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Editorial on the Research Topic: 
 

Prognosis prediction and risk stratification in head and neck cancer


Head and neck cancer is the seventh most common cancer worldwide, accounting for 3% of all cancers. For patients with early-stage disease, either surgery alone or definitive radiation therapy alone results in an excellent treatment outcome. However, the majority of newly diagnosed patients present with local-regionally advanced disease and require multimodality treatment. The treatment outcomes of these patients are far from satisfactory. It is widely recognized that treatment outcome is determined by a complex interaction of multiple factors, including biological, clinical, treatment, and environmental factors. However, current treatment decisions primarily rely on the clinical stage, which does not always reflect the variable clinical course and long-term outcomes. Recent advances in radiomics, genomics, proteomics, microbiome, AI technique and machine learning, and other potential imaging, biological, and clinical factors, alone or in combination, may provide new insights into the prognosis prediction and treatment response in head and neck cancer. Risk stratification based on these prognostic and predictive biomarkers will help design future clinical trials and personalized treatment strategies in head and neck cancer.

This paper aims to present the latest advances in basic, translational, and clinical research findings on predictions of treatment outcome and response and risk stratification in head and neck cancer, including nasopharyngeal carcinoma, and how these affect future clinical trials and treatment decisions in head and neck cancer.


1 Head and neck squamous cell carcinoma

By analyzing gene expression patterns in The Cancer Genome Atlas (TCGA) head and neck squamous cell carcinoma (HNSCC) dataset and GSE37991 dataset, Mai et al. examined possible prognostic indicators in head and neck carcinoma. The common differentially expressed metabolic enzymes were used to identify six expressed metabolic enzymes (DEMEs). When investigated on a modest scale, this metabolic enzyme-based risk signature proved to be more accurate at predicting the prognosis of HNSCC than tumor, node, and distant metastasis (TNM) stage since it was simplified to six genes. While taking into account the loss of specific clinicopathological information, clinical data collection techniques and management procedures must be strictly adhered to for the application of this gene signature in real-world situations.

Deoxyribonucleic acid (DNA) repair capacity and the tolerance of DNA to radiation damage varies in cancers and healthy tissues, and they are linked to clinical manifestations, including cancer resistance and side effects. Ming’s et al. developed a 13-diagnostic-related groups (13-DRG) signature for the prognosis of HNSCC, which could reliably and independently predict the patient’s clinical outcome. The researchers also revealed the immune landscape, tumor mutation burden, and sensitivity to chemotherapy drugs in various risk groups, all of which may be used to inform clinical treatment choices.

The prospective evaluation of patient characteristics and the identification of novel potential prognostic biomarkers for cutting-edge treatment options is a crucial topic for stratifying personalized treatment for recurrent/metastatic HNSCC (RM HNSCC). The implementation of a relatively detailed assessment technique will make it easier to identify individuals who will likely benefit from immunotherapy, salvage surgery or (re)irradiation. In the first line of treatment for RM HNSCC, a variety of variables affect treatment decisions as indicated in a questionnaire by Klinghammer et al., including performance status, programmed cell death ligand 1 (PD-L1) expression, time from last systemic treatment above or below 6 months, and disease burden.

To evaluate the prognostic performance of HNSCC, including overall survival and immune profile performance, Gao et al. created a lipid-related prognostic signature. Their study suggests that predictors created for aberrant lipid metabolism have the potential to be used in the therapeutic assessment of HNSCC.

Individualized precision medicine and the assessment of cancer prognosis have become attractive study areas. To objectively quantify and identify trustworthy and clinically useful biomarkers, Moratin et al.’s research performed immunohistochemical staining and digital pathology algorithms. Overall and progression-free survival estimates were made with a substantial degree of accuracy using a combined score combining the epidermal growth factor receptor (EGFR) expression, neck node status, and immune cell characteristics.

For immune checkpoint inhibitors (ICI) therapy response, different immune cell distribution patterns within tumors may be essential. HNSCC patients have a relatively moderate response rate to therapy due to the absence of prognostic indicators. According to Idel et al.’s analysis of the spatial distribution differences between each immune cell type, programmed death-1 (PD-1) and PD-L1 expression levels in certain tumor types may be important for predicting treatment response.

Exome sequencing was undertaken by Desai et al., and this analysis revealed that several tumor suppressor genes had mutations. If those genes were driver genes and had the potential to be druggable, they might be the subject of an actionable mutation.

A significant prognostic factor for HNSCC is the incidence of neck lymph node metastasis (LNM). As a result, understanding the molecular mechanisms involved in HNSCC LNM has important clinical ramifications for risk assessment. Zhang et al. used Gene Ontology enrichment analysis to create a risk score for identifying lymphocytes that infiltrate tumors. When used to predict the survival of patients with HNSCC, the prediction model demonstrated discrimination capacity and agreement.

In a meta-analysis of the literature on the role of microRibonucleic acid (RNA)s in the clinical manifestations of HNSCC treatment, Qiu et al. discovered that microRNAs are highly accurate at identifying recurrent, metastatic, and lymph node metastatic HNSCC. This finding suggests risk grading and individualized treatment of patients in the clinic for abnormal microRNA manifestations.

In bioinformatics research, the investigation of diverse microlevel prognostic indicators is a prominent topic. Shen et al. developed a long noncoding long non-coding (Lnc)RNA prognostic signature for HNSCC, which had a higher impact on risk assessment but requires more research to demonstrate its potential practical value.

A common regulator of messenger (m)RNA expression called N6-Methyladenosine has drawn growing research interest. Although the importance of m6A in several biological processes, including the development and spread of malignancies, has been well established, studies of its potential on the tumor immune microenvironment (TIME) are few and far between. According to Yang et al.’s findings, m6A regulators and the TIME have a strong relationship. This has implications for research into immunotherapy and chemotherapy regimens for HNSCC.

Patients with HNSCC still receive treatment based on their disease stage and tumor site rather than tumor biology. Numerous biomolecular markers have been proposed to identify primary and secondary cancers in the early stages of the disease, including proteins, DNA, RNA, and microRNAs. Immune checkpoint inhibitors have become a novel therapeutic option for HNSCC, which is an immunosuppressive disease. It would be beneficial to look at how immune cells and their regulators function in the tumor microenvironment of HNSCC. Because RNA-binding proteins (RBPs) are essential for the post-transcriptional control of genes, it is important to investigate how RBPs relate to HNSCC. An immune-related RBP predictive signature was developed by Ming et al.’s.

The majority of patients often receive a diagnosis of advanced HNSCC because of the asymptomatic nature of the early disease stages and the dearth of reliable screening techniques. Effective biomarkers must be found quickly in order to help doctors anticipate clinical outcomes with accuracy and provide references for specialized medical treatments to fight HNSCC. Nuclear transporter factor 2 (NTF2) was found as a potential diagnostic and prognostic biomarker for HNSCC via extensive analysis of its function by Xuan et al., which included RNA sequencing data and the associated clinical information.

Cisplatin is used as main or adjuvant (radio)chemotherapy for squamous cell carcinoma of the head and neck. There are two basic dosage regimens currently used, and the highest cumulative total dose of cisplatin is desired for the best results. The 3-weekly regimen had a larger cumulative total dose, according to Jungbauer et al.’s retrospective research. It can be concluded that the 3-weekly regimen is superior to the weekly regimen because this appears to favorably correlate with patient outcome. Functional organ systems, particularly those of the kidneys and bone marrow, are linked to a higher cumulative total dosage and can be thought of as predictive factors.

Primary surgery is followed with risk-adapted adjuvant radiotherapy (RT)/chemoradiotherapy (CRT) or definitive CRT for tumors that are functionally inoperable as the standard of care for locally advanced oral cavity cancer (LA-OCC). Patients with locally advanced HNSCC experience local recurrences and distant metastases after receiving combined modality therapy, and local control rates for the LA-OCC subgroup are still lower than those for LA-HNSCC, with the majority of locoregional failures occurring in the area of preceding RT. A prospective, single-arm experiment was initiated by Grün et al. to examine the feasibility and early efficacy of neoadjuvant chemoradiotherapy (nCRT) followed by surgery in LA-OCC, with a special emphasis on potential prognostic biomarkers.

The identification of cancers that will respond to treatment is required since targeting the immune system has proven to be a successful therapeutic approach for the management of different tumor types. Saiz-Ladera et al. discovered a collection of gene combinations connected to a greater presence of immune effector cells that are associated with better outcomes in HNSCC. This novel signature also recognizes a subset of cervical squamous cell carcinoma (CSCC), but not esophageal or lung squamous cell carcinoma (SCC). These findings can serve as a guide for choosing the focus of future studies.

It is important to determine whether human papillomavirus (HPV) immunotherapy effectiveness has a potential relationship with the tumor immune microenvironment since HPV+ or HPV- HNSCC patients have distinct prognostic outcomes.Wu et al.’s study used a single-cell RNA sequencing dataset and evaluated CD8+ T-cell based genes including ACAP1 (adenosine diphosphate ribosylation factor GTPase-activating proteins with Coiled-coil, Ankryin repeat and PH domains 1), ankyrin repeat domain 28 (ANKRD28), chromosome 12 open reading frame 75 (C12orf75), and mannose-6-phosphate receptor (M6PR) that could predict prognosis and immunization-correlated treatment responses.



2 Nasopharyngeal carcinoma

Nasopharyngeal carcinoma (NPC), which makes up a sizable fraction of head and neck tumors, has a considerable regional incidence. In a literature meta-analysis carried out by Chiang et al. for the eighth edition of TNM staging, clinical indicators were screened to suggest prognosis, such as upstaging paranasal sinus to T4. The conclusions obtained from this meta-analysis were all common clinical indicators, which are convenient and simple to use.

The commonly used clinical TNM staging may need to be taken into account for factors like varied EGFR expression for different outcomes over the same period since it does not specifically predict each patient’s prognosis in nasopharyngeal carcinoma. High EGFR expression was found to be strongly related with poor overall survival (OS) and disease-free survival (DFS) in Chen et al.’s meta-analysis. It should be emphasized in practice that there was no significant link between various EGFR expression and progression-free survival (PFS), distant metastasis-free survival (DMFS), OS, etc., in the subgroup analysis.

Nasopharyngeal carcinoma is usually diagnosed beyond stage I because of the insidious location of the primary region. Induction chemotherapy combined with concurrent radiotherapy is commonly used in the clinical treatment of patients with locally advanced nasopharyngeal carcinoma. In Xiong et al.’s study, a comparison of the effectiveness of several chemotherapy regimens demonstrated that TPF (taxanes, cisplatin, and 5-fluorouracil) and TP (taxanes and cisplatin) led to different outcomes due to differences in toxicities in patients with NPC at N2-3 stages.

New options and approaches for investigating the diagnosis, therapy, and prognosis of NPC have been presented by the combination of radiomics and multimodal imaging. To diagnose and treat NPC, radiomics and machine learning have been combined. However, model selection is where machine learning in radiomics is most commonly used. Radiomics, a technology for extracting information from depth images, can help with NPC diagnosis and treatment, but it also presents a number of difficulties, including the need for large datasets for the development of tumor models, data sharing between various medical institutions, and different imaging protocols, as summarized by Zhang et al. To integrate radiomics models into clinical practice, significant progress is still needed. For radiomics to promote individualized and intelligent treatment, more forward-looking research and applications are needed.

In a different meta-analysis on nasopharyngeal carcinoma, author Jing et al. analyzed the clinical manifestation of patients with various blood types and discovered that the incidence of nasopharyngeal carcinoma was lower in the Chinese population with blood group O. Worse 5-year OS, locoregional relapse-free survival (LRRFS) or DMFS rates were discovered in patients with blood group O. The study did not, however, analyze the distribution of blood types across various geographies or look into whether a person’s blood type may be related to their onset of a certain disease.

The main factors influencing the occurrence of hypothyroidism in nasopharyngeal carcinoma patients following radiotherapy, specifically after intensity-modulated radiotherapy (IMRT), are the thyroid gland’s volume and dosage. According to Shen et al.’s normal tissue complication probability (NTCP) model, which was built using multivariate construction, the best strategy to safeguard thyroid function was to reduce the average dose in the thyroid as much as possible.

Radiation therapy, along with other treatments including chemotherapy, is generally used to treat NPC. To improve the effectiveness of radiation therapy and limit the toxicity to normal tissue, the tumor target area of NPC ought to be precisely defined. According to Yan et al.’s study, the 50% standard uptake value (SUV)max threshold regimen for gross tumor volume (GTV) delineation with dose-painting appeared to be superior to the visual criterion or SUV2.5 threshold when it related to defining tumor volume in locoregionally progressed NPC with no increased toxicity.

Emerging radiomics has made it possible to reveal hidden biological characteristics and the genetic relationship between tumor and organ structures. There is growing evidence in the literature that radiomics may accurately predict treatment response based on volume shrinking in a variety of cancer types. To determine if patients with NPC were eligible for adaptive radiotherapy (ART), Lam et al. looked at the function of several multiorgan omics-based prediction models. Given the rising demand for ART in this particularly sensitive population of cancer patients during the period of IMRT, this study may offer the community helpful insights toward creating ART screening tools in the future.

According to the guidelines for the treatment of NPC, except for T1N0M0, which is treated with radiation alone, T2N0M0 and T1/2N1M0, and other stages are usually treated with a combination of radiotherapy and chemotherapy. Li et al. established residual volume of lymph nodes during chemoradiotherapy, which is useful in estimating 4-year OS, PFS and DMFS in NPC patients.

Peng et al. evaluated the therapeutic effects of CRT preceded by induction chemotherapy, which could consist of docetaxel plus cisplatin (TP), TP plus 5-fluorouracil (TPF) or cisplatin plus 5-fluorouracil (PF). These long-term follow-up studies are essential, and the results on OS and toxicity can be utilized when selecting chemotherapy regimens for patients with locally advanced NPC.

In addition to being extremely accurate in identifying soft tissues, magnetic resonance imaging (MRI) can distinguish between tumor invasion of bone structures and other symptoms in locally progressed NPC. Kang et al.’s study developed radiomics-based models of MRI images, which used pre- and in-treatment pictures with greater continuity and had superior local recurrence free survival (LRFS), DMFS, and OS predictions. These models were better at predicting disease progression or death. This concept may potentially be used in the diagnosis of various illnesses and as a tool for evaluating treatment effectiveness and prognosis, among other uses for MRI.

According to Liang et al.’s study, the eighth edition of the American Joint Committee on Cancer (AJCC) staging system for NPC in an endemic area integrating into the pretreatment neutrophil-to-lymphocyte ratio (NLR) may improve the ability to separate and discriminate between N classifications, but not within T classifications. Furthermore, the addition of adjuvant chemotherapy to concurrent chemoradiotherapy may be beneficial for individuals in the recursive partitioning analysis (RPA) 4 group. This statistical work aids in guiding the selection of a clinical treatment regimen.

The ability of epstein-barr virus (EBV) DNA levels in plasma before and after various treatments to predict the prognosis of NPC was examined in Zhu et al.’s study. It was discovered that pre-neoadjuvant chemotherapy (pre-NACT) and post-NACT EBV DNA levels can predict survival outcomes like PFS and OS in patients with NPC. The inability to forecast radiation efficiency using EBV DNA continues to be a significant drawback in its use.

Effective therapeutic target sites and corresponding treatment may improve survival of NPC patients. Li et al. explored the mechanism of action in NPC species based on the enrichment of MiR-483-5p microRNA in plasma, biopsy tissue, and tumor cells of patients with NPC in prior studies. This targeting site exists in tumor cells and has a high potential value in targeted immunotherapy.

Fewer studies have been conducted on distal lymph node metastasis in individuals with recurrence, compared to more studies on cervical lymph node metastasis in NPC. Subphrenic lymph node metastasis predicts a worse prognosis, according to Zhang et al.’s study, which was a two-center, small-sample study. The results of the study have strong implications for early recurrence detection and accurate prognosis assessment after expanding the geographical area, centers, and samples.

KIF15, a member of kinesin-12 family, has been shown to have an impact on the occurrence and progression of some types of human cancer and is essential for numerous biological processes. However, there have not been many thorough analyses on the function of KIF15 in human malignancies, and it is still unknown how KIF15 affects NPC diagnosis and prognosis. KIF15 was discovered to be highly expressed in NPC tissues, and this was associated with a bad prognosis for NPC. KIF15 might be used as a therapeutic target in the management of NPC. Mi et al. examined KIF15’s diagnostic and prognostic potential in NPC through a pancancer investigation.



3 Oral squamous cell carcinoma

Although many therapeutic approaches for oral squamous cell carcinoma (OSCC) have demonstrated encouraging results in the treatment of OSCC in recent years, the 5-year survival rate is still low. Ding et al. discovered preoperative the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), neutrophil-to-white blood cell ratio (NWR), and lymphocyte-to-white blood cell ratio (LWR) in the peripheral blood as prognostic predictors of OSCC using studies like Kaplan−Meier curves, which are helpful in predicting OSCC progression.

OSCC patients with HPV-negative status typically have poor clinical outcomes and worse treatment outcomes. In patients with HPV negative OSCC who were receiving radiotherapy, Ai et al. discovered that CD68+ macrophage infiltration was related to poor overall survival. Radiation therapy, Poly(I:C), and drugs that target HMGB1 may improve OSCC’s prognosis and responsiveness.

Perineural invasion (PNI), a crucial aspect of tumor invasion from a histological standpoint, aids in the spread of the tumor, however the prognostic significance of PNI is still up for debate. Traditional PNI was subclassified by Fu et al. to worst pattern of PNI (WPNI), and WPNI 3 was able to predict patients’ prognoses on its own. Trichotomy provided more careful and exact pathology evidence for tumor-nerve interactions in OSCC patients.

Radiotherapy, chemotherapy, and other treatments are ineffective against hypoxic tumors. The recognition of various hypoxia patterns and the creation of a hypoxia-related risk score may improve our understanding of the tumor microenvironment of OSCC, according to Li et al.’s study. Determining the hypoxic state of tumors in various patients is a prerequisite for targeted and precise patient treatment.

In individuals with OSCC, the prognosis and immunotherapy response rates are dismal. The fundamental processes for how the tumor microenvironment affects the prognosis and development of tumors are still unknown. According to Zhu et al.’s research, the immune-related gene signature can predict overall survival and help OSCC patients receive individualized care. It can also identify patients who might benefit from immunotherapy as well as treatments that concentrate on metabolic pathways, DNA damage or repair, and spliceosomes.

Of all malignancies of the oral cavity, squamous cell carcinoma is the most prevalent. The prognosis is influenced by many variables, including T stage on size and depth of invasion, and degradation of the mandibular bone. In patients with gingivo-buccal complex squamous cell carcinoma (GBC-SCC), Mahajan et al. studied the pattern of mandibular involvement and its impact on oncologic outcomes. He proposed a staging system based on the pattern of bone involvement (MMC: Marrow and mandibular canal staging system), only marrow with or without mandibular canal involvement is linked to worse survival outcomes.



4 Papillary thyroid carcinoma

The incidence of papillary thyroid carcinoma (PTC), one of the most frequent malignant carcinomas of the endocrine system, is rising globally. Although there are now diagnostic and therapeutic options for thyroid cancer, the prognosis is still unknown. Cancer invasion, malignancy, metastasis, and medication resistance are all impacted by autophagy. Long noncoding RNAs (lncRNAs) have been implicated in the development of several forms of cancer, according to recent study. However, it is still unclear how the autophagy process and lncRNAs are linked, as well as the relevance of autophagy-related lncRNA for risk assessment, medication sensitivity prediction, and prognosis prediction in PTC patients. Based on the expression patterns of lncRNAs associated with autophagy, Mu et al. developed a unique risk classification system for PTC that may be utilized for prognosis prediction, drug sensitivity prediction, and risk assessment.

PTC is regarded as a benign, slow-growing tumor with a favorable prognosis and minimal malignancy; nonetheless, some individuals still have early cervical lymph node metastasis (CLNM), which increases the chance of local recurrence. The typical symptom of CLNM in PTC is a lateral cervical lymph node metastasis from the central lymph node. Although some PTCs may not develop central lymph node metastasis, they may develop direct lateral lymph node metastasis (LLNM). The most crucial factor for deciding the surgical technique prior to surgery is CLNM, which is the biggest risk factor for local recurrence and the prognosis of PTC patients. Hu et al. developed a nomogram that demonstrated an excellent prediction of CLNM in patients with PTC and was simple to employ.

PTC, which makes up a large portion of the histological subtypes of thyroid cancer, has a fast-rising morbidity and mortality rate due to lymph node metastases or distant metastases. We must develop a deeper understanding of the etiology of PTC patients with distant or lymph node metastases. Asporin was used by Zhan et al. to identify PTC patients with or without lymph node metastases using a TMT-based quantitative proteomics technique. Asporin’s high expression in PTC tumorous tissues is a risk factor for a poor prognosis.

Alternative splicing (AS) events from Liu et al.’s study, through a limited analysis, could be regarded as trustworthy prognostic biomarkers for PTC. AS is crucial for the diversity of proteins and is closely linked to tumorigenicity, and these modifications are crucial for biological processes.



5 Oral cavity squamous cell carcinoma

Patients with distant metastases (DM) from oral cavity squamous cell carcinoma (OCSCC) have poor prognoses, and there are few reliable models for DM prediction. Although the DM growth mechanisms of the lymphatic and blood vessel systems may be different, DM development can happen directly through either of these systems. To build models for predicting DM in three years, Lu et al. used grouping factors and individually tailored micro parameters, such as age, surgical margin, early locoregional recurrence, lymphocyte-to-monocyte ratio, and presence of lymphovascular invasion.

The Cancer Genome Atlas’ oral cavity malignancies have a unique clinicopathological characteristic called partial epithelial-mesenchymal transition (p-EMT). The tumor stroma must provide extra assistance to the p-EMT cells, which are at the invasion front, in order for them to move in concert. This assistance includes track clearance, extracellular matrix remodeling, and immune evasion. By combining disease-matched xenograft tissue and single-cell RNA-seq findings, Liu et al. found that transforming growth factor beta induced (TGFBI) and hyaluronidase genes 1 (HYAL1) could act as reliable predictive biomarkers for the prevention of oral cancer.



6 Parotid carcinoma

Multiple factors have been linked to the prognosis of patients with parotid carcinoma (PC). A competing risk nomogram developed in Li et al.’s single-center, long-term research can be utilized to estimate cancer-specific mortality in PC patients. For use as a guide for evaluation in the clinic, this nomogram must be verified across a number of locations.

Accurate computerized dose prediction can considerably increase the effectiveness and safety of clinical planning. In contrast to typical automatic plans, which concentrate on conventional accelerators, the Liu et al.’s study looked at tomotherapy plans using a patient-specific gap between organs at risk (OARs) and planning target volumes (PTVs) in the model-building process to improve a method for creating automatic tomotherapy planning.



7 Oropharyngeal squamous cell carcinoma

By examining imaging characteristics, radiomics is utilized to determine whether oropharyngeal squamous cell carcinoma (OPSCC) is caused by HPV+ or HPV- and to determine the prognosis. Song et al.’s, which used radiomics for the risk assessment of patients with OPSCC to enable individualized therapy and enhance outcomes, provided evidence for the role of radiomics in this regard.



8 Hypopharyngeal squamous cell carcinoma

The prognosis of patients with hypopharyngeal squamous-cell carcinoma (HSCC), a head and neck cancer, varies greatly. According to research by Tian et al., various demographic traits, clinicopathological variables, and treatment modalities are highly connected with the survival results of HSCC patients. The data are simple to gather, demonstrating the simplicity of using this nomogram in clinical practice to support the clinical evaluation of the risk level of HSCC patients and the creation of tailored treatment plans.



9 Differentiated thyroid cancer

For individuals with low-risk differentiated thyroid carcinoma, total thyroidectomy (TT) or lobectomy without radioactive iodine (RAI) is increasingly the standard of care (DTC). It is important to pay attention to the techniques used to evaluate the effectiveness of the therapies and the suggestions that might be made, especially in light of the numerous side effects. According to Dong et al.’s study, there is no regular advice for RAI following surgery in low-risk DTC patients due to patterns of suppressed serum thyroglobulin (Tg) and anti-thyroglobulin antibody (TgAb) levels and neck ultrasonography results.



10 Salivary gland carcinoma

PD-L1 expression and prognostic significance in high-grade salivary gland carcinoma (SGC) is one of the predictors of immunotherapy efficacy. According to Fang et al.’s research, PD-L1 expression in tumor cells of high-grade SGCs rather than in immune cells was a marker of a poor prognosis and was strongly correlated with tumor stage. This finding may indicate that treatment should focus on patients with this type of protein expression.



11 Maxillary sinus carcinoma

Maxillary sinus carcinoma (MSC) makes up a small percentage of head and neck cancers; studies based on just one medical facility have small sample numbers. MSC has a concealed anatomical site and a complicated neighboring connection that results in a vague prognosis. In people with MSC, Hu et al.’s competing risk nomogram was successful in calculating the risk of cancer-specific death (CSD).



12 Salivary duct carcinoma

Salivary duct carcinoma (SDC) is a rare, extremely aggressive tumor that can develop both spontaneously and as part of pleomorphic adenoma. A majority of SDCs express the androgen receptor (AR), and approximately 40% are human epidermal growth factor receptor 2 (HER2)-positive. Treatments targeting AR and HER2 have recently been developed as a potential optional therapy in recurrent/metastatic or unresectable locally advanced SDCs based on these biomarker findings. For patients with SDC who tested positive for AR, AR-targeted treatment showed comparable effectiveness and less toxicity than traditional chemotherapy. Additionally, HER2-targeted therapy outperformed conventional or AR-targeted therapy in terms of effectiveness, with a greater response rate in HER2-positive SDC patients. However, choosing the best course of action is still challenging since SDCs frequently express both HER2 and AR. High expression of enhancer of zeste homolog 2 (EZH2) and histone H3 lysine 27 trimethylation (H3K27me3) in SDC was shown to be a potential indicator of the ineffectiveness of AR-targeted treatment, according to Saigusa et al.’s research.



13 Sinonasal carcinomas

Sinonasal carcinomas (SNCs) are difficult to categorize. As a result, prognosis and response prediction to nonsurgical treatment are frequently incorrect. The lack of prognostic and predictive tools is an unmet need, and the clinicopathological characteristics of the disease are the first logical source of information to be examined. In comparison to the current World Health Organization (WHO) categorization, Ferrari et al.’s analysis of cytomorphological, histomorphological, and locoregional extension offered a more accurate prediction. SNC chemo-radiosensitivity prediction, however, was not achieved.



14 Malignant myoepithelioma of the head and neck

The features and survival rates of malignant myoepithelioma of the head and neck (HNMM), a rare tumor, are not well defined. It will be important to investigate the epidemiology of HNMM and determine the criteria that will affect the prognosis of the condition. According to Wang et al., patients with HNMM frequently have a good prognosis, and factors including distant metastasis, pathological grade, and the use of surgery all help them survive. To assist doctors in the clinical care of this uncommon disease, the undifferentiated pathological grade and M1 in the M category were independent prognostic markers to predict OS and disease-specific survival (DSS) for HNMM patients.

We look forward to more researchers contributing more ideas, validations, reviews, etc., on head and neck cancer for prognosis and risk assessment, including but not limited to imaging biomarkers, molecular biomarkers including DNA, EBV-DNA, and HPV-DNA, microbiome, artificial intelligence technique and machine learning, and other potential biological or clinical factors, in combination with in vitro/in vivo validation. Additionally, we look forward to the prediction of treatment outcome and response and the latest development and validation of predictive models for head and neck cancer. Furthermore, we look forward to the outcomes of clinical trials based on prediction models established from above research and updated information about or preliminary results of ongoing clinical trials.
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Hypopharyngeal squamous-cell carcinoma (HSCC) is a relatively rare head and neck cancer, with great variation in patient outcomes. This study aimed to develop a prognostic nomogram for patients with HSCC. From the Surveillance, Epidemiology, and End Results (SEER) database, we retrieved the clinical data of 2198 patients diagnosed with HSCC between 2010 and 2016. The patients were randomly assigned at a 4:1 ratio to the training set or the validation set. An external validation was performed by a set of 233 patients with locally advanced HSCC treated at our center. A Cox proportional hazards regression model was used to assess the relationship between each variable and overall survival (OS). Cox multivariate regression analysis was performed, and the results were used to develop a prognostic nomogram. The calibration curve and concordance index (C-index) were used to evaluate the accuracy of the prognostic nomogram. With a median overall follow-up time of 41 months (interquartile range: 20 to 61), the median OS for the entire cohort of SEER database was 24 months. The 3-year and 5-year OS rates were 41.3% and 32.5%, respectively. The Cox multivariate regression analysis of the training set showed that age, marital status, race, T stage, N stage, M stage, TNM stage, local treatment, and chemotherapy were correlated with OS. The nomogram showed a superior C-index over TNM stage (training set: 0.718 vs 0.627; validation set: 0.708 vs 0.598; external validation set: 0.709 vs 0.597), and the calibration curve showed a high level of concordance between the predicted OS and the actual OS. The nomogram provides a relatively accurate and applicable prediction of the survival outcome of patients with HSCC.




Keywords: hypopharyngeal carcinoma, nomogram, radiotherapy, surgery, prognosis, survival analysis



Introduction

Hypopharyngeal carcinoma is relatively rare and accounts for only approximately 3% of all head and neck tumors (1, 2). Approximately 95% of hypopharyngeal tumors are squamous-cell carcinoma (2). Hypopharyngeal squamous-cell carcinoma (HSCC) is often occult with atypical early symptoms due to its anatomical features, and approximately 80% of patients are already in stage III-IV at diagnosis (2, 3). A population cohort study of 2939 patients with hypopharyngeal carcinoma showed that 10.5% of patients were in tumor-node-metastasis (TNM) stage I, 12.1% were in stage II, 23.0% were in stage III, and 52.6% were in stage IV at diagnosis, with great variation in patient outcomes (3). The 5-year overall cancer-specific survival (CSS) rate is 33.4%, while the rate is 63.1% for stage I, 57.5% for stage II, 41.8% for stage III, and 22% for stage IV (3). However, the widely used American Joint Committee on Cancer (AJCC) TNM staging system remains has some limitations to assess prognosis in clinical practice. The outcomes of HSCC are also related to many clinical parameters, such as age (> 70 is an adverse prognostic factor) and primary site (piriform sinus tumor is associated with more favorable outcomes, followed by postcricoid region and then posterior pharyngeal wall) (4, 5). Treatment modalities probably affect patient survival, but the conclusions differ across studies (6–8). However, there is a lack of prognostic scoring systems that take those above clinical factors into account.

Nomogram is a visual statistical tool and can improve predictive accuracy for survival outcomes of tumor patients in clinical practice (9, 10). Several studies have shown that nomograms are superior to the TNM staging system in predicting prognoses (11, 12). By combining multiple clinical and pathological factors, nomograms can be used to assess the survival outcome of individual patient. However, few studies have yet been developed a prognostic nomogram for HSCC. The Surveillance, Epidemiology, and End Results (SEER) database is an authoritative source of cancer prevalence and survival in the United States, as it covers approximately 28% of the US population (6). Therefore, the SEER database can provide many cases for the development of predictive models for tumors, especially rare tumors. In this study, we retrieved the clinical data via the updated SEER database, including demographics, clinicopathological parameters, and treatment modalities, and established a nomogram to predict prognostic outcomes of patients with HSCC. We also performed internal and external validation.



Patients and Methods


Patient Selection

We retrieved patient data from the updated SEER database (https://seer.cancer.gov), which included information on radiotherapy and chemotherapy (Incidence -SEER 18 Regs Custom Data with additional treatment fields, Nov 2018 Sub, 1975-2016 varying). We used SEER* Stat software (released: August 08, 2019, version 8.3.6; http://seer.cancer.gov/seerstat) to download the data. The screening criteria were as follows: 1) primary site: hypopharynx, which was coded as C12.9, C13.0, C13.1, C13.2, C13.8, or C13.9 according to the International Classification of Diseases for Oncology, Third Edition (ICD-O-3); 2) pathologically confirmed squamous-cell carcinoma, coded as 8050-8089 according to ICD-O-3; 3) complete follow-up data, including survival and cause of death; 4) a first primary tumor, confirmed in 2010 or later; and 5) detailed information on variables, including age, sex, marital status, race, insurance, and TNM stage at diagnosis, as well as treatment mode of the primary tumor, such as surgery, radiotherapy, and chemotherapy. In addition, for external validation, we selected patients with locally advanced HSCC who were treated in the Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, between April 2014 and December 2017. In this study, HSCC patients from the SEER database and treated at our center were both staged according to the seventh edition of the AJCC TNM Cancer Staging Manual.

The HSCC cancer-specific survival and noncancer-specific survival were extracted from the SEER variables of cause-specific death classification and other cause-of-death classification. Information on surgery and radiotherapy was extracted from the following fields: radiation sequence with surgery, reason for no cancer-directed surgery, and radiation recode. Information on primary-site surgery was extracted from the field “RX Summ-Surg Prim Site”. Primary-site surgery was coded as 20-52 according to the 2018 SEER program coding and staging manual.



Statistical Analysis

SPSS v22.0 (IBM, Armonk, NY, USA) and R for Windows v3.5.1 (https://www.r-project.org) were used for the statistical analysis. Categorical variables were analyzed using a chi-squared test. The Kaplan-Meier method and log-rank test were used for the survival analysis. A Cox proportional hazards regression model was used for the univariate and multivariate analyses to identify prognostic factors, and independent prognostic factors identified by the Cox multivariate analysis were used to develop the prognostic nomogram. The concordance index (C-index) and the Brier score were used to evaluate the performance of the prognostic nomogram, while the calibration curve was used for internal validation of the nomogram. We compared the predictive performance of the prognostic nomogram with that of TNM staging. We also performed a competing risk analysis because noncancer-specific death competed with cancer-specific death. All tests were two-sided, and P < 0.05 was considered statistically significant.




Results


Patient Characteristics

We identified a total of 15,256 patients who were pathologically confirmed to have HSCC between 1975 and 2016 in the SEER database. Of these patients, 2001 patients were excluded due to a lack of complete follow-up data, 3145 patients were excluded because HSCC was not their only tumor, 7613 patients were excluded because they were diagnosed before 2010 (no TNM staging information per the seventh edition of the AJCC Cancer Staging Manual), 292 patients were excluded due to unknown TNM stage, three patients were excluded because they were stage T0, and four patients were excluded due to unknown surgical details. Finally, 2198 patients were included in this study and were randomly assigned at a 4:1 ratio to the training set (n = 1758) or the validation set (n = 440). Figure 1 illustrates the screening process. Table 1 shows the demographics and clinical characteristics of the patients, 78.7% of whom were diagnosed with locally advanced HSCC (stages III-IVB). Moreover, 4.1% of the patients received surgery alone, 80.7% received radiotherapy alone, and 14.1% received both surgery and radiotherapy. The external validation set included 233 patients with locally advanced HSCC who were treated at our center, and Table S1 shows their demographics and clinical characteristics.




Figure 1 | Screening process.




Table 1 | Demographics and clinical characteristics of the HSCC training and validation sets from the SEER database.



For the 2198 patients, the median follow-up time was 41 months (interquartile range: 20 to 61). The 3-year and 5-year OS rates were 41.3% (95% CI, 38.9% to 43.7%) and 32.5% (95% CI, 30.0% to 35.0%), respectively; the 3-year and 5-year CSS rates were 50.2% (95% CI, 47.7% to 52.7%) and 44.0% (95% CI, 41.3% to 46.7%), respectively. The median OS of all patients was 24 months, and the median survival was 24 months in the training set and 29 months in the validation set. For the external validation set, the median follow-up time was 27.9 months (interquartile range: 19.3 to 38.3), and the 3-year OS rate was 64.6% (95% CI, 56.6% to 72.6%).



Construction of the Nomogram

For the training set, the Cox univariate regression analysis showed that the following parameters were significantly related to OS: age, marital status, race, insurance status, primary site, T stage, N stage, M stage, TNM stage, local treatment, and chemotherapy (Table 2). Figure 2 shows the OS curves, which were based on the Kaplan-Meier method and log-rank test and accounted for the following parameters: age, marital status, race, insurance, primary site, pathological differentiation, T stage, N stage, M stage, TNM stage, local treatment, and chemotherapy. A competing risk analysis showed that age, marital status, race, T stage, N stage, M stage, local treatment, and chemotherapy were still correlated with HSCC-specific death (all P < 0.05, Figure S1). A subgroup analysis was also performed for T stage in patients with local resectable HSCC to analyze the relationship between local treatment and OS (Figure 3). In T3 patients, no significant difference was observed in OS among patients who received surgery alone, those who received radiotherapy alone, and those who received both surgery and radiotherapy (P = 0.304). In T4a patients, however, a significant between-group difference was observed in OS (P < 0.001), which was longest in patients who received both surgery and radiotherapy, followed by patients who received radiotherapy alone, and then patients who received surgery alone. Moreover, T3 and T4a patients who received systemic chemotherapy had a significantly longer OS than those who did not receive chemotherapy (P < 0.001). We further analyzed the overall survival of metastasis-free HSCC patients with different treatment modalities for each TNM stages, as shown in Figure S2. It was found that for locally advanced HSCC, the curative effect of single treatment modality was relatively poor, while that of combined therapy was relatively better (Figures S2B–D, P < 0.001).


Table 2 | Univariate and multivariate analyses of overall survival in the training set.






Figure 2 | Kaplan-Meier survival curves of HSCC patients in different subgroups: (A) age, (B) marital status, (C) race, (D) insurance status, (E) primary site, (F) histological grade, (G) T stage, (H) N stage, (I) M stage, (J) TNM stage, (K) surgery and radiotherapy, (L) chemotherapy.






Figure 3 | OS of metastasis-free HSCC patients in different treatment groups (per T stage): (A) local treatment for T1 and T2 disease; (B) local treatment for T3 disease; (C) local treatment for T4a disease; (D) chemotherapy in T3 and T4a patients.



A Cox multivariate regression analysis showed that age, marital status, race, T stage, N stage, M stage, local treatment, and chemotherapy were independent prognostic factors for OS (Table 2). TNM stage was excluded from the multivariate analysis because it was not an independent variable, but rather, it is a combination of T, N, and M stages. The eight significant independent prognostic factors (age, marital status, race, T stage, N stage, M stage, local treatment, chemotherapy; P < 0.05) identified by the Cox multivariate regression analysis were used to develop a prognostic nomogram (Figure 4). The score of each prognostic factor was as follows (in descending order): age > 70: 52; marital status - other: 24; race - black: 26; T4b: 100; N3: 80; M1: 83; surgery and radiotherapy (no): 83; and chemotherapy (no): 59. The total score was used to predict each patient’s 1-year, 3-year, and 5-year survival probabilities. For example, for a 65-year-old married Chinese patient diagnosed with HSCC T3N2bM0 who received radical chemoradiotherapy, the prognostic nomogram scored the age as 12, the marital status as 0, race as 0, T3 as 77, N2 as 40, M0 as 0, radiotherapy as 44, and chemotherapy as 0, which resulted in a total score of 173. Therefore, the model predicted that the 1-year, 3-year, and 5-year survival probabilities were 76%, 48%, and 37%, respectively.




Figure 4 | Nomogram for predicting the survival probability of HSCC patients.





Validation of the Nomogram

The nomogram was validated with both internal and external validation. For the internal validation, the calibration curve showed that the nomogram was accurate in its predictions (Figure 5). The X-axis represents the survival probability predicted by the nomogram, and the Y-axis represents the actual survival probability. The dotted line (45° diagonal line) indicates complete concordance between the actual probability and the predicted probability. The similarity between the solid line and the dotted line indicates a high level of accuracy in nomogram prediction. Next, the C-index and the Brier score were used to evaluate the performance of the prognostic nomogram, which was compared with that of the TNM staging system (Table S2). For the external validation, the patients in the validation set were rated with the nomogram, and then the total scores were incorporated into the Cox regression model to calculate the C-index. The C-index of the nomogram was greater than 0.7, which was higher than that of the TNM staging system (training set: 0.718 vs 0.627; validation set: 0.708 vs 0.598; external validation set: 0.709 vs 0.597). The nomogram also performed better than the TNM staging system as assessed by the Brier score (lower values indicate better model performance, Table S2). Figure S3 shows that in the training set, the validation set, and the external validation set, the area under the curve (AUC) values for the 1-year, 3-year, and 5-year OS curves were higher for the nomogram than for the TNM staging system, which suggests that the nomogram is superior to the TNM staging system in predicting clinical outcomes.




Figure 5 | Internal calibration curve of the nomogram for the prediction of the (A) 1-year, (B) 3-year, and (C) 5-year survival probability of HSCC patients.



Next, we divided the patients in the training and validation sets into the following three groups based on the 3-year survival probability predicted by the nomogram: the low-risk group (3-year survival probability ≥ 50%, score ≤ 170), the moderate-risk group (30% ≤ 3-year survival probability < 50%, 170 < score ≤ 213), and the high-risk group (3-year survival probability < 30%, score > 213). The Kaplan-Meier curve illustrates the good prognostic discrimination of the nomogram (P < 0.001, Figures 6A, B). The patients in the external validation group were divided into the following two groups based on the 3-year survival probability predicted by the nomogram: the low-risk group (3-year survival probability ≥ 50%) and the high-risk group (3-year survival probability < 50%). The survival curves confirmed a significant between-group difference (P < 0.001, Figure 6C).




Figure 6 | Kaplan-Meier survival curves of the training set (A), the validation set (B), and the external validation (C) per nomogram score.






Discussion

Previous SEER-based studies have analyzed the tumor characteristics, treatment, and survival of patients with HSCC (6–8). However, other than the TNM staging system, a unified prediction model for HSCC is lacking due to the low prevalence of this disease. This is the first SEER-based study to develop a nomogram prediction model of HSCC survival. Heng Y et al. recently developed a prognostic nomogram for Chinese patients with HSCC after tumor resection, which served as a stratification indication for postoperative adjuvant treatment (13). However, the optimal initial treatment modality for locally advanced HSCC has not been fully defined and was identified as an important prognostic factor (6–8). Thus, in this SEER-based study, we analyzed the effect of local treatment (surgery and/or radiotherapy) and chemotherapy on OS. We also analyzed the prognostic factors of HSCC, developed an intuitive nomogram to effectively predict OS, and confirmed the validity of the prediction model using both internal and external validation. The nomogram may be used to evaluate the survival probability of each HSCC patient and provide a reference for the clinical assessment of patient outcomes and treatment strategies.

According to the revised TNM staging system presented in 2002 in the sixth edition of the AJCC Cancer Staging Manual, stage T4 can be further classified as T4a (moderately advanced local disease) or T4b (very advanced local disease). As a result, stage IV is further classified as stage IVA (moderately advanced local/regional disease), stage IVB (very advanced local/regional disease), and stage IVC (distant metastatic disease) (14). According to the 2010 seventh edition of the AJCC Cancer Staging Manual, HSCC-related esophageal involvement was revised from stage T4 (as described in the sixth edition) to stage T3 (15). In this study, we selected patients who were diagnosed in 2010 or later and who were staged according to the seventh edition of the AJCC Cancer Staging Manual. A survival analysis showed that the revised TNM stage was a good prognostic factor for HSCC (Figures 2G–J). However, we found limitations in the TNM stage. For example, the survival curve of stage T3 patients overlapped with that of stage T4a patients (Figure 2G), and no difference was observed in the OS prediction between stages II and III (Figure 2J), which suggests that the TNM staging prognostic system requires further improvement.

As in previous reports, this study showed that age was an important prognostic factor, and an age > 70 was associated with a more adverse prognosis (Figure 2A) (4, 5). In this SEER cohort, 23.8% of the patients were older than 70 at the time of HSCC diagnosis. The multivariate analysis showed that the hazard ratio was 1.947 (95% CI, 1.503-2.523, P < 0.001) in patients older than 70 relative to those aged 50 or below, in part because older patients tended to have more comorbidities and a shorter life expectancy and tended to receive more conservative treatment. The male: female ratio was approximately 5:1, which is similar to that reported in previous studies (4), but the univariate analysis revealed no difference in prognosis between the sexes. As shown in previous reports, this study reported that race, marital status, and insurance status were related to the OS of HSCC patients (Figures 2B–D), which to some extent reflected the effects of economic condition, social status, and emotional support on disease prognosis (16, 17). In this study, the univariate analysis showed that the primary site was a prognostic factor. “Primary site - not otherwise specified (NOS)” was associated with the worst prognosis, and no significant difference was observed in the prognosis of patients with tumors in other primary sites such as the piriform sinus, postcricoid region, and posterior pharyngeal wall (Figure 2E). In HSCC, it is often difficult to discern the primary site due to the large tumor size, which may explain the designation of “Primary site - NOS”. We also analyzed pathological differentiation and found that most cases were moderately differentiated and that pathological differentiation was unrelated to HSCC prognosis.

For HSCC, radiotherapy and surgery are important local treatments that are usually administered alone or in combination based on disease stage and pathological risk factors (such as positive margins and extracapsular involvement of lymph nodes) (2, 18–20). In the early stages of the disease, both treatments are viable options; in locally advanced-stage disease, surgery plus radiotherapy helps improve the local control rate and the prognosis. In this study, radiotherapy and surgery were analyzed as a composite variable. Our SEER data showed that in America, radiotherapy alone is the most common treatment modality for HSCC (80.8%), followed by surgery plus radiotherapy (14.1%). Consistent with previous studies (6–8), this study showed that local treatment patterns were independent prognostic factors for survival (Table 2 and Figure 2K). A population‐based cohort study that involved 6647 HSCC patients showed that the best 5-year OS rate (48.5%) was achieved with a combination of surgery and radiation therapy. The 5-year OS rate of patients treated with surgery was significantly higher than that of those treated with radiotherapy alone in cases of local (63.3% vs 52.4%) or regionally advanced disease (41.3% vs 31.9%) (6). We then performed a subgroup analysis of T stage to determine the effect of local treatment on the survival of patients with HSCC without distant metastasis (Figures 3A–C). Among the HSCC patients with stages T1 and T2 disease, most received radiotherapy, although surgery alone was also effective (P = 0.004). Surgery plus radiotherapy was the best option for patients with stage T4a disease (P < 0.001), but this combination had no significant advantage in patients with stage T3 disease (P = 0.304). A population-based study in the Netherlands also indicated that overall survival of stage T3 patients was equal after total laryngectomy and (chemo)radiotherapy, but a survival benefit was achieved after primary surgery ± radiotherapy for T4 patients (18). In general, systemic chemotherapy improves HSCC prognosis (2, 7, 19). Our data demonstrated that chemotherapy significantly reduced mortality (HR 0.489, 95% CI 0.416-0.564, P < 0.001) (Table 1 and Figure 2L), and this effect was even more pronounced in patients with locally advanced HSCC with stages T3 and T4 disease (Figure 3D).

In this study, eight prognostic factors were incorporated into our Cox multivariate analysis to develop a nomogram, including demographics (age, marital status, race, insurance status), clinicopathological parameters (primary site, T stage, N stage, M stage), and treatment (local treatment and chemotherapy). The selection of these parameters was reasonable, feasible, and practical. Further validation showed a high level of accuracy in the prediction ability of the nomogram, which was superior to that of the TNM staging system (Figure S2). Nevertheless, this study has some limitations. First, this is a SEER-based population cohort study. Patients with missing data were excluded from the study, which may have led to bias. Second, in the SEER database, chemotherapy was categorized as “No/Unknown” or “Yes”, with no details on modality, such as induction chemotherapy, concurrent chemotherapy, and adjuvant chemotherapy, and no details on the type or dose of chemotherapy drug, which may have led to information bias and may have affected the HR of the variables. Third, the SEER database does not include some of the known pathological prognostic factors for HSCC, such as positive margins or extracapsular involvement of lymph nodes. As a result, we were unable to incorporate these factors into the prediction model. Fourth, the SEER database provided OS and CSS data but not progression-free survival or local relapse-free survival data, which would have affected the survival prediction of the nomogram. Finally, the SEER database is based on the US population. Therefore, the nomogram may only serve as a reference for prognostic prediction in the Chinese HSCC population. In the future, large multicenter studies should be performed in Chinese patients to develop a prediction model for the Chinese population.



Conclusion

This SEER-based study shows that some demographic characteristics, clinicopathological parameters, and treatment strategies are significantly correlated with the survival outcomes of HSCC patients. We developed and validated a nomogram for HSCC that had superior discrimination and accuracy. The variables are easy to collect, which demonstrates the ease of use of this nomogram in clinical practice to aid in the clinical evaluation of the risk level of HSCC patients and the development of individualized treatment strategies.
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Utilizing digital pathology algorithms for the objective quantification of immunohistochemical staining, this study aimed to identify robust prognostic biomarkers for oral cancer. Tissue microarrays with specimens of a large cohort of oral squamous cell carcinoma (n=222) were immunohistochemically stained to determine the expression of PD-L1, EGFR, and COX-2 and the amount of infiltrating NK cells and CD8-positive T cells. Immunoreactivity scores were assessed using both a classical manual scoring procedure and a digital semi-automatic approach using QuPath. Digital scoring was successful in quantifying the expression levels of different prognostic biomarkers (CD8: p<0.001; NK cells: p=0.002, PD-L1: p=0.026) and high levels of concordance with manual scoring results were observed. A combined score integrating EGFR expression, neck node status and immune cell signatures with a significant impact on overall and progression-free survival was identified (p<0.001). These data may contribute to the ongoing research on the identification of reliable and clinically relevant biomarkers for the individualization of primary and adjuvant treatment in oral cancer.
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Introduction

In 2018, head and neck cancer was the seventh most common group of malignant tumors worldwide with approximately 900.000 new cases per year and squamous cell carcinomas arising from the oral mucosa (OSCC) form a major part of this entity (1–3). Metastases and locoregional disease recurrence are the main predicting factors for adverse clinical outcome and OSCC is responsible for about 1.5% of all cancer related deaths in the United States (4, 5). 5-year survival rates have remained at 40-60% over the last decades despite interdisciplinary multi-modal treatment (6–10).

Although, the introduction of immune checkpoint inhibition has brought new therapeutic options for patients with recurrent and/or metastatic head and neck squamous cell carcinoma (HNSCC), accurate biomarkers allowing for distinct risk-stratification and individualization of therapy and follow-up for patients with primary oral cancer are still limited (11, 12). Such markers might help to identify patients at risk of tumor progression, who may benefit from a more intensive interdisciplinary multi-modality therapy. While a plethora of publications reported on potential biomarkers, up to date, only few have been translated into clinical application due to a lack of prognostic relevance and clinical practicality.

A well-established method to identify and evaluate potential biomarkers is immunohistochemical staining of tumor sections to assess the expression pattern of potential candidate proteins. The use of tissue microarrays (TMAs) is a common and efficient technique to investigate expression levels of multiple markers in a large number of different tissue samples (13). The conventional way of manual inspection and counting of stained cells to assess the quantity and quality of potential biomarkers, such as different proteins or tumor-associated immune cells, is strongly observer-dependent and potentially error-prone. The introduction of automated digital image analysis has brought a new technique that may help to standardize and objectify pathological analysis including the assessment of biomarkers (14–16).

Lately, the shift towards a focus on the tumor immune microenvironment (TIME) led to the introduction of new potential biomarkers like immune-checkpoint-proteins (e. g. PD-L1) and tumor-associated immune cells in a variety of tumor entities including HNSCC. In the context of the newly introduced immunotherapy, especially PD-L1 and tumor infiltrating lymphocytes (TILs) are promising candidates with the potential to quantify both relevant aspects, the tumor immunogenicity and patients’ immunological capacity (17–22). Additionally, EGFR and COX-2 have recently been identified as key regulators related to immune phenotypes in head and neck cancer with potential impact on the response to treatment immune checkpoint inhibition (ICI) (23).

Therefore, the purpose of this study was to apply digital pathology algorithms to investigate the expression levels of different potential biomarkers, including EGFR, COX-2 and PD-L1 and the infiltration of cytotoxic TILs like natural killer (NK) cells (defined by NK activation receptor CD335) and CD8+ T cells in tissue specimens of a cohort of 222 OSCCs. Protein expression and immune cell infiltration patterns were then analyzed regarding anatomic distribution and prognostic significance for overall and progression-free survival.



Materials and Methods


Patients and Samples

The investigated cohort consisted of 222 patients with primary OSCCs. All patients received surgical treatment at the Department of Oral and Cranio-Maxillofacial Surgery of the University Hospital Heidelberg between the years 2010 and 2016. In case of residual disease, lymph node metastases or histopathological risk factors additional adjuvant radiotherapy or radio-chemotherapy was applied. Written informed consent was obtained from all patients and the study was approved by the ethics committee of the medical faculty of the University of Heidelberg (Ethic vote: S-360/2011). Follow-up data was assessed retrospectively via SAP patient management research software (SAP, Walldorf, Germany).



Tissue Microarray and Histological Slices

All TMAs and histological slices were prepared by the tissue bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany according to an established protocol as reported earlier (13). Hematoxylin-eosin-stained slides of the prepared tissue samples were examined by an expert pathologist for tumor content. Tumors were then marked to enable the selection of appropriate tissue samples. Via the tissue chip microarray (Beecher Instruments, Sun Prairie, Wisconsin, USA), tissue cores were extracted from the paraffin blocks. After transfer of the tissue cores into a recipient block, paraffin-embedding was used to create TMA blocks and slices were produced with a thickness of 2-3 µm for the staining procedure (Histo Bond, Marienfeld, Germany).



Immunohistochemistry

TMAs were stained using anti‐PD‐L1 (Cell Signaling Technology, Danvers, Massachusetts, USA), anti-Nkp46/CD335 (Thermo Fisher Scientific, Waltham, Massachusetts, USA), anti-Human CD8, (Clone C8/144B Dako, Agilent Technologies, Santa Clara, USA), anti-EGFR (D38B1, Cell Signaling Technology, Danvers, Massachusetts, USA), and anti-COX2 (SP21, Invitrogen/Thermo Fisher Scientific, Waltham, Massachusetts, USA) monoclonal antibodies, and the DAB Substrate Kit (Vector Laboratories, California, USA) following the manufacturer’s instructions. Afterwards, TMAs were scanned using the Nanozoomer HT Scan System (Hamamatsu Photonics, Japan).



Manual and Digital Pathology-Based Scoring

The manual scoring procedure was performed with digital scans of the TMAs exclusively using the NDP.view2 software (Hamamatsu Photonics, Hamamatsu, Japan). The immunoreactivity score (IRS) was determined by three independent observers, who assessed the relative amounts of stained cells and the staining intensity. The observers were blinded for the clinical data of the patients included in the study during the scoring procedures. For assessment of tumor cells, an ordinal scale was used based on the number of stained cells and staining intensity (amount of stained cells: 1 = no stained cells, 0%; 2 = < 33%; 3 = 33%-66%; 4 = >66%; staining intensity: 1 = no staining; 2 = low; 3 = medium; 4 = high). Median values of the three observes were used as final score. The two scores were then multiplied to create the final IRS with a range from 1 to 16. For immune cells, an ordinal scale was used based on the number of stained cells (amount of stained cells: 1 = no stained cells, 0%; 2 = < 33%; 3 = 33%-66%; 4 = >66%).

QuPath version v0.2.2 was used for semi-automatic digital quantification of immunohistochemical staining (24). In the first step, the TMA dearrayer function was used to infer the TMA grid. This step was followed by manually excluding invalid samples as well as staining artefacts from further analysis. Next, staining vectors were automatically determined for every TMA slide individually to ensure meaningful quantification between slides. Lastly, the positive cell detection function was used to quantify the number of positive cells for every sample. For every marker, the optimal score compartment was assessed by visual control (nucleus mean for CD8 cells, cytoplasm mean for CD335, EGFR and PD-L1 and cell mean for COX2). Figure 1A illustrates the procedure of semi-automatic digital scoring.




Figure 1 | Graphical abstract of the digital scoring procedure principles and the associations between score values obtained by different scoring techniques. (A) Identification and evaluation of tissue spots. Detection and quantification of stains. (B) Different biomarkers included in the analysis (CD8 cells, CD335/NK cells, PD-L1, EGFR, COX-2). (C) Percentage of positive cells for each stain across the samples. (D) Heatmap depicting the Spearman’s correlation coefficient between different biomarkers. (E–G) Concordance between the classical manual scoring and the digital scoring technique for CD8 cells, CD335/NK cells and PD-L1.





Anatogram of Immunostains

The illustration of the oral cavity was created using the vector-based graphic design software Vectornator X (Linearity GmbH, Karlsruhe). The exact tumor localization in relation to the graphic was determined for each patient using Microsoft Excel (Microsoft, Redmond, Washington). The tumor localization was projected onto the graphic and the various levels of expression (continuous scale) were mapped for each potential biomarker in R (version 4.0.2; www.r-project.org) to illustrate different levels of expression according to the tumor localization in the oral cavity.



Statistical Analysis

Statistical analyses were performed using Microsoft Excel (Microsoft, Redmond, Washington), SPSS 25 (SPSS for Windows, SPSS, Chicago, IL) and R (version 4.0.2; www.r-project.org).

Demographic, clinical and pathological features of the investigated cohort were analyzed using descriptive statistics. Median values of groups were analyzed using the Kruskal–Wallis one-way analysis of variance. The Wilcoxon rank-sum test was used for pairwise comparison of median values between groups. Correlation of expression levels of different biomarkers were evaluated using Spearman’s correlation coefficient and concordance of values obtained by different scoring procedures was evaluated using linear regression modelling.

The optimal cut-off values to define high- and low-expressing groups in the digital scoring for all investigated biomarkers including the CD8/CD335 ratio were defined in a data-driven approach by finding meaningful local maxima in the distribution of p-values for all cut-offs in the inter-quartile range of expression values (see Figure 3).

Survival analysis was performed using the Kaplan-Meier method from date of diagnosis until death, disease recurrence or end of data collection and log-rank testing served to determine differences between the groups. Univariate and multivariate Cox regression models were applied to evaluate the impact of immune cell infiltration and protein expression on overall survival and progression-free survival together with relevant covariates.

A p-value of less than 0.05 was considered statistically significant.




Results


Patient Cohort

Overall, tissue samples of 222 patients were included in the analysis. 137 patients (61.7%) were male and 85 (38.3%) were female. The age ranged from 27 to 88 years with a mean age of 64.3 ± 11.1 years. All patients suffered from primary squamous cell carcinoma of the oral cavity and received surgical treatment in the Department of Oral and Cranio-Maxillofacial Surgery of the University of Heidelberg between 2010 and 2016.

112 patients (50.5%) initially presented with early-stage disease (Stage I/II) and 110 (49.5%) with advanced disease (Stage III/IV). Adjuvant radiotherapy or radio-chemotherapy was applied for patients with advanced tumors (Stage III/IV), incomplete tumor resection (R+) or the presence of histopathological risk factors, such as perineural (PN+), lymphatic (L+) or vascular (V+) tumor infiltration. 89 patients (40.1%) received adjuvant treatment including radiotherapy (54 patients) and radio-chemotherapy (35 patients). 47 patients (21.2%) died during follow-up and 47 patients (21.2%) experienced disease recurrence. Table 1 provides an overview of demographic and clinical features of the patient cohort.


Table 1 | Demographic, clinical and pathological data of the investigated cohort of 222 oral and oropharyngeal cancers.





Digital Pathology Scoring of Immunostaining and Comparison With Manual Scoring

The digital scoring of immunostaining was performed for CD8, CD335, PD-L1, EGFR and COX2 (Figures 1B, C). The immunostaining for CD8, CD335 and PD-L1 were also evaluated by manual scoring enabling a comparative analysis between both techniques. No significant correlation could be observed between all markers (Figure 1D). The highest concordance was achieved for CD8-positive T cells (p<0.001, Figure 1E), followed by Nkp46/CD335-positive NK cells (p=0.002, Figure 1G) and PD-L1 (p=0.0262, Figure 1F). Scoring of COX-2 and EGFR was performed using only the semi-automatic validation method, a comparison with the manual scoring method therefore was not possible.



Spatial Mapping of Expression Patterns

The distribution of tumors and the protein expression (digital scoring) for investigated biomarkers in dependence of the affected anatomic subunit of the oral cavity are shown in Figure 2. A subset of tumors which were localized in the border region between the oral cavity and oropharynx (n=16; soft palate and base of the tongue) were subsumed under the category “oropharynx”. Overall, there was a dominance of tumors located in the lower section of the oral cavity with a higher frequency at the tongue, the floor of the mouth and the mandible (n=186, 83.8%; see Table 1 and Figure 2).




Figure 2 | Anatograms of immunostains for different biomarkers. Diameter and color of dots represent the number of stained cells for each biomarker. The localizations of dots meet the anatomic subsites affected by the tumor. (A) Localization of tumor tumors within the oral cavity and the oropharynx (B) EGFR expression (C) PD-L1 expression (D) CD335/NK cell Infiltration (E) CD8 cell infiltration (F) COX2 Expression



The median expression values of the investigated biomarkers did not differ significantly between the anatomical subsites, except for PD-L1. Here, median expression values were significantly lower (p<0.05) for tumors located in the oropharynx as compared to the other subsites except for the maxilla (Supplementary Figure 1 and Supplementary Table 1).



Survival Analysis

Assessing the clinical characteristics of the cohort revealed that the nodal status was the only parameter that was associated with OS (p=1.81E-05) or PFS (p=1.31E-05; Figure 4). To identify reliable expression biomarkers that could be applied by pathologist, expression values were not modelled as a continuous parameter in the survival time analysis but cut-offs were established. To this end, the distribution of p-values of the univariate cox proportional hazard model enabled to determine the robustness of cut-offs (Figure 3).




Figure 3 | Data-driven expression cut-offs of the digital scores for survival time analysis (A–F). The p-values (cox proportional hazard model, -log10) and hazard ratios (-log10) of the univariate survival analysis are plotted over the percent of positive cells in the digital scoring. The left half of the respective plots show the results for OS and the right half for PFS. Horizontal lines illustrate the p-value cutoff (p < 0.05) and the direction of association (HR=1). Here, a negative –log10 HR corresponds to a shorter OS or PFS, respectively.






Figure 4 | Kaplan-Meier curves depicting the results of the univariate survival analysis for: Neck node status (N0/N1) – (A). Progression-free survival (PFS) – (B). overall survival (OS) CD8/CD335 ratio (CD8/CD335 ≤2/>2) – (C). Progression-free survival (PFS) – (D). overall survival (OS) EGFR status (EGFR ≤5/>5 – (E). Progression-free survival (PFS).



In the univariate survival analysis with overall survival (OS) as the endpoint, the CD8/CD335 ratio and PD-L1 but not CD8 showed a prognostic impact across a larger range of cut-offs. Both a higher CD8/CD335 ratio (ratio >2), i.e. a T cell dominance and a higher PD-L1 expression was associated with a shorter OS (-log10 hazard ratio < 0). Modelling progression free survival (PFS) as the endpoint identified the CD8/CD335 ratio and EGFR as significant biomarkers. Both markers were associated with a shorter PFS (Figure 4).

In the multivariate analysis of overall survival, the CD8/CD335 ratio and nodal status (N), but not PD-L1 were confirmed as independent prognostic markers (Table 2). The survival differences after stratification for pathological N status and CD8/CD335 ratio are illustrated in Supplementary Figure 2B. The best survival rates were observed for patients with N0 status and low CD8/CD335 ratio, while N+ with high CD8/CD335 ratio was associated with worse survival (p<0.001).


Table 2 | Multivariate analysis of overall and progression-free survival.



Similar results were observed for progression-free survival (PFS). Here, nodal status (N), the CD8/CD335 ratio and EGFR status were confirmed as independent prognostic markers (Table 2). Supplementary Figure 2B illustrates the survival rates after stratification for EGFR status, N status and CD8/CD335 ratio. Best survival rates were seen in patients with negative EGFR status and low CD8/CD335 ratio, irrespective of neck node status, while worst survival was observed for patients with positive EGFR status, presence of neck node metastases (N+) and high CD8/CD335 ratio (p<0.001).




Discussion

The identification of reliable biomarkers is of critical importance for cancer research and to further individualize tumor therapy. While there have been advances in the definition of markers to prognosticate the therapeutic response to palliative medical therapy using immune checkpoint inhibition (ICI) by the evaluation of the tumor mutational burden (TMB) or the expression levels of PD-L1, there still is a lack on relevant markers for the primary disease (25–27). A plethora of publications exists on the correlation of different markers with clinical parameters, such as tumor size, neck node status or survival, including proteins or genetic material (28, 29). However, none has been established so far in clinical practice to serve as an accurate prognostic or predictive marker for primary therapy. The major goal in the primary disease stage is to stratify patients’ risks for tumor recurrence and, consequently, to allocate them to an adjusted primary and adjuvant treatment or more rigorous follow-up surveillance. Moreover, the introduction of new anti-cancer therapies is based on the identification of appropriate targets. The classical way of biomarker research is manual scoring of immunohistochemical staining to evaluate the expression levels of different proteins or to analyze quantity and distribution of tumor-associated immune cells. This technique is time-consuming and potentially hard to reproduce. This often results in numerous publications with contradictory conclusions due to differing methods of data generation, analysis and interpretation.

Hence, one of the goals of this study was to utilize digital pathology algorithms as a new standard procedure for the quantification of expression levels of potential biomarkers in oral cancer. The obtained IRS were then correlated with data obtained by manual scoring, associations with affected anatomic subsites, and prognostic significance to evaluate their conclusiveness.

Several biomarkers were chosen for this analysis including EGFR, COX-2, PD-L1, CD8-positive T cells and Nkp46/CD335-positive NK cells. The immune system has been identified as a key factor in the development of cancer and subsequently merged into the focus of cancer research. In the field of head and neck cancer, the introduction of immune checkpoint inhibition has further raised the importance of understanding the tumor-associated immune microenvironment and its potential influence on therapeutic success (11, 12, 30, 31). As response to immune checkpoint inhibition is restricted to a fraction of patients, surrogate markers for therapeutic success are needed. Here, several promising candidates have been proposed, including PD-L1 and tumor infiltration lymphocytes (TILs). PD-L1 has emerged as an independent prognostic marker in head and neck cancer patients and the application of immune-checkpoint-inhibition partly is based on PD-L1 expression levels (12, 32, 33). Several studies already reported on the high prognostic significance of TILs in various malignancies and their role as a marker for anti-tumor immune response (34–37). EGFR is an established prognostic marker, a key target in anti-cancer therapy and lately has been linked to different immune phenotypes and response to ICI treatment together with COX-2 (23, 38–40).

The primary aim of this study was to evaluate a digital pathology algorithm using the Qupath software approach to assess potential biomarkers in oral cancer. While different aspects of this method have been thoroughly described for a variety of diagnostic tasks including analysis of histological tumor samples, its utility for head and neck cancers remains to be confirmed in larger cohorts. Shaban et al. introduced a digital score for TIL abundance in OSCC investigating a cohort of 60 patients and described it as strong prognosticator for disease free survival. Moreover, they reported on the significantly higher impact of the digital TIL score in comparison to the manual score (14). de Ruiter et al. evaluated various T-cell markers in a cohort of 80 HPV-negative HNSCCs undergoing primary chemo-radiotherapy without finding relevant differences in overall and progression-free survival depending on T-cell infiltration (16). In another study, the authors used a digital pathology approach to determine PD-L1 expression and its prognostic significance in breast cancer. The authors concluded that the technique of digital pathology was effective in stratifying biomarker scores (41). In our study, the evaluation of expression levels of different proteins and the infiltrations patterns by manual scoring or semi-automatic scoring produced significantly correlated data sets. While the concordance was highest for CD8 cells, the correlations for NK cell and PD-L1 scores were weaker, possibly due to the greater variation of staining intensity and localization, especially for PD-L1.

All investigated biomarkers were analyzed regarding expression differences for distinct anatomical subsites by vector-designed anatograms depicting localization and staining intensity for each tumor and marker (Figure 2). Besides a dominance of tumors in the lower section of the oral cavity, there was a significant tendency towards lower median PD-L1 expression in tumors located in the oropharynx (base of the tongue and soft palate). All sixteen tumors that were subsumed under the term “oropharynx” were borderline tumors which affected the oral cavity and the oropharynx (e.g. maxilla-soft palate; tongue – base of the tongue). Those tumors were labeled as “oropharyngeal cancer” to sharpen the anatomical classifications for the analysis of spatial expression heterogeneity.

In the univariate survival analysis, several markers showed a prognostic impact on overall and progression-free survival, including PD-L1, EGFR, CD8 and NK cells. Furthermore, in the multivariate analysis, EGFR could be confirmed as independent prognostic marker for progression-free survival and the CD8/CD335 ratio for both, overall and progression-free survival. As reported before, this observation is in accordance with several other publications and confirms the validity of our data. Furthermore, this concordance strengthens the technique of digital pathology as valid method of analysis for future studies. Several authors used different immune-scores including CD8-positive T cells to identify patients at risk for adverse outcome or those who had a higher chance to profit from a more intense multi-modal treatment including radio-chemotherapy (42–45). NK cells play a vital role in anti-tumor immunity and, in contrast to T cells, are independent of MHC related activation or prior immunization and their prognostic impact on survival has been demonstrated for a variety of tumors (46–50). Their activity is mainly guided by inhibitory and activating signals via chemokines and blocking of inhibitory pathways has been shown to result in improved anti-tumor response (51, 52). While most of the mentioned publications on TILs in HNSCC reported on mixed cohorts of patients with primary and recurrent tumors of different subsites who mostly received different treatment modalities, our analysis focused on a large cohort of 222 patients with OSCC and primary surgical therapy. Here, we could confirm the prognostic significance of tumor-infiltrating lymphocytes (TILs) by evaluating NK cell and CD8 cell infiltration separately and in a CD8/CD335 ratio. In a multivariate analysis, the CD8/CD335 ratio was confirmed as independent prognostic factor for OS and PFS (p=0.02). The prognostic relevance of PD-L1 for oral cancer has been discussed in a plethora of studies and is supported by the data reported in this study (33).

The presented study has several limitations including the utilization of TMAs for the analyses considering the intratumor heterogeneity of several potential biomarkers such as PD-L1 (53). Further studies are warranted to evaluate the reported results using whole tissue slides and to validate the findings in a prospective setting. The translation of potential biomarkers into clinical practice is highly dependent of several factors, including prognostic value, reliability, and cost effectiveness. While singular biomarkers are prone to exhibit limitations regarding their clinical applicability, the definition of a set of several markers may synergize the strengths and compensate the weaknesses of single markers. The presented study contributed to this task by evaluating potential biomarker candidates using and validating a novel scoring approach with digital pathology on a large cohort of patients with oral cancer.



Conclusions

The assessment of immunohistochemical staining via digital pathology techniques was shown to be a feasible and efficient option for objective pathological analysis. The expression levels of different proteins and concentrations of tumor-infiltrating lymphocytes were successfully evaluated. Thereby, a set of clinical and histological markers with high prognostic relevance was identified. These findings provide a valuable contribution to the establishment of digital pathology as standard procedure for the identification and validation of existing and future biomarkers with clinical relevance to further enhance risk-stratification and individualization of tumor therapy in patients suffering from oral cancer.
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Purpose

To construct a prognostic signature composed of DNA repair genes to effectively predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC).



Methods

After downloading the transcriptome and clinical data of HNSCC from the Cancer Genome Atlas (TCGA), 499 patients with HNSCC were equally divided into training and testing sets. In the training set, 13 DNA repair genes were screened using univariate proportional hazard (Cox) regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a risk model, which was validated in the testing set.



Results

In the training and testing sets, there were significant differences in the clinical outcomes of patients in the high- and low-risk groups showed by Kaplan-Meier survival curves (P < 0.001). Univariate and multivariate Cox regression analyses showed that the risk score had independent prognostic predictive ability (P < 0.001). At the same time, the immune cell infiltration, immune score, immune-related gene expression, and tumor mutation burden (TMB) of patients with HNSCC were also different between the high- and low-risk groups (P < 0.05). Finally, we screened several chemotherapeutics for HNSCC, which showed significant differences in drug sensitivity between the high- and low-risk groups (P < 0.05).



Conclusion

This study constructed a 13-DNA-repair-gene signature for the prognosis of HNSCC, which could accurately and independently predict the clinical outcome of the patient. We then revealed the immune landscape, TMB, and sensitivity to chemotherapy drugs in different risk groups, which might be used to guide clinical treatment decisions.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a type of tumor that originates from the squamous epithelium of the head and neck areas, including the mucous membranes of the lips, tongue, pharynx, larynx, and others (1). HNSCC is currently one of the most common malignant tumors worldwide, with morbidity and mortality accounting for 3.6 and 3.4% of all malignant tumors in 2020, respectively (2). HNSCC is highly malignant, and there are no specific prognostic-related biomarkers for clinical application. Therefore, prognostic-related biomarkers with clinical applicability are urgently required.

DNA damage and repair play important roles throughout the life of a cell (3). DNA damage affects the expression of a variety of genes, including proto-oncogenes and cancer suppressor genes. Changes in the activity of proto-oncogenes and cancer suppressor genes are crucial in tumorigenesis (4). Several DNA repair genes have been confirmed to play an important role in the development and prognosis of HNSCC (5–7). Hence, constructing a risk model composed of DNA repair genes may be useful for predicting the prognosis of patients with HNSCC.

In this study, we aimed to establish a prognostic prediction model for HNSCC based on DNA repair genes. We first equally divided all patients with HNSCC into training and testing sets. In the training set, we screened prognostic-related DNA repair genes using univariate proportional hazard (Cox) regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a risk model (8). All patients with HNSCC were classified into high- and low-risk groups according to the median value of the training set risk score. Subsequently, we verified the prognostic relevance and prognostic predictive ability of the risk model in the training and testing sets. We also analyzed the tumor-infiltrating immune cells, immune-related gene expression, tumor mutation burden, and drug sensitivity of patients with HNSCC in the high- and low-risk groups. The results showed that the risk model composed of DNA repair genes could effectively distinguish patients with different clinical outcomes and has independent predictive prognostic ability.



Methods


Data Download

The transcriptome profiling (RNA-seq) data harmonized to fragments per kilobase million (FPKM), clinical information, and tumor mutations in patients with HNSCC were downloaded from the Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) in March 2021 (9). The pathologic stages were reconfirmed according to the seventh edition of the American Joint Committee on Cancer staging system (10). The gene transfer format (GTF) files were downloaded from Ensembl (http://asia.ensembl.org) for annotation (11). Immune-related genes were downloaded from the Tracking Tumor Immunophenotype (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (12). The gene list, containing 569 DNA repair genes, was downloaded from Gene Set Enrichment Analysis (GSEA), “GO_DNA REPAIR” gene set (http://www.gsea-msigdb.org/gsea/msigdb/cards/GOBP_DNA_REPAIR.html) (13, 14). After annotation by the GTF files, 545 DNA repair genes were eventually used for subsequent analyses. GSE41613 (15), GSE27020 (16), GSE117973 (17), and GSE65858 (18) datasets with transcriptome and clinical data of patients with HNSCC were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) for external validation.



Construction of Risk Model

To construct the risk model, we first combined the transcriptome data and clinical information of patients with HNSCC to obtain 499 samples with complete clinical information and transcriptome information, and then randomly divided them into a training set and a testing set on average. Subsequently, LASSO regression analysis was performed to further screen out 13 more representative DNA repair genes for use in constructing the risk model, and the correlation coefficients (Coef) and expression (EXP) of these 13 genes were obtained using the “glmnet” package in R (19). Finally, the risk score of each patient was calculated by the following formula: , where n refers to the number of selected DNA repair genes, Expi indicates the expression levels of gene i in each HNSCC sample, and Coefi is the correlation coefficient of gene i. Finally, we classified all HNSCC samples into high- and low-risk groups based on the median value of the risk score of the training set.



Validation of the Risk Model

We verified the risk model separately in the training and testing sets. To this end, we first performed principal component analysis (PCA) in the training and testing sets to evaluate the discrimination of the risk model for patients in the high- and low-risk groups. We then utilized heat maps to show the expression patterns of the DNA repair genes in the risk model in the training and testing sets. The Kaplan-Meier survival curve was used to distinguish the difference in the clinical outcome of patients in the high- and low-risk groups, and the significant difference P-value was calculated by the log-rank test. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to evaluate the prognostic diagnostic accuracy of the risk score and clinical characteristics. Univariate and multivariate Cox regression analyses of risk score and clinical characteristics were used to evaluate the independent correlation between the risk score and prognosis of patients with HNSCC. We also performed the above verification in all patients with HNSCC. Then we divided all samples into multiple clinical subgroups based on clinical characteristics, and the Kaplan-Meier survival curve was performed in each subgroup to demonstrate the good prognostic ability of the risk score.



Evaluation of the Tumor Immune Microenvironment and Immune-Related Gene Expression

Before analyzing the immune-infiltration situation using the CIBERSORT algorithm, which contains 22 types of immune cells, we first standardized the gene expression data through the “CIBERSORT” package in R (20). The Wilcoxon test was used to compare the different infiltrations of the 22 immune cells in the high- and low-risk groups. The Pearson test was used to analyze the correlation between risk genes and tumor-infiltrating immune cells through Statistical Product and Service Solutions 25.0 (SPSS 25.0) (21). The ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm was used to evaluate the immune score, stromal cell content, and ESTIMATE score of each sample (22). We analyzed the expression of negative regulatory immune genes in the high- and low-risk groups using the Wilcoxon test. Finally, as the research on the role of immune checkpoint genes in various tumors is increasing, we analyzed the correlation between these genes and risk scores using the Spearman test and analyzed their differences in expression in the high- and low-risk patients using the Wilcoxon test.



Assessment of Tumor Mutation Burden

We displayed the 30 genes with the highest mutation rate in all HNSCC samples and calculated the tumor mutation burden (TMB) of all samples through the “maftools” package in R (23). We then divided the HNSCC samples into high- and low-TMB groups according to the best cut-off value of the TMB of each sample. The Kaplan-Meier survival curve showed the clinical outcome of the two groups of patients with HNSCC. By combining the TMB groups and the risk groups, we further evaluated the impact of the risk score and tumor mutation burden on the clinical outcome of patients with HNSCC and displayed them with survival curves.



Online Website Verification

We verified the influence of the expression of the 13 DNA repair genes on the Oncolnc website (http://www.oncolnc.org).



Analysis of Drug Sensitivity

To evaluate the model in the clinical treatment of HNSCC, we calculated the half-inhibitory concentration (IC50) of chemotherapeutic drugs for HNSCC. The difference in the IC50 between the high- and low-risk groups was compared by Wilcoxon signed-rank test using the “pRRophetic” package in R (24).



Statistical Analysis

The significance level of the P-value was set to <0.05. All statistical analyses were performed using R 4.0.4 (https://www.r-project.org/).




Results


Development and Validation of the Prognostic Model

The flowchart of this research is shown in Figure 1. After merging the transcriptome data and the clinical data of patients with HNSCC downloaded from TCGA, we obtained 499 samples with complete information. We then divided all HNSCC samples into a training set (n = 251) and a testing set (n = 248). The basic clinical information of the two groups of patients is shown in Table 1. Subsequently, we screened out 82 prognostic-related genes among 545 DNA repair genes through univariate Cox regression analysis (Table S1, P < 0.05), of which 21 were risk genes (hazard ratio > 1). Subsequently, we screened out a further 13 representative DNA repair genes through LASSO Cox regression analysis, which were used to construct the risk model. The risk score was calculated based on the sum of the product of the expression (Exp) of all genes in the model and its correlation coefficient (Coef). The formula of the risk score was as follow: Risk Score = MORF4L2 * (0.0037) + COPS2 * (0.0063) + USP10 * (0.0255) + WAS * (–0.0123) + UVSSA * (–0.1324) + PRRX1 * (–0.0148) + ZBTB1 * (–0.0632) + DCLRE1C * (–0.0502) + MSH5 * (–0.3824) + DOT1L * (–0.1573) + ZBTB7A * (–0.00610) + POLR2C * (0.0085) + MORF4L1 * (0.0047). A negative correlation coefficient indicated that the gene was a protective factor in patients with HNSCC. In contrary, the gene with a positive correlation coefficient was a risk factor.




Figure 1 | Flowchart of this study.




Table 1 | Basic clinical information of training set and testing set.



After calculating the risk scores of all patients with HNSCC, we divided the training set and testing set samples into high- and low-risk groups according to the median value of the training set risk score, as shown in Figures 2A, G. We found that in both the training and testing sets, the proportion of patients with HNSCC who died in the high-risk group was higher than that in the low-risk group (Figures 2B, C, H, I). The high- and low-risk groups were well distinguished (Figures 2D, J). Moreover, the DNA repair genes in the risk model showed the same expression pattern in the training and testing sets (Figures 2E, K). The Kaplan-Meier survival curve showed that the clinical outcomes of patients in the low-risk group were better than those in the high-risk group (Figure 2L), both in the training set (P = 8.439e–09; Figure 2F) and the testing set (P = 1.161e-04; Figure 2L).




Figure 2 | Development and validation of the risk model for patients with HNSCC. Distribution of the HNSCC samples with different risk scores in the training set (A). According to the median value, the HNSCC samples were divided into high- (red dot) and low-risk (green dot) groups. The distribution of survival status of HNSCC samples (B). The red dot indicated dead status, and the green dot indicated alive status. Percentage of patients with HNSCC in alive or dead status (C). The red bar meant dead status, and the green bar meant alive status. PCA of HNSCC samples (D). The red dots indicated HNSCC samples in the high-risk group, while the blue dot meant low risk. Heat map depicting the expression patterns in the 13 DRGs between high- and low-risk groups (E). Kaplan-Meier survival curve demonstrating the clinical outcome differences between high- and low-risk groups (F). In the testing set, the distribution of the risk scores among all HNSCC samples (G). The distribution of survival status of HNSCC samples (H). Percentage of patients in survival status and death status (I). PCA of HNSCC samples (J). Heat map depicting the expression differences in the 13 DRGs between high- and low-risk groups (K). Kaplan-Meier survival curve showing the clinical outcome differences between the two groups (L).



To verify the ability and independence of our model to predict the prognosis of patients with HNSCC, we conducted ROC curves and univariate and multivariate Cox regression analyses in the training and testing sets, respectively. The sensitivity and specificity of the risk score were assessed using the ROC curve. In the training set, the area under the curve (AUC) of the 1-, 3-, and 5-year ROC curves of the risk score were all >0.7 (Figure 3A). The risk score had the largest AUCs of the 3-year ROC curve, compared to the clinical traits of patients with HNSCC (Figure 3B). In the testing set, the AUCs of the 1-, 3-, and 5-year ROC curves were all >0.65 (Figure 3E), and the risk score also had the largest AUCs of the 3-year ROC curve (Figure 3F). The hazard ratio (HR) value of the risk score was the largest in the univariate and multivariate Cox regression analyses of the risk score and multiple clinical features, which showed that the risk score was an independent prognostic factor (Figures 3C, D). The independence of the risk score for predicting the prognosis of HNSCC was confirmed in the test set (Figures 3G, H). Table S2 shows the univariate and multivariate Cox regression analyses of the training and testing sets. Overall, the risk score was an independent prognostic factor for HNSCC. We were unable to find an external validation dataset with transcripts of all risk genes. However, we still verified the predictive ability of other genes except MSH5 in patients with HNSCC in GSE41613. We found that despite the lack of MSH, patients with HNSCC in the low-risk group showed better clinical outcomes than those in the high-risk group in our model (P < 0.05), and the expression pattern of the remaining genes was consistent with the training and testing sets (Figure S1). And we still verified in GSE117973 without transcript of UVSSA, GSE27020 without transcripts of MSH5 and UVSSA, and GSE65858 without transcripts of UVSSA and ZBTB1. The differences of prognosis of patients with HNSCC in the high- and low-risk groups were not significant (P > 0.05, Figure S2). For these external validation, we did a sensitivity analysis by using only 12 risk genes to recalculate the risk score. And we found that deleting every risk gene had little effect on the Kaplan-Meier survival curves (Figures S3, S4).




Figure 3 | Validation of the risk model. In the training set, the 1-, 3-, and 5-year ROC curves (A). The ROC curves of clinicopathological characteristics and risk score for 3-year OS (B). In the testing set, the ROC curves for 1-, 3-, and 5-year OS (E). The ROC curves of clinicopathological characteristics and risk score for 3-year OS (F). Univariate and multivariate Cox regression survival analysis was used to validate whether age, gender, grade, stage, T, N, and risk score could independently predict the clinical outcome of patients with HNSCC in the training (C, D) and testing sets (G, H).



To further verify the accuracy of the model, we divided all samples into clinical subgroups based on different clinical traits, and we analyzed differences in the clinical outcomes of high- and low-risk samples in each clinical subgroup. Before clinical subgroup validation, we conducted a risk model validation for all samples. The Kaplan-Meier survival curve of all patients showed that the clinical outcomes of patients in the low-risk group were significantly better than those in the high-risk group (P = 1.884e-11; Figure 4A). The sensitivity and specificity of the risk scores of all HNSCC samples were assessed using the ROC curve. The AUCs of the ROC curves of risk score for 1-, 3-, and 5-year were all >0.65 (Figure 4B). The risk score had the largest AUCs of the ROC curves for 3-year compared to the clinical traits of patients with HNSCC (Figure 4C). PCA showed that patients in the high- and low-risk groups showed good discrimination (Figure 4D). The HR value of the risk score was the highest in the univariate and multivariate regression analyses of risk score and clinical characteristics (Figures 4E, F). Details of the univariate and multivariate Cox regression analyses of the training and testing sets are shown in Table S3. We divided all HNSCC samples into different clinical subgroups according to age, gender, stage, tumor (T), and lymph node (N) of patients with HNSCC. The clinical outcomes of patients in the low-risk group were significantly better than those in the high-risk group in all clinical subgroups, including those aged ≤65 years (P < 0.001, Figure 4G) and >65 years (P < 0.001, Figure 4H), male (P < 0.001, Figure 4I) and female (P = 0.003, Figure 4J), stage I-III (P = 0.007, Figure 4K), stage IV (P < 0.001, Figure 4L), T1-2 (P < 0.001, Figure 4M) and T3-4 (P < 0.001, Figure 4N), and N0 (P = 0.011, Figure 4O), and N1-3 (P < 0.001, Figure 4P).




Figure 4 | Validation in different clinical traits subgroups. In all HNSCC samples, the Kaplan-Meier survival curve demonstrating the clinical outcome differences between the high- and low-risk groups (A). The ROC curves for 1-, 3-, and 5-year OS (B), ROC curves of clinicopathological characteristics and risk score (C) for 3-year OS. PCA of all HNSCC samples (D). Univariate and multivariate Cox regression survival analysis validated whether age, gender, grade, stage, T, N, and risk score could independently predict the clinical outcomes of patients with HNSCC (E, F). Kaplan-Meier curves showing the differences in prognosis between the high- and low- risk groups in different clinical subgroups, including ≤65 (G), >65 (H), male (I), female (J), stage I-III (K), stage IV (L), T1-2 (M), T3-4 (N), N0 (O), and N1-3 (P).





Evaluation of the Immune Microenvironment and Expression of Immunoregulatory Genes

To reveal the differences in the immune microenvironment of high- and low-risk groups, including immune cell infiltration and expression of immunoregulatory and immune checkpoint genes, we first used the bioinformatics algorithm CIBERSORT to estimate 22 types of tumor-infiltrating immune cells in HNSCC. First, we found that among these 22 cell types, acquired immune-related immune cells infiltrated to a greater extent in HNSCC samples (Figure 5A). There were more naïve B cells (P = 5.3e-05, Figure 5B), resting mast cells (P = 1.8e-06, Figure 5C), T cells CD8 (P = 0.0093, Figure 5D), regulatory T cells (Tregs, P = 6.7e-08, Figure 5E), and follicular helper T cells (P = 1.3e-05, Figure 5F) in the low-risk group. In contrary, activated mast cells (P = 0.00053, Figure 5G), M0 macrophages (P = 0.00026, Figure 5H), and M2 macrophages (P = 0.0013, Figure 5I) showed greater infiltration in the high-risk group. The HNSCC samples in the low-risk group had higher immune scores (P = 1e-06, Figure 5J), stromal scores (P = 0.00033, Figure 5K), and ESTIMATE scores (P = 1.9e-06, Figure 5L) evaluated by ESTIMATE than the high-risk group. In other words, the tumor purity of HNSCC was lower in the low-risk group. Naïve B cells were positively correlated with eight risk genes that had negative correlation coefficients and negatively correlated with MORF4L2, which had a positive correlation coefficient (P < 0.05). CD8+ T cells were positively correlated with five risk genes that had negative correlation coefficients and negatively correlated with eight risk genes that had negative correlation coefficients (P < 0.05). Tregs and follicular helper T cells were positively correlated with all risk genes that had negative correlation coefficients and negatively correlated with all risk genes that had positive correlation coefficients (P < 0.05). Monocytes and Macrophages M2 were negatively related to most risk genes (P < 0.05). Macrophages M0 were negatively correlated with some risk genes that had negative correlation coefficients and positively correlated with some risk genes that had positive correlation coefficients (P < 0.05). Details are shown in Table S4.




Figure 5 | Estimation of the immune microenvironment. (A) Relative percentage of 22 types of tumor-infiltrating immune cells from the CIRBERSORT. Greater infiltration of B cells naïve (B), resting mast cells (C), CD8 T cells (D), regulatory T cells (E), and follicular helper T cells (F) in the low-risk group, and more infiltrating activated mast cells (G), M0 macrophages (H), and M2 macrophages (I) in the high-risk group. Higher immune score (J), stromal score (K), and ESTIMATE score (L) calculated by ESTIMATE in the low-risk group.



Next, we analyzed the relevant immune regulatory genes to further reveal the differences in the immune microenvironment of HNSCC in the high- and low-risk groups. Almost all negative immune regulatory genes in Figure 6A were highly expressed in the low-risk group, similar to CD4+ T cell and CD8+ T cell regulatory genes (Figure 6B). In addition, in recent years, immune checkpoint inhibitors have become increasingly common in the treatment of various tumors, including HNSCC. Therefore we investigated whether the risk model was related to immune checkpoint inhibitor-related biomarkers by Spearman correlation analysis, and we discovered that high risk scores were negatively correlated with the expression of CTLA4 (R = −0.34, P = 4.7e-15, Figure 6C), LAG3 (R = −0.28, P = 3e-10, Figure 6D), PD1 (R = −0.37, P < 2.2e-16, Figure 6E), PD-L1 (R = −0.16, P = 0.00051, Figure 6F), and TIM3 (R = −0.26, P = 7.4e-09, Figure 6G). A further Wilcoxon rank test also confirmed the expression pattern of CTLA4 (P = 4.8e-09, Figure 6H), LAG3 (P = 1.6e-06, Figure 6I), PD1 (P = 1.5e-11, Figure 6J), PD-L1 (P = 0.025, Figure 6K), and TIM3 (P = 6.2e-06, Figure 6L).




Figure 6 | Estimation of immune regulatory gene expression. Heatmap of negative immune regulatory gene expression (A). Differential expression of CD4+ T cell and CD8+ T cell regulatory genes in the high- and low-risk groups (B). Correlation between gene expression and risk scores of CTLA4 (C), LAG3 (D), PD1 (E), PD-L1 (F), and TIM3 (G). Differential expression of CTLA4 (H), LAG3 (I), PD1 (J), PD-L1 (K), and TIM3 (L) genes in high- and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001.





Assessment of Tumor Mutation Burden

To determine the tumor mutation burden (TMB), we first downloaded all the mutation data of HNSCC from TCGA and showed the top 30 mutation rate genes (Figure 7A). Subsequently, we identified the genes with the top 20 mutation rates in the high- and low-risk groups (Figures 7B, C). The tumor mutation rate of high-risk group samples was slightly higher than that of patients in the low-risk group, and the gene with the highest mutation rate in the high- and low-risk groups samples was TP53. According to the best cut-off point of TMB, all patients with HNSCC were divided into high- and low-TMB groups. The Kaplan-Meier survival curve showed that the clinical outcomes of patients with low TMB were significantly better than those of patients with high TMB (P = 0.003, Figure 7D). To further evaluate the influence of TMB and risk score on the prognosis of patients with HNSCC, we combined the TMB group with the risk group and analyzed the clinical outcomes of different groups using the Kaplan-Meier survival curve. The results showed that patients with low risk and low TMB had the best clinical outcome, followed by patients with low risk and high tumor mutation load, and that patients with high risk and high tumor mutation load had the worst clinical outcome (P < 0.001, Figure 7E). Considering the high mutation rate of TP53, we analyzed the correlation between TP53 and the risk score and its expression in the high- and low-risk groups. As a result, we found that TP53 was negatively correlated with the risk score (R = −0.31, P = 3.9e-12, Figure 7F) and was highly expressed in the low-risk group (P = 2.5e-05, Figure 7G).




Figure 7 | Assessment of tumor mutation burden of HNSCC. Top 30 mutant genes of all HNSCC samples (A). Top 20 mutant genes of high- (B) and low-risk (C) groups. Kaplan-Meier survival curve showing the OS differences between the high- and low-TMB groups (D). Kaplan-Meier survival curve showing the OS differences in the four combinations of TMB and risk (E). Correlation of TP53 expression and risk score (F). Different expression of TP53 in high- and low-risk groups (G).





Validation of the Website Oncolnc

We searched on the Oncolnc (http://www.oncolnc.org/) to verify the impact of high- and low-risk DRGs in the model on the prognosis of HNSCC and found that high-risk DRGs were correlated with poor prognosis and low-risk DRGs were associated with favorable patient prognosis. There were significant p-values for COPS2 (P = 0.000031, Figure 8A), DCLRE1C (P = 0.0051, Figure 8B), DOT1L (P = 0.0261, Figure 8C), UVSSA (P = 0.00589, Figure 8D), MORF4L2 (P = 0.00254, Figure 8E), POLR2C (P = 0.000262, Figure 8F), WAS (P = 0.0146, Figure 8G), ZBTB1 (P = 0.0153, Figure 8H), and USP10 (P = 0.0376, Figure 8I), whereas MORF4L1 (P = 0.088, Figure 8J), PRRX1 (P = 0.144, Figure 8K), ZBTB7A (P = 0.205, Figure 8L), and MSH5 (P = 0.391, Figure 8M) were not significant. The risk genes with negative correlation coefficients were also protective factors in the Oncolnc database.




Figure 8 | Verification of online website Oncolnc. Kaplan-Meier survival curve from Oncolnc (http://www.oncolnc.org/) of COPS2 (A), DCLRE1C (B), DOT1L (C), UVSSA (D), MORF4L2 (E), POLR2C (F), WAS (G), ZBTB1 (H) and USP10 (I), MORF4L1 (J), PRRX1 (K), ZBTB7A (L), and MSH5 (M) for HNSCC.





Analysis of Drug Sensitivity

To evaluate the possible clinical application of the risk model, we analyzed the sensitivity difference of chemotherapy drugs for HNSCC in the current stage of clinical trials between the high- and low-risk groups, with the drug sensitivity expressed by IC50. We showed that patients in the high-risk group were more sensitive to erlotinib (P = 8.3e-16, Figure 9A), gefitinib (P = 0.00056, Figure 9B), paclitaxel (P = 2.9e-05, Figure 9C), docetaxel (P = 2e-10, Figure 9D), and sorafenib (P = 2.7e-05, Figure 9E), whereas patients in low-risk group were more sensitive to methotrexate (P = 6e-07, Figure 9F), vinorelbine (P = 8.3e-05, Figure 9G), and rapamycin (P = 0.00015, Figure 9H), which indicated that the model could be used as a potential predictor of chemotherapy sensitivity.




Figure 9 | Analysis of drug sensitivity. Difference in inhibitory centration (IC50) of Erlotinib (A), Gefitinib (B), Paclitaxel (C), Docetaxel (D), Sorafenib (E), Methotrexate (F), Vinorelbine (G), and Rapamycin (H) for treatment of HNSCC in the high- and low-risk groups.






Discussion

An increasing number of studies have shown that DNA damage and repair play important roles in malignant tumors, including HNSCC (25). DNA repair has been proven to be widely involved in the development, prognosis, and metastasis of HNSCC (26). Further studies on the expression profile of DNA repair genes in HNSCC specimens may provide new ideas to improve the clinical prognosis of patients.

A total of 545 DNA repair genes were obtained from the “GO_DNA REPAIR” gene set of the GSEA database for subsequent analysis. Through univariate and LASSO Cox regression analyses in the training set, we constructed a risk model that included 13 DNA repair genes. Patients in high-risk group had worse clinical outcomes than low-risk patients. The AUC of the ROC at 1-, 3-, and 5-year confirmed the good prediction performance of the risk score. In addition, prediction accuracy and independence were verified using univariate and multivariate Cox regression analyses. We also performed clinical subgroup validation in the internal dataset and further validated the model in the online database Oncolnc, which reflected good accuracy and repeatability of the risk model.

We illustrated the immune landscape of patients with HNSCC using CIBERSORT and ESTIMATE, including tumor-infiltrating immune cells, immune score, immune regulatory genes, and immune checkpoint genes, all of which are considered important in HNSCC (27). Comprehensive analysis revealed that the risk score was more negatively related to tumor-infiltrating cells such as naïve B cells, resting mast cells, CD8+ T cells, Tregs, and follicular helper T cells, and positively related to activated mast cells and macrophages. According to Table S4, the correlation between risk score and tumor-infiltrating immune cells was contributed by the influence of all risk genes on tumor-infiltrating immune cells. Tumor-infiltrating immune cells both correlated with eight gene transcripts that have a negative correlation coefficient and five gene transcripts having a positive correlation coefficient. In addition, patients in the low-risk group had higher immune scores, stromal scores, and ESTIMATE scores, which indicated that their tumor purity was lower.

In this study, some of the DRGs in the risk model have already been identified as having an important role in the immune system while others have not been well studied in the immune system at present. Decreasing the activity of DOT1L (DOT1 like histone lysine methyltransferase) through silencing or an inhibitor preferentially suppressed the production of interleukin 6 (IL-6) and interferon β (IFN-β) but not of tumor necrosis factor α (TNF-α) in macrophages triggered by Toll-like receptor (TLR) ligands or virus infection. DOT1L-mediated selective histone 3 lysine 79 (H3K79me2/3) modifications at the IL-6 and IFN-β1 promoters are required for the full activation of innate immune responses (28). DO1L plays an important role in regulating the differentiation and complete function of CD4+, CD8+T cells and B cells in the process of acquired immunity, while DO1L knockdown or mutation invalidates acquired immunity (29–32). ZBTB1 (zinc finger and BTB domain containing 1) prevents DNA damage in replicating immune progenitors, allowing the generation of B cells, T cells, and myeloid cells (33). In alveolar macrophages, antigen presentation was ZBTB7A (zinc finger and BTB domain containing 7A)-dependent where alveolar macrophages deficient in ZBTB7A failed to induce antibody production and T cell responses (34).

CD8+ T cell infiltration indicates better prognosis of patients with HNSCC (35). Because of the negative correlation between the risk score and tumor-infiltrating cells, we investigated the differential expression of negative immune regulatory genes, CD4+ T cell and CD8+ T cell regulatory genes in different groups. The results showed that almost all of these genes were highly expressed in the low-risk group, potentially due to increased infiltration of immune cells in the low-risk group samples. Subsequently, the correlation between the risk score and the expression of five immune checkpoint genes, CTLA4, LAG3, PD1, PD-L1, and TIM3, indicated that the expression of immune checkpoint genes was negatively correlated with the risk score and was highly expressed in the low-risk group, suggesting that immune checkpoint inhibitors may be beneficial to patients with HNSCC with low risk scores.

In recent years, there has been an increasing number of studies on the TMB of various tumors, including HNSCC, not only in the context of its use as a biomarker, but also in the treatment of immune checkpoint inhibitors (36). In our study, TMB was positively correlated with risk score and poorer clinical outcomes. Because TP53 showed the highest mutation rate, we compared its expression in different groups and found that it was negatively correlated with the risk score and highly expressed in the low-risk group. Our model suggested that patients with HNSCC with high risk scores were more sensitive to biological inhibitors such as erlotinib, gefitinib, and sorafenib, instead of chemotherapeutics like methotrexate. These analyses of drug sensitivity were based on “pRRophetic” package in R (20). Although the authenticity of the difference in drug sensitivity of these drugs among patients with HNSCC in different risk groups needs to be verified by further clinical trials, this model based on DNA repair genes provides the possibility for guiding clinical drug use. We speculated that the effect of immunotherapy on HNSCC would be better than that of traditional chemotherapy.

In this study, some of the DRGs in the process of modeling that have already been identified play an important role in the malignant phenotypes of various cancer types. DOT1L is involved in tumorigenesis and tumor metabolism or metastasis of ovarian cancer (37, 38), prostate cancer (39, 40), leukemia (41, 42), neuroblastoma (43), colorectal cancer (44), and breast cancer (45). PRRX1 (paired related homeobox 1), a homeodomain transcriptional factor, has been demonstrated to be important in pancreatic cancer, especially in the regulation of epithelial-to-mesenchymal transition (EMT) in pancreatic cancer (46–49). Moreover, UPS10 (ubiquitin-specific peptidase 10), a deubiquitinase, promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ, and suppresses lung tumorigenesis by deubiquitinating and stabilizing KLF4 (50, 51). ZBTB7A (zinc finger and BTB domain containing 7A) acts as a tumor suppressor through transcriptional repression in several carcinomas (52–54). Moreover, its mutation or downregulation promotes cancer progression (55, 56). Furthermore, its homologous gene, ZBTB1, participates in regulating the treatment effectiveness and resistance to chemotherapy (57, 58). At present, other DRGs in the model have not been studied in depth in tumors.

In general, the prognosis model constructed based on the DNA repair gene transcripts and clinical information of patients with HNSCC in TCGA can well predict the prognosis of patients with HNSCC in the high- and low-risk groups. And this model systematically elaborated the molecular characteristics and immune microenvironment of HNSCC. The internal verification established based on the TCGA database also proved the stability of the model and provided reference value for prediction of the clinical outcomes of patients with HNSCC. In addition, the significant differences of multiple immune checkpoint genes between the high- and low-risk groups point out possible directions for the immunotherapy of patients with HNSCC.

However, we recognized that there were limitations to this study. On the one hand, the HNSCC samples involved in this study were not sufficient, and the DNA repair gene transcripts and clinical information of multiple GEO databases were incomplete, which hindered our external verification. On the other hand, the immaturity of the biobank of our institution was not enough to verify. Nevertheless, we still successfully completed external verification with the remaining genes in GSE41613 without MSH5 transcript, which further confirmed the availability and stability of the prognostic model. However, there were no significant differences in the Kaplan-Meier survival curves validated in the GSE117973 (without UVSSA), GSE27020 (without UVSSA and MSH5), and GSE65858 (without ZBTB1 and UVSSA). We assumed that the lack of a relatively important gene would reduce the predictive ability of the model, which might be the reason for the failure of the verification in GSE27020, GSE117973, and GSE65858.



Conclusion

In conclusion, this study constructed a 13-DRG signature for the prognosis of HNSCC, which could accurately and independently predict the clinical outcome of the patient. We then revealed the immune landscape, TMB, and sensitivity to chemotherapy drugs in different risk groups, which might be used to guide clinical treatment decisions.
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Background

The prognostic value of epidermal growth factor receptor (EGFR)/phosphorylated EGFR (p-EGFR) expression in nasopharyngeal carcinoma remains controversial. A meta-analysis was performed to investigate prognostic significance of EGFR/p-EGFR expression in patients with nasopharyngeal carcinoma.



Methods

Literatures published before November 2020 were systematically searched in relevant databases, including PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan fang databases. STATA 13 statistical software was used to analyze the pooled hazard ratio (HR) and 95% confidence interval (CI). Heterogeneity of the studies was examined by I2. Sensitivity and subgroup analysis were performed to explore sources of heterogeneity. The potential publication bias was assessed using both Egger’s and Begg’s tests.



Results

A total of 20 literatures with 1545 patients were included for the meta-analysis. The meta-analysis results suggested that high expression of EGFR was significantly associated with poor overall survival (OS) (HR = 1.70, 95% CI: 1.24–3.15, P = 0.001) and disease-free survival (DFS) (HR = 2.58, 95% CI: 1.87–3.56, P = 0.000). However, it was not significantly associated with progression-free survival (PFS) (HR = 1.85, 95% CI: 0.90–3.82, P = 0.09) and distant metastasis-free survival (DMFS) (HR = 1.39, 95% CI: 0.73–2.67, P = 0.319). The subgroup analysis indicated that patients with EGFR high expression in studies of higher TNM stage (III–IV) ratio had significantly poor OS (HR = 2.27, 95% CI: 1.09–4.73, P = 0.03), but heterogeneity existed in studies (I2  =  95.1%, P = 0.000). Sensitivity analyses revealed that EGFR expression did not significantly affect OS by an individual study solely, indicating there was inherent heterogeneity in OS cohorts. There was no significant heterogeneity among eight studies in the DFS cohorts (I2 = 0%, P = 0.606). There was significant heterogeneity between EGFR expression and DMFS (I2 = 82.8%, P = 0.000). Sub-group analysis in differentiated carcinoma demonstrated a smaller heterogeneity (I2 = 33.2%). In addition, p-EGFR high expression had no significant correlation with OS (HR = 1.00, 95% CI: 0.88–1.14, P = 0.982) and DMFS (HR = 1.21, 95% CI: 0.96–1.52, P = 0.112). The heterogeneity among p-EGFR and OS studies was small (I2 = 21%, P = 0.26). There was no significant heterogeneity in the DMFS cohorts (I2 = 0%, P = 0.497).



Conclusion

EGFR high-expression was significantly associated with poor OS and DFS, which may serve as a prognostic predictor for nasopharyngeal cancer.



Systematic Review Registration

[https://www.crd.york.ac.uk/PROSPERO], identifier [number CRD42021258457].





Keywords: EGFR, nasopharyngeal carcinoma, meta-analysis, prognosis, p-EGFR



Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy that arises from the epithelium of nasopharynx, having obvious regional characteristics and high incidence in China and southeast Asia (1). According to national cancer registry data in China, the incidence and mortality of NPC in Guangxi province rank first (2). Currently, the clinical TNM staging system is the principal prognostic indicator for NPC (3). However, clinical outcomes are different among patients with the same TNM stage (4). It seems that TNM stage alone is insufficient to predict individual clinical outcome. Several studies have shown that varied biological behavior and different prognosis was presented in the NPC patients with the same classification (5–7). Therefore, a reliable prognostic biomarker is necessary to improve individualized patient treatment and predict outcomes.

EGFR, belonging to the receptor tyrosine kinase family, plays an important role in regulation of proliferation and survival of tumor cells (8, 9). After ligand binding, EGFR is activated and forms homodimers or heterodimers, resulting in the phosphorylation and activation of multiple downstream signaling pathways, such as cellular differentiation, proliferation, and carcinogenesis (10, 11). Studies have demonstrated that EGFR is frequently overexpressed in NPC (12, 13). However, the relationship between EGFR expression and prognosis remains controversial. Several researches reported that high expression of EGFR was associated with poor prognosis (14–16), while other studies found no association between EGFR and prognostic value in NPC patients (17–19). Differences in study population’s characteristics and cutoff values may explain the discrepancies among different studies.

Phosphorylated-EGFR (p-EGFR) may be more predictive of patient outcome. Recent studies demonstrated that p-EGFR high-expression was associated with poorer prognosis in patients with sarcoma (20) and non-small cell lung cancer (21). In addition, some studies found that p-EGFR high-expression was closely related to nasopharyngeal cancer development (22, 23). Hence, we performed this updated meta-analysis to evaluate prognostic significance of EGFR/p-EGFR expression in patients with NPC.



Materials and Methods


Search Strategy

This meta-analysis was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement and was registered at International Prospective Register of Systematic Reviews (number CRD42021258457). PubMed, Embase, Web of Science, CNKI, and Wan Fang Data were searched to identify relevant studies which were published before November 2020. The following words in English were used for retrieval of relevant studies: ((((((((EGFR) OR EGFR transcription factor) OR (epidermal growth factor receptor)) OR EGFR protein) OR pEGFR) OR phospho-EGFR) OR (phosphorylated signal epidermal growth factor receptor)) OR phosphorylated EGFR transcription factor) OR protein EGFR OR (erbB1)) OR (HER1) AND (((NPC) OR (nasopharyngeal carcinoma)) OR (nasopharyngeal neoplasm)) OR (nasopharyngeal cancer). In addition, the following words in Chinese were searched for relevant studies: nasopharyngeal cancer, EGFR, and phospho-EGFR.



Inclusion Criteria

The following inclusion criteria were used in this study. (1) The tissue samples were from clinically diagnosed nasopharyngeal cancer patients. (2) Immunohistochemical (IHC) assay was performed to examine EGFR/p-EGFR expression. (3) HR and 95% CI was used to evaluate the association between EGFR/p-EGFR overexpression and survival time, or Kaplan-Meier (K-M) curves were used to estimate survival time. (4) When the results were reported in multiple publications, the most complete and recently reported data was extracted.



Exclusion Criteria

The exclusion criteria were as follows: (1) recurrent or metastatic NPC tissue samples, (2) unable to obtain HR and 95% CI date or K-M curves or insufficient data, (3) the results collected from NPC cell lines or animal experiments, and (4) literatures published as letters, reviews, conference abstracts, case reports, or expert consensus.



Data Collection

All articles were independently screened by the two investigators, and those studies not meeting the inclusion criteria were excluded. Any discrepancy was discussed and resolved by seeking opinions from a third party. The content of data extraction includes the following: (1) general information: first author, publication year, country, or region; (2) basic characteristics of studies: types of researches, number of patients, study size, patients’ mean age, follow-up time, detection method, ICH cutoff value, histological differentiation, TNM stage (I–II vs. III–IV), etc.; (3) primary data: HR and 95% CI of survival outcomes, including overall survival (OS) and/or disease-free survival (DFS)/progression-free survival (PFS)/distant metastasis-free survival (DMFS). The HRs and its 95% CI were extracted from the text indirectly or calculated from the K-M survival curve using Engauge Digitizer (version 12.2.1).



Quality Assessment

Quality assessment was performed by two investigators separately according to the method of Hayden et al. (24) and the Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK) (25), as previously reported by Almangush et al. (26). A score ≥10 was considered to indicate high quality articles.




Statistical Analysis

HRs with 95% CI were used to evaluate the correlation of EGFR/p-EGFR high expression with the survival time of NPC patients. Meta-analysis was performed using Stata software (version 13.0). Heterogeneity among studies was assessed with the Cochran Q test and I2 test. The fixed effects model was used if there was no heterogeneity among studies (P ≥0.1, I2 < 50% in heterogeneity test). Otherwise, it was considered to have significant heterogeneity (P<0.1, I2 ≥ 50% in heterogeneity test), the random effect model was used, and the source of heterogeneity was explored using subgroup analysis or sensitivity analysis. The potential publication bias was evaluated using both Egger’s and Begg’s tests, and P > 0.05 was considered to have no publication bias.



Results


Literature Search Results, Characteristics and Quality Assessment of Included Studies

A total of 1286 studies were identified, among which 680 articles were published in English and 606 in Chinese. After initial screening, 1211 studies were excluded, and 75 trials were retrieved for detailed assessment. After full-text screening, 20 studies with 1545 patients were eligible and included for our systematic review (12, 14–19, 22, 23, 27–35), of which three studies were published in Chinese and the others in English. These eligible studies were published from 2002 to 2019, and 19 of which were on EGFR and 3 on p-EGFR. The literature search flow is shown in Figure 1. The basic characteristics and quality assessment of the included studies are shown in Tables 1 and 2.




Figure 1 | Flow chart of studies selection procedure.




Table 1 | Characteristics of included studies.




Table 2 | Included studies were evaluated according to the REMARK guidelines.





Meta-Analysis Between EGFR/p-EGFR Expression and Prognosis


EGFR/p-EGFR Expression and OS

We observed a high degree of heterogeneity among the 17 studies reporting EGFR and OS (I2 = 92%, P = 0. 006). Despite this, the pooled HR indicated a significantly shorter OS in patients with higher expression of EGFR (HR = 1.70, 95% CI: 1.24–2.35, P = 0.001) (Figure 2A). For all three studies about p-EGFR and OS, the pooled HR was 1.00 (95% CI: 0.88–1.14, P = 0.982), indicating that p-EGFR high-expression had no significant correlation with OS in patients with NPC (Figure 2B). In addition, there was no obvious heterogeneity between these studies (I2 = 38.4%, P = 0.197).




Figure 2 | The forest map for relationship between EGFR/p-EGFR and OS in NPC. (A) EGFR and OS. (B) p-EGFR and OS.





EGFR/p-EGFR Expression and DFS/PFS/DMFS

Eight studies exploring the association between EGFR and DFS showed that EGFR high-expression was predictor of poorer DFS (HR = 2.58, 95% CI: 1.87–3.56, P = 0.000; I2 = 0%, P = 0.606) (Figure 3A), which was similar to the results of EGFR and OS. In two studies reporting EGFR and PFS, the pooled HR was 1.85 (95% CI: 0.90–3.82, P = 0.09), suggesting that patients with EGFR high-expression had a poor prognosis and there was an acceptable heterogeneity among studies (I2 = 45.4%, P = 0.176). In the five studies about DMFS, no significant association was found between DMFS and high-expression of EGFR with a pooled HR of 1.39 (95% CI:0.73–2.67, P = 0.319) (Figure 3B), but heterogeneity was significant among the studies (I2 = 82.8%, P = 0.000) (Figure 3C). On the other hand, in two studies reporting p-EGFR and DMFS, the pooled HR was 1.21 (95% CI: 0.96–1.52, P = 0.112) without heterogeneity (I2 = 0%, P = 0.497) (Figure 3D), revealing that high-expression of p-EGFR was not related to DMFS of patients with NPC.




Figure 3 | The forest map for relationship between EGFR/p-EGFR and DFS/PFS/DMFS in NPC. (A) EGFR and DFS. (B) EGFR and PFS. (C) EGFR and DFMS. (D) p-EGFR and DMFS.






Subgroup and Sensitivity Analysis

As shown in Table 3, subgroup analyses showed that patients with EGFR high-expression in studies of higher TNM stage (III–IV) ratio divided using a median percentage of TNM stage I–II samples in entire samples had significantly poor OS (HR = 2.27, 95% CI: 1.09–4.73, P = 0.03). However, the heterogeneity still existed in those studies (I2 = 95.1%, P = 0.000). In addition, the prognostic value of EGFR was not significantly associated with the country, sample size, IHC cutoff value, and histological differentiation. Moreover, sensitivity analyses revealed that EGFR expression did not significantly affect OS by an individual study solely, indicating there was inherent heterogeneity in OS cohorts (Figure 4A). A subgroup analysis was performed for studies among EGFR and DMFS, finding that the heterogeneity obviously decreased in differentiated carcinoma subgroup (I2 = 33.2%) (Figure 4B).


Table 3 | Subgroup analysis of relationship between EGFR and OS.






Figure 4 | Sensitivity analysis of hazard ratios of EGFR for OS and DMFS. (A) EGFR and OS. (B) EGFR and DMFS.





Publication Bias

Publication bias was evaluated using Begg’s test and Egger’s test. No significant publication bias was found among studies about EGFR and OS, DFS, and DMFS (all P-values were >0.05) (Figure 5).




Figure 5 | Publication bias funnel plot of EGFR and OS, DFS, DMFS: Begg’s test and Egger’s test. (A) EGFR and OS. (B) EGFR and DFS. (C) EGFR and DMFS.






Discussion

EGFR high-expression and activation of downstream signaling pathways can promote cellular differentiation and contribute to aggressive tumor behaviors, such as increasing metastatic and migratory potential, chemotherapy and radiotherapy resistance, and stemness (38, 39). p-EGFR is an active form of EGFR and is crucial for EGFR signaling (40). It has been reported that p-EGFR was associated with poor prognosis of non-small cell lung cancer patients (21). Besides, patients with high expression of p-EGFR had shorter DMFS compared with those with low p-EGFR expression. However, the prognostic value of EGFR/p-EGFR expression in NPC remains controversial. Thus, the evaluation of relationship between EGFR/p-EGFR expression and prognosis may provide a more suitable strategy for individualized treatment of NPC.

Our meta-analysis showed EGFR could predict the outcome of patients with NPC. The pooled HRs for both OS and DFS indicate an important prognostic role for EGFR in NPC. Furthermore, the results of this meta-analysis are in accordance with the findings of previous meta-analysis (41, 42). However, the association between p-EGFR expression and the prognosis of NPC has not yet been assessed in the previous meta-analysis. In our meta-analysis, high-expression of p-EGFR was not significantly associated with OS (HR = 1.00, 95% CI: 0.88–1.14) and DMFS (HR = 1.21, 95% CI: 0.96–1.52). Additionally, heterogeneity testing displayed significant heterogeneity when analyzing OS and DMFS. Subgroup analyses revealed that patients with EGFR high expression in studies of higher TNM stage (III–IV) ratio had significantly poor OS, but heterogeneity existed in studies (I2 = 95.1%, P = 0.000). EGFR high-expression was not significantly associated with the country, sample size, IHC cutoff value, and histological differentiation. Sensitivity analyses also revealed that EGFR expression did not significantly affect OS by an individual study solely, indicating there was inherent heterogeneity in OS cohorts. In subgroup analysis with EGFR and DMFS, heterogeneity was reduced to I2 = 33.2% when we combined studies of differentiated carcinoma, indicating that the difference in tumor histology may be another source of heterogeneity and undifferentiated carcinoma was more likely to metastasize. In this study, no publication bias was observed according to both Begg’s test and Egger’s test in studies reporting OS, DFS, and DMFS, which proved the stability of our study.

Some of the included studies had deficiencies in some parameters according to the REMARKS guidelines, such as a potential ambiguity in the distinction between OS and disease specific survival in some of the included studies. There is no doubt that our study has serval limitations. Firstly, the studies included mainly focused on the patients in China, with insufficient data to examine the differences in trends by ethnic groups. Secondly, differences in quality of all included studies may affect the reliability of the results. Thirdly, the reliability and stability of the IHC results is related to the detection levels of research institutions and researchers themselves. Finally, we calculated the HR estimates from the K-M survival curves when some of the HRs with 95% CI were not directly extracted from the studies, which may be different from actual value.

In conclusion, EGFR high-expression is associated with shorter OS and DFS, suggesting that it may serve as a potential prognostic factor for patients with NPC. However, p-EGFR expression may not be used as a predictor of survival prognosis in patients with NPC, which needs to be confirmed in additional prospective, multicenter studies in the future.
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Objective

Nasopharyngeal carcinoma (NPC) is a common malignant tumour in Southeast Asia, especially in southern China. ABO blood groups have been proven to play an important role in many cancers. However, it is still controversial whether the ABO blood group has a definite relationship to susceptibility to NPC and the prognosis of NPC patients. This meta-analysis was performed to elucidate the correlation between ABO blood group and NPC to provide more data for clinical practice.



Methods

A systematic search was performed of the Chinese National Knowledge Infrastructure (CNKI), Wanfang, Web of Science, EMBASE, and PubMed databases up to December 31, 2020. Stata 11.0 statistical software was used for this meta-analysis.



Results

According to the inclusion and exclusion criteria, a total of 6 studies including 6938 patients with NPC were selected. Blood group O was relevant to Chinese NPC patients, and patients with blood group O had a significantly lower incidence of NPC, while blood group A had no correlation with susceptibility to NPC. There was no difference in the 3-year overall survival (OS), locoregional relapse-free survival (LRRFS) or distant metastasis-free survival (DMFS) rates between patients with blood group O and those with non-O blood groups; worse 5-year OS, LRRFS and DMFS rates were found in patients with blood group O, whereas blood group A was not related to prognosis.



Conclusion

Blood group O in Chinese patients with NPC seems to be a protective factor for morbidity. However, once patients with blood group O are diagnosed with NPC, this blood group often indicates unfavourable OS, LRRFS and DMFS rates. It is recommended that more attention should be paid to the influence of blood group factor on patients in the treatment of NPC. 
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Introduction

Nasopharyngeal carcinoma (NPC) is a common malignant head and neck neoplasm in Southeast Asia, especially in southern China (1). Some studies have demonstrated that several factors increase the risk for NPC, such as Epstein–Barr virus infection, smoking, alcohol consumption, and family history of cancer (2–6). Moreover, ethnicity, environmental factors, and host genetic susceptibility are all recognized to be risk factors for the pathogenesis of NPC, contributing to the variation in individual susceptibility to cancer.

BO blood group antigens, the most immunogenic of all blood group antigens, are of clinical importance in transfusion medicine. Aside from erythrocytes, a wide variety of human tissues and most epithelial and endothelial cells express ABO blood group antigens (7). Alterations in ABO antigen expression can change the interactions between individual cells or between cells and the extracellular matrix. This change is believed to play an important role in tumorigenesis and cancer progression (8). Many studies have reported that patients with different blood groups possess different biological characteristics; for example, pancreatic cancer patients with blood group O have higher risk and more advanced disease than those with a non-O blood group (9), blood group O is associated with decreased frequency in pancreatic ductal adenocarcinoma (10), poor recurrence-free survival and overall survival (OS) rates are observed in cervical cancer patients with a non-O blood group (11), higher recurrence and progression is observed in bladder cancer patients with blood group O (12), and a decreased OS rate is found in renal carcinoma patients with a non-O blood group (13). However, whether such an association exists between ABO blood group and the incidence of NPC remains controversial (14–17). Some studies have shown that patients with blood group A have an increased risk for NPC  (15, 16) and that blood group O reduces susceptibility (15), while others have shown no correlation between ABO blood group and NPC (14, 17).

With the combination of precision radiotherapy and potent chemotherapy strategies, the OS rates of NPC have been considerably improved (18, 19). However, local recurrence and distant metastasis still occur after treatment in approximately 5%-15% and 15%-30% of patients, respectively (20). Although a relationship between the ABO blood group and the prognosis of NPC has been reported (21–25), the conclusions are still inconsistent. Additionally, no evidence-based results have been reported to date. Given the above, we performed this meta-analysis to elucidate the correlation between ABO blood group and NPC, including incidence and prognosis, to provide more data for clinical practice.



Methods


Literature Search Strategy

We performed a literature search of the Chinese National Knowledge Infrastructure (CNKI), Wanfang, Web of Science, EMBASE, and PubMed databases for all original articles relevant to the relationship between ABO blood groups and NPC up to December 31, 2020. Keywords utilized in the search included “nasopharyngeal carcinoma”, “nasopharyngeal cancer”, or “nasopharyngeal neoplasm”, and “ABO blood group”, with language restricted to Chinese and English. After identification, articles were manually filtered by review of the abstracts and/or full texts.



Inclusion and Exclusion Criteria

The eligible criteria for study inclusion were the following: (1) domestic literature published in the national core journals collected at Peking University Library, and foreign literature published in full-text English; (2) studies conducted in humans with NPC with the diagnosis confirmed by pathology; (3) information of serologically determined blood groups collected before treatment; (4) advanced radiation techniques other than two-dimensional radiotherapy were utilized; (5) detailed original material, including reliable data, clear results, appropriate application of statistical methods, and available odds ratio (OR), hazard ratio (HR), and 95% confidence intervals (CI) or the data required to calculate these.



Quality Assessment

An evaluation guide for case-control studies was used for each independent study to assess whether there was bias the extent of its influence (26), including the following aspects: (1) whether the baseline characteristics such as gender, age, and TNM stage were clear; (2) whether TNM staging standard was provided; (3) whether there was a significant difference in gender, TNM stage, pathological type etc. between NPC patients and cancer-free controls; (4) whether it was a multi-centre study; and (5) whether the existence of bias in research was discussed. Each of the above 5 items represented 1 point; a study with a score of 3 or more was considered to be of high quality. According to the unified quality standards, two investigators independently extracted relevant data from the included studies and summarized it. Any disagreements that appeared were resolved by consulting an adjudicating senior author.



Statistical Analysis

This systematic review was conducted basically following the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) guidelines (27) and the Cochrane Handbook (28). Stata 11.0 statistical software provided by the Cochrane collaboration was used for this meta-analysis. To determine the effect size, the OR and its 95% CI were calculated. We estimated the prognostic significance of ABO blood groups in NPC by directly using the HR and its 95% CI reported in the original articles when available; otherwise, the Kaplan–Meier curve was used to obtain the HR and its 95% CI using the method provided by Tierney et al. (29) A Q test was applied to identify heterogeneity. When there was heterogeneity (p value ≦̸ 0.05), a random effects model was used; otherwise, a fixed effects model was employed. The Z test was used to determine whether there was a significant difference in the pooled OR and HR. Publication bias was assessed by determining whether the funnel chart was symmetric. Egger’s linear regression was used for the publication bias test.




Results


Retrieval Results and Quality Evaluation

Seventeen studies were found initially; out of these, 3 domestic studies were excluded because they were not published in core journals of the Peking University Library. Out of the remaining articles, 4 were repeat publications, 2 were not case-control studies, and 2 lacked complete data. Ultimately, a total of 6 studies (14–17, 22, 23) including 6938 patients with NPC were selected for this meta-analysis (Figure 1). The baseline characteristics of the analyzed cohort were shown in Tables 1, 2. The scores of the studies were greater than or equal to 3, which meant they were of high quality. The proportion of blood group O in NPC patients was 24.83%-41.95%, and the proportion of blood group A was 25.09%-52.35%. In each study, the proportion of patients with blood group A plus blood group O exceeded 65%.




Figure 1 | Flow chart for article search and selection process.




Table 1 | Basic characteristic of the included studies.




Table 2 | Disease-related outcomes of the eligible studies.





Blood Group O Status

Blood group O was analyzed in NPC patients and cancer-free controls in a total of 4 studies (14–17). A random effects model was used owing to statistical heterogeneity between the two groups (p = 0.040). The results showed that the distribution of blood group O was irrelevant between NPC patients and cancer-free controls (OR: 1.190; 95% CI: 0.629-1.079; p = 0.159, Figure 2A). Of these 4 studies, 3 were Chinese, and 1 was Turkish. A sensitivity analysis was conducted by removing the Turkish study data (15), and the pooled OR and its 95% CI were 1.130 and 1.018-1.254, respectively, (p = 0.022<0.05, Figure 2B), which indicated that if the analysis was limited to Chinese patients, blood group O was associated with a lower incidence of NPC.




Figure 2 | Forest plots of blood group O status. (A) Distribution of blood group O in the whole involved patients with NPC; (B) Distribution of blood group O in Chinese patients with NPC.





Blood Group A Status

Blood group A in NPC patients was analyzed using the same 4 studies. There was no significant difference between NPC patients and cancer-free controls (OR: 0.824; 95% CI: 0.982-1.441; p = 0.076), as shown in Figure 3A. A sensitivity analysis was also performed by deleting the study of Turkoz FP et al. (15). The pooled OR was 0.933, and the 95% CI was 0.832-1.047 (p = 0.241>0.05, Figure 3B), which indicated that blood group A had no correlation with NPC.




Figure 3 | Forest plots of blood group A status. (A) Distribution of blood group A in the whole involved patients with NPC; (B) Distribution of blood group A in Chinese patients with NPC.





The 3- and 5-Year OS Rates

Two studies (22, 23) compared the 3- and 5-year OS rates of patients with blood group O and those with a non-O blood group (A, B, and AB). It was revealed that there was no significant difference in the 3-year OS rate between blood groups (HR: 0.966; 95% CI: 0.785-1.188; p = 0.742), as shown in Figure 4A, whereas the difference in the 5-year OS rate neared significance (HR: 0.860; 95% CI: 0.739-1.001; p = 0.051) (Figure 4B), indicating that NPC patients with blood group O had a worse trend in 5-year OS rates than those with a non-O blood group.




Figure 4 | Forest plots of OS in patients with NPC. (A) 3-year OS between blood group O and non-O; (B) 5-year OS between blood group O and non-O.





The 3- and 5-Year LRRFS Rates

These two studies also compared the 3- and 5-year LRRFS rates of patients with blood group O and those with a non-O blood group. It was revealed that there was no significant difference in the 3-year LRRFS rate (HR: 0.945; 95% CI: 0.802-1.112; p = 0.496), as shown in Figure 5A, but there was a significant difference in the 5-year LRRFS rate (HR: 0.838; 95% CI: 0.720-0.975; p = 0.022<0.05) (Figure 5B), which indicated that NPC patients with blood group O had a worse 5-year LRRFS rate than those with a non-O blood group.




Figure 5 | Forest plots of LRRFS in patients with NPC. (A) 3-year LRRFS between blood group O and non-O; (B) 5-year LRRFS between blood group O and non-O.





The 3- and 5-year DMFS Rates

The same two studies also provided 3- and 5-year DMFS rate data for patients with blood group O and those with a non-O blood group. Although the 3-year DMFS rate was not significantly different (HR: 1.002; 95% CI: 0.770-1.305; p = 0.986), as shown in Figure 6A, the 5-year DMFS rate was significantly different (HR: 0.849; 95% CI: 0.730-0.988; p = 0.034<0.05) (Figure 6B), which indicated that compared with the non-O group, NPC patients with blood group O also had a worse 5-year DMFS rate.




Figure 6 | Forest plots of DMFS in patients with NPC. (A) 3-year DMFS between blood group O and non-O; (B) 5-year DMFS between blood group O and non-O.





Relationship Between Blood Group A and Prognosis of NPC

The 3- and 5-year OS, LRRFS, and DMFS rates of patients with blood group A and those with a non-A blood group (O, B, and AB) could also be analyzed from these two studies (22, 23). The results showed that blood group A had no correlation with the prognosis of NPC (all P values>0.05), regardless of whether the 3- or 5-year OS, LRRFS, or DMFS rate was analyzed (Table 3).


Table 3 | Relationship between blood group A and prognosis of NPC.





Publication Bias Analysis

Egger’s test was performed to assess publication bias. Table 4 showed that there was no indication of publication bias for blood group O or blood group A (both P values >0.05). Because there were only two studies on prognosis, publication bias tests and sensitivity analyses could not be performed.


Table 4 | Publication bias of the included studies.






Discussion

The antigens of the ABO blood group system were discovered as the first human genetic markers in 1900 (30). The ABO gene encodes a glycosyl transferase that synthesizes A and B agglutinogens to form ABO blood groups (31). Many studies have reported that the ABO blood group is correlated with susceptibility to many malignancies. For instance, a definite correlation has been established between the ABO blood group and pancreatic cancer. Patients with a non-O blood group have an increased risk for pancreatic cancer (32).

The correlation between the ABO blood group and NPC is ambiguous. The initial research by Seow et al. (14) demonstrated that there was no association between ABO blood groups and NPC, but in 2011, Turkoz FP et al. (15) indicated that ABO blood groups were related to NPC susceptibility. Blood group A was reported to increase risk, but blood group O showed a protective effect. To date, two more relevant studies have been published. Sheng LM et al. (16) showed that compared with subjects with blood group O, a relatively higher risk was observed among patients with blood group A, while Lin K et al. (17) found no significant difference in ABO blood group between the NPC group and the control group. To date, there is no published meta-analysis providing evidence-based data to show the relevant results of ABO blood group and NPC susceptibility studies. According to the inclusion and exclusion criteria, 6 studies of high quality were included in this meta-analysis; 4 of the studies concerned the relationship between ABO blood group with NPC incidence, and 2 studies focused on the relationship between ABO blood group and NPC patient prognosis. Our results showed that there was no significant overall difference in the incidence of blood group O between NPC patients and cancer-free controls, but a sensitivity analysis demonstrated that if the analysis was restricted to Chinese individuals, group O was associated with significantly lower susceptibility to NPC, whereas no differences in blood group A were observed between the two groups, indicating that blood group O seems to be a protective factor in the Chinese population.

Due to anatomic constraints and a high degree of radiosensitivity, radiotherapy is the main treatment for non-metastatic NPC. The prognosis of early-stage NPC is satisfactory; however, for patients with locally advanced NPC, the prognosis is still poor despite the combination of concurrent and neoadjuvant chemotherapy (33). Immune therapies targeting the PD-1/PD-L1 axis have shown significant anti-tumour effects against some types of tumours, including melanoma and non-small cell lung cancer (34); however Huang ZL et al. (35) indicated that higher/positive expression of PD-L1/PD-1 may not serve as a suitable prognostic biomarker for NPC. Additional novel prognostic factors are needed to identify patients at high risk to help devise individual treatment strategies. Given the controversial results regarding the ABO blood group as a prognostic factor for NPC, we conducted this systematic review to assess the role of different blood groups in NPC and patient survival. The data from two studies (22, 23) were pooled for this meta-analysis. Although there was no difference in the 3-year OS, LRRFS or DMFS rate, a trend towards worse 5-year OS rates and significantly worse 5-year LRRFS and DMFS rates were found in NPC patients with blood group O (HR: 0.860, 95% CI: 0.739-1.001, p = 0.051; HR: 0.838, 95% CI: 0.720-0.975, p = 0.022; HR: 0.849, 95% CI: 0.730-0.988, p = 0.034, respectively), while there was no significant difference between patients with blood group A and a non-A blood group, regardless of whether the 3- and 5-year OS, LRRFS or DMFS rate was analyzed. However, Ouyang PY et al. (25) reported lower OS and DMFS rates associated with blood type A when the analysis was restricted to male patients; unfortunately, we could not conduct further subgroup analysis because of insufficient data available from the included studies.

The mechanism of how ABO blood groups influence NPC progression is still unclear. Neoplastic transformation is characterized by a dramatic aberration in cellular cohesive interaction. Adhesion molecules have been shown to facilitate tumour cell mobility, adhesion, and the host inflammatory response to cancer (36). Paré G et al. (37) found that the concentration of soluble intercellular adhesion molecule-1 is higher in women with blood group O and is related to worse survival in NPC (38). Edgren G et al. (39) showed that individuals with blood group O may have an increased inflammatory response. Maeda K et al. (40) indicated that inflammation plays an important role in the radiosensitivity of tumours. Persistent and severe inflammation is usually associated with radioresistance, which may increase the risk of tumour recurrence. These findings may explain why NPC patients with blood group O have worse OS, LRRFS and DMFS rates.

This meta-analysis has potential shortcomings. (1) due to the extremely unbalanced global distribution, the overwhelming majority of the subjects in the included studies were Chinese; thus, bias may be present; (2) the detection method for the ABO blood group was not provided in all six studies, therefore possible differences in methods may have affected the results; (3) because of limited data extracted from the included studies, further stratified analysis was impossible to perform; and (4) the included studies were all openly published, and were in Chinese and English only. Unpublished literature and language bias may also have affected the results.

In conclusion, blood group O in the Chinese population seems to be a protective factor against NPC. However, when patients with blood group O are diagnosed with NPC, this blood group often indicates unfavourable OS, LRRFS and DMFS rates. It is recommended that more attention should be paid to the influence of blood group factor on patients in the treatment of NPC.
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Objective

To evaluate the incidence of hypothyroidism in patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy (IMRT), analyze its correlation with multiple influencing factors such as thyroid exposure dose, thyroid volume, and gender, and construct a multivariate-based normal tissue complication probability (NTCP) model for the occurrence of hypothyroidism after IMRT.



Materials and Methods

The thyroid hormone levels of patients at different points in time before and after radiotherapy were tested, and statistics on the incidence of hypothyroidism after treatment were obtained. The dose-volume data of patients’ thyroids were converted into EQD2 equivalent dose values. The correlation between hypothyroidism after radiotherapy and thyroid exposure dose, thyroid volume, gender, and other factors was analyzed, and an NTCP model was constructed.



Results

A total of 69 patients with nasopharyngeal carcinoma were enrolled in this study. Twelve months after radiotherapy, a total of 24 patients (34.8%) developed hypothyroidism. Univariate analysis and multivariate analysis revealed that the average thyroid dose and thyroid volume are the most important factors affecting hypothyroidism after radiotherapy. The NTCP model constructed based on the average dose and thyroid volume has a good degree of fit.



Conclusion

The volume and average dose of the thyroid gland are the key factors affecting the occurrence of hypothyroidism in patients with nasopharyngeal carcinoma after radiotherapy. The NTCP model constructed based on multivariate construction suggests that reducing the average dose of the thyroid to the greatest extent is an effective way to protect thyroid functions.





Keywords: nasopharyngeal carcinoma, intensity-modulated radiotherapy, hypothyroidism, EQD2, NTCP mode



Introduction

Radiotherapy-induced hypothyroidism (RHT) is one of the common late-stage toxic reactions in patients who have received cervical radiotherapy, and its incidence is as high as 20%–40% (1–3), which is higher than the incidence in the normal population. The occurrence of hypothyroidism after radiotherapy in most studies was concentrated within 5 years after radiotherapy, and it generally reached a peak approximately 1 to 3 years after radiotherapy (4–6).

Intensity-modulated radiation therapy (IMRT) is the main treatment for nasopharyngeal carcinoma. Notably, 70% to 80% of patients with nasopharyngeal carcinoma had cervical lymph node metastasis at the first diagnosis (7, 8), and prophylactic irradiation of the neck lymph node drainage area is inevitable. The thyroid is located in the prophylactic irradiation area of the neck and is exposed to higher doses of radiation. However, there are currently few reports on the incidence of hypothyroidism in nasopharyngeal cancer patients after IMRT. Huang et al. retrospectively analyzed the data of 98 nasopharyngeal cancer patients who received IMRT. The lower neck prophylactic irradiation area was given a prescribed dose of 54 Gy. The median follow-up period was 17 months, and the results showed that the average thyroid dose was 49.72 Gy, and the incidence of hypothyroidism was 33.7% (9). Hypothyroidism due to radiotherapy generally has an insidious onset and lacks typical symptoms and signs; therefore, it is often ignored by clinicians and patients.

Gender (10–12), age (5, 13, 14), and thyroid volume (10, 15) are factors that affect hypothyroidism after radiotherapy, but thyroid exposure dose is the most important factor (11, 16). The incidence of hypothyroidism increases with the exposure dose, and its specific threshold is still inconclusive. Kim et al. reported the follow-up results of 114 patients with head and neck tumors after radical radiotherapy. V45 = 50% is the threshold for hypothyroidism (17), and subsequent meta-analysis results additionally support this conclusion (18). However, some studies believe that V30 or V50 is the dose threshold for hypothyroidism (19–21).

The equivalent dose in 2 Gy fractions (EQD2) is the dose required to achieve the same biological effect as conventional fractionated radiotherapy with fractions of 2 Gy. IMRT can deliver different fractionated doses of radiation to target areas and organs at risk in the irradiation field. In the treatment of nasopharyngeal carcinoma using the simultaneous measurement technique, the fractionated dose of the primary tumor target area often exceeds the conventional fractions of 2 Gy/time, and the fractionated dose of organs at risk is often lower than that of conventional fractionation. However, the dose tolerance value of each organ at risk is calculated based on the biological effects of fractionated irradiation with 2 Gy fractions of conventional radiotherapy. It is impossible to accurately assess the biological effects and probability of possible damage depending on the physical dose for organs-at-risk obtained using an IMRT treatment planning system (TPS) alone. The thyroid is a late-reacting tissue and is greatly affected by fractionated doses. Therefore, in the case of IMRT, the threshold value of the dose-volume factor based on the physical dose cannot be a reference for the limited conditions of the plan design. Additionally, it is impossible to select a reasonable IMRT dose limit level directly based on the relationship between the thyroid injury probability and the dose-volume under conventional fractionated irradiation.

This study aims to assess the incidence of hypothyroidism after radiotherapy in patients with nasopharyngeal carcinoma, analyze the correlation between hypothyroidism after radiotherapy and possible influencing factors, and construct a normal tissue complication probability (NTCP) model for the occurrence of hypothyroidism after IMRT, based on the equivalent dose in 2 Gy fractions (EQD2). In addition, this model is used to guide the search for more reasonable conditions for thyroid dose optimization in IMRT.



Materials and Methods


Case Screening

All patients were pathologically diagnosed with nasopharyngeal carcinoma and received nasopharyngeal + cervical IMRT at Sun Yat-sen University Cancer Center. No distant metastasis was observed in the first diagnosis. Further, there was no history of hyperthyroidism, thyroiditis, and other thyroid-related diseases before treatment and no history of thyroid surgery, as well as no medical or surgical history corresponding to pituitary-related diseases. Moreover, the thyroid functions [including thyroid stimulating hormone (TSH)] were normal before treatment, and regular follow-up and thyroid function tests were performed as required after the treatment.

Before treatment, and three months and twelve months after treatment, venous blood was drawn from the patients via the electrochemiluminescence method for thyroid function tests. The test items include free triiodothyronine 3 (fT3), free triiodothyronine 4 (fT4), TSH, and thyroid peroxidase antibody. The clinical diagnosis of hypothyroidism depends on the related symptoms and signs of hypothyroidism, the extent to which the serum TSH is higher than the normal upper limit, and the extent to which fT3 and fT4 are lower than the normal lower limit. If the patient has no clinical manifestations, but the TSH in the blood circulation is higher than the normal upper limit with or without fT3 and fT4 level abnormalities, the patient can be diagnosed with subclinical hypothyroidism.



Intensity-Modulated Radiotherapy and Dose Conversion

The target area delineation method and prescription dose administration of IMRT are described in our previously published literature (22). The treatment planning system (TPS) used Eclipse 11.0. The thyroid delineation entailed a layer-by-layer delineation of the thyroid structure based on enhanced CT scan images. The delineation range included the entire left and right lobes and isthmus of the thyroid, but no restriction was set for the thyroid dose.

The patients’ IMRT regimen was exported from the TPS to an EQD2 calculation and evaluation software in DICOM RT format. The calculation software automatically calculated the pixel-by-pixel conversion of EQD2 according to the set thyroid α/β value and the mature linear quadratic model calculation formula of radiobiology, and reconstructed the relevant EQD2 dose-volume parameters.

The EQD2 calculation formula is as follows:  where D is the total dose and d is the fractionated dose. We consulted reports in authoritative literature (23) and set the α/β value of the thyroid gland to be 3 Gy. The overlap between the thyroid and PTV2 was calculated according to the thyroid α/β value.

Data collection included the maximum thyroid dose Dmax, minimum dose Dmin, average dose Dmean, fractionated dose, V10 (percentage of thyroid volume where the exposure dose exceeded 10 Gy), V20, V30, V40, V45, V50, V60, V70, and thyroid volume after conversion to EQD2.



Data Analysis

SPSS 16.0 statistical analysis software was used for the analysis. Patients were divided into a hypothyroidism group and normal thyroid function group according to whether hypothyroidism occurred 12 months after treatment. If Dmean, age, and thyroid volume between the two groups conformed to the condition of normal homogeneity of variance, an independent sample T test was performed; otherwise, the rank sum test of independent samples was used, and the chi-square test was used for the comparison of categorical data such as gender, staging, and other factors. The thyroid hormone levels at different points in time (if they conformed to the normal homogeneity of variance) were analyzed by repeated measures analysis of variance and pairwise tests, and p < 0.05 was considered to indicate statistical significance.

According to whether hypothyroidism occurred 12 months after treatment, factors that may affect thyroid function, including gender, age, T stage, N stage, clinical stage, thyroid volume, Dmax, Dmin, Dmean, fractionated dose and V10 to V70, were analyzed by logistic regression analysis, one by one, to select independent influencing factors with statistical significance. Spearman correlation analysis was used to analyze the correlation between various factors, and representative factors were selected to perform logistic regression multi-factor analysis, by the forward method, to select the factors affecting the occurrence of thyroid function after radiotherapy and derive the logistic regression equation through fitting.



NTCP Model Construction

The NTCP model equation determined the mixture model for calculation (24, 25); the formula is as follows.

	

where S is the logistic regression equation derived through the fitting with factors selected by multi-factor analysis.




Results


General Data of Patients

From August 2012 to January 2014, a total of 69 patients met the enrollment requirements and entered the study. Among them, 53 were males and 16 were females, with a median age of 43 years (11–64 years). The general data of all patients are shown in (Table 1).


Table 1 | Patient and treatment characteristics.





Changes in Thyroid Hormone Levels After Radiotherapy Compared to Those Before Radiotherapy

There was no significant difference in serum fT3 levels between different points in time. Twelve months after radiotherapy, the level of fT4 was significantly lower than that before radiotherapy (p < 0.001). The TSH level showed a continuous upward trend from before to after radiotherapy (pairwise comparison showed each p < 0.001). Twelve months after radiotherapy, the level of A-Thyroid peroxidase (A-TPO) was significantly higher than that before radiotherapy (p = 0.011) (Figure 1).




Figure 1 | The trend of the change of thyroid hormones level with time. pre-RT, previous radiotherapy; 3M post-RT, 3 months post radiotherapy; 12M post-RT, 12 months post radiotherapy; FT3, Free triiodothyronine 3; FT4, Free triiodothyronine 4; TSH, Thyroid stimulating hormone; A-TPO, A-Thyroid peroxidase.





Thyroid Dose and Volume

After converting the thyroid physical dose into EQD2, the median value of Dmin of the whole group was 21.34 ± 10.71 Gy (0.80 to 35.69 Gy); the median value of Dmax was 63.89 ± 4.39 Gy (51.42 to 74.89 Gy); the median value of Dmean was 41.79 ± 11.02 Gy (10.31 to 51.46 Gy); and the median value of fractionated dose was 1.37 ± 0.35 Gy (0.34 to 1.83 Gy).

The median thyroid volume was 16.60 ± 6.38 cc (8.19 – 42.00 cc). Through the K–S test (Kolmogorov–Smirnov test), it was known that the thyroid volume distribution approximately conformed to a normal distribution (Kolmogorov–Smirnov Z = 0.968, p = 0.306), as shown in (Figure 2).




Figure 2 | Thyroid volume distribution of 69 patients.





Hypothyroidism After Radiotherapy

The thyroid hormone levels of all patients before radiotherapy were within the normal range. Three months after radiotherapy, 6 patients developed hypothyroidism, the prevalence rate was 8.7%, of which 5 cases had subclinical hypothyroidism, including 3 males and 2 females. Additionally, there was a case of clinical hypothyroidism in a 45-year-old male patient. Twelve months after radiotherapy, there were 24 cases of abnormal thyroid function, including 2 cases of clinical hypothyroidism and 22 cases of subclinical hypothyroidism. The total incidence of hypothyroidism was 34.8%, of which 16 patients were male and 8 patients were female and both patients with clinical hypothyroidism were male. The patients were categorized into the hypothyroidism group (24 cases) and normal thyroid function group (45 cases) according to whether hypothyroidism occurred twelve months after radiotherapy, and the differences between the two groups were statistically analyzed. There was a significant difference in age between the two groups (median age: 39 years in the hypothyroid group vs. 45 years in the normal group, p = 0.005). There was no statistical difference in gender, T, N staging, and clinical staging.

The median value of Dmin in the two groups was 24.86 ± 7.92 Gy in the hypothyroidism group vs. 16.00 ± 10.65 Gy in the normal group (p = 0.001). The median values of Dmax were: 64.29 ± 4.61 Gy in the hypothyroidism group vs. 63.62 ± 4.31 Gy in the normal group (p = 0.681). The median value of Dmean was 46.54 ± 7.37 Gy in the hypothyroidism group vs. 38.44 ± 11.45 Gy in the normal group, (p = 0.001). The median thyroid volumes of the two groups were: 13.46 ± 3.86 cc (8.19 to 20.50 cc) in the hypothyroidism group vs. 17.10 ± 6.80 cc (8.80 to 42.00 cc) in the normal group (p = 0.001); the thyroid volume in the hypothyroidism group was significantly smaller than that of the normal thyroid function group.



Logistic Univariate Analysis and Multivariate Analysis

Logistic univariate regression analysis revealed that age, Dmin, Dmean, V20 to V50, and thyroid volume were all related factors that affected the occurrence of hypothyroidism. Because there might be certain correlations between the above-mentioned related factors, Spearman correlation analysis was used to analyze the related factors that affected the occurrence of hypothyroidism, and Spearman coefficient > 0.8 was used as the criterion to select representative factors. The results showed that Dmean had a strong correlation with Dmin, V20 to V50 (Spearman correlation coefficients were all > 0.8), while age and thyroid volume had a relatively weak correlation with other factors.

The three independent factors of age, Dmean, and thyroid volume were analyzed by logistic multivariate regression analysis. The results showed that Dmean (p = 0.016) and thyroid volume (p = 0.011) were independent prognostic factors (Table 2).


Table 2 | Univariate analysis and multivariate analysis of radiation induced hypothyroidism.



The logistic equation obtained after fitting is

	



Normal Tissue Complication Probability Model

According to the calculation method of the mixture model, the following NTCP calculation formula is obtained:

NTCP = (1 + eS)–1, where S = -1.385 + (0.093 × Dmean) + (-0.188 × thyroid volume), the unit of Dmean is Gy, and the unit of thyroid volume is cc. This equation has passed the goodness of fit test (Hosmer–Lemeshow: p = 0.698) and has a good degree of fit, indicating that the probability of hypothyroidism is positively correlated with the average thyroid dose, and it increases with an increase in the average thyroid dose (OR value = 1.098/Gy, 95% confidence interval of the OR value: 1.018 to 1.184). Contrastingly, the probability of hypothyroidism is negatively correlated with thyroid volume: as the thyroid volume decreases, the probability of hypothyroidism increases (OR value = 0.829/cc, 95% confidence interval of OR value: 0.717 to 0.958).

In this study, the thyroid volume of 69 patients was mostly concentrated from 10 cc to 25 cc; thus, the thyroid volume was divided into four levels: 10 cc, 15 cc, 20 cc, and 25 cc, and the corresponding NTCP curves were drawn, as shown in (Figure 3). There were two variables in the NTCP model, and the distribution of thyroid volume conformed to the normal distribution. Taking the median thyroid volume of 16.60 cc, the TD5/1 and TD10/1 of RHT were calculated as 16.67Gy and 24.77Gy, respectively.




Figure 3 | Corresponding NTCP curves of four different thyroid volume levels. NTCP, normal tissue complication probability.






Discussion

Hypothyroidism is one of the common complications of head and neck tumors and nasopharyngeal cancer among patients after receiving cervical radiotherapy. Previous studies mostly involved patients who received radiotherapy for head and neck tumors. However, patients with head and neck tumors often underwent surgery before radiotherapy. The results of a meta-analysis show that patients who underwent hemithyroidectomy or surgery in the neck that did not involve the thyroid gland had a higher incidence of hypothyroidism (18). Radiotherapy is the main treatment for nasopharyngeal cancer, in contrast with the case of head and neck tumors. Previously, there were few reports of hypothyroidism in patients with nasopharyngeal carcinoma after radiotherapy. Wu et al. reported the occurrence of hypothyroidism in 408 patients with nasopharyngeal carcinoma who received conventional radiotherapy or three-dimensional radiotherapy; the incidence of hypothyroidism after 5 years of treatment was 24.7% (2). After the treatment of nasopharyngeal carcinoma entered the era of IMRT, the incidence of hypothyroidism has increased. Studies have shown that among nasopharyngeal carcinoma patients who received IMRT, 33.7% of patients had hypothyroidism at a median period of 17 months after radiotherapy (9); Zhai et al. reported that after patients with nasopharyngeal carcinoma received IMRT, the incidence of hypothyroidism after 2 and 3 years was 29.6% and 43.9%, respectively (26). In this study, 34.8% of patients who used IMRT had hypothyroidism 12 months after radiotherapy, which was close to the results of previous studies. The main reason for the significant increase in the incidence of hypothyroidism may be as follows: In IMRT, the radiation dose in the prophylactic cervical irradiation area, especially the metastatic cervical lymph nodes, is significantly higher than that of conventional radiotherapy to obtain a better area control rate, and the exposure dose of the thyroid, which is close to the prophylactic cervical irradiation area, is correspondingly increased; secondly, when conventional radiotherapy is used for prophylactic irradiation of the neck, a 3 cm wide lead shield is usually set in the front tangent field of the neck to protect the spinal cord. Therefore, the thyroid can be partially blocked by the lead shield, thereby avoiding exposure to higher doses of radiation.

In this study, it can be observed from the trend of hormone levels that the thyroid fT3 level decreased slightly after radiotherapy; the serum fT4 level decreased significantly, while the serum TSH level and A-TPO level continued to increase after treatment. This trend is consistent with the previous research results of Lin et al. (27). Studies have confirmed that thyroid autoantibodies are one of the important factors in the occurrence of hypothyroidism after radiotherapy (14, 28, 29). The study by Lin et al. found that the serum A-TPO level of nasopharyngeal carcinoma patients who had hypothyroidism after radiotherapy was significantly higher than that of patients with normal thyroid function, and the serum A-TPO level of patients was negatively correlated with fT4 levels (27). A study observed significant increases in thyroid inflammation-related indicators such as thyroid vascular pulsatility index and resistance index after radiotherapy under Doppler ultrasound, and it is believed that thyroid inflammation due to radiation damage is an important link in the occurrence of hypothyroidism after radiotherapy (30). Moreover, inflammation of the thyroid can stimulate the production of A-TPO, which may further aggravate the damage to the thyroid.

Since the nasopharynx is adjacent to the sphenoid bone and the pituitary fossa, the pituitary is often exposed to higher doses due to its proximity to the target area. Central hypothyroidism due to insufficient secretion of the trophic hormone by the pituitary gland is characterized by serum TSH levels that are lower than normal, with or without abnormal serum fT3 and fT4 levels. A recent report retrospectively analyzed 135 cases of hypothyroidism in nasopharyngeal carcinoma patients after IMRT treatment. The median follow-up period was 34.1 months. Notably, 28.9% (39/135) of the patients had primary hypothyroidism and no central hypothyroidism occurred (26), which is similar to the results reported by McDowell et al. (31). Additionally, there are many studies showing that the pituitary dose does not affect the occurrence of central hypothyroidism after radiotherapy, and the thyroid radiation dose is an influencing factor for the occurrence of primary hypothyroidism after radiotherapy (32, 33). In this study, only 2 patients in the entire group showed a continuous small drop in serum TSH levels three months and twelve months after radiotherapy compared with the levels before radiotherapy, but no patients had serum TSH levels lower than normal after radiotherapy, proving that no patients experienced the decompensation of pituitary functions.

In this study, the NTCP model of hypothyroidism constructed based on EQD2 showed that thyroid volume and average dose are two independent factors that affect the occurrence of hypothyroidism after radiotherapy, which is consistent with the results of multiple previous studies (15, 20, 24). However, some researchers tend to believe that a specific dose-volume value, such as VS60, V40, or V50, is a risk factor for hypothyroidism (5, 19, 34). The results of this study show that Dmean is one of the most important factors influencing the occurrence of hypothyroidism after radiotherapy, and its impact is greater than that of any of the indicators among V20 to V50, which additionally means that the occurrence of hypothyroidism is not affected only by the percentage of the volume of the thyroid that receives high doses of radiation. Because even if the percentage of thyroid volume exposed to high doses is very small, the overall thyroid exposure dose Dmean can still be high and increase the risk of hypothyroidism. This is in line with the relevant previous hypothesis about the mechanism of hypothyroidism after radiotherapy: that is, in addition to the damage to thyroid acinar cells, radiation can cause damage to the endothelial cells of thyroid nutrient vessels, leading to atherosclerosis, narrowing of the lumen, and insufficient blood supply to the thyroid gland (29, 30, 35, 36). In addition, thyroid inflammation due to radiotherapy leads to increased levels of thyroid autoantibodies, and autoimmune reactions between thyroid autoantibodies such as A-TPO and the thyroid may additionally play a damaging role in the occurrence of hypothyroidism (27, 37). Although the percentage of thyroid volume exposed to high doses is very small, local ischemia and the autoantibody immune response of thyroid can still affect the secretory function of the entire thyroid. Therefore, when evaluating IMRT plans for patients with nasopharyngeal carcinoma, simply using a certain dose-volume threshold such as V20 to V50 for the thyroid dose assessment may underestimate the risk of hypothyroidism, and it may be more reasonable to use Dmean for the assessment.

Thyroid volume is another key factor that affects the occurrence of hypothyroidism after radiotherapy. Studies have shown that for every 1 cc increase in the thyroid volume before treatment, the incidence of hypothyroidism can be reduced by 7% (6). Additionally, our study observed that there is a negative correlation between the thyroid volume and the occurrence of hypothyroidism, that is, the larger the thyroid volume before treatment, the lower the risk of hypothyroidism after radiotherapy. Thyroid volume is a protective factor for hypothyroidism after radiotherapy. which is consistent with the results of multiple previous studies (1, 6, 24).

The cases number met the enrollment criteria and entered this study were relatively small at the time, it was not able to create an adequate validation data set for external verification of the NTCP model. In addition, the time of follow-up was not long enough to assess the incidence of hypothyroidism at 3 or 5 years after radiotherapy. Muthy et al. (38) reported the hypothyroidism after radiotherapy in 122 patients with advanced head and neck tumors in a median follow-up time of 41 months, the peak of hypothyroidism occurred about 1 year after receiving radiotherapy (median time of subclinical hypothyroidism was 11.5 months, and median time of clinical hypothyroidism was 14.5 months). For the median thyroid volume of 16.60 cc, our study shown that the TD5/1 and TD10/1 of radiation induced hypothyroidism were 16.67Gy and 24.77Gy, respectively. Further study to expand and verify the model is undergoing and will be reported when enough cases are collected.

Overall, this study constructed an EQD2-based NTCP model of hypothyroidism after IMRT for nasopharyngeal carcinoma, which can provide an accurate basis for a more optimized thyroid dose restriction strategy. Accurately delineating the scope of the thyroid gland and regarding it as an organ at risk for dose restriction according to the NTCP model is the basis for reducing the occurrence of hypothyroidism. For a certain thyroid volume, the average thyroid dose should be reduced to the greatest extent. When selecting IMRT techniques, a multi-leave-collimator with a higher resolution should be used to maximize the dose conformity of the target area and increase the dose gradient between the radiotherapy target zone and the thyroid, which is a feasible dose optimization scheme.
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Introduction

An optimal approach to define tumor volume in locoregionally advanced nasopharyngeal carcinoma (NPC) using 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) remains unclear. This retrospective study aimed at comparing the outcomes and toxicities of different FDG-PET/CT-guided techniques for primary tumor volume delineation in locoregionally advanced NPC.



Methods

From August 2015 to February 2018, 292 patients with stage III-IVB NPC received FDG-PET/CT-guided IMRT. Three PET/CT-based techniques were used to determine the gross tumor volume (GTV) as follows: visual criteria (group A; n = 98), a standard uptake value (SUV) threshold of 2.5 (group B; n = 95), and a threshold of 50% maximal intensity (group C, n = 99) combined with a dose-painting technique.



Results

In groups A, B, and C, the 5-year LRFS rates were 89.4%, 90.0%, and 97.8%, respectively (p = 0.043). The 5-year DMFS rates were 75.1%, 76.0%, and 87.7%, respectively (p = 0.043). The 5-year DFS rates were 70.9%, 70.3%, and 82.2%, respectively (p = 0.048). The 5-year OS rates were 73.5%, 73.9%, and 84.9%, respectively (p = 0.038). Group C showed significantly higher 5-year LRFS, LRRFS, DMFS, DFS, and OS than those in groups A and B (p < 0.05). No statistically significant differences were observed between the three study groups in the cumulative incidences of grade 3-4 acute and late toxicities. Multivariate analyses showed that the PET/CT-guided technique for target volume delineation was an independent prognostic factor for 5-year LRFS, DFS, DMFS, and OS (p = 0.039, p = 0.030, p = 0.035 and p = 0.028, respectively), and was marginally significant in predicting LRRFS (p = 0.080).



Conclusions

The 50% SUVmax threshold regimen for GTV delineation with dose-painting appeared to be superior to the visual criteria or SUV2.5 threshold in locoregionally advanced NPC, and there was no increased toxicity.
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Introduction

Nasopharyngeal carcinoma (NPC) is a radiosensitive neoplasm. Radiotherapy (RT) is the primary treatment strategy for NPC, and concurrent chemoradiotherapy is extensively used for locally advanced NPC (1, 2). However, the treatment response is unsatisfactory, with rates of local recurrence varying from 16.8% to 23% (3, 4). Since the mortality rate associated with NPC is directly related to the rates of local recurrence, it is important to develop methods for the improvement of treatment outcomes in patients with locoregionally advanced disease. Boosting the radiotherapy dose can provide better local control. However, dose escalation for NPC may increase treatment-related comorbidities due to the high-dose irradiation of normal tissues (5). Thus, determining the appropriate tumor volume to prescribe high radiation dose treatment remains a major challenge.

18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET-CT) is a powerful molecular imaging tool based on the activity of cancer cell metabolism. Delineation of biological characteristics prior to the therapy facilitates individual adaptation and optimization of treatment schedules and ensures improved prognosis and decreased treatment toxicity (6). Previous studies have indicate that 18F-FDG PET can be used for target volume delineation in radiotherapy for head and neck squamous cell carcinomas (including NPC) (3, 6–13). Several approaches have been proposed for outlining FDG-avid tumors, including auto-contouring at SUV threshold ≥ 2.5, ≥ 40% to 50% of maximal SUV (SUVmax) and visual delineation (14). In our previous study, we compared FDG-PET/CT guided dose escalation IMRT with CT-based IMRT in locoregionally advanced NPC. Relative to CT-based IMRT, FDG-PET/CT-guided dose-painting IMRT (DP-IMRT) is a powerful technique with survival benefit which does not increase the incidence of toxicities (3).

To the best of our knowledge, the methods and thresholds based on SUV have not been clearly defined till date. Additionally, clinical trials directly comparing the long-term results of IMRT based on different PET/CT-derived GTV delineation in NPC patients are not available. The primary aim of this study was to retrospectively analyze the comparative efficacy and toxicity of PET/CT-guided IMRT using three PET/CT-derived methods for primary tumor volume delineation in locoregionally advanced NPC patients, and to determine if there was a difference between PET/CT-guided dose-painting and PET/CT-based IMRT in locally advanced NPC prognosis.



Methods


Patient Selection

Between August 2015 and February 2018, 292 patients with locoregionally advanced NPC from the Hunan Cancer Hospital (The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University) were selected for the present study. Eligible patients between the ages of 18-70 years with non-distant metastatic, histologically confirmed WHO types II-III, stage III, and IVB nasopharyngeal carcinoma. Patients were required to provide written informed consent prior to undergoing chemoradiotherapy. Patients with a history of previous radiotherapy, in-complete radiotherapy, secondary malignancy, evidence of distant metastasis, pregnancy, or lactating females were excluded from the study. We were able to identify the information of participants during and after data collection. This retrospective study was approved by the Ethics Committee of our hospital.



Radiotherapy

All patients received both pre-treatment contrast-enhanced CT of the head and neck and 18F-FDG-PET/CT of the whole body. The scope of the CT simulation scan from the head to the manubriosternal joint was at 2.5-mm increments. The FDG-PET/CT scans were performed within 3 days of CT scans of the same location and in same the postural position. At 1-hour post-injection of 190-240 MBq of FDG, FDG-PET scans were conducted. Data acquisition was within 3 minutes per bed position (3, 9). The images were then converted from FDG-PET to SUV, and PET/CT and CT images were used for image fusion. Three FDG-PET/CT-based methods for gross tumor volume (GTV) delineation were compared: visual criteria (group A), a standard uptake value (SUV) threshold of 2.5, (SUV2.5) (group B), and a threshold of 50% of the maximum standardized uptake value (50% SUVmax) (group C), combined with dose-painting technique. The target volumes were based on FDG-PET/CT by a group of experienced radiation oncologists, with the assistance of experienced nuclear medicine physicians. In group A, the criteria for defining the GTV of the nasopharynx (GTVnx) in FDG-PET/CT were based on visual observation (volume) (10, 12, 13). In group B, the primary tumor area with SUV2.5 threshold was defined as GTVnx (volume 2.5) (8, 11, 14). In group C, the visual criteria were used for GTVnx delineation. Using a dose-painting technique for simultaneous integrated boost (SIB), a sub-volume GTVnx-PET (volume 50%) in the GTVnx was defined as the 50% threshold of the maximum standardized uptake value (3, 9, 11, 14, 15).

In all the groups, IMRT was performed using linear accelerators (16–18). The GTVnx was enlarged by 5 mm (containing the whole nasopharyngeal mucosa and submembrane) (17), and defined as PGTVnx. The dose for T1-2 patients was DT 70.4 Gy/32 Fx, and for T3-4 patients was DT 72.6 Gy/33 Fx, with 2.2 Gy per fraction. The irradiation doses of lymph node GTV (GTVnd) was 69.96-72.6 Gy/32-33 Fx, with 2.12-2.2 Gy per fraction; for high-risk subclinical lesions (planned target volume, PTV1), it was 60.06-64 Gy/32-33 Fx, with 1.82-2.0 Gy per fraction, and for low-risk subclinical diseases (PTV2) it was 50.96-56.0 Gy/26-28 Fx, at the rate of 1.82-2.0 Gy per fraction. Radiotherapy was performed daily from Monday to Friday and lasted for 32 to 33 days. The Pinnacle3 inverse planning system was used to design and optimize the regimens. Group C was subjected to PET/CT-guided DP-IMRT. The dose administered to the GTVnx-PET was increased to DT 75.2 Gy/32 Fx gradually in T1-2 patients, and DT 77.55 Gy/33 Fx in T3-4 patients, at 2.35 Gy per fraction. Other dose target volumes were prescribed in a manner similar to those in groups A and B. The doses of critical structures were within the tolerance limits of the Radiation Therapy Oncology Group (RTOG) 0615 (16) and RTOG 0225 protocols (18).



Chemotherapy

Induction chemotherapy was administered every 3 weeks, which consisted of intravenous 3 cycles of docetaxel (60 mg/m2) and cisplatin (60 mg/m2) on day 1, followed by uninterrupted intravenous fluorouracil administration (600 mg/m2) per day from day 1 to day 5, for three cycles before concurrent chemoradiotherapy. The prescription of concurrent chemotherapy was 80-100 mg/m2 cisplatin alone every three weeks, at the same time as IMRT.



Follow-Up

The follow-up period was calculated from day one of the therapy through the last date of follow-up (April 16, 2021) or until death. We classified chemotherapy-related toxicities based on the Common Terminology Criteria for Adverse Events (version 4.0) and evaluated the toxicities of radiotherapy based on the RTOG scoring criteria for acute and late radiation incidences. The tumor complete response (CR) was assessed by physical examination of the head and neck, fiberoptic nasopharyngoscopy, and MRI at 3 months after radiotherapy completion. Classification of tumor response was based on WHO response standard (16, 19).



Statistical Analysis

All analyses were performed using SPSS (version 20.0; IBM Corporation, Armonk, NY, USA). The overall survival (OS) was defined as the time from diagnosis to the last available follow-up; disease-free survival (DFS), survival without any local, regional, or distant failure; distant metastasis-free survival (DMFS), as survival without distant metastasis; local recurrence-free survival (LRFS), as survival without local relapse; regional recurrence-free survival (RRFS), survival without local relapse in cervical or regional lymph nodes, and locoregional recurrence-free survival (LRRFS), as survival without local relapse in the lymph nodes of the nasopharynx or cervical.

The classification variables were analyzed using χ² test. Kaplan-Meier survival curves and log-rank tests were used to calculate time-to-event endpoints between the three groups. Multivariable analyses were performed to assess the significance of independent prognosis using the Cox proportional hazards model. The potential prognostic factors included age, sex, tumor stage, node stage, pre-treatment Epstein-Barr virus deoxyribonucleic acid (EBV DNA) concentration (20), and PET/CT-guided GTV (50% SUVmax threshold vs. visual criteria or SUV2.5 threshold). Statistical significance was set at p<0.05.




Results


Patient Characteristics

The number of patients in groups A, B, and C were 98, 95, and 99, respectively. The median age was 47 years (range: 18-70 years). The median follow-up time for all patients was 60.5 months (range: 13-68 months) and 62 months for the surviving patients (range: 39-68 months). The median SUVmax value for nasopharyngeal masses was 10.6 (range: 4.2-25.3) for all patients. The patient baseline features are listed in Table 1. Clinical features and baseline demographics were balanced between the three groups.


Table 1 | Clinical demographics of patients with loco-regionally advanced NPC.





Impact of PET/CT-Derived GTV Delineation on Primary Tumor Volume

The median primary tumor volumes of the GTVnx for group A (visual volume), group B (volume 2.5), and group C were 41.9 mL (range: 6.2-184.6 mL), 36.5 mL (range: 4.6-162.2 mL), and 39.4 mL (range: 5.8-176.8 mL), respectively. The median volume of the GTVnx-PET (volume 50%) in group C was 13.2 mL (range: 1.4-32.6 mL). The volume 50% in group C was significantly lower than the visual volume in group A (p < 0.001), volume 2.5 in group B (p < 0.001), and GTVnx in group C (p < 0.001). No significant differences were found in GTVnx for the three groups (group A vs. group B, p = 0.056; group A vs. group C, p = 0.141; group B vs. group C, p = 0.704).



Response

The complete response (CR) rate in group C was 100% (99/99) as compared to 92.9% (91/98) in group A (p = 0.007) and 94.7% (90/95) in group B (p = 0.021). The CR rate did not differ significantly between groups A and B (p = 0.607). Two patients in group A and one in group B showed residual nasopharyngeal tumors. Six patients in group A and four in group B showed residual neck lymph nodes. Three patients had residual nasopharyngeal neoplasms received salvage chemotherapy. Six months after the completion of radiotherapy, no patient with residual nasopharyngeal tumors was observed and only 2 patients in group A and 1 patient in group B were diagnosed with residual neck lymph nodes, and were successfully treated with salvage neck dissection.



Adverse Events

All patients in the cohorts completed the established RT regimen. All patients received concurrent chemotherapy. 71 patients (24.3%) underwent induction chemotherapy. 29 (9.9%) patients received adjuvant chemotherapy after completion of radiotherapy (Table 1). Chemotherapy was discontinued due to severe liver dysfunction, neutropenia, and refusal of treatment. Mucositis and hematologic toxicity were the most frequently recorded grade 3-4 acute adverse events. Three patients experienced grade 3-4 late toxicities, including skin fibrosis and xerostomia (dry mouth) (Table 2). No treatment-related deaths occurred during treatment. Tumor responses and toxicities were similar among the three groups (Table 2).


Table 2 | Grade 3-4 toxicity.





Treatment Failure

24 patients (24.5%) in group A, 22 patients (23.2%) in group B, and 12 patients (12.5%) in group C had tumor recurrence. The median time to recurrence was 25.5 (8–38) months for local recurrence, 26 (8–42) months for regional recurrence and was 29 (8–42) months for loco-regional recurrence. 52 patients experienced metastases to distant organs, of whom 46 had bone metastases, 18 had liver metastases, and 30 had lung metastases. 32 patients had more than one metastatic site. In conformity with standard practice, salvage treatments were conducted for the patients with relapse, involving re-irradiation, chemotherapy, and surgery.



Survival

64 patients (26 in group A, 25 in group B, and 13 in group C) died, which included 48 deaths due to distant metastases, 9 due to loco-regional recurrence, and 7 due to other medical conditions. In groups A, B, and C, the 5-year LRFS rates were 89.4%, 90.0%, and 97.8%, respectively (p = 0.043). The 5-year RRFS rates were 87.3%, 87.0%, and 93.4%, respectively (p = 0.170). The 5-year LRRFS rates were 84.3%, 84.9%, and 93.4%, respectively (p = 0.054). The 5-year DMFS rates were 75.1%, 76.0%, and 87.7%, respectively (p = 0.043). The 5-year DFS rates were 70.9%, 70.3%, and 82.2%, respectively (p = 0.048), and the 5-year OS rates were 73.5%, 73.9%, and 84.9%, respectively (p = 0.038). No statistically significant differences in LRFS, RRFS, LRRFS, DMFS, DFS, and OS were observed between groups A and B (Figure 1). Group C showed significantly higher 5-year LRFS, LRRFS, DMFS, DFS, and OS (p < 0.05, Figure 1) as compared with group A or group B.




Figure 1 | Kaplan-Meier survival curves of different groups: visual criteria, SUV2.5, and 50% SUVmax group. (A) LRFS, (B) RRFS, (C) LRRFS, (D) DMFS, (E) DFS, (F) OS.





Prognostic Factors

In the univariate analysis, the PET/CT-guided GTV (50% SUVmax threshold vs. visual criteria or SUV2.5 threshold) was an important prognostic factor for 5-year LRFS, LRRFS, DMFS, DFS, and OS (p = 0.013, p = 0.016, p= 0.012, p= 0.014, and p = 0.011, respectively). EBV DNA was identified as an important prognostic factor for 5-year LRFS, RRFS, LRRFS, DMFS, DFS, and OS (p < 0.001, p = 0.017, p = 0.003, p < 0.001, p < 0.001, and p < 0.001, respectively). There was a significant correlation between sex and DMFS (p = 0.035). However, age, T-category, and N-category were not significant factors for LRFS, RRFS, LRRFS, DMFS, DFS, or OS. Multivariate analyses revealed that PET/CT-guided GTV was an independent prognostic indicator of 5-year LRFS, DFS, DMFS, and OS (p = 0.039, p = 0.030, p = 0.035 and p = 0.028, respectively), and was marginally significant for LRRFS (p = 0.080). EBV DNA was a favorable independent prognostic indicator of 5-year LRFS, LRRFS, DFS, DMFS, and OS (p = 0.010, p = 0.043, p < 0.001, p< 0.001, and p < 0.001, respectively). The outcomes from the multivariate Cox regression analyses are listed in Table 3.


Table 3 | Multivariable analysis of prognostic factors in loco-regionally advanced NPC.






Discussion

Chemoradiotherapy is the primary treatment for locoregionally advanced NPCs. Its clinical outcomes have greatly improved with IMRT (21–23). However, residual tumor and local recurrence are challenging because of the highly invasive and metastatic nature of the disease (3, 4, 23). During IMRT planning, the precise definition of tumor volume is crucial for predicting patient prognosis. Usually, the GTV in NPC is evaluated using CT imaging. However, previous studies have found that 18F-FDG-PET/CT can greatly enhance the value of TNM staging, treatment assessment, and prognosis of NPC (24–28), and has been increasingly used to plan RT (29). Moreover, 18F-FDG-PET integrated with IMRT is more likely to facilitate target volume delineation and dose escalation (30), thereby being more favorable for the main clinical outcomes.

SUV is the primary quantitative indicator for tumor detection using 18F-FDG-PET (9). Several methods for tumor delineation using FDG-PET have been studied. A simple and most commonly used strategy is based on the visual interpretation of FDG-PET images by practiced radiation oncologists or nuclear medicine physicians (10, 12, 13). However, visual delineation of neoplasms is highly operator-dependent and leads to significant inter-observer differences (14). Other techniques of threshold determination have also been used to define target volumes, such as the percentage of maximum peak SUV (50% SUVmax), a fixed SUV threshold of 2.5, or a threshold that is adaptive to the signal-to-background ratio (SBR), although their prognostic value remains controversial (8–11, 14, 15). The lack of a unified standardization technique poses a major challenge in using FDG-PET in delineating tumor volume. Currently, there is no formally recognized method for defining the optimal tumor volume using FDG-PET/CT. Therefore, our research team conducted the current study to ascertain the optimal SUV-based methods to define the primary tumor volume in locoregionally advanced NPC and to compare the difference between PET/CT-guided dose escalation and PET/CT-based (without dose escalation) IMRT for locally advanced NPC prognosis.

Previous studies have combined FDG-PET (or PET/CT) with RT planning and compared the major neoplasm volume using PET and CT (and/or MRI) in patients with NPC (8, 10, 14, 15, 31, 32). Most results showed significant variations between the different modalities. Hung et al. (14) compared different PET-based thresholds (for e.g., SUV2.5, 40% Max, and 50% Max) for primary tumor delineation in 32 NPC patients, and reported that the SUV2.5 method generated the largest volume and the 50% Max method resulted in the smallest tumor volume. In our study, no significant difference was observed between the visual volume and volume 2.5 groups. The primary neoplasm volumes evaluated using the visual and SUV2.5 methods were significantly larger than those derived from the 50% SUVmax method, which is consistent with the findings of Hung et al. (14).

Yu et al. (11) reported that since the volume based SUV50%max isocontour was significantly smaller than the volume derived from the SUV2.5 threshold, the areas of 50% SUVmax may not be sufficient for GTVnx. Therefore, we used similar visual criteria to define GTVnx in the 50% SUVmax group and used dose-painting technique to dose boost for the threshold of 50% SUVmax (GTVnx-PET), which based on our previous study and ongoing clinical trials (9, 15). However, larger target volumes may result in higher doses of irradiation to normal tissues and, thus, increase treatment-related complications. Therefore, our study did not escalate the dose to the PET target volume based on the SUV2.5 threshold and visual delineation.

All patients in our study received concurrent chemoradiotherapy. The CR rate after chemoradiotherapy for locoregionally advanced NPC has been reported to range from 82.8% to 99% (1, 20, 33). We previously reported that FDG-PET/CT-guided DP-IMRT significantly advanced CR rates (99.0%) compared with those by the CT-based IMRT (92.9%) (3). In the present study, the CR rate was significantly higher in group C (100%) than in group A (92.9%) and group B (94.7%). Our results suggest that the risk of local residual tumor was reduced by DP-IMRT using dose escalation to the 50% SUVmax sub-volume.

Very few studies have used PET/CT-guided IMRT to study the nasopharyngeal carcinoma. Wang et al. (8) included 67 patients with locally advanced NPC and analyzed the results of conventional RT, CT-based IMRT, and PET/CT-guided IMRT. The PET/CT-guided IMRT group, which used the SUV2.5 method for delineating GTV, when statistically compared with the traditional RT group, showed a better 3-year local progression-free survival rate (LPFS: 100% vs. 95.8%, P<0.05) and DFS (95.2% vs. 79.2%, P<0.05). However, the difference in the survival rate between the PET/CT-guided IMRT and CT-based IMRT groups was not statistically significant. We have previously demonstrated that FDG-PET/CT-guided DP-IMRT increased 3-year OS, DFS, DMFS, LFFS, and LRFFS in comparison to the CT-based IMRT (3). Based on these results, we compared the efficacy of PET/CT-guided IMRT using three PET/CT-derived methods for primary tumor volume delineation in patients with locoregionally advanced NPC in the present study. The results showed that the 5-year LRFS, DMFS, DFS, and OS were higher in the 50%SUVmax group than in the visual and SUV2.5 groups. In the current study, dose escalation of the SUV 50%max isocontour improved the treatment efficacy while decreasing collateral damage in comparison to that of the visual criteria and threshold of SUV2.5. Distant metastasis is the primary cause of treatment failure following chemoradiotherapy. Our results suggest that the risk of distant metastasis was highly reduced with an increase in local control rates and, hence, enhanced the DFS and OS. We had a relatively large sample size; thus, the results of our analysis have some instructive significance.

Wang et al. (8) reported that for PET/CT-guided IMRT, the most common acute toxicities included acute mucositis and late toxicities included xerostomia, subcutaneous fibrosis, and ototoxicity. The patients treated with PET/CT-guided or CT-based IMRT showed similar acute and late toxicities. In our study, a single (1.0%) patient with extensive tumor migration to the unilateral parotid gland and metastatic lymph node invasion to the contralateral parotid gland had grade 3 xerostomia in the visual criteria group. To ensure that the dose delivered to the PTV could sufficiently control the tumor, the mean dose of the bilateral parotid gland was increased to 34 Gy in this patient. Bakst et al. (5) evaluated the results of 25 NPC patients (stage II-IVB) who received DP-IMRT combined with chemotherapy. The prescription dose in their trial was 70.2 Gy in 2.34-Gy fractions to the GTV. One patient developed hearing loss of grade 3, and 12% of the patients experienced temporal lobe necrosis. In our study, no patient developed severe ototoxicity or brain toxicity. Compared to the study by Bakst et al., the lower incidence of brain toxicity in our study was likely attributed to a lower fractionated dose in the visual and SUV2.5 groups, and the 50% SUVmax group showed overall smaller dose-escalation volumes. Our PET/CT-based-IMRT regimen did not increase acute and late toxicities in comparison to the CT-based IMRT in NPC patients reported by Lin et al. (17) and Lee et al. (16). Our previous studies found no statistically significant differences in acute and late-presenting toxicities between CT-based IMRT and PET/CT-guided DP-IMRT (3). Likewise, in this study, we did not observe significant differences in acute or late toxicities among the three groups, and no grade 5 acute toxicities were found, which is consistent with prior studies.

Several studies have reported varying levels of prognosis in NPC treated with IMRT combined with chemotherapy (1, 3, 17, 20, 22, 33, 34). However, to date, no prior research has investigated the prognostic value of different techniques in the PET/CT-guided GTV delineation of NPC. Our data showed that PET/CT-guided IMRT (50% SUVmax threshold with dose escalation vs. visual criteria or SUV2.5 threshold) was a significant and independent prognostic factor for LRFS, DFS, DMFS, and OS. Thus, the 50% SUVmax method for dose escalation by DP-IMRT is a reasonable recommendation for improving the survival of patients with locoregionally advanced NPC. The therapeutic benefit of a 50%SUVmax threshold regimen for DP-IMRT encourages further exploration in other prospective studies. The present study had several limitations. Our study was limited by its retrospective nature. Although concurrent chemoradiotherapy was the major treatment regimen, induction chemotherapy was administered to 24.3% of patients, which may have influenced the treatment homogeneity. In addition, further follow-up is required to assess the long-term survival of patients with NPC, and more comprehensive PET/CT-guided GTV delineation methods also needed to explore in our future prospective clinical trials to ascertain the most favorable treatment.



Conclusion

Overall, our results indicated that PET/CT-guided dose escalation IMRT combined with chemotherapy is effective for patients with locoregionally advanced NPC. The 50% SUVmax threshold regimen for DP-IMRT significantly improved survival without any increase in toxicity compared with the visual criteria or SUV2.5 threshold. Further, prospective trials are required to fully investigate the PET/CT-based methods of contouring the tumor to determine an optimal regimen for survival.
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Objectives

Herein, we purposed to establish and verify a competing risk nomogram for estimating the risk of cancer-specific death (CSD) in Maxillary Sinus Carcinoma (MSC) patients.



Methods

The data of individuals with MSC used in this study was abstracted from the (SEER) Surveillance, Epidemiology, and End Results data resource as well as from the First Affiliated Hospital of Nanchang University (China). The risk predictors linked to CSD were identified using the CIF (cumulative incidence function) along with the Fine-Gray proportional hazards model on the basis of univariate analysis coupled with multivariate analysis implemented in the R-software. After that, a nomogram was created and verified to estimate the three- and five-year CSD probability.



Results

Overall, 478 individuals with MSC were enrolled from the SEER data resource, with a 3- and 5-year cumulative incidence of CSD after diagnosis of 42.1% and 44.3%, respectively. The Fine-Gray analysis illustrated that age, histological type, N stage, grade, surgery, and T stage were independent predictors linked to CSD in the SEER-training data set (n = 343). These variables were incorporated in the prediction nomogram. The nomogram was well calibrated and it demonstrated a remarkable estimation accuracy in the internal validation data set (n = 135) abstracted from the SEER data resource and the external validation data set (n = 200). The nomograms were well-calibrated and had a good discriminative ability with concordance indexes (c-indexes) of 0.810, 0.761, and 0.755 for the 3- and 5-year prognosis prediction of MSC-specific mortality in the training cohort, internal validation, and external validation cohort, respectively.



Conclusions

The competing risk nomogram constructed herein proved to be an optimal assistant tool for estimating CSD in individuals with MSC.





Keywords: maxillary sinus carcinoma, nomogram, cancer-specific death, SEER, competing risk



Introduction

Maxillary sinus carcinoma (MSC) accounts for 1%–4% of all head and neck cancers (1). Early diagnosis of maxillary sinus is difficult because of its hidden anatomical site and complex adjacent relationship. In most patients it has already invaded the bone wall and surrounding tissues when they are diagnosed, meaning they have a poorly defined prognosis (2). Numerous reports have documented the prognosis of general oral cancer (3) and Nasopharyngeal carcinoma (4), but few have addressed MSC. Numerous reports have documented the survival of individuals with MSC. Nonetheless, most reports are based on single medical institutions, with small sample sizes (5). Therefore, it is critical to strengthen research on MSC prognosis.

Surveillance, Epidemiology, and End Results (SEER), a population-based data resource, has data for about 28% of the US population. Hence, particularly for rare tumors, there are a number of relevant cases in the SEER data resource that can be used for establishing competitive risk prediction models (6). The information of MSC cases herein was abstracted from the SEER data resource, which guarantees the sufficiency, as well as authenticity of the data. Generally, patients with cancer are often predisposed to more than two risks, however only one event finally occurs (7). The risks other than the one of interest are referred to as competing risks. Competing risks are censored in a traditional survival analysis, but can be improved via a competing risk analysis.

A nomogram is a visualization of a linear prognostic model that is employed to quickly predict survival probabilities (8). Each value of these characteristics reflects a score on the nomogram graph, with the overall score mapping the survival likelihood. Some researches only focus on the traditional Kaplan-Meier method along with Cox proportional hazard model, while some studies are centered on population-based assessments (9, 10). Nevertheless, a remarkable amount of research has explored the overall survival along with cancer cause-distinct survival analysis, neglecting the involvement of competing causes of death in non-metastatic MSC prognosis. The competing risks of death influence the long-time survival prognosis to a remarkable extent; therefore, they should be taken into account when predicting the survival outcomes.

Herein, we aimed to develop a competing risk nomogram on the basis of the data abstracted from the SEER data resource for estimating cancer-specific death (CSD) in individuals with MSC. This could help clinicians in making decisions regarding individualized MSC treatment, as well as making accurate estimations of disease outcomes.



Material And Methods


Surveillance, Epidemiology, and End Results Database Patients

This was a retrospective analysis that analyzed the data of individuals with MSC between 2000 and 2017. The data of the individuals with MSC used in this study were abstracted from the publicly accessible SEER data resource.

SEER 18 Regs custom data (with additional treatment fields) uploaded in November 2019 (1975–2017 varying) were selected. All individuals diagnosed with MSC (site recode NM7/CS v0204+ Schema of “Sinus Maxillary” and behavior recode ICD-O-3 of “malignant”) were enrolled. Participants who were less than 5 years old at diagnosis, with a survival period of less than or equal to one month lacking a pathological diagnosis or lacking complete data were excluded from the study.



Our Medical Center Patients

Overall, we enrolled 200 individuals with MSC from the First Affiliated Hospital of Nanchang University (China) from 2006 to 2017. All patients were confirmed by pathology, and had no history of other cancers. The approval of this study was granted by the Ethics Committee of First Affiliated Hospital of Nanchang University (No. 2020140).



Variable Selection

The variables consisting of Age, Race, Sex, AJCC (American Joint Committee on Cancer) stage, T stage, N stage, M stage, Surgery, Grade, Radiation, histological type, follow-up time as well as survival outcomes were abstracted from the SEER data resource. The X-tile software (https://x-tile.software.informer.com/) was employed to explore the optimal cut-point values. The age at the time of diagnosis of the patients was categorized into two groups, i.e., <65 and ≥65 years. The AJCC staging approach, seventh edition was utilized herein. The ICD-O-3 codes was employed to stratify the MSC histological type into two classes, i.e., SCC (squamous cell carcinoma) and none SCC (consisting of adenomas and adenocarcinomas, cystic, adnexal and skin appendage neoplasms, mucinous, serous neoplasms, and mucoepidermoid neoplasms, etc.) on the basis of the WHO classification approach. Tumor-specific survival was the primary endpoint in this study, which was computed as the time from MSC diagnosis to the death of the participant resulting from MSC or a censored event. Deaths resulting from accidents or diseases apart from MSC were regarded as competitive risks.



Statistical Analyses

All analyses were implemented in the R-software (V.4.0.4; packages: foreign, cmprsk, mstate, rms, crrstep, pec, survivial, and riskRegression). P-value was two-sided, p < 0.05 defining statistical significance. First, we determined the CIF (cumulative incidence function) for 3- to 5-year time points. Additional subgroup analyses were carried out between various subgroups, and respective CIF curves were constructed for these variables. Remarkable differences in the CIF values among subgroups were explored with the Gray’s test. Secondly, we randomly split the enrolled SEER data resource participants into a training data set and a validation data set at a ratio of 7:3. The external validation data set consisted of subjects with MSC enrolled from our hospital. The training data set was utilized to construct the nomogram that was employed to estimate CSD. The two validation data sets were used in verifying the accuracy of the constructed nomogram. Univariate along with multivariate analyses were utilized to determine the independent risk factors of CSD in the training data set. The Fine-Gray proportional hazards model was employed to construct the competing risk nomogram.

The nomogram efficiency was first assessed in the training data set and then in the validation data sets regarding the C-index, AUC, as well as calibration curve. The C-index was employed to quantify the estimation potential of the model. It ranged between 0.5 and 1.0, which reflected a random chance from revealing no discrimination to revealing perfect discrimination (11). The AUC exhibits the overall prognostic value across all thresholds (12), with an optimum estimation value yielding an AUC of 1.0. DCA (decision curve analysis) was employed to establish the clinical net benefit of diverse prognostic thresholds for a prospective clinical effect (13), and evaluated the nomogram performance in comparison with the AJCC staging system visually.




