide B (2)
Yellow oily; [ɑ]25D +3.0 (c 0.1, MeOH); UV (CH3OH) λmax

(logε): 205 (2.56) nm; ECD (CH3OH) λmax (Δε): 202 (8.09) nm;
IR(KBr) ]max: 3,422, 2,960, 1,728, 1,453, 1,373, 1,248, 1,050,
960 cm−1; 1H and 13C NMR spectral data, Table 1; HRESIMS
m/z 319.1882 [M + Na]+ (calcd for C17H28NaO4, 319.1880).

10-Acetyl-phomanoxide (3)
Yellow oily; [ɑ]25D +31.9 (c 0.1, MeOH); UV (CH3OH) λmax

(logε): 205 (2.55) nm; ECD (CH3OH) λmax (Δε): 203 (10.12) nm;
IR(KBr) ]max: 3,442, 2,961, 2,929, 1,736, 1,380, 1,242, 1,024 cm

−1;
1H and 13C NMR spectral data, Table 1; HRESIMSm/z 317.1723
[M + Na]+ (calcd for C17H26NaO4, 317.1723).

NMR and ECD Calculations
The conformations of the isomers of compounds 1–3 were
generated by iMTD-GC method embedded in Crest program
(Pracht et al., 2020). Two conformations with the root-mean-
square (RMS) distance and energy deviation of 0.5 Å and
0.25 kcal/mol, respectively, were considered as duplicates and one

FIGURE 5 | Experimental spectrum of 1 in methanol and calculated ECD spectra of (1S,2S,8R,9S,10R)-1 and (1R,2R,8S,9R,10S)-1.
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of them was removed. Density functional theory calculations were
performed with the Gaussian 16 package (Frisch et al., 2019). The
remaining conformers with population over 1% were optimized at

the B3LYP-D3BJ/6-31G(d) level in gas phase and the conformers
within an energy window of 3 kcal/mol were kept. Then, these
conformers were refined by re-optimizations at the B3LYP-D3BJ/6-

FIGURE 6 | Linear regression analysis between experimental and calculated 13C and 1H NMR chemical shifts of isomers of 2.
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311G(d,p) level with the IEFPCM solvent model in methanol for 1
and chloroform for 2 and 3, and frequency analysis of all optimized
conformations was also performed at the same level of theory to
ensure that no imaginary frequencies were present, confirming that
the optimized structures were minima on their potential energy
surfaces. NMR shielding tensors were calculated with the
GIAO method (Wolinski et al., 1990) at the mPW1PW91/6-
311G(d,p) level with the IEFPCM solvent model in methanol
for 1 and chloroform for 2 and 3. The calculated isotropic
magnetic shielding constants (σ) were Boltzmann averaged
according to their Gibbs free energies. The shielding constants
were converted into chemical shifts by referencing to TMS at
0 ppm according to the formula δcal � σTMS–σcal, where the
σTMS (the shielding constant of TMS) was calculated at the
same level. For each candidate, the parameters a and b of the
linear regression δcal � aδexp + b; the correlation coefficient,
R2; the mean absolute error (MAE) defined as Σn |δcal–δexp|/

n; and the corrected mean absolute error, CMAE, defined as Σn
|δcorr–δexp|/n, where δcorr � (δcal–b)/a, were calculated.
DP4+ probability analysis was performed using the
calculated NMR shielding tensors with DP4+ excel file
(Grimblat et al., 2015). ECD spectra were calculated by the
TDDFT methodology at the B3LYP/def2TZVP utilizing
IEFPCM in methanol. The final ECD spectra were
simulated by averaging the spectra of lowest energy
conformers according to the Boltzmann distribution theory
and their relative Gibbs free energy (ΔG) using SpecDis 1.71
(Bruhn et al., 2013) with σ � 0.30 eV and uv shift � 5 nm for 1
and 10 nm for 2 and 3, respectively.

Primary Mouse Hepatocytes
Male C57BL/6J mice (6 weeks old) were purchased from Pengyue
Laboratory Animal Company (Jinan, China). Animal care and
experiments were approved by the Animal Ethics Committee of

FIGURE 7 | Experimental spectrum of 2 in methanol and calculated ECD
spectra of (1R,2R,4R,5S,10S)-2 and (1S,2S,4S,5R,10R)-2.

FIGURE 8 | Linear regression analysis between experimental and calculated 13C and 1H NMR chemical shifts of isomers of 3.

FIGURE 9 | Experimental spectrum of 3 in methanol and calculated ECD
spectra of (1R,2R,4S,5S,10S)-3 and (1S,2S,4R,5R,10R)-3.
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Shandong Agriculture University. Primary mouse hepatocytes
were prepared as previously described (Xiao et al., 2017). Briefly,
fasted C57BL/6J male mice were anesthetized and livers were
washed with Krebs-HEPES and digested with collagenase IV by
perfusion through the inferior vena cava at 3 ml/min. Then, the
whole liver was removed 6 min later, and hepatocytes were
extracted in DMEM with 10% FBS. After filtering, cells were
resuspended and cultured in 96- or 48-well plates. Then, the cells
were treated as indicated.

Measurement of Cell Viability and Glucose
Production in Hepatocytes
Primary mouse hepatocytes were seeded in a 96-well plate and
treated with 100 nM glucagon and various concentrations of
test compounds (1–200 μM) for 24 h. After that, cell viability
was assessed by the MTT method (Pan et al., 2021). For the

determination of glucose production, hepatocytes were
incubated in KRB solution containing relevant substrates
(10 mM pyruvate, 100 nM glucagon) or indicated
compounds (1, 5, 10, 100, and 200 μM) for 6 h. Then, the
cell supernatant was collected for glucose analysis using the
commercial kit.

Measurement of cAMP Production
Hepatocytes were incubated with the indicated compounds
and stimulated with glucagon (100 nM) for 2 h, lysed in cell
lysis buffer, and the supernatant was harvested for the assays of
cAMP (Xiao et al., 2017). All data were expressed as the
mean ± SD from at least three independent experiments.
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Discovery of Mycothiogranaticins
from Streptomyces vietnamensis
GIMV4.0001 and the Regulatory Effect
of Mycothiol on the Granaticin
Biosynthesis
Ming-Rong Deng1*†, Yan Li1†, Xiao Luo1, Xiang-Ling Zheng1, Yuchan Chen, Yu-Lian Zhang1,
Weimin Zhang, Hao Zhou2* and Honghui Zhu1*

1Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong
Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern
China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences,
Guangzhou, China, 2Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province,
School of Chemical Science and Technology, Yunnan University, Kunming, China

Granaticins are benzoisochromanequinone polyketides with remarkable antibacterial and
anticancer activities. Three sulfur-containing granaticin congeners, mycothiogranaticins A
(1), B (2) and granaticin MA (3) were discovered from a granaticin-producing strain of
Streptomyces vietnamensis GIMV4.0001. Two of them were structurally determined with
mycothiol or N-acetylcysteine moieties and found to be bio-actively reluctant. Disruption of
the mshA gene (SVTN_RS20640) that encodes the D-inositol-3-phosphate
glycosyltransferase crucial for mycothiol biosynthesis, fully abolished the production of
mycothiogranaticins. The result substantiated that the newly discovered
mycothiogranaticins are consequences of the combination of the granaticin and
mycothiol biosynthetic pathways. The overall granaticin production of the ΔmshA
mutant strain was unexpectedly decreased by at least more than 50%, while similar
production level of granaticins to that of the wild type strain was observed in anmycothiol-S
transferase gene (SVTN_RS22215) disruptant Δmst. These results indicated that the
mycothiol deficiency was responsible for the decreased production of granaticins.
Mycothiol may positively regulate the biosynthesis of granaticin possibly by maintaining
the cellular redox balance. To the best of our knowledge, this is the first report that
mycothiol can not only be a direct building block of polyketides but also play a regulatory
role in the polyketide biosynthesis.

Keywords: mycothiol, MshA, MST, regulation, Streptomyces vietnamensis, granaticin, actinomycete, sulfur-
containing polyketide

INTRODUCTION

Bacterial aromatic polyketides are pharmaceutically important natural products with remarkable
structural diversity, some of which have been developed and most commonly used as antibiotics and
anticancer drugs, such as oxytetracycline, tetracenomycin, doxorubicin and aclacinomycin.
Therefore, deeper explorations of the structural diversity of bacterial aromatic polyketides would
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enable this class of compounds as continuous sources for drug
development. Sulfur incorporation can significantly expand the
structural diversity and bioactivities of many naturally occurring
molecules (Hai et al., 2021), many sulfur-containing natural
products, such as penicillin and ixabepilone, have been
approved for clinic therapy. However, bacterial sulfur-
containing aromatic polyketides are relatively rare, with only a
few examples reported over the past decades (Etoh et al., 1987;
Ohta et al., 1987; Rohr and Zeeck, 1987; Miyata et al., 1992;
Aoyama et al., 1993; Carney et al., 1997; Kulanthaivel et al., 1999;
Sasaki et al., 2010; Taguchi et al., 2013; Wang et al., 2013; Woo
et al., 2013; Taguchi et al., 2015; Bilyk et al., 2016; Che et al., 2016;
Xie et al., 2016; Nakashima et al., 2017; Matsuo et al., 2019a; Bae
et al., 2019; Matsuo et al., 2019b; He et al., 2019; Fang et al., 2020;
Cao et al., 2021). Amongst these reports, naquihexcin A could
inhibit the proliferation of the adriamycin resistant human breast
cancer (Che et al., 2016); nanaomycin K showed an inhibitory
effect on the epithelial-mesenchymal transition (Matsuo et al.,
2019a); and naquihexcin E exhibited a notable anti-HIV activity
(He et al., 2019). These suggested promising potentials of these
privileged sulfur-containing polyketides for drug development.

Granaticins are members of the benzoisochromanequinone
(BIQ) polyketides (Figure 1), showing a wide range of biological
activities on bothmicrobes and higher organisms. They are highly
active against Gram-positive bacteria and protozoa and exhibit
cytotoxicity against many cancer cell lines in vitro at nM to µM
levels as well as P-388 lymphocytic leukemia in mice (Corbaz
et al., 1957; Chang et al., 1975; Elson et al., 1988). Granaticins
inhibit bacteria by interfering with tRNALeu aminoacylation
process resulting in failure to synthesize proteins and RNAs
(Ogilvie et al., 1975a; b). The cytotoxicity was reported
initially to be attributed to the inhibition of ribosomal RNA
maturation (Heinstein, 1982). More recently, granaticins were
found to specifically inhibit farnesyltransferase (Iwasaki and
Omura, 2007), inosine 5′-monophosphate dehydrogenase (Ren
et al., 2008) and cell division cycle 7 kinase (Frattini et al., 2011),
which are important targets for the development of anticancer
drugs (Ratcliffe, 2006; Agrawal and Somani, 2009; Swords et al.,
2010). Therefore, granaticins are the highest ranked BIQ
members with clinical potentials.

Streptomyces vietnamensis is a recently designated species that can
produce granaticins (Zhu et al., 2007; Deng et al., 2011a). The
metabolites from the granaticin pathway of this strain were
systematically characterized (Deng et al., 2020). Here we report
the discovery of three sulfur-containing granaticin congeners,
mycothiogranaticins A (1), B (2) and granaticin MA (3),
from S. vietnamensis GIMV4.0001, and the involvement of
mycothiol in the granaticin biosynthesis, serving as both a
structural building block and a biosynthetic regulator.

MATERIALS AND METHODS

Strains, Plasmids, Biochemicals and
Growth Conditions
Strains, plasmids, and polymerase chain reaction (PCR) primers
used in this study were listed in Supplementary Table S1, S2,

respectively. Escherichia coli NEB Turbo was used for general
cloning and plasmid preparation. E. coli ET12567/pUZ8002
(MacNeil et al., 1992) was used as the donor host for
intergeneric conjugation. S. vietnamensis GIMV4.0001 (Zhu
et al., 2007) is a wild-type granaticin (4) producer. The
temperature-sensitive plasmid pKC1139 (Bierman et al., 1992)
was used for generating the in-frame disruption plasmids pKC-
ΔmshA and pKC-Δmst. The integrative plasmid pSET-KasO*
(Pan et al., 2017) was used for the gene complementation
purpose. PCR primers were ordered from and synthesized by
GENEWIZ. Phanta Max Super-Fidelity DNA polymerase and
ClonExpress MultiS One Step Cloning Kit were purchased from
Vazyme Biotech Co., Ltd, China, and the reactions were
performed according to the manufacturer’s procedures. Kits
for gel extraction and plasmid preparation were products of
Magen Co., Ltd (China). Other common biochemicals and
medium components were purchased from standard
commercial sources. DNA sequencing was performed by
GENEWIZ. E. coli strains containing plasmids were cultured
in LB medium at 37 °C, with shaking at 200 rpm, supplemented
with appropriate antibiotics as required. Streptomyces strains
were grown at 28 °C on ISP2 agar medium for sporulation or
in liquid YEME medium (0.3% yeast extract, 0.5% tryptone, 0.3%
malt extract, 1% glucose, 5 mM MgCl2) for growth of mycelium,
isolation of total DNA and granaticin (4) production. The liquid
Gauze’s synthetic mediumNo.1 was also used for parallel analysis
of granaticin (4) production. E. coli-Streptomyces conjugations
were performed on IPS4 agar medium.

Fermentation, Isolation and Structural
Elucidation
The seed cultures were prepared from 2-days fermentation broths
rotationally incubated at 220 rpm and 28 °C in the liquid YEME
medium. For large-scale fermentation (20 L), fifty 2000-mL
baffled flasks containing 400 mL of liquid YEME with 5% (in
volume) seed culture were incubated under the foresaid
conditions for 6 days. At the end of the fermentation, 5% (w/v)
resins (Amberlite® XAD16, Shanghai Macklin Biochemical Co.,
Ltd, China) were added into the cultures, and a 3-h extended
incubation with rotation was applied to allow the metabolites to be
absorbed into the resins. Then the resins were harvested, cleaned
and air-dried. Methanol was used for extraction. The organic
extracts were concentrated in vacuo. The crude extract was
fractionated on a silica gel column and eluted with a stepwise
gradient of CH2Cl2−CH3OH (100:0, 98:2, 96:4, 94:6, 92:8, 9:1, 8:2,
7:3, 1:1, 0:100). The elution volume was 200 mL for each gradient.
The eluents were analysed by TLC and then combined. The
combined fractions were further analysed by LC-MS. The
fractions that contain the interested m/z values were further
chromatographed over a preparative reversed-phase HPLC
column (Waters XBridge® Prep C18 10 µm OBD, 19 ×
250 mm) with a gradient elution (13 mL/min) of CH3OH in
H2O containing 0.1% formic acid. The targeted subfractions
were then passed through several rounds of semipreparative
HPLC (Agilent ZORBAX Stable Bond 80Å Phenyl Column, 9.4
× 250 mm, 5 µm) to obtain pure compounds. Compounds 1 and 3
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were purified with retention times of 10.6 and 17min, respectively,
using an isocratic elution (2.5 mL/min) of 55% CH3OH in H2O
containing 0.1% formic acid. The retention time of compound 2
was 11.2 min when using a 15-min gradient elution (3 mL/min)
from 60–100% CH3OH in H2O containing 0.1% formic acid. The
1H and 13C NMR spectra were done on either a Bruker Avance III
HD 600MHz or Avance III Ultrashield 700 MHz with QCI
Cryoprobe spectrometer at 298 K. Optical rotations were
measured with an Anton-Paar’s MCP500 polarimeter. The
experimental CD spectrum of compound 1 was collected in
methanol at a concentration of 0.5 mg/mL on an Applied
Photophysics Chirascan spectrometer using a quartz cell with
path length of 10mm. The ECD calculation was performed by
using the density functional theory (DFT) with the Gaussian 09
package (Frisch et al., 2009). The preliminary conformational
distributions search was performed via molecular mechanics
using the MM+ method implemented in CONFLEX version 8.0
software. The obtained conformers were optimized at the B3LYP/
6-31G level using Gaussian 09 software to give the energy-
minimized conformers. Methanol was used as a solvent with
the polarizable continuum model (PCM). Then, the optimized
conformers were subjected to the calculations of ECD spectra using
TDDFT at the B3LYP/6-31G (d, p) level. The overall calculated
ECD curves were weighted by Boltzmann distribution (with a half-

bandwidth of 0.35 eV) with a UV correction of 15 nm. The
calculated ECD spectra were produced by SpecDis 1.64 software
(Bruhn et al., 2013). The structures and absolute configurations
were elucidated on the basis of extensive spectroscopic analyses
including UV, MS, NMR and ECD spectra, and together with
consideration of their biogenetic origins.