Results


Baseline Characteristics

As indicated in Figure 1, initially, the data of 5,424 individuals with MSC was abstracted from the SEER data resource. Following the thorough screening, 478 individuals with MSC were enrolled in the final analysis. The median age of the patients was 64 (15–85) years at diagnosis (males = 66.7%). Most of the patients were of the white race (n = 345, 72.2%). Of the 478 MSC cases, 264 (55.2%) were SCC, including 202 (42.3%) cases of moderate differentiation. Stage IV was the most prevalent tumor stage (n = 176, 36.8%), followed by stage III (n = 171, 35.8%), II (n = 95, 19.9%), and I (n = 36, 7.5%). A remarkable number of the patients were classified as T4 (59.4%), followed by T3 (22.2%), T2 (10.7%), and T1 (7.7%). More than 50% of the cases were without lymph node (LN) metastasis (N0, 77.8%), and most cases had no distant metastasis (M0, 95.0%). A remarkable number of the patients were treated with surgery (n = 346, 72.4%). According to the observation of clinical characteristics in the three cohorts, there were differences in age, AJCC stage, T stage, N stage, surgery, radiation, and histologic type (P < 0.05). Table 1 provides a detailed summary of the demographic along with the clinical features of the enrolled participants.




Figure 1 | The Flow diagram of patient selection. SEER, Surveillance, Epidemiology, and End Results; MSC, Maxillary Sinus Carcinoma.




Table 1 | Basic characteristics of Maxillary Sinus Carcinoma patients in the training, internal validation, and external validation cohorts.





Cumulative Incidence Function Survival Analysis

Table 2 illustrates the results of our competing risk model. The median follow-up period was 26 (1–83) months. Overall, there were 261 deaths (54.6%) by the end of follow-up, with 214 (82.0%) being CSDs and 47 (18.0%) caused by other events. The 3-year cumulative incidence of CSD was 42.1%, while that of the 5-year was 44.3%. The result of the CIF subgroup analysis illustrated that a high CSD primarily occurred in patients aged ≥65 years (Figure 2A); who had an advanced AJCC stage (Figure 2B), T stage (Figure 2C), N stage (Figure 2D), and M1 stage (Figure 2E); who were not treated with surgery (Figure 2F) nor radiation (Figure 2H); who had a poorly/undifferentiated grade (Figure 2G); and SCC (Figure 2I). Nonetheless, no remarkable difference in CSD was observed in race, as well as sex subgroup analyses (Figures 2J, K).


Table 2 | Cumulative incidence of cancer-specific death in Maxillary Sinus Carcinoma.






Figure 2 | Cumulative incidence estimates of cancer-specific death in Maxillary Sinus Carcinoma. (A) Age; (B) AJCC stage; (C) T stage; (D) N stage; (E) M stage; (F) Surgery; (G) Grade; (H) radiation; (I) Histologic type; (J) Race; (K) Sex. Solid line represents cause-specific death, dotted line represents other causes of death. AJCC, American Joint Committee on Cancer; SCC, squamous cell carcinoma.





Nomogram Construction

As illustrated in Table 2, the individuals with MSC abstracted from the SEER database were randomized into a training data set (n = 343) and a validation data set (n = 135) at a ratio of 7:3. The multivariate analysis of the Fine-Gray proportional sub-distribution hazards model on the basis of the Akaike information criterion (AIC) indicated that age, histological type, stage, grade, N stage, M stage, and surgery were independent predictors affecting CSD in MSC patients of the training group (P < 0.05). After the optimization of the model on the basis of Bayesian information criterion (BIC), six variables were finally included in the prediction model (Table 3). A competing risk nomogram was constructed to estimate the 3- and 5-year likelihoods of CSD on the basis of these predictors (Figure 3). An individual patient chance of death from MSC at diverse time points could be easily calculated through this prediction model via adding the scores of each incorporated variable.


Table 3 | Results of univariate and multivariate analyses by Fine-Gray proportional sub-distribution hazards model in the training cohort.






Figure 3 | Interactive nomogram for predicting the 3- and 5-year probabilities of cancer-specific death in Maxillary Sinus Carcinoma. BIC, Bayesian information criterion; SCC, squamous cell carcinoma.





Nomogram Verification

The C-index of the competing risk nomogram model for estimating the probability of CSD was 0.810 in the training cohort, 0.761 in the internal validation data set, and 0.755 in the external validation cohort. The AUC of our nomogram model for estimating the 3- and 5-year likelihoods of CSD was 0.792 and 0.812 in the training data set, 0.783 and 0.764 in the internal validation data set, and 0.756 and 0.783 in the external validation data set. The calibration graphs exhibited an excellent agreement between the actual and the nomogram-estimated likelihoods in the training (Figures 4A, B) and validation data sets (Figures 4C–F). Altogether, these data demonstrated the excellent estimation potential along with the remarkable confidence of the constructed nomogram.




Figure 4 | Calibration curves. In the training cohort, the 3-and 5-year probabilities of cancer-specific death (A, B). In the internal validation cohort, the 3- and 5-year probabilities of cancer-specific death (C, D). In the external validation cohort, the 3- and 5-year probabilities of cancer-specific death (E, F). BIC, Bayesian information criterion; AUC, area under the curve.





Decision Curve Analysis

DCA was conducted in the three study data sets. In all three cohorts, the nomogram illustrated a higher net benefit along with a wider range of threshold likelihood relative to the AJCC staging approach, which depicts that the nomogram showed a high clinical utility value (Figures 5A–F).




Figure 5 | The nomogram of the Decision curve analysis and the nomogram of the AJCC staging system in the prediction of the cancer-specific death of patients at the 3- and 5-year point in the training (A, B), internal validation (C, D) and external validation (E, F) cohorts.






Discussion

Maxillary sinus carcinoma is one of the most frequent malignant tumors in the department of otolaryngology. The incidence of MSC is second only to nasopharyngeal carcinoma and laryngeal carcinoma in China, accounting for 2%–3% of head and neck tumors. Previous studies on sinonasal malignancies using the data abstracted from the SEER data resource have focused on incidence, as well as survival patterns (14, 15). For the first time, herein, we constructed prognostic models for the prognosis of individuals with MSC in a competitive event model and established more accurate predictors. The large data samples abstracted from the SEER data resource reduced the error of this study. In contrast with the traditional survival analysis, the competitive event model ensures that the chosen influencing factors have the most direct association with the prognosis of cancer. Although the AJCC staging system is a widely used system at present, it is unable to make a more personalized evaluation on the patient prognosis. For instance, the AJCC TNM staging approach for cutaneous melanoma was suggested to be used in vulva melanoma (16); however, treatment choices, for instance, chemotherapy, surgery, or radiotherapy, were not incorporated in this staging tool. Instead, a nomogram can make a more comprehensive and personalized evaluation because it integrates multiple factors.

Of the 11 parameters discovered herein, nine (age, M stage, radiation, AJCC stage, grade, T stage, surgery, N stage, as well as histological type) were demonstrated to be independent predictors of CSD in individuals with MSC through univariate along with multivariate competing risk analysis. In the univariate analysis, sex and race were not included, implying that they have no impact on CSD in individuals with MSC. The multivariate competing risk analysis data demonstrated that AJCC stage is not an independent predictor, which is linked to its comprehensive assessment of the T, N, and M stages. Following BIC optimization, six parameters (age, histological type, N stage, grade, surgery, and T stage) were included in the model.

It is critical to note that age was found to be an independent factor, which is consistent with Shen et al., who established a nomogram to study the prognosis of MSC. Le et al. explored the staging of MSCs and illustrated that the age of patients, favoring the young, is a remarkable independent predictor after correcting for other confounders, which may be a result of older patients having more comorbidities, as well as higher perioperative risks (15, 17, 18). The result about race in our study is similar with Shen et al., who reported that there was no significant difference in the prognosis among different races (15). There is also no direct evidence of survival differences between races. The research of Wang et al. illustrated that sex had no influence on cancer-specificity survival of Maxillary sinus SCC patients, which is consistent with our research (5). The data illustrated that higher pathological stage (grade) along with M stage and radiation were independent predictors for individuals with MSC, which is congruent with the data of previous studies (19). Nonetheless, the three factors above were removed in the process of using MSC to optimize the model to avoid overfitting.

Most clinicians prefer surgical therapy for MSC at all stages, although on the basis of the NCCN guidelines, surgery is remarkably recommended as the preferred approach for a resectable Maxillary sinus squamous cell carcinoma (MSSCC) (T1–T4a) (20). Our data illustrated that treatment with surgery remarkably reduced the CSD risks in individuals with MSC, which is congruent with the clinical experience of most doctors. However, whether a clinically negative neck in patients with MSC should be treated with an elective neck dissection or irradiated prophylactically is controversial in Europe and the United States (21, 22). In the study of Shen et al., surgery improved survival on the basis of the log-rank test. Nevertheless, in the Cox model, they demonstrated that this protective influence applies only to individuals with negative lymph nodes (15).

MSSCC is the most frequent pathological type in MSC, responsible for about 30%–50% of malignant paranasal sinus tumors (23, 24). Studies have avoided making a comparative analysis between SCC and other kinds of oral cancer. Herein, SCC was responsible for 55.2% of all MSC cases, and we established that the risk of CSD in individuals with SCC was remarkably higher in contrast with that in other kinds of MSC, including adenoid cystic carcinoma, adenocarcinomas, mucoepidermoid neoplasms, and neuroendocrine carcinoma. This is congruent with the findings of Unsal et al., and van der Laan et al. in lung cancer (19, 25). This could be attributed to the high invasive, as well as metastatic ability of squamous cell carcinoma.

Previous reports on sinonasal malignancies that used the SEER program data have focused on incidence along with survival patterns (24, 26), while we centered on constructing estimation models herein. The treatment of MSC and the assessment of the prognosis presently depend on the AJCC staging approach. Our predictive model is appropriate for all individuals with MSC and could be broadly utilized at all levels of medical centers. The comprehensiveness of this nomogram could compensate the inefficiencies of the AJCC staging tool, and allow a precise assessment of the prognosis of individuals with MSC. In addition, a user-friendly graphic interface of the prediction model could enhance communication between clinicians and patients. Besides, we employed a validation data set for external verification, and the results were remarkably linked to the actual survival probabilities.

It is undeniable that this study has some limitations. Firstly, the SEER data resource lacks some critical variables linked to prognosis, such as chemotherapy, perineural infiltration, and smoking and sinusitis history. In addition, we used the sixth or seventh edition of the AJCC staging approach herein, which lacks two critical variables (depth of infiltration and extranodal extension) relative to the eighth edition. Third, the SEER data resource additionally does not collect data on tumor volume, which is regarded as a remarkable prognostic variable for sinonasal malignancies. Although this study included data on radiotherapy, the SEER data resource lacks detailed information on the clinical treatment. Finally, although the SEER data resource provided a large sample size for this study, there are still some errors when it is applied in a global context. Larger-sample multi-center prospective research is required to further improve our prediction model and verify its clinical utility value.



Conclusion

We have established a competing risk analysis nomogram for individuals with MSC using the data abstracted from the SEER data resource. Our well-calibrated nomogram could be employed to make clinical decisions with regard to the prognosis and individualized treatment of individuals with MSC.
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Objective

PD-L1 is one of the predictors of immunotherapy efficacy. Our goal was to analyze its expression and prognostic significance in high-grade salivary gland carcinoma (SGC).



Methods

PD-L1 expression was evaluated using paraffin-embedded specimens from patients with surgically treated high-grade SGC, and it was scored by the tumor proportion score (TPS), combined positive score (CPS), and immune cell (IC) score. Associations between clinicopathological variables, disease-free survival (DFS), overall survival (OS) and PD-L1 expression were assessed.



Results

TPS≥1% occurred in 47 patients with an incidence of 43.1%, and it was significantly related to an advanced tumor stage. In patients with TPS<1%, TPS ranging from 1% to 20%, and TPS≥20%, the 5-year DFS rates were 36%, 26%, and 13%, respectively, and the difference was significant. In patients with TPS<1%, TPS ranging from 1% to 20%, and TPS≥20%, the 5-year OS rates were 49%, 24%, and 13%, respectively, and the difference was significant. CPS≥1 occurred in 87 patients with an incidence of 79.8%. IC scores of 0, 1, 2, and 3 were noted in 24 (22.0%), 37 (33.9%), 31 (28.4%), and 17 (15.6%) patients, respectively. Both CPS and IC scores had no impact on DFS or OS.



Conclusions

The expression of PD-L1 in tumor cells of high-grade SGCs was not uncommon, and it was significantly associated with tumor stage. PD-L1 expression in tumor cells rather than in immune cells indicated a poor prognosis.
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Introduction

Salivary gland carcinoma (SGC) is a relatively uncommon malignancy and accounts for less than 10% of all head and neck cancers (1). Based on the 2017 WHO classification, SGCs consist of 24 different histologic types (2). Due to their different biological behaviors and prognoses, SGCs are divided into three grades: low, intermediate, and high (3). Usually, high-grade SGC is the least frequent but has the worst prognosis. Even when treated with systemic therapies, many patients can still develop a recurrence (4, 5). More effective treatments are required to improve their prognosis.

Immune checkpoint inhibitors, such as programmed death 1 (PD-1) inhibitors, have been confirmed to be effective in controlling many malignant tumors (6). Expression of programmed death ligand-1 (PD-L1) is recognized as an important predictor of immunotherapy efficacy. A number of pioneers have analyzed PD-L1 expression in SGCs (7–9), but conflicting data have been reported, some researchers have described that about 20% of the patients show PD-L1 expression in SGC cells, and it is associated with poor disease free survival and overall survival (7, 8), but some have noted there is little relationship between PD-L1 expression and the disease specific survival (9). The scientific value of these studies is limited by no uniform standards of cutoff values, tissue specimens, antibodies, and scoring criteria for evaluating PD-L1 expression, there is still a lot of unknown knowledge regarding expression pattern and prognostic significance of PD-L1 especially in high grade SGCs, which is rarely analyzed, as far as we know, there are only four reports available for learning (10–13), according to the literature, the incidence of PD-L1 expression ranged from 26% to 53%, Xu et al. (10) and Sato et al. (11) would agree that high PD-L1 expression in salivary duct carcinoma was strongly associated with unfavorable prognosis, but Hamza et al. (12) and Schvartsman et al. (13) might not support this statement but presented PD-L1 expression had no effect on the survival. Therefore, in the current study, we aimed to evaluate the expression pattern and survival significance of PD-L1 in high-grade SGCs to explore the potential benefit of immunotherapy in this specific group.



Patients and Methods


Ethics

Our hospital institutional research committee approved this study, and all participants signed an informed consent agreement. All procedures performed were in conducted in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.



Patient Selection

From January 2010 to January 2021, the medical records of patients with surgically treated SGCs were retrospectively reviewed, and the enrolled patients met the following criteria: the disease was primary and classified as high grade based on the 2017 WHO classification (2); there was no history of other cancers; and there was enough paraffin-embedded tissue available for the PD-L1 expression test. Patients without sufficient demographic, pathologic, or follow-up data were excluded from the analysis. Information regarding age, sex, TNM stage (8th AJCC system), pathologic reports, treatment, and follow-up was extracted and analyzed.



PD-L1 Expression Test

PD-L1 expression was tested by immunohistochemistry staining using 4μm thick sections of formalin-fixed, paraffin-embedded specimens and a monoclonal antibody targeting PD-L1 (SP263). The antibody was intended for diagnostic use in vitro and was employed according to the instructions of the manufacturer’s protocol. The sections were rehydrated through graded ethanol at room temperature followed by deparaffinized in xylene. They were incubated with primary antibody for 30 minutes firstly, and then with biotinylated secondary antibodies. Immunoreactions were visualized using a 3-amino-9-ethylcarbazole as a substrate (Ventana OptiView DAB IHC detection KIT, Ref: 760-700, Mannheim, Germany). Human non-neoplastic tonsillar tissue was used as a positive control for the antibody.

TPS referred to the percentage of viable tumor cells showing partial or complete membrane PD-L1 staining at any intensity; CPS referred to the number of PD-L1 stained cells (tumor cells, lymphocytes, macrophages) divided by the total number of viable tumor cells multiplied by 100; and IC referred to the percentage of tumor area covered by PD-L1+ immune cells (4-tiered score: 0: <1%, 1: 1-5%, 2: 5-10%, 3: >10%). All PD-L1 expression evaluation was performed with high power microscope (×200).



Treatment Principle

In our cancer center, a definite diagnosis of SGC is usually made based on postoperative pathology. If a high-grade SGC was confirmed, adjuvant radiotherapy and/or chemotherapy were always administered. Neck dissection was performed if there was a cN+ neck. After discharge from the hospital, the patients were routinely followed every 3 months for the first two years and then every 6 to 12 months for the next 3 years. If disease recurrence was suspected, active interference was immediately performed.



Statistical Analysis

Associations between clinicopathological variables and PD-L1 expression were evaluated by the chi-square test. The Kaplan-Meier method was used to analyze disease-free survival (DFS) and overall survival (OS). The DFS was calculated from the date of surgery to the date of recurrence or the last follow-up visit, and OS was calculated from the date of surgery to the date of death or last follow-up visit. Factors that were significant in univariate analysis were then analyzed in a Cox proportional hazards regression model to study the independent effects on survival. All statistical analyses were performed by SPSS 20.0, and p<0.05 was considered to be significant.




Results


Baseline Information of the Patients

A total of 109 patients were included for analysis; there were 60 (55.0%) men and 49 (45.0%) women, and the mean age was 45.6 ± 10.4 years. Primary sites were distributed in the parotid gland in 55 (50.5%) patients, submandibular gland in 27 (24.8%) patients, sublingual gland in 15 (13.8%) patients, and minor gland in 12 (11.0%) patients.

Tumor stages were classified as T1 in 17 (15.6%) patients, T2 in 45 (41.3%) patients, T3 in 35 (32.1%) patients, and T4 in 12 (11.0%) patients. Neck lymph node stages were classified as N0 in 68 (62.4%) patients and N+ in 41 (37.6%) patients. The most common histologic type was high-grade mucoepidermoid carcinoma (MEC), followed by salivary duct carcinoma (SDC), which occurred in 47 (43.1%) and 33 (30.3%) patients, respectively. Adenocarcinoma, not otherwise specified, developed in 15 (13.8%) patients. Squamous cell carcinoma occurred in 8 (7.3%) patients. The least common histologic types were small cell carcinoma, large cell carcinoma, and spindle cell carcinoma, which all developed in 2 (1.8%) patients each. Perineural invasion (PNI) and lymphovascular invasion (LVI) were noted in 37 (33.9%) and 33 (30.3%) patients, respectively. A positive margin occurred in 9 (8.3%) patients.

All patients underwent surgical treatments, 60 (55.0%) patients also underwent neck dissection, and pathologic lymph node metastasis occurred in 45 (75.0%, 45/60) patients. All patients received adjuvant radiotherapy, and 24 (22.0%) patients also underwent adjuvant chemotherapy (Table 1).


Table 1 | Demographic and pathologic information of the patients.





PD-L1 Expression

TPS≥1% occurred in 47 patients with an incidence of 43.1%; in these 47 patients, 32 cases had a TPS<20%, and 15 cases had a TPS≥20%. CPS≥1 occurred in 87 patients with an incidence of 79.8%; of these 87 patients, 47 had a CPS<20, and 40 had a CPS≥20. IC scores of 0, 1, 2, and 3 were noted in 24 (22.0%), 37 (33.9%), 31 (28.4%), and 17 (15.6%) patients, respectively.



Predictors of PD-L1 Expression

As Table 2 describes, in patients with T1-T2 tumors, 42 cases had TPS<1%, 17 cases had a TPS ranging from 1% to 20%, and 3 cases had a TPS≥20%; in patients with T3-T4 tumors, 20 cases had TPS<1%, 15 cases had a TPS ranging from 1% to 20%, and 12 cases had a TPS≥20%, and the difference was significant (p=0.003). No apparent associations between any other variables and TPS were noted (all p>0.05). Furthermore, there were no significant relationships between any of the clinicopathological variables and the CPS or IC score (all p>0.05).


Table 2 | Association between clinicopathological variables and PD-L1 expression.





Survival Analysis

After a follow-up with a mean time of 3.8 (range: 0.6-9.6) years, disease recurrence occurred in 71 patients, and 62 patients died. The overall 5-year DFS and OS rates were 30.0% and 36%, respectively.

In patients with TPS<1%, the 5-year DFS rate was 36%; in patients with TPS ranging from 1% to 20%, the 5-year DFS rate was 26%; and in patients with TPS≥20%, the 5-year DFS rate was 13%, and the difference was significant (p<0.001, Figure 1). In patients with TPS<1%, the 5-year OS rate was 49%; in patients with TPS ranging from 1% to 20%, the 5-year OS rate was 24%; and in patients with TPS≥20%, the 5-year OS rate was 13%, and the difference was significant (p<0.001, Figure 2). Further, the Cox model confirmed the independence of TPS’s correlation with DFS and OS (Tables 3 and 4).




Figure 1 | Comparison of disease-free survival in patients with different tumor proportion scores (TPSs), combined positive score (CPS), and immune cell (IC) score.






Figure 2 | Comparison of overall survival in patients with different tumor proportion scores (TPSs).




Table 3 | Survival effect of PD-L1 expression on disease free survival in high grade salivary gland carcinoma.




Table 4 | Survival effect of PD-L1 expression on overall survival in high grade salivary gland carcinoma.



In patients with CPS<1, the 5-year DFS rate was 44%; in patients with CPS ranging from 1 to 20, the 5-year DFS rate was 24%; and in patients with CPS≥20, the 5-year DFS rate was 30%, and the difference was not significant (p=0.635, Figure 3). In patients with CPS<1, the 5-year OS rate was 44%; in patients with CPS ranging from 1 to 20, the 5-year OS rate was 21%; and in patients with CPS≥20, the 5-year OS rate was 53%, and the difference was not significant (p=0.540, Figure 4).




Figure 3 | Comparison of disease-free survival in patients with different combined positive scores (CPSs).






Figure 4 | Comparison of overall survival in patients with different combined positive scores (CPSs).



In patients with an IC score of 0/1, the 5-year DFS rate was 28%; in patients with an IC score of 2/3, the 5-year DFS rate was 34%, and the difference was not significant (p=0.600, Figure 5). In patients with an IC score of 0/1, the 5-year OS rate was 32%; in patients with an IC score of 2/3, the 5-year OS rate was 41%, and the difference was not significant (p=0.422, Figure 6).




Figure 5 | Comparison of disease-free survival in patients with different immune cell (IC) scores.






Figure 6 | Comparison of overall survival in patients with different immune cell (IC) scores.






Discussion

The most significant finding in the current study was that PD-L1 expression was not uncommon in high-grade SGC cells. TPS was associated with tumor stage and prognosis, and a greater TPS indicated worse survival. Both CPS and IC scores had no relationship with clinicopathological variables or prognosis. Our study provided valuable evidence that TPS could represent a better target for immune checkpoint inhibition than the CPS and IC scores.

The PD-L1/PD-1 axis mediates immune tolerance and promotes tumor growth and progression via the inhibition of anti-tumor immunity. Blocking the interaction between PD-L1 and PD-1 was clinically shown to be beneficial in maintaining the anti-tumor functions of the adaptive immune system (14). It was important to explore the PD-L1 expression level in solid malignancies, but it is not frequently analyzed in SGCs. Mukaigawa et al. (7) might be the first to investigate this issue and found that 22.8% of 219 surgically resected SGC specimens had PD-L1 expression. Moreover, the expression of PD-L1 in cancer cells was significantly related to age, sex, tumor location, pathologic tumor and nodal stages, histologic type, and pathologic grade. However, in this study, the authors defined PD-L1 expression positivity as a case showing complete membranous expression of PD-L1 in more than 1% of the carcinoma cells, which was apparently different from other studies. Vital et al. (8) considered positivity for PD-L1 if there was any unequivocal membranous staining of at least 1% of the tumor cells; in their 167 SGC patients, 17% showed PD-L1 positivity, and PD-L1 expression in tumor cells was associated with a higher tumor grade. A similar definition of PD-L1 expression positivity was used by Higashino et al. (9); the authors reported a rate of 28.3%, and it was more common in tumors with a higher stage, a higher grade, and node-positive cases. However, none of these three studies focused on high-grade SGCs, which usually have a worse prognosis than low- and intermediate-grade SGCs and deserve more attention (4, 15).

Very few researchers have examined the significance of PD-L1 expression in high-grade SGCs. Hamza et al. (12) evaluated salivary duct carcinoma specimens from 113 patients and found that 26% of the samples had positive PD-L1 expression (TPS≥1%), but the authors did not analyze the association between PD-L1 expression and clinicopathological variables. Another paper enrolling 17 salivary duct carcinoma patients reported that there was a positive PD-L1 expression rate as high as 53% (13), but in our research, we noted that the rate was 42.4%. This inconsistency might be attributed to several possibilities. First, the antibodies used in immunohistochemistry were different, and a previous study confirmed that the positive rate of PD-L1 expression was significantly affected by the antibody clones (16). Second, the specimens used for PD-L1 detection were different. We used full-face sections, but some used tissue microarray sections. When comparing these two methods, cases with high expression of PD-L1 did not have good concordance (17).

In addition, the term high-grade SGC has been used not only for salivary duct carcinoma but also to refer to some other types of cancer. This was the first study to focus on this small, specific group. We noted that the overall rate of TPS≥1% patients was 43.1%, which was associated with the tumor stage but not the histologic type. This finding was interesting and suggested that the high-grade SGC microenvironment exhibited similar immunogenicity independent of histologic type but was affected by tumor stage. Similarly, Kesar et al. (18) previously noted in their 84 patients that the two most common malignant tumor types presenting with PD-L1 expression were adenocarcinoma not otherwise specified and squamous cell carcinoma.

There are no official standards for reporting PD-L1 expression detection, and three scoring criteria are available: TPS, CPS and the IC score. In the current study, 79.8% and 44.0% of the patients had CPS≥1 and IC scores of 2 or 3, respectively. These incidences were consistent with the reports by Xu et al. (10), Witte et al. (19), and Szewczyk et al. (20). However, there was a discrepancy in the association between PD-L1 expression and clinicopathological variables. Witte et al. (18) noted that both TPS and the IC score were not related to node-positive disease, but a higher CPS means a higher frequency of lymph node metastasis. Possible explanations were differences between the studied cases and the different antibodies used.

The survival effect of PD-L1 expression in SGC is another important issue for analysis. Mukaigawa et al. (7) found that in 219 SGC patients, the 5-year DFS rates of patients showing tumor cell PD-L1 positivity and PD-L1 negativity were 20.2% and 54.6%, respectively, and the difference was significant. The 5-year OS rates of patients with tumor cell PD-L1 positivity and PD-L1 negativity were 40.8% and 80.9%, respectively, and the difference was also significant. In a paper by Xu et al. (10), the authors described that PD-L1 immunopositivity in at least 25% of tumor cells was associated with decreased disease-specific survival. Similar results were also confirmed by Sato et al. (11, 21), Nakano et al. (22), and our results. This suggested a negative survival effect of high TPS. It was the strongest point of current study, we firstly employed the three established predictive scoring criteria on this small and specific group of high grade SGC, and uncovered that TPS rather than CPS or IC score showed better promising target for immuno-oncologic treatment.

However, there were also totally different viewpoints. Higashino et al. (9) showed that in their 127 patients, disease-specific survival was 86.9% for those with PD-L1-negative tumors and 82.2% for patients with PD-L1-positive tumors, and there was no significant difference. In their subgroup analysis of high grade cancers, it was 52.7% in 23 patients with PD-L1-negative tumors and 62.5% in 21 patients with PD-L1-positive tumors, again showing no significant difference, and it remained the same in low- and intermediate grade cases. Even when expression by 10% of tumor cells was used as the threshold for defining PD-L1 positivity, no significant difference in disease-specific survival was observed. Hamza et al. (12) included 113 patients, and the authors reported that the OS rates at 3, 5 and 10 years were 52.6%, 37.9% and 25.6%, respectively. There was no significant difference in survival between patients with PD-L1-immunoreactive tumors and those without. Similar findings were also reported by Schvartsman et al. (13) and Witte et al. (19). Vital et al. (8) reported that PD-L1 expression in tumor cells did not have any correlation with DFS and OS in 167 patients with SGC, but PD-L1 positivity in tumor-infiltrating immune cells predicted a worse DFS and OS in salivary duct carcinoma. Xu et al. (10) noted PD-L1 immunopositivity determined with a cutoff of CPS≥1 was associated with improved disease-specific survival and DFS in salivary duct carcinoma. The presence of PD-1-positive immune cells was associated with improved survival regardless of the expression level. However, in our study, we failed to note a positive relationship between prognosis and CPS/IC score. The differences might be explained by that the authors investigated only PD-L1 positive tumor cells and did not check the PD-1 positive immune cells, and more importantly, even if there were many PD-L1 positive tumor cells, sometimes there were few PD-1 positive immune cells around the tumor cells. Usually, PD-1 positive immune cells induced PD-L1 positive tumor cells as a result of immune response. However, sometimes tumor cells expressed PD-L1 with innate immune response.

Limitations in the current study must be acknowledged. First, our sample size was relatively small. Second, this was a retrospective study, and it had inherent bias. Third, we used paraffin-embedded specimens and not fresh tissue to assess PD-L1 expression, which might affect the accuracy of PD-L1 expression evaluation. Fourth, PD-L1 expression level showed heterogeneity among different PD-L1 antibodies used and different pathologists, and also it showed intra-tumoral heterogeneity, more studies were needed to clarify the PD-L1 expression level in high-grade SGCs.

In summary, the expression of PD-L1 in tumor cells of high-grade SGCs was not uncommon, TPS was associated with tumor stage and prognosis, and a greater TPS indicated worse survival. Both CPS and IC scores had no relationship with clinicopathological variables or prognosis. Patients with high TPS might benefit from immunotherapy.
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This study aims to identify prognostic factors in nasopharyngeal carcinoma (NPC) to improve the current 8th edition TNM classification. A systematic review of the literature reported between 2013 and 2019 in PubMed, Embase, and Scopus was conducted. Studies were included if (1) original clinical studies, (2) ≥50 NPC patients, and (3) analyses on the association between prognostic factors and overall survival. The data elements of eligible studies were abstracted and analyzed. A level of evidence was synthesized for each suggested change to the TNM staging and prognostic factors. Of 5,595 studies screened, 108 studies (44 studies on anatomical criteria and 64 on non-anatomical factors) were selected. Proposed changes/factors with strong evidence included the upstaging paranasal sinus to T4, defining parotid lymph node as N3, upstaging N-category based on presence of lymph node necrosis, as well as the incorporation of non-TNM factors including EBV-DNA level, primary gross tumor volume (GTV), nodal GTV, neutrophil-lymphocyte ratio, lactate dehydrogenase, C-reactive protein/albumin ratio, platelet count, SUVmax of the primary tumor, and total lesion glycolysis. This systematic review provides a useful summary of suggestions and prognostic factors that potentially improve the current staging system. Further validation studies are warranted to confirm their significance.




Keywords: nasopharyngeal carcinoma, prognostic factors, AJCC/UICC staging system, TMN classification, systematic review, anatomical criteria



Introduction

Nasopharyngeal carcinoma (NPC) is an important global health burden with approximately 130,000 new cases diagnosed and more than 70,000 deaths in 2018 (1). It is a unique disease with distinctive natural behavior, epidemiology, and histopathology that differs from other head and neck cancers. Estimation of prognosis is a fundamental step in patient management. Among the various prognostic factors, the tumor–node–metastasis (TNM) staging, which has been jointly adopted by the American Joint Committee on Cancer (AJCC) and the Union for International Cancer Control (UICC), remains the most robust factor for global application. The TNM 5th Edition issued in 1997, which introduced a customized staging system for NPC by merging the strengths of the AJCC/UICC 4th edition and Ho’s system, is a historic milestone with worldwide acceptance. Subsequent revisions refined the staging system based on diagnostic and therapeutic advances (2, 3); the current 8th Edition, released in 2017, is another milestone with the unification of the TNM and the Chinese staging systems (4).

In addition to the refinement of TNM parameters, there is a growing interest in the incorporation of non-anatomical prognostic factors that reflect biological tumor behavior. These factors are potentially useful for providing biomarkers on personalized risk stratification, especially with regard to metastatic risk, for tailoring the treatment intensity. There is increasing evidence that incorporation of these factors/biomarkers with TNM staging system could further improve risk stratification (5, 6).

To provide the best available evidence for the upcoming TNM 9th Edition and associated prognostic grouping, a comprehensive systematic review was carried out to identify potentially important suggestions on anatomic and non-anatomic prognostic factors. These suggestions will then be confirmed by a multicenter validation study before the final recommendation to UICC and AJCC for consideration. The current paper is our summary of suggested prognostic factors that warrant further validation.



Materials and Methods


Study Protocol

This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline (7). A systematic search of PubMed, Scopus, and Embase for relevant literature published from January 1, 2013, to September 13, 2019, was performed. This timeframe was selected because the construction of TNM 8th Edition was based on literature reviews up to December 31, 2012. Both English and Chinese literatures were accepted, although unpublished studies were not included in the search. The search terms (Supplementary Table 1) were as follows: (“staging” or “TNM” or “prognostic”) and (“nasopharyngeal carcinoma” or “nasopharyngeal cancer” or “nasopharyngeal neoplasm”).



Inclusion Process and Criteria

From the literature identified in the initial search, the following studies were excluded after screening their titles and citations: duplicated studies, conference abstracts, reviews, letters, editorials, case reports, book chapters, and basic science studies. The remaining studies were further assessed to determine eligibility, which included original clinical studies, either prospective or retrospective, with a sample size of at least 50 NPC patients, treated with intensity modulated radiotherapy (IMRT) or equivalent, and showing a significant association between prognostic factors and overall survival (OS). Novel prognostic markers with limited potential for global applicability (e.g., radiomics, micro-RNA, circulating tumor cells, and genetic signatures) were excluded from this review. In cases of multiple studies from one institution, the study with the largest number of patients and the most recently published study was prioritized.

Two independent teams (University of Hong Kong–Shenzhen Hospital and Fujian Cancer Hospital) performed the first review to exclude the ineligible studies. Three independent reviewers (AL, W-TN, and C-LC) further assessed papers that generated disagreements based on the inclusion/exclusion before a final decision was made on the list of studies to be selected for inclusion in this review.



Data Extraction and Analyses

The primary data from the articles were extracted. The primary endpoint for the assessment of prognostic value in this review was OS; the secondary endpoints of distant-metastasis-free survival (DMFS) and local-relapse-free survival (LRFS) were included if they were reported by the original study.

We used the QUality In Prognosis Studies (QUIPS) tool to assess the risk of bias within individual studies (8). The QUIPS tool was originally designed to assess bias in studies of prognostic factors. The tool originally comprised six domains—Study Participation, Prognostic Factor Measurement, Outcome Measurement, Statistical Analysis and Reporting, Study Confounding, and Study Attrition—each of which is guided by three to seven prompting items. Based on the risk of bias, the overall quality of each study was determined as high (score 5–6), moderate (score 3–4), or low (score 0–2); low-quality studies were excluded from this review.

The criteria adopted in this systematic review were designed to synthesize the level of evidence (9), which was defined as “strong,” if there were consistent recommendations (≥75%) in multiple high-quality cohorts; “moderate,” if recommendations were consistent in ≥67% of multiple high-quality cohorts; “limited,” if the recommendation was based on a single cohort; and “inconclusive,” if there were inconsistent recommendations.




Results


Study Selection

An initial search of the three databases identified 5,595 studies that fit the search terms. Following the exclusion of ineligible articles (based on the predefined study eligibility criteria), two independent teams were constituted to identify new suggestions for improving the current TNM 8th Edition. Among the 2,200 studies evaluated, 34 original studies were selected for inclusion by both teams, whereas 198 studies were selected by only one team. The studies with a discrepancy in agreement were further reviewed by three independent reviewers, and 74 were accepted for inclusion. Thus, a total of 108 original studies were included in this in-depth systematic review.



Study Characteristics

The characteristics of the 108 studies are presented in Supplementary Tables 2–6. Only six studies are prospective analyses, while the rest (n = 102) were retrospective. The majority of studies (n = 101) included only patients without distant metastasis. Forty-four studies focused on anatomical criteria: 22 studies on primary tumor (T-classification) (6, 10–30), 20 on nodal disease (N-classification) (14, 22, 23, 31–47), 5 studies on metastatic disease (M-classification) (48–52), and 3 studies included more than one category. In the 64 studies that evaluated non-anatomical factors, 22 studies focused on plasma Epstein-Barr virus (EBV) deoxyribonucleic acid (DNA) level (53–71), 12 studies on tumor volume (63, 65, 72–81), 18 studies on inflammatory/hematological factors (54, 82–98), and 15 studies on the parameters of fluorodeoxyglucose (FDG) positron emission tomography (PET) (99–113). Three studies had more than one non-anatomical category.



Risks of Bias

The assessment on study quality using the QUIPS tool showed that 62 (57.4%) of the included articles were classified as high quality and 46 (42.6%) as moderate quality. Supplementary Figure 1 presents an algorithm of the study selection process, and Supplementary Tables 2–6 list the QUIPS scores of the included studies. Suggestions from well-conducted studies with large sample sizes or with evidence supported by multiple studies were identified for inclusion in this review.



Proposed Changes and Prognostic Factors

Summary of the level of evidence on the recommendations and studied prognostic factors is summarized in Table 1. Among the 44 reports on TNM parameters (Table 2), 13 proposed changes to current TNM-8 were identified: six on T-category, eight on N-category, and one on M-category. The recommendations that were considered to have a strong level of evidence included the involvement of the paranasal sinus (PNS) as T4 disease (16, 18–20), parotid lymph node (PLN) as N3 disease (34, 35), and the upstaging of N-classification in the presence of lymph node necrosis (LNN) (39, 40, 42).


Table 1 | Proposed prognostic factors and the level of evidence for recommendations.




Table 2 | Characteristics of studies of T-, N-, and M-classification prognostic factors and survival (n=44).








Among the 64 studies on non-TNM factors, 18 proposed parameters were identified. Prognostic factors with consistent support from multiple studies included EBV-DNA level (Table 3), primary gross tumor volume (GTV) (63, 72–74, 76, 78–81), nodal GTV (Table 4) (74, 75, 77, 81), neutrophil-lymphocyte ratio (NLR) (Table 5) (83, 85, 91, 92, 97), C-reactive protein (CRP)/albumin ratio (83, 89, 98), anemia (84, 87, 96), platelet count (82, 86), lactate dehydrogenase (LDH) (88, 95), and SUVmax of the primary tumor (99–101, 103, 108, 111, 113) and total lesion glycolysis (TLG) (Table 6) (104, 111).


Table 3 | Association of overall survival with the pretreatment EBV DNA level (n=16).




Table 4 | Association of overall survival with tumor volume (n=11).




Table 5 | Association of overall survival with neutrophil-lymphocyte ratio (NLR) (n=4).




Table 6 | Association of overall survival with PET parameters (n=10).






Discussion

To our understanding, this systematic review that evaluated the prognostic factors for NPC patients in 108 articles published from 2013 to 2019 is the most comprehensive review on this topic. The TNM 8th Edition, based entirely on the anatomical tumor extent, is the most widely used prognostic tool for NPC and remains the most robust factor for guiding treatment decisions, evaluating treatment results, and comparing outcomes between institutions worldwide. However, continuous improvement is necessary in view of the advances in investigations and treatments. Furthermore, refinement of prognostic tools by the incorporation of novel proposals based on functional imaging, plasma biomarkers, and molecular tumor characteristics is desirable in the current era of personalized oncology. For tumors with disease sites such as the prostate, breast, and skin (i.e., melanoma), non-anatomical factors have been successfully incorporated while still maintaining essential anatomical information. For NPC, considerable progress on both anatomical and non-anatomical prognostic factors have been made since the publication of the TNM 8th Edition. This systematic review reviewed the latest evidence to facilitate the formulation of a comprehensive proposal for designing the upcoming TNM 9th Edition.


T-Classification

A major change in the TNM 8th Edition was the replacement of the ambiguous terms IF/masseter space involvement with a clear specification of extensive soft tissue infiltration beyond the lateral surface of LP as T4, and the downstaging of MP/LP/PM to T2. This change was supported by two studies (10, 13, 14). However, five studies showed that MP and/or LP involvement was associated with a worse prognosis than T2 and should be upstaged; suggestions included categorizing MP as T3 and LP as T4 disease (n = 1) (16), MP as T2 and LP as T4 (n = 3) (13, 15, 30), and both MP and LP as T3 disease (n = 1) (10). Thus, further validation of the prognostic significance of MP/LP is recommended.

Three studies, comprising a total of 1,348 patients, showed that PNS involvement should be upstaged from current T3 to T4 disease given its poorer outcomes (5-year OS rate of 53.7–83.7%) (16, 19, 20). Of note, Zhang et al. reported worse prognoses among patients with ethmoid sinus or maxillary sinus involvement as T4 disease, but better prognosis in those with sphenoid sinus invasion alone as T3 disease (18); further studies on the relapse risks of various PNS are warranted.

The widespread use of magnetic resonance imaging (MRI) has improved the accuracy of detection of the extent of involvement of the skull base and of intracranial extension. With better disease characterization, Li et al. proposed the subdivision of skull base involvement into T3-slight (pterygoid process and/or base of the pterygoid bone only) and T3-severe (others) (24); similarly, Cao et al. suggested the subdivision of T4 into T4a (without intracranial extension) and T4b (with intracranial extension) based on the presence of intracranial extension (29). Further studies are needed to validate these findings.

With the technological advances in both diagnostics and treatment, the differences in survival and local control in the T-category has diminished. Eight of the included studies proposed the simplification of the T-category (6, 21–27); these included three studies that suggested the merging of T1 and T2 disease (21, 23, 24), one suggested combining of T1, T2, and T3 disease (22), and one proposed a merging of T2 and T3 (27). Other studies proposed simplification of the definition of T-classification, refinement of T2–T4 disease, and reclassification as T1 and T2 only (6, 25, 26).

Level of Evidence:

Strong: PNS involvement (T4 disease)

Moderate: Nil

Inconclusive: MP (upstaged to T3/4), LP (upstaged to T3/4), and merging of T-classification (T1–T2, T1, T2, and T3, or T2–T3)

Limited: Skull base (T3 slight vs. T3 severe) and intracranial extension (T4a vs. T4b).



N-Classification

Despite the rarity of PLN metastasis (0.4–2.8%), consistent findings were noted on its adverse prognostic outcome, which was similar to those with N3 disease, as demonstrated in two studies that included a total of 11,742 patients. Both reports recommended PLN involvement as the criteria for N3 classification (34, 35). Also, suspicion of PLN metastasis, especially in patients with advanced nodal diseases, should be raised on pretreatment imaging, and biopsy is indicated in the suspected case.

Furthermore, in five studies, there was consensus that LNN was an adverse prognostic factor (hazard ratio [HR]: 1.75–5.79) (38–42). In the largest study by Lan et al., patients with LNN had worse OS and DMFS (OS, 78.8 vs. 91.8%; DMFS, 78.4 vs. 91.6%, both p < 0.001); the authors proposed that patients with LNN should be upstaged in their respective N-category (39).

In addition to the proposals identified in the current literature search, extra-nodal extension (ENE) was recently advocated as a new criterion for N3-classification in the TNM 8th Edition for other head and neck cancers, but not for NPC. Specifically, Ai et al. proposed the categorization, as N3 disease, of ENE with infiltration into the adjacent muscle/skin/salivary gland (36). Lu et al. showed that ENE was a poor prognostic factor for NPC and proposed to categorize ENE as G0: lymph nodes without ENE; G1: tumor infiltration beyond the individual nodal capsule(s) into the surrounding fat plane; G2: coalescent nodal mass with unequivocal evidence of ENE; G3: tumor infiltration beyond the nodal capsule into adjacent structures (37). Only G2/G3 ENE, but not G1, was independently prognostic of death; the authors hence proposed a refined N-classification: New-N1: N1/N2 without G2-/G3-ENE; New-N2: N1 with G2-ENE; New-N3: N2 with G2-ENE, N1/N2 with G3-rENE, or N3. On the contrary, Guo et al. suggested that ENE was not a poor prognostic factor; but the definition of ENE was not mentioned in their study (38).

The current TNM 8th Edition categorizes retropharyngeal lymph node involvement (≤6 cm) as N1 disease, regardless of its unilateral or bilateral involvement. Tang et al. supported the current classification (32), but Study by Huang et al. on 1,225 patients (33) suggested upstaging bilateral retropharyngeal lymph node involvement as N2 disease, as they have worse 5-year OS (89.4 vs. 82.6%) and DMFS (91.5 vs. 82.9%).

Furthermore, four studies proposed the simplification of the N-classification and supported the current N3 disease with merging of the previous N3a and N3b (14, 23, 45, 47). Other studies on PLV LN, cervical LN level, and the number of LN regions had limited evidence (22, 43, 44, 46).

Level of Evidence:

Strong: PLN (N3 disease), LNN (Upstaging of N-classification)

Moderate: ENE (Upstaging of N-classification or N3)

Inconclusive: RLN involvement

Limited: PLV LN, cervical LN level, number of LN regions, merging of N2 and N3



M-Classification

Several suggestions have been made on the subcategorization of de novo oligo-metastatic disease based on the number of metastatic lesions and the site(s) of involvement (48–52). However, given the diversity of definition and management of patients with oligo-metastasis, no conclusive recommendation could be made. Most studies have shown that the number of metastatic lesions and the number of organ involvements were independent poor prognostic factors. Furthermore, both Shen et al. and Zou et al. reported that single (or oligo-) metastatic lesions without liver involvement had better prognoses compared with lesions with liver involvement (49, 52). In a multicenter study of 977 patients that was reported by Zou et al., liver metastases represented a worse prognostic factor regardless of the number of metastatic lesions with a 3-year OS rate of 34.3–72.8% vs. 22.6–23.6% (52).

Level of Evidence:

Inconclusive: Subclassification of M-category



Plasma EBV-DNA Level

The measurement of EBV-DNA concentration is widely used in diagnosis, prognostication, treatment monitoring, and the surveillance of recurrence. In concordance with previous meta-analyses (115–117), we found that the pretreatment plasma EBV-DNA level was a prognostic factor; the risk of mortality, local failure, and metastases was 1.3- to 8.4-fold, 1.1- to 3.1-fold, and 1.4- to 8.1-fold higher, respectively, for patients with high EBV-DNA levels compared to patients with low EBV-DNA levels (53–71, 114).

Several studies have highlighted the important role of EBV-DNA to refine the prognosis of patients with similar TNM stage groups. In a study of 385 patients with Stage II (TNM 7th edition) disease, the 3-year PFS, LRFS, and DMFS rates for the detectable and undetectable EBV-DNA groups were 89.1 vs. 96.4%, 94.3 vs. 98.2%, and 94.2 vs. 98.6%, respectively (p = 0.005, 0.039, and 0.017, respectively) (63). For locally advanced disease, Zhang et al. revealed that patients with stage II–III (TNM 7th Edition) and a high EBV-DNA level had worse survival than those with stage IVa–b and a low EBV-DNA level (5-year OS: 82.7 vs. 92.9%, PFS: 70.7 vs. 89%) (57). Similarly, Jin et al. showed that the prognosis of patients with stage IVa–b (TNM 7th Edition) and low EBV-DNA level was similar to that of patients with Stage III disease and high EBV-DNA level (61).

Furthermore, two studies demonstrated that recursive partitioning analysis (RPA), which integrated stage groups and the plasma EBV-DNA level, had better survival predictive ability compared to the TNM 8th Edition (67, 71). Guo et al. proposed the following RPA classes: Stage RI (T1N0), RIIA (T2–T3N0 or T1–T3N1, EBV-DNA ≤2,000 copies/ml), Stage RIIB (T2–T3N0 or T1–T3N1, EBV-DNA >2,000 copies/ml; T1–T3N2, EBV-DNA ≤2,000 copies/ml), Stage RIII (T1–T3N2, EBV-DNA >2,000 copies/ml; T4N0–N2), and Stage RIVA (any T and N3) (67). The 5-year PFS rate was 100, 87.9, 76.7, 68.7, and 50.4% for the proposed stages RI, RIIA, RIIB, RIII, and RIV, respectively (p < 0.001). In a similar study by Lee VH et al., RPA derived four new stages: RPA-I (T1–T4, N0–N2, and EBV-DNA <500 copies/ml), RPA-II (T1–T4, N0–N2, and EBV-DNA ≥500 copies/ml), RPA-III (T1–T2 and N3), and RPA-IVA (T3–T4 and N3) (71).

The EBV-DNA concentration could provide biological information of tumors beyond the anatomical factors and thereby improve the prognostic performance of the staging system. Nonetheless, the heterogeneity of cutoff values has hindered the wide application of EBV-DNA in NPC staging. The EBV-DNA cutoff values varied markedly among our included studies (1,500–25,000 copies/ml), with 4,000 copies/ml being the most frequently used cutoff value (54, 57, 59, 66). Plasma EBV-DNA is a laboratory-developed test with heterogeneity based on different DNA extraction, purification, and stabilization methods; different instruments used; different primers and probes that target a different part of the EBV genome; and different quantification controls (118). An earlier study showed that different PCR assays using primer/probe sets for latent membrane protein-2 (LMP-2) and BamHI-W might yield slightly different plasma EBV-DNA concentrations from that in the same sample (119). Also, the low sensitivity of EBV-DNA assays in patients with low-volume NPC is another concern (120). Thus, further international efforts are encouraged to harmonize the assay and validate it in large prospective cohorts to ensure that plasma EBV-DNA can unleash its full potential and be incorporated into the staging system.

Level of Evidence:

Strong: Pretreatment EBV-DNA level



Tumor Volume

There were 12 studies with 8,403 patients in the current systematic review that evaluated the significance of tumor volumes (GTV-P and/or GTV-N). Seven papers focused on the primary tumor volume (GTV-P; n = 7) (63, 72, 73, 76, 78–80), two on the nodal tumor volume (GTV-N; n = 2) (75, 77), and two on the total tumor volume including primary and node (GTV-P and GTV-N; n = 2) (74, 81). One study did not include a cutoff for GTV-N and GTV-P (65).

The findings suggested that large GTV-P was an independent predictor of OS (HR 1.56–3.23) (63, 72–74, 76, 78–80), DMFS (HR 1.01–3.23) (63, 65, 77–81), and LRFS (HR 1.01–2.79) (63, 73, 76, 78–81). Similarly, large GTV-N was an adverse prognostic factor for OS (HR 1.56–3.41) (75, 77) and DMFS (HR 2.72–6.33) (75, 81). However, the proposed cutoff values varied widely among the studies included in this review (Table 4): GTV-P ranged from 20 to 50 ml (median 33 ml), and GTV-N ranged from 7.2 to 35.7 ml (median 15 ml).

The current T- and N-classifications of the staging system are primarily based on the extent of tumor invasion and the maximum diameter of the LN, respectively. Tumor volume might correlate better with the number of clonogenic tumor cells, leading to a more accurate prediction of the chance of cure (121). Volumetric stratification has been demonstrated to improve the prognostic ability of the TNM staging system. Jeong et al. divided stage II–IV (TNM 8th Edition) into the volume subgroup and found that the 5-year OS was significantly better in participants with GTV-P ≤33 ml compared to those with GTV-P >33 ml (87.3 vs. 66.7%) (80); Chen et al. showed that among 385 TNM-8th Edition classified Stage II patients, those with a total GTV <30 cm3 was associated with a better prognosis than those with a total GTV ≥30 cm3 (63).

Despite the growing body of evidence, tumor volume is yet to be used for cancer staging in routine clinical practice for several reasons. Firstly, there are significant intra- and inter-observer variations in volume delineation. Secondly, the malignant tumor often grows into irregular shapes, and accurate measurement of tumor volume is hard to achieve with conventional imaging. Furthermore, the cutoff value of the tumor volume is difficult to define due to the differences in assessment software, measurement timing, and methods of statistical analysis (122, 123). Future efforts are needed to overcome these challenges before tumor volume can be used as a widely applied prognostic marker.

Level of Evidence:

Strong: Primary GTV volume and nodal GTV volume



Blood Inflammatory/Hematological Markers

In the 18 studies that were included, nine inflammatory/hematological markers were evaluated: the most frequently proposed marker (n = 5) is NLR (83, 85, 91, 92, 97), followed by anemia (n = 3) (84, 87, 96), LDH (n = 2) (88, 95), platelet count (n = 2) (82, 86), and the CRP/albumin ratio (n = 3) (83, 89, 98). Other proposals with limited supporting evidence included high-sensitivity CRP (hs-CRP; n = 1) (54), platelet distribution width (PDW) (86), prognostic nutrition index (PNI) and albumin/globulin ratio (AGR) (n = 1) (93), D-dimer (n = 1) (94), and tumor-infiltrating lymphocytes (TIL; n = 1) (90).

The results of 2,225 NPC patients in five studies showed that elevated pretreatment NLR was consistently associated with worse OS (HR 1.19–2.38), DMFS (HR 1.45), and LRFS (HR 1.35) (Supplementary Table 5) (83, 85, 91, 92, 97). Evidence suggested that proinflammatory tumor microenvironments are closely related to cancer development and progression. Lymphocytes are immune cells that exhibit an antitumor function, while neutrophils are inflammatory cells that influence the cytotoxic activity of the immune system. Therefore, an increased NLR, with an elevated neutrophil count and/or reduced lymphocyte count, is a biomarker that reflects an imbalance in pro- and antitumor activities in the host’s immune system. Various cutoff values of NLR have been suggested (range 2.28–3.00, median 2.32), and the analysis suggested that NLR was a reliable prognostic marker regardless of the cutoff value (124).

Other hematological markers such as hemoglobin, platelet count, LDH, and CRP have the advantages of easy accessibility, inexpensive measurement, and high reproducibility and therefore possess a promising potential for integration into the international prognostic system. In particular, the significance of LDH and CRP have long been recognized (125–127), and these parameters had been incorporated in various recently published prognostic nomograms of NPC (128–130). Accordingly, further validations of these findings are encouraged.

Level of Evidence:

Strong: NLR, CRP/albumin ratio, anemia, PDW and platelet count, and LDH

Limited: Hs-CRP, PNI and AGR, D-dimer, and TIL



FDG-PET Parameters

Among the 15 studies on FDG-PET included in the current review, most evaluated the maximum SUV (SUVmax), either alone (n = 11) (100–103, 105–108, 110, 112, 113); some also proposed other metabolic parameters, such as metabolic tumor volume (MTV; n = 1) (99) or TLG (n = 2) (104, 111) (Supplementary Table 6). A single study further evaluated the difference in prognosis between PET-CT-guided dose-painting intensity-modulated radiation therapy (IMRT) and CT-based IMRT (109).

Four studies consistently showed that the high SUVmax of the primary tumor was associated with poor OS (HR 1.07–4.88) (99, 101, 102, 111); however, conflicting results were shown with regard to the high SUVmax of nodal and metastatic disease (102, 113). High TLG was associated with inferior OS in two studies, and MTV was a poor prognostic factor in one study (Supplementary Table 6) (99, 104, 111). Therefore, we recommend further validation of the role of the high SUVmax of the primary tumor and high TLG.

The metabolic information of FDG-PET could predict tumor aggressiveness and be correlated with patient survival (131). The majority of FDG-PET studies evaluated the prognostic role of the SUVmax of the tumor mass; however, the SUVmax was limited by representing only the maximum uptake within the volume of interest (VOI) instead of within the entire mass. Emerging metabolic parameters such as TLG and MTV have been proposed to overcome these limitations: MTV is measured by contouring margins defined by thresholds, whereas TLG is calculated by multiplying the MTV by the mean SUV. Additional studies are encouraged to define the prognostic role of the abovementioned factor. However, the diverse range of cutoff values of these PET parameters used in different studies are attributable to several reasons. First, variables such as tumor delineation and definition of VOI may affect the MTV and TLG values; second, the cutoff values are established by the statistical parameters of each institution without cross-validation. Based on the evidence in the current literature, we cannot recommend a concrete cutoff value for further validation as the wide range of values has limited its reproducibility and global applicability.

Level of Evidence:

Strong: High SUVmax of the primary tumor and TLG

Limited: MTV

Inconclusive: High SUVmax of nodal disease and SUVmax of metastatic disease



Limitations

The limitations of this research merit discussion. Firstly, despite the exclusion of poor-quality studies, most of the included studies had a retrospective observational design, which is prone to biases. Secondly, the majority of the included studies that evaluated the non-anatomical markers used dichotomous variables to determine the prognostic value. The cutoff value of parameters varied among different studies, as it was calculated statistically in each study to achieve the most significant prognostic effect; therefore, the generalizability of the findings is uncertain. Thirdly, due to the heterogeneity of study designs, study populations, measurement techniques, and cutoff values, we were unable to perform a meta-analysis to estimate a pooled value reliably. Also, some of the studies of plasma EBV-DNA in early years were not included in the present analysis; however, our conclusion remains consistent with the previous findings (115–117). Lastly, some of the novel markers, such as radiomics, micro-RNA, circulating tumor cells, and genetic signatures, were not included in this review due to their limited global applicability at present.



Summary Remarks

This systematic review has identified a comprehensive list of prognostic factors and suggestions that could contribute toward more accurate risk stratification for designing personalized treatment for NPC. Further studies for the validation of these factors are needed to confirm reproducibility and define the optimal cutoff criterion, to formulate the recommendations for designing the upcoming 9th Edition of the TNM staging system.
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Background

Dynamic changes in circulating immune-inflammatory cells have been regarded as simple and convenient prognostic biomarkers in various cancers. However, studies on the prognostic values of their ratios in oral squamous cell carcinoma (OSCC) remain limited.



Materials and Methods

A total of 493 OSCC patients were included in the present study. Here, we investigated the prognostic values of the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), neutrophil-to-white blood cell ratio (NWR), and lymphocyte-to-white blood cell ratio (LWR) in OSCC. The correlations of the NLR, LMR, NWR, and LWR with clinicopathological characteristics were statistically analyzed using the Chi-square test, Kaplan-Meier curves, and univariate and multivariate Cox regression models.



Result

Kaplan-Meier analyses revealed that OSCC patients with a high LMR and low NWR had prolonged overall survival (OS, P<0.001) and disease-free survival (DFS, P<0.001 and P=0.003, respectively), but there were no significant differences in metastasis-free survival (MFS, P=0.053 and P=0.052, respectively). In contrary, a high NLR and low LWR were associated with poor OS (P<0.001 and P=0.0016, respectively), DFS (P=0.0014 and 0.0012, respectively) and MFS (P=0.021 and 0.008, respectively). Additionally, Cox multivariate analyses showed that the LMR was an independent prognostic factor for both OS (P=0.007) and DFS (P=0.017), while the LWR was an independent prognostic factor for MFS (P=0.009).



Conclusion

Preoperative NLR, LMR, NWR, and LWR in the peripheral blood are significant prognostic factors for OSCC and might be helpful in predicting OSCC progression.
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Introduction

Oral squamous cell carcinoma (OSCC) refers to a malignant tumor that originates from the mouth and is dominated by squamous cells (1). Cancer cells can occur in the gingiva, hard palate, tongue, buccal mucosa, lip and other organs, and the number of confirmed OSCC cases is predicted to rise to 856,000 cases by 2035 worldwide (2). Although many therapeutic strategies for OSCC have shown promising effects in the treatment of OSCC in recent decades, the 5-year survival rate remains at approximately 65% (3). In addition, the survival rates of patients are affected by the stage of cancer progression. For localized OSCC, the 5-year survival rate is 84% but decreases to 65% in regional cases and to 39% if distant metastasis is present (4). In other words, a high survival rate relies largely on early detection, which is the key to improving the quality of life of OSCC patients. To avoid distant metastasis of OSCC due to a missed diagnosis, local and precise approaches are urgently needed to prevent, screen, and intervene in OSCC.

The traditional tumor staging system is based on the primary tumor classification (T), quantification of nodal metastasis (N), and presence of distant metastasis (M) (5). However, patients with the same TNM stages often show significantly different prognoses, which indicates that the TNM staging system remains far from optimal in predicting OSCC outcomes, especially the clinical TNM (cTNM) (6, 7), which largely relies on the radiological evaluation. It is well known that the radiological examination can be influenced by the limitations of imaging techniques or technicians, which may result in inaccurate classification (8). Thus, some studies considered introducing a prognostic evaluation using serum biomarkers (such as neutrophils, lymphocytes, and monocytes) to optimally stratify patients, select treatment strategies and predict prognosis in the clinic (9, 10). The main strength of the novel method is that the information can be obtained from routine blood tests before surgery, without any extra effort, making it a simple, economical, and real-time prediction tool.

Numerous studies have indicated that changes in circulating immune-inflammatory cells, such as monocytes, lymphocytes, neutrophils, and platelets, in the peripheral blood could be novel prognostic biomarkers in soft tissue sarcomas or oropharyngeal cancer (10, 11). However, whether assessing the circulating immune-inflammatory in peripheral blood is suitable for OSCC is still unclear. Tsai et al. studied 202 OSCC patients and found that the pretreatment circulating monocyte count increased with advanced clinical stage (12). In a retrospective study of 309 patients with OSCC, a high platelet count, high neutrophil count and low lymphocyte count were found to be associated with reduced overall survival (OS) and disease-free survival (DFS) (13). Some studies have also indicated that an increased pretreatment neutrophil-to-lymphocyte ratio (NLR) is associated with poor outcomes in hepatocellular carcinoma, colorectal cancer, endometrial cancer, and gastric cancer (14–17). However, few studies have reported the prognostic values of the ratios of immune-inflammatory cells, such as the NLR, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-white blood cell ratio (NWR), and lymphocyte-to-white blood cell ratio (LWR), especially in patients with OSCC. Moreover, previous studies have focused on the relationship between serum biomarkers and OS or DFS, but the predictive capacity of these biomarkers for metastasis has not yet been reported.

Therefore, the current study aimed to evaluate the association of the NLR, LMR, NWR, and LWR with clinicopathological characteristics, as well as their prognostic value for OS, DFS, and MFS in OSCC patients.



Materials and Methods


Inclusion and Exclusion Criteria of Participants

The clinical data used in the present study were obtained from a database that collected demographic data, clinical characteristics, treatments, and follow-ups of all patients with OSCC who were primary diagnosed and surgically treated at Nanjing Stomatological Hospital from 2012 to 2015.

The inclusion criteria for the study were as follows: (1) primary OSCC without any previous treatment; (2) tumor resected completely by surgical ablation and neck lymph node dissection (if necessary); and (3) availability of complete follow-up data, including survival, metastasis, and cause of death. Patients who met the following conditions were excluded: (1) patients with incomplete clinical and laboratory data; (2) patients who received chemotherapy or radiotherapy prior to surgery; (3) patients who were diagnosed with nonsquamous carcinoma, such as adenoid cystic carcinoma and mucoepidermoid carcinoma; and (4) patients with blood and lymphatic system disorders.



Data Collection

Patients underwent standard workups according to the OSCC clinical pathway. Before the operation, a record of a clear medical history, a complete physical examination, results of laboratory and hematological investigations, results of cone beam computed tomography (CBCT) or head and neck computed tomography, and chest radiographs were obtained. Tumors were excised with adequate margins under intraoperative frozen-section control, and pathological TNM classification was performed according to the American Joint Committee on Cancer (AJCC) Staging Manual (7th Edition).

For each patient, the following information was obtained: age, sex, T stage, N stage, M stage, relapse, lesion site, smoking status, and survival status. The lymphocyte count, monocyte count, neutrophil count, and white blood cell count were retrieved from preoperative blood tests; the NLR, LMR, NWR, and LWR were further derived from these values. All patients were regularly followed up bimonthly until August 31, 2018. Recurrence was defined as the presence of tumors with similar histological characteristics after treatment. Metastasis was defined as tumor recurrence within distant organs.



Ethics

This study was approved by the Ethics Committee of Nanjing Stomatological Hospital, Medical School of Nanjing University(2015NL-018KS), and written informed consent was obtained from the patients or their families.



Statistical Analysis

The endpoints of this study included OS (time between diagnosis and death from any cause), DFS (time between end of primary treatment to recurrence/second primary/last follow-up), and MFS (time between diagnosis and the occurrence of distant metastasis).

The associations between the NLR, LMR, NWR, LWR, and clinicopathological parameters were evaluated by the Chi-square test. The continuous variables NLR, LMR, NWR, and LWR were analyzed as dichotomous variables according to the optimal cutoff value. The associations of the NLR, LMR, NWR, and LWR with the state of metastasis were judged by Student’s t test. Patients’ clinical endpoints were calculated using Kaplan-Meier curves and compared by the log-rank test. Backward stepwise multivariate Cox proportion analysis was performed to determine the influence of age, sex, TNM stage, nodal status, metastasis, smoking, NLR, LMR, NWR, and LWR on OS, DFS, and MFS. The results from the Cox analysis are reported as relative risks with the corresponding 95% confidence intervals (CIs). Statistical analyses were performed with SPSS software (version 19, SPSS Inc., Chicago, IL, USA). P < 0.05 was considered statistically significant.




Results


Patient Characteristics

A total of 493 patients fulfilled the inclusion criteria of this study, and all their clinicopathological characteristics are presented in Table 1. Briefly, there were a total of 261 males and 232 females; among whom 208 patients were <60 years old, 285 patients were ≥ 60 years old, and 132 patients had a smoking habit, and 361 patients did not. According to tumor stage, a total of 164 (33.3%) cases were T1 (tumor diameter ≤ 2 cm), 246 (49.9%) were T2 (2 cm < tumor diameter ≤ 4 cm), 34 (6.9%) were T3 (tumor diameter > 4 cm), and 49 (9.9%) were T4 (the tumor spread to the surrounding structure). Among the 493 patients, 30 had local relapse, and 44 had distant metastasis. Until the last follow-up, 416 (84.4%) patients remained alive, whereas 77 (15.6%) patients died due to disease recurrence, metastasis, or other reasons. All data are shown in the Table 1.


Table 1 | Clinico-pathological characteristics of patients with OSCC.





Associations of Serum Biomarkers With Clinicopathological Characteristics of Patients With OSCC

In the present study, patients were stratified using optimum cutoff values for the NLR (2.9), LMR (3.4), NWR (0.67), and LWR (0.23), which were determined according to the highest χ2 value defined by Kaplan-Meier survival analysis and log-rank tests. The associations of the above hematological parameters with the clinicopathological characteristics of patients with OSCC are shown in Table 2. Older age was associated more with a high NLR (P=0.01) and low LWR (P=0.005). Males were more strongly associated with a high NLR (P=0.01), high NWR (P=0.031), low LMR (P<0.001), and low LWR (P=0.003) than females. Both a high NLR and high NWR were demonstrated to be associated with the presence of metastasis (P=0.031 and P<0.001, respectively), while a low LWR was demonstrated to be associated with the presence of metastasis (P=0.012).


Table 2 | Associations of NLR, LMR, NWR, and LWR with clinicopathological characteristics.





Associations of the NLR, LMR, NWR, and LWR With the State of Metastasis and Survival

Student’s t test was used to compare the NLR, LMR, NWR and LWR with the state of metastasis. The results showed that a high NLR and NWR and a low LWR were associated with metastasis (P<0.05) (Figure 1). To evaluate the prognostic values of the NLR, LMR, NWR, and LWR on OS (Figure 2), DFS (Figure 3), and MFS (Figure 4), the Kaplan-Meier method was used. The analysis of the results revealed that patients with a high NLR (P<0.001) or NWR (P<0.001) had significantly worse OS, while those with a high LMR (P<0.001) or LWR (P=0.0016) had better OS. Similar differences were also observed in DFS. Figure 3 shows that patients with a high NLR (P=0.0014) or NWR (P=0.003) had significantly worse DFS, while those with a high LMR (P<0.001) or LWR (P=0.0012) had better DFS. However, with regard to MFS, only the NLR and LWR were significantly associated with MFS. Specifically, patients with a high NLR and low LWR had significantly poor MFS (P=0.021 and 0.008, respectively).




Figure 1 | Associations of the prognostic values with the state of metastasis in oral squamous cell carcinoma. (A) neutrophil-to-lymphocyte ratio (NLR), (B) lymphocyte-to-monocyte ratio (LMR), (C) neutrophil-to-white blood cell ratio (NWR) and (D) lymphocyte-to-white blood cell ratio (LWR). Asterisks (*) indicate statistical significance.






Figure 2 | Kaplan-Meier plots for the probability of overall survival (OS). OS rates of the patient subgroups stratified by the (A) neutrophil-to-lymphocyte ratio (NLR), (B) lymphocyte-to-monocyte ratio (LMR), (C) neutrophil-to-white blood cell ratio (NWR) and (D) lymphocyte-to-white blood cell ratio (LWR). Asterisks (*) indicate statistical significance.






Figure 3 | Kaplan-Meier plots for the probability of disease-free survival (DFS). DFS rates of the patient subgroups stratified by the (A) neutrophil-to-lymphocyte ratio (NLR), (B) lymphocyte-to-monocyte ratio (LMR), (C) neutrophil-to-white blood cell ratio (NWR) and (D) lymphocyte-to-white blood cell ratio (LWR). Asterisks (*) indicate statistical significance.






Figure 4 | Kaplan-Meier plots for the probability of metastasis-free survival (MFS). MFS rates of the patient subgroups stratified by the (A) neutrophil-to-lymphocyte ratio (NLR), (B) lymphocyte-to-monocyte ratio (LMR), (C) neutrophil-to-white blood cell ratio (NWR) and (D) lymphocyte-to-white blood cell ratio (LWR). Asterisks (*) indicate statistical significance.





Univariate and Multivariate Analyses of Prognostic Factors

To further verify the prognostic values of the NLR, LMR, NWR, and LWR, univariate and multivariate analyses of OS, DFS and MFS were performed. As shown in Table 3, the univariate analysis demonstrated that nodal status (P<0.001), metastasis (P<0.001), the NLR (P=0.001), the LMR (P<0.001), the NWR (P=0.001), and the LWR (P=0.002) were significantly associated with OS. Subsequently, these parameters were further analyzed with multivariate Cox regression analysis, and the results revealed that nodal status (hazard ratio [HR]=2.912, 95% CI=1.853-4.575, p<0.001), metastasis (HR=8.008, 95% CI=4.988-12.857, P<0.001), and the LMR (HR=0.532, 95% CI=0.336-0.840, P=0.007) were significantly associated with OS, indicating that nodal status, metastasis, and the LMR are independent prognostic factors for OS.


Table 3 | Univariate and multivariate analysis for OS.



For DFS, the univariate analysis showed that nodal status (P<0.001), metastasis (P<0.001), the NLR (P=0.002), the LMR (P<0.001), the NWR (P=0.004), and the LWR (P=0.002) were significantly associated with prognosis (Table 4). However, only nodal status (HR=1.960, 95% CI=1.316-2.919, P=0.001), metastasis (HR=21.561, 95% CI=13.878-33.496, P<0.001) and the LMR (HR=0.609, 95% CI=0.406-0.915, P=0.017) remained significant, indicating that nodal status, metastasis and the LMR are independent prognostic factors for DFS in OSCC patients.


Table 4 | Univariate and multivariate analysis for DFS.



The univariate analysis shown in Table 5 revealed that nodal status (P=0.04), the NLR (P=0.024) and the LWR (P=0.009) were significantly associated with MFS. However, in the multivariate analyses using the Cox proportional hazards model for MFS, only the LWR (HR=0.451, 95% CI=0.247-0.823, P=0.009) was identified as a significant prognostic factor.


Table 5 | Univariate and multivariate analysis for MFS.






Discussion

OSCC is a highly malignant tumor type (18), and the development of effective methods to diagnose and treat OSCC represents an urgent task (19). Inflammation is a basic and important pathologic response of the body triggered by damage that can occur alone or accompany tumors (20). Carcinogenesis not only recruits WBCs to and around neoplasms but also causes tissue damage through physical and chemical mechanisms, leading to wide, nonspecific inflammatory responses and systemic inflammatory responses (21). Thus, changes the counts and component proportions of white blood cells (WBCs) are changed. In the present study, the clinicopathological characteristics, follow-up data, and various peripheral blood component ratios of 493 patients with OSCC were analyzed to verify the correlations between cancer-associated systemic inflammation and OSCC outcomes. We found that a high NLR and low LWR were associated with older age. We also found that males were more strongly associated with a high NLR, high NWR, low LMR, and low LWR than females, consistent with previous studies (22). In addition, a high NLR, high NWR and low LWR were found to be associated with the presence of metastasis. However, relationships between serum biomarkers and other clinicopathological characteristics, including tumor stage, lymph node stage and relapse, were not found. This suggests that the predictive effect of the NLR, NWR, LMR and LWR may be independent of the TNM staging system. We can use these serum biomarkers to complement the diagnosis of OSCC, to evaluate prognosis and to assess treatment.

Regarding cancer-associated inflammatory responses, a previous study demonstrated a moderate correlation between monocytes and neutrophils, as they both have a negative impact on the prognosis of patients with oropharyngeal cancer, whereas lymphocytes have the opposite effect (23). The NLR, which reflects the balance between a protumor inflammatory status and an antitumor immune status, is the most widely used parameter for prognostic prediction. Most studies have reported that an increased NLR is related to worse disease control and poor survival (24–26). Similarly, in the current study, we also observed that patients with a high NLR were associated with a significant downward trend of survival probability according to the 80-month Kaplan-Meier curves for OS, DFS and MFS. Unfortunately, the multivariate analysis demonstrated that the NLR is not an independent prognostic factor for OS, DFS or MFS. The LWR is another predictive biomarker related to the prognosis of various cancers, including gastric cancer and non-small-cell lung cancer (27, 28). However, we did not find any literature reporting an association between the LWR and OSCC. According to the results of the univariate and multivariate analyses in our study, the LWR is an independent prognostic factor for MFS. This might be the first report to state a cutoff value for the LWR in predicting metastasis and demonstrated that a low LWR is a poor prognostic factor in patients with OSCC. The prognostic value of the LMR has been investigated by many schoolers while studying various cancers, including breast, lung, esophageal, gastric, colorectal, pancreatic, bladder, and cervical cancers (29). Lin et al. studied 256 patients with newly diagnosed metastatic nasopharyngeal carcinoma who received chemotherapy and found that a high LMR was associated with a good prognosis (30). The data of our study demonstrate that the LMR is the only serum biomarker independently related to both OS and DFS (according to the multivariate analysis).

Based on upon evidence, we speculate that the NLR, NWR, and LWR might affect the survival rate in an indirect way (i.e., by relating to poor clinicopathological manifestations or promoting the migration of cancer cells), while the LMR directly reflects patient survival duration after treatment. Although the underlying mechanisms of the relationship between the LMR and prognosis are not well understood, the LMR is thought to reflect the balance between the prognosis-improving effect of lymphocytes and the adverse effect of monocytes.

According to previous studies, the prognosis of OSCC is highly heterogeneous, with an overall 5-year survival rate of approximately 64%, and the median survival duration for patients with locoregionally recurrent or metastatic OSCC is 8~10 months (31, 32). Oral malignancies progress through four stages; in the early stage (stages I and II), the 5-year survival rate is approximately 80%. However, it is reduced to approximately 50% in patients with locoregional metastasis (stages III, IVA, and IVB) and approximately 25% if distant metastasis is present (stage IVC) (33, 34). Therefore, it is of great significance to understand the relationship between metastasis and inflammatory cells in predicting the prognosis of OSCC. In general, metastasis comprises the sequential occurrence of uncontrolled cancer cell proliferation, invasion into the blood or lymph circulation, and crosstalk with various components of the new microenvironment, including parenchymal, stromal and inflammatory cells. However, the precise mechanism of the process has not yet been clarified, and the factors affecting its occurrence are mostly uncertain. Based on the above results, lymph node metastasis is closely correlated with poor survival, and it was also proven in our study that metastasis is an independent predictor for poor survival. In addition, we found that a high NLR and NWR and a low LWR were associated with metastasis, whereas the LWR was an independent prognostic factor for predicting MFS. If these results can be verified by further evidence, patients who have a high risk of metastasis will receive direct benefits.

We enrolled 493 patients in the present study, with the longest follow-up exceeding 80 months. The main strength of the current study was that a large number of patients treated at a single institution were included, with a relatively long follow-up duration, and data were collected by using uniform database templates to ensure consistency, which improved the quality of the evidence. However, some inherent limitations were inevitable because of its retrospective nature. For example, patients who had blood or lymphatic system disorders were excluded because of a strict eligibility criterion, which may have caused patient selection bias. In addition, the therapy strategies were not uniform but varied based on the patient’s condition, and the effect of different treatment-related factors on prognosis was not evaluated. Therefore, a prospective study designed to confirm the prognostic value of the pretreatment NLR, LMR, NWR, and LWR is needed. Despite the limitations of this study, pretreatment serum biomarkers can be quick, simple, easily obtainable, and cost-effective tools to predict the outcome of OSCC.



Conclusion

The results of this study showed that OSCC patients with a high LMR and low NWR had prolonged OS and DFS, while a high NLR and low LWR were associated with poor OS, DFS and MFS. Moreover, once the prognostic significance of these novel markers is defined and verified by researchers, they can be widely applied in the clinic and help doctors identify patients at high risk for disease recurrence and tumor progression.
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Purpose

To accurately stratify nasopharyngeal carcinoma (NPC) patients who were benefit from induction chemotherapy (IC) followed by chemoradiotherapy (CCRT), we established residual volume of lymph nodes during chemoradiotherapy based nomogram to predict survival for NPC patients.



Methods

Cox regression analysis were used to evaluate predictive effects of tumor volume parameters. Multivariate Cox regression analysis was used to identify the prognostic factors, and nomogram models were developed to predict survival of NPC patients receiving IC followed by CCRT.



Results

Compared with other tumor volumetric parameters, midRT GTVnd was the best predictive factor for OS (HR: 1.043, 95%CI: 1.031-1.055), PFS (HR: 1.040, 95%CI: 1.030- 1.051), and DMFS (HR: 1.046, 95%CI: 1.034 – 1.059) according to the HR of Cox regression analysis. Based on multivariate analysis, three nomograms included midRT GTVnd were constructed to predict 4-year survival. The C-index of nomograms for each survival endpoints were as follow (training cohort vs. validation cohort): 0.746 vs. 0.731 for OS; 0.747 vs. 0.735 for PFS; 0.768 vs. 0.729 for DMFS, respectively. AUC showed a good discriminative ability. Calibration curves demonstrated a consistence between actual results and predictions. Decision curve analysis (DCA) showed that the nomograms had better clinical predictive effects than current TNM staging system.



Conclusion

We identified the best volumetric indicator associated with prognosis was the residual volume of lymph nodes at the fourth week of chemoradiotherapy for patients receiving IC followed by CCRT. We developed and validated three nomograms to predict specific probability of 4-year OS, PFS and DMFS for NPC patient receiving IC followed by CCRT.
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Introduction

More than 70% of newly diagnosed NPC are classified as locoregionally advanced disease (1). Based on results of several clinical randomized control studies, induction chemotherapy (IC) followed by concurrent chemoradiotherapy (CCRT) has been recommended as a preferred regimen for locoregionally advanced NPC (LA-NPC) by guideline of National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) (2, 3). Unfortunately, approximate 20-30% patients could not benefit from IC-CCRT regime, and the toxicities were increased compared with CCRT (4, 5). Therefore, it’s important to identify the patients who could benefit from IC followed by CCRT (4–8).

Emerging evidences show that pretreatment tumor volume is a prognostic factor for disease progression and survival of NPC (9–11). Recent study reported that post IC primary gross tumor and lymph node volume also had prognostic value for overall survival (OS) of LA-NPC (12). The changing rate of primary tumor volume before and after IC has also been demonstrated to predict the survival outcome of NPC (13). However, in clinical practice, tumor with poor response to IC could still respond to chemoradiotherapy and residual tumor with good response to IC could resist to chemoradiotherapy. Because adaptive radiotherapy (ART) can compensate for the dosimetric impacts induced by anatomic and geometric variations in patients, it has been widely used to treat head neck cancer (14, 15). Meanwhile, it also provides opportunity to dynamically evaluate the changing of tumor volume during radiotherapy (16). Several studies found changing of primary tumor volume during CCRT or radiotherapy could impact on patient survival in many cancers (17, 18). With regard to NPC, changing rate of total volume during radiotherapy included primary site and lymph nodes was also reported as a better prognostic factor for NPC patients receiving adaptive CCRT (19). Therefore, the tumor volume change related to IC alone was not adequate for outcomes prediction of NPC patients receiving IC followed by CCRT.

To our knowledge, no study has thus far investigated the detailed volumetric parameters and volume change rate before and after IC as well as during radiotherapy. Therefore, the purpose of the present research was to investigate the predictive volumetric parameters in the whole process of IC followed by CCRT treatment, and further to establish the nomogram to stratify LA-NPC patients who could benefit from IC followed by CCRT.



Materials and Methods


Patients

We consecutively reviewed 262 LA-NPC patients at the XiJing Hospital between July 2010 and September 2017. All patients had complete history and physical examinations, blood work and direct fiberoptic nasopharyngoscopy, imaged by computed tomography (CT) and magnetic resonance imaging (MRI) of head and neck, and chest images, abdominal sonography, and whole-body bone scan. Patients were re-staged according to the 8th edition of American Joint Committee for Cancer Staging (AJCC) system. Two radiologists reviewed all the imaging records and disagreements were resolved by consensus. The eligibility criteria in the study included: (1) age≥18 years and Karnofsky performance score ≥70; (2) histologically confirmed newly diagnostic nasopharyngeal squamous cell carcinoma; (3) stages III–IV without distant metastasis; (4) receiving IC+CCRT as initial treatment modality; (5) treated with intensity-modulated radiotherapy (IMRT); (5) re-scanning and re-planning were conducted during chemoradiotherapy. The exclusion criteria included: (1) non-squamous cell carcinoma of nasopharynx; (2) not complete the prescribed course of radiotherapy, (3) without adaptive re-planning during radiotherapy course. Ultimately, a total of 253 patients were included for analysis. The protocol was approved by the appropriate ethical review boards of XiJing hospital, and the study was conducted in accordance with the principles of the Declaration of Helsinki.



Radiation Therapy and Chemotherapy

The treatment planning approaches were described by our previous studies (20–22). In general, patients were immobilized in the supine position with head, neck, and shoulder thermoplastic mask, and CT simulation according to standard procedures. The target of nasopharynx tumor was delineated manually according to MRI before and after chemotherapy and during radiotherapy. For tumor involved cavity, such as nasal cavity, nasopharynx cavity or oropharynx cavity, the delineation would be changed if primary tumor shrunk in these sites after chemotherapy and during radiotherapy. However, the delineation of primary tumor volume was not changed after chemotherapy and during radiotherapy for tumor involved submucosal sites, skull base, cervical vertebra and intracranial extension. The target of lymph node was delineated according to the imaging before and after chemotherapy and during radiotherapy. If changing of lymph node was observed after chemotherapy and during radiotherapy, the target would be modified according to imaging. The prescribed radiation doses were defined as follows: a total of 72.6 Gy in 33 fractions at 2.2 Gy per fraction to the primary tumor of nasopharynx, 66–72.6 Gy to metastatic lymph nodes, 55–60 Gy to high-risk clinical target, and 50 Gy to low-risk clinical target. All patients were treated with 1 fraction daily for 5 days per week. The doses received by each organ at risk (OAR) should be no more than its tolerance (23).

The induction chemotherapy included TP regimen (docetaxel 75mg/m2, cisplatin 75mg/m2), GP regimen (gemcitabine 1000mg/m2, cisplatin 75mg/m2) and TPF regimen (docetaxel 75mg/m2, cisplatin 75 mg/m2, 5-FU 750 mg/m2 days1 to 5) every 3 weeks for 2–3 cycles. Radiotherapy began at 3 weeks after the last cycle of induction chemotherapy. Concurrent chemotherapy was only consisted of cisplatin (100mg/m2) every three weeks.



Tumor Volume Measurement

Three simulation CT scans were performed for every patient: before induction chemotherapy, before radiotherapy and the fourth week of radiotherapy. The primary tumor and the metastatic lymph nodes were delineated on simulation CT images according to the MRI and CT fused images. The volume was automatically measured by Eclipse 10.0 treatment planning system (Varian, CA, USA). The definitions of tumor volume were listed as follows: pre-induction chemotherapy gross primary tumor (preIC GTVnx) and lymph node (preIC GTVnd)、post-induction chemotherapy gross primary tumor(postIC GTVnx) and lymph node (postIC GTVnd), gross primary tumor at fourth week of radiotherapy (midRT GTVnx) and lymph node (midRT GTVnd).



Evaluation and Statistical Analysis

The follow-up time was calculated from the end of treatment to the last follow-up or death. Patients were regularly evaluated every 3 months during the first two years, every 6 months in the third–fifth years, and then once every year thereafter. The endpoints in this study included overall survival (OS), progression-free survival (PFS) and distant metastasis-free survival (DMFS). OS was defined as the time from end of treatment to death; PFS was measured from the end of treatment to the date of disease progression or death from any causes; DMFS, was defined as the time from end of treatment to first detection of distant metastasis.

The clinical features in different groups were evaluated by the Pearson Chi-square or Fisher’s test. The hazard ratio (HR) of COX proportional regression is used to re-evaluate the prediction of volumetric parameters. Multivariate Cox proportional hazard regression analysis was conducted to explore significant factors associated with OS, PFS and DMFS, and the proportional-hazards assumption was tested with Schoenfeld residuals. Variable risk was expressed as a hazard ratio (HR) with a corresponding 95% confidence interval (95% CI).

Based on the results of multivariable Cox regression analysis, nomogram models were formulated to predict 4-year OS、PFS and DMFS. The performance of the models was evaluated by ROC analysis and calibration curve using 1000 bootstrap resamples based on the training cohort and validation cohort validity. The value of Concordance index (C-index) and the area under the ROC curve (AUC) were used to evaluate the discriminative ability of nomogram, which ranged from 0.5 to 1.0, with 0.5 indicating a random chance while closer to 1.0 indicating a better ability to correctly discriminate the outcome. Decision curve analysis (DCA) was performed in present study as a method for determining the clinical application value of the prediction models by quantifying the net benefit to the patient under different threshold probabilities, and was applied to compare the predictive validity of the nomogram and 8th edition TNM stage in the training cohort and validation cohort (12, 24). Statistical analyses were performed using IBM SPSS Statistics (Version 25.0) and R program (version 3.6.3). The statistical tests were two-sided, and a p-value of < 0.05 was considered statistically significant difference.




Results


Patient Characteristics and Survival

The baseline characteristics of 253 LA-NPC patients were listed in Supplementary Table 1. There were more men than women (ratio, 2.46:1). The median patient age was 47 years (range:18-70 years). 44.3% (112 of 253) of patients had history of smoking and 29.2% (74 of 253) had history of drinking. Most patients (74.3%) had WHO nonkeratinizing undifferentiated subtype, and the remaining 25.7% of the patients had WHO nonkeratinizing differentiated subtype. Most patients (60.9%) had clinical stage IV disease. EBV DNA copies were detected only in 54 patients (17.8%) using quantitative PCR assay. In total, 73.1% of patients received TP regimen as induction chemotherapy, 22.9% received GP regimen and only 4% received TPF regimen.

At a median follow-up time of 52 months (rang:4-120 months), 66 patients (26.1%) had died, 26 patients (10.3%) experienced locoregional recurrence, 54 patients (21.3%) developed distant metastasis during the follow-up period. The estimated 4-year OS, PFS and DMFS rates were 76.9%, 68.5% and 78.1%, respectively.



Comparison of Predictive Performance of Tumor Volumetric Parameters

The detailed tumor volumetric parameters were shown in Supplementary Table 2. As continuous variables, we quantitatively analyzed and compared the prediction performance of different tumor volumetric parameters for OS, PFS and DMFS. Compared with other parameters, midRT GTVnd was the best predictive factor for OS (HR: 1.043, 95%CI: 1.031-1.055), PFS (HR: 1.040, 95%CI: 1.030- 1.051), and DMFS (HR: 1.046, 95%CI: 1.034 – 1.059) (Table 1). For the convenience of subsequent analysis, midRT GTVnd as continuous variables were divided into four groups as follow according to interquartile ranges (IQR): ≤7.85 cm3, 7.85-14.70 cm3, 14.70-27.50cm3 and > 27.50cm3.


Table 1 | Univariate Cox analysis of volumetric parameters in different endpoints.





Nomogram Development

For constructing the nomogram model to predict prognosis of NPC patients received IC followed by CCRT, a total of 253 patients were randomly divided into two independent cohorts according to a 7:3 ratio: training cohort (n = 177) and validation cohort (n =76) (Table 2). Univariate and multivariate analysis were conducted to identify prognostic factors associated with survival in the training cohort. The covariates included sex, age, smoking history, drinking history, histological WHO types, T stage, N stage, clinical stage, midRT GTVnd. Based on the multivariate analysis, histological type (P=0.02), T stage (P=0.015), N stage (P=0.027) and midRT GTVnd (P < 0.001) were correlated with OS. For PFS and DMFS, histological type, T stage and midRT GTVnd were detected as independently prognostic factors (P < 0.05) (Supplementary Tables 3–5). Based on predictive factors identified from the multivariate analysis in training cohort, we developed three nomograms to predict 4-year OS, PFS and DMFS, respectively (Figure 1).


Table 2 | Characteristics of Patients in the Primary and Validation Cohorts.






Figure 1 | Nomogram to predictive survival. (A), Nomogram for the probability of 4-year OS was developed based on four factors including midRT GTVnd, T stage, N stage and histological type; (B), Nomogram for the probability of 4-year PFS was developed based on three factors including midRT GTVnd, T stage and histological type; (C), Nomogram for the probability of 4-year DMFS was developed based on three factors including midRT GTVnd, T stage, and histological type. The probability could be obtained as function of total points calculated as the sum of points for each specific variable. Points was assigned for each factor by drawing a line upward from the corresponding values to the ‘point’ line. The total sum of points added by each factor was plotted on the “total points” line. A line was drawn down to read the corresponding predictions of probability.





Nomogram Validation and Evaluation

Each nomogram was validated internally and externally. The C-index of nomogram to predict OS was 0.746 (95%CI: 0.676-0.816) in training cohort and 0.731 (95%CI: 0.628-0.834) in validation cohort. The AUC showed a good discriminative ability in both cohorts (training cohort, AUC: 0.774, 95%CI 0.712-0.863; validation cohort, AUC: 0.768,95%CI 0.648-0.888). For PFS, The C-index of nomogram was 0.747 (95%CI: 0.684-0.809) in training cohort and 0.735 (95%CI: 0.634-0.836) in validation cohort. And AUC showed a good discriminative ability in both cohorts (training cohort, AUC: 0.771, 95%CI: 0.701-0.860; validation cohort, AUC: 0.772, 95%CI: 0.676-0.893). The C-index of nomogram to predict DMFS was 0.768 (95 CI: 0.699-0.837) in training cohort and 0.729 (95%CI: 0.605-0.852) in validation cohort. The AUC also showed a good discriminative ability in both cohorts (training cohort, AUC: 0.776, 95%CI: 0.707-0.869; validation cohort, AUC: 0.758, 95%CI: 0.643-0.927) (Figure 2). Moreover, the calibration plot of each nomogram demonstrated a good consistency between the actual clinical results and the predicted outcomes (Figure 3). Then we compared the midRT GTVnd based nomogram against the 8th TNM schema. The DCA showed that the midRT GTVnd based nomogram model was the better reliable clinical tools for predict disease relapse and death (Figure 4).




Figure 2 | ROC curves of Nomograms to predict 4-year OS (A), PFS (B) and DMFS (C) in both training and validation cohort.






Figure 3 | The calibration curves of Nomograms to predict 4-year OS (A), PFS (B) and DMFS (C) in both training and validation cohort.






Figure 4 | Decision curve analysis of prognostic effects between Nomograms and TNM stage for OS (A), PFS (B) and DMFS (C) in both training and validation cohort.






Discussion

Tumor volume is closely associated with prognosis of NPC has been widely reported (9, 10). Although several studies found pretreatment tumor volume and changing rate of tumor volume before and after IC had prognostic value for NPC, it was not be enough to accurately stratify patients who are benefit from IC followed by CCRT. In this study, we firstly compared the predictive performance of different tumor volumetric parameters in different treatment phase in patients receiving IC followed by CCRT. We found the residual volume of lymph nodes at the fourth week of chemoradiotherapy (midRT GTVnd) had the best predictive effects for OS, PFS and DMFS according to HR of Cox regression analysis, indicating midRT GTVnd was the optimal choice as prognostic factor among all kinds of tumor volumetric parameters in the whole process of IC followed by CCRT. The time point of ART may be a potential factor to impact the predictive effect of midRT GTVnd because tumor volume would be changed along with different ART time point. Although it is still confused to identify the optimal time point of ART, several prospective studies reported change of dose distribution varied markedly at the third or fourth week of radiotherapy in patients with NPC (25, 26). According to these studies, ART is routinely conducted at the fourth week of radiotherapy in our center. Whether other time points of ART could result in different prognostic effects of midRT GTVnd still need to be further investigated for NPC patients.

It has been a consensus that lymph nodes metastasis is associated with poor prognosis of NPC patients. Some specific features of lymph node have also been reported as poor prognostic factors for NPC, such as extracapsular invasion, necrosis, coalescence and bulky disease (>6 cm) which are closely related to the treatment sensitivity (27). In this study, we reported midRT GTVnd was a new feature which could reflect treatment sensitivity because it was defined as the residual volume of lymph nodes after IC plus at least half course of chemoradiotherapy. Analyzing from the potential mechanism, residual volume of lymph nodes might contain large number of treatment resistant cells. It has been confirmed that these cells always contribute to tumor recurrence and metastasis, and further to negatively impact patient survival (28, 29).

On multivariate analysis, we identified histological types, T stage, N stage and midRT GTVnd were independently prognostic factors for OS. In this study, 25.7% of patients had nonkeratinizing differentiated subtype which was associated with poor survival. This result was consistent with our previous studies (20, 30). All patients enrolled in this study were from the Northwest China where were considered as a typical non-endemic area for NPC. Although the prognostic value of histological type for NPC remains controversial in endemic area, given the potentially distinctive pathogenesis, geographical and ethnic origin in Northwest China, the nonkeratinizing differentiated subtype may be an efficient prognostic indicator. We failed to detect a positive correlation between N stage and distant metastatic disease on multivariate analysis. The reason may be explained by unclassified N stage was used to analyze. After patients were divided into two groups: N0-N2 and N3, patients with stage N3 had significantly higher rate of distant metastatic disease than those with stage N0 to N2 using log-rank test (data was not shown).

In view of the prognostic value of midRT GTVnd for OS, PFS and DMFS, we developed and validated three midRT GTVnd based nomograms to predict probability of 4-year survival for LA-NPC patients treated with IC followed by CCRT. The identification and calibration of the nomograms confirmed these prognostic models had wide range of applicability. Compared with the 8th edition of TNM staging system, DCA curves showed the nomogram models had better prediction accuracy for death and disease relapse in patients with LA-NPC receiving IC followed by CCRT. Unlike other risk scores could provide a probability of prognosis before treatment, our models focused on the treatment sensitivity and prognosis at end of the IC followed by CCRT. This would help clinicians to design appropriate strategies of follow-up and adjuvant treatment for each patient.

Although phase 3 trials confirm that adjuvant chemotherapy consist of cisplatin and fluorouracil following chemoradiotherapy fails to yield further benefits in LA-NPC (31, 32), several retrospective studies imply metronomic adjuvant uracil plus tegafur may reduce distant metastasis and improve survival in high-risk patients (33, 34). Plasma Epstein-Barr virus (EBV) DNA of post radiotherapy is often used to guide adjuvant therapy (35). However, different segments of the same viral DNA or different viral genes might result in vary sensitivities in quantitative PCR assay (34). In our center, although plasma EBV DNA is detected routinely using quantitative PCR assay for each patient before treatment and in the whole follow-up period, EBV DNA copies can be detected only in a few plasma samples of patients. Under this situation, these nomogram models established by this study may provide information to stratify high-risk patients without known its plasma EBV DNA status to receive adjuvant chemotherapy. These clinically high-risk features-guided approaches are feasible during daily practice in all hospitals.

The current study may have a few weak points. First, because of its retrospective nature, selection bias might have been unavoidable. Thus, the results need validation of further large sample prospective studies. Second, our data based on a single non-endemic center from the Northwest China, and thus, external validation with other centers in endemic region is needed. Finally, there is a possibility of inter- and/or intra-physician variation in GTV measurements. Despite these limitations, the discriminatory performance of the volumetric parameters in the whole process of IC-CCRT treatment could be utilized as an indicator for tailoring therapy on an individual patient basis.

In this study, we identified the best volumetric factor indicator associated with prognosis was the residual volume of lymph nodes at the fourth week of chemoradiotherapy for NPC patients receiving IC followed by CCRT. Based on the volumetric factor and clinical risk factors, we developed and validated three different nomograms to predict specific probability of 4-year OS, PFS and DMFS for LA-NPC patient, respectively.
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Purpose

There is a lack of biomarkers for accurately prognosticating outcome in both human papillomavirus-related (HPV+) and tobacco- and alcohol-related (HPV−) oropharyngeal squamous cell carcinoma (OPSCC). The aims of this study were to i) develop and evaluate radiomic features within (intratumoral) and around tumor (peritumoral) on CT scans to predict HPV status; ii) investigate the prognostic value of the radiomic features for both HPV− and HPV+ patients, including within individual AJCC eighth edition-defined stage groups; and iii) develop and evaluate a clinicopathologic imaging nomogram involving radiomic, clinical, and pathologic factors for disease-free survival (DFS) prediction for HPV+ patients.



Experimental Design

This retrospective study included 582 OPSCC patients, of which 462 were obtained from The Cancer Imaging Archive (TCIA) with available tumor segmentation and 120 were from Cleveland Clinic Foundation (CCF, denoted as SCCF) with HPV+ OPSCC. We subdivided the TCIA cohort into training (ST, 180 patients) and validation (SV, 282 patients) based on an approximately 3:5 ratio for HPV status prediction. The top 15 radiomic features that were associated with HPV status were selected by the minimum redundancy–maximum relevance (MRMR) using ST and evaluated on SV. Using 3 of these 15 top HPV status-associated features, we created radiomic risk scores for both HPV+ (RRSHPV+) and HPV− patients (RRSHPV−) through a Cox regression model to predict DFS. RRSHPV+ was further externally validated on SCCF. Nomograms for the HPV+ population (Mp+RRS) were constructed. Both RRSHPV+ and Mp+RRS were used to prognosticate DFS for the AJCC eighth edition-defined stage I, stage II, and stage III patients separately.



Results

RRSHPV+ was prognostic for DFS for i) the whole HPV+ population [hazard ratio (HR) = 1.97, 95% confidence interval (CI): 1.35–2.88, p < 0.001], ii) the AJCC eighth stage I population (HR = 1.99, 95% CI: 1.04–3.83, p = 0.039), and iii) the AJCC eighth stage II population (HR = 3.61, 95% CI: 1.71–7.62, p < 0.001). HPV+ nomogram Mp+RRS (C-index, 0.59; 95% CI: 0.54–0.65) was also prognostic of DFS (HR = 1.86, 95% CI: 1.27–2.71, p = 0.001).



Conclusion

CT-based radiomic signatures are associated with both HPV status and DFS in OPSCC patients. With additional validation, the radiomic signature and its corresponding nomogram could potentially be used for identifying HPV+ OPSCC patients who might be candidates for therapy deintensification.
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Introduction

The rise in the incidence of human papillomavirus (HPV)-related cancers has caused a significant epidemiological shift (1) in oropharyngeal squamous cell carcinoma (OPSCC). It is estimated that HPV causes more than 70% of OPSCC cases in the United States (2). HPV+ OPSCC differs from its HPV− counterpart in response to treatment and disease aggressiveness (3). In order to account for this, the most recent American Joint Committee on Cancer (AJCC) eighth edition tumor staging system was modified to incorporate HPV status, with different staging systems for HPV (p16) positive and negative tumors (4). HPV+ patients tend to respond better to definitive radiotherapy or combined chemoradiotherapy protocols and are less likely than HPV− patients to develop disease recurrence and metastases. Thus, it has become critical to develop biomarkers within the HPV+ and HPV− populations for risk stratification.

Treatment of OPSCC patients is on the cusp of a paradigm shift; current clinical trials are geared toward reducing treatment toxicity for HPV+ patients without compromising survival outcomes since low-risk patients typically could benefit from a lower dose of radiotherapy or less invasive surgical operations (treatment deintensification) (5). However, it is challenging to tailor the most optimal treatment strategy for each patient. Although high T (T3/T4) and N (N3) stages as well as tobacco use are clinically accepted risk factors for HPV+ OPSCC patients, these categorical predictors neglect the oncogenic differences between individual patients (6). A recent phase II randomized controlled trial NRG HN002 reported that patients who are grouped as candidates for treatment de-escalation using a combination of clinicopathologic factors did not meet the goal of 2-year disease-free survival (DFS) in the radiotherapy only arm (7). This exhibits a clear unmet clinical need for the development of objective biomarkers to identify patients who could truly benefit from treatment de-escalation.

On the other hand, the unmet need for HPV− patients is to precisely identify patients at high risk of developing local or regional failure after treatment, patients who might be candidates for targeted treatment escalation (8). While the eighth edition of the AJCC staging modifications that separate HPV+ and HPV− patients is a major advance (9), it still may not be sufficient for accurate risk stratification as it de-emphasizes the importance of nodal metastasis by diagnosing most of the new p16+ OPSCC patients into stages I and II (10).

Radiomics is the process of computational extraction of large numbers of quantitative imaging features, such as texture features, from routine radiologic scans (e.g., MRI and CT) for characterization of the disease (11). These features are able to detect subtle changes in imaging intensity patterns within a local region which in turn may help better describe the cancer phenotype as well as the tumor microenvironment. While radiomic features in the immediate vicinity outside the tumor have shown significant value in differentiating disease subtypes for lung (12) and breast (13) cancers, we are not aware of any work that has attempted to collectively evaluate the role of textural patterns from both within (intratumoral) and outside the tumor (peritumoral) to predict HPV status or to identify their association with disease-specific survival in OPSCC.

In this study, we sought to explore the prognostic value of both intratumoral and peritumoral HPV status-associated radiomic features on CT scans and compared and combined them with clinical and pathologic factors on over 500 OPSCC patients. The prognostic radiomic biomarker for HPV+ OPSCC was validated both internally (237 patients) and externally (120 patients) on two different cohorts. We also evaluated the utility of the radiomic signature to prognosticate DFS within each individual AJCC eighth edition-defined stage group. Finally, this study also involved creation and validation of a clinicopathologic nomogram for estimating DFS for HPV+ OPSCC patients. Figure 1 shows the overall methodology comprising radiomic feature extraction and selection, prognostic signatures, and radiomic nomogram construction and validation.




Figure 1 | Diagram of the overall radiomic workflow.





Materials and Methods


Patients

Two OPSCC cohorts were included in this study: The Cancer Imaging Archive (TCIA, n = 462) OPC-Radiomics cohort (10) and the Cleveland Clinic Foundation (CCF) cohort (n = 120). All patients had undergone pretreatment radiotherapy planning CT. TCIA is an open archive of deidentified cancer-specific medical images and associated clinical metadata accessible for public download (14). Clinicopathologic and outcome information for patients in the CCF cohort were collected after obtaining approval from the Institutional Review Board of Cleveland Clinic. Demographic data are shown in Table 1. For the TCIA cohort, a total of 473 patients with OPSCC treated with curative intent at the Princess Margaret Cancer Center between 2005 and 2010 were reviewed. Histopathologic confirmation was used for the diagnosis of OPSCC and p16 immunohistochemistry was used to assess HPV status. Patients were triaged using inclusion criteria that involved the availability of i) radiotherapy planning CT scans with matched clinical information (HPV status by p16 immunohistochemistry, survival information) and ii) binary mask for gross tumor volume (GTV). Fourteen patients with the following criteria were excluded: i) CT images containing artifact (n = 6); ii) number of voxels within tumor is less than 200, which was deemed to be insufficient for feature extraction (n = 5); and iii) tumor mask contains normal brain tissue (n = 3). Following the patient exclusion criteria, 462 patients from the TCIA cohort and 120 patients from the CCF cohort were included for subsequent radiomic analysis. The flowchart for patient enrollment is illustrated in Supplementary Figure S1.


Table 1 | Clinicopathologic data for HPV+ and HPV− patients included in this study.





CT Imaging

The CT images for the TCIA cohort were acquired (10) from one of the following CT scanners: General Electric Discovery ST, General Electric Lightspeed Plus, or Toshiba Medical Systems Aquillion ONE. CT scans were acquired in helical mode with a slice thickness of 2.5 mm (General Electric) or 2 mm (Toshiba), at 120 kVp and 300 mAs tube current. Image resolution was 1 mm for all the scans. The CT images for the CCF cohort were acquired from either The General Electric Medical System or The Siemens Medical System. CT scans were acquired in helical mode with a slice thickness of 3 mm, at 120 kVp and 235 mAs tube current. Image resolution is between 0.4 and 0.5 mm for most of the patients, with an image matrix of 512 × 512.



Intratumoral and Peritumoral Compartment Definitions

The binary intratumoral masks which outlined the primary GTV were obtained using the Radiation Therapy Structures (RTSTRUCT) for the TCIA cohort (10). Primary tumors on the CCF cohort were manually segmented by two board-certified head and neck radiologists JL (with 5 years of clinical expertise) and SS (with 6 years of clinical expertise) across all of the two-dimensional CT sections using a hand-annotation tool in axial view. Morphologic dilation operations were then performed for all patients on intratumoral masks to define the annular ring region outside the tumor up to a radial distance of 15 mm based on previous studies in lung (15) and breast cancer (13), where peritumoral margins >15 mm were not associated with disease recurrence. The intratumoral masks were then subtracted from the dilated masks to obtain the peritumoral regions, which were then subdivided into three peritumoral rings of 5-mm-radius increments. Implementation details on peritumoral masks are provided in Appendix E1, section 1.



Radiomic Feature Extraction

A total of 664 intratumoral and 1,485 peritumoral (495 × 3 peritumoral rings) radiomic features were extracted for all patients on all the compartments on a per-pixel basis. The feature sets for each study utilized included 16 gray-level intensity features (quantifying statistics of the raw intensity within a specific window size of 3 × 3, 5 × 5, 7 × 7, and 9 × 9), 40 intensity gradient-based features (quantifying intensity gradient variability), 52 gray-level co-occurrence matrix (GLCM) Haralick features (capturing disorder patterns of the adjacent pixel intensities within local pixel neighborhoods) (16), 20 Laws energy (capturing combinations of five irregular texture enhancement patterns: levels, spots, edges, waves and ripples in an image) (17), 28 Gabor wavelet-based features (capturing structural detail at seven orientations of 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, and 4 scales of 2, 4, 8, and 12 pixels) (18), and 52 CoLlAGe features (capturing textural heterogeneity by applying GLCM metrics to local anisotropic gradient orientations) (19). All of these texture features were extracted in both intratumoral and peritumoral compartments (0–5, 5–10, and 10–15 mm) on all slices containing the tumor. Statistics of mean, median, standard deviation, skewness, and kurtosis were calculated from the feature responses of all pixels within the region of interest. A list of the extracted features is summarized in Supplementary Table S1, with their detailed descriptions provided in Appendix E1, section 2. All feature values were transformed into new scores with a mean of 0 and a SD of 1 (z-score transformation). Both intratumoral and peritumoral feature extraction pipelines are now publicly available at https://github.com/ccipd.



Statistical Analysis

Within the TCIA cohort, 462 patients were randomly allocated to ST (180 patients: 100 HPV+ and 80 HPV−) and SV (282 patients: 237 HPV+ and 45 HPV−) in an approximately 3:5 ratio. For both HPV+ and HPV− patients, the ratio of non-censored patients in ST and SV was kept balanced. The clinical end points of interest for this study were HPV status and DFS. DFS was defined as the time interval from the radiotherapy end date to the date of either last follow-up (censored) or local, regional, distant failure and death (event), whichever happened first. The difference of continuous variables (i.e., age) between cohorts (i.e., ST, SV, and SCCF) was determined using the analysis of variance (ANOVA) and the association between categorical factors was estimated using the chi-square test.

Since there were no HPV− patients in the CCF cohort, we used only the TCIA cohort for HPV status prediction. A machine learning classifier was first constructed using a combination of intratumoral and peritumoral features for the prediction of HPV status using ST. To remove redundant features, all possible pairs of features in ST were tested for correlation by calculating the Spearman correlation coefficient (SCC). For any pair of features with SCC greater than 0.80, the feature with the higher Wilcoxon rank sum p-value was removed. A linear discriminant analysis (LDA) machine-learning classifier was subsequently trained in conjunction with the minimum redundancy–maximum relevance (MRMR) (20) feature selection approach using a 100-run, 3-fold cross-validation setting. The top 15 most frequently selected radiomic features (Ft) that best discriminated between HPV+ vs. HPV− across all iterations were identified from ST. An unadjusted p-value <0.05 (using two-sided Wilcoxon rank sum tests) was employed to indicate statistical significance. These features were then evaluated via the LDA classifier in terms of HPV status prediction on SV using the area under the receiver operating characteristic curve (AUC) metric.

We also developed dedicated radiomic risk score classifiers for patients within the individual HPV+ (RRSHPV+) and HPV− (RRSHPV−) categories. The least absolute shrinkage and selection operator (LASSO) method was applied to Ft using the cases in ST for both HPV+ and HPV− patients. After identifying the top ranked features, the corresponding LASSO coefficients were used for constructing risk classifiers for the HPV+ (RRSHPV+) and HPV− (RRSHPV−), respectively. Both RRSHPV+ and RRSHPV− were calculated for each patient via a linear combination of selected features that were weighted by corresponding coefficients:

	

where n (ranging from 0 to 15) is the number of features selected by LASSO for HPV+ or HPV− patients, xi refers to the HPV status-associated feature value, and βi is the corresponding weighted coefficient. The potential association of RRSHPV+ and RRSHPV− with DFS was first assessed in ST and then evaluated in SV. The prognostic ability of RRSHPV+ was further externally validated in SCCF. Patients were classified into high or low risk based on the median value of the RRSHPV+ or RRSHPV− in ST, which was then applied to SV and SCCF. Kaplan–Meier survival curves were used to visualize the survival rate for the high- and low-risk groups. At any given point on the survival curve, the probability that a patient in either the high-risk or low-risk group remains alive is presented (21). The log-rank test and hazard ratio were used to compare the survival differences between the two groups. The same Kaplan–Meier survival analyses were further performed for each cancer stage group defined by the AJCC eighth edition on the dataset combining SV and SCCF. The final values for n were determined when the hazard ratio for high risk over low risk reached the highest in SV for HPV+ patients (Supplementary Figure S4). The value of the tuning parameter in the LASSO-Cox model (λ) was averaged out by 10 cross-validation to minimize the error within ST. Constructions of RRSHPV+ and RRSHPV− were performed using in-house software implemented in the MATLAB R2019b platform (MathWorks).

Univariate Cox proportional hazards analysis on the effect of RRSHPV+, RRSHPV−, and the individual clinicopathologic variables (gender, smoking status, drinking status, T stage, N stage, and AJCC eighth edition of overall stage) on DFS was evaluated. Variables significant in univariate analysis were included for multivariable Cox proportional hazards analysis to investigate the relationships between the various covariates (including the RRSHPV+, RRSHPV−, and the clinicopathologic variables).

To further investigate the independent prognostic value of the RRSHPV+ with existing clinical factors (gender, smoking, and drinking status) and pathological staging factors (T stage, N stage, and the AJCC stage eighth edition), we constructed nomogram models for HPV+ patients comprising i) only the clinical factors (Mc) of gender, smoking, and drinking history; ii) only the pathologic staging factors (Mp) of AJCC eighth edition overall stage and N stage; and iii) both the pathologic T stage and the RRSHPV+ (Mp+RRS) using ST and validated them in SV and SCCF. The prognostic ability of Mp+RRS was compared against Mc and Mp for HPV+ populations in terms of the concordance index (C-index). The nomograms were validated using 1,000 bootstrap resampling to calculate C-index with confidence intervals. Calibration curve analysis was performed to compare the nomogram-predicted DFS with the actual DFS. Decision curve analysis was adopted to calculate the net benefit for Mp+RRS in comparison with Mc and Mp, for verification of the clinical usefulness of the nomogram (22). Nomogram construction, calibration plot, and decision curve were implemented using the “rms” and “SvyNom” packages under R statistical software (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria).




Results


Clinicopathologic Characteristics

The clinical and pathologic characteristics of patients in the TCIA training set (ST), TCIA internal validation set (SV), and CCF external validation set (SCCF) are summarized in Table 1. No significant differences were found in most features among ST, SV, and SCCF. All patients included in this study underwent radiotherapy. Eighty-seven of the 180 patients in ST (48.3%) and 145 of the 282 patients in SV (51.4%) were also treated with chemotherapy. The median DFS for HPV+ patients was 6.19 years in ST and 6.24 years in SV. The median DFS for HPV− patients was 1.27 years in ST and 1.55 years in SV. Thirty-three percent (33/100, 6 local) and 33% (79/237) of HPV+ patients were not censored in ST and SV, respectively, while 77.5% (62/80) and 68.9% (31/45) of HPV− patients were not censored in ST and SV, respectively. There were 62 (18.4%) recurrences (15 local, 8 regional, and 39 distant) for HPV+ patients and 64 (51.2%) recurrences (30 local, 11 regional, and 23 distant) for HPV− patients.



Experiment 1: Prediction of HPV Status

Within ST, 454 uncorrelated intratumoral and peritumoral features were obtained after feature pruning. From these uncorrelated features, the top 15 were identified for predicting HPV status by MRMR feature selection, of which 11 were peritumoral features and 4 were intratumoral features (Table 2).


Table 2 | Top 15 features for HPV status prediction and notation of involvement in HPV status-specific prognostic prediction in experiment 2.



Changes in classification performance on account of differently selected features in ST are provided in Supplementary Figure S2. Standard deviation of CoLlAGe sum of variance from the 0–5-mm rings (Figure 2C) was identified as the most discriminating peritumoral feature (p < 0.001), while the median of Haralick correlation-info1 (Figure 2B) was identified as the most discriminating feature (p < 0.001) within the tumor. Both features were differentially expressed on CT scans between HPV+ and HPV− patients, and representative examples are illustrated via colormaps of the feature representations overlaid on the tumor areas or the annular ring regions around the tumor (Figure 2A). Noticeably, three of the four selected Haralick features were measures of correlation applied with different statistics on both intratumoral and peritumoral regions, suggesting that there might be significant pixel correlation-related pattern differences between the HPV+ and HPV− patients. We also observed consistently higher Laws feature values for HPV− patients compared with HPV+ across ST and SV. These features quantify intensity smoothness, abrupt edge changes, and ripple patterns on CT scans. Interestingly, all the selected Laws and Gabor features were from regions outside the tumor. Further details on the selected features are provided in Supplementary Figure S3.




Figure 2 | Feature map for the best intratumoral and peritumoral features expressing differently on the example HPV+ and HPV− CT slices overlaid with either tumor or annular ring areas around the tumor (A). Boxplots showing distribution differences for the best intratumoral (B) and peritumoral feature (C) between HPV+ and HPV− patients in both training (ST) and validation (SV). Receiver operating characteristic (ROC) analysis of radiomic features for predicting HPV status on training (ST, n = 180) and validation (SV, n = 282) cohorts with confidence intervals (D). Using combined intratumoral and peritumoral features yielded the best result in SV. IT, intratumoral; PT, peritumoral.



The areas under the curve (AUCs) for using intratumoral and peritumoral alone on ST are 0.82 (95% CI: 0.76, 0.88) and 0.87 (95% CI: 0.81, 0.92), respectively. The corresponding AUCs on SV are 0.58 (95% CI: 0.49, 0.67) and 0.67 (95% CI: 0.58, 0.76). When combining the intratumoral and peritumoral features, ROC analysis on ST yielded an accuracy of 0.79 and AUC of 0.84 (95% CI: 0.78, 0.90), with a sensitivity of 0.89 and specificity of 0.68 when using a threshold of 0.4. For SV, we obtained an accuracy of 0.74 and an AUC of 0.70 (95% CI: 0.62, 0.79), with a sensitivity of 0.78 and specificity of 0.53 when the same threshold from ST was applied. Figure 2D illustrates that using combined peritumoral and intratumoral features improved AUC compared with only using the intratumoral features and using only the peritumoral features for predicting HPV status.



Experiment 2: Prognosticate DFS for Both HPV− and HPV+ Patients, Including Within Individual AJCC Eighth Edition-Defined Stage Groups

A three-feature radiomic signature was identified as having the best prediction of DFS for both HPV+ and HPV− patients (Supplementary Figure S4). The radiomic risk scores for HPV+ patients (RRSHPV+) and HPV− patients (RRSHPV−) across ST, SV, and SCCF are illustrated in Supplementary Figure S5. Details of the features selected are provided in Table 2, with their coefficients in the Cox model provided in Supplementary Figure S6. RRSHPV+ was constructed using two peritumoral and one intratumoral features, while RRSHPV− was constructed using three peritumoral features. The median RRSHPV+ value (−0.0809) in ST was used as the cutoff threshold for defining high- and low-risk groups, resulting in statistically significant DFS prediction by KM analysis in ST (log-rank test, p = 0.026, HR = 2.18), SV (log-rank test, p = 0.003, HR = 1.94), SCCF (log-rank test, p = 0.033, HR = 2.32), and SV+SCCF (log-rank test, p < 0.001, HR = 1.97) as illustrated in Figures 3A–D, respectively. The median RRSHPV− value (0.0076) in ST also resulted in a statistically significant prediction of DFS by Kaplan–Meier analysis in both the ST (log-rank test, p < 0.001, HR = 2.49) and SV (log-rank test, p = 0.023, HR = 2.41), as illustrated in Figures 3E, F, respectively.




Figure 3 | Kaplan–Meier curves for disease-free survival (DFS) using RRSHPV+ in training ST (A), internal validation SV (B), external validation SCCF (C), and the combined validation set SV+SCCF (D). Kaplan–Meier curves for DFS prediction using RRSHPV− in ST (E) and SV (F). DFS prediction for HPV+ patients in the ST (G) and SV+SCCF set (H) using radiomic nomogram (Mp+RRS), which contains pathologic tumor stage and the RRSHPV+.



The prognostic ability of the radiomic risk score (RRSHPV+) was further evaluated for the patients within the AJCC eighth edition-defined different stage groups in SV+SCCF. The HRs of predicting DFS using RRSHPV+ for stage I (Figure 4A), stage II (Figure 4B), and stage III (Figure 4C) HPV+ patients were 1.99 (95% CI: 1.04–3.83, p = 0.039), 3.61 (1.71–7.62, p < 0.001), and 1.4 (0.746–2.63, p = 0.294), respectively.




Figure 4 | Kaplan–Meier curves for prognostication using RRSHPV+ within the AJCC eighth edition-defined overall stage I (A), II (B), and III (C) HPV+ OPSCC patients. Similarly, Kaplan–Meier curves using the radiomic nomogram Mp+RRS for prognostication within overall stage I (D), II (E), and III (F) HPV+ OPSCC patients.



Results of the univariable analysis are shown in Table 3. T3 stage, a moderate or heavy drinking history, and a higher RRSHPV+ were significantly associated with worse DFS for the HPV+ population in ST. N2 stage and a higher RRSHPV− were significantly associated with worse DFS for the HPV− population in ST. In multivariable analysis, RRSHPV+ (DFS hazard ratio, 30.12, 95% CI: 5.67–159.96, p < 0.001) and T3 stage (DFS hazard ratio, 2.94, 95% CI: 1.02–8.45, p = 0.04) remained independent prognostic factors for HPV+ patients in the Cox proportional hazards model (Table 4). For HPV− patients, RRSHPV− (DFS hazard ratio, 3.37, 95% CI: 1.93–5.88, p < 0.001), N1 stage (DFS hazard ratio, 2.08, 95% CI: 1.06–4.07, p = 0.03), and N2 stage (DFS hazard ratio, 2.55, 95% CI: 1.21–5.36, p = 0.01) were the independent prognostic factors in the multivariable Cox proportional hazards model.


Table 3 | Univariable Cox proportional hazard model analysis in the training set (ST) for HPV+ and HPV− patients.




Table 4 | Multivariable Cox proportional hazard model analysis in the training set (ST) for HPV+ and HPV− patients.





Experiment 3: Using Radiomic Nomogram Mp+RRS to Prognosticate DFS Among HPV+ OPSCC

Variables significant in both univariable and multivariable analyses (pathologic T stage and RRSHPV+) were used to develop the radiomic nomogram Mp+RRS (Figure 5A) for HPV+ patients. The calibration curve of Mp+RRS for estimating DFS showed good agreement between the predicted and the observed survival probability in both ST (Figure 5B) and the combined validation set SV+SCCF (Figure 5C). The C-index of Mp+RRS for estimating DFS in ST was 0.72 (95% CI: 0.62–0.81), while the C-index for the pathologic staging nomogram Mp was 0.62 (95% CI: 0.51–0.72), and that for the nomogram Mc using gender, smoking, and drinking history was 0.59 (95% CI: 0.49–0.69). When evaluated on SV+SCCF, Mp+RRS yielded a C-index of 0.59 (95% CI: 0.54–0.65) for DFS prediction, while for Mp and Mc, the C-indices were 0.59 (95% CI: 0.53–0.64) and 0.56 (95% CI: 0.51–0.61), respectively. The Kaplan–Meier survival curves for Mp+RRS in ST and in SV+SCCF are shown in Figures 3G, H. In addition, Mp+RRS was significantly associated with DFS, independent of Mc and Mp in the multivariable analysis when evaluated on ST+SV+SCCF (Table 5). In the decision curve analysis, Mp+RRS yielded a better net benefit compared with Mc or Mp individually when the threshold probability <0.35 (Figure 5D).




Figure 5 | The constructed radiomic nomogram Mp+RRS (A) integrating the pathologic tumor stage (T stage) with the RRSHPV+. RRSHPV+ has more effect on DFS than the T stage, as indicated by a wider range of the total points. Calibration curves have good agreement between predicted and actual survival probability on ST (B) and SV+SCCF (C). Decision curve on ST+SV+SCCF (D) compared the clinical usefulness of radiomic nomogram Mp+RRS (black dash line) in DFS prediction against the pathologic staging nomogram Mp (red dash line) and the clinical nomogram Mc (green dash line).




Table 5 | Comparison between the radiomic nomogram Mp+RRS, the pathologic staging nomogram Mp, and the clinical factors nomogram Mc for DFS prediction in ST+SV+SCCF.



When evaluating the prognostic ability of Mp+RRS for HPV+ patients in SV+SCCF within each AJCC eighth edition-defined stage group, univariable Cox proportional hazard regression yielded HRs of 1.25 (95% CI: 0.66–2.36, p = 0.493) for stage I, 2.07 (0.915–4.68, p = 0.081) for stage II, and 2.32 (1.22–4.41, p = 0.01) for stage III patients. The corresponding KM curves are shown in Figures 4D–F.




Discussion

HPV+ OPSCC has better clinical prognosis and treatment response than the alcohol- and tobacco-related HPV− OPSCC (23). Because of this, treatment deintensification to reduce therapy-related morbidity in “low-risk” HPV+ OPSCC patients is being considered. However, a recent phase II randomized controlled trial by Yom et al. reported that patients in whom therapy was deintensified based on traditional TNM staging information did not meet the goal of 2-year DFS >85% (7). This was likely due to the lack of biomarkers for identifying patients who would most benefit from therapy deintensification. Although the AJCC eighth edition staging system represents a major improvement over the seventh edition, better and more reliable methods for pretreatment prognostication are needed for therapeutic decision-making. The radiomic biomarkers presented in this study aimed to identify those truly low-risk HPV+ patients within both the whole and AJCC eighth edition stage 1 population groups, for whom treatment deintensification should be considered.

In this work, we investigated the ability of both intratumoral and peritumoral radiomic biomarkers on CT scans to predict HPV status for a large cohort of 462 OPSCC patients. Additionally, we addressed the OPSCC prognosis prediction problem independently within the HPV+ and HPV− populations. The radiomic signature which was prognostic for the whole HPV+ population was also prognostic within the AJCC eighth edition stage I and stage II patients. Finally, the radiomic features were combined with pathologic staging factors to form a radiomic nomogram for individualized prognosis estimation for HPV+ OPSCC patients.

Currently, measuring p16 protein expression via immunohistochemistry is the recommended test for determining HPV status. However, distinct populations of patients exist in whom the tumors overexpress p16 but are in fact negative for HPV-DNA or mRNA expression and vice versa (24). Consequently, using p16 testing alone to determine HPV status results in some misclassified patients. Additional biomarkers are needed to complement the p16 testing. In the first experiment, we demonstrated that radiomic features from within the tumor and annular rings of 0–15 mm outside the tumor on CT imaging could reasonably predict HPV status of OPSCC, with an overall accuracy of 76%. A recent study by Leijenaar et al. designed a statistical framework for HPV status prediction, and they found that HPV+ tumors are more homogeneous in CT densities (25). This finding is in alignment with the result of this study. Specifically, HPV+ tumors possess a more homogeneous morphologic appearance in terms of CT texture patterns compared with HPV− tumors, which in turn is characterized by the Haralick correlation of information measured within the tumor (Figure 2A, second column). A higher value of the Haralick correlation indicates less pixel intensity disorders and decreased morphologic appearance heterogeneity for HPV+ tumors compared with HPV− tumors. Similar to the findings we report, Bagher-Ebadian et al. reported that HPV+ tumors have consistently lower energy components for seven frequency bands quantified by the DOST features (26). Although the discriminating textural features we identified are different from previous studies, the interpretations of the features are similar. However, we also found higher gray-level intensity values of HPV+ tumors compared with HPV− tumors on CT, which appears to be at odds to the findings of the study by Leijenaar et al. (25). In addition, our study represents the first study for integrating CT radiomic both within and around the tumor for OPSCC HPV status prediction. We demonstrate the superior discriminability of peritumoral CT radiomic features, which appears to suggest discriminable differences of the microenvironment in the regions immediately outside the tumor. HPV− patients are best characterized by a combination of local intensity disorder and microscale heterogeneity in gradient orientation, particularly outside the tumor. Specifically, a higher peritumoral variation of the gradient orientation defined by the CoLlAGe sum of variance was observed in HPV− compared with HPV+ tumors. Reduced expression of Haralick information capturing low level of correlation between adjacent pixels was also an important component of the peritumoral radiomic signature for HPV− patients. Furthermore, HPV− peritumoral regions were characterized by abrupt changes in edges, ripples, and intensity smoothness, as detected by the elevated expression of Laws features. These findings are consistent with previous studies, which showed that HPV+ tumors have less stroma overall, have smoother borders to the nests and leading edges, and are more homogeneously cellular usually without keratin production (27–29).

In the second experiment, we evaluated the prognostic ability of the HPV status-associated radiomics features found in experiment 1, to separately stratify HPV+ and HPV− OPSCC patients into high- and low-risk groups based on DFS. We constructed dedicated radiomic risk scores (RRSHPV+, RRSHPV−), which yielded significant risk stratification based on DFS in the validation set for both HPV+ and HPV− populations. A previous study by Leijenaar et al. externally validated the prognostic value of intratumoral radiomic signatures in a larger cohort of 542 OPSCC (C-index = 0.628, p < 0.001) but did not consider the variation of the results by HPV status (30). Vallières et al. used radiomic features from pretreatment FDG-PET and CT images of 300 patients from four different cohorts to prognosticate outcomes in head and neck cancer (31). They obtained C-indices of 0.63, 0.88, and 0.60 for local, regional, and distant recurrence-free survival. Aerts et al. trained a prognostic radiomic model on 422 patients with lung cancer and validated on 231 patients with head and neck cancers (32), achieving a concordance index of 0.69 (p < 0.001) on the validation set. However, unlike our study, this study did not consider HPV status as an independent prognostic indicator for outcome prediction. The prognostic ability of the radiomic risk score (RRSHPV+) was also evaluated within each of the AJCC eighth edition-defined stage groups. Although various treatment deintensification strategies have been proposed by multiple clinical trials based on clinicopathologic factors, there is a lack of reliable biomarkers for risk-stratifying OPSCC patients within individual stage groups. In the HN002 trial, patients meeting criteria of either T1-T2 N1-N2b M0 or T3 N0 N-2b M0 (AJCC seventh ed.) with a ≤10 pack-year smoking history are selected as candidates for therapy deintensification (7). Their results showed that patients randomly assigned to the non-chemotherapy arm did not meet the goal of 2-year DFS >85%. The authors also reported that for these patients using a low-than-standard-dose radiotherapy resulted in a higher rate of locoregional failure. This indicates that risk stratification based on grouping of clinicopathologic factors alone is not robust and there is a clear unmet clinical need for developing more granular and more objective biomarkers to identify patients who could truly benefit from treatment de-escalation. Clinically, stage I and stage II patients are the current target for treatment de-escalation. However, a subset of these patients still had poor survival outcome and would not benefit from treatment de-escalation (33). The CT radiomic risk score developed in this study represents a potential useful tool for guiding treatment intensities within the early-stage HPV+ OPSCC patients. By applying the threshold defined from the training set, the learned radiomic risk scores could further separate the stage I and stage II HPV+ patients into high- vs. low-risk groups based on disease-free survival. As such, the radiomic biomarker presented in this study could potentially help to distinguish patients within the current AJCC eighth edition definition of low risk as to which patients will benefit from treatment deintensification vs. those who will not. The findings of this study are consistent with a recently published study, where a histology-based imaging biomarker (MuNi) was found to be associated with survival for stage I and stage II patients (34). Noticeably, the prognostic radiomic features identified in this study are mainly from peritumoral compartments. One possible explanation for this is that the peritumoral radiomic features are associated with tumor-infiltrating HPV-specific immune responses prior to treatment, which have been more commonly found floating around the tumor without actual penetration or action into the tumor core and are strongly associated with prognosis (35, 36).

In the third experiment, we developed a radiomic nomogram Mp+RRS for HPV+ DFS prediction. Currently, the conventional TNM and AJCC staging systems are routinely used for risk stratification and prognosis estimation. They reflect tumor size (T), lymph node status (N), and cancer metastasis (M). However, these staging factors could not capture the intratumor heterogeneity, which has been shown to be a significant prognostic factor. The radiomic nomogram combined the pathologic staging information with the radiomic features extracted from the entire tumor on CT scans, enabling for robust pretreatment survival estimation. Combining the RRSHPV+ from experiment 2 with the pathologic T stage resulted in a nomogram that leads to a more individualized prognosis prediction. With refinement and improvement, this type of radiomic approach might guide more tailored treatment for patients with better survival outcome. Compared with risk stratification using only the conventional staging factors, the radiomic nomogram had an improved DFS estimation. A previous study by Fakhry et al. showed that a nomogram integrating clinicopathologic factors (i.e., HPV status, T and N stages) could reliably predict progression-free survival (37), which is in alignment with our results. Based on our results, T3 stage is significantly associated with worse DFS for HPV+ patients, while N1 and N2 stages are significantly associated with worse DFS for HPV− patients in both univariable and multivariable analyses. With regard to the radiomic nomogram for head and neck cancer, Zhang et al. built multiparametric MRI-based radiomic nomograms for predicting nasopharyngeal carcinoma prognosis and obtained C-index of 0.776 for PFS prediction (38). Yuan et al. proved that a nomogram consisting of MRI radiomic signatures and TNM stage could better predict head and neck cancer prognosis with a C-index of 0.72 on the validation set (39). The prognostic performance difference between our new CT-based nomogram and the MRI-based nomogram may be on the higher image resolution offered by multiparametric MRI, although CT tends to be used more routinely compared with MRI for head and neck cancer. We also noted that both patient cohorts from Zhang et al. (38) and Yuan et al. (39) comprised a majority of advanced stage head and neck cancer patients (100% and 70.6%), while our training and validation cohorts consist of only 17% and 26.6% of stage III and no stage IV OPSCC patients. This may also influence the performance of the model since intratumor heterogeneity could be more easily captured within those aggressive tumors.

Our study does have several limitations. First, the prognostic biomarker validation on a single cohort was done in a retrospective manner. Second, we predicted neither benefit of existing treatments for the two populations nor treatment response within the individual AJCC eighth edition-defined stage groups. These aims will be part of our future study involving large multisite and multimodality evaluation of radiomic signatures in predicting treatment response for the two populations. Third, we acknowledge the limitation of our dataset from the TCIA in terms of HPV status based on p16 testing which may not accurately reflect the true transcriptionally active HPV status, at least for a small percentage of patients. Nonetheless, this study demonstrates that CT radiomic features could, in theory, complement the existing p16 testing method in distinguishing HPV status.

Despite the aforementioned limitations, this study is the first to show the role of combined intratumoral and peritumoral radiomic features in predicting HPV status of OPSCC patients. It is also the first study to incorporate both radiomic signatures and corresponding nomograms for prognosis prediction for HPV+ and HPV− patients. If confirmed in prospective clinical trials, this radiomic nomogram pipeline could enrich the existing AJCC eighth staging systems for risk-stratifying OPSCC patients. One can imagine a strategy where numerous sources of data go into predictive models for patient care. Especially attractive here is that all patients received pretreatment cross-sectional CT scans so the data are already garnered in digitized form, easily available for radiomics-based nomograms for prognosis prediction.
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Patients with human papillomavirus (HPV) negative oral squamous cell carcinoma (OSCC) generally have poor clinical outcomes and worse responses to radiotherapy. It is urgent to explore the underlining mechanisms of the distinct prognoses between HPV negative and HPV positive OSCC and to develop effective therapy strategy to increase the survival rate of HPV negative OSCC patients. We conducted a retrospective cohort of 99 resected OSCC patients to evaluate the prognosis of HPV negative and HPV positive OSCC patients receiving radiation or not. We further addressed the association of CD68+ macrophage infiltration with HPV status and the effects on survival of OSCC patients. We also used the TCGA-OSCC cohort for further verification. Based on the cohort study, we applied a synthetic dsRNA polymer, polyriboinosinic-polyribocytidylic acid (poly(I:C)), on CAL-27 (HPV negative OSCC cells). We co-cultured its condition medium with THP-1 derived macrophage and examined the cytokines and macrophage migration. We found that high CD68+ macrophage infiltration associated with poor overall survival in HPV negative OSCC patients receiving radiation. In vitro, poly(I:C) could induce apoptosis and enhance the radiosensitivity, but increase macrophage recruitment. Targeting HMGB1 could inhibit IL-6 induction and macrophage recruitment. Our findings indicated that CD68+ macrophage might play an important role in the outcomes of HPV negative OSCC patients receiving radiation. Our findings also suggested that radiation combined poly(I:C) might be a potential therapy strategy to increase the radiation response and prognosis of HPV negative OSCC. Notably, HMGB1 should be targeted to inhibit macrophage recruitment and enhance overall therapy effects.
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Introduction

Oral cancer, the most common head and neck cancer (HNC), accounts for more than 300,000 new cases of and 170,000 deaths occur worldwide per year (1). Oral squamous cell carcinoma (OSCC) comprises approximately 90% of these cases with a 5-year survival rate of 40–60% (2). Patients with human papillomavirus (HPV) negative OSCC generally have a poor prognosis and worse response to radiotherapy or chemoradiotherapy (3–5). HPV negative and positive OSCC exhibit distinct clinic-pathological features and heterogeneous microenvironments; however, the factors responsible for the distinct responses and prognoses remained obscure (6). Therefore, it is urgent to explore the underlining mechanisms of the distinct prognoses between HPV negative and positive OSCC, so as to optimize therapy strategy of HPV negative OSCC patients and increase overall survival rate.

Radiotherapy affects the tumor microenvironment, which in turn affects radiation-induced anticancer efficacy (7). Recent studies showed that enriched inflammatory lymphocyte infiltration in tumor microenvironment associated with HPV positive HNC and favorable prognosis (8–11). Macrophages are crucial drivers of tumor-promoting inflammation (12, 13). Macrophage polarization has also been reported to increase radiosensitivity in HPV positive HNC (14). So far, however, it is not clear whether macrophage infiltration associates with response to radiotherapy and survival of HPV negative and HPV positive OSCC. On the other hand, Hanoteau et al. reported that immune modulation of tumor microenvironment enhanced response to chemoradiotherapy of HNC (15). Sato-Kaneko et al. found that adjuvant toll like receptor (TLR) agonists could enhance tumor suppression and metastasis prevention of checkpoint inhibitors in HNC (16). Therefore, we hypothesized that TLR agonists might modulate tumor microenvironment and enhance the radiosensitivity of HPV negative OSCC, the majority population of OSCC.

We conducted a retrospective cohort of 99 resected OSCC patients and validated the findings using TCGA-OSCC cohort. We evaluated the association of CD68+ macrophage infiltration with HPV status and overall and disease-free survival of OSCC patients receiving or not receiving post operation radiation. Based on the findings of the cohort study, in vitro, we applied a synthetic dsRNA polymer, polyriboinosinic-polyribocytidylic acid [poly(I:C)], as a TLR agonist on CAL-27 (HPV negative OSCC cells). We assessed the apoptosis and proliferation of CAL-27 in response to poly(I:C) or combined with radiation. We co-cultured its condition medium with THP-1 derived macrophage and examined the induced cytokine profile and macrophage migration. We also addressed the role of a radiation injury associated molecule, High Mobility Group Box 1 (HMGB1), in above effects on macrophage.



Materials and Methods


Patient and Study Design

The specimens were obtained from 99 primary OSCC patients admitted in Qilu Hospital of Shandong University between 2006 and 2015. All patients received surgical resections without preoperative chemotherapy or radiotherapy. The ethical approval of this study was obtained from the Ethics Committee of Qilu Hospital of Shandong University. The patients were subject to radiotherapy according to TNM stage, tumor differentiation, and the patients’ intentions. The patients were followed up until May 2019 (median: 60 months). The baseline clinic-pathological characteristics were shown in Supplementary Table S1.

The Cancer Genome Atlas (TCGA)-HNSCC cohort was used for validation. The clinical characteristics of TCGA-HNSCC cohort were obtained from the Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/). Gene expression data of TCGA-HNSCC RNA-sequencing (RNA-seq) dataset was obtained from UCSC Xena (https://xena.ucsc.edu/). HPV status was determined based on Cao et al. (17). Patients with HPV-supporting reads > 100 were defined as HPV positive. Updated follow-up information was used based on Liu et al. (18). Patients without HPV status or follow-up information were excluded. Patients with histories of malignancies and/or adjuvant therapies were also excluded. At last, a total of 278 OSCC patients were used for validation. The baseline clinic-pathological characteristics were shown in Supplementary Table S2. CIBERSORT, a deconvolution algorithm, was used to analyze the infiltration of macrophages in the tumor microenvironment (19) (https://cibersort.stanford.edu/index.php). Twenty-two human immune cell types were inferred. The landscape of immune infiltration is shown in Figure 1A. Another deconvolution tool, Estimating the Proportions of Immune and Cancer cells (EPIC), was also used to estimate the proportions of macrophages (20) (http://epic.gfellerlab.org). Seven human cell types were inferred by ERIC, and the landscape is shown in Figure 1B.




Figure 1 | The landscape of immune infiltration of 278 OSCC patients in TCGA cohort. (A) Heatmap of 22 types of tumor-infiltrating immune cells deconvolved using CIBERSORT in OSCC. (B) Heatmap of 7 types of tumor-infiltrating cells deconvolved using EPIC in OSCC.





Immunohistochemistry of p16 and CD68

P16 and CD68 were used to determine HPV status (4, 21) and macrophage infiltration (12, 22), respectively. Formalin-fixed paraffin-embedded tumor specimens were cut into 5-μm sections and processed for immunohistochemistry. Briefly, after incubation with a mouse anti-P16INK4a monoclonal antibody (1:50, 550834, BD Pharmingen, USA) or a mouse anti-CD68 (PG-M1) monoclonal antibody (ZM-0464, ZSGB-bio, China) at 4°C overnight, the sections were processed using biotin-streptavidin horseradish peroxidase detection system (SP-9000, SPlink Detection Kit, ZSGB-bio, Beijing, China). The slides were viewed under the Olympus IX81 microscope (Olympus, Japan), and the images were produced using DP Controller (Olympus, Japan).

P16 expression was evaluated based on staining intensity (0: no staining, 1: weak, 2: moderate, or 3: strong) and the proportion of stained tumor cells (0: 0–5%, 1: 6–25%, 2: 26–50%, 3: 51–75%, or 4: greater than 75%). P16 status was considered positive if staining intensity was strong (score 3) and the proportion of stained tumor cells was greater than 25% (score 2–4), or the staining intensity was moderate (score 2) and the proportion of stained tumor cells was greater than 75% (score 4). For CD68 evaluation, we counted the numbers of positively stained cells in five random fields (400×) in tumor nest of each specimen. The average number of CD68+ cells infiltrated in tumor nest per field was calculated. The level of CD68+ macrophages was determined according to its median value (12.67 per filed). All cases with number ≤ 12.67 per field were considered low, the number > 12.67 considered high. The evaluations of p16 and CD68 were performed by two pathologists and confirmed by another experienced pathologist.



Cell Culture and Treatment

CAL-27 (HPV-negative human oral squamous cell line) and THP-1 (human monocytic cell line) were obtained from American Type Culture Collection (ATCC). All cells were cultured in phenol red-free Roswell Park Memorial Institute (RPMI) 1640 medium (HyClone, USA) supplemented with 10% charcoal stripped fetal bovine serum (HyClone, USA) at 37°C, 5% CO2.

CAL-27 were treated with 10 μg/ml poly(I:C) (TOCRIS, R&D, USA) or PBS for specific period of time (2 or 24 h). The cells were exposed with a serial of doses of radiation (0, 2, 6, or 8 Gy). Conditioned cells and conditioned medium (CM) were collected after culture for 24 h. Radiation was carried out using Varian 23EX 554 accelerator radiation platform in Department of Radiotherapy of Qilu Hospital of Shandong University. The required doses, 2, 6, and 8 Gy, were calculated according to 6MV X-ray PDD table of Varian 23EX 554 accelerator. The vertical irradiation field was 20 cm × 20 cm.

To generate THP-1-derived macrophages, THP-1 cells (1 × 106 cells/well) were treated with 100 ng/ml phorbol myristate acetate (R&D, USA) for 6 h. For cytokine induction, the medium of THP-1-derived macrophages was replaced with 50% CAL-27 CM (or no CM control), which was the supernatants of CAL-27 treated with/without poly(I:C) for 24 h and/or 8 Gy radiation. The cells were continued to culture for 42 h before changing fresh medium and were further incubated for 24 h. IL-6 NAb neutralizing antibody or its isotype antibody (NAb/IsoAb, 10 μg/ml, R&D, USA), or HMGB1 NAb/IsoAb (1 μg/ml, Sigma, USA) was applied for the specific treatment groups as indicated.



Cell Proliferation Assay

Cell proliferation was measured by CCK-8 assay (Bioss, China). CAL-27 cells were seeded in 96-well plates at a density of 2 × 103 cells/200 μl. At the end of poly(I:C) and radiation treatments, the medium was replaced and CCK-8 solution (10 μg) was added to each well. At last, the optical density was measured at 450 nm with a microplate microscope after incubated in darkness for 2 h.



Apoptosis Assay

Apoptosis was measured using Annexin V-FITC/PI apoptosis detection kit (BestBio, China). CAL-27 cells described above were collected and washed with cold PBS. The cells were then resuspended in 500 μl binding buffer containing 5 μl Annexin V-FITC and 5 μl propidium iodide and incubated for 15 min before analyzed for flow cytometry (NovoCyte, ACEA Biosciences, USA).



Enzyme-Linked Immunosorbent Assay

The concentration of High Mobility Group Box 1 (HMGB1) in CAL-27 CM was determined by Human HMGB1 ELISA kit (Elabscience, China) according to the manufacturer’s instructions.



Cytokine Assay

The supernatants of THP-1-derived macrophages after incubation with CAL-27 CM were collected and stored at -80°C after removal of the cell debris. Bio-Plex ProTM Human Th17 Cytokine Assay (Bio-rad, USA) was used to detect the levels of cytokines in above supernatants according to the manufacturer’s instructions.



Migration Assay

The 24-well Transwell culture inserts (8 μm, BD Biosciences, USA) were used for cell migration assay according to the manufacturer’s instructions. THP-1-derived macrophages (1 × 105) were resuspended in 100 μl of serum-free RPMI-1640 medium and seeded into the upper compartment of each well. RPMI-1640 medium (600 μl) with 10% FBS and 50% CAL-27 CM was added into the lower chamber of the plate. RPMI-1640 medium with 10% FBS but without CAL-27 CM was used as control. IL-6 NAb/IsoAb (10 μg/ml, R&D, USA) or HMGB1 NAb/IsoAb (1 μg/ml) was added into CAL-27 CM as indicated. After incubation at 37°C in 5% CO2 for 24 h, the migrated cells were fixed using 10% formalin and stained with eosin. Cell numbers of five random fields were counted, and images were taken.



Statistical Analysis

Data were presented as mean ± standard deviation (SD) unless indicated. Student’s t test, Mann-Whitney U test, or ANOVA was used to determine the statistical significances as indicated. Chi-square test or Fisher’s exact test was used to determine the differences of clinicopathological characteristics between different groups. Kaplan-Meier analysis was used, and the log-rank test was used to discriminate the differences. Univariate and multivariate cox regressions were used to assess the association with overall or disease-free survival. Factors associated with cancer-specific survival with a P value lower than 0.1 and those shown to associate with cancer outcomes were further tested in multivariate cox regression. A two-tailed P value less than 0.05 was considered as statistical significance. For statistical analyses of cohort studies, IBM SPSS software version 25.0 (SPSS Inc., USA) was used. For statistical analyses of in vitro experiments, Graphpad Prism 8 software (La Jolla, USA) was used. All statistical graphs were generated using Graphpad Prism 8 software.




Results


Poor Overall Survival of HPV Negative OSCC Patients Receiving Radiation

To analyze HPV status in OSCC, tumor specimens from 99 OSCC patients in our cohort were stained for p16 (Figure 2A), a marker of HPV. To investigate the association of HPV status with the outcomes of OSCC patients, we analyzed the survivals between HPV negative and HPV positive OSCC patients and between those received or not received radiation in our cohort. We observed a poor overall survival (OS) and a poor disease-free survival (DFS) in HPV negative patients with OSCC, however, the differences were not significant (P = 0.056 and P = 0.085, respectively, Figures 2B, C). Accordingly, there was no significant association between HPV status and OS or DFS in patients with OSCC in univariate or multivariate cox regression (hazard ratio: 0.439, 95% confidence interval: 0.183–1.053, P = 0.065 for OS, hazard ratio: 0.536, 95% confidence interval: 0.259–1.110, P = 0.093 for DFS, Supplementary Tables S3, S4). Furthermore, radiation treated OSCC patients with HPV negative status showed worse OS and DFS compared to those with HPV positive status; however, the differences were not significant either (P = 0.063 and P = 0.075, respectively, Figures 2D, E).




Figure 2 | Association of HPV status and radiation with survival of OSCC patients in our cohort. (A) Representative immunohistochemical images of p16 positive and negative OSCC (left: 100×, right: 400×). (B, C) Kaplan-Meier curves show overall survival (B) and disease-free survival (C) of HPV negative and HPV positive OSCC patients. (D, E) Kaplan-Meier curves show overall survival (D) and disease-free survival (E) of HPV negative and HPV positive OSCC patients receiving radiation or no radiation. Log-rank test and/or pair wised comparison was used for significance. RT, radiation.



We further validated the findings in TCGA-OSCC cohort. OSCC patients (278) were selected from TCGA-HNSCC cohort as described in Materials and Method section. Trends of poor OS and DFS in HPV negative patients with OSCC were observed, however, the differences were not significant (P = 0.169 and P = 0.288, respectively, Supplementary Figure S1A, B). Accordingly, there was no association between HPV status and OS or DFS in patients with OSCC in univariate or multivariate cox regression (hazard ratio: 0.674, 95% confidence interval: 0.328–1.387, P = 0.284 for OS, hazard ratio: 0.623, 95% confidence interval: 0.327–1.188, P = 0.151 for DFS, Supplementary Tables S5, S6) in TCGA-OSCC cohort. In addition, radiation treated OSCC patients with HPV negative status showed a trend of worse OS compared to those with HPV positive status, but without statistical significance (P = 0.085, Supplementary Figure S1C).

The correlations between HPV status and clinic-pathological characteristics were also analyzed. No significant correlation was found in our cohort (Supplementary Table S1). More HPV negative patients were found in late stage OSCC patients in TCGA cohort (Supplementary Table S2).



Intratumor CD68+ Macrophage Infiltration Is Not Correlated HPV Status or Outcomes of OSCC Patients

To analyze macrophage infiltration in OSCC, tumor specimens from 99 OSCC patients in our cohort were stained for CD68, a marker of human macrophages. As shown in Figure 3A, CD68+ cells present throughout the tumor core. Intratumor infiltration of CD68+ macrophages were evenly distributed in patients with HPV negative and HPV positive OSCC (Figure 3B). There was no association of CD68+ macrophage infiltration with overall or disease-free survival using log-rank test (Figures 3C, D) or univariate or multivariate cox regression (Supplementary Tables S3, S4). The association was not different either considering HPV status (Figures 3E, F).




Figure 3 | Association of CD68+ macrophage infiltration and HPV status with survival of OSCC patients in our cohort. (A) Representative immunohistochemical images of high or low level of CD68+ macrophages in OSCC (left: 100×, right: 400×). (B) Proportion of high or low level of CD68+ macrophages in patients with HPV negative and HPV positive OSCC. (C, D) Kaplan-Meier curves exhibit overall survival (C) and disease-free survival (D) in high or low level of CD68+ macrophage infiltrated OSCC patients. (E, F) Kaplan-Meier curves exhibit overall survival (E) and disease-free survival (F) in high or low level of CD68+ macrophage infiltrated OSCC patients with HPV negative and HPV positive status. Log-rank test and/or pair wised comparison was used for significance. CD68-Hi, CD68-High; CD68-Lo, CD68-Low; RT, radiation.



We validated the findings in TCGA-OSCC cohort. Accordingly, macrophage infiltration deconvolved using CIBERSOFT was not correlated with HPV status (Supplementary Figure S2A). There was no association of macrophage infiltration with overall or disease-free survival (Supplementary Figures S2B, C and Supplementary Tables S5, S6). The association was not different either considering HPV status (Supplementary Figures S2D, E). Similar results were also observed in macrophage infiltration deconvolved using EPIC (Supplementary Figure S3).

Notably, we found that CD68+ macrophage infiltration was significantly correlated with differentiation in patients with HPV negative OSCC (P = 0.014), but not in those with HPV positive OSCC (P = 0.072, Table 1) in our cohort. In TCGA-OSCC cohort, we found that macrophage infiltration deconvolved using CIBERSOFT was correlated with the histological grade (P = 0.012, Table 2), especially in patients with HPV negative OSCC (P = 0.011, Table 3). In addition, we found that macrophage infiltration deconvolved using EPIC was also correlated with the histological grade in patients with HPV negative OSCC (P = 0.022, Table 4).


Table 1 | Correlation of intratumor CD68+ macrophage infiltration with clinic-pathological characteristics of HPV positive and negative OSCC patients in our cohort.




Table 2 | Correlation of macrophage infiltration deconvolved using CIBERSOFT and EPIC with clinic-pathological characteristics of OSCC patients in TCGA cohort.




Table 3 | Correlation of macrophage infiltration deconvolved using CIBERSOFT with clinic-pathological characteristics of HPV positive and negative OSCC patients in TCGA cohort.




Table 4 | Correlation of macrophage infiltration deconvolved using EPIC with clinic-pathological characteristics of HPV positive and negative OSCC patients in TCGA cohort.





Intratumor CD68+ Macrophage Infiltration Associates With Poor Survival of HPV Negative OSCC Patients Receiving Radiation

We next evaluated the role of CD68+ macrophage infiltration in the outcomes of radiation treated OSCC patients in HPV negative and HPV positive subgroups in our cohort. We observed a poor OS and a poor DFS in high CD68+ macrophage infiltrated OSCC patients received radiation in all OSCC patients (P = 0.009 and P = 0.021, respectively, Figure 4A, B). In univariate cox regression model, high CD68+ macrophage infiltration was associated with poor OS and DFS of OSCC patients received radiation (hazard ratio: 3.492, 95% confidence interval: 1.287–9.476, P = 0.014 for OS, hazard ratio: 2.610, 95% confidence interval: 1.112–6.123, P = 0.027 for DFS, Figure 4C, D and Supplementary Tables S7, S8). Notably, similar results only appeared in the HPV negative OSCC subgroup (P = 0.011 and P = 0.016, respectively, Figures 5A, B). Accordingly, radiation was associated with poor OS and DFS of high CD68+ macrophage infiltrated OSCC patients in HPV negative subgroup in univariate cox regression model (hazard ratio: 3.746, 95% confidence interval: 1.248–11.244, P = 0.019 for OS, hazard ratio: 3.012, 95% confidence interval: 1.161–7.814, P = 0.023 for DFS, Figures 5C, D and Supplementary Tables S9, S10). However, the associations remained not statistically significant after adjusting for age, gender, tumor size, lymph node metastasis, and differentiation in multivariate cox regression model (Supplementary Tables S9, S10). In addition, there were no associations in HPV positive OSCC subgroup (Supplementary Figure S4 and Supplementary Tables S11 and S12) in our cohort. We also validated these findings in TCGA-OSCC cohort. However, no association of macrophage infiltration deconvolved using CIBERSOFT or EPIC and prognosis was observed in all OSCC patients (Supplementary Figures S5, S6 and Supplementary Tables S13–S16), HPV negative OSCC subgroup (Supplementary Figures S7, S8 and Supplementary Tables S17–S20), or HPV positive OSCC subgroup (data not shown). These results suggested that CD68+ macrophage might play an important role in the distinct prognoses of HPV negative and positive OSCC patients receiving radiation or not.




Figure 4 | Association of CD68+ macrophage infilatration and radiation with survival of all OSCC patients in our cohort. (A, B) Kaplan-Meier curves show overall survival (A) and disease-free survival (B) in high or low level of CD68+ macrophage infiltrated OSCC patients receiving radiation or no radiation. Log-rank test and/or pair wised comparison was used for significance. (C, D) Forest plots illustrate hazard ratios of subgroup univariate cox regression of overall survival (C) and disease-free survival (D). CD68-Hi, CD68-High; CD68-Lo, CD68-Low; RT, radiation.






Figure 5 | Association of CD68+ macrophage infilatration and radiation with survival of HPV negative OSCC patients in our cohort. (A, B) Kaplan-Meier curves exhibit overall survival (A) and disease-free survival (B) in high or low level of CD68+ macrophage infiltrated HPV negative OSCC patients receiving radiation or no radiation. Log-rank test and/or pair wised comparison was used for significance. (C, D) Forest plots illustrate hazard ratios of subgroup univariate cox regression of overall survival (C) and disease-free survival (D). CD68-Hi, CD68-High; CD68-Lo, CD68-Low; RT, radiation.





Poly(I:C) Induces Apoptosis of CAL-27 and Enhances Its Radiosensitivity

In the above cohort studies, we observed trends of poor OS and DFS of radiation treated OSCC patients in HPV negative subgroup. To explore whether virus affects the radiosensitivity of HPV negative OSCC cells, in vitro, we applied a viral dsRNA mimic, poly(I:C), on CAL-27 cells. We performed apoptosis assay of flow cytometry of CAL-27 treated with poly(I:C) combined with radiation (Figure 6A–D). We demonstrated that the apoptotic rates of CAL-27 were significantly increased by increasing of radiation dose. On the other hand, poly(I:C) further increased the apoptosis rates of CAL-27 treated with radiation. Similarly, the proliferation of CAL-27 was also significantly decreased by increasing radiation dose (Figure 6E). Poly(I:C) had a further inhibitory effect on the proliferation of CAL-27 treated with radiation. Together, these results suggested that poly(I:C) not only induced apoptosis of CAL-27, but also enhanced the radiosensitivity of CAL-27.




Figure 6 | Poly(I:C) enhances radiation-induced apoptosis and inhibits proliferation of CAL-27. CAL-27 cells were treated with poly(I:C) or PBS for 24 h followed by radiation. (A) Representative plots illustrate apoptosis of CAL-27 according to annexin V and/or propidium iodide (PI) staining. (B) Bar plots indicate the quantifications of early apoptotic cells ((annexin V+/PI-) of the bottom right quadrant. (C) Bar plots indicate the quantifications of late apoptotic cells (annexin V+/PI+) of the top right quadrant. (D) Bar plots indicate the quantifications of total apoptotic cells (annexin V+) of the top right and bottom right quadrants. (E) The proliferation curve shows the proliferation of CAL-27 detected by CCK-8 assay. Student’s t-test was used for significance determination of flowcytometry (mean ± SD, n = 3). ANOVA was used for significance determination of CCK-8 assay (mean ± SD, n = 5). * indicates P < 0.05, *** indicates P < 0.001 and **** indicates P < 0.0001. PIC, poly (I:C).





Poly(I:C) Alters Cytokine Induction and Recruitment of Macrophage Cocultured With Radiation Stimulated CAL-27

In the above cohort studies, we found that radiation was associated with poor OS and DFS of high CD68+ macrophage infiltrated OSCC patients in HPV negative subgroup. To explore the effect of poly(I:C) and/or radiation treated CAL-27 on cytokine secretion of macrophage, we treated THP-1-derived macrophages with CAL-27 conditioned medium (CM) and evaluated the levels of cytokines using Th17 Cytokine Assay (Figure 7A). M1-type cytokines, IL-1β, IL-6, IL-17 and TNF-α of THP-1-derived macrophages were induced in response to radiation stimulated CAL-27 CM. Moreover, the inductions of IL-1β and IL-6 were also significantly increased in response to poly(I:C) combined radiation stimulated CAL-27 CM. The inductions of IL-17 and TNF-α were significantly decreased in response to poly(I:C) combined radiation stimulated CAL-27 CM. On the other hand, radiation-stimulated CAL-27 CM significantly inhibited the secretion of IL-7 in THP-1-derived macrophage, and the addition of poly(I:C) further inhibited the secretion of IL-7. Furthermore, poly(I:C) treated CAL-27 CM inhibited IL-12p70 secretion of THP-1-derived macrophages regardless of radiation treatment. These results addressed the importance of M1-type cytokine, IL-6, which was induced most significantly in response to both radiation and poly(I:C) stimulated CAL-27 CM.




Figure 7 | Poly(I:C) and radiation-stimulated CAL-27 alters cytokine secretion of macrophages and promotes macrophage recruitment through IL-6 and HMGB1. CAL-27 cells were treated with poly(I:C) or PBS for 24 h followed by 8 Gy or 0 Gy radiation. THP-1-derived macrophages were treated with above CAL-27 CM (or no CM control) and continued to culture for 42 h before incubation for 24 h with fresh medium. (A) The concentrations of IL-1β, IL-6, IL-17, TNF-α, IL-7, and IL-12p70 in the supernatants were detected by cytokine assay. ANOVA was used (mean ± SD, n = 5). (B) Bar plot shows HMGB1 concentrations in CAL-27 CM detected by ELISA. Mann-Whitney U-test was used (mean ± SD, n = 3). (C) Bar plot shows the concentration of IL-6 in the supernatants of THP-1-derived macrophages treated with CAL-27 CM (poly (I:C) 24 h combined 8 Gy radiation) or pretreated with HMGB1 neutralizing antibody or isotype antibody. (D, E) Representative images (×200) and quantifications of the migrated THP-1-derived macrophages treated with CAL-27 CM and IL-6 neutrolizing antibody (or isotype). (F, G) Representative images (×200) and quantifications of the migrated THP-1-derived macrophages treated with CAL-27 CM and HMGB1 neutrolizing antibody (or isotype). ANOVA was used (mean ± SD, n = 5). * indicates P < 0.05 and ** indicates P < 0.01. PIC, poly (I:C); CM, condition medium; RT, radiation. NAb, neutralizing antibody; IsoAb, isotype antibody.



Based on the evidences of HMGB1 in macrophage function and radiation damage, we further explored the induction of HMGB1 in poly(I:C) and/or radiation treated CAL-27 CM (Figure 7B) and its role in IL-6 induction (Figure 7C). HMGB1 induction of CAL-27 CM was significantly promoted in response to radiation in a dose dependent manner. On the other hand, poly(I:C) significantly promoted HMGB1 induction of CAL-27 in a time dependent manner regardless of radiation. Notably, poly(I:C) treatment for 24h combined 8Gy radiation showed the most significant induction of HMGB1. Furthermore, neutralizing HMGB1 significantly inhibited IL-6 induction of THP-1-derived macrophage in response to CAL-27 CM treated with poly(I:C) for 24h and 8Gy radiation.

To investigate the role of IL-6 in macrophage recruitment, we established an in vitro macrophage migration model using transwell chambers. We co-cultured THP-1-derived macrophages with CAL-27 CM treated with poly(I:C) and radiation. We found that poly(I:C) or radiation treated CAL-27 CM promoted the recruitment of THP-1-derived macrophages. The recruitment was significantly enhanced by combining poly(I:C) and radiation. However, the recruitment was depleted by neutralizing IL-6 (Figures 7D, E). These suggested the key role of IL-6 in macrophage recruitment by CAL-27 CM. Furthermore, neutralizing HMGB1 also significantly inhibited the recruitment of THP-1-derived macrophages by in response to CAL-27 CM (Figures 7F, G). These results suggested that poly(I:C) and radiation stimulated CAL-27 CM promoted macrophage recruitment could be inhibited by targeting HMGB1.




Discussion

The need to explore the underlining mechanisms of the distinct prognoses of HPV negative and positive OSCC is urgent for precise medicine. Lymphocyte infiltration of tumor microenvironment and its modulation have been shown associated with HPV positive HNC patients and their favorable prognosis and better therapy response (8–11, 15, 16). Nonetheless, the role of macrophage has been overlooked. We observed a poor OS and a poor DFS in high CD68+ macrophage infiltrated OSCC patients receiving radiation in HPV negative subgroup in our cohort. Based on the cohort results, we further conducted in vitro experiments, we found that poly(I:C) could not only induce apoptosis, but also enhanced the radiosensitivity of CAL-27. Furthermore, neutralizing IL-6 or HMGB1 could inhibit macrophage recruitment. A schematic diagram was made to depict the above mechanisms (Figure 8).




Figure 8 | The schematic diagram depicting the strategy of targeting HMGB1 may enhance radiosensitivity of CAL-27 cells by inhibiting macrophage recruitment induced by poly(I:C).



To explore the association of macrophage infiltration with HPV status and survival of OSCC patients, we conducted a retrospective cohort. In our study, we found that CD68+ macrophage infiltration was not associated with OS or DFS of OSCC patients. The association of CD68+ macrophages with survival of OSCC patients is controversial. Some studies showed that high CD68+ macrophage associated with poor survival of OSCC (23–27) or with favorable survival of OSCC (28). Consistent with our results, there are also studies demonstrated no association of CD68+ macrophage infiltration with prognosis of OSCC patients (29, 30). However, we observed a poor OS and a poor DFS in radiation treated OSCC patients with high CD68+ macrophage infiltration, especially in HPV negative subgroup, but not in HPV positive subgroup. However, the lack of association between macrophage infiltration and radiation response in HPV positive OSCC patients might also result from the limited number of HPV positive subgroup. These findings indicated that CD68+ macrophage might associate with poor radiation response and prognosis of HPV negative OSCC patients, and that CD68+ macrophage infiltration might need to be reduced before radiation therapy for HPV negative OSCC patients.

Since HPV negative OSCC patients receiving radiation obtained worse survival than HPV positive OSCC patients, we applied radiation and/or poly(I:C) to CAL-27 cells in an attempt to examine whether viral mimic could affect radiosensitivity of HPV negative OSCC. We found that poly(I:C) could induce apoptosis of CAL-27. This is consistent with previous studies of pancreatic cancer (31, 32), glioblastoma (33), and neuroblastoma (34). We also found that poly(I:C) could enhance the radiosensitivity of CAL-27. This is consistent with Mikulandra’s finding using poly(I:C) and cisplatin in HNSCC-derived cells (35) and Sato’s finding in lung adenocarcinoma (36). Together, these suggested that radiation combined with poly(I:C) could be potentially used for OSCC suppression.

On the other hand, we found that M1-type cytokines were induced in THP-1 derived macrophages in response to radiation and poly(I:C) stimulated CAL-27 CM. IL-6, the most significantly induced cytokine, played a key role in macrophage recruitment by CAL-27 CM. We also demonstrated that the process was dependent of HMGB1. It has been shown as a key damage-related molecular pattern to induce inflammation in response to radiation (37–39). However, HMGB1 has also been shown to promote hepatocellular carcinoma (40) and associate with radiation resistance of bladder cancer cells (41). Accordingly, in our study, neutralizing HMGB1 could inhibit IL-6 induction and macrophage recruitment. Taken together, our findings suggested that although poly(I:C) could enhance radiosensitivity of OSCC, neutralizing HMGB1 should also be used to inhibit macrophage recruitment promoted by poly(I:C) and radiation CAL-27 CM.

In summary, we demonstrated that CD68+ macrophage infiltration might associate with poor prognosis of HPV negative OSCC patients receiving radiation using our cohort. We found that treating CAL-27 with a viral mimic, poly(I:C), could induce apoptosis and enhance the radiosensitivity. Furthermore, HMGB1 should be targeted to inhibit macrophage recruitment and may enhance the overall therapy effects. Our findings may supply a potential therapy strategy to increase the radiation response and prognosis of HPV negative OSCC and provide new insights in understanding the molecular mechanisms.
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Background

In this study, we evaluated the prognostic value of the plasma levels of Epstein-Barr virus (EBV) DNA in patients with nasopharyngeal carcinoma (NPC) at different treatment stages.



Methods

We retrospectively analyzed the Data of 206 patients with NPC. Pre-neoadjuvant chemotherapy (pre-NACT), post-NACT, post-radiotherapy, and post-treatment plasma EBV DNA levels were used to establish prognostic nomograms. The concordance index (C-index) and calibration curves were used to compare the prognostic accuracy of the nomograms. The results were confirmed in a validation cohort consisting of patients who were tested for EBV DNA levels at all four stages of treatment. The Kaplan-Meier method was used to calculate the progression-free survival (PFS) and overall survival (OS). Survival differences were calculated using the log-rank test.



Results

EBV DNA-positive patients had worse 3-year PFS and 5-year OS than EBV DNA-negative patients; this was true for pre-NACT (PFS: 82.7% vs. 57.3%, P < 0.001; OS: 90.9% vs. 68.7%, P = 0.08) and post-NACT (PFS: 85.0% vs. 50.6%, P < 0.001; OS: 91.7% vs. 65.7%; P = 0.001) EBV DNA levels but not for post-radiotherapy (PFS: 72.2% vs. 60.9%, P = 0.192; OS: 73.1% vs. 77.2%, P = 0.472) or post-treatment (PFS: 77.3% vs. 59.2%, P = 0.063; OS: 77.5% vs. 79.7%, P = 0.644) levels. Nomograms combining pre-NACT and post-NACT EBV DNA levels had a superior prognostic ability than those of post-radiotherapy and post-treatment EBV DNA levels.



Conclusion

Pre-NACT EBV DNA levels combined with post-NACT EBV DNA levels can more reliably predict survival outcomes in patients with NPC.





Keywords: nasopharyngeal carcinoma, Epstein-Barr virus DNA, neoadjuvant chemotherapy, prognostic factor, nomogram



Introduction

Nasopharyngeal carcinoma (NPC) is relatively common in Southeast Asian countries due to the high prevalence of Epstein-Barr virus (EBV) infections (1). The recent advances in intensity-modulated radiotherapy (IMRT) and concurrent chemoradiotherapy (CCRT) have greatly improved the prognosis and survival outcomes of patients with NPC (2). However, some patients with NPC develop local recurrence or metastasis within 2 years of treatment (3). Patients with NPC receive different neoadjuvant chemotherapy (NACT) and adjuvant chemotherapy (ACT) regimens depending on their TNM stage. A phase III clinical trial showed that ACT with cisplatin and fluorouracil did not significantly improve the failure-free survival in patients with a locally advanced NPC (4). However, NACT with gemcitabine and cisplatin increased the 3-year recurrence-free survival from 76.5% to 85.3% in patients with a locally advanced NPC (5). In another study, three cycles of NACT improved the disease-free survival in patients with advanced NPC, although no significant changes were observed in the overall survival (OS) (6). Furthermore, the combination of NACT and ACT had no effect on the distant metastasis-free survival and OS in patients with advanced, high-risk NPC, despite a moderate improvement in the prognosis of low-risk patients (7, 8). Hence, the clinical benefit of NACT and ACT in patients with NPC merits further investigation.

EBV infection is associated with an increased risk of NPC (9–12). The relationship between the EBV DNA levels and the prognosis of patients at different stages of treatment has also been reported (13–16). Pre-treatment and post-treatment EBV DNA levels are considered as an indicator of tumor load and tumor malignancy. Notably, pre-treatment EBV DNA levels in the plasma of patients with NPC were significantly correlated with distant metastasis (6), relapse (17), and long-term OS (18, 19). Additionally, post-radiotherapy EBV DNA levels in the plasma of patients with NPC predicted locoregional failure, distant metastasis, and death (20). Post-treatment plasma EBV DNA levels also predicted distant metastasis (21) and tumor recurrence (22); thus, additional treatment in patients with high post-treatment EBV DNA levels may prevent relapse (14). Many NPC prognostic models are based on the EBV characteristics and serological indicators (19, 23, 24). The predictive ability of the nomograms of the circulating EBV DNA levels is higher than that of nomograms of the TNM stage (25). These findings suggest that plasma EBV DNA levels are useful in risk stratification and prognosis prediction in patients with NPC (23, 26). Furthermore, evaluating the plasma EBV DNA levels may improve the prediction of the PFS and OS (27, 28).

Nevertheless, the relevance of the dynamic changes in EBV DNA levels in NPC prognosis remains unclear. In this study, we evaluated the prognostic value of plasma EBV DNA levels at different treatment stages and the relationship between plasma EBV levels and NACT outcomes. We also developed a nomogram by combining pre-NACT and post-NACT EBV levels with other traditional risk factors.



Methods


Patients

>We retrospectively reviewed the data of 696 patients diagnosed with NPC who underwent radiotherapy with NACT at Wuhan Union Hospital Cancer Center between July 2012 and October 2018; 490 patients were excluded because of the lack of information on the plasma EBV DNA levels. Among the 206 NPC patients, the plasma EBV DNA levels were evaluated before NACT (hereafter referred to as pre-NACT) in 178 patients, after NACT and before radiotherapy (hereafter referred to as post-NACT) in 161 patients, post-radiotherapy in 118 patients, and post-treatment in 133 patients. There was an intersection between the different groups of patients. The validation cohort consisted of 76 patients with known EBV DNA levels at all four treatment stages. The eligibility criteria were as follows: (1) pathological diagnosis of primary NPC; (2) no history of cancer treatment; (3) at least one plasma EBV DNA level evaluation (pre-NACT, post-NACT, post-radiotherapy, or post-treatment); (4) treatment with IMRT; (5) NACT treatment; (6) availability of baseline clinical data, including routine blood indicators and liver and kidney function. The experimental design is shown in Figure 1.




Figure 1 | Flow chart of this study.





Diagnosis and Treatment

Baseline demographic and clinicopathological characteristics, including gender, age, and smoking status, were collected for all patients. Blood samples were collected before treatment to assess the levels of white blood cells, hemoglobin (HGB), platelets (PLT), lactate dehydrogenase (LDH), and EBV DNA. The clinical tumor stage was determined according to the AJCC TNM staging guidelines, seventh edition. All patients received IMRT and NACT, with or without adjuvant chemotherapy (ACT). NACT regimens were as follows: 1) 75 mg/m2 of docetaxel and 75 mg/m2 of cisplatin on day 1, and 750 mg/m2 of fluorouracil for 5 days; 2) 1,000 mg/m2 of gemcitabine on day 1 and day 8, 80 mg/m2of cisplatin on day 1; 3) 75 mg/m2 of docetaxel and 75 mg/m2 of cisplatin on day 1. Each regimen was given in three-week cycles for a total of three cycles. Details on NACT regimens can be found in Tables 1 and S2.


Table 1 | Patient demographic and clinical characteristics.





Plasma Epstein-Barr Virus DNA Evaluation

Plasma EBV DNA levels were assessed by quantitative PCR (qPCR) as previously described (23). Samples with EBV DNA levels higher than 400 copies/mL were considered EBV-positive. As not all patients had been evaluated for the EBV DNA levels at all four stages, we separately assessed patients with available data on pre-NACT, post-NACT, post-radiotherapy, and post-therapy plasma EBV DNA levels.



Patient Follow-Up

Patients were followed up every three months in the first three years after treatment and every six months thereafter. The primary endpoint of the study was PFS, defined as the time from diagnosis to disease progression or any-cause death. The secondary endpoint was OS, defined as the time from diagnosis to any-cause death. Patients were censored at the last follow-up date (January 2020).



Statistical Analysis

Statistical analyses were conducted using R version 3.6.3 (http://www.R-project.org). The Kaplan-Meier method was used to calculate the PFS and OS; survival differences were compared using the log-rank test. Patient characteristics were compared using the χ2 or Fisher’s exact test. Significant factors in univariate analysis were used in the multivariable Cox regression analysis. A prognostic nomogram was established, and the concordance index (C-index) and calibration curve were used to determine the accuracy and discriminative ability of the nomogram. Two-sided P-values < 0.05 were considered statistically significant.




Results


Patient Characteristics

In this retrospective study, we analyzed the data of 206 patients with NPC. There were no differences in the baseline characteristics between the included and excluded patients (Table S1). Plasma EBV DNA levels were determined pre-NACT in 178 patients, post-NACT in 161 patients, post-radiotherapy in 118 patients, and post-treatment in 133 patients. The patient demographics and clinical characteristics are presented in Table 1. The median follow-up time was 36.4 months (range, 3.8–91.6 months). A total of 54 (26.1%) patients had recurrent disease and distant metastasis, and 31 (15.0%) patients died. All patients received NACT before radiotherapy or CCRT.



Plasma Epstein-Barr DNA Levels Before and After Neoadjuvant Chemotherapy Are Significantly Associated With Patient Prognosis

The 3-year PFS rate of EBV DNA-negative patients before NACT was significantly higher than that of EBV DNA-positive patients (82.7% vs. 57.3%, P < 0.001; Figure 2). The risk of disease progression in patients positive for EBV DNA after NACT was 4.105 times (95% CI, 1.975–8.533) higher than that of patients negative for EBV DNA after NACT. Additionally, the 3-year PFS and 5-year OS rates were significantly lower in patients positive for EBV DNA after NACT than in EBV DNA-negative patients (3-year PFS: 50.6% vs. 85.0%, P < 0.001; 5-year OS: 91.7% vs. 65.7%; P = 0.001). There were no significant differences in the 3-year PFS and 5-year OS between patients stratified by post-radiotherapy EBV DNA levels (3-year PFS: 72.2% vs. 60.9%, P = 0.192; 5-year OS: 73.1% vs. 77.2%, P = 0.472). The prognosis of patients with high post-treatment EBV DNA levels tended to be worse than that of patients with low EBV DNA levels (3-year PFS: 59.2% vs. 77.3%, P = 0.063; 5-year OS: 77.5% vs. 79.7%, P = 0.644).




Figure 2 | Kaplan-Meier survival curves showing the progression-free survival (PFS) and overall survival (OS) of patients with EBV tested during different stages of treatment. (A) PFS based on pre- neoadjuvant chemotherapy (NACT) EBV DNA levels. (B) OS based on pre-NACT EBV DNA levels. (C) PFS based on post-NACT EBV DNA levels. (D) OS based on post-NACT EBV DNA levels. (E) PFS based on post-radiotherapy EBV DNA levels. (F) OS based on post-radiotherapy EBV DNA levels. (G) PFS based on post-treatment EBV DNA levels. (H) OS based on post-treatment EBV DNA levels.



Because pre-NACT and post-NACT EBV DNA levels were strongly associated with PFS, we further investigated the relationship between NACT-associated EBV DNA levels and patient prognosis. Interestingly, the prognosis of patients with an EBV DNA-negative status all along was significantly better than that of patients who were EBV DNA-positive either before or after NACT and who were EBV DNA-positive both before and after NACT (3-year PFS: 88.8% vs. 71.5% vs. 40.1%, P < 0.001; 5-year OS: 94.3% vs. 84.7% vs. 56.4%, P < 0.001; Figures 3A, B).




Figure 3 | Kaplan-Meier survival curves displaying the progression-free survival (PFS) and overall survival (OS) of patients with different EBV status during neoadjuvant chemotherapy (NACT). (A) PFS and (B) OS of patients with different EBV status throughout NACT as follows: Both negative means EBV DNA-negative before and after NACT; Single positive means EBV DNA-positive either before or after NACT; Both positive means EBV DNA-positive both before and after NACT; (C) Comparison of the PFS and (D) OS between patients whose EBV DNA status switched from positive to negative after NACT and those who remained EBV DNA-positive after NACT; (E) Comparison of the PFS and (F) OS between patients with EBV DNA status changing from negative to positive and those who remained EBV DNA-negative after NACT.





Switch From Epstein-Barr Virus DNA-Positive Level to Negative Epstein-Barr Virus DNA Level After Neoadjuvant Chemotherapy Is Associated With a Favorable Prognosis

We also evaluated the prognostic significance in the conversion from EBV DNA-positive to EBV DNA-negative after NACT. The prognosis of patients who exhibited a conversion from EBV DNA-positive to EBV DNA-negative after NACT was significantly better than that of patients who remained EBV DNA-positive (3-year PFS: 76.2% vs. 44.4%, P = 0.007; 5-year OS: 81.4% vs. 56.4%, P = 0.045; Figures 3C, D). Consistently, the 3-year PFS was significantly worse in patients who displayed conversion from EBV DNA-negative to EBV DNA-positive after NACT than in those who remained EBV DNA-negative (3-year-PFS: 56.3% vs. 88.8%, P = 0.034; Figures 3E, F). However, the prognostic ability of the conversion from EBV DNA-negative to EBV DNA-positive, and vice versa, after RT and ACT, was less profound (Figure S1). These findings suggest that the changes in the EBV DNA levels during NACT may be a better predictor of prognosis than the changes in the EBV DNA levels during RT or ACT.

We also evaluated whether the plasma EBV DNA levels were affected by the different NACT regimens. We observed no significant differences in the plasma EBV DNA levels based on the NACT regimen (Table 1). Similarly, there was also no significant difference in the NACT regimens between patients with different EBV levels (Table S2). Moreover, the OS and PFS were similar between patients receiving different NACT regimens (Figure S2).



Prognostic Factors in Nasopharyngeal Cancer

Univariate analysis indicated that the TNM stage, LDH levels, HGB levels, pre-NACT EBV DNA levels, and post-NACT EBV DNA levels were associated with the PFS in patients with NPC (Table 2). Multivariable analysis using these factors revealed that the TNM stage, LDH levels, HGB levels, pre-NACT EBV DNA levels, and post-NACT EBV DNA levels were independent risk factors predicting treatment failure (Table 3).


Table 2 | Univariate analysis for the progression-free survival of the primary cohort (N = 206).




Table 3 | Multivariate analysis for the progression-free survival of the primary cohort (N = 206).





Prognostic Value of the Nomograms of Pre- NACT and Post-NACT Epstein-Barr Virus DNA Levels

Next, we established nomograms to predict the PFS in patients with NPC (Figures 4A, B; Figures S3A, B). Calibration graphs were generated to confirm the accuracy of the prediction model (Figures 5A, B, D, E). In these graphs, the x-axes indicated the 3-year or 5-year PFS, and the y-axes indicated the actual survival. The prediction power of the nomograms of pre-NACT and post-NACT EBV DNA levels was higher than that of the nomograms with post-radiotherapy and post-treatment EBV DNA levels, with C-indices of 0.758, 0.780, 0.739, and 0.737, respectively (Table 4). The C-indexes of nomogram A and nomogram B were significantly higher than those of EBV DNA levels alone and the TNM staging system, with values of 0.626 (95% CI, 0.555–0.697) and 0.745 (95% CI, 0.697–0.819) in the pre-NACT group and 0.666 (95% CI, 0.588–0.744) and 0.724 (95% CI, 0.655–0.815) in the post-NACT group. We also found that the C-indexes of the nomograms of EBV DNA levels before and after NACT were higher than those of the nomograms of EBV DNA levels after radiotherapy and after treatment. These findings suggest that the plasma EBV DNA levels pre-NACT and post-NACT are promising prognostic factors in patients with NPC.




Figure 4 | Nomogram for predicting the 1-year, 3-year, and 5-year progression-free survival (PFS) of patients. (A) The nomogram was established by integrating the TNM stage, HGB, LDH, and pre-neoadjuvant chemotherapy (NACT) EBV levels; (B) The nomogram was established by integrating the TNM stage, HGB, LDH, and post-NACT EBV levels.






Figure 5 | The calibration curve of the nomogram for predicting the progression-free survival (PFS) with pre-neoadjuvant chemotherapy (NACT) or post-NACT EBV DNA levels. (A) 3-year and (B) 5-year in nomogram with pre-NACT EBV DNA levels in the primary cohort and (C) 3-year in the validation cohort; (D) 3-year and (E) 5-year in nomogram with post-NACT EBV DNA levels in the primary cohort and (F) 3-year in the validation cohort. Actual PFS is plotted on the y-axis; nomogram-predicted probability of PFS is plotted on the x-axis.




Table 4 | The C-indices of nomograms, TNM stage + HGB + LDH, and EBV DNA for the prediction of the progression-free survival (PFS) in the primary cohort and validation cohort .



To confirm the prognostic accuracy of the nomogram, we evaluated its prognostic performance in a validation cohort of 76 patients with available data on the EBV load for all four treatment stages. In this validation cohort, the C-indexes of nomograms A and B were higher than those of nomograms C and D (A: 0.796, 95% CI, 0.704–0.888; B: 0.794, 95% CI, 0.698–0.890; C: 0.743, 95% CI, 0.631–0.855; D: 0.759, 95% CI, 0.663–0.855; Table 4; Figures 5C, F and Figures S4C, F). The prognostic power of pre-NACT and post-NACT EBV DNA levels was higher than that of post-radiotherapy and post-treatment EBV DNA levels.



The Combination of Pre-NACT and Post-NACT Epstein-Barr Virus DNA Levels Improves the Prognostic Accuracy

We also investigated whether the combination of pre- and post-NACT EBV DNA levels can improve the accuracy of the prognostic model. EBV DNA levels were classified as double-positive, single-positive, or double-negative. This classification method based on EBV DNA levels significantly improved the prognostic accuracy of the nomogram for PFS, providing C-indices of 0.791 (95% CI, 0.728–0.854: Figure 6A) in the primary cohort and 0.819 (95% CI, 0.735–0.903) in the validation cohort (Table 5). C-indices of EBV alone were also improved, which were 0.710 (95% CI, 0.622–0.798) in the primary cohort and 0.738 (95% CI, 0.624–0.852) in the validation cohort. The calibration curves confirmed the high prognostic power of the combination of pre-NACT and post-NACT EBV DNA levels (Figures 6B–D).




Figure 6 | The nomogram and its calibration curve established by using pre- and post- neoadjuvant chemotherapy (NACT) EBV levels. (A) Nomogram; The calibration curves for predicting patient PFS at (B) 3-year and (C) 5-year in the primary cohort and (D) 3-year in the validation cohort. Actual PFS is plotted on the y-axis; nomogram-predicted probability of PFS is plotted on the x-axis. PFS, progression-free survival.




Table 5 | The C-indices of nomograms, TNM stage + HGB + LDH, and combined pre- and post-NACT EBV DNA for the prediction of the progression-free survival (PFS) in the primary cohort and validation cohort.






Discussion

To the best of our knowledge, this is the first study combining pre-NACT and post-NACT plasma EBV DNA levels to predict patient prognosis. We found significant variations in the EBV DNA levels depending on the treatment stage. We also found that pre-NACT and post-NACT plasma EBV levels were a robust prognostic biomarker independent of the NACT regimen. Patients who were negative for EBV DNA before and after NACT had a better prognosis than EBV DNA-positive patients. Notably, EBV-positive to EBV-negative conversion after NACT was strongly associated with a favorable prognosis. The C-indices of the nomogram combining pre-NACT and post-NACT plasma EBV DNA levels were higher than those of other nomograms in the primary and validation cohorts.

Plasma EBV DNA levels are an accurate and reliable predictor of NPC progression. Changes in the plasma EBV DNA levels can provide insights into the relationship between EBV infection and NPC. Tang and Hong reported that pre-treatment EBV DNA levels were an important prognostic marker (6, 23). Similarly, Leung et al. demonstrated that plasma EBV DNA levels during radiotherapy predicted clinical outcomes (29). By monitoring the plasma EBV DNA levels at different stages of chemotherapy and radiotherapy, Rui et al. found that EBV DNA levels before, after, and during NACT predicted the risk of metastasis in patients with NPC (16). Consistently, we found that pre-NACT and post-NACT EBV DNA levels strongly predicted survival in patients with NPC. The 3-year PFS of patients with EBV DNA level decline during NACT was 31.8% higher than that of patients who remained EBV-positive after NACT. Detectable EBV DNA levels after first-line therapy were associated with local recurrence, distant metastasis, and disease progression, consistent with the findings of Lv et al. (25) These findings suggest that active EBV infection is associated with aggressive tumor phenotypes in NPC. EBV DNA decrease after NACT level might indicate early tumors response. As previously reported, NACT response is associated with a favorable prognosis in patients with NPC and can be used to risk-stratify patients (30, 31). Early tumor response is associated with size reduction in primary tumor lesions detected by imaging methods; however, biomarkers of early tumor response are lacking (32, 33). Our findings suggest that changes in EBV DNA levels during NACT may be a reliable biomarker of early response in patients with NACT. Consistently, Chen et al. used changes in EBV DNA levels and (18)F-FDG PET-derived parameters to evaluate the early response in patients with NPC (34).

Tang et al. found that the C-index of a nomogram with EBV DNA levels was significantly higher than that of a nomogram without an EBV load (23). Nomograms of EBV DNA levels can also predict tumor recurrence and survival in patients with NPC (35, 36). In another study, EBV DNA levels predicted metastasis within six months after treatment (37). Therefore, EBV DNA levels could be used to risk-stratify patients and guide clinical decision making (35). However, all previous studies used pre-treatment EBV DNA levels to predict the prognosis. However, our findings suggest that monitoring the changes in EBV DNA levels during treatment may be a better predictor of prognosis in patients with NPC. We found that the C-indices of the prediction model based on the EBV DNA levels both before and after NACT were higher than those of the traditional nomograms of EBV DNA levels only before or after treatment. Thus, the clinical implementation of combined pre-NACT and post-NACT EBV DNA testing may improve the prognostic accuracy in patients with NPC. Given the strong relationship between pre-NACT and post-NACT EBV DNA levels and treatment outcomes, we believe that dynamic plasma EBV DNA may serve as a valuable marker to help predict prognosis, as well as guide NPC screening and treatment (9, 38–40). According to our findings, NACT may be continued until EBV DNA levels have reached <400 copies/mL. In patients who persistently have high plasma levels of EBV DNA, aggressive treatments (e.g., EBV-targeted cytotoxic T lymphocytes) may be needed (41, 42).

The current study had a few limitations. Importantly, not all the patients had complete EBV test results for all treatment stages. Plasma EBV DNA levels at all four treatment stages were known for only 76 patients, and the small cohort size may have led to a sampling bias. Additionally, we did not take into account different ACT strategies. However, differences in ACT regimens may lead to different clinical outcomes. Additionally, the primary endpoint of the study, PFS, is unreliable in retrospective studies due to the expected inconsistency in determining the events other than death. Another limitation is that post-NACT, post-radiotherapy, and post-treatment EBV DNA levels were assessed between the last date of the former treatment and the first date of later therapy.