Antibacterial and Cytotoxic Activity Assays
The minimum inhibitory concentrations (MICs) were
determined using a 96-well plate format with Müller-Hinton
(MH) broth (Wiegand et al., 2008). Cells of each strain at log-
phase growth stage were adjusted to anOD600 � 0.5, then 100-fold
diluted with MH broth. The diluted cell broth was pipetted with a
volume of 98 μL into each well. Two microliters of each
compound, serially diluted in DMSO, were added to each well.
DMSO was used as negative control, and vancomycin and
granaticin as positive controls. The MIC values were
determined after incubation for 18 h either at 37 °C for
Staphylococcus aureus or at 30 °C for Micrococcus luteus. Each
MIC determination was performed in triplicate. A
sulforhodamine B (SRB) colorimetric assay (Vichai and
Kirtikara, 2006) was used to assess the potential cytotoxicity
against the SF-268, MCF-7, HepG-2 and A549 cell lines. Cells
(180 μL) with a density of 3 × 104 cells/mL were seeded onto 96-

FIGURE 1 | Structures of granaticins and mycothiogranaticins.
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well plates and incubated for 24 h at 37 °C, 5% CO2. Then 20 μL of
compounds with various concentrations were added into the
wells. Plates were further incubated for 72 h. After incubation, cell
monolayers were fixed with 50% (wt/v) trichloroacetic acid
(50 μL) and stained for 30 min with 0.4% (wt/v) SRB dissolved
in 1% acetic acid. Unbound dye was removed by washing
repeatedly with 1% acetic acid. The protein-bound dye was
dissolved in 10 mM Tris base solution (200 µL) for OD
determination at 570 nm using a microplate reader. Cisplatin
was used as a positive control. Granaticin was also assessed for
comparison purpose. All data were obtained in triplicate and are
presented as means ± S.D. IC50 values were calculated with the
SigmaPlot 14.0 software using a non-linear curve-fitting method.

Chemical Analysis and Assessment of
Biomass and Overall Production of
Granaticins
LC-MS analysis was carried out, with an ESI source in negative
ion mode, on an Agilent 6230 TOF mass spectrometry coupled to
1290 Infinity LC System equipped with an Agilent ZORBAX SB-
C18 column (1.8 μm, 3.0 × 5.0 mm). Liquid chromatography for
LC-MS analysis was performed using a 20 min solvent gradient
(0.25 mL/min) from 10–100% CH3OH in H2O containing 0.1%
formic acid. Yields of the four main products, granaticin (4),
granaticin B (5), granaticinic acid (6) and granaticinic acid B (7)
were used for assessment of the overall production of granaticins.
Standard calibration curves for each product were generated by
using the pure compounds (Supplementary Figure S1). The
biomass was measured by using a volume of 20 mL of
fermentation broth for each. All the tests were done in triplicate.

Genetic Manipulation of S. vietnamensis
The mshA gene encodes the D-inositol-3-phosphate
glycosyltransferase catalyzing the first step of mycothiol
biosynthesis, and the mst gene dictates the mycothiol-S
transferase catalyzing the transfer of mycothiol to various
substrates (Newton et al., 2003; Newton et al., 2011). The
protein sequences of mshA (SCO4204) from S. coelicolor A3
(2) (Park et al., 2006) and Rv0443 from Mycobacterium
tuberculosis H37Rv were used to BLAST against the genome
sequence of S. vietnamensis GIMV4.0001 (Deng et al., 2015). The
SVTN_RS20640 gene, encoding a protein whose sequence shares
an identity of nearly 80% with SCO4204, was preferentially
considered as the mshA gene in S. vietnamensis
(Supplementary Figure S2). The SVTN_RS22215 gene, whose
product was predicted to belong to the DinB superfamily, was the
only candidate mst gene sharing 52.8% identity to Rv0443
(Supplementary Figure S3).

To construct the in-frame deletion mutant ΔmshA, two 1.7-kb
DNA fragments flanking the mshA gene (SVTN_RS20640)
were amplified using the primer pairs Sv-MshALF/R and
Sv-MshARF/R. The plasmid pKC1139 was double digested
with HindIII and EcoRI. The linearized plasmid together with
the two PCR-amplified homologous arms were assembled by
using a ClonExpress® MultiS One Step Cloning Kit, affording
the disruption plasmid pKC-ΔmshA. The recombinant

plasmid pKC-ΔmshA was then subjected to sequencing to
ensure that no mutations were introduced during the
construction process. After passing through the non-
methylating E. coli ET12567/pUZ8002, pKC-ΔmshA was
introduced into S. vietnamensis GIMV4.0001 by intergeneric
conjugation, following the established procedure (Deng et al.,
2011b). Exconjugants were picked and re-streaked on the ISP2
agar plates supplemented with 30 μg/mL apramycin and then
grown at 28 °C for 2 days. Colonies were inoculated into liquid
YEME medium and rotationally incubated at 37 °C for 1 day to
lose the temperature-sensitive plasmid. The cultures were then
diluted and spread on plate. The colonies that are sensitive to
apramycin were picked and subjected to DNA isolation and
PCR validation. For further verification, two overlapping PCR
fragments amplified with the primer pairs V-MshALOF/V-
MshARIR and V-MshALIF/V-MshAROR were subjected to
sequencing to make sure that no unintended mutations were
introduced during the homologous recombination process
(Supplementary Figure S18). The Δmst mutant was
generated in a similar way. For the complementation of
mshA, a 1.4 kb DNA fragment containing the full-length
coding sequence of mshA (SVTN_RS20640) and the putative
ribosomal binding sequence was amplified by PCR with the
primer pair Com-MshF/R. The amplified fragment was
assembled into pSET-KasO* between AflII and SpeI sites by
using a ClonExpress kit. The resulting plasmid pSET-mshA
was introduced into the ΔmshA mutant with the same method
as described above. Screening of the desired complementary
colony followed the standard procedure.

RESULTS

Discovery of Sulfur-Containing Granaticin
Congeners from S. vietnamensis
GIMV4.0001
In our continuous studies on the granaticin biosynthesis, we
noticed that there were two new minor peaks which possess
characteristic UV absorptions of granaticins in some batches of
fermentation in the liquid YEME medium. LC-MS analysis
showed that the m/z values of the two minor peaks are
929.2501 [M–H]– (Supplementary Figure S4) and 1043.3189
[M–H]– (Supplementary Figure S5), respectively. Because the
m/z values are different from the known granaticin congeners, we
decided to isolate these compounds. During the isolation process,
compound 3 came into our sights with a m/z value of 606.1285
[M–H]– (Supplementary Figure S6) and granaticin-type UV
absorption characteristics. Compound 3 couldn’t be detected by
either HPLC or LC-MS in the samples of the direct fermentation
broths or crude extracts of S. vietnamensis. It could only be
detected after at least one round of silica gel separation.
Therefore, compound 3 should be considered as a degradation
product. Although the suggested molecular weight of compound
3 is as same as the compound 4-deoxy-4-S-(N-acetylcysteinyl)
granaticinic acid (granaticin MA) which was reported nearly
40 years ago (Kormann et al., 1984), the NMR data and
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absolute configuration of granaticin MA were unavailable. It
prompted us to purify it and collect the necessary spectrum data.

Compound 1 (2.06 mg/L) was obtained as a red powder [α]25D
-21.5 (c 0.016, CH3OH). Its molecular formula was established as
C39H50N2O22S by HR-ESI-MS at m/z 929.2501 [M – H]– (calcd.
929.2503), corresponding to sixteen degrees of unsaturation. The
1H and 13C NMR spectra (Supplementary Table S3), coupled
with HSQC analysis, showed signals of three methyls, four
methylenes, eighteen methines and fourteen quaternary
carbons (Supplementary Figure S7–12). The signals of six
methines [(δH 3.18, δC 80.2, C-1′′′′), (δH 3.91, δC 71.6, C-2′′′′),
(δH 3.09, δC 71.6, C-3′′′′), (δH 3.34, δC 72.4, C-4′′′′), (δH 2.93, δC
74.8, C-5′′′′), (δH 3.53, δC 72.1, C-6′′′′)] were typical of an
inositol moiety, further confirmed by the 1H–1H COSY
correlations of H-1′′′′/H-2′′′′/H-3′′′′/H-4′′′′/H-5′′′′/H-6′′′′/
H-1′′′′ (Figure 2). The signals of five methines [(δH 4.83,
δC 98.6, C-1‴), (δH 3.64, δC 54.0, C-2‴), (δH 3.53, δC 70.9, C-
3‴), (δH 3.10, δC 70.7, C-4‴), (δH 3.67, δC 72.9, C-5‴)] and one
methylene (δH 3.44, δC 60.8, C-6‴) indicated the presence of
an α-glucosamine moiety, which was verified by 1H–1H COSY
correlations of H-1‴/H-2‴/NH-2‴ and H-3‴/H-4‴/H-5‴/H-
6‴, along with the key HMBC correlations from H-1‴ to C-3‴
and C-5‴, and from H-2‴ to C-3‴. The 1H–1H COSY
correlations of H-3′′/H-2′′/NH-2″ and the key HMBC
correlations from H-2″ to C-1″ and C-5″, from NH-2″ and

H-6″ to C-5″ confirmed the presence of an N-acetylcysteine
moiety. Further analysis of the NMR data suggested that
compound 1 contains a same moiety (part A in Figure 2)
with nanaomycin H (Nakashima et al., 2017). The fragment
could be verified by the key HMBC correlations from H-1‴ to
C-1′′′′, from NH-2‴ and H-2‴ to C-1′′. Apart from the signals
for the part A, the remaining signals (Supplementary Table
S3) closely resembled those of dihydrogranaticin (Arnone
et al., 1979), except for the presence of a methine group at
C-4 of compound 1 instead of a methylene group in
dihydrogranaticin. These findings suggested that part A and
part B were linked through a sulfur atom between C-3″ and C-
4. This deduction was confirmed by the HMBC correlations
from H2-3″ to C-4 and from H-4 to C-3′′. Comprehensive
analysis of 1H–1H COSY and HMBC spectra of compound 1
led to the establishment of its planar structure as depicted in
Figure 2.

In the NOESY spectrum (Figure 3), the observation of the
NOE interactions of H-3/H3-16 revealed the same relative
configuration of the right unit of part B of compound 1 to
dihydrogranaticin. Meanwhile, the NOESY correlations of H-3′/
H-5′ and H-1′/H-6′suggested the same relative configuration of the
left unit of part B (Figure 1). Unfortunately, no NOESY correlations
supported the relative configuration between the left and the
right units of part B. However, the previously identified
granaticin congeners from S. vietnamensis GIMV4.0001
have the same absolute configuration with the reported
granaticins from S. violaceoruber Tü22 (Deng et al., 2011a).
And the only biosynthetic gene cluster of granaticin residing
in the genome of S. vietnamensis GIMV4.0001 shares
identical organization and high sequence homology with
that of S. violaceoruber Tü22. In view of biosynthesis, the
absolute configuration of part B of compound 1 should be
identical to that of dihydrogranaticin except for C-4. As for part A,
till now, all the identified mycothiol S-conjugates share the same
absolute configuration with mycothiol and the genetic engineering
result further supported our conclusion that the part A of compound
1 share the same absolute configuration with mycothiol. Based on
the above discussion, the absolute configuration of C-4 was
determined as R by the NOESY correlation of H-3/H-4. This
deduction was further verified by ECD/TDDFT computations on
the two possible stereoisomers, (4S)-1 and (4R)-1. As shown in
Figure 4, the calculated ECD curve of (4S)-1 showed the identical
Cotton effects (CEs) as the experimental ECD curve for compound
1. Consequently, the whole structure of compound 1was established
as shown in Figure 1, named as mycothiogranaticin A.

Compound 2 was prone to degrade during the purification
process. Comparing the peaks of compounds 1 and 2 that showed
in the HPLC profiles (Figure 5A), one would intuitively believe
that the production titer of compound 2 should be greater than
that of compound 1. However, we regrettably did not obtain pure
enough compound 2 to collect the NMR data. Compound 2 could
turn into compound 1 rather rapidly, particularly at the stage of
semi-preparation HPLC where 0.1% formic acid must be added
into the mobile phase to enable the compounds to peak normally
(Supplementary Figure S13). The molecular formula of
compound 2 could be established as C45H60N2O24S with

FIGURE 2 | Key 1H–1H COSY and HMBC correlations of
mycothiogranaticin A (1).
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HR-ESI-MS data (exptl. m/z 1043.3189 [M – H]–; calcd.
1043.3184) (Supplementary Figure S14). When compound
2 was converted to compound 1, the molecular weight was

reduced by 114 Da, which is as same as in the situation of the
conversion of granaticin B (5) into granaticin (4). The
rhodinose moiety of granaticin B (5) is connected to the
first sugar by an O-glycosidic bond, and this glycosidic
bond is hypersensitive to acid and base. The reduction of
114 Da in molecular weight corresponded to the loss of the
rhodinose moiety. This led us to speculate that compound 2 is
a mycothiol S-conjugate of dihydrogranaticin B. Indeed, in the
HRESI-MS/MS analysis, the major daughter peaks between
compounds 2 and 1 shared either the same or a range of
differences from 114.0672 to 114.0685 in m/z values
(Supplementary Figure S15). This result is consistent with
the expected conversion of the mycothiol S-conjugate of
dihydrogranaticin B into the mycothiol S-conjugate of
dihydrogranaticin. The MS/MS fragmentation mechanisms
were proposed (Supplementary Figure S16). Thus,
compound 2 was named as mycothiogranaticin B, and its
proposed structure was shown in Figure 1.

Compound 3 (0.39 mg/L) was isolated as a red powder [α]25D
-654.0 (c 0.010, CH3OH). Its molecular formula was established
as C27H29NO13S by HR-ESI-MS atm/z 606.1285 [M –H]– (calcd.
606.1287). The 1D NMR spectroscopic data of compound 3
(Supplementary Table S4) were highly similar to those of
compound 1, except that the inositol and α-glucosamine

FIGURE 3 | Key NOE correlations of mycothiogranaticin A (1).

FIGURE 4 | Experimental and calculated ECD spectra of
mycothiogranaticin A (1).
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moieties were absent and a carboxyl signal at C-1′′ (δC 173.8) was
present. Further analyses of NMR data, including COSY and
HMBC experiments (Supplementary Figure S17), elucidated the
structure of compound 3 as 4-deoxy-4-S-(N-acetylcysteinyl)
granaticinic acid (granaticin MA) (Kormann et al., 1984). Its
absolute configuration was deduced as compound 1 by
comprehensive consideration NMR data, biogenesis and
genetic engineering result.

Mycothiogranaticin A (1) and granaticin MA (3) were tested
for their potential antibacterial and cytotoxic activities. As shown
in Supplementary Table S5, these two compounds, in
comparison to granaticin (4), exhibited dramatically decreased
activities against all the tested strains, and no inhibitory effects
were observed against all the tested cancer cell lines (HL-60,
MCF-7, HepG-2 and A549) and the LX-2 human hepatic stellate
cell line (Supplementary Table S6).

FIGURE 5 | Effects of disruptions of themshA andmst genes on the production of granaticins. (A) HPLC profiling of the Streptomyces vietnamensis wild type and
genetically manipulated strains. Note that granaticin MA (3) might be a degradation product of mycothiogranaticin A (1) and could not be detected in the fermentation
broth under the standard procedures. (B) The supernatants and diluted supernatants of the S. vietnamensis strains in different media. WT-Y, ΔmshA-Y, ΔmshA::mshA-
Y, Δmst-Y, WT-G, ΔmshA-G, ΔmshA::mshA-G and Δmst-G stand for the wild-type (WT), mutant ΔmshA, complementary strain ΔmshA::mshA andmutant Δmst in
the YEME (Y) or Gauze’s synthetic No.1 (G) media, respectively. Tris-EDTA buffer (pH 8.0) was used for dilution. (C) The overall yields of granaticins and biomass of the
wild type, mutant and complementary strains.
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Gene Disruption Revealing Mycothiol as
both a Structural Building Block and a
Regulator in the Granaticin Biosynthesis
Mycothiol could be involved in antibiotic biosynthesis as
exemplified by the biosynthesis of lincomycin A (Zhao et al.,
2015). To investigate whether the biosynthesis of
mycothiogranaticins is mycothiol pathway-dependent, we set
out to generate an in-frame deletion mutant ΔmshA. The
mshA gene was reported to be essential for mycothiol
biosynthesis in S. coelicolor A3 (2) (Park et al., 2006) and
other actinomycetes (Newton et al., 2003; Vilchèze et al.,
2008). A BLAST analysis revealed that SVTN_RS20640 is the
best candidate gene of mshA (Supplementary Figure S2).
Successful in-frame deletion of mshA (SVTN_RS20640) was
verified by PCR confirmation of its genotype (Supplementary
Figure S18). The mutant ΔmshA apparently produced much less
blue pigment in the fermentation broth and nomycothiogranaticin
A (1) or B (2) could be detected by HPLC analysis (Figures 5A, B).
Reintroduction ofmshA (SVTN_RS20640) into the mutant ΔmshA
resulted in restoring the dark blue pigmentation of the
fermentation broth and production of mycothiogranaticin A (1)
and B (2) in the complementary strain ΔmshA::mshA (Figures 5A,
B). The results suggested that the mycothiol moiety presented in
mycothiogranaticins A (1) and B (2) is originated from the
mycothiol pathway.

Mycothiol is a glutathione counterpart in many actinobacteria,
and it is involved in cellular detoxification. The mst gene,
encoding the mycothiol-S transferase, was reported to catalyze
the conjugation of mycothiol to electrophiles to form mycothiol-
electrophile conjugates (Newton et al., 2011). To further
investigate the biosynthetic mechanism of mycothiogranaticins,
SVTN_RS22215, the only mst candidate gene, was subjected to
deletion. The genotype of the deletion mutant Δmst
(SVTN_RS22215) was confirmed by PCR and sequcencing
(Supplementary Figure S19). Disruption of SVTN_RS22215
would not affect the biosynthesis of both granaticin and
mycothiol, but interrupt the conjugation step of mycothiol to
granaticins. Indeed, the deletion mutant Δmst didn’t show any
reduced pigmentation of the fermentation broth (Figure 5B), but
mycothiogranaticin A (1) and B (2) were absent from it
(Figure 5A). The result showed that the mycothiol-S transferase
is key for productions of mycothiogranaticins, suggesting that the
biosynthesis of mycothiogranaticins relies on the mycothiol-
dependent detoxification pathway, and that the incorporation of
mycothiol into the granaticin chromophore should be the final step.

As mentioned earlier, disruption of SVTN_RS20640 led much
reduced pigmentation of the fermentation broth of the mutant
strain ΔmshA (Figure 5B), suggesting a negative effect on the
granaticin production. The overall production of granaticins of
the mutant strain ΔmshA were reduced by more than 50% in the
YEME liquid and 80% in the Gauze’s synthetic medium No.1
liquid, respectively, while the complementary strain ΔmshA::
mshA and the mutant strain Δmst gave similar production
levels to that of the wild type strain (Figure 5C).
Theoretically, disruption of mshA (SVTN_RS20640) would
result in mycothiol deficiency in the mutant strain ΔmshA.

Considering the important role of mycothiol in maintaining
the redox balance of the cytoplasm in Actinobacteria (Newton
et al., 1996; Loi et al., 2015), the potential deleterious effect of the
mshA deletion on cell growth and in turn reduction of the
granaticin production should be examined. The growth of
each strain was assessed by dry cell weighting. The result
showed, however, the growth of the mutant strain ΔmshA was
not impaired, comparing with that of the wild-type strain
(Figure 5C). This suggested that the decreased production of
granaticins in the mutant strain ΔmshA was correlated with the
mycothiol deficiency. Mycothiol might possess a positive
regulatory effect on the biosynthesis of granaticin.

DISCUSSION

A few of new granaticin congeners have been discovered in
recent years (Jiang et al., 2014; Lv et al., 2019). Till now, the
only sulfur-containing granaticin congener, granaticin MA,
was reported nearly 4 decades ago (Kormann et al., 1984), but
the NMR and bioactivity data were unavailable for the research
community. In the current study, we discovered three
granaticin congeners with mycothiol or N-acetylcysteine
moieties, including granaticin MA, from S. vietnamensis
GIMV4.0001. Sulfur incorporation can not only expand the
structural diversity of molecules, but also endow them distinct
bioactivities. For example, the S-bridged polyketide dimmer
naquihexcin E possesses anti-HIV activity, whereas the
antiviral activity of the non-sulfur-containing monomer
naquihexcin K was not reported (He et al., 2019). More
closely related examples are nanaomycin H, I and J
(Nakashima et al., 2017; Matsuo et al., 2019a). Nanaomycin
A and granaticin (4) are close BIQ members, and share the same
stereo configuration (3R, 15S) in the pyran ring and only differ at the
C-8 position of the lateral aromatic ring in the BIQ chromophores
where the hydrogen atom in nanaomycin A is substituted by a
hydroxyl group in granaticin (4). Like mycothiogranaticins,
nanaomycin H, I and J contain mycothiol-derived moieties.
While nanaomycin A shows strong antibacterial and cytotoxic
activities, these sulfur-containing analogs showed, in contrast, no
or weak antibacterial or anticancer bioactivities in the initial assay
(Nakashima et al., 2017; Matsuo et al., 2019b). However, further
bioactivity screening revealed that all these congeners possess
epithelial-mesenchymal transition (EMT) inhibition activity
showing potentials in invasive cancer therapy (Omura et al.,
2018; Nakanishi et al., 2019). In spite of weak antibacterial
activities and no cytotoxic activities revealed in the current
study, mycothiogranaticin A (1) and granaticin MA (3) are still
open for more bioactivity screening, particularly the evaluation of
EMT inhibition activity, in consideration of the high similarity in
structure between mycothiogranaticins and the mycothiol-derived
nanaomycins.

Althoughmore andmore sulfur-containing aromatic polyketides
of bacterial origin, including sulfur-bridged dimers and mycothiol-
derived monomers, have been discovered in recent years, the
knowledge on the sulfur incorporation mechanism involved
remains limited. Researchers proposed the recruitment of the
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mycothiol-dependent detoxification pathway for their biosynthesis
(Wang et al., 2013; Fang et al., 2020). This assumption seems
reasonable but has never been experimentally confirmed. A
recent report showed that inorganic sulfur can be directly
introduced into the polyketide chromophore to form sulfur-
bridged dimers by nonenzymatic reactions (Cao et al., 2021),
suggesting diverse sulfur incorporation mechanisms. In this
study, we provided experimental evidence, for the first time, that
mycothiogranaticins are derived from the mycothiol-dependent
detoxification pathway. The proposed biosynthetic pathway was
shown in Figure 6.

Mycothiol functions as a thiol-redox buffer to contribute to
maintain the reduced state of the cytoplasm and mediates
detoxification of both xenobiotic and endobiotic electrophilic
compounds, resulting in mycothiol S-conjugates (Newton
et al., 1996; Loi et al., 2015). Taking into account of the
involvement of mycothiol in the biosynthesis and the
reluctance of bioactivities, mycothiogranaticins should be
recognized as detoxification products of granaticins by the
producer. Surprisingly, disruption of mshA (SVTN_RS20640)
reduced the granaticin production by at least more than 50%.
Because reintroduction of mshA (SVTN_RS20640) into the
ΔmshA mutant can restore the production level to that of the
wild type, and disruption of mst (SVTN_RS22215) didn’t alter
the overall yield of granaticins, mycothiol deficiency should
account for the reduction in the ΔmshA mutant. This
suggested that mycothiol is involved in positively tunning
the production of granaticin. To the best of our knowledge,
this is the first report that mycothiol can not only directly
incorporate into polyketide structures, but also play an
important regulatory role on polyketide biosynthesis.

Although we currently cannot figure out the underlying
mechanism, the soxR-like gra-orf20 gene, lying within the
granaticin biosynthetic gene cluster, may serve as a clue for
further investigation. In E. coli, the transcriptional factor SoxR,
acting as a redox sensor system, governs a global defense against
specific types of oxidative stress (Pomposiello and Demple, 2001).
When oxidative stress occurs, the oxidized SoxR activates the
transcription of the soxS gene which in turn activates the whole
response regulon. In our previous study, disruption of gra-orf20
unexpectedly led a three-fold increase of granaticin production,
showing that this soxR-like gene played a negative regulatory role
in the granaticin biosynthesis, probably by sensing the redox state of
the cytoplasm, but the exact mechanism remains unknown (Deng
M. et al., 2011). Because mycothiol is a major redox buffering agent
inmany actinomycetes, disruption ofmshA (SVTN_RS20640) would
result in mycothiol deficiency in the ΔmshAmutant and render this
mutant more vulnerable to oxidative stress. In this situation, the
SoxR homolog, Gra-ORF20, would be more easily and strongly
activated, and in turn suppress the granaticin biosynthesis.

CONCLUSION

Sulfur-containing polyketides of bacterial origin have received
increasing attention from the fields of discovery and biosynthesis
of natural products. In the current study, we discovered three
sulfur-containing granaticin analogs, mycothiogranaticins A (1),
B (2) and granaticin MA (3) from S. vietnamensis GIMV4.0001.
The structure of mycothiogranaticin A (1) was determined by the
comprehensive analysis of MS, NMR, ECD calculations and
biosynthetic studies. The mycothiogranaticin A (1) and

FIGURE 6 | The proposed biosynthetic pathway of mycothiogranaticins. MshA, D-inositol-3-phosphate glycosyltransferase; MST, mycothiol-S transferase.
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granaticin MA (3) showed dramatically decreased antibacterial
activities and no cytotoxic activities. Gene disruptions suggested
that the biosynthesis of mycothiogranaticins is mycothiol-
dependent, providing experimental evidence, for the first time,
for the biological origin of sulfur in this category of sulfur-
containing polyketides. In addition, mycothiol was
unexpectedly found to be involved in positive regulation of the
biosynthesis of granaticins, probably by maintaining the cellular
redox balance. To the best of our knowledge, this is the first report
that mycothiol can not only be a building block of polyketides but
also play a regulatory role in the polyketide biosynthesis.
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Six new phthalan derivatives cytorhizophins D-I (1-6) as well as three known derivatives
cytorhizophin C, pestacin and rhizophol B were isolated from Cytospora rhizophorae.
Among them, cytorhizophins D-E (1-2) and F-G (3-4) were two pairs of diastereoisomers,
all of them featuring a 1-phenyl-1,3-dihydroisobenzofuran scaffold with a highly
oxygenated O-linked isopentenyl unit. Besides, cytorhizophins H-I (5-6) represent the
first examples of phthalide family with fascinating 6/6/6/5 tetracyclic ring system fusing as
unprecedented furo [4,3,2-kl]xanthen-2 (10bH)-one skeleton. The structures of the new
phthalan derivatives were extensively confirmed by detail spectroscopic analysis. The
partial absolute configurations of compounds 1-6 were established through electronic
circular dichroism (ECD) calculations. Moreover, compounds 1-4 showed remarkable
antioxidant activities with EC50 values ranging from 5.86 to 26.80 μM, which were better
than or comparable to that of ascorbic acid (positive control).

Keywords:Cytospora rhizophorae, endophytic fungus, antioxidtant activity,Gynochthodes officinalis, cytorhizophin

INTRODUCTION

The free radicals and reactive oxygen species (ROS) were highly reactive intermediates widely
existing in human body, which can react with human biomolecules including lipids, proteins, DNA,
etc, thus causing seriously detrimental health effects, such as neurodegenerative diseases,
atherosclerosis, liver cirrhosis, cataracts, diabetes, and cancer (Kang et al., 2007; López-
Alarcónand Denicola, 2013). With the aim to clear up the oxidative stress resulting by excess
amounts of ROS, numerous remarkable results have been reported in the past decades (Cerutti, 1985;
Halliwell, 1987; Breimer, 1990; Ding et al., 1999; Grisham et al., 2000; Aitken et al., 2012; Russell and
Cotter, 2015; El-Hawary et al., 2019; Kusio et al., 2020). Among them, antioxidant was respected as
one of the most efficient therapeutic strategies against human diseases related to oxidative damage by
ROS (Beckman et al., 1992; Taniguchi et al., 1993).

In the repertoire of pharmaceutical antioxidant discovery and achievements, natural products
exampled by astaxanthin, vitamins, as well as carotenoids have played extremely significant roles
(Quiñones, et al., 2012). Additionally, many attentions have been continuously paid to the discovery
of natural antioxidants. Consequently, more and more nature-originated antioxidants were emerged
and widely used in functional foods, pharmaceutical drugs, and industrial cosmetics (Mussard et al.,
2019; Wen et al., 2017). Polyphenols represent a characteristic family of natural-based organic
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compounds with strong antioxidant activities (Dao et al., 2020;
Bodoira and Maestri, 2020). Phthalans featured by a core
isobenzofuran skeleton were a typical class of phenols, which
have dramatically attractedmanymedicinal scientists attributable
to their affluent structure diversities, novel architecture
complexities, and significant pharmaceutical activities in recent
years (Naito and Kaneko, 1969; Strobel et al., 2002; Harper et al.,
2003; Kapoor et al., 2003; Fotso et al., 2008). Especially, the 1-
phenyl-phthalan moiety is frequently encountered in numerous
natural products and commercially available drugs or drug lead
compounds. Their fascinating biological activities and novel
structural features rendered them appealing targets for the
natural product and pharmaceutical communities.

As a part of our continuing program to discover
structurally unique natural products with significantly
biological potentials from the endophytic fungi (Liu et al.,
2017; Liu et al., 2019a; Liu H.-X. et al., 2019; Chen et al.,
2019), an endophytic fungus, Cytospora rhizophorae A761,
was obtained from the stem of Gynochthodes officinalis
(F.C.How) Razafim. and B. Bremer (basionym: Morinda
officinalis). The chemical investigation on the liquid
culture of C. rhizophorae has resulted in the successful
purification of six novel polyphenolic natural products

cytorhizophins D-I (1-6) as well as three known
derivatives cytorhizophin C (7) (Liu et al., 2019c), pestacin
(8) (Harper et al., 2003) and rhizophol B (9) (Liu et al., 2019c)
(Figure 1). Cytorhizophins D-E (1-2) and F-G (3-4) were two
pairs of diastereoisomers, all of them featured a 1-phenyl-1,3-
dihydroisobenzofuran scaffold with a highly oxygenated
isopentenyl unit. Cytorhizophins H-I (5-6) represent the
first examples of phthalide family with a fascinating 6/6/6/
5 tetracyclic ring system fusing as unprecedented furo [4,3,2-
kl]xanthen-2 (10bH)-one skeleton. Herein, the details of the
extraction, purification, structure elucidation, and
antioxidant activity of cytorhizophins D-I were described.

MATERIALS AND METHODS

General Experimental Procedures
The general experimental procedures were described in
supporting information.

Fungal Material
The information of fungal material used in this study were
identical to that of the previous descriptions (Liu et al., 2019a).

FIGURE 1 | Structures of compounds 1-9.
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Extraction and Isolation
The strain Cytospora rhizophorae A761 was kept for 7 days at
28°C and 120 r/m on a rotary shaker in 150 flasks (1,000 ml)
containing 500 ml of potato dextrose broth (potato 20%, glucose
2%, K2HPO4 0.3%, MgSO4•7H2O 0.15%, vitamin B 10 mg/L).
The fermented broth (75 L) was filtered through cheesecloth to
give the broth and mycelia. The fermented broth were subjected
to macroporous resin D101 column with ethanol as eluent. The
EtOH fraction was concentrated under a vacuum to yield a dark
brown gum (37 g). The crude extract was subjected to reversed-
phase silica gel C18 using step gradient elution with MeOH/H2O,
60%→100% to afford six fractions (Fr.): Fr.1-Fr.6.

Then, Fr. 2 (8.92 g) was separated by silica gel flash CC
(n-hexane/EtOAc, 20:1→1:1, v/v) to give nine subfractions
(Fr.2-1 to Fr.2-9). Fr.2-5 (166.2 mg) was subjected to CC on
Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v) to give four sub-
fractions (Fr. 2-5-1 to Fr. 2-5-4). Fr. 2-5-4 was further purified by
silica gel flash column chromatography (n-hexane/EtOAc, 10:
1→1:1, v/v) to give 8 (9.0 mg). Fr.2-7 (3.07 g) was subjected to CC
on Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v) to give ten sub-
fractions (Fr. 2-7-1 to Fr. 2-7-10). Fr. 2-7-5 was purified by silica
gel flash column chromatography and further purified by
semipreparative HPLC (MeOH/H2O, 60:40, v/v, 3 ml/min) to
give 9 (5.0 mg). Fr. 2-7-6 was divided into five sub-fractions (Fr.2-
7-6-1 to Fr. 2-7-6-5) by silica gel flash column chromatography
(n-hexane/EtOAc, 10:1→1:1, v/v). Fr. 2-7-6-5 was further
separated by semipreparative HPLC (MeOH/H2O, 73:27, v/v,
3 ml/min) to give four sub-fractions (Fr. 2-7-6-5-1 to Fr. 2-7-6-5-
4). Fr. 2-7-6-5-2 (10 mg, tR = 8.3 min) was purified by
semipreparative HPLC equipped with a Chiralpak IC column
(n-hexane 95%/isopropyl alcohol, 7:3, 3 ml/min) to obtain 3
(5.0 mg, tR = 8.6 min) and 4 (2.5 mg, tR = 9.0 min).