Conclusion

We evaluated the relationship between the plasma EBV DNA levels and treatment outcomes in patients with NPC. Our findings suggest that the combination of pre-NACT and post-NACT plasma EBV DNA levels accurately predicts survival in patients with NPC. We also provided evidence that tracking plasma EBV DNA may benefit patients undergoing NACT for NPC. Future multicenter, randomized, controlled trials are required to confirm the prognostic value of EBV DNA levels in patients with NPC.
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Supplementary Figure 2 | The relationship between neoadjuvant chemotherapy (NACT) regimens and prognosis in different subgroups. (A) PFS and (B) OS in group of pre-NACT; (C) PFS and (D) OS in group of post-NACT; (E) PFS and (F) OS in group of post-radiotherapy; (G) PFS and (H) OS in group of post-treatment. PFS, Progression-free survival (PFS); OS, Overall survival; DCF, docetaxel plus cisplatin and fluorouracil; GP, gemcitabine plus cisplatin; DP, docetaxel plus cisplatin.

Supplementary Figure 3 | Nomogram for predicting patients’ 1-year, 3-year and 5-year progression-free survival (PFS). (A) The nomogram was established by integrating the TNM stage, HGB, LDH and post- radiotherapy EBV levels; (B) The nomogram was established by integrating the TNM stage, HGB, LDH and post-treatment EBV levels.

Supplementary Figure 4 | The calibration curve of nomogram for predicting progression-free survival (PFS) by using post-radiotherapy EBV DNA levels or post-treatment EBV DNA levels. (A) 3-year and (B) 5-year in nomogram with post-radiotherapy EBV DNA levels in the primary cohort and (C) 3-year in the validation cohort; (D) 3-year and (E) 5-year in nomogram with post-treatment EBV DNA levels in the primary cohort and (F) 3-year in the validation cohort. Actual PFS is plotted on the y-axis; nomogram- predicted probability of PFS is plotted on the x-axis.

Supplementary Table 1 | Patient demographic and clinical characteristics of inclusion patients, exclusion patients and validation patients.

Supplementary Table 2 | NACT regimens of four subgroups in NPC patients with different EBV DNA levels. NACT, neoadjuvant chemotherapy; DCF, docetaxel plus cisplatin and fluorouracil; GP, gemcitabine plus cisplatin; DP, docetaxel plus cisplatin.
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Purpose

To evaluate the efficacy and toxicity of the two IC (induction chemotherapy) regimens, TPF (taxanes, cisplatin, and 5-fluorouracil) and TP (taxanes and cisplatin) combined with concurrent chemoradiotherapy (CCRT) in locally advanced nasopharyngeal carcinoma (LA-NPC) patients.



Methods

Ultimately, we enrolled 213 patients at stage III-IVA in this retrospective study. The prognosis of TPF and TP was compared by Kaplan-Meier and Cox proportional hazard regression. The toxicities were evaluated according to CTCAE v4.0 and RTOG criteria.



Results

TPF was found to have a higher 5-year DMFS in stage IVA and N2-3 patients. The optimal value of pretreatment SII was 432.48. A further subgroup analysis revealed that patients in stage IVA combined with SII ≥432.48 showed superior OS (P=0.038) and DMFS (P=0.028) from TPF. Also, SII was proved to be a prognostic element for PFS (HR 2.801, P=0.018) and DMFS (HR 3.735, P=0.032) in multivariate analysis, and IC regimen (HR 2.182, P=0.049) for predicting DMFS. The rate of grade 3–4 leukopenia (P=0.038), neutropenia (P=0.021), radiation oral mucositis (P=0.048), diarrhea (P=0.036), and ear damage (P=0.046) were more common in TPF group.



Conclusion

Our study revealed that TPF regimen showed a higher 5-year DMFS for stage IVA and N2-3 patients, while for stage III and N0-1, TP might be ample. In high-risk LA-NPC patients (stage IVA combined with pretreatment SII ≥432.48), TPF had a higher 5-year OS and DMFS, with more grade 3–4 toxicities, but most of them were endurable.





Keywords: locally advanced nasopharyngeal carcinoma, induction chemotherapy, systemic immune-inflammation index, prognosis, toxicity



Introduction

Nasopharyngeal carcinoma (NPC) is a malignant head and neck tumor that occurs at the top and lateral wall of the nasopharyngeal cavity, with a relatively higher incidence in China and Southeast Asia and 129,000 new cases diagnosed worldwide (1). Early symptoms are hidden, and 75% patients have been diagnosed with NPC at stage III or IVA. Due to its special anatomy and sensitivity to radiation, concurrent chemoradiotherapy (CCRT) is regarded as the main treatment in locally advanced NPC (LA-NPC). As intensity-modulated radiotherapy (IMRT) improving, local control rates of LA-NPC were improved; however, distant metastasis still remains a major failure pattern.

Accumulating studies confirms that induction chemotherapy (IC) could help to control subclinical micrometastasis (2). A phase III trial (3) showed that IC followed by CCRT could improve overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) in LA-NPC when compared with CCRT. A recent study (4) showed that IC plus CCRT could increase OS (P<0.001), PFS (P<0.001), DMFS (P<0.001), and LRFS (P<0.001) in LA-NPC. Similarly, the survival benefits brought by IC followed by CCRT have been confirmed in many other studies (5). As a result, based on the National Comprehensive Cancer Network (NCCN) guideline, IC followed by CCRT is suggested in the category 1A recommendations for LA-NPC (6).

As we know, the first-line IC regimens including Docetaxel, cisplatin, and 5-fluorouracil (TPF), Docetaxel and cisplatin (TP), cisplatin and 5-fluorouracil (PF), Gemcitabine and cisplatin (GP) have brought some survival advantages in studies (7). At present, TPF is the main regimen, but accompanied by its long treatment time and adverse reactions caused by 5-FU, such as myelosuppression and diarrhea. Therefore, it is crucial whether the TP regimen can reduce the related toxicities while ensuring the survival benefit. A previous research performed by Wang et al. (8) in LA-NPC showed that, TPF (docetaxel 60 mg/m2, cisplatin 25 mg/m2, days 1–3, 5-FU 500 mg/m2, days 1–3) had similar efficacy compared to TP, and the grade 3–4 toxicity in TP group is lower, which provided an idea for TP regimen as an alternative to TPF. However, the standard dose of 5-FU was lowered as considering the tolerance of patients, so we could not completely rule out the potential effect of dose. At present, there is still no consensus about the efficacy and safety of the two regimens. Therefore, this paper was conducted to compare the survival efficacy and treatment-related toxicity of TPF and TP regimen in LA-NPC patients, in order to explore the feasibility of alternative TP regimen.

In addition, the TNM staging system is still considered as the reference standard for evaluating the survival in patients, but the prognosis of patients who received similar treatment in the same period is different, as the internal tumor heterogeneity is not taken into account by TNM staging. Nowadays, accumulating evidence have shown that inflammation contributes to the development, growth, and metastasis of cancer cells (9). And systemic immune-inflammation index (SII), a new hematological index, has been identified as a prognostic biomarker in NPC (10). It is worth pointing out that patients with NPC in our analysis were divided into different subgroups according to the pretreatment SII levels, which was not reported in previous studies.



Materials and Methods


Patients

A total of 213 patients diagnosed with LA-NPC at Union Hospital Cancer Center from January 2013 and December 2017 were enrolled. The inclusion criteria were as follows: (1) pathologically verified NPC at the first diagnosis; (2) Karnofsky performance status (KPS) ≥70; (3) age between 16 and 70 years; (4) a complete examination, including nasopharyngeal speculum, lung CT, enhanced MRI of the nasopharynx and neck, abdominal ultrasound, and a whole-body bone scan (or whole-body PET-CT), and finally re-staged as III-IVA according to the 8th edition of the AJCC staging system; and (5) complete data of hematological parameters, including neutrophil, lymphocyte, and platelet counts within 7 days before treatment. The exclusion criteria were as follows: (1) a history of second primary malignant tumor; (2) a history of anticancer therapy; (3) an unfinished IC followed by CCRT; (4) a poor function of heart, lung, liver, and renal; and (5) complicated with acute infection or autoimmune diseases. Written consent was obtained from enrolled patients, and the study was approved by Cancer Center of Union Hospital of Tongji Medical College of Huazhong University of Science and Technology.



Methods

IMRT was conducted with 6MV X-ray linear accelerator. And principles of target delineation are as follows: Gross tumor volume of the nasopharynx (GTVnx): 66–76 Gy/33F; Gross tumor volume of the positive neck lymph nodes (GTVnd): 66–70 Gy/33F; Clinical target volume 1 (CTV1): 60–66 Gy/33F; Clinical target volume 2 (CTV2): 54–60 Gy/33F. The fractionated dose was 1.8 to 2.2 Gy at one fraction per day and 5 days per week. PTV (Planning target volume) was expanded by adding 3 mm to the GTV and CTV, respectively. The IC regimens were as follows: (1) TPF regimen: docetaxel (75 mg/m2/day, day 1), cisplatin (75 mg/m2/day, day 1), and 5-fluorouracil (750 mg/m2/day, days 1–5); and (2) TP regimen: docetaxel (75 mg/m2/day, day 1) and cisplatin (75 mg/m2/day, day 1). IC were conducted every 21 days for three cycles. Besides, the cumulative dose of cisplatin during the concurrent chemotherapy was 200 mg/m2.



Data Collection and Clinical Endpoints

The clinical data of all patients before treatment were collected were sex, age, smoking and drinking history, EBV-DNA status, T stage, N stage, clinical stage, and IC regimen. Hematological data before treatment were peripheral blood neutrophils, lymphocytes, and platelet count. SII is defined as total platelet count (109/L) × neutrophil count (109/L)/total lymphocyte count (109/L). The follow-up data: the time of beginning of follow-up, death, disease progression, and the deadline of follow-up.

The endpoints were as follows: OS, defined as the time from pathological diagnosis to death of any cause or the last follow-up; Progression-free survival (PFS), the time from pathological diagnosis to tumor progression or death for any cause; Locoregional relapse-free survival (LRFS), the time from pathological diagnosis to local recurrence; DMFS, the time from the pathological diagnosis to the distant metastasis.

Treatment-related side effects between the groups were evaluated according to CTCAE V4.0 (Common Terminology Criteria for Adverse Events V4.0) (11) and RTOG (Radiation Therapy Oncology Group) criteria (12).



Follow-Up

The frequency of follow-up after treatment was every 3 months in the first 2 years, every 6 months in the 3 to 5 years, and then annually after 5 years. The follow-up included complete medical records. All patients were followed up by each clinical examination in the hospital or telephone calls.



Statistical Analyses

SPSS 25.0 and GraphPad Prism 8.0 software were used to analyze the data. The optimal cutoff value of SII was decided according to the receiver operating characteristic (ROC) curve. The measurement data were tested by independent sample t-test or Mann-Whitney U test, and the classified variables were tested by chi-square test. Survival curves were analyzed by Kaplan-Meier method and univariate analysis by Log-rank. Cox proportional hazard regression model was adopted in multivariate analysis. P value less than 0.05 was considered as statistically significant.




Results


Baseline Characteristics and Follow-Up

Ultimately, 213 patients diagnosed at stage III-IVA were enrolled, with 128 and 85 patients in the TPF and TP group, respectively, whose baseline characteristics are shown in Table 1. Among them, 155 (72.77%) were males and 58 (27.23%) were females, with a median age of 45 years. One hundred one (47.42%) and 87 (40.85%) patients had a history of smoking and drinking, respectively. In the cohort, 121 (56.81%) patients were diagnosed with positive EBV DNA status. Based on the TNM staging system, 115 (53.99%) and 98 (46.01%) patients were re-staged in stage III and IVA, respectively. According to the ROC curve, the optimal cutoff value of pretreatment SII was 432.48 (P=0.011, Sensitivity: 95.0%, Specificity: 34.7%, AUC=0.673) (Figure 1), with 67 (31.46%) cases in low SII group (SII < 432.48) and 146 (68.64%) cases in a higher SII group, respectively.


Table 1 | Baseline characteristics of patients in the TPF and TP groups.






Figure 1 | ROC curve for pretreatment SII = 432.48 based on OS (P=0.011, Sensitivity: 95.0%, Specificity: 34.7%, AUC=0.673). ROC, receiver operating characteristic; SII, systemic immune-inflammation index; OS, overall survival.



As shown in the table, there was no significant difference in the two regimen groups (P > 0.05). In whole, the follow-up time ranged from 26 to 83 months. Finally, 20 (9.39%) patients died, and 54 (25.35%) patients suffered from tumor progression, of which 28 (51.85%) and 26 (48.15%) patients had local progression and distant metastasis, respectively. The 5-year OS, PFS, LRFS, and DMFS rates in TPF and TP groups were 89.0 vs 82.4%, 76.8 vs 68.4%, 85.9 vs 86.9% and 90.2 vs 81.3%, respectively.



Survival Analysis Based on TNM Staging System

Survival curves based on the different IC regimens were analyzed using the Kaplan-Meier method. As was shown in Figure 2, the patients in TPF group showed superior 5-year DMFS (90.2 vs 81.3%, P = 0.043, Figure 2D). However, no evident difference was found in OS, PFS, and LRFS between the two groups (P > 0.050).




Figure 2 | Kaplan-Meier survival curves of OS (A), PFS (B), LRFS (C), and DMFS (D) between TPF and TP groups in locally advanced patients. TPF, docetaxel, cisplatin, and 5-fluorouracil; TP, docetaxel and cisplatin; OS, overall survival; PFS, progression-free survival; LRFS, locoregional relapse-free survival; DMFS, distant metastasis-free survival.



Patients in different TNM stages showed different tumor load and treatment failure rate. Therefore, survival differences among patients in different clinical and N stage subgroups were conducted separately, with 98 in stage III and 115 in stage IVA. Since only five stage N0 patients were included, in order to minimize the deviation of statistical analysis, we divided N stage into N0-1 and N2-3 subgroups, including 50 and 163 cases, respectively. As shown in Figure 3, no significant survival difference was found in stage IVA patients between the two groups, and the TPF group had superior PFS (P = 0.042, Figure 3B) and DMFS (P = 0.033, Figure 3D). Similarly, we found that stage N2-3 patients in TPF also showed a significant trend in a higher DMFS (P = 0.057, Supplementary Figure 3). However, in patients with stage III and N0-1, no survival difference was found (P > 0.050, Supplementary Figure 3).




Figure 3 | Kaplan-Meier survival curves of OS (A), PFS (B), LRFS (C), and DMFS (D) between TPF and TP groups in patients with stage IVA. TPF, docetaxel, cisplatin, and 5-fluorouracil; TP, docetaxel and cisplatin; OS, overall survival; PFS, progression-free survival; LRFS, locoregional relapse-free survival; DMFS, distant metastasis-free survival.





Survival Analysis in Stage IVA Patients Combined With Pretreatment SII

Moreover, SII is a promising factor in predicting prognosis of NPC patients. Therefore, based on the different pretreatment SII levels, we separated patients at stage IVA into low- and high-risk groups. Interestingly, our results revealed that in the high-risk group (SII ≥432.48), TPF showed significantly better OS (P = 0.038, Figure 4A) and DMFS (P = 0.028, Figure 4D) than TP, while not applicable for PFS (P = 0.099, Figure 4B) and LRFS (P = 0.667, Figure 4C). Further analysis was conducted and revealed that no significant survival difference was found in the low-risk group (SII <432.48); however, there were only 16 and 10 cases in TPF and TP groups, respectively, which required larger samples to confirm.




Figure 4 | Kaplan-Meier survival curves of OS (A), PFS (B), LRFS (C), and DMFS (D) between TPF and TP groups in stage IVA patients with high SII (SII≥432.48). TPF, docetaxel, cisplatin, and 5-fluorouracil; TP, docetaxel and cisplatin; OS, overall survival; PFS, progression-free survival; LRFS, locoregional relapse-free survival; DMFS, distant metastasis-free survival.





Univariate and Multivariate Analyses

In our univariate analysis, EBV DNA status, TNM stage, and pretreatment SII were corroborated as potential factors affecting all survival outcomes (Table 2). Patients with N0-1 stage were found to have a higher DMFS rate than that of N2-3 (88.3 vs 84.6%, P = 0.038). And in different IC regimens, the TPF regimen showed greater 5-year DMFS rate (90.2 vs 81.3%, P = 0.043). Considering the confounding factors, only statistically significant variables in univariate analysis were further researched in multivariate cox regression analysis. As shown in Table 3, EBV DNA status and clinical stage were related factors affecting all survival outcomes (P < 0.050). Also, pretreatment SII was considered as a related prognostic element for PFS (HR 2.801, 95% CI 1.195–6.565, P = 0.018) and DMFS (HR 3.735, 95% CI 1.121–12.441, P = 0.032). At the same time, IC regimen (HR 2.182, 95% CI 1.002–4.751, P = 0.049) and N stage (HR 4.076, 95% CI 0.962–7.267, P = 0.046) can also be used as effective indicators for predicting DMFS in LA-NPC patients.


Table 2 | Univariate analysis of prognostic factors for LA-NPC patients.




Table 3 | Multivariate cox regression analysis of prognostic factors for LA-NPC patients.





Toxicities

As shown in Table 4, no significant difference was found in grade 1–2 toxicities between the TPF and TP groups (P > 0.050). Compared with TP regimen, we found that the rate of grade 3–4 leukopenia (40.62 vs 36.47%, P = 0.038), neutropenia (27.34 vs 14.12%, P = 0.021), radiation oral mucositis (28.91 vs 14.12%, P = 0.048), diarrhea (27.34 vs 10.59%, P = 0.036), and ear damage (14.06 vs 10.59%, P = 0.046) was higher in the TPF group. All the patients with toxicities were improved after treatment, and no interruption of treatment occurred.


Table 4 | Treatment-related toxicities between the TPF and TP groups.






Discussion

Due to the special anatomical structure and its sensitivity to radiation, radiotherapy is the main treatment for NPC. And as the IMRT advanced, the local control rate has been improved, while local recurrence and distant metastasis are still the main failure (13). Increasing evidences suggested that IC can promote the eradication of micrometastasis, alleviate clinical symptoms caused in short term, and improve radiosensitivity (14). Furthermore, IC has been confirmed to be effective with LA-NPC in several phase III trials (15) and is widely applied. Hence, IC followed by CCRT is suggested to improve survival benefit in LA-NPC. However, it is quite important to find effective IC regimens with fewer side effects. Currently, studies on IC regimens commonly used in LA-NPC include TPF, TP, PF, and GP (16). Zhao et al. (17) found that compared with PF regimen, both GP and TP regimens could significantly improve DFS and OS, and no severe toxicities occurred. And Peng et al. (18) revealed that for NPC patients receiving a cumulative cisplatin dose (CCD) <200 mg/m2, TPF showed better survival than TP and PF, while no significant difference was found in patients receiving a CCD ≥200 mg/m2.

At present, TPF is the main regimen for LA-NPC, but accompanied by its long treatment time and adverse toxicities caused by 5-FU, such as myelosuppression and diarrhea. In a previous study on locally advanced head and neck squamous cell carcinoma (19), it was found that the total effective rate of TP regimen was 65.4%. The 3-year PFS rate and OS rate were similar as TPF. What is known to us all, different tumors of the head and neck were included in that study, and the response rate of TP regimen was taken as the main endpoint. Wang et al. (8) further found that TPF (docetaxel 60 mg/m2, cisplatin 25 mg/m2, days 1–3, 5-FU 500 mg/m2, days 1–3) showed similar efficacy compared to TP. No significant difference in 3-year survival outcomes was found (P > 0.050) between the two IC regimens. And multivariate analysis in this study also reached the same conclusion; however, the grade 3–4 toxicity in TP group is lower and tolerable. On accounting of the toxicities of 5-FU, patients were given lower dosage, so the potential effect of insufficient dose cannot be completely ruled out. At present, there is still no consensus about the efficacy and safety of the two regimens. Therefore, this paper was conducted to compare the efficacy and toxicity of TPF and TP regimen in LA-NPC, in order to explore the feasibility of alternative TP regimen.

Finally, 213 LA-NPC patients were enrolled in our study. It was found that compared to TP, the TPF regimen showed similar short-term efficacy (total effective rate was 79.7 vs 78.8%), and no significance in 5-year OS, PFS, and LRFS (P > 0.050), which were consistent with Peng (18) and Wang et al. (8). Variously, in our study, TPF was found to have a higher 5-year DMFS rate (90.2 vs 81.3% 750 mg/m2, P = 0.043), which may be due to the therapeutic benefits of 5-FU. Compared with the study of Wang et al. (8) (5-FU 500 mg/m2, days 1–3), the dose in our hospital reached 750 mg/m2 (days 1–5) in TPF regimen. Similarly, in the NPC-9901 and NPC-9902 study (20), the dose of 5-FU during CCRT was confirmed to improve DFFS, with an explanation that 5-FU could reduce the risk of disease, and this may also be applicable to the IC phase. Nowadays, the TNM staging system is still considered as a critical factor related to prognosis, and we further analyzed survival differences between patients in stage III and IVA, respectively. Interestingly, the same results were found in stage IVA patients. In previous studies, patients with advanced N category (N2–3) were more prone to distant metastasis (21); in our N category subgroups, fortunately, we observed that the TPF group had a trend in higher 5-year DMFS (P = 0.057), which was not applicable in N0-1. One possible statement is that TPF can reduce distant metastases from patients with high metastatic burdens (N2–3). Similarly, Guo et al. (22) found that N3 is an independent prognostic factor for LA-NPC, with poorer survival. These findings are similar to the results of our study, that is, compared with TP regimen, TPF regimen can show better survival in LA-NPC, especially in N2-3 patients. For N0-1 patients, the choice of TP regimen with fewer treatment-related toxicities may be enough.

In recent years, more and more evidences supported systemic inflammation contributed to the biological behavior of tumor cells, such as growth, infiltration, and metastasis (23). SII is associated with poor prognosis of NPC as a new biomarker (10), which is defined as an integration of peripheral platelet, neutrophil, and lymphocyte count. It is a comprehensive and objective tool that integrates three indicators together, and it is simpler and cheaper. Oei et al. (24) revealed that pretreatment SII level was an effective predictor for OS, PFS, and DMFS (P < 0.05). In our study, it was also confirmed that pretreatment SII was a significant prognostic factor of PFS (HR 2.801, P = 0.018) and DMFS (HR 3.735, P = 0.032), which was similar as the previous results. Nevertheless, the optimal threshold of SII level before treatment is not consistent in various studies, which may be related to the baseline characteristics in enrolled patients and reference standards for different instruments, and further prospective research to determine the appropriate cutoff value will be more accurate.

The mechanism of SII affecting prognosis may be related to its components. In inflammatory cells, neutrophils are a part of the tumor microenvironment and are closely related to cancer progression, which can promote the development and metastasis of cancer cells by secreting inflammatory mediators, like TNF and IL-6 (25). Similarly, for lymphocytes, tumor growth can be regulated by secreting cytokines, like IFN-γ and TNF-α. And then, platelets are able to increase the number of tumor cells in circulation and further induce epithelial mesenchymal transformation, thus promoting the extravasation of tumor cells to the metastatic site (26). In addition, some evidence suggests that both neutrophils and platelets can further enhance tumor angiogenesis by secreting vascular endothelial cell factors, like fibroblast growth factor and angiopoietin. Hence, a higher SII, defined as a combination of high neutrophil count, high platelet count, and low lymphocyte count, can promote unlimited proliferation and distant metastasis of tumor cells and contribute to a poor prognosis. As far as we know, the prognostic value of IC regimens based on pretreatment SII and TNM stage in LA-NPC was not reported before. According to ROC curve, the patients in stage IVA with SII≥432.48 was defined high-risk group. Interestingly, our results revealed that in the high-risk group, compared with TP, the TPF regimen showed a superior OS (P = 0.038) and DMFS (P = 0.028); unfortunately, due to a limited sample size in the low SII group, a consistent conclusion has not been reached. Hence, TPF could be considered as the more effective regimen, particularly in high-risk (IVA combined with SII≥432.48) patients. Furthermore, multivariate analysis showed that IC regimen (HR 2.182, P = 0.049) and N stage (HR 4.076, P = 0.046) could also be used as effective indicators for predicting DMFS in LA-NPC patients.

About the treatment-related side effects, obviously, combinations of three drugs produce more grade 3–4 toxicities. In our study, we found that compared with TP, the rate of grade 3–4 leukopenia (P = 0.038), neutropenia (P = 0.021), radiation oral mucositis (P = 0.048), diarrhea (P = 0.036), and ear damage (P = 0.046) were more common in the TPF group, which was consistent as previously reported (8, 27). This difference could be attributed to the anti-tumor therapy of 5-FU, since myelosuppression and diarrhea are the common toxicities.

Whereas, there are also some limitations in this study. First of all, this study is a retrospective analysis in a single center and with a small sample size, which is inevitably accompanied by the deviation of data selection. Second, we only studied SII levels before treatment; a dynamic analysis would be more meaningful. Therefore, further multicenter, large-sample, prospective randomized controlled trials are needed to comprehensively compare the effects of different IC regimens on the efficacy and prognosis in LA-NPC patients.



Conclusion

In summary, our study revealed that TPF regimen showed a higher 5-year DMFS for LA-NPC patients with stage IVA and N2-3, while TP may be enough for stage III and N0-1. In stage IVA combined with pretreatment SII ≥ 432.48 patients, TPF had higher 5-year OS and DMFS, although grade 3–4 toxicities were more common, but most of them can be tolerable.
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MicroRNAs have been proven to make remarkable differences in the clinical behaviors of head and neck squamous cell carcinoma (HNSCC). This study aims to systematically analyze whether differential expression levels of microRNAs are related to recurrence or metastasis in patients with HNSCC. A comprehensive search of the PubMed, EMBASE, and CENTRAL was conducted up to July 24th, 2021. Data were collected and combined from studies reporting recurrence-free survival (RFS) of HNSCC patients with high microRNA expression compared to those with low expression. Besides, studies providing necessary data for evaluating the diagnostic value of microRNAs for detecting recurrence and metastasis based on their expression levels were also included and combined. The pooled hazard ratio (HR) value for the outcomes of RFS in 1,093 HNSCC samples from 10 studies was 2.51 (95%CI: 2.13–2.96). A sensitivity of 0.79 (95% CI: 0.72–0.85) and specificity of 0.77 (95%CI: 0.68–0.83) were observed in three studies, of which 93 patients with recurrence and 82 nonrecurrence controls were included, and the area under the curve (AUC) was 0.85 (95% CI: 0.81–0.88). Additionally, high diagnostic accuracy of microRNAs in detecting lymph node metastasis (LNM) was also reported. In conclusion, two panels of microRNAs showed the potential to predict recurrence or diagnose recurrence in HNSCC patients, respectively, which could facilitate prognosis prediction and diagnosis of clinical behaviors in HNSCC patients.


Systematic Review Registration

PROSPERO (https://www.crd.york.ac.uk/prospero), identifier CRD42020161117.
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Introduction

Head and neck squamous cell carcinomas (HNSCCs), visualized as the most common form of human solid tumors in the head and neck region, account for a large proportion of cancer mortality worldwide (1, 2). A multiple process that accumulates genetic mutations sequentially is believed to play a critical role in the formation of HNSCCs. And these highly heterogeneous tumors are derived from stratified epithelial cells of various anatomical subsites, mainly including the oral cavity, tongue, nasal cavity, larynx, and pharynx (3, 4). However, recent studies had illustrated similarities in genomic, genetic, and epigenetic alterations between HNSCCs from different subsites, which suggested the existence of certain common mechanisms underlying the initiation and progression of HNSCCs (3, 5, 6). It is estimated that approximately 1/3 of HNSCC patients develop recurrence or metastasis after receiving standard therapies, and the majority of them ended with poor prognosis (7, 8). Currently, tumor-node-metastasis (TNM) staging based on imaging modalities and biopsy represents the leading way to predict HNSCCs’ biological behaviors, especially for metastasis and recurrence; however, accuracy varied among HNSCCs with different origins (9, 10). Therefore, reliable and detectable biomarkers may contribute to the diagnosis and prediction of metastasis and recurrence of SCCs.

MicroRNAs, a special class of noncoding RNAs (19–23 nucleotides in length), are capable of binding to their target mRNAs and regulating gene expression at the post-transcriptional level (11). In the past decade, microRNAs had been proven to make remarkable differences in HNSCC carcinogenesis and cancer progression, making them potential biomarkers to predict biological behaviors of HNSCCs (12–18). This meta-analysis aimed at evaluating the diagnostic and prognostic values of microRNAs in the recurrence and metastasis of human SCCs.



Methods and Materials


Protocol and Eligibility Criteria

This study was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines (19) and was already registered on prospero (registration number: CRD42020161117).

The inclusion criteria were as follows: 1) studies written in English; 2) the diagnosis of HNSCC was confirmed by histopathology; 3) studies demonstrating the expression levels of microRNA by quantitative polymerase chain reaction (qPCR), in situ hybridization (ISH), fluorescent in situ hybridization (FISH), or RNA sequencing; 4) studies reporting HR with 95% confidence interval (CI) or Kaplan–Meier curves related to the correlation of microRNA expression with RFS; and 5) studies providing necessary data for evaluating the diagnostic value of microRNAs in predicting recurrence and metastasis.

The exclusion criteria were as follows: 1) studies related to nonhuman samples; 2) studies providing combined outcomes of more than one microRNA or insufficient data; 3) duplicate studies; 4) studies in the form of reviews, letters, editorials, meeting abstracts, or case reports; and 5) studies reporting SCC not originated from the head and neck region.

More specifically, for the meta-analysis evaluating the predictive values of microRNAs, we aimed to address the question of whether HNSCC patients with a higher expression level of microRNAs had different risk of cancer recurrence compared to HNSCC patients with a lower expression level of microRNAs. And for the meta-analysis evaluating the diagnostic values of microRNAs, we aimed to address the question of whether the expression level of microRNAs in human biospecimen could be used as indicators for distinguishing the HNSCC patients with recurrence/metastasis or not.



Information Sources and Search Strategies

A comprehensive search of the PubMed, EMBASE, and CENTRAL was conducted from the beginning of each database to July 24th, 2021. Meanwhile, additional records from other sources, e.g., the references of included studies and original studies mentioned in reviews, were also screened.

A Boolean combination of Mesh terms and free text words were used as search strategies, mainly including “Carcinoma, Squamous Cell”[Mesh], “MicroRNA”, “MiRNAs”, “MicroRNAs”[Mesh], “Metastasis”, “Metastases”, “Recurrences”, “Relapse”, and “Recurrence”[Mesh]. Detailed search strategies were presented in Supplementary Material.



Study Selection, Data Collection Process, and Data Items

The initial screening of titles and abstracts were conducted independently by two authors, and full texts would be reviewed if the titles and abstracts were ambiguous. Any discrepancy was solved by consensus, and a third author would participate if necessary. Finally, studies fulfilling all inclusion criteria were included in the systematic review.

Data extraction for studies investigating the RFS and diagnostic value was also independently performed and cross-checked by two authors. The agreement between authors KQ and YS was determined by Cohen’s kappa score. And the extracted items were as follows: year of publication, first author, country, microRNAs studied, type of microRNA dysregulation, sample sizes, duration of follow-up, tumor sites, metastasis sites, detection assay, sample types, and cutoffs for the expression of microRNAs.



Risk of Bias Assessment, Summary Measures, and Statistical Analyses

The risk of bias within each included prognostic study was evaluated by the Newcastle-Ottawa Scale (NOS) (http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp), and the risk of bias within each included diagnostic study was evaluated by the tool provided by Quality Assessment of Diagnostic Accuracy Studies—2 (QUADAS-2) (20), while the risk of bias across studies was evaluated by the Cochran Q test and Higgins index (I2). Heterogeneity was considered significant if P < 0.05 in Q test, and subgroup analyses were applied to find the potential sources of heterogeneity. Besides, overall effects were analyzed by a fixed-effect model if I2 < 50%; otherwise, a random-effects model would be applied.

For studies investigating RFS, ln[HR] and standard error (SE) were synthesized (21). The publication bias was tested by Begg’s test. For studies investigating diagnostic values, we calculated the pooled sensitivity and specificity. The summary receiver operator characteristic (SROC) curve and the area under the SROC curve (AUC) were constructed and calculated to explore the diagnostic accuracy of microRNAs in metastasis/recurrence. Additionally, the publication bias was tested by Deek’s funnel plot asymmetry test.

The STATA 12.0 (Stata Corp, College Station, TX, USA) and Review Manager (Version5.4, The Cochrane Collaboration, 2020) software was used for all meta-analysis, and P < 0.05 was considered significant.




Results


Study Selection

A total of 3,349 records were retrieved through the initial comprehensive search. A total of 1,860 articles remained after excluding duplicates and were screened according to titles and abstracts. Subsequently, 398 studies remained and underwent full-text screening. A total of 14 studies that fully met the inclusion criteria were included for further analysis, among which 10 studies (22–31) were included for meta-analysis of HR for RFS, 3 studies (32–34) were included for meta-analysis of diagnostic accuracy for recurrence, and another 1 study (14) was included for systematic review of diagnostic accuracy for metastasis. Detailed selection process and reasons of exclusion were presented in Figure 1.




Figure 1 | Flow diagram summarizing the selection process of the systematic review.





Study Characteristics

For the 10 included studies investigating RFS, a cumulative number of 1,093 SCC samples were analyzed. Tumor subsites were confined to head and neck regions, including the oral cavity, larynx, hypopharynx, and oropharynx. The duration of follow-up ranged from 28 months to more than 120 months, and all outcomes were evaluated by multivariate Cox regression models. Detailed characteristics of each study are presented in Table 1.


Table 1 | Detailed characteristics and NOS scores of included studies investigating RFS.



For the three included studies investigating diagnostic accuracy for recurrence, a total of 93 recurrence patients and 82 nonrecurrence controls were analyzed. Tumor subsites were confined to head and neck regions, including larynx and oral cavity. And the recurrence sites were not reported in most of the studies. Detailed characteristics of each study are presented in Table 2.


Table 2 | Detailed characteristics of included studies investigating diagnostic values of microRNAs for recurrence and LNM.



Similarly, for the included study investigating diagnostic accuracy for metastasis, a total of 25 metastasis patients and 23 nonmetastasis controls were analyzed. Tumor subsites were confined to head and neck regions. And the metastasis sites were reported to be the lymph node. Detailed characteristics of each study are presented in Table 2.



Synthesis of RFS and Subgroup Analysis

The pooled HR value for the outcomes of RFS in all HNSCC patients was 2.51 (95%CI: 2.13–2.96) (Figure 2). Poorer RFS correlated with upregulation of 14 microRNAs (miR-205-5p, miR-429, miR-21-3p, miR-331-3p, miR-200a-3p, miR-19a-3p, miR-21-5p, miR-151a-3p, miR-17-3p, miR-18b-5p, miR-324-5p, miR-96-5p, miR-141-3p, and miR-130a) and with downregulation of 7 microRNAs (miR-29c, miR-200b, miR-375, miR-422a, miR-15b-5p, miR-204, and miR-200c).




Figure 2 | Forest plot for the association between microRNA expression and recurrence-free survival (RFS).



We further conducted a subgroup analysis based on anatomical subsites, and the results showed that pooled HR values for the outcomes of RFS were 2.02 (95%CI: 1.10–3.71) in oropharyngeal squamous cell carcinoma (OPSCC) patients and 2.12 (95%CI: 1.64–2.73) in oral squamous cell carcinoma (OSCC) patients (Figure 3). And in OPSCC patients, poorer RFS correlated with downregulation of miR-422a and miR-375. While in OSCC patients, poorer RFS correlated with upregulation of five microRNAs (miR-21-3p, miR-130b-3p, miR-96-5p, miR-141-3p, and miR-130a) and with downregulation of three microRNAs (miR-375, miR-204, and miR-200c) (Figure 3A). Meanwhile, we also conducted a subgroup analysis for individual microRNAs with more than two outcomes. And the expression levels of miR-21-3p, miR-96-5p, and miR-375 showed strong association with RFS, especially miR-21-3p, with a pooled HR value of 3.59 (95%CI: 1.91-6.76) (Figure 3B).




Figure 3 | (A) Forest plot for subgroup analysis of the association between microRNA expression and recurrence-free survival (RFS) based on anatomical subsites. (B) Forest plot for subgroup analysis of the association between microRNA expression and recurrence-free survival (RFS) based on microRNAs (only individual microRNAs with more than two outcomes were presented).



Taken together, our results showed that a panel of 21 microRNAs (miR-205-5p, miR-429, miR-21-3p, miR-331-3p, miR-200a-3p, miR-19a-3p, miR-21-5p, miR-151a-3p, miR-17-3p, miR-18b-5p, miR-324-5p, miR-96-5p, miR-141-3p, miR-130a, miR-29c, miR-200b, miR-375, miR-422a, miR-15b-5p, miR-204, and miR-200c) might have the potential to predict the prognosis of patients with HNSCCs, of which 2 microRNAs were associated with the prognosis of OPSCC patients, and 8 microRNAs were associated with the prognosis of OSCC patients.



Study Quality and Risk of Bias in Prognostic Studies

NOS scores of each prognostic study are listed in Table S1, of which eight studies (80%) were of “good” quality and deemed to have low risk of bias, while the other two studies (20%) were of “poor” quality and deemed to have high risk of bias mainly due to the lack of adjustment for important confounding variables. A Cohen’s kappa score of 0.76 revealed great agreement beyond chance between the two authors. Besides, no statistically significant heterogeneity (P > 0.1) and publication bias (Begg’s test: P = 0.333, Figure S1) was observed in the pooled analysis of RFS.



Pooled Diagnostic Accuracy of microRNAs for HNSCC Recurrence

The evaluation for the sensitivity and specificity of a panel of four microRNAs in diagnosing the recurrence of SCCs is illustrated in Figure 4A (miR-34c-5p, miR-186-5p, miR-3651, and miR-494-5p). A sensitivity of 0.79 (95% CI: 0.72–0.85) and a specificity of 0.77 (95% CI: 0.68–0.83) were observed in patients with recurrence and nonrecurrence controls. The AUC was 0.85 (95% CI: 0.81–0.88), and the corresponding SROC curve is presented in Figure 4B.




Figure 4 | (A) Sensitivity and specificity of microRNAs in diagnosing recurrence. (B) The summary receiver operating characteristic (SROC) curves of the diagnostic performance of microRNAs for recurrence.





Study Quality and Risk of Bias in Diagnostic Studies

As is shown in Figure S2, nearly all included diagnostic studies showed low risk of bias in patient selection, reference standard, and flow and timing; however, all of these three studies showed high risk of bias in index test mainly due to their retrospective nature, in which the index test results cannot be interpreted without knowledge of the results of the reference standard. Besides, the diagnostic thresholds in these studies were not confined and also not prespecified, which might cause some concerns on applicability. Meanwhile, no significant heterogeneity (P > 0.1) and publication bias (P = 0.53, Figure S3) was observed.



Overview of Diagnostic Accuracy of microRNAs for LNM in HNSCC

Only one study reporting the diagnostic accuracy of four independent microRNAs for LNM in HNSCC met our eligibility criteria. However, given the high risk of bias for pooled analysis of four tests derived from the same study, meta-analysis was not conducted. de Carvalho et al. reported the diagnostic accuracy of miRNA-200a (sensitivity 0.76; specificity:0.88; AUC: 0.92), miRNA-200c (sensitivity: 0.88; specificity: 1.00; AUC: 0.94), miRNA-203 (sensitivity: 1.00; specificity: 1.00; AUC: 1.00), and miRNA-205 (sensitivity: 1.00; specificity: 1.00; AUC: 1.00) in distinguishing 25 HNSCC patients with LNM from 23 HNSCC patients without LNM (14). All of these four microRNAs showed high diagnostic accuracy for detecting LNM in HNSCC patients; however, their performance was evaluated in the same cohort of which the sample size is not large enough. Thus, whether microRNAs have the potential for detecting LNM in HNSCC still needs to be validated by more studies with larger sample sizes.




Discussion

In this review, we systematically analyzed 1,093 HNSCC samples from 10 studies (22–31) and identified a panel of 21 microRNAs related to poor RFS in HNSCC patients for the first time. Besides, we investigated the diagnostic accuracy of microRNAs for recurrence (by analyzing 93 recurrence patients and 82 nonrecurrence controls from 3 studies) (32–34) and LNM (by presenting an overview of 25 metastasis patients and 23 nonmetastasis controls from another study) (14). We observed relatively high diagnostic accuracy of microRNAs in diagnosing recurrence and LNM for HNSCCs, which have the potential to assist imaging modalities and histopathology biopsy in the diagnosis and prognosis for HNSCC patients.

In the current study, we specifically took recurrence and metastasis as the outcomes. Our results showed that a panel of 21 microRNAs might be suitable biomarkers for predicting the recurrence of HNSCCs (pooled HR:2.51, 95%CI: 2.13–2.96, I2 = 0), among which poor RFS correlated with upregulation of 14 microRNAs (miR-205-5p, miR-429, miR-21-3p, miR-331-3p, miR-200a-3p, miR-19a-3p, miR-21-5p, miR-151a-3p, miR-17-3p, miR-18b-5p, miR-324-5p, miR-96-5p, miR-141-3p, and miR-130a) or with downregulation of 7 microRNAs (miR-29c, miR-200b, miR-375, miR-422a, miR-15b-5p, miR-204, and miR-200c). Besides, subgroup analyses revealed similar trends in OSCC and OPSCC patients as well as identified miR-21-3p, miR-96-5p, and miR-375, which showed strong association with RFS. Our quality assessments showed that 80% of the included studies investigating RFS were of good quality, and the meta-analysis was of low risk of bias, which reinforced the reliability of our results. Meanwhile, the diagnostic accuracy of microRNAs in HNSCC recurrence was decent (sensitivity: 0.79, 95% CI: 0.72–0.85; specificity: 0.77, 95%CI: 0.68–0.83; AUC: 0.85, 95% CI: 0.81–0.88), together with a low rate of heterogeneity and low risk of publication bias. Additionally, the diagnostic accuracy of microRNAs in LNM of HNSCC reported by de Carvalho et al. was relatively high but needs further validation.

We further summarized these analyzed microRNAs and explored their well-known biological functions related to tumor malignant behaviors in Table S2. As expected, the downregulation of microRNAs, which had been previously reported to be related to tumor suppressing functions, including inhibiting tumor cell proliferation, migration, and invasion (18, 35–61), was associated with poorer RFS in our study. Similarly, the upregulation of microRNAs, which had been previously reported to function as enhancers of tumor malignant behaviors (62–83), were associated with poorer RFS. Besides, the modulation of epithelial to mesenchymal transition (EMT), an essential early step of tumor metastasis, was identified as the most commonly reported mechanism, through which those microRNAs regulate malignant behaviors of other types of tumor. Meanwhile, surprisingly, we found five members of the microRNA-200 family (miR-200a, miR-200b, miR-200c, miR-429, and miR-141), which are known for their regulatory function on EMT, and their combination might act as a strong prognosis predictor (Figure S3) (39, 84–88). Thus, we hypothesized that the modulation of EMT and subsequent cell migration and invasion might also act as the key pathophysiological mechanisms of the interplay between microRNAs and HNSCC, which still needs to be further confirmed by mechanistical studies.

There were some limitations in this study. First, given the fact that most of the included studies performed their analyses in HNSCC samples with mixed subsites, which cannot be strictly separated, therefore subgroup analysis could only be available in OSCC and OPSCC patients. And consequently, whether our conclusions can be generalized to SCC derived from other subsites remained to be verified by further studies with larger sample sizes and a wider spectrum of HNSCC subsites. Second, it is also a pity that most of these included studies have not performed subgroup analyses based on HPV status; thus, we were not able to properly investigate the influence of the HPV status. However, most of these included studies have adjusted the HPV status in their multivariate analysis, which might reduce its influence to some extent. Third, the outcomes of four independent microRNAs for LNM in HNSCC were retrieved from the same study. Thus, pooled analysis was not conducted due to the potential high risk of bias. And the reported high diagnostic accuracy still needs to be further validated. Additionally, our results should be explained cautiously since our panels have significance when these microRNAs are taken as a whole, not individually.
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Background

CD8+ T cells, which play a vital role in response to adaptive immunity, are closely related to the immunization responses to kill tumor cells. Understanding the effects exerted by tumor-infiltrated CD8+ T cells in HPV+ and HPV- head and neck squamous cell carcinoma (HNSCC) patients is critical for predicting their prognosis as well as their responses towards immunization-related therapy.



Materials and Methods

HNSCC single cell transcriptome was used to screen for differentially expressed genes (DEGs) based on CD8+ T cells. A gene signature associated with CD8+ T cells was built and verified with the cancer genome atlas dataset with a view to predicting the prognosis of HNSCC patients. Risk scores were calculated for HNSCC cases and categorized into either high- or low-risk cohorts. The prognosis-correlated data of the risk scores were analyzed by using Kaplan-Meier survival curves and multi-variate Cox regression plots. In addition, the possibility of using the genetic profiles to predict responses toward immunization-related therapy was explored.



Results

From the DEGs screened from the sequencing of single-cell RNA, a gene signature of 4 genes (ACAP1, ANKRD28, C12orf75, and M6PR) were identified. It was seen that these genes could predict overall survival in HPV+ HNSCC patients. In addition, high- and low-risk HPV+ HNSCC patients showed marked differences in their CD8+ T-cell infiltration due to immunization when clinical characteristics were taken into consideration. This correlated with their immunization therapy responses.



Conclusions

Our work provides insights into explaining the restricted responses of current immunization checkpoint inhibiting substances in HPV+ HNSCC patients. A novel genetic signature to predict the prognosis and immunization-correlated therapeutic responses is presented. This will provide potential new therapeutic opportunities for HPV+ HNSCC patients.





Keywords: CD8+ T cells, HPV, immunization-correlated genes, immunization-correlated therapy, differentially expressed genes, predicted prognosis, head and neck squamous cell carcinoma



Introduction

Head and neck squamous cell carcinoma (HNSCC) refers to cancer of the oral cavity, oropharynx and larynx, and is the sixth commonest carcinoma globally (1). More than 550,000 new patients are reported each year, accounting for approximately 4% of carcinomas worldwide (2). Because most cases present with locally advanced disease, HNSCC is correlated with poor prognosis and results in high mortality (3). Conventional treatments exhibit limited effectiveness, and new therapeutic strategies capable of broadening the existing treatment options for HNSCC are urgently required (4). Recent clinical trials have demonstrated that programmed death ligand 1 (PD-L1) or programmed death 1 (PD-1) blockade exhibit clinically meaningful anti-tumor activity together with an acceptable safety profile when used in the treatment of HNSCC patients (5, 6). However, despite this progress, only about 20-30% of HNSCC cases survived after anti-PD-1/PD-L1 therapies, and the response towards PD-1/PD-L1 blockade is still far from satisfactory. Therefore, there is an urgent need to further understand the immunization state of the cell during this disease and identify features correlated to the response ability of existing immunization therapies, thereby paving the way to the development of new single and multi-drug immunization therapies.

HNSCC, is a type of carcinoma that can arise due to genetic alteration caused by either exposure to carcinogens (such as alcohol and/or tobacco) or via malignant conversion due to HPV infection (7, 8). There is an alarming growth of HPV + HNSCC in western countries, with up to half of all HNSCC patients residing in the US, as the presence of HPV infections is considered to increase the risk of the disease (9). However, HPV-correlated HNSCC is suggested to exhibit distinctive biological and clinically-associated characteristics, with the presence of HPV conferring a survival advantage when compared to its absence (10). Distinct tumor-infiltration immunization populations were identified in HNSCC patients, with a greater proportion of dysfunctional CD8+ T cells seen in HPV- HNSCC (11). A higher rate of response towards PD-1/PD-L1 was also identified in HPV+ patients compared to those who were HPV-. Thus, the presence of HPV may well be a factor that can be used to classify HNSCC. However, the underlying mechanisms and potential associations between the HPV state and the tumor immunization environment still needs to be characterized.

In the present study, we attempted to elucidate the correlation between the HPV state and immunization environment-related factors by using a multicenter database. A single-cell RNA sequencing dataset was used to assess the various subpopulations of immune cells and particular genes that may differ in HPV+ and HPV- HNSCC patients. Using a combination of RNA-seq data from a large number of HNSCC cases and their corresponding clinical information, a gene signature for tumor-infiltrated CD8+ T cells was established using multiple machine learning algorithms. This risk-associated gene signature was verified using the gene expression profiles and clinically associated information from an independent cancer genome atlas (TCGA) provisional dataset. The genetic signature obtained may provide future targets for increasing our knowledge of the mechanisms that govern HPV+ and HPV- HNSCC. This study may also increase immunization checkpoint blockade therapy efficacy with respect to treatment of this disease.



Materials and Methods


CD8+ T Cell Estimation in HNSCC Patients

The TIMER2.0 database (http://timer.comp-genomics.org/) was utilized to explore the relationship between tumor infiltration of CD8+ T cells and the prognosis of HNSCC in patients (12). We analyzed the immunization infiltration CD8+ T cells in different carcinoma types by multiple immunization deconvolution approaches, by using Cox regression correlation and Kaplan-Meier survival curves. These data obtained were used to correlate the prognosis data of the relevant immunization infiltration data in a range of carcinoma categories.



Research of CD8+ T Cell-Correlated Immunization-Correlated Genes in HNSCC

Single cell transcriptomes include 130,721 cells from HPV- HNSCC and HPV+ HNSCC (10). Both cohorts consist of PBMC and tumor infiltrated leukocytes (TIL). In the current analysis we have only included 60,676 cells from the TIL.



Single-Cell RNA-Seq Data Analysis

Specific to the integrated investigation of single-cell data, these were normalized with the SCTransform approach and then analyzed by conducting a mutual principal unit investigation (PCA) (https://satijalab.org/seurat/v3.1/integration.html) (13). The PCA analysis was also conducted on the integrated datasets with the cluster analysis being performed with uniform manifold approximation and projection (UMAP). Cluster analysis of single-cells was performed using Seurat’s graph-based clustering approach [R software package Seurat (version 2.3.4)] with the FindClusters feature resolution set to 0.1. Subsequently, the clusters were visualized by using the UMAP (version 0.2.6.0) graph. For quality control, unique molecular identifier counts of less than 500 and double multiples were removed. Furthermore, cells with > 5% mitochondrial genes and > 50% ribosomal genes were filtered out.



Collection and Processing of the HNSCC RNAseq Dataset

The RNA sequencing dataset for HNSCC and the corresponding clinically related data originated from the TCGA database (https://portal.gdc.carcinoma.gov/), which consists of 279 samples. The validation cohort dataset is TCGA provisional database, consisting of 249 samples. The raw gene expression dataset was processed. Probe IDs received the annotation toward the gene from the corresponding platform annotation profile of the GDC website and the raw matrix data received the quantile normalization and log2 conversion. Samples with missing data were excluded.



Building a CD8+ T Cell-Correlated Gene Signature

Single-cell data was classified into specific cell types and divided according to their respective tissue sources. The corresponding transcriptome investigation data were compared in order to screen for DEGs. To increase the efficiency of the study the candidate DEGs were taken as min.pct > 0.25 and | Log2 (FC) | > 0.5.

The association between HNSCC tumor-infiltration CD8+ T cell-correlated DEGs and overall survival time in TCGA HNSCC cases was studied. Univariate Cox regression analysis was carried out for identifying the genes associated with survival (p value < 0.05). Subsequently, the significance of candidate genes was selected using variable importance in a randomized survival forest (RSF) algorithm. A risk score model with the selected DEGs was built using multi-variate Cox regression approaches. In addition, the Kaplan-Meier test was employed for a number of gene features and p-values (log) were determined. Receiver operating characteristic (ROC) analysis was carried out for 3- and 5-year overall survival rates and area under the curves (AUCs) were determined for assessing the specificity and sensitivity of the gene signature. In addition, for testing the robustness of the results, the HNSCC tumor-infiltration CD8+ T cell-correlated gene signature was further verified with the TCGA HNSCC dataset.



The Effects of Age, Gender, Alcohol and Smoking on HNSCC Patients

To assess the correlation of risk score distribution and clinically related characteristics, HNSCC patients were grouped according to age and gender as well as their status regarding alcohol consumption and smoking. In addition, risk scores were calculated in order to assess the patients’ prognosis for HNSCC in the presence and absence of HPV by using multi-variate Cox regression correlations.



Statistical Analysis

Statistics investigations were carried out with R software (version 3.6.0). Kaplan-Meier tests and ROC analysis were performed with the “survivor” and “survROC” software packages (14). Optimal cutoff data points were calculated using the “survminer” package (15). Single-variate and multi-variate Cox regression correlations were used to assess the prognosis-correlated factors of interest. Hazard ratios (HR) and 95% confidence intervals (95% CI) were presented for all the prognosis-correlated factors. In statistical tests, P<0.05 was considered statistically significant.




Results


A Comparison of CD8+ T Cells in HPV− and HPV+ HNSCC Patients

From the TIMER2.0 website, a number of immunization deconvolution approaches including “XCELL (16)”, “MCPCOUNTER (17)”, “QUANTISEQ (18)”, “CIBERSORT-ABS” and “CIBERSORT (19)” were employed for estimating immunization infiltration of CD8+ T cells in HPV− and HPV+ HNSCC patients. With the single-variate Cox proportional risk model, the found that the tumor-infiltrated CD8+ T cells were protective for cases with HPV+ HNSCC, but this was not seen in HPV− HNSCC patients (Figure 1A). According to the Kaplan-Meier curves obtained, the survival period of the high tumor-infiltration CD8+ T-cell cohort was significantly longer than that of the low CD8+ T tumor infiltration seen in HNSCC patients who also had HPV, irrespective of the deconvolution approach used (Figure 1B).




Figure 1 | Prognosis-correlated data of CD8+ T cells from patients with HPV− and HPV+ HNSCC. (A) A heat map of data from the multiple-variate Cox proportional risk model in terms of CD8+ T cells from patients with HPV− versus HPV+ HNSCC. The z-scores represent the risk scores. (B) Kaplan-Meier survival analysis showing the levels of CD8+ T cells from patients with HPV− (right column) and HPV+ (left column) HNSCC by using MCPcounter, CIBERSORT, CIBERSORT-ABS, XCELL and QUANTISEQ approaches.





Single-Cell RNA-Seq-Based DEGs Identification

The RNA-seq based on single cells consisted of 130,721 immunization cells from the tumor infiltrated leukocyte (TIL) samples obtained from HNSCC patients. Using the UMAP algorithm, this mixture of 11 cell types including CD8 T, CD4 T, dendritic, CD8+ T, mast, natural killer (NK) and plasma cells as well as mon/macrophages were unambiguously clustered and annotated (Figure 2A). Single-cell clustering was also based on the presence and absence of HPV (Figure 2B). According to the pie chart, the number of CD8+ T cells was an important unit of the HNSCC TILs (Figure 2C). The bar graphs also indicated that CD8+ T cells accounted for the greatest proportion of infiltration of all the immunization cells into the HPV− and HPV+ tumors in HNSCC patients (Figure 2D). The gene expression of LAG3 showed that exhausting T cells account for majority of the CD8 T cells (Figure 2E).




Figure 2 | Identification of HPV− and HPV+ HNSCC tumor-infiltration of CD8+ T cell-correlated genes. (A) View of single cell samples from HPV− and HPV+ TIL. The annotated UMAP plot identifying 11 distinctive cell types. (B) The annotated UMAP plot of HPV− and HPV+ HNSCC TIL. (C) A pie chart of the seven cell types that make up the TIL of HNSCC. (D) Bar graphs of the cell proportions in the TIL of HPV− and HPV+ HNSCC. (E) Violin plots illustrating the expression of CD8A and exhausting T cell marker LAG3 in different TIL cell types.





Building a CD8+ T Cell-Correlated Gene Signature

Subsequently, the HPV+ HNSCC tumor-infiltration CD8+ T cell-correlated DEGs were screened based on the selection criteria in the approaches used (Figure 3A). To screen for the crucial survival-related factors, the DEGs from the CD8+ T cells of HPV+ HNSCC were analyzed using single-variate Cox regression for the TCGA dataset, and a total of 21 DEGs were identified to be significantly correlated to survival in these patients (p < 0.05) (Figure 3B). Based on the random forest algorithm, the top 5 significant genes, ACAP1, ANKRD28, C12orf75, M6PR and RGCC, were screened (Figure 3C).




Figure 3 | A gene signature using infiltrated CD8+ T cells. (A) A volcano plot of the differentially expressed genes (DEGs) between HPV+ and HPV− HNSCC tumor-infiltrated CD8+ T cells. (B) A volcano plot showing the DEGs obtained from Cox regression analysis of survival-related HPV+ HNSCC-infiltrated CD8+ T cells. (C) Forest plot lines of the top 4 genes screened by using random survival forest analysis of HNSCC patients.



Further, we studied the expression of the significant genes in different immune cell subsets and found the association of ACAP1, ANKRD28, C12orf75 and M6PR, but not RGCC, with CD8+ T cells (Figure 4A). Also, we checked the TCGA data using CIBERSORT deconvolution and TIMER2 website, which demonstrated a substantial fraction of CD8+ T cells and the 4 signature genes in HPV+ compared to HPV- HNSCC (Figures 4B, C). RGCC was detectable, and therefore excluded from the signature genes.




Figure 4 | Expression of the signature genes. (A) Violin plots illustrating the expression of the survival related signature genes in different TIL cell types of scRNA data. (B) Bulk seq data were deconvoluted using CIBERSORT method. Bar graph illustrating the proportion of infiltrated immune cells of HPV+ and HPV− HNSCC. (C) Expression of signature genes were analyzed using TIMER2 website. Box charts showed the expression of the signature genes of the TCGA data. “**” refers p < 0.01, “***” refers p < 0.001 and “****” refers p < 0.0001.



The risk scoring system was then built using these 4 genes with multi-variate Cox analysis using the TCGA dataset. In accordance with the formula, a risk score was calculated for the respective cases. The HPV+HNSCC cases in the TCGA dataset were then divided into high-risk and low-risk cohorts with the optimal cutoff data for the risk scores. Kaplan-Meier curves showed that the high-risk group survived for longer periods in comparison with those patients in the low-risk cohort (Figure 5A). In comparison, there was no clear distinction in the high-risk cohort of HPV- HNSCC case survival (Figure 5B). This was further validated in the TCGA provisional dataset for HPV+ HNSCC (Figure 5C). To estimate the predictive power of genetic characteristics, ROC curve analysis of the HPV+ HNSCC cases were plotted and this showed an AUC of 1 and 0.739 for 3 year-survival (Figure 5D), while ROC survival curves for the HPV- HNSCC patients were less significant (Figure 5E). This was verified by using the TCGA provisional dataset which showed an AUC curve of 0.839 for 3 year-survival (Figure 5F).




Figure 5 | Validation of prognosis gene labels for HNSCC cases. (A) Kaplan-Meier (KM) analysis of the risk group that were defined with CD8+ T cell-correlated gene tags in the TCGA dataset for HPV+ HNSCC. (B) KM analysis of the risk group that were defined with CD8+ T cell-correlated gene tags in the TCGA dataset for HPV- HNSCC. (C) KM analysis of the risk group that were defined with CD8+ T cell-correlated gene tags in the TCGA provisional dataset for HPV+ HNSCC. (D) Three- and five-year ROC survival curves from the TCGA dataset for HPV+ HNSCC. (E) Three- and five-year ROC survival curves from the HPV- HNSCC TCGA dataset. (F) Three- and five-year ROC survival curves from the TCGA provisional dataset for HPV+ HNSCC.





Correlation of Risk Score Distribution and Clinical Characteristics of HNSCC Patients

HPV+ HNSCC cases in the TCGA dataset were categorized according to high or low risk score cohorts with the best cutoff data obtained. Box plots showed that age, sex and alcohol consumption were not correlated with the risk score (Figure 6A). However, smoking (Figure 6B) did show a correlation with the risk score. Furthermore, risk scores of HPV- HNSCC cases were also evaluated according to their gene signatures as established with the scRNA and TCGA datasets (Figures 6C, D). No correlation of the risk scores were found when the cases were divided according to their age and sex as well as alcohol consumption and smoking status. This revealed a specificity of the current gene signature for the assessment of smoking in HPV+ HNSCC patients.




Figure 6 | Correlation between risk scores and clinically related characteristics of HNSCC patients. (A) Distribution of risk scores obtained when patients’ data obtained from the HPV+ HNSCC TCGA dataset were separated by age and sex. (B) Risk score distributions for alcohol and smoking in the HPV+ HNSCC TCGA dataset. (C) Distribution of risk scores obtained when patients’ data obtained from the HPV- HNSCC TCGA dataset were separated by age and sex. (D) Risk score distributions for alcohol and smoking in the HPV- HNSCC TCGA dataset. (E) Multi-variate Cox regression forest plots of the risk scores and clinically related characteristics in the HPV+ HNSCC TCGA dataset. (F) Multi-variate Cox regression forest plots of risk scores and clinically related characteristics in the HPV- HNSCC TCGA dataset. Alco and Smok refer to alcohol consumer and smoker.



In order to compare the prognosis-correlated factors to those general factors, risk scores for genetic characteristics and clinically-related variables were analyzed by multi-variate Cox regression (Figures 6E, F). The forest plots did not show any significance that the current risks examined, thus revealing the significance of the current gene signature and risk scoring system used in this study.



Profiling the Gene Expression of the HPV+ HNSCC Risk Groups

With the signature genes, we separated the HPV+ HNSCC into high and low risk groups. We investigated the DEGs between high and low risk groups of HPV+ HNSCC TCGA samples (Figure 7A). The gene ontology (GO) and KEGG pathways studies showed that the risk DEGs are enriched in the T cell activation and differentiation (Figures 7B, C), indicating the involvement of the signature genes in the T cells function. We further investigated the correlation of the signature genes with the immune checkpoint genes and found a decent correlation with CTLA4, LAG3 and PDCD1, but not with the DAMP signal gene S100A8 (Figures 8A–D). Especially, a strong correlation was detected between ACAP1 and the checkpoint related genes (Figure 8E).




Figure 7 | Profiling the gene expression of the HPV+ HNSCC risk groups. (A) A volcano plot of the DEGs between high and low risk groups of HPV+ HNSCC TCGA samples. (B) Bar graphs showing the enriched gene ontology (GO) Biological Process of the risk DEGs and (C) the enriched KEGG pathways.






Figure 8 | Correlation of the signature genes with the checkpoint related genes. Correlation of the signature genes with (A) CTLA4 (B)LAG3 and (C) PDCD1. (D) S100A8 was used as control. (E) A corr plot showing the signature genes with the checkpoint related genes.






Discussion

Using a single-variate Cox proportional risk model, we identified that the tumor-infiltration of CD8+ T cells were protective for cases with HPV+ HNSCC, but not for HPV- HNSCC cases. Further, the tumor immunization environment was explored using single-cell sequencing and screened for CD8+ T cell-specific gene feature differences between HPV+ and HPV- HNSCC patients. In addition, we built a prognosis-correlated genetic signature that divided the overall survival of HPV+ HNSCC into two risk groups with the high-risk cases showing poorer prognoses. A prognosis-correlated gene signature consisting of 4 genes with low risk. Then the association between CD8+ T cell genetic traits and clinically related parameters were determined using TCGA dataset and verified in TCGA provisional dataset, to demonstrate the accuracy of genetic traits for prognosis-correlated prediction.

According to the single-cell data, there were significant differences between the immune profiles of HPV- versus HPV+ HNSCC patients, which is of significance when designing their immunotherapy regimens. Although the proportion infiltrating CD8 cells were similar in the two HNSCC types, the CD8 gene cell expression profiles were not identical, so more tailored therapies will be required in order to improve the survival rates of patients. The distinct immune profiles in the microenvironment of HPV+ and HPV- HNSCC patients may result from the presence of viral antigens throughout the carcinogenesis process, resulting in the early innate immune responses and the enhancement of the T cells adaptive immune response (20, 21). Further comparisons of the gene transcriptomes of cells with and without the presence of viral antigens throughout the carcinogenesis process is needed to enable the true cause of immune profile differences seen in the presence and absence of HPV in HNSCC patients.

In line with our current results, a recent study noted that between nearly 10% of the infiltrating T cells present in HNSCC were such CD8-positive T cells that target HPV and express PD-1 (22). One of these cells has stem cell characteristics and can expand in large numbers to treat head and neck cancer if cancer immunotherapy is used. Current conventional treatments for head and neck cancer include radiotherapy and chemotherapy, but they may affect the number of immune cells in the body. Therefore, better results may be achieved if immunotherapy is used first and then combined with conventional modalities.

The shortcoming of our current study is the small size of the test group, which, although showing a good trend, somehow lacks statistical significance. Further studies are needed to examine not only HPV+ samples but also specific epitopes of HPV infection.
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Objectives

For patients with oral cavity squamous cell carcinoma (OSCC), particularly for those with advanced disease, quality of life (QoL) is a key outcome measure. Therefore, we estimated survival-weighted psychometric scores (SWPS), life expectancy (LE), and quality-adjusted LE (QALE) in patients with advanced OSCC.



Methods and Materials

For estimation of survival function, we enrolled 2313 patients with advanced OSCC diagnosed between January 1, 2007, and December 31, 2013. The patients were followed until death or December 31, 2014. To acquire the QoL data, data from 194 patients were collected by employing the Taiwan Chinese versions of the Quality of Life Questionnaire Core 30 and Quality of Life Questionnaire Head and Neck 35 developed by the European Organisation for Research and Treatment of Cancer and the EQ-5D-3L between October 1, 2013, and December 31, 2017. The LE of the patients with OSCC were estimated through linear extrapolation of a logit-transformed curve. SWPS and QALE were determined by integrating the LE and corresponding QoL outcomes.



Results

For the patients with advanced OSCC, the estimated LE and QALE were 8.7 years and 7.7 quality-adjusted life years (QALYs), respectively. The loss of LE and QALE was 19.0 years and 20.0 QALYs, respectively. The estimated lifetime impairments of swallowing, speech, cognitive functioning, physical functioning, social functioning, and emotional functioning were 8.3, 6.5, 6.5, 6.1, 5.7, and 5.4 years, respectively. The estimated lifetime problems regarding mouth opening, teeth, social eating, and social contact were 6.6, 6.1, 7.5, and 6.1 years, respectively. The duration of feeding tube dependency was estimated to be 1.6 years.



Conclusions

Patients with advanced OSCC had an estimated LE of 8.7 years and QALE of 7.7 QALYs. SWPS provided useful information regarding how advanced OSCC affects the subjective assessment of QoL. Our study results may serve as a reference for the allocation of cancer treatment resources.
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Introduction

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer in the world, and its incidence has been increasing, with an annual incidence approaching 500,000 (1, 2). In Taiwan, because of the high prevalence of betel nut chewing and cigarette smoking (3), OSCC is the fourth most common cancer among men. Approximately 60% of patients with OSCC present with locoregionally advanced disease (stage III or IV) at diagnosis (1), and the 5-year survival rate is only 10%–40% (2). Both OSCC and its treatments can significantly impair patients’ quality of life (QoL) and functional status. Conventionally, the outcome assessments for OSCC consider both physician and patient perspectives, with physicians objectively reporting survival, local control, and complication rates and patients subjectively reporting physical, emotional, social, and psychological outcomes (3). Patient reported outcomes are increasingly studied (4), and OSCC patients have reported varying degrees of physical problems [e.g., eating and speaking changes (5)], mental stress [e.g., fatigue, anxiety, and depression (6, 7)], and altered interpersonal relationships [e.g. social isolation, work impairment, and disrupted social relationships (5, 8)]. Among head and neck cancer (HNC) patients, OSCC patients experience the worst QoL and function (9). Patients with advanced OSCC frequently experience moderate to severe QoL and functional impairments attributable to their extensive tumor invasion or multidisciplinary treatments, such as ablative surgery and radiation therapy (9, 10). Surgery plus adjuvant radiotherapy can result in more severe and prolonged QoL disturbance compared with radiotherapy alone (11), and psychosocial and functional impairment may persist for a long time (5, 8). Hence, periodic review of QoL and the use of questionnaires may facilitate communication between patients and physicians and thereby optimize cancer treatments and nutritional interventions, potentially improving survival in patients with OSCC (12).

The quality-adjusted life-expectancy (QALE) that considers both survival and QoL is widely applied for cancer patient care and clinical research (13, 14). Studies have compared and quantified QALE in patients with HNC by estimating life expectancy (LE) and quality-adjusted LE (QALE) (14, 15). However, these studies enrolled highly heterogeneous samples and did not consider survival-weighted psychometric scores (SWPS). In the present study, we investigated the feasibility of estimating QALE and SWPS by combining mean QoL scores at various intervals with survival function in patients with advanced OSCC.



Materials And Methods


Patients

Figure 1 presents the study flowchart. Patients diagnosed as having OSCC between January 1, 2007, and December 31, 2013, were retrospectively analyzed for survival estimation. Eligibility criteria were the following: (1) aged 18 to 75 years; (2) had newly diagnosed locally advanced OSCC (stage III or IV); (3) underwent curative treatments; and (4) had an Eastern Cooperative Oncology Group performance status of 0 to 2. We excluded patients who (1) underwent palliative treatment; (2) had a history of any cancer; (3) whose OSCC had already metastasized at diagnosis; or (4) had another cancer in addition to OSCC. Finally, a cohort of 2313 patients with advanced OSCC diagnosed during the study period was enrolled from our cancer registry database. Patients with OSCC who underwent treatments and follow-up at our hospital from October 1, 2013, to December 31, 2017, were prospectively enrolled for QoL questionnaire completion. Informed consent was obtained from all participants, and the institutional review board of our hospital approved the study protocol (No. 102-2668B). This study was performed in compliance with the tenets of the Declaration of Helsinki.




Figure 1 | Study design flowchart. EORTC, European Organisation for Research and Treatment of Cancer; H&N, head and neck; QLQ, quality of life questionnaire; QoL, quality of life.





Treatment Protocol

Each patient underwent a routine workup consisting of comprehensive history taking, physical examination, flexible fiberoptic laryngoscopy, plain chest radiography, abdominal sonography, and pretreatment computed tomography or magnetic resonance imaging of the head and neck. In addition, the computed tomography of chest will be arranged if there is any abnormal finding on the plain chest radiography, and the positron emission tomography/computed tomography scan will be performed in patients with stage IV disease or if there is any finding suspicious for metastasis in the aforementioned studies. All patients underwent either primary ablative surgery with adjuvant therapy or radiotherapy (RT)/chemoradiotherapy (CRT) with curative intent. The cancer staging manual of the American Joint Committee on Cancer (2010) was used for OSCC staging. The types of adjuvant therapy were determined by the tumor board conference according to institutional guidelines. The detailed adjuvant treatment guidelines in our institute and their comparison with the National Comprehensive Cancer Network guidelines have been reported by Lin et al. (16). In brief, patients diagnosed as having a pathologic T4 disease and single metastatic neck lymphadenopathy are provided adjuvant RT, whereas those diagnosed as having extranodal extension, multiple metastatic lymphadenopathies, or positive surgical margins are administered adjuvant CRT. If indicated, the intensity-modulated RT (2 Gy/d, 5 d/week) was used to treat patients, and the radiation dose was 60–66 Gy in an adjuvant setting and 70–72 in a definitive setting. Platinum-based agents were used if chemotherapy was indicated. All patients were regularly followed up, at which time questionnaires were completed. Follow-up visits occurred during years 1–3 every three months and in years 4+ every six months. At every follow-up visit, all patients were reviewed by speech-language pathologists and dietician and underwent complete physical examination including the fiberoptic laryngoscopy. Moreover, during the follow-up period, we executed head and neck magnetic resonance imaging or computed tomography at 6-month intervals during the first 2 years and annually thereafter.



QoL Instruments

The Taiwan Chineseversions of the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 (EORTC QLQ-C30) and EORTC Quality of Life Questionnaire Head and Neck 35 (EORTC QLQ-H&N35) were used to assess QoL (17–19); these instruments, in translation and after cross-cultural adaptation to a Mandarin-speaking population, have been validated (20, 21). Per the EORTC scoring manual, for both instruments, scores were linearly transformed; all scales (multiple or single item) were scored 0–100 (22). A higher functioning score and QoL scale score indicated high functioning or QoL. By contrast, high scores on the symptom scales indicated more severe symptoms.

The EQ-5D-3L; Taiwanese version) was employed to assess general health and analyze cost utility (23). The EQ-5D-3L has five domains (pain/discomfort, mobility, anxiety/depression, self-care, and activities of daily living) and three levels of classification (no, some, and extreme problems). The health information derived from the five domains was transformed into health-related utility values by the time trade-off method (24). The utility value indicated the degree of general health status on a scale from 0 to 1, with 0 representing death and 1 representing perfect health.



Statistical Analysis

Numbers with percentages were used for categorical variables, and means with standard deviations were used to indicate continuous variables. The survival duration of the 2313 patients from the cancer registration database was defined as the duration from the date of curative treatment to death or censoring on December 31, 2014. We then plotted the Kaplan–Meier curves for overall survival estimation. On the basis of the life table of the general population in Taiwan, the Monte Carlo method was applied to determine the survival function of the reference population (matched for age and sex) (25). Linear extrapolation of a logit-transformed curve of the survival ratio between patients with OSCC and the reference population was performed to obtain the LE of the patients with OSCC (25–27). Kernel smoothing of the QoL data from 194 patients was applied to estimate average QoL function (27). The functional disabilities or symptoms were plotted against time at the beginning of curative treatment. From then until the attainment of every QoL follow-up data point, the survival outcomes were combined with the psychometric scores or utility values to calculate the SWPS or QALE (3). In brief, the utility values or psychometric scores at different time points were multiplied with the corresponding lifetime survival probabilities over the course of cancer to obtain the quality-adjusted survival curve, of which the area under the curve would be the QALE or SWPS (28). The LE implies the expected total duration of living under a certain degree of unhealthy status after the treatments; the QALE can be interpreted as the expected total duration of living under a perfect healthy condition after the treatments. Each SWPS in a psychometric item can be interpreted as the expected total duration of living under a condition with a problem in that item after the treatments. The utility value was assumed to be 1 for the reference population during the study period. Hwang et al. proposed a minimum sample size of 50 for generating the mean QoL function curve (27). Considering the 7-year follow-up data and extrapolation to 50 years of survival, we estimated the LE, QALE, and SWPS of patients with OSCC. SPSS Statistics for Windows, version 17.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis, and p <.05 was considered to indicate statistical significance. Survival extrapolation was performed using iSQoL [http://sites.stat.sinica.edu/tw/isqol/; validated in (13, 29, 30)].




Results


Patient Characteristics

Table 1 presents the patients’ baseline characteristics. The survival data of 2313 patients with OSCC were used for lifetime survival estimates. Another 194 patients were selected for QoL questionnaire completion. Among the enrolled patients, the most common stage of OSCC was stage IVA (n = 1413, 61.1%), followed by stage III (n = 602, 26.0%) and stage IVB (n = 298, 12.9%). Two thousand one hundred five (91%) patients received ablative surgery as their primary treatment modality; 1088 (47%) patients underwent postoperative adjuvant CRT, and 448 (19.4%) patients received adjuvant RT. Given the presence of the unresectable T4b disease, significant underlying comorbidities [e.g. end-stage liver disease (31) and severely reduced ejection fraction (32)], and the patient’s willingness, approximately 10% of patients underwent definitive RT/CRT as their primary treatment (33, 34). Table 2 presents the results of the 629 valid responses to the EORTC QLQ-C30 and QLQ-H&N35 completed by 194 patients with OSCC, which were stratified by time periods: post-treatment <1 year, 1−3 years, and >3 years.


Table 1 | Baseline patient characteristics.




Table 2 | The mean scores of the EORTC QOL scales in different periods of time.





Survival Outcome, LE, and QALE

Among the 2313 patients with OSCC, the 5-year overall survival rate was 54.2% (median follow-up: 31.4 months; range: 0.7–97.1 months). The LE and QALE for the reference cohort in Taiwan is 27.7 years and 27.7 quality-adjusted life years (QALYs). In our cohort of patients with OSCC, the estimated LE and QALE was 8.7 years (95% confidence interval [CI]: 6.3–14.8 years) and 7.7 QALYs (95% CI: 5.5–13.1 QALYs), respectively (Figure 2); thus, the estimated loss was 19.0 years and 20.0 QALYs, respectively (Figures 3A, B, respectively).




Figure 2 | The mean QoL (utility) function (green dashed line) was multiplied with the corresponding lifetime survival probabilities (red dashed line) to obtain the quality-adjusted survival curve (black solid line). The area under the red dashed line is the LE. The area under the black solid line is the QALE. The vertical black dotted line stands for the starting month of extrapolation.






Figure 3 | Estimated loss of LE and QALE for advanced OSCC patients. (A) Estimated loss of LE; (B) Estimated loss of QALE.





Symptoms and Impaired Function

The median period between curative treatments and questionnaire completion was 1.7 months (range: 1–158.2 months). We estimated that patients with OSCC experienced pain and consumed painkillers for 4.9 and 2.0 years, respectively (Figure 4). Regarding functional disabilities, the durations of impairments in cognitive, physical, social, emotional, and role functioning were estimated to be 6.5 (95% CI: 4.8-11.6), 6.1 (95% CI: 4.6-11.5), 5.7 (95% CI: 4.4-10.0), 5.4 (95% CI: 4.1-10.0), and 2.8 (95% CI: 2.0-4.9) years, respectively (Figure 5). The durations of impairments in swallowing, speech, taste, and smell were estimated to be 8.3 (95% CI: 6.4-15.0), 6.5 (95% CI: 4.9-11.7), 3.6 (95% CI: 2.7-6.6), and 3.0 (95% CI: 2.2-4.1) years, respectively (Figure 6). The patients experienced problems involving mouth opening, teeth, social eating, and social contact for an estimated 6.6 (95% CI: 5.0-11.4), 6.1 (95% CI: 4.5-11.0), 7.5 (95% CI: 5.7-13.3), and 6.1 (95% CI: 4.3-11.1) years, respectively (Figure 6). The estimated duration of tube feeding dependence was 1.6 (95% CI: 1.1-2.8) years. In addition, the dynamic changes of the utility values and functional impairments (Figure 7) as well as different problems (Figure 8) were also demonstrated.




Figure 4 | Dynamic changes in pain and painkiller use in patients with locally advanced OSCC.






Figure 5 | Functional impairments in patients with advanced OSCC. The estimated persistence of functional impairments is represented by the area under the quality-adjusted survival curve. Duration of functional impairments (years): Role—2.8; Physical—6.1; Emotional—5.4; Cognitive—6.5; Social—5.7.






Figure 6 | Problems in patients with advanced OSCC. The estimated persistence of impairments or problems are represented by the area under the quality-adjusted survival curve. Duration of functional impairments or problems (years): Taste—3.6; Smell—3.0; Speech—6.5; Swallow—8.3. Problem—years endured: Open mouth—6.6; Dentition—6.1; Social eating—7.5; Social contact—6.1.






Figure 7 | The trends of mean QoL (utility) function and functional impairments in patients with OSCC.






Figure 8 | The trends of different problems in patients with OSCC.





Extrapolation Validity

The model-extrapolated 8-year overall survival outcomes (using the initial 7-year follow-up data of 2313 patients) was compared with the survival outcomes measured using the Kaplan–Meier method. As shown in Figure 9, the observed survival data were highly consistent with the estimated survival curve. The mean ± standard deviation of estimated survival among the patients with OSCC was 58.9 ± 1.0 months, indicating a relative bias of only 0.3% from the observed survival (59.1 ± 0.8 months) at the end of the 8-year follow-up period.




Figure 9 | The observed 8-year survival curve and the estimated 8-year survival curve matched properly.






Discussion

Patients with locally advanced OSCC tend to have more symptoms, more severe functional disabilities, and greater reductions in QoL due to aggressive tumor extension and metastatic lymphadenopathy necessitating extensive surgical interventions or RT/CRT (4). Multidisciplinary management and advancements in treatment have facilitated the control of advanced OSCC (35); therefore, understanding the lifetime health burden of these patients is critical (36). To the best of our knowledge, this is the first study to describe QALE and lifetime symptoms or functional impairments in patients with locally advanced OSCC undergoing curative treatments. The estimated durations of problems concerning the teeth, mouth opening, social contact, and social eating all exceeded 6 years, consistent with results from a previous study (37). This may be explained by the significant lasting changes in oral structures, facial appearance, and social adaptation after curative treatment. We also observed that all the QoL domains excepting role function impairment (2.8 years), namely social, emotional, cognitive, and physical functioning, were adversely affected for over 5 years. This finding may be ascribable to the relatively young age of the patients at diagnosis, as well as to their active social participation and sufficient family support. The LE and QALE of the average patient with OSCC in Taiwan are approximately 12.2 years and 11.3 QALYs, respectively (15). Our estimates of LE and QALE, which were lower, are reasonable because we enrolled only patients with locally advanced disease. By integrating the QoL data from the QLQ-C30, QLQ-H&N35, and EQ-5D-3L questionnaires with the survival function, we generated a multidimensional health profile from the patient perspective, enabling an intuitive understanding of the changes of QoL in patients with advanced OSCC. Of note, OSCC and its treatments negatively impact patient QoL, particularly in those treated with ablative surgery (11). Extensive surgery considerably changes the facial appearance of patients with HNC, causing problems in social eating, swallowing, and speech and leading to social isolation and depression (38, 39). Given that 90% of our patients were treated with primary ablative surgery, their prolonged functional disabilities may be partially explained by the impacts of this extensive procedure. This highlights the necessity of developing psychosocial rehabilitation strategies for patients with advanced OSCC (40).

Our study results may extend the literature concerning QoL function in patients with locally advanced OSCC in several regards. First, because disease severity and treatment courses may influence various facets of QoL, a comprehensive assessment of psychometric scores for each QoL facet may yield a more holistic view. For instance, acute cancer- or treatment-related symptoms, such as pain and nausea or vomiting, may resolve gradually during follow-up. By contrast, patients with OSCC may experience prolonged physical distress and social functioning impairment that may or may not recover even after long-term disease remission is achieved (41). Multidimensional assessment may reflect the changes in QoL after the diagnosis of OSCC and may thus increase the feasibility of using QoL as an endpoint of treatment efficacy (42). Because the substantial change of the patient’s QoL usually happened within the first 2 months after curative treatments due to the surgical morbidity, treatment related toxicity and its recovery, and most symptom burden tended to be stable after 1 year (43). Hence, we collected the QoL data more frequently in the first 2 months after treatments for better estimation of QALE or SWPS. In addition, the QoL after the last data collection time point is assumed to be the same thereafter. Accordingly, even >50% of QoL data points came from within the first 2 months after treatments, it may cause little impact on the lifelong extrapolation. Second, patients’ subjective judgments of QoL may change over time (44). Hence, we used the extrapolation method, which entails a simulation approach, for estimating the lifetime survival function. By integrating the extrapolated survival outcomes and the psychometric data, we acquired the SWPS for lifetime QoL assessments in patients with advanced OSCC. Changes in QoL scores over time correspond to the cancer treatment courses and disease severity in patients with cancer, and the QoL profile is particularly informative regarding emotional distress, physical performance, and social function (45); these findings accord with ours. Overall, SWPS may constitute a comprehensive approach for determining the lifetime QoL function of patients with advanced OSCC.

The health costs and economic burden of OSCC are comparable with or higher than those of other cancers (46). Despite their poorer survival outcomes, the patients with advanced OSCC used more resources (corresponding to higher expenditures) than did those with early-stage OSCC. This is attributable to the need of this patient group for multidisciplinary treatment, supportive care, and palliative care following repeated relapse (47). The results of this study demonstrated that compared with the reference population, patients with locally advanced OSCC had substantial losses of LE (19.0 years) and QALE (20.0 QALYs). Given that the QALY metric is commonly used to assess value in health care decision-making (48), our data could yield useful information about resource allocation in advanced OSCC care.

This study has several limitations. First, the QALE and SWPS may have been overestimated for the following reasons. During extrapolation, the assumption of a constant level of QoL near the end of follow-up may have been distorted because real QoL usually declines with age (49). Moreover, patients who survived longer might have had a better QoL and completed more questionnaires (50). Further studies involving the administration of long-term QoL questionnaires and longer follow-up periods are warranted to confirm our findings. Second, the reference population utility was assumed to be 1 for the survival duration. Therefore, the loss of QALE among patients with OSCC may have been overestimated. Notably, Chung et al. indicated that women had an older mean age at diagnosis, less LE reduction, and a longer estimated QALE than men (15). However, our cohort had only two women with OSCC who completed the QoL questionnaires. Given that the computed tomography of chest was not routinely performed during staging workup in this study, small lung metastasis may have been underestimated and could negatively impact the patient’s prognosis and QoL (51). This potential confounding factor may need to be considered in the results interpretation. Another potential confounding factor is that the improvement of the surgeon’s technique and experience may lead to the better survival and QoL outcomes in patients who were treated in the later period of this study. Although our results involve intuitive assessment and appear reasonable, their interpretation should be made with these limitations in mind.

In conclusion, patients with advanced OSCC had an estimated LE and QALE of 8.7 years and 7.7 QALYs, respectively, and estimated LE and QALE losses of 19.0 years and 20.0 QALYs, respectively. The data on SWPS indicated that patients experienced multiple ongoing problems and functional disabilities over a long period of time following curative treatments. Future studies should evaluate whether information obtained from data on QALE and SWPS can be used to allocate health care resources and assess the impacts of surgery with different neoadjuvant or adjuvant protocols in patients with OSCC.
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Head and neck squamous cell carcinoma (HNSCC) is one of the greatest public challenges because of delayed diagnosis and poor prognosis. In this study, we established an autophagy-associated long non-coding (Lnc)RNA prognostic signature to assess the prognosis of HNSCC patients. The LncRNA expression profiles and clinical information of 499 HNSCC samples were available in The Cancer Genome Atlas. Autophagic LncRNAs were analyzed using Pearson correlation. A co-expression network showed the interactions between autophagic genes and LncRNAs. An autophagic LncRNAs prognostic signature, consisting of MYOSLID, AL139287.1, AC068580.1, AL022328.2, AC104083.1, AL160006.1, AC116914.2, LINC00958, and AL450992.2, was developed through uni- and multivariate Cox regressions. High- and low-risk groups were classified based on the median risk scores. The high-risk group had significantly worse overall survival according to Kaplan–Meier curve analysis. Multivariate Cox regression demonstrated that risk scores were a significant independent prognostic factor (hazard ratio = 1.739, 95% confidence interval: 1.460–2.072), with an area under the curve of 0.735. Principal component analysis distinguished two categories based on the nine-LncRNA prognostic signature. In conclusion, this novel autophagic LncRNA signature is an independent prognostic factor and may suggest novel therapeutic targets for HNSCC.
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Introduction

Head and neck squamous cell carcinomas (HNSCCs) are common tumors that rank eighth worldwide in terms of incidence and mortality. HNSCCs are epithelial carcinomas derived from the oral cavity, nasal cavity, larynx, hypopharynx, and pharynx (1). They have a heterogeneous etiology based on multistage progression, genetic alterations, and environmental factors (2). Excessive smoking, alcohol consumption, and human papillomavirus infections are known risk factors for HNSCC development (3, 4). The initial symptoms, such as nasal congestion, oral ulcers, sore throat, and hoarseness, mimic common illnesses and often lead to late diagnoses. Although the diagnostic and treatment modalities for HNSCCs are rapidly improving, the 5-year survival rate has not increased significantly in the past few years, and the prognosis remains poor (5).

Long non-coding RNAs (LncRNAs) are non-protein-coding transcribed RNAs with more than 200 base pairs (6). LncRNAs were previously regarded as “dark matter” and “transcriptional noise” without biofunctions, but recent studies have demonstrated that many LncRNAs are involved in important bioactivities, such as chromatin modification, transcriptional activation and interference, and cell differentiation and proliferation (7–9). LncRNAs are mostly found in the nucleus, particularly in the chromatin fraction, which underlines their regulatory role in gene transcription. Moreover, genome-wide tumor association studies have revealed that thousands of LncRNAs are associated with tumorigenesis and metastasis (10, 11). LncRNAs are considered novel biomarkers for guiding treatment due to recent advances in our understanding the molecular mechanisms underlying cancer-related LncRNAs (12, 13).

Autophagy is a physiological process that membrane-encloses damaged or degenerated proteins and organelles, and delivers them to lysosomes for degradation (14). Autophagic dysregulation is related to various diseases, including neurodegenerative, inflammatory, cardiovascular, and neoplastic disorders (15–18). Predictive functions of autophagy in various cancers are gradually being explored. An autophagy-related gene signature was recently reported to be closely related with HNSCC outcomes (19, 20). Another autophagic LncRNA signature was found to accurately predict the prognoses of bladder urothelial carcinomas (21). Although autophagic genes and LncRNAs can reportedly serve as HNSCC biomarkers, their prognostic value remains unclear. Our study aimed to clarify the prognostic functions of autophagy-associated LncRNAs in HNSCC.



Methods


Data Acquisition

Messenger RNA (mRNA) sequences and clinical data of HNSCC patients and controls (peritumor tissues) were acquired from The Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/). The inclusion criteria were HNSCC patients; complete LncRNA expression data and clinical information; and follow-up duration longer than 30 days. Complete clinical information, including age, sex, tumor grade, American Joint Committee on Cancer (AJCC) stage, TNM stage, and survival data, were downloaded for analysis. Autophagic genes were acquired from the Human Autophagy Database (http://autophagy.lu/index.html). Simple nucleotide variations of HNSCC were also downloaded from TCGA.

As our data were publicly available, no specific ethical approval or informed consent was required.



Identification of Autophagic LncRNAs

LncRNA expression profiles of HNSCC patients were obtained from TCGA. All data were standardized using the limma package for R software (v.3.6.3; R Foundation for Statistical Computing, Vienna, Austria) before further analysis. Pearson correlation analyses were performed on LncRNAs and autophagic genes in HNSCC patients using R software (v.3.6.3). A correlation coefficient (R) > 0.3 and p-value < 0.001 were considered significant for autophagic LncRNAs. A co-expression network between autophagic LncRNAs and genes was also built using Cytoscape (v.3.8.2).



Establishment of Prognostic Signature

Uni- and multivariate Cox regression analyses were performed to establish potential prognostic signatures. First, the association between autophagic LncRNAs and survival rates was assessed by univariate Cox regression. p < 0.01 was regarded significant for prognosis-related LncRNAs in HNSCC patients. Multivariate Cox regression analysis was then performed for the selected prognostic LncRNAs. A risk-score-based prognostic signature was computed as follows: risk score = lncRNA1β×Expression + lncRNA2β×Expression + lncRNA(N)β×Expression (22).



Prognosis Prediction

According to the formula above, HNSCC patients were classified into high- and low-risk groups based on median risk scores. A Kaplan–Meier curve was plotted to compare survival between groups using the two-sided log-rank test. Uni- and multivariate Cox regressions were performed to evaluate the effect of clinical variables on survival in HNSCC patients and to determine if the risk scores were independent prognostic factors. Predictive accuracy was determined by calculating the area under the receiver operating characteristic (ROC) curve (AUC). We also investigated the association of the expression level of each autophagic LncRNA with overall survival (OS) in HNSCC patients using Kaplan–Meier curves. To clarify the impact of single autophagy-related LncRNAs on HNSCC prognosis, we assessed their associations with the various clinical characteristics using Student’s t-test or one-way analysis of variance (ANOVA).



Functional Analysis

Principal component analysis (PCA) was performed to determine similarities and differences between the autophagic-LncRNA and whole expression profiles of HNSCC patients. Functional enrichment was assessed using gene set enrichment analysis (GSEA; v.4.0.3; http://www.broadinstitute.org/gsea/index.jsp). We verified whether or not differentially expressed genes between high- and low-risk groups were enriched in autophagy-related processes.



Prognostic Signature Validation

We detected the expression of nine autophagic LncRNAs in 190 HNSCC patients, which were used for prognostic signature validation. The validation data were provided by the Ethics Committee of Xiangya Hospital, Central South University. All HNSCC cases were pathologically confirmed; the clinical characteristics are shown in Table S1.

The expression levels of target LncRNAs were measured using real-time polymerase chain reaction (RT-PCR). Total RNA was extracted from the tissue specimens using the GeneJET RNA purification kit (Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer’s instructions. Complementary DNAs (cDNAs) were synthesized using SuperScript III Reverse Transcriptase (Invitrogen; Thermo Fisher Scientific). LncRNA expression was assessed by RT-PCR ([model]; Bio-Rad Laboratories Inc., Hercules, CA, USA). Expression levels were quantified using the 2−ΔΔCt method.



Statistical Analysis

All statistical analyses were performed using R software (v.4.0.5). Survival probabilities were compared between groups using Kaplan–Meier curve analysis. The diagnostic accuracy of the signature was evaluated by ROC curve analysis. Nomographs were plotted to estimate the 1-, 3-, and 5-year OS rates of individuals according to different risk scores and clinical parameters. Pearson and Spearman correlation analyses were performed. Simple nucleotide variations were analyzed using the maftools R package. p < 0.05 was considered significant.




Results


Identification of Prognostic Autophagy-Related LncRNAs

We identified 14,142 LncRNAs by RNA-sequence analysis of HNSCC patients from TCGA. We also obtained 257 autophagy-related genes from a public database (Table S2). In total, 910 autophagy-related LncRNAs met the criteria (R > 0.3 and p < 0.001). Cox regression analyses were then performed to determine the autophagy-related LncRNAs with potential prognostic value for HNSCC (Table S3). Of the 910 LncRNAs, 18 were linked with the OS of HNSCC patients. Multivariate Cox regression showed that 9 of those 18 LncRNAs (MYOSLID, AL139287.1, AC068580.1, AL022328.2, AC104083.1, AL160006.1, AC116914.2, LINC00958, and AL450992.2) were involved in the prognostic signature (Figures 1A, S1A–I and Table S4).



Establishment of the Nine-LncRNA Prognostic Signature

The risk score of the HNSCC patients was calculated as follows: risk score = (0.0236 × ExpMYOSLID) + (−0.0890 × ExpAL139287.1) + (−0.3069 × ExpAC068580.1) + (0.2869 × ExpAL022328.2) + (−0.0802 × ExpAC104083.1) + (−0.2112 × ExpAL160006.1) + (−0.4007 × ExpAC116914.2) + (0.0140 × ExpLINC00958) + (−0.0425 × ExpAL450992.2). The prognostic value of this nine-LncRNA risk signature for HNSCC patients was evaluated. Based on the median risk scores, 249 and 205 HNSCC patients were classified as high and low risk, respectively. Kaplan–Meier curve analysis revealed significant differences in OS between the groups; OS was worse in the high-risk group (Figure 1B). We ranked the HNSCC patients according to their risk scores based on the nine-LncRNA prognostic signature (Figure 1C). The scatter diagram demonstrated that the survival rates of the HNSCC patients were correlated with the risk scores; the mortality rate increased with an increased risk score (Figure 1D). The AUC value of the nine lncRNAs was 0.735. The AUC values for age, sex, tumor grade, AJCC stage, T stage, N stage, and M stage were 0.602, 0.451, 0.593, 0.657, 0.594, 0.620, and 0.566, respectively (Figure 1E). These results confirmed that the nine-LncRNA prognostic signature could predict the survival outcomes of HNSCC patients.




Figure 1 | Establishment of autophagy-related lncRNA signature for HNSCC patients. (A) Forest plot of univariate Cox regression for autophagic lncRNAs correlated with HNSCC prognosis. (B) Kaplan–Meier curves of overall survival for high- and low-risk groups. (C) Risk scores of the high- and low-risk groups. (D) Scatterplot of risk scores and survival time/survival outcomes. (E) ROC curves of prognostic signature and other clinical parameters. (F, G) Forest plots of univariate and multivariate Cox regressions, respectively, for association between risk score and overall survival.





The LncRNA Signature Was Independently Associated With Prognosis

Multivariate Cox regression based on risk scores and clinical characteristics was performed to determine whether the nine-LncRNA prognostic signature was an independent prognostic factor. Univariate Cox regression demonstrated that the risk score was significantly correlated with OS (Figure 1F). Multivariate Cox regression also showed a significant association between the risk score and OS in HNSCC patients (Figure 1G).



Clinical Significance of the Prognostic Signature

A nomogram was plotted to evaluate 1-, 3-, and 5-year survival based on the risk score of the prognostic signature and clinical data. The nomogram demonstrated that the risk score was the most significant contributor to the 3- and 5-year OS of HNSCC patients (Figure 2). We then investigated the associations of high- and low-risk status with clinical parameters using the Chi-square test. No significant differences in clinical parameters were observed between groups (p > 0.05; Figure 3A). We also analyzed risk scores according to clinical parameters and found significant differences in relation to survival status and T stage. Patients with poor survival status and advanced T stage had higher risk scores (p < 0.05; Figures 3B, C). To verify the utility of the prognosis signature, we also performed subgroup analyses based on age (≤ 60 vs. > 60 years; Figures 4A, B), sex (Figures 4C, D), grade (T1–2 vs. T3–4; Figures 4E, F), AJCC stage (stage I–II vs. stage III–IV; Figures 4G, H), T stage (T1–2 vs. T3–4; Figures 4I, J), and M stage (M0 vs. M1; Figures 4K, L). We found that the prognostic signature was related to OS in all strata of the population. The high-risk group had worse OS than the low-risk group.




Figure 2 | Nomograph of 1-, 3-, and 5-year overall survival probabilities predicted based on autophagy-related LncRNA signature.






Figure 3 | Correlation of risk score with clinical parameters. (A) Heatmaps of clinical parameters and autophagy-related LncRNAs between high- and low-risk groups. (B) Boxplot of risk score difference between alive and dead groups. (C) Boxplot of risk score difference between T stage1–2 and T stage 3–4.






Figure 4 | Overall survival difference between high- and low-risk groups for HNSCC patients stratified by clinical parameters, including age [age ≤60, ag e>60, (A, B)], gender [female, male, (C, D)], grade [G1–2, G3–4, (E, F)], AJCC stage [Stage I–II, Stage III–IV, (G, H)], T stage [Stage 1–2, Stage 3–4, (I, J)], and M stage [M0, M1, (K, L)].



In addition, we investigated LncRNA expression levels according to the various clinical characteristics. The expression levels of AC116914.2 and AL022328.2 were higher in males compared to females (Figure S2A). The expression levels of AL022328.2 and AL450992.2 were higher for higher grades, but the expression of MYOSLID had no correlation with grade (Figure S2B). No significant differences were found in expression levels by AJCC stage (Figure S2C). The expression levels of AC068580.1, LINC00958, and MYOSLID increased from T1 to T3, but were decreased for T4 (Figure S2D). The results regarding the N stage were similar to those for the AJCC stages (Figure S2E). In terms of the M stage, AL022328.2 and AL139287.1 expression levels were higher, but AC116914.2 expression was lower, in the M1 stage (Figure S2F).



Gene Mutations

We analyzed the gene mutation profiles of 492 HNSCC patients based on the risk scores. The high- and low-risk groups consisted of 245 (49.1%) and 247 (49.5%) samples, respectively, while 7 (1.4%) samples were excluded because of a lack of mutation data. Waterfall plots were used to evaluate the genes of the patients in the two groups (Figures 5A, B). The top 10 mutated genes in the high-risk group were TP53, TTN, FAT1, CDKN2A, NOTCH1, PIK3CA, CASP8, LRP1B, MUC16, and CSMD3. Although some mutated genes overlapped between groups, several genes were more frequent in the high-risk group, including TP53 (p = 0.004), HRAS (p = 0.001), and CASP8 (p = 0.001). Missense mutations accounted for most of the mutations in both groups (Figures 5C, D). The single-nucleotide variant was the most common type (Figures 5E, F), and C-to-T transversions were the most common single-nucleotide variant (Figures 5G, H). The gene cloud plots showed the top mutated genes in the two groups (Figures 5I, J).




Figure 5 | Landscape of mutation profiles between high- and low-risk HNSCC patients. (A, B) Waterfall plots of mutation information in each sample. (C, D) Variant classification. (E, F) Distribution of genetic alterations. (G, H) SNV classes. (I, J) Gene clouds of mutation frequencies in HNSCC patients.





Co-Expression Network of Autophagy-Related LncRNAs and mRNAs

Studies have suggested that mutual regulation between LncRNAs and mRNAs is critical for tumor progression. We established a co-expression network using Cytoscape. There were 48 mRNAs associated with nine target LncRNAs (R > 0.3, p < 0.001; Figure 6A). Associations among co-expressed mRNAs and LncRNAs in the prognostic signature and risk types were visualized using a Sankey diagram (Figure 6B). AL022328.2 was the major component of overall risk, while MYOSLID and LINC00958 accounted for small proportions (Figure 7B). The corresponding mRNAs were ATF4, ATG16L2, ATG4B, ATG4D, CAPN10, CDKN1B, HDAC6, IKBKB, ITGA3, MAP2K7, PELP1, RAB24, TSC1, TSC2, ULK3, and WDR45. Among these mRNAs, CAPN10, which is involved in degradation of the extracellular matrix and nitric oxide synthase signaling, was most strongly correlated with AL022328.2. We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify the co-expressed mRNAs most associated with autophagic LncRNAs, and determined that the top five enriched signaling pathways were involved in autophagy, human papillomavirus infection, PI3K–Akt pathway, human cytomegalovirus infection, and apoptosis (Figure 6C).




Figure 6 | Functional annotations of autophagic LncRNAs prognostic signature as per co-expressed mRNA. (A) Co-expressed regulatory network of LncRNAs-mRNA based on the signature. (B) Sankey diagram of co-occurrences of LncRNAs, mRNAs, and factors. (C) KEGG enrichment analysis of co-expressed mRNAs related with the LncRNA signature.






Figure 7 | Clustering analysis based on risk score. (A) PCA of two categories. (B) PCA for genome-wide expression profiles between high- and low-risk groups. (C–K) Enrichment plot for KEGG pathways analysis.





Functional Analysis

PCA was performed to determine differences in gene distribution between the high- and low-risk groups. No significant differences were found in the whole gene expression profiles of the two groups (Table S5), but significant differences were observed within the autophagic-LncRNA set (Figures 7A, B). GSEA was used to investigate the functional enrichment of genes. We analyzed 178 gene sets and found that 14 and 164 were upregulated in the high-risk (Table S6) and low-risk (Table S7) groups, respectively. KEGG pathway analysis revealed that the proteasome pathways and ribosomes were significantly enriched in the high-risk group (Figures 7C, D). ATP-binding cassette transporters (Figure 7E), acute myeloid leukemia (Figure 7F), B-cell receptor pathway (Figure 7G), FC epsilon RI pathway (Figure 7H), inositol phosphate metabolism (Figure 7I), non-small cell lung cancer (Figure 7J), and the phosphatidylinositol system (Figure 7K) were highly enriched in the low-risk group.



LncRNA Expression Levels

The expression levels of nine LncRNAs were compared between 502 tumor tissue and 44 normal tissue specimens from TCGA (Figure S3A). The results showed that MYOSLID, LINC00958, and AL022328.2 were expressed more, while AL450992.2 and AC068580.1 were expressed less, in tumor compared to normal tissues (Figure S3B). These results were consistent with our analysis. However, AL104083.1 and AC116914.2 were significant risk factors in multivariate analysis. AL139287.1 and AL160006.1 showed no significant differences between tumor and normal tissues. The expression levels of the nine lncRNAs are presented in Figure 8E.




Figure 8 | Validation of prognostic signature in an independent HNSCC population: (A) high-risk HNSCC patients have poorer overall survival. (B) ROC curves of prognostic signature in validated HNSCC patients. (C, D) Forest plots of univariate and multivariate Cox regression, respectively, about association between risk score and overall survival in validated HNSCC patients. (E) Heatmap of nine target LncRNAs in high-risk and low-risk groups.





Validation of Prognostic Signature

For HNSCC data validation, we analyzed 190 HNSCC patients, separated into high- and low-risk groups based on the risk score. The results indicated that the high-risk group had worse OS than the low-risk group (p < 0.05; Figure 8A). The AUC value of the validated data was 0.742 (Figure 8B). Univariate Cox regression demonstrated that risk scores (hazard ratio [HR] = 2.035, 95% confidence interval [CI]: 1.541–2.688, p < 0.001, Figure 8C) and M stage (HR = 1.950, 95% CI: 1.110–3.425, p = 0.020) were related to poor OS. Multivariate Cox regression demonstrated that risk scores (HR = 2.082, 95% CI: 1.563–2.773, p < 0.001, Figure 8D) and M stage (HR = 2.039, 95% CI: 1.140–3.648, p = 0.016) were independently correlated with OS.




Discussion

Head and neck cancers are among the most common malignancies worldwide, and about 90% of these are squamous cell carcinomas (23). Surgery combined with chemoradiotherapy provides favorable outcomes in early-stage HNSCC (24, 25). However, early-stage HNSCC patients usually have no obvious symptoms. Most patients are diagnosed at moderate or advanced stages, and about 17% of patients miss the window for surgery. Advanced HNSCCs have a poor prognosis and high recurrence rates (26). Therefore, there is an urgent need to identify potential prognostic biomarkers. Many reports have suggested that biomarkers identified through database mining may predict HNSCC prognosis (27–29). Autophagy can remove harmful substances from the body and keep the internal environment stable (30). However, autophagy can also promote tumor growth by providing energy. LncRNAs have been widely investigated as autophagy-related regulators of tumorigenesis (31).

Autophagy is closely related with oncogenesis and is important in the treatment and prognosis of various cancers (32). In the oncogenesis stage of HNSCC, smoking can induce autophagy and lead to oxidative stress (33). Moreover, knockdown of essential autophagy genes and biochemical inhibition of autophagy can remarkably enhance HPV infectivity (34). During treatment, autophagy is known to be correlated with chemo- and radioresistance due to autophagy-mediated cell death or survival (35). Autophagy is also significantly related to HNSCC prognosis; for example, an autophagic gene signature is reportedly a strong predictor of HNSCC prognosis (27). LncRNAs are increasingly being considered as novel biomarkers and prognostic markers of cancers. Autophagy-related LncRNA signatures can also predict the prognosis of colon adenocarcinoma and breast cancer (36, 37). However, there are no reports on the predictive potential of autophagic LncRNA signatures for HNSCC. Therefore, this study was performed to evaluate the role of autophagic LncRNAs in HNSCC.

We identified a prognostic signature based on nine LncRNAs, namely, MYOSLID, AL139287.1, AC068580.1, AL022328.2, AC104083.1, AL160006.1, AC116914.2, LINC00958, and AL450992.2, to predict OS in HNSCC patients. Among them, AL139287.1, AC068580.1, AC104083.1, AL160006.1, AC116914.2, and AL450992.2 were protection-related, while MYOSLID, AL022328.2, and LINC00958 were risk-related, based on the Sankey diagram. MYOSLID reportedly promotes invasion and metastasis by regulating the partial epithelial–mesenchymal transition in HNSCCs (38). LINC00958 plays a role in multiple cancers by upregulating the microRNA-625/NUAK pathway and contributes to nasopharyngeal carcinomas (39). LINC00958 regulates the miR-627-5p/YBX2 axis to facilitate cell proliferation and migration in oral squamous cell carcinoma (40). In this study, a co-expression network between these nine LncRNAs and the autophagic genes with which they interact was used to determine the mechanisms potentially underlying the autophagy-related LncRNA signature and HNSCC prognosis. The risk score increased as the expression levels of the three risk-related LncRNAs increased and those of the six protection-related LncRNAs decreased. Kaplan–Meier curve analysis revealed that the high-risk group had significantly poorer OS. The AUC value was 0.735, which indicates the reliability and stability of the prognostic signature. In addition, analysis of single autophagy-related LncRNAs showed that higher expression levels of two risk-related LncRNAs were associated with a poor prognosis, while higher levels of the remaining LncRNAs were related to a better prognosis. Multivariate Cox regression demonstrated that the autophagic LncRNA signature is an independent prognostic factor (p < 0.001). PCA of whole gene expression profile data revealed no significant differences between groups, but significant differences were seen when analyzing the autophagy-related LncRNA set. GSEA demonstrated that the 14 autophagy-related gene sets, which mainly participate in proteasome and ribosome pathways, were more common in the high-risk group. Proteasomes constitute a degradation system for oxidatively damaged proteins and are involved in cancer development because the ubiquitin–proteasomal system is a key regulator of various molecular pathways (41). Ribosomes are required to convert the information contained in mRNAs into functional proteins; therefore, promoting ribosome and protein synthesis to maintain tumor cell growth and division is essential (42). More importantly, both of these pathways may be involved in autophagy (43, 44). Autophagy-related genes enriched in these pathways may shed light on the mechanisms underlying the poor prognosis of the high-risk group. Autophagy is associated with immune filtration in tumor patients (45). Considering the important role of immune functions, future studies should investigate immune changes in HNSCC patients.

There were several limitations to this study. First, HNSCC encompasses several types of cancers, each of which require separate, detailed analyses. The present risk model was based on a public database, so validation with larger samples is required. Finally, additional experiments are required to elucidate the molecular mechanisms and potential treatment targets.

Our analyses highlight the prognostic value of the nine-LncRNA signature for HNSCC patients, which could guide clinical decisions and treatment plans, and thus improve prognosis.
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Aim

We retrospectively analyzed the distribution of distant lymph node metastasis and its impact on prognosis in patients with metastatic NPC after treatment.



Methods

From 2010 to 2016, 219 NPC patients out of 1,601 (182 from the Affiliated Cancer Hospital and Institute of Guangzhou Medical University, and 37 from the Affiliated Dongguan Hospital, Southern Medical University) developed distant metastasis after primary radiation therapy. Metastatic lesions were divided into groups according to location: bones above the diaphragm (supraphrenic bone, SUP-B); bones below the diaphragm (subphrenic bone, SUB-B); distant lymph nodes above the diaphragm (supraphrenic distant lymph nodes, SUP-DLN); distant lymph nodes below the diaphragm (subphrenic distant lymph nodes, SUB-DLN), liver, lung, and other lesions beyond bone/lung/distant lymph node above the diaphragm (supraphrenic other lesions, SUP-OL); other lesions beyond bone/liver/distant lymph node below the diaphragm (subphrenic other lesions, SUB-OL); the subtotal above the diaphragm (supraphrenic total lesions, SUP-TL); and the subtotal below the diaphragm (subphrenic total lesions, SUB-TL). Kaplan–Meier methods were used to estimate the probability of patients’ overall survival (OS). Univariate and multivariate analyses were applied using the Cox proportional hazard model to explore prediction factors of OS.



Results

The most frequent metastatic locations were bone (45.2%), lung (40.6%), liver (32.0%), and distant lymph nodes (20.1%). The total number of distant lymph node metastasis was 44, of which 22 (10.0%) were above the diaphragm, 18 (8.2%) were below the diaphragm, and 4 (1.8%) were both above and below the diaphragm. Age (HR: 1.02, 95% CI: 1.00, 1.03, p = 0.012), N stage (HR: 1.26, 95% CI: 1.04, 1.54, p = 0.019), number of metastatic locations (HR: 1.39, 95% CI: 1.12, 1.73, p = 0.003), bone (HR: 1.65, 95% CI: 1.20, 2.25, p = 0.002), SUB-B (HR: 1.51, 95% CI: 1.07, 2.12, p = 0.019), SUB-DLN (HR: 1.72, 95% CI: 1.03, 2.86, p = 0.038), and SUB-O L(HR: 4.46, 95% CI: 1.39, 14.3, p = 0.012) were associated with OS. Multivariate analyses revealed that a higher N stage (HR: 1.23, 95% CI: 1.00, 1.50, p = 0.048), SUB-DLN (HR: 1.72, 95% CI: 1.02, 2.90, p = 0.043), and SUB-OL (HR: 3.72, 95% CI: 1.14, 12.16, p = 0.029) were associated with worse OS.



Conclusion

Subphrenic lymph node metastasis predicts poorer prognosis for NPC patients with metachronous metastasis; however, this needs validation by large prospective studies.





Keywords: nasopharyngeal carcinoma (NCP), metachronous metastasis, subphrenic lymph node metastasis, distant lymph node metastasis, prognosis



Introduction

Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in South China with 18%–50% of treatment failure due to distant metastasis (1). As there are many lymphatic capillaries in the mucosa of the nasopharynx, NPC is prone to lymph node metastasis, with cervical lymph node involvement as high as 85%–90% in newly diagnosed NPC patients (2–4). Tumor cells use the lymphatic duct and lymph nodes for metastasis and the colonization of peripheral organs (5).

Brown et al. confirmed that cancer cells not only pass through the sentinel lymph nodes and then enter the lymphatic duct to metastasize to distant organs but also directly enter the bloodstream through blood vessels in the lymph nodes (6). Ethel R. Pereira et al. found that isolated cancer cells in the lymph nodes were located within 5 mm of blood vessels and that mice with complete lymph nodes had more circulating tumor cells and lung metastasis than those that underwent lymph node resection (7), proving that lymph node metastasis is diffused from lymph nodes invading the blood vessels rather than by exporting lymph vessels. This poses an important question: does the location of distant lymph node NPC metastasis impact prognosis, and if so, how?

In this paper, we retrospectively analyzed the distribution of distant lymph node metastasis and its impact on prognosis in patients with metastatic NPC after treatment. We hope that the study of tumor characteristics according to the location and route of metastasis will help to determine the biological explanation of tumor behavior, explain the related survival results, and guide disease monitoring and treatment selection.



Materials and Methods


Patients

In this retrospective study, 1,601 NPC patients from 2010 to 2016 were initially treated at the Affiliated Cancer Hospital and Institute of Guangzhou Medical University (1,214) and the Affiliated Dongguan Hospital, Southern Medical University (387). Two hundred nineteen patients (182 from the Affiliated Cancer Hospital and Institute of Guangzhou Medical University and 37 from the Affiliated Dongguan Hospital, Southern Medical University) developed distant metastasis after primary radiation therapy (RT).

This study’s inclusion criteria were i) histologically confirmed NPC and ii) radiographically detectable metastatic disease after initial radiation therapy (more than 3 months) on the basis of subsequent follow-up. The exclusion criteria were i) other malignancies and ii) HIV, tuberculosis, or other chronic inflammatory diseases (e.g., inflammatory bowel disease).

All clinical data were collected when metastasis was diagnosed, including magnetic resonance imaging of the head and neck regions, radiographs or computed tomography (CT) of the chest, ultrasonography or CT scans of the abdomen, and whole-body bone scans. Positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography(18F FDG PET/CT) were performed to confirm the metastasis of 44 patients (7 from the Affiliated Cancer Hospital and Institute of Guangzhou Medical University and 37 from the Affiliated Dongguan Hospital, Southern Medical University).

All 219 patients were treated with intensity-modulated radiation therapy (IMRT) during the initial treatment. Among them, 14 (6.4%) did not receive chemotherapy, and the other 205 (93.6%) received chemotherapy. One hundred seventy-one (78.1%) were treated with concurrent chemotherapy, including 19 (8.68%) with concurrent chemotherapy, 73 (33.3%) with neoadjuvant chemotherapy plus concurrent chemotherapy, 12 (5.5%) with concurrent chemotherapy plus adjuvant chemotherapy, and 67 (30.6%) with neoadjuvant chemotherapy plus concurrent chemotherapy plus adjuvant chemotherapy; 34 (15.5%) received non-concurrent chemotherapy, among which 26 (11.87%) received neoadjuvant chemotherapy, 1 (0.5%) received adjuvant chemotherapy, and 7 (3.2%) received neoadjuvant chemotherapy plus adjuvant chemotherapy.

After distant metastasis, cisplatin-based combination chemotherapy was recommended for most patients (209, 95.4%). Other agents were 5-fluorouracil, paclitaxel (albumin paclitaxel or paclitaxel liposomal), docetaxel, gemcitabine, cyclophosphamide, vincristine, bleomycin, capecitabine, and S-1. Supportive management with no anticancer treatment was provided for four patients (4,1.8%). Surgical resection, radiation therapy, radiofrequency ablation, and trans-arterial chemoembolization were prescribed if the doctors thought it was valuable to do so.

This study was approved by the ethics committee of the Affiliated Cancer Hospital and Institute of Guangzhou Medical University with the approval number: ZN2021-05.



Distribution of Metastatic Lesions and Other Variables

The criteria for distant lymph node (DLN) metastasis were i) CT/MRI showing a minimum lymph node diameter of ≥10 mm; ii) central necrosis or annular reinforcement; iii) extracapsular invasion of the lymph nodes (irregular enhancement of the lymph node margin; iv) some or all of the surrounding fat spaces not visible; v) lymph nodes fused with each other; and vi) 18F FDG PET/CT: SUV of the lymph nodes higher than the abdominal aorta, and/or CT images with the above features (8).

Metastatic lesions were divided into groups according to location: bones above the diaphragm (supraphrenic bone, SUP-B); bones below the diaphragm (subphrenic bone, SUB-B); distant lymph nodes above the diaphragm (supraphrenic distant lymph nodes, SUP-DLN); distant lymph nodes below the diaphragm (subphrenic distant lymph nodes, SUB-DLN), liver, lung, other lesions above the diaphragm (supraphrenic other lesions beyond bone/lung/distant lymph node, SUP-OL); other lesions below the diaphragm (subphrenic other lesions beyond bone/liver/distant lymph node, SUB-OL); the subtotal above the diaphragm (supraphrenic total lesions, SUP-TL); and the subtotal below the diaphragm (subphrenic total lesions, SUB-TL).

SUP-TL included SUP-B, SUP-DLN, lung, and SUP-OL. SUB-TL included SUB-B, SUB-DLN, liver, and SUB-OL. SUP-B is defined as lesions of the C-spine, T-spine, ribs, sternum, scapula, humerus, and clavicle. SUB-B is defined as lesions of the L-spine, sacrum, pelvic bone, and femur. SUP-DLN is defined as mediastinal LN, axillary LN, and hilar LN (excluding neck LN). SUB-DLN is defined as retroperitoneal LN, pelvic LN, hepatic hilar LN, and inguinal LN. SUP-OL is defined as other metastases above the diaphragm and beyond the bone/lung/distant lymph node such as the pleura and thyroid. SUB-OL is defined as other metastases below the diaphragm and beyond the bone/liver/distant lymph node such as the spleen and adrenal glands.

The primary disease, NPC, was T and N staged according to the American Joint Committee on Cancer (AJCC) Cancer Staging Manual (8th Edition) (9). The variables assessed in this study included sex, age, body mass index before primary therapy (BMI1), body mass index during metastasis (BMI2), the T/N/TNM staging of the primary disease NPC, disease-free interval (DFI), local recurrence, overall survival (OS), and the total organs of the metastatic lesions (organs-n).



Follow-Up and Endpoints

Patients were routinely followed up every two cycles during systemic chemotherapy and every 2 to 3 months during no anticancer treatment until death. OS was defined as the interval between the date of distant metastasis to the date of death of any cause. DFI was defined as the interval from the date of initial diagnosis of NPC to the date of distant metastasis. Data from patients alive at the end of study (December 31, 2020) were censored. We verified survival status on August 31, 2020, by direct telecommunication with the patient or family members and by checking the clinic attendance records.



Statistical Analysis

Continuous variables were described using mean and standard deviation (SD) for normally distributed data and median and interquartile [IQR] for non-normally distributed data. The Student t-test or Mann–Whitney U test were used for continuous variables between groups. Frequency and percentage were used to describe the categorical data, and the chi-square test to test the difference.

The Kaplan–Meier method was used to estimate the probability of patients’ OS. Survival curves were drawn to compare the difference between/among covariate groups, and the log-rank test was applied accordingly. Univariate and multivariate analyses were applied using the Cox proportional hazard model to explore prediction factors of OS. Variables with a p<0.1 in the univariate model were kept for multivariate analyses. A stepwise variable selection procedure (with iterations between the “forward” and “backward” steps) was applied to obtain the best candidate for the final Cox proportional hazards model. The chosen significance level for entry (SLE) and for stay (SLS) was 0.25. A p value <0.05 was considered statistically significant. All statistical analyses were performed using R (software version 6.3, https://www.r-project.org/).




Results


Patient Characteristics

The patient characteristics of metachronous metastatic NPC (n = 219) are described in Table 1. The mean age at diagnosis of metastatic NPC was 50.2 years (SD, 11.4). One hundred and six (48.4%) were more than 50 years old. One hundred seventy-four (79.5%) were male, and 45 (20.5%) were female. Before the first radiotherapy treatment, 32 (14.6%), 29 (13.2%), 122 (55.7%), and 36 (16.4%) were T1, T2, T3, and T4 stages, respectively. Eleven (5.0%), 91 (41.6%), 76 (34.7%), and 41 (18.7%) were N0, N1, N2, and N3 stages, respectively.


Table 1 | Patient characteristics.



The median OS of metachronous metastatic NPC was 13.2 months (IQR, 7.3, 25.3), and the median DFI was 20.1 months (IQR, 10.0, 33.6). The most frequent metastatic locations were bone (99/219, 45.2%), lung (89/219, 40.6%), liver (70/219, 32.0%), and distant lymph nodes (44/219, 20.1%). There were 142 (64.8%), 52 (23.7%), 24 (11.0%), and 1 (0.5%) patients with one, two, three, and four metastatic locations, respectively.



Distribution of Distant Lymph Node Metastasis

The distribution of distant lymph node metastasis is described in Table 2. The total number of distant lymph node metastasis was 44/219 (20.1%), of which 22/219 (10.0%) were above the diaphragm, 18/219 (8.2%) were below the diaphragm, and 4/219 (1.8%) were both above and below the diaphragm. The median number of distant lymph node metastasis in 44 patients was 3 (range, 1–7), 10 (22.7%) had one DLN metastasis, 24 (54.5%) had two to four DLN metastases, and 10 (22.7%) had five or more than five DLN metastases.


Table 2 | The distribution of distant lymph node metastasis.



Distant lymph node metastases above the diaphragm were located in the mediastinal LN (18/219, 8.2%), axillary LN (8/219, 3.7%), hilar LN (3/219, 1.4%), and the internal mammary lymph nodes (2/219, 0.9%). For distant lymph node metastasis below the diaphragm, there were 20/219 (10.0%) in the retroperitoneal LN, 1/219 (0.4%) in the pelvic LN, 1/219 (0.4%) in the hepatic hilar LN, and 2/219 (0.9%) in the inguinal LN.



Distant Lymph Node Metastasis Below the Diaphragm Indicates Poorer Prognosis

Survival analysis showed that patients with distant lymph node metastasis below the diaphragm had poorer OS than those without distant lymph node metastasis below the diaphragm (p = 0.036) (Figure 1). As shown in Table 3, in the univariate analysis, age (HR: 1.02, 95% CI: 1.00, 1.03, p = 0.012), a higher N stage of the primary disease NPC (HR: 1.26, 95% CI: 1.04, 1.54, p = 0.019), more metastatic locations (HR: 1.39, 95% CI: 1.12, 1.73, p = 0.003), bone (HR: 1.65, 95% CI: 1.20, 2.25, p = 0.002), SUB-B (HR: 1.51, 95% CI: 1.07, 2.12, p = 0.019), SUB-DLN (HR: 1.72, 95% CI: 1.03, 2.86, p = 0.038), and SUB-OL (HR: 4.46, 95% CI: 1.39, 14.3, p = 0.012) were associated with worse OS.




Figure 1 | Kaplan-Meier survival analysis of patients with and without SUB-DLN. (SUB-DLN, subphrenic distant lymph node).




Table 3 | Univariate analysis and multivariate analyses of clinicopathologic characteristics.



Subsequent multivariate analyses revealed that a higher N stage (HR: 1.23, 95% CI: 1.00, 1.50, p = 0.048), SUB-DLN (HR: 1.72, 95% CI: 1.02, 2.90, p = 0.043), and SUB-OL (HR: 3.72, 95% CI: 1.14, 12.16, p = 0.029) were associated with worse OS. Kaplan–Meier survival analysis of patients with and without SUB-DLN is shown in Figure 1. Kaplan–Meier survival analysis of patients with and without SUP-B/SUB-B/SUB-TL is shown in Figures 2–4.




Figure 2 | Kaplan-Meier survival analysis of patients with and without SUP-B. (SUP-B, supraphrenic bone).






Figure 3 | Kaplan-Meier survival analysis of patients with and without SUB-B. (SUB-B, subphrenic bone).






Figure 4 | Kaplan-Meier survival analysis of patients with and without SUP-TL. (SUP-TL, supraphrenic total lesions).






Discussion

Lymph nodes are the central transport center of circulating immune cells, with the lymphatic drainage system of the body a coherent whole separated by particular anatomical boundaries (10–12). Patients with extra-regional lymph node metastasis are considered to have better prognosis than those with solid organ metastasis among some metastatic malignancies. The research by Hong Pan showed that patients with distant lymph node metastasis (DLNM) had similar breast cancer–specific survival (BCSS) and OS as those with ipsilateral supraclavicular lymph node metastasis (ISLM), whereas those with distant metastasis (not DLNM) had significantly poorer BCSS and OS (12). Similarly, Francesca Magnoni found that although contralateral axillary lymph node metastasis after treatment belongs to distant metastasis (distant lymph node metastasis), its OS is significantly better than the distant metastasis of other organs (13). Yuki Mukai also found that cervical cancer without metastasis of other organs but with distant lymph node metastasis (supraclavicular/mesentery/mediastinum lymph node) had a good local control rate. The 2-year overall, cancer-specific, and progression-free survival as well as the local control of primary tumor rates were 51.3%, 51.3%, 46.9%, and 67.9%, respectively (14).

The lymphatic drainage routes of the body’s organs are local lymph nodes, retroperitoneal lymph nodes, the thoracic duct, and the left supraclavicular lymph node (15, 16). The left supraclavicular lymph nodes, often called the Virchow lymph node, is near the junction of the thoracic duct and the left subclavian vein, from which most of the body’s lymph flows into systemic circulation. For breast, cervical, prostate, and even gastrointestinal cancer, lymph diffusion may be along the abovementioned lymphatic drainage routes. Therefore, distant lymph node metastasis of non-solid organs is more contained and has a better prognosis than solid organ metastasis for these malignant tumors.

The diaphragm is an important anatomical structure. It is a natural barrier of the lymphatic system, and it divides the lymphatic system into two regions according to space. Multiple lymph node involvement on one side of the diaphragm has better prognosis than involvement on both sides in regard to Hodgkin’s disease (17). Subphrenic LN (retroperitoneal lymph nodes) are regional lymph nodes in cervical cancer and prostate cancer, which have better prognosis than those with metastasis (18–20).

The nasopharynx is prone to lymph node metastasis because of its well-developed network of lymphatics (21). Yali Xu included 2,994 patients (M1, 299/10.0%) with primary nasopharyngeal carcinoma diagnosed in the SEER database from 2006 to 2015. Compared with the N0/N1 group, the HR of the 5-year overall survival (OS) in the N2 group was 1.311 (95% CI: 1.135–1.514, p < 0.001), and the HR of OS in the N3 group was 1.625 (95% CI: 1.357–1.945, p < 0.01). In addition, the HR of cancer-specific survival (CSS) was 1.351 (95% CI: 1.156–1.580, p < 0.001) in the N2 group and 1.630 (95% CI: 1.342–1.979, p < 0.01) in the N3 group (22).The article gave the tips that the more regional lymph node metastasis in nasopharyngeal carcinoma is, the worse of the prognosis is.

Metachronous metastatic nasopharyngeal carcinoma with different locations has different prognosis. Lujun Shen found that the number of metastatic foci (multiple and single), the number of metastatic sites (multiple and single), liver involvement, and bone involvement were independent prognostic factors of OS, but that distant lymph node metastasis was not associated with overall survival (23). Zixun Zeng and others also analyzed the prognostic factors of 860 patients with metachronous NPC metastasis and found that age, the International Union for Cancer Control (UICC), N stage, Karnofsky Performance Status (KPS), serum lactate dehydrogenase (SLDH), the number of metastases, liver involvement, and bone involvement were prognostic factors affecting the OS of patients with NPC metastasis (24).Jihyun Chang found that distant lung metastasis is a good prognostic factor for metastatic NPC after treatment (25), while most other studies found that heterochronous metastatic NPC with liver metastasis had a poor OS (23, 24, 26, 27).

Distant lymph node NPC metastasis is a common metastasis site besides the liver, bone, lung, and brain (28). In this study, we firstly defined distant lymph nodes as supra- and sub-distant lymph nodes based on the diaphragm and explored the influence of supra- and sub-diaphragmatic distant lymph node metastasis on the prognosis of NPC with metachronous metastasis. Our results showed that subphrenic lymph node metastasis is associated with poorer prognosis. This finding is contrary to the conclusion of the prognosis of distant lymph node metastasis of thoracic, abdominal, and pelvic malignant tumors. It may be that for NPC, distant lymph node metastasis comes from the lymph reflux after the metastasis of peripheral organs. We found that distant lymph nodes were associated with multiple metastasis locations: the mean number of metastatic locations in the group without distant lymph node metastasis was 1.3 (SD, 0.6), and 2.2 (SD, 0.8) in the group with distant lymph node metastasis (p < 0.001). Although metastases of the liver, lung, and supraseptal lymph nodes were not found to predict prognosis in this study, the metastases of subseptal lymph nodes and other organs were found to predict poorer prognosis. However, due to the small sample size of this study, we were unable to detect the impact of liver and lung metastases on prognosis. We speculate that the diaphragm may block the further spread of tumor cells through the lymphatic duct in NPC, which migrates to the surrounding lymph nodes from peripheral organ metastasis (lung, liver, and bone). Once subphrenic lymph node metastasis occurs, it has a worse prognosis than surrounding organ metastasis (liver, subphrenic bone). Yet, supraphrenic lymph nodes do not have a predictive effect for metachronous metastasis NPC due to the better prognosis of the lungs.

While considering from the perspective of molecular mechanism, we may see the other side of SUB-DLN metastases. Lymphatic circulation plays an important role in the occurrence and development of cancer. The dissemination of tumor cells to other organs is usually mediated by lymphatic vessels as catheters, which is often referred to as tumor-associated lymphangiogenesis. When the tumor microenvironment stimulates tumor cells, tumor stromal cells, and tumor-infiltrating cells to induce a series of lymphangiogenic factors, gene lymphangiogenesis related to tumor will occur (29). It was found that miR-129-5p inhibited lymphangiogenesis and lymph node metastasis of nasopharyngeal carcinoma by blocking the zinc finger ZIC2 mediated hedgehog signaling pathway. ZIC2 was highly expressed in nasopharyngeal carcinoma compared with normal tissues. The exogenous expression of miR-129-5p resulted in decreased expression of ZIC2 and other hedgehog signaling components (30). Chuanghua Luo demonstrated that the pigment epithelium-derived factor (PEDF) is lowly expressed in human NPC tissues with poor prognosis and is negatively correlated with lymphatic vessel density (LVD). It was found that PEDF inhibits lymphangiogenesis and lymphatic metastasis of NPC in vivo experiments. PEDF also reduced the expression and secretion of vascular endothelial growth factor C (VEGF-C) through the nuclear factor-κB (NF-κB) signaling pathway in NPC cells. Their research showed that PEDF plays a vital role in lymphatic metastasis by targeting both lymphatic endothelial cells and NPC cells (31). The mechanism of nasopharyngeal lymphangiogenesis and lymphatic metastasis needs further exploration, which can explain the influence of different lymph node metastases in NPC on prognosis and also provide a candidate drug for the treatment of NPC metastasis.

This study has several limitations. One, the follow-up treatment of some patients with metastatic NPC was not uniform, and the influence of treatment factors on prognosis was not included in this study. Two, because the EBV DNA level was not available in most of the cases, we cannot analyze its impact on prognosis. Three, only a small number of patients (44/219, 20.1%) were diagnosed with metastases by whole-body 18F FDG PET-CT, and the vast majority of patients were diagnosed via chest and abdominal CT; therefore, the incidence of lymph node metastasis may be underestimated. Four, due to the small sample size, the above factors may lead to bias. Further prospective studies are needed to verify the above conclusions.



Conclusion

Subseptal lymph node metastasis predicts poorer prognosis for NPC patients with metachronous metastasis; however, this needs validation by large prospective studies. This is the first study to divide distant lymph node metastasis into upper and lower parts with the diaphragm as an anatomical boundary. This research provides another perspective and future direction to further explore the relationship between lymph node dissemination and NPC and help us find the treatment for NPC metastasis.
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Targeting the immune system has emerged as an effective therapeutic strategy for the treatment of various tumor types, including Head and Neck Squamous Cell Carcinoma (HNSCC) and Non-small-Cell Lung Cancer (NSCLC), and checkpoint inhibitors have shown to improve patient survival in these tumor types. Unfortunately, not all cancers respond to these agents, making it necessary to identify responsive tumors. Several biomarkers of response have been described and clinically tested. As of yet what seems to be clear is that a pre-activation state of the immune system is necessary for these agents to be efficient. In this study, using established transcriptomic signatures, we identified a group of gene combination associated with favorable outcome in HNSCC linked to a higher presence of immune effector cells. CD2, CD3D, CD3E, and CXCR6 combined gene expression is associated with improved outcome of HNSCC patients and an increase of infiltrating immune effector cells. This new signature also identifies a subset of cervical squamous cell carcinoma (CSCC) patients with favorable prognosis, who show an increased presence of immune effector cells in the tumor, which outcome shows similarities with the HP-positive HNSCC cohort of patients. In addition, CD2, CD3D, CD3E, and CXCR6 signature is able to predict the best favorable prognosis in terms of overall survival of CSSC patients. Of note, these findings were not reproduced in other squamous cell carcinomas like esophageal SCC or lung SCC. Prospective confirmatory studies should be employed to validate these findings.




Keywords: head and neck squamous cell carcinoma (HNSCC), human papillomavirus, transcriptome signature, immune gene signatures, cervical squamous cell carcinoma (CSCC)



Introduction

Squamous Cell Carcinoma (SCC) includes a wide range of tumors originated from diverse anatomical locations that share common molecular and genetic features (1). SCCs arise from squamous and non-squamous epithelial tissues, and they are classified according to their location as head and neck, esophagus, lung, and cervix, among others (2). SCCs are in many occasions incurable diseases particularly in their advanced stages (1). This is the case for Head and Neck Squamous Cell Carcinoma (HNSCC) and Cervical Squamous Cell Carcinoma (CSCC), since the therapeutic options for both tumors, when diagnosed in the metastatic setting, are limited and outcome is severely compromised (3, 4). In both tumors, human papilloma virus (HPV) infection plays a central oncogenic role in a substantial proportion of cases and associates with aggressiveness and clinical outcome particularly in HNSCC (5). The classical treatment for HNSCC includes chemotherapies based on platinum agents and taxanes combined with anti-EGFR antibodies, which has demonstrated to improve survival (3). Recently, immunomodulators, particularly immune checkpoint inhibitors like pembrolizumab or nivolumab, have shown to improve relapse-free survival (RFS) and overall survival (OS) (5–8). Although this has dramatically changed the expected survival of HNSCC patients, the metastatic setting, nevertheless, remained an incurable condition (9). In a similar manner, immunotherapy has shown efficacy in CSCC patients with recurrent or metastatic cancers with disease progression or after chemotherapy when tumors express PD-L1 (Combined Positive Score, CPS ≥1) (10). In other tumor types like non-small-cell lung (NSCLC) or bladder cancer, checkpoint inhibitors have also demonstrated to provide clinical efficacy (6–8, 11). However, blocking of immune inhibitory signals with antibodies against PD1 or PD-L1 does not always result in clinical response (12, 13). Activation of the immune system, including the presence of effector T cells in the tumor, is a main requisite for these therapies to be effective (14). In addition, expression of PD1 or PD-L1 or the presence of Tumor Infiltrating Lymphocytes (TIL) is associated with favorable survival, independently of the therapy administered, confirming the relevant role of the immune system in the antitumoral action (15, 16).

Identification of genomic correlations of immune activation is an approach that could permit the selection of tumors susceptible to respond to immunotherapies. In this context, the mutational burden or altered mismatch repair mechanisms have been described as predictors of response to immunotherapies in several types of tumors (17–19). Likewise, some molecular alterations have been described as linked to the lack of activity of immunotherapeutic agents including JAK2 or B2M mutations (20). Regardless, recognition of immune pre-activated tumors, usually associated with favorable prognosis, is a requisite for most immune therapies to be efficient.

In this article we explored gene sets that predict favorable prognosis in HNSCC, with the aim to identify pre-activated immune tumors. We identified a transcriptomic signature associated with favorable outcome and linked with the infiltration of effector immune cells in this tumor. Similar findings were observed in Cervical SCC (CSCC), confirming its relevance.



Material and Methods


Immune Gene Signatures

Previously described immune signatures, i.e., expanded immune gene signature (CD3D, IL2RG, CXCL10, IDO1, NKG7, CIITA, HLA-E, HLA-DRA, CD3E, CXCR6, STAT1, CCL5, LAG3, GZMK, TAGAP, CD2, STAT1, CXCL13, GZMB), IFN gamma signature (IDO1, CXCL10, CXCL9, HLA-DRA, IRF9, IFNG, STAT1), cytotoxic T lymphocyte (CTL) signature (CD8A, CD8B, GZMA, GZMB, and PRF1), and HLA genes (HLA-A, HLA-B) were used to study the prognostic capacity of the genes composing each signature (21–23).



Clinical Outcome Analysis of Individual Genes and Signatures

The KM Plotter Online Tool (http://www.kmplot.com) (24, 25) was used to explore the relationship between the expression of described gene signatures (expanded immune gene signature, IFN gamma signature, CTL signature, and HLA genes) and the newly identified signature (CD2, CD3D, CD3E, and CXCR6) with patient clinical outcomes. We evaluated the prognostic values of mRNA expression of previously described gene signatures, for overall survival (OS) in a cohort of HNSCC patients (n=527) in all stages from the Cancer Genome Atlas (TCGA) database.

Briefly, publicly available RNA-seq HTSeq count files obtained from Illumina HiSeq 2000 RNA Sequencing Version 2 platform were analyzed for quantification of mRNA expression. Negative binomial distribution method was used through DESeq package to normalize the raw count data, and Bioconductor AnnotationDbi package (http://bioconductor.org/packages/AnnotationDbi/) was employed to annotate Ensembl transcript IDs with gene symbols (n = 25,228). After that, second scaling normalization was performed to calculate the mean expression of all genes in each patient sample to 1,000 to reduce batch effects.

In order to determine the correlation between gene expression and OS, Cox proportional hazards regression analysis was performed by using the Survival R package v2.38 (http://CRAN.R-project.org/package=survival/). Log-rank P values, hazard ratios (HR), and 95% confidence intervals (CI) were calculated. In terms of statistical analysis, false discovery rate (FDR) was computed to correct for multiple hypothesis testing, and the result was only accepted as significant in the case of FDR < 10%. Each possible cutoff was evaluated between the highest and lowest quartile of expression, and the best performing threshold with the lowest p value was used in the final analysis when drawing the Kaplan–Meier plot. In addition, multivariate survival analysis was performed for the gene expression and clinical features to assess independence from known epidemiological and clinical variables, including race, sex, age, tumor stage, and tumor grade when available. Finally, only genes associated with good outcome (HR<0.65, p<0.05, and FDR≤ 5%) were selected after screening through KM Plotter.

According to the results, the gene expression of the individual genes and the newly identified signature (CD2, CD3D, CD3E, and CXCR6) were assessed for OS in the different cohorts including HNSCC (n= 527), Esophageal SCC (n=81), Lung SCC (n=501), and Cervical SCC (n=254). In case we identified an association with multiple genes, the mean expression of the selected genes was used. Patients were divided according to the best cutoff values of the gene expression [lowest p-value (p)] into high vs low expression.

For graphical representation, a heatmap plot was performed using GraphPad Prism 8.0 tool. Survival HR parameter was represented as labels overlaid on the graph. The scale color meaning was represented as follows: blue, favorable outcome; red, detrimental outcome. Detailed information about the patients and clinical variables that were included in this study are resumed in Table 1.


Table 1 | Patients’ clinical characteristics.





Analysis of Tumor Mutational Burden and HPV

Clinicopathological characteristics of patients, including stage, grade, sex, race, including tumor mutational burden (TMB), were available and allowed to restrict the analysis in the cited KM Plotter Online Tool (http://www.kmplot.com).

The TMB was determined from whole-exome sequencing data from TCGA datasets used as the number of genes with a mutation. A gene was assigned “mutated” in case it had, at least, one mutation. Then, the median number of mutations across all samples within each tumor type was determined and was used as a cutoff: samples that had more “mutated” genes were determined as “high TMB,” and samples that had fewer “mutated” genes were assigned to the “low TMB” cohort.

In terms of HPV status detection, the Cancer Genomic Atlas (TCGA) dataset used the HPV16 DNA genotyping and mRNA expression to detect HPV oncoprotein transcripts.



Association Between Tumor Immune Infiltrates and Gene Expression

The correlation between gene expression and the presence of tumor immune infiltrates (CD8+T cells, NK cells, macrophages, and dendritic cells) in HNSCC and CSCC was analyzed using the Tumor Immune Estimation Resource (TIMER 2.0) platform (http://cistrome.org/TIMER/) (26, 27), a dataset that contains 10,897 samples from diverse cancer types available in the TCGA database. To analyze the relationship between tumor gene expression and immune infiltration, the available “Gene Module” from TIMER 2.0 was used. TIMER 2.0 uses an R package that integrates six computational algorithms to associate the tumor immune infiltrate populations with genomic and transcriptomic changes in the tumors (based on microarrays or RNAsequencing data), providing an estimation of immune infiltration levels for TCGA database or user-provided tumor profiles. To make the estimations of the immune cell populations, the cited algorithms are based on gene signature-based approaches utilizing a list of cell-type-specific gene sets and using the expression values of these signature gene sets in tissue samples. Specific tissue types, distinct cancer-cell intrinsic gene expression, and different immune cell types are considered to establish Spearman’s correlations between the expression of the input gene and the abundance of the immune cell type as well as its subtypes across cancer types under study. These algorithms were applied to the expression profiles of the Cancer Genome Atlas (TCGA) tumors, allowing to explore various associations between immune infiltrates and genetic features in the TCGA cohorts. The association between the immune infiltrates and the clinical features, such as HPV infection condition, was possible sorting patient cohorts in case of HNSCC. The results are displayed as a functional heatmap, and by clicking on each box of the heatmap, subsequently it generates a scatter plot showing the association of the gene expression with the infiltrated immune cell type. “Purity adjusted” option was selected (the correlation of the given gene expression with tumor purity as proportion of cancer cells in a sample), and the most immune cell types are negatively correlated with tumor purity (data not shown). Partial Spearman’s correlation was used to perform this association analysis, and statistical significance was expressed (p<0.05). Correlation value was displayed by “Rho” parameter. Positive correlation is associated with Rho>0 values, and negative correlation is associated with Rho<0 values.




Results


Evaluation of Immune Activated Signatures and Clinical Outcome in HNSCC

With the main goal to identify immunologic correlates associated with prognosis in HNSCC, we took advantage of previous published immune transcriptomic signatures (21–23). We first explored the association of the genes included in each signature with favorable prognosis, and latter their correlation with immune populations as described in Materials and Methods (Figure 1A). The correlation analysis between each immune signature and the 32 individual genes with OS is displayed as a heatmap in Figure 1B and Table 2. Favorable survival was observed for the expanded immune genes signature (HR=0.72; 95% confidence intervals CI=0.55–0.94; log rank p=0.016), the IFN gamma signature (HR=0.66; 95% CI=0.50–0.87; log rank p=0.0028), and the CTL level signature (HR=0.68; 95% CI=0.52–0.89; log rank p=0.0053) (Figure 1B). Only the HLA signature predicted unfavorable survival (HR=1.25; 95% CI=0.92–1.70; log rank p=0.150) (Figure 1B). For the whole population of tumors (all stages, n=527), most individual genes were associated with favorable outcome (Table 2). The different gene signatures did not predict for better OS in comparison with some individual transcripts, particularly with CD2 (HR=0.59; 95% CI=0.45–0.77; log rank p= 7.5e−05), CD3D (HR=0.59; 95% CI=0.45–0.77; log rank p=0.0001), CD3E (HR=0.60; 95% CI=0.46–0.78; log rank p=0.00013), and CXCR6 (HR=0.59; 95% CI=0.45–0.78; log rank p=0.00023) (Table 2). In addition, these individual genes presented a smaller FDR (FDR<10%) compared with the other analyzed genes and signatures (Figure 1C).




Figure 1 | Evaluation of the impact of immune gene signatures (Expanded immune genes, IFN gamma genes, CTL level, and HLA genes) on clinical outcome in Head and Neck Squamous Cell Carcinoma (HNSCC) patients. (A) Flow chart of the analysis of the four published immune gene signatures and the transcriptomic expression effect in HNSCC patients’ clinical outcome and the correlation with tumor immune cell infiltrate composition. (B) Hazard ratio (HR) heat map for risk of death of each published immune gene signatures (Expanded immune genes, IFN gamma genes, CTL levels, and HLA genes) and combined, in association with overall survival (OS) in HNSCC patients at all stages (n = 527), using data from TCGA database as described in Materials and Methods. HR < 1 discriminates a risk reduction. Blue color represents favorable prognosis, and red color represents detrimental prognosis, with 95% confidence interval (CI) and p value < 0.05. (C) Graph representation of immune genes with the most favorable outcome in HNSCC (HR < 1, p value < 0.05 and FDR < 10%), in blue spots. Green spots represent immune genes with good prognosis and FDR > 10% and p < 0.05. Black spots represent immune genes without statistical significance (p value > 0.05).




Table 2 |  Clinical outcome of individual immune genes from the four immune gene signatures in terms of overall survival (OS) of HNSCC patients.



Considering these results, we decided to analyze the gene set combination of CD2, CD3D, CD3E, and CXRC6.

The expression of PDL1 or PD1 is associated with favorable clinical outcome and improved response to immunotherapy including HNSCC tumors (5–8). We identified a positive correlation between the new immune gene signature (CD2, CD3D, CD3E, CXCR6) and CD274 (PD-L1) expression in HNSCC patients (Spearman rank correlation coefficient = 0.56; P=2.4E-43), which could support the outcome prediction in this group.



The Combined Gene Signature CD2, CD3D, CD3E, and CXCR6 Predicted Favorable Prognosis in Different HNSCC Clinical Stages

Next, we tested whether a new signature composed by CD2, CD3D, CD3E, and CXRC6 could improve the potential prediction capacity in HNSCC patients. The combined immune signature demonstrated a higher prediction in the stage II and III patient subgroups, even with a small number of patients: for stage II (n=69), HR=0.39; 95% CI=0.15–0.99; log rank p=0.041; and stage III subgroup: (n=78), HR=0.31; 95% CI=0.15–0.66; log rank p=0.0012). For all stages the combined signature also predicted favorable survival: (n=527), HR=0.58; 95% CI=0.44–0.76; log rank p=8e-05). Results in stage IV were also significant but with less magnitude of benefit compared with the other subgroups: (n=259), HR=0.62; 95% CI=0.43–0.89; log rank p=0.0089) (Figure 2).




Figure 2 | Clinical outcome analysis of CD2, CD3D, CD3E, CXCR6 immune gene-set combination in each stage of HNSCC patients. Survival plots of the combination of four immune genes with the most favorable prognosis (HR < 0.65, p value < 0.05, and FDR < 10%) at all stages of HNSC patients (n = 527) (A), at stage II (n = 69) (B), at stage III (n = 78) (C), and at stage IV (n = 259) (D) are displayed. Patients whose tumors harbor high gene expression levels predicted better survival (red line), and those with low gene expression levels predicted worse survival (black line). Number of patients at risk at every time (months), with high (in red) and low gene expression (in black) are displayed. HR for risk of death and OS are displayed. HR < 0.65 discriminates a risk reduction. FDR is also displayed. The gene combination is displayed at the top of the figure.





CD2, CD3D, CD3E, and CXCR6 Expression Is Associated With Infiltration of Memory CD8+ T, Activated NK, Dendritic Cells, and M1 Macrophages in HPV-Positive HNSCC

We next explored the association of the expression at an individual transcriptomic level of CD2, CD3D, CD3E, and CXRC6 with the presence of tumor-infiltrating immune cell populations. All genes had a negative correlation with tumor purity, demonstrating the high presence of immune populations.

In HPV-positive HNSCC tumors (n=98), we observed the strongest positive correlation with central memory CD8+ T cell subpopulation (CD2: Rho=0.904, CD3D: Rho=0.933, CD3E: Rho=0.938 and CXCR6: Rho=0.886) and also a positive correlation with effector memory CD8+ T cells (CD2: Rho=0.612, CD3D: Rho=0.693, CD3E: Rho=0.623 and CXCR6: Rho=0.606) (Figure 3). In the case of NK cells, the stronger association was found for activated NK cells (CD2: Rho=0.573, CD3D: Rho=0.644, CD3E: Rho=0.576 and CXCR6: Rho=0.536), compared with a negative association with resting NK cells (CD2: Rho=−0.336, CD3D: Rho=−0.425, CD3E: Rho=−0.370 and CXCR6: Rho=−0.289). Regarding the macrophage population, HPV-positive tumors showed a positive correlation with both subtypes (M1 and M2): M1 (CD2: Rho=0.632, CD3D: Rho=0.631, CD3E: Rho=0.683, and CXCR6: Rho=0.664), and less significant for the M2 subtype (CD2: Rho=0.334, CD3D: Rho=0.203, CD3E: Rho=0.289, and CXCR6: Rho=0.358) (Figure 3). For the activated dendritic cell population, a strong correlation was observed (CD2: Rho=0.797, CD3D: Rho=0.814, CD3E: Rho=0.814, and CXCR6: Rho=0.771) (Figure 3).




Figure 3 | Association of the expression of CD2, CD3D, CD3E, CXCR6 with specific tumor-infiltrating immune cell populations in HPV-positive HNSCC patients. Expression of each gene and association with the presence of CD8+ T cells (central memory and effector memory subsets), NK cells (activated and resting), macrophages (M1 and M2 types), and activated myeloid dendritic cells in HPV-positive HNSCC (n = 98). Each panel presents the relationship between infiltrates estimation value with the purity-adjusted spearman’s correlation parameter Rho and gene expression join p value < 0.001. Rho value > 0 represents a positive correlation, and Rho < 0 represents a negative correlation. Association with immune cell populations was provided by TIMER 2.0 software and was correlated with transcriptome expression level of each immune gene, as described in Material and Methods.



In case of HPV-negative HNSCC tumors (n=422), we found a positive correlation between the gene expression level of CD2, CD3D, CD3E, and CXRC6, and CD8+ T cells subpopulations, finding the higher correlation with CD8+ central memory cells (CD2: Rho=0.817, CD3D: Rho=0.800, CD3E: Rho=0.826, and CXCR6: Rho=0.797). A less significant association was observed for the CD8+ effector memory cells (CD2: Rho=0.570, CD3D: Rho=0.592, CD3E: Rho=0.550, and CXCR6: Rho=0.570) (Figure 4). In addition, we found a positive association between the gene expression level of CD2, CD3D, CD3E, and CXRC6 and the activated fraction of NK cells present in the tumor (CD2: Rho=0.442, CD3D: Rho=0.460, CD3E: Rho=0.423, and CXCR6: Rho=0.401). A negative association with resting NK cells (CD2: Rho=−0.059, CD3D: Rho=−0.111, CD3E: Rho=−0.039, and CXCR6: Rho=0.02) was observed. Similar findings were observed for M1 macrophage infiltrates (CD2: Rho=0.760, CD3D: Rho=0.706, CD3E: Rho=0.747, and CXCR6: Rho=0.744) and M2 macrophages (CD2: Rho=0.753, CD3D: Rho=0.667, CD3E: Rho=0.748, and CXCR6: Rho=0.715), being the association with M2 macrophages higher than those observed for HPV-positive HNSCC tumors. Finally, we analyzed the activation state of the myeloid dendritic cell subpopulation, observing a high correlation with activated dendritic cells (CD2: Rho=0.829, CD3D: Rho=0.796, CD3E: Rho=0.796, and CXCR6: Rho=0.760) (Figure 4).




Figure 4 | Association of the expression of CD2, CD3D, CD3E, CXCR6 with specific tumor-infiltrating immune cell populations in HPV-negative HNSCC patients. Expression of each gene and association with the presence of CD8+ T cells (central memory and effector memory subsets), NK cells (activated and resting), macrophages (M1 and M2 types), and activated myeloid dendritic cells in HPV-negative HNSCC (n = 422). Each panel presents the relationship between infiltrates estimation value with the purity-adjusted spearman’s correlation parameter Rho and gene expression join p value < 0.001. Rho value > 0 represents a positive correlation, and Rho < 0 represents a negative correlation. Association with immune cell populations was provided by TIMER 2.0 software and was correlated with transcriptome expression level of each immune gene.





Evaluation of Immune Activated Genes in Other Squamous Cell Tumors

SCCs arise in a different locations and share molecular and genetic alterations (1). In this context, we decided to explore if the expression of four previous published immune gene signatures (Expanded immune genes, IFN gamma genes, CTL genes, and HLA) and the new identified CD2, CD3D, CD3E, and CXCR6 gene combination were able to classify patients with different outcome in lung, esophageal, and cervical SCC. Unexpectedly, no significant effect of four previous published immune gene signatures was observed in lung SCC (data not shown), neither in the case of the evaluated 32 individual genes (Table 3) or in case of the new CD2, CD3D, CD3E, and CXCR6 signature: (n=504), HR=0.85, 95% CI=0.64−1.13; log rank p=0.27 (Supplementary Figure 1). However, a detrimental outcome was observed for both, the 32 individual genes (Table 4), and the new signature in esophageal SCC (n=81; HR=2.92; 95% CI=1.19−7.18; log rank p=0.015) (Supplementary Figure 1).


Table 3 |  Clinical outcome of individual immune genes from the four immune gene signatures in terms of overall survival (OS) of LSCC patients.




Table 4 | Clinical outcome of individual immune genes from the four immune gene signatures in terms of overall survival (OS) of ESCC patients.



In CSCC we found that the expression of the analyzed immune signatures (Expanded immune genes, IFN gamma genes, CTL genes, and HLA genes) were associated with favorable OS in all stages (HR=0.6; 95% CI=0.35–1.04; log rank p=0.068) (Figure 5A and Table 5), showing similar results with that in the of case of HNSCC. Most individual genes were associated with favorable outcome at all stages (n: 254; Table 5), and the previously selected genes showed the most favorable prediction capacity: CD2 (HR=0.41; 95% CI=0.26−0.66; log rank p= 0,0001), CD3D (HR=0.39; 95% CI=0.24–0.64; log rank p= 8,5e−05), CD3E (HR=0.42; 95% CI=0.26–0.67; log rank p=0.0002), and CXCR6 (HR=0.44; 95% CI=0.27–0.70; log rank p=0.0004). Of note, in the CSCC cohort, we identified that expression of LAG3 was associated with very favorable outcome (HR=0.3; 95% CI=0.15−0.61; log rank p= 0,0004). We next evaluated the combined effect of the identified immune gene signature (combining CD2, CD3D, CD3E, and CXCR6), demonstrating a favorable prognosis (HR=0.43; 95% CI=0.27–0.69; log rank p=0.00031) with a low FDR (<5%) (Figure 5B).




Figure 5 | Expression of CD2, CD3D, CD3E, CXCR6 immune gene combination shows better clinical outcome of CSSC patients. Clinical outcome of survival plots in CSCC at all stages (n = 254) with transcriptomic expression of all four previous published immune signatures (A) and with the new immune gene-set combination CD2, CD3D, CD3E, CXCR6 (HR < 0.65 and FDR = 5%) (B). HR for risk of death and OS are displayed. HR < 0.65 discriminates a risk reduction. FDR is also displayed.




Table 5 | Clinical outcome of individual immune genes from the four immune gene signatures in terms of overall survival (OS) of CSCC patients.



The assessment of the new immune gene signature (CD2, CD3D, CD3E, and CXCRC6) in the CSCC cohort per tumor stage was not possible because sample size was too low for a meaningful analysis when we filtered data by stage.



Expression of CD2, CD3D, CD3E, and CXCR6 Is Linked to a High Expression of Memory CD8+ T Cells, Activated NK Cells, and M1 Macrophages in CSCC

Since CD2, CD3D, CD3E, and CXCR6 predict very favorable prognosis in CSCC, we evaluated the association of this new signature at transcriptomic level with the presence of tumor-infiltrating immune cell populations in CSCC. All genes showed a negative correlation with tumor purity. As in the case of HNSCC patients, we found a positive correlation between the gene expression of CD2, CD3D, CD3E, and CXCR6 and CD8+ T cells (central and effector memory subpopulations), and the strongest correlation was observed for the central memory CD8+ T cells (CD2: Rho=0.881, CD3D: Rho=0.883, CD3E: Rho=0.896, and CXCR6: Rho=0.850) (Figure 6). A positive association was also observed for the CD8+ effector memory subpopulation (CD2: Rho=0.665, CD3D: Rho=0.700, CD3E: Rho=0.631, and CXCR6: Rho=0.636) (Figure 6).




Figure 6 | Association of CD2, CD3D, CD3E, CXCR6 transcriptomic expression with specific tumor-infiltrating immune cell populations in CSCC patients. Expression of each gene in association with the presence of CD8+ T cells (central memory and effector memory subsets), NK cells (activated or resting), macrophages (M1 and M2 types), and activated myeloid dendritic infiltrates in CSSC patients (n = 254). Each panel presents the relationship between infiltrates estimation value with the purity-adjusted spearman’s correlation parameter Rho and gene expression, join p value < 0.001. Rho value > 0 represents a positive correlation, and Rho < 0 represents a negative correlation. Association with immune cell populations was provided by TIMER 2.0 software and was correlated with transcriptome expression level of each immune gene.



In case of the NK cell population, the strongest correlation was found with the activated fraction (CD2: Rho=0.637, CD3D: Rho=0.613, CD3E: Rho=0.713, and CXCR6: Rho=0.649). In the macrophage population, the highest association was identified for the M1 group (CD2: Rho=0.719, CD3D: Rho=0.651, CD3E: Rho=0.706, and CXCR6: Rho=0.664) compared with the M2 macrophage population (CD2: Rho=0.503, CD3D: Rho=0.408, CD3E: Rho=0.510, and CXCR6: Rho=0.469). For activated dendritic cells, the results were as follow: CD2: Rho=0.739, CD3D: Rho=0.743, CD3E: Rho=0.705, and CXCR6: Rho=0.620) (Figure 6).



Clinical Outcome in HNSCC and CSSC With Expression of CD2, CD3D, CD3E, CXCR6 and High Mutation Burden

As the mutational burden has been associated with response to immune-modulatory drugs (18, 19), we explored if the expression of the identified immune signature CD2, CD3D, CD3E, CXCR6 was able to predict a better outcome in HNSCC and in CSCC with high mutational burden. In HNSCC with high mutational burden, the presence of the immune signature was able to predict favorable OS (n=251; HR=0.53; 95% CI=0.37–0.76; log rank p=0.00051; FDR=5%) (Figure 7A). Similarly, in CSCC tumors with high mutational burden, the presence of the immune signature predicted strongly favorable survival (n=143; HR=0.19; 95% CI=0.09–0.39; log rank p=4.5e-07, FDR=1%) (Figure 7B). This result suggests that outcome prediction of the aforementioned immune signature is much more effective in HSCC and CSCC tumors with high mutational burden.




Figure 7 | Clinical outcome analysis of CD2, CD3D, CD3E, CXCR6 immune gene signature expression in HNSCC and CSCC tumors with high mutational burden. Clinical outcomes of survival plots of new immune gene signature with improved favorable prognosis at all stages of HNSCC tumors (n = 251) (A) and CSCC tumors (n = 143) (B) with high mutational burden (TMB) are displayed. Red line represents survival of patients whose tumors harbor high gene expression levels, and those with low gene expression levels show in black line. Number of patients at risk at every time (months), with high (in red) and low gene expression (in black), is displayed. HR for risk of death and OS are displayed. HR < 0.65 discriminates a risk reduction. FDR is also displayed. The gene combination is displayed at the top of each figure.






Discussion

In the present article we describe immune genomic signatures associated with favorable outcome in HNSCC and CSCC. Identification of genomic immune correlates that predict outcome as an indirect measure of immune activation is a key task in oncology.

SCCs comprise a large family of tumors from epithelial tissues that arise from different locations but that share some common biological characteristics like genomic instability, dysfunction of DNA repair mechanisms, or relative sensibility to therapeutic agents that induce DNA damage or affect DNA repair mechanisms (1). In addition, some of them have shown to be more sensitive to immunologic agents probably due to the retained viral antigens produced by the presence of HPV infection (4, 5).

Using previously described transcriptomic signatures associated with immune activation, we aimed to identify genes that were linked with favorable outcome in HNSCC patients. We found a correlation with outcome of most of the signatures except for the HLA one. The fact that some genes correlated better than the whole signature let us explore a combination of transcripts that could increase the prediction capacity, and this was the case for a signature that included only four genes: CD2, CD3D, CD3E, and CXCR6. Of note, these findings were reproduced in CSCC and with minor significance in esophagus tumors. The association between gene expression profile and clinical outcome in patients selecting by HPV condition was not available with KM Plotter Online Tool in the case of the HNSCC cohort of patients.

A remarkable finding is the fact that the identified results were not reproduced in other squamous cell lung cancers. These results, although surprising, confirm the heterogeneity of tumors at a location and histology level (28, 29). Probably, the results have been conditioned by the presence of HPV in these two indications: HNSCC and CSCC (most CSCC tumors are HPV positive), a situation that is not observed in other squamous cell tumors like esophagus or lung. These tumors lack the presence of HPV infection, so they do not exhibit the viral neoantigens or molecules likely recognized by the identified immune cell populations in HNSCC and CSCC.

The immune gene signature comprised several genes. CD3D and CD3E are part of the TCR-CD3 complex present on T-lymphocyte cell surface (30, 31). CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain, and after T-cell receptor engagement, they transmit the activation signaling by phosphorylation of SRC (30). In this context, the presence of these two genes is an indirect measure of the existence of activated T cells. It is not surprising to see that their presence has also been described as linked with prognosis (32). CD2 is a cell adhesion protein expressed on the T cell and NK cell surface and has been used as a specific marker for these two populations (33). Finally, CXCR6 has been described as a chemokine associated with the activation of IFN gamma effector cells, therefore can constitute an adequate marker to select active T cells (34).

The presence of the selected genes correlated with low tumor purity in HNSCC and CSCC. Moreover, we observed a very clear and strong association with the presence of populations of cells involved in adaptive immune cell response including activated T cells and dendritic cells. In addition, we observed an increase in M1 macrophages and in activated NK cells, demonstrating that the innate immunity was also present and therefore can have a role in the antitumoral action. This finding is relevant as a single signature of four genes can identify an immunologic state that is linked with a favorable prognosis compromising an adaptive and innate activated immune response. Unfortunately, no evaluation of immune populations in esophageal SCC was performed, since data are not publicly available.

When exploring differences between HNSCC HPV-positive and HPV-negative tumors, we did not observe major discrepancies beyond the fact that HPV-positive tumors had a stronger presence of the described immune cells (35). In fact, almost all CSCC tumors are HPV positive. As mentioned before, tumors in which a viral infection is a key oncogenic event can have a wider presence of neoantigens and therefore an increase presence of immune activated cells, what suggests that could be more sensitive to agents that modulate the immune system. In fact, we observed that the expression of the new immune signature correlated with the same composition of tumoral immune cell infiltrates in HNSCC and CSCC (see and compare Figure 3 and Figure 6), maybe since both types of tumors shared the same pattern of neoantigens.

A relevant finding of our study is the discrimination in outcome between those tumors with a high tumor mutational burden (TMB). In this context, not all tumors with TMB respond to immune modulators, which suggests that the identification of biomarkers within this population will also be of help.

We acknowledge that our study has limitations. This is an in silico analysis using datasets from different sources. However, all the datasets included in this study are publicly available and have been incorporated in several studies that support their consideration as representative of the general population. Of note, the compilation and integration of molecular biology and clinical data into the available datasets is sometimes scarce. For instance, we could not explore if in terms of expression our new signature had different prediction in the HNSCC cohort per HPV status. This was not the case in CSCC where all patients are HPV positive.

In conclusion, we describe a set of genes that are able to identify immune activated tumors involving adaptive and innate immune response, associated with favorable prognosis in HNSCC and CSCC. Prospective studies should be performed to confirm these results.
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Objective

To assess the efficacy of treatment outcomes of salvage surgery for recurrent nasopharyngeal carcinoma (rNPC).



Methods

We conducted a detailed search of the literatures in biomedical databases published from January 1990 to December 2020. The main research features and results of interest were retrieved from the articles that met the selection criteria for meta-analysis.



Results

A total of 21 articles with 778 patients were included, 17 of which met the meta-analysis inclusion criteria. The pooled 2-year overall survival (OS), 5-year OS, and 2-year disease-free survival (DFS) were 71%, 50% and 61%, respectively. Subgroup analysis was conducted with postoperative adjuvant therapy. The pooled 2-year OS, 5-year OS and 2-year DFS of the postoperative adjuvant therapy group compared with the surgery alone group were 69% vs 72%, 44% vs 56%, and 77% vs 54%, respectively. Univariate and multivariate analyses were performed on 178 patients with detailed individual postoperative survival data in 10 articles. On multivariate analysis, recurrent T (RT) stage and adjuvant therapy were independent predictors of outcomes.



Conclusions

This meta-analysis indicated that recurrent NPC patients can obtain survival benefits from salvage surgery. Accurately assessing the RT stage of the tumor and choosing the appropriate surgical method are important to the success of the surgery. Although the prognostic factors influencing outcome have been studied, conclusive data on the survival benefits are still lacking. Random controlled trials (RCTs) to compare surgery alone and postoperative adjuvant therapy are needed in patients with positive margin status after salvage surgery.





Keywords: outcome, adjuvant therapy, surgery, recurrent nasopharyngeal carcinoma, meta-analysis



Introduction

Nasopharyngeal carcinoma (NPC), which originates from nasopharyngeal epithelial cells, is a coon malignant tumor that occurs in the head and neck (1). The primary treatment strategy for NPC is radiotherapy with or without chemotherapy (2). However, approximately 7% to 15% of patients have persistent or recurrent disease after radical radiotherapy, and 10% to 40% of patients experience recurrence within 1 to 2 years after initial treatment (2, 3).

At present, there is still no standardized management strategy for recurrent NPC (rNPC). Surgery is often the first choice for recurrent locoregional NPC. Intensity-modulated radiotherapy (IMRT) can be chosen as a salvage treatment for unresectable disease. Targeted therapy and chemotherapy can be considered for patients who cannot undergo or refuse to receive reirradiation. Palliative chemotherapy is the main choice for patients with distant metastasis (4, 5). Radiotherapy resistance is the main reason of NPC relapse within 1 year and fatal complications caused by irradiation makes the situation more worse (6).  It is reasonable that further radiotherapy (RT) or chemotherapy (CHT) might lead to undesirable survival outcomes. The development of salvage surgery provides an alternative treatment.

In this study, we carried out a meta-analysis of the long-term results of patients who underwent surgery with or without adjuvant therapy for recurrent NPC. The combined OS and DFS rates outcomes were reported. At the same time, subgroup analysis of postoperative adjuvant therapy was performed. We also performed univariate and multivariate analyses to identify prognostic factors in a series of patients with detailed postoperative survival data.



Materials and Methods


Search Strategy

A systematic search of the PubMed, Embase, Cochrane Library, and Web of Science databases and 2 major Chinese databases, CNKI and Wanfang, were conducted in December 2020. The search strategy was predefined. The following free terms and medical subject headings were included: “nasopharyngeal,” “nasopharyngeal diseases,” “nasopharyngeal neoplasms,” “nasopharyngeal carcinoma,” “recurrence,” “surgery,” and “survival.” We limited the scope of our research to studies that only targeted humans and published in Chinese and English. The publication time was restricted from 1990 to 2020.



Inclusion and Exclusion Criteria

Studies that met all of the following inclusion criteria were selected: (1) Study population: patients with histologically proven, locally recurrent, nonmetastatic NPC receiving a primary and radical radiotherapy; (2) Treatment modality: salvage surgery for rNPC patients with or without adjuvant therapy; (3) Outcomes: the results of OS rate and DFS rate in patients who treated postoperative adjuvant therapy and surgery alone; (4) Study design: randomized controlled trials, retrospective and prospective cohort, and case series were included. Case reports, repeatedly published data, studies without adequate data and studies without full text were excluded.



Data Collection and Extraction

Data were extracted by two independent reviewers (Y.F. and Z.D.). The following data were collected from the full text of articles: The characteristics of author, publication language, number of patients, main clinical features of patients, treatment approaches, postoperative adjuvant therapy and survival rate; The Kaplan-Meier survival curve was used in the way introduced by Parmerl et al. (7) to obtain the required survival data when the survival data were not obtained directly from the articles; Data from studies with detailed individual postoperative adjuvant treatment data were extracted separately.



Assessment of Study Quality

Each study’s quality was assessed by the Methodological Index For Non-randomized Studies (MINORS) (8). There are total of 12 evaluation indicators, each of which is divided into 0 to 2 points. Scoring method: 0 point means not reported; 1 point means reported but insufficient information; 2 point means reported and provided sufficient information. The first 8 items are designed for no-control studies. The last 4 and the first 8 items are designed for studies with the control group. Articles with a score of 0-8 are low-quality, 9-16 are classified as medium quality, and 17-24 are classified as high-quality. Two reviewers scored independently. If the scoring results are inconsistent, it will be determined through discussion or consultation with a third independent senior oncologist, and finally an agreement is reached.



Statistical Analysis

In this study, we conducted the meta-analysis using software STATA version 15.0 (StataCorp LLC, College Station, TX). The random effects model (9) was adopted when heterogeneity was detected (I2 > 50%). Sensitivity analysis, Meta-regression and subgroup analyses were used to explore the source of the heterogeneity among the studies. The univariate and multivariate analysis of 178 patients with detailed survival data was performed by the IBM SPSS Statistics Version 21. OS and DFS were calculated by the Kaplan-Meier method and compared by the log-rank test. A 2-tailed p < 0.05 indicated statistical difference. Factors that achieved significance on univariate were included in the Cox proportional rate hazard model for multivariate analysis to identify independent significant prognostic factors.




Results

A total of 4976 related publications were retrieved. 4881 articles were excluded because they were duplicates, systematic reviews, animal experiments, case reports, or unrelated to the current analysis. In addition, 95 studies were evaluated later. After reading the full texts, 74 articles were excluded. The main reasons for exclusion are listed in Figure 1. Finally, 21 articles were screened out, 17 of which were included in the meta-analysis since they had a sample size of greater than 10 (10–26). Ten articles provided detailed survival data (21–30). The average MINORS score of the included articles was approximately 10 points. There was a medium quality of methodological heterogeneity in this research.




Figure 1 | PRISMA flow diagram.



The main clinical characteristics are shown in Table 1. The pooled 2-year OS, 5-year OS, and 2-year DFS that experienced surgery with or without adjuvant therapy for rNPC were 71% (95% CI, 62%-80%, I2 = 83.2%, p < 0.05, Figure 2A), 50% (95% CI, 34%-66%, I2 = 94%, p < 0.05, Figure 2B), and 61% (95% CI, 46%-75%, I2 = 77.5%, p < 0.05, Figure 2C), respectively. There was high heterogeneity indicated by the I2 value being > 50%; thus, the potential causes of heterogeneity and bias were further investigated.


Table 1 | Main characteristics of the articles included in the meta-analysis.






Figure 2 | Forest plot of meta-analysis Pooled 2-year OS (A); Pooled 5-year OS (B); Pooled 2-year DFS (C).



Meta-regression analysis showed that rT stage (Tau2 = 0.02315; p = 0.209), postoperative adjuvant therapy (Tau2 = 0.0266; p = 0.718), margin status (Tau2 = 0.02377; p = 0.14), and surgical approach (Tau2 = 0.027; p = 0.514) may not associated with heterogeneity. We further conducted a subgroup analysis of postoperative adjuvant therapy. In this subgroup analysis, we performed exploratory sensitivity analysis to find potential causes of heterogeneity. Sensitivity analysis of the pooled 2-year OS revealed that the postoperative adjuvant treatment outcomes of King et al. (20) might have had an influence on clinical heterogeneity.

In the subgroup analysis, patients underwent surgery alone had a better 2-year OS rate (72%, 95% CI, 61%-83%, I2 = 86.3%, p < 0.05, Figure 3A) than those underwent surgery and adjuvant therapy (64%, 95% CI, 55%-73%, I2 = 0.00%, p = 0.641, Figure 3A). The 5-year OS was 44% (95% CI, 35%-52%, I2 = 0.00%, p = 0.543, Figure 3B) in the postoperative adjuvant therapy group and 56% (95% CI, 31%-80%, I2 = 96.9%, p < 0.05, Figure 3B) in the surgery alone group. The 2-year DFS of the postoperative adjuvant therapy group was 77% (95% CI, 52%-1.01%, I2 = 77.5%, p < 0.05, Figure 3C), which was higher than that of the surgery alone group (54%, 95% CI, 39%-70%, I2 = 64.5%, p < 0.05, Figure 3C).




Figure 3 | Forest plot of subgroup meta-analysis Pooled 2-year OS (A); Pooled 5-year OS (B); Pooled 2-year DFS (C). Subgroups were stratified according to the postoperative adjuvant therapy status of the patients in each study.



We conducted univariate and multivariate analysis on 178 patients with detailed survival data related to postoperative adjuvant treatment. There were 131 males and 47 females. Their follow-up time was 1-117 months, and the average follow-up time was 26 months. Sixty-six patients underwent RT after surgery, 12 underwent surgery and CHT, and 125 patients underwent surgery alone. The detailed data of each patients are suarized in Supplemental Table S1.

There was no significant difference in the distribution of gender, margin status, and recurrent T stage between the open surgery group and the endoscopic surgery group. However, we found there was significant association between surgical approach and adjuvant therapy (p = 0.010). In the open surgery group, 62 (65.3%) patients underwent surgery alone, and 33 (34.7%) patients received adjuvant RT after surgery. In the endoscopic surgery group, 63 (75.9%) received surgery alone, 3 (3.6%) received adjuvant RT, 12 (14.4%) received adjuvant CHT, and 5 (6.1%) received postoperative concurrent chemoradiotherapy (CCRT). We further compared the patients who treated with surgery alone, the 5-year OS was 77.0% in the open surgery group and 82.5% in the endoscopic surgery group (p > 0.05), the 2-year DFS was 85.0% in the open surgery group and 72.5% in the surgery alone group (p > 0.05). In the open surgery group, the 5-year OS was 35.2% in the postoperative RT group and 77.0% in the surgery alone group (p < 0.05). The 2-year DFS was 37.3% in the postoperative RT group and 85.0% in the surgery alone group (p < 0.05). In the endoscopic surgery group, 12 patients received adjuvant CHT. Compared with the 2-year OS (82.5%) in the surgery alone group, the 2-year OS was 67.3% in the adjuvant CHT group (p <0.05).

The prognostic factors for recurrent NPC are shown in the Table 2. Margin status (Figure 4B), recurrent T stage (Figures 4C, D), adjuvant therapy (Figures 4E, F) affected the survival outcomes of patients. The variables considered significant in the univariate were included in the Cox multivariate analyses. Two variables (recurrent T stage and adjuvant therapy) were independent risk factors for the DFS of recurrent NPC in the Cox multivariate analyses (Table 3).


Table 2 | Clinical Characteristics and univariate analysis of prognostic factors.






Figure 4 | Kaplan-Meier survival analysis according to margin status (negative or close vs positive): (A) 2-year OS was 81.0% vs 76.2%. (B) 2-year DFS was 73.3% vs 52.0%. Kaplan-Meier survival analysis according to recurrent T stage (rT1, rT2, rT3, and rT4): (C) 2-year OS was 93.7%, 73.1%, 67.6%, and 30.0%, respectively. (D) 2-year DFS was 93.3%, 43.1%, 52.5%, and 25.0%, respectively. Kaplan-Meier survival analysis according to adjuvant therapy (No, RT, and CHT): (E) 2-year OS was 82.6%, 64.1%, and 80.8%, respectively. (F) 1-year DFS was 88.7%, 65.3%, and 16.7%, respectively.




Table 3 | Cox multivariate regression analysis of disease free survival at 2 years.





Discussion

Reirradiation, with or without chemotherapy, is a treatment strategy for rNPC. However, it is related with normal tissue injury that results in a rise of mortality and treatment-related morbidity and influences the quality of patients’ life (31, 32). Salvage surgery can achieve a better survival rate with lower treatment-related complications than IMRT or two-dimensional conventional radiotherapy (17, 29, 33). In this study, we aim to assess the efficacy of treatment outcomes in salvage surgery for recurrent nasopharyngeal carcinoma.

In our study, the results of meta-analysis showed that the pooled 2-year OS, 5-year OS and 2-year DFS rates were 71%, 50% and 61%, respectively, indicating that the majority of these patients can obtain survival benefits from surgery, which is comparable to the survival rate of 189 patients reported by Wang et al. (10). In this subgroup analysis, the 2-year OS rate and 5-year OS rate in the surgery alone group were superior to those in the postoperative adjuvant therapy group. The 2-year DFS rate in the postoperative adjuvant therapy group was 77%, which was higher than that the surgery alone group (54%). We further retrieved individual patient data with detailed survival results to compare the survival rate of 178 patients who underwent surgery, and found that recurrent T stage and adjuvant therapy were independent risk factors for the DFS of recurrent NPC in the Cox multivariate analyses.

Studies on the effects of adjuvant therapy on the prognosis of patients have been reported. According to following up 79 patients who were treated with surgery, Vlantis et al. (18) found that the adjuvant radiotherapy may not associate with an additional benefit. That is because the clear margin group, of whom only 61% received postoperative radiotherapy, showed a better survival rate than the positive margin group, of whom 83% received postoperative radiotherapy. You et al. (33) published a case-matched study comparing salvage endoscopic nasopharyngectomy with IMRT for selected local recurrent T1-T3 NPC patients. Their results suggested that the improvement in the OS rate in patients who treated with salvage endoscopic nasopharyngectomy compared with salvage IMRT may be associated with a reduction in the risk of reirradiation injury, rather than the elimination of radiation-resistant disease or a reduction in the risk of local recurrence and distant metastasis. However, A meta-analysis published in 2014 showed that postoperative adjuvant therapy is an effective treatment, with 5-year OS rates of 67% vs 39% in the postoperative adjuvant therapy group compared the surgery alone group (34). King et al. (20) previously described those 31 patients routinely received postoperative radiotherapy and found that nasopharyngectomy supplemented by postoperative radiotherapy achieved significant survival and tumor control in selected recurrent NPC. In our study, there was no significant difference in OS between the clear margin group, of whom only 1.7% received postoperative RT and 6.7% received postoperative CHT, and the positive margin group, of whom 76.2% received postoperative RT and 9.5% received postoperative CHT. Patients with positive margins are recoended to receive RT after surgery. In addition, considering that only two studies were included in the postoperative adjuvant therapy group in the DFS subgroup analysis, there is insufficient data to demonstrate an improved DFS benefit for patients who underwent adjuvant therapy after surgery. Due to the limited number of cases, it is difficult to conduct control studies with large samples, and there is still a lack of convincing evidence-based medicine. We cannot ignore the deviation of highly selected patients.

In the past, advanced tumor invading the internal carotid artery (ICA) and skull base is considered unresectable. With the refinement of imaging, cooperation with ophthalmologist and neurosurgeons, and the development of endoscopic surgery and equipment, more selected advanced tumor including invasion of the ICA can be radically removed (10). However, most surgeons mainly focus on early rNPC, ignoring the research of advanced rNPC. Endoscopic nasopharyngectomy reported by Mao et al. (11) described a 5-year OS rate is 96.6% in 31 early rNPC patients. Liu et al. (35) showed that the 2-year OS rates in rT1, rT2, rT3, rT4 were 82.2%, 47.4%, 70.5%, and 36.8%, respectively. Ng et al. analyzed 20 patients (18 with rT1, 2 with rT2) treated with open surgery, and the results of 2-year OS was 95% (14). Bian et al. (15) showed that the 2-year OS rates for recurrent T1, T2, T3, and T4 disease after open surgery were 79.8%, 66.7%, 42.5%, and 10.6%, respectively. Hao reported the 5-year OS rates in stage I, stage II, stage III, and stage IV disease after open surgery were 64.8%, 38.1%, 25.9%, and 46.9%, respectively (36). In our study, rT3 group is superior to rT2 group, because most patients with rT3 are highly selective patients, and the lesions are confined to paranasal sinus. rT2 tumor confined to the parapharyngeal tissues is adjacent to ICA, so extended resection will be more challenging for surgeons. Therefore, the salvage surgery achieved better survival results in rT1-T2 patients and partial selected rT3 patients, and the efficacy of salvage surgeries on rT4 was significantly different in each study.

Although the prognostic factors influencing outcome have been studied, conclusive data on the survival benefits are still lacking. RCTs to compare surgery alone and surgery with adjuvant therapy are needed in patients with positive margin status. As a result of the importance of margin status, the goal of nasopharyngectomy is to obtain a microscopically negative margin (37). For patients with positive surgical margin status, further resection should be performed as soon as possible if the operation is feasible. In recent years, there is increasing evidence that histologically normal margins may have underlying genetic mutations that lead to negative margin results (38, 39). This has motived researchers to search for novel molecular markers to accurately predict local tumor recurrence after surgery (40).

Our study has several limitations. First, patients undergoing surgery alone are highly selected, with a greater chance of negative margins and better survival outcomes, which may increase the bias. The use of an open approach in patients with extensive invasion of the skull base or intracranial area also increase the potential bias. Second, based on the current research, it is not possible to recoend the optimal total dose, fractionated dose and fractionated method of exposure, which may lead to different results in different centers and thus lead to bias. Third, some raw survival data could not be obtained directly from the studies, and data obtained through statistical methods may not be accurate.



Conclusion

The meta-analysis indicated that recurrent NPC patients can obtain survival benefits from salvage surgery. Accurately assessing the rT stage of the tumor and choosing the appropriate surgical method is of great significance to the success of the surgery. Although the prognostic factors influencing outcome have been studied, conclusive data on the survival benefits are still lacking, and RCTs to compare surgery alone and postoperative adjuvant therapy are necessary in patients with positive margin status after salvage surgery.
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Background

Alternative splicing (AS) plays a key role in the diversity of proteins and is closely associated with tumorigenicity. The aim of this study was to systemically analyze RNA alternative splicing (AS) and identify its prognostic value for papillary thyroid cancer (PTC).



Methods

AS percent-splice-in (PSI) data of 430 patients with PTC were downloaded from the TCGA SpliceSeq database. We successfully identified recurrence-free survival (RFS)-associated AS events through univariate Cox regression, LASSO regression and multivariate regression and then constructed different types of prognostic prediction models. Gene function enrichment analysis revealed the relevant signaling pathways involved in RFS-related AS events. Simultaneously, a regulatory network diagram of AS and splicing factors (SFs) was established.



Results

We identified 1397 RFS-related AS events which could be used as the potential prognostic biomarkers for PTC. Based on these RFS-related AS events, we constructed a ten-AS event prognostic prediction signature that could distinguish high-and low-risk patients and was highly capable of predicting PTC patient prognosis. ROC curve analysis revealed the excellent predictive ability of the ten-AS events model, with an area under the curve (AUC) value of 0.889; the highest prediction intensity for one-year RFS was 0.923, indicating that the model could be used as a prognostic biomarker for PTC. In addition, the nomogram constructed by the risk score of the ten-AS model also showed high predictive efficiency for the prognosis of PTC patients. Finally, the constructed SF-AS network diagram revealed the regulatory role of SFs in PTC.



Conclusion

Through the limited analysis, AS events could be regarded as reliable prognostic biomarkers for PTC. The splicing correlation network also provided new insight into the potential molecular mechanisms of PTC.





Keywords: alterative splicing, papillary thyroid cancer, recurrence-free survival, prognosis, splicing factor



Introduction

Thyroid cancer is the most rapidly increasing malignancy worldwide in both men and women (1). Papillary thyroid cancer (PTC), the most common thyroid carcinoma type, comprise 80% of all cases (1). PTC has several subtypes, including classical papillary cancers, less aggressive variants, such as follicular, oxyphilic, and cribriform-morular variants, and more aggressive variants, such as diffuse-sclerosing, tall-cell, columnar-cell and solid variants (2). In general, PTC has an excellent prognosis, with a 5-year survival rate over 97%, and PTC tumors measuring less than 1 cm have a 10-year disease-specific survival rate over 99% (3). Although PTC is associated with low mortality, the incidence of disease recurrence or metastasis is 20-30%, and is even higher in patients with the more aggressive variants (4, 5). It is important to assess the PTC recurrence risk accurately for ensuring patients to receive the most appropriate treatment strategy. Over the past few decades, great efforts have been made in exploring prognostic biomarkers for PTC, in particular gene markers, such as mutations in the BRAF, RAS, PIK3CA, P53, PTEN, P53 and ALK genes (6, 7). Although these studies showed promising results, they only focused on the factors driven by mutation and the level of transcription while ignoring the diversity of RNA isoform resulting from posttranscriptional modifications. Currently, there is no consensus on assessing the prognosis of PTC patients.

Alternative splicing (AS) is a significant molecular posttranscriptional modification mechanism that converts mRNA into different RNA transcripts which are then translated into different protein products, thus greatly increasing the diversity of protein species (8, 9). Recent studies have shown that more than 90% of human genes have AS modifications and these modifications play an important role in biological processes (10, 11). The dysregulation of AS is involved in a variety of physiological and pathological processes, including tumorigenesis. Since tumor cells tend to generate sub-isoform changes, which lead to the functional loss of tumor suppressor genes and the activation of oncogenic genes (12). These multiple AS events are conducive to tumor cell proliferation, invasion and metastasis, drug resistance and immune escape (13). For example, exon 13 skipping in CD46 and the exon 13-containing CD46 isoform play opposite roles in bladder cancer development, and exon 13 skipping remarkably accelerated DNA synthesis, cancer cell proliferation, migration and invasion (14). KLF6-SV1, an oncogenic alternatively-spliced isoform of KLF6 produced by alternative 5′ splice sites, is often highly expressed in various human malignancies including non-small cell lung cancer and hepatocellular carcinoma (15–17). BRCA1/2 germline mutations are most commonly seen in breast and ovarian cancer patients who benefit from treatment with PARP inhibitors (PARPis) or platinum compounds, but BRCA1-Δ11q splice variants lacking the majority of exon 11 contribute to therapeutic resistance (18, 19). We found that prognostic models constructed from AS events data had good efficiency for evaluating the survival time of adrenocortical carcinoma, cervical cancer and prostate cancer patients (20–22).

In addition, some studies have shown that AS events could be intricately regulated by key splicing factors (SFs) (23). The abnormal expression of SFs cause subversive alteration in tumor-specific AS events, which affects the initiation and progression of carcinoma (24). In recent years, the development of genome-wide sequencing technology has provided new opportunities to explore and identify tumor-specific molecules and prognostic markers (25, 26). A comprehensive analysis of AS events and underlying SF-AS regulatory networks can provide new insight into the molecular mechanism of PTC and prognosis-related biomarkers for PTC patients. Preliminary studies in AS have provided evidence of prognosis value, while the function and mechanism of AS in PTC remains unknown.

In our study, we revealed a large number of RFS-related AS events in PTC through a systemic analysis of the AS events of all genes in the PTC cohort from the TCGA SpliceSeq dataset. We constructed a prognostic prediction model based on the identification of RFS-associated AS events, and presented the clinicopathological characteristics and a nomogram of AS prognostic predictors, which could predict the recurrence-free survival rate of PTC patients. Finally, development of an SF-AS relationship network diagram showed the potential regulatory mechanisms involved in PTC recurrence and patient prognosis.



Materials And Methods

The flowchart of the study is shown in Figure 1.




Figure 1 | The flowchart of the study.




Acquisition of AS Data

The percent splice-in (PSI) data of AS events in PTC were downloaded from the TCGA SpliceSeq (https://bioinformatics.mdanderson.org/TCGASpliceSeq/) database, which provides the overview of AS events across 33 types of tumors based on TCGA RNA-seq data. AS events for 7 types have been identified so far, namely Alternate Acceptor site (AA), Alternate Donor site (AD), Alternate Promoter (AP), Alternate Terminator (AT), Exon Skip (ES), Mutually Exclusive Exons (ME) and Retained Intron (RI) (27). The annotation of the AS event consists of the parent gene symbol, the unique ID number and the splicing type. PSI values are used to quantify AS events, and its range is from zero to one. In order to acquire a credible AS events data set, we set a strict screening condition that the proportion of samples contain PSI values over 75%. We filtered out the data with AS events missing rate over than 20%, then replaced the missing value with median values.



Analysis of RFS-Related AS Events, Function and Pathway Enrichment Analysis and Gene Interaction Network

The clinical information of the PTC cohort was obtained from the cBioPortal (http://www.cbioportal.org) database, including recurrence-free survival status and time. Patients were divided into high and low PSI subgroups based on the median value of PSI, and then univariate Cox regression analysis was used to explore RFS-associated seven types AS events respectively, p values less than 0.05 considered as statistically significant. UpSetR mapping was used to analyze the interaction between the RFS-related AS events for each splicing type and corresponding parent genes. Target genes network were constructed via the Search Tool for the Retrieval of Interacting Genes (STRING, https://string-db.org) and Cytoscape (version 3.7.1). Database for Annotation, Visualization and Integrated Discovery (DAVID) online functional annotation tool (https://david.ncifcrf.gov/tools.jsp) was used to complete genetic function and pathway enrichment analysis, and use RStudio drawing.