Fr. Three was further purified by CC over reversed-phase silica
gel C18 (MeOH/H2O, 20%→100%) to give five subfractions (Fr.3-
1 to Fr.3-5). Fr.3-2 (2.0 g) was divided into seven sub-fractions
(Fr. 3-2-1 to Fr. 3-2-7) by Sephadex LH-20 (CH2Cl2/MeOH, 1:1,
v/v). Fr. 3-2-1 was further purified by repeated silica gel and semi-
preparative HPLC (ACN/H2O, 50:50, v/v, 3 ml/min) to obtain
compound 7 (2.0 mg, tR = 12.0 min). Fr. 3-2-2 was subjected by
silica gel CC (n-hexane/EtOAc, 5:1→1:2, v/v) to yield four sub-
fractions (Fr.3-2-2-1 to Fr. 3-2-2-4). Fr. 3-2-2-1 was purified by
semipreparative HPLC (MeOH/H2O, 60:40, v/v, 3 ml/min) to
give a mixture (10 mg, tR = 8.9 min). The mixture was further
separated by HPLC (Chiralpak IC column, n-hexane 95%/
isopropyl alcohol, 4:1, 3 ml/min) to obtain 2 (4.0 mg, tR =
20.8 min) and 1 (4.0 mg, tR = 25.1 min).

Fr.3-4 (1.3 g) was separated by silica gel flash CC (n-hexane/
EtOAc, 5:1→1:5, v/v) to yield twelve sub-fractions (Fr.3-3-1 to Fr.
3-3-12). Compound 5 (3.0 mg, tR = 14.0 min) was obtained from
Fr. 3-3-10 by semipreparative HPLC (MeOH/H2O, 60:40, v/v,
3 ml/min). Fr.3-4 (2.8 g) was separated by Sephadex LH-20
(CH2Cl2/MeOH, 1:1, v/v) to give seven sub-fractions (Fr. 3-4-
1 to Fr. 3-4-7). Fr. 3-4-4 was divided into four sub-fractions (Fr.3-
4-4-1 to Fr. 3-4-4-4) by silica gel flash CC (n-hexane/EtOAc, 2:
1→1:2, v/v). Fr. 3-4-4-2 was purified by HPLC (ACN/H2O, 55:45,
v/v, 2 ml/min) to yield compound 6 (4.0 mg, tR = 18.7 min).

Cytorhizophin D (1): yellow powder [α]25D = +34.0 (c 0.12,
MeOH); CD (MeOH, 0.4 mg/ml): 206 (−5.3), 214 (+40.5), 230
(+8.6), 247 (−18.2), 260 (+1.9), 288 (−2.3), 306 (−1.7) nm; UV
(MeOH) λmax (log ε) 213 (5.35), 311 (4.23) nm; IR ]max 3,230,
2,927, 1716, 1,616, 1,472, 1,015, 887, 794 cm−1. For 1H and 13C
NMR, see Table 1; HRESIMS: m/z 373.1285 [M + H]+ (calcd for
C20H21O7, 373.1282).

TABLE 1 | 1H (600 MHz) and13C (150 MHz) NMR data of 1 and 2 in CD3COCD3.

No 1 2

δH δC δH δC

1 6.38, d, 8.1 106.9, CHa 6.38, d, 8.1 106.8, CHa

2 6.98, t, 8.1 130.4, C 6.99, t, 8.1 130.4, C
3 6.38, d, 8.1 106.9, CHa 6.38, d, 8.1 106.8, CHa

4 157.9, C 157.9, C
5 108.4, C 108.3, C
6 157.9 C 157.9, C
7 7.12, s 75.7, CH 7.16, s 75.7, CH
8 111.9, C 112.0, C
9 152.0, C 151.9, C
10 141.2, C 141.0, C
11 142.7, C 142.7, C
12 6.74, s 117.4, CH 6.74, s 117.3, CH
13 145.1, C 145.3, C
14 171.7, C 171.1, C
15 2.31, s 17.9, CH3 2.28, s 17.9, CH3

1′ 82.2, C 81.6, C
2′ 3.13, dd, 4.2, 2.7 56.8, CH 3.17, dd, 4.2, 2.7 56.5, CH
3a′ 2.69, m 43.9, CH2 2.61, m 43.9, CH2

3b′ 2.55, dd, 4.2, 2.7 2.51, dd, 4.2, 2.7
4′ 1.20, s 23.7, CH3 1.22, s 22.1, CH3

5 1.14, s 21.0, CH3 1.17, s 21.9, CH3

aDetected by HMBC.

TABLE 2 | 1H (600 MHz) and13C (150 MHz) NMR data of 3 and 4 in CD3COCD3.

No 3 4

δH δC δH δC

1 6.40, d, 8.1 108.0, CH 6.40, d, 8.1 108.0, CH
2 6.96, t. 8.1 129.0, CH 6.96, t. 8.1 129.0, CH
3 6.40, d, 8.1 108.0, CH 6.40, d, 8.1 108.0, CH
4 156.0, C 156.0, C
5 112.2, C 112.2, C
6 156.0, C 156.0, C
7 6.78, br s 79.3 CH 6.79, br s 79.3 CH
8 125.0, C 125.0, C
9 147.5, C 147.5, C
10 140.6, C 140.6, C
11 133.9, C 133.9, C
12 6.51, s 117.4, CH 6.51, s 117.4, CH
13 135.4, C 135.4, C
14 5.52, dd, 12.2, 2.4 72.3, CH2 5.49, dd, 12.2, 2.3 72.3, CH2

14 5.10, dd, 12.2, 2.4 5.15, dd, 12.2, 2.3
15 2.21, s 16.8, CH3 2.21, s 16.7, CH3

1′ 80.3, C 80.3, C
2′ 3.16, dd, 4.5, 2.7 57.2, CH 3.17, dd, 4.5, 2.7 57.3, CH
3a′ 2.75, t, 4.5 44.0, CH2 2.76, t, 4.5 44.0, CH2

3b′ 2.70, dd, 4.5, 2.7 2.69, dd, 4.5, 2.7
4′ 1.27, s 23.3, CH3 1.27, s 23.2, CH3

5′ 1.19, s 21.7, CH3 1.18, s 21.6, CH3
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Cytorhizophin E (2): yellow powder [α]25D = −22.3 (c 0.02,
MeOH); CD (MeOH, 0.3 mg/ml): 206 (+3.8), 214 (−33.5), 231
(−5.3), 247 (+12.9), 262 (−2.3), 288 (+0.9), 308 (+0.6) nm; UV
(MeOH) λmax (log ε) 213 (5.33), 310 (4.26) nm; IR ]max 3,236, 2,926,
1715, 1,614, 1,470, 1,427, 1,268, 1,233, 1,198, 1,162, 1,017, 977, 903,
885, 795, 752, 739 cm−1. For 1H and 13C NMR, see Table 1;
HRESIMS: m/z 373.1281 [M + H]+ (calcd for C20H21O7; 373.1282).

Cytorhizophin F (3): yellow powder [α]25D = +127 (c 0.02,
MeOH); CD (MeOH, 0.15 mg/ml): 207 (+108.0), 238 (−2.4), 286
(−5.2) nm; UV (MeOH) λmax (log ε) 284 (4.15) nm; IR ]max 3,415,
2,953, 1,616, 1,597, 1,472, 1,285, 1,225, 1,140, 1,225, 1,015, 926,
887, 864, 826, 795, 753, 738 cm−1. For 1H and 13C NMR, see
Table 2; HRESIMS:m/z 359.1497 [M + H]+ (calcd for C20H23O6,
359.1489).

Cytorhizophin G (4): yellow powder [α]25D = ‒76 (c 0.08,
MeOH); CD (MeOH, 0.10 mg/ml): 207 (‒75.3), 238 (+2.7),
287 (+4.7) nm; UV (MeOH) λmax (log ε) 282 (4.07) nm; IR
]max 3,290, 1,616, 1,474, 1,472, 1,225, 1,015, 887, 795 cm−1.
For 1H and 13C NMR, see Table 2; HRESIMS: m/z 359.1493
[M + H]+ (calcd for C20H23O6, 359.1489).

Cytorhizophin H (5): pale yellow powder [α]25D = ‒117.5 (c
0.06, MeOH); CD (MeOH, 0.2 mg/ml): 202 (+42.2), 214 (−33.5),
235 (−4.2), 243 (−8.7) nm; UV (MeOH) λmax (log ε) 311 (4.01),
282 (3.90) nm; IR ]max 3,303, 2,828, 1715, 1,462, 1,423, 1,281,
1,236, 1,192, 1,144, 1,045, 1,011, 902, 786 cm−1. For 1H and 13C
NMR, see Table 3; HRESIMS: m/z 373.1285 [M + H]+ (calcd for
C20H21O7, 373.1282).

Cytorhizophin I (6): pale yellow powder [α]25D = ‒39.3 (c 0.02,
MeOH); CD (MeOH, 0.2 mg/ml): 200 (−38.5), 214 (−30.2), 237
(−3.3), 243 (+7.4) nm; UV (MeOH) λmax (log ε) 310 (3.87), 284
(3.84) nm; IR ]max 3,302, 1,472, 1,238, 1,016, 903, 677, 600, 592,
556 cm−1. For 1H and 13C NMR, see Table 3; HRESIMS: m/z
373.1284 [M + H]+ (calcd for C20H21O7, 373.1282).

DPPH Photometric Assay
The DPPH photometric assay were carried out according to our
previously established method (Zhong et al., 2020).

RESULTS AND DISCUSSION

Cytorhizophin D (1) was purified as a yellow powder, and the
molecular formula of 1 had been established as C20H20O7 by
HRESIMS with an obvious ion peak discovered at m/z 373.1285
([M + H]+, calcd for C20H21O7, 373.1282). The IR spectrum of 1
displayed prominent resonance bands at 3,230 and 1,716 cm−1,
clarifying the existence of hydroxy and carbonyl functionality.
The 1H NMR spectrum of 1 exhibited four downshifted protons
at δH 6.74 (1H, s, H-12), δH 6.98 (1H, t, J = 8.2 Hz, H-2), 6.38 (1H,
d, J = 8.2 Hz, H-1), and 6.38 (1H, d, J = 8.2 Hz, H-3), which were
responsive for two independent benzenoid rings. Moreover, the
signals for three methyl groups [δH 1.14 (3H, s), 1.20 (3H, s), 2.31
(3H, s)] signals were also observed in its 1H NMR spectrum.
Additionally, the 13C NMR data (Table 1) coupling with HSQC
data of 1 further identified 20 carbon signals, which could be
readily differentiated to three methyls, two methylenes, six
methines, as well as nine quaternary carbons with a carbonyl
moiety (δC 171.7).

Two spin systems of C-1/C-2/C-3 and C-2′/C-3′ were
successfully assigned by carefully analysis of the 1H-1H COSY
spectrum of 1 (Figure 2). As referring to the fragment C-1/C-2/
C-3, the critical HMBC correlative signals from H-1 to C-3 and
C-5, H-2 to C-4 and C-6 in conjunction with consideration of the
overlapping NMR data of C-1/C-3 as well as C-2/C-4 confirmed
the presence of a symmetric aromatic ring. Moreover, the
conclusive HMBC correlative signals from H3-15 to C-10, C-
11, and C-12 as well as H-12 to C-8, C-10 and C-14 revealed the
existence of the ring B. The linkage of rings A and B via C-7
methine was successfully verified by the unambiguous HMBC
correlations from H-7 to C-4, C-6, C-9, and C-13. The five-
membered lactone ring C was then established with the aid of the
conclusive HMBC correlations from the critical proton H-7 to C-
13 and C-14. Moreover, the key HMBC correlations from H-7 to

TABLE 3 | 1H (600 MHz) and13C (150 MHz) NMR data of 5 and 6 in CD3COCD3.

No 5 6

δH δC δH δC

1 6.76, d, 8.1 106.3, CH 6.62, d, 8.1 111.8, CH
2 7.07, t, 8.1 129.4, C 7.10, t, 8.1 130.1, C
3 6.38, d, 8.1 106.3, CH 6.47, d, 8.1 115.3, CH
4 156.5, C 156.5, C
5 113.1, C 111.6, C
6 158.3, C 160.5, C
7 7.28, s 76.0, CH 7.04, s 75.6, CH
8 141.0, C 141.5, C
9 144.8, C 143.5, C
10 151.2, C 151.3, C
11 142.5, C 142.6, C
12 6.71, s 118.2, CH 6.75, s 118.0, CH
13 111.0, C 111.5, C
14 171.3, C 171.3, C
15 2.24, s 19.0, CH3 2.27, s 18.0, CH3

1′a 4.70, dd, 12.4, 4.3 70.0, CH2 4.52, d, 11.8 79.9, CH2

1′b 4.26, dd, 12.4, 8.9 4.33, dd, 11.8, 5.0
2′ 3.89, dd, 8.8, 4.3 72.9, CH 4.16, t, 5.0 79.1, CH
3′ 86.0, C 84.3, C
4′ 1.44, s 28.3, CH3 1.35, s 21.5, CH3

5′ 1.38, s 18.5, CH3 1.25, s 22.5, CH3

FIGURE 2 | 1H-1H COSYs and key HMBCs of 1-4.
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C-9, and H-12 to C-14 concluded that the lactone ring C was
fused with the benzene ring B to construct the key phthalide core.

Furthermore, with the aid of the spin fragment C-2′/C-3′, a
highly oxygenated isopentyl unit was strongly suggested to
connect with the phthalide core through an ether bond in 1,
answering for the informative HMBC correlations from the
methyl protons H3-4′ to C-1′, C-2′ together with H3-5′ to C-
1′, C-2′. Moreover, there was an epoxy ring in the isopentyl unit,
which could be further concluded through the high-field shift of
C-2′ (δC 56.8) and C-3′ (δC 43.9) together with the molecular
formula. Because the lack of direct HMBC correlations from the
isopentyl unit and the ring B, the location of isopentyl moiety
could be readily assigned at C-10 position by comparing the
carbon resonance shifts of the C-9 (δC 152.0) and C-11 (δC 142.7)
along with the definitive NOESY correlations frommethyls H3-4′
and H3-5′ to H3-15. Consequentially, the planar structure of 1
was finally elucidated as outlined in Figure 1.

Cytorhizophin E (2) was obtained as a yellow powder and found
to possess a molecular formula of C20H20O7 based on the HRESIMS
ion peak at m/z 373.1281 [M + H]+, indicating eleven indices of
hydrogen deficiency. The IR spectrum of 2 was quite similar to that
of 1. The inspection of the NMR data (Table 1) of 2 with those of 1
demonstrated that 2 displayed close similarity with 1. The obvious
differences were the chemical shifts of the H-7 (δH 7.16 ppm for 1
versus 7.12 ppm for 2), H-15 (δH 2.31 ppm for 1 versus 2.28 ppm for
2), H-2′ (δH 3.13 ppm for 1 versus 3.17 ppm for 2), H-3′ (δH 2.69,
2.55 ppm for 1 versus 2.61, 2.51 ppm for 2), H3-4′ (δH 1.20 ppm for
1 versus 1.22 ppm for 2), and H3-5′ (δH 1.14 ppm for 1 versus
1.17 ppm for 2), which strongly concluded that the compounds 1
and 2 should be a pair of diastereoisomers.

To determine the absolute configuration of 1 and 2, the
experimental and TDDFT calculated circular dichroism (CD)

spectra at cam-b3lyp/def2svp level were performed. The
calculated ECD spectrum with 7R configuration showed very
excellent similarities to those of the experimental CD spectrum of
1 as shown in Figure 3. Thus, the absolute configuration at C-7 of
1 was rationally assigned as R. Moreover, the calculated ECD
Cotton effects of the 7S enantiomer were well agreement with
those in the experimental ECD spectrum of 2. Cytorhizophins D
(1) and E (2) possessed a couple of distant stereogenic centers at
C-7 and C-2′ positions, which made the establishment for the
absolute configuration of C-2′ to be challenged. The absolute
configuration of C-2′ was deducted as R as that of the co-isolated
compound rhizophol B, which was confirmed by X-ray
diffraction (Liu Z. et al., 2019). Therefore, the absolute
stereochemistries for 1 and 2 were clarified as 7R,2′R and 7S,2′R.

Cytorhizophin F (3) was also afforded as a yellow powder. The
molecular formula of 3 was confirmed as C20H22O6 by its
(+)-HRESIMS m/z 359.1497 [M + H]+. The 1D NMR
spectroscopic data of the natural product 3 showed a
collection of typical resonance signals responsive for a 1,2,3-
trisubstituted benzene ring and an isopentyl unit, which showed
very close similarity to the structure of 1. After a detail inspection
and interpretation of 1D NMR spectra of 3, it could readily
disclose that its planar structure should be closely similar to that
of 1, and the major difference between them was the absence of
carbonyl group in compound 3. This conclusion further
strengthened on the basis of the signals for the O-substituted
methylene [δC 72.3, δH 5.10 (dd, J = 2.4, 12.2 Hz), 5.22 (dd, J = 2.4,
12.2 Hz)] in 3 instead of a carbonyl functionality in 1. Moreover,
the informative HMBC correlative signals from H-7 to C-4, C-6,
C-9, C-13, and C-14 could further strengthen this deduction.
Thus, the planar structure of 3 was completely elucidated as
depicted in Figure 1.

FIGURE 3 | Experimental and calculated ECD spectra of 1 and 2.

FIGURE 4 | Experimental and calculated ECD spectra of 3 and 4.
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Cytorhizophin G (4) was obtained to be a yellow powder and
had same molecular formula with that of 3 as determined by its
HREIMS ion peak at m/z 359.1493 [M + H]+, revealing ten
degrees of unsaturation. Obviously, the 13C NMR spectroscopic
data and HSQC spectrum of 4 collectively suggested 20 carbon
signals, and all of them showed very similar chemical shifts to
those of 3. Their little differences between chemical shifts implied
that they shared the same planar structure. For compound 4, the
Cotton effects in the ECD spectrum were almost direct contrary
to those of 3, suggesting that 4 should share the opposite
configuration at C-7 position comparing with 3, attributed to
the slight contribution of C-2′ chiral center. The configuration of
chiral center for C-7 was further confirmed by ECD calculations
in Figure 4. The results showed that the theoretical ECD curve for
7R agreed with the experimental plot of 3, 7S was matched with
the experimental plot of 4. Therefore, the absolute configurations
of 3 and 4 were successfully established as 7R,2′R, 7S,2′R,
correspondingly.

Cytorhizophin H (5) was isolated as a pale yellow powder and
assigned an HRESIMS ion peak at m/z 373.1285 [M + H]+

(C20H21O7, calcd 373.1282), which perfectly agreed the
molecular formula of C20H20O7 and showed 11 degrees of
hydrogen deficiency. The 1H NMR spectrum of 5 exhibited
four aromatic protons [δH 7.28 (1H, s, H-12), 7.07 (1H, t, J =
8.1 Hz, H-2), 6.76 (1H, d, J = 8.1 Hz, H-1), 6.38 (1H, d, J = 8.1 Hz,
H-3)] as well as the characteristic proton resonance signals of
three methyls [δH 2.24 (3H, s, H3-15), 1.44 (3H, s, H3-4′), 1.38
(3H, s, H3-5′)].

Analysis of 1D as well as 2D NMR spectra including COSY,
HSQC, and HMBC could readily finish the preliminary
construction of the planar structure of 5 as shown in
Figure 5. Firstly, the obvious HMBC correlations from H-1 to
C-3 and C-5, H-2 to C-4 and C-6 along with the pivotal spin
system C-1/C-2/C-3 successfully evidenced the presence of a
1,2,3-trisubstituted aromatic ring A. Secondly, as referring to
the other spin system of C-1′/C-2′, the existence of a highly
oxygenated C-5 isopentyl unit was then verified with the aid of
the HMBC correlative signals from H3-4′ to C-2′ and C-3′, H3-5′
to C-2′ and C-3′. Moreover, the location of isopentyl
functionality had been assigned to attach at C-6 position in

the ring A through the C-1′-O-C-6 ether bond, attributable to
the decisive HMBC cross-peak from H-1′ to C-6. Additionally,
the resulting penta-substituted ring B was finally established and
clarified by the HMBC correlations from H-12 to C-8, C-10 and
C-14, H3-15 to C-10, C-11, and C-12. Taking the degrees of
unsaturation into account, the assignment of a benzopyran ring
between C-4 and C-9 via a fused oxygen bridge was eventually
verified. Moreover, the asymmetrical 1H and 13C NMR signals for
the typical trisubstituted aromatic ring C further strengthened the
conclusion. Therefore, the planar structure of 5 was determined
and established to possess a fascinating 6/6/6/5 tetracyclic ring
system fusing as unusual furo [4,3,2-kl]xanthen-2 (10bH)-one
skeleton and showed in Figure 1.

Cytorhizophin I (6) was separated as a pale yellow powder and
assigned an HRESIMS ion peak at m/z 373.1285 [M + H]+ (calcd
for C20H21O7, 373.1282), which perfectly agreed with the
molecular formula of C20H20O7 and showed 11 degrees of
hydrogen deficiency. The 1H NMR spectrum of 6 exhibited
four aromatic protons [δH 6.75 (1H, s, H-10), 7.10 (1H, t, J =
8.1 Hz, H-2), 6.62 (1H, d, J = 8.1 Hz, H-1), and 6.47 (1H, d, J = 8.1
Hz, H-3)], suggesting the existence of two phenyl rings.
Interestingly, close comparison of the NMR data of
compounds 5 and 6 as shown in Table 3 indicated that these
two compounds ought to share a significantly similar core
structure. The further HMBC correlations analysis collectively
pointed to that the compounds 5 and 6 were a pair of
diastereoisomers.

The natural products 5 and 6 possessed two distant
stereocenters C-7 and C-2′. In order to establish their
absolute configurations of diastereoisomers 5 and 6, the
effort towards theoretical ECD calculation at b3lyp/6-311
+ g (d,p) level were performed. The results revealed that the

FIGURE 5 | Key 1H-1H COSY, and HMBC correlations of 5 and 6.

FIGURE 6 | Experimental and calculated ECD spectra of 5 and 6.
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theoretical ECD plots of 7S and 7R matched with the
experimental spectra of 5 and 6, respectively, which
allowed to establish the absolute configurations of 7S for 5
and 7R for 6 (Figure 6). Unsatisfactorily, the absolute
configuration for C-2′ was failed to be assigned by the little
amount and the lack of CD contribution.

Due to the structural novelty cytorhizophins H-I (5-6)
with fascinating 6/6/6/5 tetracyclic furo [4,3,2-kl]xanthen-2
(10bH)-one skeletons, their biogenetic pathways were
proposed as shown in Scheme 1. Cytorhizophins H-I (5-6)

were bio-originated from the monodictyphenone (7), the
following selective oxidation, reduction, and
hemiacetalization transformations would result the critical
intermediate i, which underwent selective oxidative
lactonization and dehydrated to generate the key
precursors ii and iii, respectively. Then, the selective
prenylation of iii further gave rise to cytorhizophins H-I
(5-6).

The characteristic of polyhydroxy groups in these new
compounds logically suggested that they might possess
antioxidant activity. The further experimental testing
confirmed that compounds 1-6 indeed showed significant
antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-
picrylhydrazyl) scavenging assay and described in the
Experimental part (Coteele et al., 1996; Mensor et al., 2001).
Compounds 1-4 showed remarkable DPPH radical scavenging
activities with EC50 values ranging from 5.86 to 26.80 μM, which
are better than that of the positive control ascorbic acid (EC50 of
25.53 μM). Compounds 5 and 6 were found to be weak DPPH
scavengers at a concentration of 100 μM (Table 4). From a
comparison of the structures of compounds 1-4 with
compounds 5 and 6, it could be readily found that the
opening of the middle ring might play the predominant roles
in enhancing their DPPH scavenging capacity.

SCHEME 1 | Plausible Biosynthetic Pathways of 5 and 6.

TABLE 4 | Antioxidant activities of compounds 1-6.

Compounds EC50 (μM)a

DPPH radical scavenging

1 17.39 ± 0.94
2 26.80 ± 0.62
3 5.86 ± 0.71
4 7.72 ± 0.36
5 >100
6 >100
Ascorbic acid 25.53 ± 0.21

aEC50 is defined as the concentration sufficient to obtain 50% of a maximum effect
estimate in 100%, Values are expressed as the mean ± SD.
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CONCLUSION

The chemical research on the endophytic fungus Cytospora
rhizophorae has disclosed a new range of antioxidative
ingredients, involving six novel phthalan derivatives named as
cytorhizophins D-I (1-6). Among them, cytorhizophins D-E (1-
2) and F-G (3-4) were two pairs of diastereoisomers, and all of
them featuring a 1-phenyl-1,3-dihydroisobenzofuran scaffold
with a highly oxygenated O-linked isopentenyl unit; whereas
cytorhizophins H-I (5-6) represent the first examples of
phthalide family with a fascinating 6/6/6/5 tetracyclic ring
system fusing as unprecedented furo [4,3,2-kl]xanthen-2
(10bH)-one skeleton. Compounds 1-4 showed significant
DPPH radical scavenging activities with EC50 values ranging
from 5.86 to 26.80 μM, which are much better than that of the
positive control ascorbic acid (EC50 of 25.53 μM). Therefore,
the preliminary results revealed that cytorhizophins D-G
might be served as promising lead compounds for the
development of bio-available potent anti-oxidant drugs. The
detailed potential mechanisms to explain the antioxidant
action of these compounds is now underway and will be
reported in due course.
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Huoshanmycins A‒C, New Polyketide
Dimers Produced by Endophytic
Streptomyces sp. HS-3-L-1 From
Dendrobium huoshanense
Youjuan Zhu1†, Yichao Kong2†, Yu Hong1, Ling Zhang1, Simin Li1, Shurong Hou2,
Xiabin Chen2, Tian Xie2, Yang Hu1* and Xiachang Wang1*

1Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China,
2Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of
Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of
Pharmacy, Hangzhou Normal University, Hangzhou, China

Three new polyketide dimers named huoshanmycins A‒C (1–3) were isolated from a plant
endophytic Streptomyces sp. HS-3-L-1 in the leaf of Dendrobium huoshanense, which
was collected from the Cultivation base in Jiuxianzun Huoshanshihu Co., Ltd. The dimeric
structures of huoshanmycins were composed of unusual polyketides SEK43, SEK15, or
UWM4, with a unique methylene linkage. Their structures were elucidated through
comprehensive 1D-/2D-NMR and HRESIMS spectroscopic data analysis. The
cytotoxicity against MV4-11 human leukemia cell by the Cell Counting Kit-8 (CCK8)
method was evaluated using isolated compounds with triptolide as positive control
(IC50: 1.1 ± 0.4 μM). Huoshanmycins A and B (1, 2) displayed moderate cytotoxicity
with IC50 values of 32.9 ± 7.2 and 33.2 ± 6.1 μM, respectively.

Keywords: huoshanmycin, polyketide, Streptomyces, Dendrobium huoshanense, endophyte

INTRODUCTION

Dendrobium huoshanense is a perennial epiphytic Orchidaceae herb with important medicinal and
ornamental value. The leaves of D. huoshanense have long been utilized for dermatologic disorders,
metabolic syndromes, nervous system disorders, and musculoskeletal system disorders (Wang,
2021). Modern pharmacological research has revealed that D. huoshanense has anti-inflammatory
(Ge et al., 2018; Li et al., 2020), cytotoxic (Chen et al., 2022), hypoglycemic (Wang et al., 2019), anti-
atherosclerosis (Fan et al., 2020), and antioxidant (Tian et al., 2013) activity. Dendrobium plant is
well-known for its rich and diverse endophytic bacterial and fungal community (Chen et al., 2019;
Chen et al., 2020). Previous studies have revealed the close relationship between Dendrobium and its
endophytes, such as improving the seed germination rate (Tsavkelova et al., 2007) and supply of
nutrients (Li et al., 2017). At present, research on D. huoshanense endophytes mainly focuses on the
diversity and functions, while not much is known about their secondary metabolites, especially for
bacteria. The main species of bacterial microorganisms of D. huoshanense are Sphingomonas,
Acinetobacter, Enterococcus, Bacillus, and Methylobacterium (Chen et al., 2020). Streptomyces is the
largest genus of Actinobacteria and characterized by producing complex secondary metabolites.
They produce over two-thirds of the clinically useful antibiotics of natural origin (e.g.,
chloramphenicol, streptomycin, tetracycline, erythromycin, ivermectin, and rifamycin) (Raja and
Prabakarana, 2011). The last four compounds all belong to polyketides, which are derived from a
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precursor molecule consisting of a chain of alternating ketone (or
reduced forms of a ketone) and methylene groups.

Since the discovery of taxol and taxane produced by an
endophytic fungus from the phloem (inner bark) of Pacific
yew in 1993 (Stierle et al., 1993), endophytes have become an
important resource in the field of bioactive natural products
discovery (Newman and Cragg, 2015; Gómez and Luiz, 2018),
as they can produce analogs or bioactivity-related compounds as
their hosts did (Cui et al., 2012; Zhao et al., 2020c). As part of an
effort to characterize novel natural products from medicinal
plants (Wang et al., 2009; Ding et al., 2021; Hu et al., 2021)
and their endophytes (Zhao et al., 2020b; Zhao et al., 2020a; Zhu
et al., 2021), herein we report the isolation and characterization of
three new polyketide dimers from an endophyte Streptomyces sp.
HS-3-L-1 of the D. huoshanense leaf. The dimeric structures of
new huoshanmycins A‒C (1–3) were composed of SEK43,
SEK15, or UWM4 (Meurer et al., 1997), with a unique
methylene linkage. Herein, we report the fermentation,
extraction, isolation, structural elucidation, and cytotoxic
activity of these secondary metabolites.

MATERIALS AND METHODS

General Experimental Procedures
UV data were acquired on a Persee TU-1810 spectrophotometer
(Persee analytics, Beijing, China). IR spectra were measured on a
Thermo Scientific Nicolet iS5 FT-IR spectrometer (Thermo,
United States). NMR spectra were obtained on a Bruker
Advance AV500 spectrometer (Bruker, Germany). HRESIMS
spectra were recorded on an Orbitrap Elite mass spectrometer
(Thermo Scientific, United States). Liquid chromatography–mass
spectrometry (LC-MS) was conducted with an Agilent 1290
system equipped with 6120 Quadrupole MSD mass
spectrometer (Agilent Technologies, United States). HPLC
analysis was performed on a Waters 2695 system equipped
with 2998 PDA detector. Total component analysis was
performed on an Agilent 1290 UHPLC-6520 Q-TOF/MS.
Preparative HPLC separation was performed on a Waters
1525 EF LC system (Waters Company, United States). MCI
GEL high-porous polymer (75–150 μm) was purchased from
Mitsubishi Chemical Corporation (Japan). Sephadex LH-20
resin (25–100 μm) was purchased from GE Healthcare
Company (Sweden). XAD16N resin (20–60 mesh) was
obtained from Yuanye Company (Nanjing, Jiangsu, China).
Chemicals were purchased from Juyou Company or Aldrich
and used without further purification unless otherwise noted.

Strain Isolation
Plant samples of D. huoshanense were provided by Jiuxianzun
Huoshanshihu Co., Ltd. (Liu-An City, Anhui Province, China)
and identified by co-author Dr. Yang Hu. A voucher specimen
(no. 20190309) was deposited at Jiangsu Key Laboratory for
Functional Substances of Chinese Medicine, China. The roots,
leaves, and stems of D. huoshanense were separated and cleaned
with water and then rinsed in 0.1% Tween-20 for 30 s,
sequentially immersed in 75% ethanol for 5 min and in 2%

sodium hypochlorite for 5 min and rinsed with 10% NaHCO3

for 10 min to inhibit fungal growth. After each treatment, samples
were rinsed three times in sterile water. The surface sterilized
samples were aseptically dissected into small pieces; 0.5 g of each
sample was suspended in 1.0 ml of sterile H2O, and heated at 75°C
for 1 min to eliminate nonsporulating bacteria (Zhao et al.,
2020a). A 100-μl aliquot of supernatant was streaked on
oatmeal agar and on ISP4 agar plates supplemented with
nalidixic acid (25 μg/ml) and amphotericin B (25 μg/ml). A
number of sporulating bacterial colonies were observed after
1–2 months of incubation at 28°C, and each colony was
subsequently purified on a M2 agar plate (Wang et al., 2013).
Overall, 54 endophytic strains were isolated from plant samples.
The endophytic strain HS-3-L-1 was isolated from the leaf of D.
huoshanense.