Construction of the AS Model for Predicting Recurrence of PTC Patients

First, LASSO regression analysis was performed on the RFS-associated AS events obtained of 7 types by univariate Cox regression analysis. In order to avoid overfitting of the model, multivariate Cox regression analysis was used to further screen the candidate AS events and identify independent prognostic predictors. We calculated the risk score for each patient based on each predictor and the calculation formula is as follows: Risk score = PSIAS event1 × coefficient AS event1+ PSIAS event2 × coefficient AS event2+· · · + PSIAS eventn × coefficient AS eventn. According to the median risk score, PTC patients were divided into high and low risk subgroups, and Kaplan-Meier analysis was used to evaluate the accuracy of each prognostic prediction signature. In addition, the receiver operating characteristic (ROC) curve by the survival ROC package was used to calculate the corresponding area under the curve (AUC) value. Furthermore, the cBioPortal online database was used to analyze mutations and expression changes in corresponding parental genes.



The Verification of Prognostic Value of AS Predictor

The modeling dataset was random divided into two validation datasets (50 percent vs 50 percent, n=215), Kaplan-Meier survival curve and ROC curve were used to evaluate the performance of the model. Besides, we also performed a pan-cancer survival analysis based on data from TCGA.

To further analyze the independent risk factor associated with recurrence of PTC, AS prognostic predictor signature along with all clinicopathological variable mentioned above were performed by univariate Cox regression analysis. The candidate variables were subjected to multivariate regression analysis to screen out independent prognostic predictors.

In addition, we analyzed the clinicopathological characteristics of the high- and low-risk subgroups. Judge and verify the prognostic performance of the final AS prediction model in the stratified survival analysis, such as age, sex, histologic subtype, tumor grade, lymph node grade, and pathological stage.



Analysis of RFS-Related SFs and Construction of SF-AS Relationship Network

Splicing factors (SFs) were obtained from SpliceAid 2 (www.introni.it/spliceaid.html) database. The normalized mRNA expression data of the SFs were obtained from UCSC Xena (https://xena.ucsc.edu) database. The Protein expression level of SFs was obtained from The Human Protein Atlas (https://www.proteinatlas.org/) database. Univariate Cox regression analysis was used to screen out RFS-related SFs. Spearman correlation analysis was used to detect the relationship between RFS-related AS events and SFs, P value less than 0.05 and the correlation coefficient greater than 0.4 as cutoff value. Finally, Cytoscape is used to construct a potential SF-AS relationship network diagram.




Results


A Complete Overview of AS Events in the TCGA PTC Cohort

Through integrating all AS events of PTC patients from the TCGA SpliceSeq database, we discovered 37833 AS events involving 18231 genes, including 10219 ESs in 3904 genes, 9127 APs in 3653 genes, 8597 ATs in 3753 genes, 3683 AAs in 2592 genes, 3190 ADs in 2240 genes, 2787 RIs in 1865 genes, and 232 MEs in 224 genes (see Supplementary Figure 1A). The figures showed that one gene can produce multiple types of AS events in PTC patients. Among these 7 types of AS events, the most frequent splicing type was ES, while the least type was ME (see Supplemental Figure 1A).



Detection of RFS-Related AS Events and Analysis of Function and Pathway Enrichment

The survival and clinical information for PTC was obtained from the cBioPortal database (Supplementary Table 1). There was a total of 430 PTC patients with available recurrence-free survival time data and complete clinical information in our analysis. In PTC cohort, univariate Cox analysis of all AS events revealed that 1396 AS events were significantly related to the RFS (P<0.05, Supplementary Tables 2). In order to better visualize the intersection of different types of AS events and corresponding parent genes, an UpSet plot was constructed, as shown in Supplementary Figure 1B. Interestingly, we found that one gene can produce 3 different types of AS events in this study. The different types of prognoses associated AS events, except ME, in the top 20 genes are clearly exhibited in Figure 2. Next, we performed functional and pathway enrichment of 989 parent genes of RFS-associated AS events. The results showed that a total of 130 GO terms and 3 KEGG terms were significantly involved in prognosis (p<0.05), and Figures 3A–D showed the top 10 GO functional enrichment and KEGG pathways. To further explore the biological association between the corresponding paternal genes in PTC, we used STRING and Cytoscape to create a gene interaction network. Figure 3E shows a network diagram of the parental genes. The larger the node, the greater the degree of association with other genes, and the top 3 genes identified were UBA52, UBB and RPL31, they may be closely related to the occurrence and progression of PTC.




Figure 2 | The top 20 RFS-associated AS events. (A) Volcano map of AS event, red dots represent RFS- related AS. The top 20 AS events related to recurrence outcomes in different splice types in PTC, including (B) AA, alternate acceptor site. (C) AD, alternate donor site. (D) AP, alternate promoter. (E) AT, alternate terminator. (F) ES, exon skip. (G) ME, mutually exclusive exons. (H) RI, retained intron.






Figure 3 | The gene interaction network of RFS-associated AS events, functional and pathway analysis. (A) GO biological processes (BP) enrichment. (B) GO cellular component (CC) enrichment. (C) GO molecular function (MF) enrichment. (D) KEGG pathway enrichment analysis. (E) Parent genes interaction network.





Establishment of AS Recurrence Prediction Model for PTC Patients

We performed LASSO regression analysis for the significant RFS-associated AS events in each AS type (Supplementary Figure 2A–G). In order to avoid model overfitting, the above results of each AS type were further analyzed by multivariate Cox regression analysis to screen out the most suitable predictor for AS recurrence models. Seven types of AS models (AA, AT, ME, RI, AD, AP and ES) were constructed, and the formula corresponding to each model was shown in Table 1. Based on the formula, we calculated the risk score of each patient and divided into high and low risk groups. The Kaplan-Meier survival analysis showed that the recurrence model of each AS type had good predictive power to distinguish between good and poor survival results (Figures 4A–G). To further evaluate and compare the efficiency of the model, ROC curves were used to calculate the AUC value predicting the 1-year, 3-year, 5-year and 10-year recurrence-free survival rate (Figures 4a–g). The AUC values of the seven types of models at different times did not exceed 0.04. The largest AUC value of the ROC for the 1-year, 5-year and 10-year RFS rate was obtained with the AA prognostic predictor (0.860, 0.824 and 0.827 respectively), and the largest AUC value for the 3-year survival rate was obtained with the AP model (0.825). Importantly, a ten-AS event predictor was obtained by the overall analysis of prognostic-related AS events using LASSO regression and multivariate Cox regression analysis (Supplementary Figure 2H). The calculation used for the risk score is shown in Tables 1 and  2, the high-risk group showed a worse significant survival outcome than low-risk (Figure 5A). The 1-year, 3-year, 5-year and 10-year AUC values of the ROC curve for the combined model were calculated as 0.923, 0.916, 0.900 and 0.889 respectively. These values were higher than those obtained by the seven separate models individually, suggesting that the mixed AS model had the highest-level performance among all prognostic models (Figure 5B). The distribution of patient survival status and survival time, risk score for the prognostic predictors and the PSI of the ten AS events for final recurrence model, as illustrated in Figure 5C, the results showed that the shorter the patient’s survival time and the more recurrent cases, the higher the risk score of the model was significantly higher (P <0.05, Figure 5C).


Table 1 | Formula of each prognostic signature for PTC.






Figure 4 | Construction of Kaplan-Meier survival curve and ROC curve and calculation of AUC values for recurrence prognostic predictors. (A–G) Kaplan-Meier survival curve for AA, AD, AP, AT, ES, ME and RI prediction models. (a–g) ROC curve for AA, AD, AP, AT, ES, ME and RI prediction models.






Figure 5 | The ten-AS events signature as the best prognostic predictive model in PTC cohort. (A) Kaplan-Meier curve of the ten-AS prognostic predictor. (B) ROC curve of the ten-AS prognostic predictor. (C) The upper part showed the heatmap of PSI score of AS events involved in the prognostic predictor. The middle part was risk score of each individual. The bottom was the recurrence status and RFS time of each PTC patients.




Table 2 | Prognostic predictors for PTC.



In addition, parental genetic alteration of the ten-AS event model is shown in Figure 6A. The mutation of these ten genes rarely appeared in PTC patients from the TCGA dataset, but the mRNA expression level of most of the genes were altered; for example, NUD16 expression was decreased in 71% of PTC samples compared to normal tissue (Figure 6A). We detected the relationship between the expression level of parental genes and the RFS rate of PTC patients. There was a statistically significant relationship between PTC patient’s prognosis and the expression of SPHK2, SLC22A17, NUDT16, FXN, ADIRF, MARK3 and MTURN. The representative survival curves showed that NUDT16, MTURN and FXN had the most changes, and high expression was a favorable prognostic factor (Figures 6B–D, Supplementary Figure 3). The changes in mRNA may be caused by AS events, but AS events are not limited to changes in mRNA levels as they are also involved in the specific functions of protein regions.




Figure 6 | The parent genetic alteration in PTC cases. (A) In the PTC cohort, waterfall plot of parent genes variation and expression from the ten-AS models. (B–D) Kaplan-Meier survival curves of NUDT16, MTURN and FXN gene expression.





The Efficiency of AS Prognostic Predictor in Stratified Clinicopathologic Subgroups in PTC Patients

According to the ten-AS prognostic model, PTC patients were divided into two risk levels (high or low). The clinicopathologic characteristics of the two groups as shown in Table 3, PTC patients with high risk tended to be over the age of 55 and had tumors with a higher grade (p<0.05). Moreover, we analyzed the predictive performance of ten-AS prognostic model in stratified PTC patients (Table 3). The prognostic model identified high-risk patients with worse RFS rates in each subgroup except T1 and Stage II, which may result from the small number of endpoint events in these two subgroups (Table 3). In order to further explore the potential factors related to recurrence in PTC patients, the clinicopathologic variables along with the risk score of the ten-AS prognostic predictor were subjected to univariate Cox regression analysis. Age <55, female sex, histologic type-classical PTC, pathologic T1, pathologic N1 and pathologic stage I were set as references. The results showed that age, tall cell type, T3, T4, N1b, stage III, stage IV and risk score were significantly related to PTC recurrence (Table 4). Furthermore, the meaningful factors were analyzed by multivariate Cox regression analysis, and the results uncovered that the ten-AS prognostic model was the only independent recurrence prognostic factor (Table 4). The risk score of the ten-AS model, the independent predictive factor, was used to establish nomogram (Supplementary Figure 4). Our results suggested that the ten-AS prognostic predictor had a better efficiency in predicting PTC recurrence than clinicopathological characteristics, and predictive value in stratified subgroups well.


Table 3 | Clinicopathology feature of the final AS signature and prognostic analysis in stratified PTC cohorts.




Table 4 | Univariate and multivariate Cox regression analysis for clinicopathology variables.





The Verification of Prognostic Value of the Ten-AS Signature

Internal validation in two datasets shown good performance of the ten-AS signature, PTC patients with high glycolysis scores exhibited worse prognosis (see Supplementary Figure 5). Besides, we also evaluated the prognostic values of the ten-AS prognostic model in various cancers. In our results, the ten-AS prognostic model also applied to prostate adenocarcinoma (PRAD) and lung adenocarcinoma (LUAD), PRAD or LUAD patients with high-risk scores exhibited worse prognosis (see Supplementary Figure 6).



Detection of RFS-Associated SFs and Construction of SF-AS Relationship Network

In order to explore the upstream regulatory factors of dysregulated AS, the expression of 71 SFs was extracted from level 3 RNA-seq data of TCGA PTC. The results for univariate Cox regression analysis exhibited that 5 SFs (KHSRP, NOVA2, PTBP2, SRSF3 and RBM9) were significantly correlated to the RFS rate of PTC patients (Supplementary Table 3). The recurrence-free survival time curve with high and low expression of these 5 SFs shown as Figures 7A–E, among them, KHSRP was oncogenic factor, while NOVA2, PTBP2, SRSF3 and RBM9 were tumor inhibitor. We further searched The Protein Atlas database to detect the protein level of the 5 SFs in PTC. The immunohistochemistry (IHC) results showed that KHSRP, SRSF3 and RBM9 were located in nucleus, and the expression of SRSF3 and RBM9 were significantly lower in cancer than normal thyroid, while there was no significantly different between KHSRP, NOVA2 and PTBP2 in carcinoma and normal tissues (Figure 7F). The mRNA expression level of PTBP2 in normal tissues was higher than PTC, and NOVA2 expression was significantly involved in tumor stage, high expression in I-II stages and low expression in III-IV stage for PTC (Figures 7G, H). In addition, we used Spearman’s test to detect the relationship between the expression of these 5 SFs and PSI values of RFS-associated AS events. The relationship network diagram showed that RFS-related 5 SFs (blue rectangles) were significantly associated with 117 AS events, with P value less than 0.05 and Spearman coefficient greater than or 0.4 as the cutoff value (p<0.05, Spearman≥0.4, Figure 8B). Interestingly, we found that the expression of KHSRP was positively correlated (red lines) with most of adverse survival prognostic AS events (red dots) but negatively correlated (green lines) with most of favorable AS events (green dots), however, the tumor suppressor SFs were inversely related to AS events. For example, Figure 8A exhibited the representative scatter plots of SFs and AS events correlation. Based on our preliminary exploration, we proposed the hypothesis that antineoplastic SFs play a key role in dysregulated AS, which may lead to tumor progression in PTC.




Figure 7 | Validation the prognostic correlation of the targeting SFs and the expression in PTC tissues. Kaplan-Meier curves of (A) KHSRP (B) SRSF3 (C) RBM9 (D) NOVA2 (E) PTBP2 for PTC. (F) Immunohistochemistry (IHC) staining shown the expression of KHSRP, SRSF3, RBM9, NOVA2 and PTBP2 in normal thyroid tissues and PTC, data obtained from the HUMAN PROTEIN ATLAS database (HPA, https://www.proteinatlas.org/). (G) Comparison of the expression level of KHSRP, SRSF3, RBM9, NOVA2 and PTBP2 in normal thyroid tissues and PTC, data obtained from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) Student's t-test, ***p < 0.001; ns mean no significance. (H) Comparison of the expression level of KHSRP, SRSF3, RBM9, NOVA2 and PTBP2 in different stage (I, II, III and IV stage) of PTC from GEPAI database (http://gepia.cancer-pku.cn/).






Figure 8 | The correlation between the targeting SFs with AS events in PTC. (A) Two representative scatter plots showed the relevance between the expression of SFs and AS events, (left) positive correlation between NOVA2 and CLSTN1.575.ES PSI value, (right) negative correlation between PTBP2 and EPB41L5.55145.AT PSI value. (B) Interaction network of SF-AS (P<0.05, Spearman>0.4). Blue triangles represent RFS-associated SFs. Red lines represent SFs positively correlated with AS events, and green lines represent SFs negatively correlated with AS events. Red dots represent adverse AS events, and green dots represent favorable AS events.






Discussion

In this study, we first recognized diversified AS events with prognostic power using PSI of PTC AS data obtained from the TCGA. By using TCGA data, reported studies involved to PTC prognostic have shown that long noncoding RNA (lncRNAs), microRNA, and methylation data can work as prognostic factors. Chen et al., using binding motif data from Ensembl Biomart, predicted transcription factors (TFs) for affected genes to construct a TF/lncRNA/mRNA network, which predicted PTC prognosis with an AUC of 0.794 (28). Wang et al. established an N6-methyladenosine (m6A) RNA methylation-related risk signature of disease-free survival for a total PTC cohort with an AUC of 0.817. These models have also shown favorable prognostic predictions (29). We explored all events and established a ten-AS event signature to evaluate the RFS rate of PTC patients. The AUC values of the ROC curve for the 1-year, 3-year, 5-year and 10-year recurrence-free survival rate of PTC patients were 0.923, 0.916, 0.900 and 0.889 respectively, and we obtained more efficient prediction values from this model than with others. Importantly, the present ten-AS event signature has been confirmed with universality in predicting the prognosis of a wide range of tumors, including PRAD and LUAD patients.

AS is a key regulatory factor in the diversity of protein translation and gene phenotype, which is not only involved in normal physiological process but also plays an important role in the occurrence and development of human diseases, including PTC. For example, the alternatively spliced variant of thyroid stimulating hormoneβ (TSHβ), TSHβv (exon 2 deleted, exon 3 retained) has been associated with autoimmune thyroiditis in humans, which is also a high-risk factor for thyroid carcinoma (30). Circadian clock-independent AS events that play an important role in the homeostasis of the endocrine system, such as alternatively spliced Clock and Bmal1, are regulated by thyroid hormone receptor-associated protein 3 (THRAP3) and are closely associated with endocrine diseases including PTC (31, 32). Therefore, we could design different primers to evaluate the presence of AS events and types by PCR experiments and verified them by sanger sequence, which is relatively simple and effective.

In the ten-AS event prognostic prediction signature, some parental genes have been reported to play a key role in oncologic progression. Two spliced variants of MARk3 (exon 16 included and exon 16 skipped) are differentially expressed by neural progenitors and neuronal cells and contribute to the important molecular regulation of cortical development (33). TNFSF13, a tumor necrosis factor, plays a significant role in tumor development and autoimmune diseases, and hypoxia promotes the retention of the intron of TNFSF13 and suppresses the spliced isoform in MCF7 cells, which may contribute to a tumor suppressor effect (34, 35). SEC14L1 with 3 alternatively spliced exons spanning exon 11 was specifically expressed in human peripheral blood leukocytes, and different protein isoforms may show differential expression in breast and ovarian cancer development (36). Nonetheless, few studies have reported the functional characteristic and of other parental genes in this prognostic signature. Moreover, we found that changes in the mRNA levels of the parental genes in most PTC samples were associated with patient prognosis. AS events can affect the level of transcription and proteome expression. Whether the change in mRNA levels is caused by the corresponding AS events needs to be verified with further experiments. However, there were no statistically significant associations between some genes and prognosis, and the loss or gain of regions resulting from AS events might produce meaningful biological behaviors. Therefore, the underlying molecular mechanisms of these AS events in the final model is unclear, and further functional experimental research is necessary.

In addition, we also explored the correlation between clinicopathological characteristics and the RFS rate of PTC patients, and the results of the univariate analysis demonstrated that age greater than 55 years, tall cell variant PTC, T3 and T4, lateral neck lymph node metastasis and pathological stage III and IV are indicative of poor prognosis. However, further multivariate analysis showed that the risk score of the ten-AS model was the only independent prognostic factor of PTC. In addition, we found that the subgroup of high-risk AS signatures was associated with age and tumor stage, which also showed that tumor-specific AS events play a role in cancer progression and metastasis. Moreover, biological function enrichment and pathway analysis of RFS-related AS events showed that cell-cell adhesion and the transforming growth factor beta receptor signaling pathway promote PTC tumor cell growth, invasion and metastasis (37, 38). KEGG enrichment revealed ribosome and transcriptional mis-regulation in cancer that was associated with the tumorigenesis and prognosis of PTC (39). Therefore, we hypothesized that carcinoma-related outcomes due to changes in AS may involve these pathways.

SFs are the main regulators of AS events and influence splicing sites by recognizing and binding precursor mRNAs. In our study, we identified five SFs related to the prognosis of PTC patients. KHSRP was reported to be oncogenic in non-small lung cancer, colorectal cancer and PTC (40–42). Overexpression of KHSRP activated IFN-αJAK-STAT1 signaling pathway and induced lung cancer cell invasion and metastasis (40). KHSRP might be a target mRNA regulated by the STAU1-mediated mRNA decay (SMD) pathway in PTC; however, the detailed mechanism is unclear (41). NOVA2, a key AS regulator of vascular morphogenesis, was overexpressed in lung carcinoma but its expression was negatively correlated with the prognosis of PTC patients in our analysis (43, 44). Finally, an obvious trend for SF-AS correlation network that the most of favorable prognostic AS events were positively correlated with the tumor suppressor SFs, while negatively correlated with oncogenic SFs expression, however, there was opposite relationship between adverse AS events and SFs. The role of 5 SFs in PTC and the regulation of alternative splice events remains to be verified by more experiments. This study provides a deeper understanding of the mechanism of SFs in the regulation and associated splicing patterns, which will help us to further explore the potential mechanism of AS events in the development and progression of PTC.

Although well performance of the present model has been watched, some limitations are inevitably existed in this study. First, this research lacks repeatability data that could be obtained from assessing the established prognostic predictors in other independent cohorts of PTC patients. Second, the prognostic significance of these potential therapeutic targets and diagnostic biomarkers for PTC still needs to be validated with further biological function experiments, mouse model and clinical trial. Nevertheless, our comprehensive analysis of recurrence-related SFs and AS events provides new knowledge and a new perspective for studying intrinsic molecular mechanisms and identifying potential therapeutic strategies for PTC.



Conclusion

We performed a systematic analysis of AS events in PTC and constructed prognostic signatures that can be used to predict the recurrence-free survival rate for PTC patients. The ten-AS event signature involves genes including SPHK2, SEC14L1, SLC22A17, CCL14, NUDT16, FXN, ADIRF, MARK3, TNFSF13 and MTURN, which can affect the prognosis and biological progression of PTC. The identification of prognosis-related AS events and SF regulatory network increases the understanding of the underlying mechanisms of PTC development and provides a new avenue for developing treatment strategies.
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Purpose

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.



Methods

Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.



Results

Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.



Conclusion

The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.
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Introduction

Parotid cancers are responsible for about 70% of malignant tumors in the salivary gland, characterized by pathological/histological differences (1, 2). The present crude incidence of primary cancers of the salivary is 0.9 per 100,000, of which approximately 80% of these cases arise in the parotid salivary gland (3). The prognosis of individuals with PC differs significantly, with some clinical features considerably influencing the disease-free survival (DSF) along with (OS) overall survival. Its mortality rate has remained the same over the past decade, with a 5-year OS of approximately 60% dependent on the histological type, as well as the anatomical site, and specifically the treatment option (4, 5). Presently, the AJCC staging criteria are the main approach to estimating prognosis in individuals with parotid cancer. Nonetheless, remarkable differences in the clinical outcomes among individuals with parotid cancer at the same stage receiving similar treatments have been reported (6). This demonstrates that the AJCC staging method is far from being a perfect system for making a prognosis, as well as treatment decisions. Such a method is only ideal for estimating distant metastasis (M stage), tumor size along with extension (T stage), and lymph node (LN) involvement without taking into account other factors, e.g., histological types, demographical factors, and treatments. Recently, numerous researches have documented the prognosis of common head and neck cancer, such as laryngeal carcinoma (7) and nasopharyngeal carcinoma (8), but few have addressed PC. The survival of individuals with PC has been investigated by other research groups; nonetheless, most investigations are from single institutions lacking the assessment of CSD risk factors. Hence, it is pivotal to conduct more research on PC prognosis.

Surveillance, Epidemiology, and End Results (SEER), a data repository based on populations, represents an estimated 28% of the US population. Therefore, the datasets retrieved from the SEER data repository provide adequate cases of creating prognostic models, particularly for rare cancers (9). The data of PC cases utilized in this research were retrieved from the SEER data repository, which can guarantee the authenticity and sufficiency of the data. Overall, cancer patients frequently experience more than two events, but only one event occurs (10). The events excluding that of interest are termed as competing risks. In traditional survival assessment, censoring of competing risks is done and can be enhanced through competing risk assessment.

A nomogram visualizes the linear prognosis of a disease (11). Each characteristic value on the nomogram plot signifies a score, with the total score mapping the survival estimate. In many studies, survival outcomes are determined using the Kaplan-Meier approach coupled with the Cox proportional hazard, although the population-based approaches are also applied (12, 13). Nonetheless, a significance of the studies analyzed the OS along with the cancer-specific survival assessment, while neglecting the role played by other competing causes of death in the prognosis of nonmetastatic PC. Prolonged survival is dependent on the competing risks of death to a remarkable degree. The competing risk should be considered when forecasting survival outcomes.

In this work, we aimed to construct a competing risk nomogram using data retrieved from the SEER data repository to assist in predicting death linked to PC. The nomogram will help clinicians in making patient-specific decisions in treating PC as well as precise predictions of disease outcomes.



Material and Methods


SEER Database Patients

We retrospectively analyzed data from the SEER data repository spanning from 1992 to 2017. The SEER data repository (https://seer.cancer.gov/) is publicly accessible.

A selection of SEER 13 Regs Custom Data (with additional treatment fields) uploaded in November 2019 (1992–2017 varying) was done. All subjects with primary PC diagnosis (site recode NM7/CS v0204+ Schema of “parotid gland” along with the ICD-O-3 behavior recode of “malignant”) were enrolled in the analysis. Exclusion criteria consisted of PC individuals who were less than 5 years old, those with a survival time of ≤1 month, and patients lacking complete data or a pathological diagnosis.



Our Medical Center Patients

We collected data from 473 individuals with PC who were admitted to the First Affiliated Hospital of Nanchang University (China) spanning from 2006 to 2017. The subjects confirmed by pathology had no history of other malignant tumors. The Ethics Committee of the First Affiliated Hospital of Nanchang University approved this retrospective cohort study. The principles of the Helsinki Declaration were followed with regards to data confidentiality.



Variable Selection

Factors including age, T stage, AJCC stage, N stage, race, M stage, sex, histological type, surgery, radiation, grade, follow-up time, and survival outcomes were retrieved from the SEER data repository. We adopted the X-tile software to determine the optimal threshold values. The age of the subjects at diagnosis was classified into two classes, i.e., ≥70 and <70 years. The AJCC stage was employed as the staging approach. The ICD-O-3 codes were adopted to categorize the PC histological type into two classes, i.e., mucoepidermoid carcinoma (MEC) and none MEC (squamous cell carcinoma, myoepithelial carcinoma, polymorphous adenocarcinoma NOS, adenoid cystic carcinoma, and acinic cell carcinoma, among others) as per the WHO categorization approach. Cancer-distinct survival constituted the primary end-point and included the time beginning from cancer diagnosis to death emerging from PC or a censored risk. Deaths linked to accidents or diseases excluding PC constituted the competition risks.



Statistical Analyses

We conducted all the analysis using R (V.4.0.4: survivial, crrstep, cmprsk, pec, rms, riskRegression, mstate, and foreign packages) to perform the statistical analyses. Two-sided and p < 0.05 defined statistical significance. Firstly, we computed the CIF for 3 to 5 years. We further carried out subgroup analysis between diverse subgroups, and matching CIF curves were created for these variables. Gray’s test was implemented to determine the drastic differences in values of CIF among subgroups. Secondly, patients from the SEER data repository were split at random into a test data set along with the verification data set, with a 7:3 ratio. Patients recruited from our hospital served as the external verification dataset. The test dataset was employed to create the prediction nomogram for estimating of CSD, whereas the verification datasets were employed to validate the efficiency of our nomogram. Univariate coupled with the Lasso Cox regression model assessments were implemented to explore the independent predictors of CSDs in the test dataset. All different variables were further identified by AIC and BIC models. The Fine-Gray proportional hazards model was adopted to develop the competing risk nomogram.

The performance of our nomogram was first explored in the test cohort and subsequently in the verification cohorts with respect to the C-index, AUC, and the calibration curve. The estimation capacity of our nomogram was quantified with the C-index and ranged from 0.5 to 1.0, representing a random probability from indicating no discrimination to indicating optimal discrimination (14). The AUC reflects the overall estimation value for all the thresholds (15), with a perfect prediction value exhibiting an AUC of 1.0. We adopted decision curve analysis (DCA) to determine the clinical net benefit of different probability thresholds for a possible clinical consequence (16) and explored the nomogram efficiency in contrast with the AJCC staging approach visually.




Results


Baseline Features of Participants

As illustrated in Figure 1, we initially retrieved 2,304 patient cases from the SEER data repository. Strict screening was carried out, yielding 1,467 patient cases with PC who were recruited in the study. The subjects’ median age was 50.7 years (5–85) at diagnosis with males accounting for 43.6%. Most participants were white (n = 1,142, 77.8%). Of the 1,467 PC cases, 621 (42.3%) were MEC, consisting of 599 (40.8%) incidences of moderate differentiation. Besides, stage I constituted the most frequent tumor stage (n = 454, 30.9%), followed by stages IV (n = 420, 28.6%), II (n = 334, 22.8%), and III (n = 259, 17.7%). Most PC subjects were classified as T1 (35.0%), followed by T2 (28.9%), T3 (19.9%), and T4 (16.2%). More than half of the PC subjects lacked lymph node (LN) metastases (N0, 72.1%), and most patients did not exhibit distant metastases (M0, 96.4%). A significant number of the PC individuals were treated using surgical therapy (n = 1,375, 93.7%) and 35.5% of the patients received radiotherapy. The detailed demographic, as well as clinical characteristics of the recruited participants, are given in Table 1.




Figure 1 | Flow diagram illustrating recruitment of patients. SEER, Surveillance, Epidemiology, and End Results; PC, parotid cancer.




Table 1 | Basic characteristics of parotid cancer patients in the training, internal validation, and external validation cohorts.





CIF Survival Analysis

The median follow-up time was 43 months (1–95) based on the results of the nomogram (Table 2). In total, 448 patients (30.5%) had died by the end of follow-up, among which 273 (60.9%) patients died from cancer and 175 (39.1%) patients died from other causes. The 3- and 5-year CSD CIF was 21.4% and 24.1%, respectively. The CIF subgroup assessment data exhibited that high CSD majorly occurred in individuals with PC aged ≥70 years (Figure 2A) with advanced AJCC stage (Figure 2B), advanced T stage (Figure 2C), advanced N stage (Figure 2D), along with M1 stage (Figure 2E), as well as the patients who did not undergo surgical treatment (Figure 2F), radiation treatment (Figure 2H), and with undifferentiated/poor grade (Figure 2G) and MEC (Figure 2I). Nevertheless, no considerable difference in CSD was reported and race and sex subgroup assessments (Figures 2J, K).


Table 2 | Cumulative incidence of cancer-specific death in parotid cancer.






Figure 2 | Cumulative incidence predictions of CSD in parotid carcinoma. (A) Age; (B) AJCC stage; (C) T stage; (D) N stage; (E) M stage; (F) surgery; (G) grade; (H) radiation; (I) histologic type; (J) race; (K) sex. Solid line designates CSD; dotted line designates other causes of death. AJCC, American Joint Committee on Cancer; MEC, mucoepidermoid carcinoma.





Nomogram Development

As illustrated in Table 1, the patients from the SEER data repository were stratified at random into a test group (n = 1,035) and a verification group (n = 432) at a ratio of 7:3. We implemented univariate and Lasso Cox assessments in the test dataset to determine independent predictors affecting CDS. A total of nine predictive factors (AJCC stage, surgery, age, T stage, M stage, grade, N stage, histologic, and radiation) were incorporated in the predictive model (Figures 3A, B). All variables were further identified by the multivariate assessment of Fine-Gray proportional subdistribution hazards model. As per the AIC assessment, age, T stage, surgery, N stage, histologic, M stage, grade, as well as radiation were independent predictors influencing cancer-distinct death in individuals with PC of the test cohort (p < 0.05). Following the optimization of the nomogram as per the BIC, we finally incorporated six variables in the estimation model (Table 3). A competing event nomogram was created to assess the 3- and 5-year chances of CSD by using these variables (Figure 4). Each patient’s likelihood of death caused by PC at various time points was computed via this model through the addition of the scores of each of the integrated variables.




Figure 3 | L1-penalized (Lasso) regression model were adopted to determine further predictive variables in test dataset. (A) LASSO coefficient patterns of the features. (B) Ten-time cross-verification for tuning parameter selection in the Lasso model.




Table 3 | Results of univariate and multivariate analyses by Fine-Gray proportional subdistribution hazards model in the training cohort.






Figure 4 | Interactive nomogram for predicting 3- and 5-year likelihoods of CSD in parotid carcinoma. BIC, Bayesian information criterion; MEC, mucoepidermoid carcinoma.





Nomogram Verification

The C-indexes of the developed nomogram for prediction of the likelihood of CSD in the test data set were 0.862, and the internal verification datasets were 0.843 and 0.795 in the external verification. The AUC of the competing risk nomogram model for forecasting 3- and 5-year likelihoods of CSD was 0.851 and 0.861 in the test cohort, 0.834 and 0.843 in the internal verification cohort, and 0.761 and 0.751 in the external verification cohort. The calibration plots demonstrated optimal consistency of the actual likelihood with the nomogram-forecasted likelihoods in the test (Figures 5A, D), as well as verification datasets (Figures 5B, C, E, F). The above data illustrated the good estimation potential along with the high confidence of our nomogram.




Figure 5 | Calibration curves. (A) Three-year and (D) 5-year likelihoods of CSD in the test dataset. (B) Three-year and (E) 5-year likelihoods of CSD in the internal verification dataset. (C) Three-year and (F) 5-year likelihoods of CSD in the external verification dataset. BIC, Bayesian information criterion; AUC, area under the curve.





Decision Curve Analysis

The DCA was carried out in the test, internal verification, and external verification datasets. The estimation model exhibited an elevated net benefit coupled with a wide range of cutoff likelihood in contrast with the AJCC categorization criteria, illustrating that our prognostic model exhibited a high clinical application value (Figures 6A–F).




Figure 6 | Decision curve assessment of the nomogram along with the AJCC staging approach in the estimation of the CSD of individuals with PC at 3 and 5 years in the test cohort (A, D), internal verification (B, E), and external verification (C, F) cohorts.






Discussion

Salivary gland tumors (SGT) are rare, representing less than 3% of all head and neck tumors (17). On the basis of literature, 22%–35% of SGT are malignant, with the percentage of malignant SGT in the parotid being 15%–25% (1, 18). The pathological types of PC are very complex. Different types of tumors have different clinical and imaging manifestations, treatment, and prognosis. Herein, for the first time, a nomogram for the prognosis of persons with PC was created in a competitive risk nomogram and determined more precise indicators. The large-sized samples available in the SEER data repository reduce errors in this research. Relative to prevailing tools for assessing survival outcomes, the developed nomogram ensures that the chosen variables can be directly associated with a prognosis of cancer. Currently, the most widely used prognostic tool for all solid tumors, including salivary gland tumors, is the TNM staging system (19), but this staging system did not include treatment options such as surgery, chemotherapy, and radiotherapy. However, a nomogram can allow individualized examination of patient prognosis since it incorporates numerous variables.

Of the 11 variables determined in this study, these predictors have been proven in other studies (20, 21). Nine (age, AJCC stage, radiation, T stage, M stage, grade, surgery, N stage, and histological type) were established as indicators of CSD in persons with PC via univariate coupled with the Lasso Cox regression model competing risk assessment. Sex and race were excluded in the univariate assessment, illustrating that they do not influence CSD in persons with PC. Assessment of multiple variables using the competing nomogram showed that the AJCC stage was not an independent indicator of patient prognosis. Finally, six variables (age, T stage, M stage, surgery, radiation, and grade) were used to construct the nomogram.

Similar to a study by Sun et al., age was found to independently influence the prognosis of parotid gland mucoepidermoid carcinoma (20). Lyu et al. investigated staging of PC and documented that patient age, favoring 40–60-year-old patients, which is a considerable independent indicator after adjusting for other confounders, might be because older patients have more comorbidities coupled with elevated perioperative risks (22, 23). This finding was congruent with Sun et al. who documented that the prognosis was not remarkably different across races (20) and survival differences between races are not remarkable. Fang et al. documented that sex had no effect on cancer-distinct survival of PC patients, which is congruent with our work (24). The findings also showed that histology type and N stage were independent indicators for PC patients, which is in agreement with previous findings in malignant salivary gland tumor research (25). To prevent overfitting, the aforementioned factors were omitted using PC to improve the performance of the model.

Surgical treatment is the most frequently used therapy for PC at all stages, although according to the guidelines published by the NCCN, surgery is highly recommended for resectable PC (T1–T4a) (26). The data herein demonstrated that surgical therapy could remarkably diminish the tumor-distinct risk of death in individuals with PC; this has been confirmed by most clinicians. However, neck dissection is a controversial subject in parotid malignant tumors. In the presence of a clinically palpable lymph node, there is a consensus on the application of elective neck dissection with a primary parotid surgery (27), some authors support elective neck dissection depending on the tumor histology, size, and grade (28, 29). However, in the study by Ali et al., they suggested that the neck is susceptible to be a target region for metastatic diseases; therefore, complete neck dissection between levels I to V is recommended (30). We established that radiation therapy could remarkably suppress deaths in PC patients, but whether radiotherapy can significantly improve the prognosis of patients is still controversial. In the study by Kaur et al., they believe that postoperative radiotherapy (PORT) has shown a survival benefit in patients with major salivary gland carcinoma (31). For patients with resected T1–2 tumors, the present protocols advocate radiation treatment after operation for individuals with adenoid cystic pathology, close (<1 mm) perineural, or lymphovascular infiltration, or positive margins, lymph node metastasis, as well as intermediate- or high-grade histology (26). In a parotid gland infiltrating ductal carcinoma (IDC) research, they found that PORT only enhanced survival of individuals with parotid gland IDC within T3–4, N1, and TNM III subgroups (32).

Mucoepidermoid carcinoma (MEC), the most prevalent type of PC, constitutes approximately 30–50% of malignant salivary glands (33, 34) However, there is no prognostic analysis of different pathological types of parotid carcinoma. Herein, MEC accounted for 42.3% of all PC cases, and we exhibited that the risk of CSD in persons with MEC was not remarkably higher relative to that in other types of PC such as adenoid cystic carcinoma and polymorphous adenocarcinoma, adenocarcinoma NOS, and myoepithelial carcinoma. This is consistent with the result of Filho OVO et in a retrospective analysis of 193 patients (25). Nevertheless, Baddour et al. and Kokemueller et al. revealed higher survival rates at 5, 10, and 15 years for MEC in relation to other types of PC (35, 36). We think that this should be related to the difference in diagnosis and treatment level between different regions.

Previous investigation on parotid carcinoma based on the SEER data repository focused on incidence, along with survival trends (37, 38), while we focused on creating a prognostic nomogram herein. The clinical therapy of PC and the evaluation of prognosis currently depends on the AJCC staging method. Our prognostic model is suitable for all persons with PC and could be extensively applied in all levels of medical centers. The comprehensive nature of the nomogram may cover the shortcomings of the AJCC staging method, and allow individualized treatment, as well as the precise examination of the prognosis of individuals with PC. Besides, the user-friendly graphic interface of the nomogram could promote the interaction of clinicians with patients. Additionally, a verification data set was utilized for external verification, and the data were drastically congruent with actual survival likelihoods.

However, this research had some shortcomings. In the first place, the SEER data repository lacks some pivotal factors tied to prognosis, including perineural invasion, smoking history, chronic parotitis history, comorbidities, and lack of genetic records of patients. Besides, we adopted the sixth or seventh edition of the AJCC staging method, which lacks two pivotal variables (depth of invasion, as well as an extranodal extension) in contrast with the eighth edition. Moreover, the SEER repository lacks data on tumor volume, which is considered a significant prognostic factor for Salivary gland tumors. Even though this work incorporated the data on chemotherapy and radiotherapy, but the SEER database lacks detailed data on cycles number and doses of chemotherapy, the radiotherapy approaches, and the follow-up treatment after relapse. These variables can also influence the prognosis. Lastly, even though the SEER data repository provided an extensive range of samples for this analysis, errors exist when this database is utilized in the global context. Besides, the data of the external verification are only from a single province in China. It has been reported that even in China, there are different epidemiological differences between the north and the south (1, 39). Therefore larger-sample multicenter study should be conducted to further improve our estimation model and validate its clinical application significance.



Conclusion

We have created a competing risk nomogram for PC patients using the data retrieved from the SEER data repository and carried out external verification to show the precision and reliability of our nomogram. This well-calibrated nomogram could be utilized in making clinical decisions regarding the prognosis as well as personalized treatment of PC patients.
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Background/Objective

We aimed to compare the 10-year survival outcomes of induction docetaxel plus cisplatin and 5-fluorouracil (TPF), docetaxel plus cisplatin (TP), and cisplatin plus 5-fluorouracil (PF) regimens additional to concurrent chemoradiotherapy (CRT) in locoregionally advanced nasopharyngeal carcinoma (NPC).



Methods

Eligible patients with newly diagnosed stage III-IVA NPC were included. Propensity score matching (PSM) was used to balance prognostic covariates. Survival outcomes and toxicities between different groups were compared.



Results

A total of 855 patients between 2009 and 2012 were included, with 395 (46.2%), 258 (30.2%), and 202 (23.6%) receiving TPF plus CRT, TP plus CRT, and PF plus CRT regimens, respectively. After a median follow-up of 111.8 months, multivariate analysis both in the whole cohort and PSM selected 202 pairs showed that TPF plus CRT and TP plus CRT achieved significantly better 10-year overall survival (OS) than PF plus CRT. Sensitivity analysis after excluding patients with T3-4N0 disease demonstrated that TPF plus CRT still achieved significantly better OS than PF plus CRT (HR, 0.580; 95% CI, 0.395-0.852; P = 0.005), while the difference between TP plus CRT and PF plus CRT was marginally significant (HR, 0.712; 95% CI, 0.503-1.008; P = 0.056). With regard to toxicity profile, PF regimen achieved the lowest grade 3–5 toxicities (27.3%).



Conclusion

TPF plus CRT and TP plus CRT were better than PF plus CRT in improving the 10-year OS of patients with stage III-IVA NPC.





Keywords: nasopharyngeal carcinoma, induction chemotherapy, 10-year outcomes, radiotherapy, concurrent chemoradiotherapy (CCRT)



Background

As an aggressive and relatively rare head and neck cancer, nasopharyngeal carcinoma (NPC) has an extremely unbalanced geographical distribution worldwide; it is endemic in Southern China and Southeast Asia but very rare in western countries (1, 2). Different from other head and neck cancers, nondisseminated NPC is cured by radiotherapy. A 10-year overall survival (OS) of 87.1–100% could be achieved in patients with stage I-II disease; however, the corresponding survival outcome of patients with stage III-IVA disease was only 75.5–55.6%, and distant metastasis has come as the main failure patter (3). Unfortunately, more than 80% of patients presented with advanced diseases at initial diagnosis (2, 4). Therefore, how to reduce distant metastasis and improve the therapeutic outcomes of patients with advanced disease have been widely studied.

Induction chemotherapy (IC), usually a combination of two or three cytotoxic drugs, is given before radiotherapy to eliminate clinically undetectable micrometastatic lesions, thereby reducing the rate of distant failure and improving survival. Indeed, several phase III clinical trials conducted in recent years have showed that IC additional to concurrent chemoradiotherapy (CRT) could improve both distant metastasis-free survival (DMFS) and OS (5–9). This evidence strengthened the role of IC in locoregionally advanced NPC, and IC plus CRT was therefore approved as the preferable treatment strategy worldwide for advanced NPC. Despite these advances, the most effective IC regimen, however, is still unknown since various regimens all achieved positive results (5–8, 10, 11). A previously retrospective study uncovered that a triple combination of docetaxel plus cisplatin and 5-fluorouracil (TPF) was better than docetaxel plus cisplatin (TP) and cisplatin plus 5-fluorouracil (PF) regimens in patients with stage III-IVA NPC (excluding T3N0) (12). However, the insufficient follow-up duration (median, 46.1 months) and inclusion of patients who did not receive concurrent chemotherapy made these results inconclusive.

Based on this premise, we conducted this study to compare the 10-year survival outcomes of patients with locoregionally advanced NPC receiving induction TPF, TP, or PF plus CRT in the era of intensity-modulated radiotherapy (IMRT).



Results


Baseline Information of Included Patients

A total of 855 patients treated between April 2009 and December 2012 were included in our study, with 395 (46.2%) receiving TPF plus CRT, 258 (30.2%) receiving TP plus CRT, and 202 (23.6%) receiving PF plus CRT. Baseline information of these patients is shown in Table 1. The whole cohort had a median age of 44 years and a male-to-female ratio of 3.3. The PF plus CRT group had significantly lower percentages of T4 (29.4% vs. 39.3% vs. 35.2%, P = 0.007), N3 (14.7% vs. 20.7% vs. 23.3%, P = 0.173), and stage IVA (41.1% vs. 55.7% vs. 52.0%, P = 0.001) diseases compared with TPF plus CRT and TP plus CRT groups. More patients in the TPF plus CRT group received three or more cycles than in the TP plus CRT and PF plus CRT groups (69.6% vs. 22.3% vs. 26.7%, P < 0.0001). Notably, the TP plus CRT group had the lowest percentage of patients receiving a cumulative cisplatin dose (CCD) ≥ 200 mg/m2 (8.9% vs. 23.0% vs. 21.7%, P < 0.0001). A total of 278 patients received weekly cisplatin/nedaplatin during radiotherapy, with 80 (20.3%), 136 (52.7%), and 62 (29.7%) in the TPF, TP, and PF groups, respectively.


Table 1 | Baseline information of 855 patients receiving different IC regimens.





Treatment Failure Pattern

Up to the last follow-up (August 20, 2021), the median follow-up duration was 111.8 months (range, 4.57–149.63 months) for the whole cohort and 120.9 months (range, 7.43–149.63 months) for those alive. Among the patients survived, 9.6% (56/586) of them were lost to follow-up, and only 5 (0.9%) of the remaining patients were followed for less than 9 years (range, 105.2–107.6 months). A total of 269 (31.6%) deaths were observed, with 124 (31.4%) in the TPF plus CRT group, 78 (38.6%) in the PF plus CRT group, and 67 (26.0%) in the TP plus CRT group. Moreover, 85 (21.5%), 45 (11.4%), and 40 (10.1%) patients in the TPF plus CRT group suffered distant, local, and regional recurrence, respectively. The corresponding numbers were 49 (24.3%), 23 (11.4%), and 20 (9.9%) in the PF plus CRT group, and 45 (17.4%), 20 (7.8%), and 8 (3.1%) in the TP plus CRT group. Intriguingly, 29 (3.4%) patients still survived after disease progression and salvage treatments, with 18 (4.6%) in the TPF plus CRT group, 4 (2.0%) in the PF plus CRT group, and 7 (2.7%) in the TP plus CRT group. Notably, 39 new events, which accounted for 13.1% of all events, occurred after 5 years, with 21 (5.3%) in the TPF plus CRT group, 11 (5.4%) in the PF plus CRT group, and 7 (2.7%) in the TP plus CRT group (Supplementary Table S1).



Survival Outcomes Comparison

The estimated 10-year OS, DFS, DMFS, and LFFS rates were 67.8%, 64.9%, 78.4%, and 83.8% for the whole cohort, respectively. With regard to the three groups, the estimated 10-year survival rates of TPF vs. TP vs. PF were 67.7% vs. 73.5% vs. 60.5% (PTPF vs. TP = 0.153, PTPF vs. PF = 0.058, PPF vs. TP = 0.003) for OS, 63.6% vs. 71.1% vs. 59.2% (PTPF vs. TP = 0.055, PTPF vs. PF = 0.262, PPF vs. TP = 0.007) for DFS, 77.7% vs. 82.3% vs. 74.5% (PTPF vs. TP = 0.209, PTPF vs. PF = 0.39, PPF vs. TP = 0.063) for DMFS, and 81.2% vs. 89.5% vs. 81.8% (PTPF vs. TP = 0.006, PTPF vs. PF = 0.968, PPF vs. TP = 0.015; Supplementary Figure S1) for LFFS. After adjusting for various factors by an adjusted Cox proportional hazards model, TPF plus CRT (OS: HR, 0.672; 95% CI, 0.491–0.920; P = 0.013; DFS: HR, 0.753; 95% CI, 0.544–0.994; P = 0.045) and TP plus CRT (OS: HR, 0.664; 95% CI, 0.478–0.922; P = 0.015; DFS: HR, 0.701; 95% CI, 0.510–0.963; P = 0.029) were associated with significantly better OS and DFS compared with PF plus CRT (Table 2).


Table 2 | Results of multivariate analysis.



We used PSM to balance independent prognostic factors identified above (tumor stage, alcohol intake, age, and gender) and further performed survival analysis in the selected 202 pairs (Supplementary Table S2). Correspondingly, the 10-year OS, DFS, DMFS, and LFFS rates for TPF vs. PF vs. TP were 68.9% vs. 70.3% vs. 60.5% (PTPF vs. TP = 0.83, PTPF vs. PF = 0.068, PPF vs. TP = 0.043), 64.8% vs. 67.6% vs. 59.2% (PTPF vs. TP = 0.585, PTPF vs. PF = 0.219, PPF vs. TP = 0.074), 79.5% vs. 79.3% vs. 74.5% (PTPF vs. TP = 0.929, PTPF vs. PF = 0.269, PPF vs. TP = 0.310), and 81.9% vs. 89.7% vs. 81.8% (PTPF vs. TP = 0.039, PTPF vs. PF = 0.784, PPF vs. TP = 0.021; Figure 1). Results of multivariate analysis revealed that TPF plus CRT (HR, 0.617; 95% CI, 0.426–0.894; P = 0.011) and TP plus CRT (HR, 0.699; 95% CI, 0.498–0.982; P = 0.039) groups were associated with significantly improved OS but marginally significant DFS (TPF plus CRT: HR, 0.701; 95% CI, 0.491–1.002; P = 0.051; TP plus CRT: HR, 0.738; 95% CI, 0.532–1.025; P = 0.07) compared with PF plus CRT (Supplementary Table S3).




Figure 1 | Kaplan-Meier overall survival, disease-free survival, distant metastasis-free survival, and locoregional failure-free survival curves of patients receiving induction TPF, PF, and TP plus CRT in the 202 pairs selected by propensity score matching. TPF, docetaxel plus cisplatin and fluorouracil; PF, cisplatin plus fluorouracil; TP, docetaxel plus cisplatin.





Sensitivity Analysis

We performed sensitivity analysis by excluding stage T3-4N0 disease, which was regarded as low risk of distant metastasis by previous trials (5, 7). In total, 32 patients were excluded, and 189 pairs were selected by PSM from the remaining patients (Supplementary Table S4). Consistent with the results above, TPF plus CRT and TP plus CRT still achieved higher 10-year OS (70.1% vs. 69.3% vs. 60.6%), DFS (65.7% vs. 66.4% vs. 60.2%) and DMFS (79.8% vs. 78.5% vs. 74.4%) rates than PF plus CRT (Figure 2). Multivariate analysis demonstrated a significant difference in OS between TPF plus CRT and PF plus CRT (HR, 0.580; 95% CI, 0.395–0.852; P = 0.005), while this difference between TP plus CRT and PF plus CRT was marginally significant (HR, 0.712; 95% CI, 0.503–1.008; P = 0.056; Supplementary Table S5).




Figure 2 | Kaplan-Meier overall survival, disease-free survival, distant metastasis-free survival, and locoregional failure-free survival curves of patients receiving induction TPF, PF, and TP plus CRT in the 189 pairs of sensitivity analysis. TPF, docetaxel plus cisplatin and fluorouracil; PF, cisplatin plus fluorouracil; TP, docetaxel plus cisplatin.





Toxicity Comparison

Treatment adverse events of different IC regimens are shown in Table 3. As expected, the PF regimen achieved the lowest percentages of grade 3–5 toxicities (27.3%), and the TP regimen had the highest rate of grade 3–5 toxicities, which were mainly grade 3–5 neutropenia (97.1%) and febrile neutropenia (11.8%). This should be due to the application of a higher dose of docetaxel (75 mg/m2). Otherwise, grade 3–5 nonhematologic toxicities were uncommon in the TP group. Compared with the PF regimen, the TPF regimen had higher grade 3–5 neutropenia (35.6% vs. 14.7%, P < 0.001), leukopenia (27.2% vs. 5%, P < 0.001), and mucositis (6.3% vs. 1.3%, P = 0.004). Undoubtedly, docetaxel additional to PF would result in greater toxicities.


Table 3 | Acute toxicity comparison during induction chemotherapy.






Discussion

Our current study reported the 10-year survival outcomes of patients with stage III-IVA NPC receiving different IC regimens plus CRT in the era of IMRT. We found that TPF plus CRT and TP plus CRT achieved significantly better OS than PF plus CRT both in the whole cohort and the selected pairs by PSM. Toxicity analysis showed that the PF regimen had the lowest percentages of grade 3–5 adverse events. To date, our study is the first one to report the 10-year therapeutic outcomes of locoregionally advanced NPC treated by IC plus CRT in the era of IMRT.

Our study only recruited patients receiving induction TPF, TP, and PF regimens because these three regimens have been used most frequently and for the longest time in our center. Their efficacy in locoregionally advanced NPC has also been verified by clinical trials (5, 6, 8–11). Although gemcitabine plus cisplatin (GP) is also effective and may have fewer adverse events (7), the insufficient follow-up duration of patients receiving this regimen precludes them from being enrolled into this study. As previous study showed that two cycles of IC could achieve comparable outcomes as three or more cycles (13), we therefore only recruited patients receiving at least two cycles to reduce the impact of the IC cycle. Consistent with previous findings (13), results of multivariate analysis in our study also did not identify the IC cycle (2 vs. 3-4) as an independent prognostic factor. Another interesting finding was that patients receiving the TP regimen achieved lower CCD dose than those receiving the TPF regimen. The mainly responsible reason may be that a higher dose of docetaxel (75 mg/m2) may reduce patients’ tolerance to concurrent cisplatin/nedaplatin.

Notably, 39 new events occurred 5 years after radiotherapy, accounting for 13.1% of all events. Therefore, intensive follow-up is still needed after 5 years. Among the 39 new events, distant metastasis only accounted for 30.7% and noncancer-related death accounted for 33.3%. These results indicated that distant metastasis was no longer the main cause of treatment failure after 5 years for patients receiving IC plus CRT, and we should pay attention to noncancer-related death, which may be due to treatment-related sequelae.

When analyzing all the 855 patients together, both the TPF plus CRT and TP plus CRT groups achieved significantly better OS and DFS than the PF plus CRT group. However, some comparisons in PSM or sensitivity analysis only showed marginally significant difference. The main reason contributing to this should be the decreased sample sizes, which reduced statistical power in PSM and sensitivity analysis. Generally, induction TPF and TP regimens should be more effective than the PF regimen, which was consistent with the findings of a meta-analysis that taxanes-based IC could decrease the risk of distant metastasis by above 10% for patients with stage IVA disease (14). Moreover, the effect of docetaxel additional to induction PF regimen has also been verified in head and neck cancers (15–18). Different from previous results that TPF was significantly better than TP with regard to DFS and OS endpoints (12), survival endpoints except LFFS did not significantly differ between the TPF plus CRT and TP plus CRT groups. There may be three reasons attributing to this discrepancy. First, the follow-up duration was much longer in our study. Second, patients with stage T3N0 were excluded in that study. Third, patients who did not receive concurrent chemotherapy were also included in that study.

Limitations of our study should also be addressed. First, many potential bias may exist in our retrospective study. We therefore set strict enrollment criteria and balanced various prognostic factors by PSM to reduce bias. Moreover, we performed sensitivity analysis to further validate our findings. Second, toxic data during IC are unavailable for most of the patients due to the retrospective nature of our study. We therefore extracted these data from previously published clinical trials. To minimize the impact of ethnic differences on adverse events, we only recruited the three clinical trials (5, 6, 10) conducted in the endemic area (mainly South China). Despite this, this result should be interpreted discreetly. Third, the relatively small sample size, especially in PSM and sensitivity analysis, precluded the production of significant differences for some endpoints, although the survival curves showed obvious differences.



Materials and Methods


Patient Inclusion Criteria

We retrospectively reviewed the data of patients with newly diagnosed NPC who were treated at our center between 2009 and 2012. Patients would be enrolled for this study after meeting the following criteria: (1) newly diagnosed stage III-IVA disease; (2) receiving IC plus CRT; (3) IC regimens were TPF, TP, and PF and IC cycles ≥ 2; (4) concurrent chemotherapy regimen should be single-agent platinum; (5) treated by IMRT and received a total dose of at least 66 Gy; (6) no other malignancy. Notably, we included patients receiving TPF, TP, and PF regimens because they were most frequently used at that time. Moreover, the efficacy of these regimens has also been validated in randomized clinical trials. The protocol of our study was approved by the Research Ethics Committee of our center, and all the analyses were carried out in accordance with the Declaration of Helsinki. Written informed consent was obtained from all patients.



Pretreatment Staging Workup

Potential patients with indicated symptoms in our hospital would receive routine staging workup including physical examination, enhanced magnetic resonance imaging (MRI) of head and neck, chest computed tomography (CT) or X-ray, abdominal CT or sonography, and whole body bone scan. 18F-FDG positron emission tomography (PET)-CT would also be recommended to patients who presented with massive lymph node or bilateral cervical lymph node metastasis. Patients were restaged by one radiologist (LT) and one radiation oncologist (YH) separately, both with more than 10-year experience in the diagnosis and treatment of NPC at our center, based on the imaging data and the eighth edition of the International Union against Cancer/American Joint Committee on Cancer (UICC/AJCC) manual (19).



Induction and Concurrent Chemotherapy Treatment

IC was delivered every 3 weeks for two to four cycles, and the regimens consisted of docetaxel (75 mg/m2, d1) plus cisplatin (75 mg/m2, d1), cisplatin (80 mg/m2 d1) plus 5-fluorouracil (1,000 mg/m2 d1-d5, 120 h infusion), or docetaxel (60–75 mg/m2, d1) plus cisplatin (60–75 mg/m2, d1) and 5-fluorouracil (600–750 mg/m2, d1-d5, 120-h infusion). Concurrent chemotherapy was delivered during radiotherapy and consisted of weekly cisplatin/nedaplatin (30–40 mg/m2, d1) or tri-weekly cisplatin/nedaplatin (80–100 mg/m2, d1).



Radiotherapy

All the patients received pre-radiotherapy evaluation to exclude any contraindication. IMRT was delivered using the simultaneous integrated boost (SIB) technique. The prescribed doses were 66–70 Gy at 2.0–2.27 Gy per fraction to the planning target volume (PTV) of nasopharynx lesion and metastatic neck lymph nodes, 56–60 Gy at 30–35 fractions to the PTV of clinically high-risk regions, and 50–56 Gy at 30–35 fractions to the PTV of clinically low-risk regions. Radiotherapy fractions were delivered once per day from Monday to Friday each week.



Toxicity of Induction Chemotherapy

Due to the retrospective nature of our study, IC-related adverse events were not recorded for most of the patients. Therefore, we extracted toxicity data from three previous clinical trials conducted in endemic areas (mainly in South China) (5, 6, 10) to perform indirect comparisons between TPF, TP, and PF regimens.



Follow-Up Strategy and Endpoints

Patients finishing the treatment would be followed according to the institutional follow-up strategies, which included enhanced MRI of head and neck, chest CT or X-ray, abdominal CT or sonography, and whole bone scan (optional) every 3 months during the first 2 years after radiotherapy, every 6 months during the third to fifth years, and annually thereafter. For patients who lived far away from our hospital, we recommended them to receive these imaging workups at local medical centers and they would be followed by telephone. Disease recurrence including local, regional, and distant metastasis (except bone) was diagnosed by pathology. Bone metastasis was mainly confirmed by imaging methods like MRI, CT, or PET-CT.

Endpoints evaluated at our study included OS (time from diagnosis to death), disease-free survival (DFS, time from diagnosis to disease progression including noncancer-related death), distant metastasis-free survival (DMFS, time from diagnosis to first distant failure), and locoregional failure-free survival (LFFS, time from diagnosis to first local or regional recurrence or both).



Statistical Methods

T-test or one-way ANOVA was applied to determine the difference between continuous variables, and chi-square test or Fisher’s exact test was used for categorical variables. Propensity score matching (PSM) (20) was employed to balance covariates (T category, N category, overall stage, gender, age, alcohol intake) between the three groups. Estimated 10-year survival outcomes of OS, DFS, DMFS, and LFFS were obtained from Kaplan-Meier methods, and the differences were compared by log-rank test. Independent prognostic factors and their corresponding hazard ratios (HRs) and 95% confidence intervals (CIs) were identified by the multivariate Cox proportional hazard model. All statistical analyses were conducted using the Stata Statistical Package 12 (StataCorp LP, College Station, TX, USA), and a two-sided P < 0.05 indicated statistical significance.




Conclusion

Based on the 10-year follow-up, our current study reported and compared the efficacy of three IC regimens and uncovered that TPF plus CRT and TP plus CRT were better than PF plus CRT in improving the OS of patients with locoregionally advanced NPC. Further comparisons of TPF or TP with the GP regimen by future studies are needed to identify the optimal treatment strategy for NPC patients with locoregionally advanced disease.



Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



Ethics Statement

The studies involving human participants were reviewed and approved by Sun Yat-sen University Cancer Center. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.



Author Contributions

HP and YH contributed to study design. BC, SH, and LT collected the study data. HP, BC, and YH contributed to data analysis and interpretation. BC and SH contributed to manuscript writing. HP and YH reviewed the manuscript and contributed to quality control. All authors contributed to the article and approved the submitted version.



Funding

This work was funded by the National Natural Science Foundation of China (82002981).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.765378/full#supplementary-material



References

1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, and Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68:394–424. doi: 10.3322/caac.21492

2. Chen, YP, Chan, ATC, Le, QT, Blanchard, P, Sun, Y, and Ma, J. Nasopharyngeal Carcinoma. Lancet (2019) 394:64–80. doi: 10.1016/S0140-6736(19)30956-0

3. Wu, LR, Liu, YT, Jiang, N, Fan, YX, Wen, J, Huang, SF, et al. Ten-Year Survival Outcomes for Patients With Nasopharyngeal Carcinoma Receiving Intensity-Modulated Radiotherapy: An Analysis of 614 Patients From a Single Center. Oral Oncol (2017) 69:26–32. doi: 10.1016/j.oraloncology.2017.03.015

4. Mao, YP, Xie, FY, Liu, LZ, Sun, Y, Li, L, Tang, LL, et al. Re-Evaluation of 6th Edition of AJCC Staging System for Nasopharyngeal Carcinoma and Proposed Improvement Based on Magnetic Resonance Imaging. Int J Radiat Oncol Biol Phys (2009) 73:1326–34. doi: 10.1016/j.ijrobp.2008.07.062

5. Sun, Y, Li, WF, Chen, NY, Zhang, N, Hu, GQ, Xie, FY, et al. Induction Chemotherapy Plus Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase 3, Multicentre, Randomised Controlled Trial. Lancet Oncol (2016) 17:1509–20. doi: 10.1016/S1470-2045(16)30410-7

6. Cao, SM, Yang, Q, Guo, L, Mai, HQ, Mo, HY, Cao, KJ, et al. Neoadjuvant Chemotherapy Followed by Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase III Multicentre Randomised Controlled Trial. Eur J Cancer (2017) 75:14–23. doi: 10.1016/j.ejca.2016.12.039

7. Zhang, Y, Chen, L, Hu, GQ, Zhang, N, Zhu, XD, Yang, KY, et al. Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. N Engl J Med (2019) 381:1124–35. doi: 10.1056/NEJMoa1905287

8. Frikha, M, Auperin, A, Tao, Y, Elloumi, F, Toumi, N, Blanchard, P, et al. A Randomized Trial of Induction Docetaxel-Cisplatin-5FU Followed by Concomitant Cisplatin-RT Versus Concomitant Cisplatin-RT in Nasopharyngeal Carcinoma (GORTEC 2006-02). Ann Oncol (2018) 29:731–6. doi: 10.1093/annonc/mdx770

9. Yang, Q, Cao, SM, Guo, L, Hua, YJ, Huang, PY, Zhang, XL, et al. Induction Chemotherapy Followed by Concurrent Chemoradiotherapy Versus Concurrent Chemoradiotherapy Alone in Locoregionally Advanced Nasopharyngeal Carcinoma: Long-Term Results of a Phase III Multicentre Randomised Controlled Trial. Eur J Cancer (2019) 119:87–96. doi: 10.1016/j.ejca.2019.07.007

10. Hui, EP, Ma, BB, Leung, SF, King, AD, Mo, F, Kam, MK, et al. Randomized Phase II Trial of Concurrent Cisplatin-Radiotherapy With or Without Neoadjuvant Docetaxel and Cisplatin in Advanced Nasopharyngeal Carcinoma. J Clin Oncol (2009) 27:242–9. doi: 10.1200/JCO.2008.18.1545

11. Li, WF, Chen, NY, Zhang, N, Hu, GQ, Xie, FY, Sun, Y, et al. Concurrent Chemoradiotherapy With/Without Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: Long-Term Results of Phase 3 Randomized Controlled Trial. Int J Cancer (2019) 145:295–305. doi: 10.1002/ijc.32099

12. Peng, H, Tang, LL, Chen, BB, Chen, L, Li, WF, Mao, YP, et al. Optimizing the Induction Chemotherapy Regimen for Patients With Locoregionally Advanced Nasopharyngeal Carcinoma: A Big-Data Intelligence Platform-Based Analysis. Oral Oncol (2018) 79:40–6. doi: 10.1016/j.oraloncology.2018.02.011

13. Peng, H, Chen, L, Li, WF, Zhang, Y, Liu, LZ, Tian, L, et al. Optimize the Cycle of Neoadjuvant Chemotherapy for Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy: A Propensity Score Matching Analysis. Oral Oncol (2016) 62:78–84. doi: 10.1016/j.oraloncology.2016.10.014

14. Zhang, LN, Gao, YH, Lan, XW, Tang, J, OuYang, PY, and Xie, FY. Effect of Taxanes-Based Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Large Scale Propensity-Matched Study. Oral Oncol (2015) 51:950–6. doi: 10.1016/j.oraloncology.2015.07.004

15. Posner, MR, and Lefebvre, JL. Docetaxel Induction Therapy in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Br J Cancer (2003) 88:11–7. doi: 10.1038/sj.bjc.6600685

16. Posner, MR, Hershock, DM, Blajman, CR, Mickiewicz, E, Winquist, E, Gorbounova, V, et al. Cisplatin and Fluorouracil Alone or With Docetaxel in Head and Neck Cancer. N Engl J Med (2007) 357:1705–15. doi: 10.1056/NEJMoa070956

17. Vermorken, JB, Remenar, E, van Herpen, C, Gorlia, T, Mesia, R, Degardin, M, et al. Cisplatin, Fluorouracil, and Docetaxel in Unresectable Head and Neck Cancer. N Engl J Med (2007) 357:1695–704. doi: 10.1056/NEJMoa071028

18. Pointreau, Y, Garaud, P, Chapet, S, Sire, C, Tuchais, C, Tortochaux, J, et al. Randomized Trial of Induction Chemotherapy With Cisplatin and 5-Fluorouracil With or Without Docetaxel for Larynx Preservation. J Natl Cancer Inst (2009) 101:498–506. doi: 10.1093/jnci/djp007

19. Pan, JJ, Ng, WT, Zong, JF, Chan, LL, O'Sullivan, B, Lin, SJ, et al. Proposal for the 8th Edition of the AJCC/UICC Staging System for Nasopharyngeal Cancer in the Era of Intensity-Modulated Radiotherapy. Cancer (2016) 122:546–58. doi: 10.1002/cncr.29795

20. Austin, PC. The Relative Ability of Different Propensity Score Methods to Balance Measured Covariates Between Treated and Untreated Subjects in Observational Studies. Med Decis Making (2009) 29:661–77. doi: 10.1177/0272989X09341755




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Peng, Chen, He, Tian and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 15 October 2021

doi: 10.3389/fonc.2021.720835

[image: image2]


MicroRNA-483-5p Predicts Poor Prognosis and Promotes Cancer Metastasis by Targeting EGR3 in Nasopharyngeal Carcinoma


Xi-Zhao Li 1†, Yi-Jun Tu 2†, Ting Zhou 1, Jiang-Bo Zhang 1, Ruo-Wen Xiao 1, Da-Wei Yang 1, Pei-Fen Zhang 1, Peng-Tao You 2* and Xiao-Hui Zheng 1*


1 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China, 2 Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China




Edited by: 

Yong Yin, Shandong Cancer Hospital, China

Reviewed by: 

Michael Kharouta, University Hospitals Seidman Cancer Center, United States

Hongxing Liu, First Affiliated Hospital of Guangzhou Medical University, China

Yong-Chao Qiao, Guilin Medical University, China

*Correspondence: 

Peng-Tao You
 tptyou@hbtcm.edu.cn

Xiao-Hui Zheng
 zhengxh@sysucc.org.cn


†These authors have contributed equally to this work


Specialty section: 
 This article was submitted to Head and Neck Cancer, a section of the journal Frontiers in Oncology


Received: 05 June 2021

Accepted: 28 September 2021

Published: 15 October 2021

Citation:
Li X-Z, Tu Y-J, Zhou T, Zhang J-B, Xiao R-W, Yang D-W, Zhang P-F, You P-T and Zheng X-H (2021) MicroRNA-483-5p Predicts Poor Prognosis and Promotes Cancer Metastasis by Targeting EGR3 in Nasopharyngeal Carcinoma. Front. Oncol. 11:720835. doi: 10.3389/fonc.2021.720835




Background

MicroRNAs, as small non-coding RNAs, play an important role in tumorigenesis. MiR-483-5p was found to have a significant increase as a diagnostic biomarker of nasopharyngeal carcinoma (NPC), not only in plasma from NPC patients but also in tumor cell lines and biopsy tissues in our previous study. However, its function and mechanism in NPC are still unclear.



Methods

Tissue microarray including 178 primary NPC and 35 adjacent non-cancerous nasopharyngeal mucosal tissues was used to further validate the overexpression of miR-483-5p. Wound healing and invasion assays were conducted to verify its biological function. RNA sequencing (RNA-seq) and dual-luciferase reporter assay was performed to explore its target, and it was verified in fresh biopsy tissues from 23 NPC patients and 9 patients with chronic nasopharyngitis.



Results

MiR-483-5p was highly expressed in NPC tissues than in adjacent non-cancerous tissues. It was found to have a significant correlation with poor overall survival (OS) [hazard ratio (HR) = 2.89, 95% confidence interval (CI) = 1.00–8.35, p = 0.041] and progression-free survival (PFS) (HR = 1.95, 95%CI = 1.06–3.60, p = 0.029) of NPC patients. Silencing of its expression inhibited the migratory and invasive capacities of NPC cells in vitro. EGR3 (early growth response 3) was identified as a direct target, and inhibiting miR-483-5p expression markedly enhanced the expression of EGR3 at both the mRNA and protein levels. Besides, a significant decrease of EGR3 expression was found in fresh biopsy tissues from NPC patients, in contrast to miR-483-5p expression. Furthermore, directly decreasing the expression of EGR3 could enhance the migration and invasion of NPC cells.



Conclusion

The newly identified miR-483-5p/EGR3 pathway provides further insights into the development and metastasis of NPC and may provide a potential therapeutic target for NPC treatment in order to improve survival of NPC patients.
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Introduction

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy. Globally, the highest incident of NPC is found in southern China and southeastern Asia, where the annual incidence is about 20–50 cases per 100,000 people (1, 2). Previous studies have demonstrated that genetic susceptibility, endemic environmental factors, and Epstein–Barr virus (EBV) infection constitute the three etiological contributors to NPC (3). Although the overall survival rate is approximately 90% in patients with early clinical stage after therapy, unfortunately, most patients are diagnosed with advanced stage at their first visit, and the survival rate decreases to less than 50% (4). Recurrence and metastasis, especially high metastasis, are the major reasons for treatment failure (5). Therefore, there is a great need to fully disclose the molecular mechanism underlying the recurrence and metastasis of NPC.

MicroRNAs (miRNAs) are non-coding RNA molecules, about 19–25 nucleotides in length, negatively regulating gene expression at the posttranscriptional level through base paring with the 3′ untranslated region (3′-UTR) of the messenger RNA (mRNA) transcripts (6). In tumor biology, many studies have proven the importance of miRNAs in promoting tumor growth, metastasis, angiogenesis, and immune evasion through controlling the expressions of their target genes (7, 8). Besides, miRNAs have been developed as important biomarkers in predicting tumor prognosis (9). They provide new therapeutic targets in supporting personalized tumor therapy.

In NPC, certain amounts of valuable miRNAs have been identified in previous studies (10, 11). Some miRNAs have low expressions in tumor tissues and act as tumor suppressor genes, while some other miRNAs are highly expressed and act as oncogenes. They play important roles in the pathogenesis of NPC by regulating specific target genes that are involved in various cellular processes and pathways. The potential utility of some miRNAs as prognostic biomarkers has also been discussed (12, 13). Because of the deep influence of EBV infection, some EBV-related miRNAs have also been found to play roles in NPC (14–16). Despite great achievements having been reached, discovering more functional miRNAs is still necessary to help fully understand the mechanism of occurrence and development of NPC.

In our previous study, miR-483-5p was found to be highly expressed in plasma from NPC patients, showing its potential application in the diagnosis of NPC. Furthermore, its high expression was also validated in tumor cell lines and frozen biopsy tissues, indicating its role in causing NPC (17). In this study, the mechanism of miR-483-5p in promoting NPC was focused on. Firstly, miR-483-5p was found to have potential application in the prediction of poor prognosis. Secondly, it exerted a function in the promotion of metastasis by enhancing tumor migration and invasion. Finally, EGR3 (early growth response 3) was identified as a functional target gene and validated by the luciferase reporter assay. Consistent with the effect of a high expression of mir-483-5p, silencing of EGR3 could enhance the migration and invasion of NPC cell lines. The newly identified miR-483-5p/EGR3 pathway expands our understanding of the role of mir-483-5p and may provide prognostic indicators and a novel therapeutic target for the treatment of NPC.



Materials and Methods


Cell Lines and Clinical Specimens

Human NPC cell lines (CNE-1 and 5-8F) were maintained in RPMI-1640 (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand Island, NY, USA). Formalin-fixed paraffin-embedded tissues of 178 primary NPC tissues and 35 adjacent non-cancerous nasopharyngeal mucosal tissues were included in the NPC tissue microarray. The detailed characteristics of the study population are presented in Supplementary Table S1. Besides, 32 fresh biopsy tissues from 23 NPC patients and nine patients with chronic nasopharyngitis were used for the detection of EGR3. The characteristics of these patients are presented in Supplementary Table S2. The biopsy tissues were collected at the time of diagnosis and were preserved using RNAlater (Invitrogen) in a −80°C cryogenic refrigerator before use. All samples were collected from Sun Yat-sen University Cancer Center (SYSUCC; Guangzhou, China) and reviewed by pathologists to confirm the diagnosis. The research protocols were approved by the Institutional Ethical Review Board of Sun Yat-sen University Cancer Center, and informed consent was obtained from each patient.



RNA Extraction, Reverse Transcription, and Quantitative RT-PCR

Total RNA from cell lines and fresh biopsy tissues was extracted with TRIzol (Invitrogen) according to the manufacturer’s instructions. Complementary DNA (cDNA) was synthesized with the PrimeScript RT Reagent Kit (Takara, Tokyo, Japan). GAPDH was used as the internal control for the quantification of EGR3. Quantitative RT-PCR was carried out on the Roche LightCycler®480 96 Real-Time PCR platform, and gene expression was quantified using the 2−ΔΔCT method.



In Situ Hybridization

In situ hybridization (ISH) was conducted on the tissue microarray, which included 178 primary NPC tissues and 35 adjacent non-cancerous nasopharyngeal mucosal tissues. MiR-483-5p expression was detected by the digoxigenin (DIG)-labeled locked nucleic acid (LNA)-based probe (Qiagen, Hilden, Germany). Washing and scanning were carried out according to the manufacturer’s protocols. The sections were scored independently by two pathologists, and the staining index was generated as the product of the staining intensity (0, no staining; 1, weak, light yellow; 2, moderate, yellow brown; 3, strong, brown) and the proportion of positive cells (1, 0%–25%; 2, 26%–50%; 3, 51%–75%; 4, 76%–100%).



Vectors and Transfection

The miRNA inhibitor, scrambled negative control (NC) oligonucleotides, and EGR3 small interfering RNA (siRNA) were purchased from RiBoBio (Guangzhou, China). Transient transfection was performed using Lipofectamine 2000 (Invitrogen) in OPTI-MEM media according to the manufacturer’s protocol.



Wound Healing and Invasion Assays

Cell migration was measured with a scratch wound healing assay. Transfected 5-8F cells were seeded into six-well plates, subjected to serum starvation for 24 h in serum-free media, then an artificial wound was created in the confluent cell monolayer using a 200-μl pipette tip. Images were taken at 0 and 24 h using an inverted microscope. For invasion assays, 5 × 104 cells were placed into a Matrigel-coated Transwell chamber (BD Biosciences, Wokingham, UK) with an 8-μm pore size. The non-invading cells in the bottom of the chamber were fixed with 100% methanol and stained with crystal violet. The experiments were performed in triplicate.



Luciferase Reporter Assay

The EGR3 wild-type (Wt) and mutant (Mt) 3′-UTR sequences were synthesized and sub-cloned into the psiCHECK luciferase reporter plasmid (Promega, Madison, WI, USA). 5-8F was seeded into a 12-well plate at a density of 5 × 106 and each recombinant luciferase reporter plasmid and the miR-483-5p mimic were co-transfected using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions. The psiCHECK promoter vector was used as the control, and the pRL-SV40 Renilla luciferase vector (Promega) was used to normalize the activity of firefly luciferase. Twenty-four hours later, the luciferase activity in each well was detected using the Dual-Luciferase Reporter Assay System (Promega).



Western Blot

Total protein was extracted from cultured cells using RIPA buffer containing phenylmethanesulfonyl fluoride (PMSF) and quantified using a bicinchoninic acid (BCA) protein assay kit (Beyotime, Haimen, China). Protein lysates were subjected to SDS-PAGE and transferred onto polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA), followed by incubation first with an EGR3 antibody (Invitrogen) and then with a secondary antibody. β-actin antibody was used as the loading control, and the bands were detected by enhanced chemiluminescence.



Treatment and Follow-Up

All patients involved in the tissue array were treated following the routine practice of SYSUCC. Patients were followed up every 3 months during the first 2 years, semi-annually during years 3–5, and annually thereafter until death or loss to follow-up. Our primary endpoint was overall survival (OS; time from NPC diagnosis to death from any cause or censored at the date of last follow-up) and the secondary endpoint was progression-free survival (PFS; time from NPC diagnosis to the first local regional recurrence, or distant metastasis, or death from any cause, or censored at the date of last follow-up).



Statistical Analysis

Data are presented as the mean ± SD. Student’s t-test was used for comparisons between groups. Univariate and multivariate logistic regressions were performed to assess the associations between the clinical characteristics and the ISH scores. For survival analyses, survival curves were depicted using the Kaplan–Meier method and compared using the log-rank test. Multivariate Cox regression analyses including age, gender, American Joint Committee on Cancer (AJCC) stage, and the ISH sores were performed. All statistical analysis was performed using R software, version 4.0.2 (http://www.r-project.org), and a two-sided p-value <0.05 was considered statistically significant.




Results


Overexpression of miR-483-5p Was Associated With Poor Prognosis in NPC Patients

High expressions of miR-483-5p were found in the plasma, tumor cell lines, and frozen tumor tissues from NPC patients in our previous study. To further validate its high expression, the expression level of miR-483-5p was determined using ISH in paraffin-embedded tissue microarray, which contained 178 NPC tissues and 35 non-cancerous nasopharyngeal mucosal tissues. The results showed that the ISH scores of miR-483-5p were significantly higher in tumor tissues than those in non-tumor tissues (p < 0.0001) (Figure 1A). An optimal cutoff value (COV) (ISH score = 7) for high and low miR-483-5p expressions was determined (Figure 1B), and 59 of the 178 (33.2%) samples were classified as high-miR-483-5p-expressing tissues (ISH scores >7). Further survival analysis established that NPC patients with a high miR-483-5p expression had significantly poorer OS (p = 0.041) (Figure 1C) and PFS (p = 0.029) (Figure 1D). Furthermore, multivariate Cox regression analysis found that miR-483-5p expression was an independent prognostic factor for PFS (HR = 1.87, 95%CI = 1.01–3.45, p = 0.046) (Supplementary Table S3). However, no significant correlations were found between miR-483-5p and any other clinical features (Supplementary Table S4). These results suggest that the expression level of miR-483-5p is correlated with clinical outcomes and may be a promising prognostic biomarker in NPC patients.




Figure 1 | Overexpression of miR-483-5p was associated with poor prognosis in nasopharyngeal carcinoma (NPC) patients. (A) In situ hybridization (ISH) scores in NPC tissues compared with non-tumor tissues. (B) ISH staining of miR-483-5p in representative NPC cases with low and high miR-483-5p expressions (magnification, ×200 and ×400). (C, D) Survival curves for patients with NPC according to the ISH scores. ***P < 0.001.





MiR-483-5p Promoted NPC Cell Migration and Invasion In Vitro

To determine whether ectopic expression of miR-483-5p could affect the migration and invasion abilities of NPC cells in vitro, wound healing and invasion assays were performed in the 5-8F and CNE-1 tumor cell lines. Because of its high expression, interfering with the miR-483-5p expression was adopted in this study. In the scratch wound healing assays, it was shown that 5-8F and CNE-1 cells transfected with the miR-483-5p inhibitor both migrated much more slowly than those transfected with the miR-Ctrl and NC (Figure 2A). The invasion assays showed that transfection of the miR-483-5p inhibitor significantly reduced the invasion abilities of 5-8F and CNE-1 cells (Figure 2B). These results suggest that the high expression of miR-483-5p promoted NPC cell migration and invasion. However, change of cell proliferation was not observed (data not shown).




Figure 2 | MiR-483-5p promoted the migration and invasion of nasopharyngeal carcinoma (NPC) cells in vitro. (A) Cell migration ability measured by the scratch wound healing assay. (B) Cell invasion ability measured by Boyden chamber assays with Matrigel. *p < 0.05, **p < 0.01, ***p < 0.001.





EGR3 Was a Direct Target of miR-483-5p in 5-8F NPC Cell Line

To further explore the molecular mechanism by which miR-483-5p exerts its biological function, whole-transcriptome sequencing assays were performed in the Majorbio cloud platform (https://cloud.majorbio.com). There were 101 genes with significant differences (adjusted p < 0.05). According to the fold change, seven genes, namely, CCL5, S100A8, FGF21, S100P, WNT6, CEBPE, and EGR3, were selected as the candidate targets of miR-483-5p (Supplementary Table S5). Afterwards, EGR3 was predicted as a potential target gene of miR-483-5p, performed using RNA22Sites (https://cm.jefferson.edu/rna22/Interactive/). To confirm whether EGR3 was negatively regulated by miR-483-5p, luciferase reporter vectors were constructed containing the Wt or Mt miR-483-5p target sequences of the EGR3 3′-UTR (Figure 3A). Overexpression of miR-483-5p significantly inhibited the luciferase activity of the Wt EGR3 3′-UTR reporter gene, but not the Mt reporter gene (Figure 3B). In addition, it was further found that the inhibition of miR-483-5p expression increased the expression of EGR3 at both the protein and mRNA levels (Figures 3C, D, respectively) in cell lines. These results demonstrate that EGR3 is a direct target gene of miR-483-5p.




Figure 3 | EGR3 was a direct target of miR-483-5p in nasopharyngeal carcinoma (NPC) cell lines. (A) Wild-type (Wt) or mutant (Mt) target sequences of the EGR3 mRNA 3′-UTR. (B) The luciferase reporter assay was performed in 5-8F cells transfected with the psiCHECK luciferase reporter plasmid containing the Wt 3′-UTR of EGR3, Mt 3′-UTR of EGR3, a miR-483-5p mimic, and the negative control. (C) Western blot assay of the protein level of EGR3 in 5-8F cells after transfection with the miR-483-5p inhibitor. (D) Relative quantification of the mRNA expression of EGR3 by quantitative RT-PCR in 5-8F cells after transfection with the miR-483-5p inhibitor.*p < 0.05, ***p < 0.001.





EGR3 Was Decreased in NPC Clinical Specimens and Its Decrease Could Enhance NPC Cell Migration and Invasion In Vitro

The mRNA expression level of EGR3 was further measured in fresh biopsy tissues containing 23 NPC tissues and nine non-cancerous nasopharyngeal mucosal tissues by quantitative PCR (q-PCR). As expected, the results showed that EGR3 was significantly downregulated in tumor tissues compared with non-tumor tissues (p = 0.0002) (Figure 4A). As the inhibition of miR-483-5p has been shown to decrease the migration and invasion of NPC cells, we supposed that inhibiting the expression of EGR3, being a target gene of miR-483-5p, might play an opposite role in NPC. To test this hypothesis, endogenous EGR3 in 5-8F cells was silenced by the EGR3-specific siRNA oligo (Figure 4B). In the wound healing assays, 5-8F cells transfected with siEGR3 migrated faster than those transfected with scrambled siRNA control and NC (Figure 4C). In the invasion assays, transfection with siEGR3 significantly increased the invasion ability of 5-8F cells (Figure 4D). Taken together, our study demonstrates that EGR3 is a direct and functional mediator of miR-483-5p in NPC.




Figure 4 | EGR3 was decreased in nasopharyngeal carcinoma (NPC) clinical specimens, and its decrease could enhance NPC cell migration and invasion in vitro. (A) Relative expression of EGR3 mRNA by quantitative RT-PCR in NPC tissues compared with non-tumor tissues. (B) Relative expression of EGR3 mRNA by quantitative RT-PCR in 5-8F cells after transfection with siRNA. (C) Cell migration ability measured by the scratch wound healing assay. (D) Cell invasion ability measured by Boyden chamber assays with Matrigel. **p < 0.01.






Discussion

In a previous work, we found that miR-483-5p was overexpressed in the plasma, tumor cell lines, and frozen biopsy tissues from NPC patients. These results highly indicated its role in promoting NPC occurrence (17). However, there are few studies exploring its role in NPC. In this study, our results further showed that a high expression of miR-483-5p was correlated with inferior OS and PFS in NPC patients. It could promote the cell migration and invasion abilities of NPC in vitro by targeting EGR3. These findings provide new insights into the molecular functions of miR-483-5p, which could be used as a promising prognostic biomarker and a potential therapeutic target for NPC patients.

Reliable molecular biomarkers are needed for accurate prognosis. In NPC, some molecular signatures have shown potential application in prognosis prediction. For example, Liu et al. reported that a molecular signature containing five miRNAs (miR-142-3p, miR-29c, miR-26a, miR-30e, and miR-93) was significantly associated with overall, disease-free, and distant metastasis-free survival (12). Another study reported a non-overlapping four-miRNA prognostic signature, namely, miR-34c, miR-140, miR-154, and miR-449b, associated with distant metastasis in NPC (18). Considering their association with tumor metastasis, these abnormally expressed miRNAs may play roles in promoting tumor migration and invasion. Therefore, further validation studies will be essential for driving the use of these miRNAs in clinical practice for NPC. On the one hand, a high expression of miR-483-5p was not only found in the plasma, tumor cell lines, and frozen biopsy tissues from NPC patients in our study but it was also validated in the plasma from NPC patients in another study (19). On the other hand, the prognostic ability of miR-483-5p was observed in other tumors, such as in esophageal cancer (20), adrenocortical cancer (21), and hepatocellular carcinoma (22). These results provide strong evidence for its further application in prognosis prediction. As expected, miR-483-5p was further found to be associated with OS and PFS in NPC in this study (Figure 1).

Consistent overexpression of miR-483-5p was found in multiple types of clinical samples, such as plasma, tumor cell clines, frozen biopsy tissues, and paraffin-embedded tissues from NPC patients. These strongly suggest the potential role of miR-483-5p in NPC. Therefore, further experiments were conducted, and miR-483-5p was found to play a role in regulating tumor cell migration and invasion, but not proliferation (Figure 2). Two representative cell lines, a highly metastatic cell line (5-8F) and a low metastatic cell line (CNE1), were both tested. Inhibition of miR-483-5p significantly reduced the migration and invasion of NPC cell lines. Therefore, it was identified as an oncogene in NPC. However, a different function of miR-483-5p in different cancers has been shown. For example, it was found to promote cancer progression, migration, or invasion in esophageal cancer (20), gastric cancer (23), and prostate cancer (24). In contrast, it was reported to exert a function in inhibiting cell proliferation or metastasis in Wilms’ tumor (25), renal cell carcinoma (26), and glioma (27). However, its effects on the promotion of metastasis in NPC have not been reported previously.

MiRNAs exert their function by interacting with their target genes via base pairing to the 3′-UTR of mRNA (7, 8). Several genes such as KCNQ1 (20), PRM5 (24), MKNK1 (25), and ERK1 (27) have been identified as the target genes of mir-483-5p in esophageal cancer, prostate cancer, Wilms’ tumor, and glioma, respectively. Therefore, it seems that miR-483-5p carried out its function by regulating different target genes. Several candidate genes were identified by RNA sequencing (RNA-seq), and EGR3 was finally validated as the direct target gene (Figure 3). EGR3 is a zinc finger transcription factor and has been studied primarily in the context of neurodevelopment, autoimmunity, inflammation, and angiogenesis (28–32). Recently, several studies have shown that the expression of EGR3 was frequently dysregulated in a variety of cancer types (33, 34). To the best of our knowledge, these observations provide the first evidence of miR-483-5p acting as a repressor of EGR3. The decreased expression of EGR3 was also further validated in fresh biopsy tissues, and its decrease in tumor cell line was also found to promote the migration and invasion capacity (Figure 4). Besides, some other genes were found to be highly expressed, with high mir-483-5p expression, by RNA-seq. Therefore, these genes might be indirectly regulated by mir-483-5p through targeting other genes.

In conclusion, we provided the first evidence that miR-483-5p promoted the migration of NPC cell by targeting EGR3 and may serve as a promising prognostic biomarker and therapeutic target for NPC patients. The causal link between miRNAs and tumor initiation and progression further underscores their potential utility as accurate and reliable biomarkers.



Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.



Ethics Statement

The studies involving human participants were reviewed and approved by the Institutional Ethical Review Board of Sun Yat-sen University Cancer Center. The patients/participants provided written informed consent to participate in this study. Written informed consent was obtained from the individual(s) for the publication of any potentially identifiable images or data included in this article.



Author Contributions

P-TY and X-HZ conceived, designed the study, and wrote the final draft. X-ZL carried out the experiments and drafted the manuscript. Y-JT carried out the experiments. J-BZ, R-WX, and P-FZ assisted in the experiments. TZ and D-WY performed data collection and analysis. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by the National Natural Science Foundation of China (grant no. 81802708), the Key Area Research and Development Program of Guangdong Province, China (grant no. 2019B110233004), the Science and Technology Planning Project of Guangdong Province, China (grant no. 2019B030316031), the Science and Technology Planning Project of Guangzhou City, China (grant nos. 201804020094 and 201904010467), the Fundamental Research Funds for the Central Universities (grant no. 19ykpy185), and the Sino-Sweden Joint Research Program (grant no. 81861138006). The funder had no role in the study design, participant recruitment, data collection, data analysis, data interpretation, or writing of the report.



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.720835/full#supplementary-material



References

1. Torre, LA, Bray, F, Siegel, RL, Ferlay, J, Lortet-Tieulent, J, and Jemal, A. Global Cancer Statistics, 2012. CA Cancer J Clin (2015) 65(2):87–108. doi: 10.3322/caac.21262

2. McDermott, AL, Dutt, SN, and Watkinson, JC. The Aetiology of Nasopharyngeal Carcinoma. Clin Otolaryngol Allied Sci (2001) 26(2):82–92. doi: 10.1046/j.1365-2273.2001.00449.x

3. Young, LS, and Rickinson, AB. Epstein-Barr Virus: 40 Years on. Nat Rev Cancer (2004) 4(10):757–68. doi: 10.1038/nrc1452

4. Razak, AR, Siu, LL, Liu, FF, Ito, E, O'Sullivan, B, and Chan, K. Nasopharyngeal Carcinoma: The Next Challenges. Eur J Cancer (Oxford Engl 1990) (2010) 46(11):1967–78. doi: 10.1016/j.ejca.2010.04.004

5. Zhang, Y, Chen, L, Hu, GQ, Zhang, N, Zhu, XD, Yang, KY, et al. Et Al: Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. N Engl J Med (2019) 381(12):1124–35. doi: 10.1056/NEJMoa1905287

6. Lee, R, Feinbaum, R, and Ambros, V. A Short History of a Short RNA. Cell (2004) 116(2 Suppl):S89–92, 81 p following S96. doi: 10.1016/S0092-8674(04)00035-2

7. Kasinski, AL, and Slack, FJ. Epigenetics and Genetics. MicroRNAs En Route to the Clinic: Progress in Validating and Targeting microRNAs for Cancer Therapy. Nat Rev Cancer (2011) 11(12):849–64. doi: 10.1038/nrc3166

8. Stahlhut, C, and Slack, FJ. MicroRNAs and the Cancer Phenotype: Profiling, Signatures and Clinical Implications. Genome Med (2013) 5(12):111. doi: 10.1186/gm516

9. Condrat, CE, Thompson, DC, Barbu, MG, Bugnar, OL, Boboc, A, Cretoiu, D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells (2020) 9(2):276. doi: 10.3390/cells9020276

10. Spence, T, Bruce, J, Yip, KW, and Liu, FF. MicroRNAs in Nasopharyngeal Carcinoma. Chin Clin Oncol (2016) 5(2):17. doi: 10.21037/cco.2016.03.09

11. Wang, S, Claret, FX, and Wu, W. MicroRNAs as Therapeutic Targets in Nasopharyngeal Carcinoma. Front Oncol (2019) 9:756. doi: 10.3389/fonc.2019.00756

12. Liu, N, Chen, NY, Cui, RX, Li, WF, Li, Y, Wei, RR, et al. Prognostic Value of a microRNA Signature in Nasopharyngeal Carcinoma: A microRNA Expression Analysis. Lancet Oncol (2012) 13(6):633–41. doi: 10.1016/S1470-2045(12)70102-X

13. Zhao, L, Fong, AHW, Liu, N, and Cho, WCS. Molecular Subtyping of Nasopharyngeal Carcinoma (NPC) and a microRNA-Based Prognostic Model for Distant Metastasis. J Biomed Sci (2018) 25(1):16. doi: 10.1186/s12929-018-0417-5

14. Jiang, C, Li, L, Xiang, YQ, Lung, ML, Zeng, T, Lu, J, et al. Epstein-Barr Virus miRNA BART2-5p Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing Rnd3. Cancer Res (2020) 80(10):1957–69. doi: 10.1158/0008-5472.CAN-19-0334

15. Lin, C, Zong, J, Lin, W, Wang, M, Xu, Y, Zhou, R, et al. EBV-miR-BART8-3p Induces Epithelial-Mesenchymal Transition and Promotes Metastasis of Nasopharyngeal Carcinoma Cells Through Activating NF-κb and Erk1/2 Pathways. J Exp Clin Cancer Res CR (2018) 37(1):283. doi: 10.1186/s13046-018-0953-6

16. Gao, W, Wong, TS, Lv, KX, Zhang, MJ, Tsang, RK, and Chan, JY. Detection of Epstein-Barr Virus (EBV)-Encoded microRNAs in Plasma of Patients With Nasopharyngeal Carcinoma. Head Neck (2019) 41(3):780–92. doi: 10.1002/hed.25544

17. Zheng, XH, Cui, C, Ruan, HL, Xue, WQ, Zhang, SD, Hu, YZ, et al. Plasma microRNA Profiling in Nasopharyngeal Carcinoma Patients Reveals miR-548q and miR-483-5p as Potential Biomarkers. Chin J Cancer (2014) 33(7):330–8. doi: 10.5732/cjc.013.10246

18. Bruce, JP, Hui, AB, Shi, W, Perez-Ordonez, B, Weinreb, I, Xu, W, et al. Identification of a microRNA Signature Associated With Risk of Distant Metastasis in Nasopharyngeal Carcinoma. Oncotarget (2015) 6(6):4537–50. doi: 10.18632/oncotarget.3005

19. Wang, HY, Yan, LX, Shao, Q, Fu, S, Zhang, ZC, Ye, W, et al. Profiling Plasma microRNA in Nasopharyngeal Carcinoma With Deep Sequencing. Clin Chem (2014) 60(5):773–82. doi: 10.1373/clinchem.2013.214213

20. Chen, Y, Wang, H, Zhu, S, and Lan, X. miR-483-5p Promotes Esophageal Cancer Progression by Targeting KCNQ1. Biochem Biophys Res Commun (2020) 531(4):615–21. doi: 10.1016/j.bbrc.2020.07.037

21. Soon, PS, Tacon, LJ, Gill, AJ, Bambach, CP, Sywak, MS, Campbell, PR, et al. miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer. Clin Cancer Res an Off J Am Assoc Cancer Res (2009) 15(24):7684–92. doi: 10.1158/1078-0432.CCR-09-1587

22. Tang, S, Chen, Y, Feng, S, Yi, T, Liu, X, Li, Q, et al. MiR-483-5p Promotes IGF-II Transcription and is Associated With Poor Prognosis of Hepatocellular Carcinoma. Oncotarget (2017) 8(59):99871–88. doi: 10.18632/oncotarget.21737

23. Wu, K, Ma, L, and Zhu, J. Mir−483−5p Promotes Growth, Invasion and Self−Renewal of Gastric Cancer Stem Cells by Wnt/β−Catenin Signaling. Mol Med Rep (2016) 14(4):3421–8. doi: 10.3892/mmr.2016.5603

24. Yang, ZG, Ma, XD, He, ZH, and Guo, YX. miR-483-5p Promotes Prostate Cancer Cell Proliferation and Invasion by Targeting RBM5. Int Braz J Urol Off J Braz Soc Urol (2017) 43(6):1060–7. doi: 10.1590/s1677-5538.ibju.2016.0595

25. Liu, K, He, B, Xu, J, Li, Y, Guo, C, Cai, Q, et al. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation and Apoptosis In Vitro and In Vivo. Med Sci monitor Int Med J Exp Clin Res (2019) 25:1459–68. doi: 10.12659/MSM.913005

26. Wang, XG, Zhu, YW, Wang, T, Chen, B, Xing, JC, and Xiao, W. MiR-483-5p Downregulation Contributed to Cell Proliferation, Metastasis, and Inflammation of Clear Cell Renal Cell Carcinoma. Kaohsiung J Med Sci (2020) 37(3):192–9. doi: 10.1002/kjm2.12320

27. Wang, L, Shi, M, Hou, S, Ding, B, Liu, L, Ji, X, et al. MiR-483-5p Suppresses the Proliferation of Glioma Cells via Directly Targeting ERK1. FEBS Lett (2012) 586(9):1312–7. doi: 10.1016/j.febslet.2012.03.035

28. Safford, M, Collins, S, Lutz, MA, Allen, A, Huang, CT, Kowalski, J, et al. Egr-2 and Egr-3 are Negative Regulators of T Cell Activation. Nat Immunol (2005) 6(5):472–80. doi: 10.1038/ni1193

29. Nishimura, Y, Takizawa, R, Koike, S, Kinoshita, A, Satomura, Y, Kawasaki, S, et al. Association of Decreased Prefrontal Hemodynamic Response During a Verbal Fluency Task With EGR3 Gene Polymorphism in Patients With Schizophrenia and in Healthy Individuals. NeuroImage (2014) 85 Pt 1:527–34. doi: 10.1016/j.neuroimage.2013.08.021

30. Liu, D, Evans, I, Britton, G, and Zachary, I. The Zinc-Finger Transcription Factor, Early Growth Response 3, Mediates VEGF-Induced Angiogenesis. Oncogene (2008) 27(21):2989–98. doi: 10.1038/sj.onc.1210959

31. Li, S, Miao, T, Sebastian, M, Bhullar, P, Ghaffari, E, Liu, M, et al. The Transcription Factors Egr2 and Egr3 are Essential for the Control of Inflammation and Antigen-Induced Proliferation of B and T Cells. Immunity (2012) 37(4):685–96. doi: 10.1016/j.immuni.2012.08.001

32. Baron, VT, Pio, R, Jia, Z, and Mercola, D. Early Growth Response 3 Regulates Genes of Inflammation and Directly Activates IL6 and IL8 Expression in Prostate Cancer. Br J Cancer (2015) 112(4):755–64. doi: 10.1038/bjc.2014.622

33. Liao, F, Ji, MY, Shen, L, Qiu, S, Guo, XF, and Dong, WG. Decreased EGR3 Expression is Related to Poor Prognosis in Patients With Gastric Cancer. J Mol Histol (2013) 44(4):463–8. doi: 10.1007/s10735-013-9493-8

34. Salotti, J, Sakchaisri, K, Tourtellotte, WG, and Johnson, PF. An Arf-Egr-C/Ebpβ Pathway Linked to Ras-Induced Senescence and Cancer. Mol Cell Biol (2015) 35(5):866–83. doi: 10.1128/MCB.01489-14




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Li, Tu, Zhou, Zhang, Xiao, Yang, Zhang, You and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 28 October 2021

doi: 10.3389/fonc.2021.712788

[image: image2]


Spatial Distribution of Immune Cells in Head and Neck Squamous Cell Carcinomas


Christian Idel 1*†, Julika Ribbat-Idel 2†, Luise Klapper 2, Rosemarie Krupar 3, Karl-Ludwig Bruchhage 1, Eva Dreyer 2, Dirk Rades 4, Christina Polasky 1, Anne Offermann 2, Jutta Kirfel 2, Sven Perner 2,3† and Barbara Wollenberg 5†


1 Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany, 2 Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany, 3 Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany, 4 Department of Radiation Oncology, University of Luebeck, Lübeck, Germany, 5 Department of Otorhinolaryngology, MRI Technical University Munich, Munich, Germany




Edited by: 

Heming Lu, People’s Hospital of Guangxi Zhuang Autonomous Region, China

Reviewed by: 

Maud Kamal, Institut Curie, France

Arutha Kulasinghe, The University of Queensland, Australia

*Correspondence: 

Christian Idel
 Christian.Idel@uksh.de

†These authors have contributed equally to this work

Specialty section: 
 This article was submitted to Head and Neck Cancer, a section of the journal Frontiers in Oncology


Received: 21 May 2021

Accepted: 08 October 2021

Published: 28 October 2021

Citation:
Idel C, Ribbat-Idel J, Klapper L, Krupar R, Bruchhage K-L, Dreyer E, Rades D, Polasky C, Offermann A, Kirfel J, Perner S and Wollenberg B (2021) Spatial Distribution of Immune Cells in Head and Neck Squamous Cell Carcinomas. Front. Oncol. 11:712788. doi: 10.3389/fonc.2021.712788




Background

Head and neck squamous cell carcinomas (HNSCCs) have a very moderate response rate to immune checkpoint inhibitor (ICI) treatment compared to other cancer types. Lacking predictive markers for treatment response, we analyzed the immune status of HNSCC and assessed the spatial distribution of immune cells.



Materials and Methods

Via assessing hematoxylin–eosin (H&E) stains, we divided HNSCCs by the immune cell distribution in hot, cold, and excluded tumors. For each group, each with 10 tumors, we performed serial immunohistochemical (IHC) staining of the immune cell markers, checkpoint molecules, and immune regulators.



Results

The spatial distributions were different for each immune cell type, allocating regulatory T cells (Tregs) and CD11b cells predominantly in the stroma. CD4 and CD8 cells were present either in the tumor stroma or between cancer cells. Interestingly, the expressions of PD-1 (programmed cell death 1 receptor) and PD-L1 (programmed death-ligand 1) were higher in hot tumors in comparison to cold and excluded tumors. The expression of pSMAD [indicating active transforming growth factor beta (TGF-β)] was higher in excluded tumors.



Conclusion

Different immune cell distribution patterns within tumors might be crucial for ICI treatment response since hot tumors have the highest expressions of PD-1 and PD-L1. TGF-β might be a key regulator for immune cell distribution and a promising therapeutic target that determines the formation of hot or excluded immune patterns.





Keywords: HNSCC, immune landscape, spatial distribution, TGF-β, PD-L1, PD-1, immune checkpoint



Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide (1–3). The most common therapeutic options are surgery and/or chemoradiotherapy. But these therapies are often linked to severe side effects that are hard to endure for patients. They suffer from functional impairment such as permanent voice changes or dysphagia. Surgery leads to scars and visible deformations, and a lot of patients are adversely affected by chronic pain. It has been long known that chemoradiotherapy very often leads to xerostomia, fibrosis, and necrosis of the bone and soft tissue in the head and neck region (4). Also, changes in the therapy regimens of a combined irradiation and chemotherapy only had a moderate impact on the reduction of toxicity (5, 6). Despite great research efforts, overlooking studies in the time period from 1987 up until today, the prognosis is still rather poor. In p16-negative tumors, the 5-year survival is still only 40%–60% if all tumor stages are pooled. For stages III and IV, as classified by the Union for International Cancer Control (UICC), the 2-year survival is even less since 30%–50% of patients develop local or regional recurrence, and in patients with a recurrent or a metastatic disease, the median overall survival (OS) was 10–13 months prior to the introduction of immune therapies (7–11). Tumors may originate from different locations within the group of HNSCCs, i.e., the oral cavity, oropharynx, hypopharynx, and larynx. There is growing evidence that HNSCCs of these different sites of origin differ in tumor biology. The clearest difference is seen in oropharyngeal cancers, in which human papillomavirus (HPV) has a huge impact on the OS of patients. But HPV has so far not had any impact on OS in cancers of the oral cavity, the hypopharynx, and the larynx (12). Also, HNSCCs of the different sites of origin differ in the response toward irradiation. Primary tumors of the hypopharynx have the worst response toward radiotherapy (13).

The introduction of immune therapies for solid cancers by the use of the so-called immune checkpoint inhibitors (ICIs) increased the OS rates of many patients regardless of the cancer type. The most severe impact was observed in malignant melanoma therapy, extending to cancer types such as lung cancer, where ICI treatment is very promising as well (14–16). Therefore, high hopes were set for the treatment of patients with HNSCC. The results of several phase III clinical trials showed a significant improvement compared to the standard chemotherapeutic regimen, but with mostly only a moderate improvement of the OS at the primary analysis (17–19). The 2-year follow-up data again confirm the superiority of ICI to various chemotherapy protocols, especially in patients with a higher programmed death-ligand 1 (PD-L1) expression score, but miss to achieve a stable plateau in the survival curve (20).

The results of the clinical trials have already altered the therapeutic algorithms (9), but the OS rates remain lower than those in other epithelial cancers, even other squamous cell cancers (21).

The reason for this very different impact of ICIs in the treatments of various cancers is not understood so far. Research in this field is vastly expanding at the moment.

In the clinical setting, tremendous efforts are undertaken to enroll patients in clinical trials that combine two checkpoint targeting drugs, but especially from melanoma patients, we learned that this is associated with an increased risk of severe adverse events (22, 23). The second major step comprises the use of an ICI backbone and additional targeting of a second cancer-relevant pathway.

Clinical development is severely hampered by the lack of biomarkers. Most studies are being performed as all-comer studies, lacking the right assay to predefine the most suitable patients for the drugs tested. Currently, in clinical practice, tumor response is correlated with the lymphocytic infiltrate in the tumor and the expression of PD-L1.

The immune status of HNSCC might serve as an explanation for the low impact of ICI treatment in HNSCC. Saloura et al. analyzed the genomes of two HNSCC cohorts for cytokine expression and defined two patterns, namely, high and low CD8+ T-cell-inflamed phenotype (24). Kulasinghe et al. gave a first impression of the distribution of immune cells within HNSCC using multiplex immunohistochemistry (IHC) to predict the response to ICI treatment. Due to the low number of samples, they have not identified a predictive marker so far (25).

Other authors divided tumors into different immune profiles, such as hot, cold, and excluded tumors, based on the infiltration of CD8+ T cells (26, 27). To better understand the immune profile of HNSCC, we first analyzed the immune cell distribution in tumors of primary HNSCC patients who underwent surgery as a first-line treatment in whole tissue slides. But instead of a CD8 IHC, we used hematoxylin–eosin (H&E) staining to describe the following immune status of HNSCC phenotypes:

	-cold (almost no immune cells visible),

	-excluded (immune cells within the tumor, but only in the stroma), and

	-hot (immune cells in the stroma and between cancer cells).



In each group of 10 HNSCC patients of the hot, excluded, or cold status, we examined serial immunohistological stains. This way, we were able to establish a pattern of various immune cells linked to the degree of lymphocytic infiltrates in HNSCC. There are several markers to find first signs of regulators forming the different types of immune status.



Material and Methods

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the University of Luebeck (project code AZ 16-277).


Patient Selection

We established an HNSCC cohort as previously described by obtaining archived tissue samples (28). The cohort contained hot, cold, and excluded tumor tissues. We randomly selected 10 patients from each group to perform the comparative analyses, as described below. All tumors were from therapy-naive patients (PT), and none of them received ICI treatment later since ICI treatment is not yet part of the standard treatment for primary HNSCC. More details on the tumor location, tumor node metastases (TNM) stage, and later therapy are shown in Tables 1, 2.


Table 1 | Clinicopathological data of patients.




Table 2 | Details of all patients.





Immunohistochemistry

Immune profiles (hot, cold, or excluded) were assigned after H&E evaluation by a board-certified pathologist. For 10 cases from each group, we performed IHC on 4-μm-thick sections of a formalin-fixed paraffin-embedded (FFPE) specimen after deparaffinization. We employed the IView DAB Detection Kit on a Ventana BenchMark (Roche, Basel, Switzerland). Immunostaining was performed followed by microwave-based antigen retrieval as previously described (29).

The following antibodies were used:

	-CD4 [rabbit monoclonal antibody, clone SP35, ready to use (RTU); Ventana Medical Systems Roche, Oro Valley, AZ, USA]

	-CD8 (rabbit monoclonal antibody, clone SP57, RTU; Ventana Medical Systems Roche)

	-CD11b (rabbit monoclonal antibody, clone ER1345y C-terminal ab52478, 1:200; Abcam, Cambridge, UK)

	-FOXP3 (mouse monoclonal antibody, clone 236A/E7, 1:100; Invitrogen Thermo Fisher Scientific, Rockford, IL, USA)

	-PD-1 (mouse monoclonal antibody, clone NAT105, RTU; Cell Marque Sigma-Aldrich, Rocklin, CA, USA)

	-PD-L1 (rabbit monoclonal antibody, clone E1L3N, RTU; Cell Signaling, Danvers, MA, USA)





Evaluation and Scoring of Slides

For CD4, CD8, and CD11b, the percentage of immune cells and the location of positive cells (stromal versus diffuse) were determined. The share of FOXP3-positive cells among the CD4-positive cells was estimated. For pSMAD3, the percentage of positive tumor cells and the staining intensity were assessed and the immunoreactive score of Remmele and Stegner (IRS) was calculated. For PD-L1 evaluation, all three established scoring systems were employed, namely, the tumor positivity score (TPS), immune cell (IC) score, and the combined positivity score (CPS). For the TPS, all PD-L1-positive cancer cells were counted and put into relation to all viable cancer cells. Values are presented as percentages. For the IC score, PD-L1-positive immune cells were estimated by tumor area. For the CPS, all PD-L1-positive cells (cancer cells and immune cells) were counted and put into relation to the number of all viable cancer cells. This number was then multiplied by 100. This score has no unit. Programmed cell death 1 protein (PD-1) receptor was assessed using CPS in analogy to the CPS of PD-L1. CPS is so far the only marker for PD-L1 expression that is used for clinical decisions in HNSCC (9).



Statistical Analyses and Graphical Visualization

Statistical analysis was performed with an unpaired t-test for all data presented here. P-values <0.05 were considered to be statistically significant. This research has made use of the statistical analyses and visualization in R software (version 4.0.2; R Foundation, Vienna, Austria; http://www.R-project.org).

We used the following software to create artwork and to edit the photomicrographs: Inkspace (version 0.92.4; The Inkscape Project c/o Software Freedom Conservancy, Brooklyn, NY, USA; https://inkscape.org/) and GIMP (version 2.10.14; The GIMP Project c/o GNOME Foundation, Orinda, CA, USA; https://www.gimp.org).



Ethics

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the University of Luebeck (project code AZ 16-277).




Results


Patient Criteria

As expected for HNSCC, the majority of patients were males and middle-aged. A majority were smokers and p16-negative. They mostly presented with clinically advanced stages and lymph node metastases, and most suffered from a recurrence. Primary tumors were located in the oral cavity, oropharynx, larynx, and hypopharynx. Details are presented in Tables 1, 2.



Different Immune Cell Influx But the Same Immune Cell Proportions in the Three Immune Phenotypes

By reading the H&E slides, we established three distinct categories of immune cell infiltrates in HNSCC. In “cold” tumors, there were only very few immune cells overall. The other categories contained more intratumoral immune cells than did the cold tumors, but differed in their distribution: hot tumors contained immune cells diffusely throughout the tumor bulk, whereas in excluded tumors the immune cells were restricted to the stromal areas. By estimating the expressions of CD8 (CD8 T cells), CD4 (CD4 T cells), FoxP3 (regulatory T cells, Tregs), and CD11b (myeloid-derived cells), it was found that there was no significant difference in the proportion of each in the three immune types (Figure 1). There was a trend of a higher proportion of CD11b-positive myeloid cells in the excluded tumors, but this difference was not statistically significant (p > 0.05).




Figure 1 | Relationships of the immune cell types in hot, cold, and excluded tumors. While the total number of immune cells differed between hot and excluded tumors on the one hand and especially cold tumors on the other hand, the relationships of CD11b-positive myeloid cells, CD8-positive T lymphocytes, and CD4 T positive lymphocytes were very similar in all three tumor immune types. There was a trend of a higher proportion of CD11b-positive myeloid cells in excluded tumors, but this difference was not statistically significant (p > 0.05). In CD4-positive T lymphocytes, the percentage of FoxP3-positive regulatory T cells (Tregs) was related to all CD4-positive cells. There was no significant difference in the proportion of Tregs between hot, cold, and excluded tumors.





Different Distribution Patterns in the Three Immune Phenotypes

As mentioned above, the immune types were defined by the morphology of the H&E stain, whereas the distribution of the immune cell subtypes within the tumor was analyzed by IHC of CD8 and CD4 T cells, FoxP3, and CD11b (Figure 1). In cold tumors, there were only very few detectable cells of each analyzed immune cell subtype. In one tumor, there were no immune cells at all. In the other nine tumors, CD11b cells were only detectable in the tumor stroma, with CD4 T cells in the majority of cases in the stroma as well (seven tumors only in the stroma and two tumors in the tumor cells and the stroma). FoxP3 cells represented only a small fraction of the CD4 T cells, and if detectable, they were located in the stroma. In the nine cases with few immune cells, CD8 T cells were found in the stroma and in between the cancer cells. In excluded tumors, all four immune cell types were mainly in the stroma of the tumors and not in between the cancer cells. In hot tumors, the CD4 T cells and FoxP3 cells were found in 4 out of 10 tumors in the stroma and in between the cancer cells; in 6 out of 10 cases, only within the stroma. CD11b cells were detectable in the stroma and in between the cancer cells in 7 out of 10 tumors and only within the stroma in 3 out of 10 cases. CD8 T cells were located in the stroma and in between the cancer cells in 10 out of 10 tumors (Figure 2).




Figure 2 | Distribution of immune cell antigens in hot, cold, and excluded tumors. The distributions of CD4 lymphocytes, CD8 lymphocytes, CD11b-positive myeloid cells, and regulatory T cells (Tregs) within tumor tissues differed between hot, cold, and excluded tumors. In excluded tumors, all four cell types are found in the tumor stroma (black), but not in between cancer cells. In cold tumors, there were only very few immune cells at all (indicated by the slight offset). The few CD8 T cells were found in the stroma and in between cancer cells (gray), CD4 T cells were, in most cases, in the stroma (black) and only in a few cases in between cancer cells and in the stroma (gray), while Tregs and myeloid cells were only in the stroma (black) in cold tumors. In hot tumors, CD8 T lymphocytes were found in the tumor stroma and in between cancer cells (gray). CD4 T lymphocytes and Tregs were located exclusively in the tumor stroma in most hot tumors (black), and in fewer cases, CD4 T lymphocytes were between cancer cells and in the stroma (gray). CD11b cells were in the stroma and in between cancer cells (gray) in most hot tumors, but in some hot tumors, they were only found in the stroma (black).





Higher pSMAD Expression in Excluded Than in Hot HNSCC

pSMAD was measured using IHC in cancer cells and in immune cells as an indicator for an activated transforming growth factor beta (TGF-β) pathway. There was a significantly higher pSMAD expression pattern observed in the cancer cells of the excluded tumors than that in cancer cells of hot tumors (p = 0.0381). The expression of pSMAD in the cancer cells of cold tumors was in between that of hot and excluded tumors. Comparing the expression of pSMAD in hot and cold tumors showed no significant difference (p = 0.5032), and neither did the comparison between cold and excluded tumors (p = 0.1317) (Figures 3, 4).




Figure 3 | Immunohistochemistry (IHC) of pSMAD expression in hot (A), cold (B), and excluded (C) head and neck squamous cell carcinomas (HNSCCs). Hot HNSCCs (A) showed very low pSMAD expression, while excluded HNSCCs (C) had very high pSMAD expression. In cold HNSCC (B), the pSMAD expression was in between.






Figure 4 | Percentage of pSMAD-positive cancer cells. The expression of pSMAD was the highest in cancer cells of excluded tumors and the lowest in hot tumors, while in cold tumors it was in between. The difference in pSMAD expression between excluded and hot tumors was statistically significant (p < 0.05), while the expression difference in cold tumors was not statistically significant in either of the two other tumor immune types (both p > 0.05), * means p<0.05.



Furthermore, the immune cells within the sections were identified and scored based on their staining by a board-certified pathologist. The expression of pSMAD in immune cells showed no significant difference between the excluded and hot tumors (p = 0.2053), while there were almost no immune cells in cold tumors.



Higher PD-1 Expression in Hot HNSCC

The expression of PD-1 was detected with IHC and the CPS was applied. The CPS of PD-1 was significantly higher in hot tumors in comparison with those in cold and excluded tumors (hot vs. excluded, p = 0.0027; hot vs. cold, p = 0.0304). The CPS of PD-1 in excluded tumors was not significantly different from that in cold tumors (p = 0.5538) (Figures 5, 6).




Figure 5 | Immunohistochemistry (IHC) of PD-1 expression in hot (A), cold (B), and excluded (C) head and neck squamous cell carcinomas (HNSCCs). In hot HNSCCs (A), the expression of PD-1 was very high, while it was very low in cold (B) and excluded (C) HNSCCs.






Figure 6 | PD-1 scores in hot, cold, and excluded head and neck squamous cell carcinomas (HNSCCs; combined positivity score, CPS). The CPS of PD-1 was the highest in hot tumors and the lowest in excluded tumors, while in cold tumors it was in between. The differences in the CPS of PD-1 between hot and excluded tumors and between hot and cold tumors were statistically significant (both p < 0.05), while the difference between cold and excluded tumors was not statistically significant (p > 0.05), * means p<0.05, ** means p<0.005.





Higher PD-L1 Expression in Hot HNSCC

The expression of PD-L1 was detected with IHC (Figure 7) and evaluated using the TPS, IC score, and CPS. The TPS of PD-L1 was significantly higher in hot tumors in comparison to those in cold and excluded tumors (hot vs. excluded, p = 0.0422; hot vs. cold, p = 0.0127). The TPS of PD-L1 in excluded tumors was not significantly different from that in cold tumors (p = 0.2477) (Figure 8). The IC score in hot tumors was not significantly higher than that in excluded tumors (hot vs. excluded, p = 0.3078; hot vs. cold, p = 0.1196). The CPS of PD-L1 was significantly higher in hot tumors in comparison with those in cold and excluded tumors (hot vs. excluded, p = 0.0011; hot vs. cold, p = 0.0085).




Figure 7 | Programmed death-ligand 1 (PD-L1) expression in hot (A), cold (B), and excluded (C) head and neck squamous cell carcinomas (HNSCCs). In hot HNSCCs (A), the expression of PD-L1 was very high, while it was very low in cold (B) and excluded (C) HNSCCs.






Figure 8 | Programmed death-ligand 1 (PD-L1) scores in hot, cold, and excluded head and neck squamous cell carcinomas (HNSCC; tumor positivity score, TPS). The TPS of PD-1 was the highest in hot tumors and the lowest in cold tumors, while in excluded tumors it was in between. The differences in the TPS of PD-1 between hot and excluded tumors and between hot and cold tumors were statistically significant (both p < 0.05), while the difference between cold and excluded tumors was not statistically significant (p > 0.05), * means p<0.05.






Discussion

The prognosis for patients with advanced HNSCC is still very poor. Even the introduction of ICI therapy in HNSCC has not shown prognostic improvements so far (30). To better understand the differences of HNSCC in contrast to other cancer entities with a good ICI response, a lot of research was done that included RNA sequencing. Saloura et al. studied the cytokine expression patterns in HNSCC genome cohorts and proposed that the depletion of Tregs and M2 macrophages might improve the outcomes of HNSCC patients with an ICI treatment (24). It has been indicated that an IFN-γ-related profile can predict the response to treatment with the PD-1 inhibitor pembrolizumab in melanoma. This might hold true for HNSCC as well (31). In a very detailed analysis of the RNA sequencing profiles, Chen et al. described the so-called immune class of HNSCC, which contained tumors with enriched inflammatory response, enhanced cytolytic activity, and active IFN-γ signaling (32). However, RNA sequencing is still rather expensive and time-consuming. In comparison, IHC staining is more cost-effective and can be established easily without the need for expensive technical equipment. This is why, in the study presented here, we focused on IHC-based analysis to better understand the landscape of immune cells in HNSCC. In other IHC-based studies of HNSCC, the focus was on a more general description of the relation of the immune cell types rather than their spatial distribution (25, 33) or on a single location such as that of oral tongue cancers (34). The study of Meehan et al. included a mixture of PT and recurrent disease (RD) HNSCC of the tongue. As the response rate in recurrent tumors to ICI treatment is still low, some studies have tested the use of ICI in the treatment of primary HNSCC, such as KEYNOTE-689 [Study of Pembrolizumab Given Prior to Surgery and in Combination With Radiotherapy Given Post-Surgery for Advanced Head and Neck Squamous Cell Carcinoma (MK-3475-689), full text view, ClinicalTrials.gov] or ADRISK (Postoperative aRCH With Cisplatin Versus aRCH With Cisplatin and Pembrolizumab in Locally Advanced Head and Neck Squamous Cell Carcinoma, ClinicalTrials.gov). In the study presented here, we focused on treatment-naive primary HNSCC as well. The analyzed tumors were divided into three distribution patterns of immune cells. The first category, named cold tumors, had almost no immune cells in the tumor, either in the stroma or between the cancer cells. The second category, called excluded tumors, showed immune cells in the tumor, but they were limited to locations in the stroma surrounding the cancer cell areas without getting in between the cancer cells. The third type, so-called hot tumors, presented with immune cells both in the stroma and in between cancer cells.

Interestingly, mainly the CD8 T lymphocytes showed a distribution in between the cancer cells in the so-called hot tumors, while CD11b-positive myeloid cells and CD4 T lymphocytes were less frequently found in between cancer cells. By showing that in all H&E stains defining hot tumors the CD8 T lymphocytes were in the stroma and in between the cancer cells, we have provided proof that a simple H&E stain is enough for the definition of hot, cold, and excluded tumors and that CD8 IHC is not needed, as done in other studies (27). But to address the poor response to ICI in HNSCC, the expression levels of PD-1 and PD-L1 were analyzed as well. In routine diagnostics, the TPS and CPS for the expression of PD-L1 are common tools used to address the possible administration of pembrolizumab therapy in HNSCC patients (30). Also, the IC score was assessed since this score is examined for the decision about ICI treatment in lung cancer. The TPS and CPS for PD-L1 were significantly higher in hot tumors in comparison to those in excluded and cold tumors, but the IC score was not. Since the IC score only considers PD-L1 expression in immune cells—the TPS includes PD-L1 expression in cancer cells and the CPS includes PD-L1 expression in cancer and immune cells—it underlines that the main PD-L1 expression in hot tumors is in cancer cells. In a previous study, we found worse prognosis for cold tumors in comparison to those in hot and excluded tumors in a cohort of 419 HNSCC patients. This was independent of other known risk classifications such as the T stage, UICC stage, p16 expression, grading, sex, and age. Interestingly, there was no difference between p16-positive and p16-negative cancers in relation to excluded, cold, and hot cases, with 52.8% excluded, 24.8% cold, and 22.4% hot HNSCC in the p16-negative group versus 53.5% excluded, 23,9% cold, and 22.5% hot HNSCC in the p16-positive group (28). In the present study, we wanted to provide initial insights into the distribution of the different immune cell types in hot, cold, and excluded HNSCC.

Nivolumab and pembrolizumab are so far the two approved ICI medications for recurrent HNSCC. Since these antibodies are directed against PD-1, the expression patterns of PD-1 were analyzed as well. For this, the CPS of PD-1 was employed as PD-1 is mainly expressed on T cells, but less so in cancer cells. The binding of PD-L1 by PD-1 on T cells led to a decreased activation of the mammalian target of rapamycin (mTOR) via the PI3K/AKT pathway. In some cancer entities such as melanoma, PD-1 activation in cancer cells led to mTOR activation, in turn leading to cancer progression; so far, it has not been described for cancer cells in HNSCC (35, 36). Interestingly, the CPS of PD-1 was significantly higher in hot tumors in comparison to those in excluded and cold tumors. The higher PD-1 and PD-L1 expressions might make hot tumors more prone to anti-PD-1 treatment, but this needs further investigation.

Interestingly, the cancer cells of excluded tumors had a significantly higher pSMAD expression, indicating a higher TGF-β expression. TGF-β has multiple roles in physiological settings such as cell proliferation and differentiation, wound healing, and immune system, but it is very important in several pathologies, for example, in skeletal diseases, fibrosis, and cancer. In epithelial cells, it has a bifunctional role. On the one hand, it can inhibit the epidermal growth factor (EGF)-mediated cell proliferation; on the other hand, it can work synergistically with EGF in epithelial cell proliferation. Several cancer types have higher TGF-β levels than those in healthy tissues, and in several cancers, a higher TGF-β expression level is associated with cancer progression and poorer survival (37). In HNSCC, TGF-β promotes cancer cell growth. A high TGF-β expression is associated with poor prognosis and epithelial–mesenchymal transition (EMT), which might lead to metastasis (38, 39). A high TGF-β expression level also makes HNSCC cells less sensitive to cisplatin treatment by reducing the cisplatin-induced apoptosis (40). HNSCCs with high TGF-β expressions also have worse outcomes when treated with anti-PD-1 (41). In several tumor types, it was shown that TGF-β impairs the function of cytotoxic CD8 T cells (42). In the data presented here, in the immune cells of excluded and hot tumors, there was no significant difference in pSMAD expression. This might indicate that TGF-β in cancer cell areas does not directly affect the influx of immune cells into the stroma, but it is assumed that the TGF-β expression in cancer cell areas might be a barrier for immune cell infiltration in between cancer cells. In a murine model of colorectal cancer metastasis, the inhibition of TGF-β led to a higher immune cell infiltration. In this model, a single anti-PD-L1 therapy did not affect metastasis. But the combination of an anti-PD-L1 ICI with an inhibitor of TGF-β eradicated most metastasis and prolonged recurrence-free survival (43). This might also be possible in HNSCC, that the inhibition of TGF-β leads to a transformation of excluded tumors toward hot tumors. Since hot tumors have significantly higher expressions of PD-1 and PD-L1 in comparison to excluded tumors, they might be more prone to ICI treatments.

We appreciate the limitations of our study as it provides plain descriptive data and a limited number of cases. More functional analysis is needed to determine the underlying mechanisms defining hot, cold, and excluded HNSCCs and the prognostic role of TGF-β. Identifying these might lead to a better understanding of cancer progression, treatment failure, and, therefore, the optimization of therapy. With the study presented here, we wanted to give first insights into the immune cell distribution in HNSCC and a possible explanation for a high TGF-β expression being associated with worse outcomes of anti-PD-1 treatment in HNSCC. With the limited number of patients, we cannot provide any prognostic value of the TGF-β expression. But as we described worse OS for cold tumors in our previous study (28) and as all of these tumors were not treated with ICIs, we do not expect a prognostic value of TGF-β expression for the established standard therapy regimens of HNSCC. However, we are keen to learn about TGF-β analyses in future cohorts receiving ICI treatments.

Since the introduction of ICI therapy has not had a large impact on the prognosis of HNSCCs in comparison to other solid tumor types, we still need a better understanding of the underlying mechanisms. The different distribution patterns of immune cells within tumors might be an explanation since only hot tumors do have high expressions of PD-1 and PD-L1. TGF-β might be a key regulator and will serve as a promising therapeutic target, which determines the formation of a hot or an excluded immune pattern (Figure 9).




Figure 9 | Transformation from excluded to hot tumors via transforming growth factor beta (TGF-β). From the data presented in this study, we generated the hypothesis for future studies: that a blockage of TGF-β in an excluded tumor (left) might turn it into a hot tumor (right). The higher expression of programmed death-ligand 1 (PD-L1) in a hot tumor might make it more prone to a blockage of the interaction of PD-1/PD-L1.
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Head and neck squamous cell carcinomas (HNSCC) include heterogeneous group of tumors, classified according to their anatomical site. It is the sixth most prevalent cancer globally. Among South Asian countries, India accounts for 40% of HNC malignancies with significant morbidity and mortality. In the present study, we have performed exome sequencing and analysis of 51 Head and Neck squamous cell carcinoma samples. Besides known mutations in the oncogenes and tumour suppressors, we have identified novel gene signatures differentiating buccal, alveolar, and tongue cancers.  Around 50% of the patients showed mutation in tumour suppressor genes TP53 and TP63. Apart from the known mutations, we report novel mutations in the genes AKT1, SPECC1, and LRP1B, which are linked with tumour progression and patient survival. A highly curated process was developed to identify survival signatures. 36 survival-related genes were identified based on the correlation of functional impact of variants identified using exome-seq with gene expression from transcriptome data (GEPIA database) and survival. An independent LASSO regression analysis was also performed. Survival signatures common to both the methods led to identification of 4 dead and 3 alive gene signatures, the accuracy of which was confirmed by performing a ROC analysis (AUC=0.79 and 0.91, respectively). Also, machine learning-based driver gene prediction tool resulted in the identification of IRAK1 as the driver (p-value = 9.7 e-08) and also as an actionable mutation. Modelling of the IRAK1 mutation showed a decrease in its binding to known IRAK1 inhibitors.




Keywords: HNSCC, IRAK1, survival, driver gene, LASSO, ROC, whole exome sequencing



Introduction

Head and Neck cancer (HNC) is a heterogeneous disease that encompasses tumors of majorly three regions, oral cavity, oropharynx, and larynx, and together they account for more than 660000 new cases and over 320000 deaths worldwide wide, while India has contributed to 36%, 20.9% and 18.8% of the total cases of each type respectively, in 2020 (https://gco.iarc.fr) (1). More than 90% of the HNCs are diagnosed as squamous cell carcinomas (HNSCC). The common risk factors worldwide are smoking tobacco, alcohol consumption, improper diet, whereas chewing areca nuts, chewing tobacco, smoking bidis, etc., are rampant in India  (1, 2). Over the past 3-4 decades, various treatment regimens like surgery, adjuvant chemotherapy, radiation therapy, immunotherapy, etc. have been employed, yet only 50 % improvement in survival rates have been achieved for  HNSCC (3–5).

Several studies have reported drivers of Head and Neck cancer oncogenesis. The drivers can be broadly classified into tumor suppressors and oncogenes. Alterations in oncogene families like ras family of genes, myc family and EGFR family have been implicated in oral and head and neck cancers. High frequency of mutations in HRAS, copy number alterations and aberrant expression levels in KRAS, NRAS, MYC and EGFR have been reported in relation with development of many squamous cell carcinomas. Driver Genes like CCND1, MAPK family and PIK3CA are involved in the progression of HNSCC (4, 6, 7). Early stages of head and neck cancers have been associated with inactivated CDKN2A and TP53, loss of function copy alterations is associated with aggressive cancers. HPV+ve HNSCC cancers are characterized by frequent mutations and chromosomal deletions in tumor suppressors like PTEN, E-cadherins and RB1 (4, 6, 8). One of the first steps of oncogenesis involves the evasion of immune system. In HNSCC, IRAK1 overexpression is associated with tumor progression and low survival (9). IRAK1 is a kinase, activated downstream of TLRs and is activated upon radiation therapy in HNSCC (10, 11)

Several models have been proposed as predictive biomarkers for the prognosis of HNSCC patients. A recent study reported a 6 gene signature for predicting survival in patients using random forest sampling and Cox regression analysis. Exome seq analysis has led to the identification of SNPs in the genes, which can be used as independent prognostic markers (12, 13). Oncogenic driver mutations in genes commonly associated with HNSCC, like P53, PI3-AKT pathway, HRAS, CCND1 and others, have been associated with poor survival and have been identified as important factors for outcome predictions in HNSCC cohorts (4, 8). Accumulation of structural variants such as Copy number variation (CNV), Loss of Heterozygosity (LOH) in oncogenes, and tumor suppressors like c-MYC, EGFR, CDKN2A, respectively, have been associated with recurrence of squamous cell carcinomas, and poor prognosis and outcome predictions have been linked to rapid occurrence rates of SCNAs across tumor genomes (4, 14, 15). The genomic analyses of HNSCC from (110 patients) Indian population led to the identification of 5 new frequently mutated (10-22% of the patients) genes associated with OSCC-GB, namely, USP9X, MLL4, ARID2, UNC13C and TRPM3 (16).

In this study, we have performed exome sequencing of 51 individuals from diverse anatomical sites and correlated the clinical phenotype to the genotype. We report distinct anatomical site-specific signatures and heterogeneity within each group. We have also identified novel driver mutations using Oncodrivclustl. We identified alive and dead signatures using two different approaches. The first approach was based on the correlation of functional impact of variants using exome-seq with gene expression using transcriptome data (GEPIA database) and the second was LASSO regression. The signatures were validated using a receiver operating characteristics (ROC) model. We have identified 2 missense mutations in IRAK1, one of which causes structural changes in the protein, possibly leading to change in its activity.



Methodology


Subjects for the Study

We obtained 51 FFPE (Formalin Fixed Paraffin Embedded) samples diagnosed with oral cancer at the Healthcare Global Enterprises Ltd, Bengaluru, Karnataka, India. The protocol was approved by the institutional review board of HCG and Institute of Bioinformatics and Applied Biotechnology. The clinical details of every patient are mentioned in Table 1. Informed consent was obtained from all the participants.


Table 1 | A table summarizing clinical data of the samples in the study.





Exome Library Preparation

To prepare libraries for Whole Exome Sequencing, 100ng-1µg of genomic DNA was sheared with the Covaris S220 (Covaris, Woburn, MA, USA), followed by end-repair, 3’ end Adenylation and ligation with paired-end adaptors. Post ligation, 15µl of the purified libraries were PCR amplified, all the above steps were performed using the Agilent SureSelectXT kit and every step was followed by DNA purification on a magnetic stand using AMPure XP Reagent beads (Beckman Coulter Genomics, Danvers, MA, USA). Afterward, size (approx 225-275 bp) and quantity (>800ng) were verified employing the Agilent Tapestation 2200 system followed by hybridization and probe capture using Exome SureSelect Human All Exon V6+UTR probes (Agilent). Dynabeads MyOne Streptavidin T1 magnetic beads (Thermofisher). Finally, Captured Libraries were amplified with 12 cycles of PCR using indexing primers containing 8-bp indices, followed by an amplification using AMPure XP beads (Beckman Coulter). Final libraries were checked for quality (each fragment size approx. 300-400 bp) and quantity using Agilent Tapestation 2200 system.



Whole Exome Sequencing and Analysis

The libraries were multiplexed and pooled followed by a 100-bp paired-end sequencing with ~100X exome coverage depth per sample (Approx. 60-90 mb exome size) on the Illumina HiSeq 2500 platform. The exome sequencing raw data is available at https://www.ncbi.nlm.nih.gov/sra/PRJNA740146. Filtered high exome-sequencing reads generated on HiSeq 2500 were analyzed using FastQC for quality checking (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Bowtie2 (17) aligner was used for alignment and mapping of reads against the hg38 version of the human genome, with default parameter settings. SAMtools (18) was used for conversion of SAM files to BAM files. PCR duplicates were removed using Picard tools (http://broadinstitute.github.io/picard/). Variant calling was performed using the best practices Mutect2 module of GATK (Genome Analysis Toolkit, Broad Institute) including local realignment around insertions/deletions and base-quality score recalibration (19). Duplicate removed alignment files were subjected to another format Variant calling using pileup utilities from BCFtools (18). Variants common to pileup approach and GATK process, and the ones being spanned by more than 3 reads were annotated using the SnpEff and SnpSift tools (20, 21). Only the variants not present in the 1000G database were considered for further analysis (22).



Obtaining Mutation Profiles

All the vcf files were primarily processed using shell scripts. Mutation frequency of genes known to be implicated in Head and Neck cancer was depicted using a waterfall plot from the R package GenVisR (23). The samples were grouped into categories based on age (0-40 yrs.; 40-50 yrs.; 50-60 yrs.; 60-70 yrs.; 70-80 yrs.), habits (alcohol; tobacco; all; none; quit), stage of tumor at the time of biopsy (early; advanced; recurrent) and site of tumor (alveolar; buccal mucosa; tongue). Total number of mutations, number of high impact mutations and number of protein coding mutations (high impact + missense variants), per sample, from each category were obtained. Mutation signatures were obtained using the SomaticSignatures package of R (24). CNV analysis was performed using CNVkit (25).



Driver Gene Analysis

To predict the driver genes, vcf files of all the samples were merged into a single file using the BCFtools toolkit which included all the mutations present in each and every sample. This merged vcf file was given as an input to OncodriveCLUSTL for driver gene analysis (24, 26). The resulting genes were filtered based on their p-value significance and frequency of mutation. Further we checked for the effect of mutations being harbored by these genes on patient survival and it was seen that none of the mutations showed a significant difference in survival. We also checked for an association between expression patterns of these genes and patient survival from the GEPIA database (24, 26, 27) and the genes showing a significant correlation were further shortlisted followed by generating a lolliplots of the mutations present in the shortlisted genes using G3Viz (28).



IRAK1 Structure Modeling and Validation

The IRAK1 protein (identified as one of the driver genes) structure and its two mutants S532L and F196S were modeled using the 712-residue sequence from UniProt (UniProt ID: P51617) on the Robetta web server (29). The structure obtained is further energy minimized on Swiss-PdbViewer using a GROMOS 43B1 force field to repair distorted geometries (30). The energy minimized protein structure of IRAK1 was further validated using the SAVES webserver (https://saves.mbi.ucla.edu/) which employs tools such as ERRAT (30, 31), PROVE (32), PROCHECK (32, 33), WHATCHECK (34) and VERIFY 3D (35). Site Directed Mutator (SDM) and I-Mutant 2.0 (36, 37). Webservers were used to predict the effect of mutation on the stability of the protein structure and the Gibbs free energy change(ddG). Autodock 4.0 was used to blind dock the ligand JH-X-119-01 (a selective inhibitor for IRAK1) (36–38) with the wild type IRAK1 structure as well as the S532L and F196S mutant structures to study the change in ligand binding upon mutation. The active site of IRAK1 (Serine/Threonine Protein Kinase) corresponds to residues 336-348. The binding site of IRAK1(Protein Kinase, ATP Binding Site) corresponds to residues 218-239 as indicated by InterPro. LigPlot+ software (36–39) was used to visualize the ligand interactions. To understand the change in interaction between the residues in the protein structure upon mutation, Residue Interaction Analysis was performed. RING web server was used to generate a Residue Interaction Network (RIN) wherein the nodes represent the residues and the arcs represent the physico-chemical interactions (40). The network thus generated is visualized in Cytoscape to study the change in interactions of residue 196 and 532 upon mutation (41).



Survival Models

Mutation profiles and the associated clinical data of 178 Oral cancer patients from Indian Cohort were downloaded from the ICGC database. For survival analysis, ICGC and inhouse data were clubbed. To associate demographic and clinical parameters with survival time and to assess the effect of variants on it, construction of Kaplan-Meyer plots and hazard ratio (HR with 95% CI) calculations were performed by employing univariate and multivariate Cox analysis using the survminer (https://github.com/kassambara/survminer) and survival (42) packages of R. From the inhouse data, a total of 36 genes were shortlisted based on an initial scrutiny, 19 fitting the dead signature criteria and 17 fitting the alive signature criteria, 6 genes were shortlisted based on the significant association of their mutation profiles with alive and dead samples (Chi-square analysis performed in R) and an association of expression patterns with survival analysis from GEPIA database (Gene Expression Profiling Interactive Analysis). Further functional annotations were performed using information databases such as UCSC and GeneCards.



Lasso Regression Model

LASSO stands for Least Absolute Shrinkage and Selection Operator. It is a linear form of regularization technique (to minimize the error because of overfitting of data while constructing a model). As the name suggests, it uses a “shrinkage/penalty term(lambda)” in its regression equation to be able to predict with accuracy and precision.

Mathematical equation:

	

where, λ, the penalty factor (or the shrinkage parameter) and β are the coefficients related to p features (43). The significant genes were found by computing the coefficients of Lasso regression of the cox survival data. This was achieved by using the “sksurv” or “scikit-survival” module of python, present as a part of “scikit-learn”.

The equation the module sksurv.linear_model.CoxnetSurvivalAnalysis uses is as follows:-

	

This equation represents the “elastic net regression”. Here α is the same as γ which is mentioned in the Lasso regression introduction equation. By giving a l1_ratio value of 1.0 we are eliminating the Ridge regression term (second term) and only keeping the Lasso regression term. Steps followed for each dataset; 1. The dataset was processed by “CoxnetSurvivalAnalysis” with a subset of 100 random alpha values, a l1_ratio of 1.0(complete Lasso regression), alpha_min_ratio is set to auto depending on the no. of samples and no. of features. This gives us a subset of coefficients corresponding to that particular alpha value. To obtain the best alpha value by a 5-fold cross validation, we use the following modules and their utility classes a. Sklearn.pipeline.make_pipeline b. sklearn.preprocessing.StandardScaler c. sklearn.model_selection.KFold d. sklearn.model_selection.GridSearchCV. After the best alpha value for the dataset is obtained, we obtain the coefficients for all the features pertaining to that alpha value.



Statistical Analysis

Chi-square analysis was performed to determine the significance in difference between number of alive and dead patients per gene. Survival time was defined as days from the initial diagnosis to the death or the last follow-up. The hazard ratio and their 95% confidence intervals (95% CI) for the associations of clinical variables with survival time were calculated by univariate Cox proportional hazard analysis using the survival and survminer packages of R (42). The associations between SNPs and patient survival (for the additive 4 dead and 3 alive gene models) were analyzed by multivariate Cox regression models. The difference in survival time between different patients based on genotypes of the dead and alive signature genes, using an additive model, was assessed by Kaplan-Meier curves, the significance of the influence of the clinical parameters and the additive gene models on patient survival was determined using log-rank test. Receiver Operating characteristic (ROC) curve was constructed and the area under the curve (AUC) was used to assess the performance of the model. The results were considered significant if the p-value was less than 0.05.




Results


Identification of Mutation Burden and Signatures Associated With the Age and Stage of HNC Tumor

Variant analysis was performed for 50 Head and Neck Squamous Cell Carcinoma (HNSCC) tumor samples using exome-seq. The depth covered per sample was approximately 100X with an average of 61 million reads (Supplementary Table 1). To identify if there was a chromosome bias for mutations, we analyzed the mutations from all the samples. The number and density of mutation was highest on ChrX (average 794 variants) followed by Chr1 (average 400 variants), while chr18 had the least number of variants (average 60 variants) (Figure 1A).




Figure 1 | (A) A boxplot showing an aggregate of number of mutations in every sample per Mb of across all the chromosomes. It can be seen that chrX shows the highest number of mutations with the highest number of variations between the samples, with the next highest being chr1. X-axis shows the chromosome numbers and Y-axis depicts the number of mutations per Mb. (B–E) The scatter plots here show varying patterns of average number of all mutations and average number of coding mutations per category. (A) shows the average numbers across age groups, (C) shows the average numbers across patient habits, (D) shows average numbers across tumor sites and (E) shows the numbers across stages of tumors. (F) This is a bar graph showing the relative contribution of 6 mutational signatures in patients categorized by habits.



To check whether the number of mutations correlate with disease progression, habit and age of the individual, we catalogued the number of mutations per individual, habit and age. On comparison across different age groups, we observed the lowest number of total variants (approx. 3000/sample) in patients aged < 40 years, while the number was as high as 5000 variants/sample in patients belonging 70-80 years of age (Figure 1B). Patients consuming alcohol or tobacco had relatively a smaller number of variants (approx. 2500/sample) as compared to the patients consuming both (approx. 3000/sample) and the ones having quit these habits, surprisingly, showed the least number of mutations (Figure 1C). Recurrent tumor samples obtained from the buccal mucosa and alveolar sockets harbored the maximum number of variants (approx. 5000/sample) as compared to tumors of other sites in the oral cavity (Figure 1D). Interestingly, a stage-wise distribution showed that tumors at the earliest stage have the highest number of mutations, followed by a gentle decline in the number of variants in the case of advanced and recurrent stages (Figure 1E). We further investigated mutational signatures mutational burden/Mb in tumors from patients with different habits and mild distinctions were observed. C>T followed by T>C mutations were seen in high abundance across all the habits with the highest being in the quit category, while the patients with alcohol consumption showed a relatively higher C>A signature and the ones with tobacco consumption had higher levels of C>G mutation as compared to other habit categories (Figure 1F). Patients consuming both alcohol and Tobacco displayed the maximum tumor mutational burden (TMB) and yet again, the samples having quit these habits show the lowest TMB (Figure 3A).



Unique Signature in Cell Cycle, Apoptotic and Wnt Signaling Pathway Segregate Tumors of the Buccal Cavity From Tongue and Alveolus

A set of genes known to harbor somatic mutations and classified as driver genes in HNSCC were identified and a waterfall plot generated (Figure 2). As expected, TP53, a known tumor suppressor, and TP63 had the highest frequency of mutation (greater than 60%) in the HNSC cohort. Transcription factors like NOTCH1 (16%) and KMT2B (16%), UNC13C (14%), another tumor suppressor, ERCC2 (14%) involved in nucleotide excision repair pathway, were recurrently mutated, whereas genes like CDKN2A, MLH1, FGFR1, EGFR, etc. had a less than 10% mutation frequency. Interestingly, CCND1, known to be associated with HNSCC due to copy number alterations, and APEX1 which is known to be associated with a high risk of HNC showed negligible mutation frequency (Figure 2). Notably, among variations in the coding region, missense variants, stop gained variants, and structural interaction variants showed the highest frequency (Figure 2).




Figure 2 | Waterfall plot depicting mutation frequency of genes known to be implicated in HNSCC across patients with the highest frequency being that of TP53 and the lowest being that of ACRV1 along with a varying frequency across tumor suppressors, cell cycle genes, DNA damage and repair genes etc.



We categorized 19 patients based on anatomical sites, alveolar, buccal mucosa, and tongue and constructed waterfall plot. The genes uniquely mutated in each category were from a known list of proteins belonging to various categories namely, tumor suppressors, WNT signaling, Cell cycle, Apoptosis, EMT, Replication, etc. Tumor site data was available for only 19 of the patients. Tumour site data was available for only 19 of the patients. It was seen that APC4, a gene involved in Cell cycle progression, harboring a structural interaction variant showed the highest frequency being present in 18 out of 19 patients across all the tumor sites. 50-60% of the samples showed mutations in genes involved in Apoptosis, like CASP10, ATF4, PARP1, and TNFSF10, most of which were either missense or structural interaction variants, respectively. The alveolar tumours were characterized by mutations in cell cycle genes, PRKCG, RBL2, RFC2, WEE1, MCM2, CDKN2A, SMAD4, MCM3, and PRKDC proto-oncogenes like HRAS, NRAS, LMNB2. Mutational signatures in the patients with buccal mucosa category belong to the Apoptosis pathway (MAPK10, CTSW, DAXX, ATM, HTRA2, BIRC3, CASP6) and WNT signaling pathway (WISP1, NOTUM, NFATC1, ROR2, CTNNB1, CACYBP) and EMT pathway related genes, namely, RNASEH2B, DAB2IP, MMP9 and SNAI were observed. Interestingly, the mutation in transcription factor TFDP1 involved in the cell cycle was observed only in 2 samples both of them had recurrence. The least number of genes with mutational signatures were obtained in tongue cancer. Tongue cancer was characterized by unique mutations in the cell cycle genes MCM4, RNASEH2A, HDAC1, CCNB1, WNT signalling pathway LRP5, NFATC4, and WNT11, and TP53 tumour suppressor gene (Supplementary Figure S1). We also observed patient specific mutation within each category depicting heterogeneity in each of the samples.



Combination of Radiotherapy, Chemotherapy, and Surgery Is Associated With Worse Patient Survival Compared to Surgery and Chemotherapy or Surgery and Radiotherapy

Differential survival within different clinical properties was illustrated using Kaplan-Meier plots. Within the habit’s category, significantly (p=0.0083 < 0.01) low survival was observed for patients who consumed alcohol and tobacco, compared to patients having neither and the ones who have quit (Figure 3B). Among various forms of treatment, patients having undergone only Surgery and the ones with Surgery + Radiotherapy had a significantly higher probability of survival as compared to the patients having been administered with all three, Chemotherapy + Surgery + Radiotherapy (p<0.0001) (Figure 3C). For comparison, Oral cancer whole exome data of the Indian Cohort consisting of 178 samples, was downloaded from the ICGC database along with the clinical parameters of the patients. On clubbing the in-house and ICGC survival data, it was observed that patients that underwent surgery + radiation therapy showed significantly better survival (p=0.00036) as compared to the ones with only surgery and surgery + chemotherapy + radiation. In conclusion, the samples that were given surgery + chemotherapy + surgery showed the lowest probability of survival in both scenarios. As expected, the patients with no treatment administered exhibited the least survival probability (Figure 3D). The tumor stage of patients along with recurrence was also analyzed and it was seen that patient showing recurrence at any stage of the tumor displayed a significantly lower probability of survival (p<0.0001) with the recurrent T4 stage showing the lowest of survival as compared to the patients with stages without recurrence. A similar trend was seen in the inhouse data but the result was only mildly significant (p-value=0.07) (Figure 3E, Supplementary Figure S2A). A multivariate Cox proportional hazards analysis of the clinical parameters revealed that the tumor stage and treatment (Hazard Ratio 1.6 and 2.0 respectively) significantly (p-value < 0.001) influence the patients’ risk of death (Figure 3F).




Figure 3 | (A) A boxplot of average tumor mutation burden of patients categorized by habits. Patients having both the habits of alcohol consumption and tobacco usage, show the highest amount of average tmb, lowest is seen to be in the patients with alcohol consumption and those who have quit either of the habits. Surprisingly, it is seen to be high in the patients having none of the habits. (B–E) Kaplam-Meier plots showing significant differential survival probabilities between different clinical categories. (B) This plot shows a significantly lower survival in patients with the habit of smoking as compared to any other category. (C) This Kaplan-Meier plot depicts a significantly lower survival probability in patients with a combined treatment regimen of chemotherapy, radiation therapy and Surgery as against any other individual or combined treatment type. This pattern gets reflected again in (D) where the data from ICGC Indian oral cancer cohort has been combined with in-house data and finally, (E) shows A differential survival plot of patients from ICGC and in-house data showing a significantly lower survival probability in patients with recurrent tumor stages as against their non-recurrent counterparts. (F) A cox-proportional hazard ratios forest plot, depicting the fact that there is a significant difference between various categories tumor stage and treatment regimens.





Identification of IRAK1 and UMODl1 as Driver Genes and Potential Therapeutic Targets

After getting a general idea of the mutation spectrum and survival trends associated with clinical parameters, we checked for oncogenic driver genes using OncodriveCLUSTL. Among the significant genes obtained, top two genes THAP7 and CDK3 (p-value=1.11e-19, had mutations present in almost all the samples) (Figure 4A). THAP7 harbored a missense mutation which was present in 48 out of 51 samples whereas CDK3 had a downstream gene variant being a part of CDK3-TEN1 fusion present in 42 samples. Further, in order to screen the other genes from the output, we started by referring to the GEPIA database. From the significant list of genes, we checked for the ones displaying a significant difference in survival from the HNSCC transcriptome dataset in GEPIA and we obtained two driver genes that had a significantly high frequency of mutations across all the patients. The first was IRAK1, with two missense mutations, present in 21 and 19 patients respectively (Figure 4D), on either side of its kinase domain with a p-value for its mutation cluster being 9.70e-08 (Figure 4F) and significant differential survival from GEPIA (Hazards Ratio = 1.3, p-value = 0.038) (Figure 4C). The second was UMODL1 with one missense mutation in its EGF-like calcium-binding (EGF_CA) domain, present in 29 patients (Figure 4E) as part of a significant mutation cluster with p-value = 1.11e-19 (Figure 4F) and yet again, a significant differential survival from GEPIA (Hazards Ratio = 0.74, p-value = 0.029) (Figure 4B).




Figure 4 | This entire panel of figures represents results from driver genes prediction and the subsequent analyses performed. (A) This is a quantile plot generated by oncodriveclutstl that depicts significant driver genes predicted as per frequency of mutations. This plot shows THAP7 and CDK3 as the most significant driver genes. (B, C) Show expression-based survival plots of two more driver genes, UMODL1 and IRAK1, respectively, from the HNSCC dataset in GEPIA2 database. Both have a significant difference in survival probability between high and low expression categories. (F) Table showing the details of the UMODL1 and IRAK1 mutations. It can be seen that the missense mutations in both of them have been previously reported, are deleterious and probably damaging based on the SIFT and PolyPhen values. The p-value in the last column is the significance measure from oncodriveclustl prediction. (D, E) Are lollipop plots depicting the amino acid position and the number of patients of the missense mutations in UMODL1 and IRAK1 linear protein structures respectively.





Mutations in IRAK1 Lead to Structural Changes Impacting Stability and Binding of an Inhibitor

We chose IRAK1 for further analysis based on its function as a modulator of the innate immune system and its association with survival. It is known that cancer cells escape the immune system due to faulty signalling.

The IRAK1 protein structure and its two mutants S532L and F196S were modeled using the 712-residue sequence from UniProt (UniProt ID: P51617) on the Robetta web server. The modeled structure was then energy minimized, validated and the effects of the two mutations on stability and Gibbs free energy were analyzed. The energy of the structure modeled was found to decrease drastically upon energy minimization, from -22736.7 to -33353.3 for wildtype, from -22663.424 to -33286.121 for S53L and from -23651.352 to -33606.613 for F196S, indicating better structures for all the three (Table 2). The overall quality factor of the three structures, as predicted by SAVES web server was above 94, with the Wild structure having a factor of 96.1207 and S532L and F196S structures having a quality factor of 95.265 and 94.1176 respectively. In the case of S532L, the stability of IRAK1 structure increased up to a ddG value of 1.53 and decreased to a value of -0.52 for the F196S mutant as shown by Site Directed Mutator (SDM). Similar results were obtained using I-Mutant 2.0 (Table 3). JH-X-119-01, an inhibitor of IRAK1 (36) was docked on to the wild type IRAK1 structure as well as the S532L and F196S mutant structures to study the change in ligand binding upon mutation. The active site of IRAK1 (Serine/Threonine Protein Kinase) corresponds to residues 336-348. The binding site of IRAK1(Protein Kinase, ATP Binding Site) corresponds to residues 218-239. JH-X-119-01 interacts with Tyr236, Val235, and Arg228 on the wild type structure with a binding energy of -6.66 (Figure 5A, Table 4) and residues Arg232 and Tyr236 on the F196S mutant structure, with a slightly reduced binding energy of -5.46 (Supplementary Figure S3A, Table 4). The ligand did not have any favorable interactions with active site or binding site residues in the S532L mutant structure (Table 4). Ser532 on the wild type structure interacts with residue Ala535 only (Figure 5C) but Leu532 on the mutant type structure interacts with three residues (Val528, Ser536 and Ala535) (Figure 5D). This increase in residue interaction could explain the increase in stability upon mutation. Phe196 on the wild type structure interacts with three residues (Pro13, His17 and Phe18) but Ser196 on the mutant structure interacts with only one residue (Tyr20). This loss of two interactions could explain the decrease in stability upon mutation (Supplementary Figures S3B, C).


Table 2 | Change in structure energy upon minimization.




Table 3 | ddG values for S532L and F196S mutants on SDM and I-Mutant 2.0.






Figure 5 | (A) A ligplot interaction image showing the interaction of JH-X-119-01 an IRAK1 inhibitor interacting with 3 residues of the wild type IRAK1 molecule. (B) Ligplot interaction image showing the interaction of JH-X-119-01 with just one residue of the S532L mutant IRAK1 molecule. The interactions in a and b have been marked in red circles. (C) A cytoscape screen shot showing the interaction of just two residues within the IRAK1 wildtype molecule. (D) Cytoscape screen shot showing increased interaction of 4 residues within the S532L mutant IRAK1 molecule.




Table 4 | Docking energies and ligand-residue interactions.





Multivariate Prediction of Prognostic Markers Based on Survival Trends

To identify survival associated markers, we used two approaches: we had the survival details of 37/51 samples, of which 23 were alive and 14 dead. To start with, we defined cut-off percentages for mutations to be considered as alive or dead signatures. We considered a particular variant as an alive signature only if the variant in a gene was present in at least 70% of the alive patients (~16/23) and present in utmost 40% (~6/14) or 50% (~7/14) of the dead patients. Similarly, for a variant to be considered a dead signature, we stated that it should be present in at least 60% of the dead patients (~10/14) and utmost 40% (~9/23) to 50% (~12/23) of the alive patients. Additionally, we also selected genes having mutations exclusively in alive or dead patients. By following these criteria, we shortlisted 17 genes for the alive signature and 19 genes for the dead signature (Supplementary Table 1). To screen these 36 genes further, we again referred to the HNSC differential survival dataset, based on the transcriptome, from the GEPIA database which resulted in 6 genes (Supplementary Figure S4). For alive signatures, we identified mutations in 3 genes, BCAP31, TCEB2 and NID1. For dead signatures, we identified missense mutations in 3 genes, AHRR, ZNF568 and CEP112. On performing a Chi-squared comparison test, there was a significant difference found between the alive and dead percentages of individuals for these 6 genes (Figure 6A). To check for differential survival concerning these 6 genes, Kaplan Meier plots were generated. Out of the 6 genes, NID1 was the only gene that showed a significant differential survival between patients with mutations present in NID1 and those with no mutation (p-value=0.014) (Figure 6B). The rest of the 5 genes, individually, did not show any significant differential survival with respect to presence or absence of mutations (Supplementary Figures S5A–E), though BCAP31 showed borderline significance in its Kaplan-Meier plot (p-value=0.093) (Supplementary Figure S5A), and a significant difference in survival on clubbing it with TP53 a known tumor suppressor (p=0.031) (Supplementary Figure S5F). Next, on clubbing the 3 genes alive and the 3 dead signature mutation data separately, we find a significant difference in survival (p-value=0.0048) for the dead signature as compared to the alive signature (p-value = 0.073) (Supplementary Figures S5G, Figure 6C). Additionally on performing a Multivariate Cox Proportional Hazards analysis of all the Clinical parameters clubbed with all the genes, it was observed that treatment group variables have a significant influence on patients’ risk of death (HR=18.7, p-value=0.044) (Supplementary Figure S5H) and in cases where clinical properties were clubbed with the individual genes one by one, only TCEB2 and Treatment group variables, showed a significant influence on patient’s probability of survival (HR=0.013, p-value=0.021) and their risk of death (HR=17.003, p-value=0.002), respectively (Supplementary Figure S5I). Finally, we looked for the survival probabilities of these 6 genes in the HNSCC WEX data from the TCGA database and none of them showed a significant difference in survival. On analyzing the initial 36 genes again, independent of the GEPIA transcriptome data, we found significant differences in survival trends of 6 genes with an alive signature, MRPL23, TNS2, SPECC1, TBP and PLXNA3, and 2 genes, MARCH10 and COL4A6 as dead signature. The second approach was LASSO regression detailed below.




Figure 6 | (A) A mosaic plot for chi square test showing significant difference between the number of alive and dead patients harboring mutations in BCAP31, TCEB2, AHRR, ZNF568, CEP112 and NID1. (B) A Kaplan Meier plot showing significant difference in survival probability between patients with and without NID1 mutation. (C, D) Are differential survival plots for the 3 dead and 3 alive gene signatures respectively. In (C) AH stands for AHRR, ZN stands for ZNF568 and CE stands for CEP112 where the difference in survival probabilities is much more significant with p=0.0023. In (D) NI stands for NID1, MR stands for MRPL23, and TN stands for TNS2, and the difference in survival between presence of mutations in different combinations of genes is significant with p<0.0001. (E) This is an ROC curve representing the 3 gene dead signature model with a high accuracy of 79% (AUC=0.79). (F) An ROC curve representing the 3 gene alive signature model with an even higher accuracy of 91% (AUC=0.91).





Lasso Regression Models for Prediction of Prognostic Markers

In order to additionally screen for prognostic genes, we used LASSO regression to perform reduction analysis on two sets of genes; 1) The set of 36 genes obtained by applying our own cut-off criteria for dead and alive signatures, 2) Genes with only missense mutations present in at least 4 patient samples. The datasets were analyzed using python’s Scikit-learn module. The data was processed using 100 random penalty (alpha) values for 10000 iterations to obtain the best alpha value after 5-fold cross-validation. The best alpha values for both the datasets were 0.09 and.0817, respectively. On obtaining the best alpha value, we further obtained the coefficients for that particular alpha value which determine the significance of the associated genes. The genes with coefficients of 0 were eliminated. From the first dataset, we obtained MRPL23 (-0.85), COL4A6 (0.45), TBP (-0.45), MARCH10 (0.38), SPECC1 (-0.35), TNS2 (-0.3) CEP112 (0.28), and NID1 (-0.3) as the genes with significant variants (Figure 7A). The same signatures were obtained from the second dataset: MRPL23, TNS2, NID1, and MARCH10 (Figure 7B). Individual Kaplan-Meier plots of these genes showed significant differences in survival as well (Supplementary Figures S6A–C). Taking the genes common to the LASSO regression results using the two datasets and our initial independent scrutiny of significant survival genes, we observe that MARCH10, MRPL23, NID1 and TNS2 are statistically robust genes for a prognostic model prediction. All the above results were confirmed using the R package glmnet. To check if MRPL23, TNS2 and NID1 would act as better alive gene signatures, we combined the survival data of all three and the difference in survival was significant (p-value < 0.0001) (Figure 6D). Adding MARCH10 to the existing dead signature (AHRR, ZNF568 and TCEB2), resulted in a significant 4 gene signature (p-value = 0.012) (Supplementary Figure S6D). To check the accuracy of both the models, we performed and Receiver Operating Curve analysis (ROC) for both of them and the 3 gene alive model ROC curve resulted in an accuracy of 91% (AUC=0.91) and the 4 gene dead model (including MARCH10) had an accuracy of close to 80% (AUC=0.79). These results confirm the presence of two robust and accurate survival models; a 3 gene alive signature; NID1, MRPL3 and TNS2 and a 4 gene dead signature, AHRR, ZNF568, CEP112 and MARCH10 (Figures 6E, F). On comparing results from models of three sets of iterations, i.e., 10000, 1000, and 100 we observe a recurring occurrence of 2 genes EDDM3A, a secretory protein, and TOR1AIP1, nuclear laminar protein involved in the mTOR pathway (Figure 7B). Interestingly, both the genes also showed significant differences in survival when plotting Kaplan Meier graphs individually (Supplementary Figure S6E, F).




Figure 7 | (A) Bar graph showing genes obtained as significant prognostic markers from Lasso regression algorithm of the initial 36 alive/dead genes. (B) Bar graph showing genes obtained as significant prognostic markers from Lasso regression algorithm of all genes with missense mutations, run using 100 random alpha values and 10000 iterations. It is interesting to note that MRPL23, TNS2 and MARCH10, marked with red arrows, are common to both the results.





Identification of a Novel and Deleterious Variant in Cancer Gene Census in Indian HNSCC

To check for the presence of novel variants in our data, from the merged vcf file of all the samples containing all the mutations, we separated out the first 5 columns namely the chromosome, the position of the mutation, reference allele, alternate allele, and the quality score and uploaded it onto the Ensembl Variant Effect Predictor (VEP). From the output file of VEP we filtered out the variants having neither a dbSNP -rs ID nor any COSMIC ID associated with it and termed these 10767 variants as novel variants. Further, we extracted pathogenic variants based on the “deleterious” factor from Sift and “probably_damaging” factor from the PolyPhen databases and obtained a list of unique genes associated with 114 novel variants of which 35 were oncogenes and 11 were tumor suppressors (Figure 8A, B). On referring to the HNSCC whole exome data of these 114 genes from TCGA database we found that only 8 of them were a part of the Cancer Gene Census of which only 3 genes, AKT1, LRP1B, and SPECC1 showed a significant difference in survival from the TCGA whole exome data associated with these genes (Figure 8A). Further, we looked into the association of the variants and the survival of the above-mentioned 3 genes in our data and found that SPECC1 showed a significant difference in survival (p=0.035) (Supplementary Figure 7A). Surprisingly, the SPECC1 variant that showed significant survival difference was an intron variant. We performed a network analysis of 114 genes associated with novel variants using the STRING and REACTOME database. Interestingly, the pathways with variants belonged to Collagen biosynthesis and degradation, mTOR signalling, and ECM signalling pathways (Figure 8C, D, Supplementary Figure 7B). The gene AKT1, a known oncogene, had the most significant number of interactions, interconnecting all the three major clusters observed.




Figure 8 | (A) A flowchart explaining the pipeline followed for prediction of novel deleterious variants from in-house data. (B) This diagram shows the classification of 114 novel deleterious variants into 11 Tumor suppressor genes, 35 oncogenes and 2 DNA damage and Repair genes. (C) This figure shows the distribution of the 114 novel deleterious variants into 3 significant pathway interaction networks, namely Collagen Biosynthesis and Degradation, mTOR signaling and ECM Signaling. (D) A bar graph showing all the significantly mutated pathways by the number of genes mutated with the most significant pathway being receptor tyrosine kinase signaling.





Copy Number Analysis

CNVkit was used to perform CNV analysis of all the samples. Varying patterns of copy number gains and losses were seen in all the chromosomes across all the samples (Figure 9A). Based on initial results, 10 samples were excluded from further analysis as their patterns were collectively distinct from the rest 41. The remaining 41 samples chr3, chr7, chr8, chr17, chr19, and chrX (Figure 9C) showed distinct variations in copy number across their chromosome lengths. On continuing with chr3, which had the most striking number of variations, it was seen that within the chromosome, samples 21, 40, 41, 43, 50, 65, 71, and 72 displayed the most significant difference in copy number gain and loss between extreme ends of the chromosome (Figures 9B, C). Further, the last 70 Mb region of the chromosome in these 8 samples was analyzed and it was seen that ZBTB38, ATP1B3, GK5, ZIC4, AGTR1, GYG1, and SERP1 genes showed a significant gain in Copy number (Figure 9D).




Figure 9 | (A) A comprehensive heatmap showing copy number variation in all the samples across all the chromosomes. (B) Heatmap showing copy number variation across the entire length of chr3 in all the samples. Samples 21, 40, 41, 43, 50, 65, 71, and 72 are indicated by a red arrow since they show the most significant amount of variation amongst all the 41 samples. (C) A heatmap representing the above-mentioned subset of samples with a high amount of variation towards the end of chromosome 3. The last ~70 Mb (150Mb-200Mb) have been highlighted with a green oval which have been zoomed into in (D).






Discussion

One of the main objectives of our study was to identify prognostic signatures linked to survival prediction in the Indian HNSCC cohort. In HNSCC, mutations in a known set of tumor suppressors and oncogenes, namely TP53, CCND1, NOTCH1, PIK3CA, MYC, CDKN2A, PTEN, and FBXW7, have been reported, but most of them are not associated with survival (4, 44).  Several studies have reported a correlation of survival with specific signatures using either exome, or transcriptome, or small RNA signature  (13, 45, 46). Several predictive models using machine learning algorithms such as random forest and lasso- cox regression have been developed to identify genes associated with treatment outcomes, survival, and prognosis of head and neck cancers (47, 48). There are no studies from India correlating survival with gene signatures. We have utilized LASSO-COX and developed a new method using integrated variant signature and gene expression to identify survival-associated genes. The variants identified from exome-see segregated the cancer of the buccal cavity from the tongue and alveolus. Previous studies from the Indian subpopulation on oral cancer and oesophageal cancer have identified mutations specific to the population (16, 49). We have identified novel mutations in AKT1, LRP1B, and SPECC1. Network analysis using all the novel variants identified Collagen biosynthesis and degradation, mTOR signalling, and ECM signalling pathways.

Preliminary variant analysis revealed that of the genes known to be mutated in HNSCC patients, TP53 and TP63 were the ones with the highest frequency of mutation. Both these tumor suppressors are known to be mutated in HNSCC and loss of expression of the same has been linked to cancer progression while TP63 is known to promote survival in HNSCC patients (4, 50, 51). Most of the other proto-oncogenes like NOTCH1, FGFR1, EGFR, CCND1 or tumor suppressors like CDKN2A, ARID2 and MLH1, a mismatch repair gene, that are known to be frequently mutated in oral or head and neck squamous cell carcinomas in general were seen to have less than or equal to 20% mutation frequency. The frequency of these proteins being lower than usual, suggests heterogeneity especially in the Indian cohort.

On performing a tumor site-based signature analysis we came across several interesting results. To start with, APC, Adenomatous Polyposis Coli, a tumor suppressor in the WNT pathways, previously seen to have very low mutation rates in HNSCC was seen to have a structural interaction variant in 18 out of the 19 patients categorized. This suggests that the mutation was an inactivating mutation, contributing to the progression of HNC (52). Next, GPC4, Glypican 4, a known regulator of WNT signaling, known to be downregulated in breast cancer and ovarian cancer, and upregulated in colorectal cancer was seen to be mutated in 50% of the patients (52–54). The other genes with approximately 50% mutation frequency WNT16, PARP1 and ATF4. PARP1 is known to have high expression levels in oral cancer and hence a more than 30% mutation frequency in our data, suggests an activating mutation in all tumor sites (55). The role of WNT16, a part of the canonical WNT signaling pathway family of genes, in cancer progression remains unknown, although expression of WNT16 is downregulated in Basal cell carcinoma (56).

Alveolar signatures were associated with mutations in cell cycle regulators such as PRKCG, WEE1 and RBL2. PRKCG and WEE1, when upregulated, are known to be good prognostic markers in Glioblastoma, while high mRNA levels of RBL2 are known to be associated with HPV+ head and neck tumors (57). Oncogenes like FGFR1, HRAS, NRAS, and a tumor suppressor CDKN2A are known to have mutations in HNSCC (4). Tumor suppressor SMAD4, involved in the EMT pathway was seen to have a stop gained mutation. It has been reported earlier that a somatic LOH mutation was present in a high frequency of lymph node metastatic tumors in HNSCC (58). The Buccal cavity signatures revealed a mutation in the cell cycle associated gene TFDP1, specific to the recurrent buccal sample. TFDP1 amplification has been associated with lung cancer in a previous study and has been stated as a potential oncogene. Its role in head and neck cancer is unknown (59). CASP8 and ATM were the signatures present in buccal cavity. Mutation frequency of 34% has been observed in CAPS8 gene which is also associated with reduced survival in hnscc patients (60). Mutations in ATM, which is a well characterized tumor suppressor has been associated with oral cancer, lung cancer and breast cancer (61–63). The presence of a missense variant in a buccal mucosa tumor patient indicates that the mutation might be an inactivating mutation. Apart from TP53, which has previously been identified as a driver gene in oral tongue squamous cell carcinoma (64), novel gene cluster specific to tongue cancer has been identified which needs validation in larger cohort..

We investigated several potential prognostic markers based on a correlation of mutations occurring in genes and their corresponding survival outcomes. A comparison with the transcriptome data from the GEPIA database resulted in an initial set of 6 genes, 3 genes as a survival signature and 3 as dead. The most important finding out of the 6 survival signatures is the third alive signature gene NID1. Apart from showing a significant difference in survival from GEPIA, it was the only one that showed a significant difference in survival with in-house exome data. Nidogen 1 is a protein that interacts with several components of the extracellular matrix and its overexpression is known to correlate with drug resistance in ovarian cancer and increased metastasis in women affected with Breast Cancer (65, 66). Also, from GEPIA, high NID1 levels correspond to low survival probability, while patients with NID1 mutation show higher probability in our dataset, which suggests that the mutation is an inactivating mutation. Since the none of the other individual genes showed any significant difference in survival, we were encouraged to go back to our initial list of 36 genes and additionally screen through all the missense mutations in the data. A lasso regression model was built using python and R and the two datasets (36 genes and all missense mutations) were screened in order to obtain significant prognostic markers. From the algorithms and the initial curation results, we obtained 3 common alive signatures genes, MRPL23, TNS2 and NID1, and four dead signatures, MARCH10, AHRR, ZNF568 and CEP112. The individual association of survival probabilities of MRPL23, TNS2, MARCH10 and NID1 was significant.

Interestingly combined association of dead signatures showed a significant difference in survival. AHRR, an Aryl hydrocarbon receptor repressor, a known tumor suppressor has been associated with smokers in lung cancer patients in an epigenetic manner (67, 68). A mutation in the gene contributing to a dead signature suggests that its tumor suppressor potential was inactivated. The second dead signature gene was CEP112, a centrosomal protein involved in cell division, known to play a key role in the maintenance of genomic stability in association with BRCA1 (69) and ZNF568, with the most significant contribution to the dead gene signature with a particular mutation present in 12 dead and 10 alive patients, indicating ZNF568 role in tumor suppression.

Two ROC models were built to assess the accuracy of the 3 gene additive alive and the 4 gene dead signatures and it was observed that the alive signature was more accurate with an AUC of 0.91 while the accuracy of the dead signature was 0.79. There have been cancer studies where prognostic ROC models have been greater than 0.65 but have rarely crossed 0.87, which suggests that an AUC of 0.91 represents a significant predictive model (70, 71). Combining two different methods and selecting genes based on functionality rather than just the top signatures gave better accuracy than alone any of the methods, suggesting the potential robustness of this alternative approach towards screening of prognostic markers.

From these different sets of results, it is noteworthy that the predictive survival signatures are quite different when one considers the only exome as compared to when it is considered in concert with transcriptome analysis. Since the focus was on missense mutations, the same analysis also revealed targets with clinical implications and survival. We are aware that the cohorts for transcriptome and exome are not the same, exome is from our in-house Indian cohort while transcriptome is from GEPIA, representing mostly Caucasian population, nevertheless, the expression pattern with some degree of difference, more or less would be similar.

None of the Survival signatures showed significant survival differences in the Caucasian HNSCC cohort, which suggests the presence of population specific prognostic markers. We also performed preliminary Copy number analysis and obtained a signature differentiating a set of samples from another. Correlations between the clinical data/survival parameters with the copy number results are being investigated.

From the driver gene analysis, we saw that the second mutation of IRAK1, S532L showed significant results. S532L IRAK1 mutant depicted the greatest deviation from the wild type in Docking studies and Residue Interaction Studies. The inhibitor (JH-X-119-01) was unable to interact with any active/binding site residues on the S532L mutant while it formed hydrogen bonds with the ATP binding site residues of the wild type and F196S variant. S532L mutant residue had added interactions with two residues which could have played a role in blocking the binding of the ligand to the binding site of the S532L mutant structure. F196S mutant residue had a loss of two interactions but was able to provide the binding pocket for ligand binding similar to the wild type. Further residue interaction analysis with the range of active site and binding site residues may shed light on the deviation in inhibitor binding behavior of the S532L mutant from the Wild Type IRAK1. Hence S532L seems to have a greater effect on the structure and ligand binding and can be targeted for further studies.

The small sample size of patients in the study is a definite shortcoming, but the use of multiple statistically significant methods supporting the findings of our alternate screening method, also resulting in a druggable protein target, reflects on the potential robustness of our method but the signatures obtained in this study need to be validated with a large set of patient samples.



Conclusion

Exome sequencing and analysis of 51 HNSCC samples identified tumor site-specific biomarkers and a recurrence signature. The combined LASSO-COX and exome-transcriptome analysis of mutational profiles with clinical data resulted in 4 dead and 3 alive gene signatures linked to survival.  The three genes alive signature identified can predict survival of HNSCC patients with 91% accuracy. We also identified novel mutations and a druggable driver gene target IRAK1. However, our results need validation with a larger sample size.
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Supplementary Figure S1 | A waterfall plot showing site wise signatures mutations across patients with site of tumor originating from alveolus, buccal mucosa and tongue.


Supplementary Figure S2 | (A) A K-M plot showing difference in survival probabilities between different stages of tumor. (B) A K-M plot showing significant difference in survival probabilities between different types of chemotherapy regimens.


Supplementary Figure S3 | (A) A ligplot image showing the interaction of JH-X-119-01 with F196S mutant IRAK1 molecule, marked in red circles. (B) A cytoscape image showing internal IRAK1 wildtype interactions. (C) Cytoscape image showing a reduced number of interactions within the IRAK1 molecule.


Supplementary Figure S4 | A panel of KM plots from GEPIA showing significant differences in survival probabilities of BCAP31, AHRR, ZNF568, TCEB2, CEP112 and NID1 based on high and low expression categories.


Supplementary Figure S5 | (A–E) Showing K-M plots of BCAP31, AHRR, ZNF568, CEP112 and TCEB2 based on presence or absence of mutations. Note that the differences in survival probabilities are not significant. (F) A KM plot of BCAP31 and TP53 combined showing significant difference in survival based on presence or absence of mutations in both the genes. (G) An additive differential survival plot of the initial 3 alive gene signature, BCAP31, TCEB2 and NID1, showing a low significance value of 0.073. (H) A multivariate analysis forest plot showing significant influence of Treatment group of variables on patients’ risk of death. (I) A multivariate forest plot showing significant influence of Treatment group of variables on patients’ risk of death.


Supplementary Figure S6 | (A–C) K-M plots showing significant difference in survival probabilities between absence and presence of mutations in 3 genes, MRPL23, MARCH10 and TNS2. (D) And additive differential plot of the 4 gene dead signature, AHRR, ZNF568, CEP112 and MARCH10, showing significant difference in survival probabilities. (E) A K-M plot showing significant difference in survival between two categories of EDDM3A gene based on presence or absence of mutations. (F) A K-M plot showing significant difference in survival between two categories of TOR1AIP1 gene based on presence or absence of mutations.


Supplementary Figure S7 | (A) A K-M plot showing significant difference in survival between two categories of SPECC1 gene based on presence or absence of an intron variant. (B) An interaction network obtained from the STRING database, showing 3 significant pathways from the novel deleterious genes linked by AKT1.
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Purpose

This study focused on predicting 3D dose distribution at high precision and generated the prediction methods for nasopharyngeal carcinoma patients (NPC) treated with Tomotherapy based on the patient-specific gap between organs at risk (OARs) and planning target volumes (PTVs).



Methods

A convolutional neural network (CNN) is trained using the CT and contour masks as the input and dose distributions as output. The CNN is based on the “3D Dense-U-Net”, which combines the U-Net and the Dense-Net. To evaluate the model, we retrospectively used 124 NPC patients treated with Tomotherapy, in which 96 and 28 patients were randomly split and used for model training and test, respectively. We performed comparison studies using different training matrix shapes and dimensions for the CNN models, i.e., 128 ×128 ×48 (for Model I), 128 ×128 ×16 (for Model II), and 2D Dense U-Net (for Model III). The performance of these models was quantitatively evaluated using clinically relevant metrics and statistical analysis.



Results

We found a more considerable height of the training patch size yields a better model outcome. The study calculated the corresponding errors by comparing the predicted dose with the ground truth. The mean deviations from the mean and maximum doses of PTVs and OARs were 2.42 and 2.93%. Error for the maximum dose of right optic nerves in Model I was 4.87 ± 6.88%, compared with 7.9 ± 6.8% in Model II (p=0.08) and 13.85 ± 10.97% in Model III (p<0.01); the Model I performed the best. The gamma passing rates of PTV60 for 3%/3 mm criteria was 83.6 ± 5.2% in Model I, compared with 75.9 ± 5.5% in Model II (p<0.001) and 77.2 ± 7.3% in Model III (p<0.01); the Model I also gave the best outcome. The prediction error of D95 for PTV60 was 0.64 ± 0.68% in Model I, compared with 2.04 ± 1.38% in Model II (p<0.01) and 1.05 ± 0.96% in Model III (p=0.01); the Model I was also the best one.



Conclusions

It is significant to train the dose prediction model by exploiting deep-learning techniques with various clinical logic concepts. Increasing the height (Y direction) of training patch size can improve the dose prediction accuracy of tiny OARs and the whole body. Our dose prediction network model provides a clinically acceptable result and a training strategy for a dose prediction model. It should be helpful to build automatic Tomotherapy planning.
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Introduction

Radiotherapy (RT) Plan optimization is a time-consuming process in routine clinical practice. It may cost several hours to constrain the dose distribution to meet the optimal clinical criteria. The plan quality, which the total voxel information can guide the RT plan optimization and ensure, depends on the medical dosimetrist or the medical physicist’s clinical experience and skills. It can minimize the uncertainty of the planning outcome due to different planners handling the planning process (1–3).

Recently, artificial intelligence (AI) and deep learning (DL) methods have been extensively involved in radiotherapy workflow, such as dose prediction (4–7). The DL-based methods perform well in automatic feature extraction and mapping transformation (5, 8). The dose prediction model can make an end-to-end mapping transformation between patients’ anatomical and dose distribution information with organs-at-risk (OARs) constraints (9–12). Compared with using the conventional treatment planning system (TPS), using the DL model to generate predicted dose distribution reduces planning time significantly (13–16).

Tomotherapy is a superior RT modality for treating advanced cancers, such as head and neck cancer. Compared to conventional RT treatment, Tomotherapy plan optimization is a time-consuming process. To make a plan with desirable quality, the planner needs to adjust the dose-volume histogram (DVH) limitation and plan criteria to update the plan weights iteratively. In this context, the total voxel information becomes a crucial consideration in dose prediction. It can guide Tomotherapy plan optimization, reducing the iteration times by lessening TPS optimization’s adjustment steps and minimizing the planning outcome uncertainty caused by anthropogenic factors. Different planners may handle the planning process.

Due to the complex anatomy, it is highly challenging to make a plan that can precisely deliver the prescribed dose to the target for the head and neck cancer patients (17, 18). They carry great essential functions for humans, and they need to be protected from unnecessary doses to guarantee which could still function well after the treatment (safe during the treatment). It results in more difficulty in achieving the desirable dose for planning target volumes (PTVs).

This study aims to establish the underlying relationship between anatomical and dose distribution information for nasopharyngeal carcinoma (NPC) patients treated with Tomotherapy using deep-learning approaches. Since few studies have been performed to investigate dose prediction for NPC, this study should be potentially exciting and valuable as guidance or reference for future RT planning.



Materials and Methods


Data Collection and Preparation

One hundred twenty-four NPC patients were treated with Tomotherapy, and our study collected their data. PTVs, the OARs, and the external contour (Body) were labeled as the contoured structures. We added a 3 mm margin around the gross tumor volume of the nasopharynx (GTVnx) and clinical target volume (CTV) to create the planning GTVnx (pGTVnx) and PTV, respectively. The PTVs include PTV60 (a prescription dose of 60 Gy) and PTV54 (54 Gy). The OARs included Brainstem, Spinal-cord, Eyes, Lens, Larynx-esophagus-trachea (L-E-T), Optic-nerves, Oral-cavity, Parotid-glands (PGs), Pituitary, Thyroid, Submaxillary-glands (SMGs). The study collected Digital Imaging and Communications in Medicine (DICOM) files for each case, including CT series, RT Plan, RT Structure, and RT Dose files. All cases corresponding DICOM files involved in our study have been done for particular quality assurance (QA) and delivered.

The collected cases have good consistency: have all PTV60 (with prescription dose of 60 Gy) and have the same types of OARs. We did the data preprocessing before the model training. It ensures the CNN network could load and correctly process the mapping transformation between the patient’s anatomical and dose distribution information. We extracted the 3D CT matrix from CT DICOM files, and the voxel values were normalized for each case. The normalized CT matrix holds a zero mean value and one as the variance. The study converted the region of interest (ROI) information to a binary mask, which means the pixels inside the contouring area with a value of 1 and pixels outside the contouring area with 0. The spacing and matrix shapes of the ROI contouring mask were adjusted equal to the corresponding CT matrix. We obtained the dose array from RT Dose files, with dose values (from 0 to 74 Gy) directly recorded in the dose matrix. All data preprocessing had been done by Python codes. NumPy, pydicom, and other python packages were used to conserve the raw data to the “npy” format.



3D Neural Network

The 3D Dense-U-Net was built as the neural network architecture (Figure 1). “U-Net” is a famous well-behaved CNN network specializing in end-to-end matrix mapping (19). The U-Net architecture consists of down-sampling and up-sampling blocks concatenated across the bottleneck symmetrically, thus allowing the model to extract features for high, middle, and low level (20). The Dense-U-Net structure preserves the up-sampling and down-sampling portions and adds the densely connected layers within each hierarchical level to create the “Dense structure” (21). Every hierarchical level of Dense-U-Net preserves all features from previous layers. It allows the features to be reused and propagated along with successive layers. The 3D Dense-U-Net is the 3D version of the Dense U-Net model. Compared to the 2D Dense U-Net, the 3D one can directly process the input 3D matrix’s information and capture features along the Y direction.




Figure 1 | 3D Dense-U-NET structure.





Training and Testing

For the 124 nasopharyngeal carcinoma cases, we randomly chose 96 cases for training and 28 cases for testing. The model input matrix contained 21 channels. The first channel is for CT image information, and the 2–21 channels contain ROIs contour information, which includes pGTVnx, PTV60, PTV54, Body, Brainstem, Spinal-cord, Eye-L, Eye-R, Lens-L, Lens-R, L-E-T, Optic-nerve-L, Optic-nerve-R, Oral-cavity, Parotid-L, Parotid-R, Pituitary, Thyroid, SMG-L, and SMG-R. In this study, the ground truth is the dose distribution from the collected RT DOSE DICOM files. Due to the GPU memory limitation, we specified the patch-training strategy. The 128×128×48 shape matrix for training was randomly selected from the 3D dose matrix. The 3D Dense-U-Net model was built up by connection of Dense Block. Every Dense Block includes a Relu activation process, followed by convolution (kernel size 3×3×3), batch normalization, and concatenation with the previous layer. We used zero paddings in each convolution, and each convolution layer had 12 channels. The 3D Dense-U-NET model went through four times down-sampled by max-pooling (kernel size 2×2×2) and symmetrically with four times up-sampled by deconvolution (kernel size 2×2×2, channel =80). The down-sampling process reduced the initial input matrix size from 128×128×48(128➔64➔32➔16➔8) to 8×8×3. It allows the network to be able to extract features both locally and globally; the up-sampling restored the matrix size from 8×8×3 to 128×128×48. The final hierarchical layer of convolution forms a single channel matrix and becomes the output matrix. We used the Adam optimizer (22) with the MAE loss function   and settled the batch size as 4. The learning rate decayed from 10−4 to 10−6 during CNN network training. When the loss values and learning rate stabilized, the process stopped training. And an Nvidia RTX 3090 GPU accelerated the entire training and testing process in this study. The deep learning framework was TensorFlow and Keras.

This study used 28 untrained cases for the model testing. The CT images and ROI contours were used as the model input data, and dose distribution was the model output (Figure 2). The matrix height (Y direction) of the testing case patch was 64. We concatenated the full-body dose distribution after the model generated the predicted dose distribution for each testing case patch.




Figure 2 | Dose difference between the predicted dose distribution and the ground truth for Model I, II, or III. The deep red color shows the dose difference beyond 4 Gy.



We trained two comparative models with different Y lengths (height) to verify whether the 3D model with a large-height training patch could extract more interrelation information from different OAR-PTV distances in the Y direction. From our statistics results, the distance between specific OARs to PTV varies a lot among different patients. For example, the optic nerves’ distances to PTV ranged from 0 to 30 mm, which already equals 10 slices thickness of a CT scan with 3 mm thickness. Model I used the above model training method, and the shape of the training matrix was 128×128×48. Model II reduced the height of the training matrix to 128×128×16 shape. Training Model II aimed to verify whether the increase of height of the training matrix would be helpful to modulate the model to provide more accurate dose prediction for OARs. If the maximum distance from the optic nerve to PTV was 10 slices, and the height of the training matrix was just 16 slice distances, the training matrix may not be able to find enough spatial relationship from optic-organ to PTV. Increasing the height of the training matrix may allow the model to explore a more spatial relationship between the optic nerves and PTV, therefore, to generate more accurate OAR dose prediction. Model III used 2D Dense U-net. It is a simplified change from 3D Dense-U-net to a 2D version. Model III was designed to eliminate the “Y-direction distance” influence in the learning process. Model III can be seen as a comparison experiment to verify if the OAR-PTV distance in the Y direction would be a factor affecting the DL model output.