Phylogenetic Analysis
Strain HS-3-L-1 was inoculated in a 20-ml test tube with 4 ml of
TSB broth. After 3 days culture at 28°C with 160 rpm agitation,
the partial 16S rRNA gene fragment was amplified using universal
primers (27F 5′-AGAGTTTGATCMTGGCTCAG-3’; 1492R 5′-
GGTTACCTTGTTACGACTT-3′). The amplified fragment
(1,367 bp) was sent for sequencing analysis (Shanghai Sangong
Company, China), which displayed 99.85% identity (BlastN,
https://blast.ncbi.nlm.nih.gov/Blast.cgi) to Streptomyces polaris
(MW164959.1). The sequence of 16S rRNA has been
deposited in the NCBI nucleotide database with the accession
number OK161010.

Fermentation, Extraction, and Isolation
Streptomyces sp. HS-3-L-1 was grown on M2 agar plate (glucose
4 g/L, malt extract 10 g/L, yeast extract 4 g/L, and agar 15 g/L) at
28°C for a week. Small pieces of agar with bacterial growth were
added to eleven 250-ml Erlenmeyer flasks, each containing 50 ml
of medium Bran [corn flour, 40.0 g/L; gluten powder, 5.0 g/L;
K2HPO4•3H2O, 0.5 g/L; glucose, 10.0 g/L; bran, 10.0 g/L; CaCO3,
2.0 g/L; and (NH4)2SO4, 1.0 g/L]. After 3 days of incubation at
28°C with 200 rpm agitation, the seed cultures were used to
inoculate 100 Erlenmeyer flasks (250 ml), each containing
100 ml of medium Bran (total 10 L). The fermentation was
carried out on a rotary shaker (200 rpm) at 28°C for a week.
All obtained culture broth was combined and centrifuged at 5,000
×g for 30 min to separate the mycelium and supernatant.
Mycelium was extracted with MeOH (3 × 2 L), and the
organic phase was evaporated to afford 50.2 g of crude extract
A. The supernatant was mixed with 4% (w/v) XAD-16 resin and
stirred for 6 h, followed by filtration. The resin was washed with
water (3 × 500 ml) and then eluted with MeOH until the eluant
was colorless. The MeOH extract was subsequently evaporated to
afford 13.3 g of crude extract B.

Crude extract A (50.2 g) was subjected to an MCI column
(500 g, 10 × 80 cm) and eluted with a gradient of aqueous MeOH
(20, 40, 60, 80, and 100%) to yield 16 fractions (Fr. 1-1 to Fr. 1-
16). Fr. 1-9 (0.5 g) was subjected to a Sephadex LH-20 column (4
× 100 cm, 2 ml/min) eluted with 80% aqueous MeOH to obtain
11 subfractions (Fr. 1-9-1 to Fr. 1-9-11). Compound 5 (13.6 mg)
was obtained from Fr. 1-9-4. Fr. 1-9-9 was further purified by
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semi-preparative HPLC (38% aqueous MeOH) to yield
compound 3 (5.8 mg). Crude extract B (13.3 g) was subjected
to anMCI column (200 g, 6 × 30 cm), using gradient elution from
20% to 100% aqueous MeOH to provide 11 fractions (Fr. 2-1 to
Fr. 2–11). Fractions Fr. 2-5 (0.7 g) was subjected to a Sephadex
LH-20 column (4 × 100 cm, 2 ml/min, 80% aqueous MeOH) to
obtain 12 subfractions (Fr. 2-5-1 to Fr. 2-5-12). Fr. 2-5-6 (0.3 g)
was further purified by semi-preparative HPLC (45% aqueous
MeOH) to yield compounds 4 (7.6 mg) and 7 (9.4 mg). Fr. 2-10
(0.5 g) was also purified by a Sephadex LH-20 column (4 ×

100 cm, 2 ml/min, 80% aqueous MeOH) to obtain seven
subfractions (Fr. 2-10-1 to Fr. 2-10-7). Fr. 2-10-6 (0.2 g) was
further purified by semi-preparative HPLC (63% aqueous
MeOH) to yield compounds 1 (8.6 mg), 2 (16.8 mg), and 6
(12.3 mg).

Huoshanmycin A (1): Yellow amorphous powder; UV
(MeOH) λmax (log ε) 294 nm (4.17); IR (KBr) ]max 3,164,
2,927, 1,680, 1,617, 1,437, 1,401, 1,384, 1,284, 1,207, 1,138,
1,027, 829, 803, and 724 cm−1; 13C and 1H NMR data, see
Table 1; (+)-ESI-MS: m/z 749.0 [M + H]+; (‒)-ESI-MS: m/z

TABLE 1 | 1H (500 MHz) and 13C (125 MHz) NMR data of compounds 1‒3 in DMSO-d6.

No 1 2 3

δC, type δH, J
in Hz

δC, type δH, J
in Hz

δC, type δH, J
in Hz

1 165.2, C — 165.2, C — 165.2, C —

2 100.0, C — 100.1, C — 100.1, C —

3 166.1, C — 166.1, C — 166.3, C —

4 101.8, CH 5.76, s 101.8, CH 5.75, s 101.6, CH 5.74, s
5 160.9, C — 160.9, C — 160.8, C —

6 36.5, CH2 3.54, s 36.6, CH2 3.55, s 36.5, CH2 3.53, s
7 133.2, C — 133.2, C — 133.2, C —

8 121.3, CH 6.74, dd (7.6, 2.1) 121.3, CH 6.75, d (7.6) 121.2, CH 6.75, d (7.7)
9 130.5, CH 7.22, t (7.7) 130.5, CH 7.22, t (7.9) 130.5, CH 7.21, t (7.9)
10 115.0, CH 6.80, t (8.7) 115.0, CH 6.80, d (8.2) 114.9, CH 6.80, d (8.2)
11 154.2, C — 154.2, C — 154.2, C —

12 131.2, C — 131.3, C — 131.2, C —

13 200.4, C — 200.4, C — 200.6, C —

14 116.0, C — 116.0, C — 116.0, C —

15 165.5, C — 165.5, C — 165.5, C —

16 101.1, CH 6.13, d (2.3) 101.8, CH 6.14, s 101.1, CH 6.13, d (2.1)
17 163.7, C — 163.6, C — 163.6, C —

18 112.0, CH 6.09, d (2.0) 112.0, CH 6.09, s 112.0, CH 6.09, d (1.7)
19 143.4, C 143.4, C 143.4, C
20 21.9, CH3 1.83, s 21.9, CH3 1.84, s 21.9, CH3 1.84, s
1′ 161.9, C — 165.2, C — 165.1, C —

2′ 100.1, C — 100.1, C — 100.0, C —

3′ 166.3, C — 166.1, C — 166.2, C —

4′ 101.7, CH 5.70, s 101.8, CH 5.75, s 101.5, CH 5.74, s
5′ 161.4, C — 160.9, C — 161.2, C —

6′ 37.0, CH2 3.47, s 36.6, CH2 3.55, s 36.7, CH2 3.48, s
7′ 134.8, C — 133.2, C — 135.8, C —

8′ 120.9, CH 6.74, dd (7.6, 2.1) 121.3, CH 6.75, d (7.6) 109.5, CH 6.16, d (1.9)
9′ 129.1, CH 7.17, t (7.9) 130.5, CH 7.22, t (7.9) 160.1, C
10′ 114.4, CH 6.80, t (8.7) 115.0, CH 6.80, d (8.2) 101.9, CH 6.23, d (1.9)
11′ 154.7, C — 154.2, C — 157.8, C —

12′ 129.6, C — 131.3, C — 121.5, C —

13′ 141.1, C — 200.4, C — 200.3, C —

14′ 111.3, CH 5.95, d (2.4) 116.0, C — 117.6, C —

15′ 162.4, C — 165.5, C — 163.2, C —

16′ 102.3, CH 6.27, d (2.4) 101.8, CH 6.14, s 100.9, CH 6.11, s
17′ 163.6, C — 163.6, C — 162.4, C —

18′ 115.9, C — 112.0, CH 6.09, s 111.3, CH 6.06, s
19′ 203.6, C — 143.4, C — 142.1, C —

20′ 30.3, CH3 1.87, s 21.9, CH3 1.84, s 21.4, CH3 1.83, s
1″ 17.8, CH2 3.25, s 17.8, CH2 3.24, s 17.7, CH2 3.24, s
11-OH — 9.81, s — 9.82, s — 9.83, s
15-OH — 12.66, s — 12.68, s — 12.68, s
17-OH — 10.44, s — 10.45, s — 10.45, s
9′-OH — — — — — 9.88, s
11′-OH — 9.48, s — 9.82, s — 10.26, s
15′-OH — 10.36, s — 12.68, s — 12.05, s
17′-OH — 12.50, s — 10.45, s — 10.21, s
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747.2 [M −H]‒; (−)-HR-ESI-MSm/z 747.17096 [M −H]− (calcd.
for C41H31O14 747.1714).

Huoshanmycin B (2): Yellow amorphous powder; UV
(MeOH) λmax (log ε) 294 nm (4.44); IR (KBr) ]max 3,184,
2,260, 2,129, 1,675, 1,587, 1,464, 1,284, 1,167, 1,158, 1,024,
995, 926, 826, 769, 722, 699, 656, 633, 611, 576, and 523 cm−1;
13C and 1H NMR data, see Table 1; (+)-ESI-MS: m/z 749.0 [M +
H]+; (‒)-ESI-MS: m/z 747.2 [M − H]‒; (+)-HR-ESI-MS m/z
749.18768 [M + H]+ (calcd. for C41H33O14 749.1970).

Huoshanmycin C (3): Yellow amorphous powder; UV
(MeOH) λmax (log ε) 294 nm (4.41); IR (KBr) ]max 3,172,
2,259, 2,129, 1,677, 1,616, 1,587, 1,464, 1,384, 1,271, 1,204,
1,169, 1,142, 1,024, 999, 926, 844, 800, 766, 722, 600, and
524 cm−1; 13C and 1H NMR data, see Table 1; (+)-ESI-MS: m/
z 765.2 [M + H]+; (‒)-ESI-MS: m/z 763.2 [M − H]‒; (+)-HR-ESI-
MS m/z 765.1819 [M + H]+ (calcd. for C41H33O15, 765.1819),
787.1640 [M + Na]+ (calcd. for C41H32O15Na, 787.1639).

Cell Culture and Proliferation Inhibition
Assay
The human AML cell line MV4-11 (CRL-9591) was purchased
from ATCC and cultured in IMDM (Gibco) supplemented with
10% FBS (Gibco) and 1% penicillin–streptomycin (Gibco). To

conduct cell proliferation assay, cells (1.5 × 106 cells/well) in the
logarithmic phase were seeded into 96-well plates simultaneously
with various concentrations of different compounds (5 μl, final
concentration of 50–0.023 µM for IC50 determination) or vehicle
(0.5% DMSO) for 48 h. Cell viability of compounds 1‒4 was
measured using Cell Counting Kit-8 (DoJINDO) according to the
manufacturer’s instructions with triptolide as positive control
(Table 2). The absorbance was measured at 450 nm using a
microplate reader (Epoch, Bio-Tek, United States). The value of
half maximal inhibitory concentration (IC50) was calculated
using GraphPad Prism 7.

Antimicrobial Assay
Standard strains of Staphylococcus aureus (ATCC 29213),
Escherichia coli (ATCC 25922), Bacillus subtilis (A186),
Pseudomonas aeruginosa (ATCC 27853), and Acinetobacter
baumannii (ATCC 19606) were obtained from CICC (China
Center of Industrial Culture Collection, China). Bacteria were
inoculated in LB Broth media and incubated overnight at 37°C.
The cultures were quantified via a spectrophotometer, and then
diluted to A = 0.02 (OD600) and dispensed to 96-well black, clear-
bottom assay plates (100 µl/well). Test compounds (final
concentration 50 µM) and controls (positive control of 50 µM
polymyxin and placebo control of DMSO) were then added. The
plates were incubated for 16 h at 37°C, and then measured the
absorbance at 600 nm using a microplate reader. Compound
activity was calculated on a per-plate basis (Zhao et al., 2020a).

RESULTS AND DISCUSSION

Preliminary HPLC-HRMS metabolic profiling of endophytic
actinomycete strains isolated from D. huoshanense plant
samples revealed that Streptomyces sp. HS-3-L-1 is capable of

TABLE 2 | Antiproliferative activity of compounds 1‒4 against MV4-11 cell line.

Compounds IC50 ± SD, μM

1 32.9 ± 7.2
2 33.2 ± 6.1
3 >50
4 >50
Triptolide 1.1 ± 0.4

FIGURE 1 | Chemical structures of compounds isolated from Streptomyces sp. HS-3-L-1.
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novel secondary metabolite production (Supplementary Figure
S1). After scale-up fermentation (10 L) of Streptomyces sp. HS-3-
L-1, and further extraction, fractionation, and standard
chromatography, three new polyketide dimers were isolated
and identified [huoshanmycins A (1, yield: 1.68 mg/L), B (2,
yield: 0.86 mg/L), and C (3, yield: 0.58 mg/L)], together with four
previously reported metabolites, SEK43 (4, yield: 0.76 mg/L),
WS-5995 C (5, yield: 1.36 mg/L), JBIR-94 (6, yield: 12.3 mg/L),
and GTRI-02 (7, yield: 0.94 mg/L)] (Figure 1).

Compound 1 was obtained as a yellow amorphous powder. Its
molecular formula was established as C41H32O14 based on
HRESIMS data, which indicated 26 degrees of unsaturation.
The 13C NMR of compound 1 showed 41 carbons, which can
be sorted into two methyls, three methylenes, twelve aromatic
methines, twenty sp2 quarternary carbons, and four carbonyls/
carboxylic acids, with the aid of HSQC spectrum. The 1H-NMR
and HSQC spectra of 1 indicated twelve aromatic protons [δH
5.70 (1H, s), 5.76 (1H, s), 5.95 (1H, d, J = 2.4 Hz), 6.09 (1H, d, J =

2.0 Hz), 6.13 (1H, d, J = 2.3 Hz), 6.27 (1H, d, J = 2.4 Hz), 6.74 (2H,
dd, J = 2.1, 7.6 Hz), 6.80 (2H, t, J = 8.7 Hz), 7.17 (1H, t, J = 7.9 Hz),
and 7.22 (1H, t, J = 7.7 Hz)], two methyls [δH 1.83 and 1.87 (each
3H, s)], three methylenes [δH 3.25, 3.47, and 3.54 (each 2H, s)],
and six hydroxyls showed at low field: δH 9.48, 9.81, 10.36, 10.44,
12.50, and 12.66 (each 1H, s). Two spin systems of H-8 (δH 6.74)/
H-9 (δH 7.22)/H-10 (δH 6.80) and H-8′ (δH 6.74)/H-9′ (δH 7.17)/
H-10′ (δH 6.80) observed in COSY spectrum suggested the
presence of two 1,2,3-trisubstiuted benzene rings. Two
aromatic protons δH 6.13 (H-16) and 6.09 (H-18), together
with the HMBC correlations from H3-20 (δH 1.83) to C-13
(δC 200.4), C-18 (δC 112.0), and C-19 (δC 143.4), and from H-
16 to C-14 (δC 116.0) and C-18, and from H-18 to C-14, C-16 (δC
101.1), and C-20 (δC 21.9) suggested the presence of a 2,4-
dihydroxy-6-methyl-1-keto-phenyl moiety (ring A in
Figure 2). The two active hydrogens showed key HMBC
correlations from 15-OH (δH 12.66, s) to C-14/C-15/C-16, and
from 17-OH (δH 10.44, s) to C-16/C-17/C-18, indicating two

FIGURE 2 | Key COSY (bolds, blue), HMBC (arrows, pink) correlations of 1‒3.
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hydroxyl groups located at C-15 and C-17. An unsaturated six-
member lactone ring (ring C in Figure 2) was constructed by
HMBC cross peaks from H-4 (δH 5.76) to C-2 (δC 100.0), C-3 (δC
166.1), and C-6 (δC 36.5), and fromH-1″ to C-1 (δC 165.2) and C-
2. The obvious HMBC correlations from H2 -6 (δH 3.54) to C-4
(δC 101.8), C-5 (δC 160.9), C-7 (δC 133.2) and C-8 (δC 121.3)
permitted the assembly of ring B and ring C through a CH2

linkage. Analysis of the remaining NMR data revealed that unit I
of 1 (Figure 2) as C2-substitued SEK43 (4) (Meurer et al., 1997).
SEK43 was reported as an engineered biosynthesis product,
which was isolated and identified likewise from this
endophytic strain. In a similar manner, the other decaketide-
related subunit II was elucidated as C2′-substitued UMW4
(Meurer et al., 1997) mainly through HMBC correlations
(Figure 2), e.g., from H-4′ (δH 5.70, s) to C-2′ (δC 100.1) and
C-3′ (δC 166.3), from H2-6′ (δH 3.47, s) to C-4′, C-5′ (δC 161.4),
C-7′ (δC 134.8), and C-8′ (δC 120.9), fromH-14′ (δH 5.95, d) to C-
12′ (δC 129.6) and C-13′ (δC 141.1), and from H-16′ (δH 6.27, d)
to C-14′ (δC 111.3), C-18′ (δC 115.9), and C-19′ (δC 203.6). The
strong HMBC correlations from H2-1′′ (δH 3.25) to C-1 (δC
165.2), C-2 (δC 100.0), C-1′ (δC 161.9), and C-2′ (δC 100.1)
unambiguously connected SEK43 and UMW4 with a unique
methylene bridge, to form the final dimeric structure of 1. Thus,
compound 1 was identified as a novel polyketide dimer and
named huoshanmycin A, to reflect the producing strain’s point of
origin.

Compound 2 was also obtained as a white amorphous powder
and shared the same molecular formula (C41H32O14) with
huoshanmycin A (1). Compound 2 was clearly recognized as a
polyketide dimer from its NMR data (Table 1), which showed
only 21 carbons in 13C NMR spectrum. Analysis of NMR data of
compound 2 revealed that it was highly similar to SEK43 (4) and
shared a same methylene linkage between C-2 and C-2′. This was
confirmed by HMBC correlations from H2-1" (δH 3.24) to C-1/C-
1′ (δC 165.2), C-2/C-2′ (δC 100.1), and C-3/C-3′ (δC 166.1). The
remaining HMBC correlations (Figure 2) and NMR data
(Table 1) were in full agreement with the new structure of
compound 2, and it was named huoshanmycin B.

Compound 3was obtained as a yellow amorphous powder and
its molecular formula was determined as C41H32O15 from
HRESIMS results. A detailed comparison of the NMR data of
3 and 2 indicated that their structures were highly similar. The
significant differences observed in NMR spectra was that one of
the 1,2,3-trisubstiuted benzene ring protons in 2 (δH 6.75, 7.22,
6.80) was replaced with two olefinic methines (δH 6.16, 6.23) and
one hydroxyl (δH 9.88) in compound 3. This tetra-substituted
benzene moiety was confirmed by the HMBC correlations from
H-6′ (δH 3.48) to C-7, C-8′, and C-12′, from H-8′ (δH 6.16) to C-
6′, C-9′, C-10′, and C-12′, and fromH-10′ (δH 6.23) to C-8′, C-9′,
C-11′, and C-12′, as well as the correlation signals from 9′-OH
(δH 9.88) to C-8′, C-9′, and C-10′. Therefore, the structure of
huoshanmycin C (3) was elucidated as shown in Figure 1.

The other five known compounds were identified as SEK43 (4)
(McDaniel et al., 1995), WS-5995 C (5) (Ikushima et al., 1983),
JBIR-94 (6) (Taj and Sorensen, 2015), and GTRI-02 (7) (Yeo
et al., 1998), through comparison with reported data. Although
compounds 1–7 were inactive at or below 50 μM in a standard

antimicrobial assay, huoshanmycins A and B (1, 2), the two
isomers, showed antiproliferative activity against the MV4-11 cell
line with IC50 values of 32.9 ± 7.2 and 33.2 ± 6.1 μM, respectively
(Table 2).

In summary, the discovery of compounds 1–7 as metabolites
of the D. huoshanense isolate Streptomyces sp. HS-3-L-1 further
highlights the potential for novel microbial natural product
discovery from medicinal plants. Among them, compounds
1–3 were unique dimers of SEK43 (4), SEK15, or UWM4,
three decaketide-related shunt products discovered from
minimal jadPKS constructs (Meurer et al., 1997). So far, only
two similar natural products, strepolyketides B and C, were
recently reported from a marine-derived Streptomyces (Jiang
et al., 2020). Moreover, huoshanmycins A and B showed
moderate cytotoxicity against MV4-11 human leukemia cell.
The newly isolated 1–3 enriched the structural diversity of
microbial source. Future investigation to explore the
biosynthetic logic of these structurally unique dimers is ongoing.
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Metabolites With Cytotoxic Activities
From the Mangrove Endophytic
Fungus Fusarium sp. 2ST2
Yan Chen1,2, GuishengWang1, Yilin Yuan1, Ge Zou2, Wencong Yang2, Qi Tan2, Wenyi Kang1*
and Zhigang She2*

1National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China, 2School of Chemistry, Sun
Yat-sen University, Guangzhou, China

Two new 3-decalinoyltetramic acid derivatives with peroxide bridge fusarisetins E (1) and F
(2), one new chromone fusarimone A (5), two new benzofurans fusarifurans A (9) and B
(10), three new isocoumarins fusarimarins A–C (11–13), as well as five known analogues 3,
4, 6–8 and 14 were isolated from mangrove endophytic fungus Fusarium sp. 2ST2. Their
structures and absolute configurations were established by spectroscopic analysis,
density functional theory-gauge invariant atomic orbital NMR calculation with DP4+
statistical analysis, and electronic circular dichroism calculation. Compounds 1 and 2
showed significant cytotoxicity against human A549 cell lines with IC50 values of 8.7 and
4.3 μM, respectively.

Keywords: mangrove, endophytic fungus, Fusarium sp., cytotoxicity, benzofuran, chromone

INTRODUCTION

Endophytic fungi, inhabiting plants without any negative effects for the host, have been proven to be
a promising source of novel structures and unique bioactivities (Liu et al., 2021; Viridiana et al.,
2021). Fusarium spp. are endophytic fungi widely distributed in association with plants. It has
attracted much attention due to their diverse bioactive secondary metabolites, including alkaloids,
terpenes, cyclopeptide, anthraquinone, and lactones (Chen et al., 2019)—for example, indole
alkaloids fusaindoterpenes A and B from Fusarium sp. showed antiviral activity (Guo et al.,
2020), and fusarithioamide A from Fusarium chlamydosporium exhibited cytotoxic activity
(Ibrahim et al., 2018).

Mangrove endophytic fungi, the second largest ecological group of marine fungi, have been
reported to produce thousands of new metabolites until now (Chen et al., 2021; Chen et al., 2022).
Over the past 2 decades, our group continues to explore bioactive novel structures from mangrove
endophytic fungi (Huang et al., 2013; Xiao et al., 2013; Liu et al., 2016; Cui et al., 2017; Cai et al.,
2019). In the course of our ongoing search for new antitumor active compounds from mangrove
endophytic fungi, the strain Fusarium sp. 2ST2 attracted our attention because of the cytotoxicity of
the crude extract. Then, eight new metabolites, including two alkaloids fusarisetin E (1) and F (2),
one chromone fusarimone A (5), two benzofurans fusarifurans A (9) and B (10), three isocoumarins
fusarimarins A–C (11–13), were obtained together with five analogues equisetin (3), epi-equisetin
(4), takanechromone B (6), altechromone A (7), 4H-1-benzopyran-4-one-2,3-dihydro-5-hydroxy-8-
(hydroxylmethyl)-2-methyl (8), and aspergisocoumrin A (14) (Figure 1). As expected, compounds 1
and 2 exhibited significant cytotoxicity against human A549 cell line, and compounds 8 and 14
showed potent cytotoxicity against A549 and MDA-MB-435 cell lines. The isolation, structure
elucidation, and biological evaluation of these compounds were reported herein.
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MATERIALS AND METHODS

General Experimental Procedures
Optical rotations were measured on a PerkinElmer 341
instrument at 25°C. Melting points were recorded on a Fisher-
Johns hot-stage apparatus. UV spectra were measured in MeOH
using a Shimadzu UV-2700 spectrophotometer. Electronic
circular dichroism (ECD) data were obtained on a Chirascan
CD spectrometer (Applied Photophysics). A Bruker Avance 500
spectrometer (1H 500 MHz, 13C 125 MHz) was used for the 1D
and 2D NMR data collection. All high-resolution electrospray
ionization mass spectrometry (HRESIMS) data were obtained on
an Agilent G6230 Q-TOF mass spectrometer. Silica gel (200–300
mesh, Qingdao Marine Chemical Factory) and Sephadex LH-20
(Amersham Pharmacia) were used in the column
chromatography (CC). Silica gel plates (Qingdao Huang Hai
Chemical Group Co., G60, F-254) were used for the thin-layer
chromatography.

Fungal Material
The fungus Fusarium sp. 2ST2 was isolated from healthy leaves of
Kandelia candel, which was collected in June 2015 from the South
China Sea, Dong Zhai Harbor Mangrove Nature Reserve Area,
Hainan Province, China. The strain was identified as Fusarium
sp. (GenBank no.MZ801734) by a BLAST search which showed it
to be 100% identical with the sequence of Fusarium sp. (GenBank
no. KU296944.1).

Fermentation, Extraction, and Isolation
The fungus Fusarium sp. 2ST2 was cultivated on potato dextrose
agar for 5 days. The mycelia of the strain were inoculated into

500 ml potato dextrose broth for 3 days to prepare the seed
culture and then inoculated into the solid rice medium (70 g
of rice, 3 g peptone, and 50 ml of distilled water, 60 flasks). It was
incubated for 30 days at room temperature.

The medium was extracted with MeOH for three times, and
the total residue of the strain (65.0 g) was obtained. The EtOAc
extract was chromatographed by silica gel CC (200–300 mesh
silica) and eluted with an increasing gradient of petroleum
ether/EtOAc (9:1 to 1:9) to afford six fractions (Fr. A–F).
Fraction B was applied to Sephadex LH-20 CC (CH2Cl2/
MeOH v/v, 1:1) to give three fractions (Fr. B1–B3). Fraction
B1 was subjected to silica gel CC (CH2Cl2/MeOH v/v, 98:2) to
yield compounds 3 (5.8 mg) and 14 (2.5 mg). Fraction B2 was
subjected to silica gel CC (CH2Cl2/MeOH v/v, 96:4) to yield
compounds 9 (8.6 mg) and 13 (4.3 mg). Fraction C was eluted
on Sephadex LH-20 CC (100% MeOH) to obtain compound 10
(7.5 mg) and two other fractions (Fr. C1–C2). Fraction C2 was
separated using silica gel CC (CH2Cl2/MeOH v/v, 95:5) to yield
compounds 11 (3.1 mg) and 12 (3.5 mg). Fraction D was eluted
on Sephadex LH-20 CC (100% MeOH) to afford three fractions
(Fr. D1–D3). Fraction D1 was purified by semipreparative
UPLC (MeOH-H2O, 7:3) to give compounds 1 (3.6 mg) and
2 (4.0 mg). Fraction D2 was subjected to silica gel CC (CH2Cl2/
MeOH v/v, 9:1) to give compounds 4 (2.5 mg) and 7 (6.5 mg).
Fraction E was subjected to Sephadex LH-20 CC (CH2Cl2/
MeOH v/v, 1:1) to give compound 6 (3.8 mg) and another
fraction E1. Compounds 5 (3.0 mg) and 8 (2.8 mg) were
obtained from fraction E1, which was subjected to UPLC
(MeOH-H2O, 6:4).

“Fusarisetin E (1): Colorless oil, [α] + 10.0 (c = 0.16, MeOH).
UV (MeOH) λmax (log ε): 206 (3.02), 280 (2.16) nm. HRESIMSm/

FIGURE 1 | Structures of compounds 1–14.
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z 406.22293 [M + H]+ (calculated for C22H32NO6 406.22241).
1H

and 13C NMR (CD3OD-d4) data, see Table 1.
Fusarisetin E (2): Colorless oil, [α] + 11.2 (c = 0.19, MeOH).

UV (MeOH) λmax (log ε): 204 (3.0), 282 (2.56) nm. HRESIMSm/z
406.22274 [M + H]+ (calculated for C22H32NO6 406.22241).

1H
and 13C NMR (CD3OD-d4) data, see Table 1.

Fusarimone A (5): Yellow solid. HRESIMS m/z 237.07583 [M
+ H]+ (calculated for C12H13O5 237.07575). 1H and 13C NMR
(CDCl3) data, see Table 2.

Fusarifuran A (9): White solid, HRESIMS m/z 205.05090 [M-
H]- (calculated for C11H9O4 205.05063). 1H and 13C NMR
(CD3OD-d4) data, see Table 3.

Fusarifuran B (10): White solid, HRESIMSm/z 207.03026 [M-
H]‒ (calculated for C10H7O5 207.02990). 1H and 13C NMR
(CD3OD-d4) data, see Table 3.

Fusarimarin A (11): Colorless oil, [α] −21.5 (s 0.06, MeOH).
UV (MeOH) λmax (log ε): 219 (3.2), 238 (2.4), 318 (3.5) nm.
HRESIMS m/z 279.12288 [M + H]+ (calculated for C15H19O5

279.12270). 1H and 13C NMR (CDCl3) data, see Table 4.
Fusarimarin B (12): Colorless oil, [α] +18.6 (s 0.07, MeOH).

UV (MeOH) λmax (log ε): 220 (3.3), 252 (3.0), 316 (3.4) nm.

TABLE 1 | 1H and 13C NMR data of compounds 1 and 2.

No. 1 2

δC
a δH

a δH
b δC

a δH
a δHb

1 65.1 65.3
2 171.2 172.1
3 68.9 3.16, dd (5.3, 6.8) 3.0, dd (4.2, 7.8) 68.6 4.0, dd (2.7, 7.4) 3.82, brd (8.5)
4 103.2 103.2
5 76.8 4.37, qd (3.1, 6.9) 4.26, m 76.7 4.36, qd (3.2, 6.9) 4.23, m
6 46.2 2.59, dd (3.1, 11.9) 2.73, dd (3.6, 11.7) 45.1 2.59, dd (3.1, 11.9) 2.76, brd (9.5)
7 44.6 2.85, dd (4.7, 11.9) 2.44, dd (2.2, 11.9) 44.4 2.86, dd (4.6, 11.8) 2.44, dd (2.2, 12.0)
8 127.7 5.89, ddd (2.4, 4.8, 10.1) 5.84, brd (8.8) 127.7 5.88, ddd (2.4, 4.8, 10.1) 5.83, brd (8.8)
9 133.8 5.56, brd (10.1) 5.52, brd (10.1) 133.7 5.56, brd (10.1) 5.52, brd (9.8)
10 38.4 1.89, m 1.84, m 38.3 1.88, m 1.84, m
11 43.0 1.87, m 1.81, m 43.1 1.86, m 1.81, m

0.82, q (12.7) 0.73, q (12.7) 0.82, q (12.7) 0.73, q (12.7)
12 34.1 1.49, m 1.41, m 34.1 1.49, m 1.41, m
13 36.5 1.75, m 1.70, m 36.4 1.75, m 1.70, m

0.91, m 0.85, m 0.90, m 0.85, m
14 26.3 1.56, m 1.45, m 26.3 1.55, m 1.45, m

1.0, m 1.04, m 1.0, m 1.04, m
15 40.0 1.37, m 1.18, m 39.8 1.37, m 1.18, m
16 53.2 53.1
17 214.3 213.5
18 62.6 4.07, dd (6.9, 11.7) 3.88, m 58.5 3.95, dd (2.8, 12.3) 3.87, brd (12.1)

3.96, dd (5.3, 11.7) 3.78, dd (3.1, 11.0) 3.66, dd (7.4, 12.3) 3.38, m
19 30.5 3.03, s 2.92, s 28.6 3.02, s 2.88, s
20 17.7 1.34, d (7.0) 1.26, d (6.9) 17.4 1.33, d (7.0) 1.24, d (6.1)
21 22.7 0.93, d (6.5) 0.86, d (6.5) 22.7 0.93, d (6.5) 0.87, d (6.3)
22 15.0 1.0, s 0.89, s 14.7 1.0, s 0.91, s
OH-4 4.88, s 4.9, s
OH-18 7.3, s 7.5, s

aMeasured in CD3OD.
bMeasured in DMSO-d6.

TABLE 2 | 1H and 13C NMR data of compound 5 in CDCl3.