Quantitative Evaluation

Percentage of errors (δDi), p-value, and gamma passing rate were calculated to evaluate our three models’ accuracy. The formula of the percentage of errors was:

	

We calculated δDi of D98, D95, D50, D2 for PTV60, and Dmean, Dmax for all ROIs. All corresponding δDi for 28 test patients were counted and formed mean and standard deviation (Mean ± SD) for each ROI. The p-value of the two models’ δDi was calculated using a T-test; when the p-value<0.05, the prediction results have no statistical correlation. The gamma passing rates with the 3%/3 mm criteria and 10% threshold for the three approaches were calculated by 3D Slicer 4.10.2 [National Institutes of Health (NIH), USA] software.




Results

The mean deviations from the mean and maximum dose of PTVs and OARs were 2.42 and 2.93%, respectively. Error for the maximum dose of optic nerves-R in Model I was 4.87 ± 6.88%, compared with 7.9 ± 6.8% in Model II (p=0.08) and 13.85 ± 10.97% in Model III (p<0.01); Model I showed well. The gamma passing rate of PTV60 for 3%/3 mm criteria was 83.6 ± 5.2% in Model I, compared with 75.9 ± 5.5% in Model II (p<0.001) and 77.2 ± 7.3% in Model III (p<0.01); Model I also did the best job. The prediction error of D95 for PTV60 was 0.64 ± 0.68% in Model I, compared with 2.04 ± 1.38% in Model II (p<0.01) and 1.05 ± 0.96% in Model III (p=0.01); Model I still performed well. The details of prediction errors are presented in Table 1 and Table 2.


Table 1 | Mean and standard deviation (Mean ± SD) of maximum and mean values between the predicted dose and the ground truth received on PTVs and OARs relative to the prescription dose.




Table 2 | Means and standard deviations (Mean ± SD) of absolute differences for clinical DVH metrics between the predicted and ground truth doses.



To compare the three models’ accuracy intuitively, we randomly selected a test patient. We showed the dose difference between the predicted dose and the ground truth in Figure 2 and the DVH plots of ROIs in Figure 3. Figures of the dose differences and DVH plots showed that Model I has the best prediction among the three models and an advantage in predicting the optic organs’ dose.




Figure 3 | DVH plots for a test patient, such as (A) DVH plot of PTVs, (B) DVH plot of optic organs, (C, D) DVH plots of the other OARs. DVH, Ground-truth (Solid line), Model I (Dashed line), Model II (Dashed and dotted line), Model III (Dotted line).





Discussion

Precise automatic dose prediction can significantly improve clinical planning efficiency and safety (23). 3D dose prediction results can refer to current RT plan optimization in TPS (24, 25). Here, we built CNN-based dose prediction on the previous approved delivered plans. Since, in daily clinical practice, different medical physicists handled the planning process, which provided a source of uncertainty of the RT planning outcome. Using CNN-based dose prediction results guiding plan optimization can reduce the uncertainty of the planning outcomes and improve the plan optimization speed (26). A few fluence-prediction-based auto-planning researches have been done in the past few years. They mentioned that dose distribution could be predicted utilizing a fluence map as well. Furthermore, this enlightens us to get the dose prediction based on an auto-planning system (27, 28). Dose prediction studies can be the basis for much RT-relevant research and technology development.

NPC cases with Tomotherapy have great value in deep-learning dose prediction research. As we know, NPC patients with Tomotherapy are relatively rare in clinical RT practice. And in the past, studies about dose prediction of NPC patients with Tomotherapy were also not too many. Our study for dose prediction found that using a 3D CNN network for training could provide a better outcome than using a 2D CNN network, and the dose prediction accuracy has reached the clinical standard (the mean deviations for the mean and maximum doses of PTVs and OARs were 2.42 and 2.93%, respectively). It can refer to future dose prediction of NPC patients with Tomotherapy, even though this method still needs more research to improve its accuracy.

Our dose prediction model performed well in OARs and PTV areas but didn’t work well in the outside area of OARs and PTVs. Although the outcome accuracy in this study met the clinical requirements, the evaluating indicators included the deviations for the mean and maximum doses for ROIs, the gamma passing rates for PTV, and the DVH plots. But there are still some problems, such as the passing rate for Body was 70.2 ± 9.8%, which was relatively poor. That means further research should focus on how to predict accurate doses in no-contoured areas. Future studies recommend inputting more features such as the help region and the outward expansion area or controlling training data’s consistency, such as only using the designed plan from the same planner.

Besides building a dose prediction model, there is another critical factor that needs to be thought over (1). Training with the CNN network should follow the clinical logic concept (2). Training strategy should not directly duplicate from other studies, considering the dataset’s features should be ahead of training.

In this study, the network structure is similar to some medical imaging segmentation networks. Previous studies showed that the U-net could perform very well in dose prediction and CT image segmentation tasks. But the training strategy should be suitable for the specific prediction tasks. For example, the 2D U-Net can perform pretty well in the task of CT image segmentation (19, 29, 30). Slice by slice segmentation prediction is similar to the clinical logic flow. As is well known, clinical staff always creates the contouring slice by slice, which affirms that each single CT slice should contain enough segmentation information. But as shown in the study, directly using the 2D network to predict dose distribution slice by slice cannot give us the wanted outcome, which may be due to the loss of Y-direction information as shown in the results, the OARs (such as Spinal-cord), which were close to PTV in the Y direction. It didn’t show the different results using the 2D or 3D network to predict the dose distribution. But for OARs far from PTV in the Y direction, such as the optic organs, the dose-prediction results of the 2D network brought out lacks ability. The reason for the outcome difference could be that the algorithm logic is different from the clinical logic. When a medical physicist or dosimetrist makes a treatment plan, the staff should consider the relationship of the relative location between OAR and PTVs. We can quickly understand that it is difficult to avoid unnecessary doses for NPC patients if the optic organs are close to PTV. On the other hand, if the organs are far from PTV, they would be protected from radiation more efficiently. So, using the 3D network for training can allow the model to get the relative location between OARs and PTV. This action conforms to the clinical logic flow. Thus, a good outcome could meet.

Meanwhile, it is necessary to formulate the training strategy by considering the dataset’s features. Some deep-learning-based dose prediction studies have been made for cervical carcinoma. The studies used a general 3D-model-patch-training strategy with 16 pixels height matrix to train (shape of n×n×16) or directly used a 2D network for data training (5, 31, 32). From some dose prediction studies proposed, 2D network training is good enough to provide excellent results of dose prediction. But in transplanting the patch-training strategy to this project, using (n×n×16) shape matrix to train or using the 2D network gives different results. We found that the results were not so good. Reviewing the patient’s anatomic structure, we finally uncovered the dependency between the dose prediction results and the patient’s anatomic information. Using an (n×n×16) shape training matrix/patch, we got an ideal dose prediction for the patients whose PTV was close to the eyes. But for the patients whose PTV was far from the eyes, it resulted in a wrong prediction. The statistics results showed that the optic nerve’s dose delivered was negatively correlated with the distance from PTV to it. For all patients involved in the study, the maximum dose for optic nerves ranged from 9.7 to 71.4 Gy; the distance from the optic nerves to PTV ranged from 0 to 30 mm. The deep-learning model needs to know the spatial relationship between OARs and PTV. Since the predicted doses of optic nerves were highly related to its distance to PTV, using (n×n×16) shape matrix for training, it wouldn’t get an accurate dose prediction for the cases with sizeable PTV-eye distance. We believe that the (n×n×16) shape training matrix fitted better to extract anatomic information in pelvic cancer because the pelvic tissues were generally compact to PTV. For NPC patients, the PTV-eye distance varies from 0 to several centimeters. If the training patch’s height is small such as 16 pixels, it may be difficult for the deep-learning network to find the PTV-eye spatial relationship. PTVs have usually more than 70 slices thickness height for NPC patients. Suppose the training patch’s matrix with a considerable height, such as height = 48 pixels, and the model could extract more features of the spatial relationship among the PTV-eye voxels.

Clinical and actual treatment logic concept includes a lot of information, which are greatly important. We could utilize them to optimize the deep-learning network performance relevant to the RT aspect. The training matrix should be considered the network’s field of view from which the model could find the transformation relationship. Training with the 3D Dense-U-NET could predict each pixel’s dose value by considering the full input matrix. Increasing the input matrix height (Y direction) would be a strategy realized the extraction combination features of model training and clinical logic concepts. Increasing the height of the input matrix (increases the local sense of field) can make the DL model find more spatial features and relationships correlated to PTV-OAR distance, which provides a more accurate outcome for dose prediction.

The deep-learning-based dose prediction method still has many problems that need to be solved. Firstly, previous research never focused on excavating the data’s internal features and comparing the data differences. The anatomical information holds tremendous differences among different patients. Secondly, we can’t directly use the previous researchers’ method for deep learning, for different tumor types and treatment techniques have specific dose prediction methods. According to the tumor type and treatment mode, developing a specific dose prediction method can be a better way to improve dose prediction efficiency and accuracy. Our research was focused on adding the clinical logic concept with the deep-learning method together. Therefore, we developed a more reasonable deep-learning model training strategy.

A deep-learning-based study focuses on the relevant software and hardware, the clinical logic concepts, and the collected data characteristic. Combining computer technology, clinical logic flow, and data characteristics would be an ideal pathway to develop an excellent-performance dose prediction model.



Conclusions

In this study, we successfully developed an accurate dose prediction model using a 3D convolutional neural network. It proves well for NPC patients with Tomotherapy. It also tells that exploring the spatial features between OARs and PTV is necessary for dose prediction. We found that a 3D DL model with a larger Y-dimension training matrix increases the accuracy of dose prediction outcomes. With this extra consideration, our accuracy improvement method of dose prediction is good enough to be considered a milestone for the automatic planning process with Tomotherapy and other RT techniques. The predicted results could be used as a reference or guidance for systematic clinical RT planning.
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Objective

The present study aimed to evaluate the role of integrating the pretreatment neutrophil-to-lymphocyte ratio (NLR) into the eighth edition of the AJCC staging system for nasopharynx cancer in an endemic region.



Methods

Between May 2007 and December 2012, a total of 713 cases with NPC were retrospectively analyzed. The separation ability in terms of overall survival (OS), local failure-free survival (LFFS), distant metastasis-free survival (DMFS), and failure-free survival (FFS) was evaluated. The discriminatory ability was assessed using Harrell’s concordance index (c-index). Recursive partitioning analysis (RPA) was conducted and incorporated with pretreatment NLR.



Results

When integrated with NLR, the separate and discriminatory abilities for N classifications were improved in terms of OS and DMFS, but not for T categories. By using Recursive partitioning analysis, five subgroups were generated. Compared with the overall stage, the integration of NLR could not enhance the separate and discriminatory abilities. However, patients in the RPA 4 group gained significant benefits in terms of OS (HR 0.390 (95%CI 0.212-0.716), P = 0.002) and FFS (HR 0.548 (95%CI 0.314-0.958), P = 0.032) from the additional adjuvant chemotherapy after concurrent chemoradiotherapy.



Conclusion

The integration of NLR into the 8th edition of the AJCC staging system could enhance the separation and discriminatory abilities for N classifications, but not for T categories. In addition, patients in the RPA 4 group could benefit from the addition of adjuvant chemotherapy to concurrent chemoradiotherapy.





Keywords: nasopharynx cancer (NPC), neutrophil-to-lymphocyte ratio (NLR), neoplasm staging, concurrent chemoradiotherapy (CCRT), adjuvant chemotherapy



Introduction

Nasopharynx carcinoma (NPC) is prevalent in South-Eastern China, Malaysia, Indonesia, Singapore, Eastern Asia, and Northern Africa, with a high incidence rate of 15-50/100,000 cases per year (1, 2). Radiotherapy in combination with chemotherapy is the main therapeutic regimen for NPC. With improvements in diagnostic imaging and radiotherapy technology and the broader application of systemic therapy, the prognosis of NPC has improved significantly (3–5).

The American Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging system has been widely applied to estimate curative effects and to help develop therapeutic strategies. We previously reported recommendations for updating the T and N staging systems for NPC by comparing the 2008 Chinese staging system and the 7th AJCC staging system (6). Recently, the 8th edition of the AJCC staging system for NPC was released and is based on large-sample clinical trials using magnetic resonance imaging (MRI) and intensity modulated radiation therapy (IMRT) technology (7).

Clinically, patients with the same TNM stage may have different prognoses, which indicates the heterogeneity among patients. Therefore, it is essential to integrate other prognostic factors into the TNM staging system. A set of studies have shown that when integrated with some biomarkers, the separation and discriminatory ability can be enhanced in several tumors, including prostate cancer (8), breast cancer (9), lymphoma (10), and seminoma (11). Pre-treatment neutrophil-lymphocyte ratio (NLR) have been proved as an useful biomarker to predict overall survival in several cancers, such as gastric cancer (12), breast cancer (13), and nasopharyngeal carcinoma (14, 15). Several studies have demonstrated that NPC patients with an elevated pre-treatment NLR had poorer survival (14, 15). The present study aimed to investigate the role of integration of the pre-treatment NLR with the eighth edition of the AJCC staging system for nasopharynx cancer in an endemic region. In addition, an accurate staging system could not only predict prognosis, but also guide clinicians in making treatment decisions. Currently, controversy exists regarding the role of adjuvant chemotherapy after concurrent chemoradiotherapy for NPC (16, 17). Therefore, we also aimed to explore whether the integration of NLR could help stratify who may benefit from the additional adjuvant chemotherapy.



Methods and Materials


Patients

A total of 713 patients with NPC were retrospectively analyzed between May 2007 and December 2012. Patients who met the following criteria were included: (1) differentiated or undifferentiated nonkeratinizing NPC; (2) no distant metastases upon diagnosis; (3) pretreatment evaluations, including a complete patient history, physical and neurological examinations, nasopharynx and neck MRI scans, chest X-ray or computed tomography (CT) scans, abdominal ultrasonography scans, and whole-body bone scans; and (4) use of IMRT as the radiotherapy technology. Three patients had keratinizing carcinoma, and all the other patients were diagnosed with nonkeratinizing carcinoma. The median age was 45 years old. A total of 557 patients were male, and 175 were female. Stage classifications were identified according to the 8th edition of the AJCC staging system by two radiation oncologists. If discordance existed between the two radiologists, a third physician’s opinion was obtained. The patient characteristics are shown in Table 1. Blood routine, including the items of neutrophil and lymphocyte counts, is conducted by automatic blood analyzer before treatment (China, Shenzhen, Mindray BC6900). Considering several studies had demonstrated that NPC patients with an elevated pre-treatment NLR had poorer survival, and the median of pre-treatment NLR of 713 patients was 2.07 (range, 0.63-12.03), so it was chosen as the cut-off. The Ethics Committee of Guangxi Medical University Cancer Hospital approved the study protocol, and informed consent forms were signed by participants. The data were anonymously analyzed, and all the participants’ personal information is confidential. The research was performed in accordance with relevant guidelines and regulations.


Table 1 | Characteristics of patients with nasopharyngeal carcinoma.





Treatment Strategies

A detailed description of IMRT has been previously published (18). The prescribed dose was 68-74 Gy applied to the primary tumor, 60-71 Gy applied to any involved cervical lymph nodes, 60-66 Gy applied to the high-risk regions, and 54-60 Gy applied to the low-risk regions in 30-32 fractions/6-7 weeks. Those with stage I disease underwent IMRT alone. For patients with stage II-IVb disease, IMRT was administered in combination with a platinum-based chemotherapy regimen.



Follow-Up and Statistical Analysis

Follow-up was conducted from the day of diagnosis to either the day of death or the day of the last follow-up. Patients were evaluated every 3 months during the first two years, every 6 months during the next three to five years, and annually thereafter until death.

Statistical analyses were performed with SPSS software (version 16.0, SPSS Inc., Chicago, IL). The endpoints, including overall survival (OS), distant metastasis-free survival (DMFS), local failure-free survival (LFFS), and failure-free survival (FFS) were calculated using the Kaplan-Meier method, and the differences were assessed with the log-rank test. Multivariate analyses with the Cox proportional hazards model were carried out. The discriminatory performance was evaluated via Harrell’s concordance index (c-index) (19). The c-index was calculated using the package “rms” (20) in R version 3.5.1 (http://www.r-project.org/). To compare the c-indexes, bootstrap datasets with 1000 repetitions were performed. Recursive partitioning analysis (RPA) for OS was conducted with ordinal T- and N- categories and pre-treatment NLR to derive RPA stages objectively. The RPA algorithm is based on the optimized binary partition of T- or N- categories or NLR, which would result in subgroups with relatively homogeneous survival performance. All P-values were two-sided, and P ≤ 0.05 was considered statistically significant.




Results

With a median follow-up of 77 months (range, 2-134 months), a total of 171 (24%) patients died, 121 (17%) developed distant metastasis, and 65 (9.1%) developed local recurrence. Univariate analysis showed that patients with a pretreatment NLR > 2.07 had poor OS (HR 1.710 (95%CI 1.257-2.325), P = 0.001), DMFS (HR 1.476 (95%CI 1.029-2.118), P = 0.033), and FFS (HR 1.475 (95%CI 1.125-1.934), P = 0.005) than those with a NLR ≤ 2.07, while no significant difference was found in LFFS (HR 1.194 (95%CI 0.734-2.118), P = 0.475) (Figure 1). The univariate analysis also indicated that sex, age (continuous), and T and N classifications were significant prognostic factors for OS. The multivariate analysis revealed that age (continuous), pre-treatment NLR, and T and N classifications were significant factors for OS (details are shown in Table 2).




Figure 1 | Kaplan–Meier survival curves for 713 patients stratified by the cutoff of NLR. NLR, Neutrophil-to-lymphocyte ratio. (A) Overall survival; (B) Failure-free survival; (C) Distant metastasis failure-free survival; (D) Local failure-free survival.




Table 2 | Univariate and multivariate analyses for the overall survival using Cox regression model.




T Classification

The OS and LFFS curves for the T categories are shown in Figure 2. Based on the 8th edition staging system, there were significant differences in OS between the T subgroups, except in the comparison of the T1 and T2 classifications (details are shown in Figure 2A). However, there only existed a significant difference in LFFS between T4 and the other T categories (P < 0.05; Figure 2B). When integrated with NLR, a significant difference in OS was found between “T1-2 & NLR ≤ 2.07” and “T1-2 & NLR > 2.07”, but no significant differences existed between “T1-2 & NLR > 2.07” and “T3-4 & NLR ≤ 2.07”, “T3-4 & NLR ≤ 2.07” and “T3-4 & NLR > 2.07” (Figure 2C). Regarding LFFS, significant differences were only observed between “T1-2 & NLR ≤ 2.07” and “T3-4 & NLR ≤ 2.07”, “T1-2 & NLR ≤ 2.07” and “T3-4 & NLR > 2.07” (Figure 2D). After integration of NLR, the C-index became smaller for both OS and LFFS (details are shown in Table 3), which meant that the discriminatory ability was not improved.




Figure 2 | Kaplan–Meier survival curves of 713 patients stratified by the T and T & NLR classifications. NLR, Neutrophil-to-lymphocyte ratio. (A, C) Overall survival; (B, D) Local failure-free survival.




Table 3 | Univariate analysis for T and N classifications associated with overall survival, local failure-free survival, and distant metastasis free survival.





N Classification

The OS and DMFS curves for the N subsets are shown in Figure 3. Significant differences were found between the N subsets in terms of OS and DMFS for the 8th edition AJCC staging system, except for comparison of the N0 and N1 as well as N2 and N3 classifications (details are shown in Figures 3A, B). After integration of NLR, there were significant differences in OS between the updated subgroups except for the comparison of “N0-1 & NLR > 2.07” and “N2-3 & NLR ≤ 2.07” (Figure 3C). In terms of DMFS, there were still no significant differences between the “N0-1 & NLR ≤ 2.07” and “N0-1 & NLR > 2.07” subgroups and between the “N2-3 & NLR ≤ 2.07” and “N2-3 & NLR > 2.07” subgroups. Cox multivariate regression analysis showed that the N classifications were independent prognostic indicators of DMFS and OS in the two staging systems (P< 0.001). When integrated with NLR, significant improvements in the C-index of OS and DMFS were observed (details are shown in Table 3).




Figure 3 | Kaplan–Meier survival curves of 713 patients stratified by the N and N & NLR classifications. NLR, Neutrophil-to-lymphocyte ratio. (A, C) Overall survival; (B, D) Distant metastasis failure-free survival.





Recursive Partitioning Analysis

Recursive partitioning analysis classified NPC patients into eight categories with disparate outcomes for OS (Figure 4). Then 5-year overall survival rates in each group were calculated by using the Kaplan-Meier method, with 95.9%, 87.2%, 87.4%, 82.0%, 83.7%, 79.5%, 74.0%, and 67.8% in eight subgroups, respectively. Those with 5-year OS > 90% were classified as the best prognosis group (RPA1), and those with 5-year OS ≤70% were classified as the poor prognosis group (RPA5). Those with 5-year OS > 70%, and ≤80% were identified the intermediate prognosis group (RPA4). Those with 5-year OS > 80%, and ≤90% were identified as the good prognosis group. The good prognosis group consisted of four subgroups, and the 5-year rates of OS were 87.2%, 87.4%, 82.0%, and 83.7%, respectively. Then the good prognosis group was divided into two groups. The two subgroups with 5-year OS of 87.2% and 87.4% were merged into RPA2, and the other two subgroups with 5-year OS of 82.0%, and 83.7% were merged into RPA3 (Figure 4). Five-year OS was significantly different between RPA groupings (RPA1 to RPA5: 95.9%, 87.3%, 83.0%, 76.4%, and 67.8%, respectively). Figure 5 shows the FFS and OS curves for the overall stage and RPA groups. According to the 8th AJCC staging system, significant differences were found between the clinical stages in terms of OS and FFS, except for comparison of stages I and II (details are shown in Figures 5A, B). When using the RPA stages, patients with RPA1 stage had better OS than those with RPA2 stage, but no significant differences were observed between patients with the RPA2 and RPA3 stages, between the RPA3 and RPA4 stages, and between the RPA4 and RPA5 stages (Figure 5C). Regarding FFS, significant differences were found between the subgroups, except for the comparisons of the RPA1 and RPA2, RPA2 and RPA3, and RPA3 and RPA4 groups (Figure 5D). The c-indexes of OS and FFS were not improved when using RPA classifications (details are shown in Table 4).




Figure 4 | Recursive partitioning analysis for the endpoint of 5-year overall survival of 713 patients, based on the optimized binary partition of T-, N- categories and NLR. RPA, Recursive partitioning analysis; NLR, Neutrophil-to-lymphocyte ratio.






Figure 5 | Kaplan–Meier survival curves of 713 patients stratified by the overall stage and RPA groups. RPA, Recursive partitioning analysis. (A, C) Overall survival; (B, D) Failure-free survival.




Table 4 | Univariate analysis for the overall stage and RPA classes associated with overall survival, and failure-free survival.



We performed subgroup analyses to explore whether the integration of NLR could help identify who may benefit from the additional adjuvant chemotherapy by comparing concurrent chemoradiotherapy followed by adjuvant chemotherapy versus concurrent chemoradiotherapy alone. When using the 8th edition AJCC staging system, no significant benefits of adjuvant chemotherapy were found in any stage groups. For those 206 patients in RPA4, 77.2% (159/206) patients received concurrent chemoradiotherapy alone or concurrent chemoradiotherapy followed by adjuvant chemotherapy. We observed that patients in the RPA 4 group gained significant OS benefits (HR 0.390 (95%CI 0.212-0.716), P = 0.002) and FFS (HR 0.548 (95%CI 0.314-0.958), P = 0.032) from the additional adjuvant chemotherapy (Figure 6). However, no significant survival benefits were found for the additional adjuvant chemotherapy to concurrent chemoradiotherapy for other RPA groups. Meanwhile, the value of induction chemotherapy was also investigated. A total of 119 patients (16.7%) received induction chemotherapy, with 9 in RPA 1, 17 in RPA 2, 20 in RPA 3, 34 in RPA 4, and 39 in RPA 5, respectively. Then we compared the efficacy of the treatment regimens with or without induction chemotherapy in RPA 4 and 5 groups. It was found that no survival benefits were gained from induction chemotherapy in both RPA 4 and 5 groups.




Figure 6 | Kaplan–Meier survival curves in the CCRT + AC and CCRT alone arms for patients in the RPA 4 group. CCRT, Concurrent chemoradiotherapy; AC, Adjuvant chemotherapy; RPA, Recursive partitioning analysis; (A) Overall survival; (B) Failure-free survival.






Discussion

In the present study, we explored the role of integrating pre-treatment NLR with the 8th edition AJCC staging system. We observed that the integration of NLR could enhance the separate and discriminatory abilities for the N category, but not for the T classification. In addition, it could help identify who may benefit from the additional adjuvant chemotherapy after concurrent chemoradiotherapy.

In a meta-analysis involving 7,031 patients, an increased NLR was related to a poor OS and PFS (PFS) (21), which was consistent with the present study. In another two retrospective studies, Liao et al. and Ye et al. also observed that patients with a high NLR had significantly lower PFS and OS (15, 22). What is the potential mechanism by which NLR can affect tumor prognosis? As is well known, the tumor microenvironment (TME) plays a key role in tumorigenesis, proliferation, invasion, and metastasis. As inflammatory markers, neutrophils and lymphocytes are both important components of TME (23, 24). Neutrophils can activate tumor initiation by inducing the formation of reactive oxygen species (ROS), reactive nitrogen species (RNS) and proteases, as well as promoting tumor proliferation (23). In addition, neutrophils can also motivate metastasis formation via inhibiting natural killer function and facilitating the extravasation of tumor cells through the secretion of IL1β and matrix metalloproteinases (25). Several studies have reported the potential mechanism why neutrophil correlate with poor prognosis of cancer patients. Wang et al. found that patients with gastric cancer showed a significantly higher neutrophil infiltration in tumors, and the tumor-activated neutrophils fostered immune suppression and disease progression through granulocyte-macrophage colony-stimulating factor-PD-L1 (GM-CSF-PD-L1) pathway (26). In 2021, Kajioka et al. reported that neutrophil extracellular traps (NETs) induced the epithelial to mesenchymal transition in pancreatic cancer cells and thereby promoted their migration and invasion (27). Lymphocyte, including cytotoxic T cells, Th1 helper cells and B cells, can orchestrate tumor cell elimination (24). Therefore, an abundance of lymphocytes may result in poor prognoses. That is to say if patients have higher level of neutrophil and lower level of lymphocyte, their prognoses may be poor.

The peripheral NLR may become an easily measured, cost-effective and reproducible marker associated with clinical practice. However, there still exist some issues that need to be resolved. For example, the cutoff of NLR is not unique in different research institutes, ranging from 2.28 to 5.0 according to the published results (21). It is also unclear whether the level of NLR can be altered to improve prognosis by targeted treatment. Therefore, more studies need to be performed to assess the widespread use of this biomarker.

In the era of precision medicine, heterogeneities among patients require oncologists to integrate other prognostic factors into the TNM staging system. For example, prostatic specific antigen (PSA), as a powerful biomarker for prostate cancer, has been merged into the AJCC staging system to help divide patients into different risk groups (8). The expression levels of estrogen receptors (ER) and progesterone receptors (PR), as well as Her-2 for breast cancer, guide oncologists in predicting prognosis and developing the corresponding therapeutic strategies (9). Our study showed that the integration of NLR could help improve the separation and discriminatory abilities for the N category, but not for T classification. It is urgent to conduct multicenter studies to identify the role of integrating NLR with the TNM staging system for NPC.

Currently, the role of adjuvant chemotherapy (AC) after concurrent chemoradiotherapy (CCRT) for NPC is still unclear. A multicenter randomized controlled trial and a retrospective study with 2,263 patients both showed that the addition of adjuvant chemotherapy to CCRT could not provide significant survival benefits (16, 28). However, a multi-institutional retrospective study with 380 patients in the CCRT alone arm and 327 patients in the CCRT-AC arm revealed that AC can significantly improve survival (17). In the present study, we observed that patients in the group RPA 4 (T3-4N0-1&NLR>2.07, or T3-4N2-3&NLR ≤ 2.07) may gain a survival benefit from the addition of adjuvant chemotherapy to concurrent chemoradiotherapy. However, the samples in both arms were not large. It is essential to conduct prospective trials with large samples to verify the results.

There are some limitations of the present study. First, as a retrospective study, selection bias may have occurred because patients were included only if they met specific selection criteria. However, these findings can help us design and conduct prospective studies to investigate the truth. Second, the sample size was not large. Third, the patients were from a single hospital, which may result in selection bias. Finally, a set of studies has shown that the presence of Epstein-Barr viral DNA (EBV DNA) in plasma (29) has a significant influence on the prognosis of NPC patients. However, these relevant data are not available for all patients, and plasma EBV DNA assay by RT-PCR (reverse transcription-polymerase chain reaction) is not yet a routine investigation in many centres, especially in low income countries and cities. Additionally, most published studies are based on laboratory-derived test of the individual institute: the lowest detection limit varies widely among different institutions, resulting in variation in false-negative rates and recommended cutoff values (30). Therefore, considering that the updated stage system should have wide popularization and application prospects, we did not include this factor in the analysis.

In summary, the integration of NLR into the 8th edition of the AJCC staging system could significantly improve the separation and discriminatory abilities for N classification, but not for T category. Additionally, it could help stratify patients who may gain a survival benefit from the addition of adjuvant chemotherapy to concurrent chemoradiotherapy. More prospective trials with large samples are essential to verify these results.
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Background

Partial epithelial-mesenchymal transition (p-EMT) is a distinct clinicopathological feature prevalent in oral cavity tumors of The Cancer Genome Atlas. Located at the invasion front, p-EMT cells require additional support from the tumor stroma for collective cell migration, including track clearing, extracellular matrix remodeling and immune evasion. The pathological roles of otherwise nonmalignant cancer-associated fibroblasts (CAFs) in cancer progression are emerging.



Methods

Gene set enrichment analysis was used to reveal differentially enriched genes and molecular pathways in OC3 and TW2.6 xenograft tissues, representing mesenchymal and p-EMT tumors, respectively. R packages of genomic data science were executed for statistical evaluations and data visualization. Immunohistochemistry and Alcian blue staining were conducted to validate the bioinformatic results. Univariate and multivariate Cox proportional hazards models were performed to identify covariates significantly associated with overall survival in clinical datasets. Kaplan–Meier curves of estimated overall survival were compared for statistical difference using the log-rank test.



Results

Compared to mesenchymal OC3 cells, tumor stroma derived from p-EMT TW2.6 cells was significantly enriched in microvessel density, tumor-excluded macrophages, inflammatory CAFs, and extracellular hyaluronan deposition. By translating these results to clinical transcriptomic datasets of oral cancer specimens, including the Puram single-cell RNA-seq cohort comprising ~6000 cells, we identified the expression of stromal TGFBI and HYAL1 as independent poor and protective biomarkers, respectively, for 40 Taiwanese oral cancer tissues that were all derived from betel quid users. In The Cancer Genome Atlas, TGFBI was a poor marker not only for head and neck cancer but also for additional six cancer types and HYAL1 was a good indicator for four tumor cohorts, suggesting common stromal effects existing in different cancer types.



Conclusions

As the tumor stroma coevolves with cancer progression, the cellular origins of molecular markers identified from conventional whole tissue mRNA-based analyses should be cautiously interpreted. By incorporating disease-matched xenograft tissue and single-cell RNA-seq results, we suggested that TGFBI and HYAL1, primarily expressed by stromal CAFs and endothelial cells, respectively, could serve as robust prognostic biomarkers for oral cancer control.





Keywords: prognostic biomarkers, oral cancer, partial epithelial-mesenchymal transition (p-EMT), tumor stroma, myofibroblastic CAF (myCAF), inflammatory CAF (iCAF), hyaluronidase



Introduction

In Taiwan, the population of betel quid users significantly declined via a successful nationwide oral cancer screening program initiated 22 years ago. However, the 5-year survival rate (~ 56%), death ranking in all cancers (fourth for males, sixth for all), and death of middle age (60 as male median) have remained serious concerns in recent years (1). In addition, a retrospective study indicated that approximately one-third of oral cancer patients had local recurrence (34.6%, 146/422), and approximately one-fifth of 5-year survivors still experienced recurrence (18.1%, 23/127) (2). These data prompted local researchers to devote more efforts to encouraging hesitant patients for curative surgery (3), setting optimal measures for adjuvant radiotherapy (50–60 Gy) (4) and adequate surgical margins (≥ 5 mm for good overall survival) (5), among others. Regrettably, molecular biomarkers that can reliably forecast oral cancer prognosis are still unavailable.

In tumor biology, partial epithelial-mesenchymal transition (p-EMT), a.k.a. hybrid E/M status, EMT continuum or EMT spectrum, is referred to as varied intermediate stages where epithelial cells dedifferentiate to their mesenchymal counterparts (6). In contrast to fully mesenchymal cancer cells that invade alone, p-EMT cells migrate collectively and directionally in the tumor stroma, notably angiolymphatic and perineural invasions. During cluster advancement, intercellular adherent junctions and cadherins are responsible for multicellular integrity and cell-cell coordination; extracellular matrix metalloproteinases (MMPs) and basement membrane type IV collagens are essential for track clearing and secondary extracellular matrix remodeling, respectively (7).

Previously, Puram et al. revealed the ecosystems of ~6,000 cells from 18 treatment-naïve oral cancer specimens, including 5 matched lymph node metastases, by using high-resolution single-cell RNA sequencing (scRNA-seq). Their results indicated that greater than 70% of oral cavity tumors in the cancer genome atlas (TCGA) are malignant-basal type, which displays either EMT or p-EMT as hallmarks (8). Subsequent experiments using quantitative immunohistochemistry assays (PDPN, LAMB3, LAMC2) further revealed that p-EMT is statistically associated with nodal metastasis and perineural invasion in 99 primary oral cancer tissues, providing p-EMT as a useful indicator for decision-making intraoperatively (e.g., N0 neck dissection) or postoperatively (e.g., adjuvant therapy) (9).

Independently, our prior study showed that DDR1, COL4A5, COL4A6 and PDPN are statistically associated with angiolymphatic invasion in matched tumor-adjacent normal tissues from 40 Taiwanese oral cancer patients. In addition, inhibition of DDR1 kinase activity in p-EMT oral cancer cells (TW2.6) disrupted cell cohesiveness in a 2D culture, reduced spheroid invasion in a collagen gel matrix, and suppressed angiolymphatic invasion in xenograft tissues (10). It is worth noting that compared to a mesenchymal subtype (OC3) that has a similar growth rate and clonogenicity in vitro, p-EMT TW2.6 repeatedly grew faster (e.g., 32 vs. 81 days to reach 500 mm3) in immunodeficient mice (NOG) despite their tumor-bearing rates were similar (11).

The tumor stroma is regarded as the nonmalignant part of a tumor that is interconnected by extracellular matrices (ECMs) with infiltrated immune cells, vascular or lymphatic vessels, and cancer-associated fibroblasts (CAFs). In head and neck cancer, tumor-stroma interactions, including tumor budding and tumor-stroma ratio, have emerged as powerful clinicopathological predictors for tumor aggression and patient survival (12–14). CAFs gained their name through the finding that activated fibroblasts proliferate and accelerate the growth of several epithelial tumors during malignant progression, a phenomenon reminiscent of wound repair and fibrosis (15, 16). Importantly, the Sahai Lab demonstrated that stromal fibroblasts are required for guiding collective cancer cell invasion of squamous cell carcinoma in an organotypic culture model (17). In addition, scRNA-seq methodology has explicitly revealed the presence of two functionally discrete CAF subtypes in clinical samples, designated myofibroblastic (myCAF) and inflammatory (iCAF) (18–22). Of importance, both variants coevolve with tumor progression in which iCAFs seemed to precede myCAFs (21, 23).

In conventional bulk transcriptomic analysis, tumor- and stroma-derived transcripts are admixed, which greatly limits precise molecular stratification and cell type-driven therapies (8, 24, 25). To circumvent this inherent ambiguity, various computational pipelines were developed to infer tumor-infiltrated stromal components in a given tissue, including ESTIMATE (26), CIBERSORTx (27), and TIMER (28). Alternatively, an RNA-seq-based hypothesis-free workflow, namely, to extract the human and the mouse reads from patient-derived xenograft tissues, followed by composite transcriptomic analysis of tumor (human) and stroma (mouse) interactions, has been established recently (29–31).

Along the same vein, our prior results showed that the stroma of mesenchymal OC3 tumors harbored a statistically higher extent of mouse fibroblasts than p-EMT TW2.6 tumors. By translating the most significantly expressed gene matrix into clinical datasets of oral cancer tissues, we showed that the summed expression of FN1, TGFB2, TGFBR2, and TGFBI, dubbed the CAF index, is a poor indicator of overall survival for oral cancer (n=40) and the PANCAN (n=9,356) cohorts (11). Here, we continued to investigate the molecular interactions between tumor cells and stromal components in p-EMT TW2.6 tumors.



Materials and Methods


Cell Culture, Animal Experiment, and mRNA-Seq Analysis of Xenograft Tissues

Please refer to prior study for details (11). Briefly, CGHNC8, C9, K2, K6 (32), OC3 (33), OEC-M1 (34), and TW2.6 (35) were kindly provided by researchers at distinct institutions in Taiwan. OC3 and TW2.6 were selected for two independent animal studies. We measured the tumor size and mouse weight twice a week. For Exp1, all tumors were collected on day 68. For Exp2, to obtain tumors with ~500 mm3 in size, tumors of TW2.6-NOG and OC3-NOG were collected on day 32 and day 81, respectively. Total RNAs of each cell line and xenograft tissue were extracted by TRIzol® reagent (Invitrogen Life Technologies, Carlsbad, CA, USA), cleaned up by RNeasy column (Qiagen, Hilden, Germany), and subjected to an Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA) for RNA Integrity Number (RIN) assessment. Only samples that had an RIN > 7 were selected for mRNA amplification and sequencing (stranded paired-end, Illumina platform, San Diego, CA, USA).



Antibodies

Anti-Pecam1 (ab28364) was purchased from Abcam (Cambridge, UK); anti-Adgre1 (#70076S) was from Cell Signaling (Danvers, MA, USA).



Immunohistochemical (IHC) Staining

Sections were dewaxed, rehydrated, and incubated with Trilogy™ (Cell Marque, Rocklin, CA, USA) (10 mM citrate buffer, pH 6.0 for Adgre1) at 121°C for 10 min to unmask antigens. At room temperature (RT), the slides were immersed in 3% hydrogen peroxide for 15 min to quench endogenous peroxidase activity followed by 1% bovine serum albumin for 60 min to block nonspecific antigenic sites. Slides were incubated with indicated primary antibodies at 4°C overnight (Pecam1, 1:100, Adgre1, 1:1500). After washing with 1X TBS containing 0.05% Tween 20, slides were incubated with horseradish peroxidase-conjugated secondary antibodies and developed by chromogen diaminobenzidine using the DakoReal™ EnVision™ kit (#K5007, DAKO, Glostrup, Denmark). All slides were counterstained with Mayer’s hematoxylin and scanned by a Pannoramic MIDI scanner (3DHISTECH, Budapest, Hungary).



Alcian Blue Staining

Alcian blue staining kit (ab150662, Abcam, Cambridge, UK) was used to detect hyaluronan deposition in the xenograft tissues according to the manufacturer’s instruction. Briefly, dewaxed and rehydrated FFPE tissue sections were incubated with Alcian Blue Solution for 30 min at RT, slides were counterstained with Nuclear Fast Red Solution for 5 min at RT and scanned by a Pannoramic MIDI scanner (3DHISTECH).



Quantitation of FFPE Scanned Images

To quantitate the immunostaining of Pecam1, Adgre1, and Alcian blue staining in the xenograft tissues, scanned images at 100× magnification were digitized and quantitated by using ImageJ plugged-in with the Immunohistochemistry Image Analysis Toolbox (v1.40p) (NIH, Bethesda, MD, USA). Quantitation results were visualized by R package ggplot2 (v3.3.3). Statistical differences between OC3 and TW2.6 groups were evaluated by two-sample t-test of means (compare_means), as denoted in each plot.



Bioinformatic Analyses

Cell line dataset (GSE150469): human reference genome (hg19) aligned reads for individual genes (n=21,916) were used to compute expression values in transcripts per kilobase million (TPM) by using Cufflinks (v2.1.1). R pheatmap (v1.0.12) was used to visualize the relative expression levels of indicated genes in each cell line. Xenograft tissue dataset (GSE149496): as described previously (11), R XenofilteR (v1.8) processed human (hg38) and mouse (mm10) aligned reads for individual genes were used to perform gene quantification in TPM values. The resulting gene numbers for human and mouse are 17,759 and 16,374, respectively. In the exploratory analysis, R package limma (v3.40.6) was used to compute differentially expressed genes followed by Volcano plots for visualization. To identify biological pathways enriched in the OC3- and TW2.6 tumor stroma, the mouse expression matrix was subjected to gene set enrichment analysis (GSEA) (36). Enrichment was considered significant when false discovery rate (FDR) was less than 5%. R ggcorrplot (v0.1.3) was used to calculate and visualize the correlation matrix comprising genes of interest. The Pearson correlation coefficient was computed; p-value < 0.05 was considered significant. R ggplot2 (v3.3.3) was used to visualize the relative expression levels of indicated genes in the OC3- and TW2.6 stroma. Unpaired two-sample t-test of means was applied to evaluate statistical differences; p-value < 0.05 was considered significant. R pheatmap (v1.0.12) was used to visualize the relative expression levels of indicated genes in each tissue. In silico enumeration of cell fractions was conducted by using CIBERSORTx according to its online documentation of which the ‘single cell RNA-seq HNSCC’ and ‘LM 22’ were used as signature matrices, respectively (27). Puram scRNA-seq dataset (GSE103322): the raw expression matrix was acquired from the UCSC Cell Browser portal. Expression values (TP100K) were normalized, scaled, and log-transformed by using R Seurat (v4.0.3) (37). DotPlot was used to visualize the average expression and fraction of indicated genes across eleven cell types comprising 5,902 cells. NCKU-OrCA-40TN dataset (GSE37991): this normalized microarray dataset comprises 18,047 genes for further analysis. R ggcorrplot was used to calculate and visualize the correlation matrix composed of 20 selected stromal genes. The Pearson correlation coefficient was computed; p-value < 0.05 was considered significant. R survival (v3.2-7) was used to assess the univariate and multivariate Cox proportional hazards of indicated clinical features and genes. The Cancer Genome Atlas (TCGA) datasets: for each indicated cancer type, the expression matrix of 20 stromal genes and associated clinical information were acquired from the UCSC Xena platform (38), followed by univariate Cox proportional hazards assessment and dichotomized Kaplan–Meier overall survival curves prediction by using R survival (v3.2-7).




Results


Higher Microvessel Density Was Detected in the Mouse Stroma of the p-EMT TW2.6 Tumors

A recent consensus statement of epithelial-mesenchymal transition (EMT) research reiterated the importance of associating cellular characteristics, rather than the expression of a single or a small set of molecular markers, with EMT phenotypes (6). To comply with these guidelines, we inspected the expression levels of core EMT transcription factors, p-EMT hallmarks, and canonical epithelial markers and mesenchymal regulators (6, 9, 10, 39, 40) in a set of seven Taiwanese cell lines derived from the oral cavity. Among these, while the oral cancer cell line OC3 has the highest mesenchymal propensity, TW2.6 and OEC-M1 are hypothetically p-EMT cells since they maintain both epithelial and mesenchymal genes (Figures 1A, B). Indeed, we demonstrated that TW2.6, but not OC3 or OEC-M1, displayed p-EMT multicellular characteristics in vitro and in vivo (10). In addition, mesenchymal OC3 repeatedly grew slower and smaller than its p-EMT TW2.6 counterpart in vivo [Figure 1C and ref (11)], a phenomenon consistent with one prior study in that head and neck cancer tissues of the inflammatory mesenchymal subtype had a better prognosis (24).




Figure 1 | Molecular and tumorigenic features of the mesenchymal OC3 and p-EMT TW2.6 oral cancer cell lines. (A) Transcriptomic heatmaps of epithelial-mesenchymal transition (EMT)-related genes in five oral cancer cell lines (C8, C9, TW2.6, OECM1, OC3) and two HPV 16-E6/E7 immortalized oral keratinocyte lines (K2, K6). Epi, epithelial; Mes, mesenchymal; p-EMT, partial EMT. (B) A hypothetical drawing of an in vivo tumor tissue admixed with C8-, TW2.6- and OC3-like cells. (C) Engraftment rates derived from the first experiment (Exp 1) were determined at Day 68 after cell injection. In the second experiment (Exp 2), to reach a tumor mass of similar size (~ 500 mm3), Day 32 and Day 81 were used as sacrifice times for TW2.6 and OC3, respectively (11).



Next, exploratory analysis of differentially expressed genes (DEGs) in the OC3 and TW2.6 xenograft tissues revealed that (1) compared to the OC3 cells expressing various innate immunity responsive genes, TW2.6 cells expressed MYC and E2F targets involved in cell proliferation and cell adhesion (Supplementary Figure 1A); (2) compared to the OC3 stroma harboring various extracellular matrix (ECM)- and TGFβ axis-related transcripts, the TW2.6 stroma was characterized by proangiogenic factors and immune-related genes. Gene set enrichment analysis (GSEA) also confirmed that while the epithelial-mesenchymal transition hallmark is uniquely enriched in the OC3 stroma, angiogenesis and immune-related molecular processes are recurrently detected in the TW2.6 stromal compartment (Supplementary Figure 1B).

To validate that the p-EMT TW2.6 stroma had higher angiogenesis processes than the OC3 group, we first performed correlational analysis of stromal Pecam1 expression, a microvessel density surrogate, with that of each well-established proangiogenic and endothelial index gene recently established in > 10,000 human tumors (41). The results indicated that the expression of tumor cell-derived VEGFA, IGFBP3, EFNA1, EFNB1, IGF2, PDGFA and stroma-derived Angpt2, Cdh5, Esam, Esm1, Icam2, and Tie1 was statistically correlated with that of Pecam1 (Figure 2A) and elevated in p-EMT TW2.6 tumors (Figure 2B). In parallel, immunohistochemistry using a Pecam1 antibody not only verified significantly increased vascular densities but also prominent angiolymphatic invasions in the p-EMT TW2.6 tissues compared to their mesenchymal OC3 counterparts (Figure 2C). Taken together, these results strongly suggest that a higher blood supply from the tumor stroma might contribute to fostering better growth of p-EMT TW2.6 cells in vivo.




Figure 2 | Statistical enrichment of microvessel density in the p-EMT TW2.6 tumor stroma. (A) Correlational expression matrix of stromal Pecam1 and indicated proangiogenic genes in graft tumors (OC3, n=6; TW2.6, n=5). Crosses (×) indicate p > 0.05. (B) Box plots showing the expression of Pecam1, proangiogenic, and endothelial index (41) genes in xenograft tissues. Two-sample t-tests of means were used to evaluate significant differences. *p < 0.05, **p < 0.01, ns, not significant. (C) Quantitation (mean ± SEM of four 100x magnification fields for each section) and representative images of the indicated tissue sections stained for murine Pecam1 (brown). The p value of two-sample t-test of means is denoted. Blue arrowheads denote angiolymphatic invasions (ALIs) only detected in the TW2.6 tumors, a phenomenon consistent with our prior study (10). Note that TW2.6-NOG11 was not included in RNA-seq analysis.





Tumor Cell-Excluded Macrophages Were Detected in p-EMT TW2.6 Tumors

The other prominent expression feature enriched in the TW2.6 stroma is immune-related molecular signatures, including various cytokines and chemokines (e.g., Il6, Cxcl9, Cxcl10, Cxcl12). At first, this seemed perplexing since prior results showed that stronger innate immunity was present in OC3 tumor cells (11). To resolve this confusion, we performed in silico enumeration of cell fractions available at the CIBERSORTx portal (27). We first employed ‘scRNA-seq HNSCC’ as a signature matrix, since both OC3 and TW2.6 cells are derived from the oral cavity. As expected, while no significant difference was detected in the tumor compartment (primarily consisting of ‘malignant’ cells), the ‘fibroblast’ cell fraction was significantly higher in the OC3 stroma than in the TW2.6 stroma, which is consistent with our prior results (11) (Supplementary Figures 2A, B). Importantly, the constituents of other immune cell populations did not differ significantly between the two groups. Alternatively, using LM22, the default signature matrix comprising cell type-specific genes derived from 22 leukocytes revealed two immune populations, i.e., ‘Macrophage-M1’ and ‘Tγδ‘, were statistically elevated in the TW2.6 stroma. Further delineation of hallmark genes comprising each LM22 cell type revealed that instead of authentic immune cell markers, increased expression of stromal Cxcl9, Cxcl10, Cxcl11 (Macrophage-M1) and Ccl5 (Tγδ) were likely to be the leading genes contributing to the statistical enrichments (Supplementary Figures 2C, D).

Given that ‘macrophage’ represents the major (57.2 ± 6.7%) immune cell type residing in the host stroma by CIBERSORTx analysis, immunohistochemistry using an antibody against the panmacrophage marker Adgre1 (F4/80) was performed to visualize the infiltration of macrophages in each tumor section. Unexpectedly, the spatial locations of macrophages were significantly different between the OC3 and TW2.6 groups. In the majority of OC3 tissues, the tumor cells are interdigitated with irregular Adgre1-positive macrophages and are accompanied by high staining backgrounds. By contrast, in the TW2.6 group, Adgre1-positive prototypical macrophages were frequently detected in the tumor margins, a phenomenon reminiscent of ‘immune privileged’ sites detected in clinical head and neck cancer tissues (42). Note that no significant difference in macrophage staining was noticed between the OC3 and TW2.6 groups after background subtractions (Figures 3A, B), which is consistent with the CIBERSORTx results. Intriguingly, as depicted in Figure 3C, the simultaneous upregulation of murine signature genes of tumor-associated macrophages (43) and downregulation of major histocompatibility class II molecules required for antigen presentation in TW2.6 tissues reinforces the accumulation of anergic tumor-associated macrophages surrounding p-EMT TW2.6 tumor cells.




Figure 3 | Macrophages in the OC3 and TW2.6 stroma are geographically different. (A) Representative images and (B) quantitation (mean ± SEM of four 100x magnification fields from each section) of the indicated tissue sections stained for murine Adgre1 (brown). The p value of two-sample t-test of means is denoted. (C) (Left) GSEA enrichment end-plot and heatmap showing signature genes of tumor-associated macrophages (43) that are statistically enriched in the TW2.6 stroma. (Right) Heatmap showing the expression of human major histocompatibility (MHC) class-I (Hg38)- and mouse MHC class-II (mm10)-related genes in each xenograft tissue.





OC3 and TW2.6 Tumors Are Enriched With Gene Signatures of Myofibroblastic and Inflammatory CAFs, Respectively

Recent scRNA-seq studies have shown that the inflammatory subtype of CAFs (iCAFs) secretes a variety of inflammatory mediators (e.g., IL6 and CXCL12), whereas the myofibroblastic counterpart (myCAFs) primarily expresses ECM molecules (e.g., FN1 and type I collagen) (18–23). Of special interest, by microarray-based transcriptomics, Costea et al. identified two distinct subtypes of CAFs from clinical oral cancer tissues, designated CAF-N (normal-like) and CAF-D (divergent) (44). CAF-N is intrinsically motile, secretory, proangiogenic, and hyaluronan-rich. CAF-D is less migratory and secretes high levels of TGFβ but is unresponsive to it. Compared to CAF-D, the CAF-N population displayed a greater (85.33% vs. 50%) and faster (7 vs. 14 days) tumor-promoting incidence of otherwise nontumorigenic oral dysplastic cells in the immunodeficient mice (NSG) and significantly deeper invasion of malignant cells in the 3D biometrices constructed in vitro. The authors proposed that a switch from an earlier secretory CAF-N to a later TGFβhigh CAF-D occurred during oral cancer progression.

To test the hypothesis that inflammatory cytokines detected in the TW2.6 stroma might come from the iCAF cell population, in GSEA we applied customized gene matrix transposed (gmt) file of each newly identified stromal cell population as summarized in Table 1. Interestingly, this approach explicitly assigned enrichment of myCAF and CAF-D to the OC3 stroma and iCAF, tumor-associated macrophages, endothelial cells, and perivascular-like cells to the TW2.6 stroma (Figure 4A). In addition, a great number of inflammatory mediators are overlapping genes of the iCAF and immune-related pathways (e.g., IL6/JAK/STAT3 and inflammatory responses), which supports our hypothesis that CAFs of the TW2.6 stroma might be the principle source for the immune-related signatures (Figure 4B).


Table 1 | Gene matrices of stromal cell populations used in GSEA analysis.






Figure 4 | Molecular signatures of myCAF and iCAF were enriched in OC3 and TW2.6 stroma, respectively. (A) Bar chart showing cell types with significant enrichments (FDR < 5%) in OC3 or TW2.6 stroma by gene set enrichment analysis (GSEA). Cell type-specific gene matrices in each study (summarized in Table 1) were extracted and converted to gene matrix transposed (gmt) files used in GSEA. N, gene number of indicated gene matrix. (B) Heatmaps showing the expression of the indicated genes classified as stromal fibroblasts (left) or immune-related (right) molecular signatures. Blue dots refer to replicates present in both heatmaps. (C) Dot plot denotes RNA expression of the indicated genes (x-axis) across eleven cell types (y-axis) composing the scRNA-seq dataset. Dot size indicates the proportion of cells within the indicated cell type expressing the indicated gene; color intensity represents the binned count-based expression level [log(scaled normalized count + 1)] among expressing cells. OSCC, oral squamous cell carcinoma; PNI, perineural invasion; ALI, angiolymphatic invasion. CAF index is referred to (11).



We were aware that two caveats are inherent to the current study: (1) immunodeficient NOG xenografts were used, which retained only limited innate immunity, and (2) human orthologous genes might not be entirely functional in mice. With these concerns, we performed cell type-gene expression analysis using the scRNA-seq dataset of oral cancer tissues in which the presence of CAF subtypes, including myCAFs and iCAFs, has been previously noted (8, 19, 21, 23). The results showed that except for IL6, which was enriched in the iCAF population of xenograft tissues but myofibroblasts in the clinical samples, hallmark genes for myCAFs, iCAFs, and myofibroblasts were fairly consistent between the xenograft and clinical oral cancer tissues, suggesting a certain extent of conservation in non-immune stromal cell populations preserved in the current study (Figure 4C).



Statistically Higher Hyaluronan Accumulation Was Detected in p-EMT TW2.6 Tumors

Another notable feature repeatedly linked to the secretory iCAF population is increased levels of hyaluronan synthases, including HAS1 and HAS2 (18, 19, 44). Interestingly, in our system, significantly increased expression of synthases (HAS2, HAS3) and hyaluronidases (HYAL1, HYAL3, HYAL4) was detected in the tumor cells but not in the stromal portion of TW2.6 tumors (Supplementary Figure 3A). Subsequent experiments using Alcian blue staining of OC3 and TW2.6 xenograft tissues confirmed that prominent hyaluronan staining was detected in five out of six TW2.6 tissues compared to sporadic Alcian blue-positive mast cells revealed in the OC3 tissues (Supplementary Figure 3B). Thus, our data partly support prior scRNA-seq studies in that iCAFs are frequently present in a hyaluronan-rich tumor microenvironment.



Translation of Xenograft Results Into Clinical Application

Thus far, our results provide evidence that certain stromal cell populations are preferentially associated with the most invasive yet uncommon EMT (OC3) or p-EMT (TW2.6) tumor cells, which is very different from a real clinical specimen that comprises cells at variable EMT states, e.g., only tumor cells at the invasion front display a p-EMT phenotype (6). A complementary experiment is to correlate stromal genes of interest with transcriptomic datasets from clinical bulk tissues, an approach we employed to identify the CAF index (summed expression of TGFBI, TGFB2, TGFBR2, FN1) (11). Specifically, the Puram oral cancer scRNA-seq (GSE103322) and NCKU-OrCA-40TN (GSE37991) datasets were chosen for cell type mapping and survival analysis, respectively. Of note, the latter is a microarray dataset comprising 40 matched pairs of betel quid-associated oral squamous cell carcinoma and adjacent normal tissues. Due to treatment-related death, only 38 cases were included for survival analysis. In addition, except for recurrence, none of the other clinical features were statistical covariates for overall survival in univariate Cox proportional hazards model assessment (Table 2), an inherent limitation of a small cohort. Further TCGA collections with larger sample sizes will be included as validation datasets to complement this caveat.


Table 2 | Cox proportional hazards analysis of NCKU-OrCA-40TN.



First, genes identified in the xenograft experiments were validated for their primary origins of expression by cell typing of the scRNA-seq database, including myofibroblasts (IL6, ACTA2, MYL9, TAGLN), myCAFs (TGFBI, TGFB2, FN1, THY1, COL12A1, FAP, HAS1, HAS2), iCAFs (FAP, CXCL12, GSN), endothelial cells (PECAM1, TGFBR2, HYAL1, HYAL2), mast cells (HYAL3), T cells (HYAL4) and tumor cells (HAS3) (Figures 4C, 5A). Next, in the 40 tumor tissues of NCKU-OrCA-40TN, the Pearson correlation coefficient of each paired gene was computed and clustered by cell type to inspect their expression consistency. As depicted in Figure 5B, (1) the expression of myCAF genes correlated with each other the best. (2) Myofibroblast genes share partial similarities to iCAFs and myCAFs, suggesting myofibroblasts might be progenitors of both CAF subtypes. (3) The expression of PECAM1, a microvessel density proxy, was inversely correlated with myCAF-HAS2 and TGFBI but significantly correlated with iCAF-CXCL12 and myofibroblast-ACTA2. (4) The expression of HYAL1 is inversely related to myCAF genes but positively related to tumor cell HAS3.




Figure 5 | Stromal TGFBI and HYAL1 are poor and protective prognostic biomarkers, respectively, for NCKU-OrCA-40TN. (A) Dot plot denotes the cell origins of hyaluronan synthase (HAS1–3), hyaluronidase (HYAL1–4) and endothelial hallmark genes (PECAM1 ~ TIE1), which were included as controls. Dot size indicates the proportion of cells within the indicated cell type expressing the indicated gene; color intensity represents the binned count-based expression level [log(scaled normalized count + 1)] among expressing cells. OSCC, oral squamous cell carcinoma. (B) Correlational expression matrix of stroma-originating genes in the NCKU-OrCA-40TN cohort. Crosses (×) indicate p > 0.05 (C) Forest plots representing the prognostic hazard ratios (HR) of overall survival assessed by 6 stromal genes (upper plot) or stromal genes plus cancer recurrence (lower plot). *p < 0.05, ***p < 0.001.



Third, a univariate Cox proportional hazards model was performed to compute the hazard ratios (HRs) of overall survival associated with each stroma-originating gene in the NCKU-OrCA-40TN cohort. Accordingly, 6 out of 20 selected genes revealed statistical significance, including TGFBI (HR 11, 95% CI 2.4–50, p=0.0021), TGFB2, COL12A1, IL6, HAS2, and HYAL1 (HR 0.15, 95% CI 0.042–0.55, p=0.0039) (Table 2). Multivariable Cox analysis revealed these 6 genes are confounding covariates (Figure 5C upper panel), which was not unexpected since 4 of them (TGFBI, TGFB2, COL12A1 and HAS2) are derived from myCAFs. As cancer recurrence is a known prognostic factor for overall survival, we included it in multivariate Cox analysis. The results showed that TGFBI and HYAL1, respectively, remained statistically significant in multivariate Cox models (Figure 5C lower panel). These data suggested that both genes could serve as robust prognostic factors in betel quid-oral cancer. It is worth noting that TGFBI and HYAL1 should act independently rather than combined, as both lost partial significance in bivariate Cox assessment (TGFBI 8.23 95% CI 1.66–40.79, p=0.01, HYAL 0.23, 95% CI 0.06–0.88, p=0.032).

To validate our findings in larger TCGA cancer datasets, we first performed univariable Cox analysis and Kaplan–Meier curves stratified by low- and high-expression groups for each of the 20 stromal genes in the head and neck cancer cohort (HNSC, n=519). The results indicated that while high expression levels of TGFBI, FAP and IL6 were statistically prognostic for poorer survival; the expression of HYAL1 did not reach statistical significance for better survival (Figure 6A). It is worth noting that HNSC comprises 11 anatomic subsites including tonsil and larynx, such heterogeneity in tissue source might interfere with precisely identifying stromal biomarkers specific to each HNSC subtype. Next, same approach was used to evaluate TGFBI and HYALI in the other 32 TCGA cancer types. Interestingly, kidney renal clear cell carcinoma (KIRC, n=533) and uveal melanoma (UVM, n=80) concurrently displayed TGFBI and HYAL1 as poor and good biomarkers, respectively (Figure 6B). In addition, the expression of TGFBI was also a poor indicator for bladder urothelial carcinoma (BLCA, n=406), breast invasive carcinoma (BRCA, n=841), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, n=302), and glioblastoma multiforme (GBM, n=153); and the expression of HYAL1 was a statistical protective marker for kidney renal papillary cell carcinoma (KIRP, n=287) and pheochromocytoma (n=148) (Figure 6C). Taken together, the prognostic values of TGFBI and HYAL1 identified from betel quid-associated oral cancer tissues (Figure 6D) were recapitulated by seven (n=2834) and four (n=1048) TCGA cancer types, respectively.




Figure 6 | Validation of TGFBI and HYAL1 in The Cancer Genome Atlas (TCGA) datasets. (A) Dichotomized Kaplan-Meier curves of estimated overall survival for FAP, IL6, TGFBI and HYAL1 in the head neck cancer cohort (HNSC, n=519). (B) Kaplan-Meier curves for TGFBI and HYAL1 in kidney renal clear cell carcinoma (KIRC, n=533) and uveal melanoma (UVM, n=80). (C) Kaplan-Meier curves for TGFBI in bladder urothelial carcinoma (BLCA, n=406), invasive breast cancer (BRCA, n=841), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC, n=302), and glioblastoma multiforme (GBM, n=153); HYAL1 in kidney renal papillary cell carcinoma (KIRP, n=287), and pheochromocytoma (n=148). (D) Kaplan-Meier curves for TGFBI and HYAL1 in the NCKU-OrCA-40TN cohort (GSE37991, n=38). *p < 0.05, **p < 0.01, ***p < 0.001.






Discussion

Through meta-analysis of disease-matching transcriptomic xenograft tumor tissue and scRNA-seq datasets, this study extracted 20 stromal genes representative of myCAFs, iCAFs, myofibroblasts, and endothelial cells in a betel quid-oral cancer cohort comprising 40 tissues (Table 2). In univariate Cox proportional hazards assessment of overall survival, 6 out of these 20 genes exhibited statistical predictability. In multivariate Cox analysis interacting with cancer recurrence, TGFBI and HYAL1 remained statistically significant for poor and good prognosis, respectively (Figure 5C). In thirty-three TCGA transcriptomic cohorts, TGFBI was a poor indicator of seven cancer types, including head and neck cancer; HYAL1 was a protective marker for four cancer types, including kidney renal clear cell carcinoma and uveal melanoma.

With an unprecedented pace, scRNA-seq methodology has successfully deciphered the complexity and heterogeneity of tumor ecosystems composed of tumor cells and various stromal components. Among these, the two distinct molecular subtypes of cancer-associated fibroblasts, iCAFs and myCAFs, attracted special attention due to their relevance to cancer cell invasion and treatment resistance. In oral cancer, malignant p-EMT cells located at the invasion front are in proximity to CAFs (FAP+PDPN+) and are statistically associated with nodal metastasis and perineural invasion (8, 9). In breast cancer, while iCAFs (PDGFRB+, ACTA2-, CD34+, MCAM-) were implicated in cytotoxic T cell dysfunction of tripe-negative breast cancer (22), myCAFs (ecm) and myCAFs (TGFβ) were shown to be the primary resistance elements of immunotherapies (21). In pancreatic ductal adenocarcinoma, increased levels of the myCAF (LRRC15+) signature correlated with poor response to anti-PD-L1 therapy in an immunotherapy clinical trial (19). In a murine melanoma model, iCAFs (S1 immune), myCAFs (S2 desmoplastic), and myofibroblasts (S3 contractile, ACTA2high) were temporally linked to disease progression (23).

Another stromal population, vascular endothelial cells, is also therapy relevant. In a comprehensive transcriptomic study comprising 10,767 human tumors with variable extents of vascularity, Kahn et al. revealed that both the endothelial index (Figure 2B) and vascular microenvironment signatures are independent predictors of disease outcome (41). In this regard, motile and secretory iCAFs (and their equivalents with different designations) were linked to angiogenesis, variably implicated by the increased expression of CXCL12/SDF-1, VEGFA, CCL2, FGFs, PDGFs, and hyaluronic acid synthase (HAS1, HAS2) (18, 19, 23, 44). Distinct from the other proangiogenic factors, hyaluronan is a linear, anionic polysaccharide required for normal tissue homeostasis. The degradation of high molecular weight (HMW-HA, > 500 kDa) to low molecular weight hyaluronan (LMW-HA, 7–200 kDa) is mediated by hyaluronidases (HYAL1–4). Emerging evidence indicates that while LMW-HA participates in neoangiogenesis, tumor cell proliferation, migration, and invasion; in an established tumor, accumulated HMW-HA increases the intratumor interstitial fluid pressure, which blocks neoangiogenesis at the cost of reducing immune surveillance and drug delivery efficacy [reviewed in 45)].

In the oral cancer scRNA-seq study, the expression of TGFBI came from myCAFs, myofibroblasts and tumor cells (Figure 4C). TGFBI is a secretory extracellular matrix protein that mediates binding to other matrices, including fibronectin, laminin, and collagen of types I, II, IV, etc. As a direct target of TGFβ, TGFBI plays a tumor-suppressive role in early precancerous lesions but acts to promote tumor progression in later stages. Indeed, TGFBI is one of the p-EMT hallmark proteins present in oral cancer tissues (8) and is implicated in DDR1-mediated angiolymphatic invasions in the NCKU-OrCA-40TN cohort (10). Whether TGFBI produced by myCAFs and myofibroblasts is functionally different from that secreted by tumor cells awaits further investigation.

As the pathologic roles of otherwise nonmalignant stromal cell populations are beginning to emerge, prognostic biomarkers originating from the tumor stroma might illuminate a new avenue for cancer control. Indeed, while we should be more cautious about defining the tumor cell EMT spectrum in a real specimen (6), it is inspiring to learn that “the CAF-targeted therapy will take its place in the toolkit of the oncologist within the next 10 years” (46)!



Conclusions

Through integrative studies of disease-matching xenograft tumor and scRNA-seq datasets, we established nonmalignant stromal cell populations preferentially cohabitate with oral cancer cells residing in EMT and p-EMT states, the most invasive and deleterious components within a tumor. Hallmark genes representative of myofibroblasts, myCAFs, iCAFs, and endothelial cells were assessed for Cox hazard ratios and Kaplan-Meier curves of overall survival in clinical datasets. MyCAF-TGFBI and endothelial-HYAL1 were poor and good prognosis markers, respectively, for 40 betel quid-associated oral cancer tissues. In 33 TCGA datasets, TGFBI was recapitulated as a poor indicator for seven cancer types, including head and neck cancer comprising 519 patients. Our results not only disclose novel targets for oral cancer control, but also provide feasible applications, e.g, a single immunohistochemical assay of TGFBI from treatment naïve or recurred tumor biopsies, to assist clinical decision-making.
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The high heterogeneity of oral squamous cell carcinoma (OSCC) is the main obstacle for individualized treatment. Recognizing the characteristics of different subtypes and investigating the promising strategies for each subclass are of great significance in precise treatment. In this study, we systematically evaluated hypoxia-mediated patterns together with immune characteristics of 309 OSCC patients in the TCGA training set and 97 patients in the GSE41613 testing set. We further identified two different hypoxia subtypes with distinct immune microenvironment traits and provided treatment programs for the two subclasses. In order to assess hypoxia level individually, we finally constructed a hypoxia-related risk score, which could predict the clinical outcome and immunotherapy response of OSCC patients. In summary, the recognition of different hypoxia patterns and the establishment of hypoxia-related risk score might enhance our understanding of the tumor microenvironment of OSCC and provide more personalized treatment strategies in the future.
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Introduction

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of head and neck squamous cell carcinoma (HNSC), accounting for 90% of neoplasms of the head and neck (1). Despite the development of surgery, radiotherapy, and chemotherapy, the prognosis of OSCC is still unsatisfactory with an average 5-year survival probability ranging from 45% to 50% due to the high incidence of recurrence and metastasis (2–4). Recently, more and more studies have concentrated on the generation of genomic signatures for risk stratification and further survival prediction in OSCC patients (5–7). However, most prognostic signatures were deficient in clinical transformation and few of them were applied to routine practice. As a heterogeneous disease, it is of great necessity to precisely understand the molecular properties of OSCC in order to achieve individualized treatment under different subtypes.

Hypoxia is one of the critical hallmarks of cancer, which is associated with tumor malignancy and angiogenesis together with therapeutic resistance (8, 9). Currently, the significant role of hypoxia in driving tumor immunosuppression and immune escape has caused widespread concern. Evidence has revealed that T cells as well as natural killer (NK) cells under a hypoxia microenvironment always behave in an exhausted state, leading to their dysfunction in killing tumor cells (10). What is more, the hypoxia status can also promote some inhibitory immune cells like regulatory T cells (Tregs) and M2 macrophage infiltration together with the secretion of suppressive molecules like VEGFA, causing the formation of an immunosuppressive microenvironment (11–13). Even though hypoxia-related subclasses have been explored in many cancer types, the features of different subtypes and their clinical benefit in OSCC are still unknown. Therefore, investigating the distinct subtypes based on hypoxia status during tumorigenesis and development might provide new insights into the treatment and prognostic detection of OSCC.

Recently, immune checkpoint blockade (ICB) therapy has been reported to improve overall survival (OS) in distinct cancer types (14–20). Nevertheless, the proportion of benefited patients still remains low. Growing evidence has revealed a tight association between hypoxia and tumor immunotherapy across multiple tumor types (21). However, the effect of hypoxia on the immune microenvironment as well as the efficacy of immunotherapy in OSCC remains less known.

In the present study, a consensus clustering based on hypoxia genes was conducted and validated in two OSCC cohorts, characterizing two different hypoxia states of OSCC samples for the first time. Moreover, the prognostic features, hypoxia traits, gene mutation alterations, immune infiltration, and the promising treatment strategy for each subtype were analyzed and investigated. For clinical practice, we further constructed a hypoxia prognostic risk score model which could further predict the OS and ICB therapy response for OSCC patients. These findings suggested an indispensable role of hypoxia states in directing therapeutic plans for OSCC.



Material and Methods


Data Collection and Processing

The Cancer Genome Atlas (TCGA) mRNA sequence data [htseq-FPKM in log2(x + 1) transformed] together with clinical information of OSCC were obtained from the UCSC Xena browser (GDC hub: https://gdc.xenahubs.net). For validation, microarray profiles of GSE41613 containing clinical annotations were extracted by GEOquery R package. The mentioned clinical traits are demonstrated in Table 1. The batch effects normalized mRNA data of pancancer with clinical information were downloaded from UCSC Xena browser. The hypoxia gene set containing 200 classical hypoxia-associated genes was obtained from gene set enrichment analysis (GSEA) (http://www.gsea-msigdb.org/). Expression data of OSCC cell lines [TPM in log2(x + 1) transformed) were downloaded from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) project (https://portals.broadinstitute.org/ccle/) (22). Drug sensitivity data (area under the curve—AUC) of OSCC cells from the Cancer Therapeutics Response Portal (CTRP v.2.0) and PRISM Repurposing dataset (19Q4) were acquired from the dependency map (DepMap) portal (https://depmap.org/portal/). The ICB treatment cohort GSE91061 (23) was downloaded from the GEO database [FPKM in log2(x + 1)] transformed and used for subsequent validation. The CheckMate 009 (CM-009), CheckMate 010 (CM-010), and CheckMate 025 (CM-025) (24) were combined together to investigate the significance of our risk score [FPKM in log2(x + 1)]. We also downloaded RNA-seq (count values) data of IMvigor210 cohort (25) with clinical information by the “IMvigor210CoreBiologies” R package and transformed it into FPKM values. The log2(FPKM + 1) was calculated on expression data for further comparison.


Table 1 | Clinical and molecular information included in the study.





Consensus Clustering Analysis

Unsupervised clustering was applied to recognize different hypoxia patterns and classify OSCC patients for further analysis. A consensus hierarchical clustering algorithm based on the expression of 34 prognostic hypoxia genes was conducted by the “ConsensuClusterPlus” R package with Euclidean distance and Ward.D2’s linkage (number of bootstraps=50, item subsampling proportion = 0.8, feature subsampling proportion = 0.8).



Survival Analysis

Univariate Cox regression analysis was conducted to identify prognostic hypoxia genes and clinical events. Multivariate Cox regression analysis was performed to recognize independent prognostic factors. The Kaplan–Meier survival curve was applied to analyze the prognostic significance between distinct groups.



Single-Sample Gene Set Enrichment Analysis

The hypoxia-associated gene sets were downloaded from GSEA. The single-sample gene set enrichment analysis (ssGSEA) algorithm in “GSVA” R package was conducted to calculate the hypoxia score of each OSCC patient.



Mutation Analysis

The MAF file of OSCC containing the detailed mutation information of the training set was downloaded from TCGA (https://portal.gdc.cancer.gov/) and further processed. The “maftool” R package was performed to analyze gene mutant features between two OSCC subclasses.



Function Enrichment Analysis

The “Limma” R package was applied to identify differential genes between two clusters with a standard of |log FC| >1.2 and adjusted P-value <0.05. Further gene ontology (GO) function enrichment of selected genes was performed by ClueGO in Cytoscape.



Tumor Microenvironment Analysis

The immune score and the tumor purity were calculated by the ESTIMATE algorithm (26). The CIBERSORT algorithm was applied to evaluate the LM22 gene signatures in OSCC subtypes (27). What is more, the Epic algorithm was also used to calculate the contents of immune cell infiltration in the microenvironment (28).



Screening Potential Agents of Cluster 2

k-Nearest neighbor (k-NN) imputation was performed to impute the missing AUC values of the CTRP and PRISM datasets. Before imputation, drugs with more than 20% of missing data were excluded. Furthermore, the “pRRophetic” R package was performed to measure the AUC values of samples by ridge regression.



Development and Validation of Predictive Risk Score

Considering the difference of each platform, before developing or validating the risk score, we conducted z-scale of the mRNA data in each platform (TCGA, GSE41613, GSE91061, CM cohorts, and IMvigor210). Then, the “glmnet” R package was performed to filter the prognosis-related hypoxia genes by LASSO Cox regression analysis with a 10-fold cross-validation. After identifying the significant genes, their regression coefficients (β) were estimated by multivariate Cox regression via LASSO, and we calculated the risk score of each OSCC patient by the formula as follows:

	



Establishment of a Nomogram

Univariate Cox and multivariate Cox regression analyses of some clinical traits were first performed and finally determined a sum of four independent prognostic factors for further establishment. Afterward, a nomogram with the four factors was developed for predicting 1- and 3-year OS of OSCC patients. The calibration plot was performed to estimate the accuracy and consistency of the prognostic models. Survival net benefits of each variable were estimated with decision curve analysis (DCA) by “stdca.R.”



Other Bioinformatics Analysis

Principal components analysis (PCA) was applied to verify the hypoxia patterns of different subtypes. Potential ICB response was predicted by the tumor immune dysfunction and exclusion (TIDE) algorithm (29). The “upsetR” R package was used to visualize the intersections between promising agents in different subtypes.



Statistical Analysis

R 4.0.2 (https://www.r-project.org/) was mainly used for statistical analysis. Student’s t-test or one-way analysis of variance was used to analyze differences between groups in variables with a normal distribution. Categorical variables between two groups were compared using chi-square test. A two sided P-value <0.05 was considered statistically significant.




Results


Identification of Two Hypoxia-Associated Clusters in OSCC

As depicted in Figure 1A, a brief flowchart was demonstrated to introduce our study. Considering the critical role of hypoxia condition in the tumor microenvironment, we summarized a sum of 188 classical hypoxia-stimulated genes available from GSEA and estimated their prognostic value for further classification (Table S1). Univariate Cox proportional hazards model was conducted and finally filtered 34 genes with significant risks on survival of patients in the training set (Figures S1A, B). Hence, based on the expression similarity of the 34 hypoxia-related gene signature, the consensus clustering method was used to cluster the samples. We selected k = 2 as the optimal number of clusters, which could divide all samples into two groups with less correlation between groups in the training and testing cohorts (Figures 1B, C). Then, PCA was conducted to compare the transcriptional profile between these two clusters in the two cohorts, suggesting a significant distinction between these two subgroups (Figures 1D, E). In order to evaluate the clinical relevance of this clustering, the survival analysis between the two subclasses was conducted. In these two sets, cluster 2 was consistently associated with worse prognosis, highlighting the potential clinical utility of this hypoxia-associated subtyping (Figures 1F, G).




Figure 1 | Identification of hypoxia-related clusters in oral squamous cell carcinoma (OSCC). (A) Overview of the analysis procedures. (B, C) Unsupervised clustering of OSCC patients based on the hypoxia-associated genes generated two clusters in the TCGA and GSE41613 cohorts. (D, E) Principal component analysis based on hypoxia genes distinguished two identified subtypes in different cohorts. (F, G) Kaplan–Meier survival analysis of overall survival between the two clusters in the two cohorts.





Distinct Hypoxia Conditions Between the Two OSCC Clusters

To better understand the hypoxia status of the two clusters, we conducted the ssGSEA algorithm to calculate the scores of some hypoxia-associated processes. As expected, patients in cluster 2 were enriched in higher hypoxia condition in the training and testing cohorts (Figure 2A). What is more, a total of nine hypoxia-associated key genes were also verified to be highly expressed in cluster 2, which was consistent with the aforesaid ssGSEA result (Figure 2B). Hence, we could define cluster 2 as a “high hypoxia subclass” compared with cluster 1.




Figure 2 | Differential hypoxia conditions across two identified clusters. (A) Heatmap of the significant differential hypoxia pathways of two OSCC clusters based on ssGSEA in the training set and testing set. (B) The expression of nine hypoxia key genes upregulated in cluster 2 in the training and testing sets (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).





Mutation Alterations in the Two Subclasses

Recent studies have reported the hypoxia phenotype associated with gene mutations (30). We further investigated the difference of gene mutations among these two clusters. As illustrated in the waterfall plot, differently mutated genes were detected between the two clusters and GNPTAB was finally identified as the most differentially highly mutated gene in cluster 2 (Figure 3A) (P < 0.01). Furthermore, based on the oncodriveCLUST algorithm, we predicted HRAS as the driver gene candidate in cluster 1 and MAST4 in cluster 2 (Figure 3B). What is more, tumor mutational burden (TMB) was significantly increased in cluster 2 (Figure 3C).




Figure 3 | Mutational alterations between two hypoxia clusters in the TCGA cohort. (A) Top 11 most differently mutated genes depicted in the two clusters. (B) HRAS or MAST4 respectively identified as the driver gene candidate for cluster 1 or cluster 2. (C) Tumor mutational burden significantly increased in cluster 2 (**P < 0.01, ***P < 0.001).





High Correlation Between Hypoxia-Related Gene-Based Clusters With Immune Infiltration

To obtain deeper insights into the molecular characteristics of the two OSCC clusters, we conducted the differentially expressed genes (DEGs) analysis and their GO analysis in the training dataset. With a threshold of |log2 FC| >1.2 and adjusted P-value <0.05, a sum of 55 DEGs were identified for the two clusters. The expressions of DEG between these two clusters were demonstrated by a heatmap (Figure S2A). GO analysis based on Cytoscape showed that the cluster-specific genes were significantly enriched in immune cell infiltration, suggesting a distinct immune difference between these two clusters (Figure S2B).



Immune Microenvironment Features Between the Two Clusters

To reveal the difference of these two clusters on the tumor microenvironment, we first calculated the immune score and tumor purity both in the training and testing sets based on the ESTIMATE algorithm. We found that the immune score was decreased and purity score was elevated in cluster 2 compared with cluster 1 (Figures 4A and S3A). With the significant difference in immune score and purity score identified between clusters, we further compared the relative ratio of 22 kinds of immune cells by the CIBERSORT algorithm. There existed six immune cell populations significantly differently enriched between the two clusters in the training set and nine immune cells in the testing set (Figures 4B and S3B). Combined, macrophages M0, activated mast cells, were enriched in cluster 2, while CD8 T cells, resting mast cells, were deficient in both two sets. We further conducted the Epic algorithm to validate our results and found that only CD8 T cells were consistently lacking in cluster 2 in the two cohorts (Figures 4C and S3C). CD8 T cell, also known as cytotoxic T cell (CTL), exerted a critical role in antitumor immunity. We further examined two indicators of T-cell killing ability between the two clusters. Similarly, cluster 2 also exhibited lower CYT score and IFNG expression than cluster 1 in the training set and testing set, which was consistent with previous studies that showed an association between high CYT levels and higher patient OS (Figures 4D and S3D). Taken together, it was the lower composition of CD8 T cells and their disability of killing tumor cells that led a worse prognosis in cluster 2.




Figure 4 | Comparison of the immune conditions and TME between the two clusters in the training set. (A) Cluster 2 occupied a lower immune score and a higher purity than cluster 1. (B) Composition of the six significantly differential immune cells between the two clusters based on the CIBERSORT algorithm. (C) The Epic algorithm illustrated the immune cell difference between the two clusters. (D) The CYT score and IFNG expression significantly decreased in cluster 2 (*P < 0.05, **P < 0.01, ***P < 0.001).





Identification of the Potential Treatment Strategy of the Two Clusters

After investigating the distinct molecular and biological characters between these two clusters, we sought to explore specific treatment options for each cluster. Considering the vital role of CD8 T cells in immunotherapy and their significant differences between the two clusters, we further assessed their immunotherapy response based on the TIDE method. In both training set and testing set, the TIDE score was significantly lower in cluster 1 compared with cluster 2, indicating patients in cluster 1 might be more sensitive to ICB therapy (Figure 5A). For cluster 2 patients, we hoped to seek for traditional chemotherapeutics to achieve targeted therapy. After the filtering procedure described in the Material and Methods, we finally obtained 16 OSCC cells with 913 drugs in the PRISM and 22 OSCC cells with 465 drugs in the CTRP dataset. The pRRophetic package with a built-in ridge regression model was then applied to predict the drug response of clinical samples in the training set based on their expression profiles, and the estimated AUC value of each compound in each sample was thus obtained. We finally identified four agents simultaneously with lower AUC values in cluster 2 both in the PRISM- and CTRP-predicted datasets (Figures 5B, C and S4). To further filter a more therapeutically significant drug in OSCC, we took their clinical phase and experimental evidence from the literature into account. Finally, we identified only bortezomib as the optimal drug that has the potential for cluster 2 treatment (Figure 5D).




Figure 5 | Potential treatment strategy of the two clusters. (A) Cluster 2 group occupied a significantly higher TIDE score in the two cohorts. (B) The predicted AUC values of bortezomib from the CTRP and PRISM cohorts were decreased in cluster 2 patients. (C) The upsetR plot revealed only the AUC of four agents simultaneously decreased in cluster 2 patients estimated by the CTRP and PRISM cohorts. (D) Identification of the most promising cluster 2-specific agents according to evidence from multiple sources (*P < 0.05, **P < 0.01, ****P < 0.0001).





Development and Validation of Hypoxia-Associated Prognostic Signature

To establish a signature for clinical implications, it is of great significance to filter the most representative genes of each cluster. Considering HIF1A serving as the key transcription factor in hypoxia, we intersected the DEGs between the two clusters with 4,748 potential targets of HIF1A in OSCC and found a sum of 6 candidate genes in the intersection (Figure 6A), identified as “Clustering-specific hypoxia-related genes.” To obtain the most powerful prognostic markers, the LASSO Cox regression analysis was conducted (Figure 6B). A total of five gene signatures were generated and the coefficients were estimated by multivariate Cox regression via LASSO (Table S2). There existed a transcriptional difference between the two clusters (Figure 6C). After calculating the risk scores of the signature based on the regression coefficients, we intriguingly found that cluster 2 possessed a higher score in the two cohorts (Figures 6D, E). Further survival analysis revealed that patients in the high-score group exhibited significantly worse prognosis than OSCC patients or cluster 1 patients with low-score (Figures 6F, G). Although there was no significant survival difference between high and low scores in cluster 2 in the training set (P = 0.1) and testing set (P = 0.13), it was still obvious that a high hypoxia score was associated with the tendency toward worse prognosis (Figures 6F, G). The results were consistent with the above data that cluster 2 conferred the poorer prognosis. In order to determine the prognostic significance of the signature in other organ sites, we conducted the survival analysis of our hypoxia score across 33 TCGA cancer types. Similarly, the hypoxia risk score also served as an unfavorable prognostic biomarker for pancancer (Figure 6H). What is more, the predicted AUC values of bortezomib from CTRP and PRISM were also decreased in the high hypoxia score group, validating its promising clinical value for high-risk OSCC patients (Figures 6I, J).




Figure 6 | Establishment and validation of a hypoxia prognostic signature (A). A total of six candidate genes were identified in the intersection of “HIF1A targets” and “DEGs.” (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) Differential expression of genes in hypoxia signature. (D, E) Cluster 2 patients conferred a significantly higher hypoxia risk scores in the TCGA and GSE41613 cohorts. (F, G) Survival analysis of the hypoxia-associated signature in OSCC or OSCC subtypes. (H) The prognostic significance of the established signature across 33 cancer types. (I, J) The predicted AUC values of bortezomib from the CTRP and PRISM datasets were decreased in the high-risk score OSCC patients (**P < 0.01, ****P < 0.0001).





Construction of a Nomogram for Predicting OSCC Survival

To verify whether the hypoxia-related signature was an independent prognostic factor, univariate and multivariate Cox regression analyses were conducted (Figures 7A, B). The results in univariate Cox regression revealed that risk score, age, and angiolymphatic and perineural invasion had a significant association with the OS of OSCC patients. In multivariate Cox regression, risk score, age, and angiolymphatic and perineural invasion were identified as independent prognostic factors of OSCC. Then, we applied these four independent factors to establish a nomogram for predicting OSCC 1- and 3-year OS (Figure 7C). With the score increasing, the OS of patients decreased. Moreover, the calibration plots at 1 and 3 years approached 45 degrees, indicating a great performance of the established nomogram (Figure 7D). Meanwhile, DCA was performed to compare the clinical usability and benefits of the nomogram with that of the age and angiolymphatic and perineural invasion. As shown in Figure 7E, compared with age and angiolymphatic and perineural invasion, the 1-year DCA curves of the new nomogram showed larger net benefits across a range of death risk.




Figure 7 | Nomograms according to the OS-associated hypoxia scores for OSCC patients in the TCGA cohort. (A, B) The univariate and multivariate Cox regression analyses of OS-associated variables. (C) Establishment of a nomogram to predict the OS of OSCC patients. (D) The calibration curve revealed the high consistency between the nomogram-predicted OS with actual OS. (E) Decision curve analysis for the nomogram and other clinical features in the prediction of prognosis of OSCC patients at 1-year point (*P < 0.05, **P < 0.01, ***P < 0.001).





Predictive Value of Hypoxia-Related Risk Score in Immunotherapy

Immunotherapy has been proven relevant to improve survival in the treatment of multiple tumor types. Thus, identification of patients who will benefit most from ICB treatment is of great necessity. Our analysis revealed that the TIDE was significantly increased in the high hypoxia score group, indicating its crucial role in regulating immune response (Figure 8A). Based on three immunotherapy cohorts, we identified that patients with a high hypoxia score group always exhibited clinical disadvantages and markedly shortened survival (P = 0.026 in GSE91061, P = 0.039 in CM009+010+025 cohorts, and P = 0.029 in IMvigor210) (Figures 8B, C, E). In CM009+010+025 cohorts, the chi-squared test conducted between low and high hypoxia score groups demonstrated significantly better therapeutic outcomes in low score patients (Figure 8D). Similarly, patients with high hypoxia scores exhibited less treatment effectiveness in the IMvigor210 cohort (Figure 8F). We also compared the hypoxia score levels in the three immune subtypes of IMvigor210. The immune-inflamed subtype showed significantly the lowest risk score, which further confirmed our analysis above (Figure 8G). In addition, TMB was significantly decreased in the high-score group (Figure 8H). In all, our results strongly suggested that hypoxia score was associated with the response to immunotherapy and could further effectively predict the prognosis of patients.




Figure 8 | Prediction of immunotherapeutic benefits by hypoxia score. (A) TIDE scores were increased in the high hypoxia risk score group in the TCGA and GSE41613 cohorts. (B, C) The survival analysis of the high and low hypoxia risk score groups in the GSE91061 and CM-009+CM-010+CM025 immunotherapy cohorts. (D) The immunotherapy response patients (CR/PR) more distributed in lower risk score patients, while non-response ones (PD/SD) enriched in higher risk score patients in the CM-009+CM-010+CM025 cohorts. (E) High-risk score patients occupied a significantly reduced overall survival in the Imvigor210 cohort. (F) Various fractions of clinical outcome patients in the high and low hypoxia risk score groups in the IMvigor210 cohort. (G) The difference of hypoxia risk scores in the three immune subtype groups in the IMvigor210 cohort. (H) Differences in TMB between high- and low-risk score groups in the IMvigor210 cohort (ns, no significance, *P < 0.05, **P < 0.01).






Discussion

The tumor microenvironment is composed of not only the solid tumor tissue but also the surrounding vessels, fibroblasts, distinct immune cells, and extracellular matrix (31, 32). The imbalance between excessive oxygen demand and insufficient oxygen supply shaped a hypoxic microenvironment, leading to a malignant progression of tumor (33). As a hallmark of tumor, hypoxia exerts a crucial significance in different biological processes, including multiple metabolic forms, immune escape, angiogenesis, and metastasis (34). What is more, the crosstalk between tumor cells and other non-tumor cells under a hypoxic microenvironment could also induce therapeutic resistance, resulting in failure of treatment and poor clinical outcome. Considering hypoxia as an emerging biomarker and target in cancer therapy, exploring the effect of hypoxia in the tumor microenvironment is of great necessity.

Up till now, more and more studies emphasize the importance of molecular subtyping, which could direct individualized treatment (35, 36). The classification based on hypoxia genes and the generation of related signatures have been conducted in many cancer types including breast cancer, lung adenocarcinoma, and glioma to discriminate high-risk subclass and to predict survival (21, 37, 38). However, the relationships between hypoxia with clinical outcomes, genomic alterations, and therapeutic responses remain obscure in OSCC. Identifying different hypoxia patterns and generating a related signature in OSCC are beneficial to deepen our understanding of hypoxic microenvironment in OSCC progression and improve the outcome of cancer treatment.

In our study, we recognized two hypoxia-associated patterns that have different characteristics by unsupervised clustering of the gene expression of hypoxia genes. Cluster 2 patients were characterized by higher hypoxia degree, leading to a survival disadvantage over cluster 1. We also explored different mutated patterns between the two clusters. Moreover, we identified hypoxia signature genes by conducting differentially expressed analysis between the two subtypes. In agreement with the association of hypoxia status with abnormal immune response, we found that the signature genes were correlated with distinct immune cell infiltration. In the tumor microenvironment (TME), CD8 + CTLs are the immune cells of first choice for targeting cancer. During cancer progression, CTL encounters dysfunction and exhaustion due to immune-related tolerance and immunosuppression in TME, all of which contribute to adaptive immune resistance. Through multiple algorithms in the two databases, we identified CD8 T cells consistently deficient in cluster 2, which might be a major cause of its poorer prognosis and its worse immunotherapy response.

Thinking of the heterogeneity of hypoxia conditions, it was essential to quantify the hypoxia-associated character in OSCC. Hence, we further established a hypoxia-related scoring system and validated it in two cohorts. The estimated risk score was elevated in cluster 2, which was consistent with its worse prognostic significance. Multivariate Cox analysis also revealed the score as an independent prognostic factor in OSCC. Furthermore, the predictive potential of this prognostic risk score model was generated by combining it with several clinical features in a risk assessment nomogram.

In view of the clinical significance of our study, we respectively investigated different treatment strategies for distinct subclasses in line with the concept of precision treatment. For cluster 1 with a better prognosis, we recommended the recently widely used ICB treatment, while for cluster 2 patients, we screened bortezomib as the promising agent to improve the outcome of this subtype. What is more, the ideal drug was also applied to OSCC patients with high hypoxia-related risk score, indicating its clinical transforming value. In addition, the risk score we established could also predict the efficacy of immune checkpoint therapy and might promote personalized OSCC immunotherapy in future ICB treatment.

In summary, we recognized two different subclasses with a distinct immune microenvironment in OSCC based on hypoxia condition and explored the treatment of each subtype. We also established an individual hypoxia-associated score system which could predict the survival and the efficacy of immunotherapy. These findings provide a novel, efficient, and accurate predictive model in the prognosis and response to immunotherapy, thus promoting personalized cancer chemotherapy and immunotherapy in the future.
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Supplementary Figure 3 | The TME characteristics between two clusters in GSE41613 cohort. (A) Cluster2 patients conferred lower immune scores and higher tumor purity than Cluster1. (B) The significant immune cells difference between two clusters estimated by Cibersort algorithm. (C) EPIC algorithm revealed 7 immune cells difference in two clusters. (D) The CYT score but not the IFNG expression significantly decreased in Cluster2 patients. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS, not significant)
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Simple Summary

Clinically, aberrant lipid metabolism is responsible for overweight and/or obesity. Overweight is considered as an independent factor of cancer risk in 2019. Therefore, lipid metabolic reprogramming is an emerging hallmark of malignancy. It is an urgent need to comprehensively understand the relationship among lipid metabolism and HNSCC and identify a valuable biomarker for predicting prognosis of HNSCC patients. Three new findings were found in this study. Firstly, we identified the lipid-related differentially expressed genes (DEGs) by using the GEO microarrays and TCGA dataset. A novel lipid-related mRNA prognostic signature (LRPS, consisting of ADCY2, LIPE and OLR1) was developed, which could predict the survival and prognosis of HNSCC patients as an independent effective prognostic factor. Secondly, we found that the LRPS could indicate the type of infiltrated immune cells in HNSCC tumor microenvironment. Thirdly, we verified that the LPPS score could interpret the TP53 status of HNSCC. Our new findings indicated that LRPS has a potential to be a promising indicator of overall survival, TP53 status, and immune characteristics in HNSCC, and perhaps can monitor and guide the treatment efficacy and prognosis of HNSCC in the future.



Background

Head and neck squamous cell carcinoma (HNSCC) is characterized by a high frequency of lymph node metastasis and a high mortality. Lipid metabolic reprogramming is an emerging carcinogen as its role in fulfilling cancer growth and spread. However, little is known about the correlation between lipid metabolism and HNSCC.



Materials and Methods

Expressions of lipid-related genes were obtained from the Cancer Genome Atlas (TCGA) and Gene expression Omnibus (GEO) databases for differential and functional analyses. A total number of 498 patients from TCGA with complete information were included to identify a lipid-related prognostic signature (LRPS), based on ADCY2, LIPE, and OLR1, by using univariate and multivariate Cox regression analyses. LRPS-high and LRPS-low groups were accordingly divided to pathway and cell enrichment analyses.



Results

LRS-low patients had a better overall survival and relapse - free survival  than LRS-high ones in HNSCC. The LRPS-high group was significantly related to perineural invasion of cancer, cancer-related pathways, high TP53 mutation rate, high proportion of natural killer T cells (NKT), dendritic cells, monocytes, Treg, and M1 and M2 macrophage infiltration in HNSCC tumor tissues. Conversely, the LRPS-low group correlated with DNA damage-related and T-cell-regulated pathways, low frequency of mutated TP53, and high infiltration of B cells and CD4+ effector cells including Th1 and Th2.



Conclusion

LRPS has a potential to be a promising indicator of overall survival, prognosis, TP53 status, and immune characteristics in HNSCC.





Keywords: head and neck squamous cell carcinoma, survival, lipid-related prognostic signature, TP53 status, immune characteristics



Introduction

Head and neck squamous cell carcinoma (HNSCC) is the most common type of the head and neck cancers, with a high risk for recurrence and poor survival under the advanced treatment approaches. The incidence of HNSCC was increased by 36.3% during the past 10 years, from ~482,000 HNSCC patients in 2008 to ~657,000 cases in 2018 (1, 2). Smoking, alcohol assumption, and virus infection are recognized as important carcinogenic factors (3). Recent studies implicate that abnormal lipid metabolism may be related with HNSCC development and progression (4, 5).

Lipid metabolic reprogramming is an emerging hallmark of malignancy (6). Overwhelming lipid anabolic and catabolic processes are essential for the uncontrolled cell proliferation and rapid cancer growth. Simultaneously, lipids constitute most of the cell membranes and serve as signaling molecules. Theoretically, fatty acids and cholesterol synthesis provide carcinogenesis and metastasis with a range of metabolic fuels and substrates, as well as pro-tumor signaling cytokines (7–11). Furthermore, the roles of lipid metabolites in protecting cancer cells from harmful conditions (like endoplasmic reticulum stress, reactive oxygen species, and drug toxicity) have been substantiated in various cancers (12, 13). Some oncolipid-activated signaling pathways, such as sterol regulatory element-binding proteins and stearoyl-CoA desaturases, have been identified to be the potential targets for cancer treatment in the future (6, 14, 15).

Clinically, aberrant lipid metabolism is responsible for overweight and obesity. Overweight is considered as an independent factor of cancer risk by the American Cancer Society, which released a report entitled Cancer Facts & Figures in 2019 (16). Nowadays, it is estimated that 5% of cancers in men and 11% in women are attributed to overweight (17). Experimental evidence indicates that high-fat diet-induced obesity not only promotes carcinogenesis, but also induces lymphangiogenesis and lymphatic metastasis in vivo (18–20). Conversely, diet-caused weight loss was shown to reduce cancer risk (21). Furthermore, a deliberate weight loss has been proved to reverse the effects of obesity-induced oxidative stress, inflammatory activities, and oncogenesis (22). Reduction of DNA damage responses in overweight mice was also observed after an administration of energy restriction (23).

In this study, we firstly identified the lipid-related differentially expressed genes (DEGs) by using the GEO microarrays and the TCGA dataset. A novel lipid-related mRNA prognostic signature (LRPS, consisting of ADCY2, LIPE, and OLR1) was developed for predicting survival of HNSCC patients. Accordingly, HNSCC patients were divided into high-risk and low-risk groups according to their LRPS signature, and gene-set enrichment analysis (GSEA) and cell enrichment analysis were used to elucidate the potential mechanisms.



Materials and Methods


Ethics Approval

The original datasets in our study were downloaded from the TCGA database and GEO dataset. We downloaded and analyzed the study data in accordance with the relevant data policies of TCGA database and GEO datasets, and therefore, no additional ethics approval was needed.



Data Source

The original datasets comparing the mRNA expression profiles between tumors and adjacent normal tissues were obtained from the three GEO databases [GSE30784 (containing 167 oral squamous cell carcinoma, 17 dysplasia, and 45 normal oral tissues), GSE37991 (containing 40 male oral squamous cell carcinoma biopsies), and GSE65858 (containing 290 HNSCC biopsies)] and a TCGA dataset (containing 498 HNSCC biopsies). The clinical samples from the TCGA database with complete clinical information of patients were selected. The microarray data of GSE30784, GSE37991, and GSE65858 were based on GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array), GPL6883 (Illumina HumanRef-8 v3.0 expression beadchip), and GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip), respectively. The corresponding clinical information of patients with HNSCC was also acquired from the TCGA database (up to July 19, 2019). A total of 498 HNSCC patients with detailed follow-up time were included for the following analyses.



Data Processing and Differential Expression Analysis

The GEO data were processed and analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/). TCGA mRNA counts were normalized and analyzed by R packages (DESeq2 package) (p < 0.01, |log2FC| > 2).



Functional Enrichment Analyses

Gene ontology (GO) and KEGG pathway enrichment analyses were performed using the DAVID online database (the Database for Annotation, Visualization, and Integration Discovery) (24, 25). The enriched biological processes (BP), cellular component (CC), and molecular function (MF) were obtained to analyze the DEGs.



Protein–Protein Interaction Analysis

The STRING online database (http://string-db.org) was performed for PPI analysis. Cytoscape software was employed to construct the PPI network (26). MCODE tool of Cytoscape was performed to identify gene cluster of the PPI network. Degree cutoff ≥ 2, node score cutoff ≥ 0.2, K-core ≥ 2, and max depth = 100 was set as the threshold value.



Prognostic Signature Generation and Validation

The TCGA original dataset was performed as a training cohort. Univariate and multivariate Cox proportional hazards regression analyses were carried out to identify potential genetic predictors for HNSCC survival. Kaplan–Meier survival analysis with log-rank test was performed in R package. An internal dataset derived from the original TCGA served as a validation cohort using the bootstrap resampling method (27). Multivariate survival analysis was then performed to assess the association between the signature and clinical pathological index, namely, age, gender, lymphovascular invasion, margin status, recurrence, lymphatic metastasis, perineural invasion, cancer status, and nodal extracapsular spread.



Pathway Enrichment and Immune Enrichment Analyses

Gene-set enrichment analysis (GSEA) was performed using GSEA software with the criteria p < 0.05 and FDR < 0.25 (28, 29) and visualized using clusterProfiler packages of R (30). mRNA expression profiles were uploaded to xCell online software to evaluate the immunocyte heterogeneity of LRPS-high and LRPS-low groups (31).



Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.4 and R software (version 3.6.3); p < 0.05 was considered statistically significant. A nonparametric t-test was performed to compare continuous variables and χ2 test was used to compare categorical variables between two groups. ANOVA test was utilized to compare more than two groups.




Results


Lipid-Associated DEGs in HNSCC

To explore the lipid-related genes in HNSCC, 37 lipid-metabolic channels and 4 lipid-related signaling pathways (Supplementary Files S1) were selected based on KEGG pathway databases, and then analyzed in the TCGA database and GEO datasets using R packages. The result showed that a total of 65 genes significantly abnormally expressed in all three independent cohorts including TCGA, GSE30784, and GSE37991. The 26 upregulated and 39 downregulated lipid-related DEGs in total are listed in Table 1. The top 20 DEGs from the TCGA database are listed in Figure 1, and all lipid-related DEGs in GEO datasets are shown in Supplementary Figure S1 (p < 0.01, |log2FC| > 2).


Table 1 | The lipid-related DEGs among GSE30784, GSE37991, and TCGA.






Figure 1 | Lipid-related differentially expressed genes (DEGs) in HNSCC. Top 20 of the 65 genes involving lipid metabolism showed abnormal expression in HNSCC from the TCGA database including 44 normal tissues and 502 tumors (p < 0.01, |logFC| > 2). The color from blue to red represents the gene expressions from high to low between tumors vs. normal tissues.





Comprehensive Analysis of Molecular Characteristics in DEGs

Potential functions were then investigated in biological processes of the DEGs in HNSCC. GO analysis was performed and visualized in Figure 2A. The module of BP showed that the oxidation–reduction process, cholesterol homeostasis, sphingolipid biosynthetic process, and lipid metabolic and catabolic processes were commonly enriched. CC showed that the DEGs were significantly enriched in extracellular exosome, endoplasmic reticulum (membrane), and lipid particle. With regard to the module of molecular function (MF), the DEGs were mainly involved in iron ion binding and oxidoreductase activity.




Figure 2 | Functional vanalyses and PPT network of the DEGs. (A) GO analysis including biological processes, cellular components, and molecular functions. The x-axis shows gene counts enriched in these processes. (p < 0.01, FDR < 0.05). (B) Pathway analysis of the DEGs showed the common pathways in the KEGG database. The size of the points represented the numbers of the enriched genes; the bigger the size, the more genes enriched. Blue to red points represented statistical significance from low significance to high significance (p < 0.01, FDR < 0.05). (C) PPI network of the DEGs. Blue represents down-expressed genes, and red denotes up-expressed genes. Solid lines represent known interactions from curated databases or experimentally determined. Dotted lines represent predicted interactions. (D, E) Key module genes, namely, module 1 and module 2, with scores of 6.17 and 4.5, respectively.



Next, KEGG pathway enrichment analysis was used to figure out functions of the proteins encoded by the DEGs. As shown in Figure 2B, the DEGs were closely associated with arachidonic acid metabolism, PPAR signaling pathway, regulation of lipolysis in adipocytes, and metabolic pathways. p < 10−5 was recognized as significantly enrichment categories.

To figure out the relationship between the DEGs in HNSCC, the PPI network was constructed by STRING online database (Figure 2C). The central node genes (more than 10 connections or interactions) and the top 10 highly connected genes were identified, namely, PPARG, LIPE, SLC27A6, CYP2E1, ADIPOQ, PLA2G16, PLIN1, PLA2G2A, CYP2J2, and SLC2A4 (Supplementary Files S2). MCODE plugin from Cytoscape was used for the key module within the PPI network. The two most significant modules were identified for further pathway enrichment analysis. Module 1 consisted of 13 hub genes, namely, LIPE, PPARG, ADIPOQ, SLC2A1, SLC2A4, SLC27A6, MGLL, PLIN1, PLIN4, FABP3, CYP2E1, ALOX12, and CYP2J2 (Figure 2D). Module 2 included 5 hub genes, namely, SQLE, DHCR7, HMGCS2, TM7SF2, and CH25H (Figure 2E). Pathway enrichment analysis revealed that the hub genes in module 1 were closely correlated with PPAR signaling pathway (p = 2.58 × 10−6) and AMPK signaling pathway (p = 8.29 × 10−4). Module 2 was mainly enriched in steroid biosynthesis (p = 4.80 × 10−5) (Supplementary Files S2).



Identification of a Lipid-Related Prognostic Signature of HNSCC

To verify whether the lipid-related DEGs could be potential prognostic markers for HNSCC, the univariate and multivariate Cox analyses were performed to analyze the lipid-related DEGs as predictors for survival in TCGA patients with HNSCC (Supplementary Files S3, Model dataset). Univariate Cox analysis showed that ADCY2, OLR1, and LIPE significantly affected the overall survival of patients with HNSCC among the DEGs (Figures 3A, B and Supplementary Files S4). Next, a lipid-related prognostic signature (LRPS), containing LIPE, ADCY2, and OLR1, was constructed based on the coefficient of multivariate Cox analysis and mRNA expression of the three genes, the risk score = (−0.15) × LIPE + (0.08) × ADCY2 + (0.09) × OLR1 (Figure 3C). Subsequently, the LRPS containing LIPE, ADCY2, and OLR1 was selected to predict the prognosis of HNSCC patients through the TCGA and GEO databases.




Figure 3 | Prognostic analysis of LRPS genes. (A) Univariate Cox analysis of OLR1, ADCY2, and LIPE. (B) Survival analysis of the three genes in HNSCC according to the Kaplan–Meier Plotter online database (http://kmplot.com/analysis/index.php?p=background). (C) The risk score performed using multivariate Cox analysis of the three genes. *p < 0.05, **p < 0.01, ***p < 0.001.



The patients were accordingly divided into the high-risk group (n = 249) and low-risk group (n = 249) based on the risk score (Figures 4A, B), finding that the HNSCC patients in the high-risk group had a poorer 5-year overall survival (36.9%, HR = 0.377, 95% CI = 29.8%-45.7%) than those in the low-risk group (55.9%, HR = 0.566, 95% CI = 47.07%–66.5%) (p = 4.889 × 10−6) (Figure 4C and Supplementary Files S5). The concordance indices (C-index) of the lipid signature showed a higher specificity and sensitivity for predicting 3-, 5-, and 10-year overall survival (C-index = 0.645, 0.592, and 0.66, respectively, Figure 4D).




Figure 4 | LRPS in the TCGA model dataset. (A) Heatmap for the mRNA expression distribution in TCGA cohort by risk score, with red representing high expression and blue representing low expression. (B) The risk scores for patients with HNSCC were plotted in ascending order. (C) The survival rates of HNSCC patients between the LRPS-high group and LRPS-low group (p = 4.889 × 10−6). (D) C-index values of ROC analysis.



The LRPS was validated in the GSE65858 database. A total of 290 patients with HNSCC were subdivided into LRPS-high and -low groups according to the risk score, and survival analysis showed that the LRPS-high group had poorer 5-year overall survival than the LRPS-low group with a high effectivity (Figures S2A, B). We also established an internal TCGA dataset by bootstrap resampling method to validate the effectiveness of the LRPS (Supplementary Files S3, Validation dataset). The clinical characteristics within the two datasets had no significant differences using t-test analysis (Supplementary Table S1). The validation database was calculated and divided in the same way as the original group (Figure S3). Five-year overall survival analysis demonstrated that the high-risk group (37.92%, 95% CI: 30.71%–46.8%) was significantly poorer than its counterpart (59%, 95% CI: 51.1%–68.2%, p < 0.001, Supplementary Files S5). Taken together, the lipid-based signature of ADCY2, LIPE, and OLR1 could effectively predict the HNSCC patients’ survival.



LRPS Was an Independent Indicator of Prognosis and Closely Correlated to HNSCC Recurrence

Univariate Cox regression analysis showed that age, gender, lymphovascular invasion and metastasis, nodal extracapsular spread, perineural invasion, margin status, recurrence, cancer status, and LRPS score were significantly correlated with HNSCC prognosis (Figure 5A). Multivariate Cox analysis determined LRPS as an independent predictor after adjustment by other pathologic characteristics (Figure 5B). We evaluated the clinicopathologic factors in HNSCC among LRPS-high and LRPS-low groups (Table 2). Meanwhile, the LRPS could also independently predict the overall survival of HNSCC patients from the GEO database (Figures S2C, D). Statistically, LRPS-high patients were more prone to suffering relapse than the LRPS-low counterparts (52.73% vs. 22.92%, p = 0.0024). A high LRPS score had affinity relation with perineural invasion, compared with a low LRPS score (54.59% and 38.41% respectively, p = 0.0027). There were no significant differences within age, sex, alcohol and smoking history, tumor size and stage, lymphovascular invasion, and metastasis between the LRPS-high and LRPS-low groups.




Figure 5 | Prognostic analysis of LRPS in HNSCC. (A) Univariate Cox analysis of clinicopathologic factors and the LPRS score in TCGA-HNSCC patients. (B) Multivariate Cox analysis of the significant factors according to results from the univariate Cox analysis (p < 0.05).




Table 2 | The differences of clinical pathological characteristics between LRPS-high and LRPS-low.



Furthermore, based on the primary tumor sites, the data were classified into four subgroups: oral cavity, tongue, larynx, and pharynx. The results showed that the proportion of oral cavity and larynx samples were almost equally distributed between the high risk and low risk, but there were more cases of tongue and fewer pharynx in the high-risk than in the low-risk group (p < 0.0001, Fisher test; Figure 6A). Meanwhile, the samples with HPV test results were subdivided into positive and negative groups, and the data were performed to analyze the association between HPV status and the lipid signature. Surprisingly, we found that almost all HPV-positive samples showed a low risk for LRPS, while HPV-negative samples had a high risk for LRPS (p < 0.0001, Fisher test; Figure 6B).




Figure 6 | Distribution of primary tumor sites and the HPV status in different LRPS subgroups. (A) Heatmap and table showing the distribution of HNSCC primary sites (oral cavity, pharynx, larynx, and tongue) between the LRPS subgroups. (B) Heatmap and table showing the distribution of different HPV status between the two LRPS subgroups. The distributions of the primary site subtypes and HPV status in the LRPS subgroups were compared through the Fisher test.





Molecular and Immune Characteristics in Different LRPS Subgroups

Since the lipid signature could increase the risk for recurrence, we sought to illuminate potential mechanisms regulating cancer relapse. Different LRPS groups were performed to GSEA and xCell analyses. We observed that the LRPS-high group significantly positively correlated to focal adhesion, MAPK signaling pathway, neuroactive ligand–receptor interaction, cancer-related pathway, and TGFβ signaling pathway. The LRPS-low group was mainly enriched and negatively related to apoptosis, cell cycle, oxidative phosphorylation, p53 signaling pathway, and T-cell receptor signaling pathway (Figure 7A, p < 0.05, FDR < 0.25).




Figure 7 | Molecular characteristics of LPRS subgroups. (A) Gene sets enrichment in the LRPS-high and LRPS-low groups, respectively (p < 0.05, FDR < 0.25). (B) The proportions of immunocytes within tumor microenvironment in different LRPS subgroup (ns, no significance; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). NK cells, natural killer cells; NKT, natural killer T cells; Tgd cells, gamma delta T cells.



xCell analyses revealed that compared with adjacent normal tissues, the tumors that had a high LRPS score were more infiltrated in NKT, dendritic cells, monocytes, Treg, and M1 and M2 macrophages, which is in line with the inflammatory niche of the HNSCC tumor microenvironment. In addition, a proportion of B cells and CD4+ T effector cells including Th1 and Th2 significantly decreased in the LRPS-high group compared with the LRPS-low group, implicating that there is a suppressive immunity in the LRPS-high group (Figure 7B). Notably, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were observed enriched in the LRPS-high group (p < 0.001). The above results indicated a possible changed immune milieu of primary tumor sites with an increased risk for HNSCC progression.

Finally, gene mutations were further analyzed to explore the molecular nature of the LRPS subgroups, and the top 10 genes with the highest mutation rates were identified (Figure 8A). Genomic analysis showed that HNSCC endowed a high frequency of TP53 mutations, as high as about 71%, suggesting a vital role on tumor bioactivities. Our results showed a higher mutation rate of TP53 in LRPS-high patients than those with low LRPS score (82% vs. 60%), underlying a potential crosstalk between altered lipid metabolism and TP53 status. Missense variations were the most popular in both LRPS-high and -low groups. Importantly, TP53 showed a significantly higher mutation rate in the LRPS-high than in the LRPS-low group (Figure 8B, p < 0.0001, Fisher’s exact test). In addition, TTN, CDKN2A, FAT1, FRGB1, MUC16, CSMD3, PIK3CA, and SYNE1 were higher than 16% in both groups. The correlation between LRPS score and total mutation burden (TMB) was further explored, suggesting that the LRPS score was slightly correlated with total mutation burden (r = −0.11, p = 0.015, Figure S4).




Figure 8 | Genomic mutations in the LRPS. (A) Genomic mutation signature in the patients with HNSCC from the TCGA database. (B) Significantly mutated genes in LRPS-high and LRPS-low subgroups. The top 10 mutated genes are listed; the right shows mutation percentage and the top shows the overall mutation rates of different cohorts.






Discussion

The first new finding of the manuscript is that we identify the novel lipid prognostic signature of ADCY2, LIPE, and OLR1, which can predict the survival and prognosis of HNSCC patients as an independent effective prognostic factor. Meanwhile, our data may explain how lipidomics affects the prognosis and survival of patients with HNSCC through affecting tumor microenvironment via immunosuppression.

In recent years, lipid metabolism has come into a sharp focus on cancer initiation and progression owing to its essential role in HNSCC and striking contribution to cancer development. In this study, we, for the first time, identified a novel LRPS of HNSCC through univariate and multivariate Cox analyses, which were performed to analyze the lipid-related DEGs as predictors for survival in TCGA patients with HNSCC. ADCY2, OLR1, and LIPE significantly predicted the overall survival of HNSCC among the lipid DEGs. When the three genes were combined to indicate the prognosis of HNSCC patients, it showed that the LRPS-high group was highly related to poor prognosis.

OLR1 is a stimulator of epithelial–mesenchymal transition (EMT) and involved in PPAR pathway, regulated by the secondary messenger cyclin adenosine monophosphate (cAMP). OLR1 promotes migration and metastatic spread in different pathways, such as TBC1D3/OLR1/TNFα/NF-κB, OLR1/c-Myc/HMGA2, oxLDL/OLR1/VEGF-C, and PI3K/Akt/GSK3β (32–36). Recently, LOX-1Δ4, an alternative OLR1 isoform, has been shown to directly drive non-tumorigenic breast epithelial cells into fast proliferation status (37). More importantly, OLR1 is also reported to be positively correlated with the occurrence of lymphatic metastases in pancreatic cancers (38).

Adenylate cyclase 2 (ADCY2) encodes the adenylate cyclase that catalyzes ATP to transform to the second messenger cyclic adenosine monophosphate (cAMP). The latter is a crucial signal in cell fate, inflammation, and many other bioactivities, and is also greatly involved in the growth and differentiation of MSCs. Zhao et al. have reported E2-induced ADCY2 as a positive regulator in MSCs (39). In colorectal cancer, ADCY2 could also be an important prognostic marker (40).

Lipase E, hormone-sensitive type (LIPE) increases both the levels of free cholesterol and free fatty acids, and plays an important role in adipocyte function and lipid and glucose homeostasis (41). More importantly, LIPE encodes the rate-limiting enzyme of lipolysis, and homozygous null mutation of LIPE results in marked inhibition of lipolysis, leading to multiple symmetric lipomatosis (42). Our studies showed that LIPE played a central role in the protein–protein interactions of the DEGs, significantly related to the survival rate of patients with HNSCC.

The second new finding of the study is that the LRPS can indicate the type of the infiltrated immune cells in the HNSCC tumor microenvironment. Comprehensive analyses indicated a diverse characteristic of LRPS subgroups. Lumps of the LRPS-high group showed a higher infiltration of inflammation-associated cells, including dendritic cells, M1 and M2 macrophages, and monocytes, yet a lower proportion of immunocytes (B cells and pro B cells, CD8+ Tcm) compared with the LRPS-low group. The finding is also supported by the new concept that the infectious, chronic irritated, and inflammatory infiltration induces cancer and promotes neoplastic risk.

Macrophages are the main source of tissue repairment-related growth factors and cytokines after activation, such as TGFβ1, TNFα, TGFα, and IL1 (43). These factors partly contributed to carcinogenesis via different signaling pathways. Numerous studies further showed a strong correlation between macrophage abundance and poor cancer prognosis, including thyroid cancer, lung cancer, and hepatocellular cancer (44–47). Compromised immunity was also observed in our results, consistent with the research that shows that high-fat diet-induced obesity accelerates tumor growth by impairing CD8+ T-cell function (48). These observations could partly elucidate that the patients with LRPS high score were more subject to a poor survival because of the inflammatory-rich and immunodeficient conditions.

Intriguingly, we found that LRPS-low harbors more Th1 and Th2 cells and fewer Treg cells in HNSCC. By contrast, LRPS-high has more Treg cells, consistent with the results from Whiteside group, which found a large number of Treg cells in the peripheral circulation of patients with HNSCC (49). Treg cells serve as one of the culprits that suppress anti-tumor immune response. Tumor within a niche of Treg cells is recognized as an unfavorable factor of cancer prognosis (50).

We further found that the patients with high LRPS score were more susceptible to recurrence because of increased infiltration of MSCs and HSCs in the tumor microenvironment. Recent data have proposed lipid metabolic rewiring as a new hallmark of cancer stem cells (CSCs) owing to its modification on stem-like cells’ properties (51).

Taken together, these results affirmed that abnormal lipid metabolism exerts a great impact on immune cells’ function in the tumor microenvironment, just influencing the progression and prognosis of HNSCC.

The third new finding of the study is that LPPS score can interpret the TP53 status of HNSCC. Our results showed that there were fewer LRPS-high samples in HPV-positive HNSCCs, which was in accordance with the negative relationship between HPV status and p53 mutation frequency (52). We also found a significant higher mutation rate of TP53 in LRPS-high patients than those with low LRPS score, underlying a potential crosstalk between altered lipid metabolism and TP53 status. Wild-type p53 supervises the cell damage response to various stimuli, and recent findings increasingly link p53 to lipid metabolism. P53 suppresses lipid biosynthesis via inhibiting lipogenesis, yet induces fatty acid oxidation as an alternative energy source to glycolysis in the condition of nutritional deficiency (53, 54), implicating p53 as a positive regulator of catabolism (increase fatty acid levels) and an inhibitor of anabolism (decrease fatty acid levels) in the process of fatty acid metabolism. Otherwise, loss of p53 can lead to cell malignant transformation. As expected, mutated p53 exert a great impact on carcinogenesis through regulating gene transcription related to cell cycle, DNA repair, immunity and energetic activities, and so on. This gain of function of mutated p53 has been validated in various human cancers including breast, prostate, colon, pancreas, and head and neck cancers (55–60). Our data further supported that p53 mutations did cooperate with abnormal lipid metabolism to promote cancer progression in HNSCC, though more laboratory investigations are needed in the future.

Though the LRPS has great potential for predicting HNSCC survival and p53 status, there are some limitations. The training and validation cohorts were retrospective, and more findings need to be validated prospectively. Moreover, the value of LRPS is not validated by in vitro and in vivo assays. Therefore, more studies are needed in the future.



Conclusion

Our data confirmed that the three lipid-related genes play a pivotal role in tumorigenesis and recurrence of HNSCC, potentially by suppressing anti-tumor immunity and reflecting TP53 mutations status. LRPS has a potential to be a promising indicator of overall survival, prognosis, TP53 status, and immune characteristics in HNSCC, and perhaps could monitor and guide the treatment efficacy and prognosis of HNSCC in the future.
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Background

Total thyroidectomy (TT) or lobectomy without radioactive iodine (RAI) is becoming a common management for patients with low-risk differentiated thyroid cancer (DTC). However, the assessment of response to therapy for these patients remains controversial. The aim of this study was to propose and validate a new dynamic evaluation strategy to assess the response to therapy in patients with low-risk DTC treated with TT or lobectomy but without RAI.



Methods

We performed a retrospective analysis of 543 adult patients with low-risk DTC who underwent TT or lobectomy without RAI therapy. Follow-up consisted of trends of serum thyroglobulin (Tg), anti-thyroglobulin antibody (TgAb) levels and neck ultrasonography (US) were conducted every 6–24 months. Response to therapy assessments were defined as excellent response, biochemical incomplete response, structural incomplete response, and indeterminate response according to the follow-up findings.



Results

At a median follow-up of 51 months (range 33–66 months), 517 (95%) had excellent response, while the other 26 had either biochemical incomplete response (an increasing trend of suppressed serum Tg levels, n=9; an increasing trend of TgAb levels, n=3) or indeterminate response (a stable or decreasing trend of suppressed serum Tg levels, but a stable positive trend of TgAb levels, n=14). No patients had structural incomplete response or no deaths related to thyroid cancer. The risk of incomplete response was significantly higher in lobectomy than in TT (p<0.001).



Conclusion

Our study proposed and validated a new dynamic response to therapy assessment depending on trends of suppressed serum Tg, TgAb levels, and neck US findings which could be an appropriate tool for postoperative follow-up in low-risk DTC patients without RAI therapy. Our findings provided further evidence to support no routine recommendation of RAI after surgery in low-risk DTC.
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Introduction

The prevalence of low-risk differentiated thyroid cancer (DTC) is increasing significantly, which mainly due to the early diagnosis of thyroid microcarcinoma (TMC) by using neck ultrasonography (US) (1–4). Optimal management of DTC usually requires inter-disciplinary cooperation, including surgery, risk-adapted postoperative radioactive iodine (RAI) therapy, individualized thyroid hormone therapy, and follow-up for the detection of patients with persistent or recurrent disease (5–7). Recently, considering factors such as the excellent prognosis of low-risk DTC (5, 8), absence of significant reduction in recurrence rate or disease-free survival in low-risk patients treated with RAI (9, 10), scarce evidence concerning the usefulness of RAI in improving disease-specific mortality in low-risk DTC (5), and potential side effects on RAI [e.g., chronic sialadenitis (11, 12), secondary malignancies (13, 14)], the 2015 American Thyroid Association (ATA) guidelines recommend performing conservative strategies, namely, total thyroidectomy (TT) or lobectomy without RAI ablation, for low-risk DTC patients (5). Thus, in China, TT or lobectomy without RAI ablation is becoming a common management for patients with low-risk DTC.

Although the above-mentioned conservative strategies are gradually becoming accepted, the assessment of response to therapy for these patients remains controversial. According to the 2015 ATA guidelines, periodic measurements of serum thyroglobulin (Tg) on thyroid hormone therapy and neck US should be considered during the follow-up of patients with low-risk DTC who underwent TT or lobectomy without RAI ablation (5), but the roles played by each of these methods are not specially defined. In 2016, Momesso et al. proposed a dynamic risk stratification method (mainly based on neck US findings and different suppressed serum Tg cutoff values, namely, Tg <0.2, 0.2–5, or >5 ng/mL for TT; Tg <30 or >30 ng/mL for lobectomy, to stratify assessments as excellent response, indeterminate response, biochemical incomplete response and structural incomplete response) to evaluate the response to initial surgery in low-risk DTC patients who did not undergo RAI therapy (15). However, since this evaluation system could be affected by the size of remnant tissue, the results vary significantly [e.g., excellent response, 94.1% as reported by Momesso et al. (15) versus 71.7% as reported by Park et al. (16)].

The current study attempted to use a dynamic evaluation strategy based on the trends of suppressed Tg, anti-thyroglobulin antibody (TgAb) levels and neck US findings to determine the response to therapy in Chinese low-risk DTC patients treated with surgery alone (TT or lobectomy) after a median follow-up of 51 months and identify risk factors associated with incomplete response.



Material and Methods


Patients

This retrospective study was approved by the Institutional Research Ethics Committee of West China Hospital of Sichuan University (# 20201158). The requirement for written informed consent was waived because this study was of retrospective design and used only de-identified clinicopathologic data.

Electronic medical records at West China Hospital of Sichuan University, Chengdu, China, were retrospectively reviewed for adult patients with low-risk DTC who underwent TT or lobectomy without RAI remnant ablation therapy between July 2015 and September 2016. The inclusion criteria were as follows: patients aged >18 years at the time of surgery; patients with documented low-risk DTC who underwent lobectomy with isthmusectomy or TT, and/or central/lateral neck dissection, without RAI remnant ablation therapy, with thyroid-stimulating hormone (TSH) suppressive therapy; and those who were routinely followed up every 6–24 months with the determination of serum TSH, Tg and TgAb levels and neck US findings. The exclusion criteria were histopathological diagnosis other than DTC, history of other cancers, presence of other conditions that have clinical significance, and absence of sufficient follow-up data.



Laboratory Studies and Follow-Up Protocol

Serum Tg, TgAb, and TSH levels were measured 1.5–3 months post-operation and during routine follow-up every 6–24 months in our hospital. Between July 2015 and May 2020, serum Tg, TgAb, and TSH levels were measured using a fully automated electrochemiluminescent immunoassay analyzer (Cobas® e 601, Immunoassay Analyzer, Roche, Switzerland) with a measuring range of 0.04–500 ng/mL, 10–4000 IU/mL, and 0.005–100 mIU/L, respectively. After May 2020, serum Tg, TgAb, and TSH levels were measured using a new generation of electrochemiluminescent immunoassay analyzer (Cobas® e 801, Immunoassay Analyzer, Roche, Switzerland). Neck US examination was performed by experienced operators, using color Doppler scanners with multi-frequency probes (7.5–10 MHz), every 6 months during the first year post-operation and repeated at 12- to 24- month intervals thereafter.

The trends of suppressed serum Tg and TgAb levels were evaluated at the same TSH levels and defined as stable (the change of Tg or TgAb levels <20% when comparing the three consecutive Tg or TgAb levels), decreasing (the decrease of Tg or TgAb levels ≥20%) or increasing (the increase of Tg or TgAb levels ≥20%). Positive TgAb was defined as serum TgAb level ≥60 IU/mL, which might interfere with Tg measurement (16, 17). When the serum TgAb level was <60 IU/mL, serum TgAb status was defined as negative (16).

Neck US examination included the analysis of the thyroid bed, remnant thyroid tissue, and lymph node regions. A negative neck US result was defined as an empty thyroid bed with the jugular and carotid vessels in a medial location or no abnormalities in the remnant thyroid tissue, and as the absence of suspicious lymph nodes (LNs).



Response to Therapy Assessments

Response to therapy assessments at the last follow-up were defined as excellent response, biochemical incomplete response, structural incomplete response, and indeterminate response, which mainly depended on the trends of serum suppressed Tg, TgAb levels and neck US findings with avoidance of the size of remnant tissue. The definitions of each response to therapy assessment at the last follow-up for patients who underwent TT or lobectomy without RAI are shown in Table 1 (15, 16, 18, 19).


Table 1 | The definitions of a new response to therapy assessment in patients with low-risk DTC who underwent total thyroidectomy or lobectomy without RAI.





Statistical Analysis

Continuous variables were presented as means and standard deviations or median values with ranges, and categorical variables were calculated as frequencies or percentages. A comparison of continuous variables was performed with Student’s t-test, and that of categorical variables was performed using Pearson’s χ2 test or Fisher’s exact test. Prognostic factors associated with incomplete response at the last follow-up were analyzed using logistic regression. A p-value of <0.05 was considered statistically significant. Statistical analyses were performed using IBM SPSS statistical software (version 23.0 for Mac OS X).




Results


Study Cohort

Between July 2015 and September 2016, a total of 634 patients were included (Figure 1). Seventeen patients were not included in the follow-up: 14 had other cancers (six with breast cancer, three with lung cancer, one with squamous cell carcinoma, one with esophageal cancer, one with colon cancer, one with renal cell carcinoma, and one with ovarian cancer), while 3 had a history of other conditions that had clinical significance (one with gastrointestinal stromal tumor, one with familial adenomatous polyposis, and one with uremia). Seventy-four patients could not be evaluated because of insufficient follow-up data. Finally, 543 patients were evaluated: 471 (87%) who underwent TT and 72 (13%) who underwent lobectomy.




Figure 1 | Flow chart of inclusion-exclusion of patients with low-risk differentiated thyroid cancer without radioiodine ablation at the study. aPatients underwent lobectomy + isthmusectomy + ipsilateral central neck dissection or total thyroidectomy +/- central/lateral neck dissection.





Clinical Characteristics

The demographic characteristics and clinical features of the 543 patients included in the study are shown in Table 2. Mean patient age was 43 years; 79% were female, and all patients had low-risk papillary thyroid cancers. TMC was found in 420 (77%) of the 543 patients, wherein 19% had multifocal disease. Neck dissection was performed in 540 (99%) of the 543 patients, wherein 77% had N0. Central cervical LN metastases were found in 125 (23%) of the 543 patients, including 73 (58%) with one LN metastasis, 34 (27%) with two LN metastases, and 18 (15%) with three or four LN metastases. No patients had lateral LN cervical metastases. Based on the 8th American Joint Cancer Committee TNM staging system, 97% and 3% patients had stage I and stage II, respectively. For thyroid surgery specific complications, rates of transient hypoparathyroidism and vocal cord paralysis in TT were higher than those in lobectomy.


Table 2 | Baseline characteristics of the patients.



Patients who underwent lobectomy were younger than those who underwent TT (p=0.014). More unifocal disease and TMCs were found in patients who underwent lobectomy than in those who underwent TT (p=0.005 and p=0.013, respectively). There were no significant differences in LN metastasis or TNM staging between the TT and lobectomy cohorts (Table 2).



Response to Therapy Assessments

At the last follow-up (median follow-up, 51 months; range, 33–66 months), 517 (95%) of the 543 patients had excellent response (Table 3). Of the other 26 patients, 12 had biochemical incomplete response (an increasing trend of suppressed serum Tg levels, n=9; an increasing trend of TgAb levels, n=3), 14 had indeterminate response (a stable or decreasing trend of suppressed serum Tg levels, but a stable positive trend of TgAb levels). No patients had structural incomplete response or no deaths related to thyroid cancer.


Table 3 | Response to therapy assessments at the last follow-up in the study subjects.



Excellent response and fewer biochemical incomplete response were found in patients who underwent TT than in those who underwent lobectomy (p<0.001). There were no significant differences in the indeterminate incomplete response between the two groups (Table 3).



Prognostic Factors Associated With Incomplete Response

Details and the results of univariate analysis of prognostic factors associated with incomplete response in low-risk DTC patients treated with TT or lobectomy without RAI therapy at the last follow-up are presented in Table 4. The risk of incomplete response at the last follow-up was not related to the patient’s age, sex, primary tumor, or nodal status (Table 4). The risk of incomplete response was significantly higher in patients who underwent lobectomy than their counterpart (odds ratio=6.529, p=0.001).


Table 4 | Univariate analysis of prognostic factors associated with incomplete response at the last follow-up in 543 patients.






Discussion

In this study, we proposed and validated a new dynamic response to therapy assessment depending on trends of suppressed serum Tg, TgAb levels, and neck US findings in patients with low-risk DTC who underwent TT or lobectomy without RAI therapy. Response to therapy assessments were defined as excellent response, biochemical incomplete response, structural incomplete response, and indeterminate response, which mainly depended on the trends of suppressed serum Tg, TgAb levels and neck US findings without interference of the size of remnant tissue. Our findings show that, at the last follow-up, 95% of patients with low-risk DTC who underwent TT or lobectomy without RAI ablation therapy had excellent response. This rate in our cohort was similar to that (94.1%) reported by Momesso et al. (15), thus conforming the definition used in our study might be reasonable and reliable. Furthermore, the proportion of patients (97%) with excellent response among those who underwent TT in our study was similar to the proportion (98%) reported by Schlumberger et al. who performed a 5-year follow-up study of a randomized, phase 3, equivalence trial (ESTIMABL1, two thyrotropin-stimulation methods: thyroid hormone withdrawal versus the use of recombinant human TSH, and two RAI ablation doses:1.1 GBq versus 3.7 GBq) (20). Thus, our study provided further evidence to support no routine recommendation of RAI after surgery in low-risk DTC. The proportion of patients with biochemical incomplete response or indeterminate response in our study was in accordance with the 10-year recurrence rate of 1%–2%, which is expected for patients with low-risk DTC. During our follow-up, no patients had structural incomplete response, which may be explained by the aggressive prophylactic lymph node dissection and insufficient follow-up duration (21, 22).

According to the 2015 ATA guidelines, lobectomy may be sufficient for a unifocal intrathyroidal low-risk carcinoma sized <4 cm in diameter in patients with no prior head and neck radiation, familial thyroid cancer, or clinically detectable cervical LN metastases (5). In the present study, type of surgery was found to be a prognostic factor associated with incomplete response in low-risk DTC patients without RAI therapy at the last follow-up. Particularly, we found that the risk of biochemical incomplete response was significantly higher in patients who underwent lobectomy (seven and two patients due to increasing trends of suppressed serum Tg and TgAb levels, respectively), when compared to TT (two and one patients due to an increasing trend of suppressed serum Tg and TgAb levels, respectively). For low-risk DTC patients treated with lobectomy, an increase in Tg values over time suggested a growing thyroid tissue or tumor, and an increase in TgAb values suggested coexistent Hashimoto thyroiditis in residual thyroid tissues (especially in patients diagnosed with Hashimoto thyroiditis by surgical histopathology) or tumor relapse (5, 23–25).

The present study has several strengths. First, postoperative risk assessment, assessment of potential benefits and side effects of RAI therapy, and patients’ preferences and values had been adequately considered during post-operative management (observation and individualized thyroid hormone therapy without RAI ablation). Second, all the included patients underwent TT or lobectomy by experienced thyroid surgeons in our hospital who had more than 10 years of thyroidectomy experience. Third, all the serum Tg, TgAb, and TSH levels of all patients were measured by electrochemiluminescent immunoassay in our laboratory to ensure the accuracy and reliability. Finally, considering that neck US is operator-dependent, all high-resolution neck US scans were performed by experienced specialists to evaluate structural abnormalities to ensure the accuracy in our center. However, this study has several limitations. First, the 51-month (median) follow-up period chosen for this study might be suboptimal. Although most recurrences (80%) in low-risk DTC patients occurred during the first 3-5 years of follow-up, some recurrence or incomplete response might be missed (26, 27). Second, the single-institutional study design creates selection biases that are difficult to control. Third, this retrospective study enrolled a relatively small cohort of patients who underwent lobectomy.

In conclusion, our study validates that the newly proposed dynamic response to therapy assessment depending on trends of suppressed serum Tg, TgAb levels, and neck US findings could be an appropriate tool for postoperative follow-up in low-risk DTC patients without RAI therapy. Our findings provide further evidence to support no routine recommendation of RAI after surgery in low-risk DTC.
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As a key histopathological characteristic of tumor invasion, perineural invasion (PNI) assists tumor dissemination, whereas the current definition of PNI by dichotomy is not accurate and the prognostic value of PNI has not reached consensus. To define PNI status in each patient when mixed types of PNI occurred simultaneously, we here further subclassified the traditional PNI in 183 patients with oral squamous cell carcinoma (OSCC). The spatial localization of nerves in OSCC microenvironment was thoroughly evaluated and successfully concluded into four types of PNI: 0, tumor cells away from nerves; 1, tumor cells encircling nerves less than 33%; 2, tumor cells encircling nerves at least 33%; and 3, tumor cells infiltrating into nerve sheathes. Sequentially, patients were stratified by single and mixed types of PNI. Traditionally, types 0 and 1 were defined as PNI−, while types 2 and 3 were PNI+, which predicted shorter survival time. When multiple types of PNI existed within one tumor, patients with higher score of PNI types tended to have a relatively worse prognosis. Therefore, to define the status of PNI more precisely, the new variable worst pattern of PNI (WPNI) was proposed, which was taken as the highest score of PNI types present in each patient no matter how focal. Results showed that patients with WPNI 1 had longest survival time, and WPNI 2 correlated with better overall survival (p = 0.02), local-regional recurrence-free survival (p = 0.03), and distant metastasis-free survival (p = 0.046) than WPNI 3. Multivariate Cox analysis confirmed that only WPNI 3 could independently predict patients’ prognosis, which could be explained by a more damaged immune response in WPNI 3 patients with less CD3+CD8+ T cells and CD19+ B cells. Conclusively, WPNI by trichotomy provide more meticulous and precise pathological information for tumor-nerve interactions in OSCC patients.




Keywords: tumor-nerve interaction, worst pattern of perineural invasion (WPNI), oral squamous cell carcinoma (OSCC), prognostic biomarker, immune balance



Introduction

Oral squamous cell carcinoma (OSCC) represents the most common epithelial malignancy in the head and region, with nearly 350,000 new cases and 180,000 deaths in 2018 globally (1). Smoking, alcohol drinking, and betel quid chewing are reported as lifestyle-related pathogenic risk factors (2). At present, the primary choice for OSCC treatment is still surgical resection supplemented with/without postoperative radiotherapy, chemotherapy, or concurrent chemoradiotherapy (3). Although strategies for OSCC diagnosis and treatment are both constantly being optimized, the 5-year overall survival rate remains about 60% (3). With OSCC progression, patients eventually die of tumor recurrence and metastasis (2). Typically, lymphovascular route represents the main pathway for OSCC metastasis while nerves as the potential pathway have attracted increasing attentions in recent years (4).

In the tumor microenvironment, nerves have been neglected by researchers (5). However, in addition to interacting with immune cells, fibroblasts, and endothelial cells, tumor cells can also interact with nerves (6). Morphologically, the best example of tumor-nerve interaction is perineural invasion (PNI), which assists tumor dissemination and has been recognized as a negative prognostic factor for several cancers (7–10). Although PNI is included in clinical diagnosis including OSCC (11), there is still lack of a standardized definition consensus among pathologists (12, 13). In 1985, Batsakis et al. described PNI as tumor cells invaded in, around, and through peripheral nerves (14), nerves were surrounded by tumor cells in whole or in part, or tumor cells were observed inside the endoneurium (15). With traditional dichotomies, PNI was classified as positive (presence, PNI+) or negative (absence, PNI−).

However, debates on the spatial relationship between tumor cells and nerves in PNI have existed for decades due to this dichotomy. On the one hand, Liebig et al. optimized PNI to the definition that tumor cells are closely adjacent to the peripheral nerves and encircle no less than 33% of their circumferences or tumor cells within any of the three layers of nerve sheaths; however, the judgement of PNI in clinical practice was still quite subjective (13, 15, 16). Consequently, the detection rate of positive PNI in the same tumor type varied greatly across cohorts (4). Additionally, a few studies still argued that PNI failed to predict survival (17–20). However, on another hand, intratumoral heterogeneity within a single tumor microenvironment (TME) is the intrinsic driver for the simultaneous existence of several PNI types. The status of PNI in each patient as mixed types of PNI coexist and their clinical outcomes are unclear, which promoted us to identify a histopathological indicator to efficiently capture the feature of tumor-nerve interaction patterns.

In this study, in order to further classify the traditional PNI, we thoroughly evaluated the spatial localization of nerves in OSCC microenvironment. Then, the new variable, the worst pattern of PNI (WPNI) was proposed and investigated for its clinical significance. Moreover, as increasing evidence suggests that peripheral nerves profoundly alter the immune response in both inflammatory diseases and cancers (21–23), we also explored whether the imbalance of the immune system was associated with different WPNI scores in OSCC patients.



Materials and Methods


Patients and Tissue Samples

A total of 183 patients with primary OSCC treated in the Department of Oral and Maxillofacial Surgery at Nanjing Stomatological Hospital from January 2013 to December 2014 were included in this retrospective study (Table 1). Patients’ demographic data (age and sex), clinicopathological parameters (tumor site, pathologic T stage, pathologic N stage, pathologic TNM stage, tumor differentiation, worst pattern of invasion (WPOI), PNI, local-regional control and distant metastasis), and treatment modalities (radiotherapy and chemotherapy) were included and analyzed. Inclusion criteria included the following: (1) patients with a pathological diagnosis of OSCC; (2) patients who were primarily treated with surgery; and (3) patients with complete clinicopathological data and available tissue specimens. The exclusion criteria included preoperative chemotherapy or radiotherapy, failure to undergo surgery, and the inability to obtain pathological slides. The pathological stages and the histological grade of OSCC were separately classified based on the guidelines of the 7th edition of AJCC Cancer Staging and the protocol of WHO. This study was conducted in full accordance with ethical principles and was approved by the Medical Ethics Committee of the Nanjing Stomatological Hospital, Medical School of Nanjing University [approval number: 2019NL-009(KS)].


Table 1 | Clinicopathological features of 183 OSCC patients in this study.





Study Design

Based on distinct spatial localization of nerves in OSCC microenvironment, 183 OSCC patients were stratified by five types of PNI as indicated in Figure 1I. Through evaluation of their prognostic value, we tried to determine which type of PNI showed the highest risk of death, especially when mixed types of PNI occurred in one patient. Finally, we introduced the new variable worst pattern of PNI (WPNI) to define the PNI status of OSCC patients and further evaluated its predictive ability for the clinical outcome.




Figure 1 | Illustrations for patterns of tumor-nerve interaction and the study design. (A) PNI type 0, tumor cells away from nerves. (B) PNI type 1, tumor cells encircling nerves less than 33%. (C) PNI type 2, tumor cells encircling nerves at least 33%. (D) PNI type 3, tumor cells infiltrating into nerve sheathes. (E–H) The cartoon diagrams corresponding to (A–D). (I) Flow diagram illustrating the management of OSCC patients stratified by different types of PNI. The dashed circles represented the peripheral nerves. Scale bars: 20 μm.





PNI Types and the WPNI

The traditional PNI were subclassified into four types: 0, tumor cells away from nerves; 1, tumor cells encircling nerves less than 33%; 2, tumor cells encircling nerves at least 33%; and 3, tumor cells infiltrating into nerve sheathes. The new variable WPNI was taken as the highest score of PNI types present in each patient no matter how focal, which was similar to WPOI (24). Two oral pathologists independently reviewed all hematoxylin-eosin (H&E)-stained slides to recognize and record the existing PNI types and where disagreement occurred, consensus would be reached through a discussion.



Immunohistochemistry

Immunohistochemical staining was performed on 4-μm-thick formalin-fixed, paraffin-embedded tissue sections. After baking all sections at 70°C for 45 min, they were incubated with xylene three times for 10 min each and then treated with gradient ethanol for 5 min in each solution. Antigen unmasking was performed by boiling the sections in sodium citrate buffer (pH 6.0), blocking with 3% hydrogen peroxide for 10 min at room temperature and washing. Cytokeratin-5/6 (kit-0018) and S-100β (kit-0007), both ready-to-use and purchased from Maixin (Maixin Biotech Co., Ltd., Fuzhou, China), were used to label tumor epithelial cells and nerves, respectively, at 4°C overnight. Then, the Super-MaxVision mouse/rabbit Universal HRP Kit (TPB-0015, Typing Biotech Co., Ltd., Nanjing, China) was used for DAB chromogen staining followed by nuclear staining using hematoxylin. Sections were covered with neutral gum and dried at room temperature.



Flow Cytometry

The T/B/NK cells data in preoperative blood of primary OSCC patients was immediately collected and analyzed using flow cytometry. To identify and determine the percentages of mature human lymphocyte subsets in erythrocyte-lysed whole blood, including T cells (CD3+), B cells (CD19+), helper/inducer T cells (CD3+CD4+), suppressor/cytotoxic T cells (CD3+CD8+), and natural killer (NK) lymphocytes (CD3−CD16+ and/or CD56+), BD Multitest™ CD3-FITC/CD8-PE/CD45-PerCP/CD4-APC reagent and BD Multitest™ CD3-FITC/CD16-PE+CD56-PE/CD45-PerCP/CD19-APC reagent were used according to the manufacturer’s instructions (Cat No. 340503, BD Biosciences, Franklin Lakes, NJ, USA), and samples were then quantified by flow cytometry on a FACS Calibur instrument. To determine the absolute counts of the lymphocyte subsets listed above, the total numbers of preoperative peripheral lymphocytes determined by the Automated Haematology Analyser XS Series (XS-1000i, Sysmex Corporation, Japan) were collected from the clinical laboratory. Since both tests came from the same batch of blood samples, we ignored the possible errors caused by the use of different detection instruments. Herein, the TBNK data of 62.3% (114/183) of OSCC patients were successfully collected and the detailed characteristic data are listed in the Supplementary Table S1.



Statistical Analysis

Survival curves were calculated by the Kaplan-Meier method and compared by the log-rank test. The hazard ratio (HR) was calculated using the Cox proportional hazard regression model. Overall survival (OS) was defined as the time from surgery to death from any cause. Local-regional recurrence-free survival (LRFS) and distant metastasis-free survival (DMFS) were defined as the time from surgery to the occurrence of local-regional recurrence and distant metastasis or death from any cause, respectively.

For descriptive analysis, categorical variables are expressed as numbers and percentages, and continuous variables are expressed as median values and ranges. The Chi-square test was used to compare the correlations between the baseline factors and the morphological classifications of PNI. All hypothesis generation tests were two sided, and differences between groups were analyzed using Student’s t-test, with a significance level of 0.05: *p < 0.05; **p < 0.01; and ***p < 0.001. Data analysis and visualization were performed on the Windows platform using IBM SPSS 24.0 and GraphPad Prism 8.0.




Results


OSCC Microenvironment Has Heterogeneous Patterns of Tumor-Nerve Interaction

A total of 183 patients with primary OSCC were enrolled in this study, and 904 H&E-stained slides were thoroughly reviewed. Based on the spatial localization of nerves in the OSCC microenvironment, we observed that OSCC has heterogeneous patterns of tumor-nerve interaction. Therefore, tumor cells could be found away from nerves, which was defined here as PNI type 0 (Figures 1A, E). The conditions that tumor cells encircling nerves <33% and ≥33% were separately divided into PNI type 1 (Figures 1B, F) and type 2 (Figures 1C, G). Once tumor cells were observed infiltrating into nerve sheathes, this pattern was defined as PNI type 3 (Figures 1D, H). Importantly, if more than one type of PNI simultaneously occurred in one tumor sample, this condition was concluded into the mixed PNI type. As the PNI type 0 could be present in all OSCC samples, its coexistence with other types was not considered mixed PNI types. Thus, there were 94 (51.4%), 17 (9.3%), 31 (16.9%), and 16 (8.7%) patients with single type of PNI, types 0–3, respectively. In addition, the remaining 25 (13.7%) patients had the mixed PNI type (Figure 1I).



Mixed Types of PNI Are Present in One OSCC Patient

In this study, we found that PNI− status contained two patterns of tumor-nerve interaction, that is PNI types 0 and 1, while PNI+ status consisted of PNI types 2 and 3. The traditional PNI− patients did not contain any mixed types of PNI. However, in the PNI+ patients, the mixed types of PNI consisted of type 1/2 (6, 3.3%), type 2/3 (13, 7.1%), type 1/3 (5, 2.7%), and type 1/2/3 (1, 0.5%) (Figure 1I). Through immunohistochemical staining on sequential tissue sections, we showed that PNI types 0–3 simultaneously occurred in the same one OSCC sample (Figure 2).




Figure 2 | Mixed PNI types simultaneously occurred in one OSCC sample. (A–E) H&E images. (F–J) Tumor cells labeled with cytokeratin 5/6. (K–O) Nerves labeled with S100β. The bold “T” and “N” represented tumor cells and nerves, respectively. Scale bars: (A, F, K) 1,000 μm, (B, G, L) 50 μm, and (C–E, H–J, M–O) 20 μm.





The PNI Status of OSCC Patients Should Be Subdivided Into Three Types of WPNI

In order to determine the prognostic value of PNI and its subtypes in our cohort, Kaplan-Meier analyses were firstly performed between the traditional PNI+ and PNI− OSCC patients. Patients with the traditional PNI+ status showed a significantly lower OS than the PNI− patients (p < 0.0001) (Figure 3A). Next, we did subgroup analysis and found that in the PNI− patients, PNI types 0 and 1 both indicated high 5-year OS (87.2% vs. 88.2%, respectively; p = 0.89) (Figure 3B). However, in the PNI+ patients, PNI type 3 tended to indicate a decreased 5-year OS than PNI type 2 (68.8% vs. 74.2%, respectively) though statistically not significant (p = 0.52) (Figures 3C, D). Most importantly, patients with the mixed PNI types had the worst 5-year OS (40.0%) (Figure 3C).




Figure 3 | The overall survival analysis performed between patients with the traditional PNI by dichotomy (A) and subgroup analysis separately in PNI− (B) and PNI+ (C) patients. (D) The results of log-rank test in (C). *p<0.05; ****p<0.0001; ns, not significant.



In order to determine the contribution of PNI subtypes to the decrease of OS, we further drew and compared the OS curves within the mixed PNI types. As a result, PNI type 1/2 showed the best OS, followed by PNI types 1/3, 2/3, and 1/2/3 (Figure 4A). In detail, the proportion of deaths tended to increase from 13% (n = 2, PNI type 1/2) to 20% (n = 3, PNI type 1/3), and then to 60% (n = 9, PNI type 2/3) (Figure 4B). Based on the OS analysis above, the highest PNI type perfectly indicated the patients’ survival outcome. Thus, we here introduced the variable WPNI, which took the highest score present in each patient, to define the PNI status (Figure 4C). Thus, as PNI type 0 or 1 was redefined as WPNI 1, mixed PNI types of 1/2 were reclassified as WPNI 2. Meanwhile, we took the mixed PNI types 1/3, 2/3, and 1/2/3 as WPNI 3.




Figure 4 | The PNI status of OSCC patients should be subdivided into three types of WPNI. (A) The overall survival curves were drawn and compared within PNI+ patients with mixed PNI types. (B) The stack graph showing the frequency distribution in PNI+ patients with mixed PNI types. (C) As the highest PNI type perfectly indicated the patients’ survival outcome, PNI type 0 or 1 was redefined as WPNI 1, the mixed PNI type 1/2 was reclassified as WPNI 2, and the mixed PNI types 1/3, 2/3, and 1/2/3 were combined as WPNI 3. *p<0.05.





WPNI 3 OSCC Patients Showed the Worst Clinical Outcome, Prognosis, and Immune Response

To investigate the correlation between the clinicopathological features and the new WPNI scoring system, 111 (60.7%), 37 (20.2%), and 35 (19.1%) OSCC patients were reclassified into WPNI 1, WPNI 2, and WPNI 3, respectively (Figure 1I). Chi-square test was performed and presented that higher WPNI indicated enhanced tumor lymph node metastasis (LN metastasis, χ2 = 15.96, p < 0.001) and more aggressive pattern of tumor invasion (WPOI, χ2 = 16.27, p < 0.001) (Table 2). Moreover, the rate of local-regional recurrence and distant metastasis after OSCC operation also significantly increased with higher WPNI score (Table 2).


Table 2 | Clinicopathological features and their associations with the WPNI scoring system.



To evaluate the prognostic value of the WPNI model on OS, LRFS, and DMFS, Kaplan-Meier analysis and log-rank test were performed. In all three survival models, WPNI 1 indicated the best prognosis while WPNI 3 predicated the worst prognosis (Figures 5A–C). As for WPNI 2, it had significantly better OS (p = 0.02), LRFS (p = 0.03), and DMFS (p = 0.046) than WPNI 3, which both indicated the traditionally PNI+ status. Furthermore, univariate Cox analysis showed that pathologic N stage, TNM stage, and WPNI were significantly negative predictors for OS, LRFS, and DMFS (Table 3). Tumor differentiation and WPOI could successfully predict OS and LRFS, but not DMFS (Table 3). To exclude the effects of confounders, multivariate Cox analysis was also performed that WPNI 3 was the only variable to independently predict OS (HR = 3.80, 95% CI = 1.83–7.86, p < 0.001), LRFS (HR = 3.85, 95% CI = 1.81–8.18, p < 0.001), and DMFS (HR = 5.29, 95% CI = 1.83–15.28, p = 0.002) (Table 3).




Figure 5 | WPNI 3 OSCC patients showed the worst prognosis and immune response. (A–C) Kaplan-Meier analysis for overall survival (A), local-regional recurrence-free survival (B), and distant metastasis-free survival (C) in patients stratified by the WPNI scoring system. (D) The gating strategy for flow cytometry analysis. (E, F) Comparison of the circulating lymphocytes among OSCC patients with different WPNI scores.




Table 3 | Univariate and multivariate analysis for OS, LRFS, and DMFS.



As reported that tumor-infiltrating lymphocytes significantly correlated with PNI (25, 26), we further explored whether OSCC patients with different WPNI scores had changed lymphocyte subsets in the preoperative peripheral blood. The gating strategy for grouping cell populations is shown in Figure 5D. Although the proportion of lymphocyte subsets did not significantly change with different WPNI scores (Figure 5E), the absolute number of total T cells (CD3+), inhibitory T cells (CD3+CD8+), and B cells (CD19+) were all significantly decreased in WPNI 3 patients (p = 0.01, p = 0.01, and p = 0.008, respectively; Figure 5F), further suggesting a possible imbalance in immune response.




Discussion

Classical PNI types in different studies showed inconsistent prognostic value. Thus, alternative PNI-related characteristics were developed to test their rationality. Karina et al. retrospectively analyzed the prognostic value of PNI, number of PNIs, distance between PNI and cancer center, and diameter of invaded nerves in PNI using 318 OSCC samples and showed that classical PNI classification (PNI− vs. PNI+) could not predict the prognosis successfully (27). In contrast, an increased number of PNIs could independently predict a higher risk of local recurrence, and the prognosis worsened when the diameter of the invaded nerves exceeded 1 mm. In addition, a single PNI or PNI occurring outside the cancer center had no effect on the prognosis. Wei et al. also found that with an increased number of PNIs, the prognosis of patients worsened, but the author pointed out that how to quantify the number of PNIs needs further study (28). Miller et al. classified PNI into “PNI in tumor center,” “PNI at tumor border,” “PNI outside tumor center,” and “no PNI” in head and neck cancer and found that this classification system could not effectively predict local recurrence (29). However, in 200 patients with oral tongue SCC, Caponio et al. presented that intratumoral PNI combined with tumor grading and WPOI could successfully predict lymph-node metastasis and advocated integrating PNI in the 8th edition of the AJCC Cancer staging system (30).

Given that PNI reflects the interaction between tumor cells and nerves (31), and it has been proven to be an active process (15), tumor cells “away from” nerves to “encircling” them and finally “infiltrating into” nerve sheathes can coexist in one tumor. Notably, tumor cells encircling nerves were empirically divided into two conditions based on the cutoff value of 33% which was empirically adopted (16). Moreover, intratumoral heterogeneity might be the intrinsic driver for the simultaneous existence of several PNI types within a single tumor microenvironment (TME). For the first time, we classified the traditional PNI− status into WPNI 1, which represented an early stage of tumor cells invading nerves. Survival analysis confirmed that OSCC patients with WPNI 1 did have a good prognosis. However, the traditional PNI+ indicator should be critically evaluated for its further subclassification. In this study, PNI+ successfully predicated worse survival, but we found that WPNI 2 had significantly better survival than WPNI 3. We believed that as the late stage of tumor cells invading nerves, WPNI 3 contributed mainly to the predictive ability of the traditionally PNI+ status. Multivariate Cox analysis confirmed that only WPNI 3 could independently predict the patients’ survival. So, tumor cell-mediated destruction of nerve sheaths and their subsequent invasion significantly accelerate tumor progression. Once tumor cells entered the nerve microenvironment, they would have convenient routes and abundant nutrition for their distant metastasis (32).

Inflammatory infiltration related to PNI has been intensively investigated (33–35); we here focused on how the circulating lymphocytes changed with different stages of tumor cells invading nerves. In pancreatic ductal adenocarcinomas, infiltrating CD8+ T cells significantly decreased in the PNI+ samples accompanied with elevated levels of acetylcholine (25). In OSCCs, higher CD8+ T cells at the parenchyma of the invading edge and peripheral stroma both indicated improved overall and recurrence-free survival (36). In our study, WPNI 3, but not WPNI 2, represented significantly lower circulating CD8+ T cells than WPNI 1. Most importantly, WPNI 3 implies the destructed nerve sheathes, which means more possibility for neurotransmitters such as norepinephrine spilling into OSCC microenvironment (37). What is more, B cells also decreased as WPNI scores increase, indicating the damaged immune response.

In conclusion, PNI tends to be an active and continuous process in which tumor cells move far away from nerves to invade the nerve sheaths, which reflects clinically worsening survival. Therefore, the WPNI scoring system, which takes the highest score to refine the traditional PNI status, may be worth further clinical evaluation and promotion.
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Background

N6-Methyladenosine (m6A), which is a prevalent regulator of mRNA expression, has gathered increasing study interests. Though the role of m6A as being important in many biological processes (such as growth and proliferation of cancers) has been well documented, its potential role in tumor immune microenvironment (TIME) has rarely been analyzed.



Methods

We downloaded RNA expression, single nucleotide polymorphism (SNP), and copy number variation (CNV) data from The Cancer Genome Atlas (TCGA). We then curated 21 m6A regulators and clustered patients into three m6A subtypes and m6A-related gene subtypes and compared them based on overall survival (OS). The combination of CIBERSORT as well as ssGSEA quantified the infiltration levels of immune cells and immune-related functions. The m6A scores were determined by using principal component analysis (PCA) algorithm. Furthermore, we evaluate the correlation of m6A regulators with immune and response to therapy.



Results

Three m6A clusters were identified based on the TCGA-HNSCC cohort, and there were significant associations among them in overall outcomes and caner-related pathways. We found that three m6A clusters were consistent with three phenotypes: immune-inflamed, immune-dessert, and immune-excluded. HNSCC patients were divided into high– and low–m6A score groups based on the cutoff of m6A score. Patients with lower m6A score had better overall survival outcome. Further analysis indicated that patients with higher m6A score presented higher tumor mutation burden (TMB). In addition, patients in low–m6A score subgroup had high chemotherapeutics sensitivity. GEO cohort confirmed patients with low m6A score demonstrated significant overall survival advantages and clinical benefits. Low m6A score carry an increased neoantigen load, eliciting a response to immunotherapy, and its value in predicting survival outcomes of immunotherapy was also confirmed in three anti-PD-1 cohorts.



Conclusions

Our study demonstrated that m6A regulators are closely related to TIME and the m6A score was an effective prognostic biomarker and predictive indicator for immunotherapy and chemotherapeutics. Comprehensive evaluation of m6A regulators in tumors will extend our understanding of TIME and effectively guide increasing study investigations on immunotherapy and chemotherapy strategies for HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) remains the primary cause of cancer death worldwide, with approximately 890,000 newly diagnosed cases per year (1). More than 50% of patients will present with local recurrence or node metastasis within 5 years caused by resistance to conventional treatment (2). Conventional treatments include surgery, radiotherapy, and chemotherapy based on the stage of patients, but most HNSCC exhibit weak prognosis because of the complex mechanisms whereby the RNA modifications were associated with different immune cell infiltrations.

Immunotherapy may provide significant therapeutic effects in identifying and eliminating tumor cells by activating patients’ immune defense system (3). This treatment yields new insights with unparalleled and synergistic survival benefits into multiple clinical management (4, 5). For example, inhibitors of CTLA-4 as well as anti-PD-1/L1 antibodies, which are representative immune checkpoint inhibitors, have achieved a marked clinical response in patient’s treatment (6–8). Nevertheless, a major limitation of this treatment (the imbalance of the immune system) is that a minority of patients could benefit from immunotherapy. In addition, numerous cytokines (such as IL-10 and IL-17) and immunosuppressive cells (derived from marrow) are components of the tumor immune microenvironment (TIME) promoting immune escape (9). Thus, the regulatory mechanism and the novel markers of HNSCC should be urgently investigated by comprehensively parsing the components of TIME so that the ideal HNSCC subgroups for guiding and predicting therapeutic responsiveness could be identified.

The methylation modification of the N6 adenosine (m6A), which is the most common type of posttranscriptional modification on RNA and mediate above 60% of RNA methylation, plays crucial roles in a series of cancer processes and progression and immunomodulatory abnormalities (10). To be specific, the aberrant methylation of m6A is close to cancer stem cell differentiation, cancer immune response, and microRNA (miRNA) editing; they also play an essential role in the progression of various cancers (11–13). The m6A methylation levels in tumors mainly depend on the expression of m6A regulatory proteins, which is controlled by the expression of “writers”—methyltransferases, the “erasers”—demethylases, and “readers”—binding proteins in cell (14, 15). The writers, which include methyltransferase like (METTL)14, METTL3, WT1-associated protein (WTAP), Casitas B-lineage proto-oncogene like 1 (CBLL1), KIAA1429, ZC3H13, and RNA-binding motif protein 15 (RBM15), RBM15B, promote m6A RNA methylation (16–18). The erasers, which include fat mass- and obesity-associated protein (FTO) and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), remove m6A methylation (19). The readers, which include YTH domain-containing 1 (YTHDC1), YTHDC2, YTH N6-methyl-adenosine RNA-binding protein 1 (YTHDF1), YTHDF2, YTHDF3, and heterogeneous nuclear ribonucleoprotein C (HNRNPC), insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), IGF2BP3, ELAV-like RNA-binding protein 1 (ELAVL1), heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and LRPPRC, can bind proteins to the m6A methylation site (20).

Increasing evidence has demonstrated that the dysregulated expression of m6A regulators plays a vital regulatory role in tumor progression and patient prognosis (21, 22).

Lan et al. showed that m6A-modified GATA3 pre-mRNA was mediated by KIAA1429, stimulating the RNA-binding protein to undergo separation and promoting GATA3 pre-mRNA degradation (23). Among patients with hepatocellular carcinoma, overexpression of KIAA1429 was significantly associated with poor clinical prognosis. Also, shRNA silencing of KIAA1429 suppressed hepatocellular carcinoma cell proliferation and tumorigenesis both in vitro and in vivo.

In the study of Chen et al., WTAP was found to be highly expressed in osteosarcoma cancer (24), and Cox analysis showed that it was an independent prognostic factor for overall survival. Mechanistically, WTAP, as an oncogene, regulated osteosarcoma proliferation and metastasis via PI3K/AKT pathway in vitro and in vivo. The study of Yi et al. divided patients into two subtypes determined via the consensus clustering for 15 m6A methylation regulators, which could stratify the prognosis of patients (25). They also established the risk score based on six m6A regulators, which was an independent prognostic indicator of patients.

However, the role of risk score in immunotherapy and chemotherapy was not analyzed. In addition, whether m6A methylation regulators have the interface of copy number variations (CNVs) or the correlation of tumor mutation burden (TMB) has yet to be fully explored.

Using public databases, Li et al. showed that higher expression of METTL3 was associated with poorer survival prognosis in colorectal carcinoma (CRC) metastatic tissues (26). In vivo, they found that METTL3 is linked to CRC development through maintaining SOX2 expression.

Recently, most studies have revealed the correlation between immune cell infiltration and m6A modification, but the carcinogenic pathways of m6A methylation in TIME remains unclear. Han et al. reported that lysosomal protease, marked and recognized by YTHDF1, induced the degradation of tumor neoantigens (27). Compared with WT mice, they observed higher levels of CD8+ cytotoxic T cells and NK cells in tumors from YTHDF1 knockout mice, which suggest that an enhanced antitumor response occurs in the absence of YTHDF1. In melanoma cells, Chong et al. demonstrated that interferon-gamma (IFN-γ)-induced cytotoxicity could be decreased by FTO in vitro by suppressing the expression of cell-intrinsic genes PD-1, CXCR4, and SOX10, at least partially through YTHDF2-mediated decay process (28). Moreover, they found that knockdown of FTO enabled an antimelanoma response via upregulating the expression level of IFN-γ in mice. Another study demonstrated that METTL3-mediated m6A of CD40 and CD80 promoted DC activation and maturation, which contributed to increased antigen presentation and T-cell stimulation in vivo and in vitro (29). Also, the METTL3-mediated mRNA modification is essential in cancer progression. Consequently, these results indicated that m6A are vital mediators of TME, emphasizing potential promising targets in enhancing therapeutic response to clinical immunotherapy. However, almost all studies focused on one or two m6A regulators owing to existing technical limitations. Thus, the combined analysis of multiple m6A regulators in HNSCC, including the interactions between the m6A regulators and CNVs and TMB, will enhance our understanding of TIME (30).

In our study, we systematically assessed the relationship between m6A methylation and prognosis, CNVs, TMB, and TIME based on the next-generation sequencing data of HNSCC samples. Three clustering subtypes were identified via “ConsensusClusterPlus” method, and these three subtypes were closely linked to three phenotypes: immune-inflamed, immune-excluded, and immune-desert (7). Moreover, we constructed a scoring model, m6A score, to quantify HNSCC of individual cases. Also, the relationships between scoring model, ICI treatment, TIME, and cancer-related pathways were thoroughly analyzed to further explore the effect of m6A regulators in HNSCC. The whole study suggested that m6A regulators play an indispensable role in TIME and in assisting to make therapeutic strategies on HNSCC.



Methods


The Collection and Pretreatment of Datasets and Samples

The genomics data and clinical information of 528 HNSCC samples and 43 adjacent normal tissues were procured from the public TCGA (https://cancergenome.nih.gov/). The selection criteria were used as follows: (1) histologically confirmed HNSCC and (2) complete clinical and OS data. Lastly, 479 patients with the corresponding clinical information, including age, gender, stage, HPV subtype, and radiation therapy were collected for further analysis. The mutation data (e.g., somatic mutation and copy number variation data) was downloaded from the UCSC Xena (https://gdc.xenahubs.net/). Twenty-one m6A regulators were collected based on published literature. Next, the differential expression of the 21 m6A regulators was presented in a heatmap. Nonsynonymous mutation and synonymous mutation counts were defined as tumor mutation burden. The GSE65858 (N = 267) from GEO was used as the validation cohort. The detailed information of clinical data and 21 m6A regulators are shown in Supplementary Tables S1–S3.



The Consensus Clustering of 21 m6A Regulators by Consensus Cluster Plus

To elucidate the biological function of the m6A regulators in HNSCC, ConsensusClusterPlus package based on Euclidean distance and Wards linkage was employed to classify the patients into different distinct m6A subtypes (31). The “PCA” package was used to investigate gene-expression arrays among distinct m6A subgroups.



Gene Set Variation Analysis

We utilized the gene set variation analysis (“GSVA”) package to investigate the biological processes among different m6A subgroups (32). The well-defined biological pathways and functions were derived from the Hallmarker gene set “c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.4.symbols.gmt” (download from MSigDB database v7.4) and IMvigor210CoreBiologies package (33, 34). The “ClusterProfiler” package was used to determine the Gene Ontology (GO) annotation of m6A-related genes (the cutoff value were q-value <0.05 and p-value <0.05) (35).



Immune Cell Infiltration and Immune-Related Function Estimation by ssGSEA

The relative abundance and activity levels of 23 immune cell types, obtained from published signature gene lists, were quantified using the single sample gene set enrichment analysis (ssGSEA) in R package GSVA (36, 37). In this study, the innate immune cells (including natural killer (NK) cells, CD56dim NK cells, CD56bright NK cells, dendritic cells (DCs), plasmacytoid dendritic cells (pDC), immature DCs (iDC), neutrophils, mast cells, and macrophages) and the adaptive immune cells (including B cells, T cells, CD8 T cells, T follicular helper (TFH), Th1, Th2, Th17, and Treg cells) comprised these signatures. In addition, we also used ssGSEA to explore the relationship between different m6A subtypes and immune-related pathways (such as cytolytic activity, T-cell co-stimulation, inflammation promoting, and parainflammation) in HNSCC expression profile of TCGA. The biosimilarity of the infiltrating immune cells and immune-related functions were estimated by the Gaussian fitting model.



To Calculate the Immunotherapy Predictors: IPS, TIDE, and ESTIMATE

Immunophenoscore (IPS) is an effective predictor of response to immune therapy via characterizing the determinant factors of cancer immunogenicity and antigenomes (37). The major histocompatibility complex (MHC)-related molecules, checkpoints or immunomodulators (CP), effector cells (EC), and suppressor cells (SC) developed the IPS scoring scheme. The sum of the four classes, calculated by averaging the Z-scores, was defined as the IPS. To predict immune checkpoint blockade response (ICB), we utilized the tumor immune dysfunction and exclusion (TIDE) method to model tumor immune evasion mechanisms, including the dysfunction of T-cell dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTLs) and the prevention of T cell in tumors with exclusion of CTLs (38). For patients with higher TIDE score, cancers more likely to occur immune escape in these patients' body, thus ICB treatment might bring these patients less and short-lasting clinical benefits. The ESTIMATE algorithm was used to evaluate the tumor cellularity and tumor purity, which were composed of the TIME, based on expression matrixes. The analysis method is integrated in the “ESTIMATE “ package (39). We extracted these gene expression data from RNASeqV2 data to predict different infiltration levels of immune cells and the proportion of stromal cells. Tumor purity is the summation of stromal score and immune score from individual cases. The tumor sample with higher immune scores and lower tumor purity indicated that it had an abundance of immune cell infiltration.



The Identification of Significant Mutational Genes and Signatures

The mutation annotation format (maf) file was analyzed using MutSigCV algorithm to identify significant SMGs based on the significance threshold, and the maf data were processed using the “maftools” package (40). MutSigCV measures the significance of nonsilent somatic mutations in a gene based on the background mutation rates by silent mutations (41). The false discovery rates (q-values) were then calculated, and genes with statistical significance (q-values ≤0.1) were set as SMGs (Supplementary Table S4). We then utilized the waterfall plot to visualize the mutation information of these significant SMGs in the TCGA cohort. Furthermore, we applied Fisher’s test to detect mutually exclusive or co-occurring ratio of m6A regulators. Mutational signatures were determined using the genomic data by adopting ExtractSignatures function that applies the Bayesian nonnegative matrix factorization-based framework (42). The optimal number of mutational signatures for the TCGA cohort could be detected by the SignatureEnrichment function and then it automatically assigned a given signature to each sample.



DEGs Associated With the m6A Phenotypes

Patients were grouped into the three m6A clusters based on consensus clustering algorithm to identify differentially expressed genes (DEGs) associated with the m6A modification. The “limma” package was implemented to determine DEGs between three m6A clusters (43). The significance filtering cutoff of DEGs were set as the significance-adjusted p-value <0.001.



The Construction of the m6A Gene Signature

The overlapped DEGs identified from DEGs were used to perform the univariate Cox regression. The consensus clustering algorithm was utilized to define the number of gene clusters. The prognosis-related genes were extracted for further analysis. We then curated the final genes determined to conduct principal component analysis (PCA), and principal component 1 and 2 were extracted to construct the m6A score (44, 45). This method has an advantage of mainly focusing on positively correlated (or negatively correlated) genes. We then define the m6A score of each patient by adopting a similar formula based on the previous studies:

	

To determine the TMB of each patient, we also counted the nonsynonymous and synonymous mutation counts in the TCGA cohort (46). The association with TMB and m6A score was evaluated by Spearman’s method based on survival curve.



The Correlation Between m6A Score and Biological Pathways

Mariathasan et al. constructed a panel of signatures that stored genes associated with various biological pathways, including (1) immune-checkpoint; (2) CD8 T-effector signature; (3) epithelial-mesenchymal transition (EMT), including EMT1, EMT2, and EMT3; (4) pan-fibroblast TGFb response signature (Pan-F-TBRS); (5) Fanconi anemia pathway; (6) homologous recombination; (7) base excision repair; (8) WNT target; (9) DNA damage repair; (10) mismatch repair; (11) nucleotide excision repair; (12) DNA replication; (13) antigen processing; (14) cell cycle regulation; (15) FGFR3-related genes; and (16) cell cycle (34, 47). We performed the Spearman’s method to explore the correlation between m6A score and these biological pathways.



The Genomic and Clinical Information of Immune-Checkpoint Cohorts

We systematically performed a search for the ICB cohorts in the public databases, which could be available for detailed genomic and clinical information. Three independent anti-PD-L1 cohorts, IMvigor210 cohort (patients with metastatic urothelial cancer treated with atezolizumab) (34), Riaz et al. cohort (patients with metastatic melanoma treated with nivolumab) (48), and GSE78220 cohort (patients with metastatic melanoma treated with pembrolizumab) (49), were finally downloaded to analyze the predictive value of the m6A score for immunotherapy. The raw gene expression data of all cohorts were normalized.



To Evaluate the Sensitivity of Chemotherapeutic Drugs

We used the largest public pharmacogenomics database, Genomics of Drug Sensitivity in Cancer (GDSC), to predict the sensitivity of different drugs between high– and low–m6A score subgroups (50). The prediction process used was the “pRRophetic” package where the half-maximal inhibitory concentration (IC50) was estimated by ridge regression model based on gene expression profiles (51).



Statistical Analyses

The statistical analyses were generated by using R version 4.1.0. To compare more than two groups, statistical significance was estimated by the Kruskal-Wallis test. Student’s t-test was used to compare the difference between two subgroups (52). Kaplan-Meier analysis generated the differences between m6A subgroups and prognosis via the “survminer” package. To determine the optimal cutoff values of each cohort, we used the “surv-cutpoint” function from the “survival” package. We adopted Cox regression to calculate the hazard ratios (HR) of m6A regulators and m6A-related genes. The multivariate Cox regression was used to evaluate the independent prognostic factors. The “forestplot” package was employed to show the results of Cox regression analysis for m6A score in the GEO cohort and TCGA cohort. We assessed the specificity and sensitivity of m6A score through drawing receiver operating characteristic (ROC) curve by using “pROC” and “‘timeROC” package. Also, the Spearman’s method was used to compute the correlation coefficient. All comparisons were presented by the p-values (two-tailed), whereby <0.05 indicated statistical significance.




Results


The Genetic Landscape of 21 m6A Regulators in HNSCC

We firstly identified 21 m6A regulators (including eight “writers,” 11 “readers,” and two “erasers”) in the TCGA cohort. Figure 1A and Supplementary Figure S1A summarize the significant biological processes and functions of 21 m6A regulators conducted by Metascape database. Then, the waterfall plot presented the incidence of copy number variations and the ratio of somatic mutations of 21 m6A regulators. A total of 72 of the 479 (15.03%) patients experienced mutations, mainly including missense mutation, splice site, and nonsense mutation. In Figure 1B, we found that KIAA1429 exhibited the highest mutation frequency, followed by LRPPRC and YTHDC2, while YTHDC1, YTHDF2, IGF2BP2, HNRNPC, METTL14, and RBM15B did not show any mutations. The results of mutation co-occurrence examined the significant relationship between IGF2BP3 and FTO, RBM15 and YTHDF1, LRPPRC and YTHDF2 (Supplementary Figure S1B). Further investigation revealed the CNV frequency of 21 m6A regulators. Most m6A regulators showed the prevalent deletions in copy number, while IGF2BP2, YTHDC1, and CBLL1 had a widespread frequency of CNV amplification (Figure 1C). Figure 1D shows the location of CNV of all m6A regulators on chromosomes. We further demonstrated that the expressions of ALKBH5, METTL3, YTHDF2, and YTHDC2 were significantly downregulated in tumor samples, and in contrast the expression of CBLL1, METTL14, IGF2BP2, IGF2BP3, KIAA1429, YTHDF1, and YTHDC1 were significantly upregulated in tumor samples (Figure 1E). Compared with normal tissues, m6A regulators (such as CBLL1 and YTHDF1) with amplificated CNV demonstrated markedly higher expression, and YTHDF2 and YTHDC2 with prevalent CNV deletions were markedly decreased in the tumor (Figures 1C, E). Spearman’s method presented the correlation among these m6A regulators (Supplementary Figure S1C). We found that IGF2BP2 showed no significant correlation with some m6A regulators (RBM15B, YTHDC2, RBM15, YTHDF2, and METTL14). We then ascertain the prognostic value of 21 m6A regulators using the Cox regression. The Cox regression revealed that YTHDC2 was a protective factor, significantly associated with prolonged overall survival rate, while HNRNPA2B1 was a risk factor (Supplementary Figures S1D, E). Based on these results, we demonstrated that m6A regulators had significant heterogeneity of genomic and transcriptomic alteration landscape between normal and HNSCC samples.




Figure 1 | The genetic landscape of 21 m6A regulators in HNSCC. (A) The functional enrichment network of 21 m6A regulators visualized by Metascape. Different circles represented different annotations. (B) Seventy-two of the 479 patients showed different genetic alterations, including missense mutation, splice site, and nonsense mutation. (C) The CNV of 21 m6A regulators. The column represented the alteration frequency. The green dots represented deletion of CNV. The pink dots represented amplification of CNV. (D) The location of CNV alteration of m6A regulators in cell. (E) The different expression level of 21 m6A regulators between normal and HNSCC (*p < 0.05; **p < 0.01; ***p < 0.001).





The Identification of m6A Subgroups Mediated by 21 m6A Regulators

The TCGA dataset with available survival and clinical information were enrolled into the training cohort. The regulator network comprehensively depicted the whole interactions of 21 m6A regulators and their prognostic significance (Figure 2A). We found that not only eraser genes were all risk factors, while some of the writer and reader genes were favorable factors. Moreover, we demonstrated that the connection among 21 m6A regulators were positively correlated. These results indicated that cross-talk among the 21 regulators probably play critical roles in the formation of different m6A modifications and pathogenesis and progression in individual tumors. Based on the hypotheses, we utilized unsupervised clustering to classify samples into different m6A clusters. Moreover, we could completely distinguish one m6A cluster from other clusters based on PCA (Figure 2B). Accordingly, three distinct m6A clusters were eventually identified, including 128 cases in m6A cluster A, 247 cases in m6A cluster B, and 121 cases in m6A cluster C (Figure 2C; Supplementary Figures S2A, B).




Figure 2 | Patterns of m6A methylation modification. (A) The interaction of 21 m6A regulators in HNSCC. The different RNA modifications were depicted by different colored circles. Readers, orange; writers, gray; erasers, red. Favorable factors were indicated by the green circle, and risk factors were indicated by the purple circle. (B) The remarkable difference between different three m6A clusters was plotted via principal component analysis. (C) Kaplan-Meier curves of overall survival (OS) in TCGA cohort with three m6A clusters (p = 0.022). (D) Kaplan-Meier curves of overall survival (OS) in GEO cohort with three m6A clusters (p = 0.049). The patients in m6A cluster C showed worse OS than in other clusters.



Among these clusters, m6A cluster A, m6A cluster B, and m6A cluster C, patients in m6A cluster A had an advantage in overall survival rate, whereas m6A cluster C revealed the poorer prognosis in the TCGA cohort (p = 0.022). In the validation cohort (GEO cohort), the identical analyses obtained similar results (p = 0.049, Figure 2D; Supplementary Figure S2C).

In the TCGA cohort, multivariate Cox regression further demonstrated that patients in m6A cluster C had worst overall survival rate after adjusting clinical parameters [m6A cluster C vs. m6A cluster A, HR, 1.68 (95% CI, 1 to 2.8), p = 0.049, Supplementary Figure S4A]. However, there was no statistical significance between m6A cluster C and prognostic outcome in the GEO cohort [m6A cluster C vs. m6A cluster A, HR, 1.47 (95% CI, 0.88 to 2.47), p = 0.143, Supplementary Figure S4B]. We also noticed that the 21 m6A regulators showed different significances between the three m6A clusters. In detail, KIAA1429 and FTO were significantly elevated in m6A cluster A; CBLL1, IGF2BP2, and IGF2BP3 were significantly elevated in m6A cluster B; and WTAP, ALKBH5, and RBM15 were significantly elevated in m6A cluster C (Supplementary Figures S2B, C).



The Distinct Immune Landscapes of TIME in m6A Clusters

To explore the biological functions and pathways underlying these m6A clusters, we performed GSVA enrichment analysis against the GO and KEGG gene sets (Supplementary Figures S3A, B). As shown in the GSVA analysis, m6A cluster A was markedly enriched in immune activation-related pathways. Intriguingly, m6A cluster C was markedly associated with carcinogenic pathways, such as DNA replication, nucleotide excision repair, and mismatch repair pathways. Whereas, m6A cluster B was highly enriched in both carcinogenic and stromal-related signaling pathways.

The heatmap visualized the infiltration levels of 23 immune cells among three m6A clusters (Figure 3A). Antitumor lymphocyte cells, such as activated CD8+ T cells, and NK cells, were mainly enriched in the m6A cluster A. However, regulatory T cells and type 1/2/17 T helper cells were mainly enriched in the m6A cluster B. To our surprise, innate immune cells including natural killer cell, macrophage, eosinophil, mast cell, and MDSC were increased in the m6A cluster C. To explore the subsets of immune cell in TIME, CIBERSORT package was further used to characterize the immune cell infiltration based on the expression file. We observed the consistent result in the Figure 3B. Previous studies revealed a novel immune phenotype, immune-excluded phenotype, with an abundance of immune cells, retained in the tumor stroma rather than in the parenchyma. Therefore, we speculated that the m6A cluster B with higher stromal score exhibited an ineffective antitumor immune response (Figure 3E). Cancer-related pathway analyses demonstrated that the m6A cluster B was related to TGF-β and WNT-target pathways, which further corroborated with our hypothesis (Supplementary Figures S4C, D). In Figure 3C, we found that m6A cluster A exhibited the highest immune scores, followed by m6A cluster B and m6A cluster C. Conversely, m6A cluster C had a higher tumor purity than m6A cluster B and m6A cluster A, suggesting that tumors in m6A cluster B and m6A cluster A are surrounded by more immune cells and stromal cells (Figure 3D).




Figure 3 | The characteristics of TIME in three m6A clusters. (A) The heatmap showed the result of the consensus clustering in the TCGA cohort. Clinical information included age, gender, survival status, HPV subtypes, radiation, and stage. (B) The infiltration of immune cells in the three m6A clusters using the CIBERSORT. *p < 0.05; **p < 0.01; ***p < 0.001. (C–E) The analysis of the immune score (C), tumor purity (D), and stromal score (E) among three m6A clusters. ns, no significance.



Then, we examined the association between 21 m6A regulators and immune cells via Spearman’s method. We focused on the regulator HNRNPA2B1, an independent prognostic risk factor based on the above results (Supplementary Figures S1D, E), which was negatively correlated with numerous immune cells (Supplementary Figure S5A). The ESTIMATE showed that low-expression subgroup of HNRNPA2B1 exhibited higher immune score, which confirmed the above findings (Supplementary Figure S5B).

We also found that low-expression subgroup of HNRNPA2B1 exhibited a significant increased among 23 immune cells (Supplementary Figure S5C). The low-expression subgroup of HNRNPA2B1 also exhibited elevated expression of HLA molecules (Supplementary Figure S5D). Subsequent function enrichment analyses found that low-expression subgroup of HNRNPA2B1 exhibited an obvious enhancement in immune activation including T-cell costimulation and type I/II IFN responses, which hinted that the expression of HNRNPA2B1 might affect the efficacy of immunotherapy (Supplementary Figure S5D). Thus, we investigated two anti-PD-L1 immunotherapy cohorts (IMvigor210 cohort and GSE78220 cohort). In the IMvigor210 cohort, patients with low expression of HNRNPA2B1 had prolonged overall survival rate (Supplementary Figure S5E). In the GSE78220 cohort, there was no significant survival trend (Supplementary Figure S5F). Therefore, we speculated that HNRNPA2B1-mediated m6A methylation modification may enhance the antitumor response via promoting the activation of immune cells.



The m6A-Related DEGs in HNCSS

To identify the biological behaviors (e.g., genetic alterations and expression perturbations) of these m6A clusters, we fixed attention on the m6A-related transcriptional expression alterations across three m6A clusters in HNSCC. The Venn diagram determined 4,269 overlapping differentially expressed genes (DEGs) (Figure 4A). A total of 311 DEGs related to prognosis were considered the representative m6A-related genes (Supplementary Table S5). GO enrichment analysis revealed that the biological processes related to RNA transcription and modification were significant functions (Figure 4B). Similar to the above analysis, unsupervised clustering method based on the expression of these 311 DEGs separated patients into three stable gene clusters (gene clusters A–C) in the TCGA cohort (Supplementary Figure S6A). Figure 4C demonstrates that three m6A gene cluster had different clinicopathological features. We found that patients in m6A gene cluster C exhibited advanced clinical stage. In addition, patients receiving radiotherapy were mainly concentrated in the m6A gene cluster A, while patients with negative HPV subtype were represented by the m6A gene clusters B and C.




Figure 4 | The construction of m6A gene clusters and functional annotation. The 4,269 differentially expressed genes (DEGs) among three m6A clusters were shown in the Venn plot. (B) GO enrichment analysis of 311 prognosis-related DEGs. (C) The consensus clustering based on prognosis-related DEGs classified patients into three gene clusters, respectively. (D) The Kaplan-Meier curves of the three m6A gene clusters (p < 0.001). (E) The multivariate Cox regression-estimated prognostic value of m6A gene clusters in TCGA cohort.



The survival analysis further indicated that the three m6A gene clusters had significant prognostic differences in HNSCC samples. m6A gene cluster A was proven to be related to better prognostic outcome, while patients in m6A gene cluster C was associated with poorer outcome (Figure 4D). The Cox regression determined m6A gene cluster C (vs. m6A gene cluster A) as an independent risk factor after considering age, gender, stage, HPV subtype, and radiotherapy [HR, 1.52 (95% CI, 1.01 to 2.28), p = 0.045; Figure 4E]. Supplementary Figure S6B observes the different expression levels of the 21 m6A regulators, which were consistent with our expected results.



The Construction of Prognostic Signatures and Exploration of Its Characteristics of Clinical Traits

Accordingly, the above results showed that the m6A regulators played a nonnegligible role in regulating prognosis and TIME. However, these analyses were only based on the overall population and could not interpret the heterogeneity and complexity of m6A regulators individually. Based on these identified m6A-related genes, we developed a scoring scheme, considered m6Ascore, to quantify individual patients.

The alluvial diagram visualized the quantification changes of patients (Figure 5A). These results illustrated that m6A gene clusters B and C were linked to higher m6A score, whereas m6A gene cluster A exhibited lower m6A score. Notably, m6A cluster C showed the highest m6A score, followed by m6A cluster B, while m6A cluster A revealed the lowest m6A score (Supplementary Figure S7A). Furthermore, we conducted the analysis of Spearman’s correlation to illustrate the patterns of m6A regulators. The heatmap indicated that m6A score was positively correlated with WNT target signatures, cell cycle signatures, and EMT pathways (Figure 5B).




Figure 5 | The construction of m6A score and explore its relevant genetic features. (A) Alluvial diagram of m6A clusters in groups with m6A geneCluster, m6A score, and survival status. (B) Correlations between m6A score and the known biological gene signatures using Spearman analysis. (C, D) The survival analysis of patients in high and low m6A score subgroups in the TCGA cohort (C) and GEO cohort (D). (E) Comparison of PD-L1 expression level in high versus low m6A score subgroups. (F) The distribution of tumor mutation load (TMB) in high versus low m6A score subgroups. (G) The waterfall of mutational landscape in TCGA stratified by low (left panel) and high m6Sig score (right panel) subgroups. Each column represented one patient. Age, Gender, Survival status, HPV subtypes, Radiation, Stage were shown as patient annotations. (H) There was a significant positive correlation between the m6A score and TMB (R = 0.16, p < 0.001). (I) Kaplan-Meier curves for patients in high and low TMB subgroups. H, high; L, Low (P=0.012). (J) Kaplan-Meier curves for patient in the TCGA cohort stratified by both m6A score and TMB. H, high; L, Low; TMB, tumor mutation load (P < 0.001).