5 5

No. δC δH No. δC δH

1 182.2 8 154.3
2 114.7 8a 104.2
3 162.9 9 9.2 2.02, s
4a 143.3 10 18.6 2.44, s
5 125.2 OCH3-6 56.5 3.96, s
6 151.4 OH-5 5.14, s
7 94.5 6.41, s OH-8 12.51, s

TABLE 3 | 1H and 13C NMR data of 9 and 10 in CD3OD.

No. 9 10

δC δH (J in Hz) δC δH (J in Hz)

2 169.4 163.5
3 119.1 128.4
3a 127.6 109.0
4 98.9 7.02, d (2.2) 99.6 6.84, d (2.3)
5 139.1 137.2
6 98.6 6.44, d (2.2) 97.3 6.27, d (2.3)
7 146.5 141.8
7a 156.9 154.3
8 12.7 2.75, s 13.1 2.70, s
9 187.4 10.14, s 166.3
10 56.5 3.95, s
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HRESIMS m/z 279.12290 [M + H]+ (calculated for C15H19O5

279.12270). 1H and 13C NMR (CDCl3) data, see Table 4.
Fusarimarin C (13): Colorless oil, HRESIMS m/z 291.08639

[M + H]+ (calculated for C15H15O6 291.08631).
1H and 13C NMR

(CDCl3) data, see Table 4.

NMR Calculations
In general, conformational analysis was carried out using Merck
Molecular Field by Spartan’s 10 software. Conformers above 1%
Boltzmann populations were optimized at the B3LYP/6-311+G
(d, p) level in polarizable continuum model (PCM) methanol
(Gaussian 09). Subsequently, NMR calculations were computed
using the gauge invariant atomic orbital (GIAO) method at the
mPWLPW91-SCRF/6-311+G (d, p) level using the PCM in
methanol (Gaussian 09). Finally, the shielding constants were
averaged by Boltzmann distribution theory for each stereoisomer,
and their experimental and calculation data were analyzed by
DP4+ probability.

ECD Calculations
The ECD calculationswere performed as described previously (Chen
et al., 2020). Geometric optimization of compounds 1 and 2 was
carried out at the B3LYP/6-31+G(d) level in the liquid phase. Then,
ECD calculations were performed using the TDDFTmethodology at
the WB97XD/CC-PVDZ and WB97XD/6-31G levels, respectively.

Cytotoxicity Assay
The cytotoxicity of all compounds against tumor cell lines was
tested by the MTT assay as previously reported (Chen et al., 2019).

RESULTS AND DISCUSSION

Compound 1 was isolated as a colorless oil. The molecular
formula was determined as C22H32NO6 based on the

HRESIMS data (m/z 406.22293 [M + H]+). The 1H NMR data
of 1 (Table 1) showed three methyl signals at δH 0.93 (d, J =
6.5 Hz), 1.0 (s), and 1.34 (d, J = 7.0 Hz), one N-methyl proton at
δH 3.03 (s), and two olefinic protons at δH 5.56 (brd, J = 10.1 Hz)
and 5.89 (ddd, J = 2.4, 4.8, 10.1 Hz). The 13C NMR data of 1
(Table 1) displayed 22 carbon signals, including four methyls,
four methylenes (one oxygenated), seven methines (two olefinic),
and four quaternary carbons (one ketone carbonyl and one ester
carbonyl carbon). The planar structure of 1was a detailed analysis
of the 1D and 2D NMR data. The spin system of H3-20/H-5/H-6/
H-7/H-8/H-9/H-10/H2-11/H-12(/H3-21)/H2-13/H2-14/H-15(/
H-10) from 1H-1H COSY data (Figure 2), together with the
heteronuclear multiple-bond correlations (HMBC) (Figure 2)
from H3-22 to C-7, C-15, C-16 and C-17 and from H-6 to C-1,
established the partial ring system of A/B/C, while the HMBC
correlations from H-6 to C-2 and C-4, from H-3 to C-1 and C-4,
and from H3-19 to C-2 and C-3 indicated the presence of a γ-
lactammoiety (ring D). In addition, a peroxide bridge between C-
4 and C-5 was proposed according to two additional oxygen
atoms in the molecular formula of 1, which constitute the ring E.
Thus, the planar structure of 1was deduced (Figure 1), which was
similar to fusarisetin A (Jang et al., 2011), by comparing their
NMR data.

Compound 2, with a molecular formula of C22H32NO6, the
same as 1, was isolated as a colorless oil. The results of comparing
the NMR data of 1 and 2 indicated that they shared a planar
structure, and this was further confirmed by an extensive analysis
of 1H-1H COSY and HMBC correlations (Figure 2), while the
major difference of NMR shifts at H-3 (ΔδH +0.84), C-18 (ΔδC
−4.1), and C-19 (ΔδC −1.9) suggested 1 and 2 to be 3-epimers.

The relative configurations of 1 and 2 were determined by the
NOESY correlations (Figure 3). The cross-peaks of H-12/H-10/
H3-22/H-7/H3-20 suggested that these protons were co-facial,
while the correlations of H3-21/H-15/H-6 showed that these
protons were on the other face. Considering the absence of

TABLE 4 | 1H and13C NMR data of 11–13 in CDCl3.

No. 11 12 13

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 166.2 166.6 164.8
3 155.0 157.7 149.8
4 106.1 6.29, s 104.3 6.19, s 111.8 6.60, s
4a 139.1 139.5 134.3
5 101.4 6.33, d (2.2) 100.4 6.46, d (2.2) 103.6 6.49, brs
6 166.9 166.9 166.8
7 100.5 6.48, d (2.2) 101.3 6.31, d (2.2) 102.1 6.58, brs
8 163.6 163.8 163.9
8a 100.0 100.1 102.1
9 41.6 2.69, dd (3.7, 14.6) 33.3 2.53, t (2.5) 134.3 7.22, d (15.5)

2.55, dd (8.6, 14.6)
10 68.9 4.07, m 23.2 1.83, m 122.5 6.68, d (15.5)

1.73, m
11 39.3 1.53, m 38.5 1.52, m 166.1
12 18.7 1.51, m 67.9 3.84, m 61.0 4.29, dd (7.1, 14.1)
13 14.0 0.96, t (6.9) 23.9 1.22, d (6.2) 14.2 1.36, t (7.0)
OH-8 11.10, s 11.10, s 11.0, s
OCH3-6 55.7 3.87, s 55.8 3.86, s 55.9 3.91, s
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correlation from H2-18 and 4-OH to other protons, the NOESY
spectrum of 1 and 2were retested in DMSO-d6 reagent. Then, the
correlation of 4-OH/H2-18 was only detected in 1, indicating that
the protons of OH-4 and H2-18 were positioned on the same face
in 1 and were opposite in 2. Thus, 1 and 2 were an epimer at C-3.
Subsequently, the 13C NMR calculations of (1R*, 3S*, 4R*, 5S*,
6S*, 7S*, 10S*, 21R*, 15R*, 16S*)-1a and (1R*, 3R*, 4S*, 5S*, 6S*,

7S*, 10S*, 21R*, 15R*, 16S*)-1b were carried out using the GIAO
method at mPW1PW91-SCRF/6–311+G (d, p)/PCM (MeOH).
The results of the DP4+ probability analysis (Smith and
Goodman, 2010; Kawazoe et al., 2020; Xu et al., 2021) showed
that 1a was the most likely candidate structure, with a better
correlation coefficient (R2 = 0.99891) and a high DP4+
probability of 100% (all data) probability (Figure 4). Similarly,

FIGURE 2 | Key heteronuclear multiple-bond correlations and correlation spectroscopy of compounds 1, 2, 5 and 9–13.

FIGURE 3 | Key nuclear Overhauser effect correlations of compounds 1 and 2.

FIGURE 4 | Comparisons of calculated and experimental 13C NMR data of 1 and 2.
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13C NMR calculations with the DP4+ probability analysis of the
two isomers [(1R*, 3S*, 4S*, 5S*, 6S*, 7S*, 10S*, 21R*, 15R*, 16S*)-
2a and (1R*, 3R*, 4R*, 5S*, 6S*, 7S*, 10S*, 21R*, 15R*, 16S*)-2b] of
2 were performed. The results showed that 2 gave the best match
of 100% (all data) with the 2b isomer.

Aiming at determining the absolute configuration of 1, the
ECD calculation was performed at theWB97XD/CC-PVDZ level.
The results showed that the calculated ECD curve was in good
agreement with the experimental one (Figure 5). Therefore, the
absolute configuration of 1 was assigned as 1R, 3S, 4R, 5S, 6S, 7S,
10S, 21R, 15R, 16S. The absolute configuration of 2 was
determined to be 1R, 3R, 4R, 5S, 6S, 7S, 10S, 21R, 15R, 16S by
the identical experimental and calculated curves (Figure 5).

Compound 5 was obtained as a yellow solid. The molecular
formula was determined to be C12H13O5 based on HRESIMS data
(m/z 237.07583 [M + H]+). The 1H NMR spectrum (Table 2) of 5
showed two methyl groups at δH 2.02 (s), 2.44 (s), one methoxyl
group at δH 3.96 (s), one olefinic proton at δH 6.41 (s), and one
chelated hydroxyl group at δH 12.51 (s). The 13C NMR data
(Table 2) of 5 highlighted the presence of 12 carbon resonances,
including three methyls (one oxygenated), one olefinic carbon,
and eight quaternary carbons (one carbonyl carbon and seven
olefinic carbons). The 1H and 13C NMR data of 5 were similar to
those of 6, indicating that 5was one chromone. The structure of 5
was further established by the HMBC correlations (Figure 2)
from H3-9 to C-1, C-2, and C-3 and from H3-10 to C-3.

Compound 9 was obtained as a white solid. The molecular
formula was determined to be C11H9O4 based on HRESIMS data.
The 1H NMR spectrum (Table 3) of 9 showed one methyl group
at δH 2.75 (s), one methoxyl group at δH 3.95 (s), and two
aromatic protons at δH 7.02 (d, J = 2.2 Hz),6.44 (d, J =
2.2 Hz). The 13C NMR data (Table 3) of 9 highlighted the
presence of 11 carbon resonances, including two methyls, two
sp2 methines, and seven quaternary carbons. These data suggest 9
to be a benzofuran derivate. The NMR data of 9 were closely
similar to penicifuran C (Qi et al., 2013), except for the presence

of a methoxyl group, The HMBC correlations (Figure 2) from
H3-10 to C-7 indicated that the methoxyl group was located at C-
7. Thus, the structure of 9 was determined as shown in Figure 1.

Compound 10 was obtained as a white solid. The molecular
formula was determined to be C10H13O5 based on HRESIMS
data. The 1H and 13C NMR data (Table 3) of 10 were similar to
those of 9, except that the aldehyde group in 9 was oxidized to the
carboxyl group, and there was an absence of the methoxyl group.
The deduction was further confirmed by the HMBC correlations
(Figure 2) from H3-8 to C-2, C-3, and C-9. Therefore, the
structure of 10 was established as shown.

Compound 11 had the molecular formula of C15H18O5 by the
HRESIMS data. The 1H NMR spectrum (Table 4) of 11 showed
one chelated hydroxyl group at δH 11.10 (s), onemethyl group at δH
0.96 (t, J = 6.9 Hz), one methoxyl group at δH 3.87 (s), and three
olefinic protons at δH 6.29 (s), 6.33 (d, J = 2.2 Hz), and 6.48 (d, J =
2.2 Hz). The 13CNMR data (Table 4) of 11 revealed the presence of
15 carbon resonances, including two methyls, three methylenes,
one sp3 and three sp2 methines, and six quaternary carbons. These
data suggest 11 to be an isocoumarin class. The spin system of H2-
9/H-10/H2-11/H2-12/H3-13 in the 1H-1H COSY spectrum
(Figure 2) as well as the HMBC correlations (Figure 2) from
H2-9 to C-3 and C-4 showed that the side chain was substituted
at C-3. By comparing the specific rotation of 11 [[α]−21.5 (s
0.06, MeOH)] with (−)-citreoisocoumarin [[α] −29.8 (s 0.34,
MeOH)] (Mallampudi et al., 2020), the 10R configuration at C-
10 in 11 was indicated. Thus, the gross structure of 11 was
defined as shown.

Compound 12 was isolated as a colorless oil. The molecular
formula was determined to be C15H18O5 based on HRESIMS
data. The comparison of the 1H and 13C NMR data (Table 4) with
those of 11 revealed that they share the same isocoumarin
structure, except that the hydroxyl group was substituted at C-
12 in 12. The spin system of H2-9/H2-10/H2-11/H-12/H2-13 in
the 1H-1H COSY spectrum (Figure 2), together with the HMBC
correlations (Figure 2) from H2-9 to C-3 and C-4, further
supported this possibility. The 12S configuration was
confirmed by the positive specific rotation value of 12 [[α]
+18.6 (s 0.07, MeOH)] when compared with peneciraistin D
[[α] +21.1 (s 0.14, MeOH)] (Ma et al., 2012).

Compound 13was isolated as a colorless oil with the molecular
formula of C15H14O6 based on HRESIMS data. Upon comparing
the 1H and 13C NMR data (Table 4) between 11 and 13, it was
suggested that 13 also possessed the isocoumarin framework. The
spin system of H-9/H-10 observed in the 1H-1H COSY spectrum
(Figure 2) and the HMBC correlations (Figure 2) fromH-9 to C-3
and C-4 from H-10 to C-11 made it possible to obtain the gross
structure. Additionally, an ethyl group was linked with C-11 by the
HMBC correlations from H-12 to C-11. The 9E configuration of
the double bond was determined by the large coupling constant JH-
9, H-10 = 15.5 Hz. Thus, the structure of 13 was confirmed as shown
in Figure 1.

Five known analogues were characterized as equisetin (3) (Zhao
et al., 2019), epi-equisetin (4) (Zhao et al., 2019), takanechromone B
(6) (Qader et al., 2021), altechromoneA (7) (Tanaka et al., 2009), 4H-
1-benzopyran-4-one- 2,3-dihydro-5-hydroxy-8-(hydroxylmethyl)-2-
methyl (8) (Sousa et al., 2016), and aspergisocoumrin A (14) (Wu

FIGURE 5 | Calculated and experimental electronic circular dichroism
spectra of 1 and 2.
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et al., 2019) through a comparison of the spectroscopic data with the
literature.

All compounds were evaluated for their cytotoxicity against
the A549 (lung carcinoma), HELA (cervical carcinoma),
KYSE150 (esophageal squamous carcinoma), PC-3 (pancreatic
carcinoma), and MDA-MB-435 (breast carcinoma) human
cancer cell lines (Table 5). As a result, compounds 1 and 2
showed selective cytotoxicity against A549 cell line with IC50

values of 8.7 and 4.3 μM, respectively. Compound 8 showed
potent cytotoxicity against A549 and MDA-MB-435 cell lines
with IC50 values of 5.6 and 3.8 μM, respectively. Compound 14
exhibited significant cytotoxicity against A549 and MDA-MB-
435 cell lines with IC50 values of 6.2 and 2.8 μM, respectively,
while the other compounds exhibited non-significant activity
against the five cancer cell lines at the concentration of 50 μM.

CONCLUSION

In summary, two new 3-decalinoyltetramic acid (3DTA)
derivatives, fusarisetins E (1) and F (2), with a peroxide bridge,
were isolated from mangrove endophytic fungus Fusarium sp.
2ST2. The 3DTA derivatives showed various bioactivities, such as
antimicrobial, anticancer, larvicidal, cytotoxic, and antiviral (Fan
et al., 2020). The structure of fusarisetins E (1) and F (2) was
similar to that of fusarisetin A, which was first isolated from the
soil fungus Fusarium sp. FN080326 with inhibitory activity to
acinar morphogenesis (Jang et al., 2011), while fusarisetin E (1)
was identified as peroxyfusarisetin (Yin et al., 2012), a synthetic
intermediate by mixture. Here fusarisetin E (1) was reported first
as an optically pure new natural product with 1D and 2D NMR
data (Supplementary Figures S1–S8). Moreover, natural
peroxide compounds that usually have unique pharmacological
activities, such as artemisinin with antimalarial activity (Zhao
et al., 2018; Pandey et al., 1999), talaperoxides A-D with
cytotoxicity (Li et al., 2011), phaeocaulisin M with anti-
inflammatory activity (Ma et al., 2015), 1α,8α-epidioxy-4α-
hydroxy-5αH-guai-7(11),9-dien-12,8-olide with antiviral
activity (Dong et al., 2013), and plakinic acid M with

antifungal activity (Matthew et al., 2016), were reported.
Compounds 1 and 2 had selective cytotoxicity against A549
cell line with IC50 values of 8.7 and 4.38 μM, respectively. The
cytotoxicity of fusarisetins was reported for the first time.
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