There was an inverse trend between the m6A score and the immune score (R = −0.35, p = 2.3e−16) and stromal score (R = −0.08, p = 0.076), which demonstrated the crosstalk between m6A score and TIME (Supplementary Figure S7B, C). Compared with the high m6A score, patients in low–m6A score subgroup had higher relative level of immune checkpoint molecules and CD8 effector cells. However, high m6A scores were significantly associated with stromal pathways (Supplementary Figure S7D).

Furthermore, we determined the prognostic value of m6A score in predicting patients’ survival outcome. Based on the cutoff value of 3.3615, we divided patients into low– or high–m6A score subgroups. As expected, patients with low–m6A score were associated with a prominent prognosis (p < 0.001, Figure 5C), and the ROC validated the predictive accuracy of the m6A score (AUC = 0.634, Supplementary Figure S7E). Integrating the clinical information (e.g., age, gender, stage, HPV subtype, and radiotherapy), multivariate Cox regression confirmed that the high m6A score was an independent prognostic factor for evaluating survival outcome (high m6A score vs. low m6A score; HR, 0.61 [95% CI, 0.44 to 0.86], p < 0.01, Supplementary Figure S7G).

We also investigated the relationship between the m6A score and level and found that the expression level of PD-L1 was elevated in the low–m6A score subgroup than in the high m6A score subgroup (Figure 5E). The constructed m6A score was validated in the GEO cohort by integrating clinical genomic information. The m6A score displayed the potential predictive value in GEO cohort (AUC = 0.672, Supplementary Figure S7F), and patients in low–m6A score subgroup had a better survival outcome (p = 0.044; Figure 5D). Multivariate Cox regression also confirmed that the m6A score was an independent prognostic biomarker in GEO cohort [HR, 0.52 (95% CI, 0.3 to 0.92), p = 0.024; Supplementary Figure S7H]. We then further analyzed the distribution of somatic mutated gene between low– and high–m6A score subgroups. As shown in Figure 5G, high m6A score subgroup presented more tumor somatic mutations than the low–m6A score group. Increasing studies have demonstrated and there was a link between the TMB and immunotherapy responses. Consequently, we further explored the distribution of TMB in low– and high–m6A score subgroups. We confirmed that the low–m6A score group had lower TMB frequencies (Figure 5F). The m6A score was markedly positively correlated with TMB (R = 0.16, p = 0.00041; Figure 5H). In addition, we found that patients with low TMB frequencies demonstrated a survival benefit (p = 0.012; Figure 5I), while patients with low m6A score showed significant survival advantages among patients with low TMB frequencies (Figure 5J).

The prognostic value of m6A score subjected to various clinical parameters was also estimated. We found that patients in low m6A score had a better survival outcome than those in m6A score among different subgroups (Supplementary Figure S8). Furthermore, the OS of patients with radiotherapy in the high– and low–m6A score groups was superior, but patients with low m6A score benefited significantly more than those with high m6A score from radiotherapy. Accordingly, patients with low m6A score were more likely to benefit for survival from radiotherapy than those with high m6A score.



The Role of m6A Score in Predicting Immunotherapy Benefits

TIDE and IPS served as novel imunotherapeutic predictors and are strongly suggested to evaluate the response of immunotherapy to patients. We revealed that TIDE was significantly decreased in the low–m6A score subgroup, and IPS was significantly elevated in the low–m6A score subgroup (IPS: p = 0.0014, Supplementary Figure S9A; TIDE: p = 0.0035, Supplementary Figure S9B). In detail, the levels of the four groups were significantly increased in the low m6A score group (Supplementary Figures S9C–F).

We investigated whether the m6A score could predict immunotherapy response to ICB treatment based on three cohorts. Among IMvigor210 cohort and Riaz et al. cohort, patients with low m6A score exhibited clinical benefits markedly (IMvigor210 cohort, p < 0.001, Figure 6A; Riaz et al. cohort, p = 0.048, Figure 6J). In GSE78220 cohort, the survival curve presented an opposite result due to the small number of samples (Figure 6H). The immunotherapeutic advantages and anti-PD-1/L1 response to patients were confirmed in the low– and high–m6A score subgroups (Figures 6B, C, I, K).




Figure 6 | The role of m6A score in anti-PD-1/L1 cohorts. (A) The survival analysis of patients in low and high m6A score subgroups in the IMvigor210 cohort (p < 0.001). (B) The proportion of patients with different response to immunotherapy in IMvigor210 cohort. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. (C) Distribution of m6A score in different response groups. (D) The tumor immune phenotypes were validated in IMvigor210 cohort. (E) Differences in EMT pathways and DNA repair-related pathways between low and high m6A score groups (*p < 0.05; **p < 0.01; ***p < 0.001). (F) The survival analysis of patients who received immunotherapy stratified by both m6A score and neoantigen burden. H, high; L, low; NEO, neoantigen burden (p < 0.001). (G) The AUC of the quantification of m6A score in patients treated with immunotherapy (6 months, AUC = 0.649; 12 months, AUC = 0.690; 18 months, AUC = 0.667). (H) The survival analysis of patients in low– and high–m6A score subgroups in the GSE78220 cohort (p = 0.033). (I) The proportion of patients with different responses to immunotherapy in GSE78220 cohort. (J) The survival analysis of patients in low– and high–m6A score subgroups in the Riaz et al. cohort (p = 0.048). (K) The proportion of patients with different immunotherapy response in Riaz et al. cohort.



We investigated the difference between m6A score and three immune phenotypes in the IMvigor210 cohort and found that lower m6A score was remarkably associated with excluded immune phenotype, indicating that immune checkpoint inhibitors are less effective for these patients (Figure 6D). Furthermore, we revealed that EMT were significantly activated in tumors with low m6A score (Figure 6E). Figure 6F indicates that individuals with a combination of high m6A score and low neoantigen burden showed a poorer prognosis. The ROC curves implied that m6A score was a robust biomarker to assess clinical prognosis of patients under immunotherapy (Figure 6G). In summary, our work strongly demonstrated that m6A regulators was significantly correlated with TIME and mediated prognostic response to immunotherapy.



The Low–m6A Score Group Showed More Sensitivity to Chemotherapies

Considering the frequent use of chemotherapy in the treatment of HNSCC, we further explored the response of patients with 138 different types of drugs. In detail, the GDSC dataset was used to predict the IC50 of the selected drugs based on the “pRRophetic” package. A total of 54 drugs demonstrated obviously lower IC50 in the low–m6A score group (Supplementary Figure S10). Based on the guidelines of the National Comprehensive Cancer Network (53) and Chinese Society of Clinical Oncology (54), we summarized all the drugs used for the treatment of head and neck tumor (including cisplatin, methotrexate, cetuximab, afatinib, capecitabine, oxaliplatin, carboplatin, docetaxel, nivolumab, camrelizumab, gemcitabine, nimotuzumab, 5-FU, paclitaxel, pembrolizumab, toripalimab, and nedaplatin). However, only paclitaxel presented obvious lower IC50 in the low–m6A score group. The finding suggested that patients with low m6A score were more sensitive to the treatment of paclitaxel than those with high m6A score in HNSCC.




Discussion

Increasing evidence shows that m6A methylation, the most common posttranscriptional modification, exerts a crucial regulation on immunity, inflammation, as well as antitumor effects involving in interaction with various m6A regulators. Furthermore, since most studies just revealed the modulation of one or two regulators in the contexture of TIME, the comprehensive characteristics of immune cell mediated by integrated various m6A regulators is essential to elucidate the potential mechanism of m6A methylation in TIME. So far, the effects of m6A regulators on the TIME of HNSCC have not been explained comprehensively. Identifying the contribution of m6A regulators in TIME will enhance our understanding of antitumor response mediated by m6A methylation and facilitating more effective strategies on immunotherapy and chemotherapy.

In our study, we established three immune phenotypes based on 21 m6A regulators, which were correlated with survival outcomes and diverse TIME characterization in HNSCC. The m6A cluster A had high infiltration level of adaptive immune cells, corresponding to the immune-inflamed phenotype. The m6A cluster B had high infiltration level of innate immune cells and stroma cells, corresponding to the immune-excluded phenotype. The m6A cluster C was characterized by the inhibition of TIME, corresponding to the immune-desert phenotype. The immune-inflamed phenotype showed a large infiltration proportion of immune cell TIME (7). The immune excluded, known as nonhot tumors, means that immune cells were penetrated in the stroma rather than parenchyma. In our study, we found that the immune-desert phenotypes lacked activated and priming T cell, which were correlated with the immune escape demonstrated by previous studies (34, 55, 56). We also revealed that the m6A cluster A was significantly associated with elevated infiltration of lymphocyte, supporting its predictive value on immunotherapy. Based on the above results, we found m6A cluster B exhibited a significantly high level of stroma activation, including Wnt signaling pathway and TGF-β pathway, which impeded the activation of T-lymphocyte cells (57). Therefore, we presumed that patients in m6A cluster B may benefit from ICB treatment as well as TGF-β blockade treatment.

The overlapped DEGs identified from three m6A phenotype were significantly associated with RNA modification and immune-related pathways, suggesting that these DEGs were “true” m6A-related genes. We then further identified three transcriptomic subtypes based on m6A-related genes. This result demonstrated that all m6A regulators played a key role in shaping TIME. After, we established a scoring system, named m6A score, to distinguish heterogeneity of each patient derived from m6A modification, thus precisely guiding therapeutic strategies for HNSCC. As observed, the m6A modification pattern characterized by the immune-desert phenotype exhibited a higher m6A score, while the pattern characterized by the immune-inflamed phenotype showed a lower m6A score.

Further analyses showed that the m6A score could serve as a prognostic biomarker, which was also associated with mutation-related signatures and TMB. These results suggested that the m6A score could be a preferable marker in predicting genomic aberrations.

We verified that the m6A score was strongly associated with the predictors of ICB treatment, implying that the m6A methylation could affect the response of immunotherapy to patients. In the IMvigor210 cohort, we validated the accuracy of the determined immune phenotype (34) and found that the m6A score integrated with various biomarkers (e.g., neoantigen load, TMB, the components of TIME) could more effectively predict prognosis of patients receiving immunotherapy. Actually, we also confirmed the prediction ability of the m6A score in the anti-PD-1/L1 immune response via two independent immunotherapy cohorts, which showed significant difference between nonresponders partial responders, and completed responders. We further found that patients with low m6A score might be more sensitive to anticancer drugs than high m6A score based on the GDSC. These above findings suggested that m6A score was a reliable tool, which could be used to comprehensively determine the immune-related phenotypes and guide clinical treatment decision to immunotherapy and anticancer drugs.

Furthermore, we also elucidated the specific m6A regulators in the regulation of TIME. Recent studies have confirmed that m6A could enhance the stability of mRNA and transport the specific mRNAs to the cytoplasm mainly through the binding proteins of HNRNPA2B1 in cell (58). Also, HNRNPA2B1 was recognized as an oncogene as it promotes tumor growth and migration in various cancers (59–61). Our analyses revealed that the expression of HNRNPA2B1 was upregulated in tumor and associated with decreased survival rate. Furthermore, higher expression of HNRNPA2B1 exhibited a lower infiltration trend of various types of DC, indicating that HNRNPA2B1 may be involved in the activation of DC. We also evaluated the mutated driver genes, the critical foundation of tumor diagnosis, therapeutic selections, via analyzing the TCGA cohort.

Although 21 m6A regulators are added into the mode, novel-identified regulators need to be curated to optimize the accuracy of the m6A score. Since there is a lack of appropriate immunotherapy cohorts based on HNSCC, we hope that different regimens (e.g., anti-PD-1/L1 or anti-CTLA-4) across HNSCC cohorts will verify our conclusion. Furthermore, only retrospective datasets were used to identify the m6A regulators and m6A score; thus, a series of prospective cohorts receiving immunotherapy were needed. Moreover, as not all cohorts exhibited that patients in low–m6A score subgroup benefits from ICB treatment, we needed a large and multicenter clinical population sample combined with more clinical features to confirm and improve the accuracy of the model.

In conclusion, our work comprehensively evaluated the TIME characteristics of m6A regulators based on different cohorts. This integrated analysis indicated m6A modification could not be ignored as its vital role in regulating tumor immunity. Comprehensive evaluation of m6A modification in TIME will guide more effective and important immunotherapeutic strategies.
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Purpose

A combined model was established based on the MRI-radiomics of pre- and mid-treatment to assess the risk of disease progression or death in locally advanced nasopharyngeal carcinoma.



Materials and Methods

A total of 243 patients were analyzed. We extracted 10,400 radiomics features from the primary nasopharyngeal tumors and largest metastatic lymph nodes on the axial contrast-enhanced T1 weighted and T2 weighted in pre- and mid-treatment MRI, respectively. We used the SMOTE algorithm, center and scale and box-cox, Pearson correlation coefficient, and LASSO regression to construct the pre- and mid-treatment MRI-radiomics prediction model, respectively, and the risk scores named P score and M score were calculated. Finally, univariate and multivariate analyses were used for P score, M score, and clinical data to build the combined model and grouped the patients into two risk levels, namely, high and low.



Result

A combined model of pre- and mid-treatment MRI-radiomics successfully categorized patients into high- and low-risk groups. The log-rank test showed that the high- and low-risk groups had good prognostic performance in PFS (P<0.0001, HR: 19.71, 95% CI: 12.77–30.41), which was better than TNM stage (P=0.004, HR:1.913, 95% CI:1.250–2.926), and also had an excellent predictive effect in LRFS, DMFS, and OS.



Conclusion

Risk grouping of LA-NPC using a combined model of pre- and mid-treatment MRI-radiomics can better predict disease progression or death.





Keywords: radiomics, nasopharyngeal carcinoma, prognosis, prediction model, magnetic resonance imaging



Introduction

Nasopharyngeal carcinoma (NPC) is epithelial carcinoma originating from the inner layer of the nasopharyngeal mucosa. In 2018, there were 129,000 new cases of NPC in the world (1). The TNM stage system is widely used in risk stratification and therapeutic decision in NPC, and about 70% are diagnosed with locally advanced stage (2). Concurrent chemoradiotherapy with or without induction chemotherapy is the standard treatment with locally advanced nasopharyngeal carcinoma (LA-NPC). However, it is worth noting that there are still significant differences in clinical outcomes among the same TNM stage and similar treatment in LA-NPC; metastasis and recurrence, especially the former, are the considerable causes of treatment failure (3). The 5-year progression-free survival (PFS) for stage III and IVa in NPC were 68.7–87% and 50.4–68%, and the 5-year overall survival (OS) were 75.5–91.4% and 58.3–75%, respectively (4–6). Therefore, developing individualized methods to predict the effect in LA-NPC is necessary.

Radiomics is an algorithm that could automatically extract high-dimensional quantitative features from medical images. These features are extracted from the whole tumor in different ways. They can provide comprehensive information about tumor phenotype, tumor microenvironment, and response to treatment to characterize tumor heterogeneity (7, 8). Magnetic resonance imaging (MRI) was the preferred imaging modality for diagnosis and local stage of NPC (9). Previous studies had shown that MRI-radiomics is an independent risk factor for distant metastasis, local recurrence, and PFS in NPC (10–12). Most of these studies focus on primary tumors of the nasopharynx. A recent study showed that primary tumors and metastatic lymph nodes have different biological characteristics (13). Therefore, it is necessary to consider adding metastatic lymph node information to radiomics based on primary nasopharyngeal tumors.

Due to individualized differences, different NPCs have different responses to chemoradiotherapy, leading to differences in tumor cell populations (i.e., differences in tumor heterogeneity). Currently, there is no literature report on constructing an MRI-radiomics model during chemoradiotherapy to predict LA-NPC. This study aims to screen features associated with PFS labeling in pre- and mid-treatment MRI-radiomics, respectively, to construct a model to predict disease progression or death in LA-NPC (stage III–IVa).



Material and Method


Patient

This retrospective study was approved by the institutional review board of our institution. Informed consent from patients was exempted due to the retrospective nature of this study. The experiment included newly diagnosed LA-NPC (stage III-IVa) in Sichuan Cancer Hospital from January 2015 to December 2016. The inclusion criteria were as follows: (1) histologically confirmed LA-NPC (restage according to AJCC 8th edition) and at least one metastatic lymph node. Previous studies associated with head and neck cancer have shown that the radiomics features of increasing the region of interest (ROI) of the lymph nodes provide a better predictive power than those from primary tumors alone (14, 15). According to the definition of Ho et al. (16), the diagnostic criteria of N + include central necrosis, extracapsular spread, the shortest diameter of cervical lymph nodes >10 mm, and the shortest diameter of retropharyngeal lymph nodes >5 mm. (2) pre- and mid-treatment (20 times of radiotherapy) MRI examination of nasopharynx and neck, MRI sequence included axial contrast-enhanced T1 weighted imaging (CET1WI), and axial T2 weighted imaging (T2WI); (3) radical chemoradiotherapy were completed; (4) have available clinical data. The exclusion criteria were (1) motion artifacts, blurring, and in-continuity in MRI images; (2) history of anticancer therapy before baseline MRI scans, such as radiotherapy, chemotherapy, immunotherapy, and surgery; (3) patients with distant metastasis; (4) recurrence or complicated with other malignant tumors; (5) incomplete radiotherapy planning records. Finally, a total of 243 patients were included in further analysis.

Pre-treatment clinical characteristics were collected through the Health Information System (HIS) of Sichuan Cancer Hospital. The characteristics include age, sex, cigarette smoking, alcohol consumption, family history, WHO type, platelet count (PLT), neutrophil count, lymphocyte count, monocyte count, platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), hemoglobin (HB), C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), serum albumin, cumulative dose of radiotherapy, image-guided radiotherapy (IGRT), TNM stage, induction chemotherapy, targeted therapy.



Treatment

The treatment regimen was concurrent chemoradiotherapy ± induction chemotherapy. The chemotherapy regimen was platinum-based single or dual drug (cisplatin ± paclitaxel), beginning on the first day of radiotherapy. Gross tumor volume (GTV), included both primary nasopharyngeal tumor (GTVnx) and metastatic lymph nodes (GTVln) as demonstrated by clinical, endoscopic, and imaging data. All ROI segmentations were firstly manually performed by a radiation oncologist who had 3 years of experience in NPC radiotherapy and then validated by a senior radiation oncologist who had 10 years of experience. GTV was planned to receive a total dose of 66–76 Gy with conventional fractionation (2.1–2.25 Gy per fraction, five fractions per week). Some patients were treated with anti-EGFR monoclonal antibodies during radiotherapy simultaneously. Nasopharynx and neck MRI were reexamined at 20 times of radiotherapy.



Follow-Up and Survival Endpoint

MRI scan showed soft tissue swelling or space-occupying and then by histopathology to determine local recurrence. Distant metastasis was diagnosed synthetically by clinical symptoms, physical examination, imaging data, and histopathology. The main endpoint was PFS, while loco-recurrence-free survival (LRFS), distant metastasis-free survival (DMFS), and OS were secondary endpoints. PFS was defined as the time during the tumor progressing (for any aspect) or at death (for any reason) and the first MRI scan. LRFS was defined as the time between the first local recurrence and the first MRI scan. DMFS was defined as the time between the first distant metastasis and the first MRI scan. OS was defined as the time between the death of any cause and the first MRI scan.



MRI Check

The MRI equipment was Siemens Magnetom Avanto-1.5T/Magnetom Skyra-3T. Some scanning parameters were as follows: T2WI sequence of Magnetom Avanto-1.5T scan was repetition time (TR): 4,890 ms; echo time (TE): 80 ms; field of view (FOV): 340×340 mm; matrix: 320×320 mm; thickness: 3 mm; gap: 3.6 mm. CET1WI sequence was TR: 695 ms; TE: 12 ms; FOV: 300×320; matrix: 320×280; thickness: 3 mm; gap: 3.6 mm. T2WI sequence of Magnetom Skyra-3T scan was TR: 5,290 ms; TE: 85 ms; FOV: 340×340 mm; matrix: 320×320 mm; thickness: 3 mm; gap: 3.6 mm. CET1WI sequence was TR: 769 ms; TE: 12 ms; FOV: 300×320 mm; matrix: 320×280; thickness: 3 mm; gap: 3.6 mm. CET1WI was treated with gadolinium meglumine at a dose of 0.2 mmol/kg.



Image Acquisition and Segmentation

The MRI image was exported through PACS and saved in DICOM format. The saved image was then imported into the MIM planning system for ROI drawing. To ensure the accuracy of the sketch, we used manual segmentation to outline the masses on the CET1WI and T2WI sequence of the primary nasopharyngeal tumor and metastatic lymph nodes in pre- and mid-treatment (as shown in Figure 1). The resulting 3D mass area was ROI. In this study, the metastatic lymph nodes with the largest short diameter were selected as the target lesions for GTVln, which is consistent with the study of Bologna (17).




Figure 1 | Sketch of ROI. (A–D) are CET1WI sequences; from left to right, they are GTVnx and GTVln in pre-treatment, GTVnx and GTVln in mid-treatment. (E–H) are T2WI sequences; from left to right, they are GTVnx and GTVln in pre-treatment, GTVnx and GTVln in mid-treatment.





Image Preprocessing

The uAI Research Portal (Version: 430 sp1) was used to image preprocessing. We processed the image by several filters, including Box Mean, Additive Gaussian Noise, Binomial Blur, Curvature Flow, Box Sigma, Laplacian of Gaussian (LoG), Wavelet, Normalize, Laplacian Sharpening, Discrete Gaussian, Mean, Speckle Noise, Recursive Gaussian, Shot Noise/Poisson Noise filter. In our study, four different LoG filtered images were obtained through different combinations. After three times of wavelet decomposition, the wavelet images of eight various frequency bands were finally obtained, and normalize filter adjusted all MRI images to 255 gray levels in order to standardize the scanning parameters and machinery differences reflected on the images.



Radiomics Feature Extraction

The uAI Research Portal was also used for feature extraction. Features of different categories were considered: 14 shape features, 18 first-order statistics features, 21 features computed on gray level co-occurrence matrix (GLCM), 16 features computed on gray level run-length matrix (GLRLM), 16 features computed on gray level size zone matrix (GLSZM), 14 features computed on gray level dependence matrix (GLDM), and 5 features computed on gray level dependence matrix (GLDM), a total of 104 radiomics features. The original and filtered image generated 25 groups, so each ROI extracted a total of 2,600 features. Finally, from each image type (CET1WI or T2WI), 2,600 radiomics features were extracted from both the primary tumors and the largest affected lymph node on pre- and mid-treatment, for a total of 20,800 features, namely, 10,400 for pre- and mid-treatment, respectively. Excel S1 and S2 of Supplementary Materials shown the all radiomics feature in pre- and mid-treatment.



Radiomics Feature Selection, Model Building, and Validation

To avoid the influence of class imbalance (85 cases of progress/death vs 158 cases of disease-free survival) on the model building, we used a SMOTE algorithm to oversample the original dataset of pre- and mid-treatment, respectively. After amplification, the dataset was randomly divided into a training dataset (476/595) and a test dataset (119/595) according to 4:1. The model building was based on the training dataset, after being preprocessed by center and scale and Box-cox; the feature with no difference between categories was removed. The Pearson correlation coefficient was used to remove redundant features. LASSO regression was used for a further selection of the remaining features, which is consistent with most previous studies (10–12, 18, 19). Then, 20 MRI-radiomics that were most closely related to PFS tags were selected, and the importance of features in the model was sorted. Finally, we selected the top five features respectively to create a radiomics model of pre- and mid-treatment. At the same time, the prediction ability of the model was tested in the training, test, and original dataset by ROC curve and confusion matrix. Eventually, we received the radiomics risk score of pre-treatment named P score and mid-treatment named M score.



Final Model Development and Risk Stratification

The clinical information, P score, and M score were analyzed by Cox univariate analysis, and we selected the variables with P < 0.05 (bilateral test) to Cox multivariate analysis. According to the results of multiple factors, we chose the variables with P < 0.05 (bilateral test) to train a multivariate Cox proportional hazard regression model, and the predicted values of linear predictive variables of PFS were obtained. The higher the predictive value, the greater the risk of progress/death. The median of the predictive value was used as the threshold for risk stratification. Finally, we compared the Kaplan-Meier survival curves between different risk groups and TNM stages at different clinical endpoints.



Statistical Analysis

All statistical analyses were conducted using SPSS (version 26.0), GraphPad Prism (version 8), and R software (version 3.5.2). LASSO logistic regression was completed by the “glment” package. The Kaplan–Meier survival analyses were presented by GraphPad Prism. P < 0.05 was considered as statistically significant.




Result

A total of 243 patients were included for the final analysis. The median follow-up period was 52.7 months (range 10.6–72 months). The specific clinical data were shown in Table 1.


Table 1 | Clinical baseline data of the subjects (N=243).




Establishment and Validation of Pre-Treatment MRI-Radiomics Prediction Model

In the pre-treatment prediction model, there were 243 samples in the original dataset, which were expanded to 595 samples by SMOTE algorithm. After randomly grouping according to 4:1, there were 476 samples in the training dataset and 119 samples in the test dataset. Top five of 20 radiomics features were selected, including three from primary nasopharynx tumors and two from metastatic lymph nodes. Supplementary Figure S1 shown the 20 radiomics feature in pre-treatment. Then the pre-treatment radiomics model to predict PFS in LA-NPC was established by logistic regression. The AUC value of the pre-treatment prediction model in the training dataset was 0.8003 (95% CI:0.7613–0.8392). The average AUC value of five times 10-fold cross-validation in the training dataset was 0.7905 (95% CI: 0.7506–0.8304). The AUC value in the original dataset was 0.773 (95% CI: 0.7126–0.8334). The AUC value in the test dataset was 0.8527 (95% CI: 0.7843–0.921). The ROC curve was shown in Figure 2.




Figure 2 | Pre-treatment MRI-radiomics model in each dataset predicted the ROC curves of the PFS in LA-NPC. (A) shows the ROC curve of the MRI-radiomics model in the training dataset of pre-treatment, and (B) shows the average ROC curve of 10-fold cross-validation of the MRI-radiomics model in the training dataset. (C, D) represent the ROC curve of the MRI-radiomics model in the original dataset and test dataset, respectively.



The results of the confusion matrix (Figure 3) of the three datasets (training dataset, original dataset, and test dataset) in this study were as follows: the accuracy, precision, sensitivity, specificity, and F1 values of the training dataset were 0.725, 0.704, 0.618, 0.805, and 0.658, respectively. In the original dataset, they were 0.728, 0.614, 0.600, 0.797, and 0.607, respectively. In the test dataset, they were 0.790, 0.795, 0.686, 0.868 0.737, respectively. Finally, according to the weighted coefficient of logistic regression analysis, we obtained a formula for calculating the risk value of each LA-NPC patient:

	




Figure 3 | Pre-treatment MRI-radiomics model in each dataset predicted the confusion matrix of PFS in LA-NPC. (A–C) represent the confusion matrix of the MRI-radiomics model of pre-treatment in the training dataset, the original dataset, and the test dataset, respectively.





Establishment and Validation of Mid-Treatment MRI-Radiomics Prediction Model

In the mid-treatment prediction model, the original dataset after oversampling and grouping showed 476 samples in the training dataset and 119 samples in the test dataset. Five radiomics features were selected, including three from primary nasopharyngeal tumor and two from metastatic lymph nodes. Supplementary Figure S2 shown the 20 radiomics feature in mid-treatment.

Then the mid-treatment radiomics model to predict PFS in LA-NPC was established by logistic regression. The AUC value of this model in the training dataset was 0.9253 (95% CI: 0.9025–0.9482). The average AUC value of five times 10-fold cross-validation in the training dataset was 0.9205 (95% CI: 0.8967–0.9442), and the AUC value in the original dataset was 0.8884 (95% CI: 0.8467–0.93). The AUC value in the test dataset was 0.8849 (95% CI: 0.8286–0.9413) (Figure 4).




Figure 4 | Mid-treatment MRI-radiomics model in each dataset predicted the ROC curves of the PFS in LA-NPC. (A) shows the ROC curve of the MRI-radiomics model in the training dataset of mid-treatment, and (B) shows the average ROC curve of 10-fold cross-validation of the MRI-radiomics model in the training dataset. (C, D) represent the ROC curve of the MRI-radiomics model in the original dataset and test dataset, respectively.



The results of the confusion matrix (Figure 5) of the three datasets (training dataset, original dataset, and test dataset) in this study were as follows: the accuracy, precision, sensitivity, specificity and F1 values in the training dataset were 0.851, 0.867, 0.770, 0.912, 0.816, respectively; in the original dataset, they were 0.798, 0.714, 0.706, 0.848, 0.710, respectively; and in the test dataset were 0.773, 0.740, 0.725, 0.809, 0.733, respectively.




Figure 5 | Mid-treatment MRI-radiomics model in each dataset predicted the confusion matrix of PFS in LA-NPC. (A–C) represent the confusion matrix of the MRI-radiomics model of mid-treatment in the training dataset, the original dataset, and the test dataset, respectively.



Finally, according to the weighted coefficient of logistic regression analysis, we obtained a formula for calculating the risk value of each LA-NPC patient:

	



Final Model Development and Risk Stratification

In univariate Cox analysis, age, alkaline phosphatase, T stage, TNM stage, P score, M score were significantly correlated with PFS. Subsequent multivariate Cox analysis showed that P score (HR: 13.515, 95% CI: 5.185–35.230) and M score (HR: 17.604, 95% CI: 8.113–38.195) were independent risk factors for PFS, as shown in Table 2.


Table 2 | Identification of risk factors of PFS by univariate and multivariate Cox models.



We put P score and M score into multivariate Cox regression model, and the predicted values of PFS linear predictive variables were obtained. The median predicted value was used as a threshold to classify high- and low-risk patients. In terms of prognostic power for PFS, the high- and low-risk groups (P<0.0001, HR: 19.17, 95% CI: 12.77–30.41) was significantly prognostic than TNM stage (P=0.004, HR: 1.913, 95% CI: 1.250–2.926). Similar results could be found by looking at the Kaplan-Meier curves for LRFS, DMFS, OS of the high-/low-risk groups and TNM stage, for as far as LRFS is concerned, the log-rank test showed P < 0.0001 (HR: 44.61, 95% CI: 22.60–88.05), P=0.6270 (HR: 0.8464, 95% CI: 0.4321–1.658), respectively; for DMFS concerned, P < 0.0001 (HR: 14.11, 95% CI: 7.864–25.30) and P=0.0788 (HR: 1.700, 95% CI: 0.9536–3.030), respectively; for OS concerned, P < 0.0001 (HR: 20.18, 95% CI: 11.75–34.66), P=0.0016 (HR: 2.532, 95% CI: 1.478–4.339), respectively (Figure 6).




Figure 6 | Kaplan-Meier survival curve. Kaplan-Meier survival curves of TNM stages and two risk groups at different clinical endpoints. TNM stages in PFS (A), LRFS (C), DMFS (E), OS (G) survival curve, high- and low-risk groups in PFS (B), LRFS (D), DMFS (F), OS (H) survival curve. The P-value in the figure is obtained by the log-rank test.






Discussion

In recent years, radiomics has developed rapidly in medicine, and good results have been achieved in predicting the effect of tumors. MRI is a standard imaging method in NPC, and it has unique advantages. First of all, MRI can provide superior anatomical information (such as spatial location) and has good soft tissue contrast-detection ability. Secondly, different MRI sequences may be sensitive to critical components of tumor physiology, such as blood flow and cell density, and MRI also can distinguish regions in the tumor that contain different environments that may affect local cell phenotypes and genotypes, such as blood flow changes. Finally, MRI can be the non-invasive and repeated examination of the tumor to evaluate the treatment response to be integrated into the treatment strategy. So, the MRI image was used to establish the LA-NPC prediction model through radiomics. This study explored the value of MRI-radiomics features on pre- and mid-treatment in predicting effect in LA-NPC. The results showed that the M score and P score were independent prognostic indexes of PFS. Finally, we put them into the multivariate Cox model to calculate the risk score. We successfully stratified the risk of the LA-NPC. Through the Log-rank test, we found that MRI-radiomics showed good predictive ability in PFS, LRFS, DMFS, and OS.

By screening the pre-treatment MRI-radiomics features, we got 20 radiomics features related to PFS in LA-NPC. It is better to consider that the ratio between the amount of data and the number of features that can be accommodated by logistic regression is more than 20:1 (20). We selected the top five features to establish a pre-treatment prediction model, and the risk score named P score was calculated (21). In previous studies, an MRI-based model on primary nasopharyngeal tumors had been proved to be a significant prognostic biomarker for PFS in LA-NPC (22, 23). Furthermore, the research by Yang et al. indicated that an MRI-based model on metastatic lymph nodes is a significant risk factor for PFS in LA-NPC (24). Thus, MRI-radiomics features from both metastatic lymph nodes and primary nasopharynx tumors contribute to PFS prediction in LA-NPC, which is consistent with our research. As far as we know, there is no related research on the radiomics features of mid-treatment. Similarly, we calculated the risk score of mid-treatment named M score. The MRI-radiomics model of pre- and mid-treatment was internally validated by 10-fold cross-validation in the training dataset. The average AUC values were 0.7905 (95% CI: 0.7506–0.8304) and 0.9205 (95% CI: 0.8967–0.9442), respectively, which indicates that the model has good repeatability. In addition, the two models have high AUC values in both original and test datasets (Figures 2, 4), which shows that the model has good generalization ability and portability. Furthermore, the performance of the two models in the confusion matrix in different datasets (Figures 3, 5) is also outstanding.

Comparing the radiomics features included in the two models, the pre-treatment prediction model had two first-order features (average eigenvalues and maximum eigenvalues) and three texture features (GLCM, GLDM, GLSZM); the mid-treatment prediction model had one shape feature (surface area/volume ratio), one first-order feature (average eigenvalue), and three texture features (GLDM, GLSZM). The shape features reflect the volume, sphere, surface area/volume ratio of the tumor. Previous studies had found that primary tumor volume is closely related to local control, distant metastasis, and OS in NPC (25). Zhang et al. worked on the development and validation of an MRI-based model (including surface area/volume ratio) for predicting distant metastasis of NPC. The model has good evaluation ability in the validation cohort (C index: 0.74, 95% CI: 0.58–0.85) (11). First-order statistical features are the simplest statistical descriptors, including gray average, maximum, minimum, variance, percentile, etc. (24). GLCM can reveal the spatial complexity of tumors and may provide information about central necrosis or tumor metastasis-dependent factors, such as yes-related proteins (13). Several studies had shown that GLCM is closely related to the recurrence, metastasis, and OS of NPC (10–12, 17, 18, 24, 26). Zhang et al. demonstrated that GLSZM is associated with the risk of distant metastasis of NPC (10). Farhan et al. found significant differences between recurrent and non-recurrent regions in seven features (including GLSZM) in the radiomics analysis of intratumoral spatial heterogeneity in LA-NPC (19). GLDM quantifies the dependence between the gray values of adjacent pixels and the gray values of central pixels within a certain distance, and its predictive value in NPC had been confirmed by Zhang et al. (10).

We also found that three of the features in the pre-treatment prediction model came from CET1WI, and two were from T2WI, while all the features of the mid-treatment prediction model came from CET1WI. By comparing the accuracy, precision, sensitivity, specificity, F1 value, and AUC value of the two models, we noticed that the mid-treatment prediction model is better than the pre-treatment in training and original dataset, which may indicate that T2WI mainly reflects the density and boundary of the tumor. However, CET1WI reflects the heterogeneity and structure within the tumor (such as tumor angiogenesis) (27), which is crucial for judging the prognosis. Zhang et al. also found that the contribution of CET1WI to the model is more significant than that of T2WI (11), which is consistent with the results of their another study (the radiomics prediction based on CET1WI sequence is better than T2WI sequence or combined with CET1WI and T2W sequence) (28). Jiang et al. also proposed that using CET1WI to build a model produces better results than T2WI (29).

The features’ inconsistency between pre- and mid-treatment prediction model is attributed to LASSO regression. In the screening radiomics features, LASSO regression will compress some relatively unimportant features, adjust the coefficients to zero for insignificant parameters, and rank the importance of features, for example, “wavelet_firstorder_wavelet_LHH-Mean_GTVnxT1” ranks thirteenth in the Pre-treatment prediction model and sixteenth in the mid-treatment, showing the features included in the pre-treatment model are not entirely useless, just their importance has changed. It also indicates that the tumor cell population has changed after chemoradiotherapy, leading to changes in heterogeneity within the tumor.

We compared the Kaplan-Meier survival curves between different risk groups and TNM stages at different clinical endpoints. The results showed that the high- and low-risk group had an excellent ability to predict PFS (P<0.0001 HR: 19.17, 95% CI: 12.77–30.41) was better than the TNM stage (P=0.004, HR: 1.913, 95% CI: 1.250–2.926). The MRI-radiomics model’s ability to predict the LA-NPC effect is better than the TNM stage had been confirmed in some studies, consistent with our study (12, 18, 26). Interestingly, we tested the high- and low-risk group at other endpoints and found that they all performed well in LRFS, DMFS, and OS, which was similar to some of the results of Marco Bologna (26), who used OS as the label for radiomics features screening, and the final prediction model also had good predictive ability in LRFS. In the study, our radiomics features were labeled with PFS, which includes patients with recurrence, metastasis, and death according to the definition, so the features we screened have predictive values for different endpoints.

Marius suggested several considerations when conducting radiomics studies (30). Firstly, in addition to randomized clinical trials, the class imbalance is common, especially in retrospective studies using routine clinical data. There is little uniformity between interesting and non-interesting events in the cohort. For example, in our study, about 35% of patients had events of interest (progress/death). When evaluating MRI-radiomics features to predict PFS in NPC, we must take the imbalance between the percentage of patients with and without interesting events (35%) into account. The classifier that assigns all the cases in the sample to the “no event of interest” group seems to have a 65% correct rate. Still, it doesn’t make clinical sense because it cannot actually distinguish whether interesting events have occurred by MRI in LA-NPC. Therefore, the overall accuracy and sensitivity, specificity, AUC value should be reported. Our study also used a SMOTE algorithm to balance the impact of class to reduce data imbalance on the research (31). Secondly, overfitting occurs when a model with many input parameters or too many degrees of freedom “memorizes” data. In addition to the features related to disease, the model also contains features reflecting image noise and random fluctuations. Generally, there are two processing methods: reducing the number of features, or performing regularization on the data. Here we compared the Pearson correlation coefficients to check and avoid collinearity between variables, and used LASSO regression for feature selection to avoid overfitting. Besides, the SMOTE algorithm balances the class distribution by synthesizing a small number of samples, which reduces the possibility of overfitting.

This study has two main advantages. Firstly, our research is the only one that demonstrates the predictive effect of the mid-treatment radiomics features on PFS in LA-NPC. We found that the use of radiomics information of mid-treatment can more comprehensively evaluate the response of LA-NPC to treatment and better evaluate the prognosis. On the other hand, we indirectly confirmed that the heterogeneity of tumors would change during chemoradiotherapy. The Cox model combined the pre- and mid-treatment radiomics features for risk stratification and found an excellent predictive effect across different clinical endpoints. Secondly, it had been proved that the population of different genomes is one reason for the clinical heterogeneity of radiotherapy efficacy (32). It is well known that radiomics is assumed to represent the histological heterogeneity of solid tumors (33). Although more than 90% of LA-NPC had positive lymph nodes, previous studies ignored metastatic lymph nodes (22, 23). We also collected the radiomics features of primary nasopharyngeal tumors and metastatic lymph nodes to describe tumor biological characteristics better.

This study also has some limitations. Firstly, this study is a retrospective study conducted by a single agency in non-endemic areas of NPC and lacks external validation. It is necessary to perform a large-sample multicenter prospective validation in NPC endemic and non-endemic regions to obtain strong evidence of clinical application. Secondly, the disunity of the treatment plan will also affect the prediction effect of the model. Finally, MRI-radiomics models and statistical analysis algorithms are unfamiliar and complex to the clinic. To solve this problem, we can set up a website or application, and doctors can upload images and clinical variables to obtain results.



Conclusion

The MRI-radiomics model (pre- and mid-treatment) is a powerful tool to predict the disease progression/death in LA-NPC. We calculate the risk score of disease progression/death in LA-NPC by combining the radiomics characteristics of pre- and mid-treatment and stratify the patients with high and low risk, which can not only predict the PFS in LA-NPC but also predict the LRFS, DMFS, and OS.
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The prognosis and immunotherapy response rates are unfavorable in patients with oral squamous cell carcinoma (OSCC). The tumor microenvironment is associated with tumor prognosis and progression, and the underlying mechanisms remain unclear. We obtained differentially expressed immune-related genes from OSCC mRNA data in The Cancer Genome Atlas (TCGA) database. Overall survival-related risk signature was constructed by univariate Cox regression analysis and LASSO Cox regression analysis. The prognostic performance was validated with receiver operating characteristic (ROC) analysis and Kaplan–Meier survival curves in the TCGA and Gene Expression Omnibus (GEO) datasets. The risk score was confirmed to be an independent prognostic factor and a nomogram was built to quantify the risk of outcome for each patient. Furthermore, a negative correlation was observed between the risk score and the infiltration rate of immune cells, as well as the expression of immunostimulatory and immunosuppressive molecules. Functional enrichment analysis between different risk score subtypes detected multiple immune-related biological processes, metabolic pathways, and cancer-related pathways. Thus, the immune-related gene signature can predict overall survival and contribute to the personalized management of OSCC patients.
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Introduction

Oral squamous cell carcinoma (OSCC) is one of the common malignant neoplasms in the head and neck region (1), leading to approximately 1.8% cancer-related death worldwide in 2020 (2). In the United States, there are an estimated 35,540 new cases and 6,980 deaths in 2021. In spite of the advantages of multimodal therapy including surgical resection, with or without radiotherapy or chemotherapy, the 5-year survival rate is approximately 50% (3). The challenge highlights the need to identify prognostic biomarkers to predict survival in patients with OSCC.

Over the past decade, immunotherapy has proven to be an effective treatment for various cancers. The identification of possible mechanisms of immune evasion has improved the understanding of cancer immunotherapy (4). Cancer immunotherapy, particularly immune checkpoint inhibitors (ICIs), has shown durable anti-tumor activity and improved survival in patients with head and neck squamous cell carcinoma (HNSCC) (5). Despite initial enthusiasm, only a small number of patients have benefited from immunotherapy (6, 7). The complex interactions between cancer and the immune system have elucidated the role of the immune system in cancer development. To estimate the potential response to ICIs treatment, further exploration of predictive biomarkers is necessary.

In this study, we aimed to assess the correlation between immune-related genes and the prognosis and immune landscape of OSCC. Finally, we further performed functional enrichment analysis to explore the underlying mechanisms.



Materials and Methods


Data Sources

RNA sequencing and clinical data of 325 OSCC and 32 normal oral cavity samples in The Cancer Genome Atlas (TCGA) database were obtained from the UCSC Xena data portal1 and eBioPortal2 database. The GSE41613 and GSE42743 were obtained from the Gene Expression Omnibus (GEO) database3 (8). The gene expression data of the GEO database were normalized by rma method using affy R package (9).



Construction of Risk Score Model

To identify differentially expressed genes (DEGs) between normal and tumor samples in the TCGA dataset, RNA sequencing data were performed using the limma R package with a cutoff of |log2FC| ≥ 1.5 and a false discovery rate (FDR) < 0.05 (10). We extracted immune-related DEGs from the identified DEGs based on the ImmPort database4 (11). Univariate Cox regression analysis was used to estimate the association between the expression of immune-related DEGs and overall survival (OS) of patients. Next, the LASSO regression model was conducted to identify key prognostic genes using the glmnet R package (12). Risk scores for each OSCC sample were derived based on the expression of prognostic genes and their corresponding regression coefficient.



Internal and External Validation of the Prognostic Signature

Patients in the TCGA dataset were randomly divided into a training set (n = 162) and a testing set (n = 163) for internal validation. The GSE41613 and GSE42743 datasets were used as the external validation cohort. Overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS) were plotted using Kaplan–Meier curves and calculated using Cox regression analysis. Patients were divided into high-risk and low-risk groups based on the median value of the risk score. Time-dependent receiver operating characteristic (ROC) curve was performed to assess the predictive efficiency of the prognostic signature using the timeROC R package (13). Independent prognostic factors were identified by multivariate Cox regression analysis using the survival R package (14). Furthermore, all independent prognostic factors obtained by multivariate Cox regression were used to construct a predictive nomogram by the rms R package to assess the 1-year, 3-year, and 5-year OS of the patients. Its predictive capacities were estimated by the corresponding calibration curve and the consistency index (C Index). Then, decision curve analysis (DCA) was performed by the dcurver R package to investigate the clinical utility of the nomogram model.



Estimation of the Immune Landscape

We estimated the expressions of 782 genes from 28 types of immune cells to quantify the infiltration ratio of immune cells (15). The ratio of immune cell infiltration was calculated by the ssGSEA method through the Gene Set Variation Analysis (GSVA) R package and visualized by heatmap R package (16, 17). The stromal, immune, and estimate scores were quantified by the estimate R package (18). Data on stromal fraction, leukocyte fraction, scores of six representative signatures, and the gene set of immune-related markers were obtained from a previously published study from the TCGA group (19).



Functional Enrichment Analysis

Functional enrichment analysis of Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Hallmark pathways was analyzed using the GSEA software v4.1.0 and visualized by ggplot2 R package (20, 21).



Statistical Analysis

Data comparison between two groups was performed by two-tailed t-test and multiple t-tests with FDR < 0.05 for continuous comparisons. Data comparison between three groups was performed by one-way ANOVA test. Correlations between ssGSEA scores of 28 immune cells and risk scores or the expression of the prognostic signature were determined by Pearson correlation test. In all analyses, p < 0.05 was considered statistically significant. All statistical analyses were conducted by GraphPad Prism v8.0.2 and R software v4.0.5.




Results


Identification of the Candidate Immune-Related Genes

Differential expression analysis was performed between normal and tumor samples. A total of 1,313 upregulated genes and 1,615 downregulated genes were identified (Figure S1A). By comparing the DEGs and immunologically relevant genes, 249 genes overlapped (Figure S1B), and the expression of these genes was shown in the heatmap (Figure S1C). Univariate Cox regression analysis was performed to explore the correlation between the expression of 249 immune-related DEGs and OS in patients with OSCC. In total, 16 candidate immune-related genes were identified (Figure S1D).



Construction and Internal Validation of the Prognostic Signature

The LASSO Cox regression analysis was used to further identify 9 key genes, namely, Apolipoprotein D (APOD), Oxidized Low Density Lipoprotein Receptor 1(OLR1), Stanniocalcin-2 (STC2), Dickkopf-related protein 1 (DKK1), Tumor necrosis factor receptor superfamily member 19 (TNFRSF19), tumor necrosis factor receptor superfamily member 4 (TNFRSF4), Defensin Beta 1(DEFB1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), and Cathepsin G (CTSG) (Figures S1E, F). Risk scores were calculated according to the expression of these prognostic genes weighted by the coefficients in the regression analysis for each OSCC sample. Patients from the training set, the testing test, and the entire TCGA set were divided into high-risk and low-risk groups based on the median value of the risk score, respectively. A higher proportion of deaths was observed in the high-risk group than that in the low-risk group (first and second panel of Figures 1A–C). The 9 genes were differentially expressed between the high-risk and low-risk groups (bottom panel of Figures 1A–C and Figure S2). To assess the predictive performance of the 9-gene prognostic signature, time-dependent ROC analyses were performed in the training, testing, and whole TCGA set to estimate the 1-year, 3-year, and 5-year OS probability (Figures 1D–F). Patients with low-risk scores showed longer OS, DSS, and PFS in the training, testing, and whole TCGA set (Figures 2A–C). We also found higher proliferation scores and wound healing scores in the high-risk group (Figures S3A, B). Together, these supported the predictive ability of the prognostic signature.




Figure 1 | Immune-related prognostic model construction in the TCGA cohort. The prognostic significance of risk scores was evaluated using the training set (A, D), the testing set (B, E), and the whole TCGA set (C, F), respectively. (A–C) The first panel from top represents the risk score distribution of the samples. The intersecting point represents the median of risk scores. The second panel from the top was the distribution of OS status and risk scores. The bottom panel was the heatmap of the mRNA expression of the nine immune-related DEGs. (D–F) The ROC curve for predicting 1-, 3-, and 5-year overall survival probability.






Figure 2 | Survival analysis of immune-related signature in the TCGA cohort. Kaplan–Meier curves for the survival rate of OSCC patients between the high-risk and low-risk groups in the training (A), testing (B), and whole TCGA set (C), respectively. p-values for significance (<0.05) calculated using Cox regression analysis.





External Validation of the Prognostic Model in the GEO Cohort

Patients in the GEO datasets were divided into high-risk and low-risk groups by the median value of risk scores. The high-risk group had a higher proportion of deaths compared to the low-risk group (Figures 3A, B). The ROC analysis verified the predictive efficiency of estimating the 1-year, 3-year, and 5-year OS probability (Figures 3C, D). The patients in the high-risk group had a worse prognosis (Figures 3E, F).




Figure 3 | The prognostic significance of the risk score and survival analysis were evaluated using the GEO validation cohort. The prognostic significance of risk scores was evaluated using the validation datasets GSE42743 (A) and GSE41613 (B), respectively. The first from top represents the risk scores distribution of the samples. The intersecting point represents the median of risk scores. The second from top was the distribution of OS status and risk scores. The bottom panel was the heatmap of the mRNA expression of the nine immune-related DEGs. The ROC curve for predicting 1-, 3-, and 5-year overall survival probability in GSE42743 (C) and GSE41613 (D). Kaplan–Meier curves for the survival rate of OSCC patients between the high-risk and low-risk groups in GSE42743 (E) and GSE41613 (F). P values for significance (<0.05) calculated using Cox regression analysis.





The Risk Score is an Independent Prognostic Factor and Its Relationship to Clinical Characteristics

Multivariate Cox-regression analysis was performed using risk scores and clinical parameters as covariates to evaluate the independence of the risk score. The result demonstrated that the risk score can be considered as an independent predictor (TCGA: Figure 4A, GEO: Figures S4A, B). Then, we analyzed the correlation between the prognostic signature and clinical characteristics. In the TCGA cohort, the risk score was significantly different among different histologic stage and pathologic stage (Figures 4C, D). There were no differences between the risk score and age and gender (Figures 4B, E). In addition, OS was significantly shorter in high-risk patients with the same pathologic stage, and lymphovascular invasion status compared with low-risk patients (Figures 4F, G). In the GEO cohort, risk scores were higher in the stage III/IV group (Figures S4C, D), and the risk score could differentiate patients with the same pathological stage (Figures S4E, F).




Figure 4 | Prognostic values of the immune-related signature model in the TCGA cohort. (A) Multivariate Cox regression analysis regarding OS in OSCC. (B–E) The distribution of risk scores in OSCC samples stratified by gender, histologic stage, pathologic stage, and lymphovascular invasion. (F) Kaplan–Meier curves for patients stratified by both pathologic stage and risk scores. (G) Kaplan–Meier curves for patients stratified by both lymphovascular invasion and risk scores. p < 0.05 shows significant difference. Survival significance calculated using Cox regression analysis. # just indicates the Events number. *p value < 0.05, **p value < 0.01, ***p value < .001.





Development and Assessment of the Predictive Nomogram

The nomogram model was constructed using the independent factors including age, risk scores, pathologic stage, and lymphovascular invasion status in the TCGA dataset (Figure 5A). The calibration curve was close to the standard curve showing the accuracy of the predictive nomogram in predicting the probability of OS over 1, 3, and 5 years (Figures 5B–D). Then, we performed a decision curve analysis (DCA) for age, risk scores, pathologic stage, lymphovascular invasion status, and combined nomogram model to evaluate the clinical utility of the nomogram (Figures 5E–G).




Figure 5 | Nomogram for predicting the survival probability of OSCC patients in the TCGA cohort. The nomogram for prediction of the 1-, 3-, and 5-year survival probability for OSCC patients (A). The calibration curve for prediction of the 1-year (B), 3-year (C), and 5-year (D) survival probability for OSCC patients. The DCA curves of the age, risk score, pathologic stage, lymphovascular invasion, and combined nomogram model compared for 1-year (E), 3-year (F), and 5-year (G) OS of OSCC.





Correlation Between Tumor Immune Microenvironment and the Prognostic Signature

We compared the infiltration ratio of 28 immune cells. The high-risk group showed a relatively lower ratio of immune cell infiltration, including cells with anti-tumor activity and immunosuppressive activity (TCGA: Figures 6A, B; GEO: Figure 7). In addition, a positive correlation was observed between the ssgsea score of these two categories of immune cells in the high-risk and low-risk groups (Figure 6C). We compared the infiltration ratio of these two categories of immune cells in different risk groups and observed that the low-risk group was characterized by higher anti-tumor and pro-tumor immunity (Figures 6D, E). The risk score was negatively correlated with the enrichment score for most types of immune cells. The expression of CTSG, CTLA4, TNFRSF4, APOD, and OLR1 was positively correlated with the enrichment score of most immune cells, and the expression of STC2 was negatively correlated with it (Figure 6F). Using the ESTIMATE database, we observed higher stromal scores, immune scores, and estimate scores in the low-risk group (Figures 8A–C). We compared the stromal fraction and leukocyte fraction of these two groups in the TCGA cohort. The results showed that the stromal fraction and leukocyte fraction were higher in the low-risk group (Figures S3C, D). In addition, scores of macrophage regulation, lymphocyte infiltration and IFN-γ response were higher in the low-risk group in the TCGA cohort (Figures S3E–G). While, scores of homologous recombination defects were lower in the low-risk group and no differences were found in TGF-β response (Figures S3H, I). After analyzing the expression profiles of 75 immune-related genes in different risk groups, it was observed that the expression of immune-stimulatory and suppressive genes was relatively higher in the low-risk group (Figures 8D–F). When comparing the expression levels of several important inhibitory checkpoint molecules between the high-risk and low-risk groups, we found that the expression levels of Programmed cell death protein 1 (PD-1), Programmed death-ligand 2 (PD-L2), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin 3 (TIM3), Lymphocyte activation gene 3 (LAG3), Indoleamine 2,3-dioxygenase 1 (IDO1), and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) were higher in the low-risk group (Figures 8G–I).




Figure 6 | Correlation between immune cell infiltration and the prognostic signature in the TCGA cohort. (A, B) The infiltration ratio of 28 immune cells. (C) Correlation of the cells with anti-tumor immunity and pro-tumor immunity. (D, E) Anti-tumor immunity and pro-tumor immunity scores of the risk score model. (F) The correlation between the immune-related signature and the ssGSEA scores of 28 immune cells. All p-values for significance (<0.05) represent comparisons via two-tailed t-test and multiple t-tests with FDR < 0.05. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001.






Figure 7 | Correlation between immune cell infiltration and the prognostic signature in the GEO cohort. The infiltration ratio of 28 immune cells in GEO42743 (A, B) and GEO41613 (C, D). All p-values for significance (<0.05) represent comparisons via two-tailed multiple t-tests with FDR < 0.05. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, and ****p-value < 0.0001.






Figure 8 | Immune patterns of the risk score model. Comparison of stromal scores, immune scores, and estimate scores between the high-risk and low-risk patients in the TCGA (A), GSE42743 (B), and GSE41613 (C). The expression level of immune-related signatures in the TCGA (D), GSE42743 (E) and GSE41613 (F). The expression level of immune checkpoint molecules in the TCGA (G), GSE42743 (H) and GSE41613 (I). All p-values for significance (<0.05) represent comparisons via two-tailed t-test and multiple t-tests with FDR < 0.05. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, ****p-value < 0.0001, and NS (not significant).





Functional Enrichment Analysis

GO enrichment analysis for different risk groups revealed the following top immune-related GO terms: T-cell receptor complex, plasma membrane signaling receptor complex, and immunoglobulin complex in cellular components (Figure 9A); antigen binding, cytokine receptor activity, and CCR chemokine receptor binding in molecular functions (Figure 9B); defense response to bacterium, humoral immune response, and immune response regulation signaling pathway in biological process (Figure 9C). KEGG pathway analysis showed that immune-related pathways and metabolic pathways were enriched in the low-risk group, while the pentose phosphate pathway (PPP), spliceosome pathway, and homologous recombination (HR) pathway were enriched in the high-risk group (Figure 9D). Furthermore, hallmark pathway analysis revealed that glycolysis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and G2M checkpoint were enriched in the high-risk group, whereas IL6/Jak/Stat3 signaling, Interferon-γ response, and allograft rejection were enriched in the low-risk group (Figure 9E).




Figure 9 | Functional enrichment analysis. GO pathway enrichment analysis revealed top 5 GO terms in cellular components (A), molecular functions (B), and biological process (C). KEGG pathway analysis (D) and hallmark pathway analysis (E) between the high-risk and low-risk groups (p < 0.05 and FDR <25% were controlled).






Discussion

ICIs are effective in the treatment of multiple cancers and have greatly improved the outcomes of patients. The limitation is that only a small number of patients benefit from ICIs treatment, including HNSCC (6, 7). Immune cells are key regulatory components of the tumor microenvironment (TME) and play an important role in tumor growth and progression (22). Immune cell infiltration is associated with the survival rate of OSCC patients (23). However, the underlying mechanisms still need further elucidation.

In this study, we firstly identified immune-related genes that are differentially expressed between normal and tumor tissues. Then, univariate Cox regression analysis screened 16 survival-related genes. These survival-related genes have the potential to be biomarkers for prognosis. Furthermore, we established an immune-related risk signature, which is composed of 9 genes (APOD, OLR1, STC2, DKK1, TNFRSF19, TNFRSF4, DEFB1, CTLA4, and CTSG). APOD, OLR1, STC2, and DKK1 were overexpressed in high-risk patients. APOD has been reported to exhibit tumor suppressive activity in some types of tumors (24). OLR1, STC2, and DKK1 correlate with tumor evolution and immunosuppressive effects (25–29). TNFRSF19, TNFRSF4, DEFB1, CTLA4, and CTSG were identified as protective genes. High expression of TNFRSF19 is associated with poor prognosis in various types of cancer (30, 31). TNFRSF4, a T-cell co-stimulatory molecule, enhances CD8+ T-cell infiltration (32). DEFB1 suppresses tumor migration and invasion in OSCC (33). CTLA-4 is a negative regulator of T-cell activation, and CTLA-4 inhibitors have been shown to promote antitumor immunity (34). CTSG is regarded as an immune-related biomarker in OSCC and inhibits OSCC cell proliferation, migration, and invasion (35). The specific role of the immune-related genes needs further investigation.

The immune-related signature could be used as an independent predictor of the prognosis in the TCGA cohort and GEO cohort. The signature could divide OSCC patients into high-risk and low-risk groups with statistically different survival outcomes. The higher proliferation score and wound healing score in the high-risk group could partially explain the worse prognosis of patients with high-risk scores. In addition, the risk score could stratify patients with the same pathological stage, and lymphovascular invasion status. Additionally, the nomogram model further demonstrated that the risk signature can predict long-term prognosis. To assess the clinical utility of our signature, the DCA curve revealed that the nomogram joined the risk score, and clinical factors have a higher predictive efficiency than a single clinical factor. These data suggest that this immune-related risk signature can predict the prognosis of OSCC patients.

Immune cell infiltration has been reported to be an important indicator of tumor prognosis. Immune scores, as well as scores for macrophages, lymphocyte infiltration and IFN-γ response were higher in the low-risk group. These indicate a complex intratumoral immune state. Then, we analyzed the immune cell infiltration and immune-related signatures of the high-risk and low-risk groups. The risk score was negatively correlated with the infiltration ratio of immune cells, suggesting that tumor cell infiltration is indicative of better prognosis. The low-risk group had a higher proportion of anti-tumor immune cells, including activated CD4+ T cells, activated CD8+ T cells, and natural killer (NK) cells. In addition, we also found higher levels of immunosuppressive cells, such as Treg cells, macrophages, and myeloid-derived suppressor cells (MDSCs) in the low-risk group. CD8+ T cells and NK cells, representing an activated phenotype, were higher expressed in the low-risk group, and correlated with better survival in HNSCC (36). These indicate that both anti-tumor immune cells and immunosuppressive cells are infiltrated in the TME in the low-risk group. Together, these findings suggest that the low-risk group is of the “hot tumor” phenotype, while the high-risk group is of the “cold tumor” phenotype, which could explain the difference in survival rates (37).

Consistent with immune cell infiltration phenotype, immune stimulatory factors and immune inhibitory factors were both higher expressed in the low-risk group. Co-expression of inhibitory factors had been observed following the infiltration of T cells (37, 38). The expression of negative regulatory immune checkpoints, including PD-1, PD-L2, CTLA-4, TIM3, LAG3, IDO1, and TIGIT, was relatively higher expressed in the low-risk group. The infiltration of immunosuppressive cells and elevated inhibitory pathways in the low-risk group may be negative feedback of anti-tumor immune activation. Collectively, these findings suggest that the low-risk group may be more sensitive to ICIs treatment.

To understand the mechanisms underlying the signature, functional enrichment analysis was performed between risk groups. GO analysis detected that immune-related GO terms were enriched in the low-risk group. KEGG pathway analysis showed that immune-related pathways and metabolic pathways were enriched in the low-risk group, while the PPP, spliceosome pathway, and HR pathway were enriched in the high-risk group. Further analysis of hallmark pathways revealed that glycolysis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and G2/M checkpoint were enriched in the high-risk group, whereas IL6/Jak/Stat3 signaling, Interferon-γ response, and allograft rejection were enriched in the low-risk group. Recent studies have shown that IFN-γ upregulates immunosuppressive molecules such as PD-L1, PD-L2 and IDO1, in cancer and host cells (38, 39), thereby increasing the response likelihood to ICIs therapy. Cell metabolism is crucial for tumor immunity (40). On the one hand, fatty acids are required for anti-tumor effects, including the development and effector functions of CD8+ T cells (41). However, it was also found that fatty acids are important for Treg survival and function (42). Fatty acid metabolism can modulate the TME, and the adaptation of immune metabolism may partly explain the immune cell infiltration and expression of immune-related genes in the TME. In the high-risk group, cancer-related pathways were activated, which promoted the malignant transformation of the tumor and indicated a poor prognosis. Increased glycolytic activity in high-risk patients may lead to glucose competition within the TME, thereby limiting T-cell proliferation and effector functions (43). The PPP is another important metabolic pathway that helps cancer cells to meet anabolic requirements for nucleic acid synthesis, nicotinamide-adenine dinucleotide phosphate (NADPH) production, fatty acid synthesis and cell survival, as well as scavenging oxidative stress (44). Activation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to stimulate PPP (45). An emerging role of spliceosome in cancer and immunity has been studied. Aberrant splicing contributes to cancer progression and immune dysregulation (46, 47). Spliceosome inhibitors have exhibited antitumor effects in cancer cells (48). The HR pathway is essential for DNA double-strand break (DSB) repair. Activation of HR in the high-risk group represented the onset of DNA damage. Higher HR deficits were found in the high-risk group, suggesting sensitivity to targeted therapy with poly ADP-ribose polymerase inhibitors (PARPi) (49) and DNA-damaging reagents (50). G2/M checkpoint was activated in the high-risk group in response to DNA damage. Small molecules targeting the G2/M checkpoint have shown promising results in preclinical studies (51). In summary, the low-risk group is the immune flamed phenotype and may potentially benefit from ICIs treatment, while targeting metabolic pathways, DNA damage or repair, and spliceosome may improve outcomes in the high-risk group.

The limitation is that the study is based on data available online. Further prospective studies with larger samples are needed to assess the clinical relevance of this signature, as well as in vitro and in vivo experimental studies to estimate its biological function in OSCC.



Conclusion

In summary, we have established an immune-related prognostic signature that can predict the prognosis of patients with OSCC and potentially identify patients who may benefit from immunotherapy and therapies targeting metabolic pathways, DNA damage or repair, and spliceosome. These findings may provide insights into the precise management of OSCC.
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Patients with oral cavity squamous cell carcinoma (OCSCC) who develop distant metastasis (DM) face poor outcomes, and effective prediction models of DM are rare. A total of 595 patients with OCSCC were retrospectively enrolled in this study. Because pathological N staging significantly influences the development and mechanisms of DM, the patients were divided into nodal-negative (pN−) and -positive (pN+) groups. Clinical outcomes, prognoses, and prediction models were analyzed separately for both groups. Overall, 8.9% (53/595) of these patients developed DM. Among the DM cases, 84.9% (45/53) of them developed DM within the first 3 years. The median overall survival, locoregional recurrence-free survival, time until DM development, and postmetastatic survival were 19.8, 12.7, 14.6, and 4.1 months, respectively. Distinguishing patients who only developed locoregional recurrence from those with DM according to locoregional conditions was difficult. Age, surgical margin, and early locoregional recurrence were predictors of DM that were independent of time until DM in the pN− group; the lymphocyte-to-monocyte ratio, presence of lymphovascular invasion, and early locoregional recurrence in the pN+ group were determined. If one point was scored for each factor, then two scoring systems were used to classify the patients into low- (score = 0), intermittent- (score = 1), or high- (score = 2 or 3) risk for the pN− and pN+ groups. According to this scoring system, the 3-year DM rates for the low, intermittent, and high risk subgroups were 0.0%, 5.9%, and 17.8% for the pN− group and 7.1%, 44.9%, and 82.5% for the pN+ group, respectively. These systems also effectively predicted DM, and the areas under the curve predicted DM occurring within the first 3 years were 0.744 and 0.820 for the pN− and pN+ groups, respectively. In conclusion, effective scoring models were established for predicting DM.




Keywords: oral cavity squamous cell carcinoma, distant metastasis, lymphatic metastasis, prediction model, oral cancer



Introduction

Oral cavity squamous cell carcinoma (OCSCC) is one of the most common types of head and neck squamous cell carcinoma (HNSCC), which is the sixth most common cancer globally and the fourth most common cancer in the Taiwanese male population (1, 2). In addition, 5% to 15% of patients with curative OCSCC develop distant metastasis (DM) during follow-up, for which the prognosis is poor (3–5). The median survival rate is 12.5 mo for those with metastatic HNSCC (6) and 3 mo for those with metastatic OCSCC (4). Thus, metastatic OCSCC research and management is critical.

Unlike locoregional recurrence, for which salvage surgery is a curative option, metastatic OCSCC can generally only be treated with palliative therapies (7–9). Although approved novel agents could prolong survival, most provide no long-term clinical benefit (7–9). The outcomes of DM are also influenced by its clinical presentation; several studies have reported that the number of metastatic lesions significantly influences the survival rates of patients with DM (4, 6). Patients who develop single metastasis or oligometastasis have higher survival rates than do those who develop multiple metastases (4, 6). Unfortunately, most lesions form multiple metastases, with 15% to 30% of cases of DM detected during follow-up for a single metastasis or oligometastasis. Metastatic-direct therapy, such as surgical resection, radiotherapy, and radiofrequency ablation, also influences survival rates, but only cases of single metastasis or oligometastasis are suitable for these aggressive therapy treatments (6). Therefore, the early detection of single and oligometastatic lesions is crucial and influences the outcomes and choice of metastatic-direct therapy.

These single and oligometastatic lesions can be detected through regular screening, but because of the relatively low rate of DM among patients with OCSCC, the cost-effectiveness of regular screening for these patients must be considered. Effective biomarkers that predict DM may provide a suitable method for selecting eligible patients for screening. Several studies have discussed predicting DM (4, 5, 10–14), and pathological neck lymph node involvement was considered to significantly influence the development of DM (15, 16). The primary tumor was long thought to passively permeate the lymphatic system and spread to the regional lymph nodes; the permeated tumor cells would then enter the lymph node vasculature and disseminate to distant organs through the lymphatic system or blood vessel system (17). However, some patients can develop DM without initial pathological neck lymph node involvement (5). The DM model now considers the additional effects of components of primary tumor biology, such as tumor microenvironment, the vascular endothelial growth factor family, and epithelial-mesenchymal transition (17). Primary tumors actively enter the primary tumor lymphatics and primary tumor vasculature simultaneously. The tumor cells then directly metastasize to distant organs through both of these systems. Because the mechanisms of DM can differ between patients with and without neck lymph metastasis, prediction models should be formulated independent of this factor. In addition, though these models should ideally be applied to all patients with OCSCC, only clinicopathological variables are analyzed because these factors can be widely available in clinical settings.

In this study, we enrolled all patients newly diagnosed with OCSCC at Chung Shan Medical University Hospital between 2010 and 2016. Data regarding clinicopathological variables were retrospectively extracted and analyzed. Because pathological N status is highly influential to the DM development (4, 5), the predictors for the patients were analyzed with or without the presence of regional lymph node metastasis. Enrollees were divided into nodal-negative and -positive groups, and the clinical outcomes, prognoses, and the prediction models of these groups were analyzed separately. We hope that these models can be applied in clinical practice, especially in the early detection of DM.



Methods and Materials


Study Design, Research Setting, and Patient Selection

This was a single-institute cohort study. Patients newly diagnosed with OCSCC at Chung Shan Medical University Hospital between January 2010 and December 2016 were retrospectively enrolled. The patients were staged according to the American Joint Committee on Cancer staging system (seventh edition) (18) and underwent curative resection at initial diagnosis. At the timing of screening, the patients with locoregional recurrence but who were not newly diagnosed or who experienced secondary primary malignancies were excluded because the factors, such as tumor recurrence and metastatic lesions from secondary primary malignancies, might influence the calculation of time-dependent prognostic and predictive factors. The other exclusion criteria were as follows: patients who did not undergo curative surgery, who received a previous diagnosis and treatment for other HNSCCs, and/or those classified as stage IVC at initial diagnosis. This study was approved by the institutional review board of Chung Shan Medical University Hospital (IRB No. CS2-20050).



Clinical Characteristics

The clinical data we recorded were the same as those in our previous study and were accessed from the patients’ medical charts (19). We took note of the basic clinicopathological variables included age, sex, primary tumor features (location, staging, and pathological features), and nodal conditions. Adjuvant therapy, included adjuvant chemoradiotherapy, adjuvant radiotherapy, and adjuvant chemotherapy, were also documented. Biochemistry laboratory data documented within 7 d before curative surgery were also compiled. DM-associated information was recorded, such as the numbers and sites of metastatic lesions and their subsequent treatments.



Classification of Patients With and Without Pathological Neck Lymph Node Involvement

Lymphatic and blood vessels are the two primary systems that allow tumor cells to develop into regional metastasis or DM. Because the mechanisms of DM development through the lymphatic or blood vessel systems may differ (17), the phenotypes and predictors are discussed separately herein. Our patients were divided into nodal-negative and -positive groups according to their initial pathological N stage, which was determined in order to identify the influence of regional lymph node metastasis. The patients of both groups were then classified into disease-free status (without disease progression), locoregional recurrence only, and DM with any locoregional status groups to discuss the impact of distant metastasis in clinical outcomes. Prognostic factors and prediction models for DM were separately established for both nodal-negative and -positive groups (Figure 1).




Figure 1 | The patients were classified according to their patterns of disease progression. According to the patterns of disease progression, the patients were classified into those with disease-free development (without disease progression), locoregional recurrence only, and distant metastasis with any locoregional status. (A) Venn diagram of the nodal-negative group. (B) Venn diagram of the nodal-positive group. (C) The classifications of both the nodal-negative and -positive groups according to the patterns of disease progression.





Definition of DM

At the time of writing, monitoring of patients with OCSCC includes imaging studies, such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography-computed tomography, and whole-body bone scanning. Patients should undergo CT and MRI every 3 to 6 mo for the first 2 y and then every 6 to 12 mo in the next 3 to 5 y after curative treatment. PET-CT is conducted when the status of the primary lesion cannot be ascertained via CT or MRI. Whole body bone scan (WBBS) should be performed every 6 mo in the first year and then performed again if patients report local bone pain. Here, the imaging studies were evaluated by two independent radiologists; if they could not reach a consensus, then the equivocal patterns were discussed at tumor board conferences.



Statistical Analysis

Overall survival (OS) was calculated from the date of diagnosis to the date of death or last follow-up. The locoregional recurrence-free survival (LRFS) rate was calculated from the date of disease diagnosis to the date of local or regional recurrence. Time until DM was defined as the date of disease diagnosis until the date of detection of DM. Postmetastatic survival (PMS) was calculated from the date of DM detection to the date of death or the last follow-up.

Correlations between the clinicopathological parameters were analyzed using a χ2 or Fisher’s exact test. Cox forward stepwise regression analyses were used to identify the independent factors for PMS and for the time until DM. Only the variables with P values of <.05 in univariate analyses were enrolled in the forward multivariate analysis. A two-sided P value of <.05 was statistically significant. We utilized the time-dependent receiver operating characteristic (ROC) curve in our prediction models (20). Survival analyses were estimated using the Kaplan-Meier method, and the log-rank test was used to compare the survival curves. SPSS (version 21.0, IBM Corp., Armonk, NY, USA) was used for all statistical analyses.




Results


Baseline Characteristics

A total of 595 patients newly diagnosed with OCSCC were retrospectively enrolled in this study. These patients received curative surgical resection. The patients at recurrent stages or with secondary primary malignancies were excluded. In accordance with the initial pathological N staging, the patients were divided into nodal-negative (77.1% [459/595]) and -positive groups (22.9% [136/595]). Mean age of all was 53.9 (28.3-90.3) (nodal-negative group, 53.9 [28.3-90.3]; nodal-positive group, 54.2 [29.2-88.2]) (Figure S1). Overall, 8.9% (53/595) of the included patients developed DM during the follow-up period (5.4% [25/459] and 20.6% [28/136] for the nodal-negative and -positive groups, respectively). The basic patient characteristics are presented in Table 1.


Table 1 | Basic characteristics of OCSCC patients with or without distant metastasis.





Clinical Outcomes

In accordance with disease progression patterns, the patients were classified as disease-free (without disease progression), having locoregional recurrence only, and having DM with any locoregional status. The distributions of the progression patterns were significantly different between the nodal-negative and -positive groups (P <.001). The percentage of these three patterns were 72.8% (334/459), 19.6% (90/459), and 5.4% (25/459) in the nodal-negative group, and 50.7% (69/136), 28.7% (39/136), and 20.6% (28/136) in the nodal-positive group (Figure 1).

For all included OCSCC patients, the OSs of the patients who were disease-free (without disease progression), had locoregional recurrence only, and had DM with any locoregional status were significantly different. 3-y OS of these three patterns were 93.1%, 56.8%, and 22.1%, respectively (P <.001), and 5-y OS were 88.5%, 47.5%, and 12.3%, respectively (P <.001) (Figure 2A). In both the nodal-negative and -positive groups, the patients who developed DM had also significantly poorer OS than those of the patients without DM (Figures 2B, C).




Figure 2 | Clinical outcomes of patients who were disease-free, had locoregional recurrence only, and had distant metastasis (DM) with any locoregional status. In accordance with disease progression patterns, the patients were classified as those who were disease-free (without disease progression), who had locoregional recurrence only, and had DM with any locoregional status. (A) Overall, the patients who had DM had significantly worsened overall survival (OS) than did the others (P <.001). (B, C) In both the nodal-negative and -positive groups, the patients who developed DM had significantly poorer OS than those of the patients without DM. (D) The patients who developed locoregional recurrence only and DM with any locoregional status had similar 6-mo locoregional recurrence-free survival (LRFS) rates (77.5% and 74.0%, respectively, P = .344). It was difficult to differentiate both disease patterns at the early phase. (E) For the nodal-negative group, the 6-mo LRFS rates of the patients who developed locoregional recurrence only and who had DM were 80.0% and 87.5%, respectively (P = .338), and the median LRFS periods were 11.7 and 16.1 mo, respectively (P = .021). (F) For the nodal-positive group, the 6-mo LRFS rates were 71.8% and 61.5%, respectively (P = .275), and the median LRFS periods were 8.9 and 8.3 mo, respectively (P = .400).



However, the patients who developed locoregional recurrence only and DM with any locoregional status had similar 6-mo LRFS rates (77.5% and 74.0%, respectively, P = .344) (Figure 2D). For the nodal-negative group, the 6-mo LRFS rates of these two progression patterns were 80.0% and 87.5%, respectively (P = .338) (Figure 2E). And for the nodal-positive group, the 6-mo LRFS rates were 71.8% and 61.5%, respectively (P = .275) (Figure 2F). Although the patients who developed DM had poor outcomes, it was difficult to distinguish the patients who developed DM or locoregional recurrence only according to the phenotypes of early locoregional recurrence. Effective predictive models are required to ensure that patients at risk of DM undergo regular screening for the early detection of DM.



Patients Who Developed DM

For the patients who developed DM, the most common metastatic sites were the lung (67.9%), bone (43.4%), and mediastinal lymph node (28.3%). Most metastases (64.2% [34/53]) were multiple metastatic lesions (metastatic lesions ≥ 3). The basic characteristics of the patients who developed DM are listed in Table 2.


Table 2 | The presentations of metastatic lesions.



The median OS of the patients who developed DM was 19.8 mo (28.0 and 17.3 mo for the nodal-negative and -positive groups, respectively, P = .009). The median LRFS period was 12.7 mo (16.1 and 8.3 mo, respectively, P = .105). The median time until DM was 14.6 mo (19.2 and 10.8 mo, respectively, P = .013). And PMS was only 4.1 mo (5.4 and 3.3 mo, respectively, P = .349). Almost 85% (84.9% [45/53]) of the DM events occurred within the first 3 y (nodal-negative group: 76% [19/25]; nodal positive group: 92.9% [26/28]) (Figure 3).




Figure 3 | The distribution of time until distant metastasis. Most (84.9%, 45/53) of the DM events occurred within the first 3 y (nodal-negative group, 76% [19/25]; nodal-positive group, 92.9% [26/28]).



Histologically poor differentiation (hazard ratio [HR] 95% confidence interval [CI]: 2.39 [1.13–5.06], P = .023) and pleural metastasis (HR [95% CI]: 3.88 [1.67–9.00], P = .002) were independent factors for PMS. The number of metastatic lesions (HR [95% CI]: 2.01 [1.04–3.90], P = .037) was also a significant factor in the univariate analysis (Table S1).



The Role of Adjuvant Therapy in DM

The distributions of patients receiving adjuvant therapy or not were the same in both the nodal-negative and -positive groups (P = .231, and.335, respectively) (Table 1). Among the patients with DM, 47.2% (25/53) of them had received adjuvant therapy. The advanced staging (nodal-positive) group had a greater administration of adjuvant therapy than did the lower staging (nodal-negative) group (nodal-positive vs. -negative, 57.1% vs. 36.0%, P = .017) (Table 2). Although adjuvant therapy did not impact time until DM in statistics, it seemed to be a trend that adjuvant therapy decreased DM occurrence in the nodal-positive group (HR: 0.869, P = .694) (Table S2).



DM Prediction Model for Patients With OCSCC

Prediction models for DM were established separately for the nodal-negative and -positive groups because their DM development processes may have differed. In the nodal-negative group, ages greater than 65 y (HR [95% CI]: 3.78 [1.51–9.44], P = .004), surgical margin of less than 5 mm (HR [95% CI]: 3.15 [1.06–9.35], P = .038), and a locoregional recurrence of less than 6 mo (HR [95% CI]: 7.03 [2.02–24.50], P = 0.002) were independent factors for the time until DM. Lymphovascular invasion (HR [95% CI]: 2.81 [1.01–7.86], P = .048), a locoregional recurrence of less than 6 mo (HR [95% CI]: 24.35 [8.00–74.11], P <.001), and a lymphocyte-to-monocyte ratio of less than 2.5 (HR [95% CI]: 5.38 [1.33–21.72], P = .018) were independent factors for the nodal-positive group (Table S2). The calculation for the Akaike information criterion of the independent factors is in Table S3.

Each independent factor was scored 1 point, and two predictive models were established separately for the nodal-negative and -positive groups. Both models could classify patients into low- (score 0), intermittent- (score 1), and high- (score 2 or 3) risk groups. And 3-y DM rate of these three risk groups were 0.0%, 5.9%, and 17.8% in the nodal-negative group, and 7.1%, 44.9%, and 82.5% in the nodal-positive group, respectively (Figures 4A, B). In addition, these models were found to be effective predictors of DM events. The areas under the curve (AUCs) that predicted DM occurring within the first 1 y were 0.858 and 0.848 for the nodal-negative and -positive models, respectively. In addition, up to 85% of the DM events occurred within the first 3 y, and the AUCs predicted this event were 0.744 and 0.820 for both two groups, respectively (Figures 4C, D). The AUC, sensitivity, and specificity of each score are presented in Table 3.




Figure 4 | The prediction model for distant metastasis. Cox forward stepwise regression analyzes were used to identify the independent factors for the time until DM. Age, surgical margin, and early locoregional recurrence were predictors of DM that were independent of time until DM in the nodal-negative group; the lymphocyte-to-monocyte ratio, presence of lymphovascular invasion, and early locoregional recurrence in the nodal-positive group were determined. Each independent factor was scored 1 point, and two predictive models could classify patients from both the nodal-negative and -positive groups into low- (score 0), intermittent- (score 1), or high- (score 2 or 3) risk groups separately. (A, B) The nodal-negative and -positive 3-y DM rates were 0.0%, 5.9%, and 17.8% and 7.1%, 44.9%, and 82.5%, respectively. (C, D) These models were effective predictors of DM events occurring within the first 3 y. The areas under the curve (AUCs) of the nodal-negative and -positive models were 0.744 and 0.820, respectively.




Table 3 | Areas under the curve (AUCs), sensitivity, and specificity of the score models to predict distant metastasis.






Discussion

A total of 595 patients with OCSCC were retrospectively enrolled in this study. Overall, 8.9% of the included patients developed DM during the follow-up period, with 85% of DM events occurring within the first 3 y following the date of initial diagnosis. Among the patients who developed DM, the median OS, LRFS, time until DM, and PMS were 19.8, 12.7, 14.6, and 4.1 mo, respectively. The lung, bone, and mediastinal lymph nodes were the most common metastatic sites. Histologically poor differentiation and pleural metastasis were independent factors of PMS. Because the phenotypes of locoregional recurrence between the patients who developed DM or locoregional recurrence only were similar, DM was difficult to detect early. Two scoring models predicting DM development were established to distinguish the influence of regional lymph node metastasis. These models could predict DM events occurring within the first 3 y after diagnosis for each patient in the nodal-negative and positive groups. The AUCs of these two models were 0.744 and 0.820, respectively.

In addition, although the mechanism between aging and cancer metastasis in OCSCC was unknown, the results showed that aging influenced the occurrence of DM for both the nodal-negative and -positive groups. In our study, age ≥ 80 y was an independent factor for time until DM in univariant Cox regression for all patients (HR [95% CI]: 8.880 [2.579–30.581], P = .001). For the nodal-negative group, ages between 70–80 and ≥ 80 y were significant (ages between 70–80 y, HR [95% CI]: 5.0668 [1.811–14.182], P = .002; ages ≥ 80 y, HR [95% CI]: 8.890 [1.056–74.856], P = .044). An age ≥ 80 y was also independent (HR [95% CI]: 8.656 [1.731–43.292], P = .009) for the nodal-positive group (Table S3). Several studies have reported that extracellular matrix degradation may be the reason why cancer metastasis occurred more in elderly patients than in younger patients (21, 22). Future studies are warranted for OCSCC in this issue.

In Taiwan, up to 70% of HNSCC cases are OCSCC (2), and the PMS of patients with OCSCC was significantly poorer than that of non-OCSCC patients. One study has reported that the proportions of patients with cancer of the oral cavity, oropharynx, hypopharynx, and larynx who achieve 2-y PMS are 8.9%, 33.3%, 12.1%, and 21.1%, respectively (P <.001) (23). Thus, although the DM rate is lower among patients with OCSCC than among those without OCSCC (14, 24), predicting and managing DM in patients with OCSCC is a major challenge in clinical practice.

Although the shortened period of locoregional control (locoregional recurrence < 6 mo) was found to be independent of time until DM, it was initially difficult to identify the patients who would develop DM; the phenotypes and 6-mo LRFS rate were not significantly different between the patients who developed DM and those with locoregional recurrence only. According to Allen et al. (17), primary tumors actively enter both primary tumor lymphatics and primary tumor vasculature simultaneously and disseminate to distant organs through the lymphatic and blood vessel systems. For locoregional conditions, the mechanisms of tumor-induced lymphangiogenesis and lymph node metastasis have been widely discussed. These mechanisms include the expression of VEGFs, angiopoietins, insulin-like growth factors, and fibroblast growth factors (25), some of which have salient roles in the development of DM (26, 27). Detailed molecular analyses on this topic are warranted in the future.

In addition to locoregional recurrence, DM may develop directly from the primary tumor. In our study, almost 85% of DM events occurred within the first 3 y for the nodal-negative and -positive groups, as reported in other studies (4, 5). The time until DM development was unrelated to nodal status, and the DM process did not depend solely on lymphatic drainage. Metastatic tumor cells enter the primary tumor vasculature directly from the primary tumor lesions (17). These metastatic tumor cells are aggressive and invasive; compared with the genetic profiles of the primary tumor lesions, those of the matched lesions indicated enrichment in hypoxia, angiogenesis, EMT, and glycolysis (12). Other metastatic-related functions, such as cell differentiation, extracellular matrix organization, tissue development, adhesion, immune response, and cancer metabolism, have also been reported (28, 29). The molecular signals of DM differ from those of locoregional recurrence in that the process of DM development does not depend on lymph node metastasis.

Several studies investigated DM predictors on the basis of clinicopathological parameters (10, 11). Hosni et al. found that 14.1% (63/447) of patients with OCSCC in their study were diagnosed with DM during follow-up. Pathological N2 or N3 (pN2 or pN3) and histological grade 2 or 3 (G2–3) were independent factors for DM. However, only patients who received curative surgery followed by adjuvant chemotherapy or chemoradiotherapy were enrolled in this study (10). In addition, Huang et al. classified 312 patients with OCSCC into high-, intermittent-, and low-risk groups according to their human papillomavirus (HPV) viral loads, pN2 status, and tumor depth. The 5-y DM rates for these three groups were 74%, 17%, and 1% (P <.001), respectively, and the concordance index was 0.78 (11). Although the model effectively predicted DM in patients with OCSCC, only 5.4% (17/312) of these patients were classified as high-risk with subsequent intensive treatments and follow-up strategies. In our study, patients were divided into nodal-negative and -positive groups, with predictive models established separately for each group. In addition to the shortened interval of locoregional control, other independent factors were related to cancer metastasis, such as age, surgical margin, and lymphovascular invasion status (30–32). In the nodal-negative group, although only 5.4% (25/459) of the patients developed DM during the follow-up period, most (77.1% [459/595]) of the patients with OCSCC were in this group, and this first predictive model was established for them. By contrast, for the nodal-positive group, almost 40.5% (45/111) of the patients were classified as intermittent- to high-risk, and the 3-y DM rates were 44.9% to 82.5%. Both models effectively predicted the development of DM (AUCs predicted DM occurring within the first 3 y, with 0.744 and 0.820 for the nodal-negative and -positive groups, respectively).

In this study, we hoped to provide flexible models to predict DM in clinical practice. Only the parameters which were available in the clinical setting were enrolled for analysis. The patients who missed the score factors would be eliminated in prediction models. The weight of each score factor was different, which might affect the power of the prediction models. In the future, we hoped that artificial intelligence, such as machine learning and deep learning, could be involved in the development of these prediction models.

This study had some limitations. First, although we established a predictive model for DM development, only a single-institute analysis was undertaken; the validation of our results with a large population is required. Second, DM was detected on the basis of image diagnosis and not from autopsy results. Micrometastatic lesions may therefore not have been detected and could constitute missed diagnoses. Third, although molecular information, such as HPV infection status, is vital for predicting DM development in patients with OCSCC (11), only the information available in the patients’ medical charts were analyzed.



Conclusion

DM development may occur directly through both the lymphatic and blood vessel systems, though the DM development mechanisms of these two systems may differ. In this study, we established two scoring models that could effectively predict DM events within the first 3 y following diagnosis of each patient in both nodal-negative and -positive groups. A validation study is required to verify our findings.
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Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck. The primary clinical manifestations are nasal congestion, blood-stained nasal discharge, headache, and hearing loss. It occurs frequently in Southeast Asia, North Africa, and especially in southern China. Radiotherapy is the main treatment, and currently, imaging examinations used for the diagnosis, treatment, and prognosis of NPC include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and PET-MRI. These methods play an important role in target delineation, radiotherapy planning design, dose evaluation, and outcome prediction. However, the anatomical and metabolic information obtained at the macro level of images may not meet the increasing accuracy required for radiotherapy. As a technology used for mining deep image information, radiomics can provide further information for the diagnosis and treatment of NPC and promote individualized precision radiotherapy in the future. This paper reviews the application of radiomics in the diagnosis and treatment of nasopharyngeal carcinoma.
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1 Introduction

Compared with other head and neck tumors, NPC has unique epidemiological, etiological, clinical, and genetic characteristics (1). According to the data of the International Agency for Research on Cancer, there are approximately 133,354 new cases of NPC, which accounts for only 0.7% of all cancers diagnosed in 2020. More than 70% of new cases occur in East and Southeast Asia, and South China is also an area with a high incidence. The age-standardized mortality rate in China is 1.6/100000, which is approximately twice that of NPC worldwide (2). Therefore, accurate treatment of NPC is imperative.

Because of the specific anatomical position and important adjacent structures of NPCs and the high sensitivity of NPC to radiotherapy, the main treatment for NPC is a comprehensive treatment based on radiotherapy. During radiotherapy, the medical images applied to NPC include magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET)-CT, and PET-MRI (3). These various medical imaging methods have distinct characteristics. MRI has high contrast for different tissues, which provides high-resolution images of soft tissue; however, it requires a long acquisition time (4). CT has advantages in imaging bone and vascular invasion, and image acquisition is rapid; thus, it is well tolerated by patients (5, 6). In contrast to anatomical imaging, PET-CT combines biological metabolic information, and PET-MRI combines metabolic information with high-resolution soft-tissue images, and therefore, they are expected to become new methods for the diagnosis and treatment of NPC (5–7). These imaging methods have played a crucial role in target delineation, planning, quantitative evaluation, radiotherapy response tracking, and outcome and toxicity prediction of NPCs (8–11). However, the application of traditional images is aimed at diagnosing and treating diseases from a macro perspective. Patients with similar stages and grades of tumor experience different therapeutic effects with the same treatment due to the internal heterogeneity of the tumor (12). Only analyzing the disease from an anatomical level cannot meet the needs of treatment. With the increase in standards for radiotherapy, hidden information in images is valuable for improving NPC treatments. Radiomics is a technology that involves mining deep information in images, which has been used widely in the diagnosis, treatment, and prognosis of lung, esophageal, breast, rectal, and prostate cancers (13–16). There is an increasing number of studies investigating the diagnosis and treatment of NPC using radiomics. For example, one study applied metabolic information obtained from PET-CT to the treatment of head and neck squamous cell carcinoma with the aim of performing dose painting (17).



2 Radiomics

As an emergent field of transformational research, radiomics extracts quantitative features from medical images to decode the heterogeneity derived from tumor regions, metastatic lesions, and normal tissues, and explore microscopic changes in morphological and functional images (18). There are four steps in radiomics studies, which comprise image acquisition, tumor segmentation, feature extraction, and model development and validation (19) (Figure 1). Radiomics is distinct from traditional radiology, where images are not only interpreted visually; moreover, quantitative analyses are possible because the images are the data.




Figure 1 | Flow chart of radiomics.



Radiomics statistical features can be divided into first-order, second-order, and high-order features. A first-order statistical feature describes the distribution of individual voxel values without considering the spatial relationship (20). Second-order features are usually described as ‘texture’ features; they describe the statistical correlation between voxels with similar (or dissimilar) contrast values and provide a measurement of intratumor heterogeneity. The high-order statistical method applies a filter grid to the image to extract repeated or non-repeated patterns (19). These data are combined with clinical data to develop models to improve the accuracy of diagnostic, treatment, and prognostic predictions. Mining image information and combining clinical medicine with engineering may become routine practice in the diagnosis and treatment of NPC in the future. Furthermore, radiomics will allow oncologists to establish relevant tumor databases and use this data to provide decision support for the diagnosis and treatment of tumors (21).



3 Radiomics Signature

When researchers make predictions about diagnosis or treatment based on radiomics, they need to first clarify the diseases and problems to be studied, and then collect relevant clinical data, such as hemoglobin, lymphocytes, etc. The features which are extracted from the volume of interest and related clinical parameters are filtered through various ways, such as Cox proportional hazards model and classifier, and then the final required model is established (22).



4 Application of Radiomics for the Diagnosis and Treatment of NPC

Most imaging studies on NPC have focused on MRI data, and few have reported on the use of CT, PET-CT, and PET-MRI images. Moreover, studies have focused predominantly on prognosis, and there is currently a lack of exploratory and prospective studies, even though retrospective studies can provide valuable clinical guidance for diagnosis, differential diagnosis, treatment, recurrence, and prognosis of the disease.


4.1 Diagnosis


4.1.1 Diagnosis

The resolution of soft tissue on MRI is significantly superior to that of CT and PET-CT and can effectively show the range of parapharyngeal space, skull base, and intracranial tumors. It is the gold standard for the evaluation of NPC (5–7). NPC is prone to distant metastasis; therefore, PET-CT is now used to evaluate distant metastasis by providing systemic anatomical and metabolic information. The National Comprehensive Cancer Network guidelines (23) recommend MRI and PET-CT for the diagnosis of NPC. The TNM staging system (based on tumor size, regional lymph node involvement, and distant metastases) that is currently used to guide the diagnosis and treatment of NPC is regarded as the gold standard. However, during diagnosis and treatment, patients at similar stages have exhibited different treatment responses, which may be due to the internal heterogeneity of the tumor. Thus, Zhu et al. (24) developed a radiomics model that combined the features extracted from MRI data with clinical information to analyze the survival subgroups of early NPC (validation group C-index: 0.814), compared it with the T (C-index: 0.803) and TNM staging systems (C-index: 0.765), and concluded that performance of the radiomics model was superior to the TNM staging system. This may have a significant impact on individualized diagnoses, treatments, and prognoses of NPC in the future.

Compared with CT, MRI has a higher resolution of soft tissue, which is advantageous for imaging NPCs. Research on the application of CT combined with radiomics to the diagnosis and staging of disease remains limited. PET-MRI combines the metabolic characteristics of PET and the high-resolution characteristics of MRI (6). Compared with MRI, the increased [18F]-fluorodeoxyglucose (FDG) uptake of PET-MRI can better show the subtle changes in local lesions, and it can also provide a more suitable anatomical reference than can PET-CT (5). Chan et al. (25) found that the sensitivity, specificity, and accuracy for the diagnosis of primary tumors of head and neck MRI were 94.2%, 90.9%, and 99.5% (p = 0.75), respectively, 99.6%, 98.3%, and 99.2% (p = 0.92) for head and neck [18F]-FDG PET-CT, respectively, and 98.2%, 96.3%, and 99.3% (p = 0.87) for [18F]-FDG PET-MRI, respectively. The positive predictive value of PET-MRI in the diagnosis of distant metastasis (93.1%) is higher than that of MRI and PET-CT (78.8% and 83.3%, respectively). This was a prospective study that suggested that this imaging method has better diagnostic capabilities for nasopharyngeal cancer and may play an important role in the diagnosis and treatment of NPC in the future.

In a study of PET-MRI combined with radiomics, Feng et al. (26) developed a radiomics model of FDG PET-MRI and reported areas under the curve (AUC) of the training group based on T2-weighted imaging and PET models of 0.85 and 0.84, respectively, and those of the validation group of 0.83 and 0.82, respectively, which offers great promise for the clinical staging of NPCs. In terms of internal heterogeneity of tumors, Akram et al. (27) showed that the imaging features Neighboring Gray Tone Difference Matrix-busyness extracted from MRI data before and after treatment may reflect differences between recurrent and non-recurrent areas in tumors; moreover, they demonstrated the potential of radiomics in the identification of radiation resistance in tumors before treatment to select dose increments.



4.1.2 Differential Diagnosis

Radiomics is advantageous not only for the diagnosis of diseases but also for differential diagnoses. The clinical manifestations and medical images of radiation-induced osteonecrosis and bone metastasis of the cervical spine are similar (28). Furthermore, the two conditions require different treatment methods and thus, require differentiation before treatment. The AUCs of MRI-based radiomics nomogram training and validation groups have been reported to be 0.725 and 0.720, respectively (28). Although CT and MRI are not applicable for differentiating between tumor recurrence and inflammation (29), PET-CT can distinguish between these two conditions; however, the high uptake of inflammation can affect the diagnosis of recurrence. The diagnostic performance of NPC images based on PET-CT imaging was evaluated using 42 cross combinations of six feature selection methods and seven classifiers. The optimal combination of feature selection and machine learning methods (the cross-combination fisher score [FSCR] + random forest [RF], FSCR + k-nearest neighborhood [KNN], FSCR + support vector machines [SVM] with radial basis function kernel [RBF-SVM], and minimum redundancy maximum relevance [MRMR] + RBF-SVM) to identify the two diseases were obtained (AUCs of 0.883, 0.867, 0.892, and 0.883, respectively; sensitivity: 0.833, 0.864, 0.831, and 0.750, respectively; specificity 1, 1, 0.873, and 1, respectively). Compared with the standard uptake value (SUV), total lesion glycolysis, and other indices, radiomics showed a higher AUCs (0.867–0.892 vs. 0.817), although the difference was not statistically significant (p = 0.462–0.560) (Table 1).


Table 1 | Data of relevant models in references.






4.2 Treatment


4.2.1 Treatment Response Prediction

Radiotherapy is the main treatment for NPC during the early stage and radiotherapy and chemotherapy are the primary treatments during in late stage (6). For patients with intensity-modulated radiotherapy, weight loss, tumor regression, and other factors can result in large dose errors when applying the originally planned irradiation (30). In such cases, adaptive radiotherapy may be a better treatment option. Adaptive radiotherapy is usually administered to patients during radiation therapy, and the processes of imaging, sketching, and planning are repeated. The current radiotherapy system presents a significant economic burden for patients, and treatment is time-consuming and labor-intensive. Patients who need adaptive radiotherapy should be identified before treatment to improve treatment response. Yu et al. (30) used tumor marker features in MRI images acquired before treatment, and feature modeling (using enhanced T1 and T2 images provided AUCs of the enhanced T1, T2, and combined model verification groups of 0.852, 0.750, and 0.930, respectively), which may offer a basis for determining patient eligibility for adaptive radiotherapy and developing personalized treatments to reduce dose error. For the treatment response of NPC patients with advanced local progression to induction chemotherapy, Zhao et al. (31) developed a nomogram that combined multi-sequence MRI features before treatment with clinical parameters to predict the treatment effect in non-epidemic NPC areas. The model (training and validation group C-index: 0.952 vs. 0.863) had better predictive ability than the model developed using clinical parameters alone (training and validation group C-index: 0.708 vs. 0.549). In addition, in a study by Piao et al. (32), the AUC of the combined model was highest (AUC: 0.905) with the separate modeling of ClusterShade_angle135_offset 4 and Correlation_AllDirection_offshel_SD features based on enhanced magnetic resonance sequence imaging (AUC: 0.804 and 0.762, respectively). The combined model of the two features can help to determine the sensitivity and drug resistance in patients undergoing neoadjuvant chemotherapy, which is crucial for treatment scheme selection and treatment plan modification in patients with NPC.



4.2.2 Prognosis Prediction

Most imaging studies have focused on the prognosis of NPC. These studies (33–36) demonstrate the effectiveness of conventional MRI in evaluating progression-free survival (PFS), disease-free survival, and overall survival in patients with NPC, in combination with clinical information, such as lymph nodes, Epstein-Barr virus, and tumor stage, which can guide personalized treatment selection and improve the quality of care. Ouyang et al. (33) calculated and analyzed the Radscore and found it can predict PFS as a biomarker. Shen et al. (34) developed five models based on different combinations of data: model 1: clinical data; model 2: overall staging; model 3: radiomics; model 4: radiomics + overall staging; and model 5: radiomics + overall staging + EB virus). Model 5 had a high C-index for predicting PFS (training group 0.805, validation group 0.874). Yang et al. (36) suggested a nomogram integrating lymph node, Dose Volume Histogram signature, reflecting planning score and TNM stage, that had a C-index of 0.811 for the prediction of PFS, which showed better performance than using TNM alone (C-index: 0.613). Furthermore, another study (37) used different combinations of PET, CT, and relevant clinical data to develop models and found that the model combining all three factors had the highest prediction performance (C-indices of the training and validation cohorts were 0.71–0.76 and 0.67–0.73, respectively). Another found that subregional radiomics analysis of NPC outperformed the whole tumor (C-index, 0.69 vs. 0.58) and the traditional AJCC (American Joint Committee on Cancer) staging system for PFS prediction (38).

Radiomics can predict not only treatment effects but also recurrence before treatment, which can improve treatment decision-making. For the prediction of recurrence, most studies use MRI images. Zhang et al. (39) developed models based on MRI radiomics to predict distant metastasis (AUCs of the training and validation groups: 0.827 and 0.792, respectively) and divided patients into low- and high-risk groups based on a risk cutoff score of 0.37 to indicate the risk of metastasis and determine the treatment strategy. A subsequent study (40) introduced a nomogram to radiomics to study local recurrence and found that the nomogram (C-index: 0.74) predicted recurrence more accurately than did radiomics and clinical variables (C-index: 0.59). The study by Raghavan et al. (41) preferred the prediction model, which not only predicted recurrence but also emphasized whether recurrence would occur in the form of local or distant metastasis. The AUC, sensitivity, and specificity of the local recurrence model were 0.82, 0.73, and 0.74, respectively, whereas those of the model for predicting distant metastasis were 0.92, 0.79, and 0.84, respectively. In addition, another study (42) combined machine learning with features extracted from MRI and applied different feature selection and classifier methods to determine the optimal combination (random forest + random forest), which laid a foundation for future studies of local recurrence and distant metastasis prediction combining MRI features with relevant clinical information. Li et al. (43) used radiomics with machine learning to analyze the radiation resistance of local recurrence (artificial neural network: 0.812; KNN:0.775; SVM: 0.732) using existing MRI data, which provided quantitative and objective evaluations of patients with NPC without requiring additional radiation exposure. Furthermore, NPCs with in-field recurrences could be differentiated from NPCs (AUCs: 0.727–0.835).



4.2.3 Prediction of Side Effects

Radiomics can also be applied to the prediction of radiotherapy reactions the following radiotherapy for NPC. In a study of patients with acute xerostomia after radiotherapy (44), parotid CT images and saliva volume were acquired before, during, and after treatment to develop a model to predict changes in saliva volume after early radiotherapy (accuracy: 0.9220, sensitivity: 100%). The difference between the statistical and real values can then be used to predict the degree of dry mouth by predicting the amount of saliva. The diagnosis of radiation-induced brain injury in NPC mainly depends on MRI; however, MRI has limited use for early diagnoses and can only be used to evaluate morphological changes in late radiation-induced brain injury in the temporal lobe. Radiomics can examine microscopic characteristics, which can be used as markers as a basis for the treatment of early brain injury. Zhang et al. (45) developed three models combining machine learning and MRI radiomics; the AUCs of the validation group were 0.830 (95% confidence interval [CI]: 0.823–0.837), 0.773 (95% CI: 0.763–0.782), and 0.716 (95% CI: 0.699–0.733), respectively, which offers promise for applying radiomics to the study of related complications.



4.2.4 Stability Characteristic Study

Because there are numerous methods to extract radiomics features, obtaining robust features is vital for the generalizability of radiomics models. Liang et al. (46) used two different feature extraction tools to extract features from different NPC MRI sequences. Different extraction methods had varying effects on the features, which may impact model development. Thus, the selection of stable features of the disease is key. In a study on PET-CT radiomics characteristics under different contrast agents, Lu et al. (47) selected [18F]-FDG and [11C] choline to examine segmentation and discretization and revealed that discretization has a greater impact on features than does segmentation, and features extracted from [11C] choline are more stable than those extracted from the [18F]-FDG contrast agent. Yang et al. (48) evaluated the reproducibility of features extracted from PET-MRI and found that a voxel size of 0.5 × 0.5 × 1.0 mm3 in PET, T2, and diffusion-weighted imaging data and a larger bin size allow the acquisition of stable characteristics. Although these studies focused on the definition and mode of feature generation, Lv et al. (49) analyzed the robustness of feature matrix parameters and found that poor absolute-scale robustness retained good diagnostic performance (Table 1).





5 Future

Artificial intelligence technologies and radiomics will be applied in the diagnosis and treatment of NPC in the field of target delineation, dose evaluation, plan design, outcome prediction, to realize the individualized clinical adaptive precision radiotherapy. However, there is still a significant gap between research and clinical application, which requires relevant modeling to not only meet or even exceed the industry gold standard but also solve some medical ethical problems (20). At present, many studies on radiomics are focused on NPC. However, radiomics may be extended to diseases other than tumors in the future and provide a reference for the majority of patients by establishing databases and other measures. In addition, radiomics can reduce medical costs and makes full use of medical image data to reduce injuries caused by invasive punctures; relevant models can solve problems of treatment and prognosis to save on medical costs and realize individualized treatment.



6 Conclusion

Multimodal imaging combined with radiomics offers new opportunities and methods for studying the diagnosis, treatment, and prognosis of NPC. The combination of radiomics and machine learning assists in the diagnosis and treatment of NPC. However, machine learning in radiomics is primarily applied to model selection. Although radiomics has numerous unique advantages, it also carries significant challenges, such as the need for big datasets for tumor model development, data sharing between different medical institutions, and various imaging protocols. Considerable progress is still needed to apply radiomics models to clinical practice. Future developments of radiomics require further forward-looking research and applications to promote individualized and intelligent treatment.
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Head-and-neck squamous cell carcinoma (HNSCC) is characterized by a high frequency of neck lymph node metastasis (LNM), a key prognostic factor. Therefore, identifying the biological processes during LNM of HNSCC has significant clinical implications for risk stratification. This study performed Gene Ontology enrichment analysis of differentially expressed genes between tumors with LNM and those without LNM and identified the involvement of immune response in the lymphatic metastasis of HNSCC. We further identified greater infiltrations of CD8+ T cells in tumors than in adjacent normal tissues through immunochemistry in the patient cohort (n = 62), indicating the involvement of CD8+ T cells in the antitumor immunity. Hierarchical clustering analysis was conducted to initially identify the candidate genes relevant to lymphocyte-mediated antitumor response. The candidate genes were applied to construct a LASSO Cox regression analysis model. Three genes were eventually screened out as progression‐related differentially expressed candidates in HNSCC and a risk scoring system was established based on LASSO Cox regression model to predict the outcome in patients with HNSCC. The score was calculated using the formula: 0.0636 × CXCL11 − 0.4619 × CXCR3 + 0.2398 × CCR5. Patients with high scores had significantly worse overall survival than those with low scores (p < 0.001). The risk score showed good performance in characterizing tumor-infiltrating lymphocytes and provided a theoretical basis for stratifying patients receiving immune therapies. Additionally, a nomogram including the risk score, age, and TNM stage was constructed. The prediction model displayed marginally better discrimination ability and higher agreement in predicting the survival of patients with HNSCC compared with the TNM stage.
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1 Introduction

Head-and-neck squamous cell carcinoma (HNSCC) is the most common malignant tumor arising from the head-and-neck cancers (1); it typically arises in the oral cavity, oropharynx, larynx, and hypopharynx (2, 3). HNSCC is characterized by frequent local invasiveness and neck lymph node metastasis (LNM), which have been identified as key prognostic factors. Despite advancements in diagnostic and therapeutic modalities, the prognosis of patients with HNSCC remains poor (4). Accurate prediction of prognosis assists in decision-making regarding adjuvant treatment after tumor resection. Currently, prognostic prediction and treatment decisions regarding HNSCC are based on the American Joint Committee on Cancer TNM staging system (5). However, the sensitivity and accuracy of this system for prognostic prediction are reduced by the individual heterogeneity (6). Accurate predictors are thus needed.

Innate and adaptive immunity can exert antitumor effect through recognition and elimination of malignant cells (7, 8). Increasing evidence suggests that densities of tumor-infiltrating lymphocytes (TILs) reflect the antitumor immunity process in the tumor environment and can predict overall survival (OS) of patients with cancer, including those with HNSCC (9–11). TILs comprise at least 28 different types (12), among which T lymphocytes are considered the central players (13). Besides T lymphocytes, various myeloid cells, such as dendritic cells (DCs), natural killer (NK) cells, and macrophages, also infiltrate the tumor microenvironment (TME) to exert their antitumor effects (14). Some studies have focused on the correlations between the infiltration of one or several immune cells in HNSCC tumors and prognosis (15–17). However, immunity in the tumor environment is mutually regulated by multiple TILs, which demands a comprehensive analysis of the TIL profiles.

Generally, TILs can effectively eliminate cancer cells at their early stages (8). However, cancer cells can evade the immune surveillance and resist the cytotoxic effect of cytotoxic T lymphocytes by hijacking immune-checkpoint pathways (18, 19), allowing the occurrence of advanced tumors. Multiple immune checkpoints, especially those expressed on the T-lymphocyte markers have been reported. Numerous clinical trials in various tumors have proven the efficiency of immune-checkpoint blockade (ICB) therapies, especially those that target cytotoxic T-lymphocyte-associated protein 4 (CTLA) and programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) (20, 21). However, the clinical responses of ICB antibodies strongly depend on the composition of the TME (22, 23). As a result, the clinical benefit of patients with cancer from ICB therapies has great heterogeneity. A key challenge is the identification of patients potentially suitable for ICB therapies. Currently, the advancement of next-generation sequencing technologies and computational techniques allows analysis of the infiltration of immune cells (24–26). Based on the comprehensive insight of TIL profiles, we can better investigate the antitumor response and predict outcomes in patients with cancer. Some efficient risk scoring systems based on immune features have been reported in prediction of HNSCC outcome (27, 28). However, their clinical applications were somewhat limited by complex variables incorporated in prediction models.

In this study, we performed RNA sequencing in patients with HNSCC with different LNM statuses and found that the differentially expressed genes (DEGs) between HNSCC tumors with LNM and those without LNM were enriched in immune-response pathways. After estimating the abundance of TILs, we found that CD8+ T cells had greater estimated abundance in tumors with LNM, which was also verified in our HNSCC cohort by immunohistochemistry (IHC). Therefore, we focused on T-lymphocyte-related genes in the follow-up study. We developed a prognostic risk-scoring system based on the TIL-related genes, and the ability of the system in reflecting tumor immune environment was also evaluated.



2 Materials and Methods


2.1 RNA-Sequencing Profiles


2.1.1 Sample Preparations and Procedures

Samples from LNM− primary tumors (n = 4) and LNM+ primary tumors (n = 5) were cut into small specimens. The total RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s procedure. The purity and quantity of total RNA were analyzed using NanoDrop ND 1000 (NanoDrop, Wilmington, DE, USA), and the integrity of the RNA was assessed using Agilent 2100 with RIN number >7.0. Poly(A) RNA was purified from total RNA (5 µg) using poly T oligo attached magnetic beads using two rounds of purification (Invitrogen). The mRNA was then fragmented into small pieces using divalent cations under elevated temperature. Subsequently, the cleaved RNA fragments were reverse-transcribed to create the final cDNA library in accordance with the protocol for the mRNA-sequencing sample preparation kit (Illumina, San Diego, CA, USA). Lastly, we performed the 150-bp paired-end sequencing on an Illumina X Ten (LC Bio, Hangzhou, China) following the recommended protocols.



2.1.2 Data Processing

The HISAT package (version 2.0.4) (29) was used to align the raw RNA sequences to the hg19 human reference genome (http://genome.ucsc.edu/). The mapped reads were assembled using StringTie (version 1.3.4) (30), and transcriptomes were merged using Perl scripts. The expression level for mRNAs was calculated by exon per million mapped reads (FRKM) using StringTie. The DEGs with |log2 (fold change)| >1 and p-value <0.05 were selected using “edgeR” (version 3.20.9) (31).



2.1.3 Data Analyses

Gene Oncology (GO) enrichment was performed for DEGs using the GO database (http://geneontology.org/). The DEGs with significant differential expression (p < 0.01, log2|FC|>2) in top 20 enriched GO terms were selected and applied to GO enrichment analysis of ImmunoSystem Process using Cytoscape 3.1.0 (32). KEGG pathway analysis of the DEGs was also performed using the KEGG pathway database (https://www.genome.jp/kegg/pathway.html). Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) (http://cibersort.stanford.edu) was used for TIL profiles. The algorithm was run using the leukocyte matrix (LM22) signature and 1,000 permutations for the estimation of relative fractions of multiple TILs in gene expression profiles of admixtures (26, 33, 34). Samples with statistically significant deconvolution result across all cell subsets (p-value <0.05) were included in the consequent analysis. The relative fractions of 22 TILs were summarized by means ± standard errors of the means (SEM).




2.2 IHC


2.2.1 Sample Preparations and Procedures

A patient cohort (n = 62) with a histopathological diagnosis of primary HNSCC was enrolled in this study. All patients underwent surgical tumor resection and neck lymph node dissection (elective or therapeutic neck dissection) under general anesthesia at the First Affiliated Hospital of Zhejiang University from January 2018 to June 2021. The exclusion criteria were as follows: (i) chemotherapy, radiotherapy, or biological treatment before surgery; (ii) immune deficiency or immune system disease; (iii) inadequate clinicopathological medical records; (iv) previous history of other malignant tumors; and (v) previous history of primary tumors arising from the head and neck.

Demographical and clinicopathological data—sex, age, primary region of tumorigenesis, tumor size, and N status—were collected by a retrospective review of medical records and postoperative pathological reports. T and N staging was performed using the TNM staging system of the American Joint Committee on Cancer, 7th Edition. Because of the retrospective study design, power calculation was not performed. The sample size was equal to the number of patients treated in our institution during the recruitment period. The collection and the preservation of the samples were approved by the Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University, and written informed consent was obtained from all participants.

Segments of tumor tissues (n = 62) and adjacent normal tissues (n = 24) (mucosa 5 cm beyond the edge of the carcinoma) were collected and repeatedly washed in phosphate-buffered saline (pH 7.4) to remove mucus and blood and then fixed in formalin, dehydrated, embedded in paraffin, and sectioned. Moreover, 4-μm-thick paraffin sections of samples were deparaffinized in xylene, rehydrated through graded alcohols, repaired with antigen retrieval through hot citric acid buffer (pH 6), and blocked with 3% bovine serum albumin. These sections were then incubated with antibody-CD4 (NCL-L-CD4-1F6, Leica Biosystems, Milton Keynes, UK), antibody-CD8 (NCL-L-CD8-4B11, Leica Biosystems, UK), antibody-Foxp3 (ab20034, Abcam, Cambridge, MA, USA), and secondary antibodies (Servicebio, Wuhan, China) successively at an appropriate dilution. Finally, sections were treated with 3,3′-diaminobenzidine, counterstained with hematoxylin, dehydrated through graded ethanol, cleared in xylene, and mounted with resin mounting medium.



2.2.2 Quantitative Evaluation of Immunostaining Density

Immunostaining reactions were separately assessed by two independent pathologists who were blinded to the clinical data of the patients. A positive reaction was defined as clear brown staining. The interface of the tumor/normal tissues were screened at a low-power field (×100). Subsequently, areas containing the highest number of positively stained cells (hot spots) were selected. In the selected field, 3–8 separate areas of intense cells were captured in a ×200 field. These images were captured using an inverted microscope (Leica, Wetzlar, Germany).

We used the IHC Profile plugged in ImageJ software (USA) to semiautomatically calculate the intensity of positive cytoplasmic membrane staining and percentage of positive staining area. Antigen-expressed cells in each IHC image were divided into four levels (high positive, positive, low-positive, and negative) according to their density and assigned values of 3, 2, 1, and 0, respectively. We multiplied the value of positive cells and percentage of positive areas to obtain the IHC score of each marker based on the Barnes’ score method.



2.2.3 Associations of TILs With Clinicopathological Features

Patients were divided into high- and low-infiltration groups based on their IHC scores of immune markers (CD8, CD4, and Foxp3). The Chi-squared test was performed to determine the associations of the immune markers with the clinicopathological features of patients with HNSCC.




2.3 Database Mining


2.3.1 Data Acquisition

We mined The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) to extract the transcriptome data, pathological stage, and survival status of patients with HNSCC diagnosed between 1993 and 2013 (n = 501).



2.3.2 Data Analyses


2.3.2.1 Correlations of TIL-Related Genes by Pearson’s Analysis and Hierarchical Clustering Analysis

Pearson’s analysis was performed to screen DEGs closely related to CD8, CD4, and Foxp3, which were involved in the pathway of activation, differentiation, and migration of T cells. The correlation values were clustered and visualized through hierarchical clustering analysis (HCA) in the R software.



2.3.2.2 Survival-Related Hub Gene Screening Using the LASSO Cox Regression Analysis

To identify the hub gene signatures relevant to survival of patients, we used a linear regression technique based on the LASSO algorithm in “glmnet” R (version 4.1-1). The most suitable signatures were selected by the LASSO Cox regression model when the minimum penalization coefficient (lambda) was obtained after running crossvalidation likelihood 1,000 times. The selected gene signatures were then applied to establish a risk-scoring system, by weighting the expression levels of gene signatures and corresponding regression coefficients. To validate its efficiency in predicting patients’ prognosis, patients with HNSCC were divided into the low- and high-risk groups based on their risk scores (median risk score as cutoff point). Survival rates of the two groups were calculated using the Kaplan–Meier (KM) method and compared using log-rank test. The time-dependent receiver operating characteristic curve (ROC) analysis was performed to assess the area under curve (AUC) for the 1‐, 3‐, and 5‐year OS, thus checking the survival prediction accuracy of the prognostic model.



2.3.2.3 Survival Analysis

The correlations between the survival-related genes and OS of patients with HNSCC were analyzed using KM plotter database (http://kmplot.com/analysis/) (35). Cox proportional hazards regression analysis was performed to calculate the log-rank p-values, hazard ratios (HRs), and 95% confidence intervals (CIs). KM survival plots were generated to visualize the survival differences in patients with different mRNA expression levels of target genes (median as cutoff point).



2.3.2.4 Associations Between the Risk Scores and Tumor Immune Microenvironment

The abundance of TILs in HNSCC tumors was estimated using the CIBERSORT algorithm. Tumors were divided into the high-risk and low-risk group (median as cutoff point). The estimated infiltration fractions of TILs between the two groups were compared using the Mann–Whitney U test. We also investigated the associations of the risk scores with the infiltrations of lymphoid and myeloid cells, respectively, using Pearson’s correlation test. Comparison of the overall infiltrations of lymphoid and myeloid cells between the two groups was also performed using the Mann–Whitney U test. Additionally, the associations of the risk scores with a set of immune checkpoints were analyzed using Pearson’s correlation test.





2.4 Quantitative Real-Time Polymerase Chain Reaction

The relative expression levels of the survival-related hub genes were further identified in LNM− (n = 18) and LNM+ primary tumors (n = 18). Total RNA was isolated from collected tumor tissues using RnaExTM Total RNA Isolation Solution (GK3006, GENEray, Shanghai, China). Moreover, 1 μg of total RNA was used to synthesize cDNA. The quantitative real-time polymerase chain reaction (qRT‐PCR) was performed using 500 ng cDNA per 10 μl reaction. Each reaction was conducted with iQTM SYBR® Green Supermix (Bio‐Rad, Hercules, CA, USA). Gene amplification was conducted on thermal cycler programmed as follows: initial denaturation at 95°C for 5 min followed by 35 cycles at 95°C for 10 s, annealing at 60°C for 20 s, 72°C for 1 min, extending at 72°C for 5 min. Each sample was analyzed in triplicate. Relative expression levels were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The relative expression of targets in LNM+ tumors compared with LNM− tumors was calculated using 2−△△ct. The primer sequences are presented in Table 1.


Table 1 | Primers used in qRT-PCR.





2.5 Univariate and Multivariate Cox Regression Analyses

A total of 439 patients with complete clinical data from the TCGA dataset were evaluated, and univariate and multivariate Cox regression analyses were employed to investigate whether the risk score was an independent risk factor for the OS of patients with HNSCC. The OS rates were calculated using the KM method and log-rank test. We included age, grade, T stage, N stage, and TNM stage into the univariate Cox model, considering their potential prognostic roles. The risk score was classified into four levels by quartiles (low, low-medium, medium-high, and high); age of patients was classified into four age bands (<50, 50–60, 60–70, ≥70 years). Variables showing statistically significant effect (p-value <0.05) in the univariate analysis were included in the multivariate Cox regression model. Variables with p-values <0.05 in the multivariate Cox model were considered independent prognostic factors. The forest was used to display the HR, p-value, and 95% CI of each variable using the “forestplot” R package.



2.6 Construction and Assessment of the Nomogram Model

For convenient application of the established risk-scoring system in clinical work, we established a nomogram prediction model based on the risk scores and clinical parameters to predict outcomes of patients with HNSCC. Variables identified as independent risk factors were included to construct a nomogram prediction model to predict OS of patients with HNSCC. The discrimination of the constructed nomogram model was measured and compared using Harrell’s concordance index (c-index). The predicted accuracy of the nomogram for prediction of 1‐, 3‐, and 5‐year survival of patients with HNSCC was shown in the calibration curves and compared with that of the TNM stage (36).



2.7 Statistical Analysis

All statistical analyses and plots were conducted using GraphPad Prism (version 8.0) and R software (version 4.0.5). Student’s t-test was used for groupwise comparisons of normally distributed continuous variables; the Mann–Whitney U test was used for groupwise comparisons of variables with abnormal distributions. The Chi-squared test was used to analyze the associations between the TILs and clinicopathological features. Pearson’s correlation test was used to analyze correlations between groups. Correlation values were used to conduct HCA. The KM method was used to calculate survival rates. LASSO regression analysis was performed to filter key genes and establish the risk-scoring system. The accuracies of the diagnostic and prognostic prediction models were generated using ROC curves and calculated using the AUC. Univariate and multivariate Cox hazard regression analyses were performed for screening independent risk factors for the OS of patients with HNSCC. A nomogram was constructed based on parameters selected by multivariate Cox regression analysis. The discrimination abilities of the prognostic models were measured using the c-index. All statistical tests were two sided, and p-value <0.05 was considered statistically significant.




3 Results


3.1 Identification of Biological Processes in Tumors During LNM of HNSCC Tumors

A total of 258 upregulated genes and 265 downregulated genes were identified in tumors with LNM compared with tumors without LNM (|log2 fold-change| >1 and p-value <0.05). DEGs were significantly enriched in extracellular matrix and immune-related GO terms (p < 0.01) (Figure 1A). Similarly, KEGG pathway analysis yielded DEGs enriched mostly in the cytokine-cytokine receptor interaction pathway (Figure 1B). We found the 198 DEGs enriched in the top 20 GO terms were mainly enriched in the immune system process pathways of complement activation (classical pathway) (53.85%), positive regulation of cytokines involved in immunity (34.63%), NK-mediated immunity (7.69%), and T-cell chemotaxis (3.85%) (Figure 1C). Among them, CCL26, MYB, CDH26, GATA3, CXCL10, CXCL11, IL6, and CCL20 were involved in the pathway of activation, differentiation, and migration of T cells.




Figure 1 | Identification of the immune process involved in antitumor lymphatic metastasis response in head-and-neck squamous cell carcinoma patients (n = 9). (A) Gene Ontology (GO) enrichment analysis of 523 differentially expressed gene (DEGs). The top 20 GO terms with the smallest p-value in the enrichment analysis results are presented. (B) KEGG pathway analysis of 523 DEGs. The top 20 pathways with the highest enrichment factor are shown. (C) Immunosystem process pathway enrichment analysis of 198 DEGs involved in the top 20 GO terms. Numbers in boxes indicate numbers of genes involved in corresponding immune pathways.





3.2 Identification of Infiltrated TILs in HNSCC Tumors

We compared the average infiltration levels of TILs and found that CD8+ T cells were greater in LNM+ tumors than in LNM− tumors (0.173 ± 0.044 versus 0.103 ± 0.022, respectively) (Figure 2A). IHC confirmed the expression of CD8 in tumor tissues and adjacent normal tissues. CD8+ T cells infiltrated the tumor stroma, invasive margin, and center, whereas CD4+ and Foxp3+ T cells mainly infiltrated the tumor stroma and invasive margin (Figure 2B). The IHC scores of CD8 and CD4 were significantly higher in tumor tissues (p < 0.05) while those of Foxp3 showed no significant difference (p > 0.05) (Figure 2C). The protein expression levels of CD8 and CD4 were significantly correlated (r = 0.256, p < 0.05), whereas CD8 and Foxp3 showed no statistically significant correlation (r = 0.078, p > 0.05) (Figure 2D). Additionally, the protein expression level of Foxp3 was highly relevant to that of CD4 (r = 0.351, p < 0.01). As shown in Table 2, the CD8 expression level was significantly associated with LNM status (p = 0.001) but not with sex, age, tumor site, tumor burden, or degree of differentiation. CD4 and Foxp3 showed no significant correlations with clinicopathological characteristics (p > 0.05).




Figure 2 | Identifying significant tumor-infiltrating lymphocyte (TIL) subtypes engaging in antitumor lymphatic metastasis response. (A) Comparison of the estimated fractions of 22 TILs in tumors with LNM (n = 5) and those without LNM (n = 4). All values were represented by mean ± SEM. (B) Representative immunohistochemistry (IHC) images of CD8, CD4, and FOXP3 in adjacent normal tissues and tumor tissues. Images were obtained under a light microscope at magnifications of ×200. (C) Comparison of the IHC scores between normal tissues (n = 24) and tumor tissues (n = 62) by Mann–Whitney U test. *p < 0.05; ns, p > 0.05. (D) Correlations of the IHC scores of CD8, CD4, and FOXP3 in tumor tissues (n = 62) by Pearson’s correlation test. TIL, tumor-infiltrating lymphocytes; LNM, lymph-node metastasis; SEM, standard error of mean.




Table 2 | The Chi-square test of the associations between IHC scores and clinicopathological characteristics.





3.3 Identification of TIL-Related Genes

Among the DEGs involved in T-cell regulation, CXCL10 and CXCL11 were identified to be highly correlated with TIL-characterizing gene sets (CD8A, CD4, and Foxp3) (p < 0.00001) (Figure 3A). Additionally, CXCR3 and CCR5 were highly correlated with both CXCL10 and CXCL11 (r > 0.613, p < 0.0001) (Figure 3B). Consistently, the chemokines were positively associated with a series of effector immune cells, including M2 macrophages, resting NK cells, resting mast cells, CD8+ T cells, and activated memory CD4+ T cells (TAM CD4) (r > 0.04, p < 0.001) (Figure 3C). Additionally, they were negatively associated with M1 macrophages, activated mast cells, plasma cells, and naïve CD4+ T cells (Figure 3C). Comprehensively, CXCL10, CXCL11, CXCR3, and CCR5 were TIL-related chemokines, involved in the accumulation of TILs in HNSCC.




Figure 3 | Identification of TIL-related genes in head-and-neck squamous cell carcinoma (n = 501) by Pearson’s correlation test and hierarchical cluster analysis. (A) Correlations among immune-related differentially expressed gene (DEGs), CD8A, CD4, and Foxp3. (B) Correlations of CXCL10 and CXCL11 with chemokine ligands. (C) Correlations of CXCL10, CXCL11, CXCR3, and CCR5 with the abundance of TILs. *p < 0.05; **p < 0.01; ***p < 0.001. TILs, tumor-infiltrating lymphocytes.





3.4 Establishment and Validation of the Risk-Scoring System

CXCL11, CXCR3, and CCR5 were screened to be candidate genes related to prognosis of patients with HNSCC through LASSO Cox regression analysis (Figures 4A, B). A risk-scoring system was then established based on the formula generated according to the expression of the three genes, which could calculate the risk scores of patients with HNSCC. The risk-scoring system was established as follows: risk score = (0.0636) * CXCL11 + (−0.4619) ;* CXCR3 + (0.2398) * ;CCR5. Patients with high-risk scores had significantly worse OS than low-risk patients (log-rank p < 0.001) (Figures 4C–F). The risk score was identified to be an independent risk factor for patients with HNSCC (HR, 1.586; 95% CI, 1.21~2.077). The prediction accuracy of the system had a good performance in predicting 1-year OS (AUC, 0.606; 95% CI, 0.551–0.66) and 3-year OS (AUC, 0.642; 95% CI, 0.59–0.695). In contrast, the system showed relatively poor performance in predicting 5-year OS (AUC, 0.599; 95% CI, 0.519–0.679) (Figure 4G).




Figure 4 | Establishment and verification of the risk-scoring system in patients with head-and-neck squamous cell carcinoma (n = 501). (A) LASSO coefficient profiles of CXCL10, CXCL11, CXCR3, and CCR5. (B) Partial likelihood deviance of variables revealed by LASSO-based Cox regression model. (C) Patients with HNSCC were divided into high- and low-risk groups (median as the cutoff) based on the risk scores. (D) Scatterplot of the survival status of patients with different risk scores. Abscissa represents risk score, and ordinate represents survival status. (E) Heatmap of expression levels of CXCL11, CXCR3, and CCR5 in tumors with different risk scores. (F) Kaplan–Meier analysis and log-rank test of patients with high- and low-risk scores. (G) Predictive accuracy of the risk-scoring system by time-dependent receiver operating characteristic curve (ROC) analysis.





3.5 Validation of Prognosis-Related Candidate Genes

Of the three genes, CXCR3 had significant associations with OS of patients with HNSCC (HR, 0.64; 95% CI, 0.49–0.84; log-rank p = 0.001), so did CCR5 (HR, 0.76; 95% CI, 0.58–1; log-rank p = 0.048). Interestingly, patients with high expression of CXCL11 also had the tendency to live longer than those with low expression of CXCL11 (HR, 0.82; 95% CI, 0.62–1.07), but not statistically significant (log-rank p = 0.15) (Figure 5A). Also, the relative expression level of CXCL11 was significantly lower in LNM+ tumors compared with that in LNM− tumors (p < 0.05), whereas CCR5 showed significant higher expression in LNM+ tumors compared with that in LNM− tumors (p < 0.05). The relative expression level of CXCR3 in LNM+ tumors was mildly higher but not statistically significant (p = 0.436) (Figure 5B).




Figure 5 | Identifying the prognostic role of CXCL11, CXCR3, and CCR5 in patients with head-and-neck squamous cell carcinoma (HNSCC). (A) Survival curves of HNSCC patients stratified by mRNA expression levels (median as the cutoff) (n = 501). (B) Comparing the relative expression levels of CXCL11, CXCR3, and CCR5 in tumors without lymphatic metastases (n = 18) and those with lymphatic metastases (n = 18) by unpaired Student’s t-test. Error bars represent the mean ± SEM. *p < 0.05; ns, p ≥ 0.05.





3.6 Ability of the Risk-Scoring System to Reflect the TIL Landscape

Among the 22 TILs, M0, M1, and M2 macrophages had the highest infiltration rates (24.7%, 12.6%, and 10.8%, respectively), followed by resting memory CD4+ T cells (TRM CD4), follicular helper T cells (Tfh), CD8+ T cells, and resting NK cells. Ten subtypes of TILs (naïve B cells, memory B cells, naïve CD4+ T cells, TAM CD4, γδT cells, activated NK cells, monocytes, resting dendritic cells, eosinophils, and neutrophils) showed low abundance in both high- and low-risk patients (<5%) (Figure 6A). As for the remaining 12 types of TILs, we compared their abundance in high- and low-risk groups and found that 11 of them showed significant differences. Among these TIL subtypes, seven types of TILs (resting mast cells, CD8+ T cells, Tregs, resting NK cells, TRM CD4, M2 macrophages, and M1 macrophages) had significantly higher abundance in low-risk groups. In contrast, four types of TILs (activated mast cells, plasma cells, activated DCs, and M0 macrophages) had significantly higher abundance in high-risk groups. Tfhs showed no difference in the infiltration between the two groups (p > 0.05) (Figure 6B).




Figure 6 | Ability of the risk-scoring system to characterize the tumor-infiltrating lymphocyte (TIL) landscapes in patients with head-and-neck squamous cell carcinoma (n = 439). (A) Heatmap of abundance of 22 TILs in the low- and high-risk groups. (B) Comparing the abundance of 12 TILs between the low- and high-risk groups by Mann–Whitney U test. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, p ≥ 0.05. Grey columns represent the low-risk group, and red columns represent the high-risk group.



Intriguingly, with the increase in the risk scores, the overall abundance of lymphoid cells continuously decreased (r = −0.454, p < 0.0001) and that of myeloid cells increased (r = 0.487, p < 0.0001) (Figure 7A). Consistently, the lymphoid cells had greater infiltration in the low-risk groups (p < 0.0001) and the myeloid cells had greater infiltration in high-risk groups (p < 0.0001) (Figures 7B, C).




Figure 7 | Associations of the risk scores with abundance of lymphoid cells and myeloid cells (n = 439). (A) Correlations of the risk scores with abundance of lymphoid cells and myeloid cells by Pearson’s correlation test. (B) Comparing the abundance of lymphoid cells (left) and myeloid cells (right) between the low- and high-risk groups by Mann–Whitney U test. ****p < 0.0001. (C) Stacked column plots of abundance of TILs in low- and high-risk groups.





3.7 Validating the Associations of the Risk Scores and Immune Checkpoints

The risk scores were significantly correlated with CD27 (r = −0.7948, p < 0.0001), ICOS (r = −0.6251, p < 0.0001), PDCD1 (r = −0.5958, p < 0.0001), LAG3 (r = −0.5662, p < 0.0001), TIGIT (r = −0.5302, p < 0.0001), CTLA4 (r = −0.486, p < 0.0001), IDO1 (r = −0.4519, p < 0.0001), HAVCR2 (r = −0.3021, p < 0.0001), and CD274 (r = −0.251, p < 0.0001) (Figure 8).




Figure 8 | Correlations of the risk scores with immune checkpoints by Pearson’s correlation test (n = 501).





3.8 Identifying the Prognostic Role of the Risk Scores

Risk score, TNM stage, and age were independent risk factors for OS of patients with HNSCC through univariate and multivariate Cox regression analyses (Figures 9A, B). Patients with low–medium-, median–high-, and high-risk scores had significantly higher mortality risks than those with low-risk scores (HR = 1.653, 1.666, and 2.554, respectively, p < 0.05). Patients at stage III and stage IV had significantly higher mortality risk than those at stage I (p < 0.05). The risk of death for patients aged >70 years was significantly higher than that of those aged <50 years (HR = 1.689; 95% CI, 1.032–2.764; p < 0.05) (Figure 9C).




Figure 9 | Forest plots showing univariate (A) and multivariate Cox regression analyses (B, C) of the effect of variables on overall survival of patients with head-and-neck squamous cell carcinoma (n = 439).





3.9 Construction and Validation of a Nomogram Prediction Model

A nomogram was constructed to predict the OS of patients with HNSCC based on identified independent risk factors (risk score, TNM stage, and age) (Figure 10A). The prediction model displayed better discrimination ability than the TNM stage for predicting OS (c-index = 0.64 vs. 0.57, respectively). The calibration curves for probability of 1-, 3-, and 5-year OS showed good agreement between nomogram prediction and actual observation, which also performed better than the TNM stage (Figures 10B, C).




Figure 10 | Establishment and evaluation of nomogram prediction model for overall survival (OS) of patients with head-and-neck squamous cell carcinoma (n = 439). (A) Nomogram based on independent risk factors for OS in patients with HNSCC. (B) Calibration curves of the nomogram model for 1-, 3-, and 5-year OS. (C) Calibration curves of TNM stage for 1-, 3-, and 5-year OS.






4 Discussion

Although the associations between TILs and cancer outcomes vary according to cell specificity and tumor heterogeneity, pan-cancer analysis had revealed that higher estimated T-cell fractions are generally correlated with superior survival (37). Massive evidence supports the antitumor role of CD3+ T and CD8+ T cells in colorectal cancer (38), breast cancer (39), and nonsmall cell lung cancer (40). Strong infiltration of CD8+ T cells has been generally associated with a favorable prognosis of patients with cancer (41–43). Moreover, immunotherapies are mainly aimed to reinvigorate antitumor immunity mediated by CD8+ cytotoxic T lymphocytes (CTLs) (23). CD4+ T cells can eliminate tumor cells by promoting the functions of CTLs or modulating the TME (44, 45). Greater infiltrations of CD4+ and CD8+ T lymphocytes have been identified to be associated with improved OS for HNSCC (46, 47). Consistently, we found higher CD8+ and CD4+ T-cell infiltration in HNSCC tumor tissues than adjacent normal tissues (p < 0.05) in our cohort. The density of CD8 and CD4 was highly correlated (r = 0.256, p < 0.05), indicating their synergy in the TME. The prognostic role of tumor-infiltrating FoxP3+ T lymphocytes in patients with HNSCC is controversial. Boxberg et al. reported that patients with HNSCC with lower density of Foxp3+ T lymphocytes tended to have worse OS and disease-free survival (48). In contrast, Mehtap et al. reported that FoxP3 was correlated with advanced tumor stages and poor prognosis (49). A pan-cancer meta-analysis revealed the heterogeneity of the prognostic roles of FoxP3s among tumor sites and the antitumor role of FoxP3 in HNSCC (OR, 0.69; 95% CI, 0.50~0.95; p < 0.05). It is hypothesized that the positive effect of FoxP3+ Tregs may be partially attributed to its ability to suppress inflammatory response, which may promote tumor progression (50, 51).

In this study, we found that both innate and adaptive immune responses engaged in the lymphatic metastatic process of HNSCC tumors, which reminded us the importance of investigating TILs. Among tumor-infiltrating T lymphocytes, CD8+ T cells seemed to actively participate in the antitumor LNM response in patients with HNSCC, which was also identified through the Chi-squared analysis of the IHC scores of CD8 (p = 0.001). Considering the cytotoxic effect of CD8+ T cells and regulation function of CD4+ T cells and Tregs in tumor immunity, chemokines closely related to the three TIL subtypes can reflect tumor immune environment to some degree. The role of CXCL11 in tumor immunity is controversial. Notably, CXCL11 can promote antitumor immunity to benefit survival, as in patients with colon adenocarcinoma (52). However, CXCL11 is a potential antagonist of CXCL10 and CXCL11 because of its higher affinity for CXCR3 (53). CXCL11 also binds to CXCR7, implicating it in tumor invasiveness (54). The mechanism underlying the function of CXCL11 in the tumor environment may explain its negative association with prognosis. Additionally, the role of CCR5 in HNSCC tumor immunity is also intriguing. In our study, we found that patients with HNSCC with higher CCR5 expression had significantly better OS (HR, 0.59; 95% CI, 0.45–0.78). However, CCR5 contributes to negative effect (coefficient, 0.2398) on survival rates in LASSO regression model. Also, CCR5 had significantly higher expression in tumors with LNM than in those without LNM (p < 0.05) in our cohort. Some studies reported that greater cytoplasmic CCR5 expression is correlated with a poor prognosis of patients with cancer because it induces cancer hallmarks (55), cancer homing to metastatic sites (56), and tumor invasion (57). A few studies also focused on the tumor-promoting role of CCR5 in HNSCC (58–60), which are consistent with our partial findings. Thus, CCR5 may not be an independent prognostic factor for outcome of patients with HNSCC, and further investigation is warranted.

In contrast to the immune surveillance role of lymphocytes in the TME, myeloid cells may promote tumor growth and metastasis through by favoring the TME (61–63). Zhang et al. implicated the role of CD8+ T cells in attenuating the protumor activity of myeloid cells in the premetastatic TME by compromising Stat3, which indicated its therapeutic potential (64). Consistently, the competition for between lymphoid cells and myeloid cells in TME of HNSCC were also presented in our study. Tumors with higher risk scores tended to be infiltrated by greater abundance of myeloid cells and less abundance of lymphoid cells, and had worse prognosis, compared with those with lower risk scores. Although, many studies have assessed the abundance of individual lymphocytes or myeloid cells in tumor tissues to predict the prognosis of patients and potential sensitivity to adjuvant chemotherapy and immunotherapy (12). However, the tumor immune microenvironment is an intricated assembly of varieties of TILs. They interact to shape the TME that may be antitumor or tumor promoting. Based on this, the risk-scoring system we established in the study comprehensively evaluates the infiltrations of various significant TILs and provides a more reliable theoretical basis for stratifying patients receiving immune therapies.

This study had some limitations. First, the method used to quantify the density of IHC markers may not fully reflect in vivo expression patterns. Second, the performance of the risk scores in predicting OS of patients with HNSCC was unsatisfactory. We speculate that it may be because the risk-scoring system only includes genes closely relevant to the tumor immune microenvironment. However, the TME not only consists of immune cells but also fibroblasts, endothelial cells, normal epithelial cells, nutrients, etc. These admixtures have been extensively researched and thought to involve in the tumor growth (65). Additionally, the prognosis or tumor progression is mainly regulated by tumor cells. Therefore, more genes associated with tumor progression should be incorporated into the system to improve the prediction accuracy of prognosis of patients with HNSCC. Third, the discrimination of constructed nomogram was limited (c-index, 0.64; 95% CI, 0.55–0.73), despite its better performance than TNM stage. We speculate that it may be because the risk score only evaluates the patient’s prognosis from the perspective of tumor LNM. However, tumor progression is a complicated process in which tumor cells interact with TME for mutual promotion. Therefore, some indicators related to the invasive ability of tumor cells and identified to be independent risk factors (e.g., HPV status, depth of invasion, extranodal extension) should also be included in the prediction model to improve the reliability, which were not assessed in this study due to the retrospective nature of the data (66–68). There is still room for improvement of the nomogram in the prognosis prediction of HNSCC. Prospective cohort studies involving a large number of patients are needed to improve it in the future.



5 Conclusion

We identified the involvement of CD8+ T cells in antitumor immunity during the process of tumor lymphatic metastasis and established an immune-feature-based three-gene-signature risk-scoring system to predict HNSCC prognosis. The risk-scoring system had good performance in characterizing the immune landscape in HNSCC and might benefit clinical patient risk stratification. The constructed nomogram could be a robust supplement to the TNM stage in the prediction of clinical prognoses. Further demonstrations of their prediction values in the clinical level are needed in the future.
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Objectives

The purpose of this study was to establish a nomogram for predicting cervical lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC).



Materials and Methods

A total of 418 patients with papillary thyroid carcinoma undergoing total thyroidectomy with cervical lymph node dissection were enrolled in the retrospective study from January 2016 to September 2019. Univariate and multivariate Logistic regression analysis were performed to screen the clinicopathologic, laboratory and ultrasound (US) parameters influencing cervical lymph nodes metastasis and develop the predicting model.



Results

CLNM was proved in 34.4% (144/418) of patients. In the multivariate regression analysis, Male, Age < 45 years, Tumor size > 20mm, multifocality, ambiguous boundary, extracapsular invasion and US-suggested lymph nodes metastasis were independent risk factors of CLNM (p < 0.05). Prediction nomogram showed an excellent discriminative ability, with a C-index of 0.940 (95% confidence interval [CI], 0.888-0.991), and a good calibration.



Conclusion

The established nomogram showed a good prediction of CLNM in patients with PTC. It is conveniently used and should be considered in the determination of surgical procedures.





Keywords: nomogram, papillary thyroid carcinoma, cervical lymph node, metastasis, predictor



Introduction

Papillary thyroid carcinoma (PTC) originates from the thyroid follicular epithelium and is the major pathological type among thyroid malignancies, accounting for approximately 80% of all thyroid cancers (1). PTC is more common in female patients, and the incidence rate in women is three times that in men. Although PTC is considered to be an indolent tumor with low malignancy, slow disease progression, and good prognosis (2), 20–50% of patients still have early cervical lymph node metastasis (CLNM), leading to a high risk of local recurrence (3).

CLNM of PTC usually manifests as sequential lymph node metastasis from the central area to the lateral cervical area (4). However, some PTCs may undergo direct lateral lymph node metastasis (LLNM) without central lymph node metastasis, which is called “skip metastasis” (5). CLNM is the strongest risk factor for local recurrence and the prognosis of PTC patients and is an important indicator for determining the surgical approach before surgery (6).

Prophylactic cervical lymph node dissection (CLND) has always been controversial (7, 8). Some scholars believe that CLND can change the tumor–node–metastasis (TNM) staging of some patients, and reduce their risk of postoperative recurrence (9). Other studies suggest that there is still not enough evidence to show that prophylactic CLND is beneficial in reducing the recurrence rate and improving the prognosis, and it increases the risk of potential surgical complications such as recurrent laryngeal nerve injury and reduced parathyroid function (10). Therefore, it is necessary to efficiently and accurately assess the presence or absence of CLNM before surgery.

Ultrasound has the advantages of real-time, noninvasive, dynamic, and simple operation and has become the preferred tool for cervical lymph nodes examination. However, due to the complex anatomical location of cervical lymph nodes and interference by air echoes in the trachea, the detection rate of central lymph node metastasis by ultrasound is very limited, and the sensitivity of conventional ultrasound in the diagnosis of central lymph node metastasis is low, at only 20–33% (11). In addition, ultrasound cannot detect some occult lymph nodes metastasis. In recent years, some scholars have attempted to use clinical data and imaging data to assess the risk faced by PTC patients before surgery and screen out the patients most likely to develop CLNM to compensate for the low sensitivity of conventional ultrasound at directly diagnosing CLNM. Hu et al. (5) used clinicopathological data to analyze the risk factors for skip metastasis in PTC patients. Their results suggest that age > 55 years, tumor located in the upper portion, and unilaterality were independent risk factors of skip metastasis. In another study, a radiomic model established based on anatomical and functional magnetic resonance images was used to screen independent risk factors for CLNM in PTC patients (12). Tong et al. (13) established a nomogram model based on the central lymph node status suggested by conventional ultrasound and computed tomography (CT) images, which could be used to predict LLNM in PTC patients before surgery. No previous reports have established a quantitative risk assessment model for the screened risk factors, and there is no unified method for the preoperative prediction of CLNM in PTC patients. Thus, the purpose of our study was to establish a nomogram model for the preoperative prediction of CLNM of PTC based on clinical, pathological, and ultrasound imaging characteristics and to test its predictive efficacy.



Materials and Methods


Patients

This study was performed with the approval of the Ethics Committee of the People’s Hospital of Guangxi Zhuang Autonomous Region, China (IRB No. KY-KJT-2019-04). The informed consent requirement was obtained from all participants. A total of 418 PTC patients (109 males and 309 females, aged 9-75 y with a median age of 43 y) were enrolled between January 2016 and September 2019. Inclusion criteria: ① preoperative thyroid fine-needle aspiration biopsy or postoperative pathology diagnosed PTC; ② complete clinical, pathological, and conventional ultrasound image data; ③ first thyroid surgery (thyroid lobectomy or any type of thyroidectomy) and undergoing CLND (at least central lymph nodes dissection); and ③ pathology confirming the presence or absence of lymph node metastasis. The exclusion criteria were as follows: ① non-PTC pathology; ② other treatments before surgery (such as iodine-131 or surgical history); ③ incomplete ultrasound, clinical, or pathological data; ④ distant metastasis; and ⑤ malignant tumors at other sites. The clinical, serological, and pathological data of the included cases were retrospectively analyzed, including age (<45 years, 45-55 years, or >55 years), sex, bilaterality (unilateral or bilateral), tumor size (maximum diameter <10 mm, 10-20 mm, or >20 mm), Hashimoto’s thyroiditis (absent or present), serum thyroid-stimulating hormone (TSH), thyroid peroxidase antibodies (TPOAb), triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and the expression of galectin-3, cytokeratin (CK)-19, and CK-34 in tumor specimens.

The surgical range of cervical lymph node dissection of the enrolled patients were determined based on the preoperative fine-needle aspiration cytological examination and/or the intraoperative rapid frozen pathological results: ① unilateral PTC: excision of the affected lobe plus isthmus and lymph nodes dissection of the ipsilateral central region (level VI);  x2461; bilateral lymph nodes dissection in the central region for patients with isthmus or bilateral PTC; ③ lymph nodes dissection of the affected lateral cervical region if preoperative ultrasound reported lymph node metastasis in the lateral cervical region (levels II, III, and IV) and fine-needle aspiration cytology indicated suspicious positivity; ④ additional lymph node dissection in level V if lymph node metastasis in level V was suspected.



Ultrasonography Imaging

Preoperative conventional ultrasound examination was performed using a GE Logiq E9 ultrasound system (GE Healthcare Life Sciences, Chicago, IL, USA) with a 6-15 MHz linear transducer. The patients were placed in the supine position with the neck extended. The thyroid and cervical lymph nodes were scanned on multiple sections, and their characteristics were recorded, including tumor position (left, right, others), internal component (solid, not solid), echogenicity (hypoecho, not hypoecho), taller than wide (absent or present), multifocality (single or multiple), margin (regular or irregular), boundary (legible or ambiguous). The presence or absence of microcalcification (defined as a maximum diameter of calcification ≤1 mm) and the presence or absence of extracapsular invasion (defined as contact between the nodule and the anterior and/or posterior capsule of the thyroid, such that the continuity of the capsule line was interrupted or obscured by nodules that could not be explored), and the sonographic assessment of the cervical lymph nodes (Figures 1, 2). Blinded to the clinical and pathological information, two ultrasound physicians with more than 2 years of experience were responsible for the interpretation of sonographic images. In cases of discrepancies, the two physicians reanalyzed and discussed together to reach a consensus.




Figure 1 | PTC with negative CLNM in a 48-year-old female. (A) Longitudinal sonogram and (B) Transverse sonogram showing a 5×5×6 mm hypoechoic nodule in the right lobe of thyroid (arrow). The nodule was regular, legible, with a taller than wide shape and absence of extracapsular invasion. A bulky calcification (> 1 mm) was observed inside the nodule. Histological examination of the tumor (C) and lymph nodes (D) indicated no lymph nodes metastasis in the central area of the neck. H-E × 100.






Figure 2 | A 29-year-old female PTC patient with positive CLNM. (A) Longitudinal sonogram and (B) Transverse sonogram showing a hypoechoic lesion in the right lobe of thyroid (arrows). The tumor size is 26×17×16mm, irregular, ambiguous, had multiple microcalcification (≤ 1 mm) inside, and hard to be distinguish from the anterior thyroid capsule. Conventional US of the lymph nodes on (C) Level III and (D) level IV area of the neck. The lymph nodes were approximately rounded, lymphatic hilus structure disappeared, and with scattered calcification inside (arrowheads). These features on US suggest the cervical lymph nodes metastasis. Histological examination confirmed the (E) thyroid papillary carcinoma in the right lobe, and (F) revealed lateral cervical lymph nodes metastasis. H-E × 200.





Statistical Analysis

R language 3.5.3 statistical software was used for data analysis. Continuous variables were presented as mean ± standard deviation (SD), and comparisons between groups were performed with Student’s t- test or analysis of variance. Categorical data were expressed as the number of cases or percentages (%), and comparisons between the groups were performed with the Chi-square test. The risk factors with P < 0.1 were screened by univariate analysis and were included in the multivariate logistic regression analysis. The stepwise regression was used to identify the independent predicting factors for CLNM in PTC patients, from which a nomogram model was plotted and established (14). The concordance index (C-index) and 95% confidence interval (CI) were used to evaluate the discriminability of the nomogram model. The range of the C-index is 0–1. The closer the C-index is to 1, the better the model differentiates patients and the more accurate the predictive performance. The calibration curve was used to evaluate the agreement between the predicted probability of CLNM in the nomogram of PTC and the actual probability value. The X-axis represents the predicted probability calculated by the nomogram, and the Y-axis represents the actual pathological assessment of lymph node metastasis. Falling on the 45° diagonal reference line indicated that the prediction was in good agreement with pathology. P<0.05 indicated that a difference was statistically significant.




Results

The demographic data of patients are shown in Table 1. Out of 418 patients, postoperative pathological results showed that 144 patients (144/418, 34.4%) had positive CLNM, of whom 99 cases had central lymph node metastasis, 28 cases had central and lateral lymph node metastasis, and 17 cases had skip metastasis of LLNM; 274 cases (274/418, 65.6%) were negative for CLNM.


Table 1 | Patients characteristics.




Univariate Analysis of Risk Factors for CLNM

Univariate analysis showed that when comparing the CLNM-positive and -negative groups, there were statistically significant differences in factors such as gender, age, expression of galectin-3, tumor size, boundary, margin, bilaterality, taller than wide, multifocality, tumor position, echogenicity, presence of microcalcification, extracapsular invasion, and US suggested CLNM (P < 0.1). There was no significant difference in the expression level of TSH, TPOAb, T3, T4, FT3, FT4, CK-19, and CK-34, tumor internal components, and the presence or absence of thyroiditis between the CLNM-positive group and the CLNM-negative group (P > 0.1) (Table 2).


Table 2 | Univariate analysis of risk factors associated with CLNM in PTC patients.





Multivariate Analysis of Risk Factors for CLNM

The risk factors with statistically significant differences in the univariate analysis were included in the multivariate logistic regression analysis. Seven variables (including male sex, age <45 years, tumor maximum diameter > 20mm, multifocality, ambiguous boundary, extracapsular invasion, and US suggested CLNM) were proved to be independent predicting factors associated with CLNM (Table 3). The ranking of the odds ratio (OR) value was as follows: US suggested CLNM > tumor size > extracapsular invasion > gender > multifocality > boundary > age.


Table 3 | Multivariate analysis of predictive factors associated with CLNM in PTC patients.





Establishment of Nomogram Model

The nomogram model was established using the seven independent risk predictors: gender, age, multifocality, tumor size, extracapsular invasion, boundary, and US suggested CLNM (Figure 3). The model score axis (2-9) corresponded to the score of each predictor from bottom to top, and then the total score was calculated to find the risk of CLNM corresponding to the last risk axis. The C-index of the nomogram was 0.940 (95% CI, 0.888-0.991), suggesting that the nomogram model has a favorable prediction performance of CLNM. The calibration curve displayed good fitting with the 45° reference line suggesting that the predictive model was in good consistency with the actual condition of lymph node metastasis (Figure 4).




Figure 3 | Nomogram for predicting CLNM in patients with papillary thyroid carcinoma. CLNM, cervical lymph node metastasis; US, ultrasound.






Figure 4 | Calibration curve for internal validation of the CLNM nomograms. Nomogram predicted CLNM probabilities are plotted on the x-axis; actual CLNM probabilities are plotted on the y-axis. The dashed line along the 45-degree line passing through the point of origin represents a perfect calibration model in which the predicted probabilities are consistent with the actual probabilities. US, ultrasound; CLNM, cervical lymph node metastasis.






Discussion

Nomogram model is a predictive tool, which uses a visually graphical representation of a statistical predictive model that to generate a numerical probability of a clinical event (15). Nomograms are widely used to predict clinical disease onset and patient prognosis, especially in the field of cancer (16). Tong et al. (13) proposed a radiomics nomogram, which incorporated the radiomics signature and the ultrasound and contrast enhanced CT-reported cervical lymph node status, for the prediction lateral lymph node metastasis in patients with PTC. The radiomic nomogram demonstrated a best predictive performance than either the radiomic signature or the US- or CT- reported lateral cervical lymph node status with an area under the ROC curve and a C-index of 0.914 (95% CI, 0.842-0.987) and 0.927 (95% CI, 0.856-0.980), respectively. However, CT has the limits of radiation and costly, and has a risk of contrast agent allergy. It has been reported that the incidence of hypersensitivity reactions related to iodinated contrast media ranges from 0.004–3.0% (17). Several scholars recommended CT as a complementary modality for detecting the extent of tumor involvement in the airway or esophagus as well as detecting extra nodal tumor extension (18). In our present study, a quantitative nomogram model for the preoperative prediction of CLNM of PTC was established based on laboratory serum indicators, pathology, and non-invasive ultrasound imaging characteristics. This nomogram model exhibited a promising value with an excellent discriminative ability of a C-index of 0.940 (95% CI, 0.888-0.991), and a good calibration.

The results of the present study showed that male sex, age <45 years, multifocality, tumor maximum diameter >20 mm, extracapsular invasion, ambiguous boundary, and lymph node metastasis suggested by ultrasound were independent risk predictors for CLNM of PTC. The risk of CLMN in male patients was 2.82 times that of female patients. Some scholars believe that men (especially young men) have a high basal metabolism, which accelerates the spread of tumors and puts them at greater risk for CLNM (19). This finding is consistent with the results of Gui et al. (20). PTC can occur in various age groups, with a high incidence in 30–60 years old. This study analyzed the relationship between age and CLNM and found that the risk of CLNM in PTC patients <45 years old was significantly higher than that in other age groups (P=0.021). This is consistent with the conclusion of Zheng et al. (21) that age is an independent risk factor for the development of CLNM of PTC. However, Xue et al. (22) reported no difference in lymph nodes metastasis between patients <45 years old and patients ≥45 years old. The explanation for the inconsistent results may be related to the relatively small sample size and the bias of case selection in the study of Xue et al.

Multiple lesions are a clinicopathological feature of PTC, having an incidence of approximately 23–40% in PTC patients. Compared with single lesions, multifocal PTC is more invasive, and the more cancer lesions a person has, the higher their degree of malignancy, the more prone they are to lymph node metastasis, and the poorer the prognosis will be (23). Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are highly expressed in multifocal PTC (24). High expression of COX-2 and VEGF is closely related to the extent of PTC invasion and lymph node metastasis. COX-2 can catalyze the synthesis of a large amount of prostaglandin E2 (PGE2), which not only promotes cell proliferation and inhibits apoptosis but also promotes tumor angiogenesis. VEGF promotes neovascularization, increases vascular permeability, and plays an important role in tumor nutrient transport before angiogenesis. The results of present study also showed that the risk of CLNM of multifocal PTC was 2.67 times that of a single lesion. A study on multifocal PTC found that multiple lesions could be accurately identified in 75.9% of cases by ultrasonography (25). There was no significant difference between their multifocal findings determined by ultrasound and their histopathological findings. Therefore, the prediction model based on ultrasound features is reliable and feasible.

Tumor size has always been considered an important predictor of CLNM in patients with PTC. The larger the tumor volume, the higher the risk of CLMN. The mechanism may be related to the overexpression of VEGF. With the enlargement of nodules, the intra-tumor vessels are induced by various angiogenic factors to proliferate rapidly, forming many disorganized vascular networks. The active angiogenesis of the tumor increased the risk of CLNM (26, 27). However, the prediction thresholds reported by previous studies are different. Ahn et al. (28) reported that a tumor diameter ≥ 1 cm was a risk factor for CLNM, while Yan et al. (29) believed that tumor diameter had predictive value when it was ≥ 0.25 cm. The results of this present study found that the risk of developing CLNM of tumors with a maximum diameter of 10–20 mm and >20 mm was 1.83 and 6.63 times that of tumors with a maximum diameter of < 10 mm.

Extracapsular invasion of the thyroid is another independent predictor for CLNM (30). Kamaya et al. (31) reported that the criteria for ultrasound assessment of capsule invasion in PTC were that the nodule was adjacent to the capsule (i.e., there was no normal thyroid tissue between the nodule and the capsule), regardless of whether the capsule was interrupted. Jin et al. (32) suggested that the risk of CLNM was higher when the contact area between the nodule and the capsule was greater than 25%. Wang et al. (33) showed that tumor invasion and breakthrough of the thyroid capsule increased the likelihood of invading the lymphatic ducts and increased the risk of CLNM, and the distance between the tumor and the capsule was negatively correlated with the rate of lymph node metastasis. In our present study, the risk of CLNM in PTC patients with extracapsular invasion was significantly higher than that of patients without extracapsular invasion, which is consistent with the results of previous studies

The results of this study also indicated that an ambiguous boundary is an important factor for predicting lymph node metastasis, which is in line with the report of Xue et al. (22). Tumor metastasis required cancer cells invasion into the stroma, migration into the vessels, and proliferation in the lymph nodes (34).The invasive growth characteristics of the tumor cause the loss of a clear boundary between the tumor and the surrounding normal tissues.

On ultrasound, metastatic lymph nodes of PTC is recognized as round-like, calcified, cystic, and disordered or absent lymphatic hilus structure. In this study, any of the above changes detected by ultrasound examination was suspected lymph node metastasis. Ultrasound suggested lymph node metastasis accounted for the highest score in the nomogram model established in the present study, which may become one of the most important indicators for the prediction of CLNM.

Microcalcification is the deposition of calcium salts caused by vascular and fibrous hyperplasia, which reflects the rapid growth of cancer cells and is a typical ultrasound manifestation of PTC. However, the effect of microcalcification on CLNM of PTC is controversial. The presence of microcalcifications, especially the presence of diffuse microcalcifications, has been highly correlated with CLNM, and 91.8% of the thyroid lesions with diffuse microcalcifications developed central lymph node metastasis (27). Bai et al. (35) found that the presence of microcalcifications in PTC was significantly correlated with lymph node metastasis and clinical stage. Some cytokines, such as bone morphogenetic protein-1 and osteopontin, are highly expressed in tumors with microcalcifications (36), which are associated with the invasiveness of PTC. However, the results of this study showed that microcalcification was only statistically significant in univariate analysis, as multivariate analysis did not indicate that microcalcification was an independent risk factor for CLMN. The relationship between microcalcifications and CLNM needs to be further studied.

Hashimoto’s thyroiditis is a risk factor for the development of PTC (37). However, there is no consensus on the relationship between Hashimoto’s thyroiditis and CLNM in PTC patients. Hashimoto’s thyroiditis is a protective factor against CLNM, as the probability of developing CLNM is lower in PTC patients with Hashimoto’s thyroiditis (38). Zhou et al. (39) reported that TPO Ab <1 kU/L was an independent risk factor for central lymph node metastasis, but this was not confirmed in the study of Qu et al. (40). In our present study, there was no significant difference in the incidence of CLNM between PTC patients with Hashimoto’s thyroiditis and PTC patients without a Hashimoto’s thyroiditis background. TPOAb was not an independent risk factor for CLNM. The differences in the results of these studies may be related to the differences in the samples of different studies. The study of Zhou et al. only included unifocal PTC, and only central lymph node metastasis was analyzed. In this study, we included both unifocal PTC and multifocal PTC, and included both central lymph node metastasis and LLNM in the statistical analysis.

The present study has some limitations. First, the establishment of the nomogram model was based on a retrospective study of single-center samples, which may have a selection bias. Second, relatively few study subjects were included in this study, so the established nomogram model still requires prospective and big data studies to further verify its accuracy. Third, this study only included patients with PTC in China, and the applicability of the results to other pathological types of thyroid cancer (such as follicular thyroid carcinoma and medullary carcinoma) or populations of other races or countries needs to be further explored.

In summary, male sex, age <45 years, multifocality, maximum tumor diameter > 20 mm, extracapsular invasion, ambiguous boundary, and US suggested CLNM were independent risk factors for CLNM in patients with PTC. This study successfully established a nomogram model for predicting CLNM of PTC, which can help in the preoperative quantitative prediction of CLNM and should be considered in the determination of surgical procedures.
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Background

Head and neck squamous cell carcinoma (HNSCC) is still a menace to public wellbeing globally. However, the underlying molecular events influencing the carcinogenesis and prognosis of HNSCC are poorly known.



Methods

Gene expression profiles of The Cancer Genome Atlas (TCGA) HNSCC dataset and GSE37991 were downloaded from the TCGA database and gene expression omnibus, respectively. The common differentially expressed metabolic enzymes (DEMEs) between HNSCC tissues and normal controls were screened out. Then a DEME-based molecular signature and a clinically practical nomogram model were constructed and validated.



Results

A total of 23 commonly upregulated and 9 commonly downregulated DEMEs were identified in TCGA HNSCC and GSE37991. Gene ontology analyses of the common DEMEs revealed that alpha-amino acid metabolic process, glycosyl compound metabolic process, and cellular amino acid metabolic process were enriched. Based on the TCGA HNSCC cohort, we have built up a robust DEME-based prognostic signature including HPRT1, PLOD2, ASNS, TXNRD1, CYP27B1, and FUT6 for predicting the clinical outcome of HNSCC. Furthermore, this prognosis signature was successfully validated in another independent cohort GSE65858. Moreover, a potent prognostic signature-based nomogram model was constructed to provide personalized therapeutic guidance for treating HNSCC. In vitro experiment revealed that the knockdown of TXNRD1 suppressed malignant activities of HNSCC cells.



Conclusion

Our study has successfully developed a robust DEME-based signature for predicting the prognosis of HNSCC. Moreover, the nomogram model might provide useful guidance for the precision treatment of HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is cancer that arises from squamous cells in the area of the head and neck. HNSCC represents up to 90% of tumors in the head and neck region, which includes malignancy of the oral cavity, pharynx, and larynx (1, 2). The initiation and development of HNSCC are mainly caused by genetic alterations, human papillomavirus (HPV) infection, and consumption of tobacco, alcohol, and areca-nut, etc (3). Although surgery, radiochemotherapy, targeted therapy, and immunotherapy have been significantly advanced, patients with HNSCC have a median five-year overall survival (OS) rate of approximately 66% (4). HNSCC is usually treatable if detected at the earliest stage. Unfortunately, patients often present with advanced clinical stages at the time of diagnosis that is incurable or requires aggressive treatment, leading to an unfavorable prognosis (5). This highlights the significance of developing novel and robust molecular signatures for precisely evaluating the clinical outcome of HNSCC, which contributes to therapeutic guidance for HNSCC (6, 7).

Metabolic alterations of tumors were first found nearly a century ago, but only recently has reprogrammed metabolism been deemed as a cancer hallmark (8, 9). For example, nutrient uptake and biosynthesis are required in the early stages of cancer progression, while oxidative phosphorylation and oxidative stress resistance occur in the later stages of tumor growth (10). Therefore, reprogrammed metabolism has become a topic of renewed interest, and reversing abnormal metabolic processes might be a novel approach for the treatment of HNSCC (11). However, it is still uncertain which key metabolic enzymes affect the dismal prognosis of HNSCC.

The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) and NCBI-Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) are international public databases that archive and freely distribute next-generation sequencing, microarray, and other formats of high-throughput datasets, which are valuable resources for improving our understanding of cancer development (12, 13). In this study, we first identified the common differentially expressed metabolic enzymes (DEMEs) in TCGA HNSCC and GSE37991 cohort. Afterward a robust DEME-based signature was successfully built up and validated for predicting the clinical outcome of HNSCC. Moreover, a clinically practical nomogram model was constructed to accurately estimate HNSCC prognosis.



Materials and Methods


Data Source

The original GEO datasets GSE37991 and GSE65858 were downloaded from NCBI GEO databases. The data of GSE37991 and GSE65858 were based on GPL6883 (Illumina HumanRef-8 v3.0 expression beadchip) and GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip), respectively. For the TCGA HNSCC cohort, the raw data and corresponding clinical information were downloaded from the TCGA data portal. The tumor located in lips, tongue, oral cavity, oropharynx, larynx, and hypopharynx were selected. The format of the TCGA HNSCC downloaded data was HTseq-FPKM, and the formats of GSE37991 and GSE65858 were normalized microarray data.

The RNA‐seq data of the TGCA HNSCC cohort included 521 HNSCC samples and 44 normal control samples. Forty‐three out of 44 normal samples were matched to the HNSCC tumor samples. Only one normal sample from the salivary gland was not matched to the tumor samples. Two hundred and seventy HNSCC tumor samples were included in the microarray data of GSE65858, which did not include normal control samples. The microarray data of the GSE37991 cohort included 40 HNSCC samples and 40 paired normal samples. Regarding the inclusion/exclusion criteria for the enrolled patients, both tumor and normal control samples in TCGA HNSCC and GSE37991 cohorts were included for the differential expression analysis. For the construction of risk signature, only the tumor samples in TCGA HNSCC, GSE37991 and GSE65858 cohorts were considered, and all normal control samples were excluded. The patients without clinical characteristics such as follow-up time, follow-up status, age, gender, clinical stage, T stage or N stage were excluded. Besides, the patients with the TX stage and NX stage were also excluded due to the disturbance to grouping. The clinical characteristics including age, gender, stage of the HNSCC tumor samples in the TCGA HNSCC discovery cohort and GSE65858 validation cohort were summarized in Tables S1 and S2, respectively.



Data Pre-Processing and Differential Expression Analysis

Briefly, the probes that have no expression in most of the samples were excluded. The FPKM data of the TCGA HNSCC cohort was converted to TPM format for further analysis. For GSE37991, data normalization was achieved with GeneSpring GX software (Agilent Technologies). For GSE65858, the data was first processed within the R/Bioconductor. Then the expression values were subjected to log2-transformation and the normalization was performed using Robust Spline Normalization (RSN). Batch effects of expression BeadChips were corrected using ComBat.

The DEMEs in GSE37991 and TCGA HNSCC cohort were identified by the edgeR package. Absolute log2FC>1 and p<0.05 were selected as the demarcation criteria based on Benjamini & Hochberg (BH) procedure. The common differentially expressed genes (DEGs) between GSE37991 and TCGA HNSCC cohort were identified by the intersect function in R.



Gene Ontology Enrichment Analysis

Gene Ontology (GO) enrichment analysis was performed using the DAVID (the Database for Annotation, Visualization and Integration Discovery).



Prognostic Signature Generation and Validation

TCGA HNSCC cohort and GSE65858 were used as discovery and validation cohorts, respectively. DEMEs were demonstrated to be correlative with the OS of HNSCC by univariate Cox proportional hazards regression analysis, which adopted the statistics from the TCGA HNSCC cohort. Subsequently, the most optimum DEMEs were chosen by the approach of the least absolute shrinkage and selection operator (LASSO) regression. The independent DEME-based prognostic signature was determined by the multivariate Cox proportional hazards regression analysis. Afterward a risk score model was constructed with this independent DEME-based prognostic signature. The summation of each DEME’s score was computed as a risk score for each HNSCC patient:   (14). On basis of the median value of the risk scores, the TCGA HNSCC cohort was divided into a low-risk group and a high-risk group. We compared the OS between low- and high-risk groups and assessed the differential survival distinguished by clinicopathological parameters between low- and high-risk groups. Similarly, the GSE65858 validation cohort was classified into low- and high-risk groups according to the above risk score model built up by the TCGA HNSCC cohort. Besides, the OS and the survival distinction were likewise differentiated by clinicopathological parameters between low- and high-risk groups.



Nomogram Model Construction

A nomogram model including the risk score and other clinicopathological indices was constructed. The calibration curves were used to assess the accuracy for predicting 1-year OS and 3-year OS of HNSCC.



Cell Culture and Transfection

Both SCC1 and SCC23 were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, USA) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Cells were grown in a 37°C, 5% CO2 cell incubator in a humidified atmosphere. The cells were transfected with siTXNRD1 and siCTRL using Lipofectamine® RNA iMAX Transfection Reagent (Invitrogen, Carlsbad, CA, USA).



Western Blot

The protein samples were separated on 4-20% SDS-PAGE gels and then transferred to polyvinylidene difluoride (PVDF) membranes. Following by blocking in 5% skimmed milk for 1 hr at room temperature, the blots were then probed with primary antibody against TXNRD1 (1:1000, Proteintech, Chicago, IL, USA) at 4°C overnight. The corresponding HRP-conjugated secondary antibody was used to incubate the membranes for 1 hr at room temperature. The signal was detected with ECL kits.



MTT Assay

The cells were seeded into the 96‐wells of the plate at a density of 3,000 cells per well in 200 μl cell culture media. MTT solution (20 μl,5 mg/ml) was added to each well at the indicated time points and incubated for 4 hrs at 37°C. Dimethyl sulfoxide (DMSO) was added to dissolve the precipitate after removing the supernatant. A microculture plate reader (Tecan, Mannedorf, Switzerland) was used to measure the absorbance at 570 nm.



5‐Ethynyl‐2′‐Deoxyuridine Assay

According to the manufacturer’s instructions, the Click‐iT™ 5‐Ethynyl‐2′‐deoxyuridine (EdU) Cell Proliferation Kit for Imaging (Invitrogen) was used to perform the EdU assay. Briefly, EdU was added to the cells and incubated at 37°C for 2 hrs. Subsequently, 3.7% formaldehyde was used to fix the cells at room temperature for 20 min. After washing three changes of PBS, 0.5% Triton X‐100 was added to increase the permeability of the cellular membrane. 1× Click‐iT reaction cocktail was used to stain the cells in the dark at room temperature for 30 min. Then, the cell nucleus was stained by Hoechst 33342 dye. A confocal laser scanning microscope (Olympus, Center Valley, PA) was used to capture at least four random images per well.



Statistical Analysis

The volcano plot and heatmaps were drawn by the “ggplot2” package of R software. The univariate and multivariate Cox regression analyses incorporated the clinical characteristics including age, gender, clinical stage, and risk score. The independent prognostic factors for HNSCC were identified by the univariate and multivariate Cox regression analyses. The Kaplan‐Meier method and log‐rank test were performed to calculate the OS distinguish between different groups. A p-value less than 0.05 is considered statistically significant.




Results


The Common DEMEs Between GSE37991 and TCGA HNSCC

The volcano plot was used to visualize the distribution of metabolic enzymes between cancer and normal tissues from the GSE37991 and TCGA HNSCC cohort. The significantly downregulated or upregulated metabolic enzymes were represented as green or red dots, respectively (Figure 1A). In total, 478 (402 upregulated and 76 downregulated) and 223 (102 upregulated and 121 downregulated) significantly changed metabolic enzymes were identified in GSE37991 and TCGA HNSCC cohort, respectively. The detailed information of the significantly changed metabolic enzymes was summarized in Tables S3 and S4. The common DEMEs (23 upregulated and 9 downregulated) between GSE37991 and TCGA HNSCC cohort were shown in Figure 1B.




Figure 1 | The significant alteration of DEMEs between TCGA HNSCC cohort and GSE37991. (A) The volcano plot showed significant alteration of DEMEs between normal controls and tumor tissues from HNSCC. The fold changes (log2‐scaled) were shown in the X-axis, and the p values (log10‐scaled) were shown in the Y-axis. Each gene was represented by a dot, and the significantly downregulated or upregulated DEMEs were represented by the green or red color. (B) The common DEMEs between the TCGA HNSCC cohort and GSE37991 were shown in Venn diagrams.





Gene Ontology

Gene ontology (GO) analysis of the DEMEs showed that small molecule catabolic process, alpha-amino acid metabolic process, glycosyl compound metabolic process, cellular amino acid metabolic process, organophosphate catabolic process, protein tetramerization, nucleoside metabolic process, nucleobase-containing small molecule catabolic process, aspartate family amino acid metabolic process, purine-containing compound catabolic process were the enriched (Figure 2A).




Figure 2 | (A) Gene ontology analyses of the common DEMEs. (B) ASNS, CYP27B1 TXNRD1, GATM, PLOD2, FUT6, and HPRT1 were significantly correlative with survival in the TCGA HNSCC cohort.





Identification of the Prognostic Signature

The survival-related DEMEs in the TCGA HNSCC cohort were identified by the univariate Cox regression, and ASNS, CYP27B1, TXNRD1, GATM, PLOD2, FUT6, and HPRT1 were harvested. Based on the HRs, GATM and FUT6 were protective genes, while ASNS, CYP27B1, TXNRD1, PLOD2, and HPRT1 were risky genes (Figure 2B). The LASSO regression analysis identified six optimal DEMEs including ASNS, CYP27B1, TXNRD1, PLOD2, FUT6, and HPRT1. The risk score for each patient was computed as follows: risk score = (0.308) *ASNS + (0.228) * CYP27B1 + (0.284) * TXNRD1 + (0.174) * PLOD2 + (-0.092) * FUT6 + (0.362) * HPRT1. Subsequently, the HNSCC patients were divided into high- and low-risk groups based on the median value of risk scores (Figure 3A). The survival time and survival status of each HNSCC patient in TCGA HNSCC were presented in a scatter plot (Figure 3B). The expression levels of ASNS, CYP27B1, TXNRD1, PLOD2, FUT6, and HPRT1 in each HNSCC patient were shown with a heatmap (Figure 3C). Besides, survival analysis demonstrated that the OS of the high-risk group was significantly lower compared to the low-risk group (Figure 3D). We then stratified the HNSCC patients with different clinical indices including age, gender, clinical stage, T stage, and N stage. As shown in Figures 4A–E, the low-risk group got remarkably better OS than the high-risk group for the HNSCC patients with age>60 (p=0.003), or with female gender (p=0.023) or with male gender (p=0.022), or at the clinical stage III-IV (p<0.001), or at the stage T3-4 (p=0.003), or with node metastasis (p=0.005).




Figure 3 | Establishment of the prognostic signature using the TCGA HNSCC cohort. (A) Scatter plot of the risk scores distribution. (B) Scatter plot of the OS and OS status distribution in the low‐and high‐risk groups. (C) The six prognostic DEMEs expression pattern between low‐ and high‐risk groups was shown in the heatmap. (D) The low-risk group got remarkably better OS than the high-risk group for the HNSCC patients.






Figure 4 | The OS distinction between the low‐ and high‐risk groups was classified by age, gender, clinical stage, T stage, and N stage in the TCGA HNSCC cohort (A–E).





Validation of the Prognostic Signature in an Independent Cohort GSE65858

Similarly, the HNSCC patients in GSE65858 were divided into high- and low-risk groups using the same median risk score in the TCGA HNSCC cohort (Figure 5A). The survival status, survival time, and expression level of prognosis-related DEMEs in each HNSCC patient were shown in Figures 5B, C. More importantly, the HNSCC patients in the high-risk group suffered a significantly poorer OS than those in the low-risk group (Figure 5D). As displayed in Figures 6A–E, the low-risk group got remarkably better OS than the high-risk group for the HNSCC patients with age ≤ 60 (p=0.026), or with male gender (p=0.009), or at the clinical stage III-IV (p=0.027), or the stage T3-4 (p=0.030).




Figure 5 | Validation of the prognostic biomarker using the GSE65858 validation cohort. (A) Scatter plot of the risk scores distribution. (B) Scatter plot of the OS and OS status distribution in the low‐and high‐risk groups. (C) The six prognostic DEMEs expression pattern between low‐ and high‐risk groups was shown in the heatmap. (D) The low-risk group got remarkably better OS than the high-risk group for the HNSCC patients.






Figure 6 | The OS distinction between the low‐ and high‐risk groups was classified by age, gender, clinical stage, T stage, and N stage in the GSE65858 validation cohort (A–E).





The Risk Score Is an Independent Prognostic Factor for HNSCC

In the TCGA HNSCC cohort, the univariate Cox regression analysis showed that age (p =0.014, HR=1.020), gender (p =0.045, HR=0.695) and risk score (p<0.001, HR=2.116) were significantly associated with survival (Figure 7A). The multivariate Cox regression analysis revealed that only risk score (p<0.001, HR=2.047) was the independent prognostic factor for HNSCC (Figure 7B). Similarly, in GSE65858, the univariate Cox regression analysis showed that age (p =0.013, HR=1.027), clinical stage (p=0.001, HR=1.615) and risk score (p=0.024, HR=1.715) were significantly correlated with survival (Figure 7C). The multivariate Cox regression analysis showed that age (p =0.015, HR=1.027), clinical stage (p=0.001, HR=1.637) and risk score (p=0.023, HR=1.710) were independent prognostic factors for HNSCC (Figure 7D).




Figure 7 | The independent prognostic factors were revealed by univariate and multivariate Cox regression analysis. (A) Age, gender and risk score were significantly correlated with survival in the TCGA HNSCC cohort by univariate Cox regression analysis. (B) The risk score was the independent prognostic indicator in the TCGA HNSCC cohort by multivariate Cox regression analysis. (C) Age, clinical stage and risk score were significantly associated with survival in the GSE65858 cohort by univariate Cox regression analysis. (D) Age, clinical stage and risk score were the independent prognostic indices in the GSE65858 cohort by multivariate Cox regression analysis.





Nomogram Model Prediction

The risk score, age, gender and clinical stage were incorporated into the nomogram model to forecast the clinical outcome of HNSCC (Figure 8). A total nomogram-based score was obtained for each HNSCC patient derived from the clinicopathological parameters and their corresponding points. The 1-year OS or 3-year OS of HNSCC patients was forecasted with the nomogram model. The calibration curves showed that the nomogram model we built up exhibited excellent conformance for predicting the 1-year OS or 3-year OS of HNSCC (Figures 9A, B). The C indices of the nomogram model are 0.658 or 0.616 for predicting the 1-year OS or 3-year OS of HNSCC, respectively.




Figure 8 | The nomogram prediction model was constructed with the risk score and other clinicopathological indices.






Figure 9 | (A) The calibration plot for internal validation of the nomogram for 1-year OS prediction. (B) The calibration plot for internal validation of the nomogram for 3-year OS prediction.





Knockdown of TXNRD1 Suppressed Malignant Activities of HNSCC Cells In Vitro

The expression level of TXNRD1 was significantly reduced in HNSCC cells following siTXNRD1 treatment (Figure 10A). Compared to the siCTRL treated cells, the MTT assay showed that the optical density (OD) values were markedly lower in TXNRD1-knockdown cells at indicated time points (Figure 10B). Similarly, the EdU assay showed the percentage of EdU‐positive cells was dramatically lower in HNSCC cells treated with siTXNRD1 (Figure 10C).




Figure 10 | Knockdown of TXNRD1 suppressed malignant activities of HNSCC cells in vitro. (A) The expression level of TXNRD1 was significantly reduced in HNSCC cells following siTXNRD1 treatment. (B) Compared to the siCTRL treated cells, the OD values were markedly lower in TXNRD1-knockdown cells at indicated time points. (C) The EdU assay showed the percentage of EdU‐positive cells was dramatically lower in HNSCC cells treated with siTXNRD1. ***P < 0.001. ****P < 0.0001.






Discussion

Metabolic reprogramming has been demonstrated to be essential for regulating the carcinogenesis of HNSCC. The energy consumption of neoplastic cells is increased to maintain their continuous growth and rapid proliferation (15). Nonetheless, the underlying molecular mechanisms for metabolic reprogramming in HNSCC are still unclear. Therefore, it’s urgently needed to figure out the potential metabolic enzymes that are correlative with the carcinogenesis of HNSCC. In this study, the common DEMEs between the TCGA HNSCC cohort and GSE37991 were identified. GO analyses of the common DEMEs revealed that the small molecule catabolic process, alpha-amino acid metabolic process, glycosyl compound metabolic process, etc., were enriched. In addition, a robust DEME-based prognostic signature including HPRT1, PLOD2, ASNS, TXNRD1, CYP27B1, and FUT6 was constructed based on the TCGA HNSCC cohort. More importantly, this six-gene prognosis signature was successfully validated in another independent cohort GSE65858. Moreover, we have built up a robust risk score-based nomogram model which might provide personalized therapeutic guidance for treating HNSCC. In vitro experiment revealed that the knockdown of TXNRD1 suppressed malignant activities of HNSCC cells.

Based on our study, ASNS, CYP27B1, TXNRD1, PLOD2, HPRT1 are identified as risky genes, and FUT6 is deemed as the protective gene. ASNS catalyzed the ATP-dependent conversion of aspartate to asparagine, which promoted the proliferation of tumor cells through acting as an amino acid exchange factor (16). Downregulation of ASNS led to the suppression of asparagine synthesis by p53 and the unbalance between asparagine and aspartate, which subsequently inhibited the proliferation of neoplasm cells (17). Overexpression of ASNS facilitated the growth, metastasis, and chemoresistance of neoplasm cells, and a metabolic vulnerability was shown in specified cancer models with low-ASNS expression (18). CYP27B1, the vitamin D metabolizing enzyme, was upregulated at the beginning of the cancer carcinogenesis process with an increased expression of the vitamin D receptor (19). Besides, CYP27B1 may weaken the anticancer functions by locally altering the catabolic and anabolic progress of active vitamin D in cancer (20). On the contrary, CYP27B1 inhibited the proliferation, invasion, and migration of ovarian cancer cells in vitro (21). TXNRD1 is increased in head and neck cancer, breast cancer, and lung cancer, and its overexpression is correlative with poor prognosis (22, 23). Suppression of TXNRD1 inhibited the proliferation and induced apoptosis of hepatocellular carcinoma cells by modulating redox balance in vitro (24). In addition, TXNRD1 may promote DNA replication, tumorigenicity, and drug resistance by inducing the generation of reactive oxygen species (25). Increased expression of PLOD2 has been found in many types of cancer including breast cancer, colorectal cancer, hepatocellular carcinoma, esophageal squamous cell carcinoma, etc. (26) In HNSCC, PLOD2 is essential for the invasion and metastasis by activating the function of integrin β1 (27). In terms of mechanism, PLOD2 induced collagen cross-linking and maturation, and thus affected the biogenesis of the extracellular matrix of cancer-associated fibroblasts and stellate cells in the tumor microenvironment (26, 28). HPRT1 is located on chromosome X and supplies recycled nucleotides to the cell cycle for DNA and RNA synthesis (29). Increased expression of HPRT1 was observed in many cancer types, indicating that HPRT1 may be a potential diagnostic and prognostic marker (30). FUT6 produced glycans for tumor cells via the PI3K/Akt signaling pathway, which was regulated by miR-125a-3p in colorectal cancer (31). Overexpression of FUT6 inhibited the malignant activities of neoplasm cells by suppressing the dimerization and phosphorylation of epidermal growth factor receptors (32).

Our robust metabolic enzyme-based risk signature has several advantages compared to the gene model with existing signatures. Firstly, to the best of our knowledge, currently few metabolic enzyme-based prognostic signatures are available for predicting the prognosis of HNSCC. Secondly, most prognostic signatures included up to 10 genes, which might be not facilitated for clinical application. Our model has simplified the number of genes in the risk signature to six. Thirdly, compared to many existing prognostic signatures, we have successfully constructed a metabolic enzyme-based nomogram model which showed great promise for therapeutic guidance for HNSCC. Fourthly, the multivariate analysis showed that metabolic enzyme-based prognostic signature was more robust for predicting the prognosis of HNSCC compared to the TNM stage.

Although our study might provide clinical guidance for treating HNSCC, several limitations are needed to be considered. Firstly, the detailed clinicopathological information such as M stage and HPV infection status is missing in most HNSCC patients. Therefore, the importance of these clinicopathological parameters couldn’t be included in the nomogram model. Secondly, most patients in the TCGA HNSCC cohort are whites. The effectiveness of the prognostic signature in other races is warranted for further validation. Thirdly, the AUC value of our metabolic-enzyme based risk signature was not high (data not shown), and needs further improvement. However, it is very difficult to use a risk model or a panel of biomarkers to accurately predict the prognosis of HNSCC. In the clinical setting, many clinicopathological parameters such as clinical symptoms, psychological condition and systemic diseases should be combined to comprehensively evaluate the clinical outcome of HNSCC. Finally, large-scale cohorts are needed to verify our DEME-based prognostic signature.



Conclusions

In summary, our study has identified the common DEMEs between HNSCC and normal controls, which may be correlative with the initiation and development of HNSCC. In addition, we have successfully built up and validated a robust DEME-based prognostic signature. Moreover, the nomogram model might provide useful guidance for the precision treatment of HNSCC.
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Multiple factors differentially influence treatment decisions in the first line treatment of recurrent/metastatic HNSCC. The EORTC Young investigator group launched a survey among treating physicians to explore the main influencing factors for treatment stratification. The questionnaire was posted as a web-survey link from May to August 2020. Next to defining the factors that mostly influence therapeutic decision the survey was complemented by a clinical case discussion of five patient cases. A total of 118 responses from 19 countries were collected. The key factors identified to guide treatment decision were performance status, PD-L1 Expression, time from last systemic treatment above or below 6 months, and disease burden.

Prospective evaluation of patient characteristics and additional potential predictive biomarkers for novel treatment options remains an important question to stratify personalized treatment for RM HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) represents the sixth most common type of cancer with 0.65 million new cases and 0.33 million deaths annually worldwide (1). Despite recent advances in the diagnosis and treatment of HNSCC, the median survival for patients with incurable, recurrent, or metastatic disease remains poor at around 10–15 months (2). Treatment intensification failed to improve outcome (3). To date, the epidermal growth factor receptor (EGFR)-targeted antibody cetuximab and programmed death receptor-1 (PD-1) antibodies nivolumab and pembrolizumab are approved as targeted agents for the treatment of HNSCC. With the introduction of immunotherapies both in first and second line treatments of HNSCC, the therapeutic options for patients have increased (4). Toxicities and QoL were favorable with immunotherapeutic treatment in comparison to chemotherapy (5). However, not all patients respond to PD-1 inhibition and for some patients with autoimmune diseases the risk of deterioration with such treatment modalities is essential. Multiple factors have been discussed, which differentially influence treatment decisions in the first line treatment of recurrent/metastatic HNSCC. However there is a lack of scientific evidence to provide adequate patient selection for tailored treatment (6, 7).

The EORTC young investigator group launched a survey among physicians treating head and neck cancer patients, to ask what are the main influencing factors used to stratify treatment for chemotherapy and cetuximab versus immunotherapy alone versus immunotherapy in combination with chemotherapy. Furthermore, we asked the participants to make treatment decisions for particular case presentation taking PD-L1 expression into consideration.



Methods

The questionnaire was posted as a web-survey link in the EORTC (European Organization for Research and Treatment of Cancer) head and neck cancer (HNC) mailing list reaching 419 EORTC members from May to August 2020. The questionnaire can be found in the Appendix. Data were collected via Survey Monkey (www.surveymonkey.com) and descriptive analyses were performed.

The survey consisted of 17 items divided in two parts: 12 items in part one and five clinical cases in part two. The participants were medical oncologists, radiation oncologists, and surgeons (otolaryngologist and maxillofacial).

In the first part of the survey we evaluated the experience in treating HNSCC and the environment where each respondent worked (presence or not of a multidisciplinary team). This was followed by the key questions regarding the factors that mostly influence therapeutic decision in the recurrent/metastatic (R/M) setting to choose chemotherapy plus anti-EGFR agent or chemotherapy in combination with immunotherapy (IO) or IO alone. Items to choose were burden of disease, time from last systemic treatment, presence of locoregional or metastatic disease, performance status (PS), tumor pain, hypercalcemia, treatment schedule, risk of bleeding, patient age, PD-L1 combined positivity score (CPS), and the presence of caregiver.

In the second part we proposed five clinical cases with different characteristics and asked the preferred treatment based on three different PD-L1 CPS value (PD-L1 CPS <1; PD-L1 CPS 1–19; PD-L1 CPS ≥20).



Results


Collection of Questionnaires

There were 118 responses to the questionnaire. The participants were predominantly male (61%), 53.9% of responders had an age between 40 and 55 years. The majority of participants (43.6%) treated 6–15 HNC patients per month. Countries that mainly contributed to the survey included Italy (40%), Germany (19%), France (6%), Netherlands (6%) Switzerland (6%), and Belgium (6%). Participants were medical oncologists (58.6%), radiation oncologists (20.7%), and head and neck surgeons (20.7%). Of these participants, 43.6% had more than 15 years of experience in head and neck cancer treatment and more than 95% of responders reported to work as part of an HNC multidisciplinary team in their hospital that discusses patients with both curative and palliative intent. Regarding the reimbursement policy for drugs used in R/M HNSCC, in the majority of the countries of the participants, cetuximab in first line only with cisplatin in combination with 5-fluorouracil (67.5%) and nivolumab in platinum resistant patients (92.1%) are reimbursed. Descriptive data of the responders are provided in Table 1.


Table 1 | Participants characteristics.





Factors Mostly Influencing Treatment Decisions

Within the questionnaire, physicians were asked to rate 5 factors to stratify the treatment for platinum in combination with cetuximab (e.g., EXTREME or TPEX protocol) in first-line treatment of R/M HNSCC (8, 9). The main factors identified were performance status, time from last systemic treatment >6 months, and a high burden of disease, respectively 82.8, 64.6, and 61.2% of responders. Moreover, we asked the main factors leading to choosing immunotherapy as monotherapy in the same setting, which were performance status (72.2%), PD-L1 CPS ≥20 (72.2%), and time from last systemic treatment <6 months (53.9%).

In the setting of combined treatment with chemotherapy and immunotherapy, physicians guided their decision on performance status and burden of disease (both 69.8%) and PD-L1 CPS 1–19 (62.2%). In Table 2 factors that mainly influenced treatment decision are summarized.


Table 2 | Factors that mostly influence treatment decision.





Clinical Case Discussion

In our survey we proposed 5 different clinical cases in different settings of R/M HNSCC according to pain, extension of disease, comorbidity, presence of caregiver, performance status, and time from last systemic treatment. We asked the participants to choose the preferred therapy (between chemotherapy + cetuximab, IO alone or IO + chemotherapy) regarding three alternative PD-L1 CPS (<1; 1–19; ≥20).

The first clinical case illustrated a male patient of 58 years old with an ECOG of 0 and with history of hypertension and previous hepatitis B (30 years ago). He was a previous smoker (20 packs/years). He consulted an Otorhinolaryngology specialist for having moderate dysphagia. He was diagnosed with an ulcerated lesion at the base of the tongue and right tonsil, and 4–5 cm nodes on the right neck (level IIa). The subsequent magnetic resonance imaging (MRI) and fluorodeoxyglucose–positron emission tomography (FDG-PET) confirmed the presence of an ulcerated right oropharyngeal lesion, pathologic nodes and showed bilateral lung nodules. Final clinical staging was cT4aN2bM1. In Table 3, we report the decisions based on different PD-L1 CPS values from the responders.


Table 3 | Clinical Case 1—Preferred therapy according to CPS value.



The second clinical case described a male patient of 62 years old diagnosed with HNSCC. He was a current smoker (120 packs/year) without relevant comorbidities, ECOG 0, who underwent a total laryngectomy + right (IIa–IIb–III,V) and left (II–III–IV) selective neck dissection (SND), right hemithyroidectomy and voice prosthesis placement. Based on TNM VIII edition the tumor was classified as pT3 pN2c cM0, R0, squamous cell carcinoma (SCC) with extracapsular extension (ENE+). The patient received adjuvant radiochemotherapy with cisplatin at a cumulative dose of platinum of 240 mg/m2. Two years later a computer tomography (CT) scan showed two lung nodules (10 and 8 mm) in the left upper lobe and another peribronchial nodule (8 mm) in the right lower lobe, with unsuccessful biopsy attempt. FDG-PET revealed next to the known lesion a large mass localized to left side of L5-S1 and left hemisacrum with bone erosion. The patient complained of left lower back pain with impaired ambulation, weight loss (5%) due to anorexia and asthenia. PS ECOG 1. Palliative radiotherapy (20 Gy) on L5-S1 was delivered. In Table 4, we report the decisions for systemic treatment of the responders regarding this case based on different PD-L1 CPS value.


Table 4 | Clinical Case 2—Preferred therapy according to CPS value.



The third clinical case described a male patient, 71 years old, PS ECOG 0, never smoker. He had a history of ulcerative colitis that was diagnosed at the age of 54 and treated with mesalazine in the clinical phase of remission. He had a left tonsillectomy with partial excision of the base of tongue plus modified left neck dissection (levels I–IV), with final diagnosis of SCC, p16+ and HPV 16 + pT2 pN2b cM0, R0, ENE+, stage III. This treatment was followed by 3 months of adjuvant concomitant chemoradiotherapy on the neck nodes (66/54 Gy) and cisplatin cumulative dose 260 mg/m2. Three months later FDG-PET showed mediastinal and right hilar nodes (dimension 17 × 7 and 22 × 12 mm) and a small nodule at the right lower lung with maximum diameter of 8 mm. Bronchoscopy and sampling of the node confirmed the diagnosis of SCC, p16 positive. The patient had no signs or symptoms and maintained a social life and working activities. Table 5 summarizes the answers of the responders of the questionnaire.


Table 5 | Clinical Case 3—Preferred therapy according to CPS value.



The fourth clinical case described a female patient of 47 years old, with a PS ECOG 2 due to comorbidities with mild mental impairment, anxiety and depression. A caregiver was present to help her with her everyday needs. Medical history revealed arterial hypertension and polyarticular juvenile idiopathic arthritis since her childhood in treatment with methylprednisolone 4 mg. She underwent a mandibulectomy + maxillectomy + right selective neck dissection. The pathology report revealed a grade 2 SCC of the oral cavity, pT4b pN2b (2/55 ENE-) cM0. She underwent adjuvant concomitant chemoradiotherapy, with RT up to 60/54 Gy, and with a cumulative cisplatin dose of 200 mg/m2. After three months, due to the appearance of mild dyspnea, a chest CT scan was performed with evidence of left pleural effusion and progression of disease at the lung and a bone lesion art the sternum. In Table 6, we report the treatment decision of our responders, based on different PD-L1 CPS values.


Table 6 | Clinical Case 4—Preferred therapy according to CPS value.



The fifth clinical case was about a male patient, 74 years old, ECOG 1. In October 2014 he underwent concomitant chemoradiotherapy for a supraglottic laryngeal SCC, cT2 cN2 cM0 (up to 70 Gy) with cumulative cisplatin dose of 300 mg/m2. Eleven months later he underwent neck dissection due to nodal relapse. Furthermore, 3 years after initial diagnosis, level V on the left was re-irradiated due to unresectable relapse. Another 2 years later a CT showed vascularized tissue with irregular margins of 32 × 32 mm at the left laterocervical site adjacent to the surgical clips. The patient complained about pain localized to the tumor recurrence. Here we report decisions based on different PD-L1 CPS values from responders (Table 7).


Table 7 | Clinical Case 5—Preferred therapy according to CPS value.






Discussion

Treatment decision in R/M HNSCC remains challenging. No internationally accepted treatment guideline exists to guide the decision-making process. Medical treatment is considered the standard approach in the palliative setting, however for a minority of patients salvage surgery or (re-)irradiation might be an option. The survey was answered by the EORTC members of the Head and Neck cancer group, which represents a community of experts of the field and therefore is not representative for all physicians. CheckMate-141, Keynote-040, and Keynote-48 trials (2, 10, 11) led to the introduction of immune checkpoint inhibitors (ICIs) into the palliative treatment of HNSCC in platinum sensitive or resistant patients, thus providing an alternative to chemotherapy, which is beneficial in regard to tumor control for a subset of patients. However, toxicities which impair quality of life do occur more often with chemotherapy combinations, which has led to the widespread use of immunotherapies. Currently, PD-L1 expression is the only established biomarker to stratify treatment decisions (12). However, a multitude of other factors play a minor or major role in deciding for or against a chemotherapeutic regimen with or without the combination with ICIs. Stzurz and Vermorken in their editorial commentary to Keynote-048 showed the complexity of therapeutic choices in R/M HNSCC, other than PD-L1 CPS values (12). Physicians have to consider multiple variables, namely, biological age (from fitness to frailty), tumor dynamics, and burden of disease. In our survey, the most important decision factor in the palliative setting was the performance status of the patient for the three treatment options given. We interpreted this in the way that good performance status is a fundamental prerequisite for receiving chemotherapy, otherwise this treatment being detrimental for the patient. On the opposite, immunotherapy could be perceived as a treatment with less toxicity, therefore suitable also for patients with lower PS. However, it should be acknowledged that PS is also the strongest predictor of PFS and OS in patients treated with immunotherapy (13). Next to performance status, treatment decision for immunotherapy alone or in combination with chemotherapy is mainly guided by the time from last platinum-based treatment and PD-L1 expression. This is in line with the published data of platinum refractory disease (10, 14) and the inclusion criteria of the Keynote-48 trial (2). Currently, limited data from prospective clinical trials exist regarding the dynamics of response under checkpoint inhibition. Due to the limited overall response rate achieved with immunotherapy alone (less than 20% in the unselected population) (2, 10), the majority of physicians participating in this survey voted for the combination with chemotherapy when a situation of high tumor burden exists. It should be underlined that obtaining response to treatment is crucial in particular when facing disease with high tumor burden and corresponding symptoms (15). The survey was complemented by a clinical case discussion, which took most factors guiding treatment decisions into account. Responses appeared to be guided by PD-L1 CPS as one of the most important factors; however, also in case of high PD-L1 CPS, there was a relatively high quote of respondents choosing combination of chemotherapy plus IO, mainly in cases where the high tumor burden (case #1) or the symptoms (mainly pain) complained by the patients justified the need to achieve tumor response (case #2 and #5). It is interesting to observe that also in the third case responses were guided by PD-L1 CPS expression, even in presence of an autoimmune comorbidity. The anamnesis of ulcerative colitis did not lead the majority of participants of the survey to avoid IO, possibly due to the fact that the autoimmune disease was reported as being under control and without high steroid use. Until recently, no large cases series of patients with inflammatory bowel disease and immune checkpoint inhibition have been published, and patients with active autoimmune diseases have been excluded from most of clinical trials leading to registration of IO in the different cancer sites. Also, the fourth case presented with the comorbidity of a polyarticular juvenile idiopathic arthritis, in active treatment with low steroid dose; the disease-free interval since last platinum dose was 3 months, therefore prompting many respondents to propose the use of IO alone. About one-third of the physicians would have chosen a combination of chemotherapy and cetuximab, considered to be less at risk of toxicities than IO.

Given the obvious limitations of such a survey in general, the collected responses were in line with current treatment recommendations by the European Society of Medical Oncology (ESMO) (6). There is broad consent of treatment with ICI in platinum refractory or nonsymptomatic PD-L1 positive tumor patients. For patients with low or negative PD-L1 expression the choice of the appropriate chemotherapy combination with or without IO has not been defined and especially elderly and frail patients, who do represent a large proportion of patients, remain not adequately represented in trials. This makes general treatment recommendations impossible. The aim of systemic treatment should always be evaluated, if being primarily directed to achieve treatment response or to prolong overall survival. Discussion with the patient and caregivers should also be a central point in treatment choice, evaluating preferences and expectations of the patient. Geriatric assessments or evaluation of the frailty of the patient should be prospectively evaluated to improve patient outcome in this vulnerable population (16). These points highlight a field of missing data in the decision process for the right treatment. Considering all these factors, we support treatment personalization as being crucial in clinical decision making, in a time where different treatments are available for R/M HNSCC patients.


Conclusion

Immunotherapy has changed the therapeutic landscape in RM HNSCC. Our survey showed how clinical decisions in a real world setting are based mostly on performance status, PD-L1 CPS expression, burden of disease, and time from last systemic treatment. Prospective evaluation of patient characteristics and additional potential predictive biomarkers for novel treatment options remain an important quest to stratify personalized treatment for RM HNSCC.
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Purpose

To investigate the role of different multi-organ omics-based prediction models for pre-treatment prediction of Adaptive Radiotherapy (ART) eligibility in patients with nasopharyngeal carcinoma (NPC).



Methods and Materials

Pre-treatment contrast-enhanced computed tomographic and magnetic resonance images, radiotherapy dose and contour data of 135 NPC patients treated at Hong Kong Queen Elizabeth Hospital were retrospectively analyzed for extraction of multi-omics features, namely Radiomics (R), Morphology (M), Dosiomics (D), and Contouromics (C), from a total of eight organ structures. During model development, patient cohort was divided into a training set and a hold-out test set in a ratio of 7 to 3 via 20 iterations. Four single-omics models (R, M, D, C) and four multi-omics models (RD, RC, RM, RMDC) were developed on the training data using Ridge and Multi-Kernel Learning (MKL) algorithm, respectively, under 10-fold cross validation, and evaluated on hold-out test data using average area under the receiver-operator-characteristics curve (AUC). The best-performing single-omics model was first determined by comparing the AUC distribution across the 20 iterations among the four single-omics models using two-sided student t-test, which was then retrained using MKL algorithm for a fair comparison with the four multi-omics models.



Results

The R model significantly outperformed all other three single-omics models (all p-value<0.0001), achieving an average AUC of 0.942 (95%CI: 0.938-0.946) and 0.918 (95%CI: 0.903-0.933) in training and hold-out test set, respectively. When trained with MKL, the R model (R_MKL) yielded an increased AUC of 0.984 (95%CI: 0.981-0.988) and 0.927 (95%CI: 0.905-0.948) in training and hold-out test set respectively, while demonstrating no significant difference as compared to all studied multi-omics models in the hold-out test sets. Intriguingly, Radiomic features accounted for the majority of the final selected features, ranging from 64% to 94%, in all the studied multi-omics models.



Conclusions

Among all the studied models, the Radiomic model was found to play a dominant role for ART eligibility in NPC patients, and Radiomic features accounted for the largest proportion of features in all the multi-omics models.





Keywords: nasopharyngeal carcinoma, adaptive radiotherapy, radiomics, dosiomics, multiomics approach



Introduction

Nasopharyngeal carcinoma (NPC) presents immediate proximity to a variety of surrounding critical healthy organs such as spinal cord and brainstem within an intricated nose-pharynx ministry, dysfunction of which can incur catastrophic complications. At present, concurrent chemo-radiotherapy (CCRT) is a standard-of-care remedy for advanced NPC patients; adoption of Intensity-modulated Radiotherapy (IMRT) allows for highly conformal and precise dose delivery to the treatment targets, meanwhile protecting the adjacent healthy tissues. Notably, the success of treatment relies on an assumption that the patient anatomy remains throughout the 6-7 weeks of IMRT course. In response to treatment perturbations, however, tumors and surrounding healthy organs may exhibit significant morphometric volume and/or geometric alterations, which may jointly alter patient anatomy and jeopardize the efficacy of the original treatment plan (1–3). The issue of these variabilities can be more detrimental in the IMRT era, where slight anatomic deviations may deleteriously lead to significant dosimetric consequences due to the sharp dose falloff beyond the target lesions. Confronted with this, Adaptive Radiotherapy (ART), a modification of the original treatment plan, has been introduced to compensate for these patient-specific variations. The dosimetric and clinical benefits of ART for NPC patients have been well-documented in the literature (1–7).

Notwithstanding, ART generally involves re-imaging, re-segmentations of tumor and organs-at-risk (OARs), and re-planning, requiring a highly specialized multidisciplinary team. This labor-intensive and time-consuming nature of ART procedures preclude the feasibility of routine ART practice on a patient basis in clinic. In light of this, tremendous effort has been constantly made to evaluate the underlying morphometric and geometric variations of patient anatomy amid the radiotherapy course, in the hope of streamlining clinical implementation of ART (8–20).

Radiation dose has long been regarded as a prime attribute for morphometric volume change of tumors, neck lesions and bilateral parotid glands throughout the treatment course. Bahl et al. (8) prospectively analyzed volumetric alterations in 20 NPC patients between pre-treatment computed tomography (CT) and mid-treatment CT at the 17th fraction. They reported approximately 30% shrinkage of high-risk gross-tumor-volume (GTV), which was accompanied with a significantly increased median dose of 7.2-7.7 Gy to and reduced volume of bilateral parotid glands. Another prospective study by Cheng et al. (9) demonstrated that the anatomic tissue shrinkage was dependent on radiation dose received. They analyzed repeated planning CT and magnetic resonance images (MRI) at 30-Gy and 50-Gy intervals and reported that the shrinkage of both primary NPC tumor and nodal lesions against pre-treatment baselines were higher when 50-Gy was delivered (13% and 29%, respectively) than that when 30-Gy was given (9% and 16%, respectively) and a similar trend was also observed for bilateral parotid glands. Further evidence was also observed by Hu et al. (10) who analyzed 40 re-planned NPC patients and confirmed the significant shrinkage of 35% in clinical-target-volume, and by Murat et al. (11) who reported a median reduction of 27% and 43% in primary and nodal GTV, respectively, in 48 re-planned head-and-neck cancer patients.

Notably, volumetric shrinkages of these organ structures are often accompanied with geometric shifts of internal structures (12, 13) and/or body contour modification (14, 15), which may in concert contribute to an elevated risk of ill-fitted immobilization cast during daily setup (14, 15) and/or detrimental consequences following treatment [e.g., overdosing to OARs (7, 16, 17), underdosing to targets (7, 12)], triggering the demand for ART. In view of this, research community has introduced numerous criteria as ART triggers (11, 12, 18–20), mainly on dosimetric aspects. Nevertheless, most of these factors require close monitoring throughout the radiotherapy course for each patient, pre-treatment prediction of ART eligibility is greatly demanding. Further, these factors are deficient in capturing inter-patient disparity in intrinsic biologic response of tissue upon receiving treatment perturbation.

Until more recently, emerging Radiomics has opened up opportunities for divulging concealed biologic traits and genetic association of tumor and organ structures (21–23). There is mounting evidence in the literature showing the power of Radiomics in predicting treatment response on the ground of volume shrinkage in various cancer diseases (24–29), which has laid great foundation for Radiomics prediction of ART demand in cancer patients. Ramella et al. performed radiomic analysis on pre-treatment CT images of replanned non-small cell lung cancer patients and generated a radiomic signature for prediction of tumor shrinkage during chemo-radiotherapy, yielding an Area Under the Receiver Characteristics Curves (AUC) of 0.82 (27). For the first time, Yu et al. generated several radiomic models for ART eligibility in NPC patients using tumoral radiomic features from multi-parametric pre-treatment MRI, achieving AUCs ranging from 0.75 to 0.93 (15). It is worth noting that ART eligibility is multifactorial in nature. Joint response of multiple organ structures upon treatment perturbations, treatment aggressiveness, and pre-treatment geometric and morphologic condition of patient anatomy, may all come into play for triggering ART.

Therefore, it is pertinent to investigate the role of these attributes, in the form of -omics features, from multiple relevant organ structures within head-and-neck regions using pre-treatment CT, MRI, contours, and three-dimensional dose map for prediction of ART eligibility in NPC patients, which constituted the main objective of this present study. The success of this study may provide the community with valuable insights into developing ART screening strategies in future, particularly in view of the soaring demand of ART in this vulnerable subgroup of cancer sufferers in the IMRT era.



Methods and Materials


Patient Data

This study is a retrospective analysis of 261 NPC patients who received radiotherapy at Hong Kong Queen Elizabeth Hospital between 2012 and 2015. Patient informed consent was waived due to the retrospective nature of this study. Patients were included if they (1) were diagnosed with biopsy-proven primary NPC without presence of distant metastasis and co-existing tumors of other types at presentation (2), underwent curative concurrent chemo-RT (CCRT) or CCRT plus adjuvant chemotherapy (AC), and (3) were treated with Helical Tomotherapy. Patients were excluded if they (1) received induction chemotherapy before CCRT treatment, or (2) received RT-alone without concurrent chemotherapy, or (3) did not receive injection of contrast agent for obtaining planning contrast-enhanced CT (CECT) images or planning contrast-enhanced T1-w (CET1-w) MR images, or (4) did not have complete set of clinical/image data. The binary status of whether or not an individual patient has undergone ART treatment during their main course of RT at the discretion of radiation oncologist was chosen as the clinical endpoint for this study. Patients were labelled as 1 if he/she has received ART treatment, otherwise were labelled as 0.



Image Acquisition

All the enrolled patients underwent pre-treatment planning CECT and MRI scans, which were retrospectively retrieved in Digital Imaging and Communications in Medicine (DICOM) format, archived using Picture Archiving and Communication System (PACs). Details of imaging parameters can be found in Supplementary A1.



Volume-of-Interest (VOI) Definition

There were a total of 8 different VOIs of organ structures involved in this study, including gross-tumor-volume of primary NPC tumor (GTVnp) and metastatic lymph nodes (GTVn), ipsi-lateral parotid gland (IpsiPG), contra-lateral parotid gland (ContraPG), brainstem (BS), spinal cord (SC), high-dose and low-dose regions of nodal planning target volume (PTVn_high_dose for the PTVn with the prescribed dose level of 70-Gy, PTVn_low_dose for the PTVn with the prescribed dose level of 60-Gy, respectively). Figure 1 illustrates location of each VOI involved in this study.




Figure 1 | Illustration of the eight VOIs involved in this study.



GTVnp was manually delineated on axial CT slices after registration with planning MR images, and GTVn was delineated on CECT images by an experienced radiation oncologist specializing in head-and-neck cancers with accreditations, in accordance with International Consensus Guidelines for the CT-based delineation of neck levels (30). To determine whether each of the segmented parotid glands (PG) belongs to IpsiPG or ContraPG for each patient, the minimum geometric distance between a particular voxel point on the PG volume and all voxel points on the GTVnp surface was first determined. This procedure was repeated for another voxel point on the PG volume until the minimum distances between each of all the voxel points on the PG volume and the GTVnp surface were determined. Lastly, a median value of these calculated minimum distances was obtained to determine the overall proximity of that PG to the GTVnp for each patient. The PG with smaller median value of the minimum distances was denoted as IpsiPG, otherwise it was denoted as ContraPG. All segmentations were carried out using Varian ARIA and Eclipse treatment planning system v13 (Varian Medical Systems Inc, Palo Alto, CA).



Multi-Omics Feature Extraction


Radiomics (R) and Morphology (M)

Prior to radiomic feature extraction, a series of image preprocessing steps were performed on CECT and MR images according to well-recognized recommendations from the Image Biomarker Standardisation Initiative (IBSI) guidelines (31), using our in-house developed Python-based (v3.7.3) platform. Details of the image preprocessing procedures can be found in Supplementary A2.

In this study, 4 different VOIs of organ structures (GTVnp, GTVn, IpsiPG and ContraPG) were involved in radiomic feature calculations. Extraction of radiomic features was performed using the publicly available SimpleITK (v1.2.4) and PyRadiomics (v2.2.0) packages embedded in our platform in accordance with the IBSI guidelines (31). Radiomic features can be generally divided into three major families: morphologic features, first-order statistics, and texture features which can be further categorized into Gray Level Difference Matrix (GLDM), Gray Level Cooccurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM) classes. Radiomic feature calculations were performed on CECT, CET1-w and T2-w MR images, with and without being filtered by Laplacian of Gaussian (LoG) filter (kernel size: 1-mm, 3-mm, 6-mm) and wavelet filters (HHH, HLL, LHL, LLH, LHH, HLH, HHL, LLL). In this study, morphologic features of all the 4 VOIs were separated from the radiomic feature set, resulting in a total of 6,348 radiomic features for each studied VOI. A total of 14 morphologic features, including elongation, flatness, least axis length, major axis length, minor axis length, maximum 2D diameter column, maximum 2D diameter row, maximum 2D diameter slice, maximum 3D diameter, mesh volume, sphericity, surface area, surface volume ratio, voxel volume, for each of the 4 VOIs (i.e., GTVnp, GTVn, IpsiPG, and ContraPG) were combined to form a set of 56 features. Detailed definitions of the radiomic and morphologic features can be found on the Pyradiomics documentation (https://pyradiomics.readthedocs.io/en/latest/features.html).



Dosiomics (D)

All the 8 different VOIs of organ structures were employed for dosiomic feature calculation using RT dose data. Conventional dose-volume histogram (DVH) does not contain information on spatial dose distribution within irradiated organs. By contrast, dosiomics is capable of characterizing spatial pattern of local radiation dose distributions within the 8 studied VOIs. It has been extensively studied in various predictive modelling for cancer prognosis and treatment responses (32, 33). In this study, dosiomic features of DVH curve points for the 8 VOIs were calculated based on the method adopted by Gabryś et al. (34), examples include but not limited to maximum dose, minimum dose, mean dose, volume of the VOI receiving at least certain dose levels, and minimum dose received by certain volume of the VOI. Besides, spatial dose distribution within each studied VOI was extracted to comprehensively depict the heterogeneity of deposited dose, such as dose gradients along the three imaging axes (x-, y- and z-directions). The definitions of these features were described in a previous publication by Buettner et al. (35). Further, the three-dimensional (3D) dose distribution within each studied VOI was transformed into a 3D image, such that radiomics-alike dosiomics features were subsequently calculated using the PyRadiomics package; examples include first-order dose statistics, GLDM, GLCM, GLRLM, GLSZM and NGTDM. A total of 1608 dosiomic features were extracted from the 8 VOIs in this study.



Contouromics (C)

In this work, we extracted features that depict complex geometric relationships between 4 pairs of VOIs of organ structures (GTVnp and IpsiPG, GTVnp and ContraPG, GTVnp and SC, and PTVn_low_dose and SC), on the ground that the implementation of ART is triggered by change of geometric relationship of different internal organs within head and neck regions. These features were extracted from the RT contour data. For the first time, they were termed as “Contouromics” in this study. For each of the VOI pairs, a series of contouromic features were calculated from a distance descriptor overlap-volume histogram (OVH), as adopted in a previous publication (36); for instance, the maximum and minimum distances between SC and PTVn_low_dose during the treatment planning stage were calculated as the distances on the OVH at zero and full volume, respectively. In this study, the calculation of OVH was implemented using the algorithm employed in a previous publication (37). Besides, an angle descriptor projection-overlap-volume (POV), defined as one VOI that overlaps with the parallel projection of another VOI at specific projection angle, was used for further divulging potential contouromic features from the VOI pairs. A total of 132 contouromic features were extracted from the 4 pairs of VOIs in this study. Table 1 summarizes the sources of VOIs involved in calculation of the four types of -omics features studied. 


Table 1 | Summarizes the sources of VOIs involved in calculation of the four types of -omics features studied.






Determination of Optimal Feature Selection (FS) Algorithms for Each -Omics Dataset

Feature dimensionality reduction is considered essential in machine learning when it comes to minimizing the risk of model overfitting. Although there are a multitude of unsupervised and supervised FS algorithms currently available for assessing redundancy and outcome relevance of the studied features, an optimal combination of both kinds of FS algorithms remains unclear. In this study, a total of 6 unsupervised and 4 supervised FS algorithms that have been commonly adopted in machine learning were studied (38) and are publicly available (https://jundongl.github.io/scikit-feature/algorithms.html), giving rise to a resultant amount of 24 FS combinations (Supplementary Figure S1).

A proper selection of FS combination for a particular feature set is crucial to ensure that the final selected features of a prediction model are of high discriminability (i.e., high score of Area Under the Receiver Operating Characteristics Curve, AUC score) and high reproducibility under multiple train/test splits of the dataset (i.e., high feature output stability score). To this end, we adopted a strategic workflow (Supplementary Figure S2) to calculate both scores and determined the optimal FS combination using a decision graph (Supplementary Figure S3) for a particular -omics dataset. More details can be found in Supplementary A3.



Development and Evaluation of ART Prediction Models

In this study, a total of 4 single-omics models (R, M, D, C) and 4 multi-omics models (RM from R+M, RD from R+D, RC from R+C, RMDC from R+M+D+C) were developed using the corresponding -omics features from multiple VOIs of organ structures.

Figure 2 shows a schematic diagram for model development. The patient cohort was divided into a training dataset and a hold-out test dataset in a ratio of 7 to 3 via 20 iterations. The optimal supervised FS algorithm was applied only to the training dataset of each iteration to maintain clinical relevance of the remnant features. The optimal unsupervised FS algorithm was subsequently applied to remove highly redundant features, leading to a reduced feature set of K features. Development of prediction models was conducted with the initial K features using the Ridge algorithm (for single-omics model) or Multi-Kernel Learning (MKL) algorithm (for multi-omics model) via a 10-fold cross-validation (CV) within the training set to mitigate the risk of model overfitting. Evaluation of model discriminability, in aspects of AUC, was performed on the hold-out test set of each iteration. The model development process was repeated on (K-1) features after removing the feature of the lowest ranking of frequency of occurrence across the 20 iterations until one feature remained in the feature set. An optimal prediction model was finally determined when the average AUC on the hold-out test datasets reached its maximum.




Figure 2 | Shows a schematic diagram for model development. T, Training set; H, Hold-out test set; FS, feature selection; MKL, Multi-Kernel Learning; CV, Cross-Validation; AUC, Area Under the Receiver Operating Characteristics Curves.



With regard to the model training algorithm, Ridge classifier was adopted for generation of the 4 single-omics models. It is a typical statistical approach for resolving bias-variance trade-off with the use of a linear function; the principles and advantages of Ridge algorithm have been well-documented (39). On the other hand, MKL algorithm was applied for development of multi-omics models in this study. Unlike single-omics features, different types of multi-omics data may contain distinctly different data representations. Ridge algorithm is deficient in capturing the difference in representations of multi-omics data and non-linear relationship between predictors and prediction outcome. Therefore, MKL was adopted in this study with an attempt to divulging complementary (non-linear) relationship between different types of -omics features and prediction outcomes. Specifically, two types of kernels (Gaussian and Polynomial) with a range of kernel parameters were applied. Each kernel was embedded into the feature space of a given multi-omics feature set for subsequent multi-omics fusion. Supplementary Figure S4 illuminates the multi-omics fusion framework in our study. More details of the MKL algorithms can be found in Supplementary A4 and a previous publication (40).



Model Comparison and Statistical Analysis

For single-omics models, discriminability of the final radiomic model (R), in terms of distribution of the AUC scores across the 20 iterations, was compared against the other 3 single-omics models (M, D, and C) in both training and hold-out test datasets. For multi-omics models, discriminability of the final RMDC model was compared against the other 3 multi-omics models (RM, RD, and RC) in both training and hold-out test datasets. Further, we also compared the best-performing single-omics model against all the 4 studied multi-omics models (RM, RD, RC, and RMDC). With this regard, the selected single-omics model was firstly re-trained using MKL algorithm for achieving a fair comparison with multi-omics models.

Statistical estimates of model discriminability in terms of average AUC, its standard deviation (STD) and 95% confident interval (95%CI) across the 20 iterations for all the studied prediction models were reported in this study. Two-sided paired student t-test was employed for the abovementioned comparisons. On the other hand, Chi-square test was employed to assess statistical difference of categorical patient clinical factors between patients who received ART and those who did not, while two-sided student t-test was applied for continuous clinical factors. A p-value of ≤ 0.05 was considered statistically significant.




Results


Patient Characteristics

A total of 135 NPC patients (35 experienced ART, approximately 26%) were finally considered eligible for this study. Table 2 summarizes major characteristics of the patients. There were no statistically significant differences in the studied clinical factors between patients who experienced ART and those who did not.


Table 2 | Patient clinical characteristics.





Optimal FS Combination Determination and Model Development

Optimal combinations of FS algorithms for the 4 single-omics datasets (R, M, D, C) and the 4 multi-omics datasets (RM, RD, RC, RMDC) were determined using the decision graphs (Supplementary Figures S5A–H) and were summarized in Supplementary Table S1.

Supplementary Figures S6A–D and S7A–D illustrate the change of average AUC scores (and its STD shown in shadow) in both training and hold-out test sets against varying number of features for the 4 single-omics models and the 4 multi-omics models, respectively. Final models were determined when the average AUC scores on the hold-out test sets reached its maximum.

Table 3 summarizes the total number and distribution of the selected features in the final models. Interestingly, it can be observed that radiomic features are dominant in all the four multi-omics models, compared to M, C, and D features.


Table 3 | A summary of total number and distribution of selected features in the final models.





Model Comparison

Figures 3A, B indicates box-whisker plots of the average AUC distributions for the final single-omics models, and Figures 3C, D for the multi-omics models and the Radiomic models trained by using MKL algorithms, in training and hold-out test sets. A summary of the statistical estimates of model performance is provided in Tables 4A, B.




Figure 3 | (A–D) Box-whisker plots of the average AUC distribution for the final single-omics models in training set (A) and hold-out test set (B), and for the multi-omics models and the Radiomic models trained by using MKL algorithms in training (C) and hold-out test set (D).




Table 4(A-B) | A summary of statistical estimates on performance of single-omics models (4A), multi-omics models and the Radiomic model trained by using MKL algorithm (4B).



From Figures 3A, B and Table 4A, it can be seen that the Radiomic model (R) significantly outperformed all other studied single-omics models (p-value < 0.0001), achieving an average AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training set and 0.918 (STD: 0.034, 95%CI: 0.903-0.933) in the hold-out set.

The Dosiomic model (D) was the second best single-omics model with an average AUC of 0.895 (STD: 0.018, 95%CI: 0.887-0.903) in the training set and 0.811 (STD: 0.029, 95%CI: 0.798-0.824) in the hold-out set. This was followed by the Morphologic model (M) which yielded an average AUC of 0.740 (STD: 0.032, 95%CI: 0.726-0.754) in the training set and 0.643 (STD: 0.078, 95%CI: 0.608-0.677) in the hold-out set, while the Contouromic model (C) was the most underperforming model, producing an average AUC of 0.664 (STD: 0.052, 95%CI: 0.641-0.687) in the training set and 0.550 (STD: 0.082, 95%CI: 0.514-0.586) in the hold-out test set.

From Figures 3C, D and Table 4B, it can be observed that the RMDC model had the highest AUC of 0.997 (STD: 0.003, 95%CI: 0.995-0.998) in the training set and 0.943 (STD: 0.029, 95%CI: 0.931-0.956) in the hold-out set, compared to other types of multi-omics models. While it statistically outperformed the other three studied multi-omics models (RM, RD, and RC) in the training set, it did not reach the statistical significant level in the hold-out test set.

Notably, when the R model was re-trained using MKL algorithm (referred to as R_MKL model), the average AUC boosted to 0.984 (STD: 0.008, 95%CI: 0.981-0.988) in the training set and 0.927 (STD: 0.050, 95%CI: 0.905-0.948) in the hold-out set. The development and performance of the R_MKL model can be seen in Supplementary Figure S7E, Figures 3C, D and Table 4B. Surprisingly, further comparisons between the R_MKL model and all the 4 studied multi-omics models indicated that there were no significant differences in model discriminability between R_MKL and all other multi-omics models in the hold-out test set (Figure 3D and Table 4B).




Discussion

ART aims to compensate for patient-specific anatomic variations in NPC patients between fractions, while routine ART implementation on patient basis would undoubtedly pose immense burden to clinic. Previously, we were the first to demonstrate the capability of tumoral Radiomics from pre-treatment MRI for prediction of ART eligibility in NPC patients (15). In this study, we investigated a variety of single-omics and multi-omics models from multi-modal images, with an eye towards identifying their roles in predicting ART eligibility in NPC and providing insights into development of ART eligibility screening strategy in NPC in the long run. In this discussion, we attempted to highlight key findings of our study, scrutinize possible underlying reasons, and provide research community with potential directions in the future.

Results of our study showed that the R model significantly outperformed all other studied single-omics models (i.e., M, C and D models, all p-value < 0.0001), achieving an average AUC of 0.942 (STD: 0.009, 95%CI: 0.938-0.946) in the training set and 0.918 (STD: 0.034, 95%CI: 0.903-0.933) in the hold-out test set (Figures 3A, B and Table 4A). Among the studied multi-omics models, the RMDC had the highest average AUC in both cohorts (Figures 3C, D and Table 4B), however, its difference to the other three models (RM, RD and RC) did not reach the level of statistical significance in the hold-out test sets (Table 4B). Surprisingly, there was no statistical difference between the R_MKL and all the studied multi-omics models in the hold-out set (Table 4B). In other words, addition of other types of -omics features into a radiomic model did not demonstrate statistically significant improvement in model performance, suggesting the dominant role of Radiomic features in prediction of multifactorial ART eligibility in NPC. Besides, Radiomic features accounted for majority of the final selected features, ranging from 64% to 94%, in all the studied multi-omics models (Table 3). We speculated that the dominant role of Radiomics found in this study could partially be explained by both the unique nature of Radiomics and the multi-factorial nature of the ART eligibility.

First, the outstanding predictability of Radiomics in this study may largely lie in its unique capability in unraveling intrinsic tissue property regarding response to treatment perturbations, which can be tissue-type dependent and patient-specific. There is mounting evidence in the literature showing the power of Radiomics in predicting treatment response in various cancer diseases (24–29). For instance, Hou et al. investigated CECT-based biomarkers for prediction of therapeutic response to chemo-radiotherapy in esophageal carcinoma and reported the discriminability of their model in AUC ranging from 0.686 to 0.727 (24). Wang et al. developed a radiomic signature combining features from multi-modal MR imaging sequences for prediction of early treatment response to induction chemotherapy in NPC patients, achieving an AUC of 0.822 (25). Piao et al. devised a MR-based radiomic model to distinguish sensitive and resistant tumors in NPC patients following induction chemotherapy, yielding an AUC of 0.905 (26). In these studies, the tumor response was defined in accordance with the Response Evaluation Criteria in Solid Tumors (RECIST) via quantitative assessment of tumor shrinkage, which follows the same line of thought as in this present study. Apart from this, Ramella et al. performed radiomic analysis of pre-treatment CT images of replanned non-small-cell lung cancer patients and generated a radiomic signature for prediction of tumor shrinkage during chemo-radiotherapy, yielding an AUC of 0.82 (27). Yu et al. analyzed tumoral radiomic features from multi-parametric pre-treatment MRI of NPC patients and developed several prediction models for ART eligibility, achieving AUC ranging from 0.750 to 0.930 (15). All the above evidence indicates the outstanding capability of Radiomics in divulging patient-specific intrinsic tissue biologic characteristics for discerning respondent and non-respondent cancer patients upon treatment perturbations, laying great foundation for predicting patient-specific anatomic variations for ART eligibility for NPC in this study.

By contrast, Dosimoics mainly characterizes aggressiveness of a specific treatment plan by capturing dose statistics from the entire three-dimensional dose distribution map within each of the studied organ structures, while it appears to convey little information on tissue responsiveness upon treatment perturbations. To a degree, this may shed some light on the well-recognized phenomenon where the same-staged patients experienced a diverse range of treatment outcome/response following identical treatment (same degree of treatment aggressiveness). Herein, we emphasize that results of our study do not deny the potential of Dosiomics in predicting treatment response. Indeed, it is worth noting that the D model was the second best-performing model in this study, giving rise to an average AUC of 0.895 (STD: 0.018, 95%CI: 0.887-0.903) in the training set and 0.811 (STD: 0.029, 95%CI: 0.798-0.824) in the hold-out test set (Figures 3A, B and Table 4A). This result appears in agreement with most of the previous studies investigating triggering factors for ART in NPC (8–20), where radiation dose deposited was regarded as a prime factor for morphologic volume shrinkage of targets and OARs during the RT course, which may in turn incur intolerable dosimetric deviations from initial treatment plan and hence trigger ART implementation. For instance, Cheng et al. (9) analyzed repeated planning CT and MR scans at 30 and 50-Gy intervals. They reported that the shrinkage of both primary tumor and nodal lesions were higher when 50-Gy was delivered (13% and 29%, respectively) than that when 30-Gy was given (9% and 16%, respectively) and similar trend was also observed for bilateral parotid glands, which jointly led to significant increase in doses to numerous critical OARs, triggering implementation of ART. In this regard, several research groups have also suggested to incorporate dosimetric deviations in targets and/or OARs (such as parotid glands) as part of the ART regimen (12, 18–20). Of note, although Dosiomics has recently been studied for prediction of toxicity (32, 34, 41–43) and prognosis (33, 44) in cancer patients, its potential in treatment response prediction, in particular on the basis of the RECIST criteria, has not been reported. Future studies in this aspect are recommended to confirm its capability in this regard.

On the other hand, Morphologic and Contouromic features merely depict initial morphometric characteristics and geometric relationship between organs, respectively. They share commonality in their distinct disparity against Radiomics in that they both carry little or no underlying biologic information of the studied organ structures. This may in part explain the fair-to-poor predictive performance of the M and C models in our study, yielding an AUC of 0.643 (STD: 0.078, 95%CI: 0.608-0.677) and 0.550 (STD: 0.082, 95%CI: 0.514-0.582) in the hold-out test set, respectively (Figures 3A, B and Table 4A).

In addition, the multifactorial nature of ART eligibility in the context of NPC disease may further elucidate why Radiomics plays a dominant role in this study, irrespective of additional types of -omics features. ART eligibility in NPC depends on multiple organs located in a confined space of head-and-neck regions. GTVnp, GTVn and bilateral parotid glands are all bulky organ structures within the nose-pharynx ministry, responsiveness of these structures upon treatment perturbations jointly determines the degree of patient-specific alternations in anatomy, hence affecting the demand for ART. Given the unique superiority of Radiomics in unravelling intrinsic tissue biologic response, we inferred that the role of Radiomics could become increasingly important when more organ structures come into play in contributing to the studied outcome (i.e., the ART eligibility), compared with other types of -omics features. This may, to some extent, provide an insight into our findings that Radiomic features accounted for the largest proportion of the final selected features in all the studied multi-omics models (Table 3); and that the multi-organ-based R model performed far better than other single-omics models (all p-value < 0.0001) (Table 4A); and that incorporating Morphologic and/or Dosiomic and/or Contouromic features into the radiomic model did not demonstrate statistically significant improvement in the hold-out test set (Table 4B) (all p-value > 0.05). Herein, we highlight that findings of this study may provide research community with valuable insights into development of pre-treatment stratification strategies for ART eligibility in NPC patients, potentially facilitating clinical implementation of ART in the future.

Although there exists a lack of studies on revealing multi-omics in prediction of multi-organ triggering outcome, results from a few studies in the literature may worth our attention. Sheikh et al. investigated radiomics and dosimetric features from bilateral parotid and submandibular glands (i.e., four separated organ structures) for predicting xerostomia, and reported that addition of dosimetric and clinical factors into a joint-CT-MR radiomic model did not lead to statistically significant improvement in model performance (45), which appears to be in line with our current findings. By contrast, Jiang et al. reported superior model performance when using both radiomic and dosimetric features from five lung sub-regions for predicting radiation pneumonitis than when using radiomic features alone (46), which may appear contradictive to our findings. However, it should be noted that the features in their studies were essentially derived from a single organ – the same lung tissue, rather than individual separated organ structures as in this current work. Further, unlike the present work, only CT-based radiomics was adopted in their study, which may lead to a relatively weaker predictive power than as if it were developed from multi-modal images that capture complementary tissue characteristics. Notwithstanding, this presents an interesting area to be explored and a close scrutinization of different types of features in prediction of a multi-organ contributing outcome is highly warranted in the future to further affirm the role of radiomics in context.

This study has several limitations. First, our models were developed and validated in a small-sized single cohort of NPC patients who received CCRT under Tomotherapy machine. While we believe such a homogeneous dataset is advantageous for model building, findings of our study require further validation in a large multi-cohort study. However, it is worth noting that the goal of this study was to assess the role of different omics-based prediction models for ART eligibility in NPC, instead of developing a generalizable model for clinical adoption. Thus, results of this study still deserve great attention in the community. Second, this study employed a large number of features for model building, which may lead to model overfitting in a small-sized cohort. In this regard, we deployed a strategic approach of determining optimal FS combinations that were used for feature dimensionality reduction prior to model development. The remnant feature sets were of high outcome relevance and low feature redundancy, and only 10 to 33 and 37 to 55 features were input to the modelling algorithms for developing single-omics and multi-omics models, respectively.



Conclusion

Comparisons among all the studied models indicated that the Radiomic model was found to play a dominant role for ART eligibility in NPC patients; and Radiomic features accounted for the largest proportion of features in all the four multi-omics models, suggesting its governing power in ART eligibility prediction.
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Objective

Salivary duct carcinoma (SDC) is a highly aggressive and uncommon tumor arising not only de novo but also in pleomorphic adenoma. Androgen receptor (AR)- and HER2-targeted therapy have recently been introduced for SDC as promising treatment options; however, no predictive biomarkers have yet been established. EZH2 and H3K27me3 are closely linked to the development and progression of various cancers, and EZH2 is also expected to be a desirable therapeutic target. We therefore explored the clinicopathological and prognostic implications of EZH2 and H3K27me3 in a large cohort of SDC patients, focusing on their impact on the therapeutic efficacy of AR- or HER2-targeted therapy.



Materials and Methods

The EZH2 and H3K27me3 immunohistochemical expression and EZH2 Y646 gain-of-function mutation status were examined in 226 SDCs, and the relationship with the clinicopathological factors as well as clinical outcomes were evaluated within the three groups depending on the treatment: AR-targeted (combined androgen blockade with leuprorelin acetate and bicalutamide; 89 cases), HER2-targeted (trastuzumab and docetaxel; 42 cases), and conventional therapy (112 cases).



Results

EZH2 and H3K27me3 were variably immunoreactive in most SDCs. A positive correlation was found between the expression of EZH2 and H3K27me3. The EZH2 expression in the SDC component was significantly higher than that in the pre-existing pleomorphic adenoma component. EZH2 Y646 was not identified in any cases. EZH2-high cases more frequently had an advanced clinical stage and aggressive histological features than EZH2-low cases. An EZH2-high status in patients treated with AR-targeted therapy was associated with a significantly shorter progression-free and overall survival as well as a lower objective response rate and clinical benefit rate. In addition, a H3K27me3-high status in patients treated with AR-targeted therapy was related to a shorter overall survival. Conversely, there was no association between the EZH2 and H3K27me3 expression and the clinical outcomes in the conventional or HER2-targeted therapy groups.



Conclusions

A high expression of EZH2 and H3K27me3 in SDC might be a predictor of a poor efficacy of AR-targeted therapy. Our data provide new insights into the role of EZH2 and H3K27me3 in therapeutic strategies for SDC.





Keywords: salivary duct carcinoma, EZH2, H3K27me3, androgen receptor, HER2, combined androgen blockade (CAB), prognosis, therapeutic effect



Introduction

Salivary duct carcinoma (SDC) is a highly aggressive and uncommon tumor that accounts for as many as 10% of all salivary gland malignancies (1, 2). It can occur not only as de novo carcinoma but also as a malignant component of carcinoma ex pleomorphic adenoma (PA) (1, 3). SDC is histologically comparable to high-grade mammary ductal carcinoma. SDC shows a high rate of metastasis, and systemic chemotherapy is required for patients with metastatic disease.

Most SDCs characteristically express androgen receptor (AR), and approximately 40% are positive for HER2 (4–6). Recently, based on these biomarker profiles, treatments targeting AR and HER2 have been developed as a promising optional therapy in recurrent/metastatic or unresectable locally advanced SDCs (7–14). AR-targeted therapy demonstrated equivalent efficacy and less toxicity for patients with AR-positive SDC than conventional chemotherapy (9, 10, 14, 15). Furthermore, HER2-targeted therapy showed more encouraging efficacy with a higher response rate in HER2-positive SDC patients than conventional or AR-targeted therapy (8–11). However, since SDCs often express both AR and HER2, selecting the most appropriate treatment remains difficult.

In the past decade, there have been remarkable advances in research on therapy-relevant biomarkers linked to biological behavior in various cancers. At present, little is known concerning the mechanisms and factors related to resistance to targeted therapy in patients with SDC, although a few possible adverse biomarkers of SDC patients treated with AR-targeted therapy, such as AR-related molecules, have been reported (3, 16–19). However, how to apply such strategies in clinical practice remains challenging (19). For this reason, precise immunohistochemical biomarkers that reflect the clinicopathological status or predict the prognosis and therapeutic effect are awaited (3–6, 19).

Enhancer of zeste homolog 2 (EZH2), a specific histone methyltransferase of histone H3 at Lys 27 (H3K27), has been garnering attention as a prognostic factor as well as an attractive target for cancer therapy. EZH2 plays an important role in the epigenetic maintenance of the repressive chromatin mark. It forms the polycomb repressive complex 2 (PRC2) and demonstrates histone methyltransferase activity (20). PRC2 recruitment to chromatin causes H3K27 trimethylation (H3K27me3), which is normally related to gene repression and plays a crucial role in tumor development (21). Furthermore, the EZH2 Y646 gain-of-function mutation is involved in tumorigenesis (22–24). In fact, the overexpression of EZH2 has been shown to be associated with invasive growth and poor clinical outcomes in many malignant tumors, including breast, prostate, gastric, endometrial and hematologic cancers, even though the prognostic impact of H3K27me3 expression is variable (25–29). Furthermore, the overexpression of EZH2 is related to resistance to AR- and HER2-targeted therapy in prostate and breast cancers, respectively (30, 31).

An EZH2 inhibitor was approved by the U.S. Food and Drug Administration for use against epithelioid sarcoma and follicular lymphoma in 2020 (32). In addition, several clinical trials concerning EZH2 inhibitor therapy for different types of malignant tumors are ongoing (ClinicalTrials.gov: NCT02601950, NCT01897571 and NCT04407741) (33, 34). To our knowledge, however, the roles of EZH2 and H3K27me3 in SDC have not yet been described.

We therefore examined the EZH2 and H3K27me3 protein expression and EZH2 Y646 activating mutations and evaluated their relationship with the clinicopathological factors and prognosis of SDC in a large cohort of patients. Furthermore, we sought to analyze the association of EZH2/H3K27me3 expression with survival outcomes and therapeutic effect within differently (AR- or HER2-targeted) treated groups of patients with SDC.



Materials and Methods

This study was approved by the Institutional Ethics Review Board of each participating institution.


Patients

All patients underwent a central pathological review by an expert pathologist (T.N.) according to the rigorous histomorphological criteria for SDC (Figure 1). We recruited 226 patients who were diagnosed with and received treatment for SDC at 7 institutions between 1994 and 2019, and AR- and HER2-tageted therapy started in 2012 and 2011, respectively. As shown in the study flow diagram (Figure 2), we classified total 226 patients into 3 independent cohort groups: the conventional therapy group (Cohort A; 112 cases, 49.6%), the AR-targeted therapy group (Cohort B; 89 cases, 39.4%), and the HER2-targeted therapy group (Cohort C; 42 cases, 18.6%). The conventional therapy group (Cohort A) was defined as SDC patients who did not receive either AR-targeted therapy (combined androgen blockade therapy [CAB]: leuprorelin acetate and bicalutamide) (9) or HER2-targeted therapy (trastuzumab and docetaxel) (11–13). Patients who had been treated before the introduction of targeted therapy were also assigned to the conventional therapy group (Cohort A), even if they were positive for AR and/or HER2. Almost all patients in the conventional therapy group (Cohort A) (109 of 112 cases, 97%) received radical surgical resection with or without radiotherapy/systemic therapy, which is considered a typical treatment in general clinical practice. In addition, Cohorts B and C included 17 patients who received both AR- and HER2-targeted therapy. The details of AR- and HER2-targeted therapy were previously reported (9, 11).




Figure 1 | (A, B) Representative histologic features of salivary duct carcinoma (SDC). (A) Dilated ductal structures with a papillary, “Roman-bridge,” or cribriform growth accompanied by comedo necrosis. (B) SDC ex pleomorphic adenoma composed of SDC (right portion) and a preexisting pleomorphic adenoma component (left portion). Note carcinoma cells exhibiting large pleomorphic nuclei and abundant eosinophilic cytoplasm. (C, D) Immunohistochemically, the EZH2 labelling index (LI) is low (0%) (C) and high (90%) (D) in SDC. (D) Diffuse and strong nuclear and weak cytoplasmic EZH2 immunoreactivity. (E, F) Likewise, the H3K27me3 LI is low (0%) (E) and high (90%) (F) in SDC. (F) Diffuse and strong nuclear H3K27me3 immunoreactivity.






Figure 2 | Study flow diagram. SDC, salivary duct carcinoma; DOC, dead of other cause; NED, no evidence of disease; Tmab/DTX, trastuzumab and docetaxel; CAB, combined androgen blockade; AR, androgen receptor; HER2, human epidermal growth factor receptor type 2; PFS, progression free survival; OS, overall survival; CBR, clinical benefit rate; ORR, objective response rate. * Time from the start of any treatment to the diagnosis of progressive disease. † Time from the start of any treatment to death from any cause or the last follow-up. ‡ Time from the start of AR- or HER2-targeted therapy to the diagnosis of progressive disease or death from any cause. § Time from the start of AR- or HER2-targeted therapy to death from any cause or the last follow-up. || ± conventional therapy. ¶ The percentage of patients who achieved a complete response (CR), partial response (PR) or stable disease for at least 24 weeks. ** The percentage of patients who achieved CR or PR.



We retrospectively reviewed the patient records to obtain information about the age, sex, tumor size, lymph node metastasis, distant metastasis, and survival. The TNM classification was determined in accordance with the 8th edition of the International Union Against Cancer (35).



Histopathology

The histopathological analysis regarding tumor grading was performed using a previously reported histological risk stratification model, which was determined by 4 histological features (prominent nuclear pleomorphism, mitosis ≥30/10 high-power fields, vascular invasion and high poorly differentiated cluster) (36). The total number of positive factors was considered to indicate low risk to high risk, as follows: low risk, 0 to 1 point; intermediate risk, 2 to 3 points; high risk, 4 points.



Immunohistochemistry (IHC) and Fluorescence In Situ Hybridization (FISH)

For IHC, formalin-fixed, paraffin-embedded tumor tissue was cut into 4-μm-thick sections. A polymer-based detection system with heat-mediated antigen retrieval was conducted using the primary antibodies shown in Supplementary Table 1. Diaminobenzidine was applied to detect antigen-antibody reactions. The EZH2 and H3K27me3 labelling index (LI) (0–100%) was determined by counting the number of immunoreactive nuclei in at least 1,000 cells (Figure 1). We also compared the EZH2/H3K27me3 expression among normal salivary glands, the PA component and carcinoma.

HER2 was considered to be positive based on an HER2 IHC score of 3+ and/or HER2 amplification, as determined by a FISH analysis, in accordance with the ASCO/CAP guideline for evaluating breast cancer (5, 37). The analysis methods of immunohistochemical staining for Ki-67, AR, p53, p-Akt, mTOR, PTEN, EGFR and CK5/6 were reported previously by our group (5, 37–40)



Gene Mutation Analyses

We extracted DNA from paraffin-embedded sections using a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, DE, USA) and DNA was purified using a QIAquick Spin Kit (Qiagen). DNA purity was tested using a NanoDrop (Thermo Scientific, Waltham, MA, USA). For the detection of mutations, DNA was amplified with primers flanking regions in exon 16 of the EZH2 gene encompassing codon 646. We amplified the region with the following primers: forward primer 5’-TGG GGG ATT TTT ATC AAA G-3’/reverse primer 5’-TCA AAC CCA CAG ACT TAC CT-3’. Polymerase chain reaction products were sequenced in both sense and antisense directions using a BigDye Terminator v3.1 cycle sequencing kit on an ABI 3730 instrument (Applied Biosystems, Inc., Foster City, CA, USA). Sanger sequencing was performed for TP53 (exons 4–10), PIK3CA (exons 9 and 20) and HRAS (exons 1-2) (38).



Statistical Analyses

Non-continuous variables were compared using the chi-squared test. Continuous variables were compared using the Mann-Whitney U test or Wilcoxon’s signed-rank test. Spearman’s rank correlation test was used to evaluate the correlation between the expression of proteins. The association between the EZH2/H3K27me3 expression and the overall survival (OS) or progression-free survival (PFS) was evaluated using the Kaplan-Meier product-limit method and univariate and multivariate Cox proportional hazards models. Furthermore, in the AR- and HER2-targeted therapy groups (Cohorts B and C), the relationship between the EZH2/H3K27me3 expression and clinical benefit rate (CBR) or objective response rate (ORR) was also analyzed using univariate and multivariate Cox proportional hazards models. The potential confounders in the multivariate analysis included the age, sex, primary tumor site, separate T, N, and M classification, first-line treatment, histological origin and AR- and HER2-targeted therapy. Conventional therapy group (Cohort A), AR-targeted therapy group (Cohort B), and HER2-targeted therapy group (Cohort C) were independent cohorts classified based on a difference of therapy, but not clinical outcomes. Therefore, we estimated the optimal cut-off values for the EZH2 and H3K27me3 expression according to survival in each cohort. The PFS in the conventional therapy group (Cohort A) was defined as the length of time from the start of any treatment to the diagnosis of progressive disease, while the OS in the conventional therapy was defined as the length of time from the start of any treatment to death from any cause. The PFS in the AR- and HER2-targeted therapy groups (Cohorts B and C) was defined as the length of time from the start of AR- and HER2-targeted therapy to the diagnosis of progressive disease or death from any cause, respectively, while the OS in the AR- and HER2-targeted therapy groups (Cohorts B and C) was defined as the length of time from the start of AR- and HER2-targeted therapy to death from any cause or the last follow-up, respectively.

The therapeutic effect of AR- and HER2-targeted therapy was evaluated according to the ORR, defined as the percentage of patients who achieved a complete response (CR) or partial response (PR) and CBR, which was defined as the percentage of patients who achieved CR, PR or stable disease (SD) for at least 24 weeks. Tumor assessments were performed within 4 weeks before the initiation of AR- and HER2-targeted therapy using computed tomography and/or magnetic resonance imaging and were repeated every 6–8 weeks until disease progression, death, or up to 2 years after the initiation of treatment. Thereafter, assessment was continued every 3 months in surviving patients. Patient response was determined based on the Response Evaluation Criteria in Solid Tumors (version 1.1) (41). All statistical analyses were performed using the STATA software program (version 16; StataCorp, College Station, TX, USA). All tests were two-sided, and P values of < 0.05 were considered to indicate statistical significance.




Results


Patients’ Characteristics

The distribution of the patient characteristics is shown in Table 1. The case series included 194 males and 32 females with a median age of 63 (range, 26-94) years old. Eighty-three SDC cases (43%) and 115 cases (57%) were classified as de novo and carcinoma ex PA, respectively (Figure 1). Bone-only metastasis was found in 4 cases in the AR- group (Cohort B) and 1 case in the HER2-targeted therapy group (Cohort C). In the conventional therapy group (Cohort A), 42 of 112 cases (37.5%) were treated with systemic therapy, either at the time of the initial treatment or at the time of recurrence/metastasis.


Table 1 | Patients’ characteristics.



The median follow-up period of all patients was 3.7 (range 0.04-19.0) years. The 5-year OS rate in all patients was 46.9% (95% confidence interval [CI] 39.8%-53.7%), and the 5-year PFS rate was 23.5% (95% CI 18.0%-29.4%). The median OS of all patients was 4.4 (95% CI 3.7-5.9) years, and the median PFS was 1.0 (95% CI 0.9-1.3) years. In addition, the median follow-up period of conventional therapy group (Cohort A) was 4.0 (range 0.04-19.0) years. The median OS of conventional therapy group (Cohort A) was 5.8 (95% CI 3.4-8.7) years, and the median PFS was 2.6 years (95% CI not significant).



Efficacy of AR-Targeted Therapy

The median follow-up period in the AR-targeted therapy group (Cohort B) was 1.9 (range 0.1-6.6) years. The responses in patients treated with CAB are shown by waterfall plots in Supplementary Figure 1. Four (4.5%), 20 (22.5%), 42 (47.2%), and 23 (25.8%) patients showed CR, PR, SD, and PD, respectively. The ORR was 27.0% (95% CI 18.7%–37.2%). Forty-two patients with SD maintained their status for more than 24 weeks and CBR was 74.2% (95% CI 63.9–82.3%). The median PFS was 0.46 (95% CI 0.36–0.58) years, and the median OS was 2.33 (95% CI 1.86-3.17) years.



Efficacy of HER2-Targeted Therapy

The median follow-up period in the HER2-targeted therapy group (Cohort C) was 2.3 (range 0.3-8.4) years. The responses in patients treated with HER2-targeted therapy are shown by waterfall plots in Supplementary Figure 1. Five (12.2%), 22 (53.7%), 11 (26.8%) and 3 (7.3%) patients showed CR, PR, SD and PD, respectively. The ORR was 65.9% (95% CI 49.8%–79.0%). Eleven patients with SD maintained the status for more than 24 weeks and CBR was 92.7% (95% CI 79.0%–97.7%). The median PFS was 0.80 (95% CI 0.56–0.93) years, and the median OS was 2.91 (95% CI 2.27-3.27) years.



The Expression of EZH2 and H3K27me3 With Clinicopathological Correlation

In virtually all cases, both EZH2 and H3K27me3 were expressed in at least a limited part of the SDC (97.8% and 99.1%, respectively). The cut-off values for a low/high LI of EZH2 and H3K27me3 were 60% and 65%, respectively, based on the median value. A total of 124 cases (54.9%) and 102 cases (45.1%) were thus classified into the EZH2-low and EZH2-high groups, respectively (mean EZH2 expression LI: 48.8%). Likewise, 112 cases (52.6%) and 101 cases (47.4%) were categorized into the H3K27me3-low and H3K27me3-high groups, respectively (mean H3K27me3 expression LI: 52.8%) (Figure 1). A weak positive correlation was found between the expression of EZH2 and H3K27me3 (r = 0.357, P < 0.001) (Supplementary Figure 2).

The EZH2 expression of the surrounding non-neoplastic salivary gland tissues and pre-existing PA components was very low (mean EZH2 expression LI: 1.8% and 4.2%, respectively), and the value in the SDC was significantly higher than that in the PA component (P < 0.001), while that in the PA component was higher than that in normal salivary gland tissue (P = 0.002) (Supplementary Figure 3). In contrast, H3K27me3 expression was also observed in the surrounding non-neoplastic salivary gland tissues and pre-existing PA components to varying degrees in almost all cases (mean H3K27me3 expression LI: 39.1% and 52.0%, respectively). The expression of H3K27me3 in the PA component and SDC was higher than that in the normal salivary gland tissue (P = 0.038 and < 0.001, respectively); however, the H3K27me3 expression in the PA component and SDC was not significantly associated (P = 0.885) (Supplementary Figure 3).

The correlations between the EZH2/H3K27me3 expression and the clinicopathological factors and various biomarkers are summarized in Table 2 and Supplementary Table 2. High-EZH2-LI cases more frequently had an advanced N and M classification compared with low-EZH2-LI cases (P = 0.005 and < 0.001, respectively), while there was no notable relationship between the EZH2 expression and T classification. In addition, an EZH2-high tumor was associated with the presence of prominent nuclear pleomorphism, intermediate or high histological risk group, carcinoma ex PA, higher Ki-67 LI and the aberrant expression of p53 in comparison to an EZH2-low tumor (P < 0.001, = 0.015, = 0.014, < 0.001 and = 0.005, respectively). In contrast, an H3K27me3-high status was associated with a low p-Akt and high EGFR expression (P = 0.036 and 0.034, respectively). A weak positive correlation was found between the expression of H3K27me3 and AR (r = 0.350, P < 0.001) (Supplementary Figure 4).


Table 2 | Patient characteristics and the correlation between the EZH2/H3K27me3 expression and clinicopathological factors.





Association Between the EZH2/H3K27me3 Expression and Clinical Outcomes

We estimated the optimal cut-off values based on survival in each cohort (Cohorts A-C). Consequently, cut-off values between the low and high LI of EZH2 and H3K27me3 in conventional therapy group (Cohort A) were determined to be 35% and 50%, respectively. These in AR-targeted therapy group (Cohort B) were 60% and 80%, respectively. Furthermore, these in HER2-targeted therapy group (Cohort C) were determined to be 65% and 70%, respectively.

In the conventional therapy group (Cohort A), although the high expression of H3K27me3 was associated with a significantly longer PFS only in the univariate analysis (P = 0.011), there were no other significant prognostic associations (Table 3 and Figure 3).


Table 3 | The association between EZH2 or H3K27me3 expression and clinical outcomes in patients with salivary duct carcinoma treated with conventional therapy.






Figure 3 | Kaplan-Meier survival curves according to the EZH2/H3K27me3 expression in salivary duct carcinoma with conventional therapy. No significant association was identified between the EZH2 expression and the progression-free survival (PFS) (A) or overall survival (OS) (B). (C) A low expression of H3K27me3 was associated with a significantly shorter PFS (P = 0.010), but there was no significant association between the H3K27me3 expression and the PFS in multivariate analysis. (D) Although a low expression of H3K27me3 tented to be associated with a shorter OS (P = 0.087), no significant relation between the H3K27me3 expression and the OS was detected in univariate and multivariate analyses.



In the AR-targeted therapy group (Cohort B), univariate and multivariate analyses revealed that an EZH2-high status was associated with a significantly shorter PFS (P < 0.001) (Table 4 and Figure 4). A significant relationship between an EZH2-high status and a shorter OS was identified in the univariate analysis (P = 0.042), but not in the multivariate analysis. Furthermore, an EZH2-high status was associated with reduced ORR and CBR values in the univariate (P = 0.003 and 0.002, respectively) and multivariate analyses (P = 0.039 and 0.007, respectively). Furthermore, an H3K27me3-high status was associated with a shorter OS in the univariate and multivariate analyses (P = 0.027 and 0.047, respectively). There was no significant association between the H3K27me3 expression and the PFS, ORR or CBR. Waterfall plots of the maximum tumor size change from baseline according to EZH2 and H3K27me3 status are shown in Figure 5.


Table 4 | The association between EZH2 or H3K27me3 expression and clinical outcomes in patients with salivary duct carcinoma treated with AR- or HER2-targeted therapy.






Figure 4 | Kaplan-Meier survival curves according to the EZH2/H3K27me3 expression in salivary duct carcinoma treated with AR-targeted therapy. An EZH2-high status was associated with a significantly shorter progression-free survival (PFS) (A) and overall survival (OS) (B) (P <0.001 and P = 0.040, respectively). (C) There was no significant association between the H3K27me3 expression and the PFS. (D) An H3K27me3-high status was associated with a shorter OS (P = 0.031).






Figure 5 | Waterfall plots of maximum changes from baseline according to the EZH2 (A) and H3K27me3 (B) status in patients who received AR-targeted therapy. The dotted line indicates -30% of maximum change from baseline.



In contrast, no significant association was identified between the EZH2/H3K27me3 expression and therapeutic effect in the HER2-targeted therapy group (Cohort C) (Table 4 and Figures 6, 7).




Figure 6 | Kaplan-Meier survival curves according to the EZH2/H3K27me3 expression in salivary duct carcinoma treated with HER2-targeted therapy. No significant association was identified between the EZH2 expression and the progression-free survival (PFS) (A) or overall survival (OS) (B). There was also no significant association between the H3K27me3 expression and the PFS (C) or OS (D).






Figure 7 | Waterfall plots of maximum changes from baseline according to the EZH2 (A) and H3K27me3 (B) status in patients who received HER2-targeted therapy. The dotted line indicates -30% of maximum change from baseline.





EZH2 Y646 Activating Mutations

Two hundred and twenty-two of the 226 cases were available for gene sequencing. There were no patients with EZH2 Y646 gain-of-function mutations.




Discussion

The present findings suggested that the EZH2 and H3K27me3 expression was a predictive factor of AR-targeted therapy in SDC (42). Conversely, there was no significant association between the EZH2/H3K27me3 expression and clinical outcomes in the conventional or HER2-targeted therapy group.

In prostate cancer, the activated EHZ2 pathway is associated with resistance to AR-targeted therapy. First, this is because the overexpression of EZH2 promotes neuroendocrine differentiation and resistance to AR-targeted therapy through ataxia telangiectasia-mutated (ATM) upregulation (43, 44). Although this relationship was not investigated in this study, we are greatly interested in investigating this issue by reviewing recurrent/metastatic SDC cases with resistance to AR-targeted therapy as a future challenge. Targeting EZH2 represents a way of restoring AR signaling in neuroendocrine-differentiated tumor cells (44, 45). Second, EZH2 directly binds to the promoter of prostate-specific antigen, an AR-targeted gene, and inhibits its expression in CAB-resistant prostatic cancer cells (46). Third, EZH2 activates AR gene transcription through direct occupancy at its promoter (47). Therefore, there is the possibility that combination treatment targeting EZH2 and AR is an effective novel therapeutic regimen for the treatment of castration-resistant prostate cancer (CRPC) (46). The use of the EZH2 inhibitor tazemetostat in combination with AR-targeted therapy is currently being evaluated for its safety in CRPC (NCT04179864) (44).

In this study, the high-EZH2 expression was associated with a significantly shorter PFS and indicated a predictive factor of a poor efficacy of AR-targeted therapy assessed by ORR and CBR. The present findings suggest that SDC patients with EZH2-high status may be unsuitable for AR-targeted therapy. Combination treatment targeting EZH2 and AR might overcome resistance of AR-targeted therapy in SDC patients. Validation via prospective clinical trials is warranted in order to improve therapy selection and develop treatment strategies tailored for SDC patients.

In SDC patients with AR-targeted therapy, the H3K27me3 expression was not a predictive factor, but it was significantly associated with the OS. EZH2 is supposed to promote tumor progression in both an H3K27me3-dependent and H3K27me3-independent manner in cases of malignant tumor (22). Regarding the H3K27me3-dependent function, EZH2 catalyzes H3K27me3, which mediates chromatin compaction and results in the transcriptional repression of downstream genes, including tumor suppressor genes (22, 48). In contrast, as H3K27me3-independent functions, EZH2 not only promotes the methylation of non-histone proteins but also acts as a co-activator for transcription factors. These activities contribute to transcriptional suppression and co-activation (49, 50). Because the expression of EZH2 and H3K27me3 showed a weakly positive correlation in this study, the aggressiveness of SDC may be—at least partially—related to the H3K27me3-dependent function of EZH2.

In breast cancer, EZH2 activity is reported to be correlated with resistance to HER2-targeted therapy (31). However, for the present cohort of SDC patients treated with HER2-targeted therapy, as with conventional therapy, there was no association between the EZH2/H3K27me3 expression and therapeutic effect. On the other hand, we are also interested in the efficacy of certain drugs (e.g. trastuzumab deruxtecan) in the low-HER2 expression tumors, even in SDC (51).

An EZH2-high status was associated with aggressive clinicopathological features, including advanced N and M classification, the presence of prominent nuclear pleomorphism, intermediate or high histological risk group, a high Ki-67 LI and the aberrant expression of p53. Similar to the current findings on SDC, in various cancers, the association between the expression of EZH2 and tumor progression has been indicated (25–29). In salivary gland tumors, although the amount of data is very limited, adenoid cystic carcinoma with a high EZH2 expression showed a high Ki-67 LI (52). SDC cases with the high expression of EZH2 exhibited various aggressive clinicopathological features, but there was no significant association with the survival of patients in the conventional therapy group. One of the reasons that caused the discrepancy may be a difference in the patient population that was analyzed: all patients in Table 2 and the conventional therapy group in Table 3. However, further studies are warranted to clarify the role of EZH2 in the regulation of biological behavior of the tumor. The EZH2 Y646 gain-of-function mutation was not identified in SDC, in contrast to reports of its presence in lymphoma (22–24).

In colon cancer, EZH2 but not H3K27me3 expression is associated with progression from adenoma to carcinoma (53, 54). One previous report found that the majority of malignant salivary gland tumors, such as mucoepidermoid carcinoma and adenoid cystic carcinoma, showed positive EZH2 immunoreactivity, but all the investigated benign tumors, including PA, were negative (55), although no SDC cases were included in that study. In our cohort, nearly all cases with an SDC component of carcinoma ex PA expressed EZH2, whereas the PA component showed almost no expression of EZH2. In line with these findings for colon cancer, EZH2 may contribute to the malignant transformation from PA to SDC. 　

In our study, the ORR, median PFS, and median OS were 27.0%, 0.46 years, and 2.33 years, respectively, in the anti-androgen therapy group (n=89). On the other hand, according to the two European cohorts reported (n=34 and n=17) in the relevant literature, the outcomes varied: the ORR, median PFS, and median OS were 17.7-64.7%, 0.33-0.91 years, 1.41-3.66 years, respectively (10, 14). Thus, the outcomes of patients who received anti-androgen therapy do not necessarily seem considerably poor in comparison to the European cohorts. However, the discrepancy may be due differences in the cohort size, patient characteristics, regimens, and method of survival assessment.

In this study, we thought that it was not appropriate to apply common pre-set cut-offs when analyzing independent cohort groups. Because this is the first investigation to examine the EZH2 and H3K27me3 expression in SDC, there are no known optimal cut-off values for the EZH2 and H3K27me3 expression for any subject (e.g., clinicopathological factors in total cases or clinical outcomes in different therapeutic cohorts). Also, the biological behavior of each cohort (Cohorts A to C) varies in the present study. Therefore, in this study, to investigate the clinicopathological correlation of the EZH2 and H3K27me3 expression in the total cases we used the median values as the cutoff values. Alternatively, in Cohorts A to C, we individually estimated cut-off values according to survival. Due to the relatively small sample size in each group, internal validation was not conducted in this study. The most suitable cut-off values for the EZH2 and H3K27me3 expression should be reevaluated in a much larger series in future studies.

Several limitations associated with the present study warrant mention. First, the nonrandomized and retrospective design may have introduced bias into the data collection. Second, in this study, functional analyses of EZH2 and H3K27me3 were not performed, and could not find out details of subcellular molecular mechanisms. Further comprehensive studies, including a clinical trial, in vitro cell culture and patient-derived xenograft experiments, are needed to clarify the biological role of EZH2 and H3K27me3 in the development and progression of SDC.

In conclusion, the present study showed that EZH2 and H3K27me3 are frequently but unevenly expressed in SDC. In SDC patients treated with AR-targeted therapy, the high expression of EZH2 and H3K27me3 was a potential predictor of a poor efficacy of the treatment. In addition, there is a possibility that an EZH2-high status was associated with resistance to AR-targeted therapy.
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Background

Papillary thyroid carcinoma (PTC) is one of the most common malignant carcinomas in the endocrine system, and it has a growing incidence worldwide. Despite the development of diagnosis and treatment modalities for thyroid carcinoma, the outcome remains uncertain. Autophagy participates in the process of cancer invasion, malignancy, metastasis, and drug resistance. Emerging research has shown that long noncoding RNAs (lncRNAs) play an important role in the process of different types of cancers. However, the interaction between the process of autophagy and lncRNA and the value of autophagy-related lncRNA for risk assessment, prediction of drug sensitivity, and prognosis prediction in PTC patients remains unknown.



Materials and Methods

We screened 1,283 autophagy-related lncRNAs and identified 144 lncRNAs with prognostic value in The Cancer Genome Atlas (TCGA) cohorts. Univariate and multivariate Cox regression analyses were used to establish the prognosis-related autophagy-related lncRNA risk classification consisting of 10 lncRNAs to indicate the level of risk, according to which the patients were grouped into high-risk group and low risk-group.



Results

The high-risk group had dramatically worse overall survival compared with the low-risk group. Cox regression analysis was performed to confirm the independent prognostic value of the autophagy-related lncRNA risk stratification, and the time-dependent receiver operating characteristic curves of the risk stratification were 0.981 (1 year), 0.906 (3 years), and 0.963 (5 years). LncRNA CRNDE (LINC00180) is overexpressed in the tumor, and its high expression matched with poorer survival state. So, we chose it for further experiment. Finally, knockdown of the CRNDE in PTC increased the sensitivity to sorafenib.



Conclusion

Collectively, we successfully established a novel risk stratification for PTC based on the expression profiles of autophagy-related lncRNAs.
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Introduction

Thyroid carcinoma is the most common endocrine malignant tumor, and 90% of this tumor type is made up of papillary carcinoma histologically (1). The improvement of thyroid-based diagnostic procedures, such as radiographic imaging and fine-needle aspiration, has contributed directly to the rapid increase of new discovered cases (2). Similarly, papillary carcinoma accounts for most of the increase (3). However, the other histological subtypes (anaplastic, medullary, and follicular) do not change markedly (4, 5). The sharp increase in mortality due to PTC has garnered increased concern from the public (3, 6, 7).

With the research on papillary carcinoma mainly focused on genetics, transcriptomics proteomics, and epigenetics, mechanistic knowledge is growing rapidly. Therefore, determining the correlation of the clinicopathological information with the genomic alternations and transcriptome has become a new area of research for many researchers (8).

The increasing risk of small thyroid nodes due to overdiagnosis alone remains controversial among clinical decision makers. Although the eighth edition of the American Joint Committee on Cancer–Union for International Cancer Control (AJCC–UICC) staging system describes that most patients at low risk have a lower mortality for differentiated thyroid cancer, there is a crucial discussion about initial therapeutic decision-making and the clinical management of those newly diagnosed (9), especially regarding the requirement for active surveillance or thyroid surgery (1).

Autophagy is a type II programmed cell death process, which directly controls physiological mechanisms by degradation of proteins and organelles to achieve homeostasis (10). It is an important pathway necessary to adjust to various stresses (11). Nevertheless, dysregulation of autophagy involved in multiple diseases, including cancer (12–14), results in both tumor suppression and oncogenesis at different stages of cancer development.

Long noncoding RNAs (lncRNAs) are a type of noncoding RNA whose length is more than 200 base pairs (15, 16). These play a role in diverse biological processes of cancer, such as tumor prognosis, immune system, and cell proliferation (17, 18).

There is still no proper risk stratification for guiding the decision maker to make the choice to perform surgery and for predicting the outcome following thyroidectomy. Here, we established a risk stratification based on the expression profiles of autophagy-related lncRNAs to predict the risk level of patients with PTC.



Materials and Methods


Thyroid Carcinoma Data Sets

We extracted the expression data and the matched clinical information of patients with papillary thyroid carcinoma (PTC) from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/). Then, we classified the RNAs into either protein-coding function or lncRNA using the Ensemble human genome browser (19). The expression data for all the messenger RNAs (mRNAs) and lncRNAs in the cohort were log2 transformed [log2(FPKM+1)] for downstream analyses. A total of 508 patients whose pathological subtype is PTC were included in the study, and those whose survival time was less than 30 days were excluded because their death is likely to be classified under surgery-related death.



Cell Culture

PTC cell lines BCPAP, TPC‐1, and K1 were used in the following experiment. TPC-1 and K1 were cultured in Roswell Park Memorial Institute‐1640 medium (Gibco, USA) containing 10% fetal bovine serum (FBS) (Gibco, USA) and 1% antibiotics (P/S) (Gibco, NY, USA), and BCPAP was cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, USA) containing 10% FBS (Gibco, USA) and 1% antibiotics. All samples were placed in an incubator (Thermo, USA) with 5% CO2 at 37°C. Cells were dissociated with 0.25% trypsin at a ratio of 1:3 when their density reached 80%.



Cell Transfection

The small interfering RNAs (siRNA) were utilized for knocking down CRNDE, and scrambled siRNA (si‐NC) was used as the negative control. The sequences were shown in Supplementary Table S1. All of them were synthesized by RiboBio (Shanghai, China). Cell transfection was performed with Lipofectamine 2000 (Invitrogen, USA) according to the product instructions. After harvesting for 48 h, the efficiency of knocking down was identified using qRT-PCR.



Cell Treatment and Proliferation Assay

Cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) Assay (MedChemExpress, China) according to the manufacturer’s instructions. Briefly, PTC cells with and without transfection (4 × 103 cells/well) were cultured in a 96-well plate in the presence or absence of sorafenib (MedChemExpress, China) (2 µM), and the cell viability was observed by measuring absorbance at 450 nm (24, 48, and 72 h) in a microplate reader after incubation with CCK-8 solution (10 µl) for 2 h.



RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction

TRIzol (Invitrogen, CA) was used to extract total RNA from PTC cells. Here, 1 ml of TRIzol reagent was added to a 3.5-cm dish and incubated for 10 min. Following this step, 0.2 ml of chloroform was added to the dish. All the contents of the dish were transferred into tubes and shaken vigorously for 16 s. After standing in ice for 10 min, the tubes were centrifuged at 12,000 rpm for 25 min at 4°C. Finally, the RNA was washed with 75% ethyl alcohol and dissolved in diethylpyrocarbonate (DEPC) water. Then, 1 µg extracted RNA retrieved in the above step was reverse-transcribed into cDNA in a 20-µl reaction volume by using the First Strand cDNA Synthesis Kit (Takara, Japan) according to the manufacturers’ instructions. The cDNA was used as a template for real-time PCR by using matched primers. The sequences used in quantitative PCR were shown in Supplementary Table S1. The length of amplified products was within 300 bp. The real-time PCR was performed with a 20-µl reaction system containing 2 µl cDNA, 2 µl of mix of primer, 4 µl dd H2O, and 10 µl SYBR Green Real-Time PCR Master Mix (Takara, Japan). The detailed reaction conditions were set by referring to the manufacturers’ instructions. Data were analyzed by using the ΔΔCt method, where the endogenous housekeeping gene β-actin was used as a quantity and quality control.



Obtaining Autophagy-Associated Gene Sets and Identification of Autophagy-Related LncRNAs by Coexpression Analysis

A total of 232 autophagy genes were obtained from the Human Autophagy Database (HADb; http://www.autophagy.Lu), which provides a comprehensive and up-to-date list of human genes involved in autophagy and is shown in Supplementary Table S2. The Pearson correlation coefficient was calculated between the expression of autophagy genes and autophagy-related lncRNAs. Autophagy-related lncRNAs were selected based on the absolute value of the coefficient being >0.3 (|R|>0.3), and a P value <0.001 was considered significant. Detailed information on the correlation between lncRNAs and autophagy-related genes is shown in Supplementary Table S3.



Construction of a Protein–LncRNA Interaction Network

To further explore the interaction between lncRNAs and autophagy genes, we established an lncRNA and mRNA network using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The software Cytoscape 3.8.1 was used to visualize the relationship between lncRNAs and mRNAs.



Construction of the Prognostic Risk Stratification

Univariate and multivariate Cox regression analyses were performed to identify potential autophagy-related lncRNAs with prognostic value. The autophagy lncRNAs with a P value <0.01 were submitted to the next step to perform the multivariate Cox regression analysis. The risk stratification based on the expression of autophagy-related lncRNAs was established by using the candidate lncRNAs obtained from the multivariate Cox regression. The linear risk formula was RiskScore = (Coef1 × Expression Gene1) + (Coef2 × Expression Gene2) + (Coef3 × Expression Gene 3) + (Coef4 × Expression Gene4) + (Coef5 × Expression Gene5) +……+ (Coef Gene N × Expression Gene N).

Based on the expression profiles of autophagy-related lncRNAs, we conducted a principal component analysis (PCA) to investigate the difference between the high-risk group and low-risk group.



Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using GSEA software (Version 4.1.0). All operations were performed as previously described (19–22). The results of GSEA were visualized using an enrichment map. Each analysis of gene set permutation was calculated 1,000 times, and pathways enriched in specific phenotypes were sorted by normalized enrichment score (NES) and P value. Relevant gene sets were obtained from the gene set database of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways detailed in Supplementary Figure S2.



Statistical Analysis

A Cox regression model was employed to construct the risk stratification. The hazard ratio (HR) and associated 95% confidence interval (CI) were calculated. From the analysis of two subgroups based on the median value of risk score, the overall survival (OS) times of the high-risk and low-risk subgroups were calculated and analyzed via Kaplan–Meier test and compared using the log-rank test. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the predictive accuracy of the autophagy-related lncRNAs.




Results


Identification of Prognostic Autophagy-Related LncRNAs in Papillary Thyroid Carcinoma

By constructing the coexpression network of the 232 autophagy genes, a total of 1,283 autophagy-related lncRNAs were obtained (Figures 1A–D). Then, we performed Cox proportional hazards analysis to obtain 144 autophagy lncRNAs with significant prognostic value by analyzing the expression profile (Figure 1). There were 32 lncRNAs with low risk (HR <1) and 112 lncRNAs with high risk (HR >1) (Supplementary Table S4). Following this, multivariate Cox analysis was performed to further screen 10 lncRNAs from 144 autophagy lncRNAs with prognostic value, and they were AC008063.1, AC011297.1, FAM201A, AC092279.1, LINC00900, AL162231.2, CRNDE, TONSL-AS1, LINC02454, and AC004918.3 (Figures 4A–J) (Supplementary Table S5).




Figure 1 |  Construction of the regulation network of the long noncoding RNAs (lncRNAs) with prognostic value and autophagy genes in papillary thyroid carcinoma (PTC). (A) The coexpression network of the 10 autophagy-related lncRNAs–messenger RNAs (mRNAs) with prognostic value was constructed and visualized using Sankey diagram between prognostic risk-related lncRNAs, mRNAs, and risk types (risk or protective). (B) The coexpression network of autophagy-related lncRNAs and matched transcriptional factors was constructed and visualized using Sankey diagram. (C) The network of autophagy gene and autophagy-related lncRNA. (D) The correlation of expression levels of lncRNAs involved in the risk stratification.





Construction of a Prognostic Model

Then, these optional lncRNAs were submitted to the next step to construct the prognostic risk stratification of autophagy-related lncRNAs. We established a coexpression network of autophagy-related lncRNAs with prognostic value and mRNAs, as shown in (Figures 1A, C). And the formula is as follows:

Risk score = (AC008063.1*-1.740157523) + (AC011297.1*0.171231624) + (FAM201A*0.895715416) + (AC092279.1*-3.730086976) + (LINC00900*-2.38496601) + (AL162231.2*0.671649156) + (CRNDE*0.450612252) + (TONSL-AS1*-0.79310585) + (LINC02454*0.588168097) + (AC004918.3*2.412626944).

Based on the risk formula and median risk score, the PTC patients were divided into a high-risk group and a low-risk group (Figure 2A). Kaplan–Meier survival analysis showed that patients in the high-risk group had shorter OS than that in the low-risk group (Figure 2B), which suggested that the risk stratification had good prognostic prediction ability.

A scatter plot of survival status and risk curve were made in order to display the risk score and the corresponding survival status of PTC patients, the results of which showed that the higher risk score corresponded to higher mortality. At the same time, the heatmap was drawn based on these 10 autophagy-related lncRNAs in the PTC samples (Figure 2A). The survival curve (Figures 2B–D). The heatmaps displayed the expression of these elements in the high-risk group and low-risk group. Hence, these results indicate that all 10 autophagy lncRNAs have good prognostic value for PTC (Figures 2, 3).




Figure 2 | Prognosis and expression of risk genes in the two groups of papillary thyroid carcinoma (PTC) patients. (A) The heatmap displayed the expression levels of autophagy-related long noncoding RNAs (lncRNAs) in the high-risk and low-risk groups. (B) Kaplan–Meier survival analysis of the high-risk and low-risk groups based on the risk stratification. (C) The scatter plot based on the survival status of each patient. The different colors matched the status of survival and death. (D) The risk curve was drawn based on the risk score of each sample. The different colors matched the status of risk.






Figure 3 | Evaluation of the clinical utility of the risk stratification. (A) DCA curve was drawn based on the risk stratification. (B) The area under the curve (AUC) value of clinical features according to the receiver operating characteristic (ROC) curves. Clinical features: Age, TNM stage, gender, T (tumor size), N (lymph node metastasis), and M (distant metastasis). (C) ROC curve of the risk stratification showing the prognostic performance of the autophagy-related long noncoding RNA (lncRNA) risk stratification. (D) The univariate Cox regression analysis of the risk model score and clinical features regarding prognostic value. (E) The multivariate Cox regression analysis of the risk model score and clinical features regarding prognostic value.





Evaluation of the Risk Stratification Based on the 10 Autophagy-Related LncRNAs as an Independent Prognostic Factor for Papillary Cancer Patients

Univariate and multivariate Cox regression analyses were employed to determine whether the risk stratification based on autophagy-related lncRNAs was an independent prognostic factor of PTC. The HR and 95% CI of the risk score based on the risk stratification were 1.003014104–1.00616136988199 (P < 0.05) in the univariate Cox regression analysis and 1.004196324–1.00559955694039 (P < 0.05) in the multivariate Cox regression analysis (Figures 3D, E). The results showed that the risk stratification based on autophagy-related lncRNAs was a powerful significant prognostic factor of PTC, independent of clinicopathological characteristics such as tumor size, metastasis of lymph node and distant metastasis, sex, and TNM stage. The ROC curve was plotted to evaluate and estimate the predictive specificity and sensitivity of the risk stratification based on the autophagy-related lncRNAs (Figure 8). The time-dependent area under the curve (AUC) for 1, 3, and 5 years was 0.981, 0.901, and 0.963, respectively (Figure 3B). At the same time, the AUC of the other clinical characteristic including T, N, M, age, and TNM (stage) was calculated, and the AUC value of the risk score exceeded most of the others (Figure 3C). These results indicate that the risk stratification based on autophagy-related lncRNAs was an effective independent prognostic factor for PTC patients. Subgroup analysis was performed based on the risk stratification (Figures 5C–N). Besides, those patients both with high tumor mutation burden (TMB) levels and high risk exhibited a poorer survival state (Figures 5A, B). PCA results show that the model has an excellent ability to distinguish high-risk and low-risk patients (Figures 6A–D). DNA stemness score (DNAss) and RNA stemness score (RNAss) presented significant differences among the two subgroups (Figures 6E, F). Different risk types possessed different TIME statuses, Immunogenomics features (Figure 7).




Figure 4 | (A–J) Kaplan–Meier survival analyses of 10 prognostic risk-related autophagy-related long noncoding RNA (lncRNA).






Figure 5 | Performing the survival analysis combining TMB with risk stratification. (A) Kaplan–Meier survival analyses of high-TMB and low-TMB papillary thyroid carcinoma (PTC) group. (B) Kaplan–Meier survival analyses of high TMB combined with high risk, high TMB combined with low risk, low TMB combined with high-risk group, and low TMB combined with low-risk group. (C–N) Kaplan–Meier survival analyses of the autophagy-related long noncoding RNA (lncRNA) risk stratification in different subgroups.






Figure 6 | (A–D) Principal component analysis (PCA) between the low-risk and high-risk groups based on risk stratification. (A) The whole genome. (B) Autophagy-related encoding genes. (C) Autophagy-related long noncoding RNA (lncRNA). (D) The risk model of the 10 autophagy-related lncRNA expression profiles. (E, F) The correlation among risk stratification and tumor stem cell score (based on RNA expression and DNA methylation). (E) The correlation between the risk stratification and DNA stemness index. (F) The correlation between the risk stratification and RNA stemness index.






Figure 7 | Exploration of the association of the risk stratification with tumor immunity. (A) Immune infiltration statuses among high-risk group and low-risk group through TIMER, CIBERSORT, XCELL, QUANTISEQ, MCPcounter, EPIC, and CIBERSORT database. (B) Differential expression checkpoint gene in papillary thyroid carcinoma (PTC) sample of high-risk and low-risk patients. (C) Correlation between the long noncoding RNA (lncRNA) involved in the risk stratification and immune cell infiltration. Symbols *, **, *** means that p-value <0.05, <0.01 and <0.001, respectively.






Figure 8 | Evaluation and valuation of the prediction ability of sensitivity of risk stratification for common clinical chemotherapies and targeted therapies. (A–N) The risk stratification also can act as a powerful predictor of chemosensitivity for clinical chemotherapeutics. (O–V) The expression of 10 long noncoding RNAs (lncRNAs) in papillary thyroid carcinoma (PTC) and normal tissue. (IV–VI) Here, 2 µM sorafenib was added after knocking down CRNDE in three PTC cell lines. I-III: Efficiency of knocking down were confirmed with qRT-PCR. Symbols *, **, *** means that p-value <0.05, <0.01 and <0.001, respectively. The expanded form of ns means that no significance.





Knocking Down CRNDE Significantly Improves the Sensitivity of Papillary Thyroid Carcinoma Cell Line for Sorafenib

Interestingly, most of the risk genes involved in the stratification system with higher expression in PTC samples matched better prognosis (Figures 4F, 8R). After further validation, we found that those patients with higher CRNDE expression matched worse survival state.

We tried to evaluate the association between the risk stratification and the efficacy of chemotherapeutics based on the THCA cohort of TCGA project. Interestingly, the results showed that higher risk score based on the risk stratification was associated with higher half inhibitory concentration (IC50) of sorafenib (P < 0.01) (Figure 8K).

Next, we chose lncRNA CRNDE from the 10 autophagy lncRNAs and investigated if it could mediate cancer cell survival under sorafenib challenge. By directly knocking down CRNDE in the PTC cell line (Bacap-1, TPC-1, and K1), CCK-8 assay showed that knocking down CRNDE partially increased the effects of sorafenib-induced cell death in PTC cells with si-CRNDE transfection (Figures 8I–III). All those results suggested that CRNDE plays a positive role in tumorigenesis and may regulate the sorafenib sensitivity of PTC cells (Figures 8IV–VI).




Discussion

Over the past year, the diagnostic rate of thyroid cancer has increased rapidly because of the popularization and widespread application of various imaging techniques. PTC lists on top of head and neck cancers. Currently, the comprehensive treatment strategy of combining surgery, thyroid hormone therapy, and internal radiotherapy is widely accepted. However, the definitive molecular mechanisms contributing to the malignant phenotype of PTC remain poorly explored. The high occurrence of thyroid cancer has been shown to have a close relationship with daily iodine intake and disorders of thyroid-stimulating hormone (TSH) levels, and a strong association was also proven that some PTC patients exposited to ionizing radiation (23).

Abnormal expression state of specific genes including tumor suppressor genes and oncogenes and epigenetics process such as methylation of promoters and acetylation of histone are involved in the heterogeneity of PTC. The common classical oncogenic alterations are found in the tumorigenesis of PTC, among which activating mutation in BRAF lists as first among common genetic alterations. BRAF V600E mutation has been verified as a powerful prognostic marker to evaluate the risk of PTC (24). The mutation of BRAF gene has a strong correlation with aggressive clinical characteristics such as metastasis of lymph node, extra thyroid diffusion, high recurrence rate, and resistance to radioactive iodine. Mutation of BRAF reduces the ability of cancer cells to take up iodine. The status of telomerase reverse transcriptase (TERT) mutation has been discovered to serve as an independent prognostic factor for PTC (25). NTRK, HRAS, KRAS, NRAS, RET, RET/PTC, and PAX8/PPARγ gene mutations were proven as oncogenic driver mutations in tumorigenesis of PTC (26–28). The unique oncogene duet of coexisting BRAF V600E and TERT promoter mutations is widely proven to be a robust genetic background promoting thyroid cancer aggressiveness (29–31). Systematic identification and analysis of these oncogenic alterations will help clinical decision makers better diagnose, predict the prognosis, and make the appropriate treatment decision.

Currently, the exploration of molecular biomarkers and development of relative risk stratification are of great interest in cancer research, including screening for new effective diagnostic biomarkers of early-stage cancer, establishing new risk stratifications to predict the OS of cancer patients and new drug research and development.

The discovery of thousands of noncoding RNAs has changed the conventional concept that biological processes are mostly regulated by genes with protein-coding ability (32). There is much research indicating that lncRNAs participate in the process of tumorigenesis. More recently, lncRNAs are associated with various biological behaviors of PTC, including autophagy (33–35), invasion (36, 37), and metastasis (38) by acting as cancer oncogenes or suppressor genes. Although accumulating evidence has shown that the mRNA expression profile could be regarded as a powerful predictive tool for patients suffering from cancer, the risk stratification based on the lncRNA profile has been shown to have an excellent prognostic value because lncRNAs act in a functional mode that is different from that of mRNA with coding ability (39–42). The abnormal expression of particular lncRNAs in cancer is a response to cancer progression, and they could serve as powerful independent biomarkers for diagnosis and prognosis. However, the prognostic value of lncRNAs in PTC has not been systematically explored. Meanwhile, it is often difficult to accurately risk stratify and make an optimal benefit–harm balance of management of PTC, particularly for the risk stratification of small nodules and prediction of OS.

In this study, we established a risk stratification based on the expression profile of autophagy lncRNAs. In order to identify target lncRNAs, we performed coexpression analysis and obtained 1,283 autophagy-related lncRNAs (|R|>0.3 and P value <0.001). After performing univariate and multivariate analyses, autophagy-related lncRNAs with independent prognostic values were selected to construct a risk score model by using matched expression levels. According to the median risk score, the patients were assigned to the high-risk group and low-risk group. Consistent with our assumptions, patients in the high-risk group tended to have worse OS than that in those in the low-risk group. We draw the ROC curve and calculated its AUC value. All the results showed that the risk stratification could easily classify the risk state of PTC. Among the lncRNAs composing the risk stratification, AC008063.1, AC092279.1, LINC00900, and LINC02454 were protective factors. AC004918.3, AC011297.1, AL162231.2, CRNDE, FAM201A, and TONSL-AS1 were risk-related factors. Besides, we employed the Cox regression analysis and certified that the risk stratification is an independent factor of PTC. At the same time, we evaluated the clinical value of the risk stratification in clinical characteristics including age, gender, tumor, node, metastasis, and TNM staging classification. We also made comprehensive and systematic estimation of tumor-infiltrating cells through different databases and immunosuppressed molecules based on the risk stratification.

The initial intervention of PTC always starts with surgical resection of the gland with primary tumor and the metastatic lymph nodes (43, 44). However, the management of advanced PTC patients with a high risk of recurrent disease and exhibiting radioactive iodine refractoriness is still full of intractability after undergoing total thyroidectomy (45, 46). The patients mentioned above may be candidates to benefit from drug therapy. Therefore, we explored the association between the risk stratification and the efficacy of common chemotherapeutics based on the THCA cohort of TCGA project. The IC50 of sorafenib in the high-risk group is higher than that of the low-risk group. A risk lncRNA CRNDE was chosen for further study, and the experimental evidence showed that knocking down CRNDE might enhance sensitivity to sorafenib in in vitro experiments.

We hope the risk stratification based on the autophagy-related lncRNAs helps the clinical worker identify patients with conventionally high risk of PTC and could contribute to the management of patients with PTC.

Our research focused on autophagy-related lncRNAs, and there are certain limitations in our research. First, our studies were based on TCGA cohort and need to be further validated using another additional cohort with a long follow-up time. While low mortality is a characteristic of PTC, there is an absence of cohorts with sufficiently long follow-up. Furthermore, further experiments need to be carried out to determine the mechanisms and functions of these autophagy-related lncRNAs in the tumorigenesis of PTC.
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Purpose

To study the pattern of mandibular involvement and its impact on oncologic outcomes in patients with gingivo-buccal complex squamous cell carcinoma (GBC-SCC) and propose a staging system based on the pattern of bone involvement (MMC: Marrow and mandibular canal staging system) and compare its performance with the 8th edition of the American Joint Committee on Cancer (AJCC8).



Methods

This retrospective observational study included treatment-naïve GBC-SCC patients who underwent preoperative computed tomography (CT) imaging between January 1, 2012, and March 31, 2016, at a tertiary care cancer center. Patients with T4b disease with high infratemporal fossa involvement, maxillary erosion, and follow-up of less than a year were excluded. The chi-square or Fisher’s exact test was used for descriptive analysis. Kaplan–Meier estimate and log-rank test were performed for survival analysis. Multivariate analysis was done using Cox regression analysis after making adjustments for other prognostic factors. p-Value <0.05 was considered as significant. Based upon the survival analysis with different patterns of bone invasion, a new staging system was proposed “MMC: Marrow and mandibular canal staging system”. “Akaike information criterion” (AIC) was used to study the relative fitted model of the various staging (TNM staging—AJCC8) with respect to survival parameters.



Results

A total of 1,200 patients were screened; 303 patients were included in the study. On radiology review, mandibular bone was involved in 62% of patients. The pattern of bone involvement was as follows: deep cortical bone erosion (DCBE) in 23%, marrow in 34%, and marrow with the mandibular canal in 43% of patients. Patients with DCBE and no bone involvement (including superficial cortical) had similar survival [disease-free survival (DFS) and locoregional recurrence-free survival (LRRFS)], and this was significantly better than those with marrow with or without mandibular canal involvement (for both DFS and LRRFS). Patients with DCBE were staged using the MMC, and when compared with the AJCC8, the MMC system was better for the prediction of survival outcomes, as AIC values were lower compared with those of the AJCC8. There was a significant association (p = 0.013) between the type of bone involvement and the pattern of recurrence.



Conclusions

For GBC-SCC, only marrow with or without mandibular canal involvement is associated with poorer survival outcomes. As compared with the AJCC8, the proposed Mahajan et al. MMC staging system downstages DCBE correlates better with survival outcomes.





Keywords: head and neck squamous cell carcinoma, oral cancer (OC), AJCC 8th edition, gingivo-buccal squamous cell carcinoma, imaging—computed tomography, imaging, prognostic model, outcome assessment



Introduction

Squamous cell carcinoma is the most common histology of the oral cavity cancers. There are a multitude of factors that impact the prognosis of patients with these tumors. Amongst these, mandibular bone erosion (through the cortical bone of the mandible: deep cortical and/or marrow) is found to be an important factor (1–5). According to widely accepted staging systems, its presence is considered to be stage T4a (6). The probability of mandibular bone erosion is higher with buccal mucosa lesions in close proximity to the mandible and gingival cancers, which occur due to invasion of the mandible through the occlusal surface (7–9).

Over recent years, it has often been argued that mandibular bone erosion needs to be characterized further. The Japan Society for Oral Tumors (JSOT) has defined T4 cancer as the invasion of the mandibular canal (10–12). Ebrahimi et al. based the T stage on size and depth of invasion for tumor categories T1–T3 and T4 in the presence of marrow invasion (13). In contrast, a few reports have suggested that tumor size correlates with adverse prognosis and that bone invasion is not an independent predictor of survival (14–16). On the contrary, some studies have reported that tumor size and marrow invasion are independent predictors of reduced survival (13, 17–19). In view of such varied evidence and lack of clarity, this study aims to evaluate the association of various patterns of mandibular bone involvement and their impact on survival. Based upon the findings, we also endeavored to develop a staging system that would reflect the implications of various types of bone invasion-superficial cortical erosion (erosive bony involvement), deep cortical erosion (infiltrative bony involvement), marrow involvement (infiltrative bony involvement), and mandibular canal involvement (infiltrative bony involvement), as assessed on imaging in a better way.



Material and Methods

This is a retrospective study on treatment-naïve gingivo-buccal complex squamous cell carcinoma (GBC-SCC) patients who underwent preoperative CT imaging between January 1, 2012, and March 31, 2016, at a tertiary care cancer center. The patients who underwent treatment with curative intent were included. Since surgery is the mainstay of treatment for these cancers, only those patients who underwent definitive surgical management at our center were included in the study.


Patients

Overall, 1,200 patients were screened. We excluded patients with stage T4b with high infratemporal fossa involvement, maxillary erosion, those with follow-up of less than 1 year, and cases where digital imaging and communications in medicine (DICOM) images were not available for review. Analysis was performed on 303 patients in our study (Figure 1). The Institutional Ethics Committee approval was obtained. Since it is a retrospective study, the waiver of consent was granted. The demographic, treatment, histopathological, and follow-up details were obtained from the electronic medical records.




Figure 1 | Consort diagram; 1,200 patients were screened, and 303 were included who met the inclusion criteria.





Image Evaluation

Two senior head and neck radiologists with experience of over 10 and 6 years and one junior radiologist with experience of over 3 years reviewed the CT images independently (AbM, NS, and ND, respectively). The imaging review was performed on reconstructed DICOM data. The soft-tissue algorithm and bone window or bone algorithm reformations and axial images were analyzed on a volume viewer integrated within the picture archiving and communication system (PACS) using triangulation.

The various patterns of bone involvement reported on imaging were as follows: erosive infiltration, i.e., superficial cortical erosion with subtle outer cortical erosion without complete breach. Infiltrative invasion included deep cortical erosion with outer cortical breach and disease reaching up to the inner cortical layer, marrow involvement with disease eroding both the cortices and reaching up to the mandibular marrow, and mandibular canal involvement with disease eroding the inferior alveolar canal, obliteration of fat, or excessive enhancement within the mandibular foramen, with or without widening or erosion of the foramen, which was regarded as the perineural spread. Figure 2 shows a line diagram of the described patterns of mandibular involvement. As the 8th edition of the American Joint Committee on Cancer (AJCC8) does not consider superficial cortical erosion for upstaging the disease, patients with superficial cortical erosion were included with patients having no bone erosion.




Figure 2 | (A) Line diagram of tumor eroding the superficial cortex. (B) Tumor with deep cortical erosion. (C) Tumor with marrow involvement.





Pathology Evaluation

The pathology reports of all tumors exhibiting bone invasion on imaging were reviewed. The bone invasion was categorized as present or absent in the final report. In cases where there was inadequate information regarding the extent of bone invasion, the second review of the pathology slides was performed by a senior head and neck pathologist (SR, AP, and MB).



Statistical Considerations

The analysis was performed using SPSS version 21 and R software (IBM Corp). The chi-square or Fisher’s exact test was used for descriptive analysis. The overall survival (OS) was calculated from the date of surgery to death due to any cause. Disease-free survival (DFS) was defined from the date of surgery to any disease recurrence. Locoregional recurrence-free survival (LRRFS) was calculated from the date of surgery to the locoregional recurrence. The patients were censored if they were lost to follow-up or on the last follow-up date in case the event did not occur. Kaplan–Meier estimate and log-rank test were performed for survival analysis. Multivariate analysis was done using Cox regression analysis after making adjustments for other prognostic factors. p-Value <0.05 was considered significant.


MMC: Marrow and Mandibular Canal Staging System

Based upon the survival analysis with different patterns of bone invasion, a new staging system was proposed, “MMC: Marrow and mandibular canal staging system” (Table 1). The patients with no bone erosion/superficial cortical erosion and deep cortical bone erosion were staged based on the size and depth of invasion. Only marrow invasion with or without mandibular canal involvement was considered to be T4a. The patients were restaged according to this system, and this staging system was compared with the AJCC8 staging system.


Table 1 | Marrow mandibular canal staging system.



“Akaike information criterion” (AIC) was used to study the relative fitted model of the various staging (TNM staging—AJCC8) with respect to OS, DFS, and LRRFS. AIC estimates the best-fitted model, relative to other models, thus providing the means for each model selection. R software and survival package were used to calculate the AIC values.





Results


Patient Characteristics

We screened 1,200 patients, out of whom 303 patients met the inclusion criteria and were included in the final analysis. The mean age of the cohort was 52.86 years (30 to 84 years). Of these, 258 (85%) were males and 45(15%) were females. The personal habits revealed that most of the patients 263 (86.8%) were tobacco chewers/smokers; 27 (8.9%) had multiple habits. Out of 303 patients, 261 (86%) underwent segmental mandibulectomy, and 42 (14%) underwent marginal mandibulectomy. A total of 206 (68%) patients received adjuvant chemoradiation, 71 (23%) received adjuvant radiotherapy, and 26 (9%) did not warrant any adjuvant therapy. Relevant patient demographic and clinicopathological data are summarized in Table 2. The pathological nodal staging was done using the AJCC8 staging system. All the patients underwent neck dissection. The majority of them were N0, 154 (51%); N1, 16 (5%); N2, 53 (18%); and N3, 80 (26%). Positive bony and mucosal margins were seen in 8 (3%) and 7 (2%) of cases, respectively.


Table 2 | Demographic, histopathological, and clinical details of the whole cohort (n = 303).





Patterns of Bone Involvement

According to the radiology review, mandibular bone was involved in 187 (62%) patients. Out of these, deep cortical erosion was seen in 43 (23%), marrow was involved in 64 (34%), and mandibular canal involvement was seen in 80 (43%) patients.



Survival Analysis

In our study, the mean OS was 26 months, the mean DFS was 24.6 months, and the mean LRRFS was 24.7 months. The cohorts were stratified based on the type of bone erosion. Figures 3–5 depict the Kaplan–Meier survival curves for the various patterns of bone involvement. No bone erosion or deep cortical bone involvement had a significantly better outcome compared with marrow or mandibular canal involvement (DFS, p = 0.023; LRRFS p = 0.013). However, the difference in OS between the 2 groups was not significant (p = 0.82). Marrow involvement had a similar survival (DFS and LRRFS) to mandibular canal invasion (for DFS, p = 0.59; for LRRFS p = 0.77). There was a significant survival difference (DFS and LRRFS) between the deep cortex and marrow (for DFS, p = 0.005; for LRRFS, p = 0.017) and the deep cortex and mandibular canal involvement (for DFS, p = 0.01; for LRRFS p = 0.006).




Figure 3 | Comparison of Kaplan–Meier survival curves of disease-free survival (DFS) for different patterns of bone involvement.






Figure 4 | Comparison of Kaplan–Meier survival curves of locoregional recurrence-free survival (LRRFS) for different patterns of bone involvement.






Figure 5 | Comparison of Kaplan–Meier survival curves of overall survival (OS) for different patterns of bone involvement.



When the patients were stratified based on extracapsular spread (ECS), there was statistically worse DFS and LRRFS in patients with marrow/canal involvement as compared with no bone erosion/deep cortical erosion in the ECS-negative subgroup (p = 0.023 and p = 0.013, respectively). However, the difference in the 2 groups was not statistically significant (p = 0.389 for DFS; p = 0.641 for LRRFS) in the ECS-positive subgroup. The type of bone was an independent prognostic factor for DFS on multivariate analysis after making adjustments for known histopathological prognostic factors and retroantral fat involvement involvement p < 0.001(Table 3). Other independent prognostic factors were retroantral fat involvement, skin involvement, and tumor grade. The type of bone involvement was the only independent prognostic factor for LRRFS on multivariate analysis, p < 0.001 (Table 4).


Table 3 | Multivariate analysis of disease-free survival in patients with gingivo-buccal squamous cell carcinoma.




Table 4 | Multivariate analysis of locoregional recurrence-free survival in patients with gingivo-buccal squamous cell carcinoma.





Marrow and Mandibular Canal Classification—Stage Migration and Comparison With 8th Edition of the American Joint Committee on Cancer

As per the final histopathology report, patients were staged according to the AJCC8 and MMC classifications (Table 2). In the MMC classification, patients with deep cortex involvement were downstaged from T4 to the stage according to the size of the tumor and depth of invasion. Out of 228 T4 patients (according to the AJCC8), 30 patients were downstaged to T1–T3. Out of these 30 patients, 6 were restaged to T1, 16 were restaged to T2, and 8 were restaged as T3. When the two staging systems were compared using AIC, the MMC system turned out to be a better staging system for the prediction of survival, as the AIC values of the MMC staging system for LRRFS, DFS, and OS were lower compared with those of the AJCC8 (Table 5).


Table 5 | AIC values of AJCC8 and MMC staging system with respect to survival.





Patterns of Recurrence

Table 6 shows the pattern of recurrence with respect to the types of bone involvement. Further, we evaluated if the type of bone erosion had any impact on the pattern of recurrence. The recurrence occurred in 23.3% of patients with deep cortical and no bone involvement versus 48.6% of patients with marrow and mandibular canal involvement, which was statistically significant (p = 0.023). There was a statistically significant association between the type of bone erosion and the type of recurrence (p = 0.013).


Table 6 | Pattern of bone involvement with pattern of recurrence.






Discussion

The prognosis of oral squamous cell carcinoma depends upon a multitude of factors. Several of these are included in the staging system. Bone invasion has been considered as an adverse prognostic factor for a long time, thus meriting adjuvant therapy (2). Over the last few decades, it has been shown that superficial cortical erosion for alveolar primaries does not portend a poorer prognosis; such tumors are, therefore, staged according to their size (13).

There have been several studies that have further tried to understand and characterize the type of bone erosion and its effect on prognosis (20, 21). They have differentiated bone erosion as erosive (superficial cortical erosion) and infiltrative (deep cortical, marrow involvement, and mandibular canal involvement) and looked at their impact on the prognosis and survival. It has been observed that cortical bone erosion may not impact survival and only marrow invasion impacts prognosis. A recent meta-analysis found that only marrow invasion impacted overall and disease-free survival (22). On the contrary, few other studies did not show such an association between any type of bone erosion and survival (14–16). Probably this is the reason why staging systems, rather than characterizing the type of bone erosion, continue to mention merely mandibular bone erosion as present or absent.

Studies on this aspect have looked at all subsites of the oral cavity combined. It is prudent to understand that a buccal mucosa or a lower alveolus cancer is more likely to erode mandibular bone as compared with a tongue cancer (8, 9). They cannot be kept on the same pedestal while making any meaningful conclusions regarding upstaging the disease in presence of bone erosion. Another important aspect that these studies have not considered is the pathological depth of invasion, which plays an important role in assessing the prognosis and has recently been incorporated in the AJCC staging system (23, 24). In our study, we utilized the AJCC8 to stage the patients; thus, the depth of invasion was included in the staging process. As mentioned earlier, we only included buccal mucosa and lower alveolus cancer patients in the study, which is the most relevant cohort. We also excluded patients with high infratemporal fossa and maxillary erosion. This was done to exclusively analyze the prognostic impact of the type of mandibular bone erosion on survival.

On multivariate analysis, type of bone erosion had an independent prognostic impact on DFS and LRRFS (p < 0.001 and p < 0.001, respectively) after making adjustments for other prognostic factors (Tables 3 and 4, respectively). Deep cortical erosion had survival similar to cases with no bone erosion. In contrast, marrow and mandibular canal involvement had similar survival (DFS and LRRFS), which was statistically worse than that seen with deep cortical erosion and no bone erosion for DFS and LRRFS (Figures 3, 4).

Based on the results of univariate analysis, patients with deep cortical or no bone involvement were included together, and patients with marrow and mandibular canal were included together for further analysis. We found marrow and mandibular canal involvement to be statistically significantly poorer than no bone or deep cortical erosion for DFS and LRRFS (p =0.023 and p =0.013, respectively). It has also been hypothesized by a few studies that mandibular canal involvement may be associated with higher chances of distant metastasis (25–27). In our study, we found a statistically significant association between type of recurrence and the type of bone erosion (p = 0.013).

There have been few studies that have tried to restage the disease based upon the type of bone erosion. As per Ebrahimi et al., cortex involvement had a similar outcome as no bone involvement (13). They proposed a staging system where the disease was upstaged by 1 T category in the presence of marrow invasion. Another study proposed the JSOT classification, where the tumor was classified as T4a only when there was the involvement of the mandibular canal (10, 11). Involvement of the mandibular marrow without canal involvement was classified according to size; however, these patients performed equally badly as those with canal involvement. Bone erosion was completely ignored in another staging system, where the classification was based upon the soft tissue involvement alone (28). They did not consider bone involvement important for staging the tumor. In all these studies, cases without bone erosion were staged as per the size of the tumor. For staging, they had used the 7th edition of the AJCC, where the impact of depth of invasion was not considered. In the present study, we have staged the patients as per the AJCC8 and have considered the depth of invasion for all the patients.

As per the AJCC8 classification system, the tumor is classified as T4a even on mandibular cortical involvement. But the results of our study show that the cortical involvement did not affect the survival of the patient. Hence, we proposed an MMC classification system in which we downstaged tumors with superficial or deep cortical erosion based solely upon their size and depth of invasion (Table 1). Only those having marrow involvement with or without mandibular canal involvement were staged as T4a. This staging was labeled as MMC. The results of our study also show that T classification based upon the MMC staging was a better predictor of OS, DFS, and LRRFS as compared with the AJCC8 (Table 5).

The limitation of our study is that it is retrospective. We also did not study the impact of superficial bone erosion on the prognosis. Moreover, information about the pattern of invasion on histopathology  for these patients was not available. In spite of these limitations, this study provided a large sample size focusing on the relevant subsite of the oral cancers, the buccal mucosa.



Conclusion

In this study, we found that for GBC-SCC, bone erosion with marrow as well as mandibular canal involvement, and not cortical erosion, is associated with poorer survival outcomes. The marrow with or without mandibular canal involvement has a higher incidence of recurrence, and there was a statistically significant association between the type of bone involvement and pattern of recurrence. T classification based upon the proposed Mahajan et al. MMC staging system, which downstages deep cortical bone involvement, is a better predictor for survival as compared with the AJCC8.
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Background

KIF15 plays a vital role in many biological processes and has been reported to influence the occurrence and development of certain human cancers. However, there are few systematic evaluations on the role of KIF15 in human cancers, and the role of KIF15 in the diagnosis and prognosis of nasopharyngeal carcinoma (NPC) also remains unexplored. Therefore, this study aimed to conduct a pan-cancer analysis of KIF15 and evaluate its diagnostic and prognostic potential in NPC.



Methods

The expression pattern, prognostic value, molecular function, tumor mutation burden, microsatellite instability, and immune cell infiltration of KIF15 were examined based on public databases. Next, the diagnostic value of KIF15 in NPC was analyzed using the Gene Expression Omnibus (GEO) database and immunohistochemistry (IHC). Kaplan–Meier curves, Cox regression analyses, and nomograms were used to evaluate the effects of KIF15 expression on NPC prognosis. Finally, the effect of KIF15 on NPC was explored by in vitro experiments.



Results

The expression of KIF15 was significantly upregulated in 20 out of 33 cancer types compared to adjacent normal tissue. Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analysis showed that KIF15 could participate in several cancer-related pathways. The increased expression level of KIF15 was correlated with worse clinical outcomes in many types of human cancers. Additionally, KIF15 expression was related to cancer infiltration of immune cells, tumor mutation burden, and microsatellite instability. In the analysis of NPC, KIF15 was significantly upregulated based on the GEO database and immunohistochemistry. A high expression of KIF15 was negatively associated with the prognosis of patients with NPC. A nomogram model integrating clinical characteristics and KIF15 expression was established, and it showed good predictive ability with an area under the curve value of 0.73. KIF15 knockdown significantly inhibited NPC cell proliferation and migration.



Conclusions

Our findings revealed the important and functional role of KIF15 as an oncogene in pan-cancer. Moreover, high expression of KIF15 was found in NPC tissues, and was correlated with poor prognosis in NPC. KIF15 may serve as a potential therapeutic target in NPC treatment.
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Introduction

Cancer has become the leading cause of morbidity and mortality in low- and high-income countries around the world (1). Due to population aging and growth, the global number of patients with cancer is predicted to increase (2). Despite great advances in diagnostic and therapeutic methods of treating cancer in recent years, the survival outcome and quality of life of patients remains unsatisfactory (3). Among all types of cancers, nasopharyngeal carcinoma (NPC) is endemic to southeast Asia, north Africa, and southern China. According to GLOBOCAN estimates, the age-standardized rate of NPC is 4–25 cases per 100,000 individuals in these regions (4, 5). The tumorigenesis and progression of NPC are closely related to genetic factors, environmental effects, and Epstein–Barr virus (EBV) infection (6). Advanced NPC had worse clinical outcomes due to delayed diagnosis and distant metastasis are the critical factors for treatment failure (7). Consequently, it is necessary to identify novel biomarkers and investigate the molecular mechanisms for improving early diagnosis and prognosis of NPC.

The kinesin superfamily (KIF) is an important microtubule-dependent motor protein that participates in the transport of various cargos including vesicles, membranous organelles, and mRNAs (8). To date, more than 45 KIF members have been found in mammalian cells and they are classified into 14 families base on their structural features (9). KIF15, a member of kinesin-12 family, is a plus end-directed motor with an N-terminal motor domain that plays a key role in bipolar spindle assembly (10). During cell division, dysregulation of KIF15 can result in aberrant cell proliferation, tumorigenesis, and tumor aggressiveness (11). Recently, KIF15 has been proven to be over-expressed in various cancers including gastric cancer, hepatocellular carcinoma, and lung adenocarcinoma (12–14). However, the functions of KIF15 in pan-cancer are not fully understood. Moreover, there is a lack of evidence on the effects of KIF15 expression on the diagnosis and prognosis of NPC.

In the present study, we comprehensively analyzed the expression signature, prognostic value, and associated pathways of KIF15 across 33 types of human cancers using multiple databases. Subsequently, the correlations between KIF15 and tumor mutation burden (TMB), microsatellite instability (MSI), and immune infiltration degree were investigated. We further analyzed the mRNA expression of KIF15 in NPC tissues and normal tissues using the Gene Expression Omnibus (GEO) database. Immunohistochemical analysis (IHC) was utilized to verify the protein expression level of KIF15 and its diagnostic and prognostic value in NPC. RNA interference was conducted to silence the KIF15 expression to investigate its molecular function in the NPC cell lines. The results of our study could contribute to a better understanding of the effects of KIF15 on cancer (specifically NPC) occurrence, development, and prognosis.



Materials and Methods


Analysis of KIF15 Differential Expression in Pan-Cancer

The Cancer Genome Atlas (TCGA) is a web-based, publicly available database, which contains more than 2.5 petabytes of genomic, transcriptomic, and proteomic data of over 20,000 cancer patients across 33 different cancer types (http://cancergenome.nih.gov/). Gene expression data and clinical data of TCGA were downloaded using the University of California, Santa Cruz Xena (UCSC Xena) online tool. Wilcoxon test was used to assess the expression levels of KIF15 in various cancers based on TCGA database. The Oncomine database is a useful platform that provides a powerful series of analyses, including comparison gene expression signatures, clusters, and gene-set modules (www.oncomine.org). The Kaplan-Meier plotter is capable of evaluating the potential role of mRNA, miRNA, and proteins in 21 cancer types (http://kmplot.com/analysis/). The expression pattern of KIF15 in pan-cancer was further verified by Oncomine database and Kaplan-Meier plotter database. The clinical relationship between KIF15 expression level and patients’ cancer stage was evaluated using limma package and RColorBrewer package was used to visualized the results, we used ‘avereps’ function from limma package to condense the microarray data object so that values for within-array replicate probes are replaced with their average, for each cancer type, we compared gene expression differences of KIF15 between each of the two cancer stages using the Wilcox test. P values were set as statistically significant according to the following: *P<0.05; **P<0.01 and ***P<0.001.



Analysis of KIF15 Expression and Prognosis in Pan-Cancer

To evaluate the KIF15 potential prognostic value in pan-cancer, univariate Cox regression and Kaplan-Meier (KM) method were used to analyze overall survival (OS), disease-free interval (DFI), disease-specific survival (DSS) and progression-free interval (PFI) based on TCGA database. The GEPIA web-based platform was applied to analyze the KIF15 expression level in pan-cancer (http://gepia2.cancer-pku.cn). A P value <0.05 was set as significantly different.

Meta-analysis was carried out using Review Manager (RevMan) version 5.3. The eligible studies were searched for on public databases, including PubMed, PrognoScan and Chinese National Knowledge Infrastructure (CNKI) up to December 31, 2021. The search strategy was as follows: (“KIF15” or “kinesin family member 15”) AND (“tumor” or “cancer” or “carcinoma” or “malignancy”) AND (“survival” or “outcome” or “prognostic”). The inclusion criteria were: (1) the expression level of KIF15 was detected in human cancer; (2) the correlation of KIF15 expression and OS or Disease-free survival (DFS) or Relapse-Free Survival (RFS) or Local relapse-free survival (LRFS) or Distant metastasis-free survival (DMFS) was evaluated; and (3) the hazard ratios (HRs) with 95% confidence intervals (CIs) could be acquired directly or estimated. The exclusion criteria were: (1) articles that were reviews, case reports, letters, meeting abstracts, or expert opinions; (2) duplicate literature; and (3) data that were insufficiently detailed or the needed descriptive or inferential statistics could not be calculated.

We evaluated the correlation between KIF15 and the survival results (OS, RFS, and DMFS) by the pooled HR and 95% CIs. A P<0.05 was regarded to be statistically significant. Higgins I2 statistics and the chi-square Q test were applied to analyze the heterogeneity of different studies. When the heterogeneity was statistically significant (P>0.1 or I2<50%), the fixed-effect model (FEM) was built; otherwise, the random-effect model (REM) was built. A funnel plot and the Egger test were used to evaluate publication bias.



Functional Analysis of KIF15 Related Genes

The GEPIA database was utilized to identify the significantly related genes of KIF15 in human cancers. The correlation coefficient was calculated using the Pearson method and the top 100 genes most relevant to KIF15 were selected. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses was performed to investigate the biological functions of these genes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). Next, a protein–protein interaction (PPI) network was constructed and visualized by Cytoscape (version 8.2). The functional state of KIF15 in different cancer types was explored using CancerSEA database (http://biocc.hrbmu.edu.cn/CancerSEA/). CancerSEA is the first comprehensive database that offers a cancer single-cell functional state atlas; it contains 14 functional states of 41,900 cancer single cells across 25 cancer types. Association between KIF15 and functional state in various single-cell datasets was determined by a correlation strength >0.3 and a false discovery rate (FDR) (Benjamini & Hochberg) <0.05.



Correlation Between KIF15 Expression and Tumor Immunity

The Tumor Immune Estimation Resource (TIMER) web server is an interactive database that helps comprehensively analyze immune cell infiltration (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) in difference cancer types (https://cistrome.shinyapps.io/timer/). We applied ‘‘Gene’’ module of TIMER to evaluate the correlation between KIF15 expression and the six immune cell subtypes from the expression file.

TMB is defined as the total count of somatic insertions, base substitutions, and deletions in each coding area of the tumor genome. The Perl language and R software (version 4.1.1) were used to calculate the total TMB score of each TCGA cancer case and analyze its relationship with KIF15 expression level in pan-cancer (15). MSI is defined as the number of insertion or deletion events in short tandem repeat DNA tracts. Analysis of the correlation between KIF15 expression and MSI was performed by R software (16). Relationship between KIF15 expression and immune signatures was investigated. These immune signatures contained BTLA, CD200, TNFRSF14, NRP1, LAIR1, TNFSF4, CD244, LAG3, ICOS, CD40LG, CTLA4, CD48, CD28, CD200R1, HAVCR2, ADORA2A, CD276, KIR3DL1, CD80, PDCD1, LGALS9, CD160, TNFSF14, IDO2, ICOSLG, TMIGD2, VTCN1, IDO1, PDCD1LG2, HHLA2, TNFSF18, BTNL2, CD70, TNFSF9, TNFRSF8, CD27, TNFRSF25, VSIR, TNFRSF4, CD40, TNFRSF18, TNFSF15, TIGIT, CD274, CD86, CD44 and TNFRSF9, according to previous reports (15–17).The limma package and RColorBrewer package of R software were used to evaluate the correlation between KIF15 expression and the selected immunologic genes in pan-cancer.



Genetic Alteration Analysis of KIF15

cBioPortal for Cancer Genomics database (http://cbioportal.org) were utilized to analysis the KIF15 alteration frequency, copy number alteration and mutation type in various cancer types from TCGA.



GEO Database Analysis of NPC

Three gene expression profiling datasets GSE12452, GSE53819, and GSE61218 were obtained from the GEO database. The GSE12452 microarray contained 31 NPC samples and 10 normal samples, the GSE53819 microarray included 18 NPC samples and 18 non-cancerous samples, the GSE61218 microarray included 10 NPC tissue samples and six normal samples. The expression level of KIF15 was evaluated by wilcoxon, and P-values <0.05 were set as statistically significant.



Immunohistochemistry and Evaluation

From April 2011 to December 2015, 158 formalin-fixed, paraffin-embedded NPC and 33 normal nasopharyngeal epithelium (NNE) tissues were collected in The First Affiliated Hospital of Guangxi Medical University. The patient tumors were newly diagnosed, non-metastatic, measurable, and pathologically confirmed to be NPC. The study was approved by the ethics committee of The First Affiliated Hospital of Guangxi Medical University.

First, the paraffin-embedded tissue sections were dewavered and rehydrated, then the antigen retrieval was carried out, and the endogenous peroxidase activity was blocked by 3% hydrogen peroxide for 25 min at 25°C. After being incubated with KIF15 primary antibody (Abcam, 1:200) at 4°C overnight, the sections were incubated by the secondary antibody for 90 min at room temperature. The immunoreactive score was calculated by multiplying the proportion of positive cells and the staining intensity. The cell positivity scores were determined as follows: <5% for zero; 5%–25% for one; 26%–50% for two; 51%–75% for three; and 76%–100% for four. The staining intensity scores were determined according to the following: 0 for no staining; 1 for light yellow; 2 for yellow; and 3 for brown. The final immunoreactive score were determined according to the following: 0 for negative, 1-3 for weak staining, 4-7 for moderate staining and, 8-12 for intense staining. All the NPC patients were divided into KIF15 high expression group and low expression group base on median immunoreactive score.



Gene Set Enrichment Analysis (GSEA) of KIF15

GSEA was conducted using GSEA (version 4.0.1) with the Molecular Signatures Database (MSigDB). Samples were separated into high or low KIF15 expression groups based on the median KIF15 expression. The gene set ‘‘c2.cp.kegg.v7.1.symbols.gmt’’ of MSigDB gene set was chose as a reference gene set. A pathway with adj P-value<0.05, false discovery rate (FDR)<0.25 and normalized enrichment score (NES) >1.5 was considered as significantly enriched.



Cell Lines and Transfection

The normal human nasopharyngeal epithelial cell line (NP69) and NPC cell line (CNE1, CNE2, HONE1, C666-1) were obtained from Guangxi Medical University Nasopharyngeal Cancer Research Laboratory. The NP69 cells were cultured in keratinocyte-SFM medium (Invitrogen, Carlsbad, USA) containing bovine pituitary extract (BD Biosciences, San Diego, CA, USA). Human NPC cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (Gibco), 1% streptomycin/penicillin was added to the medium. All the cells were incubated in a humidified atmosphere with 5% CO2 at 37°C. NPC cell was transfected with siRNAs targeting KIF15 or control siRNA (RuiSai, Shanghai, China) using Lipofectamine 3000 (Invitrogen, Carlsbad, USA). The target sequences were GCGGTTATAATGGTACCAT (siKIF15-1), and GCTGGAAAGAGTTTCCTTT (siKIF15-2).



Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Total RNA from NPC cell was extracted using TRIzol reagent (Life Technologies Corporation, Carlsbad, USA), cDNA was generated using the PrimeScript RT reagent kit according to the manufacturer’s protocol (Takara Bio, Kusatsu, Japan). Then, the TB Green Premix Ex Taq II kit (Takara Bio) was applied for qRT-PCR. The relative RNA expression was determined by 2 -△△ct method, with GAPDH being the internal control. The primers sequences were as follows: KIF15: Forward: 5’-TGGAGGATGGAGGAATAG-3’; Reverse: 3’-CCACCAGGTTGAGTAGGG-5’. GAPDH: Forward: 5’-GGATTGTCTGGCAGTAGCC-3’; Reverse: 3’-ATTGTGAAAGGCAGGGAG-5’.



Cell Viability and Colony Formation Assays

Cells were planted into 96 well plates (1500 cells/well) after 24 hours of transfection. CCK-8 reaction reagent (Dojindo, Japan) was used to measure cell viability at 0h, 24h, 48h, 72h. 10 µl of CCK-8 solution was added into each well and incubated for 2 h. The OD value was measured with the microplate reader at 450 nm. In order to explore proliferation, colony formation assay was performed. After incubation in 6-well plates at 1500/well, the formation of cell colonies was detected after 14 days. In brief, cells were subjected to methanol fixation and stained by crystal violet solution. clones contained at least 50 cells were counted for analysis.



Scratch Assay

5 × 105 cells/well were seeded into 6-well plates. Subsequently, 10µl pipette tip was used to create a wound on the confluent cell monolayer. Then, we used inverted microscope to take photos of wound closure at 0 and 24 h and the wound healing distance was analyzed.



Transwell Assay

After resuspending by serum-free medium, 5 × 104 cells containing RPMI 1640 medium without FBS were plated in the upper chamber, and 500 ul of 10% FBS RPMI 1640 medium was added to the lower chamber. The number of cells that had migrated after 24 h was measured under three random fields.



Statistical Analysis

Differences in clinical characteristics (Gender, Age, Histological type, T stage, N stage and TNM stage) between the groups were evaluated using the chi square test, while 5 year-OS between the groups were evaluated using KM analysis with the log-rank test. OS, RFS, and DMFS were defined as the period from the day of first treatment to day of death, relapse and distant metastasis due to any reason. Statistical analysis and visualization were conducted with SPSS (version 24.0; IBM, New York, USA), GraphPad Prism (version 8.0), and R software. Results with P<0.05 was regarded as statistically significant. We conducted univariate and multivariate cox regression analyses for the selection of features. The selection of candidate features depended on comprehensive consideration of their clinical value and statistical significance. The nomogram model was generated with 5-year OS endpoint by the rms package of R software. Concordance index (C-index), receiver operating characteristic (ROC) curve, and the calibration curve were used to evaluate the predictive accuracy for the nomogram. After calculating the total scores by nomogram, patients were divided into low- or high-risk subgroups by using the X-tile software (version 3.6.1; Yale University, New Haven, CT, USA) (18).




Results


KIF15 mRNA Expression and Clinical Association in Pan-Cancer

The abbreviations of the 33 TCGA cancer types are shown in Table 1. In TCGA database, KIF15 was upregulated in 20 cancer types, including BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, PCPG, PRAD, READ, SARC, STAD, THCA and UCEC (Figure 1A). Likewise, in the Oncomine database, the expression level of KIF15 was significantly increased in bladder, brain and CNS, breast, cervical, colorectal, esophageal, gastric, head and neck, lung, and ovarian cancers, as well as lymphoma and sarcoma; while significantly decreased in leukemia. (Figure 1B). Detailed data of KIF15 expression levels in Oncomine database are shown in Supplementary Table 1. In the Kaplan-Meier plotter database, KIF15 was differentially highly expressed in 18 cancer types, including adrenal, bladder, breast, colorectal, esophageal, liver, lung, ovarian, pancreatic, prostate, rectal, renal, skin cancer, stomach, thyroid, and uterine cancers and acute myeloid leukemia, while less expressed in testicular cancer (Figure 1C). In short, KIF15 could serve as an oncogene in pan-cancer. In addition, the expression level of KIF15 significantly related to patients’ cancer stage in ACC, BRCA, COAD, ESCA, KICH, KIRC, KIRP, LIHC, LUSC, SKCM, TGCT, and THCA based on TCGA database (Figure 2).


Table 1 | Abbreviations of the 33 cancer types in the The Cancer Genome Atlas database.






Figure 1 | The expression level of KIF15 in pan-cancer. (A) Differential expression of KIF15 between tumor and normal tissues of KIF15 in TCGA. (B) Differential expression of KIF15 between tumor and normal tissues of KIF15 in Oncomine. (C) Differential expression of KIF15 between tumor and normal tissues of KIF15 in Kaplan–Meier plotter. *P < 0.05; **P < 0.01 and ***P < 0.001.






Figure 2 | Correlation of KIF15 mRNA expression and different pathological stages of certain cancers in TCGA.





Correlation Analysis Between the Expression of KIF15 and Prognostic Value

Univariate cox regression analyses are shown as forest charts in Figure 3. High KIF15 expression positively correlated with poorer OS in ACC, KICH, KIRC, KIRP, LGG, LIHC, MESO, PAAD, PCPG, PRAD, READ, while it correlated with better OS in READ and THYM (Figure 3A). For DFI, high KIF15 expression remarkably correlated with worse survival in KIRP, LIHC, LUAD, PAAD, PRAD, SARC, and THCA (Figure 3B). For DSS, it was found that high KIF15 expression significantly correlated with worse prognosis in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PRAD, SARC, and UCEC, while it correlated with better prognosis in COAD (Figure 3C). For PFI, high KIF15 expression positively correlated with worse survival in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PCPG, PRAD, SARC but correlated with better survival in COAD and GBM (Figure 3D).




Figure 3 | The prognosis value of KIF15 of differ cancers using Univariate Cox proportional hazards models. (A) Overall survival (OS). (B) Disease-free survival (DFI). (C) Disease-specific survival (DSS). (D) Progression-free interval (PFI).



A K-M survival curve was used to demonstrate the effect of KIF15 on prognosis, as shown in Figure 4. For OS, increased KIF15 expression showed worse prognosis in ACC, KICH, KIRC, KIRP, LGG, LIHC, MESO, PAAD, and SARC but better prognosis in COAD, STAD, and THYM (Figure 4A). For DFI, increased KIF15 expression showed worse prognosis in KIRP, LIHC, LUAD, PAAD, SARC, and THCA (Figure 4B). For DSS, increased KIF15 expression showed worse prognosis in ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PRAD and SARC, but better prognosis in COAD (Figure 4C). For PFI, increased KIF15 expression showed worse prognosis in ACC, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD, PRAD, SARC, and UVM but better prognosis in COAD and GBM (Figure 4D). Together, higher expression levels of KIF15 represented an unfavorable prognostic indicator in pan-cancer. Additionally, based on the GEPIA platform, higher mRNA expression levels of KIF15 also indicated a worse prognostic outcome in pan-cancer (Figures 4E, F).




Figure 4 | The prognostic value of KIF15 in different cancers using Kaplan–Meier method. (A) Overall survival (OS). (B) Disease-free survival (DFI). (C) Disease-specific survival (DSS). (D) Progression-free interval (PFI). (E) OS curve of KIF15 in all cancer based on GEPIA. (F) Disease-free survival (DFS) curve of KIF15 in all cancer based on GEPIA.



A meta-analysis was performed to further clarify the prognostic value of KIF15 in cancers. The flowchart of literature retrieval process is shown in Supplementary Figure 1. The basic characteristics of all included studies (12, 14, 19–29) or datasets are shown in Supplementary Table 2 and Supplementary Table 3. Results of the forest plots demonstrated that high KIF15 expression significantly correlated to a worse OS (HR 1.25, 95% CI 1.14–1.37, P<0.0001); RFS (HR 1.31, 95% CI 1.13–1.53, P = 0.0003); and DMFS (HR 1.51, 95% CI 1.32–1.73, P<0.00001) (Supplementary Figure 2). Significant heterogeneity in meta-analysis was observed (OS, P<0.00001, I2 = 60%; RFS, P = 0.01, I2 = 53%), and thus a REM was adopted. For the sensitivity analysis of OS, after exclusion of Liu et al., Song et al., and Duke OC, the heterogeneity was reduced (P=0.0003, I2 = 48%), while no significant change occurred with the HR of 1.30 (95% CI 1.19–1.43, P<0.00001). For the sensitivity analysis of RFS, after exclusion of GSE31210, the heterogeneity decreased (P=0.23, I2 = 22%), while the HR slightly decreased to 1.23 (95% CI 1.09–1.38, P=0.0006) (Supplementary Figure 3). Thus, the summarized results in the meta-analysis were relatively reliable and stable. In summary, these integrated analyses suggest that high expression of KIF15 may serve as a poor prognostic biomarker in most cancers.



Molecular Mechanism of KIF15 in Pan-Cancer

The interaction between KIF15 and its related genes are displayed in Figure 5A. KEGG and GO enrichment analysis were carried out to explore the potential functions of KIF15 in cancer. The results indicated that KIF15 and its related genes were significantly associated with cell division, mitotic nuclear division, and sister chromatid cohesion; they may also have association with the p53 signaling pathway, the cell cycle, and DNA replication (Figures 5B, C). In the analysis of CancerSEA database, the functional state of KIF15 was explored at the single-cell level in 14 types of cancer. KIF15 was found to be positively associated with cell cycle, DNA damage, DNA repair, and proliferation in multiple cancer types (Supplementary Figure 4).




Figure 5 | Functional analysis of KIF15 and relevant genes. (A) Protein–protein interaction (PPI) network display the top 100 relevant genes of KIF15. (B) Gene Oncology (GO) analysis of KIF15 and relevant genes. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of KIF15 and relevant genes.





Genetic Alteration of KIF15 in Pancancer

As is shown in Figure 6. Mutation status of KIF15 was evaluated, the highest alteration rate of KIF15 (8.13%) appears in patients with uterine corpus endometrial carcinoma with ‘‘mutation’’ as the primary type. The ‘‘deep deletion’’ type (4.17%) of copy number alteration was the primary type in the diffuse large B-Cell lymphoma cases.




Figure 6 | The alteration frequency with mutation type of KIF15 in different cancer types from TCGA database.





Relationship Between KIF15 and Immune-Related Factors

Studies have proven that immune cell infiltration is significantly correlated with survival in cancers. Tumor purity is a vital factor that affects the evaluation of immune infiltration. Therefore, the relationship between KIF15 expression and immune cell infiltration in pan-cancer was explored. Notably, the results indicated that HNSC, KIRC, LGG, LIHC, PRAD, and THYM were six cancer types most strongly associated with KIF15 expression in immune cell infiltrating level, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells (Supplementary Figure 5). TMB and MSI were also analyzed. For TMB, it was found that KIF15 gene expression was positively related to ACC, BLCA, BRCA, COAD, HNSC, KICH, LGG, LUAD, LUSC, MESO, PAAD, PRAD, READ, SARC, SKCM, STAD, and UCEC but negatively related to THYM. For MSI, we found that KIF15 gene expression was positively related to BLCA, ESCA, LUSC, MESO, READ, SARC, STAD, and UCEC but was negatively related to DLBC. Moreover, correlation between KIF15 and immune gene set was analyzed, and the expression of several important immune-related genes was significantly related to KIF15 expression level in pan-cancer, such as CTLA4, IDO1, and LAG3 (Figure 7). In summary, our findings showed that high expression of KIF15 played an important role in immune-related factors.




Figure 7 | Association of KIF15 mRNA expression with tumor mutational burden (TMB), microsatellite instability (MSI) and immune genes. (A) A radar map shows the relationship of KIF15 and TMB. (B) A radar map shows the relationship of KIF15 and MSI. (C) Heatmap shows the relationship of KIF15 and immune genes. *P < 0.05; **P < 0.01 and ***P < 0.001.





KIF15 Expression in NPC Tissue

Regarding the key functional role of KIF15 in cancers, we detected the expression level of KIF15 in NPC tissue through the GEO datasets and IHC. Based on the analyses of three microarrays (GSE12452, GSE53819, and GSE61218), KIF15 expression was found to be upregulated in NPC tissues compared to the normal controls (P<0.05) (Figures 8A–C). A diagnostic ROC curve was performed between the two groups, and KIF15 exhibited high diagnostic value in the three microarrays (area under the curve, AUC= 0.9584, 0.7191, and 0.9833, respectively) (Figures 8D–F). For IHC, Compared with the NNE tissue, KIF15 expression was significantly upregulated in NPC tissues (Figure 9A). As shown in Table 2, high KIF15 expression level positively correlated with T stage (P=0.015), N stage (P=0.003), and clinical stage (P=0.006). the median follow-up period was 76 months (range, 4-80 months). After 5-year follow-up, 62 (78.5%) patients in low KIF expression group were alive, 46 (58.2%) patients in low KIF expression group were alive. The result indicated that increased KIF15 expression correlated with worse OS for NPC (P=0.0044). (Figure 9B). To identify the independent prognostic factor in NPC, univariate analysis was used to assess the prognostic value of clinical features and KIF expression level. These results indicated that age (P=0.078), T stage (P=0.023), N stage (P=0.007), and KIF15 expression level (P=0.006) were significantly correlated with the OS (Table 3). According to the multivariate cox analysis, age, T stage, N stage, and KIF15 expression level were incorporated to build a nomogram model (Figure 10A). The C-index of the model was 0.695 (95% CI 0.62–0.765) and was verified by 1000-replication bootstrapping analysis. The calibration curves for predicting 3- and 5-year OS also indicated a satisfactory predictive accuracy (Figures 10B, C). ROC curve analysis revealed that the model had an effective predictive ability, with an AUC value of 0.730 (Figure 10D). Subsequently, based on the total score of each case, all the patients were divided into either a low-risk (score<136) or high-risk group by X-tile software. KM survival curves showed that the OS in the high-risk group was significantly reduced below that of the low-risk group (Figure 10E).




Figure 8 | The expression of KIF15 in nasopharyngeal carcinoma (NPC) and normal tissues were investigated by GEO database. (A–C) KIF15 was significantly upregulated in NPC tissue in three datasets. (D–F) The diagnostic operating characteristic (ROC) curves of KIF15 in NPC and normal tissues in three datasets.






Figure 9 | Preliminary experimental verification of KIF15 in patients with nasopharyngeal carcinoma (NPC). (A) Immunohistochemical analysis of KIF15 protein expression between nasopharyngeal carcinoma (NPC) and normal tissues (200×). (B) Kaplan–Meier survival curves for KIF15 in NPC.




Table 2 | Correlation between the expression level of KIF15 and clinicopathological characteristics of patients with nasopharyngeal carcinoma.




Table 3 | Evaluation of the prognostic factors of nasopharyngeal carcinoma based on univariate and multivariate COX regression.






Figure 10 | Nomogram for predicting the prognosis of NPC patient. (A) Nomogram. (B, C) 3-year and 5-year calibration curves. (D) Operating characteristic (ROC) curves for the mode. (E) Survival curve of high-risk and low-risk groups.





KIF15 Related Pathways

As is shown in Figure 11, GSEA analysis of GSE12450 indicated that high expression of KIF15 significantly related to DNA repair (NES = 2.424, p.adj = 0.013, FDR = 0.008), DNA replication (NES = 2.737, p.adj = 0.013, FDR = 0.008) and PLK1 pathway (NES = 2.301, p.adj = 0.013, FDR = 0.008).




Figure 11 | Enrichment plots of GSEA from GSE12452 dataset. (A–C) KIF15 related signaling pathways in c2.cp.kegg.v7.1.symbols.gmt.





Primary Validation of the Effect of KIF15 in NPC Cells

Using RT-PCR, we found that the mRNA expression level of KIF15 was increased in NPC cell lines, especially in CNE1, compared to the NP69 (p < 0.001) (Figure 12A). Therefore, CNE1 cell line was selected for further study. Besides, We verified that KIF15 expression level was significantly repressed upon si-KIF15 transfection (Figure 12B). CCK8 and colony formation assays indicated that downregulation of KIF15 remarkably reduced the proliferation of CNE1 (Figures 12C, D). Wound healing was remarkedly suppressed by KIF15 silencing in CNE1 (Figure 12E). The Transwell assay indicated that the migration of CNE1 cells were significantly suppressed by KIF15 silencing (Figure 12F).




Figure 12 | Effect of KIF15 in NPC cell proliferation and migration. (A) qRT-PCR analysis of KIF15 expression level in normal and NPC cell lines. (B) qRT-PCR analysis confirmed the knockdown efficacy of KIF15 in NPC cell line CNE1. (C, D) CCK-8 and colony formation assay were applied to examine the proliferation ability of KIF15 knockdown cells. (E, F) Wound-healing and transwell assay employed to detect the migration ability of KIF15 knockdown cells. **P < 0.01 and ***P < 0.001.






Discussion

NPC, one of the major types of head and neck cancer, is a malignant tumor arising from the nasopharyngeal mucosal lining (30). Because of its challenging anatomical location, radiochemotherapy is regarded as the mainstay of treatment (31). However, an anatomy-based staging system is not enough to predict prognosis and treatment efficiency of NPC. Thus, it is necessary to investigate the incorporation of clinical features and novel biomarkers for the improvement of the efficacy of prediction.

Kinesins are a type of conserved protein that modulate the movement of certain important functional molecules, including chromosomes, protein complexes, mRNAs, and organelles in cells during mitosis (32). Thus, they are critical for protein sorting and appropriate positioning of different biological molecules. Reportedly, the kinesin family features are prominent in facilitating a variety of biological processes such as cell morphology, cytoskeletal dynamics, cell division, and cell migration (8). These findings have demonstrated a very promising role of the kinesin family in cancer. For instance, KIF23 is highly expressed in gastric cancer and is correlated with a worse prognosis of patients (33). KIF21B has been identified as an oncogene in the development and migration of NSCLC (34). Additionally, KIF20B could promote cancer growth by promoting cell proliferation in tongue cancer (35). However, the effect of most kinesin families in tumorigenesis are not completely understood.

KIF15 is a member of the kinesin family that directs kinesin-like motor enzymes involved in mitotic spindle assembly (36). The aberrant expression of KIF15 could lead to abnormal cell replication, differentiation, and thus cause tumorigenesis. The expression pattern and functional roles of KIF15 in tumor pathogenesis, especially in NPC, have not been comprehensively investigated. The results of our pan-cancer analysis revealed that KIF15 expression was significantly upregulated in most type of cancers, suggesting that KIF15 might act as an oncogene in pan-cancers. Based on KM and univariate analyses, it was found that high expression of KIF15 indicated poor survival in several cancers, including OS, DFI, DSS, and PFI. Our results from the clinical correlation test showed that KIF15 expression level was increased in advanced pathological stages in ACC, KICH, KIRC, KIRP, LIHC, LUAD, and TGCT. Moreover, the results of IHC revealed that KIF15 had a higher expression level in NPC tissues, and it was significantly correlated with the poor prognosis of patients with NPC. Previous studies have indicated that KIF15 plays a vital role in the disease progression of most cancers. Gao et al. have found that the upregulation of KIF15 in breast cancer tissues was positively related to TNM stage, tumor size, and lymph node metastasis; while downregulation of KIF15 inhibited cell proliferation and tumor proliferation in vitro and in vivo (37). Research by Li et al. has shown that over-expression of KIF15 promoted the cancer stem cell (CSC) phenotype and malignancy through phosphoglycerate dehydrogenase (PHGDH)-regulated intracellular reactive oxygen species disorders in HCC (38). Wang et al. have also shown that KIF15 promoted pancreatic cancer growth by enhancing G1/S phase transition by affecting the MEK–ERK signalling pathway (25). These findings are consistent with that of ours, which indicated that KIF15 is a promising diagnostic and prognostic biomarker in pan-cancer, as well as NPC.

Functional enrichment analysis showed that KIF15 may be involved in the p53 signaling pathway, the cell cycle, DNA replication and FOXO pathway. The well-known cancer suppressor gene, p53, closely controls various cellular signals involved in the cell-cycle, apoptosis, and senescence (39). A study based on machine learning showed that KIF20A and KIF23 were regulated by p53 and correlated with malignant transformation and tumor stage (40). Further, KIF15 knockdown strongly enhanced the expression of p53 and p21 protein in breast cancer cells (37). KIF15 is involved in Burkitt lymphoma cell activity via mediating the expression of p53 (41). Loss or mutation of p53 in tumor might have an impact on the recruitment and activity of myeloid and T cells, which contribute to immune evasion and tumor development, in addition, p53 can also affect the immune cells, causing different outcomes that can impede or promoting cancer progression (42, 43). The cell cycle is one of the most important topics studied in cancer biology. Over-expression of KIF15 increases the cyclin-D1, CDK2, p-RB expression, and accelerated G1/S transition in pancreatic cancer cells (25). KIF15 suppression has been shown to cause cell cycle arrest at the G0/G1 phase in breast cancer cells, indicating that knockdown of KIF15 inhibited the malignant behavior of breast cancer cells (27). Abnormal DNA replication is a hallmark of the cancer process, and previous studies have indicated that KIF15 and other kinesin genes were significantly enriched in DNA replication in bladder and endometrial cancers (29, 44). Accumulating evidence revealed that the FOXO family of transcription factors plays an important role in regulating the progression and function of tumor microenvironment (TME). FOXOs promote antitumor activity by negatively inducing the expression of immunosuppressive proteins, including PD-L1 and VEGF in stromal cells or tumor cell, and thus promote immunotolerant state in the TME (45).

TMB is an emerging characteristic of cancer and is tightly associated with MSI (46). Both TMB and MSI are considered to be biomarkers for the favorable immune checkpoint blockade treatment response in cancer (47, 48). For TMB, we found that KIF15 gene expression was positively associated with ACC, BLCA, BRCA, COAD, HNSC, KICH, LGG, LUAD, LUSC, MESO, PAAD, PRAD, READ, SARC, SKCM, STAD, and UCEC but was negatively associated with THYM. We suspect that a high neoantigens load led to the dysregulation of KIF15, and thus affected the development of cancer. For MSI, we found that KIF15 gene expression was positively associated with BLCA, ESCA, LUSC, MESO, READ, SARC, STAD, UCEC but was negatively associated with DLBC, suggesting that MSI may change the expression of KIF15 (15). Several kinesin superfamily have been found to link with tumor immune cells infiltration. For example, Ren et al. found that KIF20A expression was strong positive association with Th2 cells, Treg cells and Macrophages, while a negative association with Th17 cells, Mast cells and NK cells (49). Kim et al. indicated that KIF18A act as a key dendritic cells differentiation and activation regulator (50). Qiu et al. shown that KIF18B expression was associated closely with tumor immunity and interacted with various immune cells and genes markers (15). However, researches investigating the possible role of KIF15 in the regulation of tumor immunity are seldom. A study constructed a decision tree using mutations in PIK3CA, MEF2C, SLC11A1, and KIF15 to divided patient sub-cohorts with elevated PD-L1 expression, which contribute to identify the novel prognostic biomarkers of Gastric Cancer (51). Result of our study indicates new antigen generation was related to KIF15, further experiments are needed to investigate the regulator role of KIF15 in TME.

Tumor cells as well as the tumor microenvironment (TME) could secrete or express different signaling molecules, which act on immune checkpoints expressed in immune cells to inhibit immune responses (52). Several kinesin family genes have been linked to immune infiltration. For example, KIF18B expression significantly correlated negatively with the purity of stromal cells and immune cells in seven types of cancer (15). Likewise, KIF1A expression negatively correlated with infiltration levels of 16 types of immune cells in ovarian carcinoma (53). KIF20A had a strong positive association with Th2 cells, Treg cells, and macrophages but a negative association with Th17 cells, mast cells, and NK cells in renal clear cell carcinoma (49). However, the effects of KIF15 in cancer immunity and cancer microenvironment have been seldomly reported, and further investigation is urgently needed to clarify its role in cancer. In our study, expression of KIF15 significantly related to B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration in HNSC, KIRC, LGG, LIHC, PRAD, and THYM. Macrophages have high plasticity in response to different external signals and directly influence various steps in tumor development, such as tumor cell proliferation, stemness, and immunosuppression (54). Neutrophils participate in almost every step of oncogenesis, and in recent years, the neutrophil-to-lymphocyte ratio has been regarded as a prognostic indicator of worse OS in cancer (55). Dendritic cells are a critical factor in antitumor immunity due to their potent antigen-presenting ability, therefore, dendritic cells are a critical target in any effort to generate immunotherapy against cancer (56). In short, our results suggest a likely regulatory role of KIF15 in tumor immunology.

Moreover, we selected several common immune genes and examined their correlation with KIF15 expression levels in various cancer types. Among these genes, CTLA4 has presently garnered much attention. CTL-associated antigen 4 (CTLA4) is the first immune checkpoint receptor to be clinically targeted. It regulates T-cell activation by competing with the co-stimulatory molecule CD28, CTLA4 and CD28 shared ligands, CD80 (also known as B7.1), and CD86 (also known as B7.2) (57). Once antigen recognition has started, CD28 signalling intensely amplifies TCR signalling to activate T cells (58). In this study, KIF15 significantly related to CTLA4 expression in 17 out of 33 cancer types. Indoleamine 2, 3-dioxygenase 1 (IDO1) is a novel immune checkpoint target, which is a type of a rate-limiting metabolic enzyme that transforms tryptophan (Trp) into downstream kynurenines (Kyn). Some studies have demonstrated that IDO1 was associated with potently regulating immunosuppressive effects in cancer (59). According to our findings, KIF15 was highly related to IDO1 expression in 11 out of 33 cancer types. Inhibitory receptors (IRs) have a potential role in regulating the immune response and are regulators of T cell dysfunction in autoimmune diseases. Lymphocyte Activation Gene 3 (LAG3), also known as CD223, is currently one of the most promising new IR targets in the clinic. It is expressed by both activated and exhausted CD4+ and CD8+ T cells as well as by regulatory T cells (60). In the present study, it was found that KIF15 was closely related to the expression of LAG3 in 16 out of 33 cancer types. Thus, KIF15 might serve as novel cancer therapeutic targets.

To the best of our knowledge, this is the first study that focused on the value of KIF15 from a pan-cancer perspective. We successfully explored the role of KIF15 in NPC; however, further functional experiments are still needed to clarify its effect on tumor biological process in vivo and in vitro. Despite the limitation of our study, we conclude that KIF15 could be a promising prognostic biomarker in pan-cancer as well as in NPC.



Conclusion

In the present study, a pan-cancer investigation was performed revealing that KIF15 played a vital role in prognosis, molecular function, signaling pathways, and tumor immunity in differ cancer types based on public databases. Furthermore, we demonstrated that KIF15 was highly expressed in NPC tissue and could be considered as a novel diagnostic and prognostic biomarker of NPC.
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Background

To study neoadjuvant chemoradiotherapy (nCRT) and potential predictive factors for response in locally advanced oral cavity cancer (LA-OCC).



Methods

The INVERT trial is an ongoing single-center, prospective phase 2, proof-of-principle trial. Operable patients with stage III-IVA squamous cell carcinomas of the oral cavity were eligible and received nCRT consisting of 60 Gy with concomitant cisplatin and 5-fluorouracil. Surgery was scheduled 6-8 weeks after completion of nCRT. Explorative, multiplex immunohistochemistry (IHC) was performed on pretreatment tumor specimen, and diffusion-weighted magnetic resonance imaging (DW-MRI) was conducted prior to, during nCRT (day 15), and before surgery to identify potential predictive biomarkers and imaging features. Primary endpoint was the pathological complete response (pCR) rate.



Results

Seventeen patients with stage IVA OCC were included in this interim analysis. All patients completed nCRT. One patient died from pneumonia 10 weeks after nCRT before surgery. Complete tumor resection (R0) was achieved in 16/17 patients, of whom 7 (41%, 95% CI: 18-67%) showed pCR. According to the Clavien-Dindo classification, grade 3a and 3b complications were found in 4 (25%) and 5 (31%) patients, respectively; grade 4-5 complications did not occur. Increased changes in the apparent diffusion coefficient signal intensities between MRI at day 15 of nCRT and before surgery were associated with better response (p=0.022). Higher abundances of programmed cell death protein 1 (PD1) positive cytotoxic T-cells (p=0.012), PD1+ macrophages (p=0.046), and cancer-associated fibroblasts (CAFs, p=0.036) were associated with incomplete response to nCRT.



Conclusion

nCRT for LA-OCC followed by radical surgery is feasible and shows high response rates. Larger patient cohorts from randomized trials are needed to further investigate nCRT and predictive biomarkers such as changes in DW-MRI signal intensities, tumor infiltrating immune cells, and CAFs.





Keywords: neoadjuvant chemoradiotherapy, oral cavity cancer, multiplexed immunofluorescence, diffusion-weighted magnetic resonance imaging, predictive biomarker



1 Introduction

The standard treatment for locally advanced oral cavity cancer (LA-OCC) is primary surgery followed by risk-adapted adjuvant radiotherapy/chemoradiotherapy (RT/CRT) or definitive CRT for functionally inoperable tumors (1–5). Following combined modality treatment, local recurrences and distant metastases occur in about 25% of patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) (1, 2). However, local control rates for the subgroup of LA-OCC remain inferior to those of LA-HNSCC with most locoregional failures emerging in field of prior RT (6–8). Furthermore, high-dose, postoperative RT/CRT to the oral cavity is challenging following extensive reconstructive surgery and can be delayed due to prolonged postoperative recovery or possible complications associated with surgery (6, 9, 10). Also, better vascularization and oxygenation in the unoperated tissue is associated with increased radiosensitivity and early systemic therapy could potentially reduce metastatic spread of these tumors (11). Some rare complications, such as fibula transplant- or flap-necrosis related to RT could be avoided in case of preoperative treatment, and in case of occurrence, the necrotic jaw could be resected during surgery (9). To improve local tumor control and overcome some of the limitations of primary or postoperative radiotherapy (PORT), a limited number of retrospective and prospective studies investigated neoadjuvant RT/CRT in LA-OCC. These studies mostly showed encouraging local control rates despite utilizing partly outdated RT-techniques, doses, and time intervals between treatment modalities (12). To study neoadjuvant CRT (nCRT) we launched a prospective, single-arm trial investigating nCRT followed by surgery in LA-OCC. We here report on first results regarding feasibility and early efficacy with a particular focus on potential predictive biomarkers for pathologic complete response (pCR) based on pretreatment immune contextures and diffusion-weighted magnetic resonance imaging (DW-MRI) signal changes during treatment.



2 Patients And Methods


2.1 Patient Selection

The INVERT trial is an ongoing, single-center, prospective phase II trial. Eligible patients were 18 years or older with histologically confirmed, primary diagnosis of locally advanced HNSCC of the oral cavity stage III-IVA defined by UICC TNM version 8. Mandatory staging included MRI of the neck, and computed tomography (CT) of the chest and abdomen. Additional key inclusion criteria were Eastern Cooperative Oncology Group (ECOG) status of ≤2 and adequate organ function. The study received approval by the ethics committee of the Goethe-University Frankfurt, Frankfurt, Germany (approval number 208/12). A written informed consent was provided by each patient. The INVERT treatment schedule is shown in Supplementary Figure 1. The study protocol synopsis in English language is provided as Supplementary Table 1, the complete protocol in German language as supplementary document 1.



2.2 Chemoradiotherapy

Neoadjuvant RT consisted of 60.0/54.9/50.1 Gy in 30 fractions, applied to the primary tumor region, involved/high risk neck levels, and the elective neck levels according to current guidelines, respectively (13, 14). Intensity-modulated radiotherapy (IMRT) with a simultaneously integrated boost (SIB) concept was used. Therapy was delivered by 6 MeV photon energy using a linear accelerator (Versa HD™, Elekta). Two cycles of chemotherapy (CTX) were applied on days 1–5, and 29–33 of the RT consisting of 5-fluorouracil (5-FU) (600 mg/m² per day) as a continuous 120-h intravenous infusion, and cisplatin (20 mg/m² per day) as short intravenous infusion (15). For patients who were ineligible for cisplatin, carboplatin area und curve (AUC) 1 was applied alternatively on days 1–5, and 29–33. For patients with contraindications for 5-FU, cisplatin monotherapy was applied.



2.3 Surgery

Radical surgery following nCRT was performed according to the initial extension of the primary tumor as marked by pretreatment tattooing. Elective neck dissection was performed according to pretreatment staging information. Elective, ipsilateral supraomohyoid neck dissection (SOHND) was conducted for clinically negative neck nodes (cN0), and was extended to the neck levels I-V for pathologically positive nodes. In these cases, and for tumors crossing midline, contra-lateral SOHND was performed and also extended to the neck levels I-V for positive, contra-lateral nodes. Surgical reconstruction consisted of locoregional flaps, myocutaneous flaps, free flaps, or bone grafts as one- or two-stage surgical procedures.



2.4 Objectives

The primary endpoint, pCR, was defined as ypT0N0 after surgery. Acute and late adverse events from CRT and surgery were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 4.0. Furthermore, surgical complications were graded on the basis of the Clavien-Dindo classification (16, 17). Explorative immune cell counts and DWI-MRI signal intensities were assessed to identify potential predictive bio- and imaging markers for pCR.



2.5 Pathological Assessment of Tumor Response

For pathological assessment, the tissue was extensively worked up. The tumor bed was formaldehyde-fixed and paraffin-embedded (FFPE) in total; ypTNM staging was applied according to the UICC TNM classification of malignant tumors (Union internationale contre le cancer, Version 8, 2017). Furthermore, tumor regression grading of the primary tumor was performed as described by Braun et al. (18): Grade 1: No or devitalized tumor cells; grade 2: small nests of vital tumor cells which do not exceed 5% of the whole lesion; grade 3: 5%-50% vital tumor cells; grade 4: more than 50% vital tumor cells. Also, for residual primary tumors, patterns of response to neoadjuvant CRT were evaluated as introduced by Nagtegaal et al. (19) and reported as tumor fragmentation versus shrinkage.



2.6 Radiological Assessment of Tumor Response

Diffusion-weighted, gadolinium enhanced MRI was performed prior to RT (day -14 to day 0; MRI 1), during RT (day 15, MRI 2), and prior to surgery (day 72 to 86, MRI 3).


2.6.1 Magnetic Resonance Imaging Protocol

All MRI scans were performed using a 1.5-T system (MAGNETOM Avantofit, Siemens Healthineers) with a dedicated head and neck coil. Standard axial turbo inversion recovery magnitude (TIRM) (repetition time ms/echo time ms 3270/36; matrix size, 320 × 252; slice thickness, 6 mm), axial DW (diffusion-weighted) (repetition time ms/echo time ms, 3980/55; matrix size, 160 × 160; section thickness, 5 mm); axial unenhanced T1-weighted turbo spin-echo sequences (repetition time ms/echo time ms, 659/12; matrix size, 384 × 324; section thickness, 4 mm); axial T2-weighted turbo spin-echo sequences (repetition time ms/echo time ms, 7010/83; matrix size, 384 × 365; section thickness, 4 mm) were acquired. Axial contrast-enhanced T1-weighted multipoint Dixon sequences with fat suppression (repetition time ms/echo time ms, 604/12; matrix size, 320 × 277; section thickness, 4 mm) were also performed. Contrast administration was performed by injection of 0.1 ml gadobutrol per kilogram body weight (flow rate of 2 ml/s) with a power injector (Accutron MR; Medtron, Saarbrücken, Germany), followed by application of 20 ml saline (flow rate of 2 ml/s).



2.6.2 Image Analysis

All MRI scans were analyzed on a commercially available PACS workstation (Centricity 4.2, GE Healthcare, Dornstadt, Germany). Two different observers (one radiology department resident, one senior staff member) quantitatively analyzed the MR series in consensus. Tumor signal intensities were assessed on diffusion-weighted, T2-weighted, and contrast-enhanced images using dedicated regions of interest (ROI) with a standardized radius of 5mm, placed on solid portions of the tumors. The signal intensity of the upper cervical spinal cord was also measured. The tumor signal intensities were expressed as a tumor to spine signal intensity ratio. Furthermore, ADC (apparent diffusion coefficient) were calculated with two b factors (0, 1,000 s/mm2) by placing ROIs over the solid tumor regions. Subsequently, the signal intensities of the tumors were independently assessed qualitatively by the two raters. The higher value was taken into account for the analysis in the event of unequal assessment by the two raters. Tumor signal intensities were evaluated on diffusion-weighted and T2-weighted images using a 5-point scale compared with the spinal cord (1 = hypointense, 2 = slightly hypointense, 3 = isointense, 4 = slightly hyperintense and 5 = markedly hyperintense). The images of the gadolinium-enhanced T1-weighted images were assessed using a 4-point scale compared to the submandibular gland (1 = no enhancement, 2 = weak enhancement, 3 = moderate enhancement, and 4 marked enhancement) (20).




2.7 Multiplexed Immunofluorescence

Pretreatment FFPE tissue sections were assessed before staining by an experienced head and neck pathologist. Each section contained the following three tumor compartments: tumor, invasive front, and tumor microenvironment (TME, stroma). Next, the pretreatment tissue sections (2 µm thick) were deparaffinized by 1 hour incubation at 60°C and stained with Opal 7‐Color Automation immunohistochemistry (IHC) Kits (Akoya Bioscience) in the BOND‐RX Multiplex IHC Stainer (Leica). Each section was put through 6 sequential rounds of staining, which included blocking in 5% BSA followed by incubation with primary antibodies of two panels (T-cell panel: CD3, Ventana, 790-4341; CD4, Abcam, ab133616; PD-1, Sigma, HPA035981-100UL; CD163, Abcam, ab182422; CD8, DAKO, M710301-2; FoxP3, Abcam, ab20034; TME panel: PD-L1, Spring, M4422; Pan-Cytokeratin (Pan-CK), Abcam, ab7753; alpha-smooth muscle actin (aSMA), Sigma, F377; Vimentin, Abcam, ab92547; CD45, Abcam, ab10558; Ki67, Abcam, ab16667), corresponding secondary HRP-conjugated antibodies (Akoya Biosciences, ARH1001A) and Opal fluorophores as described before (21). Nuclei were counterstained with 4′,6‐diamidino‐2‐phenylindole (DAPI) contained in the Opal 7‐Color Automation IHC Kits, and slides were mounted with Fluoromount‐G (SouthernBiotech). Imaging was performed with the VectraPolaris imaging system (Akoya Bioscience), and images were analyzed by using the Phenotyping application of the inForm software V2.5 (Akoya Bioscience). The following markers were used to identify specific cell types for input into the training algorithm: T-Helper Cells: CD3+ CD4+; Exhausted T-Helper Cells CD3+ CD4+ PD1+; Cytotoxic T-cells: CD3+ CD8+; Exhausted Cytotoxic T-Cells: CD3+ CD8+ PD1+; Macrophages: CD163+; PD1+ macrophages: CD163+ PD1+; Regulatory T-cells (Tregs): CD3+ CD4+ FoxP3+; Cancer-associated fibroblasts (CAFs): aSMA+ Vimentin+; PD-L1+ CAFs: aSMA+ Vimentin+ PD-L1+; Immune cells: CD45+; PD-L1+ immune cells: CD45+ PD-L1+. Proliferating immune cells: CD45+ Ki67+.



2.8 Statistics and Analysis

The primary clinical objective of this pilot study is to estimate the pCR rate and to calculate the corresponding 95% confidence interval. The assumed probability for pCR on which the case number calculation was based was 50%. In order for the overall statistical length to be less than 40% (+/- 20%), data from a total of n=26 patients must be available for analysis (exact Clopper-Pearson calculation using PASS 2008 software). Since the primary endpoint of pCR is achieved after surgery, we expect only a small drop out of at most 5%, resulting in a total number of 28 patients to be recruited.

Statistical analyses were performed using SPSS (IBM SPSS Statistics, v25.0, Armonk, NY, USA) and R [R Core Team (2020). R Foundation for Statistical Computing, Vienna, Austria]. Confidence intervals for binomial variables were calculated using the Clopper–Pearson method. Associations between categorical variables were evaluated by the Pearson chi-squared test. Regarding qualitative and quantitative MRI analysis, the Wilcoxon signed-rank test was used for nonparametric, related samples. Further, the Mann-Whitney U test was nonparametric, nonrelated samples for quantitative MRI analysis. Cohen’s Kappa test was used to assess the overall inter-rater variability in the qualitative MRI evaluation (22). For multiplexed immunofluorescence analysis, overall average marker percentages were dichotomized between “high” and “low” abundance by median value. All tests were two-sided and a p-value of p ≤ 0.05 was considered as significant during all statistical procedures.




3 Results


3.1 Patient Characteristics

Until the data cutoff for this interim analysis in July 2021, 17 of 26 planned patients were enrolled in this trial. All patients had stage IVA tumors of the oral cavity, mostly with osseus tumor infiltration (15/17, 88%); 59% (10/17) of the patients were men, and median age was 63 years by the time of first diagnosis. Table 1 summarizes the patient characteristics. The consort diagram is shown in Supplementary Figure 2.


Table 1 | Baseline characteristics. Clinical disease stage according to UICC TNM classification (8th edition); ECOG, Eastern Cooperative Oncology Group.





3.2 Toxicity, Treatment Compliance and Efficacy

RT-related grade 3 toxic effects occurred as pain and dysphagia in 4 (24%, 95% CI: 7-50%), as mucositis in 7 (41%, 95% CI: 18-67%), and as radiation dermatitis in 2 (12%, 95% CI: 1-36%) of the patients. Chemotherapy-related grade 3 adverse effects were leukopenia in 5 (29%, 95% CI: 10-56%), and hypertension in 6 (35%, 95% CI: 14-62%) patients. One patient with comorbidities died from pneumonia ten weeks after completion of nCRT (Supplementary Table 2).

Full dose of RT was applied in all 17 patients. Thirteen (76%, 95% CI: 50-93%) received cisplatin and 5-FU. Three patients (18%, 95% CI: 38-43%) with contraindications against 5-FU received cisplatin monotherapy, and one patient with contraindications for cisplatin received carboplatin and 5-FU. Regarding compliance with CTX, 13 (76%, 95% CI: 50-93%) patients completed CTX as prescribed and 4 (24%, 95% CI: 7-50%) received >50%. All patients received prophylactic gastric tubes (PEG tube) to ensure adequate nutrition (Supplementary Table 3).

After nCRT, 16 patients underwent surgery. All patients received bilateral neck dissections and flap plastics. Complete local tumor resection (R0) was achieved in all cases (100%, 95% CI: 79-100%). NCI-CTCAE grade 3 complications were reported in 9 (56%, 95% CI: 30-80%) cases. Oral hemorrhages (4/16, 25%, 95% CI: 7-52%) and wound complications (3/16, 19%, 95% CI: 4-46%) were most common. According to the Clavien-Dindo classification, grade 3a complications were found in 4 (25%, 95% CI: 7-52%) patients, and grade 3b complications were reported in 5 (31%, 95% CI: 11-59%) patients. Grade 4-5 surgical complications did not occur (Table 2).


Table 2 | Surgical and Pathological Characteristics of Patients who Underwent Surgery.



Overall, a pCR (ypT0N0) in the intention-to-treat population was achieved in 7 (41%%, 95% CI: 18-67%) of the patients and in 44% (95% CI: 20-70%) of the patients who underwent surgery: ypT0 occurred in 8 (50%, 95% CI: 25-75%) and ypN0 in 13 (81%, 95% CI: 54-96%). In the majority of the patients with residual tumor, tumor fragmentation was found rather than tumor shrinkage. Exemplary images of tumor regression patterns are shown in Figure 1. Downsizing of the primary tumor of > 95% was evident in 88% (14/16, 95% CI: 68-98%) of the cases (Table 2).




Figure 1 | Pathological Response Patterns Following Neoadjuvant Chemoradiotherapy. (A) No/minimal tumor regression, vital tumor cells, and prominent keratin pearls; (B) Tumor fragmentation with increased amount of fibrous connective tissue with scattered groups of vital tumor cells; (C) Tumor shrinkage with a solitary group of vital tumor cells embedded in fibrous connective tissue; (D) Complete response with no vital tumor cells within fibrous connective tissue; salivary glands, and skeletal muscles located on the right.





3.3 Association of Diffusion-Weighted Magnetic-Resonance Imaging and Response to Chemoradiotherapy

The test for inter-rater variability regarding the qualitative MRI evaluation showed high correlation between the two raters (kappa 0,809; p<0.001). Qualitative signal intensities changed significantly between MRI 1, MRI 2, and MRI 3 in diffusion-weighted and T1 + gadolinium series (p-values < 0.05). Exemplary, fused axial diffusion-weighted gadolineum-enhanced T1-weighted images are shown in Figure 2. Regarding quantitative analysis, signal intensities changed significantly when MRI 2 and MRI 3 were compared to MRI 1 in the ADC and diffusion-weighted series (p-values < 0.05), and between MRI 2 and MRI 3 in the T2 series (p=0.034) (Supplementary Table 4). Quantitative and qualitative changes in signal intensities were correlated with the pathological response of the primary tumor following CRT. Increased changes in the ADC signal intensity between MRI 2 and 3 were associated with < 5% residual tumor tissue (p=0.022) (Figure 3, Supplementary Table 5).




Figure 2 | Exemplary MRI Images of Clinical Responses to Neoadjuvant Chemoradiotherapy. (A) Exemplary images of a 55-year old patient with left-sided squamous cell carcinoma of the oral cavity before and during chemoradiotherapy (day 15), and prior to surgery; The top row shows representative axial gadolineum-enhanced T1-weighted images with continuous decrease in size and contrast enhancement resulting in complete clinical response prior to surgery of the primary tumor at the left retromolar region; The bottom row shows corresponding fused diffusion-weighted - gadolineum-enhanced T1-weighted images with decreasing diffusion restriction of the tumor region resulting in complete clinical response prior to surgery. (B) Exemplary images of a 49-year old patient with left-sided squamous cell carcinoma of the oral cavity before and during chemoradiotherapy (day 15), and prior to surgery; The top row shows representative axial gadolineum-enhanced T1-weighted images with continuous decrease in size and contrast enhancement. Markable residual tumor with contrast enhancement at the left mandibular region prior to surgery; The bottom row shows corresponding fused diffusion-weighted - gadolineum-enhanced T1-weighted images with decreasing but residual diffusion restriction of the tumor region; nCRT, Neoadjuvant chemoradiotherapy.






Figure 3 | Association of Changes in ADC Signal Intensities with Pathological Tumor Response. Delta (Δ) in ADC signal intensities of MRI 2 and MRI 3 correlated with pathological response of the primary tumor: (A) ΔADC, complete response of the primary tumor vs. any residual primary tumor; (B) ΔADC, <5% residual primary tumor vs. ≥5% residual primary tumor; ADC, Apparent diffusion coefficient; MRI, Magnetic resonance imaging; p-values according to Mann-Whitney U test; *p-value < 0,05.





3.4 Association of Immunohistochemical Biomarkers in Pre-Treatment Tissue Specimens Imaging and Response to Chemoradiotherapy

To identify possible predictive markers for response to nCRT, the abundance of different cell populations was tested for their association with either pCR or ypT0 (Table 3 and Figure 4). A higher abundance of PD1+ cytotoxic T-cells (p=0.012) and PD1+ macrophages (p=0.046) was associated with incomplete response of the primary tumor to nCRT (no ypT0). Further, an increased occurrence of PD1+ cytotoxic T-cells (p=0.036) and CAFs (p=0.036) was associated with incomplete tumor and or nodal response (no pCR).


Table 3 | Association of pre-treatment immune cell infiltration and cells of the tumor microenvironment with response to neoadjuvant chemoradiotherapy.






Figure 4 | Multiplex Immunohistochemistry and Cell Types Associated with Poor Response to Neoadjuvant Chemoradiotherapy. Representative overview of the T-cell antibody panel (A) and the TME panel (B), and exemplary images of cell types with association to tumor response to neoadjuvant chemoradiotherapy (C–E). Nuclei were counterstained with DAPI (blue). (A) T-cell panel: CD163 (cyan), CD4 (green), PD-1 (yellow), CD8 (orange), CD3 (red), FoxP3 (white); (B) TME panel: Pan-CK (cyan), aSMA (green), Vimentin (yellow), CD45 (orange), PD-L1 (red), Ki67 (white); (C) PD-1 positive macrophage; (D) PD-1 positive cytotoxic T-cell; (E) Cancer-associated fibroblast.






4 Discussion

Only a limited number of studies have investigated nCRT for HNSCC to date. We present preliminary clinical and translational results of a single-arm, prospective trial utilizing neoadjuvant, concomitant IMRT-based CRT followed by radical surgery, and provide novel predictive biomarkers, such as immune cell infiltrates and diffusion weighted MRI imaging.

The use of nCRT is standard in different tumor entities, such as lung, esophageal and rectal cancer, with encouraging pCR rates and long-term oncologic outcomes (23–26). In HNSCC, primary surgery with risk-adapted adjuvant RT/CRT has been the standard of care for decades, but has never been tested against nCRT in a prospective, randomized trial (1, 2). A number of retrospective studies have investigated nCRT for HNSCC of different subsites with RT doses ranging from 20-50 Gy. Concomitant systemic therapy was mostly platinum-based with cumulative doses between 63–100 mg/m². The time interval from the end of CRT to surgery ranged between 1-6 weeks, resulting in pCR rates form 0-50%, and 5 years overall survival (OS) rates of 45-81% (Supplementary Table 6) (27–35). In 7 prospective, non-randomized trials, neoadjuvant RT doses of 40-50 Gy were applied with (n=6) or without (n=1) concomitant CTX. Again, CTX was mostly platinum-based with cumulative doses of 160-200 mg/m². Intervals from completion of RT/CRT to surgery ranged from 3-8 weeks with pCR rates from 13 to 75% (Supplementary Table 7) (36–44). A randomized study by Mohr et al. assigned 268 patients to surgery alone or nCRT with 36 Gy and concomitant cisplatin (12.5 mg, days 1-5), followed by radical surgery 10-14 days after CRT completion. In this study, nCRT resulted in pCR of the primary tumors in 37% of the patients, and less locoregional relapses occurred after 3 years (31% vs. 16%) (38). Yi et al. randomized patients to receive neoadjuvant RT (50 Gy) with or without concomitant cisplatin (cumulative 150 mg/m²). Following local restaging with CT/MRI and endoscopy, patients received completion CRT (total 70 Gy + cisplatin) for >80% clinical remission, followed by planned neck dissections for cN2-3 patients, or radical surgery after 6-8 weeks. Surprisingly, clinical response rates (64 vs. 70%) and pCR rates (27 vs. 43%) were lower following nCRT compared to neoadjuvant RT alone. However, local progression-free survival and OS were improved following nCRT versus neoadjuvant RT and surgery (44). Most of the patients included in the studies above would have received standard, adjuvant RT doses of 60-66 Gy resulting in disease-free survival rates of less than 50% at 5 years (1, 2). However, most of the above neoadjuvant data originate from the pre-IMRT era, where dose escalation was clearly associated with higher toxicity. Accordingly, a higher dose of 60 Gy was selected for this IMRT-based trial. Further, the cumulative doses of cisplatin in the older studies were mostly far less than the currently recommended ≥ 200mg/m² utilized in combination with 5-FU in this study (45). CTX consisting of cisplatin plus 5-FU is not the current international standard for HNSCC. However, in our department as in other German-speaking centers cisplatin (200mg/m² total) and 5-FU was the standard concomitant CTX regimen at the time the trial was designed. Furthermore, a parallel German multicentric phase III trial in the definitive CRT-setting, failed to demonstrate any benefit regarding survival or toxicity for a taxane/cisplatin combination compared to the cisplatin/5-FU regimen used in this trial, with the latter showing good 3 years OS rates of 65% (15).

The time interval between CRT and surgery was scheduled to be 6 to 8 weeks in this trial and therefore longer than in the majority of the prior trials. There is little experience regarding re-growth of HNSCC after neoadjuvant regimens in cases of delayed surgery. However, in other tumor entities treated with neoadjuvant CRT, such as rectal cancer or esophageal cancer, surgery is commonly performed 6-8 weeks after CRT completion in order to allow for prolonged tumor regression (23–26). Furthermore, in anal squamous cell carcinoma, a tumor entity with several biological parallels to HNSCC, it has been demonstrated that a final response evaluation should be performed 6 months after CRT (50-60 Gy) completion (46). Moreover, for primary CRT of HNSCC, tumor response also is only evaluated at 3 months following treatment and any residual tumor after 6 to 8 weeks after treatment is not necessarily considered as clonogenic (47). The feasibility of surgery and the frequency of postoperative complications were of special interest in this study. In all patients, complete tumor resections and adequate ND were possible. Surgical complications are frequently classified using a system introduced by Clavien and Dindo (16) which has been adapted for head and neck cancer as well (17, 48). McMahon et al. prospectively studied postoperative complications according to the CD system in 192 patients who underwent major head and neck surgeries with free flap repair. A total of 64% had any-grade complications with grade 3 or above occurring in 32% of the patients. Loss of flaps occurred in 3 patients (49). Peters et al. reported 60% overall complications from a cohort of 121 patients with more than half of them being major (grade 3-5) (50), and Grammatica et al. reported on 84 patients with 62% complication rate with 31% of grade 3 and higher (51). In the present trial, a total of 68% of the patients suffered from post-operative complications and 56% had grade 3 complications. One loss of flap and no grade 4-5 toxicities occurred in the context of surgery. Overall complications did not occur more frequently here in comparison with the rare literature on this topic.

Within our study, extended tumor regression analysis besides the general TNM classification was utilized to more precisely assess response patterns. Braun et al. developed a tumor regression grading (TRG) for HNSCC on the basis of the percentage of vital residual tumor cells (18). Analogous to a recent system introduced by Nagtegaal et al. for rectal cancer, regression patterns in this study were also distinguished between tumor fragmentation and shrinkage (19). Tumors without complete response to nCRT more likely showed fragmentation (n=5) instead of shrinkage (n=3). Prediction of tumor shrinkage following nCRT rather than tumor fragmentation would be of great value for clinicians to possibly reduce the extent of surgery, but higher patient numbers are needed to address this topic. To date, surgery for HNSCC should be performed within the initial tumor margins due to potential tumor fragmentation. Tumor fragmentation following nCRT in HNSCC possibly reflects radio-resistant, hypoxic or immune-privileged tumor subareas, and has been associated with tumor recurrence by Kiong et al. (52). This hypothesis is further supported by the following immunological findings: Multiplex IHC in this study showed that higher abundances of PD1+ cytotoxic T-cells, PD1+ macrophages, and CAFs were associated with incomplete response to nCRT. The prognostic value of immune cell infiltrates and the TME composition have been extensively studied in HNSCC within the last years (53, 54). CD8+ tumor-infiltrating lymphocytes (TILs) were shown to be prognostic factors associated with improved outcome following primary or adjuvant CRT in single- and multicenter cohorts (55, 56). On the other hand, PD1 is a prominent marker of T-cell exhaustion and inhibits anti-tumor T-cell response (57). M2-polarized (CD163+), tumor-associated macrophages (TAMs) promote tumor growth and spread (58). PD1+ expression in TAMs negatively correlates with their phagocytic effects against tumor cells (59) and high abundances of PD1+ TAMs were associated with poor outcome in gastric and muscle-invasive bladder cancer, yet (60, 61). CAFs were reported to play a key role in tumor progression by secretion of growth factors and cytokines, and high αSMA levels in OCC were associated with impaired prognosis (62–65). Taken together, in patients with incomplete response to nCRT, the tumor and its microenvironment were defined by immunosuppressive stimuli and exhausted immune effector cells.

Finally, we identified an association of changes in ADC signal intensities with response to nCRT. Previously, Kato et al. identified correlations of tumor regression according to RECIST (Response evaluation criteria in solid tumors) with ADC and diffusion-weighted signal intensities in 28 HNSCC patients treated with neoadjuvant CRT, RT, or CTX (20). Median RT dose applied was 30 Gy. Imaging was performed before and after neoadjuvant treatment. To the best of our knowledge, no other study has analyzed early and late responses to nCRT via DW-MRI in HNSCC to predict pathological tumor response. So far, DW-MRI studies for HNSCC have mostly focused on early response prediction either during or after definitive CRT (66, 67). Kim et al. performed DW-MRI on 40 patients undergoing primary CRT for HNSCC before, during, and after therapy. Complete therapy responders showed an early increase in ADC intensity (p<0.01) (68). Further studies found high pretreatment ADC intensities to be associated with poor outcome in HNSCC (69, 70). Besides these encouraging results, the DW-MRI evaluation procedures to assess response to therapy have differed greatly between the previous studies and standardized evaluation protocols to improve comparability were not yet established.

We acknowledge several limitations of this study: First, the sample size is limited and allows only preliminary and exploratory hypotheses regarding the predictive biomarkers assessed. Second, the unicentric character of the study warrants caution regarding generalization of the results. Third, this interim analysis was not planned according to the study protocol. Finally, some surgical techniques and DW-MRI quantification are not completely standardized yet, which might affect interpretability. Nevertheless, immunological and radiological biomarkers were correlated with pathological responses to neoadjuvant CRT for this tumor entity for the first time.



5 Conclusion

Neoadjuvant chemoradiotherapy for locally advanced oral cavity cancer followed by radical surgery is feasible and shows high response rates. Emerging biomarkers such as diffusion-weighted magnetic resonance imaging signal intensities, tumor immune cell infiltrates, and the tumor microenvironment are of great interest with potential predictive value regarding response following neoadjuvant treatment. Ultimately, future patient selection for organ preservation could be based on these factors following randomized, controlled trials.
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Purpose

This study aimed to construct a prognostic signature consisting of immune-related RNA-binding proteins (RBPs) to predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) effectively.



Methods

The transcriptome and clinical data of HNSCC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. First, we ascertained the immunological differences in HNSCC, through single-sample gene set enrichment analysis, stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE), and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) deconvolution algorithm. Then we used univariate proportional hazards (Cox) regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis to screen immune-related RBPs and acquire the risk score of each sample. Subsequently, we further investigated the difference in prognosis, immune status, and tumor mutation burden in high- and low-risk groups. Finally, the efficacy of immunotherapy was measured by the tumor immune dysfunction and exclusion (TIDE) score.



Results

We derived 15 immune-related RBPs, including FRMD4A, ASNS, RAB11FIP1, FAM120C, CFLAR, CTTN, PLEKHO1, SELENBP1, CHCHD2, NPM3, ATP2A3, CFDP1, IGF2BP2, NQO1, and DENND2D. There were significant differences in the prognoses of patients in the high- and low-risk groups in the training set (p < 0.001) and the validation set (p < 0.01). Furthermore, there were statistical differences between the high-risk group and low-risk group in immune cell infiltration and pathway and tumor mutation load (p < 0.001). In the end, we found that patients in the low-risk group were more sensitive to immunotherapy (p < 0.001), and then we screened 14 small-molecule chemotherapeutics with higher sensitivity to the high-risk group (p < 0.001).



Conclusion

The study constructed a prognostic signature of HNSCC, which might guide clinical immunotherapy in the future.
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Introduction

Head and neck squamous carcinoma (HNSCC), which has a mortality rate of 50.5%, is one of the most common tumors, accounting for 3.6% of malignant tumors (1). HNSCC is a histologically and genetically heterogeneous disease that originates from a variety of anatomical parts, including the oral cavity, tongue, salivary glands, nasopharynx, and larynx (2). Smoking, drinking, and human papillomavirus infection are the main causes of HNSCC (3). Patients with HNSCC often experience cervical lymph node metastasis, local recurrence, and resistance to radiotherapy and chemotherapy (4).

At present, the treatment strategy for HNSCC patients is still based on tumor location and disease stage, not tumor biology. Many biomolecular markers, such as proteins, DNA, RNA, and microRNA, have been proposed to detect primary and secondary malignancies in the initial stages of the disease, but the above indicators are still very limited in terms of prognostic assessment and optimization of treatment options. In order to improve the treatment outcome of HNSCC, a clinically useful method is urgently needed to identify the risk of HNSCC and judge the effectiveness of adjuvant therapy.

The tumor microenvironment (TME) plays a vital role in the occurrence, progression, and treatment response of tumors. TME includes proliferating tumor cells, tumor stroma, blood vessels, cancer-related fibroblasts, infiltrating inflammatory cells, and various related signal molecules (5, 6). In the microenvironment of HNSCC, immune cells and mesenchymal cells, as the two main non-tumor components, have caused a large number of inflammatory reactions (7). Since HNSCC is an immunosuppressive disease, immune checkpoint inhibitors have emerged as a new treatment option (8). The basic principle of immunotherapy is to block the immunosuppressive effect of immune checkpoints while activating the endogenous immune system, thus increasing the number and cytotoxicity of T cells, which is beneficial to attack tumor cells (9). Consequently, it would be valuable to investigate the role of immune cells and their regulators in the TME of HNSCC.

From the nucleus to the peripheral cytoplasm, RNA-binding proteins (RBPs) play a vital role in the post-transcriptional regulation of genes (10). RBPs are able to affect pre-mRNA processing, transport and localization, mRNA stability/degradation, and translation (11). In a variety of tumors, some RBPs were found to be dysfunctional and aberrantly regulated (12, 13). Meanwhile, RBPs are important components of the immune system, which respond quickly to inflammatory mediators and in modulating inflammatory responses (14). Considering the important role of RBPs in immunity, it is necessary to explore the relationship between RBPs and HNSCC.

This study aimed to develop a prognostic prediction model for HNSCC based on immune-related RBPs. First, we classified HNSCC patients into two immune phenotypes based on the enrichment fraction of immune cells, then screened for differentially expressed RBPs in two immune phenotypes, and defined them as immune-related RBPs. Through univariate proportional hazards (Cox) regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified immune-related RBPs related to prognosis and then constructed a risk model for patients with HNSCC. Based on the validation of the prognostic relevance and predictive capacity of the risk model, we further analyzed the infiltrating immune cells and immune-related pathways, somatic mutations, copy number variations (CNVs), the efficacy of immunotherapy, and sensitivity of chemotherapeutic agents in patients with HNSCC. The results showed that the risk model consisting of immune-related RBPs can effectively differentiate the clinical outcomes and show superiority in predicting the prognosis of patients with HNSCC.



Methods


Data Access

The transcriptome data in the fragment per kilobase million (FPKM) format and clinical data of 499 patients with HNSCC were downloaded from The Cancer Genome Atlas (TCGA) as the training set (https://portal.gdc.cancer.gov) (15) and downloaded the transcriptome data and clinical data of 97 HNSCC samples from the GSE41613 dataset of the Gene Expression Omnibus (GEO) database for validation (https://www.ncbi.nlm.nih.gov/geo/) (16). The data of somatic mutation and CNVs of patients with HNSCC were downloaded from UCSC (http://xena.ucsc.edu/) (17). The gene list of RBPs was collected from Gerstberger (10), SONAR (18), GO: RNA binding (19), poly(A) RBPs (20–24), CARIC (25), and XRNAX (26).



Immunophenotyping Based on Single-Sample Gene Set Enrichment Analysis

Single-sample gene set enrichment analysis (ssGSEA) is an algorithm based on rank ordering, which can calculate the degree of enrichment of a single sample in a given gene set (27). On this basis, the enrichment scores of immune cells and some related immune processes were calculated through the GSEA program (28, 29) and then quantified through the default parameters of the “Gene Set Variation Analysis (GSVA)” R package (30). Subsequently, the “ConsensusClusterPlus” R package was used to co-cluster the infiltration levels of 23 types of immune cells in HNSCC samples from TCGA to identify and distinguish immune subtypes (31). In the cumulative distribution function (CDF), the K value with the largest area under the curve was selected as 2, and so the HNSCC samples were divided into two types (31). The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was utilized to calculate the immune score, stromal score, ESTIMATE score, and tumor purity (32). The immune cell infiltration calculated by the Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) deconvolution algorithm was used to verify the immune difference between the two types (33). Finally, the GSEA program was used to compare the differences in pathway enrichment between the above immunotypes from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (34).



Construction and Validation of Risk Model

The “limma” R package was used to distinguish RBPs with different expressions between immunotypes. With a 1.4-fold difference and corrected p less than 0.05 as the screening conditions, 238 immune-related RBPs were obtained. Subsequently, 47 immune-related RBPs associated with prognosis were obtained through univariate proportional hazards regression (p < 0.05). The “glmnet” package was then utilized to perform LASSO Cox regression analysis (35). After 1,000 times of cross-validation, 15 immune-related RBPs and the correlation coefficients of the corresponding risk genes were obtained to construct a risk model at the same time.  , in which Expi is the expression of each risk gene and Coefi is its correlation coefficient. All patients were divided into a high-risk group and a low-risk group characterized by the median risk score of patients with HNSCC in the training set. The Kaplan–Meier curves were used to compare the overall survival (OS) difference of patients in the high- and low-risk groups. Receiver operating characteristic (ROC) curves were generated to evaluate the effectiveness and accuracy of the risk score in predicting the prognosis of patients with HNSCC. Next, the “ggExtra” R package was used to calculate the correlation between the risk score and the OS of patients with HNSCC. The independent correlation between the risk score and the prognosis of patients with HNSCC was then evaluated by univariate and multivariate proportional hazards regression analyses. Subsequently, a nomogram that could predict the prognosis of individual patients with HNSCC was constructed based on the stage, T stage, N stage, and risk group of patients with HNSCC through the “rms” R package (36). The C index was then used to assess the ability of the nomogram to distinguish prognosis, and a calibration chart was drawn to evaluate the accuracy of the nomogram. In addition, GSEA and gene set variation analysis (GSVA) were used to compare the differences in KEGG pathway enrichment between risk groups.



Analysis of Somatic Mutation and Copy Number Variations

The tumor mutation burden (TMB) of HNSCC samples from TCGA was analyzed through the “maftools” R package (37). The differences in TMB between the high- and low-risk groups were compared and showed the top 20 genes with the highest mutation rate and their mutation types in the high- and low-risk groups. Then the impact of TMB on the OS of patients with HNSCC was evaluated through the Kaplan–Meier survival curves. After that, gistic 2.0 was used to detect significant copy number amplification or deletion (38). In the end, the CNVs of 22 pairs of autosomes between the high- and low-risk groups were compared and showed the top 20 genes with most CNVs and their variation types.



Prediction of the Curative Effect of Immunotherapy and Chemotherapy

Tumor immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.edu/) was used to calculate the TIDE score, which was reported to be able to predict the response of patients with a malignant tumor to immunotherapy (39). On the other hand, the “pRRophetic” R package was used to compare the half-maximal inhibitory concentration (IC50) differences of some common small-molecule chemotherapeutics between the high- and low-risk groups and screened out chemotherapeutics that may have better efficacy for patients in the high-risk group (40).



Statistical Analysis

All statistical analyses were based on R 4.0.4 software (https://www.r-project.org/). Categorical variables were tested by the chi-square test or Fisher’s exact test. The t-test or Wilcoxon test was performed on continuous variables. p < 0.05 was deemed statistically significant.




Results


Development and Validation of the Prognostic Model Based on Immunophenotyping of Head and Neck Squamous Cell Carcinoma

The flowchart of this research is shown in Figure 1. First, we obtained patient data from TCGA database and divided the patients into two groups according to differences in immune cells. The CIBERSORT deconvolution and ESTIMATE algorithm confirmed the difference in the immune microenvironment between the Sub1 and Sub2 groups (Figure 1A). After differential expression analysis, 238 immune-related RBPs were identified. Through univariate and LASSO Cox regression analysis, 15 immune-related RBPs related to prognosis were selected, and then the Kaplan–Meier curves showed the difference between the high- and low-expression immune-related RBPs groups (Figure 1B). Subsequently, we found that the risk score was significantly related to the OS of patients with HNSCC in training and validation sets, respectively (Figure 1C). In addition, the differences in immune cells and pathways between the high- and low-risk groups are further elaborated (Figure 1D). In terms of genes, we showed the differences in somatic mutation and CNVs (Figure 1E). In addition, we have also produced a nomogram combining the stage, T stage, N stage, and risk group to predict the prognosis (Figure 1F). In the end, the efficacy of immunotherapy was analyzed through the TIDE score, and the sensitivity of different risk groups to small-molecule chemotherapeutics was also revealed (Figure 1G).




Figure 1 | Flowchart of this study. Two immune subtypes identified by single-sample gene set enrichment analysis (ssGSEA) and co-clustering analysis, and difference of infiltrating immune cells assessed by CIBERSORT deconvolution algorithm and ESTIMATE algorithm (A). Fifteen immune-related RNA-binding proteins (RBPs) screened out through “limma” package, univariate and least absolute shrinkage and selection operator (LASSO) Cox analysis, and the Kaplan–Meier curves for high- and low-expression immune-related RBP groups (B). Validation of the risk model composed of immune-related RBPs for prognosis in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database (C). Immune cell infiltration and pathways in high- and low-risk groups (D). Somatic mutation and copy number variations (CNVs) in high- and low-risk groups (E). Construction and calibration of prognosis nomogram (F). The differences of tumor immune dysfunction and exclusion (TIDE) score and sensitivity to chemotherapeutics of patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups (G). *p < 0.05; **p < 0.01; ***p < 0.001.



Based on the transcriptome data of TCGA HNSCC, we evaluated and quantify 23 kinds of immune cells and 15 kinds of immune processes by ssGSEA. After that, co-clustering analysis was used to distinguish the infiltration of 23 immune cells in the HNSCC samples in TCGA. When K = 2, the CDF curve had the largest area under the curve, so all samples were divided into two types (Sub1 and Sub2) (Figure S1A). Among them, there were 271 cases in the Sub1 group and 228 cases in the Sub2 group. It was worth mentioning that the immune cells and pathways were more enriched in the Sub2 group than the Sub1 group (Figure 2A). Compared with the Sub2 group, the Sub2 group had lower immune score (Figure 2B, p < 0.001), lower stromal score (Figure 2C, p < 0.001), lower ESTIMATE score (Figure 2D, p < 0.001), and higher tumor purity (Figure 2E, p < 0.001). For the purpose of authenticating the difference between the two types, we used the CIBERSORT deconvolution algorithm and the ESTIMATE algorithm to calculate the infiltration of immune cells. Among the Sub1 group, M0 macrophages, activated dendritic cells, and mast cells infiltrated more, while in the Sub2 group, primitive B cells, plasma cells, CD8 T cells, activated CD4 memory T cells, follicular helper T cells, Treg cells, M1 macrophages, resting mast cells, and eosinophils infiltrated more (Figure 2F, p < 0.05). As far as the human leukocyte antigen (HLA) family is concerned, the expression of the Sub1 group is lower (Figure 2G, p < 0.001). Considering the rise of immune checkpoint inhibitor therapy, we also analyzed the differences between immune checkpoints. The expressions of checkpoint LAG3, PDCD1, HAVCR2, CTLA4, and CD274 in the Sub2 group are extremely higher than that in the Sub1 group (Figure 2H, p < 0.001). In addition, as the result of pathway enrichment shows, there was more immune-related pathway enrichment in the Sub2 group, such as cytokine receptor interaction, chemokine signaling pathway, JAK-STAT signaling pathway, cell adhesion molecules cams, toll-like receptor signaling pathway, and natural killer cell-mediated cytotoxicity (Figure 2I, p < 0.001). It was worth noting that the Kaplan–Meier curves showed a better prognosis of the Sub2 group than that of the Sub1 group (Figure 2J, p = 0.007).




Figure 2 | Immune subtypes of head and neck squamous cell carcinoma (HNSCC) were identified based on the tumor-infiltrating immune cells. Heatmap of single-sample gene set enrichment analysis (ssGSEA) scores for Sub1 group (n = 271) and Sub2 group (n = 228) (A). Comparison of immune score (B), stromal score (C), ESTIMATE score (D), and tumor purity (E) between Sub1 and Sub2 groups. Difference of immune cell infiltration between Sub1 and Sub2 groups (F). The expressions of HLA family genes in Sub1 and Sub2 groups (G). The discrepancy of immune checkpoint genes between Sub1 and Sub2 groups, including LAG3, PDCD1, HAVCR2, CTLA4, and CD274 (H). The divergence of enrichment pathways between Sub1 and Sub2 groups (I). Kaplan–Meier curves of Sub1 and Sub2 groups (J). ***p < 0.001.





Construction and Validation of Risk Model

We screened 238 immune-related RBPs through the “limma” R package (Figure 3A). Among these 238 immune-related RBPs, most of them were highly expressed in the Sub2 group, and the others were highly expressed in the Sub1 group (Figure 3B). Subsequently, 47 prognostic-related immune-related RBPs were obtained through univariate proportional hazards regression (Figure 3C, p < 0.05). In order to avoid overfitting, we then used LASSO Cox regression analysis and cross-validated 1,000 times to obtain 15 immune-related RBPs and the correlation coefficients of their corresponding risk genes (Figures 3D, E, Table S1). The risk model was thus constructed:

	




Figure 3 | Construction of risk model for prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Volcano plot exhibiting the differentially expressed immune-related RNA-binding proteins (RBPs) between Sub1 group (n = 271) and Sub2 group (n = 228) in HNSCC (A). Heatmap of differentially expressed immune-related RBPs in Sub1 and Sub2 groups (B). The result of univariate Cox analysis (C) and least absolute shrinkage and selection operator (LASSO) Cox analysis (D, E).



The negative correlation coefficient indicated that the expression of the gene was beneficial to the prognosis, and the positive value indicated no benefit or even hindrance.

We assigned TCGA data as the training set and GEO data as the validation set. According to the median risk score of patients with HNSCC in TCGA, all patients were divided into the high-risk group and low-risk group (Figures 4A, H). In the training and validation sets, the mortality of patients in the high-risk group was higher than that in the low-risk group (Figures 4B, I). In the high-risk group, ASNS, CTTN, CHCHD2, NPM3, CFDP1, IGF2BP2, and NQO1 were expressed higher, while in the low-risk group, there were higher expressions of FRMD4A, RAB11FIP1, FAM120C, CFLAR, PLEKHO1, SELENBP1, ATP2A3, and DENND2D (Figures 4C, J). The OS was negatively correlated with the risk score, which meant the OS of patients with HNSCC gradually decreases as the risk score increased (Figures 4D, K). The area under the ROC (AUC) of the risk score of the training set was 0.60 (1 year), 0.70 (3 years), and 0.64 (5 years) (Figure 4E). In contrast, the AUC of the validation set was 0.63 (1 year), 0.63 (3 years), and 0.64 (5 years) (Figure 4L). The Kaplan–Meier curves also indicated that the high-risk group had a poor prognosis (Figures 4F, G, p < 0.01).




Figure 4 | Application and validation of the risk model for prognosis. Samples in The Cancer Genome Atlas (TCGA) dataset were designated as training set, and samples in Gene Expression Omnibus (GEO) dataset were designated as validation set. On basis of the mean risk score of samples in training set, patients were divided into high-risk (red dot) and low-risk (green dot) groups. Distribution of the risk scores of the patients in training set (A). Distribution of survival time of patients in training set (B). The heatmap depicting the expression difference of 15 immune-related RNA-binding proteins (RBPs) between the high-risk group and the low-risk group in training set (C). Correlation between overall survival and risk score in training set (D). ROC curves of risk score for predicting 1, 3, and 5 years of overall survival in training set (E). Kaplan–Meier curves of high- and low-risk groups in training set (F). Distribution of the risk scores of the samples in validation set (H). Distribution of survival time of samples in validation set (I). The heatmap showing the expression patterns of 15 immune-related RBPs between the high- and low-risk groups in validation set (J). Correlation between overall survival and risk score in validation set (K). Receiver operating characteristic (ROC) curves of risk score for predicting 1, 3, and 5 years of overall survival in validation set (L). Kaplan–Meier curves of high- and low-risk groups in validation set (G).



In order to verify the validity and independence of the risk score, we combined the clinical characteristics and pathological staging data from TCGA database to perform univariate and multivariate Cox regression analyses. Univariate Cox analysis showed that age (p < 0.05), stage (p < 0.001), T (p < 0.01), N (p < 0.001), and risk score (p < 0.001) were significantly related to the prognosis (Figure 5A, Table S2). Multivariate analysis indicated that age (p < 0.01), N (p < 0.05), and risk score (p < 0.001) were significantly correlated with the prognosis (Figure 5B, Table S3). This implied that our risk model based on immune-related RBPs could be used as independent and effective indicators for the prognosis of patients with HNSCC.




Figure 5 | Independence of risk score and construction of nomogram consisting of risk score and clinicopathological characteristics. Univariate Cox regression analysis was used to validate whether age, gender, grade, stage, T, N, and risk score had an independent influence on prognosis (A). Multivariate Cox regression analysis was used to validate whether age, gender, grade, stage, T, N, and risk score had independent influence on prognosis (B). Construction of integrated nomogram to predict survival in head and neck squamous cell carcinoma (HNSCC) (C). Calibration curve for predicting 1, 3, and 5 years of overall survival (D). *p < 0.05, **p < 0.01.



In addition, we combined the stage (I–II and III–IV), T stage (T1–2 and T3–4), N stage (N0 and N1–3), and risk group (low and high) to construct 1-, 3-, and 5-year prognostic nomogram models (Figure 5C), which could guide clinical judgment more conveniently and effectively. For example, when an 80-year-old patient in a low-risk group is stage III–IV, T3–4, and N1–3, he would get a score of 375, which means that the probability of his survival time at less than 1 year, less than 3 years, and less than 5 years is 0.268, 0.574, and 0.698, respectively. The following calibration chart showed the difference between the OS predicted by this nomogram and the actual OS from TCGA database and suggested that the nomogram had certain accuracy (Figure 5D).

Finally, we evaluated the relationship between each of the 15 immune-related RBP genes in the model and the OS of patients with HNSCC. Patients with high expressions of ASNS, IGF2BP2, CFDP1, CHCHD2, CTTN, NPM3, and NQO1 have poor OS, while patients with high expressions of FRMD4A, FAM120C, ATP2A3, PLEKHO1, RAB11FIP1, DENND2D, CFLAR, and SELENBP1 have a better OS (Figures 6A–O, p < 0.05).




Figure 6 | Validation of each immune-related RNA-binding protein (RBP) in the risk model. Kaplan–Meier curves showing the differences of overall survival in high- and low-expression immune-related RBPs ASNS (A), IGF2BP2 (B), CFDP1 (C), CHCHD2 (D), CTTN (E), NPM3 (F), NQO1 (G), FRMD4A (H), FAM120C (I), ATP2A3 (J), PLEKHO1 (K), RAB11FIP1 (L), DENND2D (M), CFLAR (N), and SELENBP1 (O) between high-expression (blue) group and low-expression (yellow) group.





Exploration of the Immune Microenvironment

The established risk model was based on immune-related RBPs, so it was necessary to confirm whether the model was related to the immune microenvironment of HNSCC. CIRBERSORT results showed that the 15 immune-related RBPs in the model all had associated immune cells (Figure 7A). Through the ESTIMATE algorithm, we found that the immune score, stromal score, and ESTIMATE score were lower and that the tumor purity was higher in the high-risk group (Figures 7B–E, p < 0.001). Then, we compared the expressions of the HLA family, and most of them were lower in the high-risk group (Figure 7F, p < 0.05). Subsequently, the checkpoint expressions of PDCD1, CD274, CTLA4, HAVCR2, and LAG3 in the low-risk group were relatively high (Figures 7G–K, p < 0.001). Every immune checkpoint is negatively correlated with the risk score (Figures 7L–P, p < 0.001).




Figure 7 | Immune landscape of patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups. Correlation matrix of 15 immune-related RNA-binding proteins (RBPs) and infiltrating immune cells (A). Comparison of immune score (B), stromal score (C), ESTIMATE score (D), and tumor purity (E). The differential expressions of HLA family genes in patients with HNSCC in high- and low-risk groups (F). The expression level of immune checkpoint genes PDCD1 (G), CD274 (H), CTLA4 (I), HAVCR2 (J), and LAG3 (K) in low-risk group and high-risk group. The correlation between risk score and immune checkpoints PDCD1 (L), CD274 (M), CTLA4 (N), HAVCR2 (O), and LAG3 (P). “ns” means p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.





Analysis of Somatic Mutation and Copy Number Variations

In the high-risk group and the low-risk group, the genes with the highest mutations are TP53, TTN, FAT1, and CDKN2A. Moreover, there are more mutations of TP53, FAT1, CDKN2A, NOTCH1, SYNE1, and NSD1 in the high-risk group, and the mutation rate of PIK3CA is higher in the low-risk group (Figures 8A, B). TMB is higher in the high-risk group (Figure 8C, p < 0.001). The prognosis of patients with high TMB was significantly worse than that of patients with low TMB (Figure 8D). Considering that the risk score was an independent prognostic factor, we evaluated the superimposed influence of TMB and risk score. The prognosis in descending order is the low-mutation and low-risk group, the high-mutation and low-risk group, the low-mutation and high-risk group, and the high-mutation and high-risk group (Figure 8E, p < 0.001).




Figure 8 | Somatic mutation and copy number variations (CNVs) in high- and low-risk groups. Heatmap of somatic mutations in high-risk group (A) and low-risk group (B). The difference of tumor mutation burden between high- and low-risk groups (C). Kaplan–Meier curves showing the differences in high- and low-tumor mutation burden (TMB) groups (D). Kaplan–Meier curves revealing the differences in high-TMB and high-risk group, high-TMB and low-risk group, low-TMB and high-risk group, and low-TMB and low-risk group (E). Amplification and deletion of copy number in the high-risk group (inner) and low-risk group (outer) (F). The 20 genes with maximum CNVs in high-risk group, and the percentage meaning the proportion of patients with head and neck squamous cell carcinoma (HNSCC) who suffered gene deletion (blue) or amplification (red) in high-risk group (G). Top 20 genes with maximum CNVs in low-risk group, and the percentage representing the ratio of patients with HNSCC who suffered gene deletion (blue) or amplification (red) in low-risk group (H).



Extensive copy number amplification was detected in 22 pairs of autosomes in all two groups. In the low-risk group, high-frequency deletion regions were found on chromosomes 3 and 13, and high-frequency amplification regions were found on chromosome 8 (Figure 8F). In the high-risk group, CNVs analysis indicated the following most relevant genes: MIR7641-2|chr8, CASC19, CCAT1, CASC21, CASC8, CCAT2, POU5FIB, and CSMD1 (Figure 8G). Among them, gene CSMD1 had a significant copy number deletion (Figure 8G). On the other hand, the five most correlative genes in the low-risk group included NAALADL2, TP63, LINC01206, TPRG1, and TPRG1-AS2 (Figure 8H).

GSEA (Figure 9A) and GSVA (Figure 9B) revealed the differences in pathway enrichment between the high- and low-risk groups. Most of the pathways enriched in the low-risk group were associated with immune responses, which may be involved in immune-related RBPs, including Fc gamma R-mediated phagocytosis, B-cell receptor signaling pathway, T-cell receptor signaling pathway, autoimmune thyroid disease, cell adhesion molecules cams, cytokine–cytokine receptor interaction, leukocyte transendothelial migration, and natural killer cell-mediated cytotoxicity.




Figure 9 | Enrichment signaling pathways of different risk groups. The pathway enrichment of gene set variation analysis (GSVA) between the low- and high-risk groups (A). The pathway enrichment of gene set enrichment analysis (GSEA) between the low- and high-risk groups (B).





Prediction of the Efficacy of Immunotherapy and Chemotherapy

We used the TIDE score to predict the immunotherapy response of patients with HNSCC to immunotherapy. It could be briefly described that the higher the TIDE score, the higher the likelihood of immune dysfunction or evasion, and the less likely the patient will benefit from immune checkpoint inhibitors. As a result, the TIDE score of the high-risk group was significantly higher than that of the low-risk group, which means that immunotherapy is less effective in the high-risk group (Figure 10A, p < 0.001).




Figure 10 | The value of the risk model in predicting the efficacy of immunotherapy and chemotherapy. The score of tumor immune dysfunction and exclusion of patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups (A). The box plots of the estimated IC50 for bosutinib (B), bryostatin.1 (C), camptothecin (D), cytarabine (E), docetaxel (F), doxorubicin (G), erlotinib (H), gefitinib (I), gemcitabine (J), lapatinib (K), paclitaxel (L), parthenolide (M), sorafenib (N), and thapsigargin (O).



In addition, we screened out 14 small-molecule chemotherapeutics that may be more effective for patients with HNSCC in the high-risk group. The IC50 represents the concentration of an inhibitor that is required for 50% inhibition of carcinoma cells. A lower IC50 value means better drug sensitivity. Patients in the high-risk group were more sensitive to bosutinib, bryostatin.1, camptothecin, cytarabine, docetaxel, doxorubicin, erlotinib, gefitinib, gemcitabine, lapatinib, paclitaxel, parthenolide, sorafenib, and thapsigargin (Figures 10B–O, p < 0.001).




Discussion

Immunotherapy has become an effective method for treating malignant tumors (41). Furthermore, immunosuppressant therapy has made important progress in the treatment of patients with HNSCC (42). Nevertheless, it cannot be ignored that only a limited one-third of patients respond to immunotherapy in most types of tumors (43). Further studies of immune-related RBPs in HNSCC may provide new ways to improve the clinical prognosis of patients. At present, there is an urgent need for an accurate and operational prognostic evaluation model for HNSCC in clinical practice. Based on TCGA and GEO databases and a variety of algorithms starting with ssGSEA, our study established a new model for predicting immune response, efficacy of conventional chemotherapy and immunotherapy, and individual outcome.

There are many kinds of myeloid immune cells in the HNSCC microenvironment that have a unique immune profile prior to treatment (44). In this study, we retrospectively analyzed the transcriptomic data of 499 HNSCC patients in TCGA database and further classified them into Sub1 and Sub2 on the basis of differences in immune cell infiltration. Regarding the infiltrating immune cells in the Sub1 group, M0 macrophages infiltrated more, while in the Sub2 group, there was more infiltration of naive B cells, plasma cells, T cells, and M1 macrophages. Compared with the Sub1 group, the Sub2 group had higher immune, stromal, and ESTIMATE scores but lower tumor purity, and its prognosis was significantly better than that of the Sub1 group. In addition, the expressions of the HLA family were significantly lower in the Sub1 group, which assisted tumor cells to escape the immune system (45). The immune-related pathways in the Sub2 group were more abundant.

Some RBPs are able to rapidly react to inflammatory mediators and regulate the reprogramming of immune cells to tumor-associated phenotypes (12). After recognizing the difference in RBP expressions between the Sub1 and Sub2 groups, we constructed a risk model containing 15 immune-related RBPs through univariate and LASSO Cox regression analysis. Then, according to the risk score calculated by the above model, patients with HNSCC were divided into low- and high-risk groups. Patients in the high-risk group had poorer clinical outcomes. The model even had good validity and stability in determining the prognosis at 1, 3, and 5 years, which was further confirmed in the GEO database. After confirming the risk score as an independent prognostic factor, we constructed a prognostic nomogram model according to the staging, T, N, and age of patients, which was also accurate in predicting OS at 1, 3, and 5 years.

The relationship between the prognostic characteristics of 15 immune-related RBPs and the immune microenvironment has also been investigated. In contrast with the high-risk group, the low-risk group had lower tumor purity and higher immune score, stromal score, and ESTIMATE score. In the high-risk group, M0 macrophages, activated dendritic cells, and mast cells infiltrated more, but the expression of the HLA family decreased. In the low-risk group, there were more M1 macrophages, naive B cells, CD4 memory and CD8 T cells, plasma cells, and eosinophils. This is similar to previous reports suggesting that exhausted immunity with lower survival is characterized by enrichment of stromal activation and anti-inflammatory M2 macrophage, whereas enhanced immunity associated with better prognosis is characterized by M1 macrophages providing stronger pro-inflammatory signaling, enhanced cytolytic activity, and massive lymphocyte infiltration (7). The activation of M1 macrophages is beneficial to patients because it can induce acute inflammation secreting tumor-killing molecules such as tumor necrosis factor α (TNFα) (46). On the other hand, if acute inflammation is not controlled, differentiation of M2 macrophages facilitates chronic inflammation, promoting tumor cell growth, angiogenesis, fibrosis, and immunosuppression (47), which is certainly harmful to patients. Both B cells and partial T cells also contribute to the prognosis of patients with HNSCC. As reported by Norouzian et al., the composition of B-cell subpopulations changes in TME of HNSCC, and the B cells with atypical memory and regulatory phenotype are significantly related to favorable prognostic (48). Notably, the high abundance of tumor-infiltrating lymphocyte B and high density of direct B-cell/CD8+ T-cell interactions predict a better outcome (49). Dense T-cell infiltration, especially cytotoxic CD8 T cells, represents superior antitumor ability (50, 51).

Based on the risk score, we further elaborated on TMB, somatic mutations, and CNVs. The high-risk group had a higher TMB, which implied a higher mortality rate. Mutations in TP53 were overwhelmingly predominant in both groups and were more frequent in the high-risk group than in the low-risk group (70% vs. 55%). As previously reported by Lawrence, TP53 mutations and CDKN2 inactivation are intimately involved in HNSCC (52). Remarkably, TP53 mutations are common and associated with a poor prognosis in patients with HNSCC (53). MIR7641 is highly expressed in the exosomes of metastatic tumor cells and can enhance the proliferation, migration, and invasion of recipient tumor cells (54, 55). Cub and Sushi Multiple Domains-1 (CSMD1) acts as a tumor suppressor, whose low expression promotes the invasion of HNSCC and gastric tumor (56, 57) and is also correlated with a poorer prognosis of HNSCC (58).

The efficacy of immunotherapy has been reported to be generally superior to that of conventional chemotherapy (42). Besides, the combined application of PD-1/PD-L1 inhibitors and platinum drugs also shows positive therapeutic potential (59). This implies that the exploration of medication regimens is potentially valuable. On the one hand, the immune checkpoint expressions of LAG3, PDCD1, HAVCR2, CTLA4, and CD274 increased in the low-risk group. The efficacy of corresponding immune checkpoint inhibitors is better for the low-risk group but the opposite for the high-risk group. On the other hand, the low-risk group has a lower TIDE score, which means that the lower TIDE score is related to a better curative effect. TIDE can be used to identify two mechanisms of tumor immune escape: inducing T-cell immunotherapeutic dysfunction in tumors with high infiltration of cytotoxic T lymphocytes (CTLs) and blocking T-cell infiltration in tumors with low CTL in TME (39). In our study, the low-risk group had more infiltration of CTLs, so they would respond better to immunotherapy, due to better recovery from T-cell dysfunction. The high-risk group had less CTL infiltration, so they would benefit less from immunotherapy, which may be due to T-cell repulsion. In short, the low-risk group will benefit more from immunotherapy. Furthermore, we screened out 15 chemotherapy drugs that are more suitable for the high-risk group. The new model constructed by immune-related RBPs could serve as a new marker to help guide the selection of chemotherapeutic drugs and distinguish who would benefit more from antitumor immunotherapy.

Some of the RBPs in this article have been reported to have a practical relationship with tumorigenesis and progression. Asparagine synthetase (ASNS) catalyzes the synthesis of the nonessential amino acid asparagine, while ASNS knockdown significantly hinders cell proliferation (60). In other words, stable ASNS gene expression guarantees the growth of tumor cells. Cortactin (CTTN) gene encodes a protein, cortacn, which plays an essential role in the migration of oral carcinoma cells by regulating filamentous actin and prominent structures on cell membranes (61). The high expression of CTTN was related to a poorer OS rate (62). Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (CHCHD2) as a small mitochondrial protein can regulate mitochondrial outer membrane permeabilization and is one of the negative regulators that mediate apoptosis (63). CHCHD2 indicates a poor prognosis and is overexpressed in hepatocellular carcinoma, breast tumor, non-small cell lung carcinoma, and renal cell carcinoma (64, 65). The loss of the human Cranio Facial Development Protein 1 (CFDP1) affects the dynamic changes of chromosomes and cell cycle progression (66). Moreover, some studies have confirmed that CFDP1 is a risk gene for pancreatic carcinoma (67, 68). High expression of insulin growth factor 2 mRNA binding protein 1 (IGF2BP1) is associated with a poor prognosis such as advanced clinical stage, increased tumor size, lymph node metastasis, and low survival rate of patients with HNSCC (69, 70). NAD(P)H quinone oxidoreductase (NQO1), a cytoplasmic enzyme that mediates the reduction of quinone substrates, is highly expressed in a multitude of tumors and can catalyze quinone drugs to poison tumor cells (71). NQO1 is considered a promising direct tumor target. For example, the drug β-lapachone, catalyzed by NQO1, triggers the innate perception of T cells in the TME, thereby enhancing antitumor capacity and even overcoming checkpoint blockade (72). Casein kinase 2-interacting protein-1 (CKIP-1, also known as PLEKHO1) inhibits tumor growth by causing inactivation of serine/threonine kinases and self-degradation of Smurf1, which is a potential oncogenic target in various tumor cells (73). Selenium binding protein 1(SELENBP1) is significantly downregulated in esophageal adenocarcinoma, ovarian tumor, and oral squamous cell carcinoma, but its overexpression can lead to incremental cellular senescence and apoptosis, as well as enhanced cytotoxicity of cisplatin (74–76). Three different genes (ATP2A1-3) encode the Ca2+-ATPases from the Sarco/endoplasmic reticulum (SERCA) to maintain calcium homeostasis between the cell cytoplasm and the endoplasmic reticulum, and they have been reported to downregulate transcription in gastric and colon tumors (77). In particular, ATP2A2 gene inactivation is closely related to oral squamous cell carcinoma (78). DENN/MADD domain-containing protein 2D (DENND2D) is less expressed in malignant tumors and is thought to contribute to the worsening prognosis and high recurrence rate (79–81). However, other RBPs may have a prospective regulatory impact on HNSCC. Some articles reported the relationship between genes FRMD4A and HNSCC. High expression of FRMD4A is associated with an increased risk of HNSCC recurrence, and the silencing of FRMD4A inhibits the growth and metastasis of human squamous cell carcinoma in skin and tongue metastases and reduces the proliferation and cell adhesion of squamous cell carcinoma (82, 83). Interestingly, in our study, patients with high expression of FRMD4A experienced a better prognosis (Figure 6H), which is worthy of further study. RAB proteins play the role of small GTPases in the regulation of vesicle and protein transport, membrane targeting, and fusion, and a group of them can actively or inversely regulate tumor cell generation, migration, and invasion (84). RAB11 affects the invasiveness of breast cancer cells (85). RAB11FIP1 is positively related to dendritic cells and CD4 T cells, and the low expression of RAB11FIP1 revealed a poor prognosis for lung adenocarcinoma (86). CASP8 and FADD-like apoptosis regulator (CFLAR), also known as c-FLICE-like inhibitory protein (c-FLIP), is a vital anti-apoptotic protein (87). Some studies have identified FLIP as an independent poor prognostic indicator for colorectal carcinoma, cervical carcinoma, and acute myeloid leukemia (88).

Although some studies have explored the association of RBPs with HNSCC (89, 90), our research has made further progress. On the basis of differentiated immunophenotyping, we take the lead in the screening of differentially expressed RBPs, which represents a more effective prognostic biomarker and a more accurate predictor of response to immunotherapy in different groups of patients. In general, the prognosis model system constructed based on the immune-related RBPs and clinical information of patients with HNSCC drew the landscape in the immune microenvironment of HNSCC and could effectively predict the prognosis of patients with HNSCC in the high- and low-risk groups. The nomogram based on this model is more helpful for predicting the clinical outcome of patients with HNSCC. Last but not least, the differences in immune checkpoints and TIDE scores between the high- and low-risk groups provide new ideas for the immunotherapy of patients with HNSCC.

Our study still has some limitations. First, we only used public databases to construct and verify the prognostic risk model, and we need to validate this model in subsequent clinical trials. Second, how the immune-related RBPs regulate immunity still needs to be verified by experiments in vitro and in vivo. Eventually, human papillomavirus is an independent prognostic factor for HNSCC, which is worth further stratified analysis.



Conclusion

In summary, the signature constructed by 15 immune-related RBPs could effectively predict the clinical outcome of patients with HNSCC. Subsequently, we demonstrated the immune landscape, TMB, CNVs, and efficacy of immunotherapy in different risk groups, which might guide clinical therapy.
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Introduction

For squamous cell carcinoma of the head and neck (HNSCC), cisplatin is used as primary or adjuvant (radio)chemotherapy. In terms of dosage, two main regimens are used, weekly 40mg/m2 or 3-weekly 100mg/m2. For an optimal outcome, the highest possible cumulative total dose of cisplatin is aimed for. The selection of the scheme is patient-specific, but the factors for the selection of the optimal scheme have not yet been conclusively researched. The aim of this study was to find correlations between initial laboratory values and the cumulative total dose of cisplatin, as well as any correlations between early laboratory values or their dynamics and later laboratory values or their dynamics to provide support in the selection of the chemo regimen.



Material and Methods

In this retrospective study, the clinical data and laboratory values, namely glomerular filtration rate (GFR), hemoglobin, albumin, leucocyte, erythrocyte and platelet count, over the course of time of 79 patients with HNSCC who had received chemotherapy with cisplatin in our clinic between 2018 and 2021 were evaluated.



Results

Patients on 3-weekly regimens achieved a higher mean cumulative total dose of cisplatin than patients on weekly regimens (214.18 ± 65.95 vs 183.33 ± 65.2 mg/m2). Significant positive correlations were seen for total cumulative dose of cisplatin with initial GFR (p=0.001, Pearson’s r=0.364), initial hemoglobin (p=0.035, r=0.237), initial erythrocyte (p=0.002, r=0.337), and initial albumin (p=0.002, r=0.337). There were no significant correlations for initial leucocyte or platelets. Regarding the dynamics of the laboratory values under the first chemo administration, no correlation was found with later laboratory values or dynamics.



Discussion and Conclusion

As in other prospective studies, our retrospective analysis found a higher cumulative total dose in the 3-weekly regimen. As this seems to correlate positively with patient outcome, superiority of the 3-weekly regimen over the weekly regimen can be assumed. Functioning organ systems, especially of the bone marrow and kidneys, are associated with an increased cumulative total dose and can therefore be regarded as predictive factors. Regular monitoring of laboratory values is nevertheless essential throughout the entire course of chemotherapy.
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Introduction

Cisplatin is an inorganic heavy metal complex with the molecular formula Cl2H6N2Pt. It was the first platinum-containing agent approved by the United States Food and Drug Administration for the treatment of cancer in 1978 (1). Intracellularly, cisplatin loses its chloride ions, creating a reactive species that generates linkage with the purine bases of DNA (2). Cross-linking sets DNA damage, which subsequently leads to apoptosis of the affected cell through various signal transduction pathways (3). Due to increasing resistance mechanisms to cisplatin, the underlying molecular mechanisms continue to be the focus of oncology research (4).

In the treatment of squamous cell carcinoma of the head and neck region (HNSCC), cisplatin is used both as part of primary (without previous surgery) and adjuvant (after previous surgery) radiochemotherapy (pRCT/aRCT). Possible applications have also been established in combination with other antineoplastic agents such as cetuximab or 5-fluorouracil (5-FU), as in the EXTREME regimen (5). Other platinum derivatives such as carboplatin can also be used, but because of the superiority of cisplatin, they are usually chosen only when, because of individual risk factors, therapy with cisplatin appears too risky. This may be the case, for example, if kidney function is too weak at the beginning or during the course of chemotherapy (6, 7).

The main known side effects of cisplatin are a high emetogenic potential and various organotoxic effects. Cisplatin can be nephrotoxic (8), ototoxic (9) and neurotoxic (especially with peripheral neuropathies) (10) as well as myelosuppressive (11). Appropriate premedication with e.g. cortisone, histamine antagonists and 5-hydroxytryptamine antagonists should keep nausea within tolerable limits. Because of the possible organ damage mentioned, laboratory-chemical blood checks must be carried out before and after each administration in order to be able to recognize and treat possible complications. If there are signs of incipient organ damage, an individual decision must be made as to whether chemotherapy can be continued with supportive measures, whether it must be paused, whether a switch to another agent must be made, or whether chemotherapy must be discontinued completely. Most common reasons for discontinuation or switching from cisplatin to another agent appear to be nephrotoxic and myelosuppressive effects (12). However, other factors can also result in the discontinuation of therapy, such as serious infections or even the patient’s refusal to continue therapy.

Studies have shown that the outcome of patients after pRCT and aRCT depends mainly on the cumulative total dose, i.e. the added dose of all administrations of cisplatin in the course of therapy. The higher the total cumulative dose achieved, the better the outcome of patients (13). Thus, the goal of RCT is to administer as high a dose of cisplatin as possible during ongoing radiotherapy, while preserving organ function and reducing toxicity and side effects as much as possible. Various regimens are used for this purpose. The two most common are weekly administration à 40mg cisplatin/m2 body surface area and 3-weekly administration à 100mg cisplatin/m2 body surface area intravenously during radiotherapy (14). Currently, there are no uniform recommendations as to which therapy regimen should be selected. On the one hand, patients seem to achieve better locoregional control with the 3-weekly regimen, but on the other hand, the higher tumor toxicity also leads to more pronounced side effects than with the weekly regimen (15, 16).

The aim of this study was to demonstrate possible correlations of early laboratory chemical changes with the cumulative total dose achieved later and to be able to provide support for the selection of the cisplatin regimen based on subgroup analyses.



Material and Methods

All patients who had a presentation to the Interdisciplinary Head and Neck Tumor Board of the University Medical Centre Mannheim (Mannheim, Germany) from 01/2018 to 05/2021 were screened. Screening was performed only through 2018 because prior to that, cisplatin was administered mostly in combination with 5-FU, not as monotherapy. Radiation fractionation of 2Gy per day was performed in both adjuvant and primary RCT. Thus, a total cumulative dose of 60Gy was achieved at the completion of therapy. In the primary RCT, if therapy could be completed, a subsequent boost of 10Gy was applied to the tumor region.

Patients who received curative therapy and started either primary radiochemotherapy with cisplatin without another chemotherapy agent or adjuvant radiochemotherapy with cisplatin without another chemotherapy agent were included. Patients on other platinum-based chemotherapies (e.g., carboplatin), combined chemotherapeutics (e.g., cisplatin/5-FU), or palliative regimens (e.g., the EXTREME regimen with platinum/cetuximab) were not included. Clinical data such as patient age, cisplatin regimen used, and any port or percutaneous endoscopic gastrostomy (PEG) implantation were extracted from medical records. Blood sampling was done on the day of chemo administration or the day before. The control of blood values after chemotherapy administration was performed 3-7 days after chemotherapy administration. Blood values were extracted from the in-house laboratory system before and after the respective chemo administrations, namely leukocyte count, glomerular filtration rate (GFR, calculated from serum creatinine), platelet count, hemoglobin, erythrocyte count, and serum albumin. In addition to the enumerated values, their differences between before and after chemo administration, both in absolute and relative values, were also calculated.

Statistical analysis was then performed using the statistical software SPSS Statistics for Windows, version 27.0 (SPSS Inc., Chicago, Ill., USA). Descriptive analyses, t-tests, and bivariate correlations were performed. A p-value <0.05 was considered statistically significant. The results are given in absolute numbers ± standard deviation. A professional consultation took place by the local ethics committee of the University of Heidelberg and did not result in any concerns (approval number 2021-865).



Results

Of the patients screened, 79 patients (n=79) were included. All patients had squamous cell carcinoma on histopathology, and the location, tumor extent, lymph node status, and distant metastasis status (according to the respective Union for International Cancer Control TNM classification) are listed in Table 1. The mean age was 63 years (± 9 years, range 33-80 years). 64 patients (81%) were male, 15 (19%) were female. Radiochemotherapy was started adjuvantly (after a previous resectioning surgery) in 31 patients (39.2%) and as primary/definitive therapy (without previous surgery) in 48 patients (60.8%). Chemotherapy with weekly regimen was started in 30 patients, 3-weekly regimen in 49 patients (38%/62%). A PEG was placed in 46 patients (58.2%). A port was implanted in 28 patients (35.4%). The first dose of cisplatin 3-weekly was given in 49 patients (62%), a second dose of cisplatin 3-weekly in 37 patients (47%), and a third dose of cisplatin 3-weekly in 12 patients (15%). Due to adverse events, the regimen was changed from 3-weekly to weekly in 4 patients (5%) after the first administration. The first dose of cisplatin weekly was given in 30 patients (38%), a second dose of cisplatin weekly in 32 patients (41%), a third dose of cisplatin weekly in 29 patients (37%), a fourth dose of cisplatin weekly in 25 patients (32%), a fifth dose of cisplatin weekly in 19 patients (24%), a sixth dose of cisplatin weekly in 12 patients (15%), and seven doses of cisplatin weekly in 2 patients (2.5%).


Table 1 | Characteristics and initial laboratory values of the examined patients (T, tumor extent; N, lymph node status; M, distant metastasis status).



The total cumulative dose achieved was a mean of 202.47mg cisplatin/m2 body surface area (± 66.96; range 40-300). A dose of ≥200mg/m2 body surface area was achieved in 57 patients (72.51%). Here, a cumulative dose of >200mg/m2 body surface area was achieved within the weekly regimen group in 56.6% of patients, and within the 3-weekly regimen group in 81.6% of patients. The agent was switched from cisplatin to carboplatin in 8 patients (10.12%) during the course of therapy, and 2 patients (2.53%) were switched to primary radioimmunotherapy with cetuximab.

12 patients (15.2%) died during the observation period, 54 patients (68.3%) were alive at the end of the observation period. In 13 patients (16.5%), death within or survival of the observation period could not be traced on the basis of the available data. Of the 12 patients who died, 8 patients had started radiochemotherapy with the weekly regimen and 4 patients with the 3-weekly regimen. On average, the deceased patients initially had significantly higher platelet levels (p=0.039), significantly lower albumin levels (p<0.001), significantly lower erythrocyte levels (p=0.019), and significantly lower hemoglobin levels (p=0.008) than the survivors. There were no significant differences in leukocyte or GFR levels compared with patients who were alive at the end of the observation period.

Significant positive correlations were seen for total cumulative dose with initial GFR (p=0.001, Pearson’s r=0.364) (Figure 1), initial hemoglobin (p=0.035, r=0.237) (Figure 2), initial erythrocyte count (p=0.002, r=0.337) (Figure 3), and initial albumin (p=0.002, r=0.337) (Figure 4). There were no significant correlations for total cumulative dose with initial leukocyte (Figure 5) or platelet (Figure 6) count. There were no significant correlations of the total cumulative dose with the differences of the laboratory values pre/post-chemo administration.




Figure 1 | Bivariate correlation analysis of initial GFR values [ml/min/1,73m^2] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.001, Pearson’s r=0.364; individual values as points, dashed linear trend line.






Figure 2 | Bivariate correlation analysis of initial hemoglobin values [g/dL] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.035, Pearson’s r=0.237; individual values as points, dashed linear trend line.






Figure 3 | Bivariate correlation analysis of initial erythrocyte count [10E12/L] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.002, Pearson’s r=0.337; individual values as points, dashed linear trend line.






Figure 4 | Bivariate correlation analysis of initial albumin value [g/L] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.002, Pearson’s r=0.337; individual values as points, dashed linear trend line.






Figure 5 | Bivariate correlation analysis of initial leucocyte count [10E9/L] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.177, no significant correlation; individual values as points.






Figure 6 | Bivariate correlation analysis of initial platelet count [10E9/L] with final cumulative total dose of cisplatin achieved [mg/m^2]: p=0.56, no significant correlation; individual values as points.



When separated by gender, there was a significant difference in the change in GFR after the first chemo administration, both in absolute (p=0.007) and relative differences (p=0.012), with a greater decrease in GFR in females (-7.27ml/min; -4.13ml/min). Otherwise, there were no significant differences, not even in the total cumulative dose achieved.

In the male subgroup, there was a significant negative correlation of total cumulative dose with an increase in leukocytes after the first chemo administration (absolute value: p=0.016, r=-0.301; relative value: p=0.032, r=-0.269).

In the subgroup of women, there was a significant negative correlation of differences in erythrocytes (absolute value: p=0.03, r=-0.708; relative value: p=0.04, r=-0.695) and hemoglobin (absolute value: p=0.028, r=-0.567; relative value: p=0.023, r=-0.581) values over the first chemo administration with the total cumulative dose.

Between patients with and without PEG, as well as between patients with and without port, there were no significant differences in the values collected.

In the weekly group, the mean age (69.53 ± 7.1 years) was significantly (p<0.001) higher than that in the 3-weekly group (58.94 ± 7.75 years). The achieved total cumulative dose of cisplatin was significantly (p=0.046) higher in the 3-weekly group than in the weekly group (214.18 ± 65.95 vs. 183.33 ± 65.2 mg/m2 body surface area) (Figure 7). Mean initial GFR was significantly (p<0.001) lower in the weekly group (79.9 ± 17.22ml/min) than in the 3-weekly group (94.45 ± 14.23). There were no significant differences in the remaining initial laboratory values between the two groups.




Figure 7 | Comparison of the average cumulative total dose of cisplatin achieved between the two regimens (weekly administration 40mg/m^2 body surface area and 3-weekly administration 100mg/m^2 body surface area). Student’s t-test: p=0.046, statistically significant (*) mean CDC(weekly)= 183.33mg/m^2; mean CDC(3-weekly)=214.18mg/m^2.



Considering only patients with a GFR ≥ 70ml/min, there is no significant difference in the total cumulative dose of cisplatin achieved between the weekly regimen (190 ± 57.82mg/m2 body surface area) and the 3-weekly regimen (217.28 ± 62.34mg/m2 body surface area). Patients with GFR between 60-69ml/min showed a significant difference (p=0.046) with 183.33 ± 65.2mg/m2 body surface area in the weekly regimen and 214.18 ± 65.95mg/m2 body surface area in the 3-weekly regimen. Patients with a GFR<60ml/min did not receive chemotherapy on the 3-weekly regimen during the screened period, so a comparison of the two regimens was not possible here.

Initial leukocyte values showed a significant positive correlation with leukocyte values after the first (p=0.009, r=0.292) and before the fifth (p=0.019, r=0.518) chemo administration. Initial GFR values showed a significant positive correlation with GFR values before the second (p<0.001, r=0.701), third (p<0.001, r=0.668), fourth (p<0.001, r=0.749), fifth (p=0.004, r=0.164) and sixth (p<0.001, r=0.886) chemo administration. Initial platelet values showed a significant positive correlation with platelet values before the second (p<0.001, r=0.537), third (p=0.001, r= 0.473), fourth (p<0.001, r=0.656), fifth (p=0.002, r=0.646) and sixth (p=0.01, r=0.709) chemo administration. Initial hemoglobin values showed a significant positive correlation with hemoglobin values before the second (p<0.001, r=0.751), third (p<0.001, r=0.512), fourth (p<0.001, r=0.786), fifth (p<0.001, r=0.758) and sixth (p=0.002, r=0.79) chemo administration. Initial erythrocyte values showed significant positive correlation with erythrocyte values before second (p<0.001, r=0.605), third (p<0.001, r=0.507), fourth (p<0.001, r=0.768), fifth (p<0.001, r=0.788) and sixth (p=0.002, r=0.795) chemo administration. Initial albumin values showed significant positive correlation with albumin values before second (p<0.001, r=0.667), third (p=0.012, r=0.372) and fourth (p=0.002, r=0.586) chemo administration.

With respect to the individual initial laboratory values among themselves, significant positive correlations were found between leukocytes and platelets (p=0.003; r=0.335), GFR and platelets (p=0. 025; r=0.252), hemoglobin level and erythrocytes (p<0.001; r=0.759), hemoglobin level and albumin (p<0.001; r=0.651), and erythrocytes and albumin (p<0.001; r=0.607).

There was a significant negative correlation between platelets and hemoglobin level (p<0.001; r=-0.415), as well as between platelets and albumin (p<0.001; r=-0.409) and platelets and erythrocytes (p=0.006; r=-0.304).



Discussion

There are currently only a few randomized controlled trials comparing the two aforementioned chemo regimens. Tsan et al. described a higher average cumulative total dose of cisplatin achieved with the 3-weekly regimen and better tolerability than with the weekly regimen (17). Noronha et al. compared the 3-weekly regimen with weekly administration of 30mg cisplatin/m2 body surface area, again finding significantly better locoregional control in the 3-weekly group and recommending it should be preferred (15). In a meta-analysis, no superiority of the weekly regimen was found in terms of patient outcome, nor were there differences in prior therapy side effects, so the authors recommend the 3-weekly regimen (18). Another meta-analysis also found no difference in overall survival, but found the weekly regimen to be less myelotoxic and nephrotoxic, but associated with increased dysphagia and body weight loss (19). Retrospective evaluations also found a higher total cumulative dose of cisplatin with the 3-weekly regimen (16), but other authors described better tolerability in terms of less toxicity with the weekly regimen (20). In addition to the two regimens listed, other regimens (such as low-dose daily cisplatin (21, 22) also exist internationally, but these are not currently established nationwide in Germany. It is to be expected that the results of this study are not directly transferable to other cisplatin regimens and that own evaluations have to be made in this respect.

An important retrospective study, in light of whose results our study is also interpreted, showed a correlation of overall survival with the total cumulative dose of cisplatin administered (13). This study was important in that it was able to correlate a targeted but more distant end point (overall survival) with a more proximate end point (total cumulative dose) and therefore allowed earlier interpretation of data.

Due to the highly distressing and also potentially dangerous side effects of (radio)chemotherapy, it seems reasonable to consider not only tumor free-survival but also the overall survival of patients with regard to the evaluation of a therapy. However, due to the partly limited compliance of patients during regular tumor follow-up, the survival of all patients could not be evaluated. Of those who could be followed up, 26.6% of patients after RCT with the weekly regimen died within the observation period; in the 3-weekly regimen group, 8.1% of patients died within the observation period. The significance of the survival rates of our patients is therefore limited, also due to the relatively short observation period in relation to the 5-year survival rate of patients with HNSCC (23). Comparison of laboratory values at baseline showed significantly higher erythrocyte, hemoglobin, and albumin levels and lower platelet levels in survivors. Overall, however, it is difficult to compare patient survival between the two regimens in a retrospective study because the indication of the regimens was also based on the treating physician’s assessment of which form of chemotherapy the patient could tolerate. Based on the significant differences in erythrocyte/hemoglobin and albumin levels, it can be assumed that the patients who died during the observation period were already in poorer physical condition before the start of therapy, so that their poorer survival rate cannot necessarily be attributed to the chemo regimen. Thus, a high-quality assessment of overall survival comparing cisplatin regimens remains reserved for large, prospective studies designed over an even longer time period.

Based on the study by Strojan et al. the cumulative total dose was therefore set as the primary endpoint in this study.

There were no significant differences in the total cumulative dose achieved between patients with and without PEG, and patients with and without port. Dysphagia in patients with advanced HNSCC can develop both promptly postoperatively due to extensive tumor resection and persist in aRCT (24), or develop directly in a pRCT or aRCT due to radiogenic stomatitis and xerostomia (25). If oral food intake is significantly restricted as a result, the placement of a PEG may be necessary in the medium term after temporary parenteral nutrition. The patient must be informed about the possible risks and complications (26). If extravasation occurs during intravenous administration of cisplatin, severe irritation of the affected tissue, including necrosis, may occur, necessitating immediate conservative or even surgical intervention (27). Because of the higher concentration, the risk of tissue damage is higher in the 3-weekly dosage than in the weekly dosage (28). Therefore, pretherapeutic port implantation should be evaluated, especially in patients with poor peripheral venous status. However, due to the potential peri- and postoperative complications from a port, the expected benefits must always be weighed against the potential risks (29). Thus, the indication for the mentioned devices has to be made individually for the patients, a basic superiority in the achieved cumulative total dose could not be proven in our data by PEG placement and/or port implantation, a blanket recommendation on this can therefore not be made.

Our data show that high erythrocyte, hemoglobin, GFR, and albumin values in the initial blood values, i.e., measured before the first chemotherapy dose, correlate with a high total cumulative dose achieved.

High or normal hemoglobin values, like high or normal erythrocytes, indicate adequate hematopoietic function. A high or normal GFR indicates adequate renal function. Albumin, as the main blood transport protein, is an indirect representation of nutritional status and, in combination with other values, is known to be a predictive factor about patient outcome in long-term therapies (30).

It seems logical that high/normal values of leucocytes and platelets also indicate normal bone marrow function. The lack of correlations of leukocytes and platelets with the cumulative total dose of cisplatin in our data allows hypothesizing different explanations. On the one hand, these values in the context of reactive leukocytosis and reactive thrombocytosis are subject to higher dynamics with higher fluctuations within a few days than, for example, erythrocyte values. This makes them unsuitable for predictive estimation for the future based on a single blood draw. On the other hand, it could be suggested that the bone marrow function, which is represented by the leukocyte and platelet values, actually has no predictive/prognostic function for the patient. This is in contrast to the demonstrated correlations of hemoglobin and erythrocytes. In this regard, it could be argued that erythrocyte and hemoglobin levels do not primarily represent bone marrow function, but rather renal function. An adequate renal function plays an important role in erythrocyte formation by stimulating hematopoiesis via erythropoietin (31). Although this relationship is biologically beyond question, we were unable to demonstrate a significant correlation between GFR and erythrocyte/hemoglobin levels in our data. This suggests that erythrocytes are still influenced by too many other factors to assume a pure linear relationship with, and thus representation of, renal function. A final conclusion of this cannot be made in a retrospective view due to the close biological interconnectedness of the laboratory values.

In summary, patients with adequately functioning organ systems, particularly the kidney and bone marrow, have a better chance of achieving a high total cumulative dose of cisplatin than patients who already have laboratory limitations in these systems at the start of therapy. However, it must be kept in mind that although the positive correlations were statistically significant, they were with a rather moderate correlation coefficient, so the associations between good renal/bone marrow function and achieving a high total cumulative dose of cisplatin were not strictly related. Rather, the organ functions reflected in the blood values must be viewed and evaluated in conjunction with, for example, the patient’s clinical presentation and other comorbidities as well, not as sole decision factors.

High/normal initial values of hemoglobin, GFR, erythrocyte count and albumin can therefore be considered predictive factors for chemotherapy with cisplatin. Yet, there are also clear positive correlations within the laboratory values, especially strong between the hemoglobin values, the erythrocytes and the albumin values. Due to their biological nature, these values are closely related and also typically move in conformity with each other, as they represent the general condition as well as, among other things, the nutritional status of the patient. Malnutrition, for example, can manifest itself both in a decreased albumin level and, in the case of pronounced substrate deficiency, in anemia. It must therefore be assumed that the individual laboratory values are not completely independent values, each of which is individually predictive of the subsequent cumulative total dose, but must be considered in their entirety.

The importance of GFR as a prognostic factor is also highlighted by the fact that in the subgroup analysis of patients with a GFR of more than 70ml/min/1.73m^2, no significant difference in the cumulative dose of cisplatin was discernible between the 3-weekly and the weekly group. This highlights the importance of good renal function for the patient’s therapeutic prognosis and might even call into question the fundamental superiority of the 3-weekly regimen. Nonetheless, the superiority of this regimen in terms of higher cumulative dose of cisplatin has also been demonstrated in large randomized trials (15, 17), also in our study significantly higher cumulative doses were achieved with the 3-weekly regimen in the range between 60 and 69ml/min/1.73m^2.

However, it should be noted that in routine clinical practice the measurement is made indirectly by calculation from serum creatinine. Creatinine, in turn, is a breakdown product of muscle. Especially in (tumor) cachectic patients, creatinine may be decreased due to the lack of muscle mass, so that a false-high/good GFR value is calculated. In these cases, the renal function must be critically questioned.

In our data, there was a significant difference in the dynamics of GFR after the first chemo administration between men and women, with women showing a greater decrease in GFR. It is known from the analysis of long-term data that women show a significantly greater permanent decrease in GFR during the course after therapy with cisplatin compared to men (32). This is mainly explained by the lower average muscle percentage in women (33). Over the later chemo administrations, this sex difference in GFR dynamics was no longer detectable in our data, probably because the patients who had shown a greater GFR decline during the first administration had received targeted protective volume therapy during later chemo administrations to prevent renal failure.

The male subgroup showed a negative correlation of the dynamics of leukocyte levels over the first chemo administration with the later cumulative dose of cisplatin. Thus, the higher the leukocytes increased between before and after the first administration, the lower the cumulative dose of cisplatin at the end. It can be assumed that this correlation is due to constellations in which patients have suffered an infection, which on the one hand manifests itself in leukocytosis and on the other hand negatively influences the cumulative dose achieved later, since the infection meant that chemotherapy had to be suspended or discontinued. A possible correlation of leukopenia after cisplatin administration with the later cumulative dose may thus be statistically masked.

A similar negative correlation was found in the subgroup of women, but here between the dynamics of erythroycyte and hemoglobin levels above the first chemo administration with the cumulative dose of cisplatin. Thus, the greater the increase in erythrocyte and hemoglobin levels between the first two blood draws, the lower the subsequent cumulative dose of cisplatin. Since high erythrocyte and hemoglobin levels tend to be prognostically favorable factors, this counterintuitive correlation is most likely explained by an exciccosis phenomenon. Renal damage and limited fluid intake may result in intravascular fluid deficiency, which is reflected in increased erythrocyte and hemoglobin levels. Since this correlation in our data is only seen in the first chemo administration, it can be assumed that in these patients exsiccosis was counteracted by supportive measures during later chemo administrations.

The correlation analyses show that GFR, platelet count, erythrocyte count, and hemoglobin levels are stable overall, and the initial values correlate with the later ones over almost the entire course of chemotherapy. In the case of leukocyte values, a consistent correlation of initial with later values is not found, which fits with the fact that leukocytosis may occur together with an increase in acute-phase proteins (34) in the context of stressful situations such as those represented by chemotherapy. At the same time, however, leukopenia may also develop due to the myelosuppressive effects of cisplatin (12). Through this, the dynamics of leukocyte values in the course of chemotherapy is much more pronounced than that of the other laboratory values, resulting in the lack of correlation evidence with the initial values. However, there was no relevant correlation of the initial laboratory values with the later dynamics of the laboratory values, nor of the dynamics of the laboratory values over the first chemo administration with the later values. It must also be considered that falsification may occur due to iatrogenic influence on laboratory parameters during the course of radiochemotherapy. While cisplatin can primarily trigger a reduction in blood count values, the treating physician can raise blood count values again by administering transfusions and bone marrow stimulation with e.g. granulocyte colony-stimulating factor (G-CSF). Substitution therapy of iron and erythropoietin in the context of anemia of chronic disease also changes the course of blood values compared to a patient in whom this substitution does not take place.

It must further be considered that radiotherapy alone at different doses also has an impact on blood counts and blood values and thus represents a potential bias on the evaluation of blood values under radiochemotherapy (35). However, in our study, significant correlations and differences were found mainly with respect to initial laboratory values, which were not yet influenced by radiotherapy, and after the first dose of chemotherapy, which was administered in parallel with the start of radiotherapy. Thus, the influence of radiation on the significant correlations and differences found can be considered absent or negligible. The later laboratory values in the course of radiochemotherapy were certainly influenced by the radiation in addition to the chemotherapy; an etiological assignment would not be possible with certainty here in the retrospective design.

In summary, our data show that neither the initial laboratory values nor their dynamics over the first chemo administration provide sufficient information about the later behavior of the laboratory values in the course of chemotherapy. Thus, subsequent leukopenia or renal failure cannot be confidently assessed after primary chemo administration and need to be monitored regularly during chemotherapy. Nevertheless, it must be critically noted that the sampling times of the blood controls after chemo administration were not standardized. Due to the fluctuations in the sampling times, in some cases of several days, a falsification of the dynamics cannot be ruled out here. In clinical routine, the partly specific temporal course of the laboratory parameters, in particular of the nadir, should be observed during the blood checks after chemo administration in order not to obtain false-good values.

However, the negative correlation of the initial platelet values with the initial erythrocyte, hemoglobin, and albumin values, i.e., the laboratory values favorable in relation to the cumulative total dose, is striking. A direct negative correlation between the initial or later platelet values and the total cumulative dose of cisplatin was not detectable in our data. However, advanced cancers are well known causes of secondary thrombocytosis (36), and the negative prognostic value of thrombocytosis and an elevated platelet/lymphocyte ratio in HNSCC patients has already been demonstrated in other retrospective studies (37). Although the value in terms of patient outcome of antiplatelet therapy (38) is not yet clear, pretherapeutic thrombocytosis before cisplatin therapy seems to have some prognostic value.

The limitations of this study are mainly due to its retrospective design. As the initial regimens were also chosen on the basis of the initial laboratory values, an asymmetry in the weekly and 3-weekly groups results, especially with regard to age and GFR. A younger patient with statistically less preexisting disease and good renal function was likely to be preferentially assigned to the 3-weekly regimen by the treating physician, whereas an older patient with statistically more preexisting internal disease and a low GFR was more likely to be placed in the weekly group. However, our results are in line with those of the literature, in which a higher cumulative total dose was achieved in the study arm with the 3-weekly regimen, even in randomized controlled trials (15, 17). Furthermore, the changes in laboratory values over the period of the RCT cannot necessarily be attributed to the chemotherapy, as iatrogenic interventions such as red blood cell transfusions or the administration of G-CSF could also have taken place. However, since these are legitimate supportive measures that are available to every patient under RCT and would not have been omitted in a prospective study, the use of the data is nevertheless justifiable. In particular, initial blood levels, for which we demonstrated a correlation with the cumulative total dose of cisplatin, are still unaffected by such supportive measures.

Our data show a higher average cumulative total dose of cisplatin in the 3-weekly group (Figure 7). Also, a cumulative dose ≥200mg/m2 body surface area was more frequently achieved with the 3-weekly regimen. If the previous findings from retrospective studies confirm that the cumulative total dose correlates positively with the outcome of the patients, the 3-weekly would in principle be preferable to the weekly regimen as far as medically justifiable.

The initial hemoglobin and erythrocyte values, the initial GFR and the initial albumin value allow a prospect of the total dose to be achieved later and should be taken into account when selecting the chemo regimen. Also, elevated platelet values are seen mainly in patients with otherwise rather low favorable prognostic parameters (erythrocytes/hemoglobin/albumin), so that at least indirectly an increased disease burden and a lower resistance might be suspected here.

The initial laboratory values as well as their changes after the first chemo administration do not allow any conclusion to be drawn about later changes in the laboratory values (especially leukopenia or kidney failure), therefore the laboratory values must be checked regularly during the entire chemotherapy in order to be able to recognize and treat any complications at an early stage.

However, rising leukocytes (mainly in men in our evaluation) and rising erythrocytes/hemoglobin (mainly in women in our evaluation) after the first chemo administration may be indications of poor outcome, as they were statistically associated with a lower cumulative dose of cisplatin in our study.

For the correct selection of the chemo regimen, especially against the background of cisplatin-resistant tumors, further factors must be investigated in the future in order to be able to make the optimal weighing of benefits and risks for the individual patient. In this regard, tumor biology and pharmacogenetic research are the main focus for patient stratification (39). This will allow the identification of patient groups with an increased risk of complications and side effects, as well as those with a possible development of resistance to cisplatin.
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Approximately 85% of histological subtypes of thyroid cancer are papillary thyroid cancer (PTC), and the morbidity and mortality of PTC patients rapidly increased due to lymph node metastases or distant metastasis. Therefore, it needs to distill an enhanced understanding of the pathogenesis of PTC patients with lymph node metastases or distant metastasis. We employed the TMT-based quantitative proteomics approach to identify and analyze differentially expressed proteins in PTC with different degrees of lymph node metastases. Compared with paired normal tissues, asporin is overexpressed in PTC-N0, PTC-N1a, and PTC-N1b tumorous tissues via proteomics, western blotting, and immunohistochemistry assays. Functionally, asporin is mainly expressed in the extracellular matrix, cell membrane, and cytoplasm of PTC tumorous tissues, and promotes thyroid cancer cell proliferation, migration, and invasion. Mechanistically, asporin, interacting with HER2, co-localizes HER2 on the cell membrane and cytoplasm, and the asporin/HER2/SRC/EGFR axis upregulate the expression of EMT-activating transcription factors through the MAPK signaling pathway. Clinically, asporin can be regarded as a serological biomarker to identify PTC patients with or without lymph node metastasis, and high expression of asporin in PTC tumorous tissues is a risk factor for poor prognosis.
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Introduction

Cancer has rapidly grown in global incidence and mortality in recent years and is expected to become the leading cause of death from the non-communicable disease according to GLOBOCAN (1). Thyroid cancer is the most common endocrine malignancy, and its incidence was the highest among all cancers in the United States between 2000 and 2009 (2). Approximately 85% of histological subtypes of thyroid cancer are papillary thyroid cancer (PTC). Although the death rate of PTC is relatively low following surgery with or without concomitant radioiodine treatment, the morbidity and mortality of PTC patients are increased greatly due to lymph node metastases (LNMs) or distant metastasis (3).

PTC is MAPK-driven cancer characterized by mutually exclusive drivers including BRAFV600E and mutated RAS (4). Importantly, the BRAF V600E oncoprotein (encoded by the BRAFV600E mutation) is a typical member of MAPK signaling pathway, occurring in 40%–60% of PTC patients (3). Furthermore, Xing M demonstrated that activation of MAPK signaling pathway resulted in upregulation of tumor-promoting genes (e.g. VEGFA, MET, HIF1A, UPA, UPAR, TGFB1, and TSP1) as well as downregulation of tumor suppression and thyroid genes (e.g. TIMP3, SLC5A8, DAPK1, NIS, TSHR, and TPO) (2). Recently, the framework of BRAFV600E-RAS gene expression scores in The Cancer Genome Atlas (TCGA) indicated that PTCs differentiate into BRAFV600E-like and RAS-like PTCs (5). All these studies indicated that the MAPK signaling pathway (upregulated in tumors with the BRAFV600E mutation) is associated with PTC aggressiveness. However, the phase 2 trial of vemurafenib targeting BRAF-mutated PTC patients showed only a 38.5% response rate, which is considerably lower than that in patients with BRAF-mutated melanoma (6). Therefore, it needs to distill an enhanced understanding of the pathogenesis of PTC patients.

Asporin belongs to the class I small leucine-rich proteoglycan (SLRP) family, which also includes biglycan and decorin (7). The name “asporin” refers to its unique aspartate resides (D-repeat) in its N-terminal domain and its 54% identity with the sequence of decorin (8). Asporin contains 380 amino acids and its D-repeat polymorphisms (residues 8–19) in the N-terminus are correlated with osteoarthritis and metastatic recurrence of prostate cancer (7, 9). Although decorin acts as a tumor suppressor and biglycan is regarded as an oncogene, asporin exerts tumor-suppressor function in triple-negative breast cancer but exerts tumor-promotor function in some types of cancer, including breast, pancreatic, colorectal, gastric, and prostate cancer (10). For example, asporin binds directly to extracellular TGF-β1 in triple-negative breast cancer and its downstream cytoplasmatic component Smad 2/3 in colorectal cancer, resulting in inhibition or activation of the TGF-β1 signaling pathway, respectively (11, 12). Therefore, it is unsurprising that asporin plays different roles depending on binding different proteins. A growing body of evidence now demonstrates that asporin acts as an extracellular matrix component or intracellular protein that positively or negatively controls proliferation, invasion, and metastasis of cancer cells by regulating the TGF-β, EGFR, and CD44 signaling pathways (10). A previous study indicated that asporin is expressed at moderate levels in thyroid normal tissues (8); however, the biological roles of asporin in thyroid cancer progression have never been investigated. The present study contributes to this field by demonstrating that asporin interacts with HER2 to promote thyroid cancer metastasis by regulating the MAPK-epithelial-to-mesenchymal transition (EMT) axis.



Materials and Methods


Patients and Specimens

In total, 106 PTC patients were recruited from the department of head and neck surgery, Peking University Cancer Hospital & Institute, People’s Republic of China. The use of human materials in this study was approved by the Ethics Committee of Peking University Cancer Hospital & Institute and informed consent was obtained from all patients. Tumorous and paired normal tissues from 53 PTC patients were used in Western blotting, immunohistochemistry (IHC), and tandem mass tag (TMT)-based mass spectrometry (MS)/MS assays. Serum samples from another 53 PTC patients were analyzed by ELISA. Tissues collected from surgical procedures and serum samples were immediately snap-frozen in dry ice and then stored at –80°C. The clinicopathological parameters of all these PTC patients are summarized in Supplementary Table 1.



Co-Immunoprecipitation

Immunoprecipitation was performed as previously described (13, 14). Briefly, whole-cell extracts were obtained with RIPA buffer (ab156034; Abcam) containing 1 mM PMSF and a protease inhibitor cocktail (04693132001; Roche). After centrifugation at 12,000 ×g for 20 min at 4°C, soluble proteins were quantified by BCA. Samples (1 mg) of proteins precleared with 30 μl protein A/G Plus-Agarose (sc-2003; Santa Cruz) were used for each immunoprecipitation experiment. Proteins were incubated with 2 μg antibodies and 30 μl protein A/G Plus-Agarose. Immunoprecipitated materials were washed four times with ice-cold wash buffer (0.1% Triton X-100, 50 mM Tris-HCl, pH 7.4, 300 mM NaCl, 5 mM EDTA, 0.02% sodium azide) and once more using 1 ml ice-cold PBS. Bound proteins were separated by SDS-PAGE, transferred onto PVDF membranes, and immunoblotted with the appropriate antibodies. Signals were detected with Enhanced Chemiluminescence kits (Millipore) according to the manufacturer’s instructions. Band intensity was measured using FluorChem Q 3.4.0 software.



IHC and Evaluation of Staining

Tissue sections (5 μm thick) were de-waxed at 60°C for 30 min followed by two 5-min washes with xylene. The sections were then rehydrated by sequential 5-min washes in 100%, 95%, and 80% ethanol and distilled water. Antigen retrieval was performed by heating the tissues at 95°C for 10 min in 0.01 M citrate buffer (pH 6.0). The endogenous peroxidase activity of the tissues was blocked by 3% hydrogen peroxide for 30 min, followed by incubation with primary detection antibodies overnight at 4°C. The sections were then incubated with the Polink-2 Plus® HRP Polymer Detection System (PV-9001 and PV-9002; ZSGB-BIO) according to the manufacturer’s instructions. The samples were developed using the 3, 3′-diaminobenzidine (DAB) substrate (Dako), and counterstained with hematoxylin.

The immunohistochemical staining was evaluated according to percentage and intensity. The percentage of positive cells was scored as 0–4 (0 = <10% cells; 1 = 10%–30% cells, 2 = 30%–50% cells, 3 = 50%–70% cells, and 4 = >70% cells), and the staining intensity of the positive cells was scored as 0–3 (0 = no staining, 1 = weak staining, 2 = intermediate staining, and 3 = strong staining). The percentage and intensity scores were summed to obtain the final immunohistochemical staining scores ranging from 0–7. Based on these scores, the protein expression level was classified into three groups: 0–2 = negative staining; 3–5 = moderate staining; and 6–7 = high staining.



Immunofluorescence Staining

Immunofluorescence staining was performed as previously described (15). Briefly, BCPAP and KTC-1 cells were washed three times with PBS, fixed in 4% paraformaldehyde for 20 min, permeabilized with 0.2% Triton-X 100 for 15 min, and then blocked with 5% BSA for 60 min. Cells were incubated with primary detection antibodies (anti-asporin and anti-HER2 (sc-7301); Santa Cruz) at 4°C overnight. Cells were then incubated with appropriate secondary detection antibodies [Alexa Fluor Plus 555-conjugated anti-mouse (A32727; Thermo Fisher) or anti-rabbit (A32727) antibody and Alexa Fluor 488-conjugated anti-rabbit (A11034; Thermo Fisher)]. Cell nuclei were stained with DAPI (Sigma) at a final concentration of 0.1 mg/mL. Fluorescent images were captured on a laser confocal microscope (LSM780; ZEISS).



Transfection of Thyroid Cancer Cell Lines

Poorly differentiated thyroid cancer cell lines [B-CPAP (RRID: CVCL_0153) and KTC-1 (RRID: CVCL_6300)] and anaplastic thyroid cancer (ATC) cell lines [BHT-101 (RRID: CVCL_1085)] were kindly provided by the Stem Cell Bank of the Chinese Academy of Sciences. BCPAP and KTC-1 cells were cultured in RPMI 1640 supplemented with 10% FBS and 1% non-essential amino acids (Invitrogen, USA). BHT101 cells were cultured in DMEM supplemented with 20% FBS. All human cell lines have been authenticated using short tandem repeat profiling within this year, and all experiments were performed with mycoplasma-free cells. Small interfering RNAs (siRNAs) were obtained from Guangzhou RiboBio (China). Three siRNAs targeting the Asporin gene were designed and synthesized (siRNA2: 5’-GTGACGGTGTTCCATATCA-3’; siRNA4: 5’-GGAGTATGTGCTCCTATTA-3’; siRNA5: 5’-GTGCTATTCACGAGTTGTA-3’). At the time of transfection, cells were plated onto a 6-well plate at 60%–80% confluence. Transfection was performed with RNAiMAX (13778-150; Thermo Fisher) according to the manufacturer’s protocol. RNAiMAX reagent (7.5 μL) and siRNAs were diluted in Opti-MEM and incubated at room temperature for 15 min. The mixtures were then added to cells, giving a final concentration of siRNAs of 30 pmol. BCPAP, KTC-1, and BHT101 cells were cultured for 72 h after transfection and were subsequently lysed in RIPA buffer (ab156034; Abcam).



Drug Treatment

For the Afatinib assay, BCPAP and KTC-1 Cells (4×105) were incubated with 100 ng/ml EGF (236-EG-200; R&D Systems) for 20 min, and then incubated with or without 1 μmol/L Afatinib (S1011; Selleckchem) for 2 h. For the PLX4032 assay, BCPAP and KTC-1 Cells (4×105) were also incubated with 100 ng/ml EGF for 20 min and then incubated with or without 2 μmol/L PLX4032 (S1267; Selleckchem) for 4 h. After Afatinib and PLX4032 treatment, BCPAP and KTC-1 Cells were washed with ice-cold PBS three times, and whole-cell lysates were subjected to SDS–PAGE and incubated with p-EGFRY845, p-ERK1/2, t-ERK1/2, SLUG, ZEB1, ZEB2, and β-actin antibodies, respectively.



In Vitro Assays of Cell Migration and Invasion

The migratory and invasive potentials of the BCPAP, KTC-1 and BHT101 cell lines were evaluated as described previously (16). Briefly, 3×104 cells suspended in RPMI 1640 or DMEM media were seeded in the upper chamber of the Transwell (3422; Corning) coated with 100 μl 2% Matrigel (356234; Corning). RPMI 1640 or DMEM supplemented with 10% FBS was placed in the lower chamber as the source of chemoattractant. After 24 h of 37°C incubation, the cells remaining on the upper surface of the insert were removed using a cotton swab, and the cells on the lower surface were fixed with anhydrous methanol for 30 min and then stained with 0.2% crystal violet solution (V5265-250ML; Sigma). For each insert, cells in the center and five randomly selected peripheral fields were assessed under an inverted microscope. Migration assays were performed using the invasion assay method, except that 5×104 cells were seeded into the upper chamber that was not coated with Matrigel.



Cell Proliferation And Colony Formation Assays

Cell proliferation assays were performed using the Cell Counting Kit-8 (96992; Sigma) according to the manufacturer’s protocol. Briefly, 5×103 BCPAP and KTC-1 cells in suspension were seeded into a 96-well plate (100 μl/well). After incubating the plate in a humidified incubator (37°C, 5% CO2) for 24, 48, 72, and 96 h, 10 μL CCK-8 solution was added to each well. After incubating the plate for 2 h, the absorbance values at 450 nm and 600 nm were measured using a microplate reader (Multiskan FC; Thermo Scientific). For the colony formation assay, 3×103 BCPAP and KTC-1 cells suspended in RPMI 1640 containing 10% FBS were added to each well of a 6-well plate. Cells were cultured for 14 days at 37°C, and colonies were counted in three independent experiments.



TMT-Based MS/MS Analysis and Protein Identification

TMT-based MS/MS analysis was performed as previously described (17, 18). Briefly, according to the lymph node status, 48 thyroid tissues from 24 PTC patients were pooled as follows: tumorous tissues from PTC patients with N0 (N0_T), tumorous tissues from PTC patients with N1a (N1a_T), tumorous tissues from PTC patients with N1b (N1b_T), and paired normal tissues from all PTC patients (N0_N, N1a_N, and N1b_N). The four groups of proteins were reduced by incubation with 10 mM DTT for 30 min at 55°C, alkylated with 25 mm IAA for 30 min at room temperature in the dark, and then incubated with trypsin/Lys-C mix at a protein/protease ratio of 25:1 for 12 h at 37°C. Subsequently, TMT isobaric label reagents (0.8 mg TMT dissolved in 40 μL 99.9% acetonitrile) were used separately according to the manufacturer’s instructions to label each group of peptides as follows: TMT-126 for N1b_T; TMT-127 for N0_T; TMT-128 for N1a_T; TMT-131 for N0+N1a+N1b_N. All the labeled peptides in the four groups were then combined for subsequent high-performance liquid chromatography (HPLC) and LC-MS/MS analysis (18).

The MS/MS raw data were analyzed against the human reviewed Swiss-Prot FASTA database (released on 2018.03.02) using Proteome Discoverer software (Version 2.1, Thermo Scientific). The following search criteria were applied: carbamidomethylation (C, +57.021 Da) and TMT-6plex (K and peptide N-terminus) as fixed modifications and oxidation (methionine, M) as a variable modification. A maximum of two missed trypsin/Lys-C cleavages was allowed. The false discovery rate (FDR) was determined based on searches of the peptide spectrum matched against the reversed decoy database. The FDRs for peptide and protein identification were both set to 0.01. The MS/MS raw data were deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD007971.



Bioinformatic Analysis

The two-sided 95% prediction interval of the combined ratio distribution was used to identify the cutoffs for differentially expressed proteins (DEPs) (set as ≥1.7-fold or ≤0.4-fold) using JMP Pro 13.2.1 software (Supplementary Figure 1A). Gene ontology (GO) and pathway enrichment analyses were performed using the Funrich tool (Version 3.1.3). The protein-protein interaction (PPI) analysis was performed and visualized using the stringAPP plugin in Cytoscape (Version 3.7.0), with a confidence cutoff set at 0.4. TCGA-Assembler 2 software was used to download the normalized RNA-seq by expectation-maximization (RSEM) data and clinicopathological parameters of thyroid cancer (THCA) from TCGA (19). Upregulated mRNA expression was defined as a Z-score ≥1, whereas downregulated mRNA expression was defined as a Z-score ≤−1 according to the previous study (20).



Statistical Analysis

All statistical analyses were performed using SPSS 19.0 (IBM Corp., Armonk, NY, USA) and JMP Pro 13.2.1 software. Each experiment was repeated at least 3 times. ANOVA was used to evaluate differences among different groups and Tukey’s HSD was further applied for pairwise comparisons. Mann–Whitney or Kruskal–Wallis tests were used to analyze the relationship between asporin mRNA expression and clinicopathological characteristics. The Kaplan–Meier method was used to evaluate progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic value of serum asporin in thyroid cancer. Two-tailed P < 0.05 was considered to indicate statistical significance.




Results


Overview of Proteomic Profiles and Corresponding Bioinformatic Analysis

To comprehensively investigate the underlying mechanisms of PTC tumorigenicity with different degrees of LNMs, we obtained the global protein profiles of PTC tissues by performing TMT-based MS/MS. A total of 7,657 proteins were identified, of which 5,965 high confidence proteins without keratin were extracted with stringent criteria (q-value <0.01, unique peptide ≥2). The abundance of these 5,965 proteins was analyzed by non-supervised principal component analysis (PCA). Tumorous tissues in PTC-N0, PTC-N1a, and PTC-N1b were separated from pooled paired normal tissue (Npool_N) in Component 1, indicating that proteomic profiles in PTC tumorous tissues were distinct from paired normal tissues. Furthermore, tumorous tissues in PTC with different degrees of LNM also exhibited different profiles in terms of protein expression, resulting in a separate cluster in Component 2 (Supplementary Figure 1B). In further exploration of the patterns of variation among tumorous tissues in PTC-N0, PTC-N1a, and PTC-N1b, we obtained a total of 609 DEPs (q-value < 0.01, unique peptide ≥ 2, and fold change ≥ 1.7-fold or ≤ 0.4-fold) for hierarchical clustering analysis. The ratios of these 609 DEPs were grouped hierarchically into five clusters, of which 430 DEPs in cluster 5 were upregulated in N0_T, N1a_T, and N1b_T (Figure 1A). To further explore the biological significance of these DEPs, we performed GO and pathway enrichment analyses of these 430 DEPs. The majority of these DEPs were mainly involved in metabolism, energy pathways, cell growth, and extracellular matrix structural constituents (Figure 1B), which are the pathological hallmarks of cancer (21). Therefore, 70 DEPs enriched in these categories were extracted and average ratios were used to construct the PPI network. Of particular note, these DEPs were closely linked and upregulated in PTC tumorous tissues compared to the levels expressed in pooled normal tissues (Figure 1C).




Figure 1 | Bioinformatic analysis of differentially expressed proteins (DEPs) by TMT-based MS/MS. (A) Hierarchical cluster analysis of DEPs. Upregulated and downregulated DEPs are shown in red and green, respectively. Five clusters are shown on the left of the heatmap. (B) Gene ontology and pathway enrichment analysis of DEPs in Cluster 5. The biological process, cellular component, biological pathway, and molecular function are shown in blue, red, green, and purple, respectively. (C) Protein-protein interaction network was constructed with DEPs; no connective DEPs were excluded. The average ratios of DEPs are reflected by color intensity. Upregulated and downregulated DEPs are shown in red and green, respectively. Five DEPs included in the red ovals were further investigated by Western blotting analysis.





Verification of DEPs by Western Blotting and IHC Analyses

To further validate our proteomics data, five core DEPs (VCAN, PLS3, SERP1NA1, CD55, and asporin) enriched in three different categories of PPI were analyzed by Western blotting (Figure 2A). VCAN, PLS3, SERP1NA1, CD55, and asporin were confirmed to be upregulated in in PTC-N0, PTC-N1a, and PTC-N1b tumorous tissues (Figures 2A, B); β-actin was used as an internal control. Thus, the Western blotting results were consistent with our proteomics data, and the average ratios of these five DEPs [e.g., Ratio_ave (asporin) = (N0_T/Npool_N + N1a_T/Npool_N + N1b_T/Npool_N)/3)] were 3.60, 1.84, 2.91, 2.02, and 2.31, respectively (Figure 2C). Asporin was selected for further investigation based on the following criteria: (a) Asporin acts as an oncogene in pancreatic, colorectal, gastric, and prostate cancer (10); (b) The roles of asporin in thyroid cancer have not been reported based in searchers of PubMed or Google. IHC performed in an independent set of PTC patients confirmed that the IHC scores of asporin were also increased in PTC tumorous tissues (Figures 2D, E). Furthermore, IHC staining indicated that asporin is expressed mainly in the extracellular matrix, cell membrane, and cytoplasm. Typical images of IHC staining of asporin expression are shown in Figure 2E. To further investigate the roles of asporin in PTC tumorigenesis, asporin RSEM data and corresponding clinicopathological parameters were successfully retrieved from the TCGA-THCA cohort. This dataset showed that the high-level Z-scores of asporin were positively correlated with PTC patients with larger tumor classification (P < 0.001), LNM (P < 0.001), high AJCC staging (P < 0.001), and BRAFV600E mutation (P < 0.001) (Table 1). Furthermore, we found that asporin mRNA expression showed a significant positive association with EMT-activating transcription factors (EMT-TFs), including β-catenin (r = 0.207, P < 0.001), SLUG (r = 0.706, P < 0.001), ZEB1 (r = 0.428, P < 0.001), and ZEB2 (r = 0.522, P < 0.001) (Figure 4C). These results suggested that asporin may exert a vital tumor-promoting function in PTC by regulating the MAPK/EMT axis.




Figure 2 | Validation of five differentially expressed proteins (DEPs) by Western blotting and IHC analyses. (A) VCAN, PLS3, SERP1NA1, CD55, and asporin protein levels were validated by Western blotting analysis; β-actin was used as the loading control. (B) Quantification of the indicated five DEPs relative to β-actin. (C) The average ratios of the indicated five DEPs were identified in the TMT-based proteomics data relative to β-actin. (D) Histopathological scoring of asporin in 29 paraffin-embedded PTC tumorous tissues and paired normal tissues. *P < 0.05, **P < 0.01. (E) Representative images of immunohistochemical labeling of asporin in PTC tumorous tissues and paired normal tissues. Asporin was expressed mainly in the extracellular matrix, cell membrane, and cytoplasm of PTC tumorous tissues, while a very low or no signal was detectable in paired normal tissues. Paired normal (N) or tumorous (T) tissues are marked with dotted lines. Scale bars, 50 μm.




Table 1 | Correlations of Asporin mRNA expression in tumorous tissues with clinicopathological characteristics.





Knockdown of Asporin Inhibits Cell Growth, Migration, and Invasion of Thyroid Cancer Cells

To further examine the ability of asporin to enhance tumor progression in thyroid cancer, we knocked down endogenous asporin expression in thyroid cancer cell lines by transfection with three siRNAs (Figures 4A, B). Compared to the cells transfected with the scramble control, CCK-8 assays showed that asporin knockdown inhibited the viability of BCPAP and KTC-1 cells (Figures 3A, B). Furthermore, siASPN also decreased the number of colonies in the colony formation assays (Figures 3C, D), further indicating that asporin knockdown inhibits the growth of thyroid cancer cells. Next, we performed Transwell assays to examine the effects of asporin knockdown on the invasive and metastatic potential of these cells. We found that transfection with siASPN decreased the migratory and invasive ability of BCPAP and KTC-1 cells (Figures 3E, F). Interestingly, migration and invasion assays showed that siASPN also significantly decreased the ability of BHT101 cells (ATC cell line) to penetrate the Transwell membrane with or without Matrigel-coating (Supplementary Figure 2). These results suggested that asporin knockdown significantly inhibits the metastatic potential of thyroid cancer cells.




Figure 3 | The knockdown of asporin inhibits thyroid cancer cell growth, migration, and invasion. (A) CCK-8 assay of the growth rates of control or siASPN BCPAP cells. Data represents the mean ± SD of three independent experiments. **P < 0.01(si4-si5 cultured for 72-96 h) (B) Growth rates of control or siASPN KTC-1 cells. **P < 0.01(si4-si5 cultured for 48-96 h,and si2 cultured for 96 h). (C) Representative images of colony formation in BCPAP and KTC-1 cells. (D) The number of clones counted in three independent experiments. Data are expressed as mean ± SD. **P < 0.01. (E) Representative images of Transwell assays of BCPAP and KTC-1 cell migration and invasion. (F) Cells that migrated across the chamber membrane were stained with 0.2% crystal violet solution and counted. Data represents the mean ± SD. **P < 0.01.





Asporin Knockdown Impairs the Malignant Phenotype of Thyroid Cancer Cells by Inhibiting the MAPK/EMT Axis

Next, we investigated the molecular mechanism by which asporin promotes the malignant phenotype in thyroid cancer. TCGA-THCA cohort analysis indicated that asporin mRNA expression was positively associated with MAPK pathway activation and EMT-related mRNA expression. Western blotting analysis showed that asporin knockdown reduced p-ERK1/2 protein levels, but not t-ERK1/2 protein levels in BCPAP and KTC-1 cells (Figures 4A, B). Furthermore, siRNA-mediated silencing of asporin also resulted in the downregulation of EMT-TFs, including SLUG, ZEB1, and ZEB2, which is the downstream of the MAPK signaling pathway (Figures 4A, B). Of particular note, we also found that siRNA-mediated silencing of asporin resulted in the downregulation of p-ERK1/2, TWIST1, SLUG, ZEB1, and ZEB2 protein levels, and upregulation of E-cadherin in BTH101 cells (Supplementary Figure 3). These results indicated that asporin knockdown inhibited the tumorigenicity of thyroid cancer cells by hindering activation of the MAPK signaling pathway and downregulating its downstream EMT-TFs to impair the migration and invasiveness of thyroid cancer cells.




Figure 4 | Asporin knockdown impairs the malignant phenotype of thyroid cancer cells by inhibiting the MAPK/EMT axis. (A) Knockdown of asporin using three siRNAs (siASPN). Levels of proteins in the MAPK signaling pathway and its downstream EMT-TFs were downregulated in the siASPN cells, including p-ERK1/2, SLUG, ZEB1, and ZEB2. The results presented are representative of at least 3 independent experiments. (B) Quantification of protein levels in control and siASPN cells relative to β-actin. (C) TCGA-THCA cohort data analysis indicated that asporin mRNA expression was positively correlated with the expression of some EMT-TFs mRNAs, including β-catenin, SLUG, ZEB1, and ZEB2.





Asporin Interacts With HER2 and Activates the HER2 Signaling Pathway

Numerous studies have shown that the MAPK signaling pathway is activated by members of the EGF family, including EGFR and HER2 (22). We investigated the ability of asporin to interact with members of the EGF family in PTC using endogenous co-IP assays. Asporin was coprecipitated with HER2 but not with EGFR and SRC (Figure 5A), and conversely, HER2 was coprecipitated with asporin (Figure 5B). Furthermore, immunofluorescence assays revealed the co-localization of asporin and HER2 on the cell membrane and in the cytoplasm of BCPAP and KTC-1 cells (Figure 5C). These results indicated that asporin and HER2 form a complex. Knockdown of asporin expression in BCPAP and KTC-1 cell lines reduced HER2, p-HER2Y1248, p-SRCY418, p-EGFRY845, and p-EGFRY1173 expression, but not SRC and EGFR levels (Figures 5D, E). These results suggested that asporin could bind HER2 to maintain its expression level, and asporin knockdown could subsequently downregulate the expression of p-EGFR and p-SRC in BCPAP and KTC-1 cell lines.




Figure 5 | Asporin interacts with HER2 and activates the HER2 signaling pathway. (A, B) Endogenous co-immunoprecipitation (co-IP) assay revealed co-IP of asporin with HER2, but not with EGFR and SRC, and conversely, HER2 was coprecipitated with asprorin; IgG was used as the isotype control. The results presented are representative of at least 3 independent experiments. (C) Immunofluorescence staining of asporin (green) and HER2 (red) in BCPAP and KTC-1 cells. Merged images with DAPI staining. Asporin colocalizes with HER2 in the cell membrane and cytoplasm. One representative result of at least 3 independent experiments was shown. (D) Equal amounts of proteins in siASPN or control cells were analyzed by immunoblotting with the indicated antibodies. (E) Proposed working model for asporin promoting thyroid cancer metastasis by regulating the HER2/SRC/EGFR/MAPK/EMT axis.





Afatinib and PLX4032 Mimic the Effects of Asporin

Our results suggest that reduced MAPK pathway activity is due to lower EGFR/HER2 signaling which mediates the decrease in EMT regulating genes by Asporin knockdown. To confirm these results, pharmacological inhibitor assays were performed to confirm whether Afatinib (EGFR inhibitor) or PLX4032 (MAPK inhibitor) can mimic the effects of Asporin knockdown on SLUG, ZEB1, and ZEB2 expression. We found that BCPAP and KTC-1 cells treated with Afatinib can downregulate p-EGFRY845, p-ERK1/2, SLUG, ZEB1, and ZEB2 expression, but not t-ERK1/2 (Figure 6A). Furthermore, PLX4032 treatment results in the downregulation of p-ERK1/2, SLUG, ZEB1, and ZEB2 protein levels in BCPAP and KTC-1 cells, but not t-ERK1/2 (Figure 6B).




Figure 6 | Afatinib and PLX4032 mimic the effects of Asporin knockdown on SLUG, ZEB1, and ZEB2, expression. (A) Afatinib treatment can downregulate p-EGFRY845, p-ERK1/2, SLUG, ZEB1, and ZEB2 expression, but not t-ERK1/2. (B) PLX4032 treatment results in the downregulation of p-ERK1/2, SLUG, ZEB1, and ZEB2 protein levels, but not t-ERK1/2.





Clinical Applications of Asporin in PTC

Our in vitro results raised the possibility that the upregulation of asporin in serum represents a candidate biomarker in PTC. Accordingly, we examined the serological asporin levels in 54 PTC patients and 11 healthy volunteers by ELISA. The serum levels of asporin in PTC were higher than those in healthy volunteers (P < 0.05) (Figure 7A). We then used ROC curve analysis to determine the sensitivity and specificity of asporin as a biomarker in PTC. The area under the ROC curve (AUC) of asporin for discriminating PTC patients from healthy controls was 0.73, and the optimal Youden’s index was 0.407 (sensitivity = 0.679, specificity = 0.727) (Figure 7B). More importantly, serum levels of asporin in PTC-N1a and PTC-N1b patients were higher than those of healthy volunteers and PTC-N0 patients (P < 0.01) (Figure 7C). The AUC of asporin for discriminating PTC-N1a and PTC-N1b patients with PTC-N0 patients was 0.84, and the optimal Youden’s index was 0.59 (sensitivity = 0.667, specificity = 0.923) (Figure 7D). These results implicated asporin as a serological biomarker that can be used to identify PTC patients with or without lymph node metastasis. Furthermore, we referred to the TCGA-THCA cohort to investigate the potential correlation of asporin expression with OS or PFS. Kaplan–Meier analysis indicated that high Z-scores for asporin in tumorous tissues were associated with significantly worse PFS (P = 0.027) and OS (P = 0.002) than those of patients with normal/low Z-scores (Figures 7E, F). Therefore, elevated asporin expression in tumorous tissue was found to correlate positively with a poorer prognosis, thus, also implicating asporin as a novel candidate prognostic biomarker.




Figure 7 | Clinical analysis of asporin expression in serum and tumorous tissues. (A) The serum levels of asporin in 54 PTC patients and 11 healthy volunteers were determined by sandwich ELISA. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01. (B) Receiver-operator characteristic (ROC) curve analysis was used to examine the diagnostic efficacy of serum asporin levels. ROC curve analysis of data for discriminating PTC patients and healthy volunteers. (C) Serum asporin levels in patients with PTC-N0, PTC-N1a, and PTC-N1b. (D) ROC curve analysis of data for differentiating PTC-N0 from PTC-N1a and PTC-N1b.(E, F) Kaplan–Meier curves and log-rank tests showing high expression of asporin is positively correlated with worse progression-free survival and overall survival of patients with PTC.






Discussion

Our study revealed distinct tumorous protein profiles among PTC with different degrees of LNMs and showed that DEPs in tumorous tissues are mostly enriched in the extracellular matrix, metabolism, and cell growth. The proteomics data were validated by Western blotting analysis of VCAN, PLS3, SERP1NA1, CD55, and asporin, which were confirmed to be upregulated in PTC tumorous tissues with different degrees of LNMs. Asporin was found to be expressed mainly in the extracellular matrix, cell membrane, and cytoplasm of PTC tumorous tissues, and promoted thyroid cancer cell proliferation, migration, and invasion. Asporin was also shown to co-localize with HER2 on the cell membrane and in the cytoplasm of PTC cells. Furthermore, we showed that the asporin/HER2/SRC/EGFR axis upregulated the expression of EMT-TFs via the MAPK signaling pathway (Figure 5E). Finally, ELISA assay implicates asporin as a serological biomarker to identify PTC patients with or without lymph node metastasis, and high expression of asporin in PTC tumorous tissues is a risk factor for poor prognosis.

In colorectal cancer, Wu et al. demonstrated that asporin promoted cancer cell proliferation and metastasis via the EGFR/SRC/cortactin signaling pathway (23). Furthermore, Ding et al. suggested that asporin also promoted tumor growth and metastasis in gastric cancer via the EGFR/ERK/MMP2 axis (24). However, it is far from clear how asporin activates the EGFR signaling pathway to upregulate the p-EGFR protein level. Two previous studies suggested that HER2 and EGFR are overexpressed in PTC tumorous tissues (25, 26) and that HER2 and EGFR overexpression are positively associated with extrathyroidal extension, LNM, and high TNM stage in PTC (26). In the current study, we found that asporin interacted with HER2 and asporin knockdown downregulated protein levels of HER2, p-HER2Y1248, and p-EGFRY1171. Mounting evidence shows that HER2 overexpression promotes EGFR expression and activity (27–29). Furthermore, HER2/HER2, HER2/EGFR, and HER2/HER3 levels were increased by HER2 overexpression, resulting in activation of the MAPK and PI3K signaling pathways, as well as stimulation of SRC kinases (30). In breast cancer, Jeong and colleagues found that PMCA2 knockdown disrupted the interaction between HER2 and HSP90 and promoted the internalization and degradation of HER2, resulting in a reduction in the protein levels of p-EGFR, HER3, and p-HER3, but not EGFR (31). Furthermore, Yoon et al. indicated that α6β4 integrin interacted with, and increased the translation of HER2 through eIF4E, which resulted in p-EGFR overexpression and activation of Ras to promote invasion in breast cancer cells (32). However, the mechanism by which asporin regulates HER2 expression in thyroid cancer remains to be fully elucidated. However, these previous studies provide good evidence that asporin may regulate HER2 expression at the translational or post-translational level.

A growing body of evidence indicates that SCR activity is necessary for HER2-mediated proliferation, survival, metastasis, and angiogenesis (33), suggesting that SRC is the vital second messenger of HER2. Furthermore, HER2 interacts with SRC to increase its expression and activity (34, 35). SRC also increases HER2/HER3 dimerization and HER2 activity (36), which indicates that HER2 and SRC may create a regulatory feedback loop. Interestingly, Biscardi et al. indicated that SRC also enhanced EGFR activity by inducing phosphorylation of Tyr845 and Tyr1101 (37). In accordance with previous studies, we also found that asporin knockdown in PTC cells downregulate protein levels of HER2, p-SRCY418, and p-EGFRY845, but not the total levels of SRC protein. Collectively, the asporin/HER2/MAPK/EMT axis promoted the migration and invasion of thyroid cancer cells.

Nearly 36% of PTC patients are diagnosed with LNMs, which are correlated with local tumor recurrence and cancer-specific mortality (38). Therefore, it is important to accurately diagnose the presence and level of LNMs. Although high-resolution ultrasound imaging can be used to evaluate the extent of primary tumors and LNMs of PTC (39), the overall sensitivity is only 51%, and this imaging has limitations for the evaluation of the deeply situated retropharyngeal and mediastinal lymph nodes (38, 39). In the present study, we found that serum asporin could not only be used to distinguish PTC patients from healthy volunteers but also to discriminate PTC-N1a and PTC-N1b patients from PTC-N0 patients. These results indicated that the combination of serum asporin levels and ultrasound imaging may be used to assess the probability that LNMs has occurred and the extent.
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Background

The classification of sinonasal carcinomas (SNCs) is a conundrum. Consequently, prognosis and prediction of response to non-surgical treatment are often unreliable. The availability of prognostic and predictive measures is an unmet need, and the first logical source of information to be investigated is represented by the clinicopathological features of the disease. The hypothesis of the study was that clinicopathological information on SNC could be exploited to better predict prognosis and chemoradiosensitivity.



Methods

All patients affected by SNC who received curative treatment, including surgery, at the Unit of Otorhinolaryngology—Head and Neck Surgery of the University of Brescia between October 1998 and February 2019 were included in the analysis. The institutional series was reviewed and a survival analysis was performed. Machine learning and multivariable statistical methods were employed to develop, analyze, and test 3 experimental classifications (classification #1, based on cytomorphological, histomorphological, and differentiation information; classification #2, based on differentiation information; and classification #3, based on locoregional extension) of SNC, based on the inherent clinicopathological information. The association of experimental classifications with prognosis and chemoradiosensitivity was tested.



Results

The study included 145 patients. From a prognostic standpoint, the machine learning-generated classification of SNC provided better prediction than the current World Health Organization classification. However, the prediction of the chemoradiosensitivity of SNC was not achievable.



Conclusions

Reorganization of clinicopathological information, with special reference to those related to tumor differentiation, can improve the reliability of prognosis of SNC. Prediction of chemoradiosensitivity remains an unmet need and further research is required.





Keywords: sinonasal, carcinoma, skull base (head and neck), classification, machine learning, prognosis, chemotherapy, radiotherapy



Introduction

Sinonasal carcinomas (SNC) are a heterogeneous group of cancers that include keratinizing and non-keratinizing squamous cell carcinoma (SCC), spindle cell carcinoma, lymphoepithelial carcinoma, sinonasal undifferentiated carcinoma (SNUC), NUT carcinoma, neuroendocrine carcinomas (NEC), intestinal-type (ITAC), and non-intestinal-type adenocarcinoma (NITAC) (1). SNC represent most of the malignancies diagnosed in the sinonasal tract and their treatment is histology-driven (2–4). Thus, the reliable classification of SNC is paramount to guiding the treatment that the multi-disciplinary team will offer.

The current classification of SNC is mostly based on histomorphological features, in combination, when needed, with immunohistochemical and genetic studies. However, diagnosis of SNC is universally acknowledged as a challenge since several tumor types display overlapping features, and differential diagnosis includes a variety of entities. The fact that SNC exhibit some overlapping features from a morphological standpoint is not surprising, as several authors have demonstrated that the molecular features of these cancers are partially coinciding, and signatures of several genes are necessary to correctly classify diverse SNC (5, 6). The practical implications of this challenge are remarkable: not only is the sinonasal tract the site with the highest rate of major diagnostic discrepancy in the head and neck (19.0% vs. 0.0–8.3% in sinonasal and non-sinonasal sites, respectively) (7), but Choi et al. also demonstrated that initially misdiagnosed sinonasal cancers are associated with worse prognosis compared to those correctly identified prior to treatment (8). Moreover, even SCC diagnosis, which could be considered as relatively “simple” in most areas of the head and neck, has been associated with the highest rate of diagnostic discrepancy in the nasoethmoidal compartment (9). Correct classification of SNC is of paramount importance, particularly in the era of “histology-driven” management, as the best type and sequence of treatment modalities can significantly change with histology (2–4). As an example of that, neoadjuvant chemotherapy (ChT) has been adopted for several sinonasal cancers in an attempt to achieve a number of goals such as treatment intensification, chemoselection, orbit sparing, and reduction of distant failure. However, neoadjuvant ChT can display non-negligible toxicity, and no reliable means of response prediction are available. Thus, there exists a substantial uncertainty about the opportunity to start treatment with neoadjuvant ChT in some SNC.

These data dispel any doubt that the current method of classifying SNCs can be improved. Thus, research in the field of sinonasal oncology should be oriented toward the identification of novel clustering approaches to be implemented with the current classification. The main hypothesis of this study was that the reorganization of clinicopathological information on SNC could improve the prediction of prognosis and chemoradiosensitivity. The institutional series of SNC patients at the University of Brescia was reviewed and used to test the utility of machine learning techniques in exploiting commonly available information. The resulting experimental classifications were tested as prognostic and predictive factors and compared with the current means of classifying SNC.



Materials and Methods


Patients’ Selection and Data Acquisition

All patients affected by SNC who received curative treatment, including surgery, at the Unit of Otorhinolaryngology—Head and Neck Surgery of the University of Brescia between October 1998 and February 2019 were included in the analysis. ITAC and low-grade NITAC were excluded, as they were considered remarkably different clinical entities with respect to other SNCs (10).

The following information were retrospectively gathered for each case (full details are reported in Table S1): demographics, oncological history, treatment characteristics, response to neoadjuvant therapy (classified according to the Response Evaluation Criteria In Solid Tumors [RECIST], version 1.1), general pathologic features, cytomorphological information, histomorphological and local invasion-related information, (immuno)histochemical and nucleic acid-based test information, locoregional extension, follow-up events, and status at last evaluation. Differentiation of tumors was described through non-mutually exclusive classes (i.e., each tumor could be attributed to more than one differentiation class), based on the criteria summarized in Table 1. Margin status (11), perineural invasion (PNI) (11), lymphovascular invasion (LVI) (11), and infiltrative pattern-bone invasion (IPBI) (12) were considered as previously described. The 8th TNM Edition was employed (13).


Table 1 | Summary of criteria to attribute squamous, glandular, neuroendocrine, mesenchymal, embryonal, and neural differentiation.



The pathologic evaluation of cases was led by the senior pathologist co-authoring this study (SB), who has 25 years of physician-level experience in the field, acquired in centers with a high volume of sinonasal cancers. A large majority of pathological reports (126/145, 86.9%) were either led or co-authored by SB. All non-SCC, non-conventional SCC, and nasoethmoidal SCC cases were analyzed in consensus by at least 2 dedicated head and neck pathologists and reviewed by SB.



Unsupervised Re-Classification of Tumors

The softwares XLSTAT and RStudio were employed to perform the following analyses. The following experimental classifications were generated to test the main hypothesis of the study.


Unsupervised Re-Classification of Tumors Based on Pathological Features

Three groups of information (1—cytomorphological; 2—histomorphological and invasion-related; and 3—differentiation) underwent adjusted-inertia Multiple Correspondence Analysis (MCA). A minimum of 2 factors were extrapolated from each MCA, whereas the third or further factors were considered only if determining >10% of inertia. Agglomerative Hierarchical Clustering (AHC), which clusters observations through Euclidean dissimilarity as per Ward’s method, was applied to the factors extrapolated from MCAs. Three- to 6-cluster classifications were generated, and their association with disease-specific survival (DSS) was tested through the Cox proportional-hazards model. The classification providing the best prediction with minimum complexity was identified through analysis of the concordance index (C-index), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Nagelkerke pseudo-R2 (NPR). This classification is hereby referred to as “classification #1.” The C-index expresses the goodness of fit of prognostic models. AIC and BIC estimate the prediction error of a model, whereas NPR determines how much of the variance observed in a series is explained by the variables (i.e., covariates). Thus, the higher the C-index and NPR, and the lower AIC and BIC, the better is one predictive model compared to another.

Each class of the selected classification was described in terms of cytomorphological, histomorphological- and invasion-related, and differentiation information through chi-square or Fisher’s exact test, as appropriate.



Unsupervised Re-Classification of Tumors Based on Differentiation Features

Differentiation information underwent AHC. Identification of the best classification in terms of the number of clusters was selected as described for classification #1. This classification is referred to as “classification #2.”



Unsupervised Re-Classification of Tumors Based on Locoregional Extension

Local and regional extension information was summarized through an adjusted-inertia MCA approach, as previously described, and underwent AHC. Identification of the best classification in terms of the number of clusters was selected with the same method described for classifications #1 and #2 but using local recurrence-free survival (LRFS) instead of DSS. This classification is referred to as “classification #3”.




Prognostic Efficacy of Classifications #1 to #3 and Comparison With Available Classifications

The following time-to-event outcomes were considered to evaluate the prognostic efficacy of classifications: overall survival (OS), DSS, recurrence-free survival (RFS), LRFS, regional recurrence-free survival (RRFS), and distant recurrence-free survival (DRFS). The effect on prognosis was first tested through univariable analysis with a log-rank test (level of significance = 0.10). To measure a more reliable effect on outcomes, multivariable prognostic models were created through the Cox proportional-hazards method with an a priori selection of covariates for those outcomes which were impacted by classifications #1 to #3 at univariable analysis (level of significance = 0.05). The proportional hazards assumption was tested with Schoenfeld’s global test (level of significance = 0.05). Factors resulting in significant multivariable analysis for DSS, LRFS, and DRFS were also tested through a competing risk analysis with Gray’s test (level of significance = 0.05). Events were defined as appropriate to analyze competing risk for DSS (death of disease, death of other cause), LRFS (local recurrence, death without local recurrence), and DRFS (distant recurrence, death without distant recurrence). Causes of censorship were analyzed for DSS, RFS, LRFS, RRFS, and DRFS. Competing risk multivariable analysis was performed through a subdistribution hazard model for DSS, LRFS, and DRFS.

The following parameters were evaluated for classifications #1 to #3: independent prognostic effect (defined as the statistical significance of the classification when considered as a covariate in a multivariable model); prognostic segregation (defined as the ratio of observations clustered in a category significantly different from the reference category in a multivariable model out of the total number of patients in the series); and a priori applicability (evaluated as the confusion rate calculated through classification tree analysis run with the classification as the dependent variable and pathological or locoregional extension-related information as an explanatory variable, as appropriate).

Based on these parameters, classifications #1 and #2 were compared to the latest WHO classification of tumors, whereas classification #3 was compared to the pT category and stage of the latest TNM classification. Since the analysis was based on planned comparisons, multiple comparisons correction was not performed.



Sub-Analysis of Patients Receiving Neoadjuvant Chemotherapy and Assessment of Chemoradiosensitivity

Descriptive statistics of the sub-cohort of patients receiving neoadjuvant ChT were performed. Multivariable models were applied to this sub-cohort of patients, including response to ChT as a covariate.

Chemoradiosensitivity (i.e., the tendency of the tumor to respond to ChT and/or radiotherapy (RT)) was estimated based on the criteria summarized in Table 2. The univariable association of response to neoadjuvant ChT and chemoradiosensitivity with demographics, oncological history, treatment characteristics, pathological information, and classifications #1 to #3 was tested with chi-square or Fisher’s exact test, as appropriate (level of significance = 0.10). A multivariable analysis of the same outcomes was performed using logistic regression applied to factors resulting significantly from the univariable analysis (level of significance = 0.05). The Classification Random Forest (CRF) method with “random with replacement” sampling, a subsample size of 50 observations, and the building of 100 classification trees was run to detect predictors of response to neoadjuvant ChT and chemoradiosensitivity.


Table 2 | Summary of criteria to estimate chemoradiosensitivity of tumors.






Results


Cohort Description

The study included 145 patients, of whom 49 (33.8%) were women and 96 (66.2%) were men. Nine (6.2%) patients were treated between 1998 and 2000, 22 (15.2%) between 2001 and 2005, 30 (20.7%) between 2006 and 2010, 42 (29.0%) between 2011 and 2015, and 42 (29.0%) between 2016 and 2019 (Figure S1). The mean age at surgery was 63.8 years (median: 66.3; range: 28.8–89.0; interquartile range: 54.6–74.5).

Ninety-nine (68.3%) and 46 (31.7%) patients were referred for a primary or recurrent tumor, respectively. In the latter group, 15 (32.6%) patients had received surgery; 10 (21.7%) surgery and adjuvant RT; 7 (15.2%) surgery and adjuvant ChT-RT; 6 (13.0%) definitive ChT-RT, 3 (6.5%) RT; and 1 (2.2%) surgery and adjuvant ChT. In 4 (8.7%) of the patients, previous treatments could not be traced back. In patients referred after adjuvant or definitive (ChT-)RT (26/46, 56.5%), the disease-free interval was less than 1 year in 8 (30.8%) cases, between 12 and 24 months in 4 (15.4%), between 24 and 48 months in 4 (15.4%), between 5 and 10 years in 4 (15.4%), and beyond 10 years in 2 (7.7%).

Surgery consisted of endoscopic resection without transnasal craniectomy (ER), endoscopic resection with transnasal craniectomy (ERTC), cranioendoscopic resection (CER), open maxillectomy (OM), and endoscopic-assisted craniofacial resection (EA)CFR in 30 (20.7%), 21 (14.5%), 11 (7.6%), 48 (33.1%), and 35 (24.1%) patients, respectively. Neck dissection was performed in 30 (20.7%) patients, of whom 18 (60.0%) received a unilateral therapeutic comprehensive neck dissection and 12 (40.0%) unilateral superselective (I–IIA) or selective (I–III) neck dissection (when harvest of recipient vessels before microvascular reconstruction was indicated).

Fifty-six (38.6%) patients did not receive adjuvant treatments; 70 (48.3%) underwent adjuvant RT; 15 (10.3%) adjuvant RT-ChT; and 4 (2.8%) adjuvant ChT alone. Neoadjuvant ChT was administered to 35 (24.1%) patients, of whom 31 (88.6%) received docetaxel, cisplatin/carboplatin, 5-fluorouracile (TPF) regimen and 4 (11.4%) a cisplatin and etoposide alternated to adriamycin and ifosfamide (PE-AI) protocol.



Pathological Features

The tumor epicenter was in the maxillary sinus and in the nasoethmoidal complex in 79 (54.5%) and 66 (45.5%) patients, respectively. Histology was distributed as follows: SCC in 91 (62.8%) patients (well/moderately differentiated in 31 [21.4%] cases, poorly differentiated in 60 [41.4%]), SNC not otherwise specified (SNCNOS) in 30 (20.7%), NEC in 10 (6.9%), high-grade NITAC (HG-NITAC) in 6 (4.1%), SNUC without molecular identifier in 5 (3.4%), and SMARCB1/INI1-deficient carcinoma (ID-SNUC) in 3 (2.1%) (Figure 1).




Figure 1 | Panel illustrating examples of histologies included in the study. (A) Well-differentiated squamous cell carcinoma (SCC) (hematoxylin–eosin (HE), magnification: ×100). (B) Poorly differentiated SCC (HE, magnification: ×200). (C) Spindle cell carcinoma (HE, magnification: ×200). (D) High-grade non-intestinal-type adenocarcinoma (HG-NITAC) (HE, magnification: ×200). (E) Small cell neuroendocrine carcinoma (NEC) (HE, magnification: ×200). (F) Large cell NEC (HE, magnification: ×200). (G) Sinonasal undifferentiated carcinoma (SNUC) (HE, magnification: ×200). (H) Pie chart displaying distribution of histologies in the series. Scale bar: 100 μm. ID-SNUC, INI1/SMARCB1-deficient sinonasal undifferentiated carcinoma; SNCNOS, sinonasal carcinoma not otherwise specified.



Of note, SNCNOS were poorly-to-non-differentiated SNCs that could not be classified as WHO-recognized entities. ID-SNUC was distinguished from SNUC owing to their substantially different clinical behavior (4). When considering SCCs, 64 (70.3%) were described as classical variants, 16 (17.6%) as non-keratinizing, 5 (5.5%) as adenosquamous, 3 (3.3%) as basaloid, 2 (2.2%) as spindle-cell, and 1 (1.1%) as adenomatoid. When considering NEC, 6 (60.0%) were described as small cells, 1 (10.0%) as large cells, and 3 (30.0%) were not otherwise specified. The preeminent grade of differentiation was described as low in 33 (22.8%) tumors, high in 93 (64.1%), and unspecified in 19 (13.1%). The worst grade of differentiation was low in 21 (14.5%) tumors, high in 105 (72.4%), and unpecified in 19 (13.1%). Inverted papilloma (IP) was found in 21 (14.5%) tumors, of which 19 (13.1%) were SCC and 2 (1.4%) SNCNOS. Margins were clear (R0) in 86 (59.3%) patients and involved (R+) in 59 (40.7%).

Squamous morphology of tumor cells was observed in 107 (73.8%) cases, basaloid in 12 (8.3%), glandular in 18 (12.4%), and mesenchymal in 18 (12.4%), out of which 14 (9.7%) were spindle, 3 (2.1%) rhabdoid, and 1 (0.7%) osteoblastoid (Figure 2).




Figure 2 | Examples of cytomorphology and related Multiple Correspondence Analysis. (A, B) Squamous cell morphology [(A) well-differentiated; (B) poorly-differentiated]. (C) Spindle cell morphology. (D) Glandular cell morphology. Magnification of histological images is ×200; all are stained through hematoxylin–eosin. The bottom image shows organization of variables into cartesian axes depending on their mutual relationships. This results in 2 factors (F1, F2), represented in the y- and x-axes of the graph, which reliably summarize sample variability, as shown in the scree plot. Scale bar: 50 μm.



Keratinization was found in 38 (26.2%) cases, cellular pleomorphism in 53 (36.6%), nuclear pleomorphism in 50 (34.5%), nucleolar prominence in 30 (20.7%), abnormal mitoses in 20 (13.8%), neoplastic necrosis in 66 (45.5%), and verrucous hyperplasia in 3 (2.1%). The nucleus-to-cytoplasm ratio was classified as high in 22 (15.2%) tumors, low in 9 (6.2%), and intermediate or unspecified in 114 (78.6%).

Pattern of growth was described as solid in 125 (86.2%) tumors, papillary in 27 (18.6%), transitional-like in 8 (5.5%), lobular in 7 (4.8%), cribriform in 7 (4.8%), pagetoid in 7 (4.8%), and tubular in 2 (1.4%). Overall, PNI was observed in 44 (30.3%) cancers, and LVI in 49 (33.8%). Infiltrative-type bone invasion was observed in 85 (58.6%) patients (Figure 3).




Figure 3 | Examples of microscopic local spread patterns. (A) Perineural invasion (hematoxylin–eosin (HE), magnification: ×100). (B) Endovascular tumor embolization (HE, magnification: ×200). (C) Infiltrative pattern-bone invasion (HE, magnification: ×100). (D) Pagetoid growth (HE, magnification: ×100). White dashed line indicates the basal lamina of glandular epithelium of a submucosal gland. The tumor grew along the glandular axis underneath the epithelium. Scale bar: 100 μm.



According to the criteria reported in Table 1, squamous differentiation was observed in 114 (78.6%) tumors, glandular in 35 (24.1%), mesenchymal in 32 (22.1%), neuroendocrine in 25 (17.2%), neural in 3 (2.1%), and embryonic in 1 (0.7%). Given their rarity in the series, neural and embryonic differentiations were not considered further.

Histochemical, (immuno)histochemical, and nucleic acid-based staining employed over the study period are reported in Table S2. Epstein–Barr virus (EBV), human papilloma virus (HPV), and polyomavirus were searched in 16 (11.0%), 3 (2.1%), and 3 (2.1%) cases, respectively. Only one tumor was found to be EBV+. No cases associated with HPV or polyomavirus were observed. A positive stain for p16 was found in 5 of 9 (55.6%) cases in which it was tested.

The tumor involved the orbital content in 41 (28.3%) cases, the bony skull base in 41 (28.3%), the dura mater in 26 (17.9%), masticator and/or parapharyngeal space in 46 (31.7%), the facial soft tissues in 46 (31.7%), the sphenoid sinus in 37 (25.5%), the frontal sinus in 19 (13.1%), and the nasopharynx in 24 (16.6%). The pathological T category was distributed as follows: pT1 in 12 (8.3%) patients, pT2 in 16 (11.0%), pT3 in 22 (15.2%), pT4a in 43 (29.7%), and pT4b in 52 (35.9%). Eighteen (12.4%) patients had pathologically proven nodal metastases. The tumor stage was classified as I in 12 (8.3%) patients, II in 15 (10.3%), III in 21 (14.5%), IVA in 42 (29.0%), and IVB in 55 (37.9%).



Oncologic Outcomes

The mean follow-up duration was 48.2 months (median: 29.7; range: 0.8–215.6; inter-quartile range: 9.4–73.2). The status of patients at last contact was distributed as follows: died of disease in 61 (42.1%) patients; alive with no evidence of disease in 60 (41.4%); died of other causes in 7 (4.8%); and alive with evidence of disease in 4 (2.8%). Thirteen (9.0%) patients were lost at follow-up. The following data refer to the subgroup of patients for whom follow-up information is available (n = 132).

One-, 2-, 5-, and 10-year OS were 74.0, 62.5, 51.3, and 46.3%, respectively (Figure 4); 90% of deaths from any cause occurred within 55 months after diagnosis. One-, 2-, 5-, and 10-year DSS were 76.0, 65.0, 54.6, and 53.1%, respectively (Figure 4); 90% of cancer-specific deaths occurred within 50 months after diagnosis.




Figure 4 | Main oncologic outcomes of the series summarized through Kaplan–Meier curves. Venn diagram shows raw count of recurrences. DRFS, distant recurrence-free survival; DSS, disease-specific survival; LRFS, local recurrence-free survival; OS, overall survival; RFS, recurrence-free survival; RRFS, regional recurrence-free survival.



Sixty-nine (52.3%) patients had at least 1 recurrence. In particular, there were 31 (23.5%) local recurrences, 7 (5.3%) locoregional, 9 (6.8%) local and distant, 3 (2.3%) regional, 3 (2.3%) regional and distant, 10 (7.6%) distant, and 6 (4.5%) locoregional and distant (Figure 4). Cumulatively, recurrence was observed at the local, regional, and distant sites in 53 (40.2%), 19 (14.4%), and 28 (21.2%) patients, respectively.

One-, 2-, 5-, and 10-year RFS were 64.6, 54.9, 46.1, and 43.0%, respectively (Figure 4). One-, 2-, 5-, and 10-year LRFS were 74.3, 65.5, 57.0, and 53.3%, respectively (Figure 4). One-, 2-, 5-, and 10-year RRFS were 89.3, 85.1, 85.1, and 80.2%, respectively (Figure 4). One-, 2-, 5-, and 10-year DRFS were 87.4, 81.4, 73.1, and 70.1%, respectively (Figure 4). The time to observe 90% of any recurrence, local recurrence, regional recurrence, and distant recurrence was 33, 35, 32, and 43 months, respectively. The causes of censorship in the RFS (n = 63) analysis were distributed as follows: 6 (9.5%) patients died of other causes with no recurrence of disease, and 57 (90.5%) patients were alive with no recurrence of disease. The causes of censorship in the LRFS (n = 79) analysis were distributed as follows: 6 (7.6%) patients died of other causes with no local recurrence of disease, 15 (19.0%) patients died of non-locally recurrent disease, and 58 (73.4%) patients were alive with no local recurrence of disease. The causes of censorship in the RRFS (n = 113) analysis were distributed as follows: 6 (5.3%) patients died of other causes with no regional recurrence of disease, 43 (38.1%) patients died of non-regionally recurrent disease, 64 (56.6%) patients were alive with no regional recurrence of disease. The causes of censorship in the DRFS (n = 104) analysis were distributed as follows: 7 (6.7%) patients died of other causes with no distant recurrence of disease, 32 (30.8%) patients died of recurrent disease without distant metastasis, and 65 (62.5%) patients were alive with no distant recurrence of disease.

A multivariable analysis of prognostic factors is reported in Tables S3–S6. Schoenfeld’s global p-value was >0.05 for all models. The results of the competing risk analysis of DSS and LRFS are summarized in Tables S4, S6, respectively. Gray’s test competing risk analysis of DRFS showed that both covariates showing significance at multivariable analysis (i.e., histology according to WHO classification and locoregional extension according to classification #3) are potentially associated with informative censoring bias. The probability of informative censorship is significantly affected by the category of covariates (p = 0.027 and p <0.0001, respectively). While the locoregional extension maintained significance in terms of distant recurrence-specific events (p = 0.008), histology lost significance (p = 0.408). The multi-variable subdistribution hazard models of DSS and LRFS did not show relevant difference compared with the respective Cox proportional hazards models, thus excluding the presence of a relevant informative censoring bias (Table S7). Multivariable subdistribution hazard models of DRFS showed a relevant difference compared with the respective Cox proportional hazards models (i.e., the covariate histology lost significance) (Table S7). Thus, the DRFS Cox proportional hazard model was considered flawed by informative censoring and was not used to compare classifications. Given the paucity of regional failure events (n = 19) and the remarkable number of competing events, RRFS was also excluded from terms of comparison of classifications.



Classifications #1 and #2 and Comparison With WHO Classification

Cytomorphological-MCA, histomorphological and invasion-related-MCA, and differentiation-MCA generated 2 factors each, representing 76.0, 70.7, and 82.4% of variability in observations, respectively.

For classification #1, 5- and 6-cluster classifications were the best combinations of AIC/BIC and NPR (Table S8); since the 6-cluster classification had a 1-case class, the 5-cluster classification was selected due to better sorting of cases. Classification #1 is reported in Table 3. An independent prognostic effect was observed on LRFS and prognostic segregation was 15.9% (“NEC with mesenchymal features” vs. others). A priori applicability was suboptimal, with a confusion rate of 4.1%.


Table 3 | Classification #1 and class-specific outcomes.



For classification #2, the 5-cluster classification generated through AHC (Figure 5) was associated with the best combination of AIC/BIC and NPR (Table S9). Classification #2 is reported in Table 4. An independent prognostic effect was observed on RFS and LRFS. Prognostic segregation was 37.2% for RFS (“SCC with mesenchymal features”, “NEC without glandular features”, and “other carcinomas” vs. others) and 26.2% for LRFS (“SCC with mesenchymal features” and “other carcinomas” vs. others) (Figure 6). The a priori applicability was optimal, with a confusion rate of 0.0% (Figure 7). The WHO classification (i.e., classification in SCC, SNCNOS, NEC, HG-NITAC, SNUC, and ID-SNUC) had an independent prognostic effect on OS, DSS, RFS, and DRFS. Prognostic segregation was 9.0% (NEC and ID-SNUC vs. others).




Figure 5 | Dendrogram and profile plot summarizing the process of Agglomerative Hierarchical Clustering based on differentiation features (i.e., leading to classification #2). This unsupervised machine learning methodology clusters observations (listed along the x-axis) based on their dissimilarity (expressed in the y-axis). Dissimilarity, which is defined according to differentiation, is maximal between clusters and minimal within each cluster. The process resulted in 5 clusters (C1–5), each one displaying a determinate frequency of squamous, glandular, neuroendocrine, and mesenchymal differentiation, as expressed by the profile plot. C1, C2, C3, C4, and C5 corresponds to cluster labeled as “squamous cell carcinoma,” “squamous cell carcinoma with glandular features,” “squamous cell carcinoma with mesenchymal features,” “neuroendocrine carcinomas without glandular features,” and “other carcinomas” in Table 4.




Table 4 | Classification #2 and class-specific outcomes.






Figure 6 | Kaplan–Meier curves depicting recurrence-free survival of different sinonasal carcinomas (SNC) classified according to the WHO criteria and classification #2. Prognostic segregation is expressed through pie charts. P-value refers to log-rank test (see Tables S5 and 4 for multivariable-adjusted significance). See Table 4 for detailed definition of each group of carcinomas as per classification #2. HG-NITAC, high-grade non-intestinal-type adenocarcinoma; ID-SNUC, INI1-SMARCB1-deficient sinonasal undifferentiated carcinoma; NEC, neuroendocrine carcinoma; SCC, squamous cell carcinoma; SNCNOS, sinonasal carcinoma not otherwise specified; SNUC, sinonasal undifferentiated carcinoma.






Figure 7 | Flow chart summarizing the logical steps to classify sinonasal carcinomas (SNC) according to classification #2. See Table 1 for detailed description of features designating the differentiation(s) of carcinomas. See Table 4 for de-tailed definition of each group of carcinomas as per classification #2. NEC, neuroendocrine carcinoma; SCC, squamous cell carcinoma.



When comparing RFS multivariable models including the type of surgery, locoregional extensions summarized as classification #3, margin status, type of adjuvant treatment, and either classification #2 or WHO classification, C-index, AIC, BIC, and NPR were 0.484, 577, 613, and 0.774 vs. 0.431, 579, 617, and 0.781, respectively (Table 5).


Table 5 | Comparison of multivariable models in terms of concordance index (C-index), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Nagelkerke pseudo-R2 (NPR).





Classification #3 and Comparison With TNM Classification

Locoregional extension-related MCA generated 2 factors, representing 74.1% of the variability in observations. Five-cluster classification was associated with the best combination of AIC/BIC and NPR (Table S10). Classification #3 is reported in Table 6. An independent prognostic effect was observed on OS, DSS, RFS, and LRFS. Prognostic segregation was 33.8% for OS, DSS, RFS, and LRFS (“transcranial,” “spheno-infracranial,” and “fronto-orbito-basal” vs. others). A priori applicability was suboptimal, with a confusion rate of 3.4%.


Table 6 | Classification #3 and class-specific outcomes.



Pathological T category (i.e., classification in pT1, pT2, pT3, pT4a, and pT4b) had an independent prognostic effect on OS, DSS, RFS, and LRFS. Prognostic segregation was 35.9% (pT4b vs. others) for OS, DSS, and RFS, and 65.5% for LRFS (pT4a and pT4b vs. others). The tumor stage (i.e., classification into stage I, II, III, IVA, and IVB) had an independent prognostic effect on OS, RFS, and LRFS. Prognostic segregation was 37.9% (IVB vs. others) for OS and RFS, and 66.9% for LRFS (IVA and IVB vs. others).



Response to Neoadjuvant Chemotherapy and Chemoradiosensitivity

Response to neoadjuvant ChT was distributed as follows: partial response (PR) in 15/35 (42.9%) patients; stable disease (SD) in 15/35 (42.9%); and progression of disease (PD) in 5/35 (14.3%). Histology was SCC in 14/35 (40.0%) patients, SNCNOS in 11/35 (31.4%), SNEC in 4/35 (11.4%), and SNUC, HG-NITAC, and ID-SNUC in 2/35 (5.7%) each. Fourteen/35 (40.0%) tumors were classified as pT4b, 12/35 (34.3%) as pT4a, 7/35 (20.0%) as pT3, and 2/35 (5.7%) as pT2. Chemoradiosensitivity could be estimated in 76/145 (52.4%) patients and was distributed as follows: class A in 2 (2.6%) cases, class B in 33 (43.4%), and class C in 41 (53.9%).

Among all the tested information, only PNI and pagetoid growth were significantly associated with the response to ChT (p = 0.043 and p = 0.070, respectively, with PNI being associated with lower rate of PR and higher rate of PD, and pagetoid growth with higher rate of PR), neither of which maintained significance at multivariable analysis. The estimate of chemoradiosensitivity was associated with cellular pleomorphism (p = 0.030), solid pattern of growth (p = 0.056), pagetoid growth (p = 0.032), PNI (p = 0.001), and classification #1 (p = 0.050). However, only pagetoid growth and PNI-maintained significance at logistic regression (p = 0.030 and p = 0.007, respectively), with pagetoid growth being significantly associated with class A or B and PNI with class C. CRF was associated with a steady out-of-the-basket error between 40 and 60% when applied to both the response to neoadjuvant ChT and chemoradiosensitivity.

When the prognosis of patients receiving neoadjuvant ChT was analyzed in the multivariable model, the response to ChT affected OS, DSS, and RFS, with PD being associated with a significantly worse outcome. While margin status played a substantial prognostic role in multivariable models for all outcomes but RRFS and DRFS, its prognostic effect was lost when the analysis was limited to the subset of patients treated with neoadjuvant ChT.




Discussion


Heterogeneity of Sinonasal Carcinomas

The first significant confirmatory finding of this study is that cancers grouped under the term “SNC” are extremely heterogeneous. While some dominant features, such as squamous cell morphology and a solid pattern of growth, could be demonstrated, numerous tumors displayed diverse pathological features from cytomorphological, histomorphological, and immunohistochemical standpoints. As already highlighted by other authors (15–17), this emphasizes that carcinomas of the sinonasal tract definitely have overlapping features, which probably explains difficulties in diagnosis, the high rate of diagnostic discrepancies, and suboptimal prediction of treatment response. As a glaring example of this phenomenon, according to classification #2, 62/145 (42.8%) of cases were classified as non-purely squamous SNC, of which, however, 31 (50.0%) displayed at least one of the features required to be labeled as “squamous.”



Steadily Poor Prognosis of Sinonasal Carcinomas

Another relevant result of our analysis is that a substantial proportion of SNCs were associated with poor prognosis even if treatment was performed over the last 2 decades within a modern, multidisciplinary frame. As reported by Dulguerov et al., the OS of SNC progressively increased in the second half of the last century, from 28% ± 13% in the 1960s, to 36% ± 13% in the 1970s, 43% ± 15% in the 1980s, and 51% ± 14% in the 1990s (18). According to our results and consistent with a Danish population-based phase-4 cohort study performed in 2008–2015 (19), the positive trend observed by Dulguerov et al. has plateaued, with 5-year OS settled roughly around 50%. Of note, around one-third of patients included in the present series died within one year from the end of treatment, mostly owing to an early local recurrence, highlighting that a remarkable proportion of SNC is highly aggressive and poorly controlled, even if they were initially considered eligible for curative treatment. On one hand, this might be related to the large number of patients with locally advanced SNC in our study (T3/4: 117/145, 80.7%; vs. 61.4% in the recently published Danish Head and Neck Cancer (DAHANCA) group study) (19). On the other hand, this finding suggests that a relevant subgroup of SNC is not managed effectively even with contemporary treatment strategies. Interestingly, SNCNOS, namely SNC lacking a precise diagnosis according to the WHO criteria, were associated with dismal OS and DSS similarly to NEC and ID-SNUC (5-year estimates: 36.6 and 41.7%, 33.3 and 37.5%, and 0.0 and 0.0%, respectively). SNUCs with normal or non-tested expression of SMARCB1/INI1, were associated with 5-year OS and DSS of 66.7%, which aligns with the 59% rate recently reported by Amit et al. in a cohort of 95 SNUCs (20). While SNUC is still considered as a wastebasket entity, the progressive exclusion from this category of aggressive SNC with specific molecular identifiers such as ID-SNUC (21), SMARCA4-deficient carcinoma (22) and NUT carcinoma (23), together with the increasing use of neoadjuvant ChT-based regimens, has led to considerable improvement in SNUC-specific outcomes, particularly when treatment is based on chemoselection (20). Our data suggest that poorly understood SNC currently bears a worse prognosis than SNUC, which in the past was unanimously considered to be associated with a dismal outcome (24–26). Among SNC with the worst prognosis, NEC and ID-SNUC represented only a small proportion (13/145, 9.0%), while SNCNOS was the second most frequent diagnosis after SCC, with 30 (20.7%) cases. This further emphasizes the difficulty of reaching a WHO-recognized SNC diagnosis in SNC and the need for better classification of SNC to improve treatment outcomes.



The Impact of Multimodal Treatment

Adjuvant and neoadjuvant therapies have been confirmed to be of utmost importance in determining and predicting outcomes. Response to neoadjuvant ChT was associated with OS, DSS, and RFS independently of histology, locoregional extension, type of surgery, margin status, and type of adjuvant treatment (Tables S3–S5). In particular, patients with PD had a significantly worse prognosis than those with SD or PR following neoadjuvant ChT (Figure 8). Several studies from the University of Texas MD Anderson Cancer Center demonstrated the prognostic effect of response to neoadjuvant ChT in single-histology SNC series (20, 27, 28). Of note, in our series, adjuvant ChT-RT showed a remarkable positive effect on RFS and LRFS (Figure 8), which was, however, minimized in multivariable analysis, where adjuvant RT and ChT-RT had a similar positive impact on RFS and LRFS irrespective of histology, locoregional extension, type of surgery, margin status, and previous ChT (Tables S5–S6). This finding reinforces the belief that treatment of most SNC should be multimodal. Being independently associated with OS, DSS, RFS, and LRFS, margin status was confirmed as a relevant prognostic factor. The finding that margin status lost its prognostic effect on patients treated with neoadjuvant ChT is of particular interest (Tables S3–S6). A possible explanation might be related to a non-concentric response of SNC to ChT, as observed in other cancers (29). This would imply that the assessment of margins at definitive pathology is not a reliable estimate of microscopic residual disease. Such a hypothesis, while based on a small number of patients, might suggest that the value of classical prognosticators of SNC is undermined in subjects receiving neoadjuvant therapies and warrants a systematic reappraisal of prognostic factors in these patients. However, before generalizing this finding, one should consider that it was based on patients sent for surgery after neoadjuvant ChT, which includes a majority of cases with poor response to neoadjuvant therapy and might thereby be not representative of all SNC.




Figure 8 | Kaplan–Meier curves summarizing the most relevant results of the survival analysis. Top row of graphs demonstrates the poorer prognosis in terms of disease-specific (DSS), recurrence-free (RFS), and distant recurrence-free survival (DRFS) of patients with progression of disease (PD) after neoadjuvant chemotherapy compared to those with stable disease (SD) or partial response (PR). Middle row shows the protective effect of adjuvant radiotherapy (RT) and chemoradiotherapy (CRT) on local recurrence-free survival (LRFS). Of note, only CRT showed an effect on DSS at univariate analysis. Bottom row shows the absence of a relevant effect of margin status on prognosis in patients receiving neoadjuvant CT. P-value refers to log-rank test (see Tables S3–S6 for multivariable-adjusted significance). CT, adjuvant chemotherapy; R0, clear margins; R1, involved margins.





Machine-Learning-Based Classification of Sinonasal Carcinomas

Three machine-learning-generated experimental classifications of SNC based on pathological features and locoregional extension were generated to test the main hypothesis of the study, which was that reorganization of clinicopathological information could improve the prediction of prognosis and chemoradiosensitivity. Each classification was compared to the respective gold standard method to describe sinonasal cancers, namely the WHO (1) and TNM classifications (13) for pathological diagnosis and description of locoregional extension, respectively. A comparison was first performed on a prognostic basis and showed that classification #2 better predicted OS than the WHO classification, whereas classification #1 could not be included in the comparison as there were no prognostic outcomes affected by both the WHO classification and classification #1 at multivariable analyses. Prognostic segregation was also better for classification #2 compared to the WHO classification, with 37.2 and 9.0% of patients being classified in the poor-prognosis category(ies), respectively. As opposed to classification #1, classification #2 was applicable a priori, which means that criteria to apply this classification to an external series could be found, as reported in Figure 6. However, two main drawbacks of this classification should be highlighted: First, criteria to designate a cancer with one or another differentiation were established arbitrarily, based on the common interpretation of some morphological and (immuno)histochemical findings (Table 1); second, immunohistochemistry, which is supposed to substantially aid in unveiling nuances of differentiation in a given cancer, was not systematically applied, as immunostaining was dictated by case-specific needs to achieve a diagnosis. Thus, not all cancers underwent the same set of immunostaining. Based on these findings, reorganization of pathological information, with special reference to those related to tumor differentiation, may help in improving the ability to predict outcomes of SNC-patients. However, classification #2 has been used only as a research means to test a scientific hypothesis and requires optimization and external validation prior to being proposed as an alternative prognostic tool.

Classification #3 assessed the locoregional extension of SNC and performed better than TNM classification in terms of OS, DSS, RFS, and LRFS prediction. However, the absence of a priori applicability prevents it from being proposed as an alternative to TNM classification. Moreover, TNM-based clustering of tumors provided better prognostic segregation. The main difference between classification #3 and TNM lies in the fact that in the former, the category is assigned by simultaneously considering the status of involvement of several sinonasal and skull base structures, whereas the latter classifies a tumor based on the infiltrated structure pertaining to the highest T category. The fact that the first method provided better prediction of several survival outcomes should prompt investigation of tumor extension in a more multidimensional fashion when T category assignment criteria are revised for the next TNM Edition. For instance, a score-based assignment based on the evaluation of tumor extension along the 6 vectors of possible growth (i.e., anterior, posterior, inferior, superior, medial, and lateral) could be considered.

Of note, the prognostic value of the experimental classification used herein should be considered in view of the unsupervised methodology of machine learning. Each classifications has been developed based on non-prognostic information, and prognostic outcomes (i.e., DSS and LRFS) were employed only to select the best among alternative clustering strategies developed blindly with respect to prognosis. This method minimizes the risk of overfitting.



Unpredictability of Response to Chemotherapy and Radiotherapy

Reliable prediction of sensitivity to ChT and/or RT is an unmet need in the field of sinonasal oncology. Amit et al. recently demonstrated that sensitivity to ChT-RT can be based on response to neoadjuvant ChT in SNUC, at the cost of a 60% rate of ChT-related grade 3–4 adverse events (20). The same group also found that a 34-gene signature predicted the response to neoadjuvant ChT in SNUC, thus paving the way towards molecular biology-based selection of locoregional treatment, which would have the potential benefit of avoiding neoadjuvant ChT-related toxicity (30). Different from SNUC, chemoselection is not effective in other SNC such as SCC (28). Since SNUC represents a minority of SNC, there is an evident need for predictive tools to identify responders to non-surgical treatment. This would, in fact, save potential responders the morbidity of invasive surgeries such as open maxillectomy and endoscopic-assisted craniofacial resection, which were performed in more than half of the patients in the present series (83/145, 57.2%). Our analysis showed that PNI and pagetoid growth affected chemoradiosensitivity independently of other factors. PNI was associated with resistance to non-surgical therapies, whereas pagetoid growth was associated with increased chemoradiosensitivity. However, this observation has limited value from a predictive perspective: first, PNI and pagetoid growth were found at definitive histological examination after surgery, and one could argue that they might have been undetectable at pre-treatment biopsy; second, even if pagetoid growth was unprecedently reported in SNC in the present study (Figure 3D), this pattern of local extension is rather rare (7/145 cases, 4.8%). Pagetoid growth refers to the tendency of cancer cells to spread through the epithelium, thus representing a distinct escape route along the superficial aspect of the sinonasal tract compared to invasion of subepithelial tissues. This pattern was observed in 3 SNCNOS, 2 SCC, and 2 SNUC. Two cases were recurrent, and 3 had been treated with neoadjuvant ChT (of which 1 was a recurrent SNCNOS), thus excluding that this pattern represents an artifact induced by previous treatments (as 3 patients were treatment-naïve). PNI was observed in 44 (30.3%) patients, consistent with the findings of Gil et al. (22% in SCC, 60% in SNUC, 20% in SNCNOS) (31). The fact that PNI increased chemoradioresistance is consistent with its negative effect on prognosis, as observed in other studies (11, 32). Thus, it is reasonable to surmise that PNI represents a preeminent mechanism of resistance to therapy in SNC. Overall, it can be concluded that pathological features cannot be exploited, not even through machine learning, to infer chemoradiosensitivity of SNC, as also witnessed by the fact that CRF was unable to segregate cancers based on their estimated chemoradiosensitivity. Thus, since genomics- (30) and radiomics-based (33) signatures are efficient in segregating responders from non-responders while avoiding chemoselection, omic analysis of SNC represents the next logical step forward in sinonasal oncology research.



Limitations of the Study

Besides those already highlighted, the 1) retrospective design of this study, which included only patients treated with surgery as locoregional treatment, is the major limitation. This was imposed by the need for accurate pathological analysis of each case (that is not available in patients receiving a primary RT-based treatment), but, at the same time, it creates a considerable selection bias. In fact, some chemoradiosensitive cancers that initially responded to neoadjuvant ChT were treated with definitive ChT-RT, thus preventing inclusion in this study. 2) Given the rarity of SNC, both primary and recurrent cases were included. Removing recurrent cases would have meant decreasing the size of the series to a point of non-usability for this study. Since presentation did not significantly impact on survival, with prognosis being the first term of comparison between classifications, then the tradeoff between dramatically reducing the series size and accepting the non-/poorly-impacting approximation of including non-primary cases was considered in favor of this scientific policy. Of note, the same strategy has been adopted by several other research groups with a high reputation in the field of sinonasal cancer (34–41). However, despite there exists no sound and univocal evidence on the fact that recurrent SNC bear worse prognosis compared to primary SNC, a sufficiently large series of non-recurrent SNC would imply reducing the risk for confounders and bias. 3) Selection of staining methods to make diagnosis was dictated by case-specific needs and constraints, thus being non-systematic as an unavoidable consequence of the long inclusion period. 4) Lacking a blind re-evaluation by multiple raters, this study does not provide information on inter-rater agreement. 5) The sample size of this single-center series of rare cancers is inherently limited. 6) Even if unsupervised machine learning reduces the risk of overfitting, external validation will be essential to corroborate our findings.




Conclusions

This study confirmed that SNCs are exceedingly heterogeneous from a histological standpoint. Oncologic outcomes have plateaued since the early 2000s despite the adoption of multi-modal treatment regimens. SNCNOS, namely cancers that cannot be precisely classified as per WHO criteria, represent a non-negligible part of SNC and their prognosis is similar to that of aggressive histologies such as NEC and ID-SNUC. Re-classification of cancers through a machine learning method based on pathological information improved prediction and segregation, thus suggesting that a reappraisal of pathological and biological features of these cancers could be beneficial in terms of prognostic accuracy. However, the response to ChT and/or RT could not be predicted in this series, thus suggesting that other fields of research, such as radiomics and genomics/transcriptomics, should be exploited to identify predictive models. Of note, the classifications presented here were aimed at verifying the hypothesis of the study and are not intended to substitute the standardized method for classifying SNC.
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Background

Head and neck squamous cell carcinoma (HNSCC) is a type of malignant tumor with an increasing incidence worldwide and a meager 5-year survival rate. It is known that nuclear transporter factor 2 (NTF2) transports related proteins into the nucleus physiologically. However, the role of NTF2 in HNSCC remains unclear.



Methods

In this study, RNA-Seq data of HNSCC samples with corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) database. In addition, other expression profiling data were downloaded from the Gene Expression Omnibus (GEO) database. The differential expressions of NTF2, along with the overall survival (OS) rates were identified and analyzed. Then, the clinical features and expression levels of NTF2 were utilized to develop a prognostic model. The study also utilized the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods to determine the related pathways of NTF2. Furthermore, the Tumor Immune Estimation Resource (TIMER) database was referenced to discover the immune correlation of NTF2. In this research investigation, RT-qPCR, western blotting, Cell Counting Kit-8 (CCK-8) assay, wound-healing assay, and immunohistochemical (IHC) staining methods were adopted to perform experimental verifications.



Results

This study’s results confirmed that the NTF2 expressions were significantly increased in HNSCC tissue when compared with normal tissue. In addition, the high expression levels of NTF2 were found to be associated with poor prognoses, which was confirmed via the IHC validations of HNSCC samples with survival data. The results of functional enrichment analysis showed that the NTF2 was associated with epithelial cell growth, skin differentiation, keratosis, and estrogen metabolism. Furthermore, the expressions of NTF2 were determined to be negatively involved with immune infiltrations and correlated with immune checkpoint blockade (ICB) responses following various ICB therapy strategies. The results of the CCK-8 assay and wound-healing assay confirmed the NTF2’s promoting effects on the proliferation and migration of tumor cells.



Conclusions

This study defined a novel prognostic model associated with the expressions of NTF2, which was shown to be independently related to the OS of HNSCC. It was concluded in this study that NTF2 might be a potential diagnostic and prognostic biomarker for HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the mouth, nasopharynx, oropharynx, hypopharynx, and larynx (1). It is currently the most common malignancy of the head and neck, and the sixth most common cancer globally (2). There are more than 650,000 new cases and 350,000 deaths from HNSCC each year worldwide (3, 4). At present, the incidence of HNSCC is increasing year by year and is expected to increase by 30% by 2030 (5, 6). Tobacco, alcohol, human papillomavirus (HPV), and Epstein-Barr virus (EBV) infections are considered to be risk factors for the high incidence of HNSCC (7–10). It has been determined that due to the asymptomatic nature of the early disease stages, along with the lack of effective screening methods, the majority of patients tend to be diagnosed with advanced squamous cell carcinoma of the head and neck, resulting in a meager 5-year survival rate (11, 12). Therefore, there is an urgent need for effective biomarkers to be identified to assist clinicians in accurately predicting clinical outcomes and provide references for personalized medical treatments to combat HNSCC.

It has long been noted that the size of the nucleus tends to correlate with the size of the cell (13–17). Nuclear transport factor 2 (NTF2, also known as NUTF2) is bound up with nuclear size regulation and was initially identified based on its ability to stimulate nuclear input in permeable cells (18, 19). It has subsequently been shown to be responsible for importing Ran-GDP into the nucleus (20, 21). It has been found that altered nuclear scaling is associated with many types of cancer, and pathologists monitor the increased grading of nuclear sizes in cancer diagnosis and prognosis processes (22, 23). It has been reported that increased nuclear size during melanoma progression is related to decreased NTF2 expressions. In addition, increased NTF2 levels in melanoma cells are known to be sufficient for reducing the nuclear size (24). While Du et al. reported that NTF2 overexpression promoted the proliferation, migration, and invasion of glioma cells, which suggests that NTF2 is an oncogene in glioma (25). However, at present, the function of NTF2 in HNSCC remains unclear.

In this study, RNA sequencing data and the corresponding clinical information of HSNCC patients from the Cancer Genome Atlas (TCGA) database were comprehensively analyzed. The differential expressions of NTF2 were examined, and its diagnostic and prognostic values were evaluated. The results were further validated with clinical patients. The relationships between the expression levels of NTF2 and immune infiltration were then analyzed, and the function of NTF2 in HNSCC cell lines was verified. Finally, NTF2 was successfully identified as a potential diagnostic and prognostic biomarker for HNSCC.



Materials and Methods


Downloaded Data and Differential Expression Analysis

In this research investigation, the original counts and corresponding clinical information of RNA sequencing data (Level 3) for 528 HNSCC samples and 44 normal samples were obtained on July 1st, 2021 from TCGA dataset (https://portal.gdc.cancer.gov/). Also, the expression profiling data of 22 pairs of HNSCC were obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The data were analyzed in SPSS (Version 25, IBM Corp., USA), and the results were processed using Graphpad Prism (Version 8, GraphPad Software, USA). In addition, the UALCAN database (http://ualcan.path.uab.edu/) was referenced to investigate the relationships between the expression levels of NTF2 and various clinical features.



Survival Analysis

In this study, the prognostic values were determined by the Kaplan-Meier curves, and univariate and multivariate Cox regression analysis was performed. The R packages “RMS” and “RMDA” packages were utilized to perform the nomogram, calibration, and decision curve analysis (DCA) based on the results of the multivariate Cox proportional risk analysis. Nomogram and DCA were used to evaluate and compare the predictive models containing the clinical outcomes. All of the above-mentioned analysis methods and R packages were performed using R software version 4.0.3, and P < 0.05 was considered to be statistically significant.



Functional Enrichment Analysis

Differentially expressed genes were identified and analyzed using the “limma” R package and wilcoxon tests based on the expression levels of the NTF2 (26, 27). A false discovery rate (FDR) < 0.05 and a |log2(fold change)| >1 were set as the thresholds. Then, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized when using the “cluster profiler” R package. Finally, the “ggplot2” R package was adopted to visualize the experimental results.



Correlation Analysis of the NTF2 via Immune Infiltration, Immune Checkpoints, and ICB Responses

The Tumor Immune Estimation Resource (TIMER) database (https://cistrome.shinyapps.io/timer/) was referenced in this study to analyze six subsets of tumor-infiltrating immune cells (28). The immune checkpoint-related genes (SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2) were extracted from TCGA database to explore the tumor immunology. Then, Tumor Immune Dysfunction and Exclusion (TIDE) was used to predict the potential immune checkpoint blocking (ICB) responses (29). The R software packages “ggplot2”, “pheatmap”, and “ggpubr” were used in this research for graph visualization. In the aforementioned analysis processes, a P value of less than 0.05 was considered to be statistically significant.



Cell Cultures

During this study’s experimental processes, human nasopharyngeal carcinoma cell line 5-8F cells and human pharyngeal squamous carcinoma cell line Fadu cells were cultured in RPMI1640 (iCell, China) and MEM medium (Gibco, USA), respectively. All of the media contained 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin. Also, all of the cells were incubated at 37°C under the condition of 5% CO2.



siRNA Transfection, RNA Isolation, and Real-Time qPCR Methods

The NTF2 was knocked down in 5-8F and Fadu cell lines via siRNA transfection (Hanbio, China). Then, the 5-8F and Fadu cells were collected for subsequent studies after transfection for 48 hours.

The total RNA was extracted according to the instructions of the Trizol Reagent (Invitrogen, USA), and real-time quantitative  PCR (RT-qPCR) was performed using SYBR Green (Vazyme, China). The relative expression levels of the genes were analyzed using the ΔΔCT method and normalized to GAPDH.

The specific primers and siRNA sequences were listed in Table 1.


Table 1 | Primer and siRNA sequences of related genes.





Western Blotting

In order to assess the protein expression levels of the NTF2, a RIPA buffer and protease inhibitors (Gene-Protein Link, China) were used to disrupt the cells. Then, 20 μg of total protein was separated on 15% SDS-PAGE gel. The antibodies specific for NTF2 (66063-1, Proteintech, China) (1:1000) and GAPDH (T004, Affinity, China) (1:2000) were utilized for probing the proteins. Then, specific proteins were visualized using the method provided by the AI600 Imaging System (GE, USA).



Wound-Healing Assay

In the present study, 5-8F cells were inoculated in 6-well plates containing MEM with 10% FBS at a density of 4 × 105 cells/well. Subsequently, when 90% of the cells had become fused after 16 to 24 hours of culture, the confluence cells were lined with a 200 µL pipette. Then, the injured monolayer cells were washed with phosphate-buffered saline (PBS) for the purpose of removing the cell debris. In the next experimental step, the MEM with 10% FBS was replaced with a serum-free medium. Images were obtained at 0, 6, and 24 hours, and each experiment was independently performed at least three times. The scratch areas were evaluated using Image J, and the cell migration rates were calculated using the following formula:

	



Immunohistochemical Staining

Paraffin-embedded tissue was selected from 66 HNSCC patients who had undergone surgery in the Affiliated Hospital of Guilin Medical University between April 2012 and October 2019. The patients enrolled in this study were diagnosed with primary squamous cell carcinoma of the larynx, with no other malignancies in the mouth, oropharynx, or pharynx, and no previous history of radiotherapy or chemotherapy. In addition, both clinical and pathological data were collected, including the patients’ ages, differentiation grades, lymph node metastasis, and survival periods. The follow-up and postoperative management data of the patients were collected by telephone or from outpatient medical records. The tumor stages were classified according to the tumor node metastasis (TNM) staging system (2017) of the Union for International Cancer Control (UICC). The samples obtained from the 66 HNSCC patients and ten adjacent normal tissue were each divided into 4 µm thick sections for this study’s immunohistochemical (IHC) analysis process. A primary monoclonal antibody (66063-1, Proteintech, China) was used to detect the expression levels of the NTF2. Secondary antibodies to mouse IgG were obtained from the IHC kit (#CW2069, Beijing Cowin Bioscience Co., Ltd., China). Mouse IgG was used as a negative control to exclude false positive results. The staining intensity was assessed by histology score (H-score) and semi-quantitative analysis was performed by two independent pathologists who had not been informed of  the sources of the clinical samples (30, 31). The following formula was applied:

	

The studies involving human participants were reviewed and approved by the Ethics Committee of the Affiliated Hospital of Guilin Medical University. All of the patients/participants provided their written informed consent to participate in this study.



Statistical Analysis

Two-tailed student t-tests were performed in SPSS to evaluate the statistical significance in this study. The significance differences of P < 0.05, 0.01, and 0.001 were symbolized as *, **, and ***, respectively.




Results


NTF2 Was Highly Expressed in HNSCC

The mRNA expressions of NTF2 in human cancer cells were analyzed using the UALCAN database. It was found that when compared with the corresponding normal tissue, higher expressions of NTF2 were observed in the majority of the cancer types, including HNSCC (P < 0.001); bladder urothelial carcinoma (BLCA); breast invasive carcinoma (BRCA); cholangiocarcinoma (CHOL); colon adenocarcinoma (COAD); esophageal carcinoma (ESCA), and so on (Figures 1A, B). In addition, significant increases in the NTF2 expressions in HNSCC cases were observed in 44 cases of tumor tissue with paired adjacent normal tissue (P < 0.001) (Figure 1C). Furthermore, similar results were observed in 22 pairs of HNSCC samples from the GSE6631 cohort in the GEO database (P < 0.001) (Figure 1D). Therefore, the findings suggested that NTF2 may play a vital regulatory role in the development and progression of HNSCC.




Figure 1 | Expression of NTF2 in HNSCC. (A) NTF2 expressions in different types of cancers were examined using the UALCAN database. (B) Analysis of NTF2 expression in HNSCC using TCGA database. Comparison of NTF2 mRNA levels in paired adjacent normal tissue and tumor tissue of HNSCC from TCGA (C) and GEO database (D). *P < 0.05, **P < 0.01, ***P < 0.001.





NTF2 Expression Levels and the Clinical Features of the HNSCC Patients

This study investigated the NTF2 expression levels in various HNSCC subgroups using the UALCAN database. It was observed that the NTF2 expression levels were higher in the HPV negative group than in the positive group (P < 0.001; Figure 2D). In addition, the NTF2 expression levels were significantly up-regulated in both the men and women tumor groups, respectively (P < 0.001) (Figure 2A). The same results were observed for the different age groups (P < 0.001; Figure 2B); pathological grade groups (P < 0.001; Figure 2C); HPV infection groups (P < 0.001; Figure 2D); tumor stage groups (P < 0.001; Figure 2E); and lymph node metastasis groups (P < 0.001; Figure 2F) among the HNSCC cases. However, there were no significant differences observed among the clinical subgroups.




Figure 2 | NTF2 expressions in different groups were evaluated according to clinical features based on UALCAN database. Analysis was shown for sex (A), age (B), pathological grade (C), HPV infection (D), clinical-stage (E), and lymph node metastasis status (F). N0: no regional lymph node metastasis; N1: 1 to 3 cervical lymph nodes metastasis; N2: 4 to 9 cervical lymph nodes metastasis; N3: 10 or more cervical lymph nodes metastasis. ***P < 0.001.





High Expressions of NTF2 Were Observed to be Correlated With the Poor Prognoses of the HNSCC Patients

Then, the prognostic values of the NTF2 were determined. Following a median expression level, the patients were divided into the following two groups: High expression group (n = 264) and low-expression group (n = 264), as detailed in Figure 3A. The patients in the high expression group were observed to have remarkably higher mortality rates than those in the low-expression group (Figure 3B). In addition, the Kaplan-Meier survival curves also showed that the survival rates of the high expression patients were significantly lower than those of the low-expression patients (P = 0.000714; Figure 3C).




Figure 3 | Analysis of the prognostic risk signature based on NTF2 expression in TCGA database. (A) The risk score distribution of HNSCC patients. (B) Survival status and duration of patients. (C) Survival curve of NTF2 with high and low expression. The univariate (D) and multivariate (E) independent prognostic analysis of independent risk factors for overall survival (OS) in HNSCC patients. (F) Nomogram to predict the 1-, 3-, and 5-year overall survival of HNSCC patients. (G) Calibration curve for the OS nomogram model. The grey dotted line represents the ideal prediction curve.



In the present investigation, both univariate and multivariate Cox proportional risk analyses were performed. The results revealed that the NTF2 expression levels, patient ages, and TNM stages were independent prognostic factors (Figures 3D, E), which were included to establish an accurate prediction model. This study’s nomogram provided a graphical representation of the aforementioned factors, and the prognostic risks for an individual patient could be calculated by the points associated with each risk factor, as detailed in Figure 3F. In addition, as shown in Figure 3G, the calibration plots showed excellent agreement between the actual probabilities and the estimated probabilities at 1, 3, and 5 years.



Experimental Verifications of the Clinical Samples

An immunohistochemical staining method was used to detect the expression levels of NTF2 in the tumor samples from 66 HNSCC patients and 10 normal tissue samples. The results revealed that the NTF2 was highly expressed in the HNSCC tissue when compared with the normal tissue (Figures 4A, B). Meanwhile, there was no significant correlation observed between the NTF2 expression levels and the patient ages, genders, pathological grades, tumor stages, lymph node metastasis, or smoking habits (Table 2). The median follow-up timeframe for all of the examined patient cases was 36.2 months (ranging from 1.0 to 99.9 months). At the final follow-up times, it was determined that in 49 cases (74.2%), the patients had survived, and in 17 cases (25.8%) the patients had died. The Kaplan-Meier analysis results showed that the high expression levels of NTF2 were closely related to significant reductions in overall survival (P = 0.0066) in the HNSCC case samples (Figure 4C).




Figure 4 | Immunohistochemical evaluation of NTF2 as a prognostic marker. (A) Negative, weak, moderate, strong immunohistochemical staining of NTF2 was shown respectively in HNSCC and normal samples. (B) The H-scores of 66 HNSCC tissue were compared with those of 10 normal tissue. (C) Overall survival rate was compared between low and high expression group of NTF2 based on H-score. ***P < 0.001.




Table 2 | Correlation between NTF2 expression and the clinicopathological features in 66 HNSCC samples.





Functional Enrichment Analysis

In the present study, the co-expressed genes related to NTF2 were identified by mining data from TCGA database. This study’s volcano map and heat map with positive and negative correlations with NTF2 in HNSCC were shown in Figures 5A, B, respectively. A total of 119 genes associated with NTF2 (P < 0.05) were used in the GO and KEGG enrichment analyses in order to explore relevant biological functions and pathways. The top 30 critical terms for the enrichment analysis of the biological processes (BP), cellular components (CC), and molecular functions (MF) were detailed in Figures 5C–E. The first 10 KEGG pathways of the related genes were shown in Figure 5F.




Figure 5 | Functional enrichment analysis of NTF2 related genes. (A) In the volcano map of HNSCC in TCGA database, red dots were up-regulated genes and blue dots were down-regulated genes. (B) Heatmap of differential genes between NTF2 high and low groups in TCGA database. (C–E) GO analyses. (F) KEGG analyses.





Correlation Analysis of NTF2 Expression Level With Immune Infiltration, Immune Checkpoint, and ICB Response

The associations between the NTF2 expression levels and the infiltrating immune cells were analyzed. The results showed that NTF2 expression levels were negatively correlated with the B cells (PSpearman = -0.35; P < 0.001); CD4+ T cells (PSpearman = -0.25; P < 0.001); CD8+ T cells (PSpearman = -0.17; P < 0.001); neutrophils (PSpearman = -0.17; P < 0.001); macrophages (PSpearman = -0.11; P = 0.0017); and dendritic cells (PSpearman = -0.16; P < 0.001) (Figure 6A). The immune checkpoint-related genes (SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2) were extracted and analyzed. It was found that the CD274, CTLA4, LAG3, PDCD1, and TIGIT genes displayed negative correlations with the NTF2 expressions (Figure 6B). The potential ICB responses indicated that the NTF2 high expression group had a poor efficacy for immune checkpoint blockade treatments (Figure 6C).




Figure 6 | Correlations between NTF2 and immune status in HNSCC patients. (A) Spearman analysis between NTF2 and immune score. (B) Correlation analysis between NTF2 and immune checkpoint-related gene expression using Wilcox on test. (C) Potential immunotherapeutic responses were predicted through the TIDE algorithm. *P < 0.05, **P < 0.01, ***P < 0.001.





NTF2 Regulation of the Proliferation and Migration of HNSCC Cells

In order to investigate the role of NTF2 in HNSCC cells, two siRNAs targeting NTF2 (si1, si2) were transfected into 5-8F and Fadu cells respectively. It was found that when compared with the control cells treated with empty vector, the NTF2 was significantly silenced at the mRNA (Figure 7A) and protein levels in the knockdown group (Figure 7B). This study then tested the effects of cell proliferation in-vitro. Using the CCK-8 assay, it was found that the knockdown of the NTF2 could inhibit HNSCC cell proliferation after 48 hours (P < 0.001) and 72 hours (P < 0.001) of culturing (Figures 7C, D). In addition, the wound-healing assay was used to assess the capacity of cancer cell migration. The results revealed that the cells treated with NTF2 siRNAs showed lower migration rates than the control cells after 6 hours (P < 0.001) and 24 hours (P < 0.001) of culturing (Figures 7E, F).




Figure 7 | Experimental validation. (A, B) Knockdown validation by qRT-qPCR and western blotting. CCK-8 assay (C, D) and wound-healing assay (E, F) were used to detect the growth and migration of NTF2-knockdown HNSCC cell lines. *P < 0.05, **P < 0.01, ***P < 0.001.






Discussion

Following the Global Burden of Disease study, the incidence of lip and oral cancers has increased by 36.5%, throat cancers by 23.1%, and other pharyngeal cancers by 29.9% over the past decade (32, 33). It has been found that with the increased stages of the tumor, the survival rates of HNSCC patients decreased, and the postoperative recurrence rate increased (34–36), which could not be improved by adjustments in treatment regimens (37, 38). Therefore, the development of new therapeutic targets and prognostic markers is urgently required. In previous investigations, NTF2 had been reported to reduce the nuclear sizes of melanoma cells and was found to be highly expressed in glioma tissue (24, 25). However, NTF2 had not yet been reported in HNSCC cases. This study found increased expression levels of NTF2 in TCGA and GEO databases, which was confirmed by the results obtained in this study’s tissue samples. In addition, knockdown verifications of this molecule were conducted for the first time in the current investigation. The results confirmed that the downregulation of NTF2 could inhibit HNSCC cells proliferation and migration.

HPV infections are known to be associated with the majority of oropharyngeal cancers (> 70%) and are considered to be increasingly common risk factors for HNSCC (39, 40). HPV-associated tumors are modulated by helical domain mutations of the oncogene PIK3CA, loss of TRAF3, and the amplification of the cell cycle gene E2F1 (41). In this study, there was observed to be significant statistical differences in the expression levels of NTF2 between the HPV infection group and the non-HPV infection group. Therefore, the results suggested that the NTF2 may be involved in the integration of the HPV’s genetic information into the host genome.

Although such clinical indicators as TNM can be used to judge the prognoses of patients, they still have certain limitations (42). At present, the accumulation of public genome databases and the recent advances in bioinformatics have made it possible to acquire a comprehensive cancer genome map in large cohorts (43). However, the effects of NTF2 on tumor survival in HNSCC remain under-reported. The results obtained in this study showed that the high expressions of NUFT2 were related to the poor prognostic outcomes of the HNSCC patients in the bioinformatics database. Therefore, a nomogram was constructed in this study for the comprehensive predictions of patient survival rates in clinical settings. In addition, the prognostic effects were reconfirmed by the collected tissue samples.

TIMER web server is a comprehensive resource for the systematic analysis of immune infiltrates across diverse cancer types (28, 44). The relationships between the NTF2 expression levels and the tumor-infiltrating immune cells were analyzed in this study using the TIMER database. It was found that the NTF2 expression levels were negatively correlated with six immune cells. Therefore, it was indicated that NTF2 might indirectly alter tumor immune microenvironments. Furthermore, this study considered that immune checkpoint therapy may be less effective in patients with high expressions of NTF2, suggesting that it was a predictor of malignant prognosis.

However, it should be noted that there were still some limitations in this study. For example, the HPV infection data were not available in the clinical data. In addition, although the functions of NTF2 in cells were initially explored, the mechanisms of those functions were not investigated. Therefore, further studies should be conducted in-vivo and in-vitro to investigate the functions and mechanisms of NTF2 in HNSCC.

In conclusion, the results obtained in this study elucidated the differential expressions and clinical prognosis values of NTF2. The NTF2 immune-related functions were also discussed, which reflected the clinical and biological significance of NTF2 in HNSCC. The obtained results suggested that the NTF2 might be a potential novel tumor prognostic marker and therapeutic target in the future.
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Malignant myoepithelioma of the head and neck (HNMM) is a rare malignancy, and its characteristics and survival rates have not been well-defined. This study aimed to define the epidemiology of HNMM and identify the prognostic factors associated with the disease. Data on all patients diagnosed with HNMM between 1991 and 2016 were gathered from the Surveillance Epidemiology and End Results (SEER) database. The demographics, clinicopathological characteristics, treatment, and prognoses of the patients were described. Cox regression analysis was used to identify the prognostic factors, and the prognostic nomograms for overall survival (OS) and disease-specific survival (DSS) were constructed. A total of 333 cases of HNMM were identified. The average age at diagnosis was 60.6 years, and 50.1% of the patients were men. After diagnosis, 46.2% of patients underwent surgery alone, 43.5% of patients underwent surgery and radiotherapy, and 3.6% of patients received only radiotherapy. Survival analysis showed that the 5-year OS and DSS for all HNMM patients were 69.7 and 82.1%, respectively. In the multivariate analysis model, the undifferentiated pathological grade (P <0.05) and M1 in the M category (P <0.01) were independent prognostic factors for poor OS and DSS, whereas the use of surgical resection was an independent favorable prognostic factor for both OS and DSS (P <0.05). The prognostic nomograms for OS and DSS prediction were constructed; the C-index values for OS and DSS prediction were 0.78 (95% CI 0.70–0.86) and 0.79 (95% CI 0.67–0.90), respectively. In conclusion, this SEER data-based study demonstrated that HNMM patients often had a favorable prognosis, and distant metastasis, pathological grade, and the use of surgery contributed to their survival. Furthermore, we developed a prognostic nomogram to predict OS and DSS for HNMM patients to aid physicians in the clinical management of this rare disease.
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Introduction

A myoepithelial tumor is a rare malignancy that is composed almost exclusively of cells with myoepithelial differentiation. Myoepithelial tumors were classified among salivary gland tumors as separate entities by the World Health Organization in 1991 (1) . These can be can categorized as benign and malignant myoepitheliomas. Malignant myoepithelioma (MM) is a neoplasm that exhibits a wide morphological and cytological diversity similar to its benign counterpart, myoepithelioma, with evidence of malignant change. Due to a lack of specific symptoms or imaging characteristics, it is impossible to differentiate benign from malignant myoepitheliomas based on clinical information. Therefore, a biopsy is required for the diagnosis of this disease. Malignant myoepitheliomas often present with an infiltrative growth pattern, angiolymphatic or perineural invasion, and a propensity for metastasis and recurrence (2–4). Nagao et al. (5) reported that myoepithelial tumors with high cell proliferative activity suggest malignancy, irrespective of their histological appearance.

Malignant myoepitheliomas are often located in the salivary glands (6–8). In addition to the salivary gland, previous studies have reported that this disease may arise in other head and neck locations such as the nasal cavity, nasopharynx, and the maxillary sinus (9–14). Owing to its rarity, much of the current knowledge and clinical approaches to malignant myoepithelioma of the head and neck (HNMM) are limited to generalizations from malignant myoepitheliomas located in other anatomical regions (7). Furthermore, there is a lack of population data, and no studies so far have defined the clinicopathological characteristics and determined the factors influencing survival in a large cohort; these factors limit the understanding of this rare disease. Thus, we conducted the present study to describe the demographics, clinicopathologic characteristics, treatment regimen, and prognosis of HNMM patients using data from the Surveillance Epidemiology and End Results (SEER) database.



Materials and Methods


Participants

A population-based search for patients diagnosed with HNMM between 1991 and 2016 was carried out in the SEER database of “SEER 18 Regs Custom Data with additional treatment fields, Nov 2018 Sub (1975–2016)” using SEER*STAT 8.3.9 software. Given that SEER is a publicly available database, institutional review board approval was not required (Ethics committee of Shanghai Stomatological Hospital). The International Classification of Diseases for Oncology (ICD-O) topography code 8982/3 was used to identify all HNMM patients. The study variables included demographic information, clinicopathological factors, treatment, and prognosis. Specific information retrieved included data on age at diagnosis, sex, race, tumor grade, anatomical site, TNM stage (AJCC 7th edition), surgery, radiotherapy, survival status, and survival time (overall survival, OS; disease-specific survival, DSS). OS was defined as the interval from initial diagnosis to death from any cause or last follow-up, and DSS was defined as the interval from initial diagnosis to death caused by this disease.



Statistical Analysis

Descriptive statistics were calculated for all demographic and clinicopathological characteristics. Survival analyses for OS and DSS were performed using the Kaplan–Meier curve and log-rank tests. Univariate and multivariate Cox regression analyses were used to assess the predictive performance of each covariate for OS and DSS. All survival analyses were performed using MedCalc software (version 15.2.2, Mariakerke, Belgium), and the prognostic nomograms for OS and DSS predictions were constructed using R version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). P <0.05 was considered statistically significant.




Results

A total of 333 patients diagnosed with HNMM between 1991 and 2016 were found in the SEER database. Patient characteristics are shown in Table 1. Of these patients, 50.1% were women, and 72.7% were white. The average and median age at diagnosis were 60.6 and 63 years, respectively (range: 1–94 years). The salivary gland was the most affected site, followed by the oral cavity. Definitive staging was available in 67.3% of cases, with almost equal distributions at each stage (stage I, 21.9%; stage II, 25.8%; stage III, 25.0%; stage IV, 27.3%). Among 243 (OS) and 245 (DSS) patients with definitive information on metastases, lymph node and distant metastases were observed in 37/243 patients and 16/245 patients, respectively. As for the treatment regimen, 46.2% of patients underwent surgery alone, 43.6% of patients received surgery and radiotherapy, 3.6% of patients received radiotherapy alone, and 6.3% received neither. Compared with those receiving surgery plus radiotherapy, HNMM patients receiving surgery alone tended to exhibit well differentiated, early-stage tumors (TNM-I/II, T1/T2, lymph node-negative tumors) (Supplementary Table 1). Moreover, patients who could not receive surgery were more likely to have exhibited distant metastases (6/33 vs. 10/299).


Table 1 | Patients’ characteristics.



The Kaplan–Meier curves for OS and DSS showed that the 5-year OS and DSS in the entire cohort were 69.7 and 82.1%, respectively (Figures 1A, B). The median OS was 118 months (95% CI, 93–177). Survival analysis revealed a statistically significant difference in OS and DSS stratified according to the stage at presentation (P <0.01) (Figures 1C, D). Similarly, pathological grade and T/N/M categories were significantly associated with both OS and DSS (Figure 2). Male sex and the use of radiotherapy were associated with worse DSS (P = 0.04 for both). Younger age was associated with significantly better OS (P <0.01). However, race and primary site were not significantly associated with OS and DSS.




Figure 1 | Survival analysis. OS (A) and DSS (B) in all 333 HNMM patients; OS (C) and DSS (D) analysis stratified by AJCC-TNM staging.






Figure 2 | OS and DSS analysis. (A) OS and T category; (B) OS and N category; (C) OS and M category; (D) OS and pathological grade; (E) DSS and T category; (F) DSS and N category; (G) DSS and M category; and (H) DSS and pathological grade.



As for treatment modality, surgical resection was associated with better DSS and OS (Figures 3A, B). A Kaplan–Meier analysis was used to compare the relative survival curves for HNMM patients receiving surgical resection, radiotherapy, both, or neither (Figures 3C, D). Differences in OS were observed between the patients treated with surgery alone and radiotherapy alone (P = 0.01), whereas differences in DSS were observed between those treated with bimodal therapy and surgical resection (P = 0.01) (Supplementary Table 2).




Figure 3 | Survival analysis stratified by surgery (A, B) and treatment modalities (C, D).



We then further compared the efficacy of treatment modalities stratified by tumor stage and the presence of lymph node metastases. Surgery plus radiotherapy could not significantly improve OS or DSS, compared with surgery alone, among patients with late-stage (III/IV) or lymph node metastasis (P >0.05). Similarly, no significant differences were observed between treatment modalities (surgery alone vs. surgery plus radiation) among early-stage patients (I/II) (P >0.05) (Supplementary Figure 1).

Tables 2, 3 show the results of the univariate and multivariate Cox regression analyses for OS and DSS, respectively. In the multivariate analysis model, an absence of differentiation in terms of pathological grade (OS: HR = 5.46, 95% CI 1.62–18.4, P <0.01; DSS: HR = 8.20, 95% CI 1.31–51.4, P = 0.03) and M1 in the M category (OS: HR = 9.98, 95% CI 3.57–27, P <0.01; DSS: HR = 18.6, 95% CI 4.67–74.3, P <0.01) were independent prognostic factors for worse OS and DSS, while the use of surgical resection was an independent favorable prognostic indicator for both OS and DSS (OS: HR = 0.15, 95% CI 0.05–0.47 P <0.01; DSS: HR = 0.14, 95% CI 0.02–0.83, P = 0.03). Additionally, N2 in the N category was an independent, unfavorable, prognostic factor for OS (HR = 3.20, 95% CI 1.31–7.80, P = 0.01).


Table 2 | Univariate COX regression analysis for OS and DSS.




Table 3 | Multivariate COX regression analysis for OS and DSS.



Furthermore, we constructed the prognostic nomograms for OS and DSS among HNMM patients using independent prognostic factors from multivariate Cox regression analysis. As shown in Figure 4, distant metastasis contributed the most to both OS and DSS, followed by pathological grade and the use of surgery. The C-index values for OS and DSS predictions were 0.78 (95% CI 0.70–0.86) and 0.79 (95% CI 0.67–0.90), respectively. The 3-, 5-, and 10-year calibration curves showed excellent agreement between the predicted and observed values (Figure 5).




Figure 4 | The constructed prognostic nomogram for OS (A) and DSS (B) prediction. Each variable was assigned a score on the point scale. By summing the total score and locating it on the total point scale, a straight line was drawn down to determine the estimated probability of OS and DSS.






Figure 5 | Calibration curves for the 3-, 5-, and 10-year DSS/OS.





Discussion

Data on HNMM are relatively limited. In addition, there is a demand for large-scale cohort studies to determine the clinicopathological determinants of survival and treatment modalities for this rare malignancy. This study, using data from the SEER database, permitted the analysis of treatment and outcomes using population-based data relating to this rare malignancy. This study is, to our knowledge, based on the largest cohort of HNMM patients in its description of demographics and clinicopathological characteristics as well as its definition of prognostic factors.

Demographically, our results concerning age agreed with data previously reported in the literature related to HNMM, with the peak incidence recorded in the sixth decade of life (range: 14–96 years) (11, 15–17). Although age was significantly associated with OS rather than DSS, this significant association disappeared after adjusting for other variables in the multivariate Cox regression analysis. The sex distribution results contradicted those of the previously reported studies. Nagao et al. reported a predominance of women over men (2:1) among 10 patients with MM of the salivary gland, whereas Yu et al. observed a predominance of men (1.7:1) (5, 18). However, our cohort found an equal sex distribution, with 167 women and 166 men. One possible explanation for this discrepancy is that several previous studies only focused on patients with MM of the salivary gland. In our study, we included patients with MM in other head and neck regions, not only in the salivary gland. Notably, this study is the first to suggest that male patients with HNMM have a worse prognosis than their female counterparts. Race appeared to have no statistically significant effect on the survival of HNMM patients. This finding is inconsistent with previous reports that indicate that race is an independent prognostic factor in other head and neck malignancies (19, 20).

In terms of clinicopathology, most tumors (76%) occurred in the salivary glands in this cohort; this result is consistent with the results of previous studies (17). A survival analysis stratified in terms of the primary sites showed no significant differences in DSS and OS. Patients with MM of the salivary gland had a survival rate similar to those with MM of other parts of the head and neck. This result suggests that these patients may belong to one entity. Previous studies have revealed that pathological grade is an important prognostic reference for tumors in the head and neck region (21–24). This study also indicated a significant association between pathological differentiation and survival, and multivariate analysis demonstrated that pathological differentiation was independently associated with OS and DSS. In the constructed nomograms, pathological differentiation had the second highest contribution to OS and DSS predictions. This finding demonstrates the importance of the pathological differentiation of MM located in the head and neck region on prognosis; thus, physicians should evaluate the prognosis in terms of pathological differentiation. AJCC-TNM staging plays an essential role in treatment planning and prognosis evaluation. Based on the available information, in this cohort, an equal distribution of the AJCC-TNM stage was observed among the 234 patients. Meanwhile, 19.4 and 7.7% of patients had lymph node and distant metastases, respectively, signifying the aggressive nature of this rare malignancy via hematogenous and lymphatic spread. Both the N and M categories were independently associated with OS and DSS. For example, patients with distant metastases have a dismal prognosis (OS, 26 months; DSS, 28 months). Therefore, an early examination and diagnosis is vital to improve survival and decrease the possibility of metastases.

Overall, the prognosis of HNMM patients is better than that of patients with other malignancies in the head and neck region (25, 26). According to the largest case series reported to date, the 5-year cumulative survival rate of 59 Chinese patients with HNMM was 62% (27). In this cohort, our data showed a 5-year OS rate of 69.7%. One possible explanation for this difference is the higher proportion of stage III (23/59 cases) and stage IV (19/59) patients in the cohort in the study by Zhao etal. (27) than in this study. Furthermore, our data revealed that a significant majority of cases (90.1%) were treated with surgical resection, and the use of surgery was an independent favorable prognostic factor. Surgery may decrease the risk of death from all causes and HNMM by 85 and 86%, respectively. Surgery significantly prolonged OS by approximately 109 months (147 months vs. 38 months). Therefore, surgery is the optimal treatment strategy for patients with HNMM. A previous study has also demonstrated that surgical resection is the preferred treatment for HNMM. However, the requirements for a first surgery are high. Furthermore, if the resection is not complete, it is easy for relapse to occur, and the operation and adjuvant treatment often do not deliver satisfactory results (27). Radiotherapy is an alternative regimen for patients who cannot tolerate surgery; it can also serve as an adjuvant treatment for patients undergoing surgery. In this cohort, approximately half of all patients (47.1%) received radiotherapy. The addition of radiotherapy to surgery did not significantly prolong the OS or DSS. Moreover, patients receiving a combination of surgery and radiotherapy had a considerably shorter duration of DSS than those who underwent surgery alone. This result may be attributed to the fact that patients receiving radiotherapy plus surgery mostly had advanced-stage tumors and that patients with radiotherapy were more likely to have late-stage tumors (76/115 vs. 43/113). Radiotherapy alone is sometimes used palliatively, as was the case in 3.6% of patients in our cohort who received radiotherapy alone. Moreover, our data showed that patients who underwent surgery alone had a substantially longer OS than those who underwent radiotherapy alone, suggesting that radiotherapy could not replace surgery among patients with HNMM. However, only 12 out of 333 patients received radiotherapy alone. Hence, it is difficult to arrive at a solid conclusion on the role of radiotherapy in HNMM owing to the small sample size. Moreover, the efficacy of chemotherapy for HNMM could not be evaluated because of insufficient information. Therefore, the optimal treatment regime for HNMM patients still needs to be confirmed in future research.

Despite a large sample size for this rare malignancy, this study has several limitations. First, certain variables could not be precisely analyzed retrospectively, including tumor recurrence and comorbidities. Second, no information on chemotherapy was available in the SEER database; thus, the analysis was limited in terms of exploring the optimal regimen for this malignancy. The lack of data on cancer control and tumor recurrence in the SEER database restricted the potential knowledge we could have gained concerning this rare disease. Third, concerns emerged regarding the misclassification and lack of clinicopathologic variables, particularly tumor grade and histological differentiation, in the database. For example, there was no information on the TNM stage for 109 patients and on the pathological grade for 146 patients.

In conclusion, HNMM is a rare malignancy that often occurs in the sixth decade of life with an equal sex distribution. It has a relatively good survival rate with a 5-year OS and DSS of 69.7 and 82.1%, respectively. Pathological grade and distant metastasis are independently associated with its prognosis. Surgical resection confers OS and DSS benefits in patients with HNMM. Furthermore, distant metastasis, pathological grade, and the use of surgery contribute to the establishment of prognostic predictions of OS and DSS among HNMM patients.
